

134

5 Appendix A: Spectroscopy of cis-cis HOONO and the
HOONO/HONO2 Branching Ratio in the Reaction

OH+NO2+M; Discharge Flow Studies

5.1 Previously Published Results

This paper is reproduced with permission from the Journal of Physical Chemistry A,
volume 107, no. 36, p. 6974-6985. Copyright 2003, American Chemical Society.

135

136

137

138

139

140

141

142

143

144

145

146

147

5.2 Revisions to Branching-Ratio Results

 As described in chapters 2 and 3, our understanding of the spectroscopy used to

measure the branching ratio has improved since these results were published. This

section briefly describes what revisions should be made to the published data.

 The smallest correction is to the calculated ratio of cross sections used. More

recent calculations taking into account anharmonicities indicate that this should be

changed from 2.87 to 2.71 [73, 74].

 Since the publication of Bean et al. we have a much improved understanding of

the cis-cis HOONO spectrum. In particular, we understand that there is considerable OH

stretch intensity blueshifted outside the main peak we used to measure the HOONO

absorbance. As described in Chapter 3, our observed HOONO absorbances should have

been multiplied by 1.41 to correct for this.

 Our assumed correction for nonlinearities in the nitric acid absorbance was

significantly too small. We had assumed we could correct our observed nitric acid

absorbances by multiplying them by 1.2. As described in detail in Chapter 2, at the low

pressures of these experiments we should instead have multiplied by 2.5.

 As a result, the Bean et al. results should be corrected using

new published published
2.71 1.2BR BR 1.41 BR 0.64
2.87 2.5

= × × × = × .

The branching ratio at 298K and 13 torr is thus revised from k2(c-c)/k1 = 0.075±0.020 to

k2(c-c)/k1 = 0.048±0.013. A revised version of Figure 6 from Bean et al. is shown below.

148

0

0.02

0.04

0.06

0.08

265 275 285 295 305 315 325 335 345 355

Temperature / K

B
ra

nc
hi

ng
 R

at
io

Figure 5.1 – Corrected ratio of cis-cis to HONO2 products in the reaction of OH + NO2 as a function
of temperature, at 20 Torr.

149

6 Appendix B: Experimental Details

6.1 Room Temperature Photolysis Cells

 Machine drawings are included of the Teflon blocks and photolysis cells used in

photolysis-initiated CRDS studies described in Chapters 4 and 5. Teflon block drawings

are courtesy of Brian Bean and were submitted to the machine shop for fabrication. The

blocks were coupled to the purge tubes and vacuum line via stainless steel Ultratorr

fittings threaded into the Teflon. Initial leaks at the stainless/Teflon interface were sealed

by a generous helping of Teflon thread tape. The blocks were coupled the to the gas inlet

and pressure gauges by Teflon Swagelock fittings, also threaded into the blocks. These

generally seal well, although the Teflon Swagelock parts wear down over the course of

repeated tightenings. The seal between the Teflon blocks and the photolysis cell was the

most problematic. This was accomplished by fitting the photolysis cells into square

grooves in the Teflon blocks and pressing the Teflon blocks together. Often it was found

that inserting silicon gaskets between the cell and the Teflon block could improve the

seal. With nothing holding the gaskets out they would often deform and be pulled in by

the vacuum, breaking the seal. Over time, the Teflon surrounding the square groove was

deformed and pressed down into the groove. This made the square groove quite uneven

and prevented a seal from being made.

 Overall, the design of this cell was certainly functional. Once a good seal was

made between the Teflon blocks and the photolysis cell, it would typically last until the

cell need to be disassembled. Future cell designs may consider improving upon this seal

150
mechanism in one of two ways. A thin-walled stainless tube could be inserted inside

the silicon gaskets to help them hold shape and resist deformation. This would have the

disadvantage of reducing the inside diameter of the CRDS axis, which already can

present difficulties for alignment. A compromise would have to be struck with the wall

the tube weighing rigidity and inside diameter. The second solution would be to have a

round plate welded to the end of the photolysis cells and then create an O-ring seal

between this plate and the Teflon blocks. This would certainly seal quite well, but would

have the disadvantage of creating significantly more volume containing precursors but

not UV photons. This would increase the background for experiments such as the alkoxy

experiments described in Chapter 4 and would require faster flow rates to accomplish the

same flush duty cycle.

151

Drill thru
with size X bit

Drill thru
with #9 bit

Name: Alkoxy Cell Assembly-2 Material: Teflon
Design: Brian Bean Phone: x6014
Scale: 1:1 Units: Inches Pieces: 1

View A View B

View A

View B

Drill Thru
4 x size F bi
on 2.25 BCD

0.50

Mill 0.05" deep
For gasket

2.0

3.0

Tap for 1/8 NPT

Tap for
3/4 NPT

Tap for
1/8 NPT

Figure 6.1. Technical drawing for fabrication of Teflon block for coupling photolysis cell to CRDS
mirrors and gas inlets.

152

Drill thru
with size X bit

Drill thru
with #9 bit

Name: Alkoxy Cell Assembly-1 Material: Teflon
Design: Brian Bean Phone: x6014
Scale: 1:1 Units: Inches Pieces: 1

View A View B

View A

View B

Drill Thru
4 x size F bi
on 2.25 BCD

0.50

Mill 0.05" deep
For gasket

2.0

3.0

Tap for 1/2 NPT

Tap for
3/4 NPT

Tap for
1/8 NPT

Figure 6.2. Technical drawing for fabrication of Teflon block for coupling photolysis cell to CRDS
mirrors and gas pumpout.

153

1.0 cm

1/8 cm

4.3 cm

1.0 cm

0.15 cm

6.0 cm

7.5 cm

13.5 cm

12 cm

Quartz Cell (Starna Cells: Quartz Fluorometer Cells 3-Q-10)

Stainless Steel Cells, Fabricated from 1-cm ID stainless square tubing.

Figure 6.3. Diagrams of various photolysis cells used.

154

6.2 184.9 nm Intensity Measurements

 The measurement of 184.9 nm intensities from a Hg lamp can be complicated by

interference from other wavelengths. This section evaluates this possible interference for

the experiments described in Chapter 2. These experiments used a mercury Pen-Ray

lamp (UVP) to generate 184.9 nm light. As can be seen in Figure 6.4, these lamps

produce many other wavelengths of light in addition to 184.9 nm.

100

3.0

2.0

1.0

100 200 300 400 500

18
4.

9

25
3.

8

31
2.

5 38
5.

0

40
4.

7
43

5.
8

wavelength (nm)

re
la

tiv
e

in
te

ns
ity

Figure 6.4. Stated relative line intensities for UVP Hg Pen-Ray lamp.

 Intensity measurements were made with two slightly different detection

apparatus. The original apparatus, used for measuring the nitric acid 185 nm cross

section, consisted of two custom-made 185 nm interference filters and a PMT with a bi-

alkali cathode. Our original concern when making these measurements was leakage from

155
the most intense emission line at 254 nm (I254 > 30*I185). This concern was addressed

by filling the cell with a few hundred torr of N2O. The cross sections at 185 nm and 254

nm are 1.43×10-19 cm2 and <10-23 cm2 respectively. The resulting optical depths of >30

at 185 nm and <0.01 at 254 nm allowed for direct measurement of the 254 nm leakage:

<2% of the total intensity. This contribution was subtracted from future measurements of

the 185 nm intensity.

y = 1.32E-19x + 1.16E-03

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5E+16 1E+17 1.5E+17 2E+17 2.5E+17 3E+17 3.5E+17 4E+17
L*[N2O]

A
bs

(1
85

) /
 L

s

Figure 6.5. Fit to N2O Beer’s Law Absorbance w/ Hg lamp, double interference filter, and bialkali
cathode. Ls = 30.2 cm.

 The Beer’s Law absorption as a function of N2O concentration, with the

contribution from 254 nm leakage subtracted, is shown in Figure 6.5. The absorbance

was linear over a wide range, and a linear fit to the data yielded an observed cross section

of 1.32×10-19 cm2. This was about 5% below the literature cross section of 1.43×10-19

cm2. We were encouraged by the linearity of the plots and reproducibility of our

measured cross section and felt this relatively small discrepancy was within the

experimental uncertainty. Our measurements of the nitric acid 185 nm cross section as

well as the initial measurements of the IR nitric acid integrated cross section were made

using this same apparatus, subtracting the contribution from 254 nm leakage. Our initial

linear fit to the data yielded a cross section of 1.53×10-17 cm2. Again, this was about 5%

156
lower than the accepted literature value [25]. This small discrepancy seemed

reasonable, especially considering the scatter in nitric acid measurements at such short

wavelengths [25-27, 29, 32, 33].

 After we finished these initial measurements, the interference filters were lost.

Aaron Noell at JPL then used the same for UV measurements of methanol in his cell.

The double interference filters were replaced by a commercial 185 nm interference filter

(Acton Research Corporation, 24 nm FWHM). Using the bialkali PMT, it was found that

leakage by 194 nm light, a mercury emission line not listed in the UVP table shown in

Figure 6.4, was an important photon contaminant. The predicted relative intensities

(194:185 ratio taken from the CRC) convolved with the filter transmission properties are

shown in Table 6.1. The expected relative intensities as observed by the PMT (after the

filter) with a bialkali cathode, with fairly constant quantum efficiency, are shown in the

column labeled “postfilter intensity.” We see that, despite the 194 nm intensity being

much smaller than that at 254 nm, the 194 nm light is expected to be a much larger

problem due to the properties of the filter. Aaron further reduced the contribution of 194

nm light by a factor of five by switching to a solar-blind CsI PMT. The resulting

expected signal as seen by the CsI PMT is also shown in Table 6.1. We see that the

contribution from non-185 nm light is expected to be about 5%. The values in Table 6.1

can only be trusted as a rough guide, though, as the specific output characteristics of Pen-

Ray lamps vary from lamp to lamp and over the lifetime of the lamp.

157

Table 6.1. Expected contribution of various Hg Pen-Ray lamp wavelengths. All values other than
wavelengths are relative and unitless.

wavelength /nm Intensity Filter transmission postfilter intensity CsI Response CsI Signal

184.95 1000 0.18 180 1 180

194.23 300 0.15 45 0.2 9

253.65 30000 0.0001 3 <0.2? <0.6?

 When we returned to IR integrated cross section measurements, we used the

solar-blind CsI PMT that Aaron had used. Unfortunately, we did not re-measure the

nitric acid UV cross section and so do not know if 194 nm contamination influenced this

measurement. At the moment, the UV equipment necessary to re-measure this cross

section is not available. Instead, I have tried to quantify the contribution of the 194 nm

emission from the Pen-Ray lamp to our previous measurement of the nitric acid UV cross

section.

 The apparatus used was a 160 cm stainless steel Raman cell with UV-transparent

windows. The Hg Pen-Ray lamp output was sent through a 10 cm focal length CaF2 lens

and a pinhole to collimate the light through the cell. A second pinhole was used at the

output window to minimize the collection of photons that reflected within the cell. The

same Acton Research 185 nm interference filter described above was used to drastically

reduce the detection of 254 nm light. The PMT output was amplified and then sent to an

oscilloscope for averaging. The pressure in the cell was measured by a 10K torr MKS

Baratron. The experiments consisted of measuring the transmitted intensity as a function

of CO2 pressure using both the bialkali and CsI cathode in the PMT and then comparing

158
the absorbance as a function of pressure for the two. CO2 was chosen because σ185=

13μσ194 and because the UV spectrum in this region lacks structure.

 Absorbance data as a function of CO2 concentration are shown in Figure 6.6. The

data taken with the CsI cathode appeared linear for the range of absorbances measured

(Abs ≤ 3). The fit to this data is almost identical to the literature value of 2.85×10-22 cm2

[105]. The data taken with the bialkali cathode show obvious curvature, even at

absorbances below 0.5. The data can be simulated using only the cross sections at 185

nm and 194 nm. The simulation shown in Figure 6.6 assumes 90% 185 nm and 10% 194

nm and fits the data very well over the entire range of observed absorbances.

 As Figure 6.6 demonstrates, 184.9 nm intensities taken with the CsI cathode and

new filter were likely free from 194 nm contamination. While we cannot re-test the

interference filters used in conjunction with the bi-alkali cathode directly, it is likely they

y = 2.86E-22x + 2.00E-06

0

0.004

0.008

0.012

0.016

0.02

0 2E+19 4E+19 6E+19 8E+19 1E+20
[CO2] / molecues cm^-3

A
bs

or
ba

nc
e/

 c
m

CsI 1 alkali 1 alkali 2 CsI 2 sim alkali Linear (CsI 2)

Figure 6.6. CO2 absorption data taken with two different PMT cathodes. The linear fit to the CsI
data is shown in black. A simulation of the bialkali data using observed intensities of 90% 185 nm
and 10% 194 nm is shown in orange.

159
had similar transmission properties to the current filter. Making this assumption, we

can use the relative contributions of 185 and 194 nm light derived from Figure 6.6 to

correct the intensities measured while measuring σ185. The observed intensities were

therefore corrected to be that of just 185 by

185 0, 194 30.095 exp([HNO])obs obs sI I I lσ⎡ ⎤= − × × − × ×⎣ ⎦ .

This led to very small changes (≈1%) in the intensities and only a 1% increase in our

measured σ185. Because we have had to assume the old filters had similar transmission

properties to the new filter, this has been included as an uncertainty in the analysis of our

σ185 measurements described in Section 2.2.2.

160

6.3 Flow Cell Flush Times

 In photolysis experiments, it is important to ensure that a fresh gas sample is

being photolyzed with each excimer pulse. In this way secondary chemistry and other

potential problems stemming from the photolysis of products are eliminated. The group

lore when I joined was that, if you calculate the flush time of the photolysis region of the

flow cell from the pressure and flowmeter readouts, you should multiply that number by

two to get the actual time for a clean gas sample. This was assumed to be the result of

diffusion of products into various parts of the cell, which would compete with efficient

flushing of the cell.

 The nitric acid product from the OH + NO2 photolysis experiments provides a

strong spectroscopic measure of “photolysis products.” We therefore measured the flush

rate directly by monitoring the nitric acid signal as a function of the YAG – Excimer

delay time. Figure 6.7 shows data taken at 600 torr and a calculated flush time of 80 ms.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Excimer - YAG delay time / mS

1/
ta

u
- 1

/ta
u0

Figure 6.7 – Nitric acid signal at 3540 cm-1 as a function of the Excimer – YAG
delay time, for a calculated flush time of 80 mS. The first point shown is taken at
the typical delay time for OH + NO2 experiments of 500 μS.

161
 We see that the initial decrease in nitric acid signal exceeds that predicted by

flushing alone, i.e., far less than half the initial nitric acid remains in the probe region 40

ms after the initial photolysis. Presumably this can be explained by diffusion of nitric

acid out of the region of the cell being probed by the IR-CRDS. After this initial rapid

decay, the signal decays much slower and asymptotes to 1.3% of the signal at 500 μs.

Given the notoriety of nitric acid as a very sticky molecule, this remaining signal may

more reflect the desorption of nitric acid stuck to the walls of the flow cell than poor

flushing of photolysis volume.

 Regardless, for our purposes the 1.5% signal at the calculated flush time of 80 ms

reflects essentially complete flushing of the photolysis volume. This level of signal was

used to determine a minimum flush time (the calculated flush time needed to reduce the

signal to 1.5% its initial value at the next excimer shot) at a few different pressures.

While this time at 400 torr was about the same as that at 600 torr (88 mS), at 200 torr a

faster flush time of about 65 ms was needed. This implies that at lower pressures,

diffusion may indeed begin to play an important role and the “factor of two” rule may

once again apply. Fortunately, at lower pressures faster flush times are readily achieved.

162

6.4 Mass Flow Transducers

 Mass flow transducers (flowmeters) are a critical component of the flow-cell

experiments described in this thesis. They enable us to control and precisely know the

concentrations of all gases in the cell. This information is critical for any kinetics

simulations or cross-section measurements. As implied by their formal name, flowmeters

determine mass flow of gas through their sensor. This is accomplished by detecting the

heat transferred by a flowing gas, which is directly proportional to the mass flow of the

gas. A diagram of the sensors used in Omega flowmeters is shown in Figure 6.8.

 The temperature difference between the upstream and downstream temperature

sensors is converted to a voltage that is linearly related to the mass flow. In order to

interpret this voltage, the sensitivity of the flowmeter, given in sccm/volt, must be known

Figure 6.8. Schematic of mass flow sensor used in Omega Mass Flowmeters. Taken from
Omega’s Electronic Mass Flowmeters Flow Reference Section
http://www.omega.com/toc_asp/frameset.html?book=Green&file=MASS_FLOW_REF

163
(sccm = standard cubic centimeter = 1cm3 of gas at 70° F and 1 atm). Because the

sensor relies on the thermal conductivity of the gas, the sensitivity is gas specific, so the

calibration changes when the gas is changed. The calibration for a new gas can be

calculated using conversion tables provided in the manuals for each flowmeter.

 Sensitivities are provided with any new flowmeter, but should be calibrated upon

arrival and re-calibrated periodically. This is accomplished by flowing through calibrated

volumes, specifically those included in the calibration kit borrowed from the Sander

group at JPL. This kit includes several volumetric cylinders (10, 100, and 1000 cm3)

each with a ground glass joint on one end. This joint couples the cylinder to a specialty

piece of glassware that introduces soap bubbles to the upstream end of the cylinder. The

flow rate is then measured by measuring the time it takes for the soap bubbles to displace

the volume of the cylinder. Following corrections for the temperature, pressure, and

vapor pressure of water, the flow in standard cubic centimeters is determined and can be

plotted as a function of the voltage readout of the flowmeter.

 The flowmeters in 17 Noyes were originally all manufactured by Edwards. These

all had corrosion-resistant stainless steel bodies, bipolar electrical connections (although

of a rather inconvenient design) and were generally robust. Unfortunately, as time has

worn on, the sensors in the Edwards flowmeters have begun to go bad. Usually this is a

gradually accelerating process of decreasing sensitivity to flow (an increase in the

sccm/volt measured when calibrating). This is a serious problem because Edwards left

the flowmeter business years ago and, when they left, apparently did not sell their extra

sensors or the rights to make them to any other company. As a result, once a flowmeter

sensor goes bad, the flowmeter is no longer useable and must be replaced.

164
 So far, the flowmeters that have gone bad have tended to be those for higher

flow used for dilution or purge flows of inert gas. As a result, they have been replaced

with inexpensive brass-body flowmeters from Omega. These flowmeters must be used

with inert gas only. Under ideal conditions, these flowmeters seem to work fine. Their

sensitivities do not seem to vary between calibrations and the calibration curves are

linear, yielding uncertainties in the flow on the order of 0.5%.

 However, problems with these Omega flowmeters do exist. First, the power

supply is of a positive voltage only. As a result, the flowmeters cannot read any voltage

below 0.0 V. This can be and has been a problem when the zero-flow offset is such that

the voltage at no flow is not a positive value. When this occurs, there is a range of low

flows that will all read zero. In a calibration curve, this is evidenced by a significant

positive y-intercept. As a result, it is important to check that the zero-flow reading from

the Omega flowmeters is above zero (it is wise to check the value before and after an

experiment to account for drift), and then subtract this value from all readings that day.

 The more serious issue with the Omega flowmeters stems from the fragility of

their electronics. The first time the Omega flowmeters broke, it was clearly my fault. I

had been making changes to the power supply and readout box and accidentally

reconnected the positive and negative leads backwards. This apparently fried all three

Omega flowmeters. It is interesting to note that this did not seem to affect the Edwards

flowmeters at all. This does not necessarily imply an inherent problem with the Omega

flowmeters, but a better design would have included a fuse or other safety device that

would have protected the sensor in case of lab idiot.

165
 The second destruction of flowmeter confirms this. It is generally advised

that before you connect or disconnect a flowmeter you turn its power supply off. I would

again like to point out that the Edwards flowmeters were connected and disconnected

with the power on for years before I joined the group without any drastic consequences.

As a result of the shorted electronics mentioned above, I have been very careful to power

down the flowmeters before performing any work on them. A recent addition to the lab

(who will remain unnamed) changed the gas connections to the flowmeters with the

power on. This was just a plumbing job, with no changes to the electronics. After the

plumbing was done, one of the Omega flowmeters was broken. Presumably, something

touched its nine-pin connector during the job and cased a short. While again this could

have been prevented by powering down the flowmeters, relying on these Omega

flowmeters that are so prone to breaking is not ideal (in this latter case, we were able to

convince them to replace the unit for free, but not without nearly a month of downtime).

As a result, I advise switching to a new company when next we need a new flowmeter.

 The flowmeter-readout-DIO system is a bit messy, which I believe is a large part

of the slow response time of the flowmeter readouts (settling time after changing flow of

about ten seconds). The setup could definitely be improved.

WARNINGS:
 With Omega flowmeters, flow ONLY INERT GAS.
 Turn power to flowmeters off (power strip mounted to laser table cover)

before any work on flowmeters.
 Always check calibrations against the previous value to check for sensors

that are beginning to fail.

166

7 Appendix C: CRDS Simulation Programs for Matlab

7.1 Introduction

 I cannot give Gautham Nair enough credit for writing these. He did all the

legwork on designing the program, wrote a version of the program for C++ and then

wrote the original version of these fitting programs. I have made adjustments to the code

to for convenience and flexibility, but Gautham should definitely be considered the

author of the program. Many thanks also to Kana Takematsu for taking these programs

through the motions and helping with the documentation included in this appendix.

 It should be noted that after Gautham left for some lesser school in Massachusetts,

he wrote some of the programs on a different version of Matlab and there was a small

compatibility issue. I worked with Matlab 7.0. To get these programs to work on other

versions of Matlab it may be necessary to replace the comma separating output variables

of a function with a space i.e. change

function [ringspec,simplespec]=

to

function [ringspec simplespec]=

7.1.1 Motivation

 As described in Chapter 2, pulsed CRDS measurements of spectra with narrow

features can have significant errors in the form of incorrect lineshapes and observed

integrated absorbances below the true value. These errors stem from fitting observed

multi-exponential decays with a single exponential function to extract the decay lifetime

167
τ. The general goal of these programs is to simulate the expected CRDS signal for a

given set of apparatus conditions if the underlying high-resolution spectrum is known.

 This high resolution spectrum is adjusted by pressure broadening and application of

scale factors to take into account species concentration and convert the spectrum from

absorbance units to 1/τ.

 This spectrum is then convolved with the laser profile to generate the simulated

ringdown spectra. At each point in the simulated spectrum, a simulated ringdown decay

is produced by summing the individual decays at each frequency weighted by the laser

profile,
i

i

i
e
α
τ∑ , where α is the normalized weighting function for the laser profile. The

simulated ringdown decay is then fit with a single exponential function to generate the

“experimental” ringdown decay lifetime (1/τ’). This is then repeated for all frequencies

in the simulated spectrum. The integrated absorption of the new spectrum and the

convolved spectrum without re-fitting the decay, i

i i

α
τ∑ , can be compared to derive the

error in the CRDS spectrum.

 The magnitude of the CRDS errors and their sensitivity to various parameters can

then be explored. Because there are many parameters which we might be interested in

varying systematically, there are several versions of the program each designed to

systematically vary an individual parameter. In theory these various programs could be

combined into one generalized program, but so far I have found this to be unnecessary.

168
7.1.2 Using MATLAB:

 Some general tips for running routines in Matlab. The program files must be

contained in the Current Directory shown in Matlab. All saved files will also

automatically go to the Current Directory. You can specify any output names you want.

Inputs that are arrays or matrices must be pre-existing named items in the Matlab

workspace. To run a routine, such as Lorentzbroaden.m broadening the high-resolution

spectrum “inputspectrumname” to .05 cm-1, you would just type into the command line

outputspectrumname = Lorentzbroaden(0.05, 2.0, inputspectrumname);

and press enter. The semicolon at the end ensures that the output spectrum is not printed

to the Command Window. When the program is finished, the new matrix

“outputspectrumname” will appear in the Workspace.

WARNING: If you run the program again and do not change the output name, it will be

written over without any prompt to warn you!

 Comments can be added to any routine by beginning the line with “%”.

 To save any output matrix to a text file for manipulation in another program, use

“save savefilename.out matrixname –ASCII”

 When trying to go through the program, it is helpful to generate a fake matrix to

manipulate. Just define a matrix (“matrix=…” or [starting point: interval dist: finishing

point].) The matrix will appear in the Workspace. If you want to manipulate it, just

double click on it. To quickly generate an array (such as a column array of scalefactors

for use in SFBatchFixCut.m) you can use

newarrayname = (startnumber:stepsize:endnumber)’;

169
The apostrophe at the end rotates the array from a row to a column. If you want

column i of matrix, just write matrixname(:,i). If you want a row, write matrixname(i,:)).

If you want to manipulate any matrix (change/add/delete elements), just double click on

it.

 A flow diagram for the “SFBatchVarCut.m” top-level program to illustrate which

programs are interconnected is shown here. The programs are highly modular so that

changing and debugging programs is quite simple, even for a novice like me. An arrow

indicates a flow of outputs. For example, RingSimVarCutBatch.m calls three different

sub-routines, “Gaussiancomb.m”, “LMDecdayFitVarCut.m” and “CombDecay3.m”. It

then uses the information gathered from those sub-routines and sends outputs to

“SFBatchVarCut.m”. It is important when running a program in Matlab that all needed

sub-routines are contained in the Current Directory.

trapintegrate.m

findindex.m matrixtrapintegrate.m

LMDecayFitVarCut.m
(fits simulated ringdown)

CombDecay3.m
(convolves laser profile
with spectrum)

Gaussiancomb.m
(generates laser
profile)

SFBatchVarCut.m
(repeats below with different scalefactors)

RingSimVarCutBatch.m
(true work horse: prepare two spectra:

 before and after simulated ringdown fits)

170

7.2 Program Documentation
Programs are shown below in single-spaced text. If using higher-level programs, sub-

routines need to be saved with the titles shown in quotation marks.

7.2.1 Common Inputs

absspectrum = data spectrum used for simulation. Usually the output of

Lorentzbroaden.m

times = 1D column array specifying the time axis of the ringdowns. Should reflect the

number of points and sample rate of the experiment you are simulating.

background = background value for 1/tau. Should be in s-1.

xi,xf = range of simulated spectrum. (xi-regionwidth) and (xi-regionwidth) should not

exceed the range of absspectrum.

scannedwavenumbers = 1D column array of frequencies you want in the output

spectrum. This is where you would define the stepsize of the spectrum. Could be used to

eliminate xi and xf with a short re-program.

regionwidth = range in cm^-1 (or whatever units your spectra are in) over which the

laser profile will be used to calculate the simulated ringdown at each point. 2*laserfwhm

was sufficient in HNO3.

laserfwhm=laserfwhm in cm^-1(or whatever units your spectra are in). Treats laser

profile as Gaussian (for most simulations assumed to be 1.0 cm-1). Actually treats profile

as discrete spikes with spacing defined by …

modespace = spacing of modes for Gaussian laser profile. Generally assumed to be

0.00666 cm-1 we expect from the YAG cavity.

171
7.2.2 “Lorentzbroaden.m”

DESCRIPTION: This program is designed to take a high resolution, Doppler-limited

spectrum and convolve it with a Lorentzian lineshape to simulate pressure-broadening.

Reminder: Lorentzian
2 2

0

1
1 2

1() ()
2

x xπ

Γ

− + Γ

For nitric acid, we found that having regionwidth=2*fwhm was insufficient. If you can

spare points at the edge of your spectrum, you should try for at least 4*fwhm.

%Inputs
%fwhm=fwhm of Lorentzian profile your are convolving
%regionwidth=total width over which each spectral point will be "spread".
%spectrum=2D matrix containing data spectrum to convolve. Can be imported
%using Matlabs "Import Data" routine. First column must be x-axis
%(frequency units must match fwhm and regionwidth)
% second column can be any arbitrary frequency units.
function broadspec=Lorentzbroaden(fwhm, regionwidth, spectrum);
specspacing=spectrum(2,1)-spectrum(1,1);
convpoints=round(regionwidth/(2*specspacing));

%this initiates the matrices used in the calculation
Npoints=size(spectrum,1);
broadspec=2*ones(Npoints-2*convpoints,2);

%Here is the meat of it. If you wanted to change this to use a different
%shape you would change the second line.
%Motivation for loop: we are going to take each point of the spectrum. Each point is
%going to be treated like a Lorentzian i.e. the intensity assigned to each point is going to
%be redistributed as a Lorentzian. The transformed functions are then going to be
%summed.
for i=(convpoints+1):(Npoints-convpoints)
 lorweights=1./((spectrum((i-convpoints):(i+convpoints),1)-spectrum(i,1)).^2 ...
 +(fwhm/2)^2);
 lorweights=lorweights/sum(lorweights);
 broadspec(i-convpoints,1)=spectrum(i,1);
 broadspec(i-convpoints,2)=sum(spectrum((i-
convpoints):(i+convpoints),2).*lorweights);
end

172

7.2.3 “trapintegrate.m”

DESCRIPTION: Used to integrate spectra. Built into the Batch programs below, but can

be used for any spectrum in the Workspace that is a 2D matrix with frequency in column

1 and absorbance in column 2. Fairly self explanatory.

function trapintegral = trapintegrate(xi,xf,spectrum);
ni = findindex (xi,spectrum); nf = findindex (xf,spectrum);
trapintegral=0.0;
trapintegral=sum(spectrum(ni:(nf-1),2).*(spectrum((ni+1):nf,1)-spectrum(ni:(nf-1),1)));

7.2.4 “matrixtrapintegrate.m”

DESCRIPTION: Can be used to get the integrals of multiple spectra contained in a 2D

matrix where the columns are spectra (such as the outputs from the Batch programs

below). xi and xf should be entered as numbers, wavelengths should be a column array

such as “scannedwavenumbers” described above, and spectraonly should be a matrix

with each column as the absorbance points corresponding to the frequencies in

“wavelengths”.

function trapintegrals=matrixtrapintegrate(xi,xf,wavelengths,spectraonly)
trapintegrals=[];
for i=1:size(spectraonly,2)
 trapintegrals=[trapintegrals trapintegrate(xi,xf,[wavelengths,spectraonly(:,i)])];
end

173

7.2.5 “Gaussiancomb.m”

DESCRIPTION: Generates a Gaussian shape for use in simulation programs using

“laserfwhm”, “regionwidth”, and “modespace” to describe the laser profile. The

“combpattern” output is 2D array describing a Gaussian with 0 as the center point.

function combpattern = Gaussiancomb(laserfwhm,regionwidthcm,modespace);

lasersigma=laserfwhm/sqrt(8*log(2));
temp1=0:modespace:regionwidthcm/2;
temp2=-temp1;
temp2(1)=[];
combpoints=[fliplr(temp2) temp1]';
combintensities=exp(-(combpoints.^2)/(2*lasersigma^2));
combpattern=[combpoints combintensities];

7.2.6 “findindex.m”

DESCRIPTION: Simple program called to give the index number.

function n=findindex(x,spectrum)
n=interp1(spectrum(:,1),(1:size(spectrum,1))',x,'nearest');

174

7.2.7 “SFBatchFixCut.m” and “SFBatchVarCut.m”

DESCRIPTION: To be used when you want to run several simulations at various

“concentrations” (scalefactors). Shown is the program designed to do the ringdown fits

cutting a fixed number of points at the start of the simulated ringdown,

SFBatchFixCut.m. The program for cutting a fraction of a ringdown for each trace,

SFBatchVarCut.m, is identical but calls “RingSimVarCutBatch.m” in the for-loop.

UNIQUE INPUTS:

scalefactors = 1D column array containing all scalefactors you want used.

NOTE: later in the RingSimFixedCutBatch, the scales factor is multiplied by the arbitrary

number 6.024*10^18. If working with known absorbances, it should be possible to

change this number so that scaled absorbances represent the expected signal rather than

its current arbitrary value.

function [ringspecs,simplespecs,integrals,Summary] = SFBatchFixCut (scalefactors, xi,
xf, absspectrum, background, scannedwavenumbers, times, laserfwhm, regionwidth,
modespace);

pringtemp=[];
rringtemp=[];
psimtemp=[];
rsimtemp=[];
ringspecs=[];
simplespecs=[];
Summary=[];
integrals=[];
Npoints=length(scannedwavenumbers);
%length = # of rows in matrix

%this iterates RingSimFixedCutBatch for each scalefactor
for i=1:length(scalefactors)
 [ringspec,simplespec]=RingSimFixedCutBatch(laserfwhm, regionwidth, modespace,
times, scannedwavenumbers, background, scalefactors(i), absspectrum);

175
%see later pages for RingSimFixedCutBatch.m.
 ringspecs=[ringspecs ringspec];
%[elements1 elements2] combines the elements into one large array
 simplespecs=[simplespecs simplespec];
 integrals=[integrals [trapintegrate(xi,xf, [scannedwavenumbers ringspec]);...
 trapintegrate(xi,xf, [scannedwavenumbers simplespec])]];
%notice the “;” between the trapintegrates. This puts the results in two separate rows
%this calculates the integrated absorption for ringsepc and simplespec.
 pringtemp=[pringtemp ringspec(1)];
 rringtemp=[rringtemp ringspec(Npoints)];
 psimtemp=[psimtemp simplespec(1)];
 rsimtemp=[rsimtemp simplespec(Npoints)];
end

%this creates a matrix with columns containing the simulated spectrum
%integral, the integral of the spectrum with no CRDS error, and the first
%and last point in the spectra for both the simulation and with no CRDS
%error (critical for trying to evaluate the error outside the bounds of
%your simulation).
Summary=[integrals' pringtemp' psimtemp' rringtemp' rsimtemp'];

176

7.2.8 “ScalefactorBatchCustom.m”

DESCRIPTION: This is the same as SFBatchVarCut.m but it is designed so that any

arbitrary laser profile can be used (above routines used Gaussian profile). The

normalized laser profile needs to be a pre-existing 2D matrix with the first column as

Δ(frequency) with the center of the profile as 0 and the second column the normalized

intensity at each value of Δ(frequency).

function [ringspecs, simplespecs, integrals, Summary] = ScalefactorBatch (scalefactors,
xi, xf, absspectrum, background, scannedwavenumbers, times, laserprofile);
%in comparison with SFBatchFixCut, laserprofile has replaced inputs laserfwhm,
%regionwidth and modespace.

pringtemp=[];
rringtemp=[];
psimtemp=[];
rsimtemp=[];
ringspecs=[];
simplespecs=[];
Summary=[];
integrals=[];
Npoints=length(scannedwavenumbers);

for i=1:length(scalefactors)
 [ringspec,simplespec]=RingdownSimCustom(laserprofile, times,
scannedwavenumbers, background, scalefactors(i), absspectrum);
%see later pages for RingdownSimCustom.m
 ringspecs=[ringspecs ringspec];
 simplespecs=[simplespecs simplespec];
 integrals=[integrals [trapintegrate(xi,xf, [scannedwavenumbers ringspec]);...
 trapintegrate(xi,xf, [scannedwavenumbers simplespec])]];
 pringtemp=[pringtemp ringspec(1)];
 rringtemp=[rringtemp ringspec(Npoints)];
 psimtemp=[psimtemp simplespec(1)];
 rsimtemp=[rsimtemp simplespec(Npoints)];
end

Summary=[integrals' pringtemp' psimtemp' rringtemp' rsimtemp'];

177

7.2.9 “fwhmBatch.m”

DESCRIPTION: Very similar to SFBatch programs above, but you can run a batch of

various values of laser fwhm (laserfwhms) instead of scalefactors. widthfactor is a

number which will be multiplied by each laser fwhm to define the “regionwidth”

described above.

function [ringspecs,simplespecs,integrals,Summary] = fwhmBatch (scalefactor, xi, xf,
absspectrum, background, scannedwavenumbers, times, laserfwhms, widthfactor,
modespace);

pringtemp=[];
rringtemp=[];
psimtemp=[];
rsimtemp=[];
ringspecs=[];
simplespecs=[];
Summary=[];
integrals=[];
Npoints=length(scannedwavenumbers);

for i=1:length(laserfwhms)
 [ringspec,simplespec]=RingdownSim3(laserfwhms(i), laserfwhms(i)*widthfactor,
modespace, times, scannedwavenumbers, background, scalefactor, absspectrum);
 ringspecs=[ringspecs ringspec];
 simplespecs=[simplespecs simplespec];
 integrals=[integrals [trapintegrate(xi,xf, [scannedwavenumbers ringspec]);...
 trapintegrate(xi,xf, [scannedwavenumbers simplespec])]];
 pringtemp=[pringtemp ringspec(1)];
 rringtemp=[rringtemp ringspec(Npoints)];
 psimtemp=[psimtemp simplespec(1)];
 rsimtemp=[rsimtemp simplespec(Npoints)];
end

Summary=[integrals' pringtemp' psimtemp' rringtemp' rsimtemp'];

178

7.2.10 “RingSimFixedCutBatch.m” and
“RingSimVarCutBatch.m”

DESCRIPTION: Calculates the simulated CRDS spectrum and convolved spectrum for

each scalefactor. Shown is RingSimFixedCutBatch.m which uses fits cutting a fixed time

period at the start of each ringdown. RingSimVarCutBatch.m uses fits cutting a fraction

of a lifetime at the start of each ringdown, and replaces LMdecayfitmodified.m with

LMDecayFitVariableCut.m

function [ringspec,simplespec]=RingSimFixedCutBatch(laserfwhm, regionwidth,
modespace, times, scannedwavenumbers, background, scalefactor, absspectrum)
combpattern=Gaussiancomb(laserfwhm,regionwidth,modespace);
Nscans=size(scalefactor,1);
Npoints=size(scannedwavenumbers,1);
ringspec=zeros(Npoints,Nscans);
%zeros(m,n) generates m x n matrix with all elements = 0
simplespec=zeros(Npoints,Nscans);
tempdecay=zeros(size(times));
%if zeros(m), creates m x m matrix
simpleinvlifetime=0.0;
tempfitparam=[];

%This does the work of calling Combdecay3.m and LMDecayfitmodified.m for each
%point in the simulated spectra and compiling those numbers for export to
%SFBatchFixCut.m.
for j=1:Nscans
 invlifetimes=[absspectrum(:,1) background + scalefactor(j)* 6.024*10^8*
absspectrum(:,2)];
%creates two column matrix with x and adjusted y. 6.024*10^8 is arbitrary
for i=1:Npoints
 [tempdecay simpleinvlifetime] = CombDecay3 (scannedwavenumbers(i), times,
combpattern, invlifetimes);
%will discuss CombDecay3.m later
 tempfitparam = LMdecayfitmodified (times, tempdecay, tempdecay(1),
simpleinvlifetime);
%will discuss LMdecayfitmodified.m later
 ringspec(i,j)=tempfitparam(2)-background;
 simplespec(i,j)=simpleinvlifetime-background;
%These two outputs will later be called for in the batch files and combined with the
%scanned wavelengths to reconstruct the spectra.
end
end

179

7.2.11 “RingdownSim3.m”

DESCRIPTION: This is the first version of the RingdownSim program that is designed

for a single set of inputs. The version here uses LMDecayfit.m which fits the full

simulated ringdowns. It could easily be modified to use either of the other versions of

LMdecayfit by replacing it with the desired version below.

function [ringspec,simplespec]=RingdownSim(laserfwhm, regionwidth, modespace,
times, scannedwavenumbers, background, scalefactor, absspectrum)
combpattern=Gaussiancomb(laserfwhm,regionwidth,modespace);
Npoints=size(scannedwavenumbers,1);
ringspec=zeros(Npoints,1);
simplespec=zeros(Npoints,1);
tempdecay=zeros(size(times));
simpleinvlifetime=0.0;
tempfitparam=[];
invlifetimes=[absspectrum(:,1) background+scalefactor*6.024*10^8*absspectrum(:,2)];

for i=1:Npoints
 [tempdecay
simpleinvlifetime]=CombDecay3(scannedwavenumbers(i),times,combpattern,
invlifetimes);
 tempfitparam=LMdecayfit(times,tempdecay,tempdecay(1),simpleinvlifetime);
 ringspec(i)=tempfitparam(2)-background;
 simplespec(i)=simpleinvlifetime-background;
end

180

7.2.12 “RingdownSimCustom.m”

DESCRIPTION: This is the version of RingdownSim that can use an arbitrary user-

defined laser profile. Otherwise the same as other versions. Currently uses

“LMdecayfitVariableCut.m” but could be changed to the Fixcut version.

function [ringspec,simplespec]=RingdownSim(laserprofile, times, scannedwavenumbers,
background, scalefactor, absspectrum)
Npoints=size(scannedwavenumbers,1);
ringspec=zeros(Npoints,1);
simplespec=zeros(Npoints,1);
tempdecay=zeros(size(times));
simpleinvlifetime=0.0;
tempfitparam=[];
invlifetimes=[absspectrum(:,1) background+scalefactor*6.024*10^8*absspectrum(:,2)];

for i=1:Npoints
 [tempdecay simpleinvlifetime] = CombDecay3 (scannedwavenumbers(i), times,
laserprofile, invlifetimes);
 tempfitparam = LMdecayfitVariableCut (times, tempdecay, tempdecay(1),
simpleinvlifetime);
 ringspec(i)=tempfitparam(2)-background;
 simplespec(i)=simpleinvlifetime-background;
end

181

7.2.13 “Combdecay3.m”

DESCRIPTION: This creates the simulated ringdown decays that will be fit later. It also

calculates the signal at each point that would be seen by simply convolving the spectrum

with combpattern. This is called by the RingSim programs. Many of the inputs here will

be called by index in the main programs.

UNIQUE INPUTS: cavityinvlifetimes contains the inverse ringdown lifetimes for given

wavenumber input light. First column is wavenumber, second is inverse lifetime (1/τ).

function [decay,simpleavg] = CombDecay (centerwavenumber, times, combpattern,
cavityinvlifetimes);

%centerwavenumber is a number (the frequency at which the laser is centered)
%times is a 1d array of desired times to sample the decay (i.e. the
%oscilloscope decay trace data)
%combpattern is a 2d array. It is a simulation of the frequency spectr
%um of the laser shot, assuming wavenumber 0 is the center position.
%The first column is wavenumbers and the second
%column indicates the laser intensity at the corresponding wavenumber.
%cavityinvlifetimes contains the inverse ringdown lifetimes for given wavenumber
%input light. First column is wavenumber, second is inverse (1/e) lifetime.
%decay is the output decay signal and simpleavg is the
%cavity inverse lifetime that would be obtained by simply convolving
%the input spectrum with the comb pattern.

timesize = size (times,1);
decay = zeros (timesize,1);
combsize = size (combpattern,1);
combinvlifetimes = zeros (combsize,1);
combinvlifetimes = interp1 (cavityinvlifetimes(:,1), cavityinvlifetimes(:,2),
combpattern(:,1)+centerwavenumber, 'linear',NaN);
%interp1 is a interpolation (table lookup) function contained in Matlab.
%YI = interp1(X,Y,XI). Sometimes X is left out. This assumes that X=1:N. Note XI
%stands for x interval i.e. if X = 0:10, then XI=0:.25:10.
%Sometimes, after XI, a “method” is chosen in which the interpolation is done. The
%default is linear interpolation. Sometimes after ‘method,’ the ‘extrap” option can be

182
%stated. This chooses a method for extrapolating any elements of XI outside the
interval %spanned by X. Alternatively, “EXTRAPAVAL” replaces these values with
%EXTRAPVAL. NaN and 0 are often used for this number.

%Aside: Interpolation: constructing new data points from discrete set of known data
 % Extrapolation: find value of function at point x which is outside xk of function

for i=1:timesize
 decay(i)=sum(combpattern(:,2).*exp(-times(i)*combinvlifetimes));
end
simpleavg=sum(combpattern(:,2).*combinvlifetimes)/sum(combpattern(:,2));
%Notice that the combpattern is normalized here, as the Gaussian was not normalized
%in the subroutine. The decays generated above will be sent into LMDecayFit programs.
%The decay does not need to be normalized as it is just going to be refit later.
%Multiplying by a constant for normalization will not change the ringdown time.

183

7.2.14 “LMDecayFitModified.m”

DESCRIPTION: This actually fits the simulated decay traces using the Levenberg-

Marquardt algorithm. I believe the fitting algorithm was taken from Numerical Recipes,

but I’m not sure. This particular iteration has a fixed amount of time cut from the

beginning of the trace before it is fit.

INPUTS: fulltimes is the decay time points (same as times from above).

fulldecsignal is the decay signal as generated by CombDecay3.m

inita initial guess for the amplitude (generally taken as the first point in “fulldecsignal”

initb is the initial guess for the lifetime (generally taken from the “simpleinvlifetime”

output of CombDecay3.m.

function fitparam=LMdecayfit(fulltimes, fulldecsignal, inita, initb)

%This part makes the fit neglect times below a certain threshold

%This is the threshold value, in whatever units your times are in:
%Keep negative if you want it to work just as before.
%Must be changed manually here (does not read from higher-level programs).
tbegin=16e-8;
%This is the code that takes care of the cutting.
tmask=fulltimes>tbegin;
times=fulltimes(tmask);
decsignal=fulldecsignal(tmask);
% The rest of this is fits the remaining points.
chisq=0.0;
ochisq=0.0;
a=0.0;
oa=0.0;
da=0.0;
b=0.0;
ob=0.0;
db=0.0;
lambda=0.001;
beta=zeros(2,1);

184
alpha=zeros(2,2);
convergedflag=1;
convergecrit=0.005;
Niterations=1;
Nmax=50;
oa=inita;
ob=initb;
a=oa;
b=ob;
ochisq=sum((decsignal-oa*exp(-ob*times)).^2);

while convergedflag&&(Niterations<Nmax)
 beta=zeros(2,1);
 alpha=zeros(2,2);
 exptemp=exp(-ob*times);
 beta(1)=sum((decsignal-oa*exptemp).*exptemp);
 beta(2)=sum(-oa*times.*(decsignal-oa*exptemp).*exptemp);
 alpha(1,1)=sum(exptemp.^2)*(1+lambda);
 alpha(1,2)=sum(-oa*times.*exptemp.^2);
 alpha(2,1)=alpha(1,2);
 alpha(2,2)=sum(oa^2*times.*times.*exptemp.^2)*(1+lambda);
 da=(alpha(2,2)*beta(1)-alpha(1,2)*beta(2))/(alpha(1,1)*alpha(2,2)-
alpha(1,2)*alpha(2,1));
 db=(alpha(1,1)*beta(2)-alpha(2,1)*beta(1))/(alpha(1,1)*alpha(2,2)-
alpha(1,2)*alpha(2,1));
 a=oa+da;
 b=ob+db;
 chisq=sum((decsignal-a*exp(-b*times)).^2);
 if chisq>ochisq
 lambda=lambda*10;
 else
 lambda=lambda*0.1;
 oa=a;
 ob=b;
 if ((ochisq-chisq)<(chisq*convergecrit))||chisq==0
 convergedflag=0;
 end
 ochisq=chisq;
 end
 Niterations=Niterations+1;
end

fitparam=[a ; b ; Niterations;ochisq];
%Output file gives a = amplitude, b = exponent factor, number of iterations that were
%used in the Levenberg-Marquardt algorithm, and the chi^2 value of the fit.

185

7.2.15 “LMDecayFitVariableCut.m”
DESCRIPTION: This is identical to “LMDecayFitModified.m” described above, but a

fraction of the decay is cut instead of a fixed amount.

function fitparam = LMdecayfitVarCut(fulltimes, fulldecsignal, inita, initb)

%this makes an initial fit, in order to get a guess for the lifetime
tfitparam=LMdecayfit(fulltimes, fulldecsignal, inita, initb);
%This part makes the fit neglect times below a certain threshold
tempa=0.0;
tempb=0.0;
tempa=tfitparam(1);
tempb=tfitparam(2);
%This is the threshold value, in whatever units your times are in:
%Keep negative if you want it to work with no cut. Currently set to cut
%half of a lifetime. Needs to be changed manually on the following
%line.
tbegin=0.5*(1/tempb);

%This is the code that takes care of the cutting
tmask=fulltimes>tbegin;
times=fulltimes(tmask);
decsignal=fulldecsignal(tmask);
% This is the end of this part, the rest of the function is as in LMDecayFitModified.m

186

7.2.16 “SingledecayVarfitRes.m”/ “SingledecayFixCutRes.m”

DESCRIPTION: These programs are designed to run at a single frequency and allow you

to look at the actual ringdowns. The output decays is a 3-column matrix with the first

column the simulated ringdown, the second column the fit to the simulated ringdown and

the third column the residual. Shown in the Varfit version, FixCut is the same but with

the LMdecayfit program changed.

function [decays,ringinvT,simpleinvT] = SingledecayVarfitRes (laserfwhm, regionwidth,
modespace, times,wavenumber, background, scalefactor, absspectrum)

combpattern=Gaussiancomb(laserfwhm,regionwidth,modespace);
decays=zeros(size(times,1),3);

[decays(:,1),simpleinvT] = CombDecay3(wavenumber,times,combpattern, ...
 [absspectrum(:,1) background+ scalefactor* 6.024*10^8* absspectrum(:,2)]);
fitparam= LMdecayfitVariableCut (times, decays(:,1), decays(1,1), simpleinvT);
decays(:,2)=fitparam(1)*exp(-fitparam(2)*times);
decays(:,3)=(decays(:,1)-decays(:,2));
ringinvT=fitparam(2)-background;
simpleinvT=simpleinvT-background;

