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Abstract

For a finite Galois extension K/Q of number fields with Galois group G and a motive
M = M’ @ h%(Spec(K))(0) with coefficients in Q[G], the equivariant Tamagawa number
conjecture relates the special value L*(M,0) of the motivic L-function to an element of
Ky(Z|G];R) constucted via complexes associated to M. The conjecture for nonabelian
groups G is very much unexplored. In this thesis, we will develop some techniques to verify
the conjecture for Artin motives and motives attached to elliptic curves. In particular, we
consider motives h°(Spec(K))(0) for an Ag-extension K/Q and, h'(E x Spec(L))(1) for an
Ss-extension L/Q and an elliptic curve E/Q.
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Chapter 1

Introduction

Special values of L-functions attached to objects arising in number theory and arithmetic
geometry are known (or expected) to carry a rich source of information. There has been
an enormous amount of research during the past 150 years dedicated to the study of these
special values, resulting in beautiful theorems and remarkable conjectures. Notable examples
are the analytic class number formula and the conjecture of Birch and Swinnerton-Dyer. In
this thesis, we present two approaches to verify a conjecture of Burns and Flach concerning
the special values of L-functions attached to motives with coefficients.

Let k£ be a number field and let X be a smooth projective variety over k. For integers
n,r € Z with n > 0 let M be the (pure) Chow motive h™(X)(r), which comes equipped
with deRham, Betti and [l-adic realizations. Let A be a finitely generated semisimple Q-
algebra that acts on M. One can then define an equivariant motivic L-function L(M, s)
attached to M that encompasses the action of A on the motive (see [8] or [23]). The
equivariant Tamagawa number conjecture ([8] Conj. 4) relates the leading coefficient in the
Taylor expansion of L(M, s) at s = 0 to an algebraic element arising from perfect complexes
attached to M. The conjecture on the one hand generalizes conjectures of Stark, Chinburg,
Gross, Rubin and others, and on the other hand generalizes the conjecture of Birch and
Swinnerton-Dyer.

Our interest is in two particular motives h°(Spec(K))(0) and h'(Ek)(1) where K/k is
a finite Galois extension and Ex is the base change of an elliptic curve defined over k. The
formulation of the equivariant conjecture itself depends on various other conjectures, many
of which are known in these two special cases that we are interested in. We shall briefly

explain below the key aspects and the importance of these cases.
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1.1 The motive h'(Spec(K))(0)

In the first setting, we have a finite Galois extension K /k of number fields with Galois group
Gal(K/k) = G. Let S be a finite set of primes in K stable under the action of G. For
an irreducible complex character y of G, let Lg(x,s) denote the Artin L-function and let
L%(x,0) denote the leading coefficient in the Taylor series expansion of Lg(x,s) at s = 0.
Then one can view Lg(s) := (Ls(x, 3))xe§ as a function with values in er@ C = ¢(C[aG)),

where ( is the center and G is the set of irreducible complex characters of G. Further,

L5(0) = (L5(x, 0)), g lies in ((RIG]) ™.

There exists a natural map arising from a long exact sequence of K-theory
d: ¢(R[G])* — Ko(Z[G], R),

where Ko(Z[G],R) is the relative K group (cf. [8]). Using Tate sequences one can construct
an element RQ(K/k) € Ko(Z[G),R). We let TQ(K/k) = RQ(K/k) — 6(L%(0)). The
equivariant Tamagawa number conjecture for the motive M = h°(Spec(K)); (with an action
by the semisimple algebra A = Q[G]) states that TQ(K/k) = 0. The vanishing of TQ(K /k)
in Ko(9M,R), where 91 is a maximal Z-order containing Z[G], is equivalent to the strong
Stark conjecture as stated in [14]. Also, the vanishing of TQ2(K/k) in K((Z[G]) is equivalent
to the central conjectures of [12]. The equivariant conjecture also recovers several refinements
of the Stark conjecture due to Chinburg, Gross, Rubin, and others (cf. [6]).

For nonabelian extensions K/k, the vanishing of TQ(K/k) is known for certain dihedral

extensions (cf. [5]) and for an infinite family of quaternion extensions (cf. [9]). One of the

key ideas used in [9] is that the map
Ko(Z[G],R) — Ko(M,R) x Ko(Z[G™],R) x Ko(Z[G])

is injective for G = s, the quaternion group (here 9 is a maximal Z-order containing
Z|G]). However, this fails to hold for G = A4 (see Appendix A).

In this thesis, we shall restrict to a particular extension K/Q with Gal(K/Q) ~ Ay,
and develop some techniques for computing RQ(K/Q). We use the ideas of Chinburg ([12])
to construct the Tate sequence and explicitly compute the determinants arising from this

sequence to evaluate RQ(K/Q), and verify the vanishing of TQ(K/Q). One could possibly
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extend these techniques to verify the conjecture for an infinite family of A4-extensions.

1.2 The motive h'(Ex)(1)

In this case we consider an elliptic curve E defined over k and look at the base change curve
Ex := E Xgpec(r) Spec(K). There is a natural action of G on Ek, and we let A = Q[G].

The associated motivic L-function is L(Ek,s) = (L(E ® x,s)) which takes values in

XE@’

er@ C ~ ((C[G]). Because of the center of symmetry, the most interesting special value

of this L-function is
L*(Ex, 1) = (L*(E @ x,1)), g € (RG],

where we write L* to denote the leading coefficient in the Taylor expansion of the L-funciton
at s = 1. Part of the equivariant conjecture claims that S(L*(EK, 1)), which a priori is an
element of Ko(Z[G];R), is in fact an element of K((Z[G]; Q). This fact is known in several
cases due to Shimura and others (cf. [33], [4]).

Now, for a rational prime [ let 7} := h&ln E(Q)/I"™ and let V; := T; ®z, Q;. Let S; be a
finite set of primes containing the infinite primes, primes over [ and primes of bad reduction.

One can then define a perfect Z;|G]-complex RI'.(Ok,s,,T;). Via the height pairing, period

isomorphism and comparison isomorphism we can associate to this complex an element

RQ(E, Z,[G]) € Ko(Zi[G]; Qy).

-~

The equivariant conjecture claims that the l-part of §(L*(Fk, 1)) equals RQ(E, Z;[G]). This
conjecture generalizes the reputed conjecture of Birch and Swinnerton-Dyer (see [22] for
details).

In this thesis, we give a naive approach to verify the conjecture for the motive h'(Ex)(1).
We use modular symbols to compute special values of L-functions with abelian twists, and
use analytic methods to get numerical values of the same, with nonabelian twists. Under
some hypotheses we will use these L-values to give numerical evidence to the conjecture.

The thesis is organized as follows. In Chapter 2 we briefly define the terms involved
and state the equivariant conjecture. In Chapter 3 we reinterpret the conjecture for Artin

motives, and give a detailed description of a method to verify the conjecture in the nonabelian
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setting. Much of this Chapter is part of [27]. Further, we apply this method and prove the
conjecture in a particular case. In Chapter 4 we consider the motives arising from the base
change of elliptic curves. We give the details of computing L-values using modular symbols,
and using analytic methods. We apply these to give numerical evidences to the conjecture
(again in a nonabelian setting). This Chapter is part of the article [28]. In the appendix, we
give a brief account of the history of various results and conjectures related to the special

values of L-functions that eventually led to the formulation of the equivariant conjecture.

1.3 Notations

e For a group G, we denote by G the set of all irreducible complex characters of G.
e For a number field k, we denote by G}, the Galois group of k/k.

e For a finite place [ in a number field k, we denote by Fr; the Frobenius element

attached to [ in G,.
e S = set of all infinite places (of the underlying number field).

e For a number field k, we denote by Oy the ring of integers in k. Further, for a finite

set S of primes, O, s denotes the ring of S-integers.
e For any ring R, we let ((R) denote the center of R.
e For an R-module M, we let M* to be the R-dual Hompr(M, R).
e Given a ring homomorphism ¢ : R — S and an R-module M, we let Mg := M Qg S.

e For a ring R, we let R°P denote the opposite ring.



Chapter 2

The Conjecture

2.1 Some algebra

2.1.1 Algebraic K-groups

For a ring R (with unit element), we let PMod(R) denote the category of finitely generated
projective R-modules. We define Ky(R) to be the abelian group generated by the symbols
[P] for each P € PMod(R), with relations [P;] + [P3] = [P] for every short exact sequence

0—-P— P, — P3—0.

The group K1(R) is defined to be the abelianization of the direct limit lim GL,(R). Equiv-
alently, one can define K1(R) to be the abelian group generated by symbols [P, o] for every
P € PMod(R) and a € Autgr(P), with relations

[P1, 1] + [P, az] = [Ps, 3],
for every commutative diagram of short exact sequences
0— (P1,aq) = (P2,a2) — (Ps,a3) — 0,
(ct. [17]).

Note that a ring homomorphism ¢ : R — S induces homomorphims ¢! : K;(R) — K;(S5),
for i = 0,1. One can define a relative K-group K(R, ¢), and morphisms K;(S) — Ky(R, ¢)



and Ko(R, ¢) — Ko(R) such that
K1(R) — Ki1(S) — Ko(R, ¢) — Ko(R) — Ko(5)

is exact. In terms of generators and relations, the group Ky(R,¢) is generated by triples
[M,N; )], where M, N € PMod(R) and A : M ® g S — N ®p S is an isomorphism of S-
modules, and with relations given by short exact sequences (see [17] §40B for details). When
the morphism ¢ is evident we write Ko(R;S) for the group Ky(R, ¢). Also, for an R-module
M, welet Mg := M ®pgS.

Now, let I' be a field and let R be a central simple algebra over F. Fix an extension
F'/F such that R’ := R®p F' ~ M, (F’) and an indecomposable idempotent e € R'. Let V
be a finitely generated R-module and let ¢ € Endgr(V'). We define the reduced rank rrg(V)
of V as

(V) := dimp (e(V @ F'))

and the reduced determinant detredg(¢) of ¢ as
detredr(¢) = dﬁg{t(gb @ 1le(V @p F')).
The reduced rank induces a morphism
rrr - Ko(R) — Z.

The detredr(¢) is an element F*, which is independent of the choices of F’ and e. It induces

a morphism, called the reduced norm map,
nrp : Kl(R) — FX
(cf. [17]).

2.1.2 Virtual objects

Let R be any arbitrary ring. As before, let PMod(R) denote the category of finitely generated

projective R-modules. In [18], Deligne has constructed a category V(R) of virtual objects



and a universal determinant functor

[]:PMod(R) — V(R)

satisfying certain conditions as in [8]. The above functor naturally extends to a functor

[]: DP(R) = V(R)

where DP(R) is the category of perfect complexes of R-module. A complex C* of R-module

is called perfect if there is a chain
C*—-Cy—C3---— P*

of quasi-isomorphisms, where P*® is a bounded complex of finitely generated projective mod-
ules.

It follows from the proof of the existance of V(R) in [18] that there are isomorphisms

Ki(R) = V()
for i = 0,1 where K;(R) denotes the algebraic K-group associated to R (see [31] for details),
and mo(V(R)) is the group of isomorphism classes of objects of V(R) and m(V(R)) =
Auty () (Lv(r))-

Given a finitely generated subring S of Q, an S-order 2 of a finite dimensional Q-algebra
A is a finitely generated S-module such that A ®z Q = A. For any such S-order, and any
field extension F' of Q, one has a notion of relative virtual objects V(2; F') and V(U,; Q,),

where 2, = A ®y Z, (see [8] for details). There are isomorphisms
p p
7o(V(; F)) — Ko(U; F)

and

WO(V(leS Qp)) — KO(le @p)a

which are compatible with the Mayor-Vietoris sequences (cf. Prop. 2.5 in [8]).

Remarks.
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1. Let R be a commutative semisimple ring. Then an R-module P is projective if and
only if it is locally free at all the prime ideals of R. In this case, the determinant

functor can be defined locally by
Detg, (P,) = </\mmkﬁ"p (Pp)Pp, rankp, (Pp))

for every prime p € Spec(R). Note that thus defined Det(P) is a graded line bundle.
Let P(R) denote the category of graded line bundles over R. In the above notation, if

2 is a finite flat commutative Z-algebra then there is a natural equivalence of categories

PR = VL.

2. Even if R is not commutative, but is semisimple, one can construct the determinant
functor in a similar fashion by looking at the indecomposable idempotents. We give

this construction below since it is key to some of our computations.

By Wedderburn’s decomposition we can assume that R is a central simple algebra over
a field F. So R ~ M, (D) for some division ring D with center F'. Further, by fixing an
exact Morita equivalence PMod(M,, (D)) — PMod(D), we may assume that R = D.
Fix a field extension F’/F such that D ®p F' ~ My(F"). Let e be an indecomposable
idempotent of My(F’) and let eq,...,eq be an ordered F’-basis of eMy(F’). Let V
be a finitely generated projective (and hence free) D-module. Let {vq,...,v,} be a
D-basis of V. Set b := Ae;vj. This is an F'-basis of Detp/(e(V ®@p F')). Since any
change in the basis {v;}; multiplies b by an element of F'*, the F-space spanned by b

yields a well-defined graded F-line bundle. This defines the determinant functor.

2.2 [L-functions

Let X be a smooth projective variety defined over a number field k. For integers n,r with

n >0, let M be the pure (Chow) motive h"(X)(r). The realizations of M are

e Hyr(M) := H7,(X/k), afiltered k-space with its natural decreasing filteration {F"H'5(X/k)}icz
shifted by r;

o H;(M):= H"%(X xy k,Q(r)), a compatible system of I-adic representations of Gy;
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e H,(M):= H"(cX(C),(27mi)"Q), for each o € Hom(k,C) a Q-Hodge structure over R

or C according to whether v(o) is real or complex.

Let A be a finitely generated semisimple Q-algebra that acts on M. It therefore acts
naturally on all the realizations of M. We shall denote the motive by M4 to indicate the

action of A. For a finite place v of k of residue characteristic p, and a prime [ # p define
Ly(Ma,T) := detreda, (1 — Fry ' [H(Ma)™) € ¢(4)[T).

A compatibility conjecture of Tate implies that this element belongs to ((A)[T] and is

independent of the choice of I. We shall henceforth assume this. We can now define
L(Ma,s) = [ [ Lo(Ma, Nv™).
v
For any finite set of primes S (containing the infinite primes), set

Ls(Ma,s) = [ Lo(Ma, Nv™>).
v¢S
The above products converge in the half plane Re(s) >> 0. Our interest is to relate the
special values of these L-functions to algebraic properties of M4.

Examples.

1. Let K/k be finite Galois extension of number fields, and let G be its Galois group.
Then, there is a natural action of A = Q[G] on the motive M = h%(Spec(K))(j). The
relative L-function Lg(M4,s) attached to this motive is the tuple (Lg(x,j + S))Xe@

of Artin L-functions attached to the irreducible complex characters of G. This tuple

takes values in
[] © = ¢(Cl6) = (A g O).
xX€G
2. Let F be an elliptic curve defined over k, and let K/k be a finite Galois extension of
number fields with Galois group G. The group G and hence the algebra A = Q[G] acts
on the motive M = h'(E Xgpec(r) Spec(K))(1). The L-function L(May,s) attached to
this motive is the tuple (L(E ® x,1 + s))xeé of Hasse-Weil L-functions twisted by

irreducible complex characters of G.
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2.3 The isomorphism .

For v € S, the Deligne cohomology is the cohomology of the complex
Hy(M) ®g R 2% (Hy(M) ®g k)" /F°

induced by the inclusion H,(M) ®g R — H,(M) ®q k,. The comparison isomorphism

Hy(M) ®qg ky — Hap(M) ®j.p ky
is Gy-equivariant and hence the above complex can be written as
DreSo (Ho(M) @9 R) 2 @yes Hap(M) @y ky/FO.

For the motive M = h™(X)(r) one can define motivic cohomology H*(k, M) and its finite
parts H}(k,M) (see [8] for details).

Conjecture 1. There exists an exact sequence of finite-dimensional Ag-spaces
0 — Hk, M) ©g R - ker ans ~2» H}(k, M*(1)) g R)*

s HHk, M) @ R 2 coker any - (H°(k, M*(1)) ®g R)* — 0

where € is the cycle class map into the singular cohomology, rp is the Beilinson regulator

map, and 0 is the height pairing.

We set
2(M) = [Hp(k, M) [H (k, M)] ™ 0 [H (k, M(1)7]
B[ (k, M* (1)) B Myes [Ho(M)] ™ K [Hap(M)/F°]
where [ | : DP(A) — V(A) is the determinant functor as defined in the previous section.

The above conjectured exact sequences gives an isomorphism

Yoo - E(M) R4 AR =~ 1VAR'
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Remark. Since H]Q(M ) is defined as the image of the cycle class map it is known to be
finite dimensional. The vector space H}(M ) is also expected to be finite dimensional, but
this is not known in general. It is known in the cases we are interested in (and in some trivial
cases). For M = h%(Spec(K))(r), one has H}(M) ~ Ko_1(Ok) ®z Q, which is known to
be finite dimensional by a Theorem of Quillen (cf. [31]). Further, for a smooth projective
curve X/k and M = h'(X)(1), one has H}(M) = Pic®(X) (k) ®z Q, which is known to be
finite dimensional by Mordell-Weil Theorem.

Examples.

1. For M = h%(Spec(K))(0), K/k a finite Galois extension of number fields with Galois
group G, one has

E(M) = [Us,, ®z QIR [Xs,, ®z Q™

where for a finite set S of primes, Ug denotes the group of S-units in K, and Xg =

ker(®yesZ — Z). The map ajy is the regulator map
Us,, ®@zR — Xg,, @z R,

which is defined by
u —Zlog\u!v S0,

vES

The isomorphism Joo : E(M) ® R[G] ~ 1y, is induced by the map a.
2. For M = h'(E)(1), where Ef is the base change of an elliptic curve F defined over
k, one has

E(M) = [E(K) ®7 QK [E(K)* ®7 QK [H(Ex, Q") K [Hi(Ex(C), Q)]

where * denotes the dual and + denotes the submodule fixed by the complex conjuga-
tion. In this case, the isomorphism ), is obtained via the (Néron-Tate) height pairing

and the period isomorphism.
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2.4 The isomorphism 1,

Let 2 be an R-module in A. An 2(-submodule T of V is said to be an 2A-lattice in V if it is
both finitely generated and full (that is, T ®yq A = V).

An 2-structure T on M is a set {T}, : v € So} where, for each v € S, T}, is an A-lattice
in H,(M) and for each prime [ € Spec(R) the image T; of T, ®z Z; under the comparison
isomorphism H, (M )®qQ; ~ H;(M) is both independent of v and Gj-stable. An A-structure
is projective if each T, is a projective 2-module.

Let T be a projective 2-structure on M. For any prime [ let S; = S U {primes above 1}.

For any continuous Gg-module N let

RT'(Oys,,N) = C*(Gs,N),

RT.(O,5,,N) := Cone(RI'(Ogs,, N) = ®pes,C*(Gy, N)) [-1].
One has a conjectural isomorphism
Uy Ay @4 Z(M) = [RFC(O]WS'“ V)] ~ A s, [ch(ok,S“Tl)]-

We refer the reader to [8] Section 3 for the details about the complex RI'.. The isomorphism
¥ defines an element ([RI':(Ok s, T7)],2(M);¥9;) in V/(2;) Xy (a,) V(A). The isomorphism
class of this element is independent of the choice of the set S or the choice of the projective

structure 7', and therefore we can define under certain coherence hypothesis (cf. [8])

(E(M)vﬁoo) = <H[RFC(0K7517E)]7E(M)7Hﬁp;ﬁoo> :
P P

We shall denote the isomorphism class of this element in mo(V(2;R)) ~ Ko(2;R) by
RQ(M, ).

Examples.

1. As before, our first example is M = h°(Spec(K))(0), where K/k is a finite Galois
extension of number fields. In this case Us C Us®Q and Xg C Xg®Q are Galois stable
Z|G]-modules, but they are not projective. However, the Tate sequences associated to
the extension K /k provides a canonical projective Z[G]-structure using which one can

formulate the conjecture. We will see this in detail in the next chapter.
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2. Our second example is M = h'(Ex)(1), where Ef is base change of an elliptic curve
defined over k. In this case H(cEx(C),Z) C H(cEx(C),Q) defines a projective Z[G]-
structure. In Chapter 4, we will consider the conjecture for this particular projective

Z|G|-structure.

2.5 Equivariant conjecture

Consider the long exact sequence in K-theory

o K (AR) — Ko(A;R) —= Ko(A) — - - -

lm

C(Ar)”
In [8], Burns and Flach have constructed a canonical map

~

3:C(AR)* — Ko(%R) (2.1)

such that 6 onr = 5. As we saw in the Section 2.2, the leading coefficient of the L-function
attached to the motive M lies in ((Agr)*. The equivariant conjecture relates the image of
this leading coefficient under the map 6 to the object RQ(M,2) € Ko(2;R) constructed in

the previous section.
Conjecture 2 (Burns-Flach [8]). With the setup as above one has the following:
1. The motivic L-function L(M,s) can be analytically continued to s = 0.

2. Regarding ords—oL(M, s) as a locally constant function on Spec(((Ac)) one has
ords—oL(M, s) = rra(H (K, M*(1))*) — rra(Hp (K, M*(1))*)

where 114 s the reduced rank map defined in Section 2.1.

3. (Rationality) Set

L¥(M,0) := limg_gs Ods=0LMS) (0] s)

~

LIM,2) = 3(L*(M,0)) € Ko(2%:R)
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and

TQ(M, ) := L(M,2() + RQ(M, ).
Then, TQ(M,21) € Ko(U; Q).
4. (Integrality) TQU(M, ) = 0.
Remarks.

1. The above conjecture is a generalization to the motives with noncommutative coeffi-

cients of conjecture formulated by Fontaine and Perrin-Riou, and Kato (cf. [23],]25]).
2. The conjecture of Bloch and Kato is the special case of this conjecture with A = Z.

In the next two chapters we shall consider two particular motives and give a reinterpre-

tation of the conjecture.
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Chapter 3

Artin Motives

3.1 Reinterpretation of the conjecture

3.1.1 The conjecture

Let K/k be a finite Galois extension of number fields with Galois group G. Our interest
is in the motive M = h°(Spec(K))(0), which we regard as a motive defined over k with
coefficients in A = Q[G].

As noted in the Chapter 2, the L-function associated with this motive is a tuple of Artin
L-functions. To be precise, let Si be a finite set of primes in k, and let S := Sk be the set
of primes in K lying above the primes in Si. If p: G — GL(V) is a complex representation

corresponding to a character y € G then

Ls(x,s) := H det(1 — Frg Np—*|V1®)~!
PESK
is the Artin L-function (relative to S) attached to the character x. Here 9 is an arbitrary
prime in K lying above p and Iy is the inertia group of 8. The motivic L-function is then
given by
LS(Ma 5) = (LS(Xa S))XEG'

This L-function has a meromorphic continuation to the whole s-plane and therefore we can
consider its Taylor series expansion at s = 0. For the rest of this chapter we shall supress

the motive M from our notation and write L%(0) for the leading coefficient

L5(M,0) = (L5(x,0),cq € [ R = ¢R[G])™.
xeG
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Now, on the arithmetic side we have
E(M) = [H}(k, M)] B [H(k, M*(1))*] K Ryes,, [Hy(M)] .
The other terms that appear in the definition of Z(M) are trivial. One has
HY(k, M) := H(k, M) ~ Q,

and

G%eSOOHv(M)GU ~ (BoesnZ) ®z Q.

For an subring 2 of Q[G], let A# denote the image of 2 under the Q-linear map

#:Q[G] — Q[¢]
#

Zagg — Zagg = Zagg_l.

geG geqG geqG

For a A°P-module P, let P# = A# ®gop P. Then, one has
Hj(k, M*(1))* =~ (Us,, ®z Q).
For any finite set T" of primes in K, let X7 denote the kernel of the augmentation map
Goer? — 7

(av)vET = Z Ay.

veT

Then, from the above observation, we get

[1]

(M) = [(Us,. ©2 Q)] B [(Xs,, @2 Q)**]7".

To relate the special values of the L-function relative to S, we consider the following relative
version of Z(M):

Es(M) = [(Us ®z Q)**] B [(Xs ®z Q)**] L.

Now, to consider the integrality part of the equivariant conjecture, we want to find
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projective Z;[G]-structures that give the necessary algebraic element in K((Z;[G]; Q;). The
following Theorem of Tate allows us to replace Us and Xg by Z[G]-modules of finite pro-

jective dimension.

Theorem 1 (Tate [35]). Let S be large enough so that it contains all the infinite primes,
ramified primes and so that the S-class number Clg is coprime to the order |G| of the Galois

group G. Then there exists an exact sequence
0—-Us—A—B—Xg—0 (3.1)
of Z|G)-modules representing a canonical class in Ext%(Xg,Us), with A and B being of

finite projective dimension over Z[G].

By the above Theorem, we get an element
[A, B;sr] € Ko(Z[G);R)

where tg R is obtained by the scalar extension of the exact sequence (3.1) and the regulator
map

Rs:Us®zR — Xg ®7z R.

The integrality part of Conjecture 2 for the motive M = h°(Spec(K))(0) with coefficients

in A = Q[G] can now be restated as
Conjecture 3. 5(L5(0)#) — [A, B;sg] = 0 in Ko(Z[G); R).

Remark. By Lemma 5 in [8], we have that the equivariant conjecture does not depend
on the choice of S. Therefore it is enough to prove the conjecture for a particular set S of

primes.

3.1.2 Known cases

Theorem 2 (Burns, Flach, Greither [10, 22]). For a finite abelian extension K/Q one
has TQUK/Q) = 0.

So, the interest naturally is to verify the conjecture in nonabelian cases. In [5], an

algorithm is developed to verify the conjecture in the dihedral case. Using this algorithm,
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it is shown that the conjecture is true for all Galois extensions L/Q with Gal(L/Q) the
dihedral group of order 6. The arguments involve reducing the conjecture to an abelian case

using the map

KO (Z[Dn]7 R)tOTS - KO (Z[Cn]a R)tors;

which is proven to be injective.

So, the next group to be considered is the Quaternion group (s. In this case one has

Lemma 1 (Burns, Flach [9]). The natural map
Ko(Z[Qs],R) — Ko(Mqy, R) x Ko(Z[Qs]) x Ko(Z[QF"],R),

where Mg, is a mazimal order containing Z[Qg), is injective.

Thus the vanishing problem in Ky (Z[Qs],R) reduces to a vanishing problem in the three
groups on the right hand side. The vanishing in Ko(9Mgg,R) is Strong Stark, and is known
due to Tate, since all the characters of (g are rational. The vanishing in Ky(Z[Qs]) is
Chinburg’s 2-conjecture. This is known for an infinite family of extensions constructed by
Chinburg in [12]. In [9], the vanishing in K(Z[Q3],R) is shown for this infinite family of
extensions. Thus, the conjecture is known for an infinite family of (Jg-extensions.

We are therefore interested in the next nonabelian case, that is, the conjecture over
Ay-extensions.

The above Lemma fails to hold for A4 (see Appendix for details). Therefore, the question
arises whether we can directly compute TQ(K/Q) by constructing the Tate Sequence. The
answer is yes and this is what we shall achieve by the end of this Chapter.

Results similar to Theorem 2 for abelian extensions over imaginary quadratic fields are

known due to Bley and Johnson (see [3] and [24]).

3.2 Preliminaries

3.2.1 Chinburg’s idea

Let K/Q be a finite Galois extension with Galois group G. For any place v of K denote by
G, the decomposition group of v. Suppose that S is a finite set of primes in K satisfying

the following properties:
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1. Clg is coprime to #G.

2. S is stable under the G action.

3. S contains all the infinite primes and all the primes in K which ramify.
4. There exists vy € S for which G, = G.

Let Sy be a set of representatives for the G-orbits in .S. For v € Sy let
0—>XU(—2)—>AU —-B,—Z—0

be an exact sequence of G,-modules in which the middle terms are free and finitely generated.

Inducing the above sequence from G, to G, we get
0—Yy(-2)— A, — B, —Y, —0,

an exact sequence of G-modules. The existence of vy implies that we can identify Xg with

Dueso\{vo} Yo- Thus summing all the sequences above over the set Sp \ {vo} we get
0 - X(_2) - @UESO\{’UO}AU - ®U€S0\{U0}B'U - XS - 07

where X (—2) = @ye5,\{vo} Yo(—2)-

For v € Sp let S(v) be a set of representatives for G,-orbits of S such that Sy C S(v).
Let Jg denote the group of S-ideles and Ug denote the group of S-units in K. Then by class
field theory (cf. [1], [32]) we have

Extg(Yy, Js) = H*(Gy, Js) = Sues@w) H(Gy N Gy, K

where K, is the localization of K at w. For a subgroup H of G let inv(H,w) : H*(H,K}) —
Q/Z be the invariant map. The image of this map is generated by #LH

The inclusion Us — Jg induces an injection (cf. [1], p. 64)

ExtZ(Y,,Us) = H*(G,,Us) — H?*(G,, Js).
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The image consists of all § € H*(Gy, Jg) = @yesw)H*(Gy N Gy, K}) satisfying

D inv(Gy N Gy, w)(8) = 0.
weS(v)
Now, for each v € Sy \ {vo}, choose a map f, : Y,(—2) — Ug corresponding to 3 €
H?(Gy, Js) = @weg(v)Hz(Gv N Gy, K;) such that

1

EG.ACD) if w=w,

0 otherwise.

Combining all such f,’s we get a map f : X(—2) — Ug. This map f represents an extension
class § € Ext2G(X5,US). Then by [12], Prop. 3.2.1, 3 corresponds to the same extension

class as that of a Tate sequence:
0—-Us—A—B—Xg—0.

Now, let N be a free Z[G]-module such that there exists a map f : X(—2) & N — Us,

which is surjective. Then we have the following exact sequences:

0— ker(f) - X(—=2)® N — Ug — 0,

0— X(-2) - Ax — Bx — Xg — 0,
where Ax = ©yes,\fvo}Av and Bx = @yesy\{vy} Bv- Then following Tate’s argument (cf.
[35], Thm. 5.1) we get a Tate sequence:

0— Ug — (Ax & N)/ker(f) — Bx — Xg — 0.

3.2.2 The cohomology group H*(V,, K})

In this subsection we shall assume that K /Q is a Galois extension with Galois group G ~ Ay.
Let V4 be the Klein four group sitting inside G. We shall compute the elements of the group
H?(Vy, K¥) as morphisms arising from some Vj-resolution of Z. By local class field theory

(cf. [32]) we know that H?(Vy, K}) is cyclic of order #V; = 4. We will be interested in
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knowing a sufficient condition on morphisms so that they correspond to the trivial element
and a generator of H2(Vy, K7).

Let V4 ={1,91,92,93}. Consider the exact sequence of Z[V,]-modules:
0—MEzWiezv) 2 zv) 2z o,
defined by
[ ] 51(1) =1

* 02((1,0)) =1—g2,62((0,1)) = 1 — g3
e M = ker(d2) and d3 is the inclusion

Now, the ker(d2) is generated by

Br=(-1-g1,1+g1),02 = (1+92,0),8 = (0,1+ g3).

Thus M ~ Z[Gl]EBZ[ﬁZKBZ[Gﬂ where G; ~ V,; /{1, g;}. We denote by «; the generator (i.e, the
multiplicative identity) of Z[G;]. Then N is generated by (14 ¢1)(as) — (1 + g3)(ag + aq).
Let K,/E, be an extension of local fields with the Galois group Vj. Let F,,.,i =1,2,3
be the fixed fields corresponding to the subgroups {1,¢;}. We also assume that F,,/E,, is
ramified for ¢ = 2,3 and unramified for ¢ = 1. Let N; denote the norm map N Fu, /Fu
Now, let # : M — K be a morphism of Vj-modules. Let x; = 6(«a;). Then by the

Vy-action on M we get the following relations among x;’s:
e I; € F{Zi,
® N3(z3) = Na(z2)Ni(21).

Now, 6 defines a class in H?(Vy, K;). This class of 6 is trivial if there exists yo,y3 € K
such that ; = Nk, /p, (y;) where y; = y;lyg.
Consider the extension K,/F,,. We know that F; /N(K}) is cyclic of order 2. Choose

B € Fy, \ N(K}). Let 8 = . Thus, Ni(8) = 1.

Lemma 2. Define 6, : M — K} by 61(a2) = 01(a3) =1 and 01(ay) = 3. Then the class of
61 in H*(Vy, K¥) is the element of order two.
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Proof. First of all note that ; is indeed a morphism between Vj-modules. Also, (2601)(«;) =
B% = NE,/Fu, (8) and Nk, /Py, (8) = 1. So, by choosing y2 = 1 and y3 = [3, we see that 26,
defines the trivial class in H?(Vy, K). Thus, to prove the lemma it is enough to show that
the class of 67 is not trivial.

Suppose the contrary. Then there exists y2, y3 € K, such that N, Fu, (y2) = Ng,; Fuy (y3) =

1 and NKU/le (?/2_11/3) = (. Thus, we can find 19,13 € K such that y; = g;(];i)’i =1,2.
Then,
_ g2(m2)ns gs(m2)gr(ns) _ B

m293(n3)  g1(m)g2(n3)  g3(B))’

B = (y3'y3) - 91(y5 'y3)

where 8] = n391(n3)g2(n2)g3(n2) € Nk, /r,, (K7). Then B = 33 for some § € E,,.

But, F, /Ey, is an unramified extension and therefore 0 is a square modulo a uniformizer
of Fy,,. By this, it follows that it is a norm of an element from K,. This implies that
§3; = (1 is a norm of an element from K, a contradiction. This completes the proof of the

Lemma. O

Now, let m be a uniformizer of E,,, m; be uniformizers of F), respectively. Since
Ky/Fy, is unramified for i = 2,3 it follows that m; ¢ Ny, /r, (KJ),i = 2,3. Further,
n = No(my ') N3(m3) is a unit in E,,. Since F,,/E,, is unramified we can find = € F,, such

that Ni(x) = n.

Lemma 3. Define 6y : M — K by 6y(a1) = x,00(c;) = m;, for i = 2,3. Then the class
defined by 0y in H*(Vy, K}) is a generator.

Proof. 1t is clear that 6 is a Vj-module morphism. By the construction, it is also evident
that the class of 6 is neither trivial nor equal to that of #;. This completes the proof of the

Lemma. O

3.2.3 The local class group CI(Z[A4])

Let N be a (global) field, R be a Dedekind domain with fractional field N, A be a finite
dimensional N-algebra and A be an R-order in A.

Definition. The class group CI(A) is defined by the generators

{[X]|X is a f.g. proj. A-module such that X, ~ A, for all p € Spec(A)}
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and relations
X]=[Y]e X®A~Y @A (or equivalently, [X] = [V] in Ky(A)).

The addition is defined by [X]+[Y]=[Z] © XY ~Z S A.
If A’ is a maximal R-order containing A then there exists a natural surjection of the class
groups

CI(A) — CI(A).

Definition. The kernel of the above map is called the kernel group of A and is denoted by
D(A).

Remarks.
1. For A = N[G] and A = R|G], G a finite group, Cl(A) ~ ker(Ko(A) — Ko(A)).

2.If N =Q,R =7,A is an algebraic extension of Q and A = Oy, then CI(A) is the

ideal class group of O4.
3. The kernel group is independent of the choice of A’.
4. One has CI(M,(A)) ~ Cl(A) and D(M,(A)) ~ D(A).
Theorem 3 (Endo-Hironaka [21]). The kernel group D(Z[A4]) is trivial.
Proposition 1. The class group Cl(Z[A4]) is trivial.

Proof. Let 9 be a maximal Z-order in Q[A4] containing Z[A4]. Then by the above Theorem
Cl(Z[A4)]) =~ CL(MM). Since Q[A4] ~ Q x Q((3) x M3(Q) one can take M = Z x Z[(3] x M3(Z)
and therefore CI(OM) ~ CIU(Z) x CI(Z[(s)) x Cl(Ms3(Z)) = 0 by the above remarks. This

completes the proof of Proposition 1. O

3.3 Construction of the Tate sequence

In this section we shall construct the extension K/Q for which we shall verify the conjecture
in question, and construct a Tate sequence using the machinery developed in the previous
section. We will be using this Tate sequence to prove the vanishing of TQ(K/Q) for this

particular extension.
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3.3.1 A tetrahedral extension K/Q

Let E be the unique degree 3 subextension of Q[(7]. Thus, FE is generated by a root of the
polynomial X3 + X2 —2X —1=0. Let ¢; = (7 + (;'. Then E = Q[e7]. It is known that
the class group of F is trivial. Now, since, 43 = 1 (mod 7) the prime 43 splits in F. Let
0, = 26% — €7 — 5. Then, 0, generates a prime ideal above 43 in E. Let 05 and 63 be the
conjugates of 6. Set F' = F} = E[vy], where v% = 05/03 > 0. Let K be the normal closure
of F. Then G(K/Q) = A,.

First let us fix some notations. Let Fy and F3 denote the field extensions of F in K that
are isomorphic to F}. In other words, these two fields are obtained by adjoining vy and v3
respectively, where v3 = 03/6; and v§ = 61/065.

Let G = G(K/Q) = A4. Let g1, g2 and g3 be the order two elements of G such that the
fixed field corresponding to {1,¢;} is F;. Let h € G be an element of order three such that
h maps I} to Fj.

Let Sgp = {2,7,41,43,00} and for any extension N/Q let Sy = {primes over Sp in N}.
Let S = Sk. Set p="7,q=43,l =41, m = 2. The decomposition of these primes in K and

its subfields is as follows:

K pipd pipd af a3 af Ll il m?
VALY Y
F PP P QiQ3Q} Ly Lg mk
\/ VY
E A R P R I CR CO.
\/
Q p="T q =43 l=41  m=2

So, the set of primes which ramify in K is {2,7,43}. The class group of K is of order
16 and the cyclic factors are of orders 4, 2 and 2. The set S defined above satisfies all the
conditions stated at the beginning of the previous section. In fact, the prime [ = 41 is chosen
so that the S-class group Clg is trivial. The unique prime m in K above 2 satisfies Gy, = G.
We shall now construct the map f : X(—2) — Ug using which we shall explicitly get
the Tate sequence. Recall that Sg = {2,7,41,43,00} and that S = {primes over Sg}. Let
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So={m,p =p1,9=q1,[ = [1,00} be a set of representatives for G-orbits.
As we have seen in the previous section, the map f is the sum of f,’s for v = p, q, [, c0.
One can induce the maps f, from f, : Y, (—2) — Ug. This map is trivial for v = [ and thus

we only need to consider the primes p,q and oc.

3.3.2 Casev=q

First of all, we shall fix a set of representatives for G-orbits. Let S(v) = {m,p,q1,q2,q3} U

{three primes above [} U {three infinite primes}. From the previous section, we have
Y, = M. Thus, we need to construct a map f, : M — Ug such that the corresponding
extension class 3 € Ext%(Y,, Ug) satisfies

1 : —
m 1fw—v,

0 ifweSw)\{v,m}.

We have
V4 ifw:CI1aCI27C|37ma

GyNGy =14 {1,g;} for some i, if w|oo,
{1} otherwise.

Recall that },,c () InV(GuNGw, w)(3) = 0. Therefore, if inv(Vy, v)(8) = 1/4 and inv(Vy, w)(8) =
0 for w = g2, q3 and for the infinite primes, then it follows that inv(Vy,m) = —1/4. In other
words we need to construct f, such that inv(Vy,v)(3) generates H?(Vy, K¥), inv(Vy, w)(53)
is trivial in H?(Vy, K}) for w = qo,q3 and such that inv(Cy,w)(3) is trivial in H?(Cy, C*)
for the infinite primes w in S(v).

Note that M is generated by a1, a2 and as as indicated in the previous section. Thus,
the construction of f, requires finding three S-units u;,us and us satisfying the following

properties (here Q;; denotes the prime ideal in F; lying below q;):
1. u; € Fyfori=1,2,3.
2. Np,/p(u1)Np,/g(u2) = Npy/p(us).
3. |uilg,, =1 and |uz|g,, = |uslgy, = 1/¢.

4. u; is a square modulo @ for i =1, 2.
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9. ul,h(u2),h2(U3) > 0.

The first and second conditions ensure that the map f, is indeed a Z[G,]-module morphism.
The next two conditions ensure that f, represents the trivial element in H?(V,, K}) for
v = q2,q3 and a generator in H?(Vj, KcT) This follows from Lemma 3. The last condition

ensures that f, represents the trivial element in H?(Cy,C*). Thus

Proposition 2. If f : M — Ug is defined by f (c;) = u; for i = 1,2,3 where u;’s are
S-units satisfying the above conditions, then the class 3 € Ext%(Yv, Us) corresponding to f,
satisfies

m ifw=wv,

inv(Gy N Gy, w)(B) = —m if w=m,

0 if we S)\ {v,m}.
3.3.3 Casev=p

In this case G, = {1,h,h?}. Let L be the fixed field of G,. Let S(v) = {m,p, p2,q} U {four
primes above [} U {two infinite primes}, a set of representatives for G,-orbits. The group
Gy NGy, is trivial for w € S(v) \ {p, m}, and equals G, for w = p, m.

Consider the following G,,-resolution of Z:
o3 o2 o1
0—-7Z=>72G, =>7ZG, —7Z — 0,

defined by 61(1) = 1,62(1) = 1 — h,83(1) = 1 + h + h%. Our aim therefore is to define
f, : Z — Ug, and compute its image in the cohomology using the above resolution.

The construction of f, requires an S-unit u, satisfying
1. u, € L.
2. u,, is not congruent to 1 modulo the prime below p in L.

The first condition is to make f, an Z[G,]-module morphism, and second to ensure that u,
is not in N, /r,(K;) and hence f, represents the generator in H 2(Gy, K}). This follows
from the fact that an element o € L} is the norm of an element from K™ if and only if « is

a cube module P, which is equivalent to « not being congruent to £1 modulo P. Thus,
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Proposition 3. If f, : Z — Ug is defined by f,(1) = u,, where u, satisfies the conditions

mentioned above, then the extension class 3 € EX‘C%;(YU, Us) corresponding to f, satisfies

1 e
Es (ewaTem) ifw=wv,

iHV(GrU N ij ’UJ)(B) — —m Zf w=m,

0 if we S(v) \ {v,m}.

3.3.4 Case v =00

In this case G, = {1,¢91}. Let S(v) = {m,p,p2,q,92,q3} U {six primes over [} U {three infinite primes},
a set of representatives for GG,-orbits. The group G, N G, is nontrivial only for w = primes
over ¢ and w = m, v.

Consider the following G,,-resolution of Z:
03 o2 o1
0-7Z=>72G, =>7G, = 7Z — 0,

defined by d1(1) = 1,02(1) =1 — g1,93(1) = 1 + g1. We need to construct f, : Z — Ug such
that its image in the cohomology groups are as desired.

So, the construction f, requires a S-unit u., satisfying

1. uo € F.

2. Juoolg, =1fori=1,2,3.

3. Uy is a square modulo Q1.

4. us < 0 and o(us) > 0, where o is the nontrivial element of Gal(F/E).

The first condition ensures that f, is a Z[G,]-module morphism. The second and third
conditions ensure that the element represented by f, in H?(Cy, K) is trivial for w = q, q2, 3.
The final condition ensures that f, represents the nontrivial element in H?(Cy, K;), and

trivial element in H?(Cy, K) for infinite primes w # v. Thus,

Proposition 4. If f, : Z — Ug is defined by f,(1) = uc, where us satisfies the conditions
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above, then the class (€ Ext2G(YU, Us) corresponding to f, satisfies

1 e
Es (ewaTem) ifw=wv,

inv(Gy N Gy, w)(B) = —m if w=m,

0 if we S(v) \ {v,m}.

3.3.5 Construction of the Tate sequence

PARI ([30]) was used to explicitly compute the S-units giving rise to the Tate sequence.
Given that the S-units should satisfy certain conditions as in the previous subsection, the
search for such units was done in the following fashion.

The units ug and ug have valuation 1/¢q with respect to the prime ideals Q2; and Q33
respectively. This essentially hints that we could choose them to be generators of these
prime ideals (which are prinicipal). However, if us and ug are chosen to be the generators as
above, then the condition Ng, /5(u1)Np,/g(u2) = Np,/p(us3) is not satisfied for any S-unit
uy € Fi1. Therefore, we multiply us by a generator of a prime ideal in F3 lying above [. Then,
one can find u; € F satisfying all the conditions required. Clearly, u; will also generate a
prime ideal above [ in F}.

For u,, one can choose it to be 2. However, to make the image of the map f bigger we
choose a generator «; of a prime ideal in L lying above [, and we set u, = 2¢;. This satisfies
the required conditions.

Finally, none of the generators of the principal prime ideals in Fj lying below the primes
in S satisfy the conditions for u,,. We therefore look at the products of prime ideals that
are not principal. The class number of Fj is 2 (by PARI) and therefore the product of any
two ideals that are not principal is principal. One can find a prime ideal [r lying above [
in Fj such that a generator of the ideal [Fmp satisfies the required conditions, where mp is
the prime ideal in F} lying above 2. We set u, to be this generator.

With the help of PARI these S-units were found and in the following we shall explicitly
write down one such possible set of S-units.

Let e7 = (p + Cp_l. So, E = Q[e7]. Set

) =22 — 7 — 5,
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By = —3€2 — 2e7 + 3,
93:6%4-367—2.

Then 6; generates a prime ideal above ¢ for each ¢ = 1,2,3. Let vy = /#3/05. Since
02/03 > 0, the extension F' = E[vy] is real. Let vo = /03/601 and vs = /01/603. We shall
express all the S-units in terms of e; and v;’s. The following is a set of S-units satisfying

the required conditions:
o up = (362 + Ter +2) + (262 + Ter + 5)vy,
o uy = (14722 — 1182¢7 — 816) + (—1697¢2 + 1359¢7 + 943)vs,
o uz = (782€% + 435¢7 — 1756) + (901€2 + 503e7 — 2021)vs,
o u, =8+ (662 + 4de7 — 6)vy + (—2€2 — bey + 4)vg + (4€2 — 2e7 — 10)v3,
o Uy = (5e2 + Ter — 2) + (—2€2 — Ter — 5)vy.

This gives amap f : Xg(—2) — Us which represents the canonical class in Ext% (X, Us).
Now, with the above setting, we can find a S-unit ug, again using PARI, such that the map
f:Xg(=2)® N — Us, where N ~ Z[G], extending f by f((0,1)) = ug is surjective. The
image of f has Z-rank 21 while the Z-rank of Ug is 25. Further, the valuation with respect
to p of all the S-units that are chosen so far is 1. Thus, we choose ug such that its valuation
with respect to p is 1/p. This will make the rank equal 25. Further the following choice of

such a unit also makes the map f surjective:

o ug = (4983/2¢2 + 5597€7 + 3991/2) + (—5735/2¢2 — 6444e; — 2300)vy + (23222 +
10435/2¢7 + 1862)vg + (—5087/2¢2 — 11435/2¢7 — 2043)vs.

Note that by the construction of f, it induces an isomorphism on the cohomology groups
corresponding to Xg(—2) and Ug. Thus, if P denotes the kernel of f, then P is cohomo-
logically trivial and torsion free. This shows that P is projective. But, by the Proposition
1 we know that every projective Z[A4] module is free. Hence P is free. Thus, we have our
Tate sequence

0—-Us— (A& N)/P - B — Xg—0.
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3.4 The main result

Our aim of this section is to prove the Conjecture 2 in the particular case of K/Q that we are
considering. This we shall achieve by computing the leading coeflicients of the L-functions

and equating that with an element coming from the Tate sequence.

3.4.1 Leading coefficients of L-functions

Let k = Q and K/Q be the Galois extension defined in the earlier section, with Galois group
G = Gal(K/Q) ~ A4. There are four irreducible complex characters of A4. The character

table is below.

1lgi| h | R?
xo|1]1]1]1
xi|1]1]6G|G
Xp|1| 1| ¢G
x2|3]-1]01]0

The character xq is the trivial character. There are two other abelian characters xi
and x}. The last character yo corresponds to the 3-dimensional irreducible representa-
tion. For xo, we have L(xo,0) = (g(s) and therefore L*(x0,0) = —1/2 and L¥(x0,0) =
—3(log m)(log p)(log ) (log 1).

The character x; is abelian and hence factors through G® ~ C3. We have (cf. [37])

6
* 1 a
L (Xlao) = _§Zlog |1 - C? |X1(a’)7
a=1

where (7 = €27i/7

inflating via (Z/7Z)* — C3 X5 C*. Let oy = (1 — ¢7)(1 — (') =2—¢ € E. Then a7

is a primitive seventh root of unity and x, is defined on (Z/7Z)* by

generates the unique prime ideal in F above p. In terms of a7 we have

N 1
L*(x1,0) = —5(10g|0é7|+C310g|h(0<7)|+C§10g|h2(047)|)

B 1 ar 2 h?(ar)
- _5 <10g‘h(a7)‘ +<3 log‘ h(a7) ’) .
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L*(x1,0) = —(log w1 — ¢3 log |wa]).

Further, we have L¥(x1,0) = (1 — ¢3)(log{)(log ¢)L*(x1,0).

The character yo decomposes as xo = Indg2 le, — Ind€4lv4, where Cy = Gal(K/F) and
Vi = Gal(K/E). Thus, L(x2,s) = ]zg‘cf j)) = gg—g Thus, again by class number formula,
47

we get L*(x2,0) = hggg, where h;, and Ry, denote the class number and the regulator of L

respectively. We know that hp = 1. Further, we have hp = 2, by PARI.

Note that F is a totally real Galois extension of Q and thus, there are three real em-
beddings in E say o1 = id,o9 and o3. Hence the unit group is of Z-rank 2. Let w; and
wy be the Z-generators of this group as defined above. It is easy to verify that F' has two
real embeddings and four complex embeddings. Thus, the unit group of F' will be of Z-rank
3. One can choose a unit wz in F' such that {wy,ws,ws} is a basis of the unit group in F.
This follows from the fact that F' # E[/(u)] for any unit u € E. Let id, o, be the two real
embeddings of F' and let 0., 0~ be two complex embeddings. Then,

log lw1| log |oa(w
Ry — |det g |wi] g |oa(wr)|

log [wa| log|o2(w2)]

log [w1| log|o(w1)| 2log|oc(w)]
Rp = |det | log|ws| log|o.(ws)| 2log|o.(ws)]
log [w3| log|o(w3)| 2log|oc(ws)]

By assumption, F is a real field, and therefore o, is an element of Gal(F'/FE). Thus,
or(w;) = w; for i = 1,2. Also, we can choose o, such that o.(w;) = oo(w;) for i = 1,2.
Thus, Rr = 2|log |%HRE, and therefore we have L*(x2,0) = 4|log|—2=||. Further,

O"r(w3)
L(x2,0) = 8(log p)(log 1)*|log | 775 I-
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3.4.2 Determinants

From the construction in the previous section we have a commutative diagram of exact

sequences:
0 0
P A(P)
0—>Xs(—2)@N’\—>A@N ¢ -t x4 0
h |
0 Ug Ag Bg Xg 0
0 0

where Ag := ((—]\)f) and Bg := B. Then we have

Det(Agsr) @ Det ' (Bsr) =~ Det™'(A\(P)r) ® Det(Ag @ Ng) ® Det™!(Bg)
Det 1 (A(

1

P)r) ® Det(Xs(—2)r ® Ng) ®

12

(

(
Det ™ (Xgr)
Det ' (A(P)r) ® Det(Pr) ® Det(Usr) ®

(

Det™ 1 XSR)

12

Det(0) ~ ¢(R[G)).

The first isomorphism follows from the construction of Ag, the second from the exactness
of the middle row, the third via the map h and the last isomorphism via the maps A and
Rg. The composition of all these isomorphisms is the map induced by g : Asr >~ Bgr.
Note that the image of (Ag, Bg;¥s) in Ko(Z[G]) is zero. Thus, one can look for the
inverse image of this element in K (R[G]) via 0. After choosing Z[G] bases for A, N, B and

P, we can find a generator for
Det ™ (A(P)r) @ Det(Ar ® Ng) @ Det™*(Bg)

arising from these bases. The image of this in ((R[G]) under the above isomorphism is in
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the inverse image d~1((Ag, Bs;1s)). Our aim now is to compute this element in the inverse
image.

First we shall choose bases for A, B and N. The exact sequence
0— Xg(-2)aNSA4aoN LB Xg—0
splits into different prime components as
0—Yy(-2) 2% 4, 5B, %y, -0
and of course A|y : N — N is the identity map. We shall fix the generators for A, B and N

as follows:

e For v = oo, let A, = Z[Gla1, B, = Z|G]by with A\,(1) = (1 4 g1)a1,0,(a1)
= (1= g1)b1, po(b1) = 1.

e For v = p, let A, = Z[Glag, B, = Z[G]by with \,(1) = (1 4+ h + h?)az, 0, (as2)
= (1 — h)bg,,uv(bg) = 1.

e For v = ¢, let A, = Z|Glas ® Z[Glay, B, = Z[G]bs with A\y(a1) = (—1 — g1)as
+ (14 g1)as, A\p(a2) = (1 4 g2)as, A\y(a3) = (1 + g3)au, O, (a3) = (1 — g2)bs, 0,(aa)
= (1 — g3)bs3, puy(b3) = 1.

e For v =1, A, =0 and B, = Z[G]bsy with pu,(bs) = 1.
e Finally, let N = Z[G]as with f(as) = uo.
We then choose a generator ¢ for P ~ Z[G], and the image of this generator in X, (—2)

and N is given by:

¢ = (Co0,Cp, CqsCN) € IndgzZ ® IndggZ @ Ind‘G/4M @® N,
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where

Coo = (—3—g2+5h+5hgs — 3h* — 4h292)=

c, = 0,
¢q = (=5—>5g1+3h+4hg + 3h% + h2gl)(a3 —ag) + (h2 — h2gl)a2,
en = (g1 + g2 +9g3)(1—h?).

Finding such a c is a problem in linear algebra, and PARI was used to carry out the com-
putations.

We set z = (A)_,a;) € Det(A @ N), 2/ = [AL b1 € Det™1(B) and 2" = [M\(c)] 7! €
Det~}(A(P)). We shall compute the image of 2’ ® z ® 2’ in ¢(R[G]).

We now look at the idempotents of R[G]. Let ey = 75 > geq 9re1 = +L(2e —h—h?)(e+
g1+92+93), and e2 = (3e—g1 —ga—g3). Under the natural isomorphism p : R[G] — RxCx
Ms5(R) =: Ry x R; X R, these idempotents map to (1,0,0), (0,1,0) and (0,0, id) respectively.
Thus, we have ey + €1 + ea = 1. Further, for a Z[G]-module M, we set M; := e; M, which
we shall regard as a module over R;. For a morphism f € Hompg (M, N), let f; denote the

corresponding element in Hompg, (M;, N;).

3.4.3 The idempotent ¢,

First note that the map 6y : Ag & Ny — By is the zero map. Therefore, \g and pg are
isomorphisms. The module Ag® Ny is generated by {epa; }?_, Bo is generated by {eob; }jle.
The image of eg(z® 2') = (A)_je0a;) @ [/\?Zleobj]_l in Det(Xg(—2)o® No) ® Det ™! (Xg) is

(AL yeod:) @ [eo(00 — m) A eolp —m) A colq — m) Aol —m)]

- L
20 & Z'g: 21

where in Xg(—2)r ® Ng ~ (Ind%R) & (Indg,R) & (Ind{;, Mg) & Ng, the elements d;’s are
defined by

o dy = (1,0,0,0)
L4 d2 = (07170a O)a
L4 d3 = (0707a270)7

L4 d4 = (0,0,0&3,0),
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e d; =(0,0,0,a5).

Now, the map (Rg o fo) : Xs(—2)o ® No — Xg, is given by

eod; — —ep Zlog \fo(di)]v(v —m).

veES

So, the images of egd; are:

e cody — —1og |N(ux)leg(co —m) + 2(logl)eg(I — m),

e cody — —log |N(up)|eg(co —m) + 3(logl)ep(l —m),

® eods — —log|N(uz)leg(co —m) + 2(log g)eo(q — m),

e cody — —log|N(uz)leo(co —m) + 2(logl)eo (I —m) + 2(log g)eo(q — m),

e eods — —log [N (ug)leo(co —m) + (log p)eo(p — m),
where N = N/ is the norm map from K to Q.

The module Py is generated by ¢y whose image in Xg(—2)g @ Ny is eg(—dy — d3 + dy),
respectively. Thus,

_ 1
Zg = ﬂ(/\?:leodi)

1
— _ﬁ(im(co) A eody A epda N epds N epds)

1 5
= —ﬁ(eoc) ® (Ni=1,2,3,5(Rs,0 © fo)(eods))

= %(eoc) ® 2(log ) (log 1) (log q) (log p) (25) !,

2
where a = |N(:T”)| But this equals m® and thus, the image of eg(2” ® z ® 2’) in ((R[G]) is

1 * *
§(log m)(log)(log q)(log p)ep = —eoLs(x0,0) = —eoLS(XO,O)#.

3.4.4 The idempotent ¢;

For each v € S consider the exact sequence

Av,1 0y.1 Mo, 1
0—Yy(=2)1 = Ay1 = By1 = Y1 —0.
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The maps 0,1, 04,1 and 6 ; are zero maps while 6, ; is an isomorphism given by 6, 1(e1a2) =
(1 — (3)e1be. The module A; @ Ny is generated by {61612'}?:1 and B; by {elbj}§:1. The
image of e1(z ® 2') = (A2_je1a;) @ [AL e1b;] 7! in Det(Xg(—2)1 @ N1) ® Det ™ (Xg1) is
=7 - C3 1

Z1®2 = 5 (/\?zleldi) ® [e1(co—m)Aer(q—m)Aer(l—m)]

where in Xg(—2)r ® Ng ~ Indng @ Ind&R &) Ind%MR @ Ng, the elements d;’s are defined
by

o di = (1,0,0,0),

e dy =(0,0,3,0),
e d3 = (0,0,a3,0),
e dy=(0,0,0,a5).

Now, the map (Rg o fl) : Xs(—2)1 & N1 — Xg,1 is given by

erd; — —eq Zlog \fl(di)]v(v —m).

vES
So, the images of e1d; are:
e c1d; — —e1 (D log ]ug;l |g)(00 —m) 4+ 2(log l)er ([ —m),
e crdy = —er(Ylog fuf [g)(00 — m) + 2(log g)es (q — m),
e c1ds — —ei (> log ]u?l |g) (00 —m) 4+ 2(log l)er (I — m) + 2(log q)e1 (g — m),
o 1y —er(Slogluf[g) (o0 — m).
Foru € K, we have e (3 log|u?™' |g) = (log | Ny () |+C3 log [h* (N (u))|+C3 log [R(Nie i (w)) e

when considered as an element of Ry, under the projection R[G] — R;. Let

a(u) := (log [Ny g (u)| + (slog |h* (N p(u))| + (3 log |h(Ng /g (w))]).
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The module P; is generated by ejc whose image in Xg(—2)1 @ Ny is e1((3 + 17¢3)d1 +
(17 + 3¢3)da + (—17 — 3¢3)d3 + (6 + 3¢3)d4). Therefore,

1= %(A?:leldi)
= ﬁ(im(elc) Aeidy A epds A erdy)
-~ ﬁ(eld ® (Ai=2,34(Rs,1 0 f1)(e1ds))
(1-¢s)

m(ew) ® —4a(ug)(log 1) (log ¢)(2]) "

To calculate a(ug) we consider the element 3, = Nk, g(up) € E. We have that % and

#%;)) are units in F. Thus we can write these in terms of the basis {w1,ws} as follows:

/8 _ —28 6 h(ﬂ) _ —6 =34
) U e, T T

Hence,

a(ug) = (log|Bp| + Calog [h*(B,)] + (3 log [h(By)])

B 5, h3,)
- <1°g Gy~ R,y '>

= —28log |wy| + 6log [wa| + 6¢3 log |wi| + 34(3 log |ws]
= —(3(6+ 34¢3)(log Jwy| — C3log |wa))

= ¢2(6 + 34G3) L (x1,0)%.

Since L%(x1,0)# = (1—(3)(log1)(log ¢)L* (x1,0)# it follows that the image of e1 (2" ® z®2/)
in Ry is —(3e1L%(x1,0)%.

3.4.5 The idempotent e,

Let e3 = %(e + 91 — g2 — g2). Then e3 is an indecomposable idempotent of R[G] which lies in
Ry = M3(R). If V is a finitely generated projective module over Rs, then we can consider
the e3V as a module over ((R2) ~ R. Then, we have that the determinant of V over Ry is

the same as the determinant of e3V over ((R2).
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Now, for each v € Sy, consider

)\'U,3

0— Yv(_2)3 - Av,3 01? Bv73

which is an exact sequence of R-modules. These sequences are defined in terms of the bases

of A3, Bs as follows:

Ay 3

By, 3

Y3

Av3(€3)

0y.3(aezar + Peghar + ’yegh2a1)

tiy.3(aezby + Beshby + yezh®by)

Ay3
B, 3
Y3
Av,3(€3)

0,3(cesar + Beshar + vezh®ay)

f1y,3(ce3by + Beshby 4 yesh?by)

1

12

12

1

1

1

Hv,3
= Y’U73 - 07

R3 with basis {eghial}iqug
R? with basis {eghibl}izo,m
Y, (—2)3 ~ R generated by e3
2e3aq

2(Beshby + yesh?by)

aes

R3 with basis {eghiag}i:m,g
R? with basis {e3h"ba}i—0.1.2
Y, (—2)3 ~ R generated by e
(esas + eshas + 63h2a2)

(av —y)egby + (B — a)eghby
+(y — B)eshba

(a@+B+7)e3
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Y3

)\v73(a€30é1 + Beshas + ’763h20é3)

9U73(a63a3 + Beshas + 783h2a3)
9U73(a'63a4 + ﬂ'egha4 + 7/€3h2a4)

Hv,3

Ay
Bv,3
Yv,3

tio.3(cesby + Beshby + yesh?by)

1

12

12

12

12

RS with basis {e3h/a;}i=3.4.j=01.2
R? with basis {e3h'b3}i=0,1,2

R? with basis {e3h'a;y1 }tiz0,1.2

0

2cez(—asz + ay) + 2Beszhag
+2"}/63h2a4

2(aesbs + ’)’83}121)3)

2(a’e3bs + B'ezhbs)

0

0
R? with basis {eghib4}i:o,1,2
R? with basis {eghi}i:ogg

aes + Besh + yesh?

Now, let x, 3 and y, 3 be generators of Det(A, 3) and Det(B, 3) respectively, arising from

the bases mentioned above. Also, let z 3 be the generator of Det(N3) with respect to the

basis mentioned earlier. Let

(23 ® 24)

This is a generator of Det(A3 @ N3) ® Det~!(Bj).

(Too3 ANTp3 ANTg3 AT13NTN3) D [Yoo,3 A Yp,3 A Yg,3 N yz,3]_1-

Let Z3 ® 2’3 be the image of 23 ® 2} in Det(Xg(—2)3 ® N3) ® Det_l(X573). Then, z3 =

2(/\?2163(12‘) where d;’s are elements of Xg(—2)r ®& Ng ~ Indng &) InngR &) Ind%MR @® Nr

defined by:

L4 dl = (17070a O)a
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L d2 = (071707 0)7

e d3 = (0,0,a1,0),
e dy = (0,0,h%as,0),
e d;5 = (0,0, hag,0),
e dg = (0,0,0,as),
e d; =(0,0,0,has),
o ds = (0,0,0, h2as).
Further, 2’3 = [e3(0o —m) Aeg(p —m) A Aeg(l —m) A ezh(l —m) A ezh?([ —m)] L.

The map (Rg3 0 f3) : Xs(—2)3 & N3 — Xg 3 is given by

esd; — —es Zlog \fg(di)]v(v —m).

veS

So, the images of esd; are:
o esdi > Bluse)es(oo — m) + 2(log Des( — m),
o esds — Bluy)es (0o — m) + (loges(1 + h + h2)(1 — m),
o edy — Blu)es(oo — m) + 2(log Des (I — m),
o e3dy > B(h*(uz))es(c0 — m),
e c3ds — [B(h(us))ez(co —m) + 2(logl)eszh(l — m),
o e3ds — [(ug)ez(00 —m) + (logp)es(p — m),
e e3dy = fB(h(ug))es (00 —m) + (log p)esh(p — m),

e e3ds — B(h%(ug))es(co — m) + (log p)esh?(p — m),

w92 93
u-u9l

where ((u) = —log |
The module P is generated by esh/c,j = 0,1,2. The images of these in Xg(—2)3 ® N3

is given by

e e3c— e3(—2dy + dy — 2ds — dg + ds),
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e eshe— eg(dy —ds + dg — d7),
o esh’c— es(dr — dg).

Let 24 denote the generator of Det(P3) with respect to the above basis. Then, with these

values one has

Z3 = —2(/\jim(€3hj6) A esdy N esds A egdg N esds A 63d7)

= 8([25]71) @ B(h*(u2))(log 1)* (log p) /5] .

The unit us is the generator of an ideal in F5 lying above ¢q. The choice of this gives

B(ug) = —|log |w3|| = —| log\acqz’fm) || = —%L*(XQ,O). Thus, the image of e3(2} ® 23 ® 24) in

C(R[G)) is —esL¥(x2,0) = —e3L%(x2,0)%. This shows that the image of e2(z§ ® 20 ® 2) in
C(R[G]) is —e2LE(x2,0)7.

3.4.6 Equivariant conjecture for K/Q

Theorem 4. Let K/Q be the number field extension as above. Then the equivariant Tam-
agawa number conjecture over number fields holds in the special case K/Q.

Proof. By the computations in the previous sections it follows that the image in ((R[G])*
of the generator of Det™(Pr) ® Det(Ar @ Nr) ® Det(Bg), obtained by the Z[G]-bases
for A,B,P and N is

—eoL5(x0,0)% — GierL5(x1,0)% — e2Ls(x2,0)* = (=1, ~¢5, ~1)L5(0)*.
But this is in 671 ((Ag, Bs;¥s)). Therefore,

TQK/Q) = (As, Bs;vs) — 6(L5(0)%)
= 5((—1,-¢5, —1)L5(0)*/L5(0)%)
= 0((-1,-¢,-1)
= 0,

where the last equality follows from the fact that the element (—1,—(3, —1) is the image of
—h € K1(Z[G]). This completes the proof of the Theorem. O
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Remark. One could possibly extend the same idea for verifying the conjecture for an
infinite family of Aj-extensions. The main idea here would be similar to that of Chinburg
(|12, 13]), that is, to look for family of extensions with “subcongruent” unit groups and Ext

classes.
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Chapter 4

Elliptic Curves

4.1 The setup

Let K/Q be a finite Galois extension with Galois group G. Let E be an elliptic curve defined
over Q. For any field extension L of Q, we let Ef, := E Xgpec(q) Spec(L). Our interest is in
the motive M = h!'(Ex)(1). Note that the Galois group G acts on M and hence A4 := Q[G]
acts on the realizations of M.

As noted in Chapter 2, the motivic L-function associated to M is a tuple of twisted
Hasse-Weil L-functions. To be precise, for a Dirichlet character x let L(E ® x, s) denote the

twisted Hasse-Weil L-function. Then we have
L(M,s) = (LE® x,5 + 1), -
We shall denote by L*(1) the leading coefficient

L*(M,0) = (LY (E®x, 1)) cq-

Our aim is to relate this L-value to the arithmetic values arising from a complex as in
the conjecture. To compute the arithmetic side, we make certain assumptions that simplify

the calculations.
Assumption 1. K/Q is totally real and is tamely ramified.
Assumption 2. III(K) is trivial.

Assumption 3. E(K) is trivial.
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Note that K/Q is tamely ramified if and only if the ring O is a locally free Z|G]-module
of rank 1 (cf. [11]). In the example we consider, one has C1(Z[G]) = 1 and therefore it follows
that Ok is isomorphic to Z[G] as a Z[G]-module. In the following, we assume in addition

to the first assumption that there exists ap € Ok such that Ox ~ Z[G]ay.

4.2 The arithmetic values

4.2.1 Period isomorphism

The period map ays is an isomorphism between the Betti and deRham realizations. There-
fore two of the terms in the definition of Z(M) are trivial. Further, one has H'(Q, M) ~
E(K)®Q, and H}(Q, M*(1))* ~ E(K)* ® Q, which are both trivial by the second assump-

tion above. Therefore we have

[1]

(M) = Ryes. [Hy (M) R [Hyr/F]. (4.1)

Let £ be a Néron model for E over Z. Let w be a generator of H(£,Q}). Then the

image of the map

is a Z-lattice in C. We let Q' to be the least positive real number in this image and we define
Q = rQ where r is the number of connected components in F(R). This is the real period

associated to E (cf. [34]).

Proposition 5. In the above setting, the image of =(M) in R[G| under the isomorphism
Yoo 18 given by
Q7D g(en)g™!
geG
Proof. Recall that the isomorphism 9+, : R[G] ~ Z(M) ®qgR is constructed using the period
map ayps. Therefore, we shall first write down the Betti and deRham realizations, and the
corresponding period map between them.

Let Hp = @JeHom(K,C)Hl(JEK((C),27m'(@). We shall identify each summand on the
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right hand side with the dual homology via the isomorphism
HY(0Eg(C),2miZ) ~ Hom(H, (0 Ex (C), Z), 2miZ).

Therefore, we have

Hp ~Hom (®,H1(0 Ex(C),Z), (2mi)Z) .

We shall denote by H g, the fixed submodule of Hp under the action of complex conjugation.
Note that H} is the first term in (4.1).

Let 1 and 2 be Z-generators of Hi(Ex(C),Z) such that ~; is real, that is fixed under the
action of the complex conjugation. Then, oy; and o+, are generators for Hy (0 Ex(C),Z).

Since K is totally real, it follows that oy is real. Now define
Y : B H1(0ER(C),Z) — (2mi)Z

by setting
2mi ifo=id, j =1

(o) =
0 otherwise.

Note that every embedding of K in C corresponds to a real infinite place. Therefore, the
action of the complex conjugation on these embeddings is trivial. Thus, it follows that 3
generates H7, as a Q[G]-module after identifying via the above isomorphism.

Now, we consider the deRham realization. Note that by Serre duality one has
HdR/FO = Hl(EK, OEK) ~ HO(EK, Q}E‘K)*

where Q}EK is the sheaf of differentials, and * denotes the dual.

Lemma 4. Let £ and £o, be the Néron models for EZ over Z and for Ex over Ok, respec-
tively. Suppose that the conductor of E and the discriminant of K are relatively prime to
each other. Then

Eog == & Xgpee(z) SPec(Ok).

Proof. Note that the primes of bad reduction of E and the primes that ramify in K/Q do
not intersect. Therefore, £ Xgpec(z) Spec(Of ) is an abelian scheme over Spec(Ok). The

Lemma now follows from Corollary 1.4 in [2].
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From the above Lemma we have
H*(Ex,Qp,) =~ H(Eo,, 0, ) o, K = (H°(€,9¢) @2 Ok) @0y K.

Let wo be a generator for H(E,Q%). Then, ((wo®ag)®1)* is a Q[G]-generator for Hyp/ Fil°.
We shall choose wg such that the period fw wo is precisely €.
After identifying the Betti and deRham realizations as above, the period map

Qg HE,R — HdR,R/ Fﬂo

is given by
vz (o) [ Dot
v geG

Since Q[G] is semisimple the determinant functor is given by the map Det defined in
Chapter 1. The Q[G]-generators 71 and ((wo ® ) ® 1)* for H; and Hyp/ Fil° respectively,
allows us to identify Z(M) inside =(M)g ~ R[G]. To be precise, the image of (1) ®
((wo ® ag) ® 1) - QIG] = (M) in RG] = E(M)z is @7 (Leq9(c0)s™) - QIG]. This
completes the proof of the Proposition.

O

4.2.2 The isomorphism v,

Let T)(E) :=lim | E(Q)/I™ and let V)(E) := T;(E)®z,Q;. Then V;(E) is the l-adic realization
of M = h'(Ek)(1). Further, T}(E) is a Galois stable Z;[G]-lattice sitting inside V;(E). The
algebraic side of Conjecture 2 (4) involves RI.(Ok[$],Ti(E)), a perfect Z;|G]-complex,
which upon tensoring with Q; is quasi-isomorphic to RTc(Ok[£], Vi(E)).

To compute [RTc(Ok[%], T;(E))] we consider the distinguished triangle

1

RFC(OK[S

|, Ti(E)) — BRI (K, Ti(E)) — @ves R (Ky, Ti(E)),

where RI'f is the finite component (cf. [8]) of the usual complex RI" of cochains. Following
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the definitions from [7] and [8], we have that for v { loo, RT'¢(K,,T}) is quasi-isomorphic to
Ti(E)" = T(E)"

where the modules are placed in degree 0 and 1. Further, for v|oo, the complex RI'¢(K,,T;)
is defined to be the complex RI'(K,,T;). Finally, for v|l, we note that

H} (Ko, Vi(E)) =~ (lim E(K,)/I") ®z, Qi ~ tp ©q Q

where tg is the tangent space of Ex and the latter isomorphism is given by the exponential
map. The Z;[G]-submodule lim E(K,)/I" can have torsion points, and therefore is not a
good choice for H}(KU,Tl(E)) Let £o, be a Néron model for Ex. Then there is a free
1-dimensional Z[G]-lattice H°(Eo,,, QéoK) sitting inside tp ~ HO(Ff, Q}EK) We set

H}(Kvyn(E)) = H0(50K7 Q}/‘OK) Rz Zl-

This gives a projective Z;[G]-lattice sitting insider H} (K, VI(E)).
Lemma 5. In the above setting one has

1. For v|oo, the compler RI'f(K,,T)(E)) is quasi-isomorphic to Hi(cE(C),Z) ® Z; (in
degree 0) if K, ~ C and is quasi-isomorphic to Hi(cE(C),Z)" ® Z; (in degree 0) if

K, ~ R. Here o is the embedding corresponding to the infinite prime v.
2. Forvtloco #H}(KU,Tl(E)) is finite and is given by the local Tamagawa numbers.

3. For v|l one has

Hj(Ko, Ti(E)) ~ H’(Eoy, %, )®zL

C HYEk,Qp,) ®oQ ~ Hi(K,, Vi)

Further, for all v € S there is an inclusion

which becomes a quasi-isomorphism upon tensoring with Q.
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The finite cohomology in the global case is given by the following Proposition.
Lemma 6. Assume that UI(Ex) is finite and that | # 2,3. Then,
0 ifi=0
Hy(K,T)(E)) ~{ E(K)®yzZ ifi=1

Homz(E(K )i, Q;/Z;) ifi=3

and

0 — Mljee — H}(K,T)(E)) — Homz(E(K),Z;) — 0
is a short exact sequence. Here 111’ is a group that differs from the Shafarevich-Tate group
by the torsion of lim E(Ky)/I".

See [7] or [22] for proofs of the above Lemmas.

Remarks.

1. The quasi-isomorphism
Dveso B (Ko, TH(E)) @ Q) — Duese R f(Ky, VI(E))
induces as isomorphism
ok —cH1(0E(C),Z)" © Q; ~ Detg, (¢ Bves.. RL (K, VI(E)),

which is precisely the comparison isomorphism between the étale and singular coho-

mologies.

2. If E(K) and III(E/K)e are trivial then RI'¢(K,T;) is quasi-isomorphic to the zero

complex and hence

1

[RFC(OK[S

[ TI(E))] = [Mje] B [Sues BT ¢ (Ko, Ti(E))].

Note that the contribution of [IIj..] is just the torsion of lim E(K,)/I".
With the above Lemmas one quickly deduces the following.

Proposition 6. In the above setting suppose that III(K) and E(K) are trivial. The image
of [RFC(OK[%],TZ(E))] in [RFC(OK[%],VZ(E))] is the Z;|G]-line generated by (wo @ ).
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4.3 Special values of abelian twists

4.3.1 Modular symbols

Let H = {z € C|Im(z) > 0} denote the upper half plane and let H* = HUQU {oo} denote
the extended upper half plane. The group SLs(Z) acts discretely and discontinuously on H*.
For any congruence subgroup I' of SLy(Z) let X1 be the modular surface I'\'H*. Further,
let S2(T") be the space of all cusp forms of weight 2 for I'. There is a bilinear pairing

SQ(F)XHl(XF,(C) — C
(f7) — omi / f(2)dz

that induces an isomorphism S3(T") ~ Hy (X, C)*™" of complex vector spaces.

For cusps «a, 8 € QU {oc} consider a smooth path in H* from « to 3. For a congruence
subgroup I' of SLy(Z) let {a, B}r denote the image of the path in Xp. Note that if o and
[ are I'-equivalent, then {«,3}r is a closed path in Xp and hence defines an element of
Hy(Xr,Z). The Manin-Drinfeld Theorem says that for any cusps a,3 € QU {oo} one has
{a, B}r € H1(Xr,Q). Note that this element is independent of the choice of the path from
a and (. Therefore, we can (and will) identify {«, S} as an element of H;(Xp, Q). We shall
also drop the subscript I whenever the notation is unambiguous. For a cusp form f € So(T)

let

B
(v B, f) 1= 2mi / f(2)dz

Again, note that this definition is independent of the choice of the path from « to S.

For v € SLy(Z) let () = {7(0),7(c0)}. Let C(T') be a Q-vector space the symbols ()
as basis, where 7 runs over a set of representatives for the cosets of SLy(Z)/T". Let R be
the left ideal of Z[SLy(Z)] generated by I + S and I + (T'S) + (T'S)?, where

0 -1 11
S: 7T:

Let B(I') = C(T")R. Let Hy(T") denote the free abelian group on the cusps of I'. Let Z(I")
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denote the kernel of the map C(I") — Hy(T') defined by

(7) = [y(00)] = [v(0)]

where [a] denotes the I'-orbit of the cusp a. Then, B(I') € Z(I"). Let H(I") = Z(I")/B(I).

Proposition 7. As Q-vector spaces H(T') and H1(Xr, Q) are isomorphic, and the isomor-
phism is given by

(v) = {7(0),v(c0) }r.

Proof. See [26]. O

4.3.2 Hecke operators

For a prime p let 7, denote the Hecke operator. Thus, for a cusp for f € Sa(I'), the Hecke

operator acts as
-1
p 0 14 1 k
A= +> f
01 k=0 0 p

Now, define the action of these Hecke operators on Hi(Xr,Q) by

p—1
To(a0) = aps} + Y {8 2R
=0 b p

Then one has
({e. B}, fITp) = (Tp{c. B} f) -
4.3.3 L-values

Henceforth, we let I' = T'y(N) and f € S3(I"). We first note that the Mellin transform for

the L-function attached to a new form f is given by

L(f.5) = (20)°T(s)"! /0 T2

z

Substituting s = 1 in the above we get

L, 1) = —2ri /Om F(2)dz = — ({0, 00}, f) .
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Note that a similar identity holds for twisted forms f ® x.

Proposition 8. Let f be a new form of level N and let x be a Dirichlet character of
conductor | such that (I, N) = 1. Then we have

l
L(f ®x.1) —T"Z ) ({0.a/1}, f)

where g(x) = Zil:l x(n)(" is the Gauss sum.

Proof. Note that, by the definition of the Gauss sum one has

Therefore we get

Now, if f(z) = 3,51 a,e>™* is the g-expansion of f then

(fex)(z) = > x(n)a,e™

n>1
= 5 I00 S e(5)
= n%:l l ;x( Yan
- (Miﬂ— )] )()
N l a:lX e )R

where v, =
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Now since L(f ® x,1) = —2mi [ (f @ x)(2)dz = — ({0,000}, f @ X), we get

l
- —@Zﬂa)qo,oo},fm

= ——ZX {"}/a a(oo)}7f>

_ sy ) ({a/l,00}, f)

l a=1

l
- TXZ ) ({0.a/13, f).

This completes the proof of the Proposition. O

Recall that we have an isomorphism S3(I") ~ H;(Xp,C)*". Thus, a rational new form
f € S3(T") corresponds to an element {c, 3} € Hy(Xr, Q)" via this isomorphism. Note that
this element is unique up to sign if we further restrict it to be an element of Hy(Xr,Z)*.
We shall denote this 1-cycle by ~¢. Since the pairing (,) is compatible with the action of
the Hecke operators, it follows that s is a common eigen vector for all the Hecke operators
with eigenvalues same as that of the new form. Thus, by looking at the Hecke action on
Hy(Xp,Z)" we can compute 7. Let V be the Q-vector space generated by ~;. Note that

we can construct the complementary subspace V'’ on which the pairing (-, f) is trivial. Then,

[r=1.

where ~|y is the projection of v onto the subspace V. In fact, v|y is a rational multiple of

for any v € H;(Xp, Q)" we have

v¢. So, if we let Qf := fﬁ/f f then we see that [, f is a rational multiple of ;. The following
well-known Proposition gives the equality between the periods of an elliptic curve and the

corresponding modular form.

Proposition 9. Let FE be a strong Weil curve defined over Q and let f be the normalized
rational new form corresponding to E. Then, the real period associated to E equal cpdSy,
where d is the number of components in the real locus of E (that is, d = 2 if the corresponding

lattice is rectangular, d = 1 otherwise) and cp is the Manin constant (known to be trivial

for Xo(p))-
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Note that, {0,a/l} +{0,(l —a)/l} € H1(Xr,Z)" and {0,00} € H;(Xr,Z)". Hence we
can compute the L-values of a rational new form and its twists using the above computation.
Implementation of such a computation is studied in detail by Cremona (see [16]).
If 7 is a nonabelian irreducible representation of G, then a formula such as (4.1) does
not exist. However, by a Theorem of Brauer one can write 7 as a linear combination of
representations induced by abelian representations of the subgroups of G. Therefore one

has
Lifers) = [[L(fi®n,s) (4.2)

where ﬁ is the base change of f to the fixed field of a subgroup G; of G, and 7; is an abelian
representation of G;. Thus if one could get a formula for L(ﬁ ® 74, 8) analogous to (4.1),
then we can compute all the special values of the twisted L-functions. However, the theory
of modular symbols is lot more complicated even for a quadratic field. For example, one can
write down an infinite set of generators for Hy(X, Q) (where X is the modular surface), but
the relations amongst these generators are completely unknown (cf. [29]).

The special values of twisted L-functions associated to a base change form fof f are
related to the periods of f The equation (4.2) therefore relates the special value of a twist
of f and the periods of base change forms. Note that the arithmetic side of the equivariant
conjecture involves only the periods associated to f. Thus, the equivariant conjecture implies
period relations between the periods of f and periods of the base change forms. These

relations are precisely the ones conjectured by Doi, Hida and Ishii in [20].

4.4 Special values of nonabelian twists

Let 7 be an (irreducible) self-dual representation of G and let N(E, 7) be the conductor of
E ® 7. We suppose that the L-function L(F ® 7, s) has a meromorphic continuation to the

whole s-plane and that it satisfies a functional equation
LEE®T,s)=+L(E®T,2—s) (4.3)

where

~

LIE®T,s)=Ay(s)L(E®T,s)
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for some constant A = A(E,7) and a I'-factor

v(s) =T <s+2)\1> r <8+2)\2> - Gamma <s—1—2)\r> .

These assumptions are known to hold in many cases. For instance, if 7 is a Dirichlet char-

acter, then the assumptions are know to be true due to Shimura. Bouganis and Dokchitser

have shown in [4] that the above assumption is true for the nonabelian representation of a

. /N(E
false Tate extension. In these cases, one has A = 7r( ) , where d is the dimension of 7.

Also, one has

Now, let ¢(s) be the inverse Mellin transform of 7(s), that is,

_ /0 h ¢(t)ts%.
[T

be the incomplete Mellin transform of ¢(¢). Then one has

Let

Proposition 10.

LE®T,s) Zan s <%> +3 " a,Gos (%) (4.4)
n=1
Proof. See [19] or [36]. O

For fixed s, the series (4.4) converges exponentially with ¢ and therefore we can use this
series to get numerical approximations of the value L(F ® 7,1). The rate of convergence
of the series depends on the conductor N(E ® 7). We roughly need to sum /N(E ® 1)
terms in the series to obtain an approximation. Note that if the bad primes of F and 7 do
not intersect, then the conductor of £ ® 7 is N(F, 1) = N(E)N(r)2. Therefore, obtaining
numerical approximations to the value L(E ® 7,1) is computationally infeasible for large
field extensions.

In [19] Dokchitser has explained how to compute G,(t) efficiently and this has been

implemented in [15]. Our numerical approximations use this particular implementation.
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Remark. The Proposition 10 is in fact a special case of a more general result that holds

for any L-series having a meromorphic continuation and satisfying a functional equation of

type (4.3).

4.5 An example

Let p(x) = 2% — 4z + 1, and let K be the splitting field of p(x) over Q. The discriminant of
p(z) is 229, and hence K is a totally real Ss-extension. The unique quadratic subfield of K
is Q[v229].

Let r and s be elements of G := S3 of order 2 and 3 respectively. There are three
irreducible characters of G, two of which are abelian and the third has dimension 2. The

character table is shown below.

y|1]=1] 1
w2 0]-1

Here x is the nontrivial abelian character and ¢ is the character of the irreducbile

nonabelian representation p of G given by

0 -1 -1 1
-1 0 -1 0

T =

In fact, 1 is induced by the trivial character on C3 = {1,s,s?} C Ss, that is, ¢ = Ind(sjz lcy.

So for any new form f € S3(I'g(/V)) one has
L(f ®1.5) = L(f. )

where [ is the base change of f to Q[v/229].

Let E be the elliptic curve defined by y% + y = 2® — 8¢ — 9. This is the curve 307Al in
the sense of [16]. Note that this is a strong Weil curve and hence all the above computations
are applicable to this curve. The conductor of the curve is 307, and as noted in [16] the
group F(Q) is trivial. We note that the primes 37 and 53 split completely in K. It is easy to
check that F(Fs7) = 35 and F(F53) = 64, and therefore it follows that (K )ios is trivial (cf.
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[34]). As we will see in the next section, the L-functions L(E ® 7, s) do not vanish at s =1
for any 7 € G and therefore one can conclude that E(K) is trivial. Thus, M = h'(Eg)(1)

satisfies the first two assumptions made in Section 4.1.

4.5.1 Analytic values

The special value of the L function attached to M is L*(M,0) := (L*(E ® ¢,1))

sl In

fact, we can view this as an element of ((R[G])*:

L*(M,0) = > L*(E® ¢, 1)eg
ped

where ey = ﬁ deG #(g)g~" is the idempotent corresponding to the character ¢ € G.

In our case, we have G = S3, and G= {1,x,%}. The L-values L(E ® ¢, 1) are nonvan-
ishing for all the characters ¢ € G and thus, L*(E® 6, 1) = L(E® ¢, 1). Since the E(K) has
no torsion and the L-function does not vanish at s = 1, it follows that E(K) is trivial. Thus,
FE and K satisfy the necessary hypotheses stated in Section 4.1. For ¢ = 1,y the L-value
can be computed using modular symbols as described in Section 4.3.1. The computations
yield:

L(E,1)=Qp, LIE®x,1) = —Qp/v229

where Qg is the real period attached to E.

We apply methods described in the Section 4.4 to compute L(E ® 1), 1). The conductor
of E® is N(E)?- N()?, where N(E) = 307 and N(¢)) = 229 are the condutors of E and
1 respectively. The coefficients of the sereis L(F X 1, s) can be computed by looking at the

local factors:

(14T 4712 if p =307

1 —a,T + pT? if p =229
Ly(E®¢,T) =4 (1—ap+pT?)? if p # 307,229 and f(p) =1
1+ (2p — a2)T? 4 p*T* if p # 307,229 and f(p) =2
| 1+ a,T + (af — p)T? + appT® + p*T* if p # 307,229 and f(p) =3

The computations yield L(E ® 1,1) ~ 0.1330438452.
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4.5.2 Arithmetic values

We first consider the period isomorphism. Recall from Section 4.2 that the period isomor-
phism

. 0
Qpf e HE,]R — HdR,R/F

is given by

ay(Y®a)w e <L w) B > gla)g™ |- (4.5)

geG

Lemma 7. Consider the compler ® : R|G]| LN R[G] of R[G]-modules defined in degree 0 and
1, 0 being an isomorphism. Then the image of the trivial generator under the isomorphism
Det(®) ~ ((R[G]) is

S ey (detpy (0(1)))

ne@

where p;, is an irreducible representation with character 7).

Proof. Let p be an irreducible complex representation of G and 7 be the corresponding
character. Let e, = . ¢ n(g)g", the idempotent associated to n. Then e,C[G] ~ M, (C)

for some n > 1. Let

10 0

0 1 0
e =

0 0 1

Then eM,,(C) is an n-dimensional vector space over C. Note that e,0(1) = 0(e,) € €,C[G] ~
M, (C), so let p(A(1)) = e,#(1) = (ayj). Then by the construction of the determinant
functor for semisimple in Section 2.1.2, we have e, Det ® is the C-line bundle generated by

determinant of the map

0 :eM,(C) — eM,(C).

The determinant of § is given by det(a;;) = det(p(f(1))) and therefore Det(®) equals
2 nec endet(p(0(1)))- O

Note that (wy ® ag) and (79 ® 1) are the Q[G]-generators which define Z(M) inside
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E(M)®R. From the above Lemma and (4.5), it follows that the image of Z(M) in Z2(M)®R
is given by the Q[G]-generator

RQ:= ) det(py (5" D g(ao)g™"))ey.

neé gEG

After choosing a particular Z[G]-generator ap of Ok (using PARI), we get the following

components:

e RQ = Qp'trgglan) = Qp' = L(E,1)7!
exRQ = Q A sopv/a39) (a0 — g1(a)) = Q3! - V229 = ~L(E®@ x,1) "
ey RQ ~ Q7% (V229) ~ (0.7047640380)2 (15.131274594) = 7.516319136

~ L(E ®1,1)71(1.00000000)

4.5.3 Equivariant conjecture and consequences

As elements of ((R[G])* we have
L*(M,0)RQ ~ e1 — ey + €y, (4.6)

which is an element of ((Q[G])*. Thus L*(M,0)~! and RS2 generate the same Q[G]-line in
Z(M) ® R. This is in accordance with the rationality part of the equivariant Conjecture.
Note that the right hand side of (4.6) is a unit in Z;[G] for [ # 2,3. Therefore (4.6) provides
a numerical verification for the I-part of Conjecture 2 (4), for [ # 2,3. Our calculations in
Section 4.2 excluded the primes 2 and 3, and therefore we cannot conclude anything about

2-part or 3-part of the conjecture. To summarize, we have the following.

Theorem 5. Let K be the splitting field of p(z) = x> —4x+1, and let E be the elliptic curve
defined by y> +y = 23 —8x —9. Then the above calculations provide a numerical verification
for the l-part of equivariant Conjecture (with | # 2,3), for the motive M = h'(Eg)(1) with
coefficients in Q[G].

Remarks.

1. For abelian extensions K/Q, the methods of modular symbols give the precise value

of L-function in terms of the period, and thus one can possibly prove the equivariant
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Conjecture in the abelian case. The above result in fact proves the Conjecture (under

the assumption that III is trivial) for h' (EQ[ \/@])(1).

. The assumption on the triviality of E(K) can possibly be removed by carrying out the
calculations in Section 4.2 more carefully. Also, by Lemma 5 in [8], one can possibly
verify the conjecture for a curve with nontrivial III (or nontrivial torsion group) by

considering an isogenous curve that has trivial III and torsion group.
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Appendix A

An Auxiliary Lemma

We shall prove here the following lemma:

Lemma 8. The map
Ko(Z[A4],R) — Ko(Ma,,R) x Ko(Z[A4]) x Ko(Z[AP],R)

is not injective, where M4, is a mazimal order in Q[A4] containing Z[A4).

Proof. Following the notations in the proof of Lemma 4 of [9], the above map is injective if

and only if the map D(A4) — D(C3) is injective where for a finite group I' one defines

nr(Uy(Mr)) N im(nrgpry)
nr(Uy (Z[1)) Nim(nryr)’

D) :=

with 9 being a maximal order in Q[I'] containing Z[I'].

The group D(C3) is isomorphic to M, /Z[C3]* which is of order 2. The numerator of
D(Ay) is Z* x Z[(3]* x Z* since Q[A4] ~ Q x Q[(3] x M3(Q). Thus, the numerator of D(Ay4)
has order 24. The denominator is {nr(u) : u € Z[A4]*}. If we show that this has order 6,
then it follows that D(Ay4) has order 4, so the map D(A4) — D(C3) is not injective and
hence the lemma follows.

Now consider a unit u € Z[A4]*. The image of this under the norm reduction map nr
lies inside Z* x Z[(3]* x Z*. Let nr(u) = (a,b,c) under this identification. We shall show
that a = c.

Note that nr(u) = (po(u), p1(u),det(p2(un))), where pg is the trivial representation, p;
is a nontrivial abelian representation and po is the degree three representation of A,4. By

replacing v by —u if necessary, we can assume that a = 1. Further, we can assume that the
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image of u under the projection Z[A4]* — Z[C5]* is trivial, by multiplying by a suitable unit
(£h?) if necessary. Thus, if u = >_geA, g g Where ag € Z, then } 4 ag = po(u) =a = 1.
Further, the image of w in Z[C3]* is trivial implies that a. + ag, + a4, + a4, = 1 and
i+ 30 gy, =0 for i = 1,2,

The representation pg is given by the following:

1 0 0 -1 0 0 010
gi—10 -1 0 y 92 0 1 0O yh—=10 01
0 0 -1 0 0 -1 1 00

Thus, ¢ = pa(u) equals the determinant of (r;;)1<; j<3 where
rij = 2(ap-i+; + ah7i+jgj) — (ap—i+i + Qp—itig, T Qp—itig, T CLh—iJrng)-
Therefore, by the above identities, ¢ equals the determinant of

2(ae +ag,) —1  2(ap + ang,) 2(ap2 + apzg,)
2(ah2 + ah2g1) 2(ae + agz) -1 2<ah + ahgg)
2(an + ang,) 2(ap2 +apzg,)  2(ae +agy) — 1

Looking at the determinant of the above modulo 4, we see that ¢ = 1 (mod 4) and hence

¢ = a. Therefore, we have

#{nr(u) : u € Z[A4]*} = #{(po(u), p1(u)) : u € Z[A4]*} = #Z[C3]* =6

This completes the proof.
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A Brief History of Equivariant
Conjecture

The following table gives a brief history of the various results and conjectures related to

the special values of L-functions that eventually led to the formulation of the equivariant

Tamagawa number conjecture.

Year Mathematician(s) Result or Conjecture

1838 Dirichlet Analytic class number formula for quadratic fields
1850 Kummer Analytic class number formula for cyclotomic fields
1859 Riemann Riemann hypothesis

1896 Dedekind Analytic class number formula for number fields
1917 Hecke Analytic continuation of Dedekind (-function

1949  Weil Weil conjectures

1960 Dwork Rationality part of Weil conjectures

1963 Ono Tamagawa number of tori

1965 Birch, Swinnerton-Dyer Birch and Swinnerton-Dyer (BSD) conjecture

1966 Tate Generalization of BSD conjecture, Tate’s conjecture
1969 Serre Definition of motivic L-functions

1972 Quillen Definition of algebraic K-groups

1974 Borel Relation between (i (n) and Ko,—1(Ok)

1974 Deligne Proof of Weil conjectures

1976 Coates, Wiles Rank part of BSD conj. in rank zero, CM case
1978 Bloch K5(E) ~ L(E,2) for an elliptic curve E

1979 Deligne Rationality conjecture for L(M,0) for critical M
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Year Mathematician(s) Result or Conjecture

1983 Gross, Zagier Rank part of BSD conj. when L(E,1) =0
1985 Beilinson Rationality conjecture in a general setting
1988 Bloch, Kato Integrality conjecture for L(M, s)

1990 Kolyvagin Rank part of BSD conj. when L(E,1) # 0
1991 Fontaine, Perrin-Riou Reformulation of Bloch-Kato conjecture

1996

Burns, Flach

Equivariant conjecture in the nonabelian setting
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