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Abstract

Coupled-Resonator Optical Waveguides (CROWs) are chains of resonators in which

light propagates by virtue of the coupling between the resonators. The dispersive

properties of these waveguides are controllable by the inter-resonator coupling and

the geometry of the resonators. If the inter-resonator coupling is weak, light can

be engineered to propagate slowly in these structures. The small group velocities

possible in CROWs may enable applications in and technologies for optical delay

lines, interferometers, buffers, nonlinear optics, and lasers.

This thesis reports on achieving and controlling the optical delay in passive and

active CROWs. Both theoretical and experimental results are presented. Trans-

fer matrices, tight-binding models, and coupled-mode approaches are developed to

analyze and design a variety of coupled resonator systems in the space, frequency,

and time domains. Although each analytical method is fundamentally different, in

the limit of weak inter-resonator coupling these approaches are consistent with each

other. From these formalisms, simple expressions for the delay, loss, bandwidth, and

a figure of merit are derived to compare the performance of CROW delay lines. Using

a time-domain tight-binding model, we examine the resonant gain enhancement and

spontaneous emission noise in amplifying CROWs to find that the net amplification of

a propagating wave does not always vary with the group velocity but instead depends

on the termination and excitation of the CROW.

CROWs in the form of high-order (> 10) weakly coupled passive polymer mi-

croring resonators were fabricated and measured. The measured transmission, group

delay, and dispersive properties of the CROWs agreed with the theoretical results.
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Delays in excess of 100 ps and slowing factors of about 25 over bandwidths of about

20 GHz were observed. The main limitation of the passive CROWs was the optical

losses. To overcome the losses and to enable electrical integration, we demonstrated

active CROWs in the form of current injection InP-InGaAsP Fabry-Perot laser arrays.

Even though the losses could be completely compensated, the transmission spectra

and signal-to-noise ratio depended strongly on the injection current and resonator po-

sition. The signal-to-noise ratio degraded rapidly away from the input. Our results

highlight possible avenues to operate laser arrays as loss-compensated or amplifying

CROWs.
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Chapter 1

Overview

Resonators and oscillators are prevalent in many fields of science and engineering, from

mechanical springs to capacitors and inductors. Resonators are able to store large

amounts of energy built up from a considerably weaker input. Optical resonators, in

the same way, are capable of storing and building up intense optical fields. Optical

resonators are commonplace, for example, they are used as laser cavities and Fabry-

Perot etalon spectrum analyzers. While optical resonators have been studied for

many years [1], only with recent developments in fabrication technologies over the

past decade or so have researchers been able to fabricate optical microresonators

which have micron to sub-micron sizes.

Because of their compact, essentially chip-scale sizes, optical microresonators have

been attracting considerable theoretical and experimental attention, since they have

applications in fields ranging from fundamental physics to telecommunications sys-

tems [2]. Resonators with effective volume V ≤ (λ0

n
)3 possessing only one electro-

magnetic mode in a given spectral region (such as the emission region of an inverted

atomic population), have been essential for studies in atom-light interactions such as

cavity quantum electrodynamics (QED) and the Purcell effect [2]. Microresonator

lasers may have low thresholds since both the spontaneous emission as well as the

stimulated emission can take place into the same, single, electromagnetic mode.[2]

Resonators can also be used as optical filters and add-drop multiplexers for optical

communication systems [3, 4, 5].

1
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1.1 Basic Properties of Optical Resonators

Several parameters are important in the description of resonators: the free spec-

tral range, the quality factor, and the finesse. We will be referring to these terms

frequently throughout this work. The free spectral range (FSR) is a measure of

the optical path inside the resonator and gives the frequency or wavelength spacing

between the resonances. The FSR is defined as

∆ωFSR ≡ Ωm+1 − Ωm, (1.1)

where Ωm+1 and Ωm are consecutive resonance orders. The resonance condition is

satisfied whenever

βmLRT + φ0 = 2mπ, (1.2)

where βm = Ωmneff/c is the propagation constant, LRT is the round-trip length of

the resonator, and φ0 is any additional phase that the light may accumulate in a

round-trip. neff is the effective index of the resonator and c is the speed of light.

Therefore, substituting into Eq. (1.1), we obtain

∆ωFSR =
2πc

ngLRT

. (1.3)

ng is the group index, defined as

ng = neff

[
1 + ω

1

neff

∂neff

∂ω|Ω

]
. (1.4)

Because of their small sizes, microresonators can have FSRs of the order of GHz to

THz, making them useful for filtering applications in optical communication systems,

for example in wavelength division multiplexed (WDM) channels.

The second property used in descriptions of resonators is the quality factor, Q.

The Q factor describes the losses of the resonator and is defined as [1]

Q ≡ Ω× Field Energy Stored

Power Dissipated
, (1.5)
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where Ω is the resonance frequency of the resonator. Assuming that U is the field

energy stored, αRT is the fractional loss per round-trip in the resonator, and τRT is

the round-trip time, the power dissipated by the resonator is

Power Dissipated =
αRT U

τRT

. (1.6)

Thus, substituting into Eq. (1.5), we have

Q = Ω
τRT

αRT

. (1.7)

From Eq. (1.7), Q can be improved by either increasing the propagation time in the

resonator if the round-trip loss is fixed or by decreasing the round-trip loss.

The Q factor is also related to the bandwidth of a Lorentzian lineshape. For

a Lorentzian lineshape, the energy decays exponentially in the resonator so αRT =

1 − exp(−τRT /τL), where 1/τL is the rate of the dissipation. Hence, for small losses

such that αRT ≈ τRT /τL, Eq. (1.7) becomes

Q = ΩτL =
Ω

∆ω1/2

=
λ0

∆λ1/2

, (1.8)

where ∆ω1/2 and ∆λ1/2 are the full-widths half-maximum (FWHM) in frequency

and wavelength of the lineshape respectively, and λ0 is the resonance wavelength.

Eq. (1.8) is a particularly useful expression of the Q factor for comparison with

experiments, where ∆ω1/2 and ∆λ1/2 can be directly measured.

The final property is often used to describe resonators is the finesse, F . The

definition of finesse originally arose from the resolving power of a Fabry-Pert etalon

and is the ratio of the FSR to the FWHM width of the resonance,

F =
∆ωFSR

∆ω1/2

=
∆λFSR

∆λ1/2

. (1.9)

F can alternatively be viewed as a parameter that combines the FSR and Q, since
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for the case of a Lorentzian lineshape,

F =
∆ωFSRQ

Ω
=

∆λFSRQ

λ0

. (1.10)

1.2 Optical Microresonators

Recent advances in fabrication technologies and application-driven demands, par-

ticularly in telecommunications, sensing, and quantum computing, have enabled a

rapid development of optical microresonators. Microresonators can be broadly clas-

sified into two categories depending on how they trap light: those that rely on total

internal reflection (TIR) and those that rely on Bragg reflection for optical confine-

ment.

Examples of TIR microresonators include microspheres [6, 7], microdisks [8], mi-

crotoroids [9], and microrings [5, 10, 11, 12]. TIR microresonators have been fabri-

cated in a wide variety of materials including silica, silicon, compound semiconductors,

and polymers. The size of a TIR microresonator is limited by the TIR condition, or

equivalently, the index difference between the guiding region and the cladding. Com-

pared to Bragg resonators, index-guided resonators have the advantage that they

are typically easier to fabricate, for example requiring only photolithography, and

also have simpler coupling mechanisms, since the design of phase-matched couplers

is better understood. Moreover, this type of resonators has been demonstrated to

possess Q factors in excess of 108 [6, 7]. Ultra-high Q factors offer opportunities

to explore numerous fundamental aspects of optics, such as parametric effects [13],

opto-mechanical coupling [14], and light-atom coupling [15].

The second category of microresonators relies on Bragg reflection to confine light.

Examples of Bragg resonators include quarter-wave shifted distributed feedback (DFB),

photonic crystal (PC), Bragg annular, and onion cavities [1, 16, 17, 18]. This type of

resonator can possess significantly smaller physical sizes than index-guided resonators

since they are not limited by total internal reflection.
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1.3 Coupled-Resonator Optical Waveguides

As optical microresonators have the capability of storing light in physically small

volumes, we envision that a chain of coupled microresonators may provide a new

method for controlling the group velocity of optical pulses in a compact way on a

chip. A coupled-resonator optical waveguide (CROW) consists of a chain of resonators

in which light propagates in virtue of the coupling between the adjacent resonators

[19, 20, 21]. CROWs have the potential to significantly slow down the propagation of

light, which may find applications such as optical delay lines, interferometers, optical

buffers, and nonlinear optics [22, 23, 24].

Coupled optical resonators have already become important in nonlinear optics

research as well as in telecommunication applications in recent years [25, 26, 27, 28].

Systems consisting of a few coupled resonators, say 1 < N < 5, have been proposed

and demonstrated for optical filtering and modulation [4, 3, 22]. CROWs are “large”

systems at the other extreme, with say N > 10 resonators, and can be regarded as

waveguides with unique and controllable dispersion properties [19, 20, 25, 29].

1.3.1 Tight-Binding Analysis

The “large” chains (CROWs) have been previously analyzed using a spatial tight-

binding formalism [19]. In the tight-binding method, we approximate the electric field

of an eigenmode EK of the CROW as a Bloch wave superposition of the individual

resonator modes EΩ [19],

EK(r, t) = E0 exp(iωKt)
∑

n

exp(−inKΛ)EΩ(r− nΛẑ), (1.11)

where the nth resonator in the chain is centered at z = nΛ.

We substitute Eq. (1.11) into the wave equation and adopt the normalization
∫

d3rE∗
Ω(r)εΩ(r)EΩ(r) = 1, where εΩ(r) is the dielectric coefficient of an individual

resonator. Under the assumption of symmetric nearest neighbor coupling, after some
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algebra, we find the dispersion relation of the CROW is [19]

ωK = Ω

[
1− ∆α

2
+ κ1 cos(KΛ)

]
, (1.12)

where Ω is the resonant frequency of an individual resonator and ∆α and κ1 are

defined as

∆α =

∫
d3r[ε(r)− εΩ(r)]EΩ(r) · EΩ(r) (1.13a)

κ1 =

∫
d3r[εΩ(r− Λẑ)− ε(r− Λẑ)]EΩ(r) · EΩ(r− Λẑ), (1.13b)

where ε(r) is the dielectric coefficient of the CROW. Therefore, the coupling parameter

κ1 represents the overlap of the modes of two neighboring resonators and ∆α/2 gives

the fractional self-frequency shift of ωK .

The aforementioned tight-binding expansion is mathematically elegant and applies

to any kind of resonator. It has been used extensively to study both linear and

nonlinear optical propagation in CROWs [30, 31, 32, 33]. This theoretical framework

most readily lends itself to the analysis of infinitely long, lossless CROWs, or those

in which periodic boundary conditions apply, consisting of identical resonators.

1.4 Motivation and Organization of the Thesis

Since the initial proposal of CROWs [19, 20], most of the research to date on

CROWs has been theoretical in nature. With such unique dispersive properties and

the potential to significantly slow down propagating optical pulses, CROWs may find

applications in many fields of science and engineering. This thesis brings CROWs from

the theoretical realm into practice by developing the theoretical and experimental

approaches to understanding, explaining, and measuring light propagation in active

and passive CROWs.

We begin with Chapter 2 wherein we develop a theoretical approach based on

transfer matrices to analyze CROWs that can be easily corroborated with experi-

mental results. A set of design rules for CROW delay lines is presented in Chapter



1.4 Motivation and Organization of the Thesis 7

3, which quantifies the fundamental trade-offs between bandwidth, delay, and loss in

CROWs. Chapter 4 gives an introduction to optical polymers as well as the fabrica-

tion and measurement of single microring resonators. We then present amplitude and

time-delay measurements of CROWs in the form of high-order coupled ring resonators

in Chapter 5.

The last several chapters of the thesis discuss CROWs in active, optically am-

plifying media. Chapter 6 develops a time-domain tight-binding model to examine

the spontaneous emission noise and the effect of the termination of CROWs on the

net gain through the structure. Chapter 7 proposes Fabry-Perot resonator arrays

as a means to achieve a large reduction of the group velocity without using a high

refractive index contrast material system, culminating in a demonstration of active

CROWs in the form of current injection InP-InGaAsP laser arrays in Chapter 8.

Some basic properties of transfer matrices and their applications to other types of

coupled resonators are included in Appendix A.



Chapter 2

Matrix Analysis of Coupled-Resonator
Optical Waveguides

2.1 Introduction

In this chapter1, we use a transfer matrix formalism to investigate continuous-

wave and pulse propagation through microring CROWs. In the limit of weak inter-

resonator coupling, we shall find the dispersion relation agrees with that derived using

the tight-binding model, and the equivalent time domain equations agree with tempo-

ral coupled-mode theory. We will obtain analytical expressions for pulse propagation

through a semi-infinite CROW in the case of weak coupling which fully accounts for

the nonlinear dispersive characteristics. We shall also show that intensity of a pulse

in a CROW is enhanced by a factor inversely proportional to the inter-resonator

coupling. In finite CROWs, anomalous dispersion allows for a pulse to propagate

with a negative group velocity such that the output pulse will appear to emerge be-

fore the input as in “superluminal” propagation. The matrix formalism, as we will

demonstrate, is a powerful approach for microring CROWs since it can be applied to

structures and geometries for which analyses with the commonly used tight-binding

or temporal coupled-mode approach are not applicable.

The theory of CROWs and other coupled-resonator systems has been explored

extensively in recent years. Much of the theoretical work on CROWs thus far has been

based on the tight-binding method described in Section 1.3.1 [25, 27] and the temporal

1 c©2004 OSA. Reprinted, with permission, from [34] and [35].

8
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coupled-mode theory [5, 36]. The temporal coupled-mode equations [37] are largely

phenomenological, and the tight-binding method, while mathematically elegant, is

not always convenient for physical systems. For example, it does not readily account

for input/output coupling, loss, different resonator sizes, finite resonator chains, or

variations in coupling strengths.

In practice, the number of coupled resonators in a CROW is finite and possibly

not very large, hence we need a design-oriented analysis tool that can deal with any

number of resonators 1 ≤ N < ∞. The transfer matrix approach [38, 39, 40] is

particularly powerful since it can deal with any arbitrary sequence of resonators and

couplers, which is a prerequisite to general optical filter design [3, 5, 41]. With the

aim of rigorously analyzing realistic CROW structures, we use the transfer matrices

to study a system consisting of N coupled ring resonators with input and output

waveguides.

We choose to study a specific model of a sequence of ring resonators that are

coupled serially in a phase-matched manner as in Fig. 2.1 for the following reasons:

1. Ring resonators can be made to support a single transverse mode in a given

spectral region which is an essential feature in its practical and scientific appli-

cations. This property is in contrast to disk or spherical resonators with radii

much greater than the optical wavelength.

2. Evanescent wave coupling between ring resonators and optical waveguides can

be realized straight-forwardly and in the planar geometry by simple lithographic

techniques.

3. The simple modal structure and coupling mechanism enable an essentially “ex-

act” analytical treatment of arbitrary sequences of coupled ring resonators, thus

a meaningful comparison to experiments.

Since the modal properties of ring resonators can be easily tailored and their fab-

rication technology is mature [41, 42], they may enable practical implementations

of CROWs. The results we obtain from the analysis of the ring resonators will be

generalized to photonic crystal and Fabry-Perot cavities in Section 2.7.
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Figure 2.1: An infinitely long chain of coupled ring resonators, with the forward and
backward propagating field components labelled

2.2 Transfer Matrix Formalism

We first consider an infinite chain of coupled ring resonators in order to obtain its

dispersion relation. Both forward and backward propagating waves exist in an indi-

vidual resonator, as shown in Fig. 2.1. We assume the coupling region is sufficiently

long compared to λ, so that the light circulating in one direction in a resonator is

phase-matched to only one of the two degenerate counter-propagating modes of the

adjacent resonator. Using the notation of Fig. 2.1, the coupling between two adjacent

rings can thus be described by [43]


 b′n

bn+1


 =


 t κ

−κ∗ t∗





 a′n

an+1


 ,


 d′n

dn+1


 =


 t κ

−κ∗ t∗





 c′n

cn+1


 (2.1)

where t and κ are respectively the dimensionless transmission and coupling coefficients

over the coupling length. The matrix is unitary and unimodular so that |t|2+|κ|2 = 1.

Defining a vector with the different field components,

xn =




a

b

c

d




n

, (2.2)
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Eq. (2.1) can be rewritten as

xn+1 =


P 0

0 P


 x′n ≡ Px′n (2.3a)

P =
1

κ


−t 1

−1 t∗


 . (2.3b)

As the field propagates around the ring, it accumulates a phase shift and may be

attenuated, so

x′n =


0 Q

Q 0


 xn ≡ Qxn (2.4a)

Q =


 0 e−iβRπ

eiβRπ 0


 . (2.4b)

In the above definition, R is the ring radius and β = neff (ω)ω/c + iα, where neff (ω)

is the frequency dependent effective index and α is the loss (or gain) per unit length

in the ring. Combining Eqs. (2.3) and (2.4), we have

xn+1 = PQxn. (2.5)

Eq. (2.5) is completely general. The matrices P and Q can be specified at each

frequency to account for any frequency dependence of the effective index, loss, and

transmission and coupling coefficients.

2.3 CROW Dispersion Relation

From a theoretical point of view, it is important to understand how the tight-

binding and matrix approaches are related to each other. We shall show that the

matrix method embodied in Eq. (2.5) converges to the tight-binding result in Eq.

(1.12) under certain approximations. The approach we adopt is similar to the transfer

matrix analysis of a Bragg stack [44].
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The field in one resonator of the CROW as specified by xn is

E(ρ, φ) = E(ρ)×




an exp[iβR(π − φ)] + dn exp[−iβR(π − φ)] 0 < φ < π

bn exp[−iβR(π + φ)] + cn exp[iβR(π + φ)] −π < φ < 0
(2.6)

where φ is the azimuthal angle relative to the propagation direction in the counter-

clockwise sense, and ρ is the radial co-ordinate. For a mode of an infinite chain of

ring resonators, the fields are periodic at the lattice constant, Λ. So applying Bloch’s

theorem,

xn+1 = exp(−iKΛ)xn, (2.7)

where K is the CROW propagation constant. Combining this requirement with Eq.

(2.5) leads to

Det|PQ− exp(−iKΛ)U | = Det|(PQ)2 − exp(−i2KΛ)U | = 0, (2.8)

where U is the identity matrix.

We assume lossless propagation and Im(κ) À Re(κ) for phase-matched coupling.

We recall that at the resonant frequency of an individual resonator, Ω, Ωneff (Ω)R/c =

m, where m is an integer, and neff (Ω) is the effective index at Ω. Therefore, solving

Eq. (2.8), we obtain

sin

(
neff (ω)ωπR

c

)
= ±Im(κ) cos(KΛ), (2.9)

which is the desired dispersion relation for a ring CROW. This relation is exact in

the sense that it involves no assumption about the coupling strength. Approximating

neff (Ω) ≈ neff (ωK), Eq. (2.9) becomes

sin
(ωK

Ω
mπ

)
= ±Im(κ) cos(KΛ). (2.10)

If we expand Eq. (2.9) in the parameter ∆ωneffπR/c, ∆ω ≡ ωK − Ω, we obtain
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Figure 2.2: The exact and cosine-approximate (i.e., tight-binding-approximate) dis-
persion relations for m = 100 and κ = −0.8i

to first order
ωK

Ω
= 1± κ2 cos(KΛ), (2.11)

where κ2 ≡ Im(κ)/(mπ). The two dispersion relations corresponding to the ‘±’ coex-

ist for an infinite structure to allow for both forward and backward wave propagation

(i.e., positive and negative group velocities). Physically, for a finite structure without

reflection and a uni-directional input as in Fig. 2.3, only the dispersion relation with

the matching group and phase velocities as the input wave will be of significance.

Eq. (2.11) is of a form identical to the tight-binding result in Eq. (1.12). The

correction ∆α/2 term does not explicitly appear in Eq. (2.11) since it is accounted

for by Re(κ). From Eq. (2.11), it follows that for ∆ωmπ/Ω ¿ 1, it is necessary that

|κ| ¿ 1. This condition and the absence of all but the nearest neighbor coupling are

thus the validity conditions for the tight-binding approximate result Eq. (2.11).

Figure 2.2 shows the dispersion relations for κ = −0.8i and m = 100 as calculated

using the “exact” form in Eq. (2.10) and the approximated form in Eq. (2.11). As

ωK/Ω increases, the exact dispersion relation deviates more significantly from the

cosine form. For smaller values of κ, the deviation from the cosine dispersion relation

is reduced.
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The Bloch modes of the CROW are given by the eigenvectors of PQ. At each

frequency, there are 4 Bloch modes corresponding to the 4 eigenvalues (i.e., values of

K). The eigenvalues are exp(−iK1Λ) ≡ ξ1, exp[−i(K1Λ + π)] ≡ −ξ1, exp(−iK2Λ) ≡
ξ2, and exp[−i(K2Λ + π)] ≡ −ξ2. The corresponding (un-normalized) eigenvectors

are

q̂ξ1 =




ζ + γ

1

ζ + γ

1




, q̂−ξ1 =




−(ζ + γ)

−1

ζ + γ

1




, q̂ξ2 =




ζ − γ

1

ζ − γ

1




, q̂−ξ2 =




−(ζ − γ)

−1

ζ − γ

1




,

(2.12)

where

γ =
1

2t

√
1 + exp(

−4imπω

Ω
) + 2 exp(

−2imπω

Ω
)(1− 2t2), (2.13a)

ζ =
1

2t

[
1 + exp(

2imπω

Ω
)

]
. (2.13b)

The 4 eigenvectors are orthogonal to each other and they represent standing waves

in each resonator. In the limit of weak coupling |κ| ¿ 1 and ω ≈ Ω, such that

γ ≈ |κ| ≈ 0, ζ ≈ 1, and ξ1 = ξ2, the 4 eigenvectors reduce to 2 degenerate eigenvectors,

representing the two different superpositions of the clockwise and counter-clockwise

propagating waves in a single resonator:

q̂ξ1 = q̂ξ2 =




1

1

1

1




, q̂−ξ1 = q̂−ξ2 =




−1

−1

1

1




. (2.14)

In the limit of strong coupling and ω ≈ Ω, t ¿ 1, γ + ζ ≈
√

1+|κ|
1−|κ| ≈ 2

t
, and
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ζ − γ ≈
√

1−|κ|
1+|κ| ≈ 0. The eigenvectors become

q̂ξ1 =




2
t

1

2
t

1




, q̂−ξ1 =




−2
t

−1

2
t

1




, q̂ξ2 =




0

1

0

1




, q̂−ξ2 =




0

−1

0

1




. (2.15)

We observe that 2 field components are significantly stronger than the other. This

corresponds to a wave that “zig-zags” through the resonators without making com-

plete round-trips in each resonator. The asymptotic behavior of the eigenvectors

confirms the physical picture that as |κ| → 0, the modes of the CROW are essentially

the modes of the independent resonators, and as |κ| → 1, the microrings no longer act

as resonators and the CROW modes are essentially conventional waveguide modes.

2.4 Time Domain Analysis

Another powerful approach in the study of coupled resonator systems is the time

domain or temporal coupled-mode analysis. A time domain picture can also more

easily facilitate the study of pulse propagation in the presence of certain optical

nonlinearities, such as the Kerr effect for example [26, 27]. Little et al. have previously

analyzed coupled ring resonators using temporal coupled-mode theory [5]. We shall

see that the transfer matrices are also consistent with this approach.

Since the matrix analysis is a frequency domain approach, the temporal dynamics

is related to the transfer matrices by the Fourier transform. The field amplitudes in

the matrix approach, an and bn, are the frequency-dependent Fourier components of

the field. From the coupling matrices and for unidirectional, phase-matched coupling

such that κ∗ = −κ [1], using Eqs. (2.3) and (2.4), we find that

2ian sin(βπR) = i|κ|(an+1 + an−1). (2.16)
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Since β = ωneff/c, in the same way that Eq. (1.12) can be approximated by Eq.

(2.11) in the limit of weak coupling, the left side of Eq. (2.16) can be linearized such

that

iωan − iΩan = ± i|κ|c
2ngπR

(an+1 + an−1), (2.17)

where ng is the group index. If ng ≈ neff , taking the inverse Fourier transform of Eq.

(2.17), we find the evolution of the field in the time domain is

dãn(t)

dt
− iΩãn(t) = ±i|κ|Ω

2mπ
[ãn+1(t) + ãn−1(t)]. (2.18)

Attenuation or gain can be introduced by the addition of an imaginary part to neff .

Substituting the form of the pulse envelope, An(t) = ãn(t) exp(−iΩt), into (2.18)

yields
dAn(t)

dt
= ± i|κ|Ω

2mπ
[An+1(t) + An−1(t)]. (2.19)

Eq. (2.19) represents a set of linear first-order differential equations that can be

solved for specific initial conditions. In analogy to an array of coupled waveguides,

the solution to (2.19) for the initial conditions A0(t = 0) = 1 and An 6=0(t = 0) = 0 is

An(t) = inJn

(
t

Text

)
, (2.20)

where Jn is the nth order Bessel function and Text = ± mπ
|κ|Ω [1]. Appropriate super-

positions of Bessel functions can be used to satisfy any arbitrary initial conditions

and can thus describe the evolution of an arbitrary pulse in an infinite ring resonator

CROW in a purely temporal picture.

Eq. (2.18) is exactly identical to the result obtained previously by Little et al.

whose analysis is completely based in the time domain [5]. Reynolds et al. have also

derived the same result for coupled defects in photonic crystals with nearest neighbor

coupling [36]. The result shows that the transfer matrix method is identical to the

temporal coupled-mode theory in the limit of weak, phase-matched coupling. This

equivalence is essential since it allows for the generalization of the results obtained
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Figure 2.3: A CROW consisting of N ring resonators with input and output wave-
guides

using a particular approach to other structures for which that approach does not

strictly apply.

2.5 Finite CROWs and a Travelling Wave Picture

For physical realizations of CROWs, we are interested in finite structures with

input and output coupling. These properties can be easily incorporated into the

transfer matrices. Fig. 2.3 shows a typical implementation of a microring CROW:

light is coupled into and out of a set of coupled ring resonators via the input and

output waveguides. Assuming that the coupling length between waveguides and the

CROW is long compared to λ, then only the travelling wave phase-matched to the

input can be excited.

Adopting the notation in Fig. 2.3, the fields between adjacent resonators are

related by 
a

b




n+1

= PQ


a

b




n

, (2.21)

where P and Q are defined in Eq. (2.3) and Eq. (2.4).

By cascading the transfer matrices, PQ, we obtain an expression for the field
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components at the output of the CROW after N identical rings:


aN+1

bN+1


 = PoutQ(PQ)N−1Pin


a0

b0


 ≡


A B

C D





a0

b0


 , (2.22)

where Pin and Pout describe the coupling between the CROW and the input/output

waveguides. For a single input to the waveguide, we set aN+1 = 0. Therefore, the

transfer functions at the “through” and “output” ports as shown in Fig. 2.3 are

b0

a0

= −A

B
≡ Tthr(ω), (2.23a)

bN+1

a0

= C − AD

B
≡ Tout(ω). (2.23b)

As in microring filter design [5], the coupling between the waveguides and the CROW

can be selected to maximize the flatness of the transmission response. Therefore, a

finite CROW can be designed to mimic an infinite CROW over a bandwidth with a

sufficiently flat transmission response.

An advantage of the matrix formalism is that it is valid for chains of any length

N , which is essential in analyzing any physical realization of a CROW. From the

phase response of the transmission function given by Eq. (2.23), we can deduce the

dispersion relation of the structure. However, we note that the travelling wave is not

an eigenmode of the CROW, since the Bloch modes as given by the eigenvectors of

PQ are standing waves as in Eq. (2.12). A travelling wave solution is formed by a

superposition, either the sum or difference, of the two Bloch modes with equal group

velocities (i.e., q̂ξ1 and q̂−ξ1 , or q̂ξ2 and q̂−ξ2). The travelling wave is an eigenvector of

(PQ)2, and it is verified that the sense of propagation in the rings alternates between

clockwise and counter-clockwise with each operation of PQ, as depicted in Fig. 2.3.

Therefore, taking the phase difference accumulated over two rings to be −2KΛ, where

K is the Bloch wave vector, such that the phase difference between the output and

the input is approximately −(N − 1)KΛ, we can determine the CROW dispersion

from the finite structure.
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Figure 2.4: The exact dispersion relation for an infinite CROW and the dispersion
relation as extracted from 20 coupled resonators. The rings have a radius of 16.4 µm
and the inter-resonator coupling is −0.5i.

As an example, we compute the dispersion relation of a finite CROW consisting of

20 coupled rings with inter-resonator and waveguide-resonator coupling constants of

−0.5i. The rings are lossless, and their radius is 16.4 µm. neff is taken to be constant

and equal to 1.5. Fig. 2.4 compares the dispersion relation extrapolated from the

finite CROW with the dispersion relation of an infinite CROW as given by Eq. (2.10).

The small amplitude ripples are manifested at the resonance frequencies of the finite

structure. In the limit of an infinite number of resonators, the resonance peaks will

be infinitesimally close to each other and the ripples will be smoothed out.

2.6 Pulse Propagation

Pulse propagation through CROWs are of particular technological interest, since

information transmitted in optical communication systems is typically encoded in

pulses. Using the results from the previous sections, we can analytically and numer-

ically study optical pulse propagation in semi-infinite and finite microring CROWs.
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2.6.1 Semi-Infinite Case

A semi-infinite microring CROW consists of an infinitely long CROW coupled to a

single input waveguide as in Fig. 2.5. The input waveguide ensures that only a pulse

of positive (or negative) group velocity propagates through the structure. Assuming

that the bandwidth of the input pulse is within the bandwidth of the CROW band

such that all of the input light is coupled into the waveguide, the field amplitude

b1 in the first resonator is b1(ω) = −1/κia0(ω), where κi is the coupling coefficient

between the input waveguide and the first resonator. Since |κi| < 1, the intensity of

the field inside the CROW is higher than that of the input pulse by 1/|κi|2. This

does not violate energy conservation, as the increased intensity is a consequence of

the reduced group velocity and hence the spatial compression of the pulse inside the

CROW. Using the dispersion relation in Eq. (2.11) and approximating Λ ' 2R, the

maximum group velocity in the CROW is

vg,max =
2c|κ|
neffπ

. (2.24)

Defining the “slowing” factor to be

S =
c

neffvg,max

, (2.25)

then S can be expressed as

S =
π

2|κ| . (2.26)

Therefore, for κi = κ, the intensity inside the rings is roughly enhanced by (2
3
S)2.

This result makes intuitive sense since the only loss mechanism for the otherwise

lossless resonators is the inter-resonator coupling. Interestingly, even though the

energy velocity of the Bloch modes at Ω corresponds to the group velocity vg,max[44],

the energy velocity of a wave that is fully coupled into the semi-infinite CROW is

proportional to |κ|2. Hence, the intensity enhancement is proportional to the energy

velocity reduction rather than the group velocity reduction.



2.6 Pulse Propagation 21

b

a10a

b0

b1’ ’

’a3

3b ’

’a1

Input

Through

a2

b a

b

2

3

3

b ’2

’a2

.  .  .

1

Figure 2.5: A semi-infinite CROW

Also, in contrast to CROWs, for other coupled resonator structures where there is

no feedback between the resonators, such as the SCISSOR [45], the slowing factor is

approximately proportional to 1/|κ|2 in the case of weak coupling. However, a CROW

has the advantage that, even in the presence of loss, it is most transmitting for the

frequencies of the CROW band, while a side-coupled resonator is most attenuating

near the resonant frequency of the resonator.

To analyze the temporal dynamics of a pulse launched into the semi-infinite

CROW, we adopt a method of analysis that is analogous to pulse propagation in

conventional waveguides such as optical fibers. We shall find in the limit of weak

coupling, such that Eq. (2.11) is a good approximation, there exists a closed-form

solution to the evolution of any arbitrary input pulse.

The electric field where b1 is taken, E(t, z = 0), can be expressed as the Fourier

integral

E(t, z = 0) =

∫

band

dωb1(ω) exp(iωt), (2.27a)

b1(ω) =

∫
dt′

2π
E(t′, z = 0) exp(−iωt′). (2.27b)

At z = NΛ, each frequency component, b1(ω), acquires a phase shift of NKΛ, so the

field is

E(t, z = NΛ) =

∫

band

dω exp(iωt)

∫
dt′

2π
E(t′, z = 0) exp[−i(ωt′ + K(ω)NΛ)]. (2.28)
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However, K(ω) is given by the dispersion relation of the CROW, Eq. (2.11). There-

fore, instead of integrating over frequency in Eq. (2.28), if we integrate over the half

of the Brillouin zone that gives the appropriate group velocity (for example, the right

half), we obtain

E(t, z = NΛ) = −ΛΩκ2e
iΩt

∫ π/Λ

0
dK sin(KΛ)e−iKNΛeiΩκ2 cos(KΛ)(t−t′) (2.29)

∫
dt′
2π
E(t′, z = 0)e−iΩt′ .

Eq. (2.29) can be further simplified by letting x = KΛ, and invoking the Jacobi-

Anger expansion [32],

eiΩκ cos(x)(t−t′) =
∑
m

cmJm[Ωκ2(t− t′)] cos(mx) (2.30a)

cm =





1 if m = 0

2im if m > 0
, (2.30b)

to arrive at

E(t, z = NΛ) = −Ωκ2e
iΩt

∑
m cm

∫ π

0
dx sin(x) cos(mx)e−ixN (2.31)

∫
dt′
2π

Jm[Ωκ2(t− t′)]E(t′, z = 0)e−iΩt′ .

However, αm,N =
∫ π

0
dx sin(x) cos(mx)e−ixN 6= 0 only for certain values of m and N :

αm,N =





iπ
4

for N = m− 1 and N = −m− 1

− iπ
4

for N = m + 1 and N = −m + 1

−2(m2+N2−1)
(m2+N2−1)2−4m2N2 for N + m = even.

(2.32)

So the equation for the pulse envelope E(t, z), such that E(t, z) = E(t, z)eiΩt, is given

by the convolution integral

E(t, z = NΛ) = −κ2Ω

2π

∑
m

cmαm,N

∫
dt′Jm[Ωκ2(t− t′)]E(t′, z = 0). (2.33)
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The Fourier transform of a Bessel function Jn(t) is only defined within |2πf | ≤ 1 [46],

which accounts for the finite bandwidth of the CROW, Ω(1−|κ2|) ≤ ω ≤ Ω(1+ |κ2|).
Eq. (2.33) holds for an arbitrary input pulse and its sole assumption is the cosine-

approximate dispersion relation, which is valid for small κ. The nonlinear dispersive

nature of the CROW is embodied in the summation over the Bessel functions. Fig.

2.6(a) shows the evolution of a Gaussian input pulse E(t, z = 0) = exp(−t2/T 2) as

calculated using Eq. (2.33). Figure 2.6(b) shows the numerical results obtained from

the transfer matrices. The analytical solution is in excellent agreement with the fully

numerical approach. As the pulse propagates, even though the main peak travels at

the group velocity, the ripples develop only at the tail end of the pulse.

2.6.2 Finite Case

Pulse propagation through finite CROWs can be easily analyzed using the trans-

fer matrices results of Eq. (2.23). Since Eq. (2.23) is specified at each frequency,

we simply have to find the product between the transfer functions and the spectral

components of the input pulse. The temporal behavior follows naturally from the

Fourier transform.

Distortionless propagation through an arbitrary finite CROW can always be achieved

if the input pulse is sufficiently narrow-band such that the transmission function of

the drop port, as defined in Fig. 2.3, over the pulse bandwidth is near unity. However,

short pulses which become distorted as they propagate in the CROW are also of fun-

damental interest. For this purpose, we take an example consisting of 10 coupled ring

resonators of radius 164.5 µm and neff = 1.5. The inter-resonator coupling constant

is −0.3i and the coupling between the waveguides and CROW is −0.5i. The transfer

characteristics of this structure are shown in Fig. 2.7. We launch a 30.5 ps (FWHM)

long pulse centered at 1.55 µm into the CROW.

Using the transfer matrices, we can examine how a pulse evolves in the CROW by

finding the transfer functions associated with an or bn. Fig. 2.8 shows the evolution of

the pulse through the CROW. Even though the output pulse is attenuated compared
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Figure 2.6: Evolution of a 2.4 ps (FWHM) Gaussian pulse centered about 1.5 µm in
a semi-infinite CROW with κ2 = 0.0016. The fields are normalized to the maximum
field amplitude in the first resonator. (a) Theoretical results computed using Eq.
(2.33). (b) Results computed numerically with the transfer matrices using a chain of
100 ring resonators (neff = 1.5, R = 16 µm)
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Figure 2.7: The transmission characteristics of a 10 ring long CROW. The ring radius
is 164.5 µm and neff = 1.5. Inter-resonator coupling is −0.3i and the waveguide-
CROW coupling is −0.5i. A 30.5 ps (FWHM) long pulse centered at 1.55 µm is
input into the CROW. (a) Transmittance at the drop port. The dashed line shows the
spectrum of the input pulse. (b) Phase response at the drop port. (c) Transmittance
at the through port. (d) Phase response at the through port.
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Figure 2.8: The pulse transmission through the CROW described in Fig. (2.7). The
0th resonator is the input pulse and the 11th resonator is the output pulse at the
drop port.

to the input, the field intensity inside the rings can be greater than the input, as in

the case of the semi-infinite CROW. The intensity build-up is verified by a FDTD

simulation discussed in Section 5.3. The significant increase in the intensity of the

input pulse inside the CROW can be used to enhance the strengths of nonlinear

optical interactions. As noted earlier, we can account for loss (or gain) in our model

by including an imaginary part to the propagation factor β. We have found the

transfer matrices give excellent agreement with experimental results [40].

Another interesting effect is the small amplitude ripple that follows the main peak

in each resonator. The ripple is travelling from the end of the CROW back to the

start at approximately the group velocity of the forward moving pulse. This is anal-

ogous to a reflection from the end of a waveguide, though in the microring CROW

described here there are no reflection mechanisms, as the coupling is assumed to be

perfectly phase-matched. Indeed, Fig. 2.9 shows that the ripple at the through port is

delayed from the the drop port pulse by the travelling time between the input and the

drop. Therefore, although the microring CROW is composed of “microscopic,” dis-

crete elements, it possesses certain “macroscopic” properties that mimic conventional
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Figure 2.9: The input pulse and the output pulses at the drop and through ports of
the the CROW described in Fig. 2.7. The solid vertical line marks the maximum of
the input pulse, and the dashed vertical line marks the maximum of the output pulse
at the through port. The peak of the through port pulse occurs about 5 ps sooner
than the peak of the input.

waveguides.

At the through port, we may obtain negative group velocities, which some re-

searchers refer to as “superluminal propagation” [28, 47]. In the time domain, the

main (highest) peak of the output pulse does indeed appear before the peak of the

input pulse. Fig. 2.9 shows the output pulses at the through and drop ports as well

as in the input pulse. The peak of the through pulse is approximately 5 ps before

the peak of the input, as though the output appears before the input. However, the

pulse is attenuated and distorted. This behavior is accounted for by the anomalous

dispersive properties at the through port in Fig. 2.7(d). The anomalous dispersion is

also confirmed by the FDTD simulation discussed in the next section.
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2.6.3 FDTD Simulations

As a test for the transfer matrix method and a confirmation of the intensity

build-up and anomalous dispersion, we use a finite difference time domain (FDTD)

simulation to study the pulse propagation through two coupled ring resonators. The

waveguides and rings are 0.2 µm wide. They are set in air and have an index of

refraction of 3.5. The rings have a radius of 5 µm, and the wavelength dependent

effective index, as extrapolated from a separate FDTD simulation of the waveguides,

is neff = 3.617− 0.5539λ. The coupling between the rings is −0.32i, and the coupling

between the rings and the waveguides is −0.4i. A 2.4 ps (FWHM) Gaussian pulse is

launched into the system, and the fields at the through port, drop port, and inside

the rings are monitored. We compare the transfer matrix method with the FDTD

simulation in Fig. 2.10(a), showing that the approaches are in excellent agreement.

The anomalous dispersion at the through port and the increase in intensity in the

coupled rings are confirmed by the FDTD simulation and are evident in Fig. 2.10(b).

2.7 Photonic Crystal Defect and Fabry-Perot Cavities

Even though our derivations have been based on the example of ring resonators

thus far, in this section, we shall consider how to generalize the ring resonator results

to two other important classes of resonators: the photonic crystal defect and Fabry-

Perot cavities. In contrast to ring resonators, the coupling between Fabry-Perot

resonators with Bragg end mirrors is controlled by Bragg reflection. Even though

the coupling coefficient may be more stringently controlled in these structures, ring

resonators remain an attractive option for CROWs in planar integrated optical cir-

cuits because they can be fabricated in a single lithographic step. Moreover, recent

developments in coupled ring resonators in polymer, silica, and silicon illustrate the

potential of using ring resonators as constituent elements in CROWs [10, 48, 49].

Photonic crystal defect CROWs were first realized and measured by Olivier et al.

several years ago [50]. Since the modes of photonic crystal defect cavities cannot be
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Figure 2.10: FDTD simulation of 2 coupled ring resonators with input and output
waveguides. The radius of the rings is 5 µm, and the effective index is neff = 3.617−
0.5539λ. The inter-resonator coupling is −0.32i and the waveguide-resonator coupling
is −0.4i. The input pulse is a 2.4 ps (FWHM) Gaussian centered at 1.55 µm. (a)
Comparison between the FDTD simulation and the transfer matrix method. Output
refers to the drop port. (b) Intensity build-up and anomalous dispersion as confirmed
by the FDTD simulation.
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Figure 2.11: Coupled Fabry-Perot cavities

readily decomposed into travelling plane waves, the analysis of coupled photonic crys-

tal defect cavities using a transfer matrix method has been limited [51, 52]. However,

because the temporal coupled-mode equations for the ring resonator and photonic

crystal defect cavity CROWs are identical [36], the conclusions we draw from the

ring resonator example hold for the latter case with |κ|/(mπ) replaced by κ1 in the

tight-binding dispersion relation Eq. (1.12).

The Fabry-Perot CROWs as in Fig. 2.11 can be analyzed in the same way as

photonic crystal defect cavities or using transfer matrices. CROWs using Fabry-Perot

etalons with Bragg end mirrors have also been explored recently [53]. There have

also been extensive studies in the linear and nonlinear optical propagation in Bragg

stacks [44, 54, 55, 56, 57, 58]. In Fabry-Perot resonators, the coupling parameter

κ corresponds to the transmission coefficient, while t corresponds to the reflection

coefficient. They can be calculated from the Fresnel coefficients or from an analysis

of a Bragg stack in the case of a Fabry-Perot with Bragg end mirrors [44]. However,

κ is generally complex, not imaginary in the case of phase-matched co-directional

coupling as derived from coupled-mode theory [1, 44]. Moreover, because Fabry-

Perot resonators are one dimensional, they can be completely described by 2 × 2

transfer matrices [44], in contrast to ring resonators which require a 4 × 4 transfer

matrix to model the Bloch modes [34]. Therefore, there are only 2 Bloch modes at

each frequency rather than 4 for the ring resonator CROW.



2.8 Summary 31

For a general complex coupling coefficient between the Fabry-Perot (1 dimen-

sional) cavities, κ = κ0 exp(iθ), the dispersion relation becomes

ω(K)

Ω
= 1 +

(−1)mκ0

mπ
[sin(KΛ− θ)] . (2.34)

The dispersion relation is of the same form as Eq. (2.11), but the ± sign is absent

and θ could be arbitrarily specified depending on the nature of the coupling. While

it does not significantly alter the general characteristics of a CROW, the presence of

the phase shift modifies the phase velocity of the CROW Bloch modes. Nonetheless,

the results discussed thus far for the ring CROW still holds for a chain of coupled

linear resonators with πR replaced by L, the length of the cavity.

2.8 Summary

A transfer matrix method is developed to analyze microring coupled resonators.

In the limit of weak coupling, the transfer matrix and tight-binding approaches yield

equivalent dispersion relations, and the transfer matrix gives the same time domain

field evolution equations as temporal coupled-mode theory. We also study pulse prop-

agation through semi-infinite and finite CROWs to find the intensity enhancement

as well as anomalous dispersion. The transfer matrix method can account for finite

chains, holds for any coupling strength, applies to travelling waves, and can treat

heterogeneous chains consisting of an arbitrary mix of resonators and coupling con-

stants. These features make the transfer matrices versatile for device design and for

analyzing experimental results of microring CROWs.



Chapter 3

Designing Coupled-Resonator Optical
Waveguide Delay Lines

3.1 Introduction

With the theoretical framework we formulated in the last chapter, we will now

proceed to address the design issues of slowing light and making delay lines with

CROWs1. In particular, we will find there are fundamental trade-offs among delay,

loss, and bandwidth. We shall derive simple, analytical expressions for the achievable

delay, loss, bandwidth, and a figure of merit to compare delay line performance.

Dispersion-related distortion in CROWs has been explored previously [21, 32], and

how it limits the amount of slowing that can be achieved is discussed in [59]. We will

compare CROW delay lines composed of ring resonators, toroid resonators, Fabry-

Perot resonators, and photonic crystal defect cavities based on recent experimental

results reported in the literature.

3.2 Delay, Loss, and Bandwidth

Using the dispersion relation Eq. (2.11) and the transfer matrices for the specific

case of ring resonators, we now proceed to derive and verify the expressions that

highlight the trade-offs among delay, bandwidth, and loss of a CROW. As discussed

in Section 2.7, the results we obtain can be easily generalized to other common types

1 c©2004 OSA. Reprinted, with permission, from [35].

32
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of resonators. The immediate consequence of Eq. (2.11) is that the group velocity,

|vg| ≡
∣∣∣∣
∂ω

∂K

∣∣∣∣ =
2c

neffπ
|κ sin(KΛ)| , (3.1)

is dependent on the coupling coefficient |κ|. Since |κ| can be controlled by the separa-

tion between adjacent resonators, we can in principle achieve arbitrarily large slowing

down of optical pulses. The delay can also be controlled by changing the refractive

index of the resonators or the coupling region through the electro-optic or thermo-

optic effect [60, 61, 62, 63]. However, as |κ| decreases, so does the bandwidth of the

CROW, and the overall loss of the CROW becomes more sensitive to the intrinsic

losses in the individual resonator. The latter occurs because the light spends more

time in a resonator before “tunnelling” to its neighbor.

In the absence of other mechanisms to compensate for group velocity dispersion

(GVD), such as Kerr nonlinearity [26, 27], an optical pulse propagating in a CROW

should have a central frequency near the zero GVD region of the dispersion curve

(∂2K
∂ω2 ≈ 0) to minimize the accumulated distortion. This condition occurs at the

center frequency, ω ≈ Ω, where the group velocity is maximum vg,max = 2c|κ|/neffπ.

From Eq. (2.11), a CROW band spans a frequency range of ∆ω = 2c|κ|/neffπR.

Consequently, we define the usable bandwidth of a CROW as half of this total band-

width centered at Ω,

∆ωuse ≡ |κ|c
πneffR

. (3.2)

The periodicity, Λ is taken to be approximately equal to 2R. Thus, the temporal

delay of a pulse propagating through the whole length of the CROW is determined

by the distance traversed in the CROW and the group velocity at Ω:

τ =
πneffRN

|κ|c . (3.3)

From Eq. (3.3), we observe that the CROW effectively acts as conventional wave-
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guide with a group velocity c/neff but with a length of

Leff =
cτ

neff

=
πRN

|κ| , (3.4)

i.e., ∼ 1/|κ| times longer than the CROW. Due to the reduced group velocity provided

by the feedback amongst the coupled resonators, the total length of the CROW, NΛ,

is contracted by a factor of S = π
2
|κ|. S also represents the slowing factor of the

group velocity c/(neffvg,max). The contraction in the spatial length also applies to a

pulse propagating through the structure, such that a 100 ps pulse in a fiber, which

has a spatial extent of ∼ 2 cm, contracts to a length of ∼ 3 mm in a CROW with

|κ| = 0.1.

Furthermore, the loss from the input to the output of the CROW is intuitively

given by the product of the loss per unit length and Leff :

α =
aπRN

|κ| =
2πneffN

λ0|κ|Qint

, (3.5)

where exp(−α) is the net power attenuation coefficient of the CROW, exp(−a2πR) is

the power attenuation in the waveguides of the constituent resonators, λ0 = 2πc/Ω,

and Qint is the intrinsic quality factor or Q factor of the resonator. Eqs. (3.2), (3.3),

and (3.5) enable the straight-forward design of CROW delay lines.

If only a specific loss is tolerated, the maximal delay achievable is independent of

|κ|. To illustrate this, we define the maximum tolerable loss as exp(−α) = exp(−1).

Using Eqs. (3.5) and (3.3), we find that

τmax =
neff

ca
. (3.6)

This result makes intuitive sense since light must travel the same optical length to

achieve a given delay. The role of the resonators is now clear: the weakly coupled

resonators make this net length more compact.

To verify the simple and intuitive equations, Eqs. (3.2), (3.3), and (3.5), we

compare the equations with numerical results obtained from the transfer matrices. In



3.2 Delay, Loss, and Bandwidth 35

Table 3.1: Coupling Constants Used in Fig. 3.2 for N = 10

|κ| 0.1 0.15 0.2 0.25 0.3 0.35

|κi| 0.43 0.55 0.6 0.65 0.7 0.75

coupled resonator filter synthesis, the coupling constants must be at particular ratios

to avoid ripples in the passband which cause significant deviations from the ideal,

infinite CROW characteristics [5, 11, 64]. For a maximally flat transfer function,

the inter-resonator couplings are not constant throughout the structure [5, 65, 64];

hence, Eqs. (3.2), (3.3), and (3.5) do not strictly apply. However, we may still obtain

fairly flat transfer functions over ∆ωuse by having a single inter-resonator coupling

constant, κ, and a different waveguide-resonator coupling, κi. Fig. 3.1 shows the

passband spectra for a finite CROW with a single κ and a different κi. As shown in

Fig. 3.1, we find that one pair of κ and κi is sufficient to obtain flat transmission

spectrum over a large range in the number of resonators. The flat responses enable us

to use finite structures to mimic an infinitely long CROW characterized by a single

coupling constant.

Therefore, using the parameters in Table 3.1 when N is fixed to be 10 and κ

is varied, and setting κi = −0.43i and κ = −0.1i when N is varied, we compare

Eqs. (3.2), (3.3), and (3.5) with the calculations from the transfer matrices. As

shown in Fig. 3.2, the expressions are in excellent agreement with the numerical

calculations. In the plots of the delay times, the theoretical results as indicated by

the solid lines coincide best with the data points corresponding to slight waveguide

losses (∼ 4 dB/cm). This occurs because the losses smooth out the transmission

spectrum ripples, making the passband of the finite CROW a better approximation

to an infinitely long CROW.
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Figure 3.1: Passbands of coupled resonator structures with an identical inter-
resonator coupling |κ| throughout and a different waveguide-resonator coupling |κi|.
(a): The number of resonators is fixed and the coupling constants are varied. (b):
The coupling constants are fixed and N is varied.
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Figure 3.2: Comparing analytical expressions for loss and delay with numerical results
using the transfer matrices for various propagation losses in the resonators. The solid
lines are the theoretical results and the markers denote the numerical results. R = 100
µm and neff = 1.54.
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3.3 A Figure of Merit

To compare CROW delay lines composed in a general way independent of material

systems and resonator sizes, we need a quantitative benchmark to determine the

quality of a delay line. While τmax is a useful criterion, it does not account for the

usable bandwidth. An alternative approach is to compare the intrinsic and coupling

losses in the resonators. The intrinsic losses of each resonator due to absorption and

scattering are characterized by a time Tint. The decay of resonator power due to

coupling to adjacent neighbors is characterized by Text and the associated Q factor,

Qext = ΩText.

|Text|, from Eq. (2.20), naturally defines the characteristic lifetime of the excitation

due to the coupling, since it sets the temporal width of the field in the initially excited

resonator. It is also the time required for a pulse centered at Ω to transverse a single

resonator, i.e., |Text| = Λ/vg,max. At t = |Text|, the energy at the zeroth resonator will

have decayed to |J0(1)|2 ≈ 0.59 of the original value.

To be useful as a delay line, Text ¿ Tint, or equivalently, Qext ¿ Qint. Therefore,

a useful figure of merit for CROW delay lines is

FOM ≡ Qint

Qext

. (3.7)

The figure of merit is also useful for other resonator-based devices or geometries for

comparing the relative role of Qint and Qext, for example in the determination of the

loaded Q, 1/QL = 1/Qint + 1/Qext.

Substituting |Text| = Λneff π

2|κ|c from Eq. (2.20) into Qext = Ω|Text|, we find

Qext =
π2neffΛ

λ0|κ| . (3.8)

The figure of merit (3.7), in turn, simplifies to

FOM =
|κ|

aπR
=

∆ωuseτ

αtot

= τmax∆ωuse. (3.9)
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The second equality reveals that the FOM can be alternatively viewed as a balancing

of bandwidth, loss, and delay.

3.4 Comparing Different Resonators

Table 3.2 compares 10 resonator long delay lines with |κ| = 0.1 (1% power cou-

pling) composed of various types of resonators in different material systems at 1.55

µm. We assume neff is independent of frequency. The results emphasize the trade-

offs between delay and bandwidth. For the semiconductor, polymer, and HydexTM

ring resonators, and the photonic crystal cavities, we use some of the highest reported

experimental Qint values of a single, passive resonator in the literature to date and

their corresponding resonator sizes [10, 12, 66, 67, 68, 69].

A particular issue with ultra-high Q resonators is that excess coupling losses may

become dominant over the intrinsic resonator Q. The source of the excess coupling

loss is that the neighboring resonators act as a dielectric perturbation to an individual

resonator. In the ring microresonators with lower Qint values, bending and scattering

losses typically predominate [71]. Since the coupling is assumed to be lossless in

our analysis, the excess loss of the coupler should be accounted for by the loss of

the resonator. Therefore, for a fiber ring resonator, in which material, bending, and

splice losses are negligible, the loss in calculating the Q factor in Table 3.2 is taken

to be the excess loss of a commercial fused fiber coupler (∼ 0.2 dB [72]).

As there are no reported excess coupling loss values for ultra-high Q toroid res-

onators to date, we neglect this effect in Table 3.2 and simply use the highest reported

intrinsic Q value (Qint ≈ 108) of a single resonator [9, 73]. Extrapolating from this Q

value, the loss per revolution inside the toroid resonator is about 10−4 dB. For excess

coupling loss to be negligible, it must be ¿ 10−4 dB. Even for an excess coupling

loss of 0.01 dB, the Q value in our comparison drops to 106, the net loss increases

to 0.5 dB, τmax becomes 0.82 ns, and the figure of merit is reduced to 90. However,

the coupling between a fiber-taper and an ultra-high Q silica microsphere has been

experimentally shown to be nearly (> 99.97%) lossless [74]; therefore, the coupling of
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toroid resonators may be nearly ideal as well.

CROWs based on Fabry-Perot cavities have been recently demonstrated [53], with

an operational wavelength around 600 nm. The coupling between Fabry-Perot res-

onators can be controlled by Bragg reflection. Hence, to compare this structure with

the ring resonators where the coupling is due to evanescent decay of the field outside

the resonator, the resonator Q of the coupled Fabry-Perot structure is not taken as

the Q of the composite structure of the cavity and Bragg layers, but rather the cavity

by itself. The loss is thus determined by material and waveguide loss, which is taken

to be 0.2 dB/cm for the comparison, assuming that the Bragg gratings are etched on

a waveguide. The losses at the coupling regions are ignored.

Experimental progress in photonic crystal coupled cavity structures has been bur-

geoning over the past few years [23, 36, 50, 75, 76, 77]. To compare photonic crystal

defect cavity CROWs with the ring and Fabry-Perot resonators, κ1 is taken to be

2 × 10−4, which is approximately equal to the value of |κ|c/(neffπR) for the other

integrated optical resonators considered.

3.5 Discussion

As evidenced by the comparison in Table 3.2, application requirements, such as

on the loss, bandwidth, and material system, dictate the type of resonator that will

be the most suitable. To achieve long delays without too much attenuation, low-loss

(high-Q) resonators are required. High-Q resonators also allow for more flexibility in

the design since the CROW can be made longer with a higher coupling coefficient to

increase the bandwidth without incurring a severely detrimental effect on the loss.

For our example of |κ| = 0.1 and cavity lengths of tens of microns, for substantial

delay with an attenuation of circa 10 dB, Q values of 105–106 are necessary.

Although the use of ultra-high-Q resonators for a CROW is an attractive option,

there have not been many reported experimental demonstrations of coupling more

than a few of these resonators together [78]. Moreover, thus far, there have not

been extensive attempts to integrate these types of resonators with other planar
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components. Therefore, with the technological and experimental progress to date,

a more practical approach may be to use resonators with lower Q values as the

constituent elements of a CROW.

CROWs consisting of ring resonators and Fabry-Perot resonators are promising.

Fabry-Perot cavities have the advantage that the coupling can be precisely controlled

by Bragg reflection. However, Fabry-Perot resonators fabricated by epitaxial growth

or thin film deposition cannot be readily integrated with planar technologies. A litho-

graphically defined grating on a waveguide requires a multi-step fabrication process

already well exploited in distributed feedback (DFB) and distributed Bragg reflector

(DBR) structures.

Even though the patterning of gratings is well established, the option of ring

resonators should not be neglected. Ring resonators are more compact than a linear

chain of Fabry-Perot resonators and can be fabricated in planar integrated lightwave

circuits in a single lithographic step in the case of horizontal coupling. Recently, loss-

compensated ring resonators in InP-InGaAsP have been reported [79], thus a lossless

or even amplifying microring CROW may be feasible. Since CROWs are typically

narrow band devices, even slight deviations in resonator sizes will alter the passband

spectrum in the form of the Vernier effect [64, 11]. To achieve ideal device behavior,

post-fabrication tuning of the resonators through UV trimming [80, 81], the thermo-

optic effect [82],or the electro-optic effect [12] maybe required. However, there have

already been impressive demonstrations of flat passband, low-loss, high-order coupled

microring resonator filters [10, 48, 49], illustrating that coupled ring resonator may

indeed be a viable technology. Advances in the fabrication of ring resonators will

continue to enable passive and active ring resonator CROW delay lines in integrated

optics.

3.6 Summary

We have addressed a number of key issues in designing CROW delay lines made

of ring resonators. The achievable delay, available bandwidth, and loss are given by
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simple, analytical expressions that are in excellent agreement with numerical results

from the transfer matrix method. We have proposed a figure of merit to compare

different CROW delay lines that is a ratio between the lifetime of an individual

resonator and the lifetime due to resonator coupling. This comparison offers an easy

and quick gauge in determining the feasibility of and the minimum intrinsic resonator

Q necessary for a CROW delay line. We examined experimental progress in optical

resonators to find that CROW delay lines with bandwidths of ∼ 50 GHz and delays

of the order of 100 ps should be feasible with current technologies.



Chapter 4

Polymer Microring Resonators

4.1 Introduction

In this chapter, we present an introduction to optical polymer materials and sev-

eral demonstrations of optical notch filters based on a single microring resonator. We

shall discuss the fabrication of polymeric microring resonator notch filters using com-

binations of electron-beam and soft imprint lithography1. Moreover, we shall present

a simple and effective method for the post-fabrication trimming of microresonators

by photobleaching chromophores in an optical polymer2. Since in the absence of

any means to modify the resonators, fabrication resolution of the order of tens of

nanometers is required to achieve a particular resonance frequency or coupling ratio,

for many practical applications, post-fabrication trimming or tuning of the resonators

is desired or required.

Ring resonator notch filters in three different material systems will be presented:

polystyrene (PS) on OG-125, SU-8 on OG-125, and CLD-1 in amorphous polycarbon-

ate (APC) on silica. Intrinsic Q factors as high as 2.6× 104 were measured, and the

maximum extinction ratio of the filters was −35 dB, indicating the critical coupling

condition was satisfied.

1 c©2004 IEEE. Reprinted, with permission, from [83].
2 c©2004 OSA. Reprinted, with permission, from [84].
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4.2 Polymer Materials

In recent years, polymeric waveguide devices, including microring resonators, have

attracted much attention due to potentially low material and production costs [85].

Furthermore, the development of low-loss and optically nonlinear polymers is en-

abling the realization of both passive and active polymeric optical devices [86, 87]. In

particular, polymers provide a promising material platform for the fabrication of mi-

croring resonators since many tuning mechanisms are available. For example, Rabiei

et al. have recently demonstrated electro-optic and thermo-optic tuning of microring

resonators [12, 60]. UV trimming of ring resonators using polymers has also been

demonstrated by changing the refractive index of a polymer cladding layer [80, 88].

Table 4.1 compares a number of different material systems used for lightwave cir-

cuits [89]. The quoted waveguide losses depend very much on the dimensions of the

waveguides and the index contrast and should only be taken as approximate values.

Table 4.2 lists some of the polymers that were investigated during the course of this

thesis work. As summarized in the tables, polymers possess a wide-range of opti-

cal properties and can be processed with a large variety of techniques. The current

major limitation of polymer materials is the difficulty in incorporating electrically

pumped optical gain at the telecommunication wavelengths. Therefore, III-V com-

pound semiconductors remain the workhorse material of choice for lasers and active

photonic circuits.

Through an appropriate combination of polymers, we can tailor the dispersive

properties of the waveguides given a particular dimension. Table 4.3 gives the effec-

tive and group indices of several combinations of polymers for a specific single-mode

waveguide cross-section described in the table. The residue thickness corresponds to

the layer of core material that is left on top of the cladding after an imprint lithog-

raphy step (to be discussed in Sections 4.4 and 4.5). The higher refractive index

material is the waveguide core, and the lower index is the cladding. Since most poly-

mers do not possess a large refractive index, polymeric waveguides typically possess

effective and group indices of approximately 1.4–1.7.
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Table 4.3: Waveguide Dispersion in Selected Examples of Polymer Waveguides

Material System δn/µm† neff ng

SU-8 in OG-125 -0.04 1.514 1.6

PS in air -0.0622 1.529 1.677

APC/CLD1 in air -0.0733 1.531 1.7

†The waveguide cross-section is 1.6 µm× 1.8 µm with a 200 nm thick residue layer.

A fabrication technique that is important for polymer materials is replica molding.

In replica molding, a mold of the original master device is used to cast nearly exact

copies of the master. This technique allows for high-throughput replication of the

master device, and unlike other wet-etch or chemical processes, it does not chemically

or physically alter any dopant molecules that may be in the polymer.

In the work described in this chapter, we used soft lithography replica molding

to fabricate the microring resonators. Soft lithography is a particular technique in

imprint lithography where the mold is flexible [96]. In our work, the soft mold is fabri-

cated from a silicone rubber material, poly(di-methylsiloxane) (PDMS). The PDMS

molds are highly robust, and the same molds can be used repeatedly for different

polymers. We have previously shown that very high fidelity between the master and

molded devices can be achieved using soft lithography molding [97]. This technique

has been used to fabricate polymeric Mach-Zehnder modulators and toroid resonators

[73, 98].

4.3 Microring Notch Filter and Critical Coupling

Before discussing the experimental results, we shall briefly describe the microring

resonator geometry. We investigated microring resonator notch filters consisting of a

single resonator coupled to a waveguide as shown in Fig. 4.1. Using the notation in

Fig. 4.1, the coupling between the microring and the waveguide can be described by
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c

a b

d

Figure 4.1: A microring resonator coupled to a waveguide. The field amplitudes are
denoted by a, b, c, and d.

the matrix equation: [11, 37, 43]


b

c


 =


 t κ

−κ∗ t∗





a

d


 , (4.1)

where κ is the dimensionless length-integrated coupling coefficient and |κ|2 + |t|2 =

1. As the field propagates in the ring, it accumulates a phase shift and may be

attenuated, so d = αc exp(−i2πβR), where α is the field attenuation constant, R is

the ring radius, and β is the propagation constant in the ring. Hence, the transfer

function of the filter is described by [99, 100]

∣∣∣∣
b

a

∣∣∣∣
2

=
|t|2 − 2α|t| cos(2βπR) + α2

1− 2α|t| cos(2βπR) + α2|t|2 . (4.2)

In general, since α and |t| in Eq. (4.2) are interchangeable, Qint and Qext cannot

be uniquely determined from the spectral response of the device. However, when the

special condition α = |t| is satisfied, or alternatively when the internal power loss is

equal to the coupling (1 − α2 = |κ|2), Qi = Qext = 2QL. This condition is known as

critical coupling [100]. At critical coupling, the transfer function completely vanishes

at the resonance frequencies of the ring resonator. Therefore, not only do critically

coupled ring resonators allow us to unambiguously determine the intrinsic losses of a

resonator through a single measurement of the spectral response of the geometry in
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Fig. 4.1, they also enable optical notch filters with high extinction ratios.

4.4 Polystyrene and SU-8 Microrings

First, we shall discuss our results on unclad and clad microring resonators in the

geometry of Fig. 4.1 fabricated in polystyrene (PS, n ' 1.56) and SU-8 (Microchem,

n ' 1.56). The two examples corroborate the theoretical transmission spectrum

described by Eq. (4.2) and illustrate the phenomenon of critical coupling.

4.4.1 Fabrication

Fig. 4.2 shows the schematic flow chart of the fabrication process. For this

experiment, we created the PDMS mold from the master devices which were defined

using electron-beam writing of SU-8. Fig. 4.3 shows a scanning electron microscope

(SEM) image of the coupler region in the master device. The waveguides in the master

devices had a height of 1.5 µm and a width of 1.9 µm. The resonator-waveguide gap

size was about 350 nm.

We began the fabrication of the molded devices by spinning on a silicon wafer a

3 µm thick layer of OG-125 (Epotek, n ≈ 1.456), an ultra-violet (UV) curable epoxy,

as the under-cladding. The chip was then cured with UV light and baked at 800C

for 2 mins. For the unclad microrings, we deposited 10 µL of PS solution (4wt%

in toluene) on the chip and pressed the mold against the chip with a force of 25 N

for about 20 minutes. The toluene evaporated through the PDMS mold during this

time. Even though our molding process left behind a thin (∼ 200 nm) residue film

on the chip, this film is not detrimental on the loss of the devices if it is sufficiently

thin [101]. After the mold was lifted away, the chip was baked at 800C for 3–5 mins.

Finally, the chip was cleaved to separate the devices. The deviation in the radius of

the molded and master devices was about 2%. The radius of the master was 200 µm,

and the radius of the molded resonator was about 204 µm.

Fig. 4.4 shows an SEM image of the PS microring resonator. The slight uneven-
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PDMS

Electron−beam
lithography

Pour PDMS over
structure

Cure and peel
off PDMS mold

SU−8

Si

Si

Si

Lift−off PDMS mold

PDMS

OG−125

Si

Si

Apply PDMS mold

Si

Lift−off PDMS mold

Bake

Si

Si
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Si

OG−125

Si
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and bake
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Apply PDMS mold
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PDMS
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Figure 4.2: Fabrication process for the microring resonators. The leftmost column
shows the fabrication of the soft PDMS mold. The center column shows the fabrica-
tion of the PS microring resonators. The rightmost column shows the fabrication of
the SU-8 microring resonators.

Figure 4.3: SEM image of the coupler region in the master device which was defined
via electron-beam writing of SU-8
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ness at the base of the waveguides was replicated from the master device and is caused

by the electron-beam lithography fabrication process.

The fabrication process of the clad SU-8 resonator filters was similar to that of the

PS microrings. The only differences were that the SU-8 must be UV-cured to harden

and an over-cladding was applied. After the SU-8 was UV-cured, the chip was baked

at 800C for about 3 minutes. An extra 3 µm layer of OG-125 was subsequently applied

as the over-cladding. After the second application of OG-125, the chip was UV-cured

again and finally baked at 800C for 3–5 mins.

4.4.2 Transmission Spectra

We measured the spectral response of the fabricated devices by coupling light

from a tunable laser to the waveguide via a fiber taper and collecting the transmitted

light through a lens (see Fig. 4.7). Fig. 4.5 shows the transmission spectra for the

PS and SU-8 microring resonator filters for transverse electric (TE) polarized light.

The PS and SU-8 devices had maximum extinction ratios of -12 dB and -20 dB

respectively, illustrating that the critical coupling condition was essentially satisfied.

The PS resonators had a FSR of 1.15 nm and a 3 dB bandwidth of 0.3 nm, and hence

a finesse of 3.8. The SU-8 microrings had a FSR of 1.2nm, a 3dB bandwidth of 0.436

nm, and a finesse of 2.75. By taking the ratio between the resonance wavelength and

the FWHM linewidth of the resonance, QL factors were found to be approximately

5200 and 3555 for the PS and SU-8 microrings respectively. These quality factors

implied that Qint were 1.0× 104 and 7.1× 103.

We also fitted the experimental data with the theoretical response described by

Eq. (4.2) to find excellent agreement between them. The fit parameters for the PS

microring were α(or t)= 0.689, t(or α)= 0.620, and the group index, ng, was 1.624.

The fit parameters for the SU-8 microrings were α = t = 0.536 and ng = 1.562.

Extrapolating the Q factors from the attenuation in the microring resonator, we

find that Qint = 1.1 × 104 for the PS microring and Qint = 6.5 × 103 for the SU-8

microring. These values implied a distributed loss of about 25 dB/cm in the resonator.
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(a)

(b)

Figure 4.4: SEM images of (a) the resonator-waveguide coupling region and (b) a
section of waveguide in polystyrene. Smooth side-walls are achieved using the soft
lithography fabrication process. Inset of (a): An optical micrograph of the microring
resonator filter
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The Q factors were in good agreement with the direct measurements of the resonance

linewidths.

For the microring radius and refractive index contrast in this experiment, we

expected that the resonator loss would be dominated by the side-wall scattering (∼
15–20 dB/cm) and material losses (∼ 5 dB/cm) rather than the bend loss [12, 102,

103]. Therefore, resonators with larger FSRs and similar Q factors can be achieved

by reducing the radius.

To determine the total insertion loss of the devices, we measured the difference

between the transmitted powers with and without the microring resonator devices

in our experimental setup. The total off-resonance insertion losses were found to be

6.7 dB and 9.9 dB for the PS and SU-8 microring resonator filters respectively. The

coupling efficiency can be improved by designing a suitable mode-converter between

the fiber and our device.

4.5 CLD-1/APC Microrings

Often it is necessary to trim microresonators to tune their resonance wavelength

or coupling characteristics. In this section, we describe a simple and fast method

to trim high-Q, critically coupled polymer microring resonators. Again using the

soft-lithography replica molding method, we fabricated microring notch filters in a

polymer doped with a nonlinear electro-optic chromophore, CLD-1 [86, 104]. The

trimming was accomplished by photobleaching the CLD-1 chromophores. Photo-

bleaching of electro-optic chromophores has been previously used to tune the split-

ting ratio of a Y-junction and has also been used to fabricate polymer waveguides

[105, 106, 107]. However, the photobleach trimming of microring resonators, which

is a sensitive process and of importance in microresonator technology, has not been

previously demonstrated.
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Figure 4.5: Transmission spectra for TE polarized light of (a) the air-clad polystyrene
microring resonator and (b) the OG-125-clad SU-8 microring resonator
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4.5.1 Fabrication

In this experiment, the soft PDMS was again cast from an electron-beam writ-

ten pattern in SU-8. The polymer solution from which we mold the devices con-

sisted of 5.5wt:vol% of CLD-1/amorphous polycarbonate (APC) in trichloroethylene

(TCE)/dibromomethane (DBM). The CLD-1:APC ratio was 1:4 by weight, and the

solvent consisted of TCE and DBM in a 50% ratio by volume. The resonators were

molded directly on a silica on silicon substrate by applying a force of 25 N. The thick-

ness of the thermally grown silica was 5 µm. The fabricated ring resonator had a

radius of about 207 µm, and the thickness and width of the waveguides were about

1.6 µm and 1.4 µm respectively. The residue layer thickness from the molding was

circa 130 nm. The waveguide-resonator gap was 430 nm.

4.5.2 Photobleach Trimming

To trim the resonator, we focussed broadband visible light onto a section in the

lower half of the ring resonator in ambient conditions using the setup as illustrated

in Fig. 4.7. The illumination intensity could be varied and the exposure area can

be changed by using different objective lenses. The transfer characteristics of the

resonator were recorded after exposures at fixed time intervals using a tunable laser.

The input laser power is set to 0.1 µW to prevent additional photobleaching from the

laser source during the measurement. The photobleached ring resonator is shown in

Fig. 4.6. The photobleached region was transparent while the original polymer film

was green in color.

Fig. 4.8 shows the total shift of the resonance wavelength as a function of the

exposure time for an exposure intensity of 26 mW/cm2 over a 0.12 mm2 area. The

experimental data was curve-fitted with an exponential model with excellent agree-

ment. At the initial stages of the photobleaching, the fractional index change (∆n/n)

and resonance wavelength shift varied approximately linearly with exposure time at

a rate of −2.3 × 10−6 /s and −3.6 × 10−3 nm/s respectively. We observed a shift of
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Figure 4.6: Optical micrograph of the photobleached resonator filter. The photo-
bleached spot is the lighter region in the figure. The un-photobleached region is
green in color.

Lens

Controller

Objective

DeviceInput Fiber

Lens
Polarization Polarizer

Photo−
Detector

Optical Microscope
(with light source)

Laser
Tunable

Aspherical

Figure 4.7: The experimental setup. The light from the microscope was focussed onto
a spot on the sample for a fixed period of time, after which the transmission spectrum
was measured using a tunable laser.
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−8.73 nm after about 1.75 hours of exposure, though the exponential fit suggests a

maximum wavelength shift of −9.8 nm, or fractional index change of −6.3 × 10−3,

should be possible. Fig. 4.9(a) shows the temporal evolution of the spectrum as a

function of the exposure time. At long exposure times, the filter 3 dB bandwidth

can be broader from that at t = 0 by about 20%. The decrease in the loaded Q

factor, QL, could have been caused by a slight decrease in the index at the coupling

region over time and also a slight change in the loss of the resonator induced by the

photobleaching of the chromophores.

Fig. 4.9(b) shows the transfer characteristics after different exposure times for an

illumination intensity of about 34 mW/cm2 over an area of 0.28 mm2. The resonance

peaks are shifted by about 0.2 nm from each other. The width of the notch was

essentially maintained as the resonance is shifted. For the device, the loss and refrac-

tive index vary with the photobleaching such that the extinction ratio increased from

−15 dB to about −35 dB indicating the critical coupling condition is more closely

satisfied. The device has a 3 dB bandwidth of 0.12 nm, an FSR of 1.11 nm, and hence

a loaded quality factor, QL, of about 1.3×104 and a finesse of 10. Hence, Qint = 2QL

for the ring resonator was about 2.6 × 104 at 1550 nm, which is among the highest

reported for CLD-1 doped microrings [12].

The change in the refractive index due to photobleaching was most likely caused

by photochemical degradation of the chromophores [105, 107, 108]. Previous studies

on CLD-1/APC showed the composite has an absorption peak centered at around

670 nm [86, 104]. In ambient conditions, the photoexcited chromophores can react

with oxygen and subsequently become damaged [86, 104, 107]. As confirmed by our

experiment, the photodecomposition of the chromophores led to the decrease in the

refractive index of CLD-1/APC. However, it is well established that the photochemical

stability of CLD-1/APC can be significantly improved in an environment void of

oxygen and purged with an inert gas such as argon [86, 104]. Therefore, for practical

applications, after the device is trimmed, it should be hermetically packaged to ensure

long-term stability.
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Figure 4.8: Net resonance wavelength shift as a function of exposure time. The
exposure intensity was about 25 mW/cm2 over a 0.12 mm2 area. The experimental
data is fitted with an exponential function as indicated. S is the shift in wavelengths
in nm, t is the exposure time in minutes.

4.6 Summary

In this chapter, we have shown how soft lithography replica molding can be used

to fabricate critically coupled microring resonators with Qint ∼ 2 × 104 using a va-

riety of polymer materials. We expect that the insertion losses of the devices can

be further reduced by improving the input/output coupling, reducing the side-wall

scattering, and reducing the material losses of the optical polymers. We have also

demonstrated that a very wide resonance wavelength tuning range can be achieved

by photobleaching CLD-1 chromophores in APC microring resonators. The trimming

rate and range can be controlled by the concentration of the chromophores, the size

of the exposure area, and the optical intensity. The chromophores that have not been

photobleached can still be poled to render the polymer electro-optic [107, 109]. The

soft-lithography fabrication method and the post-fabrication trimming are applicable

to other types of polymer optical devices.
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Figure 4.9: Tuning of the microring resonances. (a) The temporal evolution of the
transmission spectrum for TE polarized light. The intensity of the exposure light
source was about 35 mW/cm2 and the exposure area was 0.28 mm2. (b) The trans-
mission spectra after certain exposure times under the same conditions as (a). The
resonances shifted by about −0.2 nm after each 30 s.



Chapter 5

Microring Coupled-Resonator Optical
Waveguides

5.1 Introduction

In this chapter1,2, we present measurements of the transmission and dispersion

properties of CROWs consisting of weakly coupled polymer microring resonators.

The fabrication and the measurement methods of the CROWs are discussed as well.

The experimental results agree well with the theoretical loss, waveguide dispersion,

group delay, group velocity, and group velocity dispersion. The intrinsic quality

factors of the microrings were about 1.5 × 104 to 1.8 × 104, and we measured group

delays greater than 100 ps with a group velocity dispersion between −70 and 100

ps/(nm · resonator). With clear and simple spectral responses and without a need

for the tuning of the resonators, the polymer microring CROWs demonstrate the

practicability of using a large number of microresonators to control the propagation

of optical waves.

For CROWs to be highly dispersive or to slow down light, a large number of weakly

coupled, identical resonators are required. However, the major challenge in realizing

CROWs and using multiple resonators for dispersion engineering [28, 111] has been

the fabrication of low-loss resonators with strict size tolerances. The problem is com-

pounded when the resonators are weakly coupled because of the narrow linewidth of

1 c©2006 OSA. Reprinted, with permission, from [48].
2 c©2006 IEEE. Reprinted, with permission, from [110].
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the coupled resonators. One solution is to tune the resonators individually, but con-

trolling the tuning becomes more complicated as the number of resonators increases.

There have been several examples of high-order (> 10) coupled microresonators us-

ing microrings and photonic crystal defect cavities [10, 49, 76, 77]. However, the

dispersion and delay were often not directly measured [10, 24, 77], and in the case of

photonic crystal cavities, the resonators had low quality factors and the transmission

spectra may be quite complex [24, 76].

5.2 Theory

In Chapters 2 and 3, we developed a transfer matrix method to analyze ring

resonator CROWs and derived a set of analytical expressions for the delay and loss

of CROWs. We shall briefly review those theoretical results, which will be useful in

our comparisons with our experiments.

As described in Chapter 2, the dispersion relation of a microring CROW is

sin(βπR) = ±|κ| cos(KΛ), (5.1)

where β = neff (ω)ω/c is the propagation constant in the ring, R is the radius,

κ = i|κ| is the dimensionless field coupling coefficient between two rings, K is the

Bloch wavevector and Λ is the periodicity of the structure. In the limit of weak

coupling, |κ| ¿ 1, the dispersion relation reduces to

ω(K) = Ω

[
1± |κ|

mπ
cos(KΛ)

]
, (5.2)

where Ω is the resonance frequency of an uncoupled resonator in radians/s and m =

Ωneff (Ω)R/c is the azimuthal modal number.

Using Eq. (5.2), the group velocity, vg of a CROW, given by 1/vg = ∂K/∂ω, is

1

vg

=
neff

Λ sin(KΛ)

[
±Rπ

c|κ| −
cos(KΛ)

n2
eff

∂neff

∂ω

]
. (5.3)
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At the center of the CROW transmission band, where ω = Ω and KΛ = π/2, the

magnitude of the group velocity is maximum and is equal to

|vg(Ω)| = c|κ|Λ
πRneff (Ω)

. (5.4)

The time delay of a pulse propagating through the CROW, τ , is determined by

the distance traversed in the CROW and the group velocity,

τ =
NΛ

vg

, (5.5)

where N is the number of resonators. At the center of the CROW band, the delay is

equal to

τd =
NπRneff (Ω)

c|κ| . (5.6)

The loss of a CROW is given by the product of the time delay, the phase velocity

of the light in the resonators, and the loss per unit length in the resonators. At the

center of the band, the loss, αΩ, is

αΩ =
αlNπR

|κ| , (5.7)

where αl is the loss per length in the rings.

We shall define the slowing factor, S, to be the ratio of the group velocity in free

space to the group velocity in the CROW, S = c/vg, such that at the band center,

SΩ =
πneff (Ω)

2|κ| . (5.8)

Therefore, to obtain a large slowing factor, weak inter-resonator coupling is necessary.

Using the conventional definition of the group velocity dispersion (GVD), the

GVD is given by the change of the delay time with respect to the wavelength [112].
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Neglecting the dependence of neff on ω, the GVD per resonator, D, is

D ≡ 1

N

∂τ

∂λ
=

Λ3(2πc)2

v3
gλ

2

(
1

λ0

− 1

λ

)
, (5.9)

where λ0 = 2πΩ/c is the resonance wavelength. As evidenced by Eq. (5.9), the GVD

is maximum at the band edges where vg → 0 and minimum at the band center where

λ = λ0. The GVD switches sign across the band center, such that for vg > 0, it is

negative for λ < λ0 and positive for λ > λ0.

From our spectral and delay measurements of CROWs, we shall verify Eqs. (5.4)-

(5.9) and determine the transmission and dispersive properties of the ring resonators.

5.3 Fabrication

We fabricated CROWs with as many as 12 weakly coupled microring resonators

in polymethyl-methacrylate (PMMA, n = 1.49) by direct electron-beam writing. As

CROWs require numerous nearly identical resonators, PMMA is ideal for their fabri-

cation since it is a high resolution electron-beam resist. A low index perfluoropolymer,

CytopTM (n = 1.34, Asahi Glass), was used as the lower cladding. The material sys-

tem of PMMA and CytopTM is used in commercial polymer optical fibers [113] and

has previously been used for simple waveguides [114]. The PMMA microrings did not

have an upper cladding in order to keep the radius as small as possible.

Fig. 5.1 summarizes the CytopTM and PMMA preparation process for the electron-

beam writing. We began the fabrication process by depositing a 5.2 µm thick layer of

CytopTM CTL-809M on a 250 µm thick silicon substrate. To ensure flatness and uni-

formity over the wafer, the deposition of the CytopTM was accomplished via a series

of spinning and thermal curing steps. First, we spun the CytopTM on the silicon at

1500 RPM. Adhesion promoters were not necessary. Next, the CytopTM was baked

at 65◦C for 60 s, 95◦C for 60 s, and 180◦C for 20 mins. The ramping of the bake

temperature was critical in attaining flat and uniform surfaces. The spinning and

baking steps were then repeated two more times, with a final bake at 180◦C for 3
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Figure 5.1: Summary of the CytopTM and PMMA preparation process for the
electron-beam writing

hours.

After the chip cooled down, an oxygen plasma treatment (Anatech SP100) of

the CytopTM was necessary for the adhesion of CytopTM to PMMA. The plasma

exposure was 30 s long at an RF power of 80 W and O2 pressure of 200 mTorr. After

an optional 60 s exposure to hexamethyldisilazane (HMDS), a 2.6 µm of PMMA 950K

C10 (Microchem) was spun onto the chip at 500 RPM for 15 s and then 4000 RPM

for 40 s. A pre-exposure bake at 180oC for 20 min ensured solvents were evaporated

and improved the adhesion between the CytopTM and PMMA.

We next patterned the microrings via direct electron-beam writing (Leica EBPG

5000). Since PMMA is a positive resist, we defined the cladding regions with the

electron-beam lithography. We used an acceleration voltage of 100 kV and an electron-

beam current of 3.5 nA at a dosage varying from 785 to 815 µC/cm2. After the

electron-beam exposure, we developed the sample in a 1:3 methyl isobutyl ketone

(MIBK):isopropanol (IPA) solution. Finally, we separated the devices by cleaving.
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Fig. 5.2 shows several optical and scanning electron microscope pictures of the

fabricated devices. The electron-beam lithography produced waveguides with fairly

smooth sidewalls. Fig. 5.2(d) shows the device end facet which was defined by scribing

and breaking. The slight waviness of the CytopTM near the PMMA waveguide is an

artifact of charging during the scanning electron microscope imaging. The quality of

the end facet indicates good adhesion between the PMMA and CytopTM and between

the CytopTM and silicon. It also shows that both PMMA and CytopTM possess the

mechanical properties suitable to cleaving. The waveguides had a width of 2.9 µm

and a height of 2.6 µm. The cladding regions were 4 µm wide. The radius of the rings

was 60 µm such that the bend loss, as calculated using a radial beam propagation

method, would be < 1 dB/cm. There was no coupling gap between the resonators

and between the waveguide and first/last resonator. However, due to the radius

of curvature of the rings as well as the waveguide design and index contrast, even

without a coupling gap, weak coupling between the resonators was achieved.

5.4 Transmission and Group Delay Measurements

We measured both the transmission spectra and group delays of the fabricated

microring CROWs. The spectral measurements were straightforward wherein we

detected the transmitted output power as a function of the wavelength scanned by

a tunable laser (HP 81640A). The group delay measurement was performed using a

RF phase-shift technique [11, 115].

Fig. 5.3 is a schematic of the setup of the group delay measurement. An RF lock-

in amplifier (SR844) generated the drive voltage to a modulator (Uniphase MA150-

001975) and detected the phase-shift between the drive and measured signals. Light

from the tunable laser source was coupled into the device under test (DUT) via a

standard single-mode fiber. The transmitted light was collected with a multi-mode

fiber coupled to a high-speed (2.5 GHz) InGaAs avalanche photodiode (APD, Fujitsu

FRM5W231DRF). To determine the absolute time delay through the CROW, we

measured the reference phase-shift due to the propagation through the input and
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(a) (b)

(c) (d)

Figure 5.2: Optical microscope [(a)] and scanning electron microscope [(b)–(d)] im-
ages of the fabricated devices in PMMA on CytopTM on silicon. (a): 10 coupled
microring resonators. The ring radius is 60 µm. (b): The coupling region between
two rings. (c): The coupling region between the input/output waveguide and the
microring. (d): A waveguide end facet produced by cleaving.
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output waveguides only and calibrated for any intrinsic, intensity-dependent system

response. Thus, the measured group delay through the CROW is given by

τm =
θm − θref

360◦
1

fmod

, (5.10)

where θm is the measured phase-shift angle in degrees, θref is the reference angle in

degrees, and fmod is the modulation frequency in Hz. By changing the wavelength

of the tunable laser source, we measured the group delay as a function of the optical

frequency.

The accuracy of the group delay depends on the accuracy of the measured phase-

shift. For a fixed error in the measured angle, the error in the group delay is smaller for

a higher modulation frequency by Eq. (5.10). However, a high modulation frequency

may cause significant distortions in the delay and amplitude measurements with the

lock-in amplifier, because the two side-bands generated about the optical carrier may

experience vastly different transmission characteristics in a narrow-band device. This

distortion is less pronounced if fmod is kept significantly smaller than the bandwidth

of the device [11]. The measured angle can also have an ambiguity equal to multiples

of 360◦, equivalent to a delay of 1/fmod. Hence, a higher modulation frequency would

more easily lead to uncertainty in the group delay due to possible 360◦ phase-shifts.

For our experiments, we used a modulation frequency of 200 MHz, which was

about 100 times narrower than the full-width half-maximum (FWHM) linewidth of

the CROWs. A maximum delay of 5 ns can be measured at this modulation fre-

quency without encountering the 360◦ ambiguity. However, the phase error in our

measurement was about ±0.5◦, equivalent to a ±7 ps uncertainty in the time delay.

The trade-off between the modulation frequency and the accuracy of the group delay

is intrinsic to this measurement technique.



5.5 Magnitude Response 69

Polarization
Controller

RF Lock−in
Amplifier

Optical 
Output

Polarization
Controller

Modulator

DUTAPD

Input
Ref 1Vpp
200MHz

Tunable Laser

Figure 5.3: Schematic of the group delay measurement setup. The RF lock-in ampli-
fier generates a 1 V peak-to-peak voltage at 200 MHz to drive the modulator. DUT
is the device under test, and APD is the avalanche photodiode.

5.5 Magnitude Response

5.5.1 Transmission Spectra

Fig. 5.4 shows the transmission spectrum at the drop port of a 10 microring

long CROW for TE polarized light. There are no spurious peaks in the spectrum,

indicating that the resonators were nearly identical. However, slight variations in

the resonators and polarization mixing may have caused the broad envelope in the

spectrum.

We compared our measured results with the theoretical results computed from the

transfer matrices [34]. For the theoretical calculations, we assumed the resonators to

be identical and neglected the dependence of neff on the wavelength. The lineshapes

of both the drop and through ports are sensitive to the propagation loss in the rings,

but while the drop port is sensitive to the inter-resonator coupling, the through port

is more sensitive to the coupling between the input/output waveguides and the rings.

Therefore, by fitting the drop and through spectra as well as the group delay, we could

estimate the complete set of parameters that describe an ideal CROW composed
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Figure 5.4: The drop port transmission spectrum of TE polarized light through a
CROW of 10 coupled microring resonators

of identical resonators: the propagation loss in the resonators, the inter-resonator

coupling coefficient, and the waveguide-resonator coupling coefficient.

Fig. 5.5 shows the experimentally measured spectra at the drop and through

ports at the resonance near 1550 nm in Fig. 5.4. The inset shows the drop port

spectrum in dB scale. The measured extinction ratio of circa −20 dB was limited by

the noise floor of our detector. For the fit, the inter-resonator field coupling coefficient

is |κ| = 0.12, the waveguide-resonator field coupling coefficient is |κi| = 0.15, and the

propagation loss is 17 dB/cm. The through port spectrum shows the Fabry-Perot

resonances defined by the device end facets. The multiple notches in the spectrum

indicate there were indeed variations in the resonators, which were not as apparent

in the lineshape of the drop port. However, these variations were small enough such

that we were able to obtain simple, clear spectral responses as in Fig. 5.4. The ring

resonators were under-coupled to the input waveguide so the extinction of the notch

in Fig. 5.5 is only about −1.5 dB.
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Figure 5.5: Experimental and theoretical spectra at the drop and through ports for the
transmission peak near λ = 1550 nm in Fig. 5.4. The fit parameters are |κ| = 0.12,
|κi| = 0.15, and αl = 17 dB/cm. Inset: The measured drop port spectrum in dB
scale

5.5.2 Losses

In general, the CROWs we fabricated had inter-resonator coupling coefficients,

|κ|, of about 0.1 to 0.15. The propagation losses of the ring resonators were about

15 to 18 dB/cm, resulting in intrinsic quality factors of 1.5× 104 to 1.8× 104. Most

of the propagation loss was likely due to side-wall scattering since the index contrast

between the core and the air cladding was quite large. The material losses of PMMA

are about 1.5 to 2 dB/cm [116, 117] and the theoretical bend loss was less than 1

dB/cm. Due to the losses in the CROWs, ripples in the passband were not observed.

Passband ripples can introduce distortions to and limit the bandwidth of propagating

optical pulses [11, 22]. The ripples may be reduced by choosing a suitable waveguide-

resonator coupling coefficient [35], or the passband can be optimally flattened through

the apodization of the inter-resonator coupling coefficients [5, 11, 22].

The fiber-to-fiber insertion loss at the through port was about −15 to −20 dB off-

resonance, and on-resonance, the loss was about −16 to −21 dB. The fiber-to-fiber
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insertion loss at the drop port depends on the number of resonators in the CROW

and varied from about −35 dB for 4 resonators to −45 dB for 12 resonators. The

ratio of the drop power to the difference between the on and off resonance through

power gives equivalent losses of 2.4 to 3.5 dB per resonator, in excellent agreement

with the loss of 2.3 to 3 dB per resonator calculated with Eq. (5.7).

The measured spectrum and loss per resonator suggest that while slight variations

in the resonators existed, the microrings comprising the CROWs were nearly identi-

cal. Our results show that the maximum number of microrings that can be coupled

together is not limited by the fabrication accuracy but rather by the resonator losses.

5.6 Dispersive Properties

To comprehensively characterize the CROWs, we obtained the dispersive proper-

ties of the ring resonators and the CROW as well. In this section, we shall extrapolate

the group and effective indices of resonator waveguides, the group delay and slowing

factors in the CROWs, and the CROW GVD from our spectral and delay measure-

ments.

5.6.1 Group Index

The group index of the resonator waveguides, ng, is related to the free spectral

range of the resonator,

∆fFSR =
c

2πngR
, (5.11)

where ∆fFSR is the free spectral range in frequency and the group index is defined as

ng(λ1) = neff (λ1)− λ1
∂neff

∂λ |λ1

. (5.12)

Therefore, from the transmission spectrum, we may obtain the group index as a

function of the wavelength. Fig. 5.6 shows the group index extrapolated from the

transmission spectrum in Fig. 5.4. We have also plotted the theoretical group in-
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Figure 5.6: The experimentally measured and theoretically calculated group index for
the PMMA on CytopTM ring resonators. The experimental values are extrapolated
from the spectrum in Fig. 5.4.

dex of the ring resonators calculated using a mode-solver. There is generally good

agreement between the theoretical and experimental values. The calculated group

index is approximately 1.525 and the measured group index ranges from 1.51 to 1.53.

The variation in the measured group index may be due to slight inaccuracies in the

wavelength and material dispersion, which was not accounted for in the mode-solver

calculations.

5.6.2 Effective Index and Group Delay

The effective index, neff , from the mode-solver calculations is approximately 1.42

in this wavelength range. We may also obtain the effective index by using Eq. (5.6),

since the group velocity at the center of the CROW band depends on the effective

index and not the group index. Table 5.1 lists the inter-resonator coupling coeffi-

cients, measured group delays and slowing factors for TE polarized light in CROWs

of various lengths that were fabricated. By plotting τd|κ| versus N , according to Eq.

(5.6), the slope is proportional to the effective index averaged over the wavelength
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Table 5.1: Coupling Coefficients, Group Delays, and Slowing Factors for CROWs of
Various Lengths

Number of Coupling Group Delay Slowing Factor
Microrings (N) |κ| τd(ps) (SΩ)

4 0.15 25.9 16.2
6 0.25 23 9.6
8 0.15 49 15.2
10 0.12 80 19.9
12 0.10 110 22.9

range considered. Thus, we can compare the experimental effective index with the

theoretical value and verify Eq. (5.6).

Fig. 5.7 shows the τd|κ| as a function of N . The data fits very well with a linear

function, with a slope of 0.9182 ps, translating to an effective index of 1.46. The value

agrees with the calculated value of 1.42 within the experimental error, indicating that

Eq. (5.6) accurately expresses the time delay at the band center of a CROW.

As listed in Table 5.1, the resonators in the CROWs were generally weakly coupled,

with an inter-resonator intensity coupling of about 1 to 2%. The weak inter-resonator

coupling led to slowing factors at the maximum of the transmission peaks of about

15 to 25. The FWHM of the transmission peaks was approximately 15 to 20 GHz.

The coupling coefficient was highly sensitive to the electron-beam writing conditions

and the PMMA/CytopTM layers such that the coupling coefficient was not replicated

exactly from device to device. Nonetheless, as evidenced by Fig. 5.7, the group delays

of the devices were consistent with each other.

5.6.3 Group Velocity Dispersion

Finally, we can determine the group velocity dispersion of the CROW from the

group delay measurements. Theoretically, the GVD is given by Eq. (5.9). The GVD

switches sign across the resonance frequency Ω and is highest at the band edges where

the group velocity is small. We extracted the GVD by taking the derivative of the
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Figure 5.7: The product of the time delay at band center and the inter-resonator cou-
pling, τd|κ|, is plotted against the number of resonators using the results summarized
in Table 5.1. The slope of the graph gives πRneff/c according to Eq. (5.6).

measured group delay with respect to the wavelength.

Fig. 5.8 summarizes the transmission, group delay, phase response, and GVD

for the TE polarization of a CROW consisting of 12 microrings, for which the delay

properties are listed in Table 5.1. The phase response was obtained by integrating the

delay with respect to the frequency. The curvatures of the theoretically calculated

group delay and GVD change at the band edges due to the losses in the resonators

[118]. The measured GVD follows the general trend described by Eq. (5.9). In

Fig. 5.8, the GVD changes from negative to positive across the resonance peak.

The high group delay and GVD at the edges of the peak may not be physical, since

the transmission amplitude was low at these wavelengths. The change in the GVD

and group delay curvatures at the band edges in the calculated results could not be

measured, most likely because of the low transmission amplitude.

Unsurprisingly, the GVD of the CROW can be very high. The measured GVD

varied from −100 to 70 ps/(nm · resonator) across the FWHM of the peak, with zero

GVD at 1511.18 nm, near the resonance peak at 1511.15 nm. The measured GVD is
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Figure 5.8: (a) The transmission amplitude, (b) the group delay, (c) the phase re-
sponse, and (d) the group velocity dispersion of TE polarized light in a 12 microring
long CROW with delay properties listed in Table 5.1.
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significantly higher than the theoretically calculated GVD which ranges from −17 to

17 ps/(nm · resonator) across the FWHM of the transmission peak. The dispersion of

the resonator waveguide alone does not account for the difference. The per resonator

GVD due to waveguide dispersion is

Dwg =
πR

c|κ|
∂ng

∂λ
, (5.13)

which is approximately 2.2 × 10−4 ps/(nm · resonator). The discrepancy may be a

result of the deviation from the ideal scenario of identical resonators. The asymmetry

of the transmission peak suggests the resonators were not perfectly identical and

perhaps the polarization was not purely TE. Since the GVD, given by Eq. (5.9),

scales as 1/v3
g , any slight deviation of the group velocity will result in a large change

in the dispersion.

Compared to other engineered waveguide structures reported to date, such as

photonic crystal waveguides and fibers, because of the weak inter-resonator cou-

pling, the CROWs we have demonstrated possess a significantly higher GVD, even

though the refractive indices of the polymer materials are relatively low. The mea-

sured GVD values of about ±100 ps/(nm · resonator) is equivalent to ±8.3 × 108

ps/(nm · km), and the calculated GVD of ±17 ps/(nm · resonator) is equivalent to

±1.4× 108 ps/(nm · km). The CROWs we have presented are about 107 times more

dispersive than conventional optical fibers, 106 times more dispersive than highly

dispersive photonic crystal fibers [119], and approximately 100 to 1000 times more

dispersive than photonic crystal waveguides reported to date [120, 121]. Compared

to previously reported GVD values of photonic crystal CROWs [122], the GVD of our

microring CROWs is about an order of magnitude greater. With such large values of

both normal and anomalous dispersion, CROWs may find applications in dispersion

management and nonlinear optics [112, 123, 124, 125, 27, 26].
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5.7 Summary

We have fabricated microring CROWs in polymer materials and have measured

their spectral and dispersive properties. Direct electron-beam writing of the PMMA

on CytopTM produces nearly identical microrings such that no external tuning of the

ring resonators is necessary, greatly simplifying the fabrication and characterization

process. The simple and clear transmission spectra of the microring CROWs are

in sharp contrast to other resonators such as disks, spheres, and photonic crystal

defects. The maximum number of coupled rings and the maximum achievable delay

are limited by the loss in the resonators and not by any fabrication inaccuracies.

Group delays greater than 100 ps were measured in the CROWs, with slowing factors

of circa 15 to 25. The group velocity dispersion of the CROWs can be very high, about

±100 ps/(nm · resonator), with most of the dispersion arising from the CROW device

structure rather than from the material or waveguide dispersion. Our demonstration

illustrates the feasibility of using a large number of microresonators to engineer the

transmission and dispersion of optical waves.



Chapter 6

Active CROWs: Gain Enhancement
and Noise

6.1 Introduction

As fabrication technologies improve, very high-order, even on the order of a hun-

dred, coupled resonators are now achievable [49]. One of the remaining important

challenges, as illustrated by our results in the last chapter, is to overcome the optical

loss in CROWs. In Chapter 3, we found the loss accumulated in these devices can

scale with the number of resonators in the structures and the time delay (we shall

show in this chapter that this is not always the case). Therefore, to compensate for

the accumulated losses, an amplifying section that is placed after a CROW may have

to be long, perhaps much longer than the CROW itself. Thus, to minimize the device

footprint, it would be advantageous to continuously amplify a wave propagating in

an active CROW.

In the remainder of this thesis, we shall investigate theoretically and experimen-

tally active, amplifying CROWs. The present chapter examines theoretically the

effect of resonant gain enhancement and noise1. Using a tight-binding analysis, we

shall show that, contrary to expectation, the net gain of a wave in a CROW does

not necessarily depend on its group velocity but is strongly affected by the excita-

tion and termination of the CROW. These results can be applied to losses as well,

though optical gain makes laser oscillation possible and must be considered with more

1 c©2007 OSA. Reprinted, with permission, from [126].
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care. Using the same formalism, we shall find the expression for the noise caused by

spontaneous emission.

6.2 Time Domain Tight-Binding Equations

To provide a generalized approach to analyze the amplifying and noise properties

of CROWs, we shall use a time domain tight-binding or coupled-mode formalism.

While time domain coupled-mode equations are commonly used to analyze coupled

resonators, their derivations are often heuristic [5, 37]. In this section, we shall outline

the derivation of these time domain coupled-mode or tight-binding equations from

Maxwell’s equations. The derivation will make explicit the assumptions that are

made in obtaining the simple coupled oscillator equations found in the literature.

To analyze gain/loss as well as noise, we first define the polarization density of

the structure as

P(r, t) = ε0χ(r)E + ε0p(r, t), (6.1)

where χ(r) is the susceptibility and p(r, t) is the small amplitude fluctuation of P(r, t)

which we will use later in our analysis of noise. Generally speaking, in active struc-

tures, the susceptibility is a function of time, since the carrier or population densities

are modified by the optical field. We shall simplify the analysis to a quasi-static

picture where the optical signal varies on a much longer time scale than the carrier

dynamics, so the gain and loss can be taken as constants. Furthermore, in the regime

of small values of gain, we can neglect nonlinearities due to saturation so χ(r) is

linear and can be expressed as χ(r) = ε(r) + iσ(r). ε(r) is the dielectric profile of

the structure and σ(r) accounts for the gain or loss depending on its sign (positive

for gain and negative for loss). ε(r) and σ(r) are dimensionless. Substituting the

polarization density into Maxwell’s equations, we arrive at

∇×∇× E(r, t) +
1

c2
[ε(r) + iσ(r)] Ë(r, t) = − 1

c2
p̈(r, t). (6.2)

In the tight-binding or coupled-mode approach, we assume the fields in a CROW,
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E(r, t), can be expressed as a superposition of the localized resonator modes, EΩ(r).

Strictly speaking, in the presence of loss or gain, the structure does not support true

eigenmodes [127, 128]. However, we shall assume that the index contrast is sufficiently

high and the loss/gain small so that these “quasi-modes” are well approximated by

an expansion over the lossless resonator modes. Therefore, for a CROW consisting of

N identical resonators, the field is

E(r, t) = exp(iωt)
N∑

n=1

an(t)EΩ(r− nΛẑ), (6.3)

where ω is the frequency of oscillation of the electric field, an(t) is a time-dependent

amplitude coefficient, ẑ is the direction of periodicity, and Λ is the period. Depend-

ing on the specific problem we solve, ω may be a particular eigenfrequency or the

frequency of an externally driving field. a(t) varies slowly compared to the optical

frequency. We note that the localized resonator modes themselves satisfy the equa-

tion,

∇×∇× EΩ(r) =
Ω2

c2
εΩ(r)EΩ(r), (6.4)

where Ω is the resonance frequency and εΩ(r) is the dielectric constant of the single

resonator.

Substituting Eqs. (6.3) and (6.4) into Eq. (6.2) and applying the slowly-varying

envelope approximation, |än| ¿ 2ω|ȧn|, we drop the än terms. The slowly-varying

envelope approximation is valid only in the case of weak inter-resonator coupling,

meaning that

∫
d3rE∗

Ω(r− Λẑ)f(r)EΩ(r) ¿
∫

d3rE∗
Ω(r)f(r)EΩ(r), (6.5)

where f(r) = ε(r) or |σ(r)|. Typically, |σ(r)| is much smaller than ε(r). However, at

certain material resonances, the imaginary part of the susceptibility can dominate so

the resonators can be coupled through σ(r) as well.

Subsequently, we integrate the result over
∫

d3rE∗
Ω(r−mΛẑ) and keep only up to

nearest neighbor interaction terms (i.e., only the n = m,m ± 1 terms). We further
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approximate that the ȧm±1 terms are negligible compared the ȧm term, which is again

only valid in the weak coupling regime. To simplify the expressions, we may adopt

the normalization condition
∫

d3rE∗
Ω(r) · εΩ(r)EΩ(r) = 1. At this point, we arrive at

2iωȧm(1 + ∆α + iσm) = am

[
(ω2 − Ω2) + ω2(∆α + iσm)

]

+ am+1

[
ω2(d + i∆σ)− Ω2b

]
+ am−1

[
ω2(d∗ + i∆σ∗)− Ω2b∗

]− p̈m exp(−iωt),
(6.6)

where the various constants are given by

∆α =

∫
d3rE∗

Ω(r) · [ε(r)− εΩ(r)]EΩ(r) (6.7a)

b =

∫
d3rE∗

Ω(r) · εΩ(r− Λẑ)EΩ(r− Λẑ) (6.7b)

d =

∫
d3rE∗

Ω(r) · ε(r)EΩ(r− Λẑ) (6.7c)

σm =

∫
d3rE∗

Ω(r) · σ(r)EΩ(r) (6.7d)

∆σm =

∫
d3rE∗

Ω(r) · σ(r)EΩ(r− Λẑ) (6.7e)

pm =

∫
d3rE∗

Ω(r−mΛẑ) · p(r). (6.7f)

To simplify the algebra, we have assumed ε(r) ≈ ε(r ± Λẑ), which is true only for

infinitely long structures. The approximation holds the worst for the first and last

resonator in a finite CROW. This means that the constants in Eq. (6.7) at the first

and last resonator are slightly different compared to resonators in the center of the

chain.

If ∆α, |σm| ¿ 1 and ω ≈ Ω, such that both the gain and the coupling are weak,

Eq. (6.6) becomes

iȧm = am

[
(ω − Ω′) + i

ωσm

2

]
+ κtam+1 + κ∗t am−1 − p̈m

2ω
exp(−iωt), (6.8)
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where Ω′ = Ω− ω∆α/2, and κt = ω/2(d− b), or

κt =
ω

2

∫
d3rE∗

Ω(r) [ε(r + mΛẑ)− εΩ(r− Λẑ)]EΩ(r− Λẑ). (6.9)

In reaching Eq. (6.8), we neglected terms that vary with ∆σm by assuming that the

coupling through the real part of the susceptibility dominates. However, in the case

where ∆σm cannot be neglected, the coupling constant will be a complex with an

imaginary part given by iω∆σm/2.

Because a CROW consisting of weakly coupled resonators is a narrowband device,

if we consider only the noise in the frequency range of a single propagation band, the

noise term, pm(t) can be approximated as a slowly varying quantity, so it can be

expressed as pm(t) = 2sm(t) exp(iωt) and p̈m ≈ −2ω2sm(t) exp(iωt). With this final

approximation and choosing the phase such that EΩ is real and κt = κ∗t , we finally

arrive at the typical time domain coupled oscillator equation,

ȧm = am

[
−i(ω − Ω′) +

1

τi

]
− iκt(am+1 + am−1)− iωsm(t), (6.10)

where we have defined 1/τi ≡ ωσm/2. τi > 0 represents gain while τi < 0 represents

loss.

Throughout our derivation, we have highlighted the approximations that are em-

bodied by Eq. (6.10). These approximations are justified in the regime of weak

inter-resonator coupling and small values of gain or loss. In the limit of high gain or

high field intensities, light propagation becomes nonlinear because of saturation. To

deal with large coupling strengths, transfer matrices as described in Chapters 2 and

7 are an alternative analytical approach.

6.3 Gain Enhancement and Boundary Conditions

In this section, we will use the coupled oscillator equation, Eq. (6.10), derived

in the previous section to understand the role of coupled resonances on the net gain
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Figure 6.1: Various configurations of coupled resonators: (a) infinitely long CROWs,
(b) finite CROWs in isolation, (c) finite CROWs with out-coupling at the ends, and
(d) finite CROWs with an input optical field with out-coupling at the ends

of an amplifying CROW. We shall neglect the noise contribution here and examine

the steady-state response, so sm(t) = 0 and ȧm = 0 in Eq. (6.10). Our results will

show that gain enhancement is strongly dependent on the boundary conditions and

excitation of the coupled resonators. We will examine the scenarios illustrated in

Fig. 6.1: (a) infinite structures, (b) finite structures in isolation of additional dissipa-

tive pathways, (c) finite structures with additional dissipation (such as input/output

waveguides), and (d) finite structures driven by input optical fields.

6.3.1 Infinitely Long Structures

An infinitely long CROW is schematically depicted in Fig. 6.1(a). The eigen-

modes of infinitely long structures satisfy Bloch boundary conditions so am+1 =

am exp(−iKΛ), where K is the Bloch wave-vector. K can be complex and can be

expressed as K = KR + iKI . Substituting this form of the solution into Eq. (6.10),

we have equations for the real and imaginary parts of Eq. (6.10):

(ω − Ω′) = −2κt cos(KRΛ) cosh(KIΛ), (6.11a)

− 1

τi

+ 2κt sin(KRΛ) sinh(KIΛ) = 0. (6.11b)
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In the absence of loss or gain, KI = 0 in the propagation band. Therefore, the

group velocity, vg = dω/dK = 2κtΛ sin(KRΛ), and Eq. (6.11b) becomes

sinh(KIΛ) =
Λ

2τivg

. (6.12)

As vg → 0, KI → ∞, meaning that the field is most amplified (or attenuated) at

the band-edges. For small values of KIΛ, near the band-center, KIΛ ≈ Λ
2τivg

and

scales linearly with vg. Therefore, for infinitely long structures, the gain (loss) of the

Bloch modes of the coupled resonators are enhanced compared to the the gain (or

loss) of the constituent resonators by a factor of 1/vg. This result agrees well with

conventional arguments in describing band-edge laser action and gain enhancement

in photonic crystals where the analysis often begins with the Bloch modes of the

structures [129, 130, 131].

6.3.2 Finite Structures

Naturally, infinitely long structures are not realizable in practice. In this subsec-

tion, we shall show that even if the finite structures contain a very large number of

periods, the modes can behave significantly differently compared to the Bloch modes.

In particular, the termination or boundary conditions play perhaps the most impor-

tant role in determining the net gain (loss) in the coupled resonator chains.

The field amplitudes in finite structures can be solved by expressing Eq. (6.10) in

terms of a matrix equation. For convenience, we define a ≡
[
a1 a2 . . . aN

]T

. In

the following sections, we shall find the fields of finite CROWs with various boundary

conditions.

6.3.2.1 Clamped Boundaries

First, we examine the modes of a finite CROW with no external coupling to dissipation

channels in addition to the intrinsic gain/loss rate of 1/τi. This situation is depicted

in Fig. 6.1(b). In this scenario, because of the finite length the CROW, the fields are
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“clamped” to zero at the boundaries, or a0 = 0 and aN+1 = 0. The matrix equation

that describes this system is

iωa =




iΩ′ + 1
τi

−iκt 0 0 ... 0 0

−iκt iΩ′ + 1
τi

−iκt 0 ... 0 0

. . . . . . .

. . . . . . .

. . . . . −iκt iΩ′ + 1
τi




a. (6.13)

The eigenvalues, ωn, and the elements of the eigenvectors, am, of Eq. (6.13) are [1]

ωn =

(
Ω′ − i

τi

)
− 2κt cos

(
nπ

N + 1

)
, n = 1 . . . N (6.14a)

a(n)
m = sin

(
m

nπ

N + 1

)
, m = 1 . . . N. (6.14b)

From Eq. (6.14a), the real part of ωn gives the dispersion relation of the structure

as N →∞. However, the imaginary part of all the eigenvalues are identical and equal

−i/τi, independent of the nπ/(N + 1). Therefore, regardless of how many resonators

are in the chain, all the modes experience equal amplification and dissipation rates.

Unlike the Bloch modes of Section 6.3.1, there is no additional enhancement of the

gain (loss) that arises from the coupling between the resonators compared to the in-

trinsic gain (loss) of the individual resonators. Physically, this result is not surprising

because these boundary conditions imply the modes of the finite CROW are isolated

from the external world, so the fields of the CROW grow (or decay) at the same rate

as its constituent resonators.

6.3.2.2 Free Boundaries

Next, we shall allow for additional dissipation in the CROW. Most typically, this

corresponds to the scenario where light is coupled out somewhere in the CROW

via waveguides for example. We will now examine the specific case where this out-

coupling occurs at the first and last element in the CROW as shown in Fig. 6.1(c),
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though our approach can be easily generalized to out-coupling at other elements.

Because we shall allow for additional dissipation at the ends of the CROW, the fields

are no longer clamped at the boundaries and are “free.”

For these boundary conditions, we can express the fields as

iωa =




iΩ′ + 1
τi
− 1

τe
−iκt 0 0 ... 0 0

−iκt iΩ′ + 1
τi

−iκt 0 ... 0 0

. . . . . . .

. . . . . . .

. . . . . −iκt iΩ′ + 1
τi
− 1

τe




a, (6.15)

where 1/τe > 0 is the additional loss rate to the external world. In general, the eigen-

values of Eq. (6.15) are found numerically. However, we can readily find an explicit

analytical expression using our results from Eq. (6.14) if 1/τe can be accounted for

perturbatively.

Perturbatively, the first-order correction to Eq. (6.14a) due to 1/τe is given by

aT
nWan, where an is the normalized eigenvector and W is the perturbation. The

resultant eigenvalues are

ωn ≈ Ω′ + 2κt cos

(
nπ

N + 1

)
+ i

[
− 1

τi

+
2

τe

sin2
(

nπ
N+1

)
∑N

m=1 sin2
(
m nπ

N+1

)
]

. (6.16)

Eq. (6.16) shows that 1/τi again does not scale with n/(N + 1), thus there is

no gain enhancement that depends on 1/vg. However, the rate of amplification is

indeed higher at the band-edges (n ≈ 0, N) compared to the band-center, because for

τi > 0, the imaginary part of ωn is more negative at the band-edges compared to the

band-center. Nonetheless, this increased gain at the band-edges is wholly determined

by the external coupling.

Fig. 6.2 illustrates this result, where we have the numerically computed eigen-

values of Eq. (6.15) and the eigenvalues described by Eq. (6.16) for the parameters

described in the caption. The parameters are normalized to Ω′. The rate of amplifi-
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Figure 6.2: −Im[ωn] vs. Re[ωn]−Ω′ for a CROW with out-coupling at the two ends.
τe = 104, τi = 5× 104, κt = 0.1, and N = 20.

cation is given by −Im[ωn] and is plotted against Re[ωn] − Ω′. As evidenced by the

figure, the frequencies near the band-edge experience an increased rate of amplifica-

tion proportional to the out-coupling rate.

Physically, we can interpret the 1/τe term in Eq. (6.16) as the effective rates of

dissipation or out-coupling of the various CROW modes described by Eq. (6.14).

This effective rate is smallest at the band-edges and largest at the band-center as

though the termination is lower loss (more “reflective”) for the lower vg modes [132].

6.3.2.3 Forced Coupled Oscillators

Thus far, we have only examined eigenmodes of infinite and finite CROWs. The

eigenmodes are useful when an input optical wave indeed excites superpositions of

these modes. In this section, we examine the transmission of a CROW amplifier
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where the first resonator is excited by an input wave and the output is detected at

the last resonator as in Fig. 6.1(d).

To model the presence of an input source, we add a driving term to the first

resonator, −iµSin, where µ describes the strength of the coupling between the input

wave and the resonator. Thus, the matrix equation becomes

iωa =




iΩ′ + 1
τi
− 1

τe
−iκt 0 0 ... 0 0

−iκt iΩ′ + 1
τi

−iκt 0 ... 0 0

. . . . . . .

. . . . . . .

. . . . . −iκt iΩ′ + 1
τi
− 1

τe




a− iµ




Sin

0

.

.

0




≡ Ma− iµsin.

(6.17)

Therefore, the amplitudes in the resonators are given by

a = −iµ(iωI−M)−1sin ≡ −iµTsin. (6.18)

The transmitted amplitude, St, is proportional to the amplitude in the last resonator

which is given by aN = −iµTN,1Sin.

The constant of proportionality between St and aN is determined from the con-

servation of energy in the absence of gain and loss. For example, we can consider a

single resonator where the rates of out-coupling to the input and output waveguides

are identical. If the magnitude of the field amplitude at the output is equal to the

input on resonance, then from Eq. (6.10)

− 2

τe

a1 − iµSin = 0. (6.19)

The factor of 2 is due to out-coupling to both input and output waveguides. If

|St|2 = |Sin|2, as in the case of ring resonators in the add-drop configuration [5], then

|St|2 = |2/(τeµ)a1|2 and |κ̄| = |2/(τeµ)| is the fraction of field amplitude inside the
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resonator leaked out to the output waveguide. For standing wave resonators, |St|2

is divided into four output channels (two at the start of the CROW and two at the

end) [133]. Therefore, generalizing to a CROW using Eq. (6.18), the transmitted

amplitude is ∣∣∣∣
St

Sin

∣∣∣∣
2

=

∣∣∣∣
2

τe

TN,1

∣∣∣∣
2

. (6.20)

The matrix element, TN,1, is explicitly given by [134]

TN,1 =
κt sin(φ)

i/τ 2
e sin((N − 1)φ) + 2κt/τe sin(Nφ)− iκ2

t sin((N + 1)φ)
(6.21a)

cos(φ) = −(ω − Ω′)
2κt

− i

2κtτi

, (6.21b)

for τi 6= 0. At the band-edges, cos(φbe) = ±1 − i/(2κtτi), and at the band-center,

cos(φbc) = −i/(2κtτi). This equation can be solved numerically. However, from Eqs.

(6.20) and (6.21), we see that the transmitted amplitude depends solely on κtτe at

a fixed φ. Thus, the net gain or loss experienced by the transmitted field can be

changed via τe.

Fig. 6.3 shows the numerically calculated transmission amplitude using Eq. (6.21)

for various values of 1/τe. The other parameters for the calculations are described

in the figure caption. As evidenced by the plot, the net gain of a wave and its

transmittance is controlled by τe.

Although Eq. (6.21) should in general be solved numerically, we can easily find

some approximate results in the case of loss, τi < 0, for which the equation does not

possess any poles. In the regime where 1/(κt|τi|) ¿ 1 and N/(2κt|τi|) À 1, after

some algebra, the transmitted amplitude at the band-center is approximately given

by ∣∣∣∣
St

Sin

∣∣∣∣
bc

≈ 4e
N

2κtτi

1/(κtτe) + 2 + κtτe

τi < 0. (6.22)

Eq. (6.22) gives the transmittance with loss and is in agreement with the heuristic

argument presented in Chapter 3 when κt ≈ 1/τe. Fig. 6.4 shows the transmittance

as a function of the number of resonators at the band-center frequency, ω = Ω′,
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Figure 6.3: The transmittance, |St/Sin|2, of CROWs for various values of τe. The
other parameters are τi = 5 × 104, κt = 0.1, and N = 10. Only the portion of
|St/Sin|2 ≤ 2 is shown for comparison.
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Figure 6.4: The exact solution of the transmittance from Eq. (6.21) and the approx-
imation given by Eq. (6.22) as a function of the number of resonators (N) at the
band-center frequency with optical loss. The other parameters are τi = −5 × 103,
κt = 0.01, τe = 1/κt = 100.

computed using Eq. (6.21) and Eq. (6.22). The plot shows that Eq. (6.22) is an

excellent approximation to Eq. (6.21).

6.4 Spontaneous Emission Noise

In optically amplifying devices, it is important to consider the effect of noise from

the spontaneous emission which degrades the signal-to-noise ratio. Using the formal-

ism we developed in Section 6.2, we can explicitly examine the effect of spontaneous

emission in a CROW. We will make frequent use of the Fourier transform in this
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section, which we define as

f(t) =

∫ ∞

−∞
f̃(ω̃) exp(iω̃t)dω̃, (6.23a)

f̃(ω̃) =
1

2π

∫ ∞

−∞
f(t) exp(−iω̃t)dt. (6.23b)

We begin in the tight-binding picture with Eq. (6.10). Spontaneous emission

causes small fluctuations in the polarization density in the medium and is represented

by sm(t). From Eq. (6.10), we can see that the spontaneous emission is manifested as

a small amplitude input at each resonator, which can then propagate and be amplified

in the CROW. A simple way to analyze the noise is to work in the frequency domain

such that we will have a linear set of equations. Taking the Fourier transform of Eq.

(6.10), we have

iω̃ãm = ãm

[
−i∆ +

1

τi

]
− iκt(ãm+1 + ãm−1)− iωs̃m, (6.24)

where ãm, ãm±1, s̃m are the Fourier amplitudes of am, sm, and am±1 respectively, ω̃ is

a frequency much lower than the optical frequency, and ∆ ≡ ω − Ω′. Eq. (6.24) can

now be solved as a matrix equation to find ãm given the s̃m’s.

6.4.1 Normalization of s̃m(ω̃)

The normalization of s̃m is related to the amount of spontaneous emission. We can

readily determine s̃m of each resonator by assuming there is no additional input wave

and taking κt = 0. For clarity, we separate the contributions of the gain/absorption

(due to induced transitions) and the intrinsic loss of the resonator:

1/τi = 1/τg − 1/τl, (6.25)

where 1/τg gives the amplification/absorption rate of the active medium and 1/τl

is the intrinsic loss rate. 1/τg depends on the inversion of the material and can be
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negative or positive depending on the pumping. 1/τl is a positive quantity.

At the material transparency, 1/τg = 0, the spontaneously emitted wave, ãsp, at

the resonant frequency is

iω̃ãsp,m = − 1

τl

ãsp,m − iΩs̃m, (6.26)

and its magnitude is

|ãsp,m|2 =
Ω2

ω̃2 + 1/τ 2
l

|s̃m|2. (6.27)

The instantaneous energy of the spontaneous emission is

Usp,m(t) = |asp,m(t)|2
∫

d3rε0εΩ(r) |EΩ(r)|2 = |asp,m(t)|2 V (6.28)

where V ≡ ε0

∫
d3rεΩ(r) |EΩ(r)|2. Therefore, from the Weiner-Khintchine theorem,

the average energy is

〈Usp,m〉 = lim
T→∞

1

T

∫ T/2

−T/2

dtUsp,m(t)

= lim
T→∞

2πV

T

∫
dω̃|ãsp,m(ω̃)|2,

(6.29)

where T is interpreted as the measurement integration time [1]. However, the spon-

taneous emission power into an ideal single uncoupled resonator is Psp,m ≈ Rsp,m~Ω,

where Rsp,m is the rate of spontaneous emission. Rsp,m is a function of the pump

rate and can be modified compared to bulk dielectrics by the Purcell factor [127]. As

the coupling to its neighbors increases, Rsp,m of a single cavity will be modified. For

simplicity, let us assume that the resonators are sufficiently weakly coupled that Rsp,m

does not change appreciably in the coupled resonator chain. Since the spontaneous

emission dissipates from the resonator at a rate of 2/τl,

〈Usp,m〉 =
Psp,mτl

2
=

Rsp,m~Ωτl

2
. (6.30)

Therefore, using Eqs. (6.27), (6.29), and (6.30), as 1/τl → 0 (i.e., small values of
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intrinsic loss), we arrive at the normalization condition

lim
T→∞

|s̃m(0)|2
T

=
~Rsp,m

4π2V Ω
, (6.31)

where we have used the identity limε→0 ε/(x2 + ε2) = πδ(x). It is important to note

that Rsp,m, τl, and τg are not independent of each other and are related through the

cavity losses and the carrier densities. In the next section, we will use the result in

Eq. (6.31) to derive the signal-to-noise ratio in active CROWs.

6.4.2 Signal-to-Noise Ratio

An important metric of propagating optical signals in any amplifying structure

with gain is the signal-to-noise ratio (SNR). SNR in non-resonant and Fabry-Perot

amplifiers as well as noise in multi-element lasers have been studied [1, 128, 135, 136,

137]. Here, we use our tight-binding formalism to derive expressions for the SNR of a

CROW amplifier. In particular, we will focus on the case described in Section 6.3.2.3

where the CROW is excited by an input wave at the first resonator and the signal is

detected at the output at the last resonator. Our approach can be easily extended to

other excitation conditions and boundary conditions.

We begin with the matrix form of Eq. (6.24) with an input in the first resonator,
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so




−i(ω̃ + ∆) + 1
τi
− 1

τe
−iκt 0 0 ... 0 0

−iκt −i(ω̃ + ∆) + 1
τi

−iκt 0 ... 0 0

. . . . . . .

. . . . . . .

. . . . . −iκt −i(ω̃ + ∆) + 1
τi
− 1

τe




ã

−iω




s̃1

s̃2

.

.

s̃N




− iµ




S̃in

0

.

.

0




= 0,

(6.32a)

ã = −iωP−1s̃− iµP−1s̃in, (6.32b)

where P is the N × N matrix in Eq. (6.32a), s̃ are the spontaneous emission noise

sources, and s̃in is the input signal. For an input of the form s̃in =
[
S̃in 0 0...0

]T

,

the amplitude at the Nth resonator is

|aN(ω̃)|2 = µ2|P−1
N,1S̃in|2 + ω2

N∑
j=1

|P−1
N,j s̃j|2 −

[
ωµ(P−1

N,1)
∗

N∑
j=1

P−1
N,j s̃jS̃

∗
in + c.c

]
. (6.33)

Eq. (6.33) gives the total magnitude of the field at the Nth resonator. We note

that the first term on the right side is the signal, the second term is the spontaneous

emission, and the last term corresponds to the beating between the input and the

spontaneous emission. For strong input powers and weak amplification, the beat

noise dominates. We shall proceed to analyze this ideal case where the spontaneous

emission signal beat noise is dominant. The other noise term can be dealt with easily

in a similar fashion.
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The noise current from the beating is given by

in(ω̃) = −ηωµ(P−1
N,1)

∗
N∑

j=1

P−1
N,j s̃jS̃

∗
in + c.c., (6.34)

where η is the responsivity of the detector and accounts for the normalization of an.

The mean electrical noise power is given by 〈i2n〉, which, using the Weiner-Khintchine

theorem, is

〈i2n〉 =η2 lim
T→∞

1

T

∫
dω̃2ω2µ2|P−1

N,1S̃in|2
N∑

j,k=1

P−1
N,j(P

−1
N,k)

∗s̃j s̃
∗
k

+ ω2µ22Re

[
(P−1

N,1)
∗2S̃∗2in

N∑

j,k=1

P−1
N,jP

−1
N,ks̃j s̃k

]
.

(6.35)

Since the spontaneous emission noise is not correlated in amplitude and phase,
∫

dω̃s̃∗l (ω̃)s̃m(ω̃) ∝ δl,m, where δl,m = 0 for l 6= m and 1 for l = m. Therefore, Eq.

(6.35) simplifies to

〈i2n〉 = η2 lim
T→∞

1

T

∫
dω̃2ω2µ2|P−1

N,1s̃in|2
N∑

j=1

|P−1
N,j s̃j|2. (6.36)

If we only consider a narrow-band signal and noise contributions within this narrow

bandwidth, the integral in the above equation can be approximated by the product

of the integrand at ω̃ = 0 and the bandwidth, ∆ω̃. So

〈i2n〉 ≈ η2 lim
T→∞

1

T

[
2ω2µ2|P−1

N,1S̃in|2
N∑

j=1

|P−1
N,j s̃j|2∆ω̃

]

ω̃=0

= ω2µ2|TN,1S̃in(0)|2
N∑

j=1

|TN,j|2 ~Rsp,j

2π2V Ω
∆ω̃,

(6.37)

where we have substituted the result from Eq. (6.31) and the matrix T was defined

in Section 6.3.2.3.
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To find the SNR, we first note that the signal is given by

〈i2in〉 = η2µ4 lim
T→∞

2π

T

∫
dω̃|P−1

N,1S̃in|4 ≈ η2µ4 lim
T→∞

2π

T
|TN,1S̃in(0)|4∆ω̃, (6.38)

where the second part of the equation is with the narrowband approximation. There-

fore, if the resonators are identical so Rsp,j = Rsp, the SNR is

SNR =
4π3V Ωµ2|TN,1|2

~ω2Rsp

∑N
j=1 |TN,j|2

· lim
T→∞

|S̃in(0)|2
T

. (6.39)

limT→∞ |S̃in(ω̃)|2/T is the power spectral density of the input, so the rightmost term

in the above equation refers to the input power at ω.

Physically, Eq. (6.39) states that the beat noise at any frequency at the output

is simply the sum of the transmitted magnitudes of spontaneous emission originating

from each resonator in the CROW. The key difference between a CROW and a non-

resonant amplifier is that the SNR can vary dramatically at different signal frequencies

because T can be a strong function of the wavelength. To have an acceptable SNR,

the matrix elements, |TN,j|2, should have a small magnitude. This can be achieved if

resonators are not high loss to begin with so the gain can be kept weak. A reduced

pump rate also reduces Rsp.

Fig. 6.5 shows the normalized SNR factor, G =
Rsp0|TN,1|2

Rsp
PN

j=1 |TN,j |2 as a function of

wavelength for various values of τg. Rsp0 is the spontaneous emission rate when τi = 0

or τg0 = τl. For weak, unsaturated gain, Rsp0/Rsp ≈ τg/τg0 since both Rsp and 1/τg

vary linearly with the pump rate. τl is taken to be a constant at 104. As evidenced

by the figure, a higher gain leads to a reduction in the SNR. The SNR is also highest

at the band-center and lowest at the band-edges.
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Figure 6.5: The normalized SNR factor, G, as a function of wavelength at various
gain levels. For the calculations, τl = 104, κt = 0.01, τe = 100, N = 10.
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6.4.3 Noise Figure

A second parameter that characterizes the performance of an amplifier is the noise

figure. The noise figure, NF, is defined as

NF =
SNRin

SNRout

, (6.40)

where SNRin is the SNR at the input of the amplifier and SNRout is the SNR at the

output. To determine NF, we simply need to define our input as Sin = Ssig + Sδ,

where Ssig is the field amplitude of the signal and Sδ is the field amplitude of the

noise.

Substituting this form of the input into Eq. (6.38), and assuming a narrow band-

width signal, we find

SNRin =
|S̃sig(0)|2
2|S̃δ(0)|2 . (6.41)

At the output, using Eq. (6.39), we have

SNRout =
4π3V Ωµ2|TN,1|2

~ω2Rsp

∑N
j=1 |TN,j|2

· lim
T→∞

|S̃sig(0)|2 + |S̃δ(0)|2
T

. (6.42)

Therefore, the noise figure, in the limit |S̃δ(0)|2 ¿ |S̃sig(0)|2, is

NF =
~ω2Rsp

∑N
j=1 |TN,j|2

4π3V Ωµ2|TN,1|2 · lim
T→∞

T

2|S̃δ(0)|2 . (6.43)

In the scenario where the noise is at the standard quantum limit (i.e., shot noise),

Sδ is the due to the vacuum fluctuations of the electric field. The quantization of the

field gives

Ŝδ(t) =

√
~ω
V

Â(t), (6.44)

where Ŝ(t) is now an operator and Â(t) is the photon annihilation operator [138].

The expectation value is
1

2
〈Ŝ†δ Ŝδ + ŜδŜ

†
δ〉 =

~ω
2V

, (6.45)
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since the noise arises from the vacuum, |0〉, photon state. On the other hand, the

classical equivalence is

〈S2
δ 〉 = lim

T→∞
2π

T

∫
dω̃|S̃δ(ω̃)|2

≈ lim
T→∞

2π

T
|S̃δ(0)|2∆ω̃.

(6.46)

Therefore, equating Eq. (6.45) with Eq. (6.46), we have

lim
T→∞

|S̃δ(0)|2
T

=
~ω

4πV ∆ω̃
. (6.47)

Taking ∆ω̃ = 2κt, the bandwidth of a CROW band, and ω ≈ Ω, the noise figure is

NF =
κtRsp

∑N
j=1 |TN,j|2

π2µ2|TN,1|2 . (6.48)

Fig. 6.6 shows an estimate of the noise figure for a loss-compensated CROW where

1/τi = 0. Rsp is given by Rsp = N2Vcav/tsp, where N2 is the population density of

the excited state of the gain medium, Vcav is the active volume of the resonator, and

tsp is the spontaneous emission lifetime. Taking N2 = 1018 cm−3, Vcav = 10 µm× 10

µm× 50 nm, and tsp = 1 ns, we compute Eq. (6.48) at the band-center frequency for

various values of inter-resonator coupling coefficients at a fixed input/output coupling

constant of τe = 1000 and µ = 0.045. The noise figure depends strongly on the

input/output coupling as well as the inter-resonator coupling. Nonetheless, using

these rough estimates, we see that through a suitable choice of coupling coefficients,

loss-compensated CROWs of the order of tens of resonators long can maintain noise

figures of less than 5.

6.5 Discussion

We have elucidated the effect of the boundary conditions on the net gain in a

CROW and the spontaneous emission on the SNR. Our results imply that the trans-
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Figure 6.6: The noise figure (NF) as a function of the number of resonators (N) in an
active CROW at the band-center frequency where the losses are exactly compensated.
The parameters for the calculations are described in the text.
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mission spectra, gain/loss, and noise of CROWs depend significantly on the exact

configuration of the CROWs and how they are excited. The dispersion relation of

an infinite structure, in the presence of gain (or loss), does not necessarily model a

periodic structure of finite length regardless of the number of periods that constitute

the device. While the real part of the phase accumulated in a finite CROW can be

similar to an infinite structure, the imaginary part of the phase (loss/gain) can differ

significantly.

Our results show gain (loss) enhancement in CROWs does not strictly depend on

vg, but can instead be understood as the combined effect of the gain (loss) of the

individual cavities and the resonance due to the finite length of the structure. Since

the effective reflectivity of a semi-infinite CROW is highest at the band-edges [132],

the “large” resonator set up in the direction of periodicity consisting of all the cavities

in the CROW is lowest loss for the band-edge or low vg modes. In the same way that

transmission spectrum ripples can be minimized by modifying only the input/output

coupling coefficients in a CROW [132], the gain (and loss) can also be controlled.

The dependence of optical loss on the structural termination has been observed in

photonic crystals [139] and the dependence of the laser frequencies and cleaved facets

has been analyzed in distributed feedback lasers [140]. The effect of the termination

on the optical properties of periodic structures should be explored in greater detail.

Our calculations of active CROWs with an input at the first resonator and output

show that the frequencies near the band-center have the highest SNR. Fortuitously,

the band-center is also the region of lowest group velocity dispersion, and its disper-

sive properties are the most robust to disorder in the coupling constants [141, 142].

Naturally then, the most ideal frequencies for the propagation of optical signals with

small vg should be those near the CROW band-center. In contrast, other types of

periodic structures, such as gratings and photonic crystals, the small group velocities

occur near the band-edges and are accompanied by a large group velocity dispersion.

It is also unclear the value of the SNR at those frequencies.

Although we have not formulated a complete picture of amplification in CROWs,

which would require additional equations to describe the carrier densities and a quan-
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tum mechanical treatment of the transition rates (to derive the gain/loss, noise), we

briefly note that the impact of vg on the induced optical transition rates and the gain.

For a simple two-level atom model, the induced transition rate, Wi is proportional to

the optical intensity [138] which is higher for reduced group velocities. To show this,

we observe that for a monochromatic wave in a homogeneous medium, its intensity

is

I(ω) =
cnph~ω

nV
, (6.49)

where nph is then the number of photons in the mode oscillating at ω, V is the modal

volume, and n is the effective index of the medium. However,

nph = ρ(ω)dω = ρ(K)dK, (6.50)

where ρ(ω) is the photon density of states in frequency and ρ(K) is the density of

states in wavenumber. Because vg = dω/dK and ρ(K) = NΛ/2π [142], substituting

into Eq. (6.50), we have

nph =
NΛ

2π

δω

vg(ω)
. (6.51)

Thus, a small group velocity leads to a higher stimulated emission rate. However, the

optical gain does not strictly depend on Wi. Rather, the optical amplification rate is

the fractional increase in the intensity of a wave per unit time, i.e., İ/I = ṅph/nph

[138]. Since ṅph is also proportional Wi, the 1/vg contribution cancels. This implies

that although Wi scales with 1/vg, the gain does not necessarily. In CROW lasers,

the lowest vg or band-edge modes need not oscillate first or at all.

6.6 Summary

We have presented a derivation of the time domain tight-binding equations de-

scribing the modes and wave propagation in CROWs. Only in the limit of weak

coupling and weak gain does the tight-binding equation resemble the simple coupled

oscillator equations commonly found in literature. Using this formalism, we find that
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the termination and excitation of a CROW has a profound impact on the net gain of

an optical wave inside the structure. A finite CROW can have significantly different

amplification and loss properties compared to an infinitely long chain of resonators.

Finally, we have derived the signal-to-noise ratio (SNR) and the noise figure of am-

plifying CROWs using the tight-binding approach.



Chapter 7

Slowing Light with Fabry-Perot
Resonator Arrays

7.1 Introduction

For electrically controllable amplification and coupling, CROWs with suitable

metal contacts and thermal dissipation are necessary. To this end, planar structures

with a small to moderate refractive index contrast are the simplest to implement.

On the other hand, to achieve significant slowing of optical pulses in CROWs, and

indeed in any medium, the optical delay should be achieved over as short a device

length as possible in the direction of propagation. In many realizations of CROWs,

such as coupled Bragg grating defects [53], photonic crystal defect cavities [50], or

ring resonators [10, 48, 49], maximizing the slowing factor necessitates using a high

refractive index contrast material system to keep the resonators compact and the

inter-resonator coupling strength weak.

A high refractive index contrast poses some practical challenges. First, a high in-

dex contrast significantly increases scattering loss due to sidewall roughness. Second,

more complex fabrication procedures may be required for the devices. For example,

small (sub-micron) feature sizes and a large etch depth (∼microns) or even suspended

membranes as in photonic crystal cavities may be needed. Third, the high index con-

trast leads to a greater mismatch between an optical fiber mode and the mode of the

CROW, further increasing the insertion losses of the system.

106
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In this chapter1, we propose to use an array of evanescently coupled Fabry-Perot

resonators as a low index contrast slow light structure. Despite the low index contrast,

a high slowing factor is obtained by decoupling the length of the device in the prop-

agation direction from the size of the resonators. Certain implementations of such

CROWs are depicted in Fig. 7.1(a) and (b). A large slowing factor is possible because

along z, the direction of propagation, the period of the device can be short, say about

5 µm for evanescently coupled single-mode waveguides. This periodicity is similar to

what is achievable in high-index contrast photonic crystal, ring, or disk resonators. In

the y direction, propagating optical waves are resonant with the cavities. Moreover,

optical gain and electronic control can be readily incorporated into the coupled wave-

guide array by leveraging diode laser array technologies [1, 143]. An optical signal

can couple into the first array element in a side-coupled or end-coupled configuration

as in Fig. 7.1(c)–(d). The output can then be out-coupled in a similar manner out

of the last element of the array. The difference between the side-coupled and end-

coupled structures is the presence of reflectors in the first and last waveguides in the

end-coupled geometry. The differences in the input and output coupling mechanisms

and configurations lead to a qualitative change of the transmission properties.

This chapter presents a transfer matrix method to analyze CROWs in the form

of low index contrast coupled waveguide resaontor arrays. We will first show how the

conventional coupled mode approach commonly used to analyze waveguide arrays [1]

can be extended to the treatment of coupled Fabry-Perot resonators to derive the

CROW dispersion relation. We will then show how the transfer matrix formalism

can be used to study arrays with side-coupled or end-coupled input and output ports.

Finally, we will discuss the dispersion and transmission in the presence of optical gain.

Due to the compact length along the propagation direction in evanescently coupled

arrays, large slowing factors of the order of 102–103 can be achieved even with a weak

index contrast of ∼ 0.1%. The large slowing factor, coupled with weak index contrast,

makes this structure a promising candidate for active CROWs.

1 c©2007 OSA. Reprinted, with permission, from [133].
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Figure 7.1: Schematic of (a) waveguide laser and (b) DFB laser arrays in a planar
geometry as implementations of CROWs. The input/output can be (c) side-coupled
or (d) end-coupled into/out of the array. The slanted lines represent reflectors that
define each resonator.
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7.2 Coupled-Mode Theory

Weakly coupled waveguide arrays are commonly analyzed using spatial coupled-

mode theory [1]. In this section, we will briefly review the approach and show how

the dispersion relation of a tight-binding form [19] can be recovered from the analysis.

Using the co-ordinate system in Fig. 7.1, for an array of N coupled, identical

waveguides, we write the dielectric constant of the structure as

ε(r) = ε̄(r) +
N∑

n=1

∆ε(r⊥ − nΛẑ), (7.1)

where ε̄(r) is the dielectric constant in the absence of any waveguides, r⊥ represents

the transverse co-ordinates (x, z), ∆ε(r⊥) defines each waveguide, and Λ is the period

in the z direction. In coupled-mode theory, we write the total field as a superposition

of the modes of the constituent waveguides,

E(r) =
N∑

n=1

cn(y)En(x, z) exp(−iβ0y), (7.2)

where E(r) is electric field in the array, cn(y) are coefficients of expansion, En(x, z) and

β0 = ωneff(ω)/c are the mode profile and propagation constant of the nth waveguide

in the uncoupled case respectively.

Expressing the y-dependent part of the total field as a column vector, we write

E(y) ≡




c1(y)e−iβ0y

c2(y)e−iβ0y

.

.

.

cN(y)e−iβ0y




≡




E1(y)

E2(y)

.

.

.

EN(y)




. (7.3)

Neglecting interaction between non neighboring waveguides, the coupled-mode
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equations can thus be written in matrix form as

dE

dy
= CE, where C = −i




β0 + Ml κl 0 0 ... 0 0

κl β0 + Ml κl 0 ... 0 0

. . . . . . .

. . . . . . .

. . . . . κl β0 + Ml




. (7.4)

Here κl is the per-length nearest neighbor coupling coefficient and Ml is the per-length

self-coupling coefficient given by

κl =
ωε0

4

∫ ∞

−∞
E∗n(r⊥) [ε(r⊥)−∆ε(r− nΛ)] En+1(r⊥)dr⊥ (7.5a)

Ml =
ωε0

4

∫ ∞

−∞
E∗n(r⊥) [ε(r⊥)−∆ε(r− nΛ)] En(r⊥)dr⊥, (7.5b)

where we have used the normalization

β0

2ωµ

∫ ∞

−∞
E∗m(r⊥)E∗n(r⊥)dr⊥ = δm,n. (7.6)

The propagation constants of the array modes, β, are determined by the solution

of the eigenvalue equation

(C + iβI)E = 0, (7.7)

where I is the N ×N unit matrix, and ω represents the frequency of interest.

Implicit in Eq. (7.4) is the boundary condition c0 = cN+1 = 0 (which corresponds

to no field propagating in the two end waveguides). Furthermore, we assume the sth

mode of the waveguide array takes the form E (s)(r) =
∑N

n=1 a
(s)
n En(x, z) exp(−iβ(s)y).

The associated eigenmodes and propagation constants are given by

β(s) = β0 + Ml + 2κl cos

(
sπ

N + 1

)
(7.8a)

a(s)
n = sin

(
nsπ

N + 1

)
, (7.8b)
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where s = 1...N and n = 1...N are integers and n enumerates positions of the

waveguides.

Thus far, the coupled-mode theory we have used is in the spatial domain where

we have solved for the N propagation constants of the waveguide array supermodes,

β(s), at a fixed (given) frequency embodied by β0 = ωneff(ω)/c. If we introduce

reflection at the end of each waveguide in an array of resonators, the feedback along

the y direction discretizes β(s) such that the modes of the resonator arrays satisfy

β(s)L = mπ, where L is the length of the array length in y and m is an integer.

Hence, to find the dispersion relationship of a resonator array, we use Eq. (7.8a) to

determine the frequencies (or values of β0) for which β(s)L = mπ.

Fig. 7.2 clarifies the effects of imposing an additional set of boundary conditions in

y to the coupled-mode treatment of an array of waveguides. For the calculations, we

have assumed 8 coupled resonators/waveguides with a coupling constant of 8× 10−4

µm−1. Without the feedback in the y direction, we compute N = 8 values of β(s) at

each frequency, thus arriving at the linear dispersion relations (the sloped lines) shown

on the left half of the figure. The condition β(s)L = mπ (L = 500µm and m = 2097),

denoted by the vertical line in the plot, “selects” the resonance frequencies of the

resonator array, which are marked by “×”s. These resonance frequencies in turn

correspond to particular values of sπ/(N + 1) shown on the right side of Fig. 7.2.

Through this process, the waveguide dispersions from the time-independent coupled-

mode theory are converted to the dispersion relation of the coupled resonators.

Assuming that Ω is the resonance frequency of an uncoupled resonator, such that

β0(Ω)L = Ωneff(Ω)L/c = mπ, setting β(s)L = mπ gives

ω(s) = Ω
neff(Ω)

neff(ω(s))

[
1− MlL

mπ
− 2

κlL

mπ
cos

(
sπ

N + 1

)]
. (7.9)

As expected, for N coupled cavities, there are N discrete resonant frequencies.

As N → ∞, the array modes described by Eq. (7.9) form a continuum and the

array eigenmodes of the structure can be treated as the Bloch modes of the system.

A Bloch mode is a periodic function in which the field in the (n + 1)th period differs
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Figure 7.2: A schematic illustrating the role of the additional resonance or boundary
condition in y. On the left, The resonance condition β(s)L = mπ selects the resonance
frequencies from the dispersion relations of the waveguide array. These frequencies
correspond to particular values of sπ/(N + 1) on the right.

from the nth period by a phase factor of KΛ, where K is the (continuous) Bloch wave

number and Λ is the period. Because the fields described by Eq. (7.8b) are standing

waves along z, they can be decomposed into superposition of counter-propagating

traveling waves along ẑ. Therefore, by comparison with Eq. (7.8b), we can replace

lim
N→∞

sπ/(N + 1) → KΛ. (7.10)

This leads to the dispersion of a CROW based on an array of coupled Fabry-Perot

resonators

ω(K) = Ω

[
1− M

mπ
− 2

κ

mπ
cos (KΛ)

]
, (7.11)

where we have assumed neff(ω) = neff(Ω) = n is a constant, and κlL = κ and

MlL = M are dimensionless coupling coefficients. The frequency dependence of κ

and M are given by Eq. (7.5); however, since the bandwidth of a CROW is not

expected to be large (ω/Ω ¿ 1), the coupling coefficients can be assumed to be



7.3 Transfer Matrix Analysis 113

constant.

The dispersion relation described by Eq. (7.11) is of the same form as the CROW

dispersion from the tight-binding approximation and the dispersion calculated using

transfer matrices for ring resonators in Chapter 2. The key difference between Fabry-

Perot and ring resonators is that only two K vectors correspond to a particular

eigen-frequency for the Fabry-Perot resonators while there are four K vectors for the

rings. Physically, this is because a ring resonator supports two degenerate modes on

resonance (i.e., even and odd, or clockwise and counter-clockwise), while a Fabry-

Perot resonator supports one mode on resonance.

The slowing factor, given by the ratio of the speed of light to the maximum group

velocity in the CROW, is

S =
c

vg|max

=
nL

2κΛ
=

n

2κlΛ
. (7.12)

Unlike coupled grating defects or ring resonators, the period Λ of the CROW is

decoupled from L. Since for weakly coupled single-mode waveguides κl ≈ 10−4−10−3

µm−1 and Λ can be ∼ 5 µm even for modest index contrast (∆n/n ≈ 10−3–10−2),

large slowing factors of the order of a few hundred to a thousand are possible.

7.3 Transfer Matrix Analysis

While the modes and the dispersion relation of a waveguide array CROW can

be determined from the coupled-mode theory of a waveguide array, the transmission

spectrum does not immediately follow from the calculations. One approach to calcu-

late the spectrum is to expand the input excitation field in terms of the eigenmodes

of the CROW and propagate the modes individually. A second, more convenient ap-

proach, which we shall describe in this section, is to use a transfer matrix formalism.

This method can account for an arbitrary input excitation at the array end-facet,

applies to asymmetric structures, and can also be used for arrays with side-coupled

input/output waveguides.
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To use the transfer matrix formalism, we describe the propagation of light through

the structure with a 2N ×2N matrix. The matrix acts on a column vector describing

both the forward and backward propagating fields at each waveguide as shown in Fig.

7.1(c)–(d). We denote the fields at each interface by

U(y) = [E
(+)
1 (y) E

(+)
2 (y) . . . E

(+)
N (y)]T , D(y) = [E

(−)
1 (y) E

(−)
2 (y) . . . E

(−)
N (y)]T ,

(7.13)

where E
(+)
n (y) and E

(−)
n (y) are the forward and backward propagating fields respec-

tively in each element at a particular value of y. Thus, the fields at y = L are related

to those at y = 0 by 
U(L)

D(L)


 = S(2)QS(1)


U(0)

D(0)


 . (7.14)

Here S(1,2) are matrices describing the reflectors at y = l1 and y = l2, which can arise

from Fresnel or Bragg reflection. Q is the transfer matrix that describes the coupling

and propagation in the array region.

To simplify the numerics and make the system more tractable, we assume that

light is not coupled from one element to the next in the reflector sections (from y = 0

to y = l1 and from y = l2 to y = L). This assumption is valid for reflection from

cleaved facets and for well-confined waveguide modes in short gratings. For the inter-

cavity coupling (from y = l1 to y = l2), we are primarily interested in the weak

coupling regime, where only nearest-neighbor coupling is significant. The inclusion of

the more general effect (e.g., nearest neighbor coupling in the grating sections) will

lead to quantitative, but not qualitative changes in our results.
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The form of S(q) (where q = 1, 2) is given by

S(q) =


 S

(q)
11 S

(q)
12

S
(q)
21 S

(q)
22


 =




P
(q)
11 P

(q)
12

F
(q)
11 F

(q)
12

. . . . . .

F
(q)
11 F

(q)
12

P
(q)
11 P

(q)
12

P
(q)
21 P

(q)
22

F
(q)
21 F

(q)
22

. . . . . .

F
(q)
21 F

(q)
22

P
(q)
21 P

(q)
22




, (7.15)

where S
(q)
ij are N × N diagonal sub-matrices, and F

(q)
ij are derived from the 2 × 2

transfer matrices for the reflectors. In other words, for the middle waveguides (where

n 6= 1, N) we have


E

(+)
n (l1)

E
(−)
n (l1)


 =


F

(1)
11 F

(1)
12

F
(1)
21 F

(1)
22





E

(+)
n (0)

E
(−)
n (0)


 , (7.16)


E

(+)
n (L)

E
(−)
n (L)


 =


F

(2)
11 F

(2)
12

F
(2)
21 F

(2)
22





E

(+)
n (l2)

E
(−)
n (l2)


 . (7.17)

For an array of N − 2 resonators with side-coupled waveguides for input and

output coupling, P
(q)
12 = P

(q)
21 = 0 and P

(q)
11 = (P

(q)
22 )−1 describes the accumulation of

phase. This lead to P
(1)
11 = exp (−iβ0l1) and P

(2)
11 = exp (−iβ0(L− l2)). Otherwise, for

input coupling at the end-facet of an array of N resonators, P
(q)
ij = F

(q)
ij . The elements

F
(q)
ij can be readily calculated for an arbitrary type of mirror (e.g., Bragg reflectors,

cleaved facets).

In the waveguide/coupler section of the structure in Fig. 7.1(c)–(d), one can use
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the coupled mode theory described in the previous section:

d

dy


U(y)

D(y)


 =


C ∅
∅ C†





U(y)

D(y)


 . (7.18)

Therefore, 
U(l2)

D(l2)


 =


Q ∅
∅ Q†





U(l1)

D(l1)


 ≡ Q


U(l1)

D(l1)


 , (7.19a)

Q = exp (CL) . (7.19b)

Combining Eqs. (7.15) and (7.19), the transfer matrix for the overall system is

given by


U(L)

D(L)


 =


S

(2)
11 S

(2)
12

S
(2)
21 S

(2)
22





Q ∅
∅ Q†





S

(1)
11 S

(1)
12

S
(1)
21 S

(1)
22





U(0)

D(0)


 ≡


G11 G12

G21 G22





U(0)

D(0)


 ,

(7.20)

where G ≡ S(2)QS(1).

Rearranging terms in Eq. (7.20) and assuming D(L) = 0 (no field is incident from

the right), we have

U(L) =
(
G11 −G12G

−1
22 G21

)
U(0) (7.21a)

D(0) =
(−G−1

22 G21

)
U(0), (7.21b)

which relates the input and output fields of our structure.

The transfer matrices can account for an arbitrary input field at y = 0 and can

be used to calculate the reflection and transmission coefficients of any resonator.

However, in most cases, we are primarily interested in exciting the first element and

the transmission and reflection coefficients in the first and last elements only. In

this case, the boundary conditions are UT (0) =
[
1 0 0 0 ... 0

]
and DT (L) =[

0 0 0 0 ... 0
]

. Using Eq. (7.21) and the boundary conditions, the transmission
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and reflection coefficients are

R1 =
D1(0)

U1(0)
RN =

DN(0)

U1(0)
(7.22)

T1 =
U1(L)

U1(0)
TN =

UN(L)

U1(0)
(7.23)

with Un(y) representing the nth element of U(y), and R1 and T1 are the reflection

and transmission coefficients at the input/through port as marked in Fig. 7.1, while

R2 and T2 are the coefficients at the drop/output port.

The transmission and reflection spectra for a CROW with 5 resonators with side-

coupled input and output waveguides are shown in Fig. 7.3. The reflectors in the

calculations consist of Bragg gratings with alternating layers of thicknesses dH = 119

nm and dL = 123 nm, with effective indices nH = 3.25 and nL = 3.15 respectively.

The gratings are 24 µm or 100 periods long. The waveguide sections have an effective

index of 3.25 and are 50 µm long. The coupling constant is κl = 4 × 10−3 µm−1.

These parameters can be accomplished by 1.25 µm wide waveguides with an effective

index of 3.25, spaced about 900 nm apart, surrounded by a cladding of index 3.15.

The resultant length of the coupled resonators in the direction of periodicity is about

10 µm.

By design, the standing wave cavities supports a resonance mode at a free-space

wavelength of 1.551 µm. It is apparent that the transmission properties of our struc-

tures resemble that of microring CROWs. In close vicinity of the resonance frequency

Ω, the transmission across cavities is increased. In contrast to CROWs consisting of

traveling wave cavities (e.g., ring/disk resonators), the maximum transmission in the

present situation is 25% rather than unity as in the case of ring resonators. This is

attributed to the lack of degenerate modes at Ω in a standing-wave cavity, so the

fields in the cavity can decay into the two waveguides in both the forward and back-

ward directions [144, 145]. This poses a limitation on a passive system, but will not

be a main concern for systems with optical gain. In passive systems, the maximum

transmission shown in Fig. 7.3(b) can be improved by increasing the reflectivity of

the Bragg gratings through increasing the number of periods and/or the index con-
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trast. The ripples in the spectrum can be reduced by apodizing the coupling constants

[11, 132, 146] .

7.4 Optical Gain

The most straight-forward implementation of the Fabry-Perot CROWs is an array

of waveguides with cleaved facets providing the feedback for the resonators. Since

the Fresnel reflection coefficient is only ∼ 30%, a large optical gain is necessary to

compensate for the losses. Gain introduces an imaginary component to the coupling

constants, κl and Ml, and can be used to tune the CROW dispersion if the gain-loss

modulation is strong [147].

Optical amplification (and loss) can be built into the coupled-mode theory by

writing the dielectric constant as a complex function:

ε(r) = ε̄(r) +
N∑

n=1

[
∆ε(r− nΛ) + i

2εeff

β0

∆γ(r− nΛ)

]
, (7.24)

where ∆γ denotes the gain coefficient in the waveguides, and εeff normalizes γ/β0 to

ε(r) and is the effective dielectric constant of the waveguides. The gain is a periodic

function in z in practice because the gain in the waveguide core and cladding areas

will not be identical.

We assume the uncoupled modes of the individual waveguides are En(x, z) exp(−iβ0y).

Using the normalization condition Eq. (7.6), the coupling constants in the presence

of gain are

κ̃l = κl + i
ωε0εeff

2β0

N∑
j=1

∫ ∞

−∞
E∗n(r⊥)∆γ(r− jΛ)En+1(r⊥)dr⊥ ≡ κl + iκ′l (7.25a)

M̃l = Ml + i
ωε0εeff

2β0

N∑
j=1

∫ ∞

−∞
E∗n(r⊥)∆γ(r− jΛ)En(r⊥)dr⊥ ≡ Ml + iM ′

l , (7.25b)

where κl and Ml are the coupling constants in the passive structure and are given in
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Figure 7.3: (a) The transmission spectrum at the through port and (b) the trans-
mission and reflection spectra at the input and drop ports for the side-coupled array.
The calculation parameters are described in the text.
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Eq. (7.5).

The coupling coefficients are now complex. In typical semiconductor materials, ∆γ

is of the order of 10−3−10−2 µm−1, while β0 is of the order of 10 µm−1. On the other

hand, even in low index contrast systems, ∆ε is on the order of 10−1 (∆n ∼ 0.01).

Therefore, in most cases, κ′l/κl, M
′
l/Ml ¿ 1.

If the Bloch vectors are complex (i.e., to account for net gain/loss in the direction

of propagation), K = KR + iKI , then the dispersion relation for the CROW is

ω(K) = Ω

[
1− M

mπ
− 2

κ

mπ
cos (KRΛ) cosh(KIΛ)− 2

κ′

mπ
sin (KRΛ) sinh(KIΛ)

]
.

(7.26)

KI can be determined from the net gain of the supermodes of the waveguide array:

γ(K) = M ′
l + 2κ′l cos(KRΛ) cosh(KIΛ)− 2κl sin(KRΛ) sinh(KIΛ). (7.27)

Approximating the gain of the supermodes is roughly equal to the gain of the indi-

vidual waveguides, γ(K) ≈ M ′
l , KIΛ is given by

coth(KIΛ) =
κl

κ′l
tan(KRΛ), (7.28)

where KIΛ = 0 when KRΛ = 0, π/2, π.

Near the band center, which is the frequency range of interest as the CROW group

velocity dispersion is minimum, KIΛ is of the order of 10−3 and is negligibly small.

Hence, the dispersion relation does not change significantly with gain. However, in

real systems, the refractive index is expected to change with the gain through thermal

and carrier injection effects. If these effects induce a large gain-loss modulation in the

CROW, then the dispersion relation can be significantly modified with the optical

gain [147].

In the approximation that the coupling constant remains constant with gain, the

gain can be modelled in the transfer matrices by the inclusion of a complex propa-

gation constant β0 + iγ0. Fig. 7.4 shows the transmission and phase responses for

various values of gain calculated using the transfer matrices by adding an imaginary
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component to the propagation constant for an array of 15 stripes. The input is end-

coupled into first element of the array as in Fig. 7.1(d). The length of the waveguides

is 500 µm, and the coupling constant is 8 × 10−4/µm. The gain values correspond

to 85%, 90%, 95%, and 99.8% of the mirror losses 1/(2L) ln(r2), where r2 = 0.28 is

about the reflectivity of cleaved facets. The coupling strength can be achieved with 3

µm wide waveguides separated by about 1 µm with an index contrast of ∆n/n ∼ 0.05,

resulting in slowing factors of about 600.

7.5 Summary

We have presented a means of slowing light with low index contrast CROWs us-

ing coupled waveguide and laser resonator arrays. Low index contrast systems have

the advantage of having smaller side-wall scattering losses for a given roughness and

typically requiring simpler fabrication processes (e.g., larger feature sizes, shallower

etch depth). We have analyzed evanescently coupled arrays and shown that they can

achieve slowing factors of several hundred times with bandwidths of tens of GHz.

Optical amplification, naturally present in laser arrays, overcomes the severe limita-

tion of high optical attenuation characteristic of most passive slow light structures.

Combining evanescent coupling in the propagation direction with Bragg or Fresnel

reflection in the orthogonal direction provides an approach for engineering more com-

plex periodic structures to slow light.
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Figure 7.4: The (a) transmission and (b) phase responses of a resonator array for
various gain values. The input is end-coupled into the first element of the array.



Chapter 8

Current Injection InP-InGaAsP
Fabry-Perot Resonator Arrays

8.1 Introduction

In this final chapter1, we present measurements of the transmission spectra of

CROWs in the form of active Fabry-Perot resonator arrays fabricated in InP-InGaAsP

semiconductor materials. The gain is supplied through the injection of electrical cur-

rent. The transfer matrix model used to analyze these structures was developed in

Chapter 7. The measured signal-to-noise ratio is found to be a strong function of

wavelength and degraded rapidly along the resonator chain away from the input.

Our results highlight a number of issues related to noise as well as device termination

and excitation described in Chapter 6. We shall close by describing the ingredi-

ents necessary for the practical implementations of loss-compensated and amplifying

CROWs.

8.2 Device Fabrication

For practical purposes, the properties of CROWs, such as the inter-resonator

coupling and optical amplification, should be electrically tunable. To this end, we

fabricated CROWs in compound III-V semiconductor (InP-InGaAsP) materials. A

schematic of the devices is shown in Fig. 8.1. Each CROW consisted of 46 laterally

1 c©2007 OSA. Reprinted, with permission, from [148].
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Figure 8.1: Schematic of the Fabry-Perot resonator array CROW
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Figure 8.2: Schematic of the wafer structure

coupled Fabry-Perot resonators with a relatively weak index contrast of ∆n/n ≈ 10−2

centered under a 100 µm wide electrical contact such that 25 resonators were pumped.

The resonators consisted of single-mode waveguides that were 3 µm wide, and we

made devices with various inter-resonator spacings near 1 µm. The resonator end

mirrors were simply cleaved facets.

The devices were fabricated using a series of aligned electron-beam lithography

steps using a Leica EBPG 5000 system, wet chemical etching, and metal evaporation.

The wafer structure is outlined in Fig. 8.2 with the active region consisting of four

unstrained quantum wells. The wet-etch was a two step process wherein we first

transferred the pattern to the thin InGaAs layer using a hydrobromic acid (HBr)

etch, and then using the InGaAs as a mask to etch the InP with hydrochloric acid

(HCl). The InGaAsP acted as an etch stop for the HCl. The waveguides were aligned

along the [110] direction in the InP to obtain straight side-walls. Feature sizes of the

order of 100 nm can be chemically etched using this technique [149, 150]. We shall

briefly discuss the fabrication process, which is summarized in Fig. 8.3.
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First, alignment markers were defined using electron-beam lithography in a 2.5

µm thick layer of poly-methylmethacrylate (PMMA) (950K C10, Microchem) and

wet-etched into the semiconductor. We immersed the chip in a solution of HBr

(48%):HNO3 (68%):H2O 1:1:30 for 5 seconds, HCl (37%):H2O 4:1 for 30 seconds, and

HBr:HNO3:H2O 1:1:30 for 45 seconds to etch into the InGaAsP layers. The resultant

markers were approximately 12 µm×12 µm and 1 µm deep. The markers were spaced

on a grid of 1.85 mm× 2.5 mm. The PMMA was stripped off using chloroform after

the etching.

Subsequently, a 250 nm thick layer of PMMA (495K C4, Microchem) was spun

onto the chip and an electron-beam exposure aligned to the markers was performed

to define the trenches between the resonator waveguides. After the lithography, the

gaps were etched by immersing the chip in HBr:HNO3:H2O 1:1:30 for 5 seconds and

HCl:H2O 4:1 for 30 seconds.

After removing the residual PMMA, a dilution of methylbutylisoketone (MIBK):

Flowable Oxide 16 (FOx 16, Dow Corning) 1:1.75 was spun onto the chip. The FOx

layer filled the trenches and was about 350 nm thick over the unpatterned regions.

FOx is a spin-on glass but can also be cured by electron-beam exposure [151]. A

second aligned electron-beam exposure of the trenches was then performed. The chip

was developed in 2.4% tetramethylammonium hydroxide (TMAH) solution (CD26,

Microposit) for 30 minutes. The FOx patterns were wider than the trenches by 200

nm and backfilled the trenches. Without this planarization step, the devices failed to

achieve laser action.

Next, electrical contacts were deposited using a lift-off process. A 2.5 µm thick

layer of 1813 resist (Microposit) was spun on and exposed photolithographically. Be-

fore development in 2.4% TMAH, the chip was soaked in toluene for 1 minute to create

a slight undercut profile to assist the lift-off [152]. The p-side contact, Cr/AuZn/Au

2 nm/6 nm/250 nm, was deposited using a thermal evaporator. The chip was then

mechanically thinned to about 100 µm thick, and the n-side contact, Cr/AuGe/Au 2

nm/6 nm/250 nm, was evaporated. Finally, devices approximately 550 µm in length

were cleaved from the chip. Figure 8.4 shows several scanning electron microscope
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(a)

(b)

Figure 8.4: Scanning electron micrographs of the (a) the top view of the FOx overlay
that backfilled the trenches and (b) the cross-section of a completed device

images of the fabricated devices.

8.3 Measurement

We measured the transmission spectrum at each of the coupled resonators for vari-

ous injection current levels. The measurement setup is shown in Fig. 8.5. To measure

the devices, we coupled light from a tunable laser (Agilent 81640A) from free-space to

a resonator facet near the center of the device. The devices were mounted onto cop-
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Figure 8.5: Schematic of the experimental setup. SPA is the semiconductor parameter
analyzer and OSA is the optical spectrum analyzer.

per bars using an electrically and thermally conductive epoxy (H2OE-LV, Epotek)

and onto a thermoelectric cooling (TEC) stage. The temperature was maintained

at 20oC. We then imaged the output of the device using a high-sensitivity InGaAs

camera (Goodrich SU640SDV-1.7RT) to measure the transmission amplitude at each

waveguide position. The waveguide positions could be readily identified from the

near-field image of the device, an example of which is shown in Fig. 8.6(a). We

investigated TE polarized light which experiences more gain compared to the TM

polarization [153].

The devices were pumped with current pulses with a temporal width of 200 ns and

a period of 10 µs using a pulsed current source (HP 8114A). The integration time of

the camera, of the order of milliseconds, was significantly longer than the pulse width

and period, which automatically averaged the transmission amplitude. Laser action

was observed in the devices, with a threshold peak current density around Jth ≈ 750

A/cm2, indicating that losses could be completely compensated. Fig. 8.6(b) shows a

typical light-current curve.

8.4 Results

For the transmission measurements, we operated the devices below threshold. For

comparisons with theory, we used the transfer matrix method from the last chapter
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Figure 8.6: (a) Sub-threshold near-field image. (b) A typical optical power vs. injec-
tion current curve.
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and set the field amplification for central 25 waveguides to be 534 cm−1 to simulate

the sub-threshold regime and the losses for the outer resonators to be 5.6 cm−1 to

model the unpumped region. The calculated normalized transmission spectra and

group delay did not depend strongly on the specific value of gain we chose as long

as the calculations remained numerically stable. We did not include spontaneous

emission into the transfer matrices.

Fig. 8.7 shows the transmission spectra for two devices with inter-resonator

separations of 800 nm and 900 nm, resulting in per length coupling constants of

κl = 1.1 × 10−3 µm−1 and κl = 0.9 × 10−3 µm−1 respectively. The spatial profile

of the waveguide mode was calculated with a mode-solver. The input light was fo-

cussed onto the zeroth resonator. The amplitude of the injection current was 280 mA

corresponding to approximately 0.7Jth. For these plots, the spontaneous emission

background in the absence of the input was subtracted from the measured amplitude.

There is generally good agreement between the theoretical and experimental results.

Since the spontaneous emission could be subtracted as a background, the noise was

not dominated by the beating between the signal and the spontaneous emission.

Fig. 8.8 shows the transmission spectra for the devices at various values of pump

current amplitudes without subtracting the spontaneous emission background in the

absence of an input. The theoretical group delay is included as well. The dotted

lines in Fig. 8.8(a), (b), (f), and (g) indicate the resonance wavelengths of a single

resonator. The spectra are normalized to the maximum power at a current amplitude

of 310 mA.

As evidenced by the plots, the transmission spectra vary strongly as a function

of position and coupling strengths, and that both peaks and notches can occur on

resonance. The spectra at 280 mA are in the closest agreement with the theoretical

calculations. The highest transmission amplitude does not occur at the band-edges

but at the band-center even though the group delay is smaller. This can be un-

derstood from the arguments in Chapter 6 that a weak resonance is set up in the

direction of periodicity because of the unpumped regions outside the contact and be-

cause the excitation source has varying magnitudes of spatial overlap with the modes
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(a) (b)

(c) (d)

Figure 8.7: The theoretically calculated transmission spectra for (a) κl = 1.1× 10−3

µm−1 and (b) κl = 0.9 × 10−3 µm−1, and the measured transmission spectra, less
the spontaneous emission background, at a current amplitude of 280mA for an array
with inter-resonator spacings of (c) 800 nm and (d) 900 nm
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of the structure. The group delay away from the band-center can be both positive

and negative depending on the inter-resonator coupling strength. For lower loss res-

onators with a higher extinction ratio between the CROW band and the stop band,

the anomalous group delays would occur at frequencies where the light is mostly

attenuated. Because of the absorption outside the contact region, the transmission

spectra do not exhibit sharp peaks.

Ideally, the transmission spectra at the various resonators should be symmetric

about the excitation at N = 0. However, the measured spectra are asymmetric,

which is due to non-uniformity in the gain across the devices and the resonators.

The non-uniformity can arise from the electrical contacts, slight errors in the litho-

graphic alignment of the FOx overlay layer, as well as the gain material itself, which

contributed to local bright spots in the devices.

Fig. 8.8 suggests that the signal-to-noise ratio (SNR) degraded rapidly as a func-

tion of the resonator position. Assuming that the noise was dominated by spontaneous

emission only, and not by the beating between the signal and the spontaneous emis-

sion, the measured optical power was approximately the sum of the signal and the

spontaneous emission background without the input signal. Therefore,

SNRopt =
Output Power with the Input

Output Power without the Input
− 1, (8.1)

where SNRopt is the optical SNR. The electrical SNR is given by |SNRopt|2. Since

we did not spectrally resolve the near-field images, the spontaneous emission power

across the entire emission bandwidth of about 40 nm was collected. The noise figure

can be determined by dividing the signal-to-total-source spontaneous emission ratio

of the input laser source of about 27 dB by SNRopt. Fig. 8.9 shows SNRopt at an

injection current of 280 mA of the resonator array with an inter-resonator spacing

of 800 nm for which the transmission spectra are shown in Fig. 8.8(d). Because of

the large measurement bandwidth, low input coupling efficiency, and the low quality

factors of the resonators, SNRopt decreased to near zero after only a few resonators.

Moreover, because of the resonant nature of CROWs, SNRopt depended strongly on
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Figure 8.9: SNRopt as a function of wavelength and resonator position of an array
with a transmission spectrum shown in Fig. 8.8(d)

the wavelength.

8.5 Discussion

Our demonstration represents the first steps toward realizing active CROWs, il-

lustrating a number of technical challenges in these devices. First, because ideally

CROWs consist of a very large number of resonators, the fabricated device must be

uniform over its footprint. This requires uniformity in the material, etching, and elec-

trical contacts. Second, continuous-wave (CW) operation of these devices is desirable

and would enable accurate measurements of the phase response or group delay of

these structures. CW operation requires improved heat dissipation that should be

achievable with buried structures and improved contact resistivity.

The SNR should be increased and the noise figure should be decreased for CROWs

to be practical. While the Fabry-Perot resonator arrays with cleaved facets are sim-

plest to implement, a relatively low facet reflectivity of ∼ 30% implies that these

resonators possess high optical losses so a high gain is necessary. High reflectivity
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mirrors, in the form of gratings for example, can be incorporated to improve the

quality factors of the resonators. Asymmetric cavity designs with unequal mirror

reflectivity at the two facets can reduce the amount of measured spontaneous emis-

sion noise [135]. Higher input coupling efficiency would also improve the amount of

signal power coupled into the CROW to increase the SNR. This can be achieved by

incorporating input and output waveguides with mode converters much like microring

CROWs or the proposed side-coupled Fabry-Perot CROWs [34, 133].

Lastly, since the introduction of gain allows for laser oscillation, an important

question is whether CROWs should be operated above or below laser threshold. There

are benefits and disadvantages to both types of operation. Sub-threshold operation is

simpler to understand and model, but requires highly accurate fabrication to ensure

that the resonators are identical to each other. Moreover, to suppress laser action in

the CROW, the input and output coupling constants as well as the inter-resonator

coupling strength should be large, which place a lower limit on the group velocity and

net amplification attainable [126].

Operation above threshold is more complicated to analyze because locking effects

may come into play but can be more interesting fundamentally. Above threshold,

the CROW can lock to the input signal and also the resonators can become phase

coherent with each other. Phase-locked laser arrays have been studied extensively

both theoretically and experimentally for several decades [143, 153]. Phase-locking

can occur even if the uncoupled elements are not exactly identical. The locking range,

or the maximum allowed detuning for the uncoupled resonators, depends on the gain

and the complex coupling coefficient between the resonators [143, 154]. In general,

the stronger the coupling, the larger the locking range. By increasing the optical

gain, the locking range can be increased, and thus a larger variation in the uncoupled

resonator resonance frequencies can be tolerated. Therefore, a light pulse centered at

the laser frequency can effectively propagate through a chain of identical resonators.

On the other hand, a CROW laser can also lock to the input signal through the

process of injection-locking so the input changes the operation of the CROW itself

[153, 155, 156, 157]. Injection-locking can be used to tune the resonance frequency
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of the array to or away from the central wavelength of an optical pulse to be prop-

agated through the array. This may be a simple way to modify the dispersion of an

input optical pulse to the array. Laser action can also clamp the gain, which may

help in stabilizing the operation of an amplifying CROW much like gain-clamped

semiconductor optical amplifiers [158, 159, 160].

8.6 Summary

We have measured the transmission spectra of electrically pumped Fabry-Perot

resonator array CROWs fabricated in InP-InGaAsP. The devices could behave as

lasers, indicating that losses could be completely compensated. The transmission

spectra and the SNR were strongly dependent on the injection current and resonator

position. The SNR of the devices degraded rapidly away from the input resonator.

The devices can be improved through fabrication uniformity, lower loss resonators,

and increased input coupling efficiency. We have also highlighted some possible av-

enues to operate laser arrays as loss-compensated or amplifying CROWs.



Appendix A

Transfer and Scattering Matrices

A.1 Introduction

We have used transfer and scattering matrices extensively in this work. Here, we

shall briefly outline some properties of these matrices and illustrate how they can

be applied to analyze other types of coupled resonator geometries. Specifically, we

shall study two examples: 1. a coupled system of a standing wave and travelling

wave resonator (a Fabry-Perot and a ring resonator) and 2. a circular array of ring

resonators.

1

b1

a2

b2

a

Figure A.1: A four port element

137
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A.2 Preliminaries

For a 4 port element as in Fig. A.2, the output fields are related to the input

fields by a transfer matrix, M,


a2

b2


 = M


a1

b1


 . (A.1)

If the system has time reversal symmetry, then


t

0


 = M


1

r


 ,


0

t∗


 = M


r∗

1


 , (A.2)

where t and r are the transmission and reflection coefficients, leading to a transfer

matrix of the form

M =




1
t∗ − r∗

t∗

− r
t

1
t


 . (A.3)

On the other hand, if there is mirror symmetry, then


t

0


 = M


1

r


 ,


r

1


 = M


0

t


 , (A.4)

which leads to a matrix of the form

M =




t2−r2

t
r
t

− r
t

1
t


 . (A.5)

Therefore, if the system possesses both mirror and time reversal symmetry, and

if we can choose the phase such that t = t∗, then

−r∗ = r, (A.6a)

t2 − r2 = 1. (A.6b)
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A.3 Examples of Transfer Matrices

Knowing the form of the transfer matrices, we can readily find out their explicit

expressions for specific waveguide or device components. In this section, we show

several examples of transfer matrices.

A.3.1 Waveguide

As a simple example, the scattering matrix of a waveguide of length L is given by

ML =


exp(−iβL) 0

0 exp(iβL)


 , (A.7)

where β is the propagation constant of the waveguide.

A.3.2 Grating

From coupled-mode theory, we have the reflection and transmission coefficients

for a grating with a sinusoidal index perturbation [44]:

rG =
−iκ∗G sinh(sLG)

s cosh(sLG) + i∆β
2

sinh(sLG)
, (A.8a)

tG =
s exp(i∆β LG

2
)

s cosh(sLG) + i∆β
2

sinh(sLG)
. (A.8b)

LG is the length of the grating. κF is the per-length grating coupling coefficient given

by

κG =
π(n2

2 − n2
1)

λ
√

n2
2 + n2

1

, (A.9)

where n1 is the minimum index of refraction and n2 is the maximum. ∆β is the

phase-mismatch between the incoming and outgoing wave, which for a single-mode

waveguide is

∆β = 2β − 2π

Λ
, (A.10)
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where Λ is the grating period, β = 2πn̄/λ, and n̄ =
√

(n2
1 + n2

2)/2. Lastly, s is related

to the difference between κF and ∆β,

s2 = |κF |2 −
(

∆β

2

)2

. (A.11)

Therefore, we substitute tG and rG into Eq. (A.3) to obtain MG, the transfer matrix

for a lossless, uniform grating.

A.3.3 Waveguide Coupled to a Ring Resonator

The transfer function of a waveguide coupled to a ring resonator described by

Eq. (4.2) can also be expressed in terms of a transfer matrix, where the transmission

coefficient of the ring is given by

tR =
tr exp(iβ2πR)− αr

exp(iβ2πR)− αrtr
, (A.12)

where αr is the fractional round-trip attenuation or the amplification factor of the

field in the ring, and κr and tr are the coupling and transmission coefficients be-

tween the ring and the waveguide. If there is no coupling between the clockwise and

counter-clockwise propagating waves in the resonator, rR = 0. tR and rR = 0 can be

substituted into Eq. (A.5) to obtain the transfer matrix MR.

A.4 Coupled Ring-Fabry-Perot Resonators

As an example, let us examine the coupled system between a Fabry-Perot and

a ring resonator as shown in Fig. A.4 [161]. The transmission and reflection coeffi-

cients of the composite structure are given by the product of the transfer matrices

representing each element.
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Figure A.2: Fabry-Perot resonator coupled to a microring resonator


aout

bout


 = Msys


ain

bin


 ≡


A B

C D





ain

bin


 ,

Msys = MG2ML2MRML1MG1.

(A.13)

Since bout = 0, the transmission and reflection coefficients are given by

T =
aout

ain

=
AD −BC

D
, (A.14a)

R =
bin

ain

= −C

D
. (A.14b)

Several examples of the transmission spectra calculated from Eq. (A.13) and

(A.14) are shown in Fig. A.3 in the case where the Q of the ring resonator is signif-

icantly higher than that of the Fabry-Perot. The Q factor for the ring resonator is

2.2× 1011 and the Q factor for the Fabry-Perot resonator is 5.1× 108. For the calcu-

lations, αr = tr such that the critical coupling condition is satisfied. An asymmetric

lineshape arises when the resonance frequency of the ring resonator is detuned from

that of the Fabry-Perot. A “hole” in the transmission of the Fabry-Perot resonator

occurs at the resonance of the ring resonator. These transmission spectra have been

experimentally observed in a coupled system of a fiber Bragg grating resonator and
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a high-Q microtoroid [161]. Because of the rapidly varying phase and amplitude re-

sponses with respect to the wavelength, we expect large group delays are possible at

the frequencies where the transmission is maximum.

A.5 Circular Arrays of Ring Resonators

As another example of the utility of transfer matrices, we propose and analyze

a novel type of wavelength-selective reflector based on a circular array of coupled

microring resonators1. Narrow-band reflection peaks can be achieved with the reflec-

tor. The ring resonators also allow for simple and wide-range tuning of the reflection

peak. The circular array consists of N > 2 ring resonators coupled to a waveguide

as shown in Fig. A.4. The circular array can also be regarded as a “super” ring res-

onator formed by a microring CROW. A wave propagating in the waveguide excites

a travelling wave inside the ring resonator array. From Fig. A.4, we observe that for

an odd number of rings (N ≥ 3), the device may act as a reflector, but for an even

number of rings (N ≥ 4), the device is always non-reflecting.

A.5.1 Transfer Matrix Analysis

To analyze light propagation in the resonator array, we use a transfer matrix

formalism. The symbols used are summarized in Table A.1. The forward and back-

ward propagating field components are defined in Fig. A.5. We use the vector xn to

represent the field components in the n− 1th ring,

xn ≡
[
a b c d

]
n

T . (A.15)

To describe the coupling of waves between adjacent resonators, we assume that

the coupling length is much greater than the wavelength of light such that only the

phase-matched waves are coupled. Hence, there is no mixing between the clockwise

1 c©2004 IEEE. Reprinted, with permission, from [162].
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Figure A.3: The calculated transmission spectra for a Fabry-Perot resonator coupled
to a ring resonator in the cases where (a) the ring and Fabry-Perot resonance fre-
quencies are the same, (b) the ring resonance frequency is positively detuned from
the Fabry-Perot, and (c) the ring resonance frequency is negatively detuned from the
Fabry-Perot. The uncoupled Fabry-Perot and ring resonator transmission spectra are
also shown for reference.

Table A.1: List of Symbols
Symbol Significance

an, bn, c′n, d
′
n counter-clockwise propagating fields

cn, dn, a′n, b′n clockwise propagating fields
xn field vector [a, b, c, d]n
κ coupling coefficient
t transmission coefficient
β propagation constant
α gain or loss, imaginary part of β
θ angle of an external vertex of an equilateral polygon
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Figure A.4: Schematic of the reflector. (a) For an even number of rings, the device
is always transmitting. (b) For an odd number of rings, the device can be reflecting.

and counter-clockwise propagating waves, and the coupling can be represented by a

4× 4 matrix:

xn+1 =


P 0

0 P


 x′n ≡ Px′n, (A.16a)

P =
1

κ


−t 1

−1 t∗


 , n ≥ 0, (A.16b)

where κ and t are the dimensionless coupling and transmission coefficients. P is

unitary such that |κ|2 + |t|2 = 1.

We can relate x′n and xn with a propagation matrix such that

x′n =


 0 Q

Q† 0


 xn ≡ Qxn, (A.17a)

Q =


 0 e−iβRθ

eiβR(2π−θ) 0


 , (A.17b)

where β is the propagation constant, R is the radius of the rings, Q† is the conjugate

transpose of Q, and θ is determined from the internal angles of the polygon whose

vertices are located at the centers of the rings. β may be complex, such that β =
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neffω/c + iα, to account for loss or gain. For an equilateral polygon, θ is

θ = 2π − π(N − 2)

N
. (A.18)

Combining (A.16) and (A.17),

xn+1 =


 0 PQ

PQ† 0


 xn ≡ Txn. (A.19)

For N (N > 2) ring resonators in the circular chain, we cascade the matrices to

obtain

xN = TN−1Px′0. (A.20)

Our goal is to find an expression that depends solely on x′in, since the components

of x′in will give the transfer functions of the structure. Thus, we seek to manipulate

(A.20) into the form

x′in = Bx′in, (A.21)

where B is a matrix to be determined. (A.21) also has the form of an eigenvalue

problem with an eigenvalue of 1.

To begin, we note that at the first resonator, the coupling to the external wave-
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guide is

xin = Pinx
′
in. (A.22)

Moreover, there are 6 phase relations in the first resonator:

a′0 = dine−iβRθ/2, d′0 = aineiβRθ/2, (A.23)

b′0 = cNeiβR(2π−θ), c′0 = bNe−iβR(2π−θ),

aN = bine−iβRθ/2, dN = cineiβRθ/2.

We use (A.23) to express xN and x′0 in terms of elements in xin in (A.20). bN and

cN simplify to

bN = ainA24eiβRθ/2

1−A23e−iβR(2π−θ)

cN = dinA31e−iβRθ/2

1−A32eiβR(2π−θ)



N = even, (A.24a)

bN = dinA21e−iβRθ/2+ainA22A34eiβR(2π+θ/2)

1−A22A33

cN = ainA34eiβRθ/2+dinA21A33e−iβR(2π−θ/2)

1−A22A33



N = odd, (A.24b)

where Aij is the ijth element of A and A ≡ TN−1P. Hence, invoking (A.22), we can

rewrite (A.20) as

MPinx
′
in = TN−1PWPinx

′
in, (A.25)

where M and W express bN , cN , b′0, and c′0 using (A.23) and (A.24). Finally, we can

rewrite (A.25) in our desired form (A.21):

x′in = P−1
in M−1TN−1PWPinx

′
in ≡ Bx′in. (A.26)

However, Det(W ) = 0, rendering B non-invertible. This is expected because

physically the system is fully characterized relative to a single input, so the four

components of x′in are not linearly independent variables. Thus, we have some freedom

in selecting the form of the eigenvector x′in. Assuming only a single input, we set one of

the inputs to the circular chain of rings to zero, say a′in, and we take the transmission
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and reflectance relative to c′in. The resultant eigenvector has the form

x′in =
[
0 b′in 1 d′in

]T

, (A.27)

where d′in is the transmission function and b′in is the reflection function. They can be

calculated by solving the matrix equation




B42

1−B44
−1

1 − B24

1−B22





b′in

d′in


 =




B43

1−B44

B23

1−B22


 , (A.28)

where Bij is the ijth element of B. The solution also satisfies

B32b
′
in + B33 + B34d

′
in = 1 (A.29a)

B12b
′
in + B13 + B14d

′
in = 0, (A.29b)

ensuring that it is self-consistent with (A.26).

A.5.2 Results and Discussion

We use (A.28) to compute the reflectance and transmittance spectra of the circular

array based reflector. For an even number of rings, the structure is verified to be

purely transmitting. For lossless rings, the even number of rings acts as an all-pass

filter. Figs. A.6(a) and A.6(b) show the transmission and phase characteristics of an

array of 4 resonators. The inter-resonator coupling is κ = −0.5i and the coupling

between the waveguide and the array is also κi = −0.5i. The radius of the rings is 100

µm and their effective index is 1.5. The transmission drops and the phase changes

most rapidly at the resonances of the “super” resonator. The phase response is not

strongly dependent on loss.

Figs. A.6(c) and A.6(d) show the spectra of 3 coupled resonators for various losses.

The inter-resonator coupling is κ = −0.08i and the coupling between the waveguide

and the array is κi = −0.53i. The radius of the rings is 100 µm and their effective
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Figure A.6: Top: The transmittance (a) and phase response (b) of an array of 4
resonators for various losses. κ = −0.5i, κi = −0.5i. Bottom: The reflectance (c)
and transmittance (d) of an array of 3 resonators for various losses. κ = −0.08i,
κi = −0.53i. For both cases, r = 100 µm and neff = 1.5.
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Figure A.7: The reflectance of an array consisting of 3 different resonators. r1,3 = 130
µm, r2 = 125 µm, κ = −0.3i, κi = −0.85i.

index is 1.5. The structure exhibits a narrow reflection peak centered at 1.55 µm and

its free spectral range is 2.4 nm. The maximum reflectance achievable is inversely

proportional to the propagation loss in the rings. In general, to obtain narrow re-

flection peaks, weak inter-resonator coupling is required. For filtering applications,

the input coupling can be chosen to optimize the flatness of the transmission and

reflection spectra.

An advantage to the matrix formalism is that it can readily deal with an array

composed of an arbitrary mix of resonators and coupling constants simply by ac-

counting for the differences in resonator sizes, coupling, and internal angles in the

transfer matrices. By varying the resonators, we can more finely tune the strongly

reflected frequencies. Fig. A.7 shows the reflectance spectrum for an array of 3 res-

onators in which the second resonator is of a different size. The rings are lossless with

inter-resonator coupling of −0.3i and the coupling to the waveguide is −0.85i. The

first and third rings (using the notation in Fig. A.5) have a radius of r1,3 = 130 µm,

while the second ring has a radius of r2 = 125 µm. The main reflection peaks are
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spaced 2 nm apart. However, even though the coupling coefficients are higher than

the previous example, the reflection peaks are narrower than the structure composed

of identical resonators with a smaller coupling strength (as in Fig. A.6(c)). The

use of different resonators provides an additional degree of freedom to obtain narrow

reflection peaks.
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