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Abstract

Stream processing systems receive continuous streams of messages with relatively raw information

and produce streams of messages with processed information. The utility of a stream-processing

system depends, in part, on the accuracy and timeliness of the output. Streams in complex event

processing systems are processed on distributed systems; several steps are taken on di�erent proces-

sors to process each incoming message, and messages may be enqueued between steps. This work

explores the problem of distributed dynamic control of streams to optimize the total utility provided

by the system. A system can be controlled using central control or distributed control. In the former

case a single central controller maintains the state of the entire system and controls the operation

of all processors. In distributed control systems, each processor controls itself based on its state and

information from other processors. A challenge of distributed control is that timeliness of output de-

pends only on the total end-to-end time and is otherwise independent of the delays at each separate

processor whereas the controller for each processor takes action to control only the steps on that

processor and cannot directly control the entire network. In this work, we discuss a framework for

design and analysis of the control-based scheduling algorithms for a distributed stream processing

system and illustrate our framework with two concrete scheduling algorithms.
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Chapter 1

Introduction

1.1 Background

Message-driven or event-driven applications are very well known and used in computer science .

The model for such applications is that application components exchange information via sending

and receiving messages (or events), which travel along the channels connecting them. This model

is very general and is therefore applicable to many practical systems. The model is useful not only

for distributed applications, but also in the design of user interfaces, hardware architectures and

other domains. In fact, the message-based model describes well the mode of communication among

di�erent entities in the real world such as departments, companies and people. Thus, any extensions

to this model are applicable outside of computer science and distributed systems.

1.2 Streams and Stream Processing

Streaming applications can be viewed as specialized extensions of message-driven applications. In

this context, a stream is de�ned as sequence of messages emitted by a single source with every

message having the same schema. Therefore, stream processing is a class of computations that

involves receiving one or more streams of messages, executing a program against incoming streams,

and producing one or more output streams. The computation can also change, but is assumed to

change less frequently than other system parameters. A streaming application is a message-driven

application that performs stream processing on several input streams. This de�nition encompasses

many applications. To narrow the de�nition for the purposes of this discussion, the following key

attributes of a streaming application are assumed:

� Statefulness: The tasks may have state. This is di�erent from �ltering or sampling applica-

tions that perform computation on one message at a time.

� Rapid Input Rate: The message arrival rate is high.
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� Dynamism:

{ Arrival and service rates for each stream may change rapidly.

{ The number of streams produced and consumed by the application may change at run

time.

{ The computation performed by the application may change, but much less frequently

than other system attributes.

� Performance Requirements: Clients represent performance requirements in the form of

Quality of Service (QoS) functions, which de�ne penalties for the delay incurred in producing

output.

� Multiple Streams: There may be several streams of information 
owing through the appli-

cations that may or may not share some computation.

� Multiple Users: The results are delivered to multiple application users.

Not all stream processing systems exhibit all these features. Only the �rst two properties are truly

necessary for a system to be a stream processing system. In fact, there are several stream processing

systems described in the literature that lack one or more elements of the above list [4].

1.3 QoS-based Scheduling in Distributed Stream Processing

Systems

The requirements described in the previous section put new demands on system design. At the

very least, a stream processing system has to process huge numbers of messages while potentially

maintaining a large amount of state. Moreover, if the extended requirements for dynamism and

performance are necessary, the system must be aware of them too. Since a centralized system is often

not capable of meeting such requirements, a distributed implementation of the stream processing

system is required. In a distributed stream processing application, computation is broken up into

several pieces that are placed onto separate machines.

In such settings, we explore the design of scheduling algorithms that are needed on each machine

of a distributed stream processing system. Our novel approach has two parts. First, we realize that

in a distributed stream processing system queuing delays will be a large part of total end-to-end

delay. This view is di�erent from those approaches proposed in Carney et al. [11] and Babcock et

al. [3]. Scheduling should be designed to alleviate these queuing delays. Second, we treat scheduling

as a control problem, which is similar to the approach taken in Paganini et al. [39]. Scheduling

at each server can be controlled using feedback information about global conditions of the system,
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Parameter Description
S The set of servers in a topology
C The matrix of link capacities between the servers.

Cij = 0 if there is no link between server i and j.
Cij = c > 0 if there is a link with distribution of transmission delays c
between server i and j, where i; j 2 [0; jSj]
Note: The matrix is symmetric because links between servers are bidirectional.

Table 1.1: Physical Topology Parameters

allowing each server to converge to an optimal scheduling policy. Thus, we can use the theory of

control design to analyze the speed of convergence and stability of our algorithms. We believe that

this approach will yield a scheduling algorithm with greater robustness to uncertainty. Similar to

Carney et al. [11], we de�ne a QoS function for each 
ow, which quanti�es the cost of delay for

every message in every stream. These costs impact the order in which messages should be processed

at each server to improve application performance.

1.4 Formal Problem De�nition

In this section, we provide a formal de�nition of the problem. We start by de�ning server topology

and stream computation, and conclude with a de�nition of scheduling as an optimization problem.

1.4.1 Server Topology

A server topology represents a distributed set of servers that are connected by a set of links. Each

server has a certain computational capacity. This capacity is determined by the server's architecture,

i.e., CPU speed, cache size, memory size, etc. Similarly, each link has an associated capacity. For

the purpose of de�ning an abstract framework, we use the distribution of service times needed to

process each stream's messages to represent the computational capacity of a server. Link capacity

is represented as the distribution of time delays for messages traveling on the link (see Table 1.1).

1.4.2 Computation

A streaming computation is a directed acyclic graph (DAG) in which each node represents an indi-

visible unit of a computation and each link represents data 
ow. A node with zero in-degree is called

a source, and a node with zero out-degree is called a sink. All data produced by sinks represents

the total result of a streaming computation. A distributed stream processing system consists of a

set of such streaming computations. Each computation is distributed among jSj servers available

in the topology. The mapping of computation on this topology is outside of the scope of this work,
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Parameter Description
F Set of streaming 
ows where each 
ow fi is a directed acyclic graph.

fk Single streaming 
ow de�ned as a tuple < ~Ck; ~Fk >, where ~Ck is a set

of computations and ~Fk is a connectivity matrix such that ~Fkij = 1 if

~ci 2 ~Ck sends output to ~cj 2 ~Ck and ~Fkij = 0 otherwise.

m : R2 ! R Mapping function m(k; i) = j : ~ci 2 ~Ck such that fk 2 F is mapped to
server sj 2 S

Yij Set of computations from 
ow j placed on server i, i.e.,

8~ck 2 Yij ; ~ck 2 ~Cj ^ fj 2 F ^ si 2 S ^m(k; i) = j

Table 1.2: Streaming Computation Parameters

Parameter Description
QoS Function q : R! R maps delay to measure of cost. Measure of cost is comparable

across streams.
Delay computation 8~c; ~c(m1;m2; :::;mn) = �m

time � stamp( �m) = min8i2[0;n](time � stamp(mi)) where
time � stamp(m) returns time when messages used to generate m or m itself
has entered the system.

Table 1.3: Quality of Service Function

therefore we assume that a mapping function, m, is given to us (see Table 1.2). There are several

mapping strategies proposed in the literature [6, 55, 59].

1.4.3 Distributed Scheduling as Optimization over a Queuing Network

Now, we de�ne a notion of quality of service and formulate the distributed scheduling problem as an

optimization problem over a queueing network. Each 
ow fi 2 F is said to have a quality of service

function, q : R ! R. This non-decreasing function maps the delay for every message produced by

every ~ck 2 ~Ci with ~Fikm = 0; for all m (i.e., each node with zero out-degree).

The delay for each message is computed as follows. Every message entering the system is time-

stamped. Each operator in a data 
ow takes several input messages and produces zero or more

messages [1, 4, 29]. An output message carries the highest time-stamp from all messages used to

create it. When a �nal output message arrives at a sink, the di�erence between the current time

and the time-stamp is taken. This di�erence is called message delay, d, and q(d) is the cost of the

delay (see Table 1.3).

A set of streaming 
ows distributed over a network of servers is viewed as a queuing network,

where each server has a set of queues corresponding to each 
ow's input (see De�nition 1.4.1). The

queues are connected if there is data 
owing between two servers as de�ned by the structure of the


ows and the mapping function. The scheduling at each server is de�ned as an optimal selection

policy for enqueued messages at each local server such that a global cost-based system performance
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metric is minimized. Currently, our optimization metric is de�ned as the average cost for all 
ows

in the system, where the cost of a 
ow is de�ned as the average cost of all messages produced by

the 
ow so far (see De�nition 1.4.2).

De�nition 1.4.1. Let Qmj be a queue on server si that corresponds to a sub-
ow Ymj, and let

[Qm1; :::; Qmn] be a state of all queues on server si, and ! be some feedback information at time t.

Then the scheduling function, sched : (sm; Qm1; :::; Qmn; t; !)! ~jk, determines which job ~jk 2 Qmk

should be executed in the next �t.

De�nition 1.4.2. The Distributed Scheduling Problem is to �nd a scheduling function, sched, that

minimizes 1
jF j limt!1

PjF j
i=0

PNi
t

t=0 c(d
i
t)

Ni
t

where N i
t is the number of events received by stream i before

time t.

Note: De�nition 1.4.1 does not force the algorithm to use any speci�c feedback information. In

the next chapter, we discuss the concrete assumptions behind this de�nition that are used in this

work.
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Chapter 2

Problem Space and Proposed

Scheduling Algorithms

2.1 Single Server: Static Mean-Based Scheduling

In this chapter, we present two approaches to solve the distributed scheduling problem. The �rst

approach is a static mean-based scheduling (SMBS) algorithm. The second approach is a dynamic

queue-control (DQC) algorithm. We design both approaches in a single server environment and then

outline the extensions needed to move these algorithms to a complete queueing network. In addition,

we discuss in detail the current assumptions and limitations of both approaches. A summary of our

framework is presented in Figure 2.1.

Our �rst approach is based on a process sharing algorithm that splits a server's processing

capacity among all streams allocated on the server. The process sharing works dynamically such

that the capacity is divided among non-idle streams. For this process sharing scheme, we use stream

statistics to determine each stream's expected delay under a given share of the total capacity. Then,

we use this analysis iteratively to determine the share that minimizes the metric introduced in

Section 1.4.3. Since the analysis uses expected queue sizes and delays, we call this approach static

mean-based scheduling (SMBS).

2.1.1 Process Sharing Algorithm

At the core of the SMBS approach is the dynamic process sharing algorithm. This algorithm splits

the processing capacity needed to execute jobs for each local stream according to the stream's

priorities. However, unlike classical static process sharing, which divides the capacity permanently

among di�erent jobs, the division in this algorithm only occurs when two or more local streams are

competing for resources.

The dynamic process sharing algorithm works as follows. For each 
ow fj on server si there is

a queue of messages Qij . The algorithm serves the message from the head of the queue. Thus, no
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Analysis Level

One Server Model 
Design

One Server Model 
Design

Multi-Server Extention Multi-Server Extension

Static : SMBS Dynamic : DQC

Figure 2.1: Analytical Framework

message reordering is done. The server processes each message until the local stream's computation,

Yij , produces zero or more messages. Therefore, scheduling decisions are not made on a per operator

basis and intermediate results of the computation are not persistent under this scheduling technique,

unlike that of Babcock et al. [3]. The scheduling algorithm performs process sharing. Each queue

has a priority number assigned to it. If there is more than one non-empty queue, the scheduler gives

a share of the local processing capacity based on the priority number of each queue (see Algorithm

1).

Algorithm 1 is executed whenever the current job in stream j �nishes processing or a new job

arrives into an empty queue. Later we will see that the priorities fp1; :::; png can be adjusted

to regulate how much of the capacity share each stream should get. This will be at the core of

determining a local scheduling policy such that the overall global objective function is minimized.

Moreover, we will prove that this mode of sharing is always more e�cient than the classical static

process sharing scheme in which the shares are not adjusted at run-time. This result is presented in

Section 3.2.

2.1.2 Process Sharing Algorithm Model

In order to determine priorities for the process sharing algorithm, we need to understand its behavior.

We use queuing theory the same way it is used to derive expected queue sizes for other types of

scheduling such as FIFO. We represent our scheduling process as a Markov Chain for which the

invariant probabilities are computed. From the invariant probabilities, the expected queue size for

each local stream is derived. Then, by application of Little's Law, the average delay is determined.

For the purposes of de�ning a Markov chain we assume that for each local stream Yij , arrival
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Algorithm 1 schedule(fQi1; :::; Qing , fmi1; :::;ming , fp1; :::; png,k)

Require: 9Qij such that jQij j > 0
Require: 9mij such that mij 6= ;
Require:

Pn
j=1 pj = 1

Require: k 2 [1; n]
Require: fQi1; :::; Qing : set of queues corresponding to local 
ows
Require: fmi1; :::;ming : set of currently executing jobs
Require: fp1; :::; png : set of priorities
Ensure:

Pn
j=1 ~pj = 1

1: if done(mik) then
2: send(mik)
3: end if
4: if size(Qik) > 0 then
5: mik  dequeue(Qik)
6: end if
7: for all mij 2 fmi1; :::;ming do
8: totalUsedWeight  totalUsedWeight + pj fAggregate shares for all executing jobsg
9: end for

10: for all mij 2 fmi1; :::;ming do
11: ~pj  

pj
totalUsedWeight

12: execute(mij , ~pj) fcontinue job execution with given fraction of the CPUg
13: end for

and service rates are distributed exponentially with means �j and �j respectively. Therefore, we can

construct a continuous Markov chain (CMC) in which each state is a vector of queue sizes for each

local stream Yij (the size of a queue includes the job that is currently being served). An example of

such a Markov chain for two queues with maximum size of two messages is shown in Figure 2.2.

The outgoing transitions from each state depend on queue size. If the queue size is zero, then

stream share is distributed among the non-empty queues. The following is the de�nition of the

transition function t that determines the rate of transition from state i to state j.

De�nition 2.1.1. Given a scheduling algorithm on n queues and given two states Si = [si1; :::; sin]

and Sj = [sj1; :::; sjn], the transition function t : fSi; Sjg ! R speci�es the transition rate from

state Si to state Sj and is de�ned as

t(Si; Sj) =

8>>><
>>>:

�i if 9sik 2 Si; 9sjm 2 Sj :: (sjm � sik) = 1 ^ 8�k 6= k; �m 6= m sj �m = si�k;

!i�i if 9sik 2 Si; 9sjm 2 Sj :: (sjm � sik) = �1 ^ 8�k 6= k; �m 6= m sj �m = si�k;

0 otherwise;

where !i =
piP

k:sik 6=0:pk
.

Proposition 1. LetM be a continious ergodic Markov chain with transition function t and invariant

distribution �. The total residence time for jobs in local 
ow Yij is

W i =

P1
j=1 sij�i

�i
, where �i 2 �:
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[0,0]

[1,0]

[2,0] [2,1] [2,2]

[0,1] [0,2]

[1,2][1,1]

λ1

λ1 λ1 λ1

λ1λ1

λ2 λ2

λ2 λ2

λ2 λ2

μ1

μ1

p1*μ1

p1*μ1

p1*μ1

p1*μ1

μ2 μ2

p2*μ2 p2*μ2

p2*μ2 p2*μ2

Figure 2.2: Example of continuous Markov chain for two queues

Proof. W i =
qi
�i

by Little's Law, where qi is expected queue size. Then, since M is ergodic, qi =P1
j=1 sij�i.

The Markov chain presented here could be viewed as a multi-dimensional grid of states where the

number of dimensions is equal to the number of queues being analyzed. For example, two queues

yield a two-dimensional mesh in the �rst quadrant, while three queues yield a cube in the �rst

quadrant. We will use this representation in our further discussion.

2.1.3 Process Sharing Algorithm Model Approximation

Before we can use the abstraction introduced in the previous section, we need to determine a concise

way of making predictions with it. De�nition 2.1.1 involves an in�nite Markov chain, which lacks

both global and local balance. One way to attack the complexity of the chain is to determine the

average amount of sharing that takes place among the streams. If the amount of sharing is known,

we can break down the chain into the interior case, when all queues are non-empty, and a set of

boundary cases. Then, the model can be disaggregated into subsets that can be analyzed with

standard techniques. However, approximating the sharing factor is very complex. The complexity

can be illustrated by the case of two streams. We can write down the following equations from the

assumption that, in a steady state, the arrival rate equals the service rate:

�1 = p1b�1 + pip1�1 where p1b = Pr(jQi2j = 0 ^ jQi1j > 0), p2b = Pr(jQi1j = 0 ^ jQi2j > 0)

�2 = p2b�2 + pip2�2 where pi = Pr(jQi2j > 0 ^ jQi1j > 0)
:



14

Now, we have two equations and three unknowns, p1b , p
2
b and pi. We cannot use an obvious

third equation, p1b + p2b + pi = 1, because it can be derived from the other two equations. A ratio

between interior and boundary probabilities, pi
p1b+p

2
b
, could be used as a third equation. However,

approximating this ratio is as complex as the original goal.

In the absence of a closed-form solution, we use a numerical approximation of the CMC model.

We can approximate the in�nite chain with a �nite chain assuming that queues may not exceed a

certain maximum size, qmax. If qmax is greater than or equal to the true maximum possible size,

then the �nite model approximates the in�nite model perfectly.

Once the model is converted to a �nite chain, we can use standard matrix solution to �nd invariant

probabilities: �Q = 0, where Q is the transition matrix [38] (see De�nition 2.1.2). However, since Q

is singular, we need to perform either equation elimination or equation replacement to �nd invariant

probabilities. More importantly, matrix Q is very large and its size grows exponentially with the

number of queues. For example, with a �ve queue model where each queue does not exceed ten

jobs, the total number of cells in Q is (105)2, which clearly cannot �t in memory or be processed in

reasonable time.

De�nition 2.1.2. (Q-Matrix) Given continuous Markov chain M for scheduling process over

fQi1; :::; Qing, where Qij 2 [0; nj ], and corresponding transition function t, let projection function

s : R! Rn project a column or row index of Q to a state Sj 2M :

s(k) = Sj, where Sj = [sj1; :::; sjn] and sjm = R(m)%(nm + 1)

R(m� 1) =
R(m)

(nm + 1)
+ sjm , R(n) = k ^m 2 [1; n]

De�ne Q as

Qij =

8<
:

t(s(i); s(j)) if i 6= j;Prank(Q)
m=1 t(s(i); s(m)) if i = j;

rank(Q) =

nY
i=1

ni

Since direct evaluation of invariant probabilities is not feasible, we present an optimized algo-

rithm for �nding an approximate invariant distribution. It is based on converting Q into transition

probability matrix P , which can be represented concisely using De�nition 2.1.2. Thus there is no

extra memory needed to look up values of P , since they are obtained by formula evaluation. The

invariant probability � can be found iteratively (see Algorithm 2):

�Tt = P�Tt�1:
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Furthermore, the vector �Tt�1 can be represented concisely by rounding numbers in �Tt�1 that

are within � of zero. The vector � is sparse, with non-zero entries occurring in consecutive regions.

Therefore, it can be represented as a segment tree that stores information about non-zero segments

and allows O(log(jSj) time lookup of entries in �, where jSj is the number of segments. Usually, the

number of segments is small because the state's probability is centered around the origin.

With concise representations of P and �, we perform iteration much faster with much less

memory than using a standard matrix approach. The questions of what the initial value of � should

be and how we determine termination of the algorithm e�ciently remain. To seed vector � we use

the following heuristic. From FIFO M/M/1 queue analysis, we know that the probability that the

queue has size m is

Pr(jQij j = m) = �mj (1� �j) where �j =
�j
�j
:

We compute the probability for n up to the maximum size of the queue and then distribute the

probability in a uniform fashion among the states whose total queue sizes are the same (see Algorithm

3).

Algorithm 2 predict(P;Niter; �)! [q1; :::; qn]

1: �  initialize()
2: [~q1; :::; ~qn] [0; :::; 0] fexpected queue sizes from previous iterationg
3: [q1; :::; qn] [0; :::; 0]
4: iteration  0
5: sum  0
6: while !done([~q1; :::; ~qn]; [q1; :::; qn]; �) ^ iteration < Niter do
7: for all i 2 [1; rank(Q)] do
8: nonZeroEntries  getNonZeroIndices(i)
9: for all j 2 nonZeroEntries do

10: if �j 6= 0 then
11: ~�j = ~�j + �jt(i; j)
12: end if
13: end for
14: end for
15: sum  �1

t(i;i) ~�j fweigh next state probability by the holding timeg
16: iteration  iteration + 1
17: for all i 2 [1; rank(Q)] do
18: state  s(i)

19: normProb  �t(i;i)�1 ~�j
sum

20: [~q1; :::; ~qn] [~q1; :::; ~qn] + normProb � state
21: end for
22: end while
23: � = ~�
24: return [q1; :::; qn]

In order to determine if the termination condition is reached, the following strategy is used.

During evaluation of �, expected queue sizes are computed. Then they are compared to expected

queue sizes from the previous iteration. If the di�erence is less than �, the algorithm is terminated.
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Algorithm 3 initialize()! �

Require: f(n; q)! R; f(n; q) =
Pn+1

k=1 f(k� 1; q� 1)^ f(n; 2) = n+1 : computes total number of
states with total size n over q local queues

1: for i = 0 to n do
2: size 

Pn
i=1 s(i)

3: �i  (�sizei (1� �i))=f(n; q)
4: end for
5: return �

In addition, a maximum number of iterations can be set after which termination is mandatory. Both

of these termination conditions are used in our approximation algorithm (see Algorithm 4).

Algorithm 4 done([q1; :::; qn]; [~q1; :::; ~qn]; �)

1: for i = 0 to n do
2: if jqi � ~qij > � then
3: return false;
4: end if
5: end for
6: return true

2.1.4 Optimum Process Sharing Parameters

Once we have a scheduling algorithm whose behavior we can predict, we can use this prediction

method to �nd the optimal parameters [p1; :::; pn] to minimize the cost of average delay incurred

by each stream. At this point several optimization techniques can be employed. The most general

approach based on Genetic Algorithms is utilized to allow the most general family of quality of

service functions to be used. The genome is just a set of integers. When they are normalized, they

yield [p1; :::; pn]. The evaluation function is the prediction algorithm that determines average delay

given [p1; :::; pn] (see Algorithms 5 and 6).

Algorithm 5 �ndOptimalPartition(N )! [p1; :::; pn]

1: population  getInitial()
2: for i = 0 to N do
3: population  evolve(evaluator)
4: end for
5: [p1; :::; pn] normalize(getFittest(population))
6: return [p1; :::; pn]

2.2 Single Server: Dynamic Queue Control Scheduling

In this section, we propose another algorithm that allows marginal cost-based scheduling and achieves

provably optimal outcome in the case of one server. In a later section, we discuss how this algorithm
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Algorithm 6 evaluator(P;Niter; �; [p1; :::; pn])! cost

1: delay  predict(P[p1;:::;pn]; Niter; �)
2: cost  qi(delay);
3: return cost

can be extended to a distributed multi-server environment. Unlike the algorithm proposed before,

this algorithm makes control decisions at every �t (for discretized time scale, we assume �t = 1).

Assuming that there is no cost of switching between tasks, the algorithm selects the most pro�table

piece of work from all available un�nished jobs in all queues to be executed in the next �t. The

algorithm schedules the job whose service rate scaled by the �rst derivative of the QoS function at

the point equal to the total amount of time spent in the system is the greatest (see Algorithm 7).

Algorithm 7 dynamicQueueControl([mk
1 ; :::;m

k
N ])

Require: k 2 [0; n] where n is number of local 
ows
Require: mk

i is a message from local 
ow k
Require: qk(x) is a QoS function for local 
ow k
Require: T (mk

i ) = time � stamp(mk
i ) is time spent in the system since entry

1: maxCost  0
2: j  0
3: for i = 0 to N do
4: marginalCost  �k

dqk(x)
dx

���
x=T (mk

i )

5: if marginalCost > maxCost then
6: j  i
7: maxCost  marginalCost
8: end if
9: end for

10: ~mk
j  execute(mk

j ;�t) frun job mk
j for �t units of time; if execute produces output, the job is

done and its results are sent downstreamg
11: if ~mk

j 6= ; then

12: end( ~mk
j )

13: end if

This scheduling approach allows messages to be processed out of order. For some streaming

applications reordering messages may be infeasible. We discuss the issues of message reordering

more in Section 2.3. However, if message reordering is inappropriate, the algorithm can be modi�ed

to select only among the messages at the heads of the local queues instead of the total set of all

waiting messages. Below, we propose a modi�ed version of Algorithm 7 for the case when message

reordering is not permitted. We prove optimality of this algorithm in Section 3.5.

The key modi�cation is the addition of queue size into the metric used to select the next message

for processing. If the message that is going to be processed, mi
1, in the next �t �nishes, then not

only is the cost of further delay for this message avoided as in Algorithm 7, but the waiting cost

for all messages in that queue is also reduced. For each waiting message, the impact of the queue

size on the cost, costRedDueToQueueSize, is computed by taking the mean service time �i
�1 and
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multiplying it by the number of messages that are in front of each message in the queue. If there is

a model that can predict service time for each message, then the average �i
�1 can be replaced by

the prediction from the model ~��1
i .

costRedDueToQueueSize =

0
@ niX
j=1

dqi(x)

dx

����
x=T (mi

j)+j�i
�1

�
niX
j=2

dqi(x)

dx

����
x=T (mi

j)+j�i
�1

1
A

We call the modi�ed algorithm DQC-NR where "NR" stands for "No Reordering" (see Algorithm

8).

Algorithm 8 dynamicQueueControlNR(si; F;Q; ~Q)

Require: si 2 S is a server
Require: F is a set of 
ows allocated on s
Require: Q is a set of quality of service functions where qi(x) is the QoS function for 
ow fi 2 F
Require: ~Q is a set of queues for each 
ow fi such that ~qi 2 ~Q : fmi

1; :::;m
i
nig, where m

i
1 is at the

head of the queue
Require: T (mk

i ) = time � stamp(mk
i ) is time spent in the system since entry

1: maxCost  0
2: j  0
3: for i = 0 to N do

4: costRedDueToQueueSize  

�Pni
j=1

dqi(x)
dx

���
x=T (mi

j)+j�i
�1
�
Pni

j=2
dqi(x)
dx

���
x=T (mi

j)+j�i
�1

�

5: marginalCost  �i

�
dqi(x)
dx

���
x=T (mi

1)
+ costRedDueToQueueSize

�

6: if marginalCost > maxCost then
7: j  i
8: maxCost  marginalCost
9: end if

10: end for
11: ~mj

1  execute(mj
1;�t) frun job mj

1 for �t units of time; if execute produces output, the job is
done and its results are sent downstreamg

12: if ~mj
1 6= nil then

13: send( ~mj
1)

14: end if

2.3 Message Reordering

Message reordering semantics can be non-trivial in a stream processing system. Typically, streaming

computations are stateful, which means that the output of a computation depends on the history

of messages. For example, suppose the system computes the moving average price for stock IBM

between 1:00 PM and 2:00 PM. If one of the messages for this time frame arrives after 2:00 PM due

to out-of-order arrival, then the operator will not be able to compute the �nal value of the result.

Thus, message reordering may cause increased delay. The SMBS approach doesn't result in message
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Table 2.1: Types of QoS Functions used

reordering, but DQC performs message reordering depending on the QoS function. We introduced a

non-message reordering DQC algorithm. However, it is unclear how to combine DQC and DQC-NR

within the same system if only some parts of the system are sensitive to message reordering. In the

future, the incorporation of message reordering into the feedback control needs to be studied more

extensively. Further issues related to message reordering are discussed by Abadi et al. [1].

2.4 QoS Functions

In the current analysis, four types of Quality of Service functions (linear, concave, convex and

sigmoid) are used. The general function forms are presented in Table 2.1.

All functions represent interesting real-life scenarios. The linear function represents a scenario

where the cost of delay is proportional to delay. Therefore, minimizing the cost results in proportional
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minimization of the delay for all messages in the stream. The concave function represents the case

where only timely messages are valued. The marginal cost of delay diminishes more the longer a

message is delayed. The convex function represents streams whose output messages are uniformly

valuable. Thus, increasing the delay of any message results in cost blow-up and sti� penalties. The

sigmoid function is a continuous equivalent of a step function that represents the case when messages

with delays up to x are not penalized. However, if a message passes a certain deadline, the penalty

becomes substantial.

2.5 Cost of Average vs. Average Cost

In Section 1.3, the SMBS algorithm is described in terms of trying to minimize the cost of average

delay. This is di�erent from the objective function introduced in Section 1.4.3, which uses average

cost instead of cost of average delay. Depending on the quality of service function, this substitution

may result in the optimization algorithm being tricked into considering costs that are di�erent from

the true objective. In this section, the issue of cost of average delay versus average cost of delay is

addressed.

For a linear function, it is always the case that both quantities are equal by the property of

expected value:

E(cX) = cE(X):

Thus, in case of linear quality of service functions, there is no issue with the SMBS algorithm.

For convex functions delaya, the cost of average will be higher than the average cost. This can

be easily proven for the case when a = 2:

V (X) = E(X2)� E(X)2 ) E(X)2 = E(X2)� V (X)) E(X)2 � E(X2):

Moreover, the amount by which cost of average overestimates average cost depends on variance,

which is determined by our scheduling algorithm. Unfortunately, we have no good model for esti-

mating the variance produced by our algorithm.

For concave functions logb(a�delay), the cost of average delay underestimates average cost. This

can be intuitively seen from the basic properties of the logarithm:

log(a+ b) � log(a) + log(b)) log(a+ b) � log(ab)

log(E(X)) � E(log(X)):

For concave and convex functions, the issue of under- and over-estimation only comes into play

when scheduling several streams whose QoS functions intersect, because the error in estimation
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e�ectively shifts the point of intersection. The point of intersection is important because, near the

point of intersection, the change in priorities yields the most e�ect in terms of the impact on the

objective function.

For sigmoid functions the cost of average could either overestimate or underestimate average

cost depending on where on the sigmoid QoS curve the average falls. A sigmoid function has the

property that the amount of error is bounded by w. However, it also has the most potential for

producing erroneous prediction. For example, assume half of the delays yield a cost near zero (in

the �rst 
at part of the sigmoid curve) and half of the delays yield a cost near w. Then the average

cost could be around w=2. On the other hand, the cost of average delay could be around 0, because

average delay falls on the "cheap" part of the QoS curve. This case has the potential to "trick" the

optimization algorithm into assuming that giving little or no priority to a stream results in virtually

no cost, but in reality the average cost could be quite high.

At this point, we only have a few heuristics that can help the optimization algorithm to yield

better predictions. In future work, the relation between average cost and cost of average should be

explored more rigorously. Meanwhile, we notice that the distribution of delay under SMBS remains

exponential-like. In several experiments the variance change was observed to be roughly similar to

the change of the mean, i.e., if the mean and variance under share p1 are x and v, and the mean

under share p2 is c � x, then the variance undre share p2 is c � v. This simple heuristic can improve

the optimization portion of our SMBS algorithm. We illustrate these approaches in Section 4.8.

2.6 Distribution of Service Times

Assumptions about the distribution of service times are important in our analysis. The dynamic

queue control (DQC) algorithm doesn't rely on any particular distribution of service times. However,

the static algorithm (SMBS) relies on distribution assumptions for the Markov model used to predict

scheduling algorithm behavior and to perform adjustments to mitigate cost of average predictions.

Currently, the assumption is that the service and arrival rates are distributed exponentially. For

an exponential distribution, the variance is equal to the mean. The alternative distributions could

be hyper-exponential or hypo-exponential. The former represents the case of increased variance,

while the latter represents the case of reduced variance. In the future, for the SMBS scheme, a new

model must be derived to �t these distributions. For the DQC scheme more experimentation must

be performed to determine whether variance a�ects algorithm e�cacy.
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2.7 Multiple Server Case

In Section 2.1.1 and 2.2, the queue control algorithms that work in a single server environment

were de�ned. Now, a series of extensions to these algorithms for multiple server environments is

discussed. The extensions to the SMBS algorithm are covered �rst, followed by discussion of DQC

and DQC-NR in multiple server environments.

2.7.1 SMBS

The straightforward way to extend SMBS scheduling is to extend our genetic algorithm approach

from Section 2.1.4. The global solution for the whole network can be represented as a two-dimensional

genome of priorities, ~P , where ~Pij is the priority for stream j on server i. Then, the same structure

of the genetic algorithm is used to �nd a near optimal partition on each server. The evaluation

function for this approach looks at end-to-end delay for each stream induced by all local priorities.

The genome with the lowest total cost is the �ttest. The system also monitors the mean arrival and

service rates of each stream on each server and, when these means change, invokes the algorithm to

�nd new partitions.

Algorithm 9 globalSMBS (N)! P

Require: N : Number of evolution iterations
Ensure: 8i , sumni

j=1Pij = 1
1: population  getInitial()
2: for i = 0 to N do
3: population  evolve(globalEvaluator)
4: end for
5: P  getFittest(population)
6: return P

Algorithm 10 globalEvaluator(P;Niter )! cost

1: cost  0
2: for all fj 2 F do
3: delay  0
4: for all si 2 S ^ 9k;m(k; j) = i do
5: delay  delay + predict([Pi;1; :::; Pi;ni ]; Niter)
6: end for
7: cost  cost + qj(delay);
8: end for
9: return cost

Since the algorithm is centralized, it has certain limitations. One set of limitations comes from

the nature of genetic algorithms; they are slow and have a tendency to converge to sub-optimal

solutions. This is not the biggest issue, since the mean rates usually do not change frequently. The

hardest part is genome evaluation, since it involves computing the Markov chain approximation

for each server in the topology. The approximation is time consuming and, as we will see in the
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Figure 2.3: Two Server/Three Flow Example

experimental section, cannot e�ectively be evaluated for more than �ve streams on each server.

Nonetheless, for small networks, this approach may be su�cient and simple enough to use, and

for larger networks the presented algorithm can be easily parallelized to provide limited scalability.

Alternately, a distributed algorithm could be designed to achieve even better scalability.

2.7.2 DQC

For the dynamic queue control algorithm, the extension to a multiple server environment is complex.

The simplest approach is to use DQC and DQC-NR algorithms in a multiple server environment

with simple heuristic modi�cations. A complete control algorithm that yields provable, optimal or

near-optimal solutions is yet to be developed.

Consider a simple two server/three stream example where just executing a local DQC algorithm

without any modi�cations fails to achieve optimality. The mapping of streams to servers is presented

below (Figure 2.3).

For simplicity, assume that all three 
ows have the same arrival and service rates. The quality

of service function for each 
ow is depicted in Figure 2.3. Flow 1 has a sigmoid quality of service

function qi(d) = 10000=(1 + e(20�d=110)), and 
ows 2 and 3 have linear quality of service function

qi(d) = d. On the �rst server, our single server algorithm defers scheduling jobs in 
ow 1 until the

point where dq1(t)
d(t) becomes greater than dq2(t)

d(t) , which happens near the in
ection point where the

derivative of q1(t) starts to grow rapidly. Then, on the second server, the delay for messages in


ow 1 will be at least equal to service time, which causes the total cost to be 10000. If the local

algorithm "knew" that delaying messages for 
ow 1 would result in ultimately higher cost, it would

have scheduled these messages ahead of 
ow 2's messages, even though the metric introduced by

Algorithm 7 tells it otherwise.

Now, we introduce a simple extension to our local algorithm that mitigates some of its de�ciencies.

The extension to Algorithm 7 is simple. We o�set the time T (mk
i ) each message spends in the system
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by the expected total service delay. Total service delay is the aggregation of all service times until a

local message reaches the user. The new formula for the modi�ed Algorithm 7 computes marginal

cost as:

marginalCost = �k
dqk(x)

dx

����
x=(T (mk

i )+!)

where! =

DkX
i=0

�ik and Dk is the set of downstream servers on which 
ow k is located :

The average service time, �ij , is tracked on each server for each 
ow and is fed back upstream

to be used for marginal cost computation.

However, this simple change doesn't work well in all circumstances. True service time experienced

on servers downstream may greatly di�er from the expected service time. This deviation case is

impossible to predict in general. In addition, there is queuing delay downstream, which is even

harder to estimate than the deviation from the mean. We explore these issues experimentally in

Chapter 4.

2.8 Internet Tra�c, Flow Intensities and Birth-Death Rates

As mentioned in the introduction, the problem of distributed scheduling and queuing delays is

very similar to the rate control problem from the Internet domain. For example, FAST TCP [28]

formulates the problem of adjusting the rate of data transmission over the Internet as a control

problem and uses well developed control theory tools to prove the stability of a novel TCP algorithm.

We are trying to apply a similar approach to streaming systems; these have a more complex structure

of data 
ows than Internet tra�c because they involve varying service times, 
ow splits and joins

and quality of service functions that assign cost to timeliness of intermediate results rather than

utility based on average throughput.

Nonetheless, the study of Internet tra�c provides valuable insights. The 
ows on the Internet

backbone are usually classi�ed into two groups: long-lived, intensive 
ows ("elephants") and short-

lived, light 
ows ("mice"). As much as eighty percent of total tra�c consists of "elephant" 
ows.

Therefore, the analysis in Paganini et al. [39] only looks at long-lived processes. This is important

because any control algorithm needs time to react to changes in the system; if changes are fast

enough due to a large number of short-lived 
ows, no control algorithm can react appropriately.

Although there are no industrial strength stream processing systems at this time, we conjecture

that a similar situation would hold. Thus, our analysis is only concerned with long-lived streaming


ows. The streaming computations are continuous and persistent, so it is very likely that most 
ows

will exist for long periods of time. If not, the system design could still maintain our focus on only
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long-lived streams, because rapid birth and death of 
ows would a�ect the variance of service rates

for the long-lived 
ows. Thus, by adjusting the statistics of long-lived streams, the system could

take into account a greater number of short-lived 
ows.
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Chapter 3

Theoretical Results

3.1 Introduction

In this chapter, several theoretical results are introduced. Optimality proofs of the DQC and DQC-

NR algorithms are presented. In addition, the advantage of the dynamic process sharing scheme

used by the SMBS algorithm over the static process sharing scheme is proved.

3.2 Static Sharing Analysis

We start with a proof that the dynamic process sharing algorithm has an advantage over the classical

static process sharing algorithm. First, we de�ne an edge (or boundary) as a set of MC states such

that each state has one or more queues empty. For example, such a a set of states for a two queue

Markov chain could be all states with the �rst queue empty. Second, we de�ne the static process

sharing algorithm. Dynamic process sharing was de�ned in Section 2.1.1. With these two de�nitions,

we can proove that the dynamic process sharing is superior. The core of the proof is to show that,

due to edge states, the static scheme would yield only partial processing capacity to a 
ow when full

capacity is available and there is a temporary state of non-contention.

De�nition 3.2.1. Given a continuous Markov process M with state space S, transition rates de�ned

by the dynamic process sharing algorithm from Section 2.1.1, and a set K = f1; : : : ; ng. The edge (or

boundary), EK , is a set consisting of all states ~si = fs1; :::sng 2 S such that (8k : k 2 K : sk = 0).

De�nition 3.2.2. Given a server s with processing capacity ~Cs, a set of 
ows F on s where jF j = n,

and a set of priorities fp1; :::; png such that
Pn

i=1 pi = 1, the static process sharing scheme is an

algorithm that provisions pi ~Cs to 
ow fi 2 F at all times.

Theorem 3.2.1. (Dynamic Process Sharing Theorem) For any server s and set of 
ows F where
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�i is the expected service rate and �i is the expected arrival rate for 
ow fi 2 F ,

8fi : fi 2 F : E(W d
fi) < E(W s

fi)

where E(W d
fi
) is the expected wait time for 
ow fi under dynamic process sharing and W s

fi
is the

expected wait time for 
ow fi under static process sharing.

Proof. Let K = f1g and Pr(EK) be the non-zero probability that all queues except for 
ow fi are

empty. Without loss of generality, under dynamic sharing, in any state si 2 EK , the service rate for

fi under dynamic sharing is �i while the service rate under static sharing is pi�i. Since there exists

time when �i > pi�i, E(q
d
fi
) is less than E(qsfi) where E(q

s
fi
) is expected queue size under static

sharing and E(qdfi) is expected queue size under dynamic sharing. Thus, by Little's Law:

8fi : fi 2 F : E(W d
fi) < E(W s

fi):

The proof depends on the fact that 9KjPr(EK) > 0. This is very easy to show. Let state s0 2 S

such that 8~sj : ~sj 2 s0 : ~sj = 0. State s0 corresponds to the case when all queues are empty and no

messages are being processed. The steady state probability for this state is 1� �.

Pr(s0) = 1�
X

8fiinF

�fi=�fi > 0

Without loss of generality, we also know that the transition probability of moving from state s0 to

state s1 = [~s0; :::; ~sn] 2 S such that s1 is a boundary state is

Pr(s0 ! s1) = �fi=
X

8fiinF

�fi > 0:

Therefore, Pr(s1) > 0, which shows that there exists K, i.e., K = fjg, for which Pr(EK) > 0.

3.3 Optimality of DQC in a Single Server Environment

Now, we prove that the dynamic queue control algorithm minimizes average cost when executed in

a single server environment. In this proof, the expected cost of making incremental decisions at each

�t is determined. Then, the expression that minimizes this expected cost is derived and is shown

to be the same as the one used by Algorithm 7.

Theorem 3.3.1. (DQC Optimality Theorem) Given server s and a set of 
ows F , where each 
ow

has a quality of service function qi that maps message delay to a measure of cost, the scheduling



28

algorithm DQC minimizes the total cost function

1

jF j
lim
t!1

PjF j
i=0

PNi
t

t=0 c(d
i
t)

N i
t

where N i
t is the number of events received by stream i before time t:

Proof. After �t of time, the current job being executed is either �nished or needs more time to

�nish. The probability that the job �nishes in �t for stream i is �i�t. Let M be a set of all

un�nished jobs at s; then the total cost incurred is the delay for all unprocessed jobs in the queue:

8mk
i : m

k
i 2M : Cost =

NX
i=1

(
dqk(x)

dx

�����
x=T (mk

i )

�t)�
dqk(x)

dx

����
x=T (mk

i )

:

Cost is expressed as the summation of the costs for all the jobs minus the cost of the job that

actually �nishes.

The other case is that the job being executed does not �nish. This will happen with probability

1� �i�t. In this case, the total cost of the decision will be

8mk
i : m

k
i 2M : Cost =

NX
i=1

(
dqk(x)

dx

�����
x=T (mk

i )

�t):

Thus, the expected cost of processing a job for �t of time is

E(Cost) = (�i�t)

NX
i=1

(
dqk(x)

dx

�����
x=T (mk

i )

�t)�
dqk(x)

dx

����
x=T (mk

i )

+ (1� �i�t)

NX
i=1

(
dqk(x)

dx

�����
x=T (mk

i )

�t)

�

E(Cost) =

NX
i=1

(
dqk(x)

dx

�����
x=T (mk

i )

� �i
dqk(x)

dx

����
x=T (mk

i )

�t2

Therefore, in order to minimize expected cost, the algorithm DQC has to maximize

�i
dqk(x)

dx

����
x=T (mk

i )

3.4 Scheduling Policies Induced by QoS Functions

A very interesting set of properties of the DQC scheduling algorithm involves its behavior for di�erent

types of Quality of Service functions. Under a given type of quality of service function (i.e., linear,
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convex, concave or sigmoid), DQC degenerates into a well-known scheduling discipline such as �rst-

come, �rst-serve (FCFS), last-come, �rst-served (LCFS) or a combination of these two.

Theorem 3.4.1. (QoS-induced Scheduling Disciplines) Given a set of jobs J = fj1; :::; jng, a quality

of service function q, and a scheduling algorithm DQC:

� DQC degenerates to FCFS if d2q(x)
dx � 0

� DQC degenerates to LCFS if d2q(x)
dx < 0

Proof. Without loss of generality, assume jobs j1; j2 2 J have arrival times t1 and t2, where t1 < t2.

For the purposes of this proof, we assume that if t1 < t2, then the arrival time for j1 is less than for

j2. Moreover, let w be time the job j1 has spent waiting. Then w � (t2 � t1) is the amount of work

needed for j2. If
d2q(x)
dx � 0, then

as w !1 , (�i
dq(x)

dx

����
x=w�(t2�t1)

) < (�i
dq(x)

dx

����
x=w

):

Thus j1 will be served before j2, which corresponds to FCFS discipline, because dq(x)
dx

���
x=w
!1 as

w !1.

If d2q(x)
dx < 0, then

as w !1 , (�i
dq(x)

dx

����
x=w�(t2�t1)

) > (�i
dq(x)

dx

����
x=w

):

Thus j2 will be served before j1, which corresponds to LCFS discipline, because dq(x)
dx

���
x=w

! 0 as

w !1.

Using Theorem 3.4.1, we can conclude that under linear and convex functions DQC degenerates to

FCFS, and under a concave function it degenerates to LCFS. Under a sigmoid function, the messages

are served FCFS until the total time in the system reaches the in
ection point at d2q(x)
dx = 0, and

then the messages are served LCFS.

3.5 Optimality of DQC-NR

Now, we show that DQC-NR also achieves optimality if message reordering is not allowed. Generally,

the structure of the proof is the same as for DQC. However, an assumption is made that the service

time for messages residing in the queue is not known. Expected service time is assumed to be a

"good enough" metric of true service time.

Theorem 3.5.1. (DQC-NR Optimality Theorem) Given a server s, a set of 
ows F where each


ow has a quality of service function qi that maps message delay to a measure of cost, and a set of
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queues ~Q where ~qi 2 ~Q corresponds to 
ow fi 2 F , then scheduling algorithm DQC-NR minimizes

the total cost function

1

jF j
lim
t!1

PjF j
i=0

PNi
t

t=0 c(d
i
t)

N i
t

,

where N i
t is the number of events received by stream i before time t;

under constraint (message reordering prohibited)

G = 8i 2 [0; jF j]; T (mi
k) < T (mi

n)) Tc(m
i
k) < Tc(m

i
n);

where Tc(m
i
k) is the completion time of message mi

k.

Proof. Similar to Theorem 3.3.1, we de�ne the marginal cost mc(t) of delaying a message m
i
k for �t

of time to be

mc(t
0) =

dqi(x)

dx

����
x=t0

�t;

where, as in Theorem 3.3.1, t0 = T (mi
1). De�ne a function �(s; i) as

�(s; i) =

niX
j=s

mc(T (m
i
j) + j�i

�1);

where i is an index of the ith 
ow, ni is the total number of messages in ~qi and s is the sth message

from the head in queue ~qi. We note that �(1; i) de�nes the total marginal cost for queue 
ow fi

and �(2; i) de�nes the total marginal cost for queue 
ow fi if the �rst message completes after �t

of time. When we select a message mi
1 at the head of the queue ~qi for processing for the next �t

it will �nish with probability �i�t and will remain un�nished with probability (1 � �i�t). If the

message doesn't �nish then the total marginal cost for all the queues on this server is

�t(i) =

nX
j=1

�(1; j):

However, if the message �nishes, the cost is

�t(i) =

nX
j=1

�(1; j)� 
 � �, where


 = mc(T (m
i
1)) and

� = �(1; i)� �(2; i):

We note that the cost if the message �nishes is di�erent because the message at the head of the

queue is removed and the queue becomes shorter, changing the marginal cost for all messages in the
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queue.

Thus, the expected cost of selecting message mi
1 for processing in the next �t is

E(Ci) = (1� �i�t)(

nX
j=1

�(1; j)) + (�i�t)(

nX
j=1

�(1; j)� 
 � �)

�

E(Ci) =

nX
j=1

�(1; j)� �i�t

nX
j=1

�(1; j) + �i�t

nX
j=1

�(1; j)� �i�t(
 + �)

�

E(Ci) =

nX
j=1

�(1; j)� �i�t(
 + �):

So, to minimize the expected cost, we need to maximize �i�t(
 + �). This is what the DQC-NR

algorithm does (see Algorithm 8).

Theorem 3.5.1 shows that Algorithm 8 achieves optimality in the single server environment.

3.6 Bounds on DQC-NR

If message reordering is not allowed, it is interesting to consider how much worse the performance

is than when message reordering is permitted. Now, we show the best case and worst case bounds

on DQC-NR as compared to DQC. This should provide an intuition about how much is lost by

prohibiting message reordering.

Theorem 3.6.1. (Bounds on DQC-NR) Given a server s, a set of 
ows F with quality of service

functions qi : R! R, and algorithms DQC and DQC-NR. Let GDQC be the optimum achieved under

DQC and GDQC�NR be the optimum achieved under DQC-NR. On average,

0 � GDQC�NR �GDQC � qi(

jF jX
i=1

qi
�i
);

where qi is the expected queue size for 
ow i.

Proof. The lower bound can be easily derived from Theorem 3.4.1; given a convex quality of service

function, DQC degenerates into FCFS scheduling, which in fact corresponds to DQC-NR. The

upper bound can also be derived by using Theorem 3.4.1. We note that, in the worst case, DQC-NR

performs FCFS while DQC degenerates into LCFS. Therefore, the message that arrives at the end

of queue ~qi may need to wait until all messages in all queues that arrived before it are processed.
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Thus, on average the wait time is

W =

jF jX
i=1

qi
�i
:

The additional cost incurred is therefore qi(W ) for some 
ow fi.

As Theorem 3.6.1 shows, under some conditions DQC-NR can degenerate into DQC. However,

in the case when DQC induces LCFS scheduling, DQC-NR can perform much worse than DQC.
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Chapter 4

Experimental Results: Single

Server

4.1 Experimental Settings and Ptolemy

This section describes the experimental environment used in our work. All code for the experiments

is developed in Java. Whenever experiments are aimed at describing performance of an algorithm,

these experiments are performed on IBM ThinkPad T43p with 2 GHz CPU, 1 GB RAM and Sun's

JDK 1.4.206unlessotherwisenoted:

Multi-machine, wide-area experiments are simulated using the Ptolemy discrete event simulator

[9] with custom extensions. A discrete event simulation consists of actors that exchange information

using messages on a virtual discretized time scale. Ptolemy allows easy addition of custom actors

to the simulation engine. In this case, custom actors include servers that implement the described

scheduling and control policies (SMBS and DQC), channels that introduce optional delay on message

transfer, cost calculators that compute the cost of ultimate delay using provided QoS functions, and

data sources that generate messages whose payloads are used to compute simulated service times

on each server. Message payloads and interarrival times are distributed exponentially.

An example of a Ptolemy model is shown below for the two streams/ one server example. The

links going from data sources to the server and then to cost calculators carry data messages. The

links going in the opposite direction carry feedback messages (see Figure 4.1).

We use the simulation as an accurate representation of real-life conditions and utilize simulation

results as a baseline for evaluation of our predictive and optimization algorithms.

4.2 Need for Non-trivial Scheduling

We begin by illustrating the need for smart scheduling. The need for non-trivial scheduling can be

demonstrated by performing comparison of our scheduling approaches to a na��ve scheduling policy.
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Figure 4.1: Example of Ptolemy Simulation Model
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Figure 4.2: SMBS vs FIFO on Two Streams with Linear QoS (Absolute Di�erence)

Parameters Descriptions
Algorithms SMBS, DQC and DQC-NR
Number of Streams 2
Stream 1 expected interarrival times Between 160 and 4000
Stream 2 expected interarrival times Between 160 and 4000
Stream 1 expected service times 100
Stream 2 expected service times 100
Stream 1 QoS cost = delay
Stream 2 QoS cost = 2000 � delay

Table 4.1: Experiment Parameters

As an example of of a na��ve scheduling policy, a simple FIFO algorithm is chosen. The detailed

comparison of SMBS, DQC and DQC-NR against FIFO is performed in Section 4.8.

To show the advantages of smart scheduling, the algorithms are run against FIFO at di�erent

utilization levels. The parameters for each experiment are listed in Table 4.1. For each algorithm,

average cost under linear QoS is generated. The second stream's QoS function weighs delay at 2000

times that of the �rst stream. Di�erent utilizations are achieved by changing arrival rates for the

streams. The average cost is compared to the average cost under FIFO scheduling. The results

for all three algorithms are very similar because, under a linear QoS function, all three algorithms

degenerate into similar scheduling policies.

All algorithms|SMBS, DQC, and DQC-NR|outperform FIFO. The absolute and percentage

di�erences between our scheduling algorithm and FIFO are depicted in Figures 4.2{4.7. The ab-

solute di�erence grows exponentially after utilization of 60%, which corresponds to the point at

which the queue size begins to grow exponentially. The percentage di�erence grows approximately

quadratically, which is also due to the fact that the larger the queues, the more e�ect the smart

scheduling has.
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Figure 4.3: DQC vs. FIFO on Two Streams with Linear QoS (Percent Di�erence)
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Figure 4.4: DQC-NR vs. FIFO on Two Streams with Linear QoS (Absolute Di�erence)
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Figure 4.5: DQC-NR vs. FIFO on Two Streams with Linear QoS (Percent Di�erence)
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Figure 4.6: SMBS vs. FIFO on Two Streams with Linear QoS (Percent Di�erence)
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Figure 4.7: DQC vs. FIFO on Two Streams with Linear QoS (Absolute Di�erence)
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Figure 4.8: SMBS-ES vs. FIFO

In the previous set of experiments, the scheduling algorithms were compared to FIFO. An inter-

esting, related question arises from our comparison. Is FIFO equivalent to the �fty-�fty dynamic

process sharing scheme? This question is important for further evaluation of our algorithms. If

SMBS with equal shares (SMBS-ES) degenerates to FIFO, it could be used as an alternative base-

line for further experiments. To test this hypothesis, FIFO is run against SMBS-ES in a one server,

two 
ows environment with one 
ow's arrival rate made progressively faster while maintaining the

overall utilization at 90% for all runs. Then, the percentage di�erence in stream rates is plotted

against the di�erence in weighted average cost between FIFO and SMBS-ES. This set of experiments

is repeated twice, making the fast stream 10 times more expensive than the slow stream and vice

versa. The results are depicted in Figure 4.8.

In Figure 4.8, it can be seen that the di�erence between FIFO and SMBS-ES grows as the

arrival rates diverge. However, if the streams have equal parameters (i.e. arrival and service rates),

SMBS-ES does very closely mimic FIFO behavior.

From experiments on SMBS-ES it can be seen that, aside from utilization, the di�erence in

streams' rates also impacts the e�cacy of the smart scheduling algorithms. When there are two

streams with one low-cost stream having rare, computationally non-intensive events and the other

high-cost stream having frequent, computationally intensive events, changing priorities to prefer

the second stream does not change the weighted average cost greatly. In Figures 4.9 and 4.10,

the decrease in advantage of SMBS over SMBS-ES and FIFO is shown. The utilization for all the

experiments is kept at 90%. The di�erence is plotted against relative streams' rate di�erence, which

is computed as �1��2
�1

. The rest of the parameters are kept the same as in Table 4.1.

In summary, our scheduling algorithms produce signi�cant (up to twofold) improvements over
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Figure 4.9: Fast Expensive Stream/Slow Inexpensive Stream Advantage Reduction
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Figure 4.10: Slow and Expensive Stream/Fast Inexpensive Stream Advantage Reduction
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Figure 4.11: Example of Ptolemy Simulation Model

the na��ve scheduling algorithm even using simple linear QoS functions. Moreover, the most impor-

tant fact that a�ects the amount of improvement is system utilization. On the other hand, the

improvement decreases as the di�erence in rates between the streams grows.

4.3 Queue Sizes and Prediction Accuracy

We start with a detailed experimental analysis of the SMBS scheduling algorithm. The experiments

on the SMBS algorithm are split into a series of steps. First, in this section, the amount of error

introduced by substituting the �nite Markov Chain for an in�nite Markov chain is analyzed. Second,

the run-time and memory advantages of the fast approximation used by SMBS are shown. Third,

the accuracy of the fast approximation is determined. Finally, a comparison among DQC, DQC-NR,

SMBS and FIFO is illustrated.

Since our model is based on treating an in�nite Markov chain as �nite, the �rst key factor that

is important to our approximation is the relationship between the size of the �nite chain and the

accuracy of the approximation. In other words, we want to know how much accuracy is sacri�ced

when the model size is reduced by assuming that queues do not exceed certain thresholds. The two

sets of experiments below answer this question.

In the above experiments, two 
ows located on one server are parameterized as stated in Table

4.2. The approximation is performed assuming a certain limit on queue size for these two 
ows.

With each experiment iteration, the limit is increased. One set of experiments is performed on an

equal pair of streams. The other has high and low frequency streams. The approximation error

is plotted in relation to the maximum queue size assumed. Both sets of experiments show that
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Experiment 1 Experiment 2
Steam 1 Steam 2 Steam 1 Steam 2

Mean inter-arrival time 250 250 190 250
Mean service time 100 100 100 70
Priority 1 10 4 7
Maximum queue size (from simulation) 44 11 33 13

Table 4.2: Experiment Parameters

State Size Number of Queues
� 2500 2
� 15625 3
� 160000 4
� 400000 5

Table 4.3: Model Size - Number of Queues Correspondence

approximation becomes accurate quite quickly and, after a queue size of 12 (half of the maximum

queue size), the error is within 10%.

4.4 Fast MC Model Approximation Performance Evaluation

Now, we examine the performance of our fast model approximation and compare it to the classical

LU decomposition approach on non-sparse matrices and the Conjugate Gradients method (CGS)

in conjunction with the Quasi-Minimal Residual method (QMR) on sparse matrices [10, 23]. The

experiments are run in the following settings. For LU decomposition, the JAMA matrix package is

used [21]. For sparse matrices, a sparse matrix toolkit (SMT) is used [25]. The reason that CGS

is used in combination with QMR is that CGS sometimes may not converge to a solution. In this

case, QMR is used as a fallback solver. In our experience, such a fallback is rarely needed, while

using CGS generally results in faster execution.

For each experiment, the model is speci�ed as a set of 
ows with maximum queue sizes, expected

service rates, expected arrival rates and relative priorities. The number of states reported in the

�gure corresponds to the number of states in the Markov chain generated from a model given its

speci�cation. Table 4.3 relates the number of states in a chain to number of queues in a model. For

each model, the experiment is repeated several times (the standard deviation never exceeds 4% of

the mean).

Note: The size of Q is the number of states squared. For example, a 387072 state model results

in a 1.49825E+11 cell Q

The experimental results are presented in Figure 4.12. It can be clearly seen that our fast

algorithm has the same exponential complexity as CGS/QSR and LU decomposition. However, the
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Figure 4.12: Run-Time Comparison
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Figure 4.13: Run-Time Comparison (Small Models)

exponential blowup occurs in much larger models. This fact lets our fast approximation process

models de�ned over 5 queues. In addition, our fast model approximation can be easily parallelized,

which would increase its ability to process bigger models (the question of parallelization is deferred

to future studies).

An interesting point to be noted is that, for small models, the LU decomposition solver out-

performs the CGS/QMR and fast matrix approximation algorithms (see Figure 4.13). This is not

surprising, since both algorithms are iteration-based and, on small matrices, LU decomposition per-

forms better than iteration-based algorithms. However, the maximum size of matrices for which this

is the case is very small, less than 200 states (two queues of maximum 14 messages each).

In terms of memory used by these three algorithms, the picture is very similar to that for execution

time (see Figure 4.14). The fast matrix approximation algorithm doesn't eliminate exponential

blowup in memory used, but it "postpones" the increases until the model size reaches a large
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Figure 4.14: Memory Comparison

number of states. It is not surprising that the sparse matrix approach performs in between LU

decomposition and fast approximation, because it still represents Q explicitly (although in a sparse

manner). Moreover, CQS and QSR require some intermediate matrices that increase their memory

usage.

In summary, the fast approximation algorithm drastically reduces memory usage and speeds up

calculation of steady-state probabilities for large Markov chain models. With the introduction of

multi-core processors, by parallelizing fast approximation, the performance could be increased even

further. In the next section, the issue of accuracy of the fast approximation algorithm is discussed.

4.5 Accuracy of Fast Approximation Algorithm

We explore how the accuracy of our approximation method depends on various parameters, including

the number of iterations, amount of di�usion in the initial vector �0, di�erence between streams'

rates, round-o� error and number of streams.

We start by looking at the number of iterations. For the purpose of studying the impact of

number of iterations, the experiments are run at 90% utilization with two, three and four streams.

For each experiment, the number of iterations is increased and the approximation result is compared

to the simulation result to determine approximation error. The results are shown in Figure 4.15.

Not surprisingly, the approximation becomes more accurate as the number of iterations increases.

Also, it can be seen in Figure 4.15 that the more streams there are, the longer it takes to converge

to steady-state. The good part is that the di�erence in number of iterations between two streams

and three streams, and between three streams and four streams, is only two-fold. Thus, the number

of iterations does not grow exponentially with the number of streams.

The approximation results also exhibit oscillation in the convergence process. In Figures 4.16
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Figure 4.15: Number of Iterations and Accuracy of Fast Approximation

and 4.17, the convergence of the two stream approximation is depicted and we can see that the

approximation error 
uctuates at each iteration.

Another parameter that a�ects accuracy is precision of the sparse vector, �. The precision is

a number, �, such that for all �i < �, �i is treated as 0. The greater the �, the less memory is

needed to store � and the greater the approximation error is. To test the impact of precision, the

number of iterations is �xed while the precision is slowly increased. In Figure 4.18 it can be seen

that approximation error decreases as precision increases. Moreover, it is not surprising that the

four stream approximation requires higher precision, because of greater probability dispersion.

Figure 4.19 shows the memory savings resulting from decreased precision. By allowing 10% error

in the approximation, approximately 50% saving in space is achieved. This rule quanti�es the bene�t

of rounding.

Now, we examine the impact of di�erences in stream rates on approximation error. The same set

of experiments on two streams as before is repeated. This time, the arrival rate is varied such that

the total utilization is kept constant at 90%. Figure 4.20 depicts approximation error in relation to

the di�erence in arrival rates. The red line shows the case when the stream with the faster arrival

rate is ten times more expensive. The yellow line shows the reverse case. As Figure 4.20 shows,

there is no relation between rate di�erence and approximation error. The error oscillation results

from variance in simulation results. To prove this, for each experiment, the expected queue sizes

from approximation and simulation are shown. Figure 4.21 shows simulation results to have much

more variance than the predictions.

The �nal parameter studied is the quality of initial condition for the approximation. The algo-

rithm for setting the initial probabilities is described in Section 2.1.3. For each set of states whose
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Figure 4.16: Rate of Convergence
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total queue size is n, the probability from the M/M/1 model is computed. The result is divided

equally among all states in the set. For the experiments here, the maximum n for which to perform

the initialization is picked. The results are presented in Figure 4.22. The graph shows how the

greater amount of dispersion (i.e., greater n) impacts the number of iterations needed to obtain

an approximation within 20% of the correct result. Except for two streams, the greater amount of

dispersion has no considerable positive e�ect on the speed of convergence. For two streams, there

is a speedup of around 40%. The reason for this phenomenon is that, for the two streams, the

steady state probabilities are distributed closer to the initial condition. Nonetheless, since the two

stream approximation already executes very fast, the conclusion is that the initial condition selec-

tion proposed in Section 2.1.3 has no signi�cant, positive impact on the speed of our approximation

algorithm.

4.6 Static Sharing vs. Dynamic Sharing

In Section 3.2, it was proven that static process sharing always results in greater residence times

than the dynamic process sharing used by the SMBS algorithm. Now, a few interesting experiments

that verify this theoretical result are shown and discussed. To compare the static sharing scheme to

the dynamic sharing scheme, several rounds of experiments simulating the behavior of both of these

schemes are run on a single server with two 
ows. The parameters for the two 
ows are presented

in Table 4.1. However, unlike previous experiments, the cost function for each of the 
ows is just

the value of total end-to-end delay (i.e., cost = delay).

Figure 4.23 depicts the ratio between weighted average costs under static and dynamic process
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Figure 4.23: Dynamic vs Static Process Sharing

sharing. The weighted average cost, as before, is computed by taking the cost of delay for each 
ow

and weighing using the corresponding arrival rates. The �gure plots this ratio against the utilization

metric, which is

Umetric = (
�1
�2

)�, where �1 � �2:

In Figure 4.23, the cost ratio between static and dynamic process sharing grows exponentially with

Umetric. This result may look surprising; one might expect that with increased utilization the static

sharing behavior should approach dynamic process sharing, because at high utilization both streams

share the processor most of the time (Figure 4.24).

However, under static sharing, each 
ow experiences exponentially increasing queuing delays due

to the fact that each share gets only 50% of the CPU. Not only do the jobs get half of the processing

capacity when the other half is vacant, but future jobs have to wait in queue while the current job

�nishes. Thus, as utilization grows, the queuing delays for each share increase exponentially forcing

the di�erence between static and dynamic process sharing to increase. This behavior also explains

why � is scaled by �1
�2

in Umetric. Consider two scenarios with equal utilization. One scenario has

two streams with equal arrival rates and the other has a fast and a slow arriving stream. The greater

the gap in arrival rates, the more bene�t dynamic process sharing brings, because of the queuing

delays for the fast stream. In short, dynamic process sharing outperforms static process sharing as

was proven in Section 3.2. Moreover, the advantage of the dynamic scheme increases with utilization

due to growing queuing delays on each share in the static process sharing algorithm.
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Figure 4.24: Probability that both streams use the CPU under the dynamic process sharing scheme

4.7 Cost of Average vs. Average Cost

In the previous section, issues of speed and accuracy of the SMBS approach were addressed. Now,

we demonstrate the e�ect that the substitution of the cost of average delay metric for the average

cost metric has on the scheduling. The experiments are run on two servers with di�erent quality of

service functions. For each experiment the cost of average is compared to average cost. There are

three batches of experiments. In the �rst batch, the two streams have equal rates. In the second

batch, one stream has faster arrival and greater service rates and is more expensive than the other.

In the third batch, the stream with faster arrival and greater service rates is cheaper than the other.

These experiments are summarized in Tables 4.4{4.6.

Stream Parameters
�1 = 220 �2 = 220
�1 = 100 �2 = 100 q(E(x)) E(q(x))
Algorithm = SMBS-ES Algorithm = SMBS

Experiment 1 x 10x 6014 6014
Experiment 2 ln(5x+ 500) log5(10000x+ 500) 8:93 9:59

Experiment 3 2x2 x3

200 3:3e7 4:8e6
Experiment 4 100

1+e10�x=110
100

1+e3�x=550
30:3 29:97

Experiment 5 x2

200000 log5(10000x+ 500) 11:18 7:705
Experiment 6 log5(10000x+ 500) 100

1+e12�x=110
7:27 5:25

Table 4.4: Cost of Average vs. Average Cost Experiment Parameters (Experiments 1{6)

The di�erence between cost of average and average cost is depicted in Figure 4.25. This result

corresponds to theoretical analysis carried out in Section 2.5. For linear QoS functions, both metrics

match as expected (Experiments 1, 7, and 13). For concave QoS functions, the average cost is below
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the cost of average delay (Experiments 2, 8, and 14). However, the di�erence is small due to the

nature of the log function. For convex QoS functions, the average cost is above the cost of average

delay (Experiments 3, 9, and 15) and the magnitude of the di�erence is consistently ampli�ed by

the polynomial cost function. For the case of sigmoid QoS functions, there is both over-estimation

(Experiments 10 and 16) and under-estimation (Experiment 4). Moreover, the magnitude 
uctuates

highly from experiment to experiment, which shows that sigmoid functions have the most potential

for "tricking" the SMBS scheduling algorithm.

Stream Parameters
�1 = 190 �2 = 400
�1 = 170 �2 = 10 q(E(x)) E(q(x))
Algorithm = SMBS-ES Algorithm = SMBS

Experiment 7 x 10x 1401 1401
Experiment 8 ln(5x+ 500) log5(10000x+ 500) 8:32 8:75

Experiment 9 2x2 x3

200 1:22e7 6:39e6
Experiment 10 100

1+e10�x=110
100

1+e3�x=550
44:75 69:56

Experiment 11 x2

200000 log5(10000x+ 500) 29:2 16:87
Experiment 12 log5(10000x+ 500) 100

1+e12�x=110
6:87 7:07

Table 4.5: Cost of Average Experiment Parameters (Experiments 7{12)

Stream Parameters
�1 = 190 �2 = 400
�1 = 170 �2 = 10 q(E(x)) E(q(x))
Algorithm = SMBS-ES Algorithm = SMBS

Experiment 13 10x x 14981 14981
Experiment 14 log5(10000x+ 500) ln(5x+ 500) 8:97 9:24

Experiment 15 x3

200 2x2 1:08e8 2:2e7
Experiment 16 100

1+e3�x=550
100

1+e10�x=110
33:4 49:4

Experiment 17 log5(10000x+ 500) x2

200000 6:83 7:05
Experiment 18 100

1+e12�x=110
log5(10000x+ 500) 9:84 16:02

Table 4.6: Cost of Average Experiment Parameters (Experiments 13{18)

In Section 2.5, it was mentioned that cost of average delay could be adjusted such that its

di�erence from average cost of delay is minimized. Now, two strategies are presented to achieve this

goal. The �rst strategy is based on constructing histograms of true residence time on each server

and using the histograms to compute approximate average cost. The histogram approach greatly

reduces the error between cost of average and average cost, but it is impractical to construct such

histograms in real life, because the system needs to evaluate several di�erent possible partitions very

quickly during the optimization process. The second strategy is model-based. Experimentally, it can

be seen that the distribution of residence times under SMBS resembles an exponential distribution.

Thus, when the mean residence time is obtained from the Markov model, it can be used to build an

exponential distribution and compute average cost. A continuous exponential distribution can be
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Figure 4.25: Cost of Average vs. Average Cost (Experiments 1{18)

discretized to obtain average cost as follows:

Costi =

cDX
i=0

re�riqi(i), where r =
1

D
and D is average delay from the Markov model.

Unfortunately, at this time, we have no rigorous error bounds for our model-based approach.

In Figure 4.25, the errors between simulated average cost and average cost from two strategies

are shown together with the cost of average delay. Red bars depict the errors from Experiments

1{18. Yellow bars show the value of average cost of delay computed by generation histogram. Each

histogram bucket is set to 20% of standard deviation. If the buckets were made small enough, the

error would reduce to zero, because the histogram would represent the true distribution of residence

times. Green bars in Figure 4.25 depict the di�erence between the model-based approach and the

true average cost obtained from simulation. This di�erence is generally much smaller than the

di�erence from the �rst experiment with unadjusted SMBS. There are still noticeable discrepancies

for convex QoS functions due to error being ampli�ed by the cubic cost function. The error in

Experiment 9 is less than in Experiment 15, because in Experiment 9 the cubic cost function is

applied to the slow stream, which has a lower-magnitude error than the faster stream in Experiment

15.

In short, the model-based adjustment approach to the SMBS scheme results in narrowing the gap

between the cost of average delay and the average cost of delay, making SMBS a viable competitor

to DQC and DQC-NR.
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Figure 4.26: Convex QoS Functions

4.8 Smart Scheduling E�ectiveness

Finally, we compare the e�ectiveness of the proposed scheduling algorithms, SMBS, DQC and DQC-

NR, under various conditions. In particular, we show how these algorithms behave depending on

utilization, quality of service functions, and number of streams. FIFO is used as a baseline for

the comparison. These factors are studied in a single server environment. The experiments over a

queueing network are discussed in Chapter 5.

We start by looking at the behavior of SMBS, DQC and DQC-NR under convex quality of service

functions. Figure 4.8 depicts quality of service functions for two streams used in the experiment and

the advantages our three algorithms exhibit under di�erent utilizations. For these experiments, both

streams have similar arrival and service rates. As seen on the graph, all three algorithms perform

similarly. This is the case because two QoS functions are increasing non-intersecting functions. Thus,

all three algorithms always give priority to the most costly stream. The advantage diminishes with

utilization, because marginal cost decreases as the delay is reduced. The greater the utilization, the

more impact our algorithms have on delay reduction .

The behavior of SMBS, DQC and DQC-NR under concave QoS functions is depicted in Figure

4.8. Unlike the convex case, the marginal advantage increases with utilization. This occurs for

exactly the same reason as in the convex case, but concave functions have increasing marginal cost

as delay decreases. In addition, DQC outperforms SMBS and DQC-NR here, because DQC allows

message reordering. DQC degenerates into LCFS under concave QoS functions. Thus, neither SMBS

nor DQC-NR can achieve the same results because no message reordering is performed.

The sigmoid case, presented in Figure 4.8, illustrates the failure of the SMBS algorithm due to
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Figure 4.31: E�ectiveness under Sigmoid QoS Functions

mismatch between average cost and cost of average. Thus, the adjustment presented in Section

4.7 is added to compare it with plain SMBS behavior. Adjusted SMBS performs better than plain

SMBS, but still not as well as plain FIFO. The reason for the failure of adjusted SMBS is the

disparity described earlier between 50=50 sharing and FIFO. For utilization between 40 and 60

percent, Adjusted SMBS picks optimal sharing priorities around 50=50. However, in this case, FIFO

outperforms equal sharing. The growth of advantage of DQC, DQC-NR and to a lesser extent

adjusted SMBS with increased utilization illustrates the nature of sigmoid curves; because no cost

is assigned for delays below a threshold, a certain amount of queueing delay should be present to

make our algorithm outperform FIFO.

To complete the analysis of QoS impact on the e�cacy of scheduling, a combination of quality

of service functions is used such that one stream has a sigmoidal function and the other has a

linear one. The outcome of this experiment is shown in Figure 4.8 and is quite similar to that of

the previous experiment, because the linear function has a segment at which one stream is more

expensive than the other and a segment where priorities switch. This is similar to the two sigmoid

functions presented earlier.

In the next set of experiments, we see how smart scheduling e�ectiveness depends on the number

of streams deployed on the server. In all the experiments, the total utilization on the server is 90%.

The arrival and service rates for all streams are equal. In the �rst round, we run DQC and DQC-NR

on a single server, increasing the number of streams with each iteration. Each new stream has a

linear QoS such that the cost is equal to i�delay, where i is the total number of streams. Thus, each

additional stream has a higher cost than the last stream added. The results are depicted in Figure

4.34. The gain of DQC and DQC-NR over FIFO increases linearly with the number of streams.
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Figure 4.32: Mixed QoS Functions

Smart Scheduling Algorithm Effectivness with Mixed QoS

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0.25 0.45045 0.54945 0.64935 0.74906 0.85106 0.9009 0.94787

Utilization

Pe
rc

en
t A

dv
an

ta
ge

 o
ve

r F
IF

O

SMBS
DQC
DQC-NR
SMBS (Adjusted)

Figure 4.33: E�ectiveness under Mixed QoS Functions
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Figure 4.34: Number of Streams

However, this result doesn't prove that the gain we obtain is due to the increased number of

streams on the server because the marginal cost between the cheapest and the most expensive

stream also increases with the number of streams. To remove this factor, in the next round, we

repeat the same experiments making only half of the deployed streams have QoS function qi(d) = d,

and the other half have QoS function qi(d) = 2 � d. Thus, the di�erence between the cheapest and

the most expensive streams remains constant from iteration to iteration. The results are shown in

Figure 4.35. There is no additional gain from DQC and DQC-NR with the increased number of

streams. This can be explained by the fact that high cost streams are competing for the same share

of the CPU. The total share of the CPU given to all high cost stream increases, but there are more

streams competing for this share.

As we have seen from the experiments presented in this section, the e�ectiveness of smart schedul-

ing algorithms is determined primarily by the nature of quality of service functions and by the ratio

of rates between streams as was shown in Section 4.2, as opposed to other factors such as the total

number of streams deployed on the server.
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Chapter 5

Experimental Results: Queuing

Network

In this chapter, we examine the behavior of our algorithms in a multi-server environment. Since

there are no provably optimal algorithms, the chapter introduces only limited examples that try to

show that even simple heuristics can outperform a simple �rst-in, �rst-out scheduling algorithm.

The simplest multi-server environment consists of two servers. There are three 
ows deployed

on these servers: two 
ows on each server, with one 
ow being executed on both servers. Figure

5.1 shows the 
ows' deployment. In the �rst round of experiments, the utilization on both servers

is maintained at 90%. The quality of service for Streams 2 and 3 is linear with equal slope, and

Stream 1 has a sigmoidal QoS. At each iteration of this round, the slope of the linear QoS function

for Streams 2 and 3 is increased. The goal of the experiment is to show that, as the slope is increased,

the e�cacy of smart scheduling with feedback decreases. The reason for this decrease lies in the fact

that feedback should force scheduling to prefer Stream 1 to Stream 2 on Server 1, although Stream

2 should be scheduled ahead of Stream 1. This happens because if Stream 1 is scheduled as usual, it

encounters a huge delay on Server 2 due to the sigmoidal QoS. As the slope for Stream 2 increases,

prioritization of Stream 1 becomes more costly. In this round, the smart algorithms with feedback

are compared to the same algorithm with no feedback.

In Figure 5.2, the results of the �rst round are shown. First, it should be noted that the e�cacy

of the DQC algorithm with and without feedback drops as both Stream 1 and Stream 2 become more

expensive. This drop occurs because, as slope increases, the streams on each server converge. As

Stream 1 Stream 2 Stream 3
QoS function 100000

1+e20�x=110
ax where a 2 [1; 25] ax where a 2 [1; 25]

Server 1 Server 2 Server 1 Server 2
Mean inter-arrival time 220 220 220 220
Mean service time 100 100 100 100

Table 5.1: Queuing Network: Experiment Parameters (Round One)
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the costs of the streams equalize, the bene�ts of the smart scheduling decrease. Second, as the slope

of the linear QoS increases, the di�erence between DQC with and without feedback decreases. The

total advantage of the algorithm over FIFO is computed based on average cost for all three streams.

Thus, as the costs of Streams 2 and 3 increase, the bene�t gained for Stream 1 becomes diluted. To

verify this hypothesis, the cost for Stream 1 alone is depicted in Figure 5.3. The advantage of DQC

with feedback over DQC for Stream 1 alone remains constant no matter what slope is chosen for

Streams 2 and 3. In the next round, we show how the current parameters can be changed to achieve

greater advantage.

In the �rst round of experiments, the gap between DQC scheduling with and without feedback

is very narrow. In the next round of experiments, we will show that the gap can be made arbitrarily

large. To make this gap wider, we replace the quality of service functions from Table 5.1 with the

functions listed in Table 5.2.
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Figure 5.3: E�cacy of Feedback for Stream 1

Stream 1 100000
1+e15�x=10

Stream 2 ax+ 100 where a 2 [1; 21]
Stream 3 a0x+ 100 where a0 2 [1; 21] and a = a0

Table 5.2: Queuing Network: Experiment Parameters (Round Two)

In this round, the quality of service function for Stream 1 is made much steeper than in the �rst

round. The new sigmoidal QoS is also shifted to the left. Moreover, for linear QoS, a minimum cost

of 100 is introduced to make sure that the linear QoS intersects the sigmoidal curve in at most two

places (i.e., it removes the case when, for small delays, linear QoS assigns less cost than sigmoidal).

The change in sigmoidal QoS is depicted in Figure 5.4.

The results of the second round are depicted in Figure 5.6. The gap between DQC with and

without feedback is bigger than before. With the new sigmoidal QoS, the cost of not o�seting the

delay on the �rst server results in much greater penalties than before, because the new sigmoidal

QoS assigns maximum cost for lesser delays. Thus, if the delays are not o�set, the average cost is

around 100000, since the vast majority of the events hit the maximum cost for Stream 1.

It should be noted that the overall percent advantage of DQC with and without feedback over

FIFO is less than before, because the new quality of service function assigns greater cost for message

delay in Stream 1. Smart scheduling under these conditions cannot greatly decrease cost, because it

cannot physically prioritize messages in Stream 1 enough to avoid the cost ceiling. In other words,

no matter what scheduling does for Stream 1, most of the messages will be delayed by more than

100 units of time.

Another interesting fact that can be observed from Figure 5.6 is that the advantage of DQC

increases with the slope of the linear QoS functions. This is di�erent from the �rst round of exper-
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Figure 5.4: Change in Sigmoidal QoS

iments. DQC improves the average cost for all three streams. However, Stream 1's cost is vastly

bigger than the cost for other streams. The di�erences decrease as the slope of linear QoS increases.

Thus, the cost saving for Streams 1 and 2 impacts the average cost of the three stream greater as

the slope of linear QoS increases. The overall gain over FIFO increases. This can be con�rmed by

looking at Figure 5.5. The average cost gain for just Stream 1 doesn't change with slope, because of

Stream 1's dominant cost over other streams. Thus, the lower cost is due to the gains for Streams

2 and 3.

In the next round of experiments, to test the impact of having no reordering, we replace the

DQC algorithm with DQC-NR and use the same parameters as in the second round. The results are

depicted in Figure 5.6 and 5.5. We notice that the advantage from feedback is negligible compared

to DQC. The reason for this poor performance is that the metric used by the scheduler takes the

length of the queue into account. Since the utilization is high, the queue length is substantial. The

queue length metric dominates feedback values. Thus, the feedback has less impact in the DQC-NR

case.

In the fourth round of experiments, we try the SMBS algorithm with and without adjustment.

There is no feedback for the SMBS algorithm, since the optimization algorithm is centralized. For the

SMBS algorithm without adjustment, the behavior is similar to DQC-NR. The increased gain over

FIFO is solely due to decreases in cost for Streams 2 and 3. The cost for Stream 1 is not impacted

(see Figure 5.5). In fact, the optimization algorithms give all the CPU to Streams 2 and 3, because

the cost of average delay is always at 100000. SMBS with cost adjustment produces a reduction in

cost for Stream 1 (See Figure 5.5). However, the overall cost for all streams actually increases with

increased slope, making SMBS with adjustment perform worse than FIFO (see Figure 5.6). The
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Figure 5.7: E�cacy of Exact Service Time Feedback

optimization algorithm underestimates the impact of the increased share of Stream 1 on Streams

2 and 3. Thus, as the slope of linear QoS increases, the negative impact of this underestimation

increases.

In the last round of experiments, we try to change the feedback. From our choice of feedback,

it may look as though if the exact future service time was known, a greater reduction in cost could

be achieved. We try to verify this assumption, by replacing the mean service time with the exact

future service time for each corresponding message. The rest of the parameters are kept the same as

in the �rst round of experiments (Table 5.2). The results are depicted in Figure 5.7. The new types

of feedback do not change the e�cacy of the algorithm. The reason for such disappointing results is

that the mean value generally overestimates the true service time. However, the service time is not

the only source of the future delay; the queuing delay is another source. Thus, neither mean service

time nor exact service time represent the true future delay experienced on Server 2.

In summary, even the simplest feedback information introduced in this chapter improves DQC

scheduling algorithm performance. Moreover, the absence of reordering makes the e�ciency of

feedback very limited. A di�erent kind of feedback has to be developed for this case. The issues

of average cost of delays versus cost of average delay presented in Section 4.7 are more acute in

a multiple server environment. In order to make SMBS suitable for a distributed environment, a

better way of adjusting predictions from the Markov model should be developed to close the gap

between average cost of delay and cost of average delay.
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Chapter 6

Applications

There are several areas where stream processing is relevant. These areas include �nancial sector

applications, military applications, enterprise integration software, and general purpose ubiquitous

messaging environments.

Finance is one of the areas where stream processing could be used. Events on the stock market

such as changes to stock prices and the amounts of a given stock sold and bought could be streamed

into the systems. An analyst could then use this data by applying di�erent models and correlating

di�erent streams in an attempt to predict and capitalize on market behavior.

In large �nancial institutions, the computing resources are often organized in clusters that are

connected by dedicated �ber-optic channels. An example of such a topology is depicted in Figure 6.1.

In the picture, each node represents a cluster. This topology is similar to the network layout employed

by IBM, where the core ring is comprised of clusters belonging to speci�c geographic regions such

as "U.S. Northeast". The nodes that are attached to regional clusters are local o�ce networks such

as "Hawthorne, NY". Such a topology is well suited for distributed, analytical stream processing

including �nancial analysis. Moreover, di�erent agents may have di�erent delay requirements, which

are guided by their ability to pay for up-to-date information. Thus, the issue of QoS-based distributed

scheduling is relevant in such systems.

Sensor networks compare another fertile area of research that requires stream processing. The

battle�eld of the future serves as a good example of a sensor network that requires distributed

stream processing. Modern warfare relies heavily on computing power. Soldiers carry wearable

computers. There are UAV drones hovering above the battle�eld. Tanks and other units contain

computing power and have multiple sensors that stream information during the battle. In such an

environment, there is a need to process all information rapidly to help soldiers identify immediate

threats and opportunities. Most of the processing involves computationally intensive tasks such as

image recognition, threat assessment, etc. Moreover, sending information to a central command-and-

control is impossible due to the delay and power cost of such communication. Instead, the computing

power on the battle�eld can form a distributed network to process incoming data streams. Such a
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Figure 6.1: Example of cluster topology for an enterprise network
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network would not be fully connected. Most likely, wireless links would be established to maximize

power consumption. Moreover, the number of streams and their priorities could constantly change as

threats come and go. All these features �t well with the description of stream processing applications

in Chapter 1.

Enterprise application integration is another area where stream processing may be useful. A

large percentage of the software engineering market is occupied with connecting various enterprise

application (e.g. SAP human resource software with accounting software). The integration could

be achieved by creating adapters that export application information as streams of messages. These

messages represent changes in application state. The system transforms and disseminates these

changes to integrated applications. Transformations may include some business logic and conversions

that do not belong in the application at either end. Such an integration system could be a stream

processing system for which QoS-based scheduling is required.

The next generation of programming languages and associated runtimes may incorporate stream-

ing into programming languages themselves. Currently, Service-Oriented Architecture (SOA) is be-

ing presented as the latest word in system design. In SOA, a system is built from a set of services

with standard descriptors, which communicate with each other via message dispatch (SOAP, REST,

etc.). A programmer can build a system by wiring services together. This approach can be taken to

a new level by making classes and components of Java-like languages perform as services such that

every function call becomes a message dispatch. Then, the run-time is responsible for taking these

components and either running them locally or sending them to be executed on remote runtime

engines. In such a runtime, all objects are viewed as services exchanging streams of data. This

approach incorporates streaming into the language itself. The runtime for such a language could

be distributed as in Hermes [51]. Therefore, scheduling in a distributed stream processing system

would be also relevant for such a runtime. The execution priorities for processes would determine

the Quality of Service functions.
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Chapter 7

Related Work

In general, the area of scheduling is very extensive, especially, in the domains of operating systems

and networking [31, 33, 58]. Since our work is uniquely focused on distinct aspects of distributed

data-stream processing systems, we discuss only the work that is directly related to scheduling in a

stream processing applications. A good description of the requirements for such systems is provided

by Bourbonnais et. al. [8].

There are several stream processing systems being developed in academia and industry. One such

system is SMILE (Smart-Middleware Light-End) [29], from IBM Research. Like many other stream

processing systems, SMILE de�nes a stream processing variant of SQL for querying information

over streaming data. The distinctive aspect of SMILE is its novel correctness guarantee model.

SMILE introduces an eventual correctness guarantee that is less stringent than ACID and is very

well suited for stream processing applications. Under eventual correctness, all operators are de�ned

to be deterministic and monotonic. This allows SMILE to have simple fault-tolerance algorithms.

Eventual correctness gives great 
exibility in optimization such as mapping and scheduling. Also, as

part of the SMILE system, a novel mapping algorithm that uses queuing theory analysis has been

developed. This analysis was one of the sourses of inspiration for this work.

Another stream processing system, called STREAM [5], is being developed by a team at Stan-

ford. STREAM proposes a SQL-like language, called CQL, for querying streams. Unlike SMILE,

STREAM emphasizes approximations of the correct result to speed up query processing and mini-

mize memory use. The scheduling algorithm proposed as part of STREAM [3] focuses on memory

management. It does take into account latency bounds on query execution, but it is not QoS driven

as Borealis [11] and our algorithm are. In addition, this algorithm is not designed for a distributed

environment, where local choices may negatively e�ect latency on downstream server machines.

Borealis is the �rst stream processing system that uses QoS functions to drive system perfor-

mance. It is a second generation stream processing system, built as an extension to Aurora and

Medusa [1] systems. Borealis allows users to de�ne streaming computations in a graphical fashion.

In addition, it allows users to specify several di�erent QoS requirements. There are a number of
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novel algorithms proposed as part of Aurora and Borealis that include scheduling and mapping.

Abadi et al. [1] present the design of the future Borealis system. It outlines the distributed schedul-

ing algorithm that is being developed for the next version of the system. In spirit, our approach is

similar to one described by Abadi et al. since our algorithm tries to use auxiliary information that

travels in messages to predict the impact of scheduling policy on global QoS objectives. However,

our framework proposes to use control to make local scheduling more adaptable and to alleviate the

need for several tiers of optimization algorithms proposed by Abadi et al.. Our framework removes

the need to subdivide the network in order to implement a centralized scheduling policy. While

removing these constraints, our algorithm does not utilize any load shedding or message reordering

schemes outlined by Abadi et al.. In the future, it would interesting to compare di�erent scheduling

strategies and incorporate other types of QoS functions into our framework.

The scheduling strategy in Abadi et al. is based on Aurora scheduling outlined by Carney

et al. [11]. Carney et al. propose several schemes to schedule sets of query execution graphs

with associated quality of service constraints. All schemes are essentially greedy. Several metrics

are proposed to optimize for di�erent things including cost of execution per operator, latency and

memory requirements. In cases where QoS is de�ned, the operators are evaluated based on the

expected impact on utility. Thus, the scheduling is operator-based and not 
ow-based. In order

to cut down on the overhead, scheduling decisions are made for a set of tuples rather than on a

per-tuple basis. However, the approach of Carney et al. does not take into account the e�ect of

queuing in the distributed stream processing system. As was shown in our work, queuing could have

a great impact on system performance and must be taken into account by the scheduling algorithm

to achieve good performance.

NiagraCQ [13] is a streaming system being developed at University of Wisconsin, Madison.

Unlike previously described projects, NiagraCQ utilizes an XML-based query language. NiagraCQ

proposes several heuristics for combining selection and join predicates, which could be useful for

mapping algorithms. However, no speci�c scheduling algorithm is proposed.

TelegraphCQ [12] is a Continuous Query processing system from UC Berkeley. The core goal is

to make the system highly adaptable in the face of a changing environment. The key components

of the system include the Fjord API [34] that allows push and pull-based communication between

components of the query plan, and Eddys [26] that encapsulate the logic of the streaming operator

and permit on-line self-optimization. The implementation of TelegraphCQ is not distributed and

does not use Quality of Service functions, thus the issues of scheduling to control execution cost are

not relevant.

There are several other stream processing systems, including Tapestry [54], Gigascope [20], Han-

cock [19], Tangram [40], Tribeca [52], HourGlass [42, 47] and IrisNet [24].Tapestry is one of the

�rst stream processing systems described in the literature. It was developed at Xerox PARC in the
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early 1990s. The system proposes an extension to the standard database that would allow users to

issue continuous queries over append-only tables. Tapestry de�nes the notions of incrementality in

query results and monotonicity, which are later used by the SMILE system. Tapestry also de�nes an

associated extension to SQL that lets users de�ne these continuous queries. Since Tapestry is envi-

sioned as a database extension, the issue of distributed implementation and the associated problem

of scheduling is not examined [54].

Gigascope and Tribeca are examples of stream-oriented systems speci�cally designed for network

monitoring. Gigascope uses an SQL-like language. However, since many computations over network-

ing data are hard to express in SQL-like languages, Gigascope provides a facility for easy addition

of custom functions. Performance and extensibility are the main achievements of Gigascope. The

architecture of Gigascope is distributed, but it uses a shared memory model. Thus the scheduling,

as presented in this work, is not applicable to the Gigascope system [20]. Similar to Gigascope,

Tribeca strives to achieve performance and extensibility. The language to specify transformations

is procedural rather than SQL-like. However, the emphasis is put on the ability of analysts to add

their own statistical models into the system. For performance reasons, Tribeca doesn't allow regular

joins unless all joined streams have window operators applied to them. The Tribeca architecture is

not distributed. The design contains several optimization strategies for better system performance

including ad-hoc query optimization. These strategies are centered on eliminating unnecessary I/O

operations and providing more robust memory management [52].

Another example of a domain-speci�c stream processing system is Hancock. Hancock is a C-like

language and associated run-time that can be used to de�ne signatures over customer transaction

streams. Signatures are products of data mining used for fraud detection, customer service and

marketing. Unlike general streaming projects or network tra�c analysis projects, Hancock puts forth

a domain-speci�c, extensible language for signature development. The runtime for the language is

non-distributed. Thus, the issues of queuing and scheduling are not discussed in the context of

Hancock [19].

Tangram is one of the earliest projects that proposed the evolution of regular databases into

stream processing systems. Instead of persistent queries, a concept of transducers is introduced.

Transducers are similar to iterators and represent computations being executed against the streaming

data. The language for expressing the computations is PROLOG, not SQL. However, since Tangram

is envisioned as a database extension, the issues of scheduling in a distributed environment are not

relevant to Tangram's design [40]. Tangram also served as the inspiration for work done by Tucker

and Maier [57] that de�nes the notion of stream punction, special meta-information messages that

are injected into streams to improve the performance of streaming operators.

IrisNet is a project that takes a di�erent approach from classical stream-oriented systems [24].

IrisNet views a stream-processing system as a widely distributed network of services. Each service
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manages information produced by a set of sensors and lets users register queries on this data.

IrisNet realizes that such services would have a lot of common components such as data storage and

query registration. Thus, IrisNet proposes a framework for development of such streaming services.

Although, IrisNet doesn't discuss scheduling of requests, IrisNet's system design makes a good target

for the scheduling approaches outlined in this work.

HourGlass [47] is another service-oriented framework for collection and distribution of sensor

data. Just like IrisNet, HourGlass tries to identify key features of sensor-data dissemination networks

and create a specialized service-oriented framework to address these unique features. As part of the

HourGlass project, an algorithm extension for network-oriented placement of operators is proposed.

This algorithm is closely related to the mapping problem. However, similar to other mapping and

scheduling solutions presented in the literature, queuing delays are not taken into account [42].

Finally, GATES is a grid-based middleware for processing distributed data streams. The design

of GATES focuses on extension of the existing Open Grid Services Architecture to allow e�cient

distributed stream processing. To the best of our knowledge, GATES is the only other system

that utilizes queuing theory to tune algorithm performance. However, unlike the work presented

here, GATES uses statistics about queues to determine sampling rate on a server. GATES doesn't

have a concept of quality of service function or a notion of feedback to determine impact of a local

computation on overall quality of the result [14]. Some work in the grid environment has focused on

control-based algorithms that try to meet certain overall quality of service. Li et al. [33] introduce

framework for designing control-based algorithms. However, this work doesn't focus on streaming

applications or queuing. Instead, a distributed framework for control of di�erent resources such as

bandwidth is developed. The goal of this framework is to achieve system stability while meeting

certain global quality of service requirements. In this context, the quality of service is de�ned not

as a function, but as a set of properties such as fairness, sampling rate, deadline ful�llment, and

error management. In the future, we need to study how the control theory used by Li et al. could

be used in a distributed streaming environment.

A streaming system could also be viewed as an overlay network produced by the mapping func-

tion. This view is similar to distributed hash tables (DHT, [36, 43, 44, 49, 60]). The Peer-to-Peer

Information Exchange and Retrieval (PIER) system [27] proposes to use DHT for creating a widely-

distributed relational database. The system is designed to handle regular database queries over

relational data rather than continuous queries over the data streams. The main problem PIER is

trying to solve is how to execute queries involving relational join over the data that is stored in

a DHT. Thus, the issue of scheduling as de�ned in this work is never addressed by PIER. In the

future, it would be interesting to see if a DHT approach could be extended to continuous queries

and how such an extension would a�ect scheduling techniques.

Infopipes at Georgia Tech [30] is another project whose goal is to de�ne and implement a data-
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stream processing system. Infopipes provides a new abstraction that simpli�es development of

distributed data-stream applications. A related project from Georgia Tech presents a distributed,

utility-driven, resource allocation algorithm [32]. This algorithm takes into account business utility

of operators in order to aggregate them and deploy them on a distributed network of servers. We

envision that smart utility-driven scheduling is still performed by the run-time after allocation, since

many times the re-allocation of operators may be costly.

Event correlation engines are a special type of stream processing systems that are very popular in

enterprise computing [2, 18]. Active Middleware technology (Amit) is one of the leading correlation

engines [2]. Amit de�nes a rich and extensive language and associated run-time for event detection

and correlation. In the future, for a correlation system like Amit, the distributed implementation of

the run-time could face the same issues of control of queuing delays as outlined in this work.

In enterprise computing, stream processing systems manifest themselves in the notion of enter-

prise service buses. An enterprise service bus (ESB) is a system responsible for integrating di�erent

services. The services connect to the ESB and submit data into the ESB. The ESB is responsible

for performing data transformation and delivery of the transformed data to interested parties. The

data transformation encompasses business rules that are programmed into the bus. Thus, the ESB

helps to achieve better integration among di�erent systems and services. In the context of our work,

the business logic inside ESB can be viewed as a streaming computation. The services could be seen

as users, and the bus itself as a stream processing system. Currently, there are several proprietary

bus implementations avaiable on the market [15, 16, 17, 22, 48, 56] and a couple of open-source

implementations [53, 46]. Most ESB deployments today are not distributed. However, this area

is experiencing rapid growth and large scale ESB deployment is soon to be come reality. In such

an environment, the approaches outlined in this work would become relevant to ESB design and

implementation.

There has been a lot of work done in trying to use control theory to design new, fair, adaptive TCP

protocols to maximize transmission rates for di�erent sources on the Internet [28, 39]. However, all

the control theory has been developed on an end-to-end basis with the assumption that each packet

has the same size and router bu�ering is very limited. For stream processing systems, the situation

is di�erent. The messages in the system are of varying size. In addition, the intermediate servers

perform computation, which has an e�ect on future service rates. As a corollary, these servers may

store much longer queues than regular Internet routers. The utility is measured in terms of delay

rather than throughput. In short, our framework is trying to combine analysis techniques developed

by the networking community and extend them to the new area of stream processing.

Another area of related research is the area of Markov chain approximation algorithms. There

are several methods based on aggregation-disaggregation of Markov chains [7, 50]. Some of these

approaches allow iterative approximation of a steady-state in a product form without storing the
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Q matrix in memory. However, the structure of our Q matrix is not suitable for such approaches.

Instead, our approximation exploits the unique structure of the Q matrix to achieve limited scala-

bility.

An alternative way to �nd steady-state probabilities of a Markov process is to use approximate

mean-value analysis to determine the approximate expected queue sizes under our SMBS scheduling

algorithm [7, 37, 41]. The work on approximate mean-value analysis is too extensive to be described

here; Bolch et al. [7] provide a good introduction to this technique. However, to the best of our

knowledge, our Markov process lacks both global and local balance to apply any of the existing

algorithms.

Also, several classical optimization problems for scheduling over queuing networks have been

developed over the years [7, 45]. However, all these optimizations de�ne cost for using resources

rather than cost of delivering information in a timely manner. It would be interesting to see how

optimization over several dimensions (i.e., taking into acount both resource and delay) could be

combined. The area of stochastic control o�ers a good set of tools that could be used to tackle this

problem. In the future, we will also study the applicability of the algorithm proposed by Sennot et

al. [45] to our work.
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Chapter 8

Future Work

There are several interesting directions for future work. For the static mean-based scheduling al-

gorithm, more work needs to be done to create better approximations of the Markov model. The

current approximation only works well for up to �ve queues. It would be useful if a closed-form

solution could be found. Such a closed-form solution would be a novel result, even outside of this

work. Our current framework makes it easy for future approximation algorithms to be plugged in.

More study of SMBS behavior in a distributed environment is also needed, since the current solution

has only been tested under limited conditions.

For the dynamic queue control algorithm, the key direction for future work focuses on the design

of better feedback for local scheduling algorithms. The feedback should go beyond expected service

times of downstream computations, and should provide a more accurate re
ection of network con-

ditions including queueing delays. More importantly, formal control theory tools need to be used

to show how robust such feedback would be, such as how quickly the scheduling would respond to

spikes in system load. Such an approach has been shown to work well for general networking and

we believe it could work equally well for streaming systems [39]. Moreover, we need to address the

issues raised in Abadi et al. [1], Carney et al. [11], Babcock et al. [3]. In particular, the impact

of message reordering has to be studied more rigorously. Formal bounds on the di�erence from the

optimal solution have to be proved for the cases when message reordering is impossible due to the

nature of streaming computation. Also, other quality of service functions presented by Abadi et al.

should be integrated into our control framework.

Moreover, we need to study the impact of non-trivial 
ows, i.e., 
ows that contain splits and

joins, on our scheduling algorithm. The joins may be hash joins described by Babcock et al. [4]

or joins de�ned over the time scale described in Zimmerman et al. [61], Manohar et al. [35]. The

latter complicates the analysis of the scheduling algorithm considerably. The nature of streaming

computation, and in particular the operators with negative selectivity, also has to be studied further

in the context of our control problem.

Another interesting and important direction involves integrating the scheduling algorithm with
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mapping algorithm being developed by Tian [55]. Clearly, mapping impacts how much scheduling

can improve on the system performance at run-time. Similarly, mapping needs to know how 
ows

will perform after they are mapped, which in turns depends on scheduling. One of the potential

approaches may involve the mapping algorithm using scheduling as a prediction model to determine

prices for particular mapping strategies.
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Chapter 9

Conclusions

The area of distributed stream processing will continue to expand as systems for network tra�c mon-

itoring, online �nancial data processing and enterprise system integration become widely adopted.

In this thesis, we have presented the problem of cost-based scheduling of streams in a distribubted

stream processing system. Unlike previous environments where scheduling has been studied, this

new setting creates new challenges such as the need to deal with 
uctuating stream statistics and

rapidly changing system attributes and the need to conduct scheduling based on quality of service

functions.

We proposed two di�erent frameworks for analysis and development of the scheduling algorithms.

Our frameworks work with any type of quality of service function, unlike several algorithms proposed

in the literature that limit the types of QoS function one may use [11]. The �rst approach is based on

generation of a model of a scheduling algorithm. The model is then used as an evaluation function

to �nd the parameters that would make the scheduling algorithm minimize the global cost of stream

processing. In this approach, the model is decoupled from the optimization process. Thus, in the

future, the search for better models and optimization strategies can be conducted independently.

We have outlined a static mean-based scheduling algorithm (SMBS) that �ts this framework. In

this approach, the model is based on a Markov process and the optimization strategy uses a genetic

algorithm. Although the model evaluation and the optimization algorithm are computationally

intensive, the advantage over na��ve scheduling is substantial.

Our second approach is based on run-time analysis of the cost of scheduling one stream over

another. The costs are driven by the quality of service functions. In conjunction with the costs,

feedback is used to provide information about global system conditions. This information adjusts

the costs such that the global cost objective is minimized. Currently, this information includes

expected service times. In the future, more sophisticated feedback that captures a system's queuing

delays will be provided and formally analyzed. However, even with simple feedback, our scheduling

algorithm not only outperforms na��ve scheduling, but also outperforms the same smart scheduling

with no feedback.



78

We hope that the two frameworks introduced in this work will serve as a good foundation for

the development and analysis of future algorithms. These algorithms would utilize more tools from

control theory to develop more accurate feedback, resulting in distributed stream processing systems

with greater robustness in the face of constant change.
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