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Abstract

Homogeneity of price is an implicit yet fundamental assuorptinderlying price based re-
source allocation theory. In this thesis, we study the &fetrelaxing this assumption by
examining a concrete engineering system (network withrbgeneous congestion control
protocols). The behavior of the system turns out to be vefgréint from the homogeneous
case and can potentially be much more complicated. A sysiethaory is developed that
includes all major properties of equilibrium of the systemels as existence, uniqueness,
optimality, and stability. In addition to analysis, we ajg@sent numerical examples, sim-
ulations, and experiments to illustrate the theory andwés predictions.

When heterogeneous congestion control protocols that t@ddterent pricing signals
share the same network, the resulting equilibrium can ngdohe interpreted as a solution
to the standard utility maximization problem as the curtbebry suggests. After intro-
ducing a mathematical formulation of network equilibriuon multi-protocol networks, we
prove the existence of equilibrium under mild assumptidfs: almost all networks, the
equilibria are locally unique. They are finite and odd in nem@ hey cannot all be locally
stable unless the equilibrium is globally unique. We alsaveetwo conditions for global
uniqueness. By identifying an optimization problem asdedavitheveryequilibrium, we
show that every equilibrium is Pareto efficient and provideupper bound on efficiency
loss due to pricing heterogeneity. Both intra-protocol artdriprotocol fairness are then
discussed. On dynamics, various stability results areigeal In particular it is shown
that if the degree of pricing heterogeneity is small enodlyé,network equilibrium is not
only unique but also locally stable. Finally, a distributddorithm is proposed to steer a
network to the unique equilibrium that maximizes the aggteatility, by only updating a

linear parameter in the sources’ algorithms in a slow tirakesc
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Chapter 1

Introduction

...he intends only his own gain, and he is in this, as in many other cases, led by an

invisible hand to promote an end which was no part of his intention.

— from “The Wealth of Natioridoy Adam Smith

Adam Smith is generally regarded as the father of econontiics.“invisible hand” idea
has been widely adopted in the modern era to refer to a pracegsich the outcome to
be explained is produced in a decentralized way (coordinayethe invisible hand), with
no explicit agreements among the acting agents. The clssiing of the theory has a few
basic assumptions. One fundamental yet frequently ignrasedmption is the homogeneity
of prices. In other words, the invisible hand (price sigad$erved by all agents is assumed
to be exactly the same. In this thesis, by studying a conemgeeering system (network
congestion control) which has been modelled using marasédt theory, we discover some
consequences of relaxing the price homogeneity assumgdtisdemonstrated that both
the results and the mathematical techniques used to déeve are very different from
the traditional theory and our systematic study providesligtions that are verified by ex-
periments. Throughout this thesis, we mainly focus on ngtwongestion control, whose
basic concepts and results are introduced in this chaptrekbr, the discovery here can
have potential impacts on related problems in both ecormand mathematics that will be

discussed later.
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1.1 Network Congestion Control

Congestion control has long been recognized as a very impartemponent of network
regulation, in both traditional transportation networkslanodern communication net-
works. Itis of particular importance for a giant and hetemgous network like the Internet,
where congestion can potentially lead to huge performaageadiation.

Congestion occurs when the aggregate demand for a certaurces(e.g., link band-
width) exceeds its supply. The effects, using the Interiseam example, include long
transfer delay, high packet loss, frequent packet retresssoms, and even possible con-
gestion collapse [32], where network links are fully utlizbut the throughput which an
application obtains is close to zero. This indeed happemsdritally. In October 1986,
the Internet had one of its first congestion collapses. A liakween two terminals in the
Lawrence Berkeley Laboratory and the University of Califarat Berkeley, which were
about 400 yards apart had its throughput drop from 32 Kbp®tbps$ (about a factor of
1000) ! After a series of similar events, people began todbmilthe congestion control
component into TCP (Transmission Control Protocol), which een widely regarded as
a great success and a significant contribution to the triuofipie Internet.

The basic idea behind TCP congestion control is straighticswData sources regulate
their sending rates according to feedback signals (paokstriate for current TCP) from
the network. These signals are generated by links baseaoruthization and hence carry
information about the congestion level inside the netwdirs. worthwhile to note that data
sources only need to know the aggregate congestion signifisir paths, and links update
their congestion signals only based on aggregate traffiiggbrough them. In other words,
it is a distributed system and only local information is used

Borrowing concepts from economics and tools from optimaatind control theory,
significant progress toward understanding network comgesiontrol has been made in
the last decade [39, 46, 55, 84, 41, 44]. In short, we viewdke (primal variable) adapta-
tion at sources and the congestion signal (dual variablesadent at links as distributed
primal/dual algorithms to solve a convex optimization peoh. When the whole network

reaches its equilibrium, the flow rates maximize aggregtiiywhile the congestion sig-
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nals, which can be interpreted as market-clearing pricethfise resources, solve its dual
problem. For more mathematical details, see section 2.1.3.

This duality theory has its impact in many ways. First, itdseéxplain previous em-
pirical observations. Second, by showing the global comsece of collective local algo-
rithms, it sets up a framework under which properties likeeieincy, and fairness can be
rigorously discussed. Third, with its elegant and simptacitrre, it allows us to discover
previously unknown behaviors of end-to-end congestiotrobfor networks with arbitrary
topology [74]. Finally, it can help design new protocolstteeale better with bandwidth
[35, 80].

1.2 A Motivating Example

The key step in setting up the duality theory for congestiomtio| system is to view con-
gestion signals associated with links as Lagrange mudtipfor the corresponding capacity
constraints introduced by links. This, however, directhplies the assumption of homo-
geneity of congestion signals as there is only one set of\dualbles in the duality theory.
This implicit assumption is clearly violated whenever thare data sources that use differ-
ent congestion signals. We now argue that is an importaet cas

The currently deployed TCP implementation, referred to as RERd in this thesis,
uses packet loss as its congestion signal to dynamicallytagasmission rate, or equiv-
alently, congestion window size. It has worked remarkaldyl in the past, but its limita-
tions in wireless networks and in networks with a large badtwdelay product have been
well-known and have motivated various proposals that u$erdnt congestion signals. For
example, schemes that use queueing delay include the eadggals CARD [33], DUAL
[79] and Vegas [12], and the recent proposal FAST [35, 80]Jlut®ms that use one-bit
congestion signals include ECN [59, 83, 43], and those tretnudti-bit feedback include
XCP [37, 45], MaxNet [82, 81], and RCP [23]. Indeed, the Linuxmpi@g system already

allows users to choose from a variety of congestion contgardhms since kernel version

LAll our experiments and simulations use NewReno with SACKede are enhanced versions of the

original Tahoe and Reno, but we refer to them generically@B8 Reno.
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2.6.13 [1]. Clearly, going forward, our network will becomenare heterogeneous one in
which protocols that react to different congestion signaksract. Yet, our understanding of
such a network is rudimentary at best. With the exceptionfeidimited analysis on very
simple topologies [54, 42, 44, 27], existing literature getly assumes that all sources are
homogeneous in that, even though they may control theis &g different algorithms,
they all adapt to the same type of congestion signals.

In the remainder of this section, we will experimentally whitat the current duality
theory cannot explain even some of the most basic behavioretaorks with heteroge-
neous protocols. This example motivates the study in tlesish

TCP Reno and FAST are used in the experiments, and we give ardreduction to
them here. TCP Reno controls its rate based on end-to-endtpgaskerobability. At its

equilibrium point, Reno is characterized by the followingiation [44]:

2

A — 11
" o

whereg! is the end-to-end loss probability. Here, we assume thabtined-trip time7; for
Reno flowi is a constant.
FAST [80] is a high speed TCP variant that uses delay as its caatrol signal. Every

20ms, a FAST flow adjusts its congestion winddwaccording to

base RTT

where RTT is the current round trip time and baseRTT is themum RTT that has been

observed. At equilibrium, each FAST floiachieves a throughput

(1.3)

whereq; is the equilibrium queueing delay observed by flowdence « is the number of
packets that each FAST flow maintains in the bottlenecksgaksmath.
We set up a Dummynet testbed [61] with seven Linux servergiadess and receivers

and three BSD servers to emulate software routers; see Figurdhe Linux senders and



HOST:NETLAB-ML5
HOST:NETLAB-ML1

HOST:DN Router1 | HOST:DN_Router-2

HOST:NETLAB-ML3 HOST:NETLAB-ML4 HOST:NETLAB-ML6

HOST:NETLAB-NMIL2 HOST:DN Router-3 HOST:NETLAB-ML7

Figure 1.1: Dummynet setup for Experiments 1.1 and 1.2.

receivers run TCP Reno or FAST. The three emulated routers negBISD 5.2.1. Each
testbed machine has dual Xeon 2.66GHz processors, 2GB afmenory, and dual on-
board Intel PRO/1000 gigabit Ethernet interfaces. Theresthines are interconnected
through a Cisco 3750 gigabit switch. The network is fully cgafable, and the link delay
and capacity can be modified on the emulated router. The qgedescipline is Droptail.
We have programmed the Dummynet router to capture variats gariables for comput-
ing queue trajectories, loss, and bandwidth utilizatiohe $ender and receiver hosts have
been instrumented to monitor TCP state variables. We use222ibdified FAST kernel.
In order to minimize host limitations and accommodate ldngiests, we have increased the
Linux transmission queue length to 5000 and ring buffer t8640perf is used to generate
TCP traffic for each protocol.

We make the following remarks before reporting experimentetail:

¢ We have modified the FAST implementation so that it does nethts window after

a loss. Therefore it only reacts to queueing delay [76].

e The standard 1500-byte MTU (Maximum Transmission Unit) sedi Thus, 100
Mbps = 8.33 pkts/ms.

e All the queue sizes reported below are exponential moviegames of instantaneous
gueue trajectories. Averaging does not affect the equilibvalue, which is of pri-

mary interest here. Note, however, that even though thexgedrtrajectory may not
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reach buffer capacity, the instantaneous trajectory aftess.

The topology of the network is shown in Figure 1.2. Links 1 &n@vhich correspond
to the outgoing links of routers 1 and 3) are each configurdid W0 Mbps capacity, 50 ms
one-way propagation delay and a buffer of 800 packets. Lifrb@er 2) has a capacity of
150 Mbps with 10 ms one-way propagation delay and a buffer&iA50 packets. There
are 8 Reno flows on path 3 utilizing all the three links, with-avey propagation delay of
110 ms. There are two FAST flows on each of paths 1 and 2. Botleaf ttave one-way
propagation delays of 60 ms. All FAST flows use a common pat@me= 50 packets.

Path1 Path2
@ [ J

- @
Link1 ® Link2 Link3

Figure 1.2: Multiple equilibria scenario.

Experiment 1.12: multiple equilibrium points

The goal of this experiment is to demonstrate multiple (tegilibrium points of the
system. It directly contradicts the uniqueness of equilirpredicted by the duality theory
(the equilibrium is the solution of the utility maximizatigoroblem, which is a strictly
convex program and hence admits a unique solution).

Two sets of tests have been carried out with different sigittimes for Reno and FAST
flows. The intuition is that if FAST flows start first, link 2 wibe saturated and links 1
and 3 will not. Since the buffer size for link 2 is small, whennRedlows join, they will
experience so many losses that links 1 and 3 will remain uretgid. This corresponds
to an equilibrium with a bottleneck link set consisting afdi2 only. If Reno starts first,
on the other hand, links 1 and 3 are saturated while link 2 tsbecause link 2 has a
higher capacity. Since the buffer size at links 1 and 3 isdatey can generate enough

gueueing delay to squeeze FAST flows when they join and ke&Rlunsaturated. This

2Throughout this thesis, packet level simulation and expenit are called "Experiment" while numerical

or theoretical example are called "Example”. They are nuatbseparately.
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corresponds to an equilibrium whose bottleneck link sesistg of links 1 and 3. We repeat
the experiments 30 times for both scenarios and obtain tleniag results.
The average aggregate rates and the standard deviatiothev@® experiments of all

the flows on each of paths 1, 2, and 3 are shown in Table 1.1 tordvarting orders. Since

Path 1 (FAST) | Path 2 (FAST) | Path 3 (Reno)
FAST start first| (52.0, 2.0) Mbps (61.1, 3.3) Mbps (26.6, 4.8) Mbps
Reno start first| (13.3, 0.8) Mbps (13.4, 0.8) Mbps (92.7, 0.7) Mbps

Table 1.1: Average aggregate rates and their standardtideaaf all flows on paths 1, 2,
3.

the difference in the aggregate rates for each path is fae than the standard deviation,
it is clear that the network reaches very different equgililepending on which flows start
first. This is further confirmed by queue and throughput mesasants shown in Figure 1.3
for link 1 and in Figure 1.4 for link 2 for one of the 30 experimi& The results for link 3

are similar to those for link 1 and are omitted.

\~

200] = FAST Starting First
= = -Reno Starting First

Link1l: Queue Size(pkts)
1=
=3
)
<
0

0 L L L
150 200 250 300 350 400 450 500
Simulation Time(sec)

=

Link1: Throughput(pkts/sec)

s
@
S

i i i i i i
200 250 300 350 400 450 500
Simulation Time(sec)

Figure 1.3: Experiment 1.1: queue size and aggregate thpau@t link 1.

These figures show that when FAST flows start first, the link @iguremains nonzero
while the queue of link 1 (and hence the link 3 queue) remamgty throughout the ex-
periment, as expected. As a consequence, the aggregabglhiprd at link 2 is close to

capacity while that at link 1 remains low for most of the tirvéhen Reno flows start first,
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Figure 1.4: Experiment 1.1: queue size and aggregate thpatat link 2.

the queue and throughput behaviors are exactly the oppésitenore detailed simulations
on multiple equilibria, refer to Appendix 6.1.
Experiment 1.2: unique equilibrium point

To make sure that the above behavior is indeed caused by isteree of multiple
protocols rather than by different flow arrival patterns, mwpeat the experiment with the
same network setup, but using all Reno or all FAST flows. Whensed=AST flows along
the long path, the parameteris set to 30. The average throughput results are summarized
in tables 1.2 and 1.3. They confirm that the network admitsiquenequilibrium when a

single protocol is used, regardless of flow arrival patterns

Path 1 Path 2 Path 3
Short flows start first (47.7, 1.3) Mbps (70.1, 1.8) Mbps (13.4, 1.0) Mbps
Long flow starts first| (40.7, 1.5) Mbps (64.9, 2.0) Mbps (21.4, 1.2) Mbps

Table 1.2: Average aggregate rates and their standardtibegaf all flows on paths 1, 2,
3 (All flows are Reno).



Path 1 Path 2 Path 3
Short flows start first (47.2, 1.1) Mbps (72.3, 1.6) Mbps (15.6, 1.2) Mbps
Long flow starts first (46.8, 1.3) Mbpsg (72.0, 1.7) Mbps (16.3, 1.0) Mbps

Table 1.3: Average aggregate rates and their standardtibegaf all flows on paths 1, 2,
3 (All flows are FAST).

1.3 Contributions of This Thesis

In this thesis, we first identify homogeneity of price as amplicit yet fundamental as-
sumption in the current duality theory on price based flowticd@nd explicitly show that,
once this assumption is relaxed, the network can exhibipimena that the current theory
fails to explain. We illustrate this through analysis, nuite examples, simulations, and
experiments.

We make two main contributions. First, for networks withdregeneous protocols, we
examine all the basic issues of equilibrium including eeise, unigueness, optimality, and
stability. These are described in turn in chapters 2 and &k in chapter 4, we propose
an update in a slow timescale to help a network reach a unigdejptimal equilibrium.
Analysis and experiments are used to verify its correctaadseffectiveness.

In chapter 2, we focus on existence and uniqueness of equitib We prove the exis-
tence of equilibrium in general multi-protocol networkgden mild assumptions. We show
that for almost all networks, the equilibria are locally que, and finite and odd in number.
They cannot all be locally stable unless the equilibriumlabglly unique. Finally, we
show that if the price mapping functions that relate diffeggrices observed by the sources
are similar, global uniqueness is guaranteed. The sinyilsrquirement is quantified.

In chapter 3, optimality and stability of equilibrium aresdussed. By identifying an
optimization problem associated widveryequilibrium, we show that all equilibria are
Pareto efficient. We also provide an upper bound on efficiéogy due to pricing hetero-
geneity. On fairness, we show that intra-protocol fairnessill decided by utility maxi-
mization problem while inter-protocol fairness is the maser which we don’t have control.
However it is shown that we can achieve any desirable int@epol fairness by properly

choosing protocol parameters. Various stability resultgpaovided. In particular we prove
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that, if the degree of pricing heterogeneity is small engtigé network equilibrium is not
only unique but also locally stable.

In chapter 4, motivated by the fact that there is in genefaliefcy loss with heteroge-
neous protocols, we shift our focus from analysis to desigadking the question of how
to steer the network to the globally optimal operating poilie propose a scheme to steer
an arbitrary network to a unique equilibrium that maximites total utility, by updating
in a slow timescale a linear parameter in sources’ algosthiine scheme uses only local
information. In addition to analysis, we present numereamples, simulations and ex-
periments using TCP Reno and FAST to demonstrate the corsscamel convergence of
the scheme.

Finally, we conclude in chapter 5 by discussing open issudsgaiestions raised by
this thesis. In addition to natural extension of currentiltss since the problem sits at the
nexus of engineering and economics and our study has a lat watd some problems in
the frontier of linear algebra, we point out a few “biggeriated issues in those fields.

Chapter 6 is an appendix that contains detailed simulatiodspaoofs that are too
lengthy to be included in the main text without sacrificingefigy. Readers can skip them
if they are primarily interested in the big picture and madsults. However, chapter 6 does
include interesting and original contributions such asgraofs of Theorem 2.8 and 3.8,
which may have impacts on related mathematics and econgrobséems as discussed at

the end of chapter 5.
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Chapter 2

Existence and Unigueness

Before discussing any performance metric of the congesbairal system, which is eval-
uated at equilibrium, one needs to determine fundamentgigpties of equilibrium, like
existence and uniqueness, which are the focus of this ahaMe prove that equilibrium
still exists, under mild conditions, despite the lack of amlerlying concave optimization
problem (Section 2.2). In contrast to the single-protoesle; even when the routing matrix
has full row rank, there can be uncountably many equilidEgainple 2.1 in Section 4.1)
and the set of bottleneck links can be non-unique (Exam@eén2Section 4.1). However,
we prove that almost all networks have a finite number of éayial and they are neces-
sarily locally unique (Section 2.3.2). The number of edpié is always odd, though can
be more than one (Section 2.3.2). Moreover, these equailiannot all be locally stable
unless the equilibrium is globally unique (Section 2.3Rthally, we provide two sufficient
conditions for global uniqueness of network equilibriune¢gons 2.3.5 and 2.3.4). The
first condition implies that if the price mapping functiommst map link prices to effective
prices observed by the sources do not differ too much, themadjluniqueness is guaran-
teed. The second condition generalizes the full-rank ¢amrdon routing matrix for global
unigueness from single-protocol networks to multi-prolotetworks. Throughout the sec-
tion, we provide numerical examples and simulations taitlate equilibrium properties or

how theorems can be applied.
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2.1 Model and Notations

2.1.1 Notations

A network consists of a set df links, indexed byl = 1, ..., L, with finite capacities;.

We sometimes abuse notation and uis® denote both the number of links and the set

L ={1,...,L} oflinks. Each link has a pricg, as its congestion measure. There dre

different protocols indexed by superscriptand N’ sources using protocgl indexed by

(j,4) wherej = 1,...,Jandi = 1,..., N/. The total number of sourcesi := 3, N7.
The L x N7 routing matrix?? for type j sources is defined b&{i = 1if source(yj, 1)

uses link/, and 0 otherwise. The overall routing matrix is denoted by
R = [ Rl RQ . RJ ]

Even though different classes of sources react to diffganes, e.g., Reno to packet
loss probability and Vegas/FAST to queueing delay, theegriare related. We model
this relationship through a price mapping function that siagommon price (e.g., queue
length) at a link to different prices (e.g., loss probabidhd queueing delay) observed by
different sources. Formally, every lirikhas a pricey,. A type j source reacts to the "effec-
tive price"m{ (p) in its path, Wheren{ is a price mapping function, which can depend on
both the link and the protocol type. The exact fornm‘{f depends on the AQM algorithm
used at the link. One can also take the pyitesed by one of the protocols, e.g., queueing
delay, as the common prige. In this case the corresponding price mapping functionas th
identity function,m{ (m) = pi. Taking a link with RED as an example and using delay as
the common price,, the price mapping functiom,, which relates loss and delay, can now

be explicitly expressed as:

(e
=
IN

Qi

K

i}
|

IS}

2.1)

0 i
VAN
S

(VAN
Q|

p= m(p) =

==
TI
S

==
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whereb, b and K are RED parameters [72].
Letm?(p) = (m](m),1 = 1,... L) andm(p) = (m’(p),j = 1,....J). The aggregate

price for sourcdj, i) is defined as
Z Rlm] (pr) (2.2)

Let¢’ = (¢/,i = 1,...,N/)andq = (¢/,j = 1...,.J) be vectors of aggregate prices.
Theng’ = (RY)" m?(p) andq = RTm(p).
Letz’ be a vector with the rate/ of source(j, i) as itsith entry, and: be the vector of

x7.

Tr = |: (xl)T,(.TQ)T?...,(xJ)T ]T

Source(j,7) has a utility function (/) that is strictly concave and increasing in its rate
xi. LetU = (Uij,izl,...,N g=1,...,J).

In general, ifz; are defined, then denotes the (column) vecter= (z;, Vk). Other
notations will be introduced later when they are encoudtek®e call(c, m, R,U) anet-

work.

2.1.2 Network equilibrium

A network is in equilibrium, or the link pricesand source ratesare in equilibrium, when
each sourcé¢j, 1) maximizes its net benefit (utility minus bandwidth cost)d éime demand
for and supply of bandwidth at each bottleneck link are badan Formally, a network
equilibrium is defined as follows.

Given any price®, we assume in this dissertation that the source E@Zte&;e uniquely

determined by

+

d(d) = [0 ()]

where (77 is the derivative of/7, and (/7)™ is its inverse, which exists sindé’ is
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strictly concave. Heré:]™ = max{z,0}. This implies that the source rates uniquely

solve

max U} (z) — zq]

As we will see, under the assumptions in this the(slisj,)'_1 (¢]) > 0 for all the pricesp
that we consider, and hence we can ignore the proje¢fiorand assume without loss of

generality that
o) = ) ) @3

As usual, we use’ (¢/) = (2] (¢/),i=1,...,N7) andz(q) = (27 (¢/),j =1,...,J) tO
denote the vector-valued functions composed:{ofSinceq = RTm(p), we often abuse
notation and write:? (p), 27 (p), (p).

Define the aggregate source ragés) = (y;(p),l = 1,..., L) atlinks!/ as:

v (p) = R'a’(p),  ylp) = Ra(p) (2.4)

In equilibrium, the aggregate rate at each link is no more tihe link capacity, and
they are equal if the link price is strictly positive. Foriyalve callp anequilibrium price

anetwork equilibriumor just anequilibriumif it satisfies (from (2.2)—(2.4))

P(y(p) —c) =0, y(p)<c, p>0 (2.5)

whereP := diag(p;) is a diagonal matrix. The goal of this chapter is to study ttistence
and uniqueness properties of network equilibrium speciig@2.2)—(2.5). LetE be the

equilibrium set:

E = {peRi| Plylp)—c)=0, y(p) < ¢} (2.6)

For future use, we now define an active constraint set andat@bian for links that
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are actively constrained. Fix an equilibrium prige € E. Let theactive constraint set

L = L(p*) C L (with respect tg*) be the set of linkg at whichp; > 0. Consider the

reduced system that consists only of linkslinand denote all variables in the reduced

system by, p, g, etc. Then, since,;(p) = ¢, for everyl € L, we havey(p) = ¢. Let the

Jacobian for the reduced system.bg)) = 9ij(p)/dp. Then

) = SR () 6
J

where

o diag o]
op Iy

and all the partial derivatives are evaluated at the gempeiit p.

2.1.3 Currenttheory: J =1

O . o2 \
— = diag :
¢ ()2

(2.7)

(2.8)

(2.9)

In this subsection, we briefly review the current theory toe tase where there is only

one protocol, i.e.,/J = 1, and explain why it cannot be directly applied to the case of

heterogeneous protocols.

When all sources react to the same price, then the equilibdesuaribed by (2.2)—(2.5)

is the unique solution of the following utility maximizatigoroblem defined in [39]:

x>0

max Z Ui(x;)

subjectto Rz < ¢

and its Lagrangian dual [46]:

r;lzig _ max (Ui(mi) —z; ; Rupz) + ; ap

(2.10)

(2.11)

(2.12)
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where we have omitted the superscyipt 1. The continuity and strict concavity éf; plus
the compactness of the feasible set guarantee the existadagniqueness of the optimal
solution of (2.10)—(2.11).

The basic idea in relating the utility maximization probl¢10)—(2.11) to the equi-
librium equations (2.2)—(2.5) is to examine the dual of thietyymaximization problem,
and interpret the effective price,(p;) as a Lagrange multiplier associated with each link
capacity constraint (see, e.g., [46, 55, 44]). As longw@®,) > 0 andm,(0) = 0, one can
replacep, in (2.5) bym,(p;). The resulting equation together with (2.2)—(2.4) prositiee
necessary and sufficient condition fofp) andm,(p;) to be the primal and dual optimal,
respectively.

This approach breaks down when there Are 1 types of prices because there cannot
be more than one Lagrange multiplier at each link. In genaralkequilibrium no longer
maximizes aggregate utility, nor is it unique as we haveaalyeseen in experiments in sec-
tion 1.2. However, as shown in the next section, existenegoiflibrium is still guaranteed

under the following assumptions:

Al: Utility functions Uij are strictly concave and increasing, and twice continyodiéi
ferentiable in their domains. Price mapping functim;m{éare continuously differen-

tiable in their domains and strictly increasing with (0) = 0.

A2: For anye > 0, there exists a numbet,.. such that ifp; > py,. for link [, then

zl(p) < eforall (4,7) with R}, = 1

These are mild assumptions. Concavity and monotonicity iifyutunctions are often
assumed in network pricing for elastic traffic. Moreover,am@dCP algorithms proposed
or deployed turn out to have strictly concave increasinigyfunctions; see e.g. [44]. The
assumption om{ preserves the relative order of prices and maps zero price tceffective
price. Assumption A2 says that whenis high enough, every source going through link

has a rate less thanwhich is satisfied by all TCPs.



17
2.2 Existence

In this section, we prove the existence of network equilibori We start with a lemma that

bounds the equilibrium prices.

Lemma 2.1. Suppose Al and A2 hold. Given a netwrkn, R, U), there is a scalap,ax

that upper bounds any equilibrium prigei.e.,p; < puax for all 1.

Proof. Choosec = min; ¢;/N, and letp,,., be the corresponding scalar in A2. Suppose
that there exists an equilibrium prigeand a linkl, such that, > pu... A2 implies that

the aggregate equilibrium rate at lihkatisfies
Z Z Rl2l(p) < Ne = mlin o
7 7
Therefore, we get a link witl, > 0 but not fully utilized. It contradicts the equilibrium
condition (2.5). O

The following theorem asserts the existence of equilibrioma multi-protocol net-

work.

Theorem 2.2. Suppose Al and A2 hold. There exists an equilibrium ppicéor any

network(c,m, R, U).

Proof. Let p,,.., be the scalar upper bound in Lemma 2.1. For amy [0, p..] -, define a
vector function

F(p) :== Rx(p) — ¢ (2.13)
For any linkl, let
)T

P = (le---’szl,le---pL

Then we may writeF'(p) asF'(p;, p—;). Define functiomy, as

hi(pi,p—t) = —F(pi,p-1) (2.14)
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We claim thath,(p;, p_;) is a quasi-concave function i for any fixedp_;. By the defini-

tion of quasi-concavity in [56], we only need to check that fet

A = {p|lp,pa) >a}

is convex for alla € R. If a > 0, clearly A; = () by (2.14). Wheru < 0, the set4, can be

rewritten as

A = {pl ‘—\/WSFZ(WP—Z)S\/M}

Since F(p;, p—;) is a nonincreasing function in for any fixedp_,;, the setA4,; is convex.
Thereforeh, (p;, p—;) is quasi-concave ip;.

Since [0, pmax) IS @ NONempty compact convex set, by the theorem of Nash {bé],
quasi-concavity of,;(p;, p_;) guarantees that there existg*ac [0, pma,|* such that for all
le{l,2..L}

p; = arg max hy(p,p",)
ple[o,pmax}

We now argue that, for all, either 1)F,(p*) = 0, or 2) F;(p*) < 0 and we can take
p; = 0. These conditions imply (2.5), and hences an equilibrium price.
Case 1: Fi(0,p*;,) > 0. SinceU; is strictly concave,F;(p;,p*,) is nonincreasingin
[0, pmax)- Moreover, the proof of Lemma 2.1 shows tHa{p,..., p*;) < 0. Therefore,
there exists a point; in [0, pmax] WhereE;(p;, p*,) = 0. Thisp; maximizesh;(p;, p*,).

Case 2:F(0,p*,) < 0. SinceF;(p;, p*,) is a nonincreasing function in, we have that
F}(plapil) < 0 for all JURS [0>pmax]

If —¢; < F,(0,p*,) < 0, thenF,(p;,p*,) andhy(p;, p*,) are strictly decreasing ip, and

YE(p1,p* ) is strictly decreasing unless somgp) becomes zero.
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hence

pf = arg max hl(plap*—l) =0
»meE [0 ,pmax]

Otherwise we havé;(0,p*,) = —¢ from (2.13). In this situationall xf going through
link [ are zero, and hence we can ggt= 0 without affecting any other prices. More
precisely, a (possibly) new price vectowith p, = 0 andp,, = p; for k # [ is also a Nash
equilibrium that maximizeé,.(px,p_x) fork =1,..., L.

Thus we have proved that, foe=1,..., L,

piFi(p;,pty) = 0, E(p,pey) <0, p*>0

which is (2.5). 0

2.3 Uniqueness

2.3.1 Multiple equilibria: examples

In a single-protocol network, if the routing matriX has full row rank, then there is a
unique active constraint sétand a unique equilibrium prigeassociated with it. 12 does
not have full row rank, then equilibrium pricesmay be nonunique but the equilibrium
ratesz(p) are still unique since the utility functions are strictlynoave, and the feasible
set is convex.

In contrast, there can be multiple equilibrium prices agged with the same active
constraint set (Example 2.1). Moreover, the active comgtset in a multi-protocol net-
work can be nonunique eveniif has full row rank (Example 2.2). Clearly, the equilibrium

prices associated with different active constraint setl#ferent.

Example 2.1: unique active constraint set but uncountably may equilibria
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In this example, we assume all of the sources use the sarity futiiction
o 1 9
Ul()) = —5(1—a) (2.15)

Then the equilibrium rates’ of type j sources are determined by the equilibrium priges

as
P(p) = 1—(R)"m(p)

wherel is a vector of appropriate dimension whose entries are aN&suse linear price

mapping functions:
m!(p) = K’p

whereK’ areL x L diagonal matrices. Then the equilibrium rate vector of tygeurces

can be expressed as
P(p) = 1- (B Kp

When only links with strictly positive equilibrium priceseaincluded in the model, we

have
J . .
yp) = Y Rl(p) = ¢
j=1

Substituting inz? (p) yields
J J
Y R(R)'Kp = > Rl-c
j=1

Jj=1

which is a linear equation ip for given R/, K7, andc. It has a unique solution if the
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determinant is nonzero, but has no or multiple solutions if

det (i Rj(Rj)TKj> =0
j=1

WhenJ = 1, i.e., there is only one protocol, afitd has full row rankdet(R*(R)TK*) >
0 since bothR!(RY)T and K'! are positive definite. In this case, there is a unique eguilib
rium price vector. Whe = 2, there are networks whose determinants are zero that have
uncountably many equilibria. See Appendix 6.4 for an examgiereR does not have full
row rank. We provide here an example with= 3 whereR still has full row rank.

The network is shown in Figure 2.1 with three unit-capaditid, ¢, = 1.
@ @ @ @
Al

S
3
X

Figure 2.1: Example 2.1: uncountably many equilibria.

There are three different protocols with the correspondiging matrices

T

110
R'=1, R*= . R*=(1,1,1)"

The linear price mapping functions are given by

K'=1, K?=diag5,1,5), K®=diag1,3,1)
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It is easy to calculate that

7T 41
6 6 6
1 47

i=1

which has determinant 0. Using the utility function define@d.15), we can check that the

following are equilibrium prices for any € [0, 1/24]:
1_ 1 _ 1
pr=p3=1/84€¢ py=1/4—2¢
The corresponding equilibrium rates are

v =25 =T/8—€¢ 1y=3/4+2¢

=12 =1/8 -3¢ 2% =4e

All capacity constraints are tight with these rates. Siled is a one-link flow at every
link, the active constraint set is unique and contains elreky Yet there are uncountably

many equilibria.

Example 2.2: multiple active constraint sets each with a unige equilibrium
Consider the symmetric network in Figure 2.2 with 3 flows, whi&the same topology

used experiments in section 1.2.

Figure 2.2: Two equilibrium with different active bottlesielink sets.
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There are two protocols in the network with the following tiag matrices:

Flows(1,1) and(1,2) have identical utility functior/! and source rate', and flow(2, 1)
has a utility function/? and source rate?.

Links 1 and 3 both have capacity and price mapping functions;(p) = mi(p) = p
andm?(p) for protocols 1 and 2, respectively. Link 2 has capaeijtyand price mapping

functionsmi(p) = m3(p) = p andmi(p).

Theorem 2.3. Suppose assumption Al holds. The network shown in Figure 4.4nma

equilibria provided:
1. ¢ <y < 2¢;
2. Forj =1,2, (U7)(27) — p’ for somep’ possiblyoco, if and only ifz? — 0;
3. Forl =1,2,m(p,) — p* asp; — p', and satisfy

2my ((UY) (e — 1)) < (U?)(2¢1 — ¢2)
< ma((UY) (c2 — 1))

Proof: We first claim that, ifc; < ¢, and (U?)'(2¢; — ¢2) > 2m3((U') (ca — 1)), then
there is an equilibrium point where only links 1 and 3 are isdad and link 2 is not. In
this case the equilibrium price for link 2 i = 0 and, by symmetry, those for links 1 and

3 are bottyp,. Such an equilibrium, if exists, is defined by the followinguations:

U (@) =p1 (UH(@%) =2ma(p1)

s+t =¢ 20t + 2?2 < ¢y
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Eliminatingz? andp,, the above equations are reduced to:

O (er —2') = 2m((U") (")) (2.16)
< - (2.17)

An equilibrium exists if and only if (2.16)—(2.17) has a negative solution for:*. We
now show that (2.16)—(2.17) indeed admits a unique solutiorr 0 under the hypothesis
of the proposition.

Whenz! = 0, we have

(U)(er = ') = (U?) (er) < P* < 2p° = 2ma ((U1)'(0))

The inequality and the last equality have made multiple dssooditions 2 and 3 of the
proposition. On the other hand, wheh= ¢, — ¢;, we havell;(2¢; — ¢3) > 2my (U] (¢ —
c1)) by condition 3. Since all functions here are continuqig,)’ are strictly decreasing,
andm; are strictly increasing, there exists a unique =* < ¢, — ¢; such tha{U?)'(¢; —
&%) = 2my (U (2)).

We next claim that, ity < 2c; and(U?)'(2¢; — ¢2) < mo((UY) (c2 — 1)), then there
is an equilibrium point where only link 2 is saturated andkéirl and 3 are not. In this case

p1 = 0, and the following equations determine such an equilibrium

O (@) =p2 (U (%) = ma(ps)

ttat<e 20+t =cy
Eliminatingx? andp,, the equilibrium is specified by

(U*) (2 —22") = ma((U')'(2")) (2.18)

> m—a (2.19)
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Whenz! = ¢, — ¢;, we have

(U?) (c2 = 22") = (U?) (21 — c2) < ma((UY)'(2))
by condition 3. When:! = ¢, /2

(U?) (e2 — 22") = (U?)'(0) = P* > ma((U) ("))

where we have used conditions 2 and 3. Hence, again, therengjaex* that satisfies

(2.18)—(2.19). Moreover, from (2.17) and (2.19), the twaiklria are distinct. O

2.3.2 Regular networks

Examples 2.1 and 2.2 show that global uniqueness is geyetliguaranteed in a multi-
protocol network. We now show, however, that local uniqesnis basically a generic
property of the equilibrium set. We present our main resuttshe structure of the equi-
librium set here, providing conditions for the equilibriyraints to be locally unique, finite
and odd in number, and globally unique. Proofs of these tesué provided in the next
subsection.

Consider an equilibrium pricg* € E. Recall the active constraint setdefined byp*.

The equilibrium price* for the links inL is a solution of
gp) = ¢ (2.20)

By the inverse function theorem, the solution of (2.20), aedde the equilibrium price
p*, is locally uniqueif the Jacobian matriy (5*) = 9/9p is nonsingular ap*. We call a
network(c, m, R, U) regular if all its equilibrium prices are locally unique.

The next result shows that almost all networks are regutat,that regular networks
have finitely many equilibrium prices. This justifies resting our attention to regular
networks and allows us to further characterize the strectdirequilibrium set by using

index theorem.
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Theorem 2.4. Suppose assumptions Al and A2 hold. Given any price mapgiegdns

m, any routing matrixRk and utility functiong/,

1. The set of link capacitiesfor which not all equilibrium prices are locally unique

has Lebesgue measure zerdih.
2. The number of equilibria for a regular netwofk m, R, U) is finite.

For the rest of this subsection, we narrow our attention tovokks that satisfy an

additional assumption:
A3: Every link! has a single-link flow(j, ) with (Uij)/ (c1) > 0.

Assumption A3 says that when the price of lihks small enough, the aggregate rate
through it will exceed its capacity. This ensures that thievaconstraint set contains
all links and facilitates the application of Poincare-Htipéorem by avoiding equilibrium
on the boundary (somg = 0).2

Since all the equilibria of a regular network have nonsiagulacobian matrices, we

can define théndex/(p) of p € E as

1 if det(J(p)) >0
-1 if det(J(p)) <O

I(p) =

Then, we have a global characterization of equilibrium ks as the next theorem.

2It is recently shown in [67] that A3 is not necessary and omegemeralize Theorem 2.5 to

S (-1ERI(p) =1

peE

where L(p) is the number of links of the active constraint set assotiatith equilibriump. Clearly, if
L(p) = L, it reduces to Theorem 2.5. This generalized theorem alswslus to conclude the number
of equilibria is odd (and therefore existence) without A8.this dissertation, although A3 is imposed for
ease of presentation, all results can be viewed with respexfixed active constraint set with appropriate
modifications. In particular, the global uniqueness resinltsection 2.3.4 directly apply without A3 sinde

has the same structure &sxcept with a smaller dimension.
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Theorem 2.5. Suppose assumptions A1-A3 hold. Given any regular networtkawes

S 1) = (-1)*

peE

whereL is the number of links.
To help appreciate Theorem 2.5, we give its two importanseguences.

Corollary 2.6. Suppose assumptions A1-A3 hold. A regular network has an wdder

of equilibria.

Notice that Corollary 2.6 implies the existence of equilioni Although we proved this
in section 2.2 in a more general setting, this simple cornpkfiows the power of Theorem
2.5.

The next result provides a condition for global uniqguen&gs.say that an equilibrium
p* € FE is locally stableif the corresponding Jacobian matiiik(p*) defined in (2.7) is
stable, that is, every eigenvalue ${p*) = Jy(p*)/Jp has negative real part. For justifi-
cation of this definition, local stability gi* implies that the gradient algorithm (2.23) later

converges locally.

Corollary 2.7. Suppose assumptions A1-A3 hold. The equilibrium of a rege&avork
is globally unique if and only if every equilibrium point ifi has an index —1)%. In

particular, if all equilibria are locally stable, thew contains exactly one point.

This result may seem surprising at first sight as it relateddbal stability of an algo-
rithm to the uniqueness property of a network. This is beednagh equilibrium and local
stability are defined in terms of the functigfy): an equilibriump* satisfieg;(p*) = cand
the local asymptotic stability gf* is determined byy(p*)/dp. The connection between
these two properties is made exact by the index theorem. Afidation of this result is
that if there are multiple equilibria, then no algorithim= f(p(¢)), whose linearization
around each equilibriump* € E satisfiesof(p*)/0p = Ady(p*)/0p, can be found to

locally stabilize all of the equilibria.



28
Corollary 2.7 will be used in Section 2.3.4 to derive a suffitieondition on price
mapping functionsn for global uniqueness. We close this subsection with an plathat

illustrates Theorem 2.5 and Corollaries 2.6 and 2.7.

Example 2.3: illustration of Theorem 2.5 and Corollaries 2.62.7

We revisit Example 2.1 with different utility functions. Radtthat in Example 2.1, as
varies from 0 tol /24, we trace out all equilibrium points. The componentandg; = pi
of these equilibrium points are shown by the (red) solid imEigure 2.3. Other sourc&é
and their effective end-to-end priC@ZSaIso lie on similar straight lines. Since the network
has uncountably many equilibrium points, it is not regularmake it regular, suppose we

change the utility functions of sourcég i) to

Ui o) — Bl =t/(1-al) Htal#1
B log ! if o] =1
with appropriately chosen positive constaat{sand 6{ . These utility functions can be
viewed as a weighted version of the widely usegairness utility functions proposed in
[55].

The basic idea of how to choosé andﬁ{ to generate only finitely many equilibrium
points is as follows. First, we pick two points in the equilin set of Example 2.1, say,
the points associated with= 0.01 ande = 0.04. These choices af provide two distinct
equilibrium points(q, z) and(g, z). For instance(q;, 1) = (0.135,0.865) corresponds to
e = 0.01and(qj, z1) = (0.165, 0.835) corresponds te = .04, as illustrated in Figure 2.3.
Then, for each sourdg, i), find o/ and3’ such that (2.3) is satisfied by the two equilibrium
points (¢!, z7) and (¢, #}) with the new utility functions. This is illustrated in Figa®.3
where relation (2.3) with the new utility function is repeesed by the (blue) curve, am@,
ﬁf are chosen so that the curve passes through the origindibeigun points(z1, ¢l) and

(4, 7). More specifically, given two equilibrium pointg’, z7) and(¢’, #/), choose

o — 1083(61{) — log(cjf‘) F = (xg")%
log(]) —log(a?)

(2
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X 1_ 01, 11/a
X1=(B/a,) "1

(0.135,0.865)

/

/ (0.165,0.835)

56f — = ——"—" ===
|
|

/ISR

Figure 2.3: Example 2.3: construction of multiple isolageghilibria.

The resultingy] and 3/ for all flows (7, 7) are shown in Table 2.1.

Table 2.1: Example 2.3} and 3.

Flows| «of I
x; | 5.6851| 0.0592
r3 | 4.0285| 0.0803
3 5.6851| 0.0592
x? 0.0322| 0.8389
T3 0.0322| 0.8389
z3 |1 0.0963| 0.7041

By construction, bothy{ = 0.135, pi = 0.230) and @} = 0.165, p} = 0.170) are net-
work equilibria. By Corollary 2.6, there is at least one aduatiéil equilibrium. Numerical
search indeed located a third equilibrium with & 0.142, p} = 0.206).

We further check the local stability of these three equigilinder the gradient algorithm
(2.23) to be introduced in Section 2.3.3. The eigenvaluesiaaex for each equilibrium
are shown in Table 2.2. It turns out that the equilibriysh € 0.142, p} = 0.206) is not

stable and has index 1, while the other two are stable withxndl. The dynamics of

Table 2.2: Example 2.3: stability and indices of equilibria

Equilibria (p1, p2, p3) Eigenvalues Index
(0.135,0.23,0.135) | —0.21,—-17.43,-26.73 | —1
(0.142,0.206,0.142) | 0.21,—12.32,—-22.40 1
(0.165,0.17,0.165) —12.41, -1.67,—-0.67 —1
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this network under the gradient algorithm is illustratedabyector field. By symmetry, the
equilibrium prices for the first and third link are always sarntherefore, we can draw the
vector field restricted on the plape = p; to demonstrate the dynamics of the system. That
is shown in Figure 2.4. The (red) dots represent the thregileea Note the equilibrium
in the middle is a saddle point, and therefore unstable. figw @rrows give the direction

of this vector field. Individual trajectories are plottedhwihin (blue) lines.

0.25

0.24

0.23+

0.22+

0.21

0.2

Figure 2.4: Example 2.3: vector field qf( p2).

2.3.3 Proofs

In this subsection we provide proofs for the results in $&c#.3.2.

Proof of Theorem 2.4. The main mathematical tool used in our proof is Sard’s Theore
[18, 70], of which we quote a version here that is tailoreduomroblem. LetG be an open
subset ofR’ and letF be a continuously differentiable function fro6to R%. A point

y € G is acritical point of F' if the Jacobian matrix¥ F'/0y of F' aty is singular. A point

z € R% is acritical value of F' if there is a critical poiny € G with z = F(y). A pointin

L is aregular value off' if it is not a critical value.

Sard's theorem. If F: G — R% is continuously differentiable on the open subSet

R%, then the set of critical values @ has Lebesgue measure zerdih.

Fix a routing matrixR and utility functionsl/. There are at mogt” — 1 different active
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constraint sets. Lef C L be such a combination with links. Consider the set of all
possible link capacities = (¢;,/ € L) under which the active constraint seffisi.e., with
such a capacity vectet an equilibrium pricey hasp, > 0if I € L andp, = 0 otherwise.
Fix such an equilibrium point*. Again letp denote the price vector only for links ib.
Thenj* is not locally unique if the functioy : R2 — R defined byj(p) = Rz(p) has
a singular Jacobian matrixj/0p at p*, i.e., if p* is a critical point ofj. The set of such
capacity vectorg € %ﬁ under which all links inL. have active constraints in equilibrium

satisfy
g(pr) =c¢

and hence are critical valuessfSincey is continuously differentiable by assumption A1,
we can apply Sard’s theorem and conclude that the set of sipdTity vectorg has zero
Lebesgue measure %ﬁ The extension té” for all link capacities clearly also has zero
Lebesgue measure ;.

Since we only have a finite number of different active comstraets, the union of
link capacity vectors that give rise to locally nonuniqueiiéria still has zero Lebesgue
measure. This proves the first part of the theorem.

The equilibrium setF defined in (2.6) is closed becaugép) is continuous, and is
bounded by Lemma 2.1. Hendeis compact. Sincéc,m, R,U) is a regular network,
everyp € F is locally unique, i.e., for each € E we can find an open neighborhood such
that it is the only equilibrium in that open set. The unionléde open sets forms a cover
for setE. SinceFE is compact, it admits a finite subcover [48], i.&.,can be covered by
a finite number of open sets each containing a single equitibr Hence, the number of

equilibria is finite. O

Proof of Theorem 2.5.By assumption A3, we can always fipgd;, > 0 such that for any

pricep and link! with p; < pui., We have

Z Z Rixl(p) > ¢

J
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Let G := [Puin, Pmax]” Wherep,., is defined in Lemma 2.1. Clearly, all equilibria are in
the setz. To prove our result, we will invoke a version of the Poinchi@pf index theorem

tailored to our problem [78, 53].

Poincare-Hopf index theorem. Let D be an open subset 8f andv : D* — R% be a
smooth vector field, with nonsingular Jacobian matriX0p at every equilibrium. If there
is aG C DF* such that every trajectory moves inward of regi@nthen the sum of the

indices of the equilibria i is (—1)~.

Gradient project algorithm. To construct the vector fieldrequired by the index theorem,
let DL = G and consider the following gradient algorithm frahto G’ proposed in [46].

The prices are updated at timaccording to
p(t) = A(Rz(t) —c) (2.21)

whereA > 0is anl x L diagonal matrix with all elements being positive. A sourpdates

its rate based on the end-to-end price
w(t) = x(p(t)) (2.22)

A consequence of assumption A3 is th#t) > p.;,, > 0 for all ¢ under the gradient

algorithm (2.21)—(2.22). This guarantees a unique actwisttaint set that i&. Hence the

equilibrium setE defined in (2.6) is equivalent t8 = {p € R% | y(p) — ¢ = 0}.
Combining (2.21)—(2.22) with(p(t)) = Rx(t) yields the required vector fielet

p(t) = Aly(pt)) —c) =: v(p(t)) (2.23)

whose Jacobian matrix is:

ov @

a—p(p) = AJ(p) = A 8p(p) (2.24)

whereJ (p) is given by (2.7). Clearlyy* is an equilibrium point ob, i.e.,v(p*) = 0, if and
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only if p* is a network equilibrium, i.ep* € E. Since the networke, m, R, U) is regular,
J(p) is nonsingular at every network equilibriupi € E C G. SinceA is a positive
diagonal matrixpv(p)/Jp is also nonsingular by (2.24) at all its equilibrium poipts G,
as the index theorem requires.

Consider any point on the boundary of;. For anyl, we have one of two cases:

1. If pi(t) = pmax, link I will be underutilizedy;(p(t)) < ¢, andp, < 0 according to
(2.23).

2. If p(t) = pmin, the aggregate rate at lirikwill exceedc;, y,(p(t)) > ¢, andp, > 0
according to (2.23).

Therefore, every point on the boundary o€z will move inward and our result directly

follows from the Poincare-Hopf index theorem. O

Proof of Corollary 2.6. Since both/(p) and(—1)* are odd, the number of terms in the

summation in Theorem 2.5 must be odd. O

Proof of Corollary 2.7. The first claim of the theorem directly follows from Theorem
2.5. We now claim that an equilibriupi € E which is locally stable has an indéxp*)

of (—1)L. To prove the claim, consider a locally stable equilibriunc@p*. All the
eigenvalues of/(p*) have negative real parts. Moreover, sinf&*) has real entries,
complex eigenvalues come in conjugate pairs. The detennofal (p*) is the product of
all its eigenvalues. If there afeconjugate pairs of complex eigenvalues dnd 2k real
eigenvalues, the product of all eigenvalues has the sameasig-1)-—2*, which has the

same sign aé—1)~. Hence the index of a locally stable equilibrium(is1)~. O

2.3.4 Global unigueness: mapping functions:(p)

In this and the next subsections, we provide sufficient domrd on the structure of the
network for global uniqueness. We also provide some impogpecial cases in section
2.3.6 where global uniqueness is guaranteed. In this stibsewe reveal that, if the price
mapping functionsm{ are similar, then the equilibrium of a regular network ishkgtyy

unique.
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2.3.4.1 General result

To state the result concisely, we need the notion of permontatWe call a vectoor =
(01,...,0r)apermutatiorif eacho, is distinct and takes value {1, . . ., L}. Treatingo as
amappingr : {1,...,L} — {1,..., L}, we leto~! denote its unique inverse permutation.

For any vector € R”, o(a) denotes the permutation efundero, i.e.,[o(a)]; = a,,. If

.
a € {1,..., L} is a permutation, thea(a) is also a permutation and we often write
instead. Lef = (1,..., L) denote the identity permutation. Thetd = o. See [52] for
more details. Finally, denotén] /dp, by 1.

Theorem 2.8. Suppose assumptions A1-A3 hold. If, for any vegter {1,...,J}* and
any permutationsr, k, nin {1,..., L}*,

L . L . L .

=1 =1 =1
then the equilibrium of a regular network is globally unique.

Proof. See Appendix 6.2.

Theorem 2.8 implies that if the (slopes of the) price mapgpurgtions are “similar”,
then global uniqueness is guaranteed, as the followindlaoyshows: Ifm{ do not differ
much across source types at each link, or they do not diffeshnalong links in every

source’s path, the equilibrium is unique.

Corollary 2.9. Suppose assumptions A1-A3 hold. The equilibrium of a regefavork is

globally unique if any one of the following conditions holds:

1. Foreachl=1,...,L,j=1,...,J
mi € [a,,z%a,} for somen; > 0 (2.26)
2. Foreachj=1,...,J,l=1,...,L

ml € [aj,ﬁaj] for somea’ > 0 (2.27)
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Proof. If (2.26) holds, we have for any, 5, 7, in {1,...,J}

L L L

- 1 - 1 L _11L 9% - 1
Hmz +l_Imz > 2]l =112 = Hmz
=1 =1 =1

which implies the sufficient condition in Theorem 2.8.
For the second assertion, fix agyin {1,..., L} and any permutations, k, n in

{1,..., L} 1f (2.27) holds, we have

L L L L
H ml[k(j)]l n H ml[n(j)h > 9 H o — H 27 gt
=1 =1 =1 =1

v
—
=
)

which implies the sufficient condition in Theorem 2.8. O

Remarks:

1. Asymptotically when, — oo, both conditions (2.26) and (2.27) converge to a single
point. Condition (2.26) reduces tﬁ{ = q; which essentially says that all protocols
are the same/(= 1). Condition (2.27) reduces 170'1{ = o/, which is the linear link

independent case that will be discussed in Theorem 2.14.
2. These link-based uniqueness results hold for a netwodneaer no flow uses more

thanL links.

2.34.2 [ =3andJ = 2case

We now focus on the case d&f = 3, J = 2 and provide stronger results than a direct
application of Theorem 2.8. This case represents the sshakd¢work that can exhibit non-

unique equilibrium points if A1-A3 are satisfied aRds full rank (see Theorem 2.17).

Theorem 2.10. Suppose assumptions A1-A3 hold for a three-links regulawaré& with
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two protocols. If the following six inequalities hold, thewetk has a unique equilibrium:

Ao+ A3 2> A, A+ A3 2> Ao, A+ A > g
1 1 1 1 1 1 1 1 1
> >

> > >
IS W W VL W W VLS W W

where); := mj (p)/m?(p).

Proof. See Appendix 6.3.

A straightforward corollary is the following:

Corollary 2.11. Suppose assumptions A1-A3 hold. For a three-links regtwaork with
two protocols, if, for alll, \; € [a,2a] for some constant > 0, the network admits a

globally unique equilibrium.

Remark: If 7] = k7 are link independent , thely = k'/k* € [a, 2a] for any k' /2k? <
a < k'/k*. Hence global uniqueness is guaranteed, which agrees Wwitbrém 2.14.

We illustrate in Figures 2.5 and 2.6 the regions\pin Theorem 2.10 and Corollary
2.11. They are both cones. The first one is the projection te \, plane and the second

one is the cross-section cut by plake+ \; = 1.

10

From Theorem 2.10

\ From Corollary 2.11

Figure 2.5: Region ol, for global uniqueness: projection g — A, plane.
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11 From Theorem 210
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From Corollary 2.11

o o1k 4

Q%\)
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0.3 -0.2 0.1 0

I I I
01 0.2 03 04

04 ,

0.707tg(arctg(A. 1%;1)>0.25n)

Figure 2.6: Region o, for global uniqueness: cross-section cut by plane- A\, = 1.

2.3.5 Global uniqueness: Jacobiad (p)

In a single-protocol network, for the equilibrium price te bnique, it is sufficient that
the routing matrixRk has full row rank. Otherwise, only the source rates are @iqot
necessarily the link prices. In a multi-protocol netwotkstis no longer sufficient. We now
provide another sufficient condition that plays the same nola multi-protocol network
as the rank condition o does in a single-protocol network (see also the remark after
Theorem 2.13).

Let f = (f1,..., f») be a vector of real-valued functions defined¥®h LetG := {z €

R"|f(z) = 0} and cd+ be its convex hull. Define a sét(G) of vectors as
V(G) = {vlv =¢ — 1 fory, ¢ € coG} (2.28)

as a function of the se&t.

Lemma 2.12. If for everyz € coG, the Jacobian matrix/(z) = 0f(z)/0z exists and

vTJ(z)v < 0 forall v € V(G), thenG contains at most one point.

Proof. For the sake of contradiction, assume there are two digpoicits ¢ andv in G

such thatf(¢) = f(¢) = 0. Let

g(0) := ¢+ 0(¢ — ¢) whered € [0, 1]
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Then

Hence,

Multiplying both sides by(y) — ¢)? yields

=W ) =
/0 (6 — &) T (g(6)) () — 6)db

The left-hand side of the above equatiojgnd the right-hand side is negative under the

assumption of the theorem. This contradiction proves therém. O]

Let f = y, and letG = F be the set of network equilibria. Then Lemma 2.12, to-
gether with Theorem 2.2, provides a sufficient conditiondgimbal uniqueness of network

equilibrium.

Theorem 2.13. Suppose assumptions A1-A3 hold. If for every price vectorcoF, the
Jacobian matrixJ (p) defined in (2.7) exists and J (p)v < 0 for all v € V(E), then there

exists a globally unique network equilibrium.

In the single-protocol case, a similar result has been obthin [55]. However, for that
case, the Jacobian matrix is negative definite wRdras full row rank. Then the condition
in Theorem 2.13 always holds and the equilibrium is uniquethe multi-protocol case,
the Jacobian matrix is in general not symmetric and henceegstive definite. Therefore
R having full row rank is no longer sufficient for the conditionthe theorem to hold.

Since we do not know the equilibrium sgt the condition in the theorem cannot be
directly applied to prove global uniqgueness. To use therdraphowever, it is sufficient
to find a convex superséf of £ and a supersét of V(E) such that”.J(p)v < 0 for

all p € Eandv € V. This implies the condition in Theorem 2.13 and hence global
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uniqueness. We illustrate this procedure in the next exampl

Example 2.4: application of Theorem 2.13 to verify global unigieness

We visit Example 2.1 for the third time but usihgg utility functions for all sources,

ie.,
U/ (2)) = log(z)) forall (j,9) (2.29)
Let the Jacobian matrix be
Jll J12 J13
J(p) = Jor Jaa Jog
J31 J32 JSS

whereJy;, = Ji(p) are functions of priceg given by (2.7). For example

L1 5 1
H p? (5p1+p2)?  (p1+ps + 3pa)?

It can be seen thal (p) is not negative definite for generalunlike in the single-protocol
case. Even thought can be hard to find, we demonstrate how to find a simple convex
supersef of £ and a simple supersgtof V(F).

Consider the convex set
E = {peR[1<p=ps<2,1<p, <2}

We claim thatE C E. To see this, lep be an equilibrium price. Ip; < 1, thenz! = 1/p;
will exceed the link capacity, and hence; > 1. A similar argument giveg, > 1. To see

p1 < 2, assume itis not true. Then

vy = 1/p1<1/2
v = 1/(5p1 +p) < 1/11

3 = 1/(2p1 +3ps) < 1/7
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Summing them yields] + 22 + 23 < 1. Hence the network is not in equilibrium, con-
tradicting thatp is an equilibrium price. Hencg; < 2. The argument fop, < 2 is
similar.
Using the definition of, we can bound all,;(p) for p € E. The results are collected
in Table 2.3.

Table 2.3: Example 2.4: bounds on elementd gf)

Elements| Upperbound Lowerbound
Ji1 —0.2947 —1.1789
Joo —0.2939 —1.1756
J33 —0.2947 —1.1789
Jos —0.0447 —0.1789
J32 —0.0369 —0.1478
J12 —0.0369 —0.1478
Jo1 —0.0447 —0.1789
J13 —0.0100 —0.0400
J31 —0.0100 —0.0400

Let
Vo= {ve R vy =v3}

We claim thatV (E) C V. To show this, note that @ C E since cd is the smallest
convex set that contains. HenceV' (E) C V(E’). Sincep, = p3 at equilibrium,v; = v
holds for anyv € V(E) from the definition of £. Hence,V(E) C V and therefore
V(E)CV.

We now check that” J (p)v < 0 forall p € E andv € V. Foranyv € V,vTJ(p)v is

the following quadratic form im; andw,:

oI J(p)v = vi(Ju + Jaz + Jiz + Jan) +

U1U2(J12 + J21 + J23 + Jgg) + U%JQQ

If v, andwv, have the same signs, then singgare all negative from Table 2.87.J (p)v <
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0. If v; andwv, have opposite sign, then a sufficient conditiondéd (p)v < 0 is
(Jiz + Jo1 + Jog + J32)? < 4doo(J11 + Jaz + Jiz + Ja1)

Using Table 2.3, it is easy to check that the maximum value/of+ Jo; + Joz + J32)? —
4Joo(J11 + J33 + J1s + J31) is —0.2895. Therefore we have found a superﬁétbf coL and
a superseY” of V(E) such that” J (p)v < 0 for all p € E and allv € V. This implies the

condition of Theorem 2.13 and hence the global uniquenesstafork equilibrium.  [J

2.3.6 Global uniqueness of special networks

In this section, we present special networks that have dlobaique equilibrium.

2.3.6.1 Case 1: linear link-independentn’

When the price mapping functions are linear and link-indepai i.e.,m{(pl) = kip, for
some scalaré’ > 0, it is easy to show that we have an unusual situation in theryhef
heterogeneous protocols where the equilibrium rate vectmives the following concave
maximization problem:
U (27
max KU (x])
]

subjectto Rz < ¢

Therefore, such a network always has a globally unique ibguim whenU? are strictly

concave. Here we provide another proof using Theorem 2.13.

Theorem 2.14.Suppose assumptions A1-A3 hold @&hdas full row rank. If for all; and

{, m{(p,) = k/p, for some scalarg’ > 0, then there is a unique network equilibrium.

Proof. We prove this by showing that the Jacobian maifix) defined in (2.7) is negative

definite over allp > 0. Then the result follows from Theorem 2.13.
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Under the assumptions of the theorelfy) can be simplified into (from (2.7)—(2.9))

7 Om? (p)
dp

Ip) = D RDp) (R)
— Zk‘jRij(p) (Rj)T

J

where D7 (p) = dx7(p)/dq’. SinceU; are strictly concaveD’(p) is a strictly negative
diagonal matrix for alp > 0. Now, J(p) is symmetric. Moreover, sincg has full row

rank, RR” is positive definite, i.e., for any nonzero vectoe R*,

ZUTRJ'(RJ)TU = Y (R (R)Tv > 0

J

Then there exists at least opesuch that)’ := (R7)”v is nonzero. Without lose of gener-

ality, assume itig = 1. Then
vTI(pv = TijRij (R

— ] TJ
Zk; DY(

k‘(n)TD()n <0

IN

where the first inequality follows from the fact that (p) is negative definite. HencKp)

is negative definite. O

2.3.6.2 Case 2: linear network

Consider the classic linear network shown in Figure 2.7.

Theorem 2.15. Suppose assumptions A1-A2 hold. The linear network in Fgiréas a

unique equilibrium.

Proof. TakeA = I in the gradient algorithm (2.23). We will prove that all thgenvalues
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Figure 2.7: Theorem 2.15: linear network.

of the Jacobian matrix

o) = YD)

J

have negative real part for all> 0. This implies that all equilibria are locally stable. By
Corollary 2.7 there must be a unique equilibrium.
In the network shown in Figure 2.7, fgr=1... L,
om’ (p) om’(p)

(Rj)T % _ a; (ej)T
J

SinceD’(p) is a negative scalar, we can define a positive numbsuch that:

om’ (p)

B0 ) (R

= e (@)

Forj = L+ 1, 9m’(p)/dp is a positive definite diagonal matrix. Recall that(p) is a
scalar. Assume that thén diagonal entry of matrixD? (p)dm/? (p) /dp is —~;. Denote byy
the L x 1 vectors formed fromy;. Then forj = L + 1:

o , J
RD () (R 1 T diag() = 147
P
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By combining the results above, we obtain

SN Omd
Jp) = ZRJDJ(R])Ta—p
j=1

L
= =) G- () -1
1

— —diag3) ~ 1"

By the following lemma, all the eigenvalues of above matrixehaegative real parts.

Therefore, there must be a unique equilibrium by Corollary 2. O

Lemma 2.16. Suppose thaB is a positive definite diagonal matrix, andis a positive

vector, then the eigenvalues Bf+ 1y have positive real parts.

Proof: See Appendix 6.5. O

The theorem can be generalized to include more than one-hagtiflows, provided
they all belong to the same tyge+ 1 and the sets of links they traverse are nested, i.e.,
Lzt D L(xd™) D --- D L(zE*1) for n multi-hop flows. This result implies that the
two 2-link flows in Example 2.1 are necessary to demonstrateuniqueness.

Experiment 2.1: linear network: unique equilibrium

We further provide a Dummynet experiment to verify TheoredbZor a three-link
network with topology shown in Figure 2.8. The topology is Bame as the one used in
Experiment 1.1. Each Dummynet router is configured to haveg@ne-way propagation
delay and 200-packet buffer. The link bandwidth is 100 Migudihk 1, 150 Mbps for link
2, and 120 Mbps for link 3. There are three FAST TCP flows usiegodths 1, 2, and 3
with one flow on each path. There are eight Reno flows using palthidty experiments
are done for each scenario.

The average aggregate flow rates and their standard desaiio each of paths 1, 2,
3, and 4 are shown in Table 2.4. They suggest that the netwaskdached the same
equilibrium regardless of which flows start first. This isthar confirmed by the queue

and throughput trajectories at links 1-3 in Figures 2.9:2 At each link, the queue and
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@ - @
Link1 Link2 Link3

Path4

Figure 2.8: Experiment 2.1: unique equilibrium.

Path 1 (FAST) | Path 2 (FAST) | Path 3 (FAST) | Path 4 (Reno)
FAST start first| (47.8, 2.7) Mbps (96.2, 2.8) Mbps (67.2, 2.8) Mbpsg (47.9, 2.7) Mbps
Reno start first| (46.1, 0.8) Mbps (94.2, 0.8) Mbps (64.6, 3.7) Mbps (43.7, 1.9) Mbps

Table 2.4: Average aggregate rates and their standardtibegaf all flows on paths 1, 2,
3, 4.

throughput behaviors are very similar regardless of whdtAST or Reno flows start first.

= FAST Starting First
= = Reno Starting First

Size(pkts)

Link1: Queue

I I I I I I
150 200 250 300 350 400 450 500

ink1: Throughput(pkts/ms)

Figure 2.9: Experiment 2.1: queue size and aggregate thpatat link 1.

2.3.6.3 Case 3: networks with no flow using more than two links

Theorem 2.7 implies the global uniqueness of equilibriumaiay network with no more
than 2 links. In this case, the Jacobian matfigp) is strictly diagonally dominant with

negative diagonal entries, and hence its determingnt is”.
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Figure 2.10: Experiment 2.1: queue size and aggregateghput at link 2.

1o ! ! — FAST Starting First
= = Reno Starting First
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Figure 2.11: Experiment 2.1: queue size and aggregateghput at link 3.
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Theorem 2.17.Suppose assumptions A1-A2 hold d&hdas full row rank. A network that

has multiple equilibria must have at least three links.

Proof. When there is only one link, the Jacobian matfig) reduces to a negative real
number, since?’ D7 (p)(R?)T is negative, andm’ /Op is positive. Therefore, any equilib-
rium is locally stable. Hence it is unique by Theorem 2.7.

When there are two links, the Jacobian matrix at argy

T = Yoy

J

It can be checked thal” (p) is diagonally dominant with strictly negative diagonal en-
tries. Moreover, the full rank condition aR implies that there are sourcég i) such that
RI.R}. = 0, and henceJ”(p) is strictly diagonally dominant. This implies that” (p) is
negative definite with strictly negative real eigenvalu&énceJ(p) and JJ7(p) have the
same eigenvalued,(p) and hence all equilibria are locally stable. According tedtem

2.7, there is a unique equilibrium. O

Remark: If R does not have full row rank, then there are two-link netwdHeat have

multiple equilibria; see Appendix 6.4.

2.4 Related Work in Economics

Our formulation is close to the general equilibrium thearyeconomics from which we
borrow ideas and techniques [51]. See [18, 21, 22, 57, 5817819] and [49, 6] for a
fairly complete treatment of related works in economiasréiture. A typical model of the
pure exchange economy consistsioEommodities andV consumers. Each consumer
has an initial endowment vectar, = (w; > 0,/ = 1,..., L) and its goal is to choose a
consumption vector; = (zy,l = 1,..., L) to maximize its utility subject to its wealth

constraint, i.e.,

max Ui(z;) subjectto p’z; < pluw;

T2
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wherep = (p;,1 = 1,..., L) are unit prices for the goods afdddenotes matrix transpose.

For each good=1,--- , L, demand and supply are balanced if

N N
g Ty = E Wil
i=1 i=1

A consumption vectog* = (27,7 = 1,...,N) and a price vectop* are called a&ompeti-
tive equilibrium(or Walrasian equilibrium if =¥ maximizesi’s utility and demand equals
supply for all goods.

In general equilibrium theory, consumers are assumed toibe takers. This aspect is
similar to our model where sources do not take into accounttheir decisions affect the
link prices or each other. Both problems are concerned wistnagtterizing fixed points of
a continuous mapping, and hence there are considerabliastias in terms of the char-
acterizations and the mathematical tools to derive thera.rit@in mathematical tools used
in this paper are the Nash theorem in game theory [56, 9],mikian application of Kaku-
tani’s generalized fixed point theorem, and results frorfeckntial topology, especially the
Poincare-Hopf index theorem [53]. They are used to provetence and study uniqueness
of network equilibrium, respectively. There are howevesesal differences.

First, the effective prices to different sources (conswnare generally different in our
model, whereas the prices in the economic model are indepéd consumers. Differ-
ential pricing is what makes networks with heterogeneoosopnls much more difficult.
Second, in the economic model, there is a concept of initidb&zment that defines both
the demand-supply relation and a consumer’s consumptissilgibty through the wealth
constraint. In our model, the wealth constraint is repldagthe link capacity constraint.
Third, in the economic model, consumers maximize theirtied whereas in our model,
sources maximize their utilities minus bandwidth costsaHy, in our model, every source
consumes exactly the same amount of bandwidth at each liik path ¢;; = «;, for all
[ € L(i)), whereas, in the economic model, consumers can consuifeeedif goods at
different amounts. This guarantees that the demand foy &aod is exactly balanced by
its supply in a pure exchange economy; yet in networks, thefdsottleneck links where

demand for and supply of bandwidth is balanced can be naqyerand a strict subset of all
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links. The propertyr;; = z; is the key structure that allows us to obtain interestingltes
on global uniqueness in fairly general settings. In comtrgi®bal uniqueness in general
equilibrium analysis usually requires very strong comait and most literature focuses on
local uniqueness [17, 19, 6]. We will return to related peob$ in general equilibrium

theory at the end of chapter 5.
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Chapter 3

Optimality and Stability

A central issue in networking is how to allocate bandwidtlildavs efficientlyandfairly,

in a decentralized manner. A series of recent work, e.g. 48955, 84, 47, 41, 44], has
shown that a bandwidth allocation policy can be expresseadrins of a utility function
Ui(z;) in the sense that the desired bandwidth allocatior= (z}, all sources) solves
the utility maximization problem (2.10)—(2.11). As shownsection 2.1.3, (2.10)—(2.11)
characterize equilibrium completely for homogeneousepoase and the optimality here
includes guarantee for both efficiency and fairness. Howegewe have shown in chapter
2, for heterogeneous congestion control networks, eqjiuihio can not be characterized
by (2.10)—(2.11) anymore. In this chapter, we first look &t deviation of efficiency and
fairness in section 3.1. In terms of efficiency, it is showatthualitatively equilibrium is
still Pareto efficient but quantitatively there is efficigoss about which we can provide
an upperbound. On fairness, we show that intra-protocoidas is still decided by utility
maximization problem while inter-protocol fairness is tregt which we don’t have control
over. However it is shown that we can achieve any desiralté-protocol fairness by
properly choosing protocol parameters. This analysisigesvinsights on networks with
heterogeneous congestion signals and further motivag¢esalgiorithm design in chapter 4.
For an engineering system, stability of equilibrium is esst. \We investigate it in section
3.2 and in particularly show that if the degree of pricingenegeneity is small enough,

then not only is the network equilibrium unique, it is alsoddly stable.
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3.1 Optimality

3.1.1 Efficiency

In this section, efficiency of equilibrium of networks witleterogeneous protocols is ex-
plored. We first make the following key observation, which oly leads to the remaining

results of this subsection, but also will be the startinghpoif our algorithm design in

Chapter 4.

3.1.1.1 Qualitative results: Pareto efficiency

Theorem 3.1. Given an equilibriunp*, there exists a positive vectgr such that the equi-

librium rate vectorz*(p) is the unique solution of following problem:

Jrrd (i
max > /U7 () (3.1)
7
subjectto Rz < ¢ (3.2)

Proof. The KKT (Karush-Kuhn-Tucker) optimality conditions for.{3, (3.2) are:

v (U (2) = > Rip forall (i, ) (3.3)
l

p'(Rr—¢c) = 0 (3.4)

Re—c < 0 (3.5)

where the(z, p) are the primal-dual variables. We now claim our system féadishose

conditions with equilibrium rates and pricés‘, p*) by choosing

. Rf P
’Yg = le ljl . (3-6)
Zz Ry (pf)

To see this, note (3.4) and (3.5) are conditions for equiiar After substituting (3.6) into
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(3.3), we have
U)) @) =" Rymi(p}) (3.7)
!

That is also an equation used to define equilibrium. O

It is worthwhile to note that Theorem 3.1 gives an underlyaogivex optimization
problem an equilibrium solves, but this optimization pestlitself depends on equilib-
rium. Hence it cannot be used to find equilibrium directlyy does it give existence and
uniqueness as in the single-protocol case [76].

As stated by the celebrated first fundamental theorem ofaneeiconomics, any com-
petitive equilibrium is Pareto efficient. That explains thest basic reason that congestion
signals are used to regulate source rates and hence reafideviolith allocation. We know
the unique equilibrium is Pareto efficient when there is glsiprice. Now we can show
that the same holds for networks with heterogeneous pristasc direct corollary of The-

orem 3.1:

Corollary 3.2. All equilibrium points are Pareto efficient.

3.1.1.2 Quantitative results: price of heterogeneity

Pareto efficiency can be viewed as a qualitative requirefoean optimal allocation. How-
ever, it does not give a quantitative criterion for optimukggregate utility (social welfare)
is the standard criterion for optimum. As shown in Sectiadh2.when there is only one
price, the unique equilibrium achieves the maximum aggdeeg#lity. For heterogeneous
protocols cases, we now study efficiency loss by lower-bounthe ratio of the achieved

aggregate utility to its maximum.

Theorem 3.3. Assume all utility functions are nonnegative, i&(x) > 0. Suppose the
optimal aggregate utility i€/* and U is the achieved aggregate utility at equilibrium of a

network with heterogeneous protocols. Then

0
Lo (3.8)

=2/
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wherey and? are the lower and upper boundsQ’F.

Proof. Assumez is one of the solutions of Theorem 3.1, then

mavafo =Y HUl(#]) <A7U (3.9)
.7
On the other hand,
maxz U (1) > ymaXZUJ =qU" (3.10)

7.7

Combining the two equalities above, we get

U
= >
U —

=212

O

It has been known for a long time that price can serve as thsible hand” to coor-
dinate competing users and realize optimal resource gibkocal hat however requires two
basic assumptions. The first assumption is that users graaltakers. If instead they are
noncooperative game players, there will be efficiency I&sch “price of anarchy” was
recently bounded from above for both routing [62] and cotigagontrol [36]. The second
assumption is the homogeneity of price that all users seiehvdoes not hold in networks
with more than one type of congestion control protocols. f@sult above quantifies the
efficiency loss as a “price of heterogeneity”.

The following simple example is used here to show the effagyidoss can be arbitrarily
large. Consider two flows sharing a single link with unit capaélow 1's utility is 3, /x1
and flow 2's isf,,/z; where; > 3, > 0. Suppose flow 2 reacts to prigé while flow

1 reacts tg! = kp?, in other wordsyn!(p) = kp andm?(p) = p. It is straightforward to

1Both1 and¥ can be bounded usin@{. For example, for a network with both loss based and delay
based protocols and assuming RED is used, the slopes of Ré&iBeaent links can provide information on

2 J
mj.



54

calculate that

U =/ (51)? + (B2)?

and

(81)° + k(61)?

-
V(B1)? + k2(5,)?

Whenk — oo, U — (G, and

U 1
Us 14 (5)?

Therefore% can be arbitrarily close to zero Wh%zh is sufficiently large.

3.1.2 Fairness

In this section, we study fairness in networks shared byrbgeneous congestion control
protocols. Two questions we address are: how the flows withah protocol share among
themselves (intra-protocol fairness) and how these potdéaghare bandwidth in equilib-

rium (inter-protocol fairness).

3.1.2.1 Intra-protocol fairness

As indicated above, when the network is shared only by flovisguthe same protocol,
the equilibrium flow rates are the unique optimal solutioraaftility maximization prob-
lem. In other words, the utility functions describe how trev$ share bandwidth among
themselves. For instance, theg utility function of FAST implies that it achieves weighted
proportional fairness. When flows using different congessmnals share the same net-
work, it turns out that this feature is still preserved “lthgawithin each protocol, as we
now show. In particular, e.g., it implies that the intra{oal fairness of FAST is still

proportional fairness.
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Theorem 3.4. Given an equilibrium(z,p) > 0, let&@ := R737 be the total bandwidth
consumed by flows using protogoat each link. The corresponding flow ratésare the

unique solution of:
I (ad ' Tl < @ :
2};%( Z Ul(z])  subjectto 7z’ < & (3.11)

Proof: Since(2/, ) > 0 is an equilibrium, from (2.2)to (2.5), we have
(U? ZR o fori=1,.., N/

This, together with (from the definition af)

ZRgz Ai < CJ (Z Rgz Ag o AA) 07 vi

forms the necessary and sufficient conditionforandp’ to be optimal for (3.11) and its

dual respectively. O

Note that in Theorem 3.4, the “effective capacitiéss are not preassigned. They are
the outcome of competition among flows using different catige prices and are related

to inter-protocol fairness, which we now discuss.

3.1.2.2 Inter-protocol fairness

Even though flows using different congestion signals irtliaily solve a utility maximiza-
tion problem to determine their intra-protocol fairnesgyt in general do not jointly solve
any convex utility maximization problem. This makes thedgtof inter-protocol fairness
hard. Here we provide a feasibility result, which says aagomable inter-protocol fairness
is achievable by linearly scaling congestion control atpons.

Assume flow {,7) has a parametgr/ with which it decides its rate in the following
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way:
) = )" ()

For example, if we consider FAST’s utility functianlog(z), then then: parameter in the
protocol can be viewed gs here. Our main result in this subsection says for a network
with J protocols, if J — 1 protocols have their linear scalar vecters then there exists
a i, vector such that one of the resulting equilibria with thatan achieve any predefined
bandwidth partition. Before we get to the theorem itself, wst tharacterize the feasible
set of predefined bandwidth allocation.

Assume that except foi = J, flow (i, 7) has parametqn{. Or equivalently, we can
defineu/ = 1. The equilibrium rates’ clearly depend on parameterForj = 1,2,...J —
1, let 7’ (u) be the unique rates of flows using protogdf there were no other protocols
in the network. Letz’() be the unique rates of typeflows if network capacity were
(c— Zk;éj RFTF)*.

Let

X = {a |2 (n) <27 <T (), p>0,Re < c}

X*includes all possible rates of flows using protogdlthey were given strict priority over
other flows or if others were given strict priority over theand all rates in between. In this
senseX ™ contains the entire spectrum of inter-protocol fairnesem@gdifferent protocols.
The next result says that every point in this spectrum iseseltile by an appropriate choice
of parametey..

Let 2’ (1) denote the equilibrium rates (may not be unique) of flowsgipitice ; shar-

ing the same networkR, c) with other protocols when the protocol parametet.is

Theorem 3.5. For every linkl, assume there is at least one typdlow that only uses
that link. Given anyz* € X*, there exists an* > 0 such thatz’(u*) = (27)* for
j=1,2,..,J—1.

Proof: Given anyz* € X*, the capacity for all type/ flows isc — 3, ., R*(«*)*. Since
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Rz* < ¢ (for all coordinates), we have— 3=, ; R*(z*)* > («7)*, which is greater than
or equal to 0. Hence the following utility maximization ptein solved by flows of typd
is feasible:

J..J

gi}é Z Ui (x7)
subjectto  R'z’ < c— ) RF(a")
k#£J

Let p’ be an associated Lagrange multiplier vector. By the assomphiat every link
has at least one single-link typg flow, we knowp/ > 0 for all /. Choose(y?)* with
(1) = (27): >, Rlml ((m”);*(p)). It can be checked that all equilibrium equations are

satisfied. O

Remarks:

1. In general, one can view Theorem 3.1 as defining fairnefisw$ using heteroge-
neous protocols and can conclude that price mapping fure(i@uter parameters)
affect fairness. This is very different from the case whesré¢hs only one type of
protocol and we will return to this point in Chapter 4. Cleaifypne can choose
price mapping functions, one can achieve any predefinedefss: More interesting,
Theorem 3.5 shows that we can achieve any reasonable petiédimess without
modifying router parameters but only by choosing a lineafagdn source algorithm.

This opens up the possibility of maintaining the end-to-esadure of TCP.

2. Theorem 3.5 implies that given any reasonable fairnessmgrflows using different
congestion signals, in terms of a desirable rate allocatigrthere exists a proto-
col parameter vectgr* that achieves it. It is however yet unclear how to compute
w* dynamically in practice using only local information. Inagter 4, we will dis-
cuss distributed algorithms to compute a particylarwhich will result in optimal

bandwidth allocation.
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3.2 Stability

3.2.1 Low dimensional results

For general dynamical systems, a globally unique equilibnpoint may not even be locally
stable [65, 38]. We start with some low dimensional cases.nEtworks with heteroge-
neous protocols, we prove that global uniqueness impliea ktability for networks with
no more than three bottleneck links, we also prove globdlilgiafor networks with no
more than two bottleneck links. By the end of this section, Weeed to general networks

with any number of links.

Theorem 3.6. For a network withZ, < 3, if there is only one equilibrium, it is also locally

stable.

Proof. We want to prove all eigenvalues 8{p) lie in the left half plane, wherd (p) is the
Jacobian of equilibrium equationg (p) = g—g) evaluated at equilibrium. By index theorem
and global uniqueness analysis [76], we hdve —.J) > 0 for the unique equilibrium.

WhenL equals 1 or 2, it is obvious ag; < J;; < 0 for j # i. Let's consider the case
with L = 3. Suppose\® + p1\? + pa X + p3 = 0 is the characteristic equation fdr. Then
p1 is the trace of-J, p, is sum of all2 x 2 principle minors of—J andp; = det(—.J).

The Routh array for the equation is

1 P2
P1 P3
(p1p2—p3)/p1 O

L p3 O .

Applying Routh stability criterion [26], we need all quargg in the left column to be
positive to guarantee all roots lie in the left half plane. &g, > 0. Global uniqueness

impliesps > 0. Hence we only need to chepkp, > ps. This is true because
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det(J) = Ji(JosJss — JogJsg) — Jio(JorJss — JogJa1)

+J13(Ja1 Jsy — Jag 1)

> JiJagdss — JiiJos sy 4+ Ji1JasJss
—Jiodo Js3 + Ji1JazJzz — JizJaz s

= Ji1(JagJsg — JogJsa) + Jao(J11Ja3 — Ji3J31)
+J33(J11Jag — Ji2 1)

> (Jig + Jag + Js3)((J11J22 — J12J01)
+(Ji1J33 — Ji3Ja1) + (JazJaz — JazJa2))

= —pP1pP2

The first inequality follows fromJ;; < J;; < 0 for j # i. The second one follows from
Jidj; — JijJ;i > 0for j # 4. One is referred to [76] for detail properties.bf

Therefore

p3 =det(—J) = —det(J) < p1p2

L]
As reviewed in 2.1.3, when there is only one kind of price pglcstability is proved by
using the objective function of the dual of the system probées a Lyaponov function. For

heterogeneous protocols, we have the following.

Theorem 3.7.For a network withZ, < 2, the equilibrium is globally asymptotically stable.

Proof. The uniqueness of the equilibrium for a network with no moanttwo bottleneck
links is shown in section 2.3.6.3. Assume the equilibriumersp*. We now prove global

stability.
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WhenL=1, consider the simple quadratic Lyaponov function

Clearly, L(p(t)) > 0 andL(p*) = 0. We now evaluate its derivative

L=2(p—p)p=270p—p)yp) —a) <0

Hence the equilibrium is globally asymptotically stable.
WhenL=2, let

L(p(t)) = [pa(t) = pil + [p2(t) — p3]

We haveL(p(t)) > 0 andL(p*) = 0. If p1(t) < pj andps(t) < p3, we havey,(t) > ¢
andy,(t) > cy. Thereforel = —(pi(t) + pa(t)) = —(n1(t) — c1) + (ya(t) — ¢2) < 0.
Similarly, whenp,(t) > p* andp,(t) > p5, L < 0. Now considerp,(t) < p* and
pa(t) > p3, Lp(t)) = pi — pi(t) + pa(t) — pj. It then follows thatl, = —p () + pia(t) =
—(y1(t) — 1) + (y2(t) — o). Letys1,y00 andy, 2 be the aggregate rates of flows using only

link 1, only link 2 and both link 1 and 2. Then = yi; + yi12 andys = y29 + y19.

L = —(?Jll + Y12 — ?fﬁ - ?ffz) + (y22 + Y12 — ?J;z - yfz)

= —(yu — Y1) + (Y22 — ¥3,) <0 (3.12)

3.2.2 General case

We now state the general result on local stability in theolwihg theorem. It essentially
says that if the similarity condition on price mapping fuoos that guarantees uniqueness

(theorem 2.8) is satisfied, the unique equilibrium is alsally stable.

Theorem 3.8. Suppose assumptions A1-A2 hold. If, for any vegter {1,...,J}* and
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any permutationsr, k,nin {1,..., L},
L . L . L .
=1 =1 =1
then the equilibrium of a regular network is locally stable.

Proof. See Appendix 6.6.

Theorem 3.9.For every equilibrium and any of its neighborhood, theretikast one point

outside the neighborhood, starting from which the trajegtgoes into the neighborhood.

Proof. Consider the vector field generated by

p=f(p)

For any equilibriump* and its neighborhood” with boundaryoV'. Divergence theorem

says the following:

/(Vof)dV:/(fon)da (3.14)
v v
Here,dV is "volume" element anda is "area" element with unit outward normal It is

straightforward to see that

L

v.f:§:%£<o (3.15)

=1

Hencef e n has to be negative somewhered@n, i.e., at those places the trajectories point

inwards.
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Chapter 4

A Slow Timescale Update

As shown in the analysis in Chapters 2 and 3, because of theofaekjlobal coordinate
signal, networks with heterogeneous congestion contmtioppls have complicated be-
haviors (e.g. multiple equilibria; see section 2.3) and maffer from efficiency loss and
unpredictable fairness (section 3.1). On the other handpiiém 3.1 and 3.5 suggest that
properly setting a linear scaling factor in source algonishis enough to achieve optimality
(best efficiency and fairness). These motivate the workismcdhapter in which we try to
answer the following question in the affirmative. Can we steketerogenous network to
the equilibrium point which is optimal in the sense of maxmg aggregate utility in a
distributed and stable manner? We propose a general &gotitat is simple, scalable,
and deployable to achieve this goal. The basic idea is sinB@sides regulating their rates
according to their congestion signals, sources also adpptamneter in &low timescale
based on a common congestion signal. This allows a sourckedmse a particular con-
gestion signal in a fast timescale (and therefore maintairefts associated with it) while
asymptotically reach the optimal equilibrium. The roadno@phis chapter is as follows.
Two experiments involving Reno and FAST are reported in sactil which imply that
we cannot predict, nor control, the bandwidth allocaticwtigh just the design of conges-
tion control algorithms. In section 4.2, a simple sourceduobalgorithm is presented that
decouples bandwidth allocation from network parameteddlamw arrival patterns in a het-
erogenous network. The rest of the chapter is then devotibe general framework of this
slow timescale control. Analysis on existence of a uniqyéinoal and stable equilibrium

of this algorithm is provided (section 4.3). Numerical exd@s are used to demonstrated



63
its correctness and convergence in different operatiom@mwents (section 4.4). Finally,
more realistic experiments that are conducted using WANaib &re reported to show the

algorithm’s effectiveness and some of its byproducts {geet.5)?!

4.1 Two Examples

In this section, we describe two experiments to illustrat@e bandwidth allocation prob-
lems in heterogenous networks. In the next section, we thesarsimple algorithm that
solves these problems. Both the problems and the solutidrbwigreatly extended to
general networks and protocols in the following sections.

Both experiments use Reno TCP, which uses packet loss as dongeghal, and FAST
TCP, which uses queueing delay as congestion signal. ThexXpstiment shows that when
a Reno flow shares a single bottleneck link with a FAST flow, tiative bandwidth allo-
cations depend critically on the link parameter (buffeekiZ’ he Reno flow achieves much
higher bandwidth than FAST when the buffer size is large andhrsmaller bandwidth
when it is small. This implies that one cannot control therfass between Reno and FAST
through just the design of TCP congestion control algorithsimce fairness is now linked
to network parameters, unlike the case of homogeneous rietwo

The second experiment shows that even on a fixed (multi-lr@tyvork, one cannot
control the fairness between Reno and FAST because theveedkbcation changes de-

pending on which flow start first!

4.1.1 Dependence of bandwidth allocation on buffer size

Experiment 4.1a: dependence of bandwidth allocation on buér size

In this example, one FAST flow and one Reno flow share a singtéehetk link with
capacity of 8.3 pkt per ms (equivalent to 100Mbps with stadgecket size) and round
trip propagation delay 50ms. The topology is shown in Figufe The FAST flow fixes
its o parameter at 50 packets. This means that the bottlenecknvidthdwill be equally

IMost results in this chapter are based on a working paper [77]
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shared between FAST and Reno when the buffer Bire150 packets.

c=8. 3pkt/ s
25 s one way

Figure 4.1: Single link example.

In all of the NS-2 simulations in this chapter, heavy-tailsgotraffic is introduced in
each link with an average rate ti% of the link capacity. Figure 4.2 shows the result with
a bottleneck buffer siz& = 400 packets. In this case, FAST gets an average of 2.1 pkt
per ms while Reno gets 5.4 pkt per ms. Figure 4.3 shows thet reghl B = 80 packets.
Since the bottleneck buffer size is smaller, the averageeuethe bottleneck is smaller.
Therefore FAST gets a much higher throughput of 3.4 pkt peantsReno gets a lower
throughput of 0.6 pkt per ms. In this case, the loss rate iyfhigh and the aggregate
throughput is lower than the bottleneck capacity due to ntimmgout events.

In summary, bandwidth sharing between Reno and FAST dependstwork param-
eters in a heterogeneous network, contrary to the case obdp@meous network. This is
undesirable since the bandwidth allocation among all caimgp&ows in a network should
depend only on their valuation of bandwidth (utility furaris) but not on AQM parameters.

In the next section, we propose a simple source-based@oliatiachieve this.

4.1.2 Dependence of bandwidth allocation on flow arrival pattern

Experiment 4.2a: dependence of bandwidth allocation on flowraival pattern

The topology of this network is shown in Figure 4.4. We use REor@thm [25] and

2The sample figure shows the rate trajectory in one simulation The rate value is measured every
2 seconds. The summary figure presents the rate trajecterggad over 20 simulation runs with different
random seeds. Each point in the summary figure representsvérage throughput over a period of one

minute. The error bars are also shown in the figure.
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Figure 4.3: FAST vs. Reno with a buffer size of 80 pkts.
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packet marking instead of dropping. The marking probahilib) of RED is a function of

queue lengtlh:

0 b<bd
p) = § %53 b<b<h (4.)
L b>b

whereb, b and K are RED parameters. Links 1-2 and 3-4 are both configured witplas
per ms capacity (equivalent to 111 Mbps), 30 ms one-way gaian delay, and a buffer
of 1500 packets. Their RED parameters dréh( k) = (300, 1500, 10000). Link 2-3 has
a capacity of 13.8 pkts per ms (166 Mbps) with 30 ms one-wapauyation delay and a
buffer size of 1500 packets. Its RED parameters are set t&b(D,110).

There are eight Reno flows on path 1-2-3-4, utilizing all thiiaks, with one-way
propagation delay of 90 ms. There are two FAST flows on eaclatbfspl-2-3 and 2-3-4.
Both of them have one-way propagation delay of 60 ms. All FASW4l use a common

a = 50 packets.

Pat h Pat h2
(2 FAST flo (2 FAST flows

@CZQ. 1pkt/ s 73\ €=13. 8pkt/ ns 5\ c=9. 1pkt/ s @
30ms one way “\=/30ms one way\>’ 30ms one way
(300, 1500, 10000) (0, 1500, 10) (300, 1500, 10000)

Path 3
(8 Reno flows)

Figure 4.4: Multiple equilibria scenario.

Two sets of simulations have been carried out with diffeisgatting times for Reno
and FAST flows. The intuition is that if FAST flows start firafk 2-3 will be saturated
and links 1-2 and 3-4 will not. Since the RED dropping slopeirdf P-3 is steep, when
Reno flows join, they will experience so many losses that litdsand 3-4 will remain
unsaturated. If Reno flows start first, on the other hand, linksand 3-4 are saturated
while link 2-3 is not because link 2-3 has a higher capacityc&the RED dropping slopes
of link 1-2 and 3-4 are not steep, they can generate enouglequedelay to squeeze FAST

flows when they join and keep link 2-3 unsaturated. In the kitians, one set of flows
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(Reno or FAST) start at time zero, and the other set of flows$ atahe 100th second. We
present the throughput achieved by one of the FAST flows aaabtihhe Reno flows. Each

point in the summary figures represents the average ratebaw@rutes.
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Figure 4.6: Bandwidth shares of Reno and FAST when Reno stastts fir

4.2 One Solution

We propose a simple source-based algorithm to solve thdgonston unfairness and un-
predictable parameter sensitivity illustrated by the epl@sin the last section. Complete
development, theoretical confirmation, and simulatiornfieation of the solution form the

rest of the paper after this section. The solution meetd #fieofollowing requirements:
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Algorithm 1 « adaptation algorithm
1. Everya update interval (2 minutes by default), calculate:

X q

=

g and] are average queueing delay and average packet loss rattheveupdate
interval, w is a parameter. Then

o min{l.lea,a*} if a < o*
| max{0.9a,a*} if a>a*

2. Every window update interval (20ms by default), run FAZjoathm (1.2).

1. Always achieve a unique equilibrium that efficiently iagis the bandwidth.
2. Maintain good fairness between different flows usingedéht protocols.
3. Allocation is independent of AQM setting.

4. Only use end-to-end local information that is available&ch flow.

)

. Only require simple parameter updates, such as the lpaggameter in FAST.

This - adaptation algorithm, Algorithm 1, fine-tunes the valuexadccording to the
signal of queue and loss in a large time scale (several RThe basic idea of the solution
is that FAST should adjust its aggressivenegs@ the proper level by looking at the ratio
of end-to-end queueing delay and end-to-end loss. In otbedsy FAST also reacts to loss

in the slow timescale.

4.2.1 Independence of bandwidth allocation on buffer size

Experiment 4.1b: independence of bandwidth allocation on bffer size

We repeat the simulations in experiment 4.1a with Algorithmw is set to be 125s.
Figure 4.7, Figure 4.8, Figure 4.10 and Figure 4.11 shoulddmepared with Figure 4.2,
Figure 4.3, Figure 4.5 and Figure 4.6 correspondingly.

With Algorithm 1, FAST achieves 3.4 pkt per ms with bufferestf 400 and 3.2 pkt per

ms with buffer size of 80, while Reno gets 4.2 pkt per ms and Ktper ms, respectively.
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The fairness is greatly improved and only slightly depena$uffer size now, which we
summarize in table 4.1 by listing the ratio of bandwidth tRenho gets and FAST gets in

different scenarios.

B=400 B=80
Without Algorithm 1| 5.4/2.1=2.6| 0.6/3.4=0.18
With Algorithm 1 | 4.2/3.1=1.4] 4.1/3.2=1.3

Table 4.1: Ratio of Reno’s rate and FAST's rate

T T T T T T T T T
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throughput (pkt / ms)
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Figure 4.7: FAST vs. Reno, with buffer size of 400 pkts and Ailgpon 1

The trajectory ofx is presented in Figure 4.9. It is clear that although botttiatafor
a = 50, FAST finally uses a much largerto deal withB = 400 case tharB = 80 case as

it experiences larger delay whéh= 400.

4.2.2 Independence of bandwidth allocation on flow arrival pattern

Experiment 4.2b: independence of bandwidth allocation on fler arrival pattern

We repeat the simulations in Experiment 4.2a with Algorithyw is set to be 1820s.
Figure 4.10 and Figure 4.11 show the effectvadaptation in the multiple-bottleneck case
that we introduced in Example 2. As we proved in Theorem 4dret is always a unique
equilibrium if we adaptx according to Algorithm 1. In this particular case, this $&ng

equilibrium is around the point where each Reno flow gets autitrput of 0.6 pkt per ms
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Figure 4.9:« trajectory in experiment 4.1b
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and each FAST flow gets 1.5 pkt per ms. At this single equitrilink 1 and link 3 are
the bottleneck links. In Figure 4.10, FAST flows start on tinego and link 2 becomes
the bottleneck. When Reno flows join on the 100th second, tie satjueue to loss on
link 2 is much higher than the target value. The FAST flows kemcluce thein values
gradually and the bottleneck switches from link 2 to link H&nhon 2000th second. After
that, FAST flows and Reno flows converge to the unique equilibriThe trajectory of

is presented in Figure 4.12. As we can see, depending on Whwh start first follows

a very different path although it finally reaches the samgetad value.
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Figure 4.10: FAST starts first with Algorithm 1.
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Figure 4.11: Reno starts first with Algorithm 1.
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4.3 Analysis

As pointed out in Corollary 3.2, all equilibria are Paretoaéfnt. However, no guarantee
on fairness can be provided. We now turn from analysis togtlesind develop a readily
implementable control mechanism that “drives” any netwwith heterogeneous conges-
tion control protocols to any desired operating point witfa® and efficient bandwidth
allocation. This also explains the intuition behind andttieoretical foundation of Algo-
rithm 1 in section 4.2. The central problems that motivatestudy include: What is the
equilibrium the system should be driven to? Can we make itue#qWill it solve any
global optimization problem? How to do that in a distributedy? In this section, we
propose an answer by introducing slow timescale updating.t&get equilibrium is still
the maximizer of some weighted aggregate utility. The fitsp $s to show the existence

and uniqueness of such a solution.

Theorem 4.1. For any given networke, m, U, R), for any positive vectow, there exists a

unique positive vectar such that if every source scales their own pricesybyi.e.,

= () (5 i)
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then, at equilibriuniz*, p*), «* solves

1 .
max —U/ (x]) (4.2)
>0 w’
(1.4) °
subjectto Rx < ¢ (4.3)

Moreover,

i iZleL(j,i) my (py)
wy leL(4,7) P

Proof. We claim that the optimality conditions of (4.2) and (4.3 #ie same as equations
that characterize the equilibrium of the above system (422), (2.4) and (2.5)). Capacity
constraints, nonnegativity, and complementary slackaessbviously the same. We only

need to check the relation between rates and prices atlaguiti. For our system, that are

o, .
W (U]) @D = > mim) (4.4)
1€L(j,i)
and ‘
j 1 ZleL(j,i) m (py)
Hi = — " (4.5)
w; ZleL(j,i) Dy
Combining them, we get
1 N
—SU)@h= > n (4.6)
i 1EL(j,i)

which is the relation between andp specified by the optimality conditions of problem
(4.2)-(4.3). On the other hand, giverandy that satisfy (4.6), one can always defjreby
(4.5), and (4.4) will also be satisfied. O

Remarks:

1. Parametetv enables us to measure fairness and to achieve any desirdzhial-
width allocation. The above result generalizes a theorefvidh which asserts that

by properly choosingy parameters in FAST flows, essentially any desired fairness
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Algorithm 2 Two timescale control scheme
1. Every source chooses its rate by

zl(t) = () (52,

¢ ()

2. Every source updates yb$ by

J _ i 2ieri, m] (py(t+T)) j
i (t+T) = p(t) + K3 ( ZleJL(j,i) ) Hi (t)

Wheren{ is stepsize for flow(j,7) and T is long enough so that the fast timescale
dynamics among andp can reach steady state.

between FAST and Reno is possible.

2. We only need all sources to have accessrtecommon price. For example, when
FAST and Reno coexist, since FAST also has access to the ¢mmyasce of packet

loss, if it updates its parameter taking into account of, |@$&orem 4.1 holds.

Theorem 4.1 naturally suggests Algorithm 2 as a two-timesseheme to control the
operating point of networks with heterogenous congestuorirol protocols. The behavior

of Algorithm 2 will be demonstrated in Section 4.4 througmarical examples.

In the extreme case, ji’ is also updated at the same timescale-Asthen sources
all react top and the system will be globally asymptotically stable. Tlssemtial idea
in Algorithm 2 is that by reacting to the same price in slowdsuale, uniqueness and
fairness of equilibrium is guaranteed in the long run. Yet #igorithm allows sources
to react to their own effective prices?(p,(t)) at the fast timescale. This flexibility is
important in practice when, for example, the link prigeare loss probability that are hard
to reliably estimate at the fast timescale. The slow timiesalgorithm only updates a linear
scalar, which is readily implementable, e.g., this coroes{s to update a parameterin
FAST/Vegas. Indeed, if we specialize Algorithm 2 to FASTAdenetworks using loss as
the common price, we get Algorithm 1 in section 4.2.

We now use the following coupled dynamical system to model M€ orks with the

above scheme and study its convergence:
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(g 1) = (U) (%qf(t)) (4.7)
Z R;mi (pu(t (4.8)

pi(t) = ulp(t) —a (4.9)

¢ @ 4.10

il (t) = S 1 (4.10)

Whene is zero, differential equation (4.10) reduces to an algel@quation and.’ is
updated instantaneously. Sources essentially reacatal the system is globally asymp-
totically stable. The following theorem shows that glopasymptotic stability still holds
when we introduce dynamics to updatkt) as in (4.10).

Theorem 4.2. There exists ap* > 0, such that for alll < ¢ < ¢, the system described by

(4.7)—(4.10) is globally asymptotically stable.

Proof. See Appendix 6.7. O

4.4 Numerical Examples

Throughout this subsection, we provide some Matlab nurakrésults to further validate
the effectiveness of the control scheme proposed in sedtihnFor simplicity we choose
w to be a vector will all components being 1, i.e., we attemphtaximize the aggregate

utility.

Example 4.1: L=2

We consider a two-link network with six flows using two pric@se routing matrices are:

pg_ | L0
011

All sources have log utility functions. Both links have cajpias 10 units. We start with

1) = 1. In each step, we directly updaié = Zm(p) (x] = 1). We can easily find the equi-
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librium by solving the utility maximization problem and @l the following equilibrium,
ri=axl=22=22=10/3, 2 =22 =5/3,p1 = p» = 0.3.

Case 1 The price mapping functions are Iineanng (m) = k;ljp, where
K'=1, K?=diag2,4)

We show the steady state prices after each iteration in PaBleu3 for each step is also
shown. Note that other{ 's are always 1 in this case. The system converges to thegpeeldi

equilibrium after three iterations.

Table 4.2: Steady state after each iteration: case 1
lterations| 3 P Do
1 1.0000| 0.2233| 0.1861
2 2.9091| 0.2985| 0.2985
3 3.0000| 0.3000/| 0.3000

We then move to the case of nonlinear price mapping functinrihe following two
cases, we again show the steady states after each iteratdats @onvergence to the target
equilibrium. See Table 4.3 and 4.4.

Case 2 mi(p1) = (p1)? m3(p2) = 2(p2)*.
Case 3 mi(p1) = /1, m3(p2) = 3\/Pz-

Table 4.3: Steady state after each iteration: case 2
Iterations|  p? s s D1 P2

1 1.0000| 1.0000| 1.0000| 0.4685| 0.3582
0.4685| 0.7163| 0.5759| 0.3489| 0.3171
0.3489| 0.6342| 0.4848| 0.3151| 0.3050
0.3151| 0.6100| 0.4601| 0.3047| 0.3014
0.3047| 0.6028| 0.4530| 0.3015| 0.3004
0.3015| 0.6008| 0.4509| 0.3005| 0.3001

OOk, WN

Example 4.2: L=3 with multiple equilibria
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Table 4.4: Steady state after each iteration: case 3
lterations| i} % T P P2
1.0000| 1.0000(| 1.0000| 0.2155| 0.1672
2.1543| 7.3364| 4.4187| 0.3331| 0.3691
1.7326| 4.9380| 3.4174| 0.2909| 0.2817
1.8542| 5.6520| 3.7228| 0.3208| 0.3061
1.8174| 5.4228| 3.6299| 0.2992| 0.2981
1.8282| 5.4943| 3.6580| 0.3002| 0.3006

OO0k WN PR

In this experiment, we use the following example that wasluseexample 2.3 (section
2.3.2) to demonstrate existence of multiple isolated dajial. The network is shown in
Figure 2.1 with three unit-capacity links, = 1. There are three different protocols with

the corresponding routing matrices

T

110
R'=1, R*= . R*=(1,1,1)"

The price mapping functions are assumed to be linear witfficeats
K'=1, K?=diag5,1,5), K®=diag1,3,1)
Utility functions of sourcegj, i) are

Bl (1 —ad) if ol #£1

Ul(x],al)=q " ,
B log ! if o] =1

with appropriately chosen positive constanfsand 3/ shown in table 2.1 (section 2.3.2).
These utility functions can be viewed as a weighted versidhea-fairness utility func-
tions proposed in [55],u{’s are updated every 20 time units. We show that although the
system reaches different equilibria after the first itematiit nevertheless finally reaches
the unique target. In terms of convergence time, not sungiis both being too cautious
(m{ = 0.1) and too aggressiven{ = 0.9) are not optimal, which can be clearly seen by
comparing with theef = (.5 case.

Case 1 We start with initial pointp, (0) = p2(0) = p3(0) = 0.3. After the first iteration,
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the network goes to equilibriunp{ = pi = 0.165, p; = 0.170). p;(¢) with different
updating stepsize’ is shown in Figures 4.13.
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Figure 4.13: Case 1 (t) with differentx’

Case 2 We choose another initial poipt (0) = p3(0) = 0.1, p2(0) = 0.3 As shown in
Figure.4.14. After the first iteration, the system reachestteer equilibriump; = pj =

0.135 andp; = 0.230. However finally, the system still reaches the same steadg at in
Figure 4.14 (Both converge to about 0.222).

0222

p,®
p,®
p,®

0135
015 015 / 015 /
—
0135

100

80 100 120 0 20 40 6 8 100 120 140 160 18 200
t t

(a) stepsizes! = 0.1 (b) stepsize:! = 0.5 (c) stepsize:! = 0.9

Figure 4.14: Case 21 (¢) with different’

Example 4.3: L=5 with asynchronous updating
In this experiment, we have a larger network with five linkd 46 flows. Also, the scheme
is tested in an asynchronous environment. We assume everyirfie units, flows can

update theiru{ and they do so with some probability. Hence every five timésjinly a
portion of flows update thej’.
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We randomly set link capacities uniformly between 1 and 1@, take price mapping
functions to bem!(p) = p andm?(p) = p“, wherea is randomly chosen between 0.5
and 5 with uniform distribution. Flows 1 to 5 use links 1 to Spectively while a random
routing matrix with entries 0 or 1 with equal probability isad to define routes for other
flows. Finally each flow randomly chooses to use price 1 or B egjual probability.

All of the 1000 trials converge to the right target. Some ¢gpiconvergence patterns
are shown in Figure 4.15. It shows clearly that although elssonism causes longer con-

vergence time, the system still converges to the same bquit.
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Figure 4.15: p(t) with different probability of updating

4.5 WAN in Lab Experiments

The objective of experiments in this subsection is to shosveffectiveness of our slow
timescale updating algorithm in a more realistic settinge &thieve that by carrying out
experiments with TCP Reno and FAST in WAN in Lab [2] and by coesity more prac-
tical scenarios not considered before (e.g., small buiter, ®nly FAST flows).

WAN in Lab is a wide area network consisting of an array of réigurable routers,
servers and clients. The backbone of the network is conddmteéwo 1600 km OC-48
links that can provide a large real propagation delay. Wedesalgorithm with a single
bottleneck link shown in Figure 4.16.

Experiment 4.3: small buffer size
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WAN-in-LAB Testbed
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Figure 4.16: WAN in Lab experiment setup

In this experiment, we show a byproduct of our slow timesedderithm, namely au-
tomatically matching FAST’s parameterto the buffer size in the network. As we know,
every FAST flow tries to maintain packets in the queues along its path. Clearly if the
buffer capacity is smaller than theused, a constant high packet loss rate will occur and
both Reno and FAST will have very poor throughput. Here we sthatvour algorithm can
adjusta automatically to a proper value when it sees a high loss rate.

One FAST and one Reno compete for bandwidth of the bottlenakkwith 1Gbps
(80pkts/ms) capacity. The buffer capacity is 480pkts. it « is set to bex;=800. The
results are summarized in Figure 4.17. As the left part ofithee shows, both Reno and
FAST get very low throughput due to the high packet loss rB&S{T: 135Mbps; Reno:
22Mbps). However, using the slow timescale update, FASTedses itsr as it sees high
loss and finally both flows get high throughput (FAST: 593MbReno: 246Mbps). The
utilization is increased dramatically from 15.7 percen88» percent.

Experiment 4.4: only FAST flows

Although the slow timescale update shows desirable priggart various tests we have
discussed so far, there is a problem we have not touched,In#imeecase when there are
only FAST flows in a network. As FAST is designed to achieveeady state with no loss,

flows will keep increasing their until the buffer is filled and loss is generated. This is not



81

JCEE) T . T . T . Laaa

Throughput (Mbps)
Thraughput (Mbps?

1508 2088 2580 ELLT]
Time €=

L L L
1588 zoEE 2508 LT z580
Time C=»

i
a =0 1808

(a) Without the slow timescale algorithm (b) With the slow timescale algorithm

Figure 4.17: Bandwidth partition between Reno and FAST

desirable and we propose to turn off the slow timescale upglalgorithm when a flow
has not seen any loss for a certain amount of time (one segpdéfhult). We conduct
an experiment using three FAST flows all with=200 and test this idea. The throughput
trajectory is shown in Figure 4.18. We can see that after mgeaf adjusting, all flows
are stabilized. The steady state throughputs are 128MB@8/2ps and 566Mbps, which
result in a high utilization of 92.8 percent even though thiéial sum of « exceeds the
buffer capacity. However, this introduces potential fags problem as we cannot control
the exacty values when they stop updating when no loss is generate@xgarple, instead
of achieving perfect fairness with a Jain index [34] of 1 , ve@dn0.733 in this experiment.
We tend to think that this short term unfairness is not so g as in practice, flows
come and go, which will give many chances for existing flowssghuffle and the random

short term unfairness can be averaged out to yield long temmefss.
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Figure 4.18: Bandwidth sharing among FAST flows
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Chapter 5

Conclusion

Writing is a deed of eternity. Its ups and downs are known only to the author.

— Du Fu (712 - 770), A Great Poet in Tang Dynasty, China

The central motivation of this thesis is to investigate ém@nd flow control in an environ-
ment with multiple pricing signals, or more generally, tesaurce allocation problem with
heterogeneous prices. It is demonstrated in this thesisviien sources sharing the same
network react to different pricing signals, the currentldyanodel no longer explains the
equilibrium of bandwidth allocation. We have introduced atihematical formulation of
network equilibrium for multi-protocol networks and stadiseveral fundamental proper-
ties such as existence, uniqueness, optimality, and gyabfe prove that equilibria exist,
and are almost always locally unique. The number of equaliisralmost always finite and
must be odd. The equilibrium is globally unique if the pricapping functions are similar,
or the J(p) is “negative definite” along certain directions. By ideniify an optimization
problem associated witaveryequilibrium, we show that every equilibrium is Pareto ef-
ficient. It also yields an upper bound on efficiency loss duprioing heterogeneity. On
fairness, we show that intra-protocol fairness is stillided by a utility maximization prob-
lem while inter-protocol fairness is the part over which vea'dlhave control. However it is
shown that we can achieve any desirable inter-protocatéas by properly choosing pro-
tocol parameters. Regarding dynamics, various stabilgylte are provided. In particular
we prove that if the degree of pricing heterogeneity is priydsounded, then the network

equilibrium is not only unique but also locally stable. Hipave propose a scheme to steer
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an arbitrary network to a unique equilibrium that maximides total utility, by updating
in a slow timescale a linear parameter in sources’ algosthithe scheme uses only lo-
cal information. In addition to analysis and numerical epéag, we have presented NS-2
simulations and WAN in Lab experiments using TCP Reno and FASIetnonstrate the
correctness and convergence of the scheme.

There are a number of features of this study. First, our esipl&on general networks
with multiple sources and links that use a large class ofrdlgus to adapt their rates and
congestion prices. Often, interesting and counter-ineiibehaviors arise only in a net-
work setting where sources interact through shared linkstiicate and surprising ways
[73, 74]. Such behaviors are absent in single-link modedsaaa usually hard to discover or
explain without a fundamental understanding of the undsglgtructure. Second, starting
from a concrete engineering system, we set up a mathemfasicadwork to further explore
structures, clarify ideas, and suggest improvements. drptbcess of doing so, we have
borrowed some tools and techniques from other communhigisare not widely used in
the field of communication networking, e.g., general equlim analysis from economics,
and Sard’s theorem and Poincare-Hopf index theorem froferdiftial geometry. More in-
terestingly, we have also developed some new mathemagiahigues; see Appendix 6.2
and 6.6 for example. These results can potentially be usefdlving important problems
in economics and mathematics, as we will discuss in morel degtizx. Finally, though it is
mainly theoretical, this thesis also includes experimargsfication of its key predictions.
These supporting data come from a range of methods that spamtimerical calculation
and packet-level simulations to Dummynet and WAN in Lab expents.

It is always exciting to look ahead. We now conclude by disowg possible future
directions. There are two natural extensions we need tceaddr

The first question is that of the global stability of hetenogeus congestion control
protocols. We know there can be multiple equilibria, ang/tt@nnot all be locally stable
unless there is only one. We have conditions under which dgiodilerium is unique and
locally stable. However, we still don’t know the global dymias of the system in general.
One plausible conjecture is that every trajectory ends up ame of the equilibria. The

intuition is that heterogeneity of prices makes the undeglylynamics no longer an exact
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gradient field, but the monotonicity of price mapping funos still guarantees that the
system reacts in a qualitatively correct way. In generaltheraatically showing this is
quite hard as only limited tools are available to deal withtiple equilibria, e.g., recent
developments in monotone dynamic systems [69] and the duakd.yaponov method
[60].

The other problem concerns the convergence property oflthe tinescale update
scheme. We have shown that, if the update is fast enoughystens will converge to the
unique optimal point. However, in reality, we want to updamach more slowly compared
to the underlying TCP dynamics. Addressing global stabfbitythis hybrid system then
becomes very challenging, especially given that the ugihey[TCP system can have mul-
tiple equilibria. The current conjecture is that if the sizp sequence satisfies some certain
condition [11], the system converges globally.

This thesis deals with a problem at the intersection of ezgging and economics and
also involves mathematics such as asymmetric matrix anwv@eld analysis. Some re-
sults and techniques here can potentially have much wigeicagions beyond the study of
congestion control systems. We now list a few long term diives, one for each discipline.

Economics: “Bounded heterogeneity implies regularity”’Economists began to seri-
ously study dynamics of market behaviors long time ago whiekd-advocated its impor-
tance in [30], in which he proposed his stability conceptsp@rfect stability and perfect
stability). It was later found that Hicksian stability islpmemotely related to real dynamic
stability, which is pointed out by Samuelson [63].

In general equilibrium theory in economics, with the claakiArrow-Debreu model
(see section 2.4 for the version of pure exchange economi§6a51] for more details),
existence, uniqueness, and stabtlioy equilibrium have been carefully and rigorously in-
vestigated in the last half century. Unlike existence, Whi@s a triumph of mathematical
economics [19], results on global uniqueness and stalitégylimited in the sense that the
conditions to guarantee those properties are quite raggridVioreover, failure to provide

applicable results on global uniqueness and stability eeskhe significance of existence

1The most commonly studied stability model is the Tatonnenpencess, whose differential equation

version was proposed in [64]. One is referred to [5, 7, 8, 8518, 24, 20, 28] for the development.
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and welfare theorems. These all cause confusion and evetiggm about the future of
general equilibrium theory [50, 4].

We observe that the examples that have multiple equilibrlaot cycles typically in-
volve some assumptions that may not accurately reflectyeBbr example, in his classical
work [65], Scarf demonstrated that it is possible for a pwehange economy with three
consumers to have a globally unique equilibrium that is mehdocally stable. The util-
ity functions of users are completely complementary in #rese that consumer 1 values
commodity A while commodities B and C do not affect its wilitvhile consumers 2 and
3 value commodities B and C, respectively.

A natural question is then whether we can provide a bound terdgeneity of con-
sumers’ utility functions or their initial endowments toagantee a unique and globally
attractive equilibrium. In short, does “bounded heteragggnmply regularity”? By reg-
ularity, we mean desirable properties such as uniquenasstahility. If that turns out to
be true, then we can potentially overcome the difficulty afigral equilibrium theory by
justifying the needed bound on the degree of heterogensigisome statistical argument
for large systems.

Engineering: “How to use multiple prices optimally” We have analyzed networks
with heterogeneous congestion control protocols whereygwotocol uses exactly one
kind of price. As sources may have access to multiple pritésjnteresting to consider
the optimal way for sources to regulate their rates basedlonfarmation they can ob-
serve. Some steps are taken in this direction by combinitayd®msed and loss-based
congestion control protocols [15, 71]. We are interested general framework under
which we can explore various basic questions, e.g., Is teyeperformance limit due to
the finite feedback information? If so, how do we express dmat what is its implication
in practice? Hopefully the answers to these questions @httemore systematic designs.

Mathematics: “Asymmetric P-matrix analysis” The general matrix stability prob-
lem has been studied for 200 years. See [26] for detailediclassults and [29] for an
excellent survey on recent progress. In the last 50 yeapl@diave begun to look at
nonsymmetric cases. We take tRematrix as an example here.

A P-matrix is a real square matrix all of whose principal minars positive. Positive
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definite matrices are symmetr¢matrices. One of the important questions being asked in
the linear algebra community is, what is the required “syrmyfi¢o guarantee the stability
of a P-matrix, i.e., all its eigenvalues have positive real partdis is a very difficult
problem and so far the only general (but conservative) résdue to Carlson [14], which
asserts that every positive sign-symmetric matrix is pa@sgtable. A matrixA is said to
be positive sign-symmetric if it is &-matrix andA(«, 5)A(G,«) > 0 for all o, 5 € Q,,
la| = |B|. Here,Q,, = {(i1,ia,... i) |1 < i3 < ig < -+ < i < n}. Given a matrixA
anda, 5 € @,, A(a, 3) means the minor off whose rows are indexed by and whose
columns are indexed hy.

People have tried to identify a set of properties from pesitiefinite matrices that is
critical for the stability of P-matrices. Various conjectures have been proposed, biatlall
for the general case. One can find these results in [31] arderedes therein.

Motivated by the analysis af (p) in this thesis, which is @&-matrix once the price
similarity condition holds, we have also carried out studygeneralP-matrices. In par-
ticular, we were able to find another condition on the degfesyimmetry that is sufficient
for the stability of aP-matrix [3]. A current conjecture is that &-matrix is stable if its
diagonal terms are all positive and larger than the absohltee of any term that is in the
same row (column). Clearly, this is a stronger statement Tteaorem 3.8. Theorem 3.6’s
proof covers cases when the dimension of the matrix doesxcetd three. It remains to

see to what extent techniques in section 6.6 can be used ltwide#his problem.
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Chapter 6

Appendix

6.1 Simulation of Multiple Equilibria

The Dummynet experiments provide qualitative evidence aitipie equilibria with prac-
tical protocols. We could not have verified the experimergallts with quantitative pre-
dictions because a Droptail router does not admit an aceunathematical model for the
price mapping functiomn,;. In this section, we present simulation results using N$+2 o
multiple equilibria and fairness. The network simulator-RI8llows us to use RED routers
for which the price mapping functiom; is known. We can thus compare simulation mea-
surements with our theoretical predictions. For all theutations in this section, TCP
Vegas is used, which has the same equilibrium structure &8 FA

The network simulator ns-2 version 2.1b9a is used here. \WehesRED algorithm
and packet marking instead of dropping. The marking prditaki(b) can be expressed as
in (4.1).

The network topology is as shown in Figure 1.2. The link c#jeeecof link 1 and link
3 are set to be 100 Mbps (8.33pkts/ms) and the one way propagiglay to be 50 ms.
For link 2, the capacity is 150 Mbps (12.5pkts/ms) and one prapagation delay is 5 ms.
There are 10 Vegas flows on each of paths 1 and 2, and 20 Reno figeadio3. As in NS
simulationsd is the number of packets the flow maintains along its path¢clwvhas been
calleda before by convention. Hence every flow tries to put 5.5 pachké&ing its path as

we seta = 50.
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Experiment 6.1: varying K.

We set(b,, b1, K1) to be (0, 1000, 10000) at link 1 and link 3. &, b,) to be (100,
1500) at link 2, and vary the slop&, at link 2 from 10 to 600. Figure 6.1 shows the
aggregate throughput of all Reno flows and the link utiliza@link 1 for different values
of K,. Theoretical predictions are calculated by solving efyuiim equations and the
price mapping function (4.1) for RED. As can be seen, the ptroii matches the measured

curve very well.
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(a) Aggregate Reno throughput (b) Link utilization at link 1

Figure 6.1: Experiment 6.1: Aggregate Reno throughput aridutilization at link 1.

From Figure 6.1, the aggregate throughput and utilizattdimi 1 are independent of
K, if Reno flows start first. This is because link 2 is not saturatethis scenario, as
explained earlier, and hence varying its parameter doeaffeatt the equilibrium. When
Vegas flows start first, on the other hand, link 2 is the bo#tbdnlink, and hence a&,
increases, Reno achieves more and more bandwidth since gh@nmgdunction penalizes
Reno less and less.

As K, increases, one may expect that the Reno throughput curvegure=6.1 that
correspond to Vegas starting first will converge to the saaleevfor the case when Reno
starts first. It is not possible to exhibit this beyoA@ = 600 at link 2. As shown in
Figure 6.1, the utilization at link 1 is more than 95% whén = 600. Even though link 1
is not saturated yet, it is so close to being saturated timalora fluctuations in the queue
can readily shift the system from the current equilibriumenehonly link 2 is saturated to

the other equilibrium where links 1 and 3 are saturated @ik 2 is not). See a clear
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demonstration of this phenomenon in Experiment 6.3.

Experiment 6.2: varying K.
In this experiment, we fiX<, = 100 at link 2 and varyK; at link 1 and link 3 simul-

taneously from 5,000 to 11,000. The results are summarizé&dgure 6.2. When Vegas
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RED Parameter linterm at Link 1 and Link 3 RED Parameter linterm at Link1 and Link3
(a) Aggregate Reno throughput (b) Link utilization at link 2

Figure 6.2: Experiment 6.2: Aggregate Reno throughput aridutilization at link 2.

flows start first, the bottleneck link is link 2 and thereforglbthe aggregate Reno through-
put and the utilization at link 2 are independent’of. When Reno flows start first, on the
other hand, links 1 and 3 become saturated and varingffect both the aggregate Reno
throughput and link 2’s utilization. The theoretical pretéhns track the measured data,
but are generally larger than the data. The main reasontid/édgas flows overestimated
base RTT when Reno flows start first and maintain a nonzero qiitea Vegas flows be-
come more aggressive and suppress Reno flows more than thdy;s$ee [47] for more
discussion on the effect of error in base RTT estimation.

As K decreases at links 1 and 3, Reno flows see more losses andtiéma syay shift
to the other equilibrium where only link 2 is saturated. F@tance, from Figure 6.2, the

utilization at link 2 is close to 95 percent whéf = 5000.

Experiment 6.3: shifting equilibria.
This experiment shows that the system can shift back ank bstween the two equi-
libria when the utilization of the unsaturated link(s) idfguently close to 100 percent so

that the system can readily jump between two disjoint acoestraint sets due to random
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fluctuation. The slope&’; = 3500 at link 1 and link 3 andx, = 500 at link 2. The simu-
lation duration is 1000 sec. The queues at link 1 and link Zhoevn in Figure 6.3. This

result unambiguously exhibits that there are two equailand they are both achieved.
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Figure 6.3: Experiment 6.3: Queue sizes at link 1 and link Be $ystem shifts between
the two equilibria with disjoint active constraint sets.

6.2 Proof of Theorem 2.8

By Corollary 2.7, we only need to prove thafp) = (—1)" for any equilibriump € E.
Sincedet(J (p)) = (—1)" det(—J (p)), the condition reduces tet(—J(p)) > 0. Now
T Om’

~J(p) = =Y RD(p)(R) =5, @

where M7 = M (p) = 8(3; (p) is a diagonal matrix, and®’ = BJ(p) is defined by its

elements

N
; 0*U!
By, = Z Ry Ry <_8(xj)2> (6.1)
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Hence

det(=J(p)) = det

Z BI M7

J

L J
= ngrknz (B M],, (6.2)
k

=1 j=1

Here, the summation oveét = (ki,..., k) € {1,...,L}* is over all L! permutations
of the L items{1,..., L}. The function sgk is 1 if the minimum number of pairwise
interchanges necessary to achieve the permutatgiarting from(1,2, ..., L) is even and
—1ifitis odd.

Let 7 denote anlL-bit binary sequence that represents the path consistirxanftly
those linksk for which thekth entries ofr are 1, i.e.qr;, = 1. LetIl(k, 1) := {n|m, = m =
1} be the set of paths that contain both linkand!. Let I7 = {i|R], = 1 if and only if
m = 1} be the set of typg sources on path, possibly empty. Let

2= - ¥ (-2%) 63

ield 8(33i

wherer? is zero if I is empty. Since all utility functions are assumed concaye> 0.

Then we have from (6.1) and (6.3)

Bl= Y 1l (6.4)
nell(k,l)
This together with (6.2) implies
J .
det(—=J(p)) = > sgk][ D [ rl (6.5)
k =1 j=1 mell(ky,l)

Consider any sequencg;,j € J;,i = 1,...,1, whereJ; is a finite index set that
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depends on. We have

HZ Aij = ZH Qij; (6.6)

wherej denotes the vector index= (ji,...,J;) and the summation is over all values in
Jl X X J].
Using (6.6) to change the order of product ovend summation ovey in (6.5), we

have
L
det(~J(p)) = S_sgrk S T (i > w2
k Jj =1 m€M(ky,l)

where the vector index = (ji, ..., j.) ranges ovef1, ..., J}L. Applying (6.6) again to

change the order of product oveand summation over the index we have

det(—J(p)) = > _sgk > u(F) > p(G,w) (6.7)
k Jj well(k,l)
where
L .
wg) = [ (6.8)
=1
L .
p(G.m) = [ (6.9)
=1
The last summation in (6.7) is over the vector index= (7!, ..., w*) that takes value in

the set{ all L-bit binary sequencel. As mentioned aboved, = (1, ..., L) denotes the
identity permutation, andst € TI(k,1)” is a shorthand for #! € T1(k;,1),l = 1,...,L".
Denote byl (a) the indicator function that i$ if the assertioru is true and) otherwise.

Then (6.7) becomes

det(=J(p)) = > > C(i,m) p(g, ) (6.10)

7 ™
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where
= ) 1(w € (k,1)) sgrk u(5) (6.11)
k

Hencedet(—J(p)) is a summation, over the indgx, =), of termsp(j, 7) with coef-
ficientsC(7, 7). We now show that only those terms for which the constituérin the

productp(7, 7) are all distinct have nonzero coefficients.

Lemma 6.1. Consider a term in the summation in (6.21) indexed fyr). If there are

integersa, b € {1,..., L} such thatj, = j, andr® = =°, thenC(j,m) = 0.

Proof. Fix any (j, 7). Suppose without loss of generality that= j; and=! = =2 and
p(3,7) # 0. We now show that its coefficieidt (g, ) = 0.

Consider any permutatiatin (6.11) that gives a nonzero coefficient(fij, ):
1(m € II(k, 1)) sgrk u(j) = sgrkpu(s) (6.12)
This means that
€ (k;,1) and 72 € II(ky,?2)
Hence, sincer! = 72, the pathr! goes through all links, 2, k1, k». In particular
€ (ky, 1) and 72 € II(ky,2)

Therefore there is a permutatidnin (6.11) withk; = ko, ks = ki, andk, = k, for [ > 3
for which 1(m € TI(k,1)) = 1 but sgrk = —sgrk. This yields a term-sgrk 1(3) in
C(j,m) which exactly cancels the term in (6.12). Since the argurappties to anyk in
(6.11),C(j, 7) = 0. 0

In view of Lemma 6.1, we will restrict the summation over thdéx(j, ) in (6.21) to

the largest subset dfi, ..., J}* where the constituent in p(j, w) are all distinct. Let®



94

denote this subset. We abuse notation and define permutatiofl, ..., L}* on© by

o(j,7) = (o(j),on))

Then let©, be the largest subset 6fthat ispermutationally distingti.e., no vector iro,
is a permutation of another vector @,. The set of permutations € {1,...,L}* isin
one-one correspondence with the seff =’) that are permutations of a givép, =) in
©o.1 This allows us to carry out the summation oygr) in (6.21) first over(j, =) that
are permutationally distinct and then over all their pertions. Notice that, given any

(7, 7) and any permutatiosr, we have from (6.9)

plo(g),o(m) = p(3,m)

i.e., p is invariant to permutations. Hence, we can rewrite (6.@L}) as

det(=J(p)) = Y. D(G,m)p(d,m) (6.13)

(J',“)Geo

where

(6.14)

In the above/-vectorse andk are permutations.
The next lemma converts a condition effrr) into one ons. It follows directly from

the definition of permutation.

Lemma 6.2. For any 7 and any permutations, k, we have
o(w)ell(kl) & wecl(o ko™

i.e.,[o(m)]; € U(k;, 1) for all L if and only ifr! € H(kgfl,al‘l) for all [.

1The one-one correspondence fails to hold for permutatioh&re.
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Applying Lemma 6.2 to (6.26), we have

D(j,m) = Y Y Umel(o ko)) sgku(o(j))

Sincek, and hencer—'k, range over all possible permutations, we can replace thexin

variableo 'k by k to get

D(G,w) = Y Y Umel(k,o) sgnke) u(o(5))
’ (6.15)

We now use (6.15) to derive a sufficient condition under whikh, =) are nonnegative
for all permutationally distinctj, ). The main idea is to show that for every negative
term in the summation in (6.15), either it can be exactly eflad by a positive term, or
we can find two positive terms whose sum has a larger or equgthitnde under the given

condition. This lemma directly implies Theorem 2.8.

Lemma 6.3. Suppose assumptions A1-A3 hold. Suppose foj any1, ..., J}* and any

permutationsr, k,nin {1,..., L}¥, we have for a regular network

p(k(3)) +pn(g)) = plo(d))

Then, for all(3, ) € Oy, D(j,m) > 0.

Proof. Fix any(j, ) € ©,. Each term in (6.15) is indexed by a pédr, k).

Fix also a permutatiosr in (6.15). Suppose there is only one permutafidior which
the term indexed byo, k) has a negative sign given iyr € TI(k, o '))sgnko) = —1.
Thistermis then-u(o(3)) < 0. Since the summation ov&rranges over all permutations,
we can find a positive term, indexed Iy, k) with k = o, that exactly cancels this
negative term. This is becausér € II(k,o!)) is alwaysl and sgtko) = sgrl = 1,
yielding the termu(o(7)). Hence we have shown that, given if there is only onek
that yields a negative term, then it is always cancelled lotlaar positive term indexed by

(o, k) with k = o~ 1.
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Given ao, suppose now there are two permutati&éns for which
wcllk,o) and well(n,o?) (6.16)

and sgitko) = sgnno) = —1. Each of(o, k) and (o, n) yields a negative term
—u(o (7)) in the summation in (6.15). Notice that (6.27) says thatafbk =1, ..., L, the
pathr! contains link pairgk;, ;') and(n;, 0, '). Hencer! also pass through link pairs

(o7 0, (kay ) and(ny, k), e,

wclloc o)) (6.17)
m e ll(k,n), mecll(n,k) (6.18)

(6.29) implies that there is a positive term in the summatio(6.15) indexed by(o, 12:)

with k = o1
sgno 'o)u(o(j)) = p(o(g) > 0

It cancels the negative termu(o (7)) in the summation indexed by, k).
To deal with the negative termu(o (7)) indexed by(e, n), note that (6.30) implies
that there are two nonzero terms in the summation, indexdebby, k) and(k~!, n), that

we now argue are positive. Indeed the term indexe¢rby , k) is

sgnkn™") u(n~'(j)) = sgrko(no)™) u(n~'(5))
= sgrko) sgnno) " u(n"(5))

= u(n7'() > 0

where we have used the hypothesis thatkgr) = —1 and sgifino) ™! = sgnno) = —1.
Similarly, the term with indexk ', n) is u(k~1(7)). The hypothesis of the lemma implies
that
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Hence, we have shown that, given if there are two negative terms in the summation in
(6.15) indexed by, k) and(o, ), then we can always find three positive terms, indexed
by, (o,071), (n7!, k) and(k~!, n), so that the sum of these five terms is nonnegative.
If there are more than two negative terms, take adglitional negative term, indexed
by, say,(o, n). The same argument shows that it will be compensated by théumique)

positive terms indexed b !, k) and(k~!, ). This completes the proof. O

Since the network is reguladet(—J (p)) # 0. Lemma 6.3, together with (6.13), im-
plies thatdet(—J(p)) > 0, or equivalently,/(p) = (—1)* for anyp € E, under the
condition of the lemma. Theorem 2.8 then follows from Comgila.7. An illustration for
the proof of Lemma 6.3 via a concrete example={ 3, J = 2) can be found in Appendix
6.3.

Remark: The sufficient condition in Theorem 2.8 can be conservateeabse many

rJ may be zero (no source of typaakes pathr).

6.3 Proof of Theorem 2.10

Proof. It is straightforward to check that only the following sixj, 7r) in (6.13) can have

negative coefficient®(j, ):

.2.92.21 2 92
(A2 + A3 — Al)m1m2m37“111r101r110 (6.19)
.9.9.21 2 9
(A1 + Az — A)ymams i 7011 10
.9.9.921 2 9
(A1 + A2 — Ag)mimgmari o1 Mo
1 1 1
c1.1.12 1 .1
()\_ + ™ )\_)m1m2m37"1117"1017"110
2 3 1
1 1 1
c1.1-.12 1 .1
(v + + — )i mggriy T o
AMA3 A
1 1
c1.1-.12 1 1
(v + + — )i mggri Ton o
Al A A3

The condition in the theorem guarantees that these termallarennegative. By (6.13),
det(—J(p)) > 0. Since the network is regular, we havet:(—J(p)) > 0 for all equilibria

p. Hence the equilibrium is globally unique. O



98

We close this section by illustrating how we determine theffacient D(j, 7) in the
proof of Lemma 6.3. Consider the term fotj, w) = ri, vl r}, in (6.19). Herej =
(1,2,2) andw = ((111),(101),(110)). By (6.26), we need to look at the sum overand
k. First, look ato = (3, 1, 2), the onlyk such thatl (o (7) € II(k,l)) = 1 and sgik = —1
isk = (2,1,3). By the argument in the proof of Lemma 6.3, if we let=1 = (1,2, 3),
we havel (o (w) € II(k,1)) = 1 and sgk = 1 and the sum of these two terms in (6.26) is
zero.

We can visualize this operation as follows: Each entry-of(p) is a sum ofm{r{T
with appropriate signs. When we expand its determinant, viemmlfrom (6.13)—(6.26), a
sum, over a set of source typgspathsm and permutations, k, of termsp(j, =) that are
products of/. Hence we can identify each term in (6.13)—(6.26), indexetjbrw, o, k),
with the original position in—J(p) of each constituent/ in p(j, 7). This is illustrated

below: The negative term

1
Ti11
2 (0' = (3, 1,2>,k = (2’ 173)’Sgrk - _1)

T110

2
T'101

is cancelled exactly by the positive term

2
110
(e =1(3,1,2),k=(1,2,3),sgrk = 1)

1
T111

T%01
Similarly, we have the following two terms that cancel onetaer:

1
T111

(0 =(2,3,1),k = (3,2,1),sgrk = —1)

2
110

T'101
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T1o1
2 (0 =1(231),k=(1,23),sgrk = 1)

T110

1
111

Now considelo = (1, 3,2). We have the following two terms with sgn= —1.

o1
0 (0 =(1,3,2),k=(3,2,1),sgrk = —1)
i i |
1o
i (0=(1,3,2),k=(2,1,3),sgrk = —1)
| T%m ]

Settingk =1 = (1, 2, 3) gives the following positive term:

1
T111
2 (e =1(1,3,2),k=(1,2,3),sgrk = 1)

T110
o1
As described in the proof of Lemma 6.3, we can find two postiérens indexed by some
(o,k). Oneis(o = (3,2,1)(1,3,2) = (2,3,1),k = (3,2,1)74(2,1,3) = (3,1,2)) and
the other is(c = (2,1,3)(1,3,2) = (3,1,2),k = (2,1,3)7(3,2,1) = (2,3,1)). They
can be visualized as the following:

10
ri, | (0=1(2,3,1),k=(3,1,2),sgrk = 1)
i o1 |
o1
o (o0 =(3,1,2),k=(2,3,1),sgrk = 1)
L am |

Form = ((111),(101),(110)), we can actually verify that only the nine terms dis-
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cussed above havEo(w) € Il(k,1))sgrk # 0. Therefore, the coefficienb(j, ) =
#((2,3,1)(5)) + p((3,1,2)(5)) — u((1,3,2)(4)). Notingj = (1,2,2), we finally get

D(G,m) = p((2,2,1) +p((2,1,2)) — p((1,2,2))
= Inirgmng + mirgng — miram;

= (A3 + )Xo — A\)ridnmgm;

6.4 Smallest Network with Multiple Equilibria

Example 6.1: a two-link network with non-unique equilibria
In this example, we assume that all of the sources use the s@ityefunction defined

as

U (z)) = _% (1—af)

i

The network has two links with capacity vector= [1,1]. The corresponding routing

matrices for these two protocols are

R1:R2: 1
1

We use linear price mapping functions (p) = K’p, j = 1,2, whereK’ are2 x 2 matrices

given by
K'=1, K?=diagl,3)

As for Example 1, we check the matrix

i=1 1 4

which has determinant O, implying multiple equilibria.dtaasy to verify that the following
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points are all equilibria:
pr=¢, p=1/4—¢/2, whereee[0,1/2]
The corresponding rates are
v =3/4—¢€/2, 2i=1/4+¢/2
The capacity constraints are all tight. O

Remarks: Note that even with a single protocol, the example above basunique equi-
librium price vectors since the routing matrix is not fulhka However, in that case, the

equilibrium rate vector is unique, unlike the case of migtiprotocols.

6.5 Proof of Lemma 2.16

Proof. Suppose thak is an eigenvalue oB + 17, then diags; — \) + 147 is singular.
If A\ = j; for certaini, then, sinced; > 0, X is positive. Otherwise the following matrix is

also singular:

I + diag ( ) 15" (6.20)

1
Bi— A
The rank of matrix diagl/(3; — \))1yT is 1. Moreover it has only one nonzero eigen-
value equal tdy_, v;/(5; — A). For the matrix in (6.20) to be singular, it must have a zero

eigenvalue, and this is possible if and only if

Vi o
2g—x =

The real part ofy; /(3; — \;) is 7:(3; — ReM)/|B; — A|*>. If Rel < 0, the sum of the real
part ofv; /(5; — A;) cannot be-1. So we must hav&e\ > 0. O
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6.6 Proof of Theorem 3.8

For a real matrixA, if all its principle minors are positived is called aP-matrix. If
ai; > 0, a;; < 0, thenA is called anM-matrix? Clearly if a P-matrix is symmetric, then
it is positive definite and hence stable. However, the Jatolatrix in our problem is
not symmetric due to the fact that multiple protocols exstich is the main difficulty of
setting up stability. Before getting into the main proof, w&tes three lemmas here. One is

refered to [10] for other related results.

Lemma6.4.If AisaP-matrix and also an/-matrix, then all its eigenvalues have positive

real parts.

Proof: Choosex > max; a;;, thenG = ol — A > 0. By the classical Perron-Frobenius
theorem [10], we can find a non-negatiyethat is an eigenvalue af with the largest
modulus. Letu = a — v, thenp is an eigenvalue ofi. Let \ be another eigenvalue of
Aand)\ # pu. Theng = a — X is an eigenvalue ofs. Hence|g| < v. As 3 # v, we
haveR(3) < v whereR(() is the real part of;. ThenRA = a — R(f) > a — v = p. In
short,A has an eigenvalue, which is real and whose real part is less than that of anyrothe
different eigenvalues ofl.

On the other hand, ad is also aP-matrix, it is well known thatA cannot have a
nonpositive real eigenvalues, which can be clearly sean fhe characteristic polynomial
of A. Now suppose there is an eigenvaluef A whose real part is not positive, as we
showed in the last paragraph, there is another eigenyahfeA, which is real and: <
R(A) < 0. This contradicts the fact that is a P-matrix and hence all eigenvalues 4f
have positive real parts.

(]

Remark: It is well known in mathematical economics that if the Jaaabmatrix is an

M-matrix then it is also &-matrix. The main reason is there is another property of the

2We use terminologies from the mathematics community. Asediorelated problems are extensively
studied in economics, there are parallel terminologieg., #.A is a P-matrix, then— A is called Hecksian;

an M-matrix with positive diagonals is referred to as Metzlaraa as having gross substitution property.
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Jacobian matrix that can be obtained by Walras’s law or tbetfeat the demand func-
tion is of homogeneity zero. In our problem, although com@atary slackness condition
can generate the same property as Walras’'s law does (onbudibeium), our Jacobian
matrix is not an)M-matrix. The M-matrix on which we will use this lemma does not
have that additional property and hence needs an additamsalmption to be &-matrix
here. Checking whether a matrix isfamatrix or not is known to be NP-complete [16].
However, using the structure of our problem we can still aizdlly check theP-matrix

condition and hence set up our main result in the next section

Let e be the column vector = [1,1,--- ,1]%.

Lemma 6.5.If Ais an M-matrix and all its eigenvalues have positive realtpathen there
isanD = diag|d,,- - ,d,], d; > 0for all 7, such thatD~'ADe = h > 0. In other words,

A'is diagonally dominant.

Proof: As all eigenvalues ofi have positive real parts, then the real one with the smallest
real part is greater than O, i.e.,> 0. Still defineG = ol — A with o > max; a;; and lety
be an eigenvalue df with the largest modulus. We then have= 1 + v > ~. Again by
the Perron-Frobenius theorefa,/ — G)~' = A~! > 0.

Pick any positive vector > 0, we can concludel~!v > 0 as every row of the nonsin-
gular matrixA~! contains at least one positive element. Define a diagonalxmat > 0

uniquely byDe = A~'v. ThenD*ADe = D v > 0. O

Remark: The above claim provides a sufficient condition to test Whetin\/-matrix is

diagonally dominant, the condition is actually also neags§s6].

For a matrixA, we define its comparison matri¥ (A) = (m;;) by settingm;; = |a;|,
andm;; = —|a;;| if i # j. Clearly M (A) is anM-matrix. The following lemma points
out a simple yet important fact that relates diagonal dongegroperty ofd with positive

diagonal entries and that af (A).

Lemma 6.6. Suppose all diagonal entries dfare positive. If thereisaal = diag|d, - - ,d,],
d; > 0 forall 7, such thatD~*M(A)De = h > 0. ThenD~'ADe > 0, i.e., A is also diag-

onally dominant.
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Proof: For any:, we have

d.;
(D™'ADe); = a; — d—?|aij| = (D"'M(A)De); >0
jA

We now state the proof of Theorem 3.8.
Proof: We need to show all eigenvalues-ef have positive real parts. Itis enough to show
—J is diagonally dominant and by Lemma 6.6 we only need to shia-J) is diagonally
dominant as all diagonal entries etJ are positive (each link has at least one flow using
it). Using Lemma 6.5, it suffices to show that(—.J) is positive stable, which then can be
reduced to check whethdr (—J) is a P-matrix by Lemma 6.4. By similar arguments in
[75], it is enough to showdet(M (—J)) > 0, which will be done in the remainder of the

proof. Following section 6.2, we have

det(=J(p)) = D> C(G.m)plj.m) (6.21)
where
= > 1(mw € I(k, 1)) sgrk u(j) (6.22)
k

For any permutatiok, DefineL;} = {i|k, = [} andL,, = {I|k, # [}. We then have

det(M ZZ G(j,m) p(g, ) (6.23)

where
= ) 1w € (k1)) sgrk(—1)"! u(4) (6.24)
k

Hencedet M (—J(p)) is a summation, over the indé¢x, =), of termsp(j, =) with coeffi-
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cientsG(j, ).
Then let©, be the largest subset of the set of all poss{bler)’s that ispermutationally

distinct i.e., no vector irB, is a permutation of another vector@y. We then have

det(M(=J(p))) = > H(j, ™) p(j, ) (6.25)

(4,m)€600

= Y Z ) e II(k,1)T (6.26)

ocX(j,m)

where

T = sgrk(—1)1"! (o (j))

and (g, ) is the largest subset of the set of all permutatienthat generate distinct
o(j,m).

We now use (6.26) to derive a sufficient condition under witigl, =) are nonnegative
for all permutationally distinctj, 7). The main idea is to show that for every negative
term in the summation in (6.26), either it can be exactly eflad by a positive term, or
we can find two positive terms whose sum has a larger or equgthitnde under the given

condition. This lemma directly implies Theorem 3.8.
Lemma 6.7. Suppose assumptions A1-A3 hold. Suppose foj any1, ..., J}* and any

permutationsr, k,nin {1,..., L}*, we have for a regular network

p(k(3)) +pn(3)) = plo(d))

Then, for all(3, ) € ©y, H(j, ) > 0.

Proof. Fix any (3,7) € 6. Each term in (6.26) is indexed by a p&ir, k). Fix also
a permutatiorr in (6.26). Suppose there is only one permutatkofor which the term
indexed by(a, k) has a negative sign given byo (w) € T1(k,1)))sgnk)(—1)Fxl = —1.

Thistermis then-u(o(5)) < 0. Since the summation ov&rranges over all permutations,
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we can find a positive term, indexed by, k) with k = , that exactly cancels this negative
term. This is becausk(o(w) € I1(1,1)) is alwaysl and sgiil)(—1)/% | = 1, yielding the
term (o (7)). Hence we have shown that, given if there is only onek that yields a

negative term, then it is always cancelled by another pesiérm indexed byo, I%) with

~

k=1

Given ao, suppose now there are two permutati&éns for which
o(m) ell(k,l) and o(w) € l(n,l) (6.27)
and

sgr(k)(—1)!" | = sgn(n)(~1)"*1 = —1 (6.28)

Each of(o, k) and (o, n) yields a negative term-u(o (7)) in the summation in (6.26).
Notice that (6.27) says that, for @l= 1, ..., L, pathso (7)! contains link pairgk;, /) and

(n,1). Henceo (m)! also pass through link pait$, (), (k;, n;) and(n, k), i.e.,

o(m) e II(L,1)) (6.29)
o(m) ell(k,n), o(xw) € l(n, k) (6.30)

(6.29) implies that there is a positive term in the summaiio(6.26) indexed by(o, I%)
with k = L

sgr()(—1)!" (o () = nle(d)) > 0

It cancels the negative termu(o(3)) in the summation indexed kyr, k).
To deal with the negative termp(o (7)) indexed by(e,n), note that (6.30) im-
plies that there are two nonzero terms in the summationxedidy (n~'o,n'k) and

(k~'o,k~'n), that we now argue are positive. Indeed the term indexehbyo, n~'k)
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is sgrin k) (—1)"n—1l pu(n=1(5)). We further have

Ll = |Lg ULnl = |(Ly N L)) (6.31)

n 1kl

= Lyl + |Ly| = 2[(Ly N Ly,)|
Hence

sgr(n‘lk) (—1)|L;_1k| = sgr(n)sgr(k) <_1)|L;| (_1)\Lﬁ|
= 1

The last equality follows from (6.28). Therefore,

sgnn”'k) (1)l = u(n7'(5) > 0

Similarly, the term with indexk~'o, k~'n) is u(k~1(7)). The hypothesis of the lemma

implies that

pn=(3)) + uk™(3) —ule(d) = 0

Hence, giverno, if there are two negative terms in the summation in (6.26gpxed
by (e, k) and (o, n), then we can always find three positive terms, indexed(dyl),
(n~lo,n k) and(k~'o, k~'n), so that the sum of these five terms are nonnegative.

If there are more than two negative terms, take adglitional negative term, indexed
by, say,(o, n). The same argument shows that it will be compensated by théumique)

positive terms indexed bya ‘o, n='k) and(k~'o, k~'n). This completes the proof.[]
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6.7 Proof of Theorem 4.2

Proof. The analysis uses the standard singular perturbatiorligtabsults [40]. By plug-
ging

' ZlEL(i,j) b

into (4.9), we get the reduced system
n) = up@)—a (6.32)

where

x{ = (Uij)/il Z 2
I€L(i,j)
In other words, the reduced system has exactly the same dynas a network with a
single congestion price. Hence it is globally asymptolycatable, which can be verified
by choosing a Lyaponov functioW (p) = D(p) — min(D(p)), whereD(p) is the dual

function. Leto, (p) = |(y(p) — ¢)|, which is a positive definite function. Then

oWy

o (1) = —(y(p) — ¢)* < —¢i(p) (6.33)

Let

and scale time by 7 = £. we get the boundary-layer system

dz’ .
= (6.34)

By using a Lyaponov functiof;(w) = fw” *w, one can show the boundary-layer system
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is globally asymptotically stable. Lef,(z) = sqrt(z7z), which is a positive definite
function. Then

v,

9 dr —2T2 < —¢i(2) (6.35)

Following arguments in [40], to prove the existenceof> 0 in the theorem, we only

need to further check

oVs
||8—;|| < k1ga(2)

and

lly(p, 2) —y(@)|| < kaga(2)

wherek,; and k, are constants. The first one is true by the definitiopfind we can
simply choosek; = 1, the second requirement is also metyais Lipschitz continuous
[46]. O
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