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Abstract

An investigation has been made into the differences in vibrational
entropy between two states of a material. These vibrational entropy
differences have been measured experimentally by low-temperature
calorimetry for several alloy systems. The results from the calorimetry
experiments have been compared with phonon densities of states (DOS) for
the two states of the material obtained from inelastic neutron scattering data.
The systems which have been examined are FezAl, Ni3zAl, CuzAu, NizV,
Co3V, and nanophase Fe.

The difference in vibrational entropy between chemically disordered
and DOz-ordered Fe3Al was measured by calorimetry to be (0.10 + 0.03)
kp/atom at high temperatures, with the ordered alloy having the lower
vibrational entropy. Analysis of the vibrational modes of the ordered and
disordered alloys with a Born-von Kdrman model showed that the lower
vibrational entropy of the ordered alloy originates from high-frequency
optical modes involving large-amplitude vibrations of the aluminum-rich
sublattice.

Inelastic neutron scattering measurements were performed on
powdered NizAl. The alloy was prepared in two states of chemical order: 1)
with equilibrium L1, order, and 2) an fcc solid solution prepared by high-
energy ball milling. The main difference in the phonon DOS of the ordered
and disordered alloys occurs near 39 meV, the energy of a peak arising from
optical modes in the ordered alloy. These high-frequency optical modes
involve primarily the vibrations of the aluminum-rich sublattice. The
difference in vibrational entropy of disordered and ordered Ni3Al is S&if -

S?,ﬁg = (+0.2 £ 0.1) kg/atom at high temperatures.



The difference in heat capacity of chemically disordered and L12-
ordered CusAu was measured by calorimetry from 70 K - 300 K. By
comparing these measured results to a harmonic heat capacity calculated with
a Born-von Karman model, we estimate the difference in vibrational entropy
between disordered and ordered CusAu to be (0.14 + 0.05) kg/atom at high
temperatures.

Samples of Ni3V were prepared with two microstructures: 1) with
equilibrium DOz order, and 2) with partial disorder (having a large D023
chemical order parameter, but without the tetragonality of the unit cell). We
measured the difference in their heat capacities from 60 K to 325 K and
inelastic neutron scattering spectra at four values of Q at 11 K and at 300 K.
We describe a microstructural contribution to the anharmonic heat capacity
that originates with the anisotropy of the D027 structure. We estimate the
difference in vibrational entropy between partially-disordered and ordered
Ni3V to be SP4s — 5°rd = (10,037 + 0.015) kp/atom at high temperature. The
elastic energy stored in the microstructure is about 60 J/mole at low
temperatures.

The difference in vibrational entropy between fcc disordered and
hexagonal ordered Co3zV was measured by calorimetry to be (0.11 £ 0.03)
kg/atom at high temperatures, with the ordered alloy having the lower
vibrational entropy. Neutron diffraction data revealed that the observed L12
region of the phase diagram does not exist, but is a state that can be obtained
in quenched alloys.

Neutron energy loss spectra were measured for two states of nanophase
Fe: 1) as-milled, with a characteristic nanocrystallite size of 12 nm, and 2)
annealed, with a characteristic crystallite size of 28 nm. The longitudinal peak

in the phonon DOS of the nanophase Fe was broadened compared to that of
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the annealed material. We attribute this broadening to short phonon
lifetimes in nanocrystals. The nanophase material also showed an enhanced
density of states at low energies below 15 meV, which may indicate the
presence of inter-crystallite vibrations. These differences in phonon DOS
should have only a small effect on the difference in vibrational entropy of
nanocrystalline and larger-grained Fe.

The vibrational entropy differences that have been measured are large
enough in comparison to 0.56 kg/atom, the maximum possible difference in
configurational entropy for a 3:1 atomic ratio, to make a significant

contribution to the alloy thermodynamics.
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Chapter One Introduction

The purpose of my thesis work has been to examine the entropy
change involved in phase transformations. An important and well-
understood contribution to the entropy change is the “configurational
entropy,” which enumerates the number of ways that atoms can be arranged
on the crystal lattice, given an overall state of order for the alloy [1-3]. Heat is
evolved or absorbed as the atoms change their configuration on the lattice,

because these configurational changes alter the chemical bonding in the alloy.

Heat can also be absorbed directly into the vibrational modes of the
crystal, however, without moving the atoms between lattice sites. It seems
reasonable that alloys in different (but constant) configurational states could
differ in their “vibrational entropy.” In spite of some general theoretical
work [4-8], vibrational entropy has attracted little attention. Recently,
however, the difference in vibrational entropy between ordered and
disordered Ni3zAl was measured, and found to be about 0.3 kg/atom [9]. This
is of comparable magnitude to the maximum possible difference in
configurational entropy for a 3:1 atomic ratio (0.56 kg/atom), so vibrational

entropy can be thermodynamically important in such transformations.

Vibrational entropy has also been studied in materials which undergo
martensitic transformations [10]. Because the atomic configurations before
and after a martensitic transformation are equivalent, there is no difference
in configurational entropy between the two states. Thus, the difference in
entropy for the transformation must be composed of the differences in

vibrational and electronic entropy. Differences in vibrational entropy have
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also been measured in martensitic transformations in Cu-based shape-
memory alloys, in which the energetically unfavorable bcc structure is
stabilized by its large vibrational entropy [11]. As a continuation of the work
by Anthony and Okamoto on NizAl [9], I decided to examine the relative
importance of vibrational entropy in several alloy systems in order to achieve
a better understanding of the thermodynamics involved in a disorder-order

transformation.

Although several of the components of my thesis work have been
studied by others, the connection had not been made with the importance of
vibrational entropy to transformations in materials. As early as 1924 Fritz
Lange had measured carefully the difference in specific heat between the
white and gray phases of tin [12]. This work was noted by F. Seitz in 1940 in
his discussions of heat capacity in The Modern Theory of Solids [13]. One
system whose lattice dynamics has received a great deal of attention is CuzAu.
An electrical resistivity study by Bowen [14] in 1954 reported a large increase
in Debye temperature, 8, from 175 K to 197 K upon ordering. With a Debye
model, this can be converted into a difference in vibrational entropy at high

temperatures as:

: 0

ASvib = 5dis —gord =3 kg In ( ord| 1.1
\edls

from which we obtain a ASyib of 0.355 kB/atom. This large value of ASyip is

comparable to the entire entropy of the order-disorder transformation in

Cu3Au, which is about 0.40 kB/atom [15]. After Bowen's result, however,

Flinn, McManus and Rayne [16] performed careful measurements of elastic
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constants for ordered and disordered Cu3Au, and obtained Debye
temperatures of 283.8 K for the ordered alloy, and 281.6 K for the disordered
alloy, so, with Equation 1.1, ASyib would be a mere 0.023 kB/atom. In 1957,
Rayne [17] measured Debye temperatures for ordered and disordered Cu3zAu
through calorimetry and found 285 K for the ordered alloy, and 278 K for the
disordered alloy, so, with Equation 1.1, ASyip would be 0.07 kg/atom. Thus,
results found in the literature for the vibrational entropy of CuzAu range
from insignificant to overwhelming. Since Bowen's large difference in Debye
temperatures was obtained by an indirect method of electrical resistivity (and
since his data were of low quality), it seems that his results were discounted in

further discussions of the thermodynamics of CuzAu.

1.1 Order-Disorder

Many materials with even-ratio stoichiometries undergo an ordering
transition as they are cooled from high temperatures. As the atoms lose
thermal energy, it becomes energetically favorable for them to rest on
preferred sites instead of random sites. The degree to which this is true is
quantified by the long-range order parameter, L, which is equal to one when
an alloy is perfectly ordered, and zero when it is completely disordered. The
mean field approximation for the free energy of an equiatomic binary A-B
alloy can be extended to include vibrational entropy with the Einstein model
[9]. Doing so requires different vibrational frequencies for A-A, B-B, and A-B
pairs of atoms, denoted waa, ®BB, and waB, and we must account for how an
increase in the long-range order parameter causes the replacement of A-A

and B-B pairs with A-B pairs. Minimizing the free energy with respect to the
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long-range order parameter provides the following relationship at high

temperatures:
[ ) 3
L= 2:kBT 1+L ( WAB )2 ) 1.2
Z(VAA + Vpgg - ZVAB) 1-L '\0WAA®BB

This is the well-known Bragg-Williams results, with the addition of a
frequency factor. Here z is the lattice coordination number, and the chemical
energy for preference of like pairs of atoms, Vo + Vg - 2Vap, is positive for
alloys that develop order. For an ordering alloy, we expect the A-B bonds to
be stiffer than the A-A and B-B bonds (i.e., mfiB > WAA®BB). Although it is
reasonably easy to include a vibrational component in a model, until now
there has been little experimental evidence to prove the importance of

vibrational entropy in disorder-order transformations.
1.2 Thermodynamics

Having argued for the existence of differences in vibrational entropy
between two states of order in a material, now how can it be measured? The
first approach begins with the Debye model for heat capacity (presented in
some detail in Section 2.2). Figure 1.1.a shows Debye heat capacity curves for
two values of the Debye temperature, 8p. By definition, we know that the

vibrational entropy, Syip, is given by

T
Svib(T)=j Q—Ide' . 1.3
o 1
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Figure 1.1  a. Two Debye heat capacities for 6p = 450, 500K. b. The difference
in heat capacity between the two curves in a.

If we take the difference between the two Debye heat capacities, as shown in

Figure 1.1.b, we can then obtain the difference in vibrational entropy from



T .
ASyir{T) = f ACp g7 . 14
. T

Thus if we can accurately measure the difference in heat capacity between two
states of the material, we can obtain the difference in vibrational entropy
between the two states of the material. The experimental method is described

in Section 3.3.1.
1.3 Density of States—Harmonic Model

Another approach to obtaining the difference in heat capacity between
the two states of the material is to obtain the phonon densities of states (DOS)
for both the ordered and disordered states of the material. The difference in
the phonon density of states of the two materials, gD(s) - go(e), where ¢ is the
phonon energy, is often the physical origin for differences in ACp(T). For
FezAl and CuzAu, we employed a Born-von Karmén model to calculate the
phonon densities of states (DOS) using force constants found in the literature
[18-21]. Given the phonon DOS curves gP(v) and gO(v), the difference in

lattice heat capacity was obtained from:

Vv
e eXp| i nT T)
hv B
ACV(T) = 3Nde[(gD(v)—gO(v)) (kBTf/ Ty ) / 2 dv . 15
PkeT) Y

The phonon DOS of a material can sometimes be measured by inelastic

neutron scattering. We have attempted to measure the phonon DOS for
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NiszV and Co3zV by a more direct inelastic neutron scattering experiment,
recording energy loss spectra at various values of momentum transfer, Q, to
measure incoherent inelastic scattering and coherent inelastic scattering. The
alloy Ni3V proved convenient for this study, since the incoherent scattering
cross sections of Ni and V are nearly identical, and the lattice dynamics of fcc

Ni are well known.
14  Density of States—Anharmonic Model

We calculate the heat capacity at constant pressure, Cp(T), as follows.

The phonon energy in the lattice, Epp, is:

1 1
Eph = 3J.g(e)e 5+ |de . 1.6
p 2
0 [ ee/kT—lJ

The heat capacity at constant pressure, Cp(T), depends on the temperature-
dependence of Epp through both the change in the phonon occupancy factor

of each mode, and the change in the phonon DOS itself. At low

temperatures:
JEph g2 eF/KT
Cp(T) = —2—) =3 f gTo(e) de 1.7

2
kT (/KT _1)2

1
+3 f )de
oE/KT 1
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where gro(€) is the phonon DOS at T = 0. We recognize the first term in
Equation 1.7 (c.f. Equation 1.5) as Cy(T), equal to Cp(T) when the phonon DOS
is unchanged with temperature so that 5‘% = 0. A problem for the analysis of

%

our data is that we do not know 57 over a broad range in temperature. One

approach is to use the Griineisen approximation for the temperature-
dependence of g(e). Over a small temperature range the Griineisen

approximation provides:

d d
5—% = 3ya[g(e)+5§e] , 1.8

where v is the Griineisen constant and o is the linear coefficient of thermal
expansion. Substituting Equation 1.8 into Equation 1.7 and integrating by

parts, we obtain:

[ T

1
Cp(T) = Cy(T) + 3YOLLJ Cy(T)H)dT' - §<e>gT0J , 1.9
0

where Cy(T) is the heat capacity at constant volume:

(=~

2 es/kT
V(D = 3 | grole)
0

de 1.10
2 ’
T2 /KT 2

and where <e>gr, in Equation 1.9 is the average energy of the phonon DOS
(the first moment of gry(€)). The last term in Equation 1.9 originates from the

change in the zero point energy with changes in the phonon DOS. Apart
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from this last term, with y = Cy it is satisfying to show that Equation 1.9

is equivalent to the result from classical thermodynamics:

Cp(T) = Cy(T) + 9BV 2T , 1.11

where B is the bulk modulus and V is the specific volume.
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Chapter Two Theory of Vibrations in Solids

2.1 Introduction

An understanding of the theory of vibrations in solids is necessary to
interpret the experimental data we have obtained from calorimetry and
neutron scattering. The heat capacity results measured by low-temperature
calorimetry can be understood in terms of the Debye model of a solid, while
the Born-von Karman model is a useful way to describe motions of atoms in
a crystal as depicted by neutron scattering. These models enable us to
visualize what is happening on both atomic and macroscopic levels in the
material. We hope that, in turn, our experimental work will lead to a better

understanding of lattice dynamics in real crystals.
2.2 Debye Model

This discussion of the Debye model is adapted from Kittel's
Introduction to Solid State Physics, Sixth Edition [1]. In the Debye
approximation the velocity of sound is taken as constant for each polarization
type, as it would be for a classical elastic continuum. The dispersion relation

1S written as

with v the constant velocity of sound. The density of states becomes
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D(w)= Y dk - Va? 22
2r2 do 272yl

If there are N primitive cells in the specimen, the total number of acoustic

phonon modes is N. A cutoff frequency wp is determined to be

wp = 6mv’N . 2.3
\Y

To this frequency there corresponds a cutoff wavevector in k space:

kp = Op _ (6E2N)§ ) 24
v \Y%

In the Debye model we do not allow modes of wavevector larger than kp.
The number of modes with k < kp exhausts the number of degrees of

freedom of a monatomic lattice.

The thermal energy is the average of the vibrational energy, ho,

weighted by the density of states and the Bose-Einstein occupancy per state:

Op —
U= | do Dlo)no)ho = dco( Vay? ) ho , 25
| 0 2mv exp(-ll@—)- 1
kgT

for each polarization type. For brevity we assume that the phonon velocity is
independent of the polarization, so that we may multiply by the factor 3 to

obtain



®p XD
U=-3 d(D( _@° ) _ 3VIT* f dx (..X_3_) ) 26
2n2v3 . e 1) 2m2vih’Jg ex-1)
where x =0 = h® ,n4 Xp = ~hop _8p This defines the Debye
T kgT kgT

temperature 8p in terms of wp defined by Equation 2.3. We may express 0p as

Op = H_V(6TCZN . 2.7

so that the total phonon energy is

XD
U = 9NkgT (_T_)3 x3dx 28,
D/ Jo ex-1

where N is the number of atoms in the specimen. The heat capacity is found
most easily by differentiating the middle expression of Equation 2.6 with

respect to temperature. Then

XD

Cy = 9Nkg (l)3 xtexdx 29
6p

At very low temperatures we may approximate Equation 2.8 by letting

the upper limit go to infinity. We have
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ex-1

x3dx. = dx x3 Z exp(-sx) = 62 1_z* , 2.10
0 s=1 r st 15

4 4
where the sum is found in standard tables. Thus U = @—NI;LT for T << 6p,
56p

and

C, —12“4Nk3( ) , 211
5 6p

which is the Debye T3 approximation.
23  Born-von Kidrman Model
23.1 Adiabatic Approximation

The Born-von Kérman formalism is a convenient way to discuss how
to analyze small amplitude motions of atoms in crystals. I will start by
describing the crystal potential function, @, which describes the binding of
atoms, as presented by Venkataraman in Dynamics of Perfect Crystals [2].
Born and Oppenheimer showed that describing dynamics using a potential
function is possible providing the adiabatic approximation is made. Let the
Hamiltonian of the crystal be given by:

HZ

+ 2 2121 + Vi(R) + Vo(r) + V3(r, R) . 212

2mz ; j
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The first two terms represent the kinetic energies of the nuclei and of the
electrons; V1(R) represents the potential energy of the nuclei, Vo(r), that of the
electrons, and V3(r, R), the energy of electron-nuclear interactions. The
adiabatic approximations consists of assuming that the eigenfunction ¥(r, R)

can be approximated by

Yo, R) = q)nl(R)Wn(r R). ‘ 2.13

Wn(r, R) is the solution to the Schrédinger equation for the electronic system;

2
[ o+ Val) + Ve, RiVi(z, R) = Ea(R)Wi(r, R) 214
]

Oona(R) is an eigenfunction of the nuclear Hamiltonian and is obtained by

solving the equation

Z +E n(R)+V1(R)10nn(R)= [Z +<I>n(R)]¢nx(R) En(R)9na(R). 215

Effectively, the adiabatic approximation says that electronic and nuclear

motions may be considered separately. There is an effective potential
D, (R) = Ex(R) + Vi(R) 2.16

which governs nuclear motions when the electronic system is in its nth state.
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Under what conditions is it appropriate to use the adiabatic
assumption? Venkataraman tells us that the answer is implicit in Equation
2.15, the spirit of which is that as the nuclei move the electronic system
continually readjusts itself according to Equation 2.14 without changing its
quantum number. In the process, the electronic system contributes an energy
En(R) to the crystal potential ®@(R). This is possible only when the nuclei
move very slowly compared to the electrons so that the latter can make
continuous readjustments so as to remain in the same (electronic) state [2]. In
other words, for the approximation to hold, the frequencies of nuclear
motion must be much smaller than the characteristic electronic transition
frequencies. This is always the case for insulators because the electronic
transition frequencies are high. This is not the case for metals; however, the
approximation still holds because of the Pauli principle. Only a few electrons
near the Fermi level can undergo real transitions; the adiabatic assumption is
thus good for most of the electrons, making the concept of a ®¢ function

acceptable for metals also [2].
2.3.2 Equations of Nuclear Motion

The advantage of the adiabatic approximation is that once ®¢ has been
constructed, the restoring forces contributed by it to nuclear displacements can
be expressed in mechanical terms. In this section, the formulation and
solution of the equations of nuclear motion will be presented. We will
assume that the crystal is perfect, infinite, free from stresses, and at 0 K; zero
point effects will be ignored. Let n be the number of atoms in the primitive

cell. We will define the equilibrium position of the kth atom in the Ith cell by
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x( : )=x(l)+x(k) , 2.17
k
where
X(Z) =la; + hap + lzaz 2.18

I1, Iz, I3 being integers, and aj, a, a3 are the basis vectors of the crystal lattice.
By convention these vectors are chosen to coincide with three edges of the
primitive cell sharing a corner. Given the lattice, we may define a reciprocal

lattice by
G(h) = h1b1 + hybs + hisbs , 2.19

where hi, hp, h3 are integers, and bj, by, b3 are the basis vectors of the

reciprocal lattice, related to ay, ap, a3 through
ai.bj = 27t51j , (1j=1,2,3); 2.20
where 8jj is the Kronecker delta.

Now we will introduce a distortion to the crystal. The atom position

can be described by

HERERE

AN
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where u denotes a small displacement. The kinetic energy is then given by
. of 1

T=%222mkuﬁ( ) , 2.22
k

where my is the mass of the atom in the kth sublattice. The ! summation is
over all the primitive cells; k runs from 1 to n; o is the Cartesian component

index.

We will assume that the electronic system is in its lowest state and will
drop the electronic subscript on @g. Since the displacements are assumed to

be small, @ may be expressed in a Taylor series as follows:

D = DO + D) + O + PO + ..., 223

where

0) A

D\ =Pl (x , 2.24.a
k)

oD = z ad l() ua(]i )= z (ba( l )ua( : ) , 224b

*®=7% X azq)(z")iol’“(l)uﬁ(l")

lkae 1kB aua(]i )auﬁ
l )uB(Z ) , 2.24.c



3 i er M MM
== dap o e upl Uy
6lkoc TkB Ky k k' k ki \k k . 2.24.d

We will restrict the power series expansion to the second-order term.
This is referred to as the harmonic approximation, which is meaningful only
if the root-mean-squared displacements due to zero-point motion are small

compared to interatomic distances. This is probably true for most solids.

In the equilibrium configuration, the force on every atom must

vanish. This immediately leads to the result

[
%( ) =0 for every o, k, I, 225
k

thus ®(1) = 0. Thus in the harmonic approximation,

D = OO) + B©)

cI>=cI>(°)+%Z > ¢aﬁ(l l'v)ua(l)ug(l') . 226

Ika 1kB k k'

l
The coefficients ¢aﬁ(
k k

) may be interpreted as force constants.

The next step is to formulate the dynamical problem starting from the

harmonic Hamiltonian
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H=T+®

orplalonaz 2 LB

lka I'kB k k

! !
where pa( ) is the momentum conjugate to uﬂ,( ) Using Hamilton's
k k.

equations, we obtain directly from 2.27 the following equation of motion:

-Pn( l )= -mkiiu{ : )= > %B( L ) , 2.28.
k k 1'kB k k'

for o =x,y,z k=1,..n; and I over the entire crystal. From 2.28 it is clear that

in the o direction

17} [
%6( l ) is the negative of the force exerted on atom (
vk k

Z )in the B direction. The quantity
k

-®of is referred to as the force constant; it is traditionally symbolized by a

due to unit displacement of the atom (

spring obeying Hooke's law.
2.3.3 Solution of the Equations of Motion

Crystal periodicity suggests that the solutions must be such that the
displacements of corresponding atoms in different cells be equivalent, apart

from a possible phase factor. Accordingly we seek wavelike solutions of the

type
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I
ua( ) = W}l_kUa(k | glexp{igx{l) - o(qt]} . 2.29
Here q is the wave vector and w(q) the angular frequency associated with the
wave. In trying a complex solution of the type 2.29, we understand that when

all the independent solutions are superposed the displacements must be real

[2].

Now if we substitute Equation 2.29 into the equations of motion, we

obtain the following 3n simultaneous equations:

O)Z(q)Ua(k ICI)=DozB( q: )Uﬁ(kllq) , a=x7y,zk=1,.n, 2.30
kk
where
q |_ 1 R
D = o Ax\ ) - x(1)) 2.31
aﬁ( o ) WIZ 0 B(k k,)eXP\ZCI{X( ) - x(1))

which can be expressed as

-1 O D lexpligudl
)— \/m—kaZ‘ %B( . k')exp{zq x(! )} 2.32

q

Dagl 7,
kk

using crystal symmetry [2]. Equation 2.31 may be expressed in matrix notation

as
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@X(q)U(q) = D(q)U(g), 2.33

where D(q) is a 3n-dimensional square matrix and U(q) is a 3n-component

column matrix:

D(q) = ) 2.34.a

Dxx q' DXV( q' DXZ q,
kk kk kk
D( q )= Dyx q| Dyy( q Dyz q, , 2.34b
kk kk kk kk
D, 1 Dzy( 1 ) D, 1
kk kk kk
[ Udk=1lq)
Udk=1]
Ulg = o 9 234.c
Ujk=nlq)

D(q) is often termed the dynamical matrix. From Equation 2.33 it is clear that

the problem of determining the frequencies appropriate to waves of wave
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vector q is essentially one of solving the eigenvalue problem. The

eigenvalues are obtained by solving the characteristic equation
I D(q)- @3(q):3n | 1 =0 2.35

which results when we insist that Equation 2.33 must yield nontrivial
solutions for the wave amplitudes. Solving Equation 2.35 yields 3n
eigenvalues which we label (sz(q), (G=1,2,...,3n). Not all of these need be
distinct; depending on the symmetry of the crystal and the value of q, some

may be degenerate.

The dynamical matrix, D(q), (3 x 3 for the disordered state, 12 x 12 for
the ordered state) was diagonalized for approximately 5 million different
values of k for the disordered alloy, and approximately 10 million values for
the ordered alloy in order to obtain the phonon densities of states, g(v), for
both the ordered and disordered alloys. The program (written by Lawrence
Anthony) chooses a value of q and checks to see that this value falls within
the first Brillouin zone. If it does, then the program diagonalizes D(q) and
solves for its eigenvalues, thus creating the phonon density of states, g(v).
These DOS curves were then used to calculate heat capacities. Each normal
mode was given a phonon occupation set by Bose-Einstein statistics. The heat
capacity of the disordered and ordered materials is the heat capacity per mode

integrated over the corresponding phonon DOS.
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Chapter Three Sample Preparation and
Experimental Methods

3.1  Methods of Sample Preparation

The materials I have studied during my thesis work have varied
widely in composition and properties, and have thus required different
methods of preparation and characterization. In this chapter, I will list and
describe these methods; in the individual chapters, I will describe my sample

materials and their particular methods of preparation and characterization.
3.1.1 Mechanical Alloying

Mechanical alloying is a technique commonly used to achieve a
disordered and/or nanophase material. The system we used is a Spex 8000
mixer/mill. Elemental powders (or small chunks) of high purity are placed
inside a hardened steel vial along with several stainless steel balls. The vial is
then sealed in an inert atmosphere and placed inside the Spex 8000, which
violently shakes the vial. Collisions between the balls and the walls of the
vial crush the elemental powders, resulting in an alloy with small grain size.
Typical ball-to-powder weight ratios range from 2:1 to 5:1. A solvent, such as

hexane or ethanol, may be added to the vial to insure complete alloying.
3.1.2 Arc-melting

Arc-melting was used to produce ingots of approximately ten grams in

mass. The samples are prepared by placing elemental pieces of metal in the
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desired mass ratio in an Edmund Biithler D-7400 chamber, in which a 3 psi
over pressure of Ar is maintained. The Cu hearth is water cooled. A Ti getter
is melted before the sample is melted in order to remove any oxygen from the
chamber. The sample is then melted, inverted, and melted again to ensure
homogeneity. This method produces a reasonably clean, homogenous button

ingot without significant loss of mass during processing.

3.1.3 Induction Melting

Another method for melting elemental metal pieces to form an alloy is
induction melting. The sample is placed in a water-cooled Ag or Cu boat,
which is placed inside a Cu coil carrying a large radio-frequency current. Eddy
currents are produced in the material and cause it to melt. A Ti getter is also
used to clean the atmosphere, which can be evacuated or operated under an
Ar over pressure. After melting, the sample can be inverted and melted
again to ensure homogeneity. This method produces a reasonably clean,
homogenous elongated ingot without significant loss of mass during

processing.

3.14 Filing

The filing system (built by Mohit Jain [1]) consists of a wheel with a
twelve inch file attached to the outside edge of the wheel. As the wheel
turns, the file is pulled back and forth over the top of the sample, which is
clamped in a vise. This action produces a powder from the solid ingot. This
powder may be disordered by the filing process; however, some systems may

require additional mechanical treatment in order to become fully disordered.
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3.1.5 Thermal Treatment

Thermal treatments were used on all samples to obtain the desired
state of order, grain size, or degree of homogenization. Samples were sealed
in evacuated glass ampoules (quartz or Pyrex, depending on the temperature)
and annealed in a Lindberg furnace. Disordered samples could be made
ordered by annealing at a temperature below the ordering temperature for a
long enough time to allow diffusion to move the atoms to their
thermodynamically preferred orientations. Small ingots or chunks could be
made disordered by quenching the samples from a temperature above the
ordering temperature into iced brine, thus freezing in the disordered state.
This method will work for systems which are relatively easy to disorder, such

as CuzAu.

3.2  Sample Characterization

Once the samples were prepared, it was necessary to characterize their
state of order, grain size, and chemical composition. This was done using the

methods discussed below.

3.2.1 X-ray Diffraction

X-ray diffractometry was performed with an Inel CPS-120
diffractometer using Co Ko radiation. The wide angle position-sensitive

detector used in this system is capable of providing very fast, accurate
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diffraction patterns, which provide information about the crystal structure,

lattice parameter, and grain size of the material.

I used a computer program called Lazy Pulverix [2] to calculate
theoretical x-ray and neutron powder diffraction patterns for some of my
materials. The diffraction patterns are calculated using the lattice parameters,
space-group symbol, and the coordinates and chemical symbols of the atoms
in the unit cell. The calculation includes atom form factors, Lorentz-
polarization factors, and geometrical features of a Bragg-Brentano powder
diffractometer. The calculated diffraction pattern includes information on

two-theta angle and relative peak intensities.

3.2.2 Quantitative Compositional Analysis

Chemical compositions and chemical homogeneities for some samples
were measured with a JEOL Superprobe 733 electron microprobe. A Hewlett-
Packard 5890 gas chromatograph equipped with a thermal conductivity
detector was utilized in order to detect and quantify evolved hydrogen,
oxygen, and nitrogen; these gases could affect both the calorimetry and
neutron scattering results. Detectability limits with this system were 0.0032

wt.% for hydrogen, 0.078 wt.% for oxygen, and 0.22 wt.% for nitrogen.

3.3  Experimental Methods

3.3.1 Differential Scanning Calorimetry (DSC)
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Low-temperature calorimetry was performed with a Perkin-Elmer
DSC4 which had been modified by mounting the DSC4 head on an assembly
which could be lowered into a liquid helium dewar. The control electronics
and the software used with the regular DSC4 setup were not modified for
these experiments. The DSC is a very sensitive type of calorimeter which
operates by maintaining the same temperature in both samples pans and
measuring the difference in heat flow necessary to maintain this temperature
balance. Masses (from 40-300 mg) of the disordered and ordered alloys were
matched to within 0.1 mg accuracy and placed in the two sample pans of the
DSC4. To test reproducibility, we obtained several matched pairs of runs with
liquid nitrogen as the cryogen for each set of samples; experiments were also
performed with liquid helium as the cryogen. To counteract instrumental
drift, runs comprised three pairs of scans over temperature intervals of 30 K,
which typically overlapped by 10 K. Depending on the size and heat capacity
of the samples, scan rates ranged from 5 to 40 K min-l. Please see Appendix A

for a detailed description of operational procedures.

The difference in vibrational entropy, ASyip= sb - SO, between
disordered (D) and ordered (O) samples was obtained from the measured
difference in heat capacity at constant pressure, ACp, = Cg - Cg :

T2

[ AC
ASyin(T1,T2) = J—TEdT : 3.1

Ty

Ideally, T; = 0 K and T3 is the temperature of interest, such as the critical
temperature of the order-disorder transition. The range of our experimental

data was from 80 K to 343 K. The upper limit of this range was chosen to
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suppress changes in the configurational entropy. Diffusional atom
movements in most metals are negligible at these low temperatures. Were
diffusion to occur, it would be largest at the highest temperatures of mea-
surement, giving a strongly decreasing ACp. Changes in the state of order
could also modify the reproducibility of the three pairs of scans taken in each
temperature interval, or the reproducibility of the different runs with the
same samples. None of these problems were found, so we are confident that
the measurements provided differences in the vibrational heat capacity,
unencumbered by changes in the configurational entropy with its evolution

‘of heat.
3.3.2 Neutron Scattering

Because neutrons interact with atomic nuclei in a material, rather than
electron clouds, they provide information which may not be obtained by
other methods, such as x-ray. Thermal neutrons have a wavelength
distribution peaked around 1.6 A, well-suited for studying variations in
atomic density on a microscopic scale. Furthermore, thermal neutrons, by
definition, have energies comparable to those of thermally induced
fluctuations in solids (about 1/40 eV), making them the natural choice for
studying the thermally important dynamics of solids by inelastic scattering.
By contrast, x-rays or electrons with wavelengths around 1 A have energies

around 12 keV and 3.5 eV, respectively [3].

Also, neutrons can be advantageous for diffraction studies of the state
of order of a material because of their ability to differentiate between atoms of

similar masses. For example, x-rays are unable to distinguish between atoms



32

with similar form factors such as Ni and V in NizV; therefore, with x-ray
diffraction you see only the fundamental diffractions and not the superlattice
diffractions. However, because of the difference in neutron scattering cross-
sections between Ni and V, very strong superlattice diffractions are observed
with neutrons. This is also true for Co and V in Co3zV. Not only does the
neutron scattering amplitude show no regular or rapid increase with atomic
number, but it also shows no variation with the angle 6. The isotropic nature
of the scattering is due to the fact that the dimensions of the nucleus, unlike
those of the cloud of extranuclear electrons, are small in comparison with the

wavelength of approximately 1 A [4].

Yet another useful characteristic of neutrons is that they can penetrate
thin layers of metal. Thus, samples may be enclosed in thin-walled sample
holders (commonly aluminum or vanadium), and may also be placed inside

special refrigerators or furnaces for in-situ measurements.

The important nuclear parameter for neutron diffraction is the
"coherent scattering length,” b [x10-12 cm] [5]. The quantity 4n|b 12 is the direct
equivalent of the form factor intensity |f(Ak)!|2 for x-ray scattering, and it is
usually possible to predict neutron diffraction patterns from x-ray diffraction
equations by simply substituting 4n b2 for 1f(Ak)|2. The neutron scattering
form factor therefore has no significant dependence on Ak, and very high
order diffractions can be measured at low temperatures. Debye-Waller factors
will suppress higher order neutron diffraction peaks in the same way as for x-

ray diffraction, however.
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Neutrons are relatively heavy, at least compared to electrons, and have
a low energy for a given momentum. A neutron with a 1 A wavelength has
an energy of about 0.082 eV, which is equivalent to a temperature of about 950
K. Debye temperatures of crystals are typically somewhat less than this, so
neutrons with wavelengths appropriate for diffraction can interact strongly
with crystal vibrations. Neutrons can gain and lose energy to the phonons in
the crystal, and in doing so they will undergo a measurable change in their
wavelength. Neutron inelastic scattering is the most important probe of

phonons in a material, as described in section 3.3.2.1.

Neutron scattering is either elastic or inelastic, and coherent or
incoherent. With x-rays and electrons, inelastic scattering is usually
incoherent, by which we mean that the phase of the scattered wave is not
predictably related to the phase of the incident wave. Such inelastic
incoherent scattering is not useful for diffraction experiments. Neutron
scattering can be both inelastic and coherent, however. If an individual
phonon in the solid is considered as part of the scattering process, the neutron
can lose (or gain) energy to the phonon, but the phase relationship between

the incident and scattered neutron wave will be predictable.

Neutron scattering can also be elastic and incoherent at the same time.
Elastic incoherent scattering may occur for a crystal of Ti, for example, for two
reasons. First, the Ti contains a mixture of isotopes. The scattering process
for each isotope is different, and the phase relationships for scattering
between different isotopes are not easily predictable. Second, Ti contains
some isotopes of having an atomic weight that is an odd number, and

necessarily a nonzero nuclear spin. The scattering processes for different spin
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orientations of the same isotope are not the same. The coherence of
scattering can be lost even when all atoms are of the same isotope, but the

isotopes have different spin orientations.

3321 Inelastic Neutron Scattering

In inelastic neutron scattering, "dynamical structure factors" have a
utility that parallels the structure factors x-ray scattering (which are
technically "coherent elastic structure factors") [5]. Dynamical structure
factors involve sums over all atoms at the basis vectors {rk} of the unit cell,
weighted in by the scattering strengths of these atoms (cjc for incoherent
scattering, and 4mb? for coherent scattering, units are [barn=10-24 cm?2]).
However, the dynamical structure factor also includes a detailed
consideration of how the neutron scattering event causes a transfer of
momentum, Q, from the neutron to the crystal, and specifically how this Q
couples to crystal vibrations. The momentum transfer is controlled
experimentally by selecting the angles and energies of the incident and
scattered neutron, and is predicted from Newtonian kinematics. Lattice
dynamics are usually treated within a "Born - von Kirman model" (as
described in Chapter Two), which places atom masses on springs connecting
each atom to its various nearest neighbors. The vibrations in a crystal are
solutions called "phonons.” Each phonon is an independent wave that
extends throughout the crystal, and is identified by a wavevector q, a
frequency v, and a "branch” v, that refers to the type of phonon (e.g., acoustic,
optical) and its polarization (e.g., longitudinal, transverse). Because the
crystal has translational symmetry, each type of atom in the unit cell (at basis

vector rx) will undergo the same vibrational motions as equivalent atoms in



35

all other unit cells. Atom displacements at the different unit cells will occur
at different times, however, and herein lies the difference between incoherent
inelastic scattering and coherent elastic scattering. For incoherent inelastic
scattering there is no consistent phase relationship between the scattering
from an atom in one unit cell and an equivalent atom in another, and the
relevant scattering cross section is Ginc for incoherent scattering. For coherent
inelastic scattering a phase relationship exists, and the strength of scattering

depends on the coherent scattering length, b.

The dynamical structure factor for incoherent inelastic scattering is
Ginc(v,Q), which is measured at a particular energy loss, E=hv and momentum
transfer, Q. The amplitude of the scattering depends on the alignment
between the momentum transfer, Q, and the directions of motion or
"polarization” of each atom in the unit cell. The polarization is described by a
3k-component vector, g}(q), which has x-, y-, and z-components for each of
the k atoms in the unit cell. This vector is given by
e1(q) = uxrx! q)I + Uy | q)j + ury | q)i in the notation of Equation 2.34.c.
The dependence on alignment is the scalar product Q-ef(q). The incoherent

dynamical structure factor intensity is:

| Gince(v,Q) 12 Z Oine ‘kz Z 1 Qedi(q) 128(v-vy(q)) , 3.2

where the intensity is smaller for atoms with large mass, M;yx. The delta
function assures the matching of energies of the phonon and the incident
neutron; the crystal vibration cannot grow if there is a mismatch of

frequencies of the neutron and phonon waves. Equation 3.2 can be evaluated
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for polycrystals. The crystallographic average of Equation 3.2 over the various

orientations of Q is:

| Ginc(v,Q) 12 = sz %‘f,%kkz 2 leh(q) 17 8(v—vy(q)) - 3.3
Y q

rk

Equation 3.3 is closely related to the phonon density of states, p(v)
(included in Equation 3.3 as the distribution of the delta functions §(v —
v¢(q))). It is sometimes possible to use incoherent inelastic neutron scattering
to determine p(v) for a material. In doing so, the measured data for neutron
counts versus energy at a particular value of Q are first corrected for
background, and then divided by the thermal phonon occupancy factor, (n(v)

-1/v:

n(v)-1 B 1
v v[l-exp(-hv/kT)]

34

which is related to the Bose-Einstein phonon occupancy factor. In ideal
experiments, this corrected scattering spectrum will be the phonon density of
states of the material. Unfortunately, three problems may vitiate the
procedure. First, different species of atoms in the unit cell may have strongly
different incoherent cross sections, Ginc. In this case there will be much
weaker scattering from phonons that emphasize motions of the atoms with
small Ojnc. In general, correcting for this effect requires a-priori knowledge of
the gk(q), and hence the phonon DOS itself. Second, at high temperatures it
may be possible for two phonons to be excited by one neutron. Double
scattering can allow twice the energy loss of the neutron, and so will distort

the measured energy loss spectrum. It is possible to correct for this
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multiphonon scattering in some cases, however, and multiphonon scattering
is often negligible for small Q (< 5 A-1) at temperatures of 300 K and below.
Third, there may be a significant contribution from coherent inelastic

scattering that must be treated separately.

The dynamical structure factor for coherent inelastic scattering,

GCOh(VIQ)/ iS:

Gear(v2) = . -Ml—;z D bi Qeh(@) 6% Bu-va) HQ-a-p) - 35
133 Y g
Notice the delta function in Equation 3.5 that does not appear in Equation 3.4.
In addition to the requirement that the frequency of the phonon matches the
frequency of the neutron, 8(v-vy(q)), coherent inelastic scattering also requires
matching of the neutron and phonon wavevectors (modulo a reciprocal
lattice vector), so there is the term 8(Q-q—g). The idea is that oscillations of
the neutron wave must match the vibrational motions of all atoms along a
phonon. This is a coherent scattering process, so the scattering amplitudes of
the atoms and their motions must cooperate to scatter the neutron. The
orientation of the momentum transfer along the vibrational direction of an
atom is important (as in the previous case of incoherent scattering), hence the
product Q-gl(q). For coherent scattering it is also important that Q be in phase
with atom motions over many unit cells. Hence the additional factor of eiQrk

in Equation 3.5.

Coherent inelastic scattering experiments are most effective when

single crystals are available for study. The orientation of the crystalline axes
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with respect to Q gives control over the particular phonon, qy(v), that is
excited. The frequency of the phonon can be measured by scanning the
energy loss while maintaining a constant Q. Coherent inelastic scattering has
been the most important method for measuring phonon dispersion curves,
which are plots of qy(v) for the different branches, y, of phonons in a
crystalline solid. For polycrystalline solids, the coherent inelastic scattering is
averaged over all orientations of the crystallites, and hence over all
orientations of q. With a good understanding of the lattice dynamics of single
crystals, it is possible to calculate the coherent inelastic scattering from
polycrystals. Unfortunately, the inverse problem of going from coherent
inelastic scattering data to phonon dispersion curves (or even to g(v)), is

usually impossible.
3.3.22 Triple-axis Spectrometer

Figure 3.1 shows a schematic of the triple-axis spectrometer used in our
experiments at the High-Flux Isotope Reactor (HFIR) at Oak Ridge National
Laboratory (ORNL). From the collimated continuous neutron beam, a
desired wavelength Ag is selected by a monochromator crystal by diffraction
(angle 26)1). The sample can rotate around a vertical axis (angle ¥) and the
beam scattered by the angle @ is analyzed by an analyzer crystal rotating
around another vertical axis to seek neutrons of a wavelength satisfying the
Bragg condition for a given Bragg reflection at a diffraction angle 284 [6]. A
detector is placed at a corresponding angle to count these neutrons. As plane
scattering geometry is used, we see that the instrument provides four

variables (28, ¥, 20, 204) to satisfy three conditions imposed by the cross
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section expression. There are thus several ways to drive a triple-axis machine

and to find phonons by appropriate scans in the scattering plane.

HB-2A MONOCHROMATOR

COLLIMATOR (C1) OR COOLED FILTER {Si, Be)

- MONOCHROMATOR

COLLIMATOR {C2)

COLLIMATYOR (C3} -

ANALYZER CRYSTAL

COLLIMATOR (C4} —

3He DETECTOR

Figure 3.1  Schematic of the HB2 triple-axis spectrometer at the High Flux
Isotope Reactor at Oak Ridge National Laboratory.

For our experiments, we operated the triple-axis spectrometer in fixed
final energy and constant Q mode. The primary monochromator crystal
angle, 26);, was used to scan the incident energy, Ej, from 14.8 to 64.8 meV.
The final energy, Ef, was maintained at 14.8 meV. The scattering angle, @,

was driven to maintain constant Q for the chosen energy loss, Ej - Ef. Several
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filters were placed between the sample and the analyzer to remove /2 and

A/3 contamination from the neutron beam.
3.3.2.3 Neutron Diffraction

Neutron diffraction data were collected using the HB4 high-resolution
powder diffractometer at the High-Flux Isotope Reactor at ORNL. This
instrument has a Ge (115) monochromator which, when 2-theta = 87°, selects
an incident neutron wavelength of 1.5 A. The neutron wavelength was
determined more precisely to be 1.4993(2) A on the basis of unit cell
refinements for the NIST Standard Reference Material Si 640b. Soller slit
collimators of 12' and 20" are positioned before and after the monochromator
crystal, respectively. An array of 32 equally spaced (2.7°) 3He detectors, each
with a 6' mylar foil collimator, can be step-scanned over a range of up to 40°

for scattering angles between 11° and 135°.

The samples were placed in vanadium cans (9 mm inner diameter by 6
cm in length) for data collection at 295 K over the 2-theta range of 11° to 135°
in steps of 0.05°. For these data collections, the detector array was scanned in
two segments to overlap up to 8 detectors in the middle of the pattern.
Overlapping detectors for a given step serves to average the counting

efficiency and the 2-theta zero-point shift for each detector.



41

References

[1] Mohit Jain, Ph.D. thesis, Caltech, 1995.

[2] F. J. Rotella,"User Manual for Rietveld Amnalysis of Time-of-Flight Neutron
Powder Diffraction Data at IPNS,” 1983. R. B. Von Dreele, J. D. Jorgensen,
and C. G. Windsor, J. Appl. Crystallogr. 15, 581 (1982).

[3]]. D. Axe and R. M. Nicklow, Phys. Today 38, 27 (1985).

[4] G. E. Bacon, Neutron Diffraction, 2nd ed. (Clarendon Press: Oxford, 1962),
Chapter 2.

[5] B. Fultz and J. Howe, Transmission Electron Microscopy and
Diffractometry of Materials, to be submitted to McGraw-Hill: New York,

Series in Pure and Applied Physics, 1996.
[6] G. Kostorz and S. W. Lovesey in Treatise on Materials Science and

Technology Vol. 15 Neutron Scattering, G. Kostorz, ed. (Academic Press:
New York, 1979) p. 52.



42

Chapter Four  FezAl

4.1 Introduction

The first system I chose to study was Fe3Al. This material has a D03
ordered phase (see Figure 4.2) below 550°C; above this temperature, there is an
fcc disordered solution, as is evident from the phase diagram for the Fe-Al
system shown in Figure 4.1. James Okamoto studied the mean square
relative displacements (MSRD) of the Fe and Al atoms in this alloy using an

EXELFS technique [1]. I will include a discussion of how some of his results
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Figure 4.1 The phase diagram for the Fe-Al system. Taken from T. B.
Massalski, editor-in-chief, Binary Alloy Phase Diagrams, 2nd ed. (Materials
Park, Ohio: ASM International, 1990).
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Figure 42  The D03 structure of FezAl. Al atoms are black, the two different
types of Fe atoms are gray and white.

relate to my work in this chapter. While the result I measured for the
difference in vibrational entropy ((0.10 % 0.03) kp/atom) is not as large as was
found by Lawrence Anthony for NizAl, FezAl offers an important advantage
for understanding the origin of differences in vibrational entropy. Phonon
dispersion relations from inelastic neutron scattering have been used to
obtain Born-von Karmén force constants for both the ordered and disordered
states of FezAl [3-5]. From these force constants we obtained phonon densities
of states (DOS), and used them to calculate the heat capacities and the
vibrational entropies. We show that the smaller vibrational entropy of the
ordered Fe3Al is due largely to the development of high frequency optical

modes involving the vibration of the aluminum-rich sublattice.

4.2  Sample Preparation
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An alloy of Fe — 25 at.% Al was prepared from materials of 99.99%
purity by arc-melting under an argon atmosphere. The composition and
homogeneity of this same alloy had been characterized thoroughly in
previous studies of chemical ordering transformations [6, 7]. For the present
work, samples of disordered Fe3Al were prepared by filing. X-ray powder
diffractometry showed no superlattice diffractions from the as-filed powders.
Mossbauer spectrometry, which is primarily sensitive to short-range order [8],
showed that these filed powders were largely disordered solid solutions. A
state of D03 chemical order was obtained in the samples by annealing them in
evacuated borosilicate glass ampoules at 480 °C for 1 h. Strong x-ray
superlattice diffractions were measured from the annealed powders,

indicating a long-range order parameter of close to unity.

43  Experiment and Analysis

4.3.1 Calorimetry

I performed low-temperature heat capacity measurements using the
system described in Section 3.3.1. Masses (about 40 mg) of the disordered and
ordered alloys were matched to 10 pg accuracies and placed in the two sample
pans of the DSC. Heat capacity measurements comprised pairs of runs, with
the two samples interchanged in their sample pans between runs. The
difference in heat capacities of the two samples was obtained from the
difference of these two sets of runs. To test reproducibility, we obtained 5
matched pairs of runs with liquid nitrogen, and 2 matched pairs with liquid

helium as the cryogen. To counteract instrumental drift, runs comprised
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three pairs of scans over small temperature intervals of 30 K, which typically
overlapped by 10 K. Because of the relatively small masses of these samples,
it was necessary to use a high scan rate, 40 K min—!, in order to produce a good
signal. Additional runs were performed with ordered Fe3Al against a NIST

sapphire calibration standard.

As was presented in Chapter Three, the difference in vibrational
entropy can be obtained from the heat capacity data using the following

equation:

T2

AC
ASvib(T1,T2) = J—-T—E dT . 4.1
Ty

Averaged results from the calorimetry measurements are presented in
Figure 4.3. The sign of the data is positive, showing that the disordered state
of FezAl has the larger heat capacity. The data of Figure 4.3 were fit to a
difference of two Debye functions with eD[e)bye = 484 K and eD?bye = 500 K to
correct the integral of Equation 4.1 for the missing low and high temperature
contributions. After correction, we obtain a difference in vibrational entropy,
ASyip, of (0.10 £ 0.03) kg/atom at high temperatures. While smaller than the
maximum possible configurational entropy of mixing (0.56 kp/atom for the

FesAl stoichiometry), ASyib is not negligible.
4.3.2 EXELFS

Local vibrational amplitudes of the Fe atoms and Al atoms with respect

to their first-nearest neighbor atoms were measured with extended electron
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Figure 4.3 Points: measured differential heat capacity of ordered and
disordered samples of Fe3Al, ACp = C% - Cg , as a function of T. Curves were
calculated using Equation 4.2, with the solid curve using the DOS from the
main part of Figure 4.6, and the broken curve using the DOS from the inset.

energy loss fine structure spectrometry (EXELFS) [9, 10], performed at
temperatures ranging from 100 K to 420 K. The Al K-edge and Fe L;3-edge
electron energy-loss spectra were acquired with a Gatan 666 parallel-detection
magnetic prism spectrometer attached to a Philips EM 430 transmission
electron microscope. Processing of the spectra to obtain EXELFS oscillations
and radial distribution functions (RDF's) followed procedures described
elsewhere [2, 11, 12]. Figure 4.4 presents typical RDF's, uncorrected for phase
shifts, from the Al K-edge EXELFS data from ordered Fe3Al. The peak in the

EXELFS data near 2 A originates from interference from the first-nearest-
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neighbor (1nn) shell, and the inverse Fourier transform of this peak, selected
by the window at the top of Figure 4.4, was used to obtain the Debye-Waller
factor for the 1nn shell. All EXELFS experiments and data analysis were

performed by James Okamoto and are described in his Ph.D. thesis and other

publications [1, 2].
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Figure 44  Fourier band-pass filtering of Al K-edge EXELFS data from
ordered Fe3Al Data in the range 5.0A-1<k<10.0A-! were Fourier transformed.

Analysis of the Al K-edge EXELFS was straightforward, but analysis of
the Fe Ly3-edge EXELFS was less so for several reasons [2, 9-12]. The L edge
jump overlaps with the Lp3 EXELFS signal. This problem is avoided by using
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only Lo EXELFS data beyond 6A-1, which is past the L; edge jump. (This

choice also allows us to neglect the spin-orbit splitting of 13 eV between Fe L3

Fe

disordered

ordered

100 200 300 400 100 200 300
T (K) T(K)

Figure 4.5  First nearest neighbor MSRD data and fits to the Einstein model
for Al and Fe atoms in disordered and ordered Fe3Al.

and L, edges, because at energies well above the ionization threshold their
EXELFS oscillations are virtually in phase [9].) We calculated differential
electron scattering cross sections for the L1 and L3 edges [10-13] using Hartree-
Slater atomic wave functions [14] as initial states, and our final states were
continuum states with a free electron density of states [11]. In the region of
our data from 6 - 12 A—l, the differential cross section of the Fe L edge was 5
times smaller than that of the Fe Lp3 edge. Moreover, transforming the L

EXELFS oscillations from energy-loss space to the k-space corresponding to
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the Lp3 edge raises the frequencies of the L; EXELFS oscillations, making them
incoherent. We also calculated differential scattering cross sections for the
excitation of Fe 2p electrons into final states of s, p, d, or f character. It was
found that in the EXELFS region, the electric dipole-allowed 2p to d transition
dominates over the sum of all others by a factor of over 20. This makes

possible the interpretation of the Fe L3 EXELFS with outgoing d waves.

By comparing the 1lnn oscillations, changes in the mean-squared
relative displacements (MSRD) measured from the Al K-edge (Al MSRD) and
the Fe Ly3-edge (Fe MSRD) were determined relative to the lowest-
temperature datum. The MSRD data were fit to predictions of the Einstein
model [15], with the lowest-temperature MSRD being free to vary. Einstein
temperatures so obtained were 377 K (+28 K, -26 K) for Al atoms in disordered
Fe3Al, 490 K (+74 K, -54 K) for Al atoms in ordered FesAl, 391 K (+18 K, -15
K) for Fe atoms in disordered FesAl, and 431 K (+40 K, -31 K) for Fe atoms in
ordered FezAl. The MSRD data and their Einstein temperature fits are
presented in Figure 4.5. There is a strong reduction in the Al MSRD in the
ordered material, but a markedly smaller reduction in the Fe MSRD. We also
observed that both the Al and the Fe MSRD in either ordered or disordered
FesAl are reduced with respect to the corresponding pure metal [10-12]. This
is not expected from the trend of the elastic modulus of Fe—Al alloys, which

decreases as aluminum is added to bcc iron [16, 17].

4.3.3 Phonon DOS Calculation
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Van Dijk [3] and Robertson [4, 5] have used inelastic neutron scattering
to measure phonon dispersion curves along high symmetry directions in

ordered and disordered FezAl. Using Robertson's force constants up to fifth
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Figure 46 Main: Phonon DOS curves for ordered (thin curve) and
disordered (thick curve) Fe3Al, calculated using force constants from
Robertson [5]. Inset: Simplified phonon DOS curves; disordered Fe3Al curves
comprise unshaded and shaded parts, ordered Fe3Al curves comprise
unshaded part and delta function at 10.5 THz.

neighbors (columns 1 and 3 of Table 4 in [5]), we calculated the phonon DOS
for disordered and DO0z-ordered FezAl. In these calculations the disordered
state was represented as a bec lattice with a basis of 1 atom having an average

mass of the Fe and Al atoms (known as the virtual crystal model), and the
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bec-based DO3-ordered structure was represented as an fcc lattice with a 4-atom
basis. The phonon dispersion curves for high symmetry directions were
reproduced, and were in excellent agreement with those presented by
Robertson [5]. The dynamical matrix, D(q), (3 x 3 for the disordered state, 12 x
12 for the ordered state) was diagonalized for approximately 5 million
different values of k in the first Brillouin zone for the disordered alloy, and
approximately 10 million values for the ordered alloy. The resulting phonon
DOS curves for the disordered and ordered alloys, gP(v) and g©(v), are
presented in Figure 4.6. The phonon DOS of the disordered alloy would have
its sharp features broadened significantly, but this will not affect qualitatively

the arguments that follow.

These DOS curves were then used to calculate heat capacities. Each
normal mode was given a phonon occupation set by Bose-Einstein statistics.
The heat capacity of the disordered and ordered materials is the heat capacity
per mode integrated over the corresponding phonon DOS. The difference in

heat capacity, ACy(T) = C9 -CY, is:

hv
oo h exp(R—T)
ACv(T) = 3N1<BJ (8P(v) - gOw)) (kBVT)Z/ "

h
o (el

The calculation from Equation 4.2 is presented as a solid curve in Figure 4.3.

dv . 42

There is qualitative agreement between the calculated and measured ACy(T).
The disparity could originate with several sources, including the different

composition of Robertson's disordered sample [5]. Substituting Equation 4.2
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for ACy(T) into Equation 4.1 and integrating, we obtain a ASyjp = 0.186

kg/atom in the high temperature limit.

We perturbed the mass of the aluminum atoms in D(q) and
recalculated the phonon DOS curves. The highest frequency modes were
most sensitive to changes in the aluminum mass, so we deduce that these
modes originate with the vibration of the aluminum-rich sublattice in the
D03 ordered structure, in agreement with Robertson [5]. Other ordered alloys
also exhibit such high frequency modes [18-20], which seem to originate with
stiffly-bonded, low-mass atoms. Furthermore, the Al atoms are the minority
species in transition metal (T) aluminides of the T3Al composition, so the Al
atoms undergo the largest change in local chemical environment upon
ordering. We therefore expect these high frequency modes to be strongly

sensitive to the state of chemical order in the alloy.

The EXELFS MSRD measurements, which are dominated by
backscattering from Fe neighbors, are most sensitive to high frequency
vibrational modes. The larger Al MSRD (Figure 4.4) is consistent with the
light Al atoms having larger vibrational amplitudes in these highest
frequency modes. The high frequency modes of vibration of the aluminum-
rich sublattice in the ordered structure will have a low phonon occupation.
The Al MSRD of the aluminum atoms will therefore decrease upon ordering
— more so than for the Fe MSRD. This trend is also seen in Figure 4.4. This
same argument explains the large change in MSRD for aluminum atoms

upon L1 ordering in NizAl [2].
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The most prominent change upon ordering in the phonon DOS curves
are the gap around 9 THz for the ordered alloy, and its optical modes at 10 - 11
THz. We modeled these features with the simplified DOS curves presented
as the inset in Figure 4.5. The model uses a Debye model for the disordered
alloy with vpepye = 8.5 THz. For the ordered alloy, we deleted the top 1/4 of
the modes in the Debye model (from (3/4)%/3 VDebye tO Vpebye Of the disordered
alloy), and placed them in a single high frequency Einstein-like distribution at
VEinstein = 10.5 THz. The ACy(T) for this model, calculated with Equation 4.2, is
presented as a dashed curve in Figure 4.3, and the high temperature limit of

its ASyip(T) was 0.185 kg/atom.

We believe that the vibrational entropy calculated from the phonon
DOS curves is an overestimate because of problems with the virtual crystal
approximation used in the modeling of the disordered alloy. In this
approach, the disordered alloy is modeled as a homogeneous bcc alloy with an
atomic weight of 48.63 (the compositionally-weighted average of Fe and Al
atoms). In fact, however, the disordered alloy will have strong local
inhomogeneities, and may well have local regions with transient vibrational
energies around 10 THz. The existence of such high frequency vibrational
processes in disordered alloys are best measured by inelastic incoherent
scattering methods [21, 22], and these measurements provide a useful
complement to more traditional interpretations of lattice dynamics in terms
of phonon modes [23-25]. Such incoherent inelastic scattering measurements
performed on ordered and disordered NizAl (Chapter Five) showed that high

frequency vibrational processes do exist in transition metal aluminides.

44 Conclusions
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The difference in heat capacity between matched samples of disordered
and D0s-ordered Fe3Al was measured by calorimetry. These data on ACy(T)
were used to obtain the difference in vibrational entropy between disordered
and DOsz-ordered Fe3zAl, which was (0.10 + 0.03) kg/atom at high
temperatures, with the ordered alloy having the lower vibrational entropy.
Extended electron energy loss fine structure spectrometry (EXELFS) was used
to measure the mean-squared-relative displacement (MSRD) between Fe
atoms and their neighboring atoms, and between Al atoms and their
neighbors. These EXELFS measurements were performed at various
temperatures, so the effective Debye-Waller factor for the central atom and its
first nearest neighbor shell could be determined. These data showed that
upon ordering, the temperature dependence of the Al MSRD underwent a
larger change than did the temperature dependence of the Fe MSRD. The Al
atoms became more stiffly bound in the ordered alloy, whereas the Fe atoms

underwent a much smaller and perhaps insignificant change.

Analysis of the vibrational modes of the ordered and disordered alloys
was performed with a Born-von Karman model, using force constants
obtained from previous neutron scattering measurements of phonon
dispersion curves. Phonon DOS curves for the ordered and disordered alloys
were calculated, and the results provided a heat capacity difference between
ordered and disordered FezAl that was in qualitative agreement with the
experimental results from calorimetry. The most significant difference in the
phonon DOS of the ordered and disordered alloys was the prominent peak at
10.5 THz in the ordered alloy, corresponding to optical modes involving

large-amplitude vibrations of the aluminum-rich sublattice. This shift of 1/4
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of the phonon modes from about 8.5 THz to 10.5 THz was found to be the
main source of the difference in vibrational entropy of ordered and
disordered FeszAl, and is the likely reason why the EXELFS results showed

that the Al atoms were bound more stiffly in the ordered alloy.

Although the results from calorimetry and the phonon DOS are in
qualitative agreement, we believe that the discrepancy between the two
methods results from problems with the virtual crystal approximation used
in the modeling of the disordered alloy. The disordered alloy may well have
local regions with transient vibrational energies around 10 THz, which would
suppress the difference in vibrational entropy from what is expected with the

virtual crystal model of the bcc phonon DOS.
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Chapter Five NizAl

5.1 Introduction

The phase diagram for Ni3Al is shown in Figure 5.1. Previous

calorimetric measurements showed the difference in vibrational entropy of
ordered and disordered Ni3Al to be about 0.3 kB/atom [1], which is a large

fraction of the difference in configurational entropy (< 0.57 kp/atom). We
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Figure 5.1 The phase diagram for the Al-Ni alloy system. From H. J.
Okamoto, Phase Equilibria 1993 14(2) p. 257.

hypothesize that- the formation of a sublattice of stiffly-bonded, light
aluminum atoms in the L12 structure of Ni3Al (shown in Figure 5.2) causes
the ordered state to have a lower vibrational entropy than the disordered

state. Although a neutron inelastic scattering experiment has been performed
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on a single crystal of Ni3Al with L12 order [3], it is unfortunately impossible
to prepare single crystal specimens of disordered fcc Ni3Al. Measurements of
neutron inelastic coherent scattering from single crystals therefore cannot be
used to identify the differences in the types of phonons in ordered and
disordered Ni3Al. The present experiment was designed to provide some of
this information by inelastic incoherent and coherent scattering from

polycrystalline powders.

Figure 5.2.  The L12 structure of Niz3Al. The large gray circles represent Al
atoms and the small white circles represent Ni atoms.

5.2  Samples and Experiment

Powders of Ni3Al were made by mechanical alloying [4, 5]. Measured
amounts of elemental nickel and aluminum powders were milled in a Spex

8000 mixer/mill with hardened steel vials and stainless steel balls and a ball-
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to-powder weight ratio of 2:1. With hexane added to the vial, nearly complete
alloying occurred in 3 - 4 hours, and several batches of Ni3Al powder were
prepared by milling for 8 hours at room temperature. X-ray diffractometry
was performed with an Inel CPS-120 diffractometer using Co Ka radiation.
The total absence of the (100) and (110) superlattice diffractions in the as-
milled material, also seen in its neutron diffraction pattern, showed that the
as-milled powder was essentially without L12 long-range order (LRO). Figure
5.3 presents an x-ray diffraction pattern from the as-milled powder, and a
pattern from the same powder after annealing at 450 °C for 10 hours, which

was the annealing treatment used to produce L12 LRO in our samples [6-8].
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Figure 5.3  X-ray powder-diffraction patterns of the ordered and disordered
NizAl powders, in the region of the (100) and (110) superlattice diffractions.
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Samples of the as-milled and the annealed powders, each about 50
grams, were placed in thin-walled aluminum cans and mounted on the
goniometer of the HB3 triple axis spectrometer at the High Flux Isotope
Reactor at the Oak Ridge National Laboratory. The spectrometer was operated
in constant-Q mode with the fixed final energy, Ef, being 14.8 meV. The
energy loss spectra were made by scanning the incident energy from 14.8 meV
to 64.8 meV. The neutron flux from the monochromator was monitored
with a fission detector, which was used to control the counting time for each
data point. The incident beam on the pyrolytic graphite monochromator
crystal was collimated with 40’ slits, and 40’ slits were also used between the
monochromator and the sample. Pyrolytic graphite filters placed after the
sample were used to remove the A/2 contamination. The filtered beam
passed through 80" slits before the pyrolytic graphite analyzer crystal.
Following the analyzer, 2° slits were used before the 3He detector. With this
arrangement, the energy resolution varied from about 2 meV at low energy
transfer to 5 meV at 40 meV energy transfer. (In addition to these instrument
parameters, several runs were performed with other instrument resolutions.
Agreement between these different data sets was good.) Four values of Q

were chosen for each specimen, ranging from 3.23 to 4.23 A-1.

53 Results

Energy loss spectra from the ordered and disordered Ni3Al are
presented in Figure 5.4. Individual runs were highly reproducible, as shown
by the two independent (but nearly coincident) data sets from the ordered
alloy with Q = 4 .23 A~1. Effects from the broad transverse band of phonon

states are seen in all data sets from 12 to 28 meV, and some structure is visible
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Figure 5.4 Raw neutron energy loss spectra for the ordered and disordered
Ni3Al powders, obtained at four values of Q. Data for the ordered alloy are
offset vertically by 1500 counts.

in this region. The energy loss spéctra from the material with L12 order also
shows a peak around 39 meV. This peak was found in the calculated phonon
DOS obtained from the results of single crystal experiments by Stassis et al. [3].
Examination of the eigenvectors of the dynamical matrix (see Section 7.4.1)
showed that it is attributable to optical modes dominated by the motions of
the aluminum-rich sublattice. As discussed below, the intensity of this peak
is suppressed in the present experiments, owing to the smaller scattering cross

section of aluminum than that of nickel, and the relatively small vibrational
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amplitudes of the nickel atoms in these optical modes. No distinct peak at 39
meV is seen in the data from the disordered Ni3Al, although some residual
intensity is found around this energy. The peak at 33 meV for the disordered
alloy is at approximately the same energy as the peak of the longitudinal
modes for fcc nickel metal. Another distinct feature of the spectra from the
disordered alloy is the stronger scattering intensity at energy losses below 10

meV or so.
54  Analysis of Phonon DOS
5.4.1 Calculated Phonon DOS

The analysis of the scattering data from the ordered powder was helped
considerably by the availability of previous phonon dispersion measurements
on single crystals of L12 Ni3zAl [3]. Although the force constants were
published, we were unable to use them satisfactorily in a Born-von Kirmén
model. Independent fits [9] to the experimental phonon dispersion curves of

Reference 3] provided the following set of force constants:

(ox(12) = 16984, oxx(22) = 18882, 0z2(1l2) = -1.128,
022(22) =-0376, oy (112) = 18.112, oxy(22) = 19.258,
oo 1) =148, ox(2) =138, ayy (1) = 1864,
¢yy(222) = 0.645} [N /m].

The force constants are of the form (bab(k]k'),where a and b are the indices of

the force constant tensor, 1 specifies the nearest-neighbor distance, and k and

k’ indicate the sublattice pair, with Al atoms occupying sublattice 1 and Ni
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atoms occupying sublattice 2. Using these force constants, the dynamical
matrix D(q) was diagonalized for approximately 106 values of k distributed
uniformly over the first Brillouin zone. Histogram binning of the resulting
eigenfrequencies provided the phonon DOS, presented at the top of Figure
5.5.a. The dynamical structure factors were calculated simultaneously.
Truncating the force constants at second neighbor distances provides a
reasonable, but imperfect fit to the phonon dispersion curves, and there are
some differences between our phonon DOS and that of Stassis et al. [26]. The
present force constants are nevertheless adequate for identifying trends in the

scattering intensity versus Q.
54.2 Calculated Dynamical Structure Factors

Also shown at the top of Figure 5.5.a is the dynamical structure factor
intensity for incoherent scattering of phonons of frequency v, 1Ginc(v,Q)| 2
obtained from the Born-von Karméan model as the following sum [10] (with a
factor involving the projection of the momentum transfer Q on the
polarization vector g (q) for the atom of mass My at the position r of the

phonon in the branch y with wavevector q) :

| Ginc(v.Q) 12 = 2 ‘—’ﬁfk‘—“z 2 | Qei(q) 17 8(v—vyq) - 5.1
Y q9

rk

For each atom, branch, and q, the crystallographic average of Equation 5.1
over the various directions of Q is: Ginc,Tk QZ | sﬁ((q) | 2 /3Mryx . This
contribution to | Ginc(v,Q) 12 was binned during the phonon DOS calculation,

as was the contribution to the partial phonon DOS, lerk(q) 12 . The peak at 39
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meV is suppressed considerably in the dynamical structure factor intensity for
incoherent scattering. The partial phonon DOS for the aluminum and nickel
atoms (essentially Equation 5.1 with the rx=1 (Al) or rx=2 (Ni) terms only)
showed that at the energies around 39 meV, the aluminum atoms have
much larger vibrational amplitudes than do nickel atoms. However, the
incoherent scattering from aluminum is negligible (cinc < 0.01 barn)
compared to that of nickel (cinc = 5.0 barn) [10], so incoherent scattering

around 39 meV is rather weak.

The dynamical structure factor intensity for coherent scattering,

| Geoh(V,Q) | 2, was calculated as [10]:

1 .
|Geoh(v12=Y 5= Y, 3 T, 1bnc Qerk(q) €lQk12 §(v-vy(q)) 8Q-q-1), 52
Tk vy 1 4

where 71 is a reciprocal lattice vector and bry is the coherent scattering length.
The crystallographic average of the inelastic coherent scattering required an
evaluation of the dynamical structure factor intensity at explicit values of Q
with respect to the crystallographic axes. For a given value of Q, the
directions of Q were chosen with an isotropic probability distribution using a

Monte Carlo sampling procedure.

Results for the total scattering, inelastic coherent plus inelastic
incoherent, are presented at the bottom of Figure 5.5.a. Differences in the
shape of the curves with different Q are caused by the inelastic coherent
scattering, whose variation with Q depends in a complicated way on the

phonon DOS and relationships between Q and the Brillouin zone boundary
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Figure 5.5. a. Calculations for L1z NigAl. Top: phonon DOS, incoherent
scattering spectrum, and average of all data at the bottom of a. Bottom: total
inelastic scattering (incoherent plus angle-averaged coherent) for L1y NizAl at
various values of Q. b. Calculations for fcc Ni. Top: phonon DOS,
incoherent scattering spectrum, and average of all data at the bottom of b.
Bottom: total inelastic scattering (incoherent plus angle-averaged coherent)

for fcc Ni at various values of Q.
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[11]. Our calculations reproduce some of the detailed Q-dependence of the
experimental data on ordered Ni3Al. For example, the strong scattering
observed for Q = 3.23 A1 around 10 meV is reproduced well in the
calculation. The general trend for the scattering at higher energies to increase

with Q is also reproduced well.

The top of Figure 5.5.a also shows the average of the four calculated
curves at the bottom of Figure 5.5.a, each normalized to unity. It differs from
the phonon DOS curve primarily in its overemphasis of the low energy part
of the spectrum, and underemphasis of the higher energy part of the
spectrum. (This average is similar, but not identical, to the dynamical
structure factor intensity for incoherent scattering.) Dividing the phonon
DOS by this average provided a “dynamical structure factor correction
function” with a shape much like a step function, having an amplitude of
0.69 for energies below 35 meV, and an amplitude of 1.94 for energies above
35 meV. For correction of the summed experimental data, the step in the
dynamical structure factor correction function was smoothed by a gaussian
function with a full width at half maximum of 4 meV, the expected

experimental resolution.

The analysis for the disordered alloy is more problematic, since force
constants are not available from previous work. We began by assuming that
the phonon DOS of the disordered Ni3Al was the same as that of fcc Ni metal
[12]. Starting with this phonon DOS of a typical fcc metal, we devised two
methods for the analysis of the energy loss spectra from disordered Ni3zAl.
The top of Figure 5.5.b shows the phonon DOS of fcc nickel. (For a

monatomic crystal, as assumed in the virtual crystal approximation, the
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phonon DOS has the same shape as the dynamical structure factor intensity
for incoherent scattering.) Also shown in Figure 5.5.b are the total incoherent
plus coherent structure factor intensities from fcc nickel at the different
values of Q used in the experiment. The average of these total inelastic
scattering intensities is presented at the top of Figure 5.5.b. We obtained a
dynamical structure factor correction function for converting the inelastic
scattering intensity into a phonon DOS, but it was not used for the analysis
presented below. This correction function was roughly constant in energy, so
in one approach for data analysis we assumed the correction factor to be unity.
It certainly can be argued that the virtual crystal approximation is unreliable;
the vibrational spectrum of the disordered crystal must be different from that
of a monatomic fcc crystal. The experimental data do show that there is some
intensity in the regions of the optical modes at 39 meV, presumably due to
vibrations of aluminum atoms in local regions of partial order (light Al
atoms vibrating in a cage of Ni atoms [2, 13]). So as a second method for
analysis of the data from the disordered alloy, we converted the summed
inelastic scattering intensity into an approximate phonon DOS by using the
same dynamical structure factor correction function as was used for the
ordered alloy (the step function with a jump at 35 meV). We do not know
which method for data analysis is more appropriate, so in what follows we

present both.
5.4.3 Temperature
Another step in obtaining the phonon DOS involved the correction for

the phonon populations in the different modes. We calculated the inelastic

incoherent scattering using the conventional multiphonon expansion [14-16].
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The calculation was performed for room temperature with the phonon DOS
curves presented at the tops of Figures 5.5.a and 5.5.b. The results showed that
at the relatively low values of Q and temperature of the present experiments,
the inelastic scattering is strongly dominated by one-phonon processes.
Multiphonon corrections would have made little difference to the resultant
phonon DOS, so these corrections were not performed. Also, our
normalization of individual data sets, discussed below, eliminated the need
to correct for the Debye-Waller factor suppression of the scattered intensity for
larger values of Q. We do neglect differences in how the Debye-Waller factors
for nickel and aluminum atoms change with Q, but these differences are not
important because they are not large, and the scattering is dominated by the

nickel atoms.

544 Data Analysis Procedure

The features of the calculated scattering (Sections 5.4.2 and 5.4.3) led us
to the following procedure for obtaining an approximate phonon DOS from
the experimental data of Figure 5.4. Our data analysis procedure has some
similarities to methods used previously [15-19]. The individual data sets for
both the ordered and disordered alloys were corrected by subtracting the same
constant background from all data sets, which is a good approximation for
data from the HB3 spectrometer. Each background-corrected spectrum was

divided by the one-phonon correction factor, (n(v) — 1)/v [10]:

n(v)-1 1
v v [1-exp(-hv/KT)]
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Next, the individual spectra for the four values of Q for the disordered and
ordered alloys were individually normalized to unity and then summed.
Finally, the summed data for the ordered alloy were multiplied by the
dynamical structure factor correction function, and this result was
normalized to unity. The resulting approximate phonon DOS for the ordered
alloy is presented in Figure 5.6. As mentioned in Section 5.4.2, we are
uncertain if the disordered alloy can be treated as a virtual fcc crystal, or if we
should use a correction factor as in the ordered alloy to weight more heavily
the data at higher energies. We expect that these two assumptions provide
reasonable upper and lower bounds on the actual phonon DOS, so both

results are presented in Figure 5.6.

55 Discussion

5.5.1 Phonon DOS

The phonon DOS of the ordered alloy presented in Figure 5.6 is in
reasonably good agreement with the phonon DOS reported by Stassis et al. [3].
For comparison with the phonon DOS at the top of Figure 5.5.a, we
convolved the calculated data with a Gaussian function of width 4 meV. The
overall agreement between the two curves (“L12 exp” and “L12 calc”) is
generally satisfactory. The peak at 39 meV in the calculated curve is a bit too
large, however, having an integrated area of about 0.28, rather than the
expected value of 1/4. Discrepancies in the matching of the calculated and
experimental g(v) curves of the ordered alloy originate in part with our
method of analysis, but also with the simplicity of the force constants (up to

second nearest neighbor only) used in the Born-von Karman model.
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Figure 5.6 Phonon DOS obtained by processing the experimental data of
Figure 5.4. The curve "Ll; exp" was obtained from the data from the
annealed powder with the L1y structure. The two curves "Dis expl" and "Dis
exp2" were obtained from the data from the as-milled powder, with two
assumptions about the weighting of the observed intensity at high energies
(see Section 5.4). The phonon DOS's at the tops of Figures 5.5.a and 5.5.b were
convolved with a gaussian instrument function to provide the curves "L1;

calc” and "Dis calc.”

For the disordered alloy, the experimental g(v) curves show an
enhanced intensity at energies around 10 meV. Some of this intensity could

arise from the lifetime broadening of the phonon energies in the disordered
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alloy. It could also originate from the internal vibrations of the
nanocrystallites produced by ball milling, hydrogen contamination of the
specimen, or both. We do not expect these latter two problems to affect the

phonon DOS of the disordered alloy at higher energies, however.

It is not surprising that there are significant differences in the
experimental curves of the disordered Ni3Al and the calculated phonon DOS
curves of nickel, a monatomic fcc metal. The first difference is independent
of our two methods of data analysis. In comparison to the calculated curve,
the experimental g(v) curves show a significantly weaker peak from
longitudinal-mode phonons at 33 meV. Some of this loss of intensity could
be associated with the lifetime broadening of the energy spectrum from the
disordered alloy, but we believe the change in intensity is larger than expected
for this mechanism. Another difference between the experimental and
calculated phonon DOS of the disordered alloy is found around 39 meV.
Because we do not know the different atom vibrations involved in this
scattering, we cannot predict reliably the intensity around 39 meV. However,
both our methods of data analysis provide some intensity in this energy
range. This intensity is certainly suppressed considerably from its intensity in
the ordered alloy, but it is non-negligible. Both methods of processing the
data from the disordered alloy suggest the presence of a bimodal high energy
structure with peaks around 33 and 39 meV. It is tempting to associate these
peaks with the motions of nickel and aluminum atoms, respectively, but

such a resolution cannot be justified rigorously.

5.5.2 Vibrational Entropy
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At high temperatures, the difference in vibrational entropy of the
disordered and ordered Ni3Al, ASyib = sé} - S°%if , depends in a
straightforward way on the difference in the phonon DOS of the two phases,
gdis(y) — gord(v)

oo

ASvib = -3kB G[ (gdis(v) - gord(v)) In(v) dv , 5.4

where the difference avoids problems with the dimensions of the argument
of the logarithm. When the phonon DOS of the disordered alloy was
obtained from the virtual crystal approximation without any dynamical
structure factor correction, Equation 5.4 gave ASyip = 0.30 kB/atom. With the
phonon DOS determined with the dynamical structure factor correction factor
of the ordered alloy (i.e., with the assumption that the vibrations with
energies above 35 meV involve primarily motions of aluminum atoms),
ASyib = 0.10 kB/atom. For comparison, a value of ASyip somewhat less than
0.3 kB/atom was obtained by cryogenic calorimetry and by extended electron
energy loss fine structure spectroscopy measurements on evaporated thin

films of NizAl [1].

Some of the contribution to ASyip from Equation 5.4 is associated with
the intensity of the phonon DOS of the disordered alloy at energies below 10
meV, but examination of the integrand gdis(v) In(v) showed that this was not
the major effect. The difference between the vibrational entropies of the
ordered and disordered alloys is caused primarily by differences in the energy
spectrum at higher energies near 39 meV. Because the ordered alloy has a

sublattice of aluminum atoms, the high-frequency vibrational modes
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involving primarily these light but stiffly-bonded atoms suppress the
vibrational entropy of the ordered alloy. The present experiment shows that
the vibrational spectrum of the disordered alloy has some intensity at the
energies of the optical modes in the ordered alloy, but much less than for the
ordered alloy. This effect of the optical modes is much the same as was
proposed for FezAl [2]. The present measurements suggest, however, that for
the purpose of understanding the magnitude of vibrational entropy, it may be
problematical to analyze the phonon DOS with a virtual crystal
approximation. The lack of vibrational modes at high energies in the
previous calculation for disordered bcc Fe3zAl may have been why the
calculated phonon DOS curves for ordered and disordered Fe3Al provided a

DSvyib that was larger than was obtained from calorimetry [2].

5.6 Conclusions

We performed inelastic neutron scattering experiments on Ni3Al in
two states of chemical order: with L12 LRO and as a disordered fcc solid
solution. For each sample, energy loss spectra were collected at four values of
Q. A Born-von Kérman analysis was performed with force constants
obtained from single crystal experiments, and the results from this analysis
suggested a procedure for extracting an approximate phonon DOS from the
energy loss spectra of the ordered alloy. The resulting phonon DOS was in
good agreement with the phonon DOS obtained previously for L12 NizAl
The spectra from the disordered alloy were also analyzed with this method,
and by another method that assumed that the participation of the nickel and

aluminum atoms in the scattering was independent of phonon energy.



75

The most significant difference in the phonon DOS of the ordered and
disordered alloys was the prominent peak at 39 meV in the ordered alloy,
corresponding to optical modes involving large-amplitude vibrations of the
aluminum-rich sublattice. The intensity near 39 meV was much weaker in
the disordered alloy, but not negligible. The corrected phonon DOS curves of
the disordered and ordered alloys were used to calculate a difference in
vibrational entropy which was s{,i}i, - S%AF = (+0.2 £ 0.1) kB /atom, in
reasonable agreement with previous measurements by calorimetry. The
main contribution to this difference in vibrational entropy was the difference
in the phonon spectrum around 39 meV, which is the energy of optical
modes involving vibrational motions of primarily the aluminum-rich

sublattice of the ordered alloy.
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Chapter Six CuzAu

6.1 Introduction

The fcc - L12 transformation in the alloy Cu3Au (the L12 structure is
shown in Figure 5.2) has been an archetype for metallurgical studies of order-
disorder transformations, and the free energy and the phase diagram (shown
in Figure 6.1) of Au-Cu have been topics for measurément and for model
calculation. Such calculations have served as tests for the cluster variation
method [1-4], for example. The influence of vibrational entropy on the

thermodynamics of Au-Cu alloys has been largely neglected, however.
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Figure 6.1 The phase diagram for the Au-Cu alloy system. From T. B.
Massalski et al., Binary Alloy Phase Diagrams, 2nd ed., (Materials Park, OH:
ASM Int., 1990).
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The lattice dynamics of ordered and disordered Cu3Au has a
controversial early history. An electrical resistivity study by Bowen [5]
reported a large increase in Debye temperature, 8, from 175 K to 197 K upon
ordering. With a Debye model, this can be converted into a difference in

vibrational entropy at high temperatures as:

ASyib = 5dis —50rd =3 kg In (eordJ , 6.1
Bdis
from which we obtain a ASyip of 0.355 kB/atom. This large value of ASyib is
comparable to the entire entropy of the order-disorder transformation in
Cu3Au, which is about 0.40 kB/atom [6]. After Bowen's result, however,
Flinn, McManus and Rayne [7] performed careful measurements of elastic
constants for ordered and disordered Cu3Au, and obtained Debye
temperatures of 283.8 K for the ordered alloy, and 281.6 K for the disordered
alloy, so, with Equation 6.1, ASyjb would be a mere 0.023 kg/atom. Debye-
Waller factors for CuzAu were assessed carefully by Fox [8], using some
arguments of Shirley and Fisher [9]. Surprisingly, the x-ray Debye-Waller
factors [10-13] showed a much higher Debye temperature for disordered than
ordered Cu3zAu: 279 K and 222 K, respectively. This leads to a large
vibrational entropy difference, ASyib = 3kB In(222 K/279 K) = -0.69 kB/atom,
with the vibrational entropy of the ordered alloy being larger. The errors of
these x-ray Debye temperatures are large enough so that the difference in

vibrational entropy could be zero, however.

Following coherent inelastic neutron scattering measurements by

Hallman [14], phonon dispersion curves along high symmetry directions
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were measured for single crystals of both disordered and ordered CuzAu by
Katano, lizumi and Noda [15]. They fit their results to calculations with a
Born-von Karmén model, and published a set of force constants for both
states of order. More recently, Cleri and Rosato [16] calculated interatomic
force constants with a tight binding method. They used their force constants

in a Born-von Kéarméan model to obtain ASvip = 0.12 kg/atom.

Our differential calorimetry equipment provides its best data only for
temperatures above 70 K. This is a problem for measurements on Cu3zAu,
which has a relatively low Debye temperature. Nevertheless, in the present
work we report measurements of ACp(T) over a sufficient range in tempera-
ture so that other knowledge of lattice dynamics can be used to extrapolate
ACP to T = 0. Furthermore, measurements of Cp(T) for disordered and
ordered Cu3zAu to 20 K were reported by Hultgren, Desai, Hawkins, Gleiser
and Kelley {17]. While these data are inadequate for the determination of

ASvib(T), they are helpful for the analysis of our data.

6.2  Samples and Experiment

Our Cu3Au was the same material used in a previous study by
Schwartz and Cohen [11]. After the material was rolled to one millimeter
thickness, two 6.3 mm disks were punched from the sheet. The two samples
were matched in mass, and disordered by sealing them in an evacuated quartz
glass ampoule and quenching from 700 °C into an iced brine bath. To obtain
L12 order, one sample was sealed in an evacuated borosilicate glass ampoule

and annealed at 375 °C for three days, then the temperature was decreased by
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30 °C every fourth day until the final holding temperature of 285 °C was
reached. The sample was then cooled in the furnace. Strong x-ray
superlattice diffractions were measured from the annealed sample, indicating
a long-range order parameter of close to unity. Chemical compositions and
chemical homogeneities were measured with a JEOL Superprobe 733 electron
microprobe. The overall composition of the ingot was found to be close to
stoichiometric, but there were compositional differences between the two

samples of about 0.3 at. %.

Low-temperature heat capacity measurements employed a Perkin-
Elmer DSC-4 differential scanning calorimeter (DSC) that had been modified
by installing its sample head in a liquid helium dewar. Masses (about 300 mg)
of the ordered and disordered alloys were matched to 0.1 mg accuracies and
placed in the two sample pans of the DSC. Heat capacity measurements
comprised pairs of runs, with the two samples interchanged in their sample
pans between runs. The difference in heat capacities of the two samples was
obtained from the difference of these two sets of runs. To test reproducibility,
we obtained ten matched pairs of runs with liquid nitrogen, and three
matched pairs with liquid helium as the cryogen. To counteract instrumental
drift, runs comprised two pairs of scans over temperature intervals of 30 K,
which typically overlap by 10 K. Scans were collected at 5, 10, and 20 K min~1.
Because the masses of Cu and Au are very different, the 0.3 at. % composition
difference of the two samples caused the Cu-rich sample to have more atoms
and a larger heat capacity. This problem was overcome by interchanging the
heat treatments of the two specimens, and doing two sets of calorimetry
measurements. Our final data were corrected for the mass difference of the

two samples. A measurement was also performed with the ordered sample
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alone to confirm that its heat capacity was in reasonable agreement with the

results of [17].

6.3 Results and Discussion

Averaged results from the calorimetry measurements are presented in
Figure 6.2. The sign of the data is positive, showing that the disordered state
of Cu3zAu has the larger heat capacity. To provide the integral of Equation 3.1

with the missing low and high temperature contributions, the data of Figure

6.2. were fit to a difference of two Debye functions with 8,4 constrained to be
270 K, which is a good approximation to the data of [17]. The fit provided 8 4;
= 259 K, so with Equation 3.1. we obtain ASyip = 0.12 kB/atom at high

temperatures.
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Figure 6.2  Difference between the heat capacities of disordered and ordered
samples of Cu3Au-the circles are the experimental data and the lines are
described in the text.



83
We employed a Born-von Karman model to calculate the phonon
densities of states (DOS) using the force constants of [15]. The dynamical
matrix was diagonalized for about 106 values of k in the first Brillouin zone,
and histogram binning of the eigenfrequencies was used to obtain the
phonon DOS g(v). These phonon DOS curves for the disordered and ordered
alloys, gdis(v) and gord(v), are presented in Figure 6.3. The difference in lattice

heat capacity was obtained as:

. exp(_h_v_\

hv \2 kT
ACy(T) = 3NkBOJ'(gD(V)—gO(V)) (kBVT) hy 3 / . 62
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Figure 6.3 Phonon DOS of CuzAu with the L1 ordered structure (thin line)
and as a disordered fcc solid solution (thick line), calculated with the Born-
von Karman model using the force constants of [15].
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In Figure 6.2, the thin line is the calculated curve for ACy(T), which is
the lattice heat capacity within the harmonic approximation. We believe the
harmonic approximation to be mostly reliable. (If ASyib were affected by
anharmonic contributions, the measured ACP(T) would deviate from zero at
high temperatures, and our experimental data show that it does not.
Furthermore, Touloukian [18] reports only a modest difference in the thermal
expansion coefficients of ordered and disordered Cu3Au.) Using the
calculated curve for ACy(T) gives ASyib = 0.232 kp/atom in the high
temperature limit. The calculated ACy(T) seems too large, however. We
believe this overestimation originates with the use by [15] of a virtual crystal
model for fitting the phonon dispersion curves of the disordered alloy. By
scaling the calculated curve for ACy(T) downwards by a factor of 0.6, we
obtained the best fit to our experimental data of ACp(T) when all data points
were weighted equally (this is the thick curve in Figure 6.2). This scaled
ACV(T) provides ASyib = 0.14 kg/atom in the high temperature limit. Owing
to our uncertainties in the modeling and fitting, we conservatively assign
error bars to our result for ASyib of + 0.05 kg/atom. This error is about three
times larger than expected from the run-to-run variations of our calorimetry

measurements.

The salient difference between the phonon DOS curves of ordered and
disordered Cu3Au is the appearance of a strong peak at 5 THz in the phonon
DOS of the ordered alloy. This peak accounts for about 1/4 of the phonon
modes. With this intensity at 5 THz in the ordered alloy, with respect to the
disordered alloy there is a corresponding loss of intensity in the phonon DOS
over the frequency range from 2.5 to 4.5 THz. If we approximate this change

as a change in frequency of 1/4 of the phonon modes from 3.5 to 5 THz, we
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1
can use Equation 6.1. to obtain ASyib =3 kB i In(5 THz/3.5 THz) = 0.26

kB/atom. This compares well to the 0.232 kB/atom calculated with the
phonon DOS curves. These estimates of ASyjb are much larger than are
obtained from the elastic constant measurements of [7], and from the
calorimetry measurements by Rayne [19] at temperatures below 4.2 K. These
previous low temperature results would not be sensitive to differences in the
high frequency vibrational modes of the disordered and ordered alloys,

however.

By examining the eigenvectors of the dynamical matrix at the high
symmetry points in the Brillouin zone, we obtained the following picture of
the different vibrational modes in the L12 structure. The highest frequency
modes above 6 THz involved the motions of Cu atoms, primarily in the
plane of their cube faces, with opposing movements of Au atoms. These
motions are controlled by the largest first nearest neighbor (1nn) force
constants. Although Cu atoms have Inn Cu atoms, few of the highest
frequency modes near 6 THz involved exclusively the motions of Cu atoms
against Inn Cu atoms. These Cu-Cu motions were instead found primarily in
the modes around 5 THz. The phonon partial DOS curves of Figure 6.4 show
that for the modes at 5 THz in the ordered alloy, the kinetic energy is almost
entirely in the motion of Cu atoms. To seek relationships between the
phonon modes and the structure of the ordered alloy, we perturbed the force
constants of [15] and recalculated the phonon DOS curves. We found that the
force constants involving the more distant pairs of atoms had little effect on
the higher frequency phonons. The strongest effects on the 5 THz peak in the

phonon DOS were obtained by perturbing the force constants involving 1nn
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CClﬂ(Z:u , CA‘f;(Su and CC111>2>((?u . We noticed that

perturbations in the weak force constant CC‘féczzu affected strongly the peak in

pairs of atoms, especially
the phonon DOS at 5 THz, whereas the peak at 6 THz was largely unaffected.

Examining the force constants of [15], we note that the condition for
axially-symmetric 1Inn force constants, C1xx — C1xy = C1zz, is reasonably well
satisfied for both Au-Cu pairs and Cu-Cu pairs in the ordered alloy, and for

Inn pairs in the disordered alloy [14, 15]. Furthermore, the components

CA‘fégu are rather small, indicating that the dominant forces between Au-Cu

Inn pairs are radial. This suggests the following intuitive picture of the
lattice dynamics involving the metallic radii of stiff spheres. A unit cell of
the L12 structure is shown in the inset in Figure 6.4. Upon ordering, the
larger Au atoms serve to separate the more abundant, but smaller Cu atoms.
Figure 6.4. shows that there are rigid contacts between the Inn Au-Cu pairs.
cAu-Cu

The large force constants CAYCU ang are consistent with this stiff
& Ixx Ixy

sphere picture. The highest frequency modes at 6 THz involve opposing
movements of Inn Au-Cu pairs, which are controlled by these large force
constants. On the other hand, Figure 6.4. shows that the Inn Cu-Cu pairs are
not in rigid contact, being separated by the larger Au atoms. It is therefore not
surprising that the 1nn Cu-Cu force constants are weaker. We find the
vibrations involving opposing movements of only lnn Cu-Cu pairs
primarily in the band at 5 THz. We know little about the vibrational
polarizations of the individual atoms in the disordered alloy at high
frequencies, but we suggest that on the average they are more isotropic than
in the ordered alloy. We suggest that with the development of L12 order, the

directions of movement of both Cu and Au atoms are constrained and
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generally increased in frequency, owing to the stiff sphere contact between Au

and Cu neighbors.
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Figure 64  Phonon partial DOS calculations for Cu and Au in CuzAu, using
force constants of [15]: partial DOS for Au atoms, obtained by weighting the
amplitude of each vibrational mode by the quantity leay |2, where eay is the
polarization vector of the Au atom in the eigenvector of the dynamical
matrix; partial DOS for Cu atoms obtained in the same way; total DOS
obtained by summing the two partial DOS curves. The inset shows a hard-
sphere model drawn with metallic radii of 1.28 A for Cu and 1.44 A for Au.
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6.4 Conclusions

We measured the difference in heat capacity of fcc-disordered and L1»-
ordered Cu3Au over the temperature range from 70 K - 400 K. We could
account semiquantitatively for the measured difference in heat capacity with
a harmonic lattice heat capacity, calculated with a Born-von Kirman model
using force constants from inelastic neutron scattering experiments by [15].
The calculated results were larger than the experimental results, but by scaling
the calculated results to fit the measured ACP(T), we obtain a difference in
vibrational entropy of disordered and ordered CuzAu at high temperatures of

(0.14 £ 0.05) kp/atom.

The phonon DOS in the harmonic approximation is able to account
semiquantitatively for the difference in vibrational entropy of disordered and
ordered CuzAu. It is possible that the large difference in metallic radii of Cu
and Au atoms influences strongly the lattice dynamics of L12 Cu3zAu by
causing strong force constants for Inn Au-Cu pairs, and weaker force

constants for Inn Cu-Cu pairs.
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Chapter Seven NisV

7.1 Introduction

The next system I chose to examine was NizV, which has an
equilibrium D03 structure (shown in Figure 7.1). The phase diagram for the
Ni-V system is shown in Figure 7.2. In the present work we used differential
scanning calorimetry to measure ACp(T) for two states of NigV. The material
was quenched from high temperature to provide a state of partial disorder,
which we confirmed to have strong chemical order, but none of the
tetragonality of the equilibrium DO07; structure [1, 2]. The second state of the

material was the D02 equilibrium structure, obtained by annealing the alloy.

Figure 7.1  The equilibrium D05 structure of NizV.
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The phase diagram for the Ni-V system. Taken from T. B.

Massalski, editor-in-chief, Binary Alloy Phase Diagrams, 2nd ed. (Materials
Park, Ohio: ASM International, 1990).

In this work we have measured the phonon DOS by a more direct
inelastic neutron scattering experiment, recording energy loss spectra at

various values of momentum transfer, Q, to measure incoherent inelastic

scattering and coherent inelastic scattering. The alloy NisV proved

convenient for this study, since the incoherent scattering cross sections of Ni
and V are nearly identical, and the lattice dynamics of fcc Ni are well known.
We obtained approximate phonon DOS curves from inelastic neutron
scattering spectra measured at 11 and 300 K. The phonon DOS curves

accounted for the low temperature part of the AC,(T) measured by
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calorimetry. However, the phonon DOS curves could not account for the

anharmonic part of ACp(T) found at higher temperatures.

We describe a microstructural mechanism to account for the
anharmonic heat capacity of ordered Ni3V. Anisotropic thermal contractions
cause elastic energy to be stored in the microstructure of the ordered alloy at
low temperatures. With an increase in temperature, some of this stored
elastic energy is relaxed and converted into heat, thus lowering the heat
capacity of the ordered alloy. To estimate the size of this anharmonic
behavior, we performed ancillary measurements of the linear coefficients of
thermal expansion and Young's moduli. After correcting the measured heat
capacity for this effect of microstructural storage of elastic energy, the
difference in vibrational entropy of the partially-disordered and ordered NizV

is estimated to be: SP4Is —g°Td = (40,037 + 0.015) kp/atom at high

temperatures.

72 Experiment

7.2.1 Samples

Ingots of NigV were prepared by the induction melting of pieces of
elemental Ni (99.99+%) and V (99.9%) in an argon atmosphere. The ingots
were sealed in evacuated quartz ampoules and homogenized at 1150 °C for 2
hours and cooled in the furnace. The brittle homogenized ingots were cold-
rolled to break them into pieces of about 1 gram mass. These small pieces
were annealed in evacuated quartz ampoules at 1150 °C, and quenched by

breaking the hot ampoule in iced brine. In what follows, we refer to these
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materials as “partially-disordered.” To form the equilibrium DOy; structure,
some of these partially-disordered pieces were annealed at 850 °C for 2 hours
and cooled in the furnace; we refer to these materials as “ordered.” Samples
of both materials were heated to 400 °C and analyzed for evolved hydrogen,
oxygen, and nitrogen with a Hewlett-Packard 5890 gas chromatograph
equipped with a thermal conductivity detector. None of these gases were
detected, and detectability limits were 0.0032 wt.% for hydrogen, 0.078 wt.% for
oxygen, and 0.22 wt.% for nitrogen. Chemical compositions and chemical
homogeneities were measured with a JEOL Superprobe 733 electron
microprobe. Averages of the composition measurements gave 25.44 at.% V
for the partially-disordered alloy, and 25.39 at.% V for the ordered alloy.
Composition variations within each sample were no more than about 0.1
at.%. X-ray diffractometry was performed with an Inel CPS-120
diffractometer using Co Ka radiation. An Al filter was used in front of the

large-angle position-sensitive detector to suppress V Ka fluorescence.

722 Calorimetry

Low-temperature heat capacity measurements employed a Perkin-
Elmer DSC-4 differential scanning calorimeter (DSC) that had been modified
by installing its sample head in a liquid helium dewar. Masses (about 300 mg)
of the partially-disordered and ordered alloys were matched to 0.1 mg accuracy
and placed in the two sample pans of the DSC. Heat capacity measurements
comprised pairs of runs, with the two samples interchanged in their sample
pans between runs. The difference in heat capacities of the two samples was
obtained from the difference of these two sets of runs. To test reproducibility,

we obtained nine matched pairs of runs with liquid nitrogen, and two
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matched pairs with liquid helium as the cryogen. To counteract instrumental
drift, runs comprised two pairs of scans over temperature intervals of 30 K,
which typically overlapped by 10 K. Scans were performed at 10 and 20 K
min~l. A measurement was also performed with the ordered sample alone to
determine approximately its Debye temperature. Thermal expansion
measurements were performed over a temperature range from 50 °C to 275 °C

using a Perkin-Elmer TMA7.

7.2.3 Ultrasonic Wave Velocity Measurements

Efforts were made to measure ultrasonically the longitudinal and shear
wave velocities in the partially-disordered and ordered states of NigV. We
used a Panametrics 10 MHz ultrasonic longitudinal wave transducer and a
Panametrics 5 MHz ultrasonic shear wave transducer, whose outputs were
passed through a Panametrics Model 5052UA ultrasonic analyzer to a Hewlett
Packard 54510A oscilloscope sampling at 1 GHz. Two sets of samples were
used; one set of cylinders was 7 mm diameter and 1 mm in height, while the
second set of cylinders was 7 mm diameter and 4 mm in height. The top and
bottom faces of the cylinders were accurately cut parallel and then polished.
Successful measurements of the longitudinal and shear wave speeds in
Cu3zAu were made using similar samples from previous calorimetry
measurements [3]. We deduced bulk moduli at room temperature of 18.88 x
1010 Pa for L1z-ordered CusAu, and 18.70 x 1010 Pa for chemically-disordered
fcc CusAu, in good agreement with previous results [4]. However, none of
the NizV samples showed a pulse-echo pattern, so measurements were

impossible. The samples of Ni3V evidently showed a strong ultrasonic
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attenuation, perhaps because inhomogeneous internal stresses caused

scattering of the ultrasonic waves.
724 Compression Testing

To measure Young's moduli, compression tests were performed using
an Instron Model 4204 load frame. A cylindrical sample of 0.55 cm diameter
and 1.9 cm height was machined from an induction-melted ingot of NisV,
and was heat-treated to produce the partially-disordered state. After
compression testing, the same sample was annealed for 2 hours at 850 °C and
cooled in the furnace in order to achieve the ordered state, and the
compression tests were repeated. The crosshead speed was 0.05 cm/min, and
the extension of the sample was measured using a strain-gauge extensometer.
We attempted to perform the compression tests in the elastic regime of the
material. The yield stress at room temperature for ordered NizV has been
reported to be 900 MPa [2]. Our samples were loaded to only 270 MPa, and we
ensured that there was no reduction in slope of the stress-strain curves at the
highest loads. Several load-unload cycles were performed on each sample.
We also performed compression tests on a similar sample of mild steel to
confirm that we obtained a reasonable Young's modulus and no hysteresis in

its stress-strain curve.
72.5 Neutron Scattering and Diffraction
Samples of the partially-disordered and ordered alloys, each about 50

grams, were placed in thin-walled aluminum cans and mounted in a closed-

cycle helium refrigerator on the goniometer of the HB2 triple axis
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spectrometer at the High Flux Isotope Reactor at the Oak Ridge National
Laboratory. Measurements on our two materials were performed at both 11 K
and 300 K. The spectrometer was operated in constant-Q mode with the fixed
final energy, Ef, of 14.8 meV. The energy loss spectra were made by scanning
the incident energy from 14.8 meV to 74.8 meV. The neutron flux from the
monochromator was monitored with a fission detector, which was used to
control the counting time for each data point. The incident beam on the
pyrolytic graphite monochromator crystal had a collimation of 110°, and 40
Soller slits were used between the monochromator and the sample. Pyrolytic
graphite filters placed after the sample were used to attenuate the 1/2 and 1/3
contamination. The filtered beam passed through 40’ slits before the pyrolytic
graphite analyzer crystal. Following the analyzer, 70’ Soller slits were used
before the 3He detector. With this arrangement, the energy resolution varied
between 0.9 and 2 meV, depending on the energy transfer and the slope of the
phonon dispersion surface. Spectra from each specimen were obtained at

four values of Q: 3.48, 3.73, 3.98 and 4.23 A-1.

7.3 Results

7.3.1 Structure

Very weak, if any, superlattice diffraction lines were observed in the Co
Ka x-ray diffraction patterns (Figure 7.3) from any samples, but the x-ray form
factors are not strongly different for Ni and V atoms. On the other hand,
neutron diffraction (Figure 7.3) showed strong superlattice diffraction peaks
from both the quenched sample and the annealed sample (e.g., the (002), (101),
(110) peaks at g = 1.74, 1.98, 2.51 A-1). From calculations of the expected peak
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Figure 7.3  X-ray and neutron powder diffraction patterns of the partially-
disordered and ordered Ni3V materials. Some weak diffractions from surface
oxides are seen in the x-ray diffraction patterns, but not in the neutron data.

intensities [5], we found the superlattice peak intensities from the ordered
alloy to be consistent with a long-range order (LRO) parameter close to one.
The superlattice peaks from the quenched samples were broadened, but had
85 to 90% of the areas of the superlattice peaks from the annealed sample.
The Bragg-Williams LRO parameter of the quenched alloy was between 0.90

and 0.95. X-ray and neutron powder diffractometry showed tetragonality in



98
the annealed specimen that was characteristic of the DOy structure. Figure 7.3
shows that the ratio of the intensities of the (004) and (200), (020) diffractions
(at g = 3.48 and 3.55 A-1) are 1:2, as expected for the powder-averaged
intensities of these diffractions. The as-quenched specimens showed no
tetragonality, and their reasonably sharp diffraction peaks were characteristic
of an fcc structure. This is consistent with previous results of transmission
electron microscopy studies that showed a “tweed” microstructure of
quenched NizV, as shown in Figure 7.4, characterized by internal strains, but
no regions that are distinctly tetragonal [1, 6, 7]. Since the quenched sample
had a high degree of the chemical order of the D0y; structure, but none of the

long-range tetragonality, we call it “partially-disordered.”

Figure 7.4  The "tweed" microstructure of Ni3V is shown in a., while the
twinned tetragonal structure is shown in b. In a., the scale is 1.5 cm is 0.3 pm,
while in b., 1.0 cm is 0.3 um. These micrographs came from L. E. Tanner,
Phys. Stat. Sol. 30, 685 (1968).

7.3.2 Calorimetry
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Averaged results from the differential calorimetry measurements are
presented in Figure 7.5. The sign of the data is positive, showing that NizV
has a larger heat capacity in the partially-disordered state than in the ordered

state. The heat capacity was also measured with an ordered sample alone.
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Figure 7.5 Differential heat capacities. Points: averages of scans with
differential calorimetry of the difference in heat capacity of partially-
disordered and ordered Ni3V materials (sign is partially-disordered minus
ordered). Error bars indicate variations between different runs. Lines:

calculations as described in the text.

From this experiment the Debye temperature was determined to be
approximately 365 K. (This could be inaccurate, since data were not obtained
much below 100 K, but it showed reasonable agreement with the heat capacity

calculated with the phonon DOS curves as described below, and should be
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adequate for our need to account for the low temperature part of ACp(T) for
use in Equation 3.1.) Using this Debye temperature of 365 K for the ordered
sample, the data of Figure 7.5 could be best fit at temperatures below 160 K
with a Debye temperature of 360 K for the partially-disordered sample. At
high temperatures, these Debye temperatures provide a larger vibrational

entropy for the partially-disordered than the ordered alloy, ASyj, of:

365
ASyib = 3kp ln(3 60) = 0.041 kg/atom . 7.1

7.3.3 Elastic Moduli, Thermal Expansion Coefficients, Griineisen Constants
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Figure 7.6  Engineering stress-strain curves from compression tests of
partially-disordered and ordered NizV. These curves were the fifth load-
unload cycles of the materials.
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The stress-strain curves of Figure 7.6 show considerable hysteresis. For
determining the Young's modulus, we used the unloading curve at stresses
slightly below the peak stress of the test. We expect this slope to be least
affected by internal processes contributing to hysteresis, and more rep-
resentative of the elastic response. In support of this expectation, we found
that the unloading curve was more reproducible than the loading curve, and
we found that the Young's modulus of the ordered material was in good
agreement with that of Francois et al. [2]. Young's moduli are presented in

Table 7.1, together with linear coefficients of thermal expansion.

Table 7.1.  Measured physical properties of partially-disordered and ordered

NiszV.

State of NizV Young's modulus o (350 K) v (Eq.7.2.) v (DOS)
partially-disordered 12.4x1010 Pa 10.6x10-6 K-1 1.15 49
DO3; ordered 17.2x1010 Pa 10.2x10-6 K-1 1.53 3.2

Griineisen constants were obtained from the temperature dependence
of the phonon DOS (described in Section 7.4). For the ordered alloy, for
example, we rescaled in energy the 300 K phonon DOS curve by 0.95% to
achieve a best match with the 11 K curve. The 300 K curve for the partially-
disordered alloy matched best with the 11 K curve for a rescaling by 1.5%.
Using the linear coefficients of thermal expansion in Table 7.1 with the 289 K
difference between 11 and 300 K, we obtain the Griineisen constants, v, of 4.9

for the partially-disordered alloy and 3.2 for the ordered alloy. These values
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seem large, perhaps because the measured thermal contraction is an average
of anisotropic constants involving different crystallographic directions. On

the other hand, using the relationship:

3BVa

Y = CV 7 72

we obtain Griineisen constants of 1.15 for the partially-disordered material
and 1.53 for the ordered material. Not only are these Griineisen constants
smaller that those obtained from the phonon DOS, but their relative sizes are
reversed for the two materials. The inconsistency in these Griineisen

constants may be related to the crystallographic anisotropy of NisV.

7.34 Inelastic Neutron Scattering

The 16 inelastic scattering spectra from the two samples (partially-
disordered and ordered), at two temperatures (11 K and 300 K), and four
values of Q (3.48, 3.73, 3.98, 4.23 A-1), are presented in Figure 7.7. The strong
elastic peak is seen at energies below 2 meV. At higher energy losses, the
inelastic scattering shows features of the phonon DOS of the material, such as
the peak from the longitudinal branch at 33 meV. In each of these spectra, the
phonon DOS is significantly modified by a thermal factor and the Q-
dependence of the coherent inelastic scattering. Since all spectra were
obtained with the same total incident beam flux, the thermal factor is evident
from the stronger scattering at 300 K than at 11 K. The Q-dependence of the
coherent inelastic scattering is seen through differences in the shapes of the

four spectra in each of the four graphs of Figure 7.7. Overlays of these raw
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data show that the inelastic loss spectra of the ordered alloy are at slightly

higher energies than are spectra of the disordered alloy, and the inelastic loss

spectra of both materials show some thermal softening. The next section

describes our analysis of these data to extract four phonon DOS curves for the

two samples, partially-disordered and ordered, at two temperatures, 11 K and

300 K.
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74  Analysis of Inelastic Neutron Scattering Spectra

This section describes our method for obtaining approximate phonon
DOS curves for the partially-disordered and ordered materials at temperatures
of 11 and 300 K. Our method has similarities to approaches used previously
[8-11]. First, a background was stripped from each spectrum. For our choices
of Q and E, the background for the HB2 spectrometer is approximately
constant in Q and E. We subtracted the same constant background from all
eight spectra obtained at 11 K. As shown in Figure 7.7, however, the
background around 40 meV was higher for the 300 K data, and we attribute
this excess background to neutrons that had undergone two scatterings in the
sample. The sample was taller than it was wide, so a second scattering is most
likely if the first deflection of the neutron was along the vertical axis. The ®
angle of scattering from the specimen was nearly 90 degrees for energy losses
around 40 meV, but only 40 degrees for the low energy part of the spectrum.
The two-phonon background in our data is therefore expected to be weakest at
low energies. The background for the 300 K data was approximated as a linear
function that was the same at low energies as the 11 K data, but was about 50%
larger at 40 meV. We calculated the inelastic incoherent scattering using the
conventional multiphonon expansion [12-14]. The calculation was
performed for 300 K with the phonon DOS curve of fcc Ni [8, 15, 16]. The
results showed that at the relatively low values of Q and temperature of the
present experiments, the inelastic scattering is strongly dominated by one-
phonon processes, but the small background enhancement of the 300 K data

with respect to the 11 K data was approximately consistent with the calculated
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two phonon scattering. Second, each spectrum was corrected by the one-

phonon thermal factor, £(T), of:
£(T) =€ (1 - exp(-e/kT)) . 7.3

All spectra were then normalized to unit area. Finally, for each specimen at
each temperature, we summed all four spectra for the different values of Q.
For the incoherent inelastic part of the scattering, this data processing
procedure should provide the total phonon DOS, since the incoherent
scattering from both Ni and V atoms are the same. The coherent inelastic

scattering from Ni atoms contributes significantly to the spectra, however.

It is usually not possible to obtain an accurate phonon DOS from
coherent inelastic scattering spectra of polycrystals without prior knowledge
of the lattice dynamics of the material [17], and there is little such knowledge
for NigV. One problem occurs because Ni and V atoms have different
coherent scattering cross sections. In particular, we were concerned initially
that the negligible coherent scattering from V atoms will de-emphasize
groups of vibrational modes having polarization eigenvectors with large
components for V atoms. If such modes dominate a significant energy range,
the deduced phonon DOS would be distorted in this range. High frequency
optical modes should be particularly susceptible to this problem. However,
were there significant differences between samples in vibrational modes
involving the motion of primarily V atoms, we should be able to detect them
through changes in the incoherent inelastic scattering. Furthermore, most
optical modes involve some motion of Ni atoms that are neighbors of the V

atoms, so these modes should also contribute to the coherent inelastic
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scattering. We examined carefully the spectra in Figure 7.7 and the final DOS
curves of Figure 7.8 over the energy range of 25-50 meV. We found no
distinct differences in the features of curves for the four sets of data. The
processed phonon DOS are very similar to each other, and to the phonon

DOS curve for fece Ni [8].
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Figure 7.8 Phonon DOS obtained from the experimental data of Figure 7.7
as described in the text.

The phonon dispersion curves of fcc Ni are well-known [15, 16]. In our
previous work [8], a Born - von Karman model was used with interatomic

force constants of fcc Ni to calculate the eigenfrequencies and eigenvectors of
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the dynamical matrix. With this information for each phonon in the first
Brillouin zone, the coherent inelastic scattering was calculated by performing
a crystallographic average of the dynamical structure factor intensity at
explicit values of Q with respect to the crystallographic axes. It was shown
that for fcc Ni, summing the dynamical structure factors for the four values of
Q (3.48, 3.73, 3.98, 4.23 A-1) provides a good approximation to the phonon
DOS [8]. More significantly, systematic errors in the analysis are not too
important for our purposes, since our need is to identify differences in the

phonon DOS curves for the different states of the material.

The phonon DOS curves presented in Figure 7.8 show no major
qualitative differences, and are in fact quite similar to the curve for fcc Ni
with comparable experimental resolution (Figure 3b in [8]). Owing to the
excellent 0.01 meV energy accuracy and stability of the HB2 spectrometer,
small energy shifts in the phonon DOS curves can be measured reliably. It is
seen in Figure 7.8 that the curve for the ordered alloy at 11 K is shifted to the
highest energy, and the lowest curve is for the disordered alloy at 300 K.
Differences in the partially-disordered and ordered DOS curves at the same
temperature are indicative of the harmonic contribution to the difference in
vibrational entropy between the two materials, and the changes of these
differences with temperature are indicative of anharmonic effects on the

difference in vibrational entropy.

75 Discussion

7.5.1 Anharmonicity and Phonon DOS
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Unfortunately, the temperature dependence of our g(v) is only
qualitatively consistent with the Griineisen approximation. This could be
caused by errors in either our measurements or in the approximation itself.
Our approach to calculating C,(T) is instead to linearly interpolate the
phonon DOS curves of 11 K and 300 K, including the zero-point contribution:

2 ee/ KT

3T
ColT) = CV(D) + 7o | [520- @] lsz( S
0 e -1

3T c
* T2—T10f [gTz(e)-ng(e)]g de ,

and the temperatures are T, = 300 K and T1 = 11 K. The phonon DOS at 11 K

is assumed to be the same as that of zero temperature.

With Equation 1.9, we calculated the harmonic differential heat
capacity, ACy(T) = C%D(T) - CQ(T), from the differences in phonon DOS of
the partially-disordered (PD) and ordered (O) samples. The calculation of
ACy(T) with the 11 K phonon DOS curves is presented as a thin dashed curve
in Figure 7.5, and the calculation of ACy(T) from the 300 K phonon DOS
curves is presented as a thin solid curve. We believe that the differential heat
capacity, ACp(T), at temperatures below 160 K is described semi-quantitatively
by calculations with a harmonic model using either pair of phonon DOS
curves (11 K or 300 K). At temperatures greater than 160 K, however, the
calculated curves are qualitatively incorrect. The ACp(T) measured by
calorimetry did not asymptotically approach zero, as expected in a harmonic
model where the heat capacities of both states of the material approach the

same Dulong-Petit limit of 3kg/atom.
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With Equations 1.9 and 7.4 we calculated Cp(T) for both the partially-
disordered and ordered alloys, using the phonon DOS curves shown in
Figure 7.8. The result for ACp(T) is presented as a dark curve in Figure 7.5. At
low temperatures, this ACp(T) curve is much like the ACy(T) curve from the
11 K phonon DOS, and near 300 K the ACp(T) curve approaches the ACv(T)
curve from the 300 K phonon DOS. At 300 K, the anharmonic ACp(T) curve
lies below the harmonic ACy(T) curve from the 300 K phonon DOS, however,
owing to the reduction of zero point energy accompanying the softening of

the phonon DOS.

Figure 7.5 shows that for temperatures greater than 160 K, there is poor
agreement between the calculated anharmonic ACP(T) curve and the data
measured by calorimetry. Since the energy scale for the HB2 spectrometer is
reliable, the heat capacities calculated with Equations 1.9 and 7.4 should be
accurate, since they are integral quantities over the phonon DOS.
Modifications of Equation 7.4 that started the transition from the low
temperature DOS to the high temperature DOS at 160 K, for example, were
also incapable of providing the large anharmonic behavior in ACp(T)
measured by calorimetry. We conclude that the thermal softening of the
phonon DOS is not sufficiently different for the partially-disordered and
ordered alloys to account for the strong anharmonic behavior of ACp(T)

measured by calorimetry at temperatures greater than 160 K.

7.5.2 Anharmonicity and Microstructure — Elastic Energy
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A microstructural mechanism for elastic energy storage is expected in
polycrystalline NizV with the D0Op structure. This mechanism, based on the
tetragonal anisotropy of the thermal expansion of the ordered alloy, should
provide an anharmonic contribution to ACP(T). For Ni3zV with DO0>> order, it
is known that the microstructure within each prior fcc crystallite consists of
lenticular packets comprising lamellae of ordered domains. The domains are
mutually arranged in a microtwin-type microstructure (see Figure 7.4.b) to
minimize the elastic energy [1, 2, 6, 7]. Such a microstructure can be
optimized to minimize elastic energy at only one temperature, however.
With changes in temperature, the ordered domains expand or contract
anisotropically, generating internal elastic energy owing to geometrical
mismatch between the lenticular packets. The ordered domains were
originally formed during the annealing and cooling from 850 °C, so we expect
the microstructure was optimized for minimizing elastic energy at high
temperatures. Anisotropic thermal contraction upon cooling will provide
internal stresses at room temperature. Tanner showed that the tetragonality
of ordered NizV can vary from about 1 to 2%, depending on the thermal
processing [1]. (Our ordered alloy had a tetragonality of 1.7%.)
Nonequilibrium tetragonalities require the presence of internal stresses. In
Tanner's work, significant strain contrast was found in transmission electron
micrographs of ordered NizV at room temperature, and others have reported
large strain effects around NizV precipitates in Ni-V alloys [6, 7]. In
comparison, crystals of the disordered alloy, which have little or no
tetragonality, will contract more isotropically upon cooling, so will have less
internal elastic energy. We expect a difference in the heat capacities of the
partially-disordered and ordered alloys owing to this microstructural

difference.
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We also expect this microstructural mechanism for elastic energy
storage in the polycrystalline ordered alloy to affect the elastic moduli
measured in tests on macroscopic specimens. We expect the measured bulk
modulus, B = V 92E/9V?2, to depend in the usual way on the energy of the
crystal originating directly from the interatomic potential, Exy, but we expect
an additional contribution from the elastic energy stored in the

microstructure, Ej st

7.5
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The second contribution, B", is positive at low temperatures, since by loading
in compression further elastic energy is added to a microstructure that has

already stored some energy during thermal contraction.

With three assumptions we can use Equation 7.5 to calculate the
microstructural contribution to the heat capacity. First, because the more
isotropic partially-disordered NigV has nearly the same chemical order as the
ordered alloy, we assume that B' is equal to the bulk modulus of the partially-
disordered alloy. We also assume that the Young's modulus is the same as
the bulk modulus. This is valid for isotropic materials having a Poisson's
ratio of 1/3. The Poisson's ratio of microtwinned Ni3zV is reported to be 0.354
[2]. Finally, we assume that the microstructural mechanism for storage of
elastic energy operates in the same way in an uniaxial compression test as in
unconstrained thermal expansion. This last assumption is probably a poor

one, limiting our results to an estimate of the magnitude of the
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microstructural heat capacity. With these assumptions, the microstructural
storage of elastic energy at a temperature T will be proportional to the amount

of thermal contraction from Ty where the microstructure was formed:

gy { H 2
Bystr = —5— U 3a(T) dT'| . 76

The heat capacity associated with this microstructural energy, ACpustr(T), is:

oE
ACpustr(T) = ——*ﬁt-r—) . 7.7

When o is independent of temperature, we obtain:

The sign of ACpust:(T) is negative for T < Ty, which is the range of all our
measurements. Assuming that Ty = 1123 K, at T = 300 K we obtain ACppstr(T)
= 0.27 J/mol/K. This microstructural contribution to the heat capacity seems
about twice as large as needed to account for the difference in the calorimetry
data and calculated curves of Figure 7.5, but it does show that a large
microstructural contribution to the heat capacity is plausible. The discrepancy
suggests that the microstructural mechanism for storage of elastic energy
operates more effectively during uniaxial compression than in thermal

expansion.

Although the prefactors in Equations 7.6 and 7.8 are unreliable, we can

still estimate the temperature dependence of ACpystr(T). Using Equation 7.2
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to provide the temperature dependence for o(T) through the temperature
dependence of Cy(T), we obtain from Equations 7.6 and 7.8:
B" 2

ACpus(D = — = Cu(D) (Bph(D) - Epn(Tw)) - 7.9

To evaluate the temperature dependence of Equation 7.9, we used the
phonon DOS of the ordered alloy, measured at 300 K, to provide Cy (Equation
1.9) and Eph (Equation 1.5). Using the temperature dependence of Equation

7.9, we scaled the prefactor of ACpstr(T) to account for the difference at 300 K
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of the heat capacity data of Figure 7.5 labeled “Calorimetry” and the curve
“DOS Anh.” (This is equivalent to setting y = 1.06, which is probably low
because the microstructural mechanism for energy storage is more effective
in an uniaxial compression test than in thermal expansion.) The full
temperature dependence of ACpystr(T) is presented in Figure 7.9 as the curve
labeled “Microstructure.” The integral of ACpustr(T) from 0 to 1123 K is 60
J/mole, which is our estimate of the elastic energy stored in the
microstructure of the ordered alloy at low temperatures. Adding this
ACpustr(T) to the ACv(T) from the phonon DOS curves measured at 11 K
provides the thick solid curve in Figure 7.9 labeled “Sum.” The agreement
with the heat capacity data measured by calorimetry is much better than
calculated with the phonon DOS alone, improving the fit at both low and
high temperatures. The largest deficiencies are at temperatures around 160 K.
We cannot be sure if this deficiency is caused by the simplicity of our model,
deficiencies in the calorimetry data, plastic relaxations in the sample, or some

combination of these reasons.

7.5.3 Anharmonicity and Microstructure — Plastic Deformation

The ordered Ni3zV does not have ideally elastic behavior, as shown by
the mechanical hysteresis of Figure 7.6. We are still investigating this
mechanical behavior, but some results are clear. The area of the loop is
largest for the first few cycles, but the loop remains relatively constant after
the fifth cycle shown in Figure 7.6. The area of the loop increases strongly
with the maximum strain. We are confident that the data of Figure 7.6 show

the hysteretic loss of mechanical energy in the ordered alloy is greater than
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that in the partially-disordered alloy (for which the maximum strain was
larger, but the area of the loop is smaller). In a cyclic process the mechanical
deformation of the ordered alloy should be more strongly converted into
heat. The area of the particular hysteresis loop shown for the ordered alloy in
Figure 7.6 corresponds to 0.6 J/mole, which seems too small to account for the
large anharmonic effects in Figure 7.5. However, there are complex
microstructural considerations that prevent direct application of the
hysteresis loop in a compression test to the calculation of the mechanical

hysteresis during the thermal expansion of the alloy.

We are still investigating the origin of the large mechanical hysteresis
in the ordered Ni3V. The hysteretic behavior of the ordered alloy could be
promoted by the internal stresses from thermal contraction, which may be
nearly large enough to drive plastic deformation at some locations in the
microstructure. It is also possible that the axes of tetragonality of the D022
structure may change to accommodate the applied stress. Such a process
could be hysteretic if the elastic energy of one ordered region were not
transferred efficiently to another region during transformations between
variants of the DO structure. We have performed preliminary
measurements of x-ray diffraction patterns when the sample was under a
compressive strain of about 0.2%. We found no evidence of transformations

between variants of the D0y, structure at this strain, however.

7.54 Entropy

Using the curve labeled “DOS Anh” in Figure 7.5 or 7.9, we calculated

the difference in vibrational entropy of the partially-disordered and ordered
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Ni3V to be 0.025 kp/atom at 300 K, with the partially-disordered material
having the higher entropy. It is risky to extrapolate this heat capacity curve to
higher temperatures, but the high temperature limit seems to be about 0.03
kg/atom. Better agreement with the heat capacities measured by calorimetry
requires an upwards scaling of this curve calculated from the phonon DOS. If
we ignore the microstructural contribution to the heat capacity, our estimate

of the high temperature limit of the vibrational entropy is 0.044 kp/atom.

We believe, however, that a more accurate estimate of the difference in
entropy of the partially-disordered and ordered NizV should consider the
microstructural contribution to the heat capacity. If the elastic energy stored
in the microstructure is converted into heat as shown by the heat capacity
curve labeled “Microstructure” in Figure 7.9, we can use Equation 3.1 to
obtain an equivalent entropy difference of 0.025 kg/atom at 1123 K, again with
the partially-disordered material having the higher entropy. Accounting for
the microstructural contribution to the heat capacity, our best estimate of the
difference in vibrational entropy is (0.037+0.015) kg/atom. This difference in
vibrational entropy between the partially-disordered and ordered states of
NizV is smaller than results we have reported for other alloys in this thesis.
We expect the reason is that our partially-disordered NizV had nearly the

same chemical long-range order as did our ordered NizV.
7.6 Conclusions
We performed a comparative study of two states of Ni3zV, a state of

partial disorder obtained by rapid quenching, and the state of equilibrium

D037 order obtained by annealing. The heat capacity of the partially-



117
disordered alloy was consistently larger than that of the ordered alloy in the
temperature range of our calorimetry measurements, 60 - 325 K. Inelastic
neutron scattering was used to obtain approximate phonon density of states
curves for the two alloys at 11 K and 300 K. The phonon energies were larger
for the ordered alloy than the disordered alloy, as expected from their
difference in heat capacities. The Cy(T) calculated from the phonon DOS
curves measured at 11 K could account for most of the difference in heat

capacities of the two materials at temperatures below 160 K.

The phonon DOS curves showed thermal softening between 11 K and
300 K. Although the phonon DOS of the partially-disordered alloy showed
more thermal softening than the ordered alloy, this difference was an order of
magnitude too small to account for the large difference in anharmonic heat
capacities of the two states of NizV at temperatures greater than 160 K. We
propose a novel microstructural contribution to the anharmonic heat
capacity. When the alloy is cooled from the high temperature where the
ordered domains are formed, anisotropic thermal contractions cause the
buildup of elastic energy in the ordered alloy. With increasing temperature,
this elastic energy is relieved and converted into heat, suppressing the heat
capacity of the ordered alloy. We estimated the differential anharmonic heat
capacity by making additional measurements of the linear coefficients of
thermal expansion and the Young's moduli of the two alloys. There is
sufficient storage of elastic energy in the microstructure to account for the
anharmonic behavior measured in the heat capacity, and the predicted
temperature dependence is qualitatively correct. There may be another

microstructural contribution to the anharmonic heat capacity originating
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with the hysteretic mechanical behavior of ordered NizV, but this hysteresis

seems small.

We calculated the vibrational heat capacity by use of the phonon DOS
curves. We modeled the temperature dependence of the microstructural heat
capacity, and used it to account for the high temperature part of the
experimental ACp(T). For the partially-disordered and ordered materials at
1123 K, we estimate the difference in vibrational entropy to be SP4is —gord =
(+0.037 £ 0.015) kg/atom. The elastic energy in the microstructure is about 60
J/mole at low temperatures, and makes a contribution to the heat capacity

that is equivalent to a difference in entropy of 0.025 kg/atom.
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Chapter Eight CoszV

8.1 Introduction

The final system I have studied is Co3zV, which has an ordered
hexagonal structure (shown in Figure 8.2) at temperatures below 1025 °C.
According to the Co-V phase diagram in Figure 8.1, there is an L1, ordered
phase from 1025 °C to 1070 °C and a disordered fcc solid solution above 1070
°C. We used differential scanning calorimetry to measure the difference in
heat capacity between the fcc disordered and hexagonal ordered phases of
Co3V. We collected neutron diffraction patterns over a wide range of
elevated temperatures to determine what phases were present in the
material. Although these diffraction measurements were a precursor to our
inelastic neutron scattering measurements, they proved interesting in their
own right. The inelastic neutron scattering data will not be discussed here but

will be published in the near future.
8.2  Experiment
8.2.1 Low-temperature Calorimetry

Ingots of Co3V were prepared by arc melting pieces of elemental Co and
V in an argon atmosphere. The ingots were then cut into 1 mm slices, from
which two 6 mm diameter disks were formed by grinding away the excess
material. The disks were then sealed in an evacuated quartz ampoule and
quenched from 1150 °C into iced brine. This heat treatment froze in the fcc

disordered phase. One of the disks was then quenched from 1050 °C to form
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the equilibrium hexagonal structure. Chemical compositions and chemical

homogeneities were measured with a JEOL Superprobe 733 electron
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Figure 8.1 Phase diagram for the Co-V alloy system. From T. B. Massalski,

editor-in-chief, Binary Alloy Phase Diagrams, 2nd ed. (Materials Park, OH:
ASM International, 1990).

microprobe. Averages of the composition measurements gave 24.56 at.% V
for the fcc disordered alloy, and 24.29 at.% V for the hexagonal alloy.
Composition variations within each sample were no more than about 0.1
at.%. X-ray diffractometry (patterns shown in Figure 8.3) was performed with
an Inel CPS-120 diffractometer using Co Ko radiation. An Al filter was used

in front of the large-angle position-sensitive detector to suppress V Ko
fluorescence.
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Low-temperature heat capacity measurements employed a Perkin-
Elmer DSC-4 differential scanning calorimeter that had been modified by

installing its sample head in a liquid helium dewar. Masses (about 300 mg) of

“‘ '..4®-..:‘_®

Figure 8.2  The ordered hexagonal structure of Co3V. The atoms labeled 1-4
are V, while the atoms labeled 5-8 are Co. From J. L. C. Daams et al., Atlas of
Crystal Structure Types for Intermetallic Phases, (Materials Park, OH: ASM
International, 1991) Volume 3, p. 5286.

the disordered and ordered alloys were matched to 0.1 mg accuracy and placed
in the two sample pans of the DSC. Heat capacity measurements comprised
pairs of runs, with the two samples interchanged in their sample pans

between runs. The difference in heat capacities of the two samples was
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obtained from the difference of these two sets of runs. To test reproducibility,
we obtained eight matched pairs of runs with liquid nitrogen, and two
matched pairs with liquid helium as the cryogen. To counteract instrumental
drift, runs comprised two pairs of scans over temperature intervals of 30 K,

which typically overlapped by 10 K. Scans were performed at a heating rate of

20 K min-1.
LN L LN I BN ML BN L LB L B B B L L I L B L B ML B
10x1 O3 f—- —f
8 | -
> f ;
‘w6 -
c » u
o o 3
= : ;
“F hexagonal Co,v E
2 j
fcc Co,v
0 AT AT ETE NN I SN I AR SN N O e O S e by v e by

40 60 80 100 120
20 (degrees)

Figure 8.3  X-ray diffraction patterns for CosV.

8.2.2 Neutron Diffraction

The Co3V samples used in our neutron work were prepared by the

Ames Laboratory. Approximately 550 grams of Co3V were melted in a
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magnesia-stabilized zirconia melting system, heated to 1600 °C, and atomized
on a yttria-stabilized zirconia atomization disk spinning at 11,950 rpm. The
material was quenched in Dow 200 polydimethyl siloxane fluid which was
removed with heptane and ethyl alcohol; then the material was dried under
vacuum. The particles produced by this method ranged from a few tenths of

a millimeter in size to a few millimeters in size.

Chemical compositions and chemical homogeneities were measured
with a JEOL Superprobe 733 electron microprobe. These analyses showed the
Co3V granules to be of stoichiometric composition and homogeneous within
the accuracy of the equipment. The external 10 pm of the granules showed
evidence of Si from the quenching liquid, but not enough to cause any
concern. A Hewlett-Packard 5890 gas chromatograph equipped with a
thermal conductivity detector was utilized in order to detect and quantify
evolved hydrogen gas, which could affect the neutron scattering results. No
hydrogen was detected by this system; detectability limits were 0.0032 wt.% for

hydrogen.

Neutron-diffraction data were collected using the HB4 high-resolution
powder diffractometer at the High-Flux Isotope Reactor at ORNL. This
instrument has a Ge (115) monochromator which, when 2-theta = 87°, selects
an incident neutron wavelength of 1.5 A. Soller slit collimators of 12' and 20’
are positioned before and after the monochromator crystal, respectively. An
array of 32 equally spaced (2.7°) 3He detectors, each with a 6 mylar foil
collimator, can be step-scanned over a range of up to 40° for scattering angles

between 11° and 135°.
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The samples were placed in vanadium cans (9 mm inner diameter by 6
cm in length) for data collection at temperatures from 295 K to 1358 K (22°C to
1085°C) over the 2-theta range of 11° to 135° in steps of 0.05°. Thin Gd spacer
disks were placed in the can in an effort to suppress multiple scattering. The
sample cans were then placed in a high-temperature furnace which was kept
under high vacuum throughout the experiment. Our chosen temperature
range allowed us to examine several phases of the material, as is evident
from the phase diagram in Figure 8.1. For these data collections, the detector
array was scanned in two segments to overlap up to eight detectors in the
middle of the pattern. Overlapping detectors for a given step serves to
average the counting efficiency and the 2-theta zero-point shift for each

detector.

8.3 Results

8.3.1 Low-temperature Calorimetry

Averaged results from the differential calorimetry measurements are
presented in Figure 8.4. The sign of the data is positive, showing that CozV
has a larger heat capacity in the disordered state than in the ordered state. The
data of Figure 8.4 could be best fit with a difference of two Debye heat
capacities with Debye temperatures of 320 K for the disordered state and 332 K
for the ordered phase. Using Equation 7.1, the difference in vibrational

entropy between the two states of the material is 0.11 + 0.02 k/atom.

8.3.2 Neutron diffraction
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The neutron diffraction patterns are presented in Figure 8.5. The
program Lazy Pulverix (see Appendix C) was used to index these patterns.
The first data set was collected at room temperature and was indexed as L15. It

seems quite reasonable that the process used to produce these samples might
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Figure 8.4  Differential heat capacities. Points: averages of scans with
differential calorimetry of the difference in heat capacity of fcc and hexagonal
Co3V materials (sign is fcc minus hcp). Error bars indicate variations between
different runs. The solid line represents the difference of two Debye heat
capacities for Debye temperatures of 320 K and 332 K.

have quenched in L1; order from the small region on the phase diagram in
Figure 8.1. As we increased the temperature, several diffraction patterns were

collected over the range 200-660 °C; these data were added together and also
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indexed as L1. However, by 950 °C, the equilibrium ordered hexagonal phase
(shown in Figure 8.2) has emerged. As we heat the material past 1025 °C, we
expect to find a region of L1, order; however, that is not the case. We find the
fcc disordered spectra beginning to form by 1038 °C as the intensity of the

ordered hexagonal peaks begins to decrease. By 1085 °C the hexagonal phase is
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Figure 8.5 Neutron diffraction patterns for CoszV. The data have been
vertically offset for clarity. The unlabeled peak at 37° is from the Nb window
in the furnace.



129

completely gone. Note that the overall intensity of the peaks has been
decreased. We later attributed this loss of intensity to an unfortunate

diffusion of Gd from the spacer disks in the sample cans.

The existence of the high temperature L1, phase had been documented
by several others [1-6], but all their measurements were performed on
quenched samples. The fact that our in-situ neutron diffraction experiments
did not reveal this phase suggests that L1, order is a nonequilibrium phase.
We suspect it forms at low temperatures when the quenched material has an
fce rather than hexagonal lattice. In this case it may be energetically favorable
for the alloy to develop some Ll chemical order, even though a
transformation to a hexagonal lattice is suppressed kinetically. We note that
the ordered hexagonal phase is closely related to a faulted form of the L1,

structure.

8.4 Conclusions

We have performed low-temperature calorimetry on two phases of
CogV, an fec disordered phase and a hexagonal phase. The disordered phase
has the larger heat capacity, and the difference in vibrational entropy between
the two phases is 0.11 + 0.03 kg/atom. We also performed in-situ neutron
diffraction experiments over a wide range of temperatures. These
experiments showed that the L1, region of the phase diagram does not exist.
We believe the observed L1, phase is a state that can be obtained in quenched

alloys.
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Chapter Nine = Nanophase Fe
9.1 Introduction

There has been strong recent interest in nanocrystalline materials,
generally defined as materials with microstructural features of 100 nm or less.
The interesting microstructure-properties relationships of nanostructured
materials are often classified as “confinement effects” and “interface effects.”
An example of a “confinement effect” is the shift in frequency of optical
absorption that occurs in semiconductors when the crystallite size is
comparable to the size of the electron-hole exciton [1]. An example of an
“interface effect” is the surprisingly high ductility of nanocrystalline ceramic
TiO2, which has been attributed to atom movements within its copious grain
boundaries [2]. A high density of grain boundaries is certainly a
distinguishing feature of nanocrystalline materials, but there were also
reports that nanocrystalline grain boundary structures are more disordered
than grain boundaries in large-grained materials [3]. Although some of these
early claims have been shown to be overstated [4,5], in the present work we
show evidence of nanocrystalline vibrations that involve the motion of stiff

crystallites separated by weak inter-crystallite forces.

There were early reports that the heat capacity of nanocrystalline
materials is significantly larger than that of large-grained materials [6].
Unfortunately, contamination by interstitial helium may have vitiated these
early observations [7]. Some measurements of Debye-Waller factors have
indicated that atoms in nanocrystals have larger thermal mean-square

displacements than in large-grained materials [8-11]. More recently, Suzuki
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and Sumiyama measured neutron inelastic scattering spectra on
nanocrystalline Ta prepared by mechanical attrition [12]. These authors
reported a smoothing of features in the phonon density of states (DOS) of the
nanocrystalline Ta (10 nm crystallite size), but no general softening of the
vibrational spectrum. On the other hand, in a recent inelastic neutron
scattering study on nanocrystalline Ni3Al with a 7 nm crystallite size [13], a
large enhancement of the phonon DOS at low energies was reported,
although it was suggested that this could have been caused by quasielastic
scattering by hydrogen in the material. The present work was undertaken to
measure the phonon DOS in nanocrystalline Fe, which is not expected to
absorb a significant amount of hydrogen. For nanocrystalline Fe we report
some enhancement of the phonon DOS at low energies, together with a

smoothing of the longitudinal peak.

9.2  Experiment

Iron powders were made by mechanical attrition of pieces of Fe of
99.995% purity. The material was milled for 12 hours in a Spex 8000
mixer/mill with hardened steel vials and balls and a ball-to-powder weight
ratio of 5:1. For comparison, a second sample was prepared from some of this
same powder by annealing at 500 °C in an evacuated quartz ampoule for 0.5
hours, and then followed by cooling at the rate of 50 °C/h. X-ray
diffractometry was performed with an Inel CPS-120 diffractometer using Co
Ka radiation. A few grams of the powders were heated to 400 °C and analyzed
for evolved hydrogen, oxygen, and nitrogen by a Hewlett-Packard 5890 gas

chromatograph equipped with a thermal conductivity detector.
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Samples of the as-milled and the annealed powders, each about 50
grams, were placed in thin-walled aluminum cans and mounted at room
temperature on the goniometer of the HB2 triple axis spectrometer at the
High Flux Isotope Reactor at the Oak Ridge National Laboratory. The
spectrometer was operated in constant-Q mode with the fixed final energy, Ef,
of 14.8 meV. The energy loss spectra were made by scanning the incident
energy from 14.8 meV to 74.8 meV. The neutron flux from the
monochromator was monitored with a fission detector, which was used to
control the counting time for each data point. The incident beam on the
pyrolytic graphite monochromator crystal had a collimation of 110’, and 40’
Soller slits were used between the monochromator and the sample. Pyrolytic
graphite filters placed after the sample were used to attenuate the 1/2 and 1/3
contamination. The filtered beam passed through 40’ slits before the pyrolytic
graphite analyzer crystal. Following the analyzer, 70’ Soller slits were used
before the 3He detector. With this arrangement, the energy resolution varied
between 0.9 and 2 meV, depending on the energy transfer and the slope of the
phonon dispersion surface. Spectra from each specimen were obtained at two

values of Q, 3.98 and 4.60 A-1.

9.3 Results

Figure 9.1 presents x-ray diffraction patterns from the as-milled powder
and from the same powder after annealing. Grain sizes and distributions of
internal strains were obtained by the method of Williamson and Hall [14],
after correcting the peak shapes for the characteristic broadening of the x-ray
diffractometer. In this method the widths of the diffraction peaks in k-space

were plotted against the k-vectors of the diffraction peaks. The slopes of these
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Figure 9.1 X-ray powder diffraction patterns of the as-milled
(nanocrystalline) and annealed (larger-grained) Fe powders. The as-milled

data are offset vertically for clarity.

plots then provide the mean-squared strain, and the y-intercepts provide the
characteristic crystallite size. We also used the Scherrer method to determine
a crystallite size [14]. Mean crystallite sizes were 12 nm for the as-milled Fe
powder and 28 nm for the annealed powder. The mean squared strains were
0.4 % in the as-milled, and 0.1 % in the annealed powders. Gas chro-
matography showed that the as-milled and annealed samples of Fe powder
had, respectively, hydrogen contents of <0.004 and 0.006 wt.%, oxygen
contents of 0.236 and 0.262 wt.%, and nitrogen contents of 0.748 and 0.849

wt.%. Some of these gases, especially oxygen and nitrogen, may have been



135
adsorbed on the surfaces of the powders and not absorbed interstitially. The
as-milled and annealed samples of Ni3Al had, respectively, hydrogen
contents of 0.0083 and 0.0128 wt.%, oxygen contents of 0.0695 and 0.0502 wt.%,
and nitrogen contents of 0.232 and 0.188 wt.%. We do not expect any

significant quasielastic neutron scattering from these trace amounts of

hydrogen.
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Figure 9.2  Sum of neutron energy loss spectra at Q = 3.98 and 4.60 A-1 for
the nanocrystalline and larger-grained powders.

The individual energy loss spectra from the Fe powders show a modest
dependence on the momentum transfer, Q, as is generally expected for
coherent inelastic scattering from polycrystalline alloys [15]. Figure 9.2

presents the sum of the spectra for both values of Q, 3.98 and 4.60 A-1. In
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these summed data, as in the individual pairs of spectra, two differences are
seen. First, in the low energy regions below 15 meV, there is stronger
scattering from the as-milled Fe than the annealed Fe. The second difference
is that the spectra from the annealed powder have sharper longitudinal peaks
(near 36 meV) than do the spectra from the as-milled powder. This is seen
most prominently for the peak of the longitudinal branch at an energy of

about 36 meV.
94  Analysis of Phonon DOS

The analysis of the scattering data was helped considerably by the
availability of interatomic force constants obtained from previous work with
single crystals of bce Fe. Using the force constants of bulk Fe from Reference
[16], the dynamical matrix of the Born — von Kirman model, D(q) [17], was
diagonalized for approximately 10° values of k distributed uniformly over the
first Brillouin zone. Histogram binning of the resulting eigenfrequencies
provided the calculated phonon DOS. For comparison with our experimental
data, this calculated phonon DOS was convoluted with a gaussian function of

full-width-at-half-maximum of 3.9 meV.

The experimental energy loss spectra include coherent and incoherent
scattering. The incoherent scattering has the shape of the phonon DOS
weighted by a thermal factor, but the coherent scattering contribution has a
shape that is sensitive to the momentum transfer Q. In particular, the
coherent inelastic scattering at low energies is expected to be relatively weak
for our choices of Q. This is because the sum over q for the dynamical

structure factor includes a factor of 3(Q-q-1), where 7 is a reciprocal lattice
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vector, q is the phonon wavevector, and Q is the momentum transfer. To
obtain the strongest coherent inelastic scattering from phonons with small g,
the value of Q should be nearly a reciprocal lattice vector. This is not the case
for our choices of 3.98 and 4.60 A~1. We devised a correction procedure,
described below, to convert the neutron energy loss spectrum of the
nanocrystalline powder to a phonon DOS, using the calculated and

experimental results from the larger-grained Fe as a reference.

The features of the inelastic scattering described in the previous section
led us to the following procedure for obtaining an approximate phonon DOS
from the experimental data. Our data analysis procedure has some
similarities to methods used previously [13, 18-22]. The individual spectra for
both Q = 3.98 and 4.60 A—1 were first summed (see Figure 9.2). The same
constant background was then subtracted from the summed spectra — a
constant background is a good approximation for data from the HB2
spectrometer. To understand the thermal factor, the incoherent inelastic
scattering was calculated for bcc Fe using the conventional multiphonon
expansion [18, 20, 23]. We found that at the relatively low values of Q and
temperature of the present experiments, multiphonon corrections would
have made little difference to the resultant phonon DOS. We therefore
divided each background-corrected spectrum by the one-phonon correction
factor, (n(v) - 1)/v [24]:

n(v) -1 1

v Ty [1-exp(-hv/KkT)] 71
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To accommodate the Q-dependence of the coherent inelastic scattering, we
compared these intermediate results to the calculated phonon DOS of Fe. We
obtained a correction function by dividing this calculated DOS by the
intermediate result from the annealed Fe powder. When the intermediate
result for the annealed bcc Fe was multiplied by this correction function, the
calculated curve was of course recovered, and this curve is shown at the

bottom of Figure 9.3. On the other hand, when the intermediate result from
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Figure 9.3 Phonon DOS curves obtained from the experimental data of
Figure 9.2, using the calculated phonon DOS to generate a correction factor for
converting the annealed Fe spectrum into the Fe phonon DOS. The
"instrumentally-broadened” phonon DOS from Fe, equal to the corrected
phonon DOS of the annealed specimen, is shown as "Annealed.” The data
from the as-milled sample are offset vertically by 0.02.
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the nanocrystalline, as-milled Fe was multiplied by this correction function,
we obtained the phonon DOS for the nanocrystalline Fe at the top of Figure
9.3. Finally, we normalized the areas of the phonon DOS curves. (The
normalization correction was small, about 3%, and likely caused by

differences in the powder packing in the two sample cans.)
9.5  Discussion
9.5.1 High Energy Regime

Figure 9.3 shows that the “longitudinal peak” at 36 meV is broadened
in the as-milled material in comparison to the peak in the annealed material.
Much of the broadening may have been caused by short phonon lifetimes in
nanophase material — a “confinement effect.” A phonon wavepacket is
expected to travel a distance, 1 ~ 12 nm, characteristic of the crystallite size,

before scattering. The characteristic number of cycles for the phonon lifetime,

y, is:

<
—

92

=
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<|

where v is the sound velocity and v is the phonon frequency. For the
longitudinal peaks in Fe, Equation 9.2 gives y ~ 20, suggesting a lifetime
broadening of 5 to 10% in energy. This is a significant effect that can account
for the observed broadening. The lifetime broadening should be
approximately symmetrical about the mean energy, however, and the
longitudinal peak in the experimental spectra is broadened more

asymmetrically than expected for a damped harmonic oscillator. There is a
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distinct shift of some longitudinal frequencies towards lower energies in the
nanophase Fe. A lower effective stiffness, presumably caused by crystalline

defects, could be responsible for this shift.

9.5.2 Low Energy Regime
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Figure 94 Enlargement of the data of Figure 9.3, together with an
enlargement of the phonon DOS for Ni3zAl (see Chapter Five).

The second feature of the phonon DOS of the nanophase material that
differs observably from that of the annealed Fe is an enhancement of
vibrational modes at low energies. The phonon DOS at low energies is
presented in Figure 9.4, together with an enlargement of the results from as-

milled and annealed powders of Ni3Al (see Chapter Five). The effects are
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qualitatively similar, but larger for Ni3Al than for Fe. Although we suggested
previously that this enhancement of the Ni3zAl phonon DOS in the low
energy regime could have been caused by quasielastic scattering from
hydrogen [13], the present measurements of hydrogen in the Ni3Al powders
showed that the as-milled powder actually has less hydrogen than the
annealed powder. Recent measurements of the phonon DOS of nanophase
and large-grained Ni by Trampenau, et al., [25] gave results similar those in

Figure 9.4 for Ni3Al

Fecht [26] and Wagner [27] proposed a two-phase model for atomic
vibrations in nanocrystalline materials, in which the “grain boundary phase”

I

has vibrations of lower frequency than the “crystalline phase.” Perhaps some
of the softening of the high frequency modes described in Section 9.1.5.1 can
be understood as atom vibrations within the grain boundary region. It is
harder to understand our observed enhancements in the low energy regime
with a two-phase model, however. It is unlikely that long wavelength
phonons can exist within a grain boundary. It is also unlikely that the short
wavelength phonons within a grain boundary can be suppressed in energy

from 30 meV to around 3 meV, since this implies a softening of the effective

interatomic force constants by a factor of 100.

We suggest that some enhancement of the phonon DOS at low
energies could originate from inter-crystallite vibrations of the
nanocrystalline microstructure. It is important to ask what condition is
required for the low energy DOS of a nanocrystalline microstructure to be

comparable or larger than the phonon DOS of a crystal of individual atoms.
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In the Debye model, or for phonons at low q characterized by a constant

velocity of sound, we have a density of states, g(v) :

\O

N -

glv) =—3v 9.3
VD

The Debye frequency is:

k

where k is an averaged inter-atomic force constant and m is an atomic mass.
In lumping n atomic masses into a nanocrystal, we have a new DOS for the

nanocrystalline microstructure, g'(v) :

9N »

v ,
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where the Debye frequency for the nanocrystalline microstructure, vp, is:

gv) = 9.5

vh = \| = , 9.6

=)
3

and k' is an average inter-crystallite force constant. To obtain a high density
of states in the nanocrystalline microstructure, we seek the condition: g'(v) >

g(v). We formulate this condition with Equations 9.3, 9.4, and 9.5, 9.6:
n

9N
——ﬁ,m):)’/ 22 5 9N(rk£\3/ 2.2 , 9.7
W

/3 s K n 9.8
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For a nanocrystalline microstructure to have an enhancement in its
density of states at low energies that is comparable to the density of states
itself, Equation 9.8 requires that the intercrystallite force constant must
increase more slowly than the linear dimension of the crystallite, 1. For a
two-dimensional grain boundary between crystallites, whose area scales as 12,
this demands that the average interatomic bond across the grain boundary
decreases in strength inversely with 1. The stiffness of grain boundaries in
nanocrystalline materials is largely unknown, but we do expect that the inter-
atomic force constants across a grain boundary are weaker than in regions of
good crystalline material. The inter-crystallite force constants are probably
sensitive to the particular material and its processing. It therefore seems
plausible that there could be a significant difference in the inter-crystallite
force constants of our nanocrystalline Fe and nanocrystalline Ni3Al. Since
the nanocrystalline Ni3Al had a crystallite size of 7 nm, versus 10 and 12 nm
for the nanocrystalline Ta [12] and Fe, it is also possible that the requirement
of Equation 9.8 may be better satisfied by nanocrystalline NizAl than
nanocrystalline Fe or Ta, giving a larger enhancement of the phonon DOS of
Ni3Al at low energies. In addition to our uncertainty of the inter-crystallite
force constants, however, we have important uncertainties about the lattice
dynamics of an irregular nanocrystalline microstructure, such as the coupling

between inter- and intra-crystallite vibrations.

9.5.3 Vibrational Entropy

We define ASyip = SRR - S‘}ﬁ) as the difference in vibrational

entropy of two states of a material, nanocrystalline and larger-grained, at high
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temperatures. This difference in vibrational entropy depends in a
straightforward way on the difference in the phonon DOS of the two phases,

ghan(v) — glg(v) [13]:

(> ]

ASvib = —3kB U[ (gnan(v) - glgv)) In(v) dv 0.9

where the difference avoids problems with the dimensions of the argument
of the logarithm. Using the phonon DOS shown in Figure 9.3, we find ASyib
= 0.019 kp/atom for the difference in vibrational entropy between the as-
milled nanophase Fe and the annealed larger-grained Fe. This difference in
vibrational entropy contributes only a small amount to the thermodynamic
stability of the nanophase microstructure, giving a —T-ASyib term in the free
energy of —-48 J/mole at 300 K. In comparison, the excess enthalpy of
nanophase materials is a few kJ/mole [28]. Although we do not find a large
entropy for nanocrystalline Fe as suggested previously [26, 27], it is possible
that ASyip may be larger for nanocrystalline materials having weaker inter-

crystallite force constants and crystallite sizes smaller than 12 nm.

9.6 Conclusions

We performed inelastic neutron scattering experiments on Fe powders
in two microstructural states: as nanocrystals prepared by high energy ball
milling and as larger crystallites prepared by annealing. For each sample,
neutron energy loss spectra were collected at two values of Q. A Born-von
Kérméan analysis was performed with the force constants of bcc Fe, and the

results from this analysis provided a correction factor for converting our
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experimental results from the larger-grained, annealed material to a phonon
DOS of bec Fe. The spectra from the as-milled nanocrystalline powder were

also analyzed with this method, so that differences in the phonon DOS could

be identified.

We found two differences in the phonon DOS of the nanocrystalline
and larger-grained Fe powders. At high energy we found a broadening of the
longitudinal peak in the nanocrystalline powder. This could be caused
primarily by lifetime broadening. It also seems that in the nanocrystalline
material, the longitudinal modes are shifted downwards in energy. A second
difference in the phonon DOS occurred in the low energy regime below about
15 meV, where the phonon DOS of the nanocrystalline material was
enhanced over that of the larger-grained material. We attribute this
enhancement of the phonon DOS to inter-crystallite vibrational modes of the
nanocrystalline microstructure. These measured changes in phonon DOS
should have only a small effect on the vibrational entropy of nanocrystalline

Fe prepared by high energy ball milling.
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Chapter Ten Summary
10.1 Summary of Experimental Results

The results I have measured for the difference in vibrational entropy

between two states of a material are presented in Table 10.1.

Table 10.1  Difference in vibrational entropy between two states of a

material.
Material State 1 State 2 ASvib (kB/atom)
FeszAl bec D03 0.1+0.03
NizAl fce L1, 02+0.1
CusAu fcc L1y 0.14 + 0.05
NizV fec D02> 0.037 + 0.015
CozV fce hexagonal 0.11+0.03
Fe nanophase larger grained 0.019

10.2 Conclusions

The magnitude of the difference in vibrational entropy between two
states of a material can vary by an order of magnitude for two different
materials depending on the structures and the degree of order. However,
these results can be measured accurately and give us a great deal of
information about the transformation between two states of a material. In

most of the cases I have examined, the difference in vibrational entropy has a
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magnitude comparable to the maximum possible difference in

configurational entropy for a 3:1 atomic ratio, 0.56 kg/atom.

Although to be completely accurate, the difference in vibrational
entropy between two states of a material must be measured at the critical
point, the results I have measured at low temperatures should still give a
reasonably good idea of what is taking place in the transformation. The
research community is beginning to recognize the impact that studies
incorporating vibrational entropy can have on the field of alloy
thermodynamics. The implications for prediction of phase diagrams are
great, considering that accounting for vibrational entropy in a model can shift
the critical temperature by a factor of two. Recent work on the Fe-Cr system
has shown that the composition dependence of the configurational entropy
differs from the composition dependence of the vibrational entropy [1]. Also,
studies of the phase diagrams for V-H and V-D have shown that different
phases exist in the two systems [2]. Since this cannot be a chemical effect, it

must result from vibrational entropy differences.

10.3 Directions for Future Work

Although I have examined differences in vibrational entropy in
several different alloy systems in my thesis work, there are obviously many
systems which have not been studied. Now that it has been proven that
vibrational entropy can make a contribution to the thermodynamics of an
order—disorder transformation, the next stage of this research should embrace
a more systematic approach to discovering trends based on the alloys and

crystal structures involved. It would be informative to examine alloy systems
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which have the D03, L1, and D09y structures in order to place our present
results in context. I believe it will be particularly informative to examine
other D03 structures, such as Pd3V and Pt3V, so that we may discover if the
microstructural energy effects found in NizV are present in other anisotropic

structures.

The phase diagrams for Pt-V and Pd-V are shown in Figure 10.1; at
higher temperatures, both Pd3V and Pt3V have a disordered fcc solution from
which a DO0js-ordered structure forms at lower temperatures. Pd3V is a
particularly suitable candidate for examination because it has been the subject

of recent attention from both experimentalists and theorists [3-7].
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Figure 10.1 The phase diagram for Pt-V is shown in a., and the phase
diagram for Pd-V is shown in b. Both diagrams are from Phase Diagrams of
Binary Vanadium Alloys (ASM: Metals Park, OH, 1986).
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Appendix A Detailed Experimental Procedure
for Low-temperature Calorimetry

A.1 Maintenance

1. The vacuum jacket of the cryostat should be pumped out every
two to three months. This should be done every time that liquid helium is
used. Also, the liquid helium transfer line should be pumped out before use.
This will prevent freezing of the transfer line and improve the insulating
capabilities of the dewar.

2. The large O-ring at the top of the dewar should be checked
regularly (twice a week during steady use) for dust and dryness and should be
lubricated lightly with vacuum grease as necessary.

3. Electrical tape has been placed around the bottom of the DSC4
head to prevént it from coming into electrical contact with the side of the
dewar. As a result of the extreme temperatures to which it is subjected, the
tape will deteriorate over time and thus will need to be replaced every few

months.
A2 Operation with liquid nitrogen

1. In order to load the samples, the DSC4 head must first be raised
from within the cryostat. First, remove all eight bolts that connect the top
plate to the flange. Next, attach the three hoist connections to the three rings
on the top plate of the cryostat. While raising the DSC4 assembly, be very
careful to keep it vertical; try to keep it from bumping the dewar walls. Set

the head on the wooden platform surrounding the cryostat and remove the



154
cover plate. Place the guide plate around the sample pans; this will prevent
small items from falling into the wells around the sample pans. (If you
should drop something into one of these wells, be very careful retrieving it--
there are delicate wires leading into the bottom of the sample pan.) Carefully
remove the sample pan lids with jeweler's tweezers and set aside; place the
samples inside and replace the lids in their original orientation. Remove the
guide plate; replace the cover plate and bolt it down. Lower the DSC4 head
into the cryostat, being very careful not to jostle the samples. Replace and

tighten the screws securing the top plate to the flange.

Gas inlet

Vacuum Connection

Thermocouple leads

Top plate

DSC4 cables

Outer flange

Relief valves

Open connections
Unused connector

Figure A.1 Schematic of liquid helium cryostat connections.
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2. After the samples have been loaded, it is necessary to purge the
central chamber of the cryostat a few times with UHP helium gas in order to
ensure that there are no contaminants (e.g., water) in the chamber. Connect
the mechanical pump to the valve labeled "E" on Figure A.1 above. Pump
until the gauge on the valve reads approximately 26. Close off the vacuum
pump and open the UHP He gas flow until the gauge reads a pressure of
approximately 3-5 psi. The relief valve is set for a pressure of 6 psi. Repeat
this process two or three times. Leave the gas pressure set at 3 psi.

3. Connect the liquid nitrogen dewar to the inlet labeled "A" with
the copper connector and start the flow of liquid nitrogen. The level of liquid
nitrogen in the dewar can be roughly monitored using the thermocouples
mounted inside the dewar walls. Thermocouple 1/2 is near the bottom of the
dewar, thermocouple 3/4 is approximately halfway between the bottom and
the lowest baffle, and thermocouple 5/6 is just below the lowest baffle.
Because the handheld monitor is not calibrated correctly, the readout will
display - 270 °F when the thermocouple is under liquid nitrogen. I usually let
the liquid nitrogen run approximately 5 minutes after the top thermocouple
reads - 270 °F. While filling the dewar with liquid nitrogen, it will be
necessary to monitor the UHP He pressure in the sample chamber; try to keep
it at approximately 3 psi. After transferring the liquid nitrogen, the UHP He
pressure should be monitored for half an hour. The set temperature on the
DSC4 controller should be set to the desired temperature (usually -180 K).
Then the system should be left to equilibrate for 8 to 12 hours. During data
collection, the UHP He pressure should be checked every half hour and
adjusted between runs if necessary.

4. After data collection is completed, the long end of the curved

copper tube should be inserted into inlet "A" and regular purity helium gas
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should be used to pressurize the cryogen chamber via "D," thus driving the
liquid nitrogen out the copper tube and into the small dewar which you have
placed appropriately. After all the liquid has been removed, "D" should be
connected to the air supply in the wall. This will warm the cryostat up to
room temperature faster and also prevent condensation of liquid on the cold
cryostat. Wait until the cryostat has reached room temperature (as measured

by the thermocouples) before opening the sample chamber.

A.3  Operation with liquid helium

1. As discussed in A.1, the outer vacuum jackets of the cryostat and
the transfer line should be pumped out before every set of experiments using
liquid helium.

2. The samples should be loaded and the chamber purged in the
same way as described above for liquid nitrogen work. Both the inner and
outer reservoirs of the cryostat should be filled with liquid nitrogen, the set
temperature should be set to -180 K, and the system should be left to
equilibrate for 8 to 12 hours. If desired, you may collect a set of data with the
liquid nitrogen before transferring the liquid helium.

3. Transfer the liquid nitrogen in the inner reservoir to the outer
reservoir using the method described above. If there is excess liquid nitrogen
after the outer reservoir is filled, transfer it to the small dewar. Force regular
purity helium gas through the inner reservoir until all liquid is gone. Place a
metal stopper in "A" and turn on the large roof pump. Carefully evacuate
the inner reservoir, then purge with helium. Repeat this two or three times--
this process should ensure that all gases (nitrogen, oxygen, etc.) except helium

have been removed. Remember to turn off and purge the roof pump when
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you have finished this step. Remove the line for helium gas from "D" and
place a metal stopper in "D." You are now ready to transfer the liquid
helium.

4. Transferring liquid helium for this arrangement is a two-person
job; at certain times a third person is helpful. Attach the regular purity
helium line to the pressurizing port on the liquid helium dewar. Slowly
lower one end of the transfer line into the dewar; apply small amounts of
pressure with the helium gas until liquid helium just starts to flow out the
other end of the transfer line. At this point, the third person should quickly
remove both the stoppers from "A" and "D" and the transfer line should be
inserted into "A." The liquid helium level detector, which is connected to
"C," can be used to tell approximately how much liquid is in the cryostat at a
given time. The liquid helium should be allowed to flow until several inches
are present in the reservoir, then the pressurizing gas should be turned off.
After a few minutes, the liquid helium will have boiled off. Repeat this
procedure three or four times, or until you are sure that the system is
adequately cold. As with liquid nitrogen, you will have to monitor the UHP
helium gas pressure. During the liquid helium transfer, the pressure will be
very low; keep the gas flowing until after the liquid transfer is complete.
After the transfer is complete, the system will start to warm up and the gas
will expand; then it will be necessary to release the excess pressure at the relief
valve "L." Check to make sure that this valve does not freeze during the
transfer procedure. Because of the large mass of the system, you will not be
able to maintain liquid helium for more than several minutes. However, by
the above procedure, you can get the system sufficiently cold to collect data at
-220 K. Allow the system to equilibrate for two to three hours before

collecting data. I found it useful to start at as low a temperature as possible



158
and collect data for a few temperature intervals. Usually this data was not
very good, but it seemed to "settle" the system. I then would cool it to the
lowest possible temperature and collect data over the full temperature range--
the second set of data would be of much higher quality.
5. After data collection is complete, the air supply in the wall
should be connected to "D" and opened until the cryostat has reached room

temperature. The sample chamber may then be opened.
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Appendix B Crystallographic Data

All crystallographic data presented in this appendix is taken from J. L.
C. Daams et al., Atlas of Crystal Structure Types for Intermetallic Phases

(Materials Park, OH: ASM International, 1991).

B.1  DO0s Structure for FezAl, p. 6814

Pearson symbo! Structure type Space group Space group number
cF16 BiF, - Fm3m 225

a = .5853 nm

Number Atom  Multiplicity X y z  Occupancy
Wyckoff letter
1 Bi 4 a 0 0 0 1
2 F1 4 b 1/2 1/2 1/2 1
3 F2 8 ¢ 1/4 1/4 1/4 1

Reference
F. Hund et al. ZEITSCHRIFT FUER ANORGANISCHE UND

ALLGEMEINE CHEMIE 1949 258 pi98

Remarks
Authors gave structure in space group No. 215, it should be space

group No. 225
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L1 Structure for NizAl and CuzAu, p. 6402

Pearson symbol Structure type Space group Space group number

cP4 AuCu, Pm3m 221
a = 3744 nm

Number Afom Multiplicity b y z  Occupancy
Wyckoff letter
1 Au 1 a 0 0 0 1
2 Cu 3 ¢ 0 1/2 1/2 1
Reference

W. Betteridge JOURNAL OF THE INSTITUTE OF METALS 1949 75
p559
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B.3 D022 Structure for Ni3V, p. 4055

Pearson symbol Structure type Space group Space group number
t/8 AlTi 4/mmm 139

" a = 3836 nm c¢ = .8579 nm

Number Atom  Multiplicity X y z  Occupancy
Wyckoff letter
1 Ti 2 a 0 0 0 1
2 Att 2 b 0 0 1/2 1
3 Al2 4 d 0 1/2 1/4 1
Reference

G. Braver ZEITSCHRIFT FUER ANORGANISCHE UND ALLGEMEINE
CHEMIE 1939 242 p1
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B.4  Ordered Hexagonal Structure for CozV, p. 5286

Pearson symbol Structure type Space group Space group number
hp24 CoV "~ PEm2 187

a = .5032 nm ¢ = 1.2270 nm

Number Atom  Multiplicity X y z  Occupancy
Wyckoff letter
1 V1 1 a 0 0 0 1
2 V2 1 b 0 0 1/2 1
3 V3 2 h 1/3 2/3 .333 1
4 V4 2 2/3 1/3 167 1
5 Co1 3 .500 .500 0 1
6 Co2 3 kK 500 .500 1/2 1
7 Co3 6 n 167 .833 167 1
8 Co4 6 n .833 167 333 1

Reference
S. Saito  ACTA CRYSTALLOGRAPHICA 1959 12 p500
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Appendix C Lazy Pulverix

Lazy Pulverix is a software package which can be used to calculate both
x-ray and neutron diffraction patterns. I have used it to calculate neutron
diffraction patterns for NizV and CosV. Presented below are the input and
output files for the ordered states of NizV and CozV. The crystallographic
data presented in Appendix B were used to create the input files, which
require information about the lattice parameters of the unit cell and the
locations of all the atoms in the unit cell. Other parameters are the
wavelength of the radiation and the desired range of 6 angle. For more
information on this method, please see F. J. Rotella,”User Manual for
Rietveld Analysis of Time-of-Flight Neutron Powder Diffraction Data at
IPNS,” 1983, and R. B. Von Dreele, J. D. Jorgensen, and C. G. Windsor, J. Appl.
Crystallogr. 15, 581 (1982).
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Input for Ni3V

TITLE Ni3V D022 order, a = 3.5432,c=7.221A Co radiation

CONDIT 1.4170 5.0 60.0A NE ©O1

CELL 3.543000 7.221000

SPCGRP I 4/M M M

ATOM V  2a0 0 0 1.000
ATOM NI 2b0 0 1/2 1.000
ATOM NI 4do 1/2 1/4 1.000
END

FINISH

Output for Ni3Vv
INTENSITY CALCULATION FOR Ni3V D022 order, a = 3.543A,c=7.221A Co radiat:

TETRAGONAL STRUCTURE

A= 3.54300
C= 7.22100
WL= 1.41700

CALCULATION BETWEEN TL. = 5.0 AND TH = 60.0 DEGREES THETA
DIFFRACTION GEOMETRY = NEUTRCN DIFFRACTION
SPACE GROUP GIVEN ON SPCGRP-CARD I 4/M M M

EQUIVALENT POINT POSITIONS

HIGH LAUE SYMMETRY

THERE IS A SYMMETRY CENTRE AT THE ORIGIN
BODY CENTRED BRAVAIS LATTICE

CONDITIONS LIMITING POSSIBLE REFLECTIONS
HKIL, WITH H+K+L=2N ONLY

NUMBER OF ATOMS IN UNIT CELL

ELEMENT NUMBER* OCCUP= NTOTAL

VvV 2a 2.0* 1.000= 2.000

NI 2b 2.0* 1.000= 2.000

NI 44 4.0* 1.000= 4.000

SCATTERING FACTOR COEFFICIENTS
\Y F=-0.041 CM-12

NI F= 1.030 CM-12

NO CORRECTION FOR ANOMAI.OUS DISPERSION WILL BE MADE
ATOM POSITIONS

ELEMENT X/A Y/B z/C FMULT occup  BTEMP
V  2a 0.000000 0.000000 0.000000 0.0625 1.0000 0.000
NI 2b 0.000000 0.000000 0.500000 0.0625 1.0000 0.000
NI 44 0.000000 0.500000 0.250000 0.1250 1.0000 0.000

THE COLUMNS CONTAIN

MILLER INDICES (HKL) BRAGG ANGLE (THETA) ANGLE (2THETA) OR THE DISTANCE !
D-VALUE AND/OR 1/D**2

SQUARE OF SINE (THETA) MULTIPLIED BY 1000 (SIN2*1000)

INTENSITY OF A POWDER LINE, SCALED TO 1000 OR UNSCALED (INTENSITY OR I1I
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THE EXACT NUMBER OF COLUMNS DEPENDS ON THE INPUT VARIABLES SYMLP,NORM, ]
IN THE CASE OF ANOMALOUS DISPERSION THE STRUCTURE FACTORS AND PHASE ANG
FOR THE ANTIREFLECTIONS (/F+(HKL)/,/F-(HKL)/, A+ (HKL),h A- (HKL), B+ (HKL), B-

1H K L THETA SIN2*1000 INT.SCALED INTENSITY UNSCALED

0 0 2 11.32 38.51 90.9 243.0
i 0 1 12.87 49.62 283.8 758.9
11 0 16.43 79.98 89.5 239.2
1 1 2 20.13 118.438 1000.0 2674.2
1 0 3 20.85 126.63 116.0 310.2
0 0 4 23.11 154.03 196.3 525.0
2 0 0 23.57 159.95 379.4 1014.6
2 0 2 26.45 198.46 77.3 206.6
2 1 1 27.24 209.57 147.3 394.0
1 1 4 28.93 234.01 67.0 179.2
1 0 5 31.99 280.66 57.7 154.2
2 1 3 32.37 286.59 113.4- 303.3
2 0 4 34.08 313.98 427.8 1143.9
2.2 0 34.44 319.91 210.8 563.8
0 0 6 36.06 346.57 12.2 32.8
2 2 2 36.78 358.42 47.8 127.9
3 0 1 37.44 369.53 46.8 125.1
31 0 39.22 399.89 44.3 118.5
1 1 6 40.78 426.54 344 .4 921.0
31 2 41.46 438.39 677.2 1811.0
2 1 5 41.59 440.62 83.3 222.8
3 0 3 41.93 446.54 41.3 110.5
2 2 4 43.51 473 .94 323.6 865.4
2 0 6 45.37 506.52 38.6 103.2
i 0 7 45.67 511.71 38.4 102.7
3 2 1 46.69 529.48 75.6 202.1
3 1 4 48.10 553.92 74.2 198.4
3 0 5 50.80 600.57 36.2 96.7
3 2 3 51.15 606.50 72.2 193.0
0 0 8 51.71 616.12 72.9 194.8
4 0 O 53.12 639.82 144.9 387.4
2 2 6 54.72 666.48 35.7 95.4
2 1 7 55.04 671.66 71.3 190.7
4 0 2 55.45 678.33 35.7 95.4
4 1 1 56.13 689.44 71.5 191.1
1 1 8 56.55 696.10 35.8 95.7
3 3 0 58.04 719.80 18.0 48.2
3 1 6 59.77 746.45 591.9 1582.9

Input for Co3Vv

TITLE Co3V hex order, a = 5.034A, c = 12.29A neutron
CONDIT 1.5000 5.0 70.0 A NE 03
CELL 5.034000 12.290000
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SPCGRP P -6 M 2

ATOM V  1a0 0 0 1.000
ATOM V  1b0 0 1/2 1.000
ATOM V 2hl/3 2/3 1/3 1.000
ATOM V  2i2/3 1/3 1/6 1.000
ATOM CO 3j1/2 1/2 0 1.000
ATOM CO 3k1/2 1/2 i/2 1.000
ATOM CO 6nl/é6 5/6 1/6 1.000
ATOM CO 6n5/6 1/6 1/3 1.000
END

FINISH

Output for Co3V
INTENSITY CALCULATION FOR Co3V hex order, a = 5.0342, ¢ = 12.29A neutron

HEXAGONAL STRUCTURE

A= 5.03400
C= 12.29000
WL= 1.50000

CALCULATION BETWEEN TL = 5.0 AND TH = 70.0 DEGREES THETA
DIFFRACTION GEOMETRY = NEUTRON DIFFRACTION
SPACE GROUP GIVEN ON SPCGRP-CARD P -6 M 2

EQUIVALENT POINT POSITIONS

HIGH LAUE SYMMETRY

THERE IS NO SYMMETRY CENTRE AT THE ORIGIN
PRIMITIVE BRAVAIS LATTICE

CONDITIONS LIMITING POSSIBLE REFLECTIONS
HKL. NONE

NUMBER OF ATOMS IN UNIT CELL
ELEMENT NUMBER* OCCUP= NTOTAL

vV la 1.0* 1.000= 1.000
\Y 1b 1.0 1.000= 1.000
V. 2h 2.0* 1.000= 2.000
v oo2i 2.0 1.000= 2.000
CoO 33 3.0* 1.000= 3.000
co 3k 3.0 1.000= 3.000
CO 6n 6.0 1.000= 6.000
CO 6n 6.0* 1.000= 6.000

SCATTERING FACTOR COEFFICIENTS

\Y F=-0.041 CM-12

Co F= 0.278 M-12

NO CORRECTION FOR ANOMAT.OUS DISPERSION WILL BE MADE
ATOM POSITIONS

ELEMENT X/A Y/B z/C FMULT OCCUP  BTEMP
vV la 0.000000 0.000000 0.000000 0.0833 1.0000 0.000
\Y 1b 0.000000 0.000000 0.500000 0.0833 1.0000 0.000
V. 2h 0.333333 0.666667 0.333333 0.1667 1.0000 0.000
V21 0.666667 0.333333 0.166667 0.1667 1.0000 0.000
CO 3j 0.500000 0.500000 0.000000 0.2500 1.0000 0.000
CO 3k 0.500000 0.500000 0.500000 0.2500 1.0000 0.000
CO 6n 0.166667 0.833333 0.166667 0.5000 1.0000 0.000
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CO 6n 0.833333 0.166667 0.333333 0.5000 1.0000 0.000

THE COLUMNS CONTAIN _
MILLER INDICES (HKL) BRAGG ANGLE (THETA) ANGLE (2THETA) OR THE DISTAN
D-VALUE AND/OR 1/D**2

SQUARE OF SINE (THETA) MULTIPLIED BY 1000 (SIN2*1000)

INTENSITY OF A POWDER LINE, SCALED TO 1000 OR UNSCALED (INTENSITY ©
STRUCTURE FACTOR (/F(HKL)/)

REAL, AND IMAGINARY PART OF STRUCTURE FACTOR (A(HKL) ,B(HKL) )

PHASE ANGLE (PHA.ANG.)

MULTIPLICITY OF THE POWDER LINE (MULT)

LORENTZ-POLARTISATION FACTOR FOR X RAY DIFFRACTION, OR LORENTZ FACTOR

THE EXACT NUMBER OF COLUMNS DEPENDS ON THE INPUT VARIABLES SYMLP, NORM
IN THE CASE OF ANOMALOUS DISPERSION THE STRUCTURE FACTORS AND PHASE A
FOR THE ANTIREFLECTIONS (/F+(HKL)/, /F- (HKL) /, A+ (HKL) , A- (HKL) , B+ (HKL) ,

l1H K L THETA SIN2*1000 INT.SCALED INTENSITY UNSCALED

0 0 2 7.01 14.90 0.0 0.0
1 0 0 9.91 29.60 0.0 0.0
1 0 1 10.52 33.32 143.9 111.8
0 0 3 10.55 33.52 0.0 0.0
1 0 2 12.18 44 .49 325.2 252.7
0 0 4 14.13 58.59 0.0 0.0
i1 0 3 14.55 63.11 308.7 239.9
1 1 0 17.34 88.79 333.8 259.3
1 0 4 17.38 89.18 166.2 129.1
1 1 1 17.71 82.51 0.0 6.0
0 0 5 17.77 93.10 0.0 0.0
1 1 2 18.78 103.68 0.0 0.0
2 0 0 20.13 118.38 0.0 0.0
2 0 1 20.45 122.11 254.7 197.9
11 3 20.47 122.31 0.0 0.0
1 0 5 20.50 122.70 41.0 31.9
2 0 2 21.41 133.28 704.5 547.3
0 0 6 21.48 134.07 467.1 362.9
1 1 4 22.66 148.37 0.0 0.0
2 0 3 22.94 151.90 833.1 647.3
1 0 6 23.86 163.66 0.0 0.0
2 0 4 24.95 177.97 541.7 420.9
1 1 5 25.24 181.89 0.0 0.0
0 0 7 25.29 182.48 0.0 0.0
2 1 0 27.08 207.17 0.0 0.0
2 1 1 27.34 210.90 50.3 39.1
2 0 5 27.38 211.49 155.2 120.5
i 0 7 27.42 212.08 25.0 19.5
2 1 2 28.11 222.07 144.4 112.2
1 1 6 28.17 222.86 288.0 223.8
0 0 8 29.22 238.34 0.0 0.0
2 1 3 29.38 240.69 179.8 139.7
2 0 6 30.16 252.45 0.0 0.0
3 0 O 31.07 266.37 124.0 96.3
2 1 4 31.10 266.76 123.8 96.2
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