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Abstract 
  

 This thesis describes laboratory experiments investigating atmospheric reactions 

using cavity ringdown spectroscopy (CRDS).  The reactions studied were the formation 

of peroxynitrous acid (HOONO) in the termolecular association reaction OH + NO2 (R1) 

and the isomerization of alkoxy radicals.  Experiments were conducted in a gas flow cell 

combining UV photolysis to initiate reactions with infrared CRDS for the detection of 

products. 

 Formation of the weakly bound HOONO in the atmosphere reduces the yield of 

nitric acid (HONO2) from R1 and lowers the efficiency of R1 as a sink for radicals.  The 

cis-cis conformer of HOONO was detected through its fundamental ν1(OH-stretch) 

spectrum centered at 3306 cm-1.  The integrated absorbance of the ν1 bands for HOONO 

and HONO2 were measured with CRDS and used to calculate the branching ratio (BR = 

kHOONO / kHONO2) of R1.  Initial experiments using a microwave discharge to initiate R1 

measured BR at 298 K and 14 torr, but were limited to low pressures by the discharge.  

BR was then reinvestigated using pulsed laser photolysis to initiate R1.  BR was 

measured over the range 20–760 torr at 298 K. 

 In support of these branching ratio measurements, a detailed study of the 

spectroscopy of HONO2 was conducted.  CRDS experiments with moderate resolution (1 

cm-1) are known to give incorrect absorbances and line shaes when measuring spectral 

features with much narrower linewidths.  However, the magnitude of these CRDS errors 

when probing a highly congested spectrum such as that of HONO2 was unknown.  We 
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observed reductions in the HONO2 integrated intensity up to 60% and quantified these 

errors as a function of concentration and pressure.   

 Alkoxy radicals (RO) are an important class of intermediates in the oxidation of 

hydrocarbons, and they react via several mechanisms.  For longer chain RO isomerization 

(forming HOR) becomes a major pathway, but isomerization rates have never been 

directly measured.  Continuing work described in Eva Garland’s thesis, we measured the 

infrared spectrum of alkoxy radical isomerization products (HOR and HORO2) formed 

within 100 μs.  We then used this spectrum to measure the relative rate of isomerization 

to reaction with oxygen for n-butoxy and 2-pentoxy radicals. 
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