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5 Appendix A: Spectroscopy of cis-cis HOONO and the 
HOONO/HONO2 Branching Ratio in the Reaction 

OH+NO2+M; Discharge Flow Studies 
 

5.1 Previously Published Results 
 
 
This paper is reproduced with permission from the Journal of Physical Chemistry A,  
volume 107, no. 36, p. 6974-6985. Copyright 2003, American Chemical Society. 
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5.2 Revisions to Branching-Ratio Results 
 
 As described in chapters 2 and 3, our understanding of the spectroscopy used to 

measure the branching ratio has improved since these results were published.  This 

section briefly describes what revisions should be made to the published data.  

 The smallest correction is to the calculated ratio of cross sections used.  More 

recent calculations taking into account anharmonicities indicate that this should be 

changed from 2.87 to 2.71 [73, 74]. 

 Since the publication of Bean et al. we have a much improved understanding of 

the cis-cis HOONO spectrum.  In particular, we understand that there is considerable OH 

stretch intensity blueshifted outside the main peak we used to measure the HOONO 

absorbance.  As described in Chapter 3, our observed HOONO absorbances should have 

been multiplied by 1.41 to correct for this. 

 Our assumed correction for nonlinearities in the nitric acid absorbance was 

significantly too small.  We had assumed we could correct our observed nitric acid 

absorbances by multiplying them by 1.2.  As described in detail in Chapter 2, at the low 

pressures of these experiments we should instead have multiplied by 2.5.   

 As a result, the Bean et al. results should be corrected using 

new published published
2.71 1.2BR BR 1.41 BR 0.64
2.87 2.5

= × × × = × . 

The branching ratio at 298K and 13 torr is thus revised from k2(c-c)/k1 = 0.075±0.020 to  

k2(c-c)/k1 = 0.048±0.013.  A revised version of Figure 6 from Bean et al. is shown below. 
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Figure 5.1 – Corrected ratio of cis-cis to HONO2 products in the reaction of OH + NO2 as a function 
of temperature, at 20 Torr. 
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6 Appendix B: Experimental Details 

6.1 Room Temperature Photolysis Cells 

 Machine drawings are included of the Teflon blocks and photolysis cells used in 

photolysis-initiated CRDS studies described in Chapters 4 and 5.  Teflon block drawings 

are courtesy of Brian Bean and were submitted to the machine shop for fabrication.  The 

blocks were coupled to the purge tubes and vacuum line via stainless steel Ultratorr 

fittings threaded into the Teflon.  Initial leaks at the stainless/Teflon interface were sealed 

by a generous helping of Teflon thread tape.  The blocks were coupled the to the gas inlet 

and pressure gauges by Teflon Swagelock fittings, also threaded into the blocks.  These 

generally seal well, although the Teflon Swagelock parts wear down over the course of 

repeated tightenings.  The seal between the Teflon blocks and the photolysis cell was the 

most problematic.  This was accomplished by fitting the photolysis cells into square 

grooves in the Teflon blocks and pressing the Teflon blocks together.  Often it was found 

that inserting silicon gaskets between the cell and the Teflon block could improve the 

seal.  With nothing holding the gaskets out they would often deform and be pulled in by 

the vacuum, breaking the seal.  Over time, the Teflon surrounding the square groove was 

deformed and pressed down into the groove.  This made the square groove quite uneven 

and prevented a seal from being made. 

 Overall, the design of this cell was certainly functional.  Once a good seal was 

made between the Teflon blocks and the photolysis cell, it would typically last until the 

cell need to be disassembled.  Future cell designs may consider improving upon this seal 
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mechanism in one of two ways.  A thin-walled stainless tube could be inserted inside 

the silicon gaskets to help them hold shape and resist deformation.  This would have the 

disadvantage of reducing the inside diameter of the CRDS axis, which already can 

present difficulties for alignment.  A compromise would have to be struck with the wall 

the tube weighing rigidity and inside diameter.  The second solution would be to have a 

round plate welded to the end of the photolysis cells and then create an O-ring seal 

between this plate and the Teflon blocks.  This would certainly seal quite well, but would 

have the disadvantage of creating significantly more volume containing precursors but 

not UV photons.  This would increase the background for experiments such as the alkoxy 

experiments described in Chapter 4 and would require faster flow rates to accomplish the 

same flush duty cycle. 
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Figure 6.1.  Technical drawing for fabrication of Teflon block for coupling photolysis cell to CRDS 
mirrors and gas inlets. 
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Figure 6.2.  Technical drawing for fabrication of Teflon block for coupling photolysis cell to CRDS 
mirrors and gas pumpout. 
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Figure 6.3.  Diagrams of various photolysis cells used. 
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6.2 184.9 nm Intensity Measurements 

 The measurement of 184.9 nm intensities from a Hg lamp can be complicated by 

interference from other wavelengths. This section evaluates this possible interference for 

the experiments described in Chapter 2.  These experiments used a mercury Pen-Ray 

lamp (UVP) to generate 184.9 nm light.  As can be seen in Figure 6.4, these lamps 

produce many other wavelengths of light in addition to 184.9 nm.  
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Figure 6.4.  Stated relative line intensities for UVP Hg Pen-Ray lamp. 

 
  Intensity measurements were made with two slightly different detection 

apparatus.  The original apparatus, used for measuring the nitric acid 185 nm cross 

section, consisted of two custom-made 185 nm interference filters and a PMT with a bi-

alkali cathode.  Our original concern when making these measurements was leakage from 
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the most intense emission line at 254 nm (I254 > 30*I185).  This concern was addressed 

by filling the cell with a few hundred torr of N2O.  The cross sections at 185 nm and 254 

nm are 1.43×10-19 cm2 and <10-23 cm2 respectively.  The resulting optical depths of >30 

at 185 nm and <0.01 at 254 nm allowed for direct measurement of the 254 nm leakage: 

<2% of the total intensity.  This contribution was subtracted from future measurements of 

the 185 nm intensity.   
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Figure 6.5.  Fit to N2O Beer’s Law Absorbance w/ Hg lamp, double interference filter, and bialkali 
cathode.  Ls = 30.2 cm. 

 
 The Beer’s Law absorption as a function of N2O concentration, with the 

contribution from 254 nm leakage subtracted, is shown in Figure 6.5.  The absorbance 

was linear over a wide range, and a linear fit to the data yielded an observed cross section 

of 1.32×10-19 cm2.  This was about 5% below the literature cross section of 1.43×10-19 

cm2.  We were encouraged by the linearity of the plots and reproducibility of our 

measured cross section and felt this relatively small discrepancy was within the 

experimental uncertainty.  Our measurements of the nitric acid 185 nm cross section as 

well as the initial measurements of the IR nitric acid integrated cross section were made 

using this same apparatus, subtracting the contribution from 254 nm leakage.  Our initial 

linear fit to the data yielded a cross section of 1.53×10-17 cm2.  Again, this was about 5% 
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lower than the accepted literature value [25].  This small discrepancy seemed 

reasonable, especially considering the scatter in nitric acid measurements at such short 

wavelengths [25-27, 29, 32, 33]. 

 After we finished these initial measurements, the interference filters were lost.  

Aaron Noell at JPL then used the same for UV measurements of methanol in his cell.  

The double interference filters were replaced by a commercial 185 nm interference filter 

(Acton Research Corporation, 24 nm FWHM).  Using the bialkali PMT, it was found that 

leakage by 194 nm light, a mercury emission line not listed in the UVP table shown in 

Figure 6.4, was an important photon contaminant.  The predicted relative intensities 

(194:185 ratio taken from the CRC) convolved with the filter transmission properties are 

shown in Table 6.1.  The expected relative intensities as observed by the PMT (after the 

filter) with a bialkali cathode, with fairly constant quantum efficiency, are shown in the 

column labeled “postfilter intensity.”  We see that, despite the 194 nm intensity being 

much smaller than that at 254 nm, the 194 nm light is expected to be a much larger 

problem due to the properties of the filter.  Aaron further reduced the contribution of 194 

nm light by a factor of five by switching to a solar-blind CsI PMT.  The resulting 

expected signal as seen by the CsI PMT is also shown in Table 6.1.  We see that the 

contribution from non-185 nm light is expected to be about 5%.  The values in Table 6.1 

can only be trusted as a rough guide, though, as the specific output characteristics of Pen-

Ray lamps vary from lamp to lamp and over the lifetime of the lamp. 
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Table 6.1.  Expected contribution of various Hg Pen-Ray lamp wavelengths.  All values other than 
wavelengths are relative and unitless. 

wavelength /nm Intensity Filter transmission postfilter intensity CsI Response CsI Signal

184.95 1000 0.18 180 1 180 

194.23 300 0.15 45 0.2 9 

253.65 30000 0.0001 3 <0.2? <0.6? 

 

 When we returned to IR integrated cross section measurements, we used the 

solar-blind CsI PMT that Aaron had used.  Unfortunately, we did not re-measure the 

nitric acid UV cross section and so do not know if 194 nm contamination influenced this 

measurement.  At the moment, the UV equipment necessary to re-measure this cross 

section is not available.  Instead, I have tried to quantify the contribution of the 194 nm 

emission from the Pen-Ray lamp to our previous measurement of the nitric acid UV cross 

section. 

 The apparatus used was a 160 cm stainless steel Raman cell with UV-transparent 

windows.  The Hg Pen-Ray lamp output was sent through a 10 cm focal length CaF2 lens 

and a pinhole to collimate the light through the cell.  A second pinhole was used at the 

output window to minimize the collection of photons that reflected within the cell.  The 

same Acton Research 185 nm interference filter described above was used to drastically 

reduce the detection of 254 nm light.  The PMT output was amplified and then sent to an 

oscilloscope for averaging.  The pressure in the cell was measured by a 10K torr MKS 

Baratron.   The experiments consisted of measuring the transmitted intensity as a function 

of CO2 pressure using both the bialkali and CsI cathode in the PMT and then comparing 
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the absorbance as a function of pressure for the two.  CO2 was chosen because σ185= 

13μσ194 and because the UV spectrum in this region lacks structure. 

 Absorbance data as a function of CO2 concentration are shown in Figure 6.6.  The 

data taken with the CsI cathode appeared linear for the range of absorbances measured 

(Abs ≤ 3).  The fit to this data is almost identical to the literature value of 2.85×10-22 cm2 

[105].  The data taken with the bialkali cathode show obvious curvature, even at 

absorbances below 0.5.  The data can be simulated using only the cross sections at 185 

nm and 194 nm.  The simulation shown in Figure 6.6 assumes 90% 185 nm and 10% 194 

nm and fits the data very well over the entire range of observed absorbances.    

 

  As Figure 6.6 demonstrates, 184.9 nm intensities taken with the CsI cathode and 

new filter were likely free from 194 nm contamination.  While we cannot re-test the 

interference filters used in conjunction with the bi-alkali cathode directly, it is likely they 
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Figure 6.6.  CO2 absorption data taken with two different PMT cathodes.  The linear fit to the CsI 
data is shown in black.  A simulation of the bialkali data using observed intensities of 90% 185 nm 
and 10% 194 nm is shown in orange. 
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had similar transmission properties to the current filter.  Making this assumption, we 

can use the relative contributions of 185 and 194 nm light derived from Figure 6.6 to 

correct the intensities measured while measuring σ185.  The observed intensities were 

therefore corrected to be that of just 185 by  

185 0, 194 30.095 exp( [HNO ])obs obs sI I I lσ⎡ ⎤= − × × − × ×⎣ ⎦ . 

This led to very small changes (≈1%) in the intensities and only a 1% increase in our 

measured σ185.  Because we have had to assume the old filters had similar transmission 

properties to the new filter, this has been included as an uncertainty in the analysis of our 

σ185 measurements described in Section 2.2.2. 
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6.3 Flow Cell Flush Times 

 In photolysis experiments, it is important to ensure that a fresh gas sample is 

being photolyzed with each excimer pulse.  In this way secondary chemistry and other 

potential problems stemming from the photolysis of products are eliminated.  The group 

lore when I joined was that, if you calculate the flush time of the photolysis region of the 

flow cell from the pressure and flowmeter readouts, you should multiply that number by 

two to get the actual time for a clean gas sample.  This was assumed to be the result of 

diffusion of products into various parts of the cell, which would compete with efficient 

flushing of the cell. 

 The nitric acid product from the OH + NO2 photolysis experiments provides a 

strong spectroscopic measure of “photolysis products.”  We therefore measured the flush 

rate directly by monitoring the nitric acid signal as a function of the YAG – Excimer 

delay time.  Figure 6.7 shows data taken at 600 torr and a calculated flush time of 80 ms.  
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Figure 6.7 – Nitric acid signal at 3540 cm-1 as a function of the Excimer – YAG 
delay time, for a calculated flush time of 80 mS.  The first point shown is taken at 
the typical delay time for OH  + NO2 experiments of 500 μS. 
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 We see that the initial decrease in nitric acid signal exceeds that predicted by 

flushing alone, i.e., far less than half the initial nitric acid remains in the probe region 40 

ms after the initial photolysis.  Presumably this can be explained by diffusion of nitric 

acid out of the region of the cell being probed by the IR-CRDS.  After this initial rapid 

decay, the signal decays much slower and asymptotes to 1.3% of the signal at 500 μs.  

Given the notoriety of nitric acid as a very sticky molecule, this remaining signal may 

more reflect the desorption of nitric acid stuck to the walls of the flow cell than poor 

flushing of photolysis volume.   

 Regardless, for our purposes the 1.5% signal at the calculated flush time of 80 ms 

reflects essentially complete flushing of the photolysis volume.  This level of signal was 

used to determine a minimum flush time (the calculated flush time needed to reduce the 

signal to 1.5% its initial value at the next excimer shot) at a few different pressures.  

While this time at 400 torr was about the same as that at 600 torr (88 mS), at 200 torr a 

faster flush time of about 65 ms was needed.  This implies that at lower pressures, 

diffusion may indeed begin to play an important role and the “factor of two” rule may 

once again apply.  Fortunately, at lower pressures faster flush times are readily achieved.
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6.4 Mass Flow Transducers 

 Mass flow transducers (flowmeters) are a critical component of the flow-cell 

experiments described in this thesis.  They enable us to control and precisely know the 

concentrations of all gases in the cell.  This information is critical for any kinetics 

simulations or cross-section measurements.  As implied by their formal name, flowmeters 

determine mass flow of gas through their sensor.  This is accomplished by detecting the 

heat transferred by a flowing gas, which is directly proportional to the mass flow of the 

gas.  A diagram of the sensors used in Omega flowmeters is shown in Figure 6.8. 

 

 The temperature difference between the upstream and downstream temperature 

sensors is converted to a voltage that is linearly related to the mass flow.  In order to 

interpret this voltage, the sensitivity of the flowmeter, given in sccm/volt, must be known 

Figure 6.8.  Schematic of mass flow sensor used in Omega Mass Flowmeters.  Taken from 
Omega’s Electronic Mass Flowmeters Flow Reference Section 
http://www.omega.com/toc_asp/frameset.html?book=Green&file=MASS_FLOW_REF 
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(sccm = standard cubic centimeter = 1cm3 of gas at 70° F and 1 atm).  Because the 

sensor relies on the thermal conductivity of the gas, the sensitivity is gas specific, so the 

calibration changes when the gas is changed.  The calibration for a new gas can be 

calculated using conversion tables provided in the manuals for each flowmeter. 

 Sensitivities are provided with any new flowmeter, but should be calibrated upon 

arrival and re-calibrated periodically.  This is accomplished by flowing through calibrated 

volumes, specifically those included in the calibration kit borrowed from the Sander 

group at JPL.  This kit includes several volumetric cylinders (10, 100, and 1000 cm3) 

each with a ground glass joint on one end.  This joint couples the cylinder to a specialty 

piece of glassware that introduces soap bubbles to the upstream end of the cylinder.  The 

flow rate is then measured by measuring the time it takes for the soap bubbles to displace 

the volume of the cylinder.  Following corrections for the temperature, pressure, and 

vapor pressure of water, the flow in standard cubic centimeters is determined and can be 

plotted as a function of the voltage readout of the flowmeter.  

 The flowmeters in 17 Noyes were originally all manufactured by Edwards.  These 

all had corrosion-resistant stainless steel bodies, bipolar electrical connections (although 

of a rather inconvenient design) and were generally robust.  Unfortunately, as time has 

worn on, the sensors in the Edwards flowmeters have begun to go bad.  Usually this is a 

gradually accelerating process of decreasing sensitivity to flow (an increase in the 

sccm/volt measured when calibrating).  This is a serious problem because Edwards left 

the flowmeter business years ago and, when they left, apparently did not sell their extra 

sensors or the rights to make them to any other company.  As a result, once a flowmeter 

sensor goes bad, the flowmeter is no longer useable and must be replaced. 
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 So far, the flowmeters that have gone bad have tended to be those for higher 

flow used for dilution or purge flows of inert gas.  As a result, they have been replaced 

with inexpensive brass-body flowmeters from Omega.  These flowmeters must be used 

with inert gas only.  Under ideal conditions, these flowmeters seem to work fine.  Their 

sensitivities do not seem to vary between calibrations and the calibration curves are 

linear, yielding uncertainties in the flow on the order of 0.5%.   

 However, problems with these Omega flowmeters do exist.  First, the power 

supply is of a positive voltage only.  As a result, the flowmeters cannot read any voltage 

below 0.0 V.  This can be and has been a problem when the zero-flow offset is such that 

the voltage at no flow is not a positive value.  When this occurs, there is a range of low 

flows that will all read zero.  In a calibration curve, this is evidenced by a significant 

positive y-intercept.  As a result, it is important to check that the zero-flow reading from 

the Omega flowmeters is above zero (it is wise to check the value before and after an 

experiment to account for drift), and then subtract this value from all readings that day. 

 The more serious issue with the Omega flowmeters stems from the fragility of 

their electronics.  The first time the Omega flowmeters broke, it was clearly my fault.  I 

had been making changes to the power supply and readout box and accidentally 

reconnected the positive and negative leads backwards.  This apparently fried all three 

Omega flowmeters.  It is interesting to note that this did not seem to affect the Edwards 

flowmeters at all.  This does not necessarily imply an inherent problem with the Omega 

flowmeters, but a better design would have included a fuse or other safety device that 

would have protected the sensor in case of lab idiot. 
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 The second destruction of flowmeter confirms this.  It is generally advised 

that before you connect or disconnect a flowmeter you turn its power supply off.  I would 

again like to point out that the Edwards flowmeters were connected and disconnected 

with the power on for years before I joined the group without any drastic consequences.  

As a result of the shorted electronics mentioned above, I have been very careful to power 

down the flowmeters before performing any work on them.  A recent addition to the lab 

(who will remain unnamed) changed the gas connections to the flowmeters with the 

power on.  This was just a plumbing job, with no changes to the electronics.  After the 

plumbing was done, one of the Omega flowmeters was broken.  Presumably, something 

touched its nine-pin connector during the job and cased a short.  While again this could 

have been prevented by powering down the flowmeters, relying on these Omega 

flowmeters that are so prone to breaking is not ideal (in this latter case, we were able to 

convince them to replace the unit for free, but not without nearly a month of downtime).  

As a result, I advise switching to a new company when next we need a new flowmeter. 

 The flowmeter-readout-DIO system is a bit messy, which I believe is a large part 

of the slow response time of the flowmeter readouts (settling time after changing flow of 

about ten seconds).  The setup could definitely be improved. 

WARNINGS:  
 With Omega flowmeters, flow ONLY INERT GAS. 
 Turn power to flowmeters off (power strip mounted to laser table cover) 

before any work on flowmeters. 
 Always check calibrations against the previous value to check for sensors 

that are beginning to fail. 
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7 Appendix C: CRDS Simulation Programs for Matlab 

7.1 Introduction 

 I cannot give Gautham Nair enough credit for writing these.  He did all the 

legwork on designing the program, wrote a version of the program for C++ and then 

wrote the original version of these fitting programs.  I have made adjustments to the code 

to for convenience and flexibility, but Gautham should definitely be considered the 

author of the program.  Many thanks also to Kana Takematsu for taking these programs 

through the motions and helping with the documentation  included in this appendix. 

 It should be noted that after Gautham left for some lesser school in Massachusetts, 

he wrote some of the programs on a different version of Matlab and there was a small 

compatibility issue.  I worked with Matlab 7.0.  To get these programs to work on other 

versions of Matlab it may be necessary to replace the comma separating output variables 

of a function with a space i.e. change  

function [ringspec,simplespec]= 

to 

function [ringspec simplespec]= 

 

7.1.1 Motivation 

 As described in Chapter 2, pulsed CRDS measurements of spectra with narrow 

features can have significant errors in the form of incorrect lineshapes and observed 

integrated absorbances below the true value.  These errors stem from fitting observed 

multi-exponential decays with a single exponential function to extract the decay lifetime 
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τ.  The general goal of these programs is to simulate the expected CRDS signal for a 

given set of apparatus conditions if the underlying high-resolution spectrum is known.   

 This high resolution spectrum is adjusted by pressure broadening and application of 

scale factors to take into account species concentration and convert the spectrum from 

absorbance units to 1/τ.   

 This spectrum is then convolved with the laser profile to generate the simulated 

ringdown spectra.  At each point in the simulated spectrum, a simulated ringdown decay 

is produced by summing the individual decays at each frequency weighted by the laser 

profile, 
i

i

i
e
α
τ∑ , where α is the normalized weighting function for the laser profile.  The 

simulated ringdown decay is then fit with a single exponential function to generate the 

“experimental” ringdown decay lifetime (1/τ’).  This is then repeated for all frequencies 

in the simulated spectrum.  The integrated absorption of the new spectrum and the 

convolved spectrum without re-fitting the decay, i

i i

α
τ∑ , can be compared to derive the 

error in the CRDS spectrum.   

 The magnitude of the CRDS errors and their sensitivity to various parameters can 

then be explored.  Because there are many parameters which we might be interested in 

varying systematically, there are several versions of the program each designed to 

systematically vary an individual parameter.  In theory these various programs could be 

combined into one generalized program, but so far I have found this to be unnecessary. 
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7.1.2 Using  MATLAB: 

 Some general tips for running routines in Matlab.  The program files must be 

contained in the Current Directory shown in Matlab.  All saved files will also 

automatically go to the Current Directory.  You can specify any output names you want.  

Inputs that are arrays or matrices must be pre-existing named items in the Matlab 

workspace.  To run a routine, such as Lorentzbroaden.m broadening the high-resolution 

spectrum “inputspectrumname” to .05 cm-1, you would just type into the command line 

outputspectrumname = Lorentzbroaden(0.05, 2.0, inputspectrumname); 

and press enter.  The semicolon at the end ensures that the output spectrum is not printed 

to the Command Window.  When the program is finished, the new matrix 

“outputspectrumname” will appear in the Workspace.   

WARNING: If you run the program again and do not change the output name, it will be 

written over without any prompt to warn you! 

 Comments can be added to any routine by beginning the line with “%”. 

 To save any output matrix to a text file for manipulation in another program, use 

“save savefilename.out matrixname –ASCII” 

 When trying to go through the program, it is helpful to generate a fake matrix to 

manipulate.  Just define a matrix (“matrix=…” or [starting point: interval dist: finishing  

point].)  The matrix will appear in the Workspace.  If you want to manipulate it, just 

double click on it.  To quickly generate an array (such as a column array of scalefactors 

for use in SFBatchFixCut.m) you can use 

newarrayname = (startnumber:stepsize:endnumber)’; 
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The apostrophe at the end rotates the array from a row to a column.  If you want 

column i of matrix, just write matrixname(:,i).  If you want a row, write matrixname(i,:)).  

If you want to manipulate any matrix (change/add/delete elements), just double click on 

it. 

 A flow diagram for the “SFBatchVarCut.m” top-level program to illustrate which 

programs are interconnected is shown here.  The programs are highly modular so that 

changing and debugging programs is quite simple, even for a novice like me.  An arrow 

indicates a flow of outputs.  For example, RingSimVarCutBatch.m calls three different 

sub-routines, “Gaussiancomb.m”, “LMDecdayFitVarCut.m” and “CombDecay3.m”.  It 

then uses the information gathered from those sub-routines and sends outputs to 

“SFBatchVarCut.m”.  It is important when running a program in Matlab that all needed 

sub-routines are contained in the Current Directory. 

 

trapintegrate.m 
 

findindex.m matrixtrapintegrate.m 

LMDecayFitVarCut.m 
(fits simulated ringdown)

CombDecay3.m 
(convolves laser profile 
with spectrum) 

Gaussiancomb.m 
(generates laser 
profile) 

SFBatchVarCut.m 
(repeats below with different scalefactors)

RingSimVarCutBatch.m 
(true work horse:     prepare two spectra: 

     before and after   simulated ringdown fits)
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7.2 Program Documentation 
Programs are shown below in single-spaced text.  If using higher-level programs, sub-

routines need to be saved with the titles shown in quotation marks.  

7.2.1 Common Inputs   
 
absspectrum = data spectrum used for simulation.  Usually the output of 

Lorentzbroaden.m 

times = 1D column array specifying the time axis of the ringdowns.  Should reflect the 

number of points and sample rate of the experiment you are simulating. 

background = background value for 1/tau.  Should be in s-1. 

xi,xf = range of simulated spectrum.  (xi-regionwidth) and (xi-regionwidth) should not 

exceed the range of absspectrum. 

scannedwavenumbers = 1D column array of frequencies you want in the output 

spectrum.  This is where you would define the stepsize of the spectrum. Could be used to 

eliminate xi and xf with a short re-program. 

regionwidth = range in cm^-1 (or whatever units your spectra are in) over which the 

laser profile will be used to calculate the simulated ringdown at each point.  2*laserfwhm 

was sufficient in HNO3. 

laserfwhm=laserfwhm in cm^-1(or whatever units your spectra are in). Treats laser 

profile as Gaussian (for most simulations assumed to be 1.0 cm-1).  Actually treats profile 

as discrete spikes with spacing defined by … 

modespace = spacing of modes for Gaussian laser profile.  Generally assumed to be 

0.00666 cm-1 we expect from the YAG cavity.   
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7.2.2 “Lorentzbroaden.m” 
 
DESCRIPTION: This program is designed to take a high resolution, Doppler-limited 

spectrum and convolve it with a Lorentzian lineshape to simulate pressure-broadening. 

Reminder:  Lorentzian 
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For nitric acid, we found that having regionwidth=2*fwhm was insufficient.  If you can 

spare points at the edge of your spectrum, you should try for at least 4*fwhm. 

 
%Inputs  
%fwhm=fwhm of Lorentzian profile your are convolving 
%regionwidth=total width over which each spectral point will be "spread". 
%spectrum=2D matrix containing data spectrum to convolve.  Can be imported 
%using Matlabs "Import Data" routine.  First column must be x-axis  
%(frequency units must match fwhm and regionwidth) 
% second column can be any arbitrary frequency units. 
function broadspec=Lorentzbroaden(fwhm, regionwidth, spectrum); 
specspacing=spectrum(2,1)-spectrum(1,1); 
convpoints=round(regionwidth/(2*specspacing)); 
 
%this initiates the matrices used in the calculation 
Npoints=size(spectrum,1); 
broadspec=2*ones(Npoints-2*convpoints,2); 
 
%Here is the meat of it.  If you wanted to change this to use a different 
%shape you would change the second line. 
%Motivation for loop:  we are going to take each point of the spectrum.  Each point is 
%going to be treated like a Lorentzian i.e. the intensity assigned to each point is going to 
%be redistributed as a Lorentzian.  The transformed functions are then going to be 
%summed.   
for i=(convpoints+1):(Npoints-convpoints) 
    lorweights=1./((spectrum((i-convpoints):(i+convpoints),1)-spectrum(i,1)).^2 ... 
        +(fwhm/2)^2); 
    lorweights=lorweights/sum(lorweights); 
    broadspec(i-convpoints,1)=spectrum(i,1); 
    broadspec(i-convpoints,2)=sum(spectrum((i-
convpoints):(i+convpoints),2).*lorweights); 
end 
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7.2.3 “trapintegrate.m” 
 
DESCRIPTION: Used to integrate spectra.  Built into the Batch programs below, but can 

be used for any spectrum in the Workspace that is a 2D matrix with frequency in column 

1 and absorbance in column 2.  Fairly self explanatory. 

   
function trapintegral = trapintegrate(xi,xf,spectrum); 
ni = findindex (xi,spectrum); nf = findindex (xf,spectrum); 
trapintegral=0.0; 
trapintegral=sum(spectrum(ni:(nf-1),2).*(spectrum((ni+1):nf,1)-spectrum(ni:(nf-1),1))); 
 

7.2.4 “matrixtrapintegrate.m” 
 
DESCRIPTION: Can be used to get the integrals of multiple spectra contained in a 2D 

matrix where the columns are spectra (such as the outputs from the Batch programs 

below).  xi and xf should be entered as numbers, wavelengths should be a column array 

such as “scannedwavenumbers” described above, and spectraonly should be a matrix 

with each column as the absorbance points corresponding to the frequencies in 

“wavelengths”. 

 
function trapintegrals=matrixtrapintegrate(xi,xf,wavelengths,spectraonly) 
trapintegrals=[]; 
for i=1:size(spectraonly,2) 
    trapintegrals=[trapintegrals trapintegrate(xi,xf,[wavelengths,spectraonly(:,i)])]; 
end 
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7.2.5 “Gaussiancomb.m” 
 
DESCRIPTION: Generates a Gaussian shape for use in simulation programs using 

“laserfwhm”, “regionwidth”, and “modespace” to describe the laser profile.  The 

“combpattern” output is 2D array describing a Gaussian with 0 as the center point. 

 
function combpattern = Gaussiancomb(laserfwhm,regionwidthcm,modespace); 
 
lasersigma=laserfwhm/sqrt(8*log(2)); 
temp1=0:modespace:regionwidthcm/2; 
temp2=-temp1; 
temp2(1)=[]; 
combpoints=[fliplr(temp2) temp1]'; 
combintensities=exp(-(combpoints.^2)/(2*lasersigma^2)); 
combpattern=[combpoints combintensities]; 
 
 
 
 
 

7.2.6 “findindex.m” 
 
DESCRIPTION:  Simple program called to give the index number. 
 
function n=findindex(x,spectrum) 
n=interp1(spectrum(:,1),(1:size(spectrum,1))',x,'nearest'); 
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7.2.7 “SFBatchFixCut.m” and “SFBatchVarCut.m” 
 
DESCRIPTION: To be used when you want to run several simulations at various 

“concentrations” (scalefactors).  Shown is the program designed to do the ringdown fits 

cutting a fixed number of points at the start of the simulated ringdown, 

SFBatchFixCut.m.  The program for cutting a fraction of a ringdown for each trace, 

SFBatchVarCut.m, is identical but calls “RingSimVarCutBatch.m” in the for-loop. 

UNIQUE INPUTS: 

scalefactors = 1D column array containing all scalefactors you want used. 

NOTE: later in the RingSimFixedCutBatch, the scales factor is multiplied by the arbitrary 

number 6.024*10^18.  If working with known absorbances, it should be possible to 

change this number so that scaled absorbances represent the expected signal rather than 

its current arbitrary value. 

 
function [ringspecs,simplespecs,integrals,Summary] = SFBatchFixCut (scalefactors, xi, 
xf, absspectrum, background, scannedwavenumbers, times, laserfwhm, regionwidth, 
modespace); 
 
pringtemp=[]; 
rringtemp=[]; 
psimtemp=[]; 
rsimtemp=[]; 
ringspecs=[]; 
simplespecs=[]; 
Summary=[]; 
integrals=[]; 
Npoints=length(scannedwavenumbers); 
%length = # of rows in matrix 
 
%this iterates RingSimFixedCutBatch for each scalefactor 
for i=1:length(scalefactors) 
    [ringspec,simplespec]=RingSimFixedCutBatch(laserfwhm, regionwidth, modespace, 
times, scannedwavenumbers, background, scalefactors(i), absspectrum); 
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%see later pages for RingSimFixedCutBatch.m. 
    ringspecs=[ringspecs ringspec]; 
%[elements1 elements2] combines the elements into one large array 
    simplespecs=[simplespecs simplespec]; 
    integrals=[integrals [trapintegrate(xi,xf, [scannedwavenumbers ringspec]);... 
        trapintegrate(xi,xf, [scannedwavenumbers simplespec])]]; 
%notice the “;” between the trapintegrates.  This puts the results in two separate rows 
%this calculates the integrated absorption for ringsepc and simplespec. 
    pringtemp=[pringtemp ringspec(1)]; 
    rringtemp=[rringtemp ringspec(Npoints)]; 
    psimtemp=[psimtemp simplespec(1)]; 
    rsimtemp=[rsimtemp simplespec(Npoints)]; 
end 
 
%this creates a matrix with columns containing the simulated spectrum 
%integral, the integral of the spectrum with no CRDS error, and the first 
%and last point in the spectra for both the simulation and with no CRDS 
%error (critical for trying to evaluate the error outside the bounds of 
%your simulation). 
Summary=[integrals' pringtemp' psimtemp' rringtemp' rsimtemp']; 
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7.2.8 “ScalefactorBatchCustom.m” 
 
DESCRIPTION: This is the same as SFBatchVarCut.m but it is designed so that any 

arbitrary laser profile can be used (above routines used Gaussian profile).  The 

normalized laser profile needs to be a pre-existing 2D matrix with the first column as 

Δ(frequency) with the center of the profile as 0 and the second column the normalized 

intensity at each value of Δ(frequency). 

 
function [ringspecs, simplespecs, integrals, Summary] = ScalefactorBatch (scalefactors, 
xi, xf, absspectrum, background, scannedwavenumbers, times, laserprofile); 
%in comparison with SFBatchFixCut, laserprofile has replaced inputs laserfwhm, 
%regionwidth and modespace. 
 
pringtemp=[]; 
rringtemp=[]; 
psimtemp=[]; 
rsimtemp=[]; 
ringspecs=[]; 
simplespecs=[]; 
Summary=[]; 
integrals=[]; 
Npoints=length(scannedwavenumbers); 
 
for i=1:length(scalefactors) 
    [ringspec,simplespec]=RingdownSimCustom(laserprofile, times, 
scannedwavenumbers, background, scalefactors(i), absspectrum); 
%see later pages for RingdownSimCustom.m 
    ringspecs=[ringspecs ringspec]; 
    simplespecs=[simplespecs simplespec]; 
    integrals=[integrals [trapintegrate(xi,xf, [scannedwavenumbers ringspec]);... 
        trapintegrate(xi,xf, [scannedwavenumbers simplespec])]]; 
    pringtemp=[pringtemp ringspec(1)]; 
    rringtemp=[rringtemp ringspec(Npoints)]; 
    psimtemp=[psimtemp simplespec(1)]; 
    rsimtemp=[rsimtemp simplespec(Npoints)]; 
end 
 
Summary=[integrals' pringtemp' psimtemp' rringtemp' rsimtemp']; 
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7.2.9 “fwhmBatch.m” 

DESCRIPTION: Very similar to SFBatch programs above, but you can run a batch of 

various values of laser fwhm (laserfwhms) instead of scalefactors.  widthfactor is a 

number which will be multiplied by each laser fwhm to define the “regionwidth” 

described above. 

 
function [ringspecs,simplespecs,integrals,Summary] = fwhmBatch (scalefactor, xi, xf, 
absspectrum, background, scannedwavenumbers, times, laserfwhms, widthfactor, 
modespace); 
 
pringtemp=[]; 
rringtemp=[]; 
psimtemp=[]; 
rsimtemp=[]; 
ringspecs=[]; 
simplespecs=[]; 
Summary=[]; 
integrals=[]; 
Npoints=length(scannedwavenumbers); 
 
for i=1:length(laserfwhms) 
    [ringspec,simplespec]=RingdownSim3(laserfwhms(i), laserfwhms(i)*widthfactor, 
modespace, times, scannedwavenumbers, background, scalefactor, absspectrum); 
    ringspecs=[ringspecs ringspec]; 
    simplespecs=[simplespecs simplespec]; 
    integrals=[integrals [trapintegrate(xi,xf, [scannedwavenumbers ringspec]);... 
        trapintegrate(xi,xf, [scannedwavenumbers simplespec])]]; 
    pringtemp=[pringtemp ringspec(1)]; 
    rringtemp=[rringtemp ringspec(Npoints)]; 
    psimtemp=[psimtemp simplespec(1)]; 
    rsimtemp=[rsimtemp simplespec(Npoints)]; 
end 
 
Summary=[integrals' pringtemp' psimtemp' rringtemp' rsimtemp']; 
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7.2.10 “RingSimFixedCutBatch.m” and 
“RingSimVarCutBatch.m” 

DESCRIPTION: Calculates the simulated CRDS spectrum and convolved spectrum for 

each scalefactor.  Shown is RingSimFixedCutBatch.m which uses fits cutting a fixed time 

period at the start of each ringdown.  RingSimVarCutBatch.m uses fits cutting a fraction 

of a lifetime at the start of each ringdown, and replaces LMdecayfitmodified.m with 

LMDecayFitVariableCut.m 

function [ringspec,simplespec]=RingSimFixedCutBatch(laserfwhm, regionwidth, 
modespace, times, scannedwavenumbers, background, scalefactor, absspectrum) 
combpattern=Gaussiancomb(laserfwhm,regionwidth,modespace); 
Nscans=size(scalefactor,1); 
Npoints=size(scannedwavenumbers,1); 
ringspec=zeros(Npoints,Nscans); 
%zeros(m,n) generates m x n matrix with all elements = 0 
simplespec=zeros(Npoints,Nscans); 
tempdecay=zeros(size(times)); 
%if zeros(m), creates m x m matrix 
simpleinvlifetime=0.0; 
tempfitparam=[]; 
 
%This does the work of calling Combdecay3.m and LMDecayfitmodified.m for each 
%point in the simulated spectra and compiling those numbers for export to 
%SFBatchFixCut.m.   
for j=1:Nscans 
    invlifetimes=[absspectrum(:,1) background + scalefactor(j)* 6.024*10^8* 
absspectrum(:,2)]; 
%creates two column matrix with x and adjusted y.  6.024*10^8 is arbitrary 
for i=1:Npoints 
    [tempdecay simpleinvlifetime] = CombDecay3 (scannedwavenumbers(i), times, 
combpattern, invlifetimes); 
%will discuss CombDecay3.m later 
    tempfitparam = LMdecayfitmodified (times, tempdecay, tempdecay(1), 
simpleinvlifetime); 
%will discuss LMdecayfitmodified.m later 
    ringspec(i,j)=tempfitparam(2)-background; 
    simplespec(i,j)=simpleinvlifetime-background; 
%These two outputs will later be called for in the batch files and combined with the 
%scanned wavelengths to reconstruct the spectra. 
end 
end 
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7.2.11 “RingdownSim3.m” 

DESCRIPTION: This is the first version of the RingdownSim program that is designed 

for a single set of inputs.  The version here uses LMDecayfit.m which fits the full 

simulated ringdowns.  It could easily be modified to use either of the other versions of 

LMdecayfit by replacing it with the desired version below.  

 
function [ringspec,simplespec]=RingdownSim(laserfwhm, regionwidth, modespace, 
times, scannedwavenumbers, background, scalefactor, absspectrum) 
combpattern=Gaussiancomb(laserfwhm,regionwidth,modespace); 
Npoints=size(scannedwavenumbers,1); 
ringspec=zeros(Npoints,1); 
simplespec=zeros(Npoints,1); 
tempdecay=zeros(size(times)); 
simpleinvlifetime=0.0; 
tempfitparam=[]; 
invlifetimes=[absspectrum(:,1) background+scalefactor*6.024*10^8*absspectrum(:,2)]; 
 
for i=1:Npoints 
    [tempdecay 
simpleinvlifetime]=CombDecay3(scannedwavenumbers(i),times,combpattern, 
invlifetimes); 
    tempfitparam=LMdecayfit(times,tempdecay,tempdecay(1),simpleinvlifetime); 
    ringspec(i)=tempfitparam(2)-background; 
    simplespec(i)=simpleinvlifetime-background; 
end 
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7.2.12 “RingdownSimCustom.m” 

DESCRIPTION: This is the version of RingdownSim that can use an arbitrary user-

defined laser profile.  Otherwise the same as other versions.  Currently uses 

“LMdecayfitVariableCut.m” but could be changed to the Fixcut version. 

 
function [ringspec,simplespec]=RingdownSim(laserprofile, times, scannedwavenumbers, 
background, scalefactor, absspectrum) 
Npoints=size(scannedwavenumbers,1); 
ringspec=zeros(Npoints,1); 
simplespec=zeros(Npoints,1); 
tempdecay=zeros(size(times)); 
simpleinvlifetime=0.0; 
tempfitparam=[]; 
invlifetimes=[absspectrum(:,1) background+scalefactor*6.024*10^8*absspectrum(:,2)]; 
 
for i=1:Npoints 
    [tempdecay simpleinvlifetime] = CombDecay3 (scannedwavenumbers(i), times, 
laserprofile, invlifetimes); 
    tempfitparam = LMdecayfitVariableCut (times, tempdecay, tempdecay(1), 
simpleinvlifetime); 
    ringspec(i)=tempfitparam(2)-background; 
    simplespec(i)=simpleinvlifetime-background; 
end 
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7.2.13 “Combdecay3.m” 
 
DESCRIPTION: This creates the simulated ringdown decays that will be fit later.  It also 

calculates the signal at each point that would be seen by simply convolving the spectrum 

with combpattern.  This is called by the RingSim programs.  Many of the inputs here will 

be called by index in the main programs. 

 

UNIQUE INPUTS: cavityinvlifetimes contains the inverse ringdown lifetimes for given 

wavenumber input light. First column is wavenumber, second is inverse lifetime (1/τ). 

 
function [decay,simpleavg] = CombDecay (centerwavenumber, times, combpattern, 
cavityinvlifetimes); 
 
%centerwavenumber is a number (the frequency at which the laser is centered) 
%times is a 1d array of desired times to sample the decay (i.e. the 
%oscilloscope decay trace data) 
%combpattern is a 2d array. It is a simulation of the frequency spectr 
%um of the laser shot, assuming wavenumber 0 is the center position. 
%The first column is wavenumbers and the second 
%column indicates the laser intensity at the corresponding wavenumber. 
%cavityinvlifetimes contains the inverse ringdown lifetimes for given wavenumber 
%input light. First column is wavenumber, second is inverse (1/e) lifetime. 
%decay is the output decay signal and simpleavg is the 
%cavity inverse lifetime that would be obtained by simply convolving 
%the input spectrum with the comb pattern. 
 
timesize = size (times,1); 
decay = zeros (timesize,1); 
combsize = size (combpattern,1); 
combinvlifetimes = zeros (combsize,1); 
combinvlifetimes = interp1 (cavityinvlifetimes(:,1), cavityinvlifetimes(:,2), 
combpattern(:,1)+centerwavenumber, 'linear',NaN); 
%interp1 is a interpolation (table lookup) function contained in Matlab.   
%YI = interp1(X,Y,XI).  Sometimes X is left out.  This assumes that X=1:N.  Note XI 
%stands for x interval i.e. if X = 0:10, then XI=0:.25:10.   
%Sometimes, after XI, a “method” is chosen in which the interpolation is done.  The 
%default is linear interpolation.  Sometimes after ‘method,’ the ‘extrap” option can be 
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%stated.  This chooses a method for extrapolating any elements of XI outside the 
interval %spanned by X.  Alternatively, “EXTRAPAVAL” replaces these values with 
%EXTRAPVAL.  NaN and 0 are often used for this number. 
 
%Aside:  Interpolation: constructing new data points from discrete set of known data 
 %           Extrapolation: find value of function at point x which is outside xk of function 
 
for i=1:timesize 
    decay(i)=sum(combpattern(:,2).*exp(-times(i)*combinvlifetimes)); 
end 
simpleavg=sum(combpattern(:,2).*combinvlifetimes)/sum(combpattern(:,2)); 
%Notice that the combpattern is normalized here, as the Gaussian was not normalized 
%in the subroutine.  The decays generated above will be sent into LMDecayFit programs. 
%The decay does not need to be normalized as it is just going to be refit later.  
%Multiplying by a constant for normalization will not change the ringdown time.
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7.2.14 “LMDecayFitModified.m” 
 
DESCRIPTION: This actually fits the simulated decay traces using the Levenberg-

Marquardt algorithm.  I believe the fitting algorithm was taken from Numerical Recipes, 

but I’m not sure.  This particular iteration has a fixed amount of time cut from the 

beginning of the trace before it is fit.   

INPUTS: fulltimes is the decay time points (same as times from above). 

fulldecsignal is the decay signal as generated by CombDecay3.m 

inita initial guess for the amplitude (generally taken as the first point in “fulldecsignal” 

initb is the initial guess for the lifetime (generally taken from the “simpleinvlifetime” 

output of CombDecay3.m. 

function fitparam=LMdecayfit(fulltimes, fulldecsignal, inita, initb) 
 
%This part makes the fit neglect times below a certain threshold 
 
%This is the threshold value, in whatever units your times are in: 
%Keep negative if you want it to work just as before. 
%Must be changed manually here (does not read from higher-level programs). 
tbegin=16e-8; 
%This is the code that takes care of the cutting. 
tmask=fulltimes>tbegin; 
times=fulltimes(tmask); 
decsignal=fulldecsignal(tmask); 
% The rest of this is fits the remaining points. 
chisq=0.0; 
ochisq=0.0; 
a=0.0; 
oa=0.0; 
da=0.0; 
b=0.0; 
ob=0.0; 
db=0.0; 
lambda=0.001; 
beta=zeros(2,1); 
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alpha=zeros(2,2); 
convergedflag=1; 
convergecrit=0.005; 
Niterations=1; 
Nmax=50; 
oa=inita; 
ob=initb; 
a=oa; 
b=ob; 
ochisq=sum((decsignal-oa*exp(-ob*times)).^2); 
 
while convergedflag&&(Niterations<Nmax) 
    beta=zeros(2,1); 
    alpha=zeros(2,2); 
    exptemp=exp(-ob*times); 
    beta(1)=sum((decsignal-oa*exptemp).*exptemp); 
    beta(2)=sum(-oa*times.*(decsignal-oa*exptemp).*exptemp); 
    alpha(1,1)=sum(exptemp.^2)*(1+lambda); 
    alpha(1,2)=sum(-oa*times.*exptemp.^2); 
    alpha(2,1)=alpha(1,2); 
    alpha(2,2)=sum(oa^2*times.*times.*exptemp.^2)*(1+lambda); 
    da=(alpha(2,2)*beta(1)-alpha(1,2)*beta(2))/(alpha(1,1)*alpha(2,2)-
alpha(1,2)*alpha(2,1)); 
    db=(alpha(1,1)*beta(2)-alpha(2,1)*beta(1))/(alpha(1,1)*alpha(2,2)-
alpha(1,2)*alpha(2,1)); 
    a=oa+da; 
    b=ob+db; 
    chisq=sum((decsignal-a*exp(-b*times)).^2); 
    if chisq>ochisq 
        lambda=lambda*10; 
    else 
        lambda=lambda*0.1; 
        oa=a; 
        ob=b; 
        if ((ochisq-chisq)<(chisq*convergecrit))||chisq==0 
            convergedflag=0; 
        end 
        ochisq=chisq; 
    end 
    Niterations=Niterations+1; 
end 
 
fitparam=[a ; b ; Niterations;ochisq]; 
%Output file gives a = amplitude, b = exponent factor, number of iterations that were 
%used in the Levenberg-Marquardt algorithm, and the chi^2 value of the fit. 
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7.2.15 “LMDecayFitVariableCut.m” 
DESCRIPTION:  This is identical to “LMDecayFitModified.m” described above, but a 

fraction of the decay is cut instead of a fixed amount. 

 
function fitparam = LMdecayfitVarCut(fulltimes, fulldecsignal, inita, initb) 
 
%this makes an initial fit, in order to get a guess for the lifetime 
tfitparam=LMdecayfit(fulltimes, fulldecsignal, inita, initb); 
%This part makes the fit neglect times below a certain threshold 
tempa=0.0; 
tempb=0.0; 
tempa=tfitparam(1); 
tempb=tfitparam(2); 
%This is the threshold value, in whatever units your times are in: 
%Keep negative if you want it to work with no cut.  Currently set to cut 
%half of a lifetime.  Needs to be changed manually on the following 
%line. 
tbegin=0.5*(1/tempb); 
 
%This is the code that takes care of the cutting 
tmask=fulltimes>tbegin; 
times=fulltimes(tmask); 
decsignal=fulldecsignal(tmask); 
% This is the end of this part, the rest of the function is as in LMDecayFitModified.m 



 

 

186

7.2.16 “SingledecayVarfitRes.m”/ “SingledecayFixCutRes.m” 

DESCRIPTION: These programs are designed to run at a single frequency and allow you 

to look at the actual ringdowns.  The output decays is a 3-column matrix with the first 

column the simulated ringdown, the second column the fit to the simulated ringdown and 

the third column the residual.  Shown in the Varfit version, FixCut is the same but with 

the LMdecayfit program changed. 

 
function [decays,ringinvT,simpleinvT] = SingledecayVarfitRes (laserfwhm, regionwidth, 
modespace, times,wavenumber, background, scalefactor, absspectrum) 
 
combpattern=Gaussiancomb(laserfwhm,regionwidth,modespace); 
decays=zeros(size(times,1),3); 
 
[decays(:,1),simpleinvT] = CombDecay3(wavenumber,times,combpattern, ...  
    [absspectrum(:,1) background+ scalefactor* 6.024*10^8* absspectrum(:,2)]); 
fitparam= LMdecayfitVariableCut (times, decays(:,1), decays(1,1), simpleinvT); 
decays(:,2)=fitparam(1)*exp(-fitparam(2)*times); 
decays(:,3)=(decays(:,1)-decays(:,2)); 
ringinvT=fitparam(2)-background; 
simpleinvT=simpleinvT-background; 


