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Abstract

Homogeneity of price is an implicit yet fundamental assumption underlying price based re-

source allocation theory. In this thesis, we study the effects of relaxing this assumption by

examining a concrete engineering system (network with heterogeneous congestion control

protocols). The behavior of the system turns out to be very different from the homogeneous

case and can potentially be much more complicated. A systematic theory is developed that

includes all major properties of equilibrium of the system such as existence, uniqueness,

optimality, and stability. In addition to analysis, we alsopresent numerical examples, sim-

ulations, and experiments to illustrate the theory and verify its predictions.

When heterogeneous congestion control protocols that reactto different pricing signals

share the same network, the resulting equilibrium can no longer be interpreted as a solution

to the standard utility maximization problem as the currenttheory suggests. After intro-

ducing a mathematical formulation of network equilibrium for multi-protocol networks, we

prove the existence of equilibrium under mild assumptions.For almost all networks, the

equilibria are locally unique. They are finite and odd in number. They cannot all be locally

stable unless the equilibrium is globally unique. We also derive two conditions for global

uniqueness. By identifying an optimization problem associated witheveryequilibrium, we

show that every equilibrium is Pareto efficient and provide an upper bound on efficiency

loss due to pricing heterogeneity. Both intra-protocol and inter-protocol fairness are then

discussed. On dynamics, various stability results are provided. In particular it is shown

that if the degree of pricing heterogeneity is small enough,the network equilibrium is not

only unique but also locally stable. Finally, a distributedalgorithm is proposed to steer a

network to the unique equilibrium that maximizes the aggregate utility, by only updating a

linear parameter in the sources’ algorithms in a slow timescale.
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Chapter 1

Introduction

...he intends only his own gain, and he is in this, as in many other cases, led by an

invisible hand to promote an end which was no part of his intention.

— from “The Wealth of Nations” by Adam Smith

Adam Smith is generally regarded as the father of economics.His “invisible hand” idea

has been widely adopted in the modern era to refer to a processin which the outcome to

be explained is produced in a decentralized way (coordinated by the invisible hand), with

no explicit agreements among the acting agents. The classicsetting of the theory has a few

basic assumptions. One fundamental yet frequently ignoredassumption is the homogeneity

of prices. In other words, the invisible hand (price signal)observed by all agents is assumed

to be exactly the same. In this thesis, by studying a concreteengineering system (network

congestion control) which has been modelled using market-based theory, we discover some

consequences of relaxing the price homogeneity assumption. It is demonstrated that both

the results and the mathematical techniques used to derive them are very different from

the traditional theory and our systematic study provides predictions that are verified by ex-

periments. Throughout this thesis, we mainly focus on network congestion control, whose

basic concepts and results are introduced in this chapter. However, the discovery here can

have potential impacts on related problems in both economics and mathematics that will be

discussed later.
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1.1 Network Congestion Control

Congestion control has long been recognized as a very important component of network

regulation, in both traditional transportation networks and modern communication net-

works. It is of particular importance for a giant and heterogeneous network like the Internet,

where congestion can potentially lead to huge performance degradation.

Congestion occurs when the aggregate demand for a certain resource (e.g., link band-

width) exceeds its supply. The effects, using the Internet as an example, include long

transfer delay, high packet loss, frequent packet retransmissions, and even possible con-

gestion collapse [32], where network links are fully utilized but the throughput which an

application obtains is close to zero. This indeed happened historically. In October 1986,

the Internet had one of its first congestion collapses. A linkbetween two terminals in the

Lawrence Berkeley Laboratory and the University of California at Berkeley, which were

about 400 yards apart had its throughput drop from 32 Kbps to 40 bps (about a factor of

1000) ! After a series of similar events, people began to build in the congestion control

component into TCP (Transmission Control Protocol), which has been widely regarded as

a great success and a significant contribution to the triumphof the Internet.

The basic idea behind TCP congestion control is straightforward. Data sources regulate

their sending rates according to feedback signals (packet loss rate for current TCP) from

the network. These signals are generated by links based on their utilization and hence carry

information about the congestion level inside the network.It is worthwhile to note that data

sources only need to know the aggregate congestion signals in their paths, and links update

their congestion signals only based on aggregate traffic going through them. In other words,

it is a distributed system and only local information is used.

Borrowing concepts from economics and tools from optimization and control theory,

significant progress toward understanding network congestion control has been made in

the last decade [39, 46, 55, 84, 41, 44]. In short, we view the rate (primal variable) adapta-

tion at sources and the congestion signal (dual variable) adjustment at links as distributed

primal/dual algorithms to solve a convex optimization problem. When the whole network

reaches its equilibrium, the flow rates maximize aggregate utility while the congestion sig-
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nals, which can be interpreted as market-clearing prices for those resources, solve its dual

problem. For more mathematical details, see section 2.1.3.

This duality theory has its impact in many ways. First, it helps explain previous em-

pirical observations. Second, by showing the global consequence of collective local algo-

rithms, it sets up a framework under which properties like efficiency, and fairness can be

rigorously discussed. Third, with its elegant and simple structure, it allows us to discover

previously unknown behaviors of end-to-end congestion control for networks with arbitrary

topology [74]. Finally, it can help design new protocols that scale better with bandwidth

[35, 80].

1.2 A Motivating Example

The key step in setting up the duality theory for congestion control system is to view con-

gestion signals associated with links as Lagrange multipliers for the corresponding capacity

constraints introduced by links. This, however, directly implies the assumption of homo-

geneity of congestion signals as there is only one set of dualvariables in the duality theory.

This implicit assumption is clearly violated whenever there are data sources that use differ-

ent congestion signals. We now argue that is an important case.

The currently deployed TCP implementation, referred to as TCPReno1 in this thesis,

uses packet loss as its congestion signal to dynamically adapt transmission rate, or equiv-

alently, congestion window size. It has worked remarkably well in the past, but its limita-

tions in wireless networks and in networks with a large bandwidth-delay product have been

well-known and have motivated various proposals that use different congestion signals. For

example, schemes that use queueing delay include the early proposals CARD [33], DUAL

[79] and Vegas [12], and the recent proposal FAST [35, 80]. Solutions that use one-bit

congestion signals include ECN [59, 83, 43], and those that use multi-bit feedback include

XCP [37, 45], MaxNet [82, 81], and RCP [23]. Indeed, the Linux operating system already

allows users to choose from a variety of congestion control algorithms since kernel version

1All our experiments and simulations use NewReno with SACK. These are enhanced versions of the

original Tahoe and Reno, but we refer to them generically as TCP Reno.
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2.6.13 [1]. Clearly, going forward, our network will become amore heterogeneous one in

which protocols that react to different congestion signalsinteract. Yet, our understanding of

such a network is rudimentary at best. With the exception of afew limited analysis on very

simple topologies [54, 42, 44, 27], existing literature generally assumes that all sources are

homogeneous in that, even though they may control their rates using different algorithms,

they all adapt to the same type of congestion signals.

In the remainder of this section, we will experimentally show that the current duality

theory cannot explain even some of the most basic behaviors of networks with heteroge-

neous protocols. This example motivates the study in this thesis.

TCP Reno and FAST are used in the experiments, and we give a briefintroduction to

them here. TCP Reno controls its rate based on end-to-end packet loss probability. At its

equilibrium point, Reno is characterized by the following equation [44]:

qr
i =

2

2 + (xr
i )

2T 2
i

(1.1)

whereqr
i is the end-to-end loss probability. Here, we assume that theround-trip timeTi for

Reno flowi is a constant.

FAST [80] is a high speed TCP variant that uses delay as its maincontrol signal. Every

20ms, a FAST flow adjusts its congestion windowW according to

W ← baseRTT

RTT
W + α (1.2)

where RTT is the current round trip time and baseRTT is the minimum RTT that has been

observed. At equilibrium, each FAST flowi achieves a throughput

x∗i =
α

q∗i
(1.3)

whereq∗i is the equilibrium queueing delay observed by flowi. Hence,α is the number of

packets that each FAST flow maintains in the bottlenecks along its path.

We set up a Dummynet testbed [61] with seven Linux servers as senders and receivers

and three BSD servers to emulate software routers; see Figure1.1. The Linux senders and
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HOST LAB-ML5

HOST:DN_Routerutut 1 HOST:DN_Router-2 HOST:DN_Router-3

HOST:NETLAB-ML1

HOST:NETLAB-ML2

HOST:NETLAB-ML3 HOST:NETLAB-ML4 HOST:NETLAB-ML6

HOST: TLAB-ML7

Figure 1.1: Dummynet setup for Experiments 1.1 and 1.2.

receivers run TCP Reno or FAST. The three emulated routers run FreeBSD 5.2.1. Each

testbed machine has dual Xeon 2.66GHz processors, 2GB of main memory, and dual on-

board Intel PRO/1000 gigabit Ethernet interfaces. The testmachines are interconnected

through a Cisco 3750 gigabit switch. The network is fully configurable, and the link delay

and capacity can be modified on the emulated router. The queueing discipline is Droptail.

We have programmed the Dummynet router to capture various state variables for comput-

ing queue trajectories, loss, and bandwidth utilization. The sender and receiver hosts have

been instrumented to monitor TCP state variables. We use a 2.4.22 modified FAST kernel.

In order to minimize host limitations and accommodate largebursts, we have increased the

Linux transmission queue length to 5000 and ring buffer to 4096. Iperf is used to generate

TCP traffic for each protocol.

We make the following remarks before reporting experimentsin detail:

• We have modified the FAST implementation so that it does not halve its window after

a loss. Therefore it only reacts to queueing delay [76].

• The standard 1500-byte MTU (Maximum Transmission Unit) is used. Thus, 100

Mbps = 8.33 pkts/ms.

• All the queue sizes reported below are exponential moving averages of instantaneous

queue trajectories. Averaging does not affect the equilibrium value, which is of pri-

mary interest here. Note, however, that even though the averaged trajectory may not
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reach buffer capacity, the instantaneous trajectory oftendoes.

The topology of the network is shown in Figure 1.2. Links 1 and3 (which correspond

to the outgoing links of routers 1 and 3) are each configured with 110 Mbps capacity, 50 ms

one-way propagation delay and a buffer of 800 packets. Link 2(router 2) has a capacity of

150 Mbps with 10 ms one-way propagation delay and a buffer size of 150 packets. There

are 8 Reno flows on path 3 utilizing all the three links, with one-way propagation delay of

110 ms. There are two FAST flows on each of paths 1 and 2. Both of them have one-way

propagation delays of 60 ms. All FAST flows use a common parameterα = 50 packets.

Link1 Link2 Link3

Path3

Path1 Path2

Figure 1.2: Multiple equilibria scenario.

Experiment 1.12: multiple equilibrium points

The goal of this experiment is to demonstrate multiple (two)equilibrium points of the

system. It directly contradicts the uniqueness of equilibrium predicted by the duality theory

(the equilibrium is the solution of the utility maximization problem, which is a strictly

convex program and hence admits a unique solution).

Two sets of tests have been carried out with different starting times for Reno and FAST

flows. The intuition is that if FAST flows start first, link 2 will be saturated and links 1

and 3 will not. Since the buffer size for link 2 is small, when Reno flows join, they will

experience so many losses that links 1 and 3 will remain unsaturated. This corresponds

to an equilibrium with a bottleneck link set consisting of link 2 only. If Reno starts first,

on the other hand, links 1 and 3 are saturated while link 2 is not because link 2 has a

higher capacity. Since the buffer size at links 1 and 3 is large, they can generate enough

queueing delay to squeeze FAST flows when they join and keep link 2 unsaturated. This

2Throughout this thesis, packet level simulation and experiment are called "Experiment" while numerical

or theoretical example are called "Example". They are numbered separately.
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corresponds to an equilibrium whose bottleneck link set consists of links 1 and 3. We repeat

the experiments 30 times for both scenarios and obtain the following results.

The average aggregate rates and the standard deviation overthe 30 experiments of all

the flows on each of paths 1, 2, and 3 are shown in Table 1.1 for both starting orders. Since

Path 1 (FAST) Path 2 (FAST) Path 3 (Reno)
FAST start first (52.0, 2.0) Mbps (61.1, 3.3) Mbps (26.6, 4.8) Mbps
Reno start first (13.3, 0.8) Mbps (13.4, 0.8) Mbps (92.7, 0.7) Mbps

Table 1.1: Average aggregate rates and their standard deviations of all flows on paths 1, 2,
3.

the difference in the aggregate rates for each path is far more than the standard deviation,

it is clear that the network reaches very different equilibria depending on which flows start

first. This is further confirmed by queue and throughput measurements shown in Figure 1.3

for link 1 and in Figure 1.4 for link 2 for one of the 30 experiments. The results for link 3

are similar to those for link 1 and are omitted.
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Figure 1.3: Experiment 1.1: queue size and aggregate throughput at link 1.

These figures show that when FAST flows start first, the link 2 queue remains nonzero

while the queue of link 1 (and hence the link 3 queue) remains empty throughout the ex-

periment, as expected. As a consequence, the aggregate throughput at link 2 is close to

capacity while that at link 1 remains low for most of the time.When Reno flows start first,
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Figure 1.4: Experiment 1.1: queue size and aggregate throughput at link 2.

the queue and throughput behaviors are exactly the opposite. For more detailed simulations

on multiple equilibria, refer to Appendix 6.1.

Experiment 1.2: unique equilibrium point

To make sure that the above behavior is indeed caused by the existence of multiple

protocols rather than by different flow arrival patterns, werepeat the experiment with the

same network setup, but using all Reno or all FAST flows. When we use FAST flows along

the long path, the parameterα is set to 30. The average throughput results are summarized

in tables 1.2 and 1.3. They confirm that the network admits a unique equilibrium when a

single protocol is used, regardless of flow arrival patterns.

Path 1 Path 2 Path 3
Short flows start first (47.7, 1.3) Mbps (70.1, 1.8) Mbps (13.4, 1.0) Mbps
Long flow starts first (40.7, 1.5) Mbps (64.9, 2.0) Mbps (21.4, 1.2) Mbps

Table 1.2: Average aggregate rates and their standard deviations of all flows on paths 1, 2,
3 (All flows are Reno).
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Path 1 Path 2 Path 3
Short flows start first (47.2, 1.1) Mbps (72.3, 1.6) Mbps (15.6, 1.2) Mbps
Long flow starts first (46.8, 1.3) Mbps (72.0, 1.7) Mbps (16.3, 1.0) Mbps

Table 1.3: Average aggregate rates and their standard deviations of all flows on paths 1, 2,
3 (All flows are FAST).

1.3 Contributions of This Thesis

In this thesis, we first identify homogeneity of price as an implicit yet fundamental as-

sumption in the current duality theory on price based flow control and explicitly show that,

once this assumption is relaxed, the network can exhibit phenomena that the current theory

fails to explain. We illustrate this through analysis, numerical examples, simulations, and

experiments.

We make two main contributions. First, for networks with heterogeneous protocols, we

examine all the basic issues of equilibrium including existence, uniqueness, optimality, and

stability. These are described in turn in chapters 2 and 3. Second, in chapter 4, we propose

an update in a slow timescale to help a network reach a unique and optimal equilibrium.

Analysis and experiments are used to verify its correctnessand effectiveness.

In chapter 2, we focus on existence and uniqueness of equilibrium. We prove the exis-

tence of equilibrium in general multi-protocol networks under mild assumptions. We show

that for almost all networks, the equilibria are locally unique, and finite and odd in number.

They cannot all be locally stable unless the equilibrium is globally unique. Finally, we

show that if the price mapping functions that relate different prices observed by the sources

are similar, global uniqueness is guaranteed. The similarity requirement is quantified.

In chapter 3, optimality and stability of equilibrium are discussed. By identifying an

optimization problem associated witheveryequilibrium, we show that all equilibria are

Pareto efficient. We also provide an upper bound on efficiencyloss due to pricing hetero-

geneity. On fairness, we show that intra-protocol fairnessis still decided by utility maxi-

mization problem while inter-protocol fairness is the partover which we don’t have control.

However it is shown that we can achieve any desirable inter-protocol fairness by properly

choosing protocol parameters. Various stability results are provided. In particular we prove
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that, if the degree of pricing heterogeneity is small enough, the network equilibrium is not

only unique but also locally stable.

In chapter 4, motivated by the fact that there is in general efficiency loss with heteroge-

neous protocols, we shift our focus from analysis to design by asking the question of how

to steer the network to the globally optimal operating point. We propose a scheme to steer

an arbitrary network to a unique equilibrium that maximizesthe total utility, by updating

in a slow timescale a linear parameter in sources’ algorithms. The scheme uses only local

information. In addition to analysis, we present numericalexamples, simulations and ex-

periments using TCP Reno and FAST to demonstrate the correctness and convergence of

the scheme.

Finally, we conclude in chapter 5 by discussing open issues and questions raised by

this thesis. In addition to natural extension of current results, since the problem sits at the

nexus of engineering and economics and our study has a lot to do with some problems in

the frontier of linear algebra, we point out a few “bigger” related issues in those fields.

Chapter 6 is an appendix that contains detailed simulations and proofs that are too

lengthy to be included in the main text without sacrificing fluency. Readers can skip them

if they are primarily interested in the big picture and main results. However, chapter 6 does

include interesting and original contributions such as theproofs of Theorem 2.8 and 3.8,

which may have impacts on related mathematics and economicsproblems as discussed at

the end of chapter 5.
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Chapter 2

Existence and Uniqueness

Before discussing any performance metric of the congestion control system, which is eval-

uated at equilibrium, one needs to determine fundamental properties of equilibrium, like

existence and uniqueness, which are the focus of this chapter. We prove that equilibrium

still exists, under mild conditions, despite the lack of an underlying concave optimization

problem (Section 2.2). In contrast to the single-protocol case, even when the routing matrix

has full row rank, there can be uncountably many equilibria (Example 2.1 in Section 4.1)

and the set of bottleneck links can be non-unique (Example 2.2 in Section 4.1). However,

we prove that almost all networks have a finite number of equilibria and they are neces-

sarily locally unique (Section 2.3.2). The number of equilibria is always odd, though can

be more than one (Section 2.3.2). Moreover, these equilibria cannot all be locally stable

unless the equilibrium is globally unique (Section 2.3.2).Finally, we provide two sufficient

conditions for global uniqueness of network equilibrium (Sections 2.3.5 and 2.3.4). The

first condition implies that if the price mapping functions that map link prices to effective

prices observed by the sources do not differ too much, then global uniqueness is guaran-

teed. The second condition generalizes the full-rank condition on routing matrix for global

uniqueness from single-protocol networks to multi-protocol networks. Throughout the sec-

tion, we provide numerical examples and simulations to illustrate equilibrium properties or

how theorems can be applied.
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2.1 Model and Notations

2.1.1 Notations

A network consists of a set ofL links, indexed byl = 1, . . . , L, with finite capacitiescl.

We sometimes abuse notation and useL to denote both the number of links and the set

L = {1, . . . , L} of links. Each link has a pricepl as its congestion measure. There areJ

different protocols indexed by superscriptj, andN j sources using protocolj, indexed by

(j, i) wherej = 1, . . . , J andi = 1, . . . , N j. The total number of sources isN :=
∑

j N
j.

TheL × N j routing matrixRj for typej sources is defined byRj
li = 1 if source(j, i)

uses linkl, and 0 otherwise. The overall routing matrix is denoted by

R =
[

R1 R2 · · · RJ

]

Even though different classes of sources react to differentprices, e.g., Reno to packet

loss probability and Vegas/FAST to queueing delay, the prices are related. We model

this relationship through a price mapping function that maps a common price (e.g., queue

length) at a link to different prices (e.g., loss probability and queueing delay) observed by

different sources. Formally, every linkl has a pricepl. A typej source reacts to the "effec-

tive price"mj
l (pl) in its path, wheremj

l is a price mapping function, which can depend on

both the link and the protocol type. The exact form ofmj
l depends on the AQM algorithm

used at the link. One can also take the pricepj
l used by one of the protocols, e.g., queueing

delay, as the common pricepl. In this case the corresponding price mapping function is the

identity function,mj
l (pl) = pl. Taking a link with RED as an example and using delay as

the common pricepl, the price mapping functionml, which relates loss and delay, can now

be explicitly expressed as:

pr
l = ml(pl) =



















0 pl ≤ b

cl

1
K

plcl−b

b−b

b

cl
≤ pl ≤ b

cl

1
K

pl ≥ b
cl

(2.1)



13

whereb, b andK are RED parameters [72].

Letmj(p) = (mj
l (pl), l = 1, . . . L) andm(p) = (mj(pl), j = 1, . . . J). The aggregate

price for source(j, i) is defined as

qj
i =

∑

l

Rj
lim

j
l (pl) (2.2)

Let qj = (qj
i , i = 1, . . . , N j) andq = (qj, j = 1 . . . , J) be vectors of aggregate prices.

Thenqj = (Rj)
T
mj(p) andq = RTm(p).

Let xj be a vector with the ratexj
i of source(j, i) as itsith entry, andx be the vector of

xj:

x =
[

(x1)T , (x2)T , . . . , (xJ)T

]T

Source(j, i) has a utility functionU j
i (xj

i ) that is strictly concave and increasing in its rate

xj
i . LetU = (U j

i , i = 1, . . . , N j, j = 1, . . . , J).

In general, ifzk are defined, thenz denotes the (column) vectorz = (zk, ∀k). Other

notations will be introduced later when they are encountered. We call(c,m,R, U) a net-

work.

2.1.2 Network equilibrium

A network is in equilibrium, or the link pricesp and source ratesx are in equilibrium, when

each source(j, i) maximizes its net benefit (utility minus bandwidth cost), and the demand

for and supply of bandwidth at each bottleneck link are balanced. Formally, a network

equilibrium is defined as follows.

Given any pricesp, we assume in this dissertation that the source ratesxj
i are uniquely

determined by

xj
i

(

qj
i

)

=
[

(

U j
i

)′−1 (
qj
i

)

]+

where
(

U j
i

)′
is the derivative ofU j

i , and
(

U j
i

)′−1
is its inverse, which exists sinceU j

i is
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strictly concave. Here[z]+ = max{z, 0}. This implies that the source ratesxj
i uniquely

solve

max
z≥0

U j
i (z)− zqj

i

As we will see, under the assumptions in this thesis,
(

U j
i

)′−1 (
qj
i

)

> 0 for all the pricesp

that we consider, and hence we can ignore the projection[·]+ and assume without loss of

generality that

xj
i

(

qj
i

)

=
(

U j
i

)′−1 (
qj
i

)

(2.3)

As usual, we usexj (qj) =
(

xj
i

(

qj
i

)

, i = 1, . . . , N j
)

andx(q) = (xj (qj) , j = 1, . . . , J) to

denote the vector-valued functions composed ofxj
i . Sinceq = RTm(p), we often abuse

notation and writexj
i (p), x

j(p), x(p).

Define the aggregate source ratesy(p) = (yl(p), l = 1, . . . , L) at linksl as:

yj(p) = Rjxj(p), y(p) = Rx(p) (2.4)

In equilibrium, the aggregate rate at each link is no more than the link capacity, and

they are equal if the link price is strictly positive. Formally, we callp anequilibrium price,

anetwork equilibrium, or just anequilibrium if it satisfies (from (2.2)–(2.4))

P (y(p)− c) = 0, y(p) ≤ c, p ≥ 0 (2.5)

whereP := diag(pl) is a diagonal matrix. The goal of this chapter is to study the existence

and uniqueness properties of network equilibrium specifiedby (2.2)–(2.5). LetE be the

equilibrium set:

E = {p ∈ <L
+| P (y(p)− c) = 0, y(p) ≤ c} (2.6)

For future use, we now define an active constraint set and the Jacobian for links that
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are actively constrained. Fix an equilibrium pricep∗ ∈ E. Let theactive constraint set

L̂ = L̂(p∗) ⊆ L (with respect top∗) be the set of linksl at whichp∗l > 0. Consider the

reduced system that consists only of links inL̂, and denote all variables in the reduced

system bŷc, p̂, ŷ, etc. Then, sinceyl(p) = cl for everyl ∈ L̂, we haveŷ(p̂) = ĉ. Let the

Jacobian for the reduced system beĴ(p̂) = ∂ŷ(p̂)/∂p̂. Then

Ĵ(p̂) =
∑

j

R̂j ∂x
j

∂q̂j
(p̂)
(

R̂j
)T ∂m̂j

∂p̂
(p̂) (2.7)

where

∂xj

∂q̂j
= diag





(

∂2U j
i

∂(xj
i )

2

)−1


 (2.8)

∂m̂j

∂p̂
= diag

(

∂m̂j
l

∂p̂l

)

(2.9)

and all the partial derivatives are evaluated at the genericpoint p̂.

2.1.3 Current theory: J = 1

In this subsection, we briefly review the current theory for the case where there is only

one protocol, i.e.,J = 1, and explain why it cannot be directly applied to the case of

heterogeneous protocols.

When all sources react to the same price, then the equilibriumdescribed by (2.2)–(2.5)

is the unique solution of the following utility maximization problem defined in [39]:

max
x≥0

∑

i

Ui(xi) (2.10)

subject to Rx ≤ c (2.11)

and its Lagrangian dual [46]:

min
p≥0

∑

i

max
xi≥0

(

Ui(xi)− xi

∑

l

Rlipl

)

+
∑

l

clpl (2.12)
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where we have omitted the superscriptj = 1. The continuity and strict concavity ofUi plus

the compactness of the feasible set guarantee the existenceand uniqueness of the optimal

solution of (2.10)–(2.11).

The basic idea in relating the utility maximization problem(2.10)–(2.11) to the equi-

librium equations (2.2)–(2.5) is to examine the dual of the utility maximization problem,

and interpret the effective priceml(pl) as a Lagrange multiplier associated with each link

capacity constraint (see, e.g., [46, 55, 44]). As long asml(pl) ≥ 0 andml(0) = 0, one can

replacepl in (2.5) byml(pl). The resulting equation together with (2.2)–(2.4) provides the

necessary and sufficient condition forxi(p) andml(pl) to be the primal and dual optimal,

respectively.

This approach breaks down when there areJ > 1 types of prices because there cannot

be more than one Lagrange multiplier at each link. In general, an equilibrium no longer

maximizes aggregate utility, nor is it unique as we have already seen in experiments in sec-

tion 1.2. However, as shown in the next section, existence ofequilibrium is still guaranteed

under the following assumptions:

A1: Utility functionsU j
i are strictly concave and increasing, and twice continuously dif-

ferentiable in their domains. Price mapping functionsmj
l are continuously differen-

tiable in their domains and strictly increasing withmj
l (0) = 0.

A2: For anyε > 0, there exists a numberpmax such that ifpl > pmax for link l, then

xj
i (p) < ε for all (j, i) with Rj

li = 1

These are mild assumptions. Concavity and monotonicity of utility functions are often

assumed in network pricing for elastic traffic. Moreover, most TCP algorithms proposed

or deployed turn out to have strictly concave increasing utility functions; see e.g. [44]. The

assumption onmj
l preserves the relative order of prices and maps zero price tozero effective

price. Assumption A2 says that whenpl is high enough, every source going through linkl

has a rate less thanε, which is satisfied by all TCPs.
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2.2 Existence

In this section, we prove the existence of network equilibrium. We start with a lemma that

bounds the equilibrium prices.

Lemma 2.1. Suppose A1 and A2 hold. Given a network(c,m,R, U), there is a scalarpmax

that upper bounds any equilibrium pricep, i.e.,pl ≤ pmax for all l.

Proof. Chooseε = minl cl/N , and letpmax be the corresponding scalar in A2. Suppose

that there exists an equilibrium pricep and a linkl, such thatpl > pmax. A2 implies that

the aggregate equilibrium rate at linkl satisfies

∑

j

∑

i

Rj
lix

j
i (p) < Nε = min

l
cl

Therefore, we get a link withpl > 0 but not fully utilized. It contradicts the equilibrium

condition (2.5).

The following theorem asserts the existence of equilibriumfor a multi-protocol net-

work.

Theorem 2.2. Suppose A1 and A2 hold. There exists an equilibrium pricep∗ for any

network(c,m,R, U).

Proof. Let pmax be the scalar upper bound in Lemma 2.1. For anyp ∈ [0, pmax]
L, define a

vector function

F (p) := Rx(p)− c (2.13)

For any linkl, let

p−l := (p1, ...., pl−1, pl+1...pL)T

Then we may writeF (p) asF (pl, p−l). Define functionhl as

hl(pl, p−l) := −F 2
l (pl, p−l) (2.14)
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We claim thathl(pl, p−l) is a quasi-concave function inpl for any fixedp−l. By the defini-

tion of quasi-concavity in [56], we only need to check that the set

Al := { pl | hl(pl, p−l) ≥ a }

is convex for alla ∈ <. If a > 0, clearlyAl = ∅ by (2.14). Whena ≤ 0, the setAl can be

rewritten as

Al =
{

pl

∣

∣

∣
−
√

|a| ≤ Fl(pl, p−l) ≤
√

|a|
}

SinceFl(pl, p−l) is a nonincreasing function inpl for any fixedp−l, the setAl is convex.

Thereforehl(pl, p−l) is quasi-concave inpl.

Since[0, pmax] is a nonempty compact convex set, by the theorem of Nash [56],the

quasi-concavity ofhl(pl, p−l) guarantees that there exists ap∗ ∈ [0, pmax]
L such that for all

l ∈ {1, 2...L}

p∗l = arg max
pl∈[0,pmax]

hl(pl, p
∗
−l)

We now argue that, for alll, either 1)Fl(p
∗) = 0, or 2)Fl(p

∗) < 0 and we can take

p∗l = 0. These conditions imply (2.5), and hencep∗ is an equilibrium price.

Case 1: Fl(0, p
∗
−l) > 0. SinceU j

i is strictly concave,Fl(pl, p
∗
−l) is nonincreasing1 in

[0, pmax]. Moreover, the proof of Lemma 2.1 shows thatFl(pmax, p
∗
−l) < 0. Therefore,

there exists a pointp∗l in [0, pmax] whereFl(pl, p
∗
−l) = 0. Thisp∗l maximizeshl(pl, p

∗
−l).

Case 2:Fl(0, p
∗
−l) ≤ 0. SinceFl(pl, p

∗
−l) is a nonincreasing function inpl, we have that

Fl(pl, p
∗
−l) ≤ 0 for all pl ∈ [0, pmax]

If −cl < Fl(0, p
∗
−l) ≤ 0, thenFl(pl, p

∗
−l) andhl(pl, p

∗
−l) are strictly decreasing inpl and

1Fl(pl, p
∗

−l) is strictly decreasing unless somexi(p) becomes zero.
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hence

p∗l = arg max
pl∈[0,pmax]

hl(pl, p
∗
−l) = 0

Otherwise we haveFl(0, p
∗
−l) = −cl from (2.13). In this situation,all xj

i going through

link l are zero, and hence we can setp∗l = 0 without affecting any other prices. More

precisely, a (possibly) new price vectorp̃ with p̃l = 0 andp̃k = p∗k for k 6= l is also a Nash

equilibrium that maximizeshk(pk, p̃−k) for k = 1, . . . , L.

Thus we have proved that, forl = 1, . . . , L,

p∗lFl(p
∗
l , p

∗
−l) = 0, Fl(p

∗
l , p

∗
−l) ≤ 0, p∗ ≥ 0

which is (2.5).

2.3 Uniqueness

2.3.1 Multiple equilibria: examples

In a single-protocol network, if the routing matrixR has full row rank, then there is a

unique active constraint setL̂ and a unique equilibrium pricep associated with it. IfR does

not have full row rank, then equilibrium pricesp may be nonunique but the equilibrium

ratesx(p) are still unique since the utility functions are strictly concave, and the feasible

set is convex.

In contrast, there can be multiple equilibrium prices associated with the same active

constraint set (Example 2.1). Moreover, the active constraint set in a multi-protocol net-

work can be nonunique even ifR has full row rank (Example 2.2). Clearly, the equilibrium

prices associated with different active constraint sets are different.

Example 2.1: unique active constraint set but uncountably many equilibria
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In this example, we assume all of the sources use the same utility function

U j
i (xj

i ) = −1

2

(

1− xj
i

)2
(2.15)

Then the equilibrium ratesxj of typej sources are determined by the equilibrium pricesp

as

xj(p) = 1− (Rj)Tmj(p)

where1 is a vector of appropriate dimension whose entries are all 1s. We use linear price

mapping functions:

mj(p) = Kjp

whereKj areL× L diagonal matrices. Then the equilibrium rate vector of typej sources

can be expressed as

xj(p) = 1− (Rj)TKjp

When only links with strictly positive equilibrium prices are included in the model, we

have

y(p) =
J
∑

j=1

Rjxj(p) = c

Substituting inxj(p) yields

J
∑

j=1

Rj(Rj)TKjp =
J
∑

j=1

Rj1− c

which is a linear equation inp for givenRj, Kj, andc. It has a unique solution if the
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determinant is nonzero, but has no or multiple solutions if

det

(

J
∑

j=1

Rj(Rj)TKj

)

= 0

WhenJ = 1, i.e., there is only one protocol, andR1 has full row rank,det(R1(R1)TK1) >

0 since bothR1(R1)T andK1 are positive definite. In this case, there is a unique equilib-

rium price vector. WhenJ = 2, there are networks whose determinants are zero that have

uncountably many equilibria. See Appendix 6.4 for an example whereR does not have full

row rank. We provide here an example withJ = 3 whereR still has full row rank.

The network is shown in Figure 2.1 with three unit-capacity links,cl = 1.

1x1
2x1

1x2

1x3

3x1

2x2

Figure 2.1: Example 2.1: uncountably many equilibria.

There are three different protocols with the correspondingrouting matrices

R1 = I, R2 =





1 1 0

0 1 1





T

, R3 = (1, 1, 1)T

The linear price mapping functions are given by

K1 = I, K2 = diag(5, 1, 5), K3 = diag(1, 3, 1)
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It is easy to calculate that

3
∑

i=1

Ri(Ri)TKi =











7 4 1

6 6 6

1 4 7











which has determinant 0. Using the utility function defined in (2.15), we can check that the

following are equilibrium prices for anyε ∈ [0, 1/24]:

p1
1 = p1

3 = 1/8 + ε p1
2 = 1/4− 2ε

The corresponding equilibrium rates are

x1
1 = x1

3 = 7/8− ε x1
2 = 3/4 + 2ε

x2
1 = x2

2 = 1/8− 3ε x3
1 = 4ε

All capacity constraints are tight with these rates. Since there is a one-link flow at every

link, the active constraint set is unique and contains everylink. Yet there are uncountably

many equilibria.

Example 2.2: multiple active constraint sets each with a unique equilibrium

Consider the symmetric network in Figure 2.2 with 3 flows, which is the same topology

used experiments in section 1.2.

1x1
2x1

1x2

Figure 2.2: Two equilibrium with different active bottleneck link sets.



23

There are two protocols in the network with the following routing matrices:

R1 =











1 0

1 1

0 1











, R2 = (1, 1, 1)T

Flows(1, 1) and(1, 2) have identical utility functionU1 and source ratex1, and flow(2, 1)

has a utility functionU2 and source ratex2.

Links 1 and 3 both have capacityc1 and price mapping functionsm1
1(p) = m1

3(p) = p

andm2
1(p) for protocols 1 and 2, respectively. Link 2 has capacityc2 and price mapping

functionsm1
2(p) = m2

3(p) = p andm2
2(p).

Theorem 2.3. Suppose assumption A1 holds. The network shown in Figure 4.4 has two

equilibria provided:

1. c1 < c2 < 2c1;

2. For j = 1, 2, (U j)′(xj)→ pj for somepj possibly∞, if and only ifxj → 0;

3. For l = 1, 2,ml(pl)→ p2 aspl → p1, and satisfy

2m1((U
1)′(c2 − c1)) < (U2)′(2c1 − c2)

< m2((U
1)′(c2 − c1))

Proof: We first claim that, ifc1 < c2 and(U2)′(2c1 − c2) > 2m2
1((U

1)′(c2 − c1)), then

there is an equilibrium point where only links 1 and 3 are saturated and link 2 is not. In

this case the equilibrium price for link 2 isp2 = 0 and, by symmetry, those for links 1 and

3 are bothp1. Such an equilibrium, if exists, is defined by the following equations:

(U1)′(x1) = p1 (U2)′(x2) = 2m1(p1)

x1 + x2 = c1 2x1 + x2 < c2
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Eliminatingx2 andp1, the above equations are reduced to:

(U2)′(c1 − x1) = 2m1((U
1)′(x1)) (2.16)

x1 < c2 − c1 (2.17)

An equilibrium exists if and only if (2.16)–(2.17) has a nonnegative solution forx1. We

now show that (2.16)–(2.17) indeed admits a unique solutionx∗ > 0 under the hypothesis

of the proposition.

Whenx1 = 0, we have

(U2)′(c1 − x1) = (U2)′(c1) < p2 ≤ 2p2 = 2m1((U
1)′(0))

The inequality and the last equality have made multiple use of conditions 2 and 3 of the

proposition. On the other hand, whenx1 = c2 − c1, we haveU ′
2(2c1 − c2) > 2m1(U

′
1(c2 −

c1)) by condition 3. Since all functions here are continuous,(U j)′ are strictly decreasing,

andml are strictly increasing, there exists a unique0 < x∗ < c2 − c1 such that(U2)′(c1 −
x∗) = 2m1((U

1)′(x∗)).

We next claim that, ifc2 < 2c1 and(U2)′(2c1 − c2) < m2((U
1)′(c2 − c1)), then there

is an equilibrium point where only link 2 is saturated and links 1 and 3 are not. In this case

p1 = 0, and the following equations determine such an equilibrium:

(U1)′(x1) = p2 (U2)′(x2) = m2(p2)

x1 + x2 < c1 2x1 + x2 = c2

Eliminatingx2 andp2, the equilibrium is specified by

(U2)′(c2 − 2x1) = m2((U
1)′(x1)) (2.18)

x1 > c2 − c1 (2.19)
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Whenx1 = c2 − c1, we have

(U2)′(c2 − 2x1) = (U2)′(2c1 − c2) < m2((U
1)′(x1))

by condition 3. Whenx1 = c2/2

(U2)′(c2 − 2x1) = (U2)′(0) = p2 > m2((U
1)′(x1))

where we have used conditions 2 and 3. Hence, again, there is auniquex∗ that satisfies

(2.18)–(2.19). Moreover, from (2.17) and (2.19), the two equilibria are distinct.

2.3.2 Regular networks

Examples 2.1 and 2.2 show that global uniqueness is generally not guaranteed in a multi-

protocol network. We now show, however, that local uniqueness is basically a generic

property of the equilibrium set. We present our main resultson the structure of the equi-

librium set here, providing conditions for the equilibriumpoints to be locally unique, finite

and odd in number, and globally unique. Proofs of these results are provided in the next

subsection.

Consider an equilibrium pricep∗ ∈ E. Recall the active constraint setL̂ defined byp∗.

The equilibrium pricêp∗ for the links inL̂ is a solution of

ŷ(p̂) = ĉ (2.20)

By the inverse function theorem, the solution of (2.20), and hence the equilibrium price

p̂∗, is locally uniqueif the Jacobian matrix̂J(p̂∗) = ∂ŷ/∂p̂ is nonsingular at̂p∗. We call a

network(c,m,R, U) regular if all its equilibrium prices are locally unique.

The next result shows that almost all networks are regular, and that regular networks

have finitely many equilibrium prices. This justifies restricting our attention to regular

networks and allows us to further characterize the structure of equilibrium set by using

index theorem.
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Theorem 2.4. Suppose assumptions A1 and A2 hold. Given any price mapping functions

m, any routing matrixR and utility functionsU ,

1. The set of link capacitiesc for which not all equilibrium prices are locally unique

has Lebesgue measure zero in<L
+.

2. The number of equilibria for a regular network(c,m,R, U) is finite.

For the rest of this subsection, we narrow our attention to networks that satisfy an

additional assumption:

A3: Every link l has a single-link flow(j, i) with
(

U j
i

)′
(cl) > 0.

Assumption A3 says that when the price of linkl is small enough, the aggregate rate

through it will exceed its capacity. This ensures that the active constraint set contains

all links and facilitates the application of Poincare-Hopftheorem by avoiding equilibrium

on the boundary (somepl = 0).2

Since all the equilibria of a regular network have nonsingular Jacobian matrices, we

can define theindexI(p) of p ∈ E as

I(p) =







1 if det (J(p)) > 0

−1 if det (J(p)) < 0

Then, we have a global characterization of equilibrium set stated as the next theorem.

2It is recently shown in [67] that A3 is not necessary and one can generalize Theorem 2.5 to

∑

p∈E

(−1)L̂(p)I(p) = 1

whereL̂(p) is the number of links of the active constraint set associated with equilibrium p. Clearly, if

L̂(p) = L, it reduces to Theorem 2.5. This generalized theorem also allows us to conclude the number

of equilibria is odd (and therefore existence) without A3. In this dissertation, although A3 is imposed for

ease of presentation, all results can be viewed with respectto a fixed active constraint set with appropriate

modifications. In particular, the global uniqueness results in section 2.3.4 directly apply without A3 sincêJ

has the same structure asJ except with a smaller dimension.
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Theorem 2.5.Suppose assumptions A1–A3 hold. Given any regular network, wehave

∑

p∈E

I(p) = (−1)L

whereL is the number of links.

To help appreciate Theorem 2.5, we give its two important consequences.

Corollary 2.6. Suppose assumptions A1–A3 hold. A regular network has an odd number

of equilibria.

Notice that Corollary 2.6 implies the existence of equilibrium. Although we proved this

in section 2.2 in a more general setting, this simple corollary shows the power of Theorem

2.5.

The next result provides a condition for global uniqueness.We say that an equilibrium

p∗ ∈ E is locally stableif the corresponding Jacobian matrixJ(p∗) defined in (2.7) is

stable, that is, every eigenvalue ofJ(p∗) = ∂y(p∗)/∂p has negative real part. For justifi-

cation of this definition, local stability ofp∗ implies that the gradient algorithm (2.23) later

converges locally.

Corollary 2.7. Suppose assumptions A1–A3 hold. The equilibrium of a regular network

is globally unique if and only if every equilibrium point inE has an index(−1)L. In

particular, if all equilibria are locally stable, thenE contains exactly one point.

This result may seem surprising at first sight as it relates the local stability of an algo-

rithm to the uniqueness property of a network. This is because both equilibrium and local

stability are defined in terms of the functiony(p): an equilibriump∗ satisfiesy(p∗) = c and

the local asymptotic stability ofp∗ is determined by∂y(p∗)/∂p. The connection between

these two properties is made exact by the index theorem. An implication of this result is

that if there are multiple equilibria, then no algorithṁp = f(p(t)), whose linearization

around each equilibriump∗ ∈ E satisfies∂f(p∗)/∂p = Λ∂y(p∗)/∂p, can be found to

locally stabilize all of the equilibria.
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Corollary 2.7 will be used in Section 2.3.4 to derive a sufficient condition on price

mapping functionsm for global uniqueness. We close this subsection with an example that

illustrates Theorem 2.5 and Corollaries 2.6 and 2.7.

Example 2.3: illustration of Theorem 2.5 and Corollaries 2.6,2.7

We revisit Example 2.1 with different utility functions. Recall that in Example 2.1, asε

varies from 0 to1/24, we trace out all equilibrium points. The componentsx1
1 andq1

1 = p1
1

of these equilibrium points are shown by the (red) solid linein Figure 2.3. Other sourcesxj
i

and their effective end-to-end pricesqj
i also lie on similar straight lines. Since the network

has uncountably many equilibrium points, it is not regular.To make it regular, suppose we

change the utility functions of sources(j, i) to

U j
i (xj

i , α
j
i ) =







βj
i (x

j
i )

1−α
j
i/(1− αj

i ) if αj
i 6= 1

βj
i log xj

i if αj
i = 1

with appropriately chosen positive constantsαj
i andβj

i . These utility functions can be

viewed as a weighted version of the widely usedα-fairness utility functions proposed in

[55].

The basic idea of how to chooseαj
i andβj

i to generate only finitely many equilibrium

points is as follows. First, we pick two points in the equilibrium set of Example 2.1, say,

the points associated withε = 0.01 andε = 0.04. These choices ofε provide two distinct

equilibrium points(q, x) and(q̃, x̃). For instance,(q1
1, x

1
1) = (0.135, 0.865) corresponds to

ε = 0.01 and(q̃1
1, x̃

1
1) = (0.165, 0.835) corresponds toε = 0.04, as illustrated in Figure 2.3.

Then, for each source(j, i), findαj
i andβj

i such that (2.3) is satisfied by the two equilibrium

points(qj
i , x

j
i ) and(q̃j

i , x̃
j
i ) with the new utility functions. This is illustrated in Figure 2.3

where relation (2.3) with the new utility function is represented by the (blue) curve, andαj
i ,

βj
i are chosen so that the curve passes through the original equilibrium points(x1

1, q
1
1) and

(q̃, x̃). More specifically, given two equilibrium points(qj
i , x

j
i ) and(q̃j

i , x̃
j
i ), choose

αj
i =

log(qj
i )− log(q̃j

i )

log(x̃j
i )− log(xj

i )
βj

i = qj
i

(

xj
i

)α
j
i
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x 11

q 11

1=(β
1
1/q

1
1)1/α1

1  x 1

5/6

7/8

1/8 1/6

  

(0.135,0.865)

  

(0.165,0.835)

Figure 2.3: Example 2.3: construction of multiple isolatedequilibria.

The resultingαj
i andβj

i for all flows (j, i) are shown in Table 2.1.

Table 2.1: Example 2.3:αj
i andβj

i .
Flows αj

i βj
i

x1
1 5.6851 0.0592
x1

2 4.0285 0.0803
x1

3 5.6851 0.0592
x2

1 0.0322 0.8389
x2

2 0.0322 0.8389
x3

1 0.0963 0.7041

By construction, both (p1
1 = 0.135, p1

2 = 0.230) and (p1
1 = 0.165, p1

2 = 0.170) are net-

work equilibria. By Corollary 2.6, there is at least one additional equilibrium. Numerical

search indeed located a third equilibrium with (p1
1 = 0.142, p1

2 = 0.206).

We further check the local stability of these three equilibria under the gradient algorithm

(2.23) to be introduced in Section 2.3.3. The eigenvalues and index for each equilibrium

are shown in Table 2.2. It turns out that the equilibrium (p1
1 = 0.142, p1

2 = 0.206) is not

stable and has index 1, while the other two are stable with index −1. The dynamics of

Table 2.2: Example 2.3: stability and indices of equilibria.
Equilibria (p1, p2, p3) Eigenvalues Index
(0.135, 0.23, 0.135) −0.21,−17.43,−26.73 −1
(0.142, 0.206, 0.142) 0.21,−12.32,−22.40 1
(0.165, 0.17, 0.165) −12.41,−1.67,−0.67 −1
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this network under the gradient algorithm is illustrated bya vector field. By symmetry, the

equilibrium prices for the first and third link are always same. Therefore, we can draw the

vector field restricted on the planep1 = p3 to demonstrate the dynamics of the system. That

is shown in Figure 2.4. The (red) dots represent the three equilibria. Note the equilibrium

in the middle is a saddle point, and therefore unstable. The (red) arrows give the direction

of this vector field. Individual trajectories are plotted with thin (blue) lines.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

p
1

p 2

Figure 2.4: Example 2.3: vector field of (p1, p2).

2.3.3 Proofs

In this subsection we provide proofs for the results in Section 2.3.2.

Proof of Theorem 2.4. The main mathematical tool used in our proof is Sard’s Theorem

[18, 70], of which we quote a version here that is tailored to our problem. LetG be an open

subset of<L
+ and letF be a continuously differentiable function fromG to <L

+. A point

y ∈ G is acritical point ofF if the Jacobian matrix∂F/∂y of F at y is singular. A point

z ∈ <L
+ is acritical value ofF if there is a critical pointy ∈ G with z = F (y). A point in

<L
+ is aregular value ofF if it is not a critical value.

Sard’s theorem. If F : G → <L
+ is continuously differentiable on the open subsetG ⊆

<L
+, then the set of critical values ofF has Lebesgue measure zero in<L

+.

Fix a routing matrixR and utility functionsU . There are at most2L−1 different active
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constraint sets. Let̂L ⊆ L be such a combination witĥL links. Consider the set of all

possible link capacitiesc = (cl, l ∈ L) under which the active constraint set isL̂, i.e., with

such a capacity vectorc, an equilibrium pricep haspl > 0 if l ∈ L̂ andpl = 0 otherwise.

Fix such an equilibrium pointp∗. Again let p̂ denote the price vector only for links in̂L.

Thenp̂∗ is not locally unique if the function̂y : <L̂
+ → <L̂

+ defined byŷ(p̂) = R̂x(p̂) has

a singular Jacobian matrix∂ŷ/∂p̂ at p̂∗, i.e., if p̂∗ is a critical point ofŷ. The set of such

capacity vectorŝc ∈ <L̂
+ under which all links inL̂ have active constraints in equilibrium

satisfy

ŷ(p̂∗) = ĉ

and hence are critical values ofŷ. Sinceŷ is continuously differentiable by assumption A1,

we can apply Sard’s theorem and conclude that the set of such capacity vectorŝc has zero

Lebesgue measure in<L̂
+. The extension to<L

+ for all link capacities clearly also has zero

Lebesgue measure in<L
+.

Since we only have a finite number of different active constraint sets, the union of

link capacity vectors that give rise to locally nonunique equilibria still has zero Lebesgue

measure. This proves the first part of the theorem.

The equilibrium setE defined in (2.6) is closed becausey(p) is continuous, and is

bounded by Lemma 2.1. HenceE is compact. Since(c,m,R, U) is a regular network,

everyp ∈ E is locally unique, i.e., for eachp ∈ E we can find an open neighborhood such

that it is the only equilibrium in that open set. The union of these open sets forms a cover

for setE. SinceE is compact, it admits a finite subcover [48], i.e.,E can be covered by

a finite number of open sets each containing a single equilibrium. Hence, the number of

equilibria is finite.

Proof of Theorem 2.5.By assumption A3, we can always findpmin > 0 such that for any

pricep and linkl with pl < pmin, we have

∑

j

∑

i

Rj
lix

j
i (p) > cl
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Let G := [pmin, pmax]
L wherepmax is defined in Lemma 2.1. Clearly, all equilibria are in

the setG. To prove our result, we will invoke a version of the Poincare-Hopf index theorem

tailored to our problem [78, 53].

Poincare-Hopf index theorem. Let D be an open subset of< andv : DL → <L be a

smooth vector field, with nonsingular Jacobian matrix∂v/∂p at every equilibrium. If there

is aG ⊆ DL such that every trajectory moves inward of regionG, then the sum of the

indices of the equilibria inG is (−1)L.

Gradient project algorithm. To construct the vector fieldv required by the index theorem,

letDL = G and consider the following gradient algorithm fromG toG proposed in [46].

The prices are updated at timet according to

ṗ(t) = Λ (Rx(t)− c) (2.21)

whereΛ > 0 is anL×L diagonal matrix with all elements being positive. A source updates

its rate based on the end-to-end price

x(t) = x(p(t)) (2.22)

A consequence of assumption A3 is thatp(t) ≥ pmin > 0 for all t under the gradient

algorithm (2.21)–(2.22). This guarantees a unique active constraint set that isL. Hence the

equilibrium setE defined in (2.6) is equivalent toE = {p ∈ <L
+ | y(p)− c = 0}.

Combining (2.21)–(2.22) withy(p(t)) = Rx(t) yields the required vector fieldv:

ṗ(t) = Λ(y(p(t))− c) =: v(p(t)) (2.23)

whose Jacobian matrix is:

∂v

∂p
(p) = ΛJ(p) = Λ

∂y

∂p
(p) (2.24)

whereJ(p) is given by (2.7). Clearly,p∗ is an equilibrium point ofv, i.e.,v(p∗) = 0, if and



33

only if p∗ is a network equilibrium, i.e.,p∗ ∈ E. Since the network(c,m,R, U) is regular,

J(p) is nonsingular at every network equilibriump∗ ∈ E ⊂ G. SinceΛ is a positive

diagonal matrix,∂v(p)/∂p is also nonsingular by (2.24) at all its equilibrium pointsp in G,

as the index theorem requires.

Consider any pointp on the boundary ofG. For anyl, we have one of two cases:

1. If pl(t) = pmax, link l will be underutilized,yl(p(t)) < cl, andṗl < 0 according to

(2.23).

2. If pl(t) = pmin, the aggregate rate at linkl will exceedcl, yl(p(t)) > cl, andṗl > 0

according to (2.23).

Therefore, every pointp on the boundary ofG will move inward and our result directly

follows from the Poincare-Hopf index theorem.

Proof of Corollary 2.6. Since bothI(p) and(−1)L are odd, the number of terms in the

summation in Theorem 2.5 must be odd.

Proof of Corollary 2.7. The first claim of the theorem directly follows from Theorem

2.5. We now claim that an equilibriump∗ ∈ E which is locally stable has an indexI(p∗)

of (−1)L. To prove the claim, consider a locally stable equilibrium price p∗. All the

eigenvalues ofJ(p∗) have negative real parts. Moreover, sinceJ(p∗) has real entries,

complex eigenvalues come in conjugate pairs. The determinant of J(p∗) is the product of

all its eigenvalues. If there arek conjugate pairs of complex eigenvalues andL − 2k real

eigenvalues, the product of all eigenvalues has the same sign as(−1)L−2k, which has the

same sign as(−1)L. Hence the index of a locally stable equilibrium is(−1)L.

2.3.4 Global uniqueness: mapping functionsm(p)

In this and the next subsections, we provide sufficient conditions on the structure of the

network for global uniqueness. We also provide some important special cases in section

2.3.6 where global uniqueness is guaranteed. In this subsection, we reveal that, if the price

mapping functionsmj
l are similar, then the equilibrium of a regular network is globally

unique.
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2.3.4.1 General result

To state the result concisely, we need the notion of permutation. We call a vectorσ =

(σ1, . . . , σL) apermutationif eachσl is distinct and takes value in{1, . . . , L}. Treatingσ as

a mappingσ : {1, . . . , L} → {1, . . . , L}, we letσ−1 denote its unique inverse permutation.

For any vectora ∈ <L, σ(a) denotes the permutation ofa underσ, i.e., [σ(a)]l = aσl
. If

a ∈ {1, . . . , L}L is a permutation, thenσ(a) is also a permutation and we often writeσa

instead. Letl = (1, . . . , L) denote the identity permutation. Thenσl = σ. See [52] for

more details. Finally, denotedmj
l /dpl by ṁj

l .

Theorem 2.8. Suppose assumptions A1–A3 hold. If, for any vectorj ∈ {1, . . . , J}L and

any permutationsσ,k,n in {1, . . . , L}L,

L
∏

l=1

ṁ
[k(j)]l
l +

L
∏

l=1

ṁ
[n(j)]l
l ≥

L
∏

l=1

ṁ
[σ(j)]l
l (2.25)

then the equilibrium of a regular network is globally unique.

Proof. See Appendix 6.2.

Theorem 2.8 implies that if the (slopes of the) price mappingfunctions are “similar”,

then global uniqueness is guaranteed, as the following corollary shows: Ifṁj
l do not differ

much across source types at each link, or they do not differ much along links in every

source’s path, the equilibrium is unique.

Corollary 2.9. Suppose assumptions A1–A3 hold. The equilibrium of a regular network is

globally unique if any one of the following conditions holds:

1. For eachl = 1, . . . , L, j = 1, . . . , J

ṁj
l ∈

[

al, 2
1
Lal

]

for someal > 0 (2.26)

2. For eachj = 1, . . . , J , l = 1, . . . , L

ṁj
l ∈

[

aj, 2
1
Laj
]

for someaj > 0 (2.27)
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Proof. If (2.26) holds, we have for anyjl, ĵl, j̃l in {1, . . . , J}

L
∏

l=1

ṁjl

l +
L
∏

l=1

ṁĵl

l ≥ 2
∏L

l=1 al =
∏L

l=1 2
1
Lal ≥

L
∏

l=1

ṁj̃l

l

which implies the sufficient condition in Theorem 2.8.

For the second assertion, fix anyj in {1, . . . , L}L and any permutationsσ,k,n in

{1, . . . , L}L. If (2.27) holds, we have

L
∏

l=1

ṁ
[k(j)]l
l +

L
∏

l=1

ṁ
[n(j)]l
l ≥ 2

L
∏

l=1

ajl =
L
∏

l=1

2
1
Lajl

≥
L
∏

l=1

ṁ[σ(j)]l

which implies the sufficient condition in Theorem 2.8.

Remarks:

1. Asymptotically whenL→∞, both conditions (2.26) and (2.27) converge to a single

point. Condition (2.26) reduces tȯmj
l = al which essentially says that all protocols

are the same (J = 1). Condition (2.27) reduces tȯmj
l = aj, which is the linear link

independent case that will be discussed in Theorem 2.14.

2. These link-based uniqueness results hold for a network whenever no flow uses more

thanL links.

2.3.4.2 L = 3 and J = 2 case

We now focus on the case ofL = 3, J = 2 and provide stronger results than a direct

application of Theorem 2.8. This case represents the smallest network that can exhibit non-

unique equilibrium points if A1–A3 are satisfied andR is full rank (see Theorem 2.17).

Theorem 2.10.Suppose assumptions A1–A3 hold for a three-links regular network with
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two protocols. If the following six inequalities hold, the network has a unique equilibrium:

λ2 + λ3 ≥ λ1, λ1 + λ3 ≥ λ2, λ1 + λ2 ≥ λ3

1

λ2

+
1

λ3

≥ 1

λ1

,
1

λ1

+
1

λ3

≥ 1

λ2

,
1

λ1

+
1

λ2

≥ 1

λ3

whereλl := ṁ1
l (p)/ṁ

2
l (p).

Proof. See Appendix 6.3.

A straightforward corollary is the following:

Corollary 2.11. Suppose assumptions A1–A3 hold. For a three-links regular network with

two protocols, if, for alll, λl ∈ [a, 2a] for some constanta > 0, the network admits a

globally unique equilibrium.

Remark: If ṁj
l = kj are link independent , thenλl = k1/k2 ∈ [a, 2a] for anyk1/2k2 ≤

a ≤ k1/k2. Hence global uniqueness is guaranteed, which agrees with Theorem 2.14.

We illustrate in Figures 2.5 and 2.6 the regions ofλl in Theorem 2.10 and Corollary

2.11. They are both cones. The first one is the projection toλ1 − λ2 plane and the second

one is the cross-section cut by planeλ1 + λ2 = 1.
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Figure 2.5: Region ofλl for global uniqueness: projection toλ1 − λ2 plane.
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Figure 2.6: Region ofλl for global uniqueness: cross-section cut by planeλ1 + λ2 = 1.

2.3.5 Global uniqueness: JacobianJ(p)

In a single-protocol network, for the equilibrium price to be unique, it is sufficient that

the routing matrixR has full row rank. Otherwise, only the source rates are unique, not

necessarily the link prices. In a multi-protocol network, this is no longer sufficient. We now

provide another sufficient condition that plays the same role in a multi-protocol network

as the rank condition onR does in a single-protocol network (see also the remark after

Theorem 2.13).

Let f = (f1, ..., fn) be a vector of real-valued functions defined on<n. LetG := {z ∈
<n|f(z) = 0} and coG be its convex hull. Define a setV (G) of vectors as

V (G) := {v|v = φ− ψ for ψ, φ ∈ coG} (2.28)

as a function of the setG.

Lemma 2.12. If for everyz ∈ coG, the Jacobian matrixJ(z) = ∂f(z)/∂z exists and

vT J(z)v < 0 for all v ∈ V (G), thenG contains at most one point.

Proof. For the sake of contradiction, assume there are two distinctpointsφ andψ in G

such thatf(φ) = f(ψ) = 0. Let

g(θ) := φ+ θ(ψ − φ) whereθ ∈ [0, 1]
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Then

df(g(θ))

dθ
= J(g(θ))

dg(θ)

dθ
= J(g(θ))(ψ − φ)

Hence,

f(ψ)− f(φ) =

∫ 1

0

J(g(θ))(ψ − φ)dθ

Multiplying both sides by(ψ − φ)T yields

(ψ − φ)T (f(ψ)− f(φ)) =
∫ 1

0

(ψ − φ)T J(g(θ))(ψ − φ)dθ

The left-hand side of the above equation is0, and the right-hand side is negative under the

assumption of the theorem. This contradiction proves the theorem.

Let f = y, and letG = E be the set of network equilibria. Then Lemma 2.12, to-

gether with Theorem 2.2, provides a sufficient condition forglobal uniqueness of network

equilibrium.

Theorem 2.13.Suppose assumptions A1–A3 hold. If for every price vectorp ∈ coE, the

Jacobian matrixJ(p) defined in (2.7) exists andvT J(p)v < 0 for all v ∈ V (E), then there

exists a globally unique network equilibrium.

In the single-protocol case, a similar result has been obtained in [55]. However, for that

case, the Jacobian matrix is negative definite whenR has full row rank. Then the condition

in Theorem 2.13 always holds and the equilibrium is unique. In the multi-protocol case,

the Jacobian matrix is in general not symmetric and hence notnegative definite. Therefore

R having full row rank is no longer sufficient for the conditionin the theorem to hold.

Since we do not know the equilibrium setE, the condition in the theorem cannot be

directly applied to prove global uniqueness. To use the theorem, however, it is sufficient

to find a convex superset̃E of E and a superset̃V of V (E) such thatvT J(p)v < 0 for

all p ∈ Ẽ and v ∈ Ṽ . This implies the condition in Theorem 2.13 and hence global
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uniqueness. We illustrate this procedure in the next example.

Example 2.4: application of Theorem 2.13 to verify global uniqueness

We visit Example 2.1 for the third time but usinglog utility functions for all sources,

i.e.,

U j
i (xj

i ) = log(xj
i ) for all (j, i) (2.29)

Let the Jacobian matrix be

J(p) =











J11 J12 J13

J21 J22 J23

J31 J32 J33











whereJkl = Jkl(p) are functions of pricesp given by (2.7). For example

J11 = − 1

p2
1

− 5

(5p1 + p2)2
− 1

(p1 + p3 + 3p2)2

It can be seen thatJ(p) is not negative definite for generalp unlike in the single-protocol

case. Even thoughE can be hard to find, we demonstrate how to find a simple convex

superset̃E of E and a simple superset̃V of V (E).

Consider the convex set

Ẽ := {p ∈ <3
+ | 1 ≤ p1 = p3 ≤ 2, 1 ≤ p2 ≤ 2}

We claim thatE ⊆ Ẽ. To see this, letp be an equilibrium price. Ifp1 < 1, thenx1
1 = 1/p1

will exceed the link capacity1, and hencep1 ≥ 1. A similar argument givesp2 ≥ 1. To see

p1 ≤ 2, assume it is not true. Then

x1
1 = 1/p1 < 1/2

x2
1 = 1/(5p1 + p2) < 1/11

x3
1 = 1/(2p1 + 3p2) < 1/7
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Summing them yieldsx1
1 + x2

1 + x3
1 < 1. Hence the network is not in equilibrium, con-

tradicting thatp is an equilibrium price. Hencep1 ≤ 2. The argument forp2 ≤ 2 is

similar.

Using the definition ofẼ, we can bound allJkl(p) for p ∈ Ẽ. The results are collected

in Table 2.3.

Table 2.3: Example 2.4: bounds on elements ofJ(p)
Elements Upperbound Lowerbound
J11 −0.2947 −1.1789
J22 −0.2939 −1.1756
J33 −0.2947 −1.1789
J23 −0.0447 −0.1789
J32 −0.0369 −0.1478
J12 −0.0369 −0.1478
J21 −0.0447 −0.1789
J13 −0.0100 −0.0400
J31 −0.0100 −0.0400

Let

Ṽ := {v ∈ <3
+ | v1 = v3}

We claim thatV (E) ⊆ Ṽ . To show this, note that coE ⊆ Ẽ since coE is the smallest

convex set that containsE. HenceV (E) ⊆ V (Ẽ). Sincep1 = p3 at equilibrium,v1 = v3

holds for anyv ∈ V (Ẽ) from the definition ofẼ. Hence,V (Ẽ) ⊆ Ṽ and therefore

V (E) ⊆ Ṽ .

We now check thatvT J(p)v < 0 for all p ∈ Ẽ andv ∈ Ṽ . For anyv ∈ Ṽ , vT J(p)v is

the following quadratic form inv1 andv2:

vT J(p)v = v2
1(J11 + J33 + J13 + J31) +

v1v2(J12 + J21 + J23 + J32) + v2
2J22

If v1 andv2 have the same signs, then sinceJkl are all negative from Table 2.3,vT J(p)v <
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0. If v1 andv2 have opposite sign, then a sufficient condition forvT J(p)v < 0 is

(J12 + J21 + J23 + J32)
2 < 4J22(J11 + J33 + J13 + J31)

Using Table 2.3, it is easy to check that the maximum value of(J12 + J21 + J23 + J32)
2 −

4J22(J11 + J33 + J13 + J31) is−0.2895. Therefore we have found a supersetẼ of coE and

a superset̃V of V (E) such thatvT J(p)v < 0 for all p ∈ Ẽ and allv ∈ Ṽ . This implies the

condition of Theorem 2.13 and hence the global uniqueness ofnetwork equilibrium.

2.3.6 Global uniqueness of special networks

In this section, we present special networks that have globally unique equilibrium.

2.3.6.1 Case 1: linear link-independentmj

When the price mapping functions are linear and link-independent, i.e.,mj
l (pl) = kjpl for

some scalarskj > 0, it is easy to show that we have an unusual situation in the theory of

heterogeneous protocols where the equilibrium rate vectorx solves the following concave

maximization problem:

max
x≥0

∑

i,j

kjU j
i (xj

i )

subject to Rx ≤ c

Therefore, such a network always has a globally unique equilibrium whenU j
i are strictly

concave. Here we provide another proof using Theorem 2.13.

Theorem 2.14.Suppose assumptions A1–A3 hold andR has full row rank. If for allj and

l,mj
l (pl) = kjpl for some scalarskj > 0, then there is a unique network equilibrium.

Proof. We prove this by showing that the Jacobian matrixJ(p) defined in (2.7) is negative

definite over allp ≥ 0. Then the result follows from Theorem 2.13.
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Under the assumptions of the theorem,J(p) can be simplified into (from (2.7)–(2.9))

J(p) =
∑

j

RjDj(p)
(

Rj
)T ∂mj(p)

∂p

=
∑

j

kjRjDj(p)
(

Rj
)T

whereDj(p) = ∂xj(p)/∂qj. SinceU j
i are strictly concave,Dj(p) is a strictly negative

diagonal matrix for allp ≥ 0. Now, J(p) is symmetric. Moreover, sinceR has full row

rank,RRT is positive definite, i.e., for any nonzero vectorv ∈ <L,

∑

j

vTRj(Rj)Tv =
∑

j

(

(Rj)Tv
)T

(Rj)Tv > 0

Then there exists at least onej such thatηj := (Rj)Tv is nonzero. Without lose of gener-

ality, assume it isj = 1. Then

vT J(p)v = vT
∑

j

kjRjDj(p)(Rj)Tv

=
∑

j

kj(ηj)TDj(p)ηj

≤ k1(η1)TD1(p)η1 < 0

where the first inequality follows from the fact thatDj(p) is negative definite. HenceJ(p)

is negative definite.

2.3.6.2 Case 2: linear network

Consider the classic linear network shown in Figure 2.7.

Theorem 2.15.Suppose assumptions A1–A2 hold. The linear network in Figure2.7 has a

unique equilibrium.

Proof. TakeΛ = I in the gradient algorithm (2.23). We will prove that all the eigenvalues
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1x

L+1x

2x Lx
Figure 2.7: Theorem 2.15: linear network.

of the Jacobian matrix

J(p) =
∑

j

RjDj(p)(Rj)T ∂m
j(p)

∂p

have negative real part for allp ≥ 0. This implies that all equilibria are locally stable. By

Corollary 2.7 there must be a unique equilibrium.

In the network shown in Figure 2.7, forj = 1 . . . L,

(Rj)T ∂m
j(p)

∂p
=

∂mj
j(p)

∂pj

(ej)T

SinceDj(p) is a negative scalar, we can define a positive numberβj such that:

RjDj(p)(Rj)T ∂m
j(p)

∂p
= −βje

j · (ej)T

For j = L + 1, ∂mj(p)/∂p is a positive definite diagonal matrix. Recall thatDj(p) is a

scalar. Assume that theith diagonal entry of matrixDj(p)∂mj(p)/∂p is−γi. Denote byγ

theL× 1 vectors formed fromγi. Then forj = L+ 1:

RjDj(p)(Rj)T ∂m
j(p)

∂p
= −1 · 1T diag(γi) = −1γT
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By combining the results above, we obtain

J(p) =
L+1
∑

j=1

RjDj(Rj)T ∂m
j

∂p

= −
L
∑

1

βje
j · (ej)T − 1γT

= −diag(βi)− 1γT

By the following lemma, all the eigenvalues of above matrix have negative real parts.

Therefore, there must be a unique equilibrium by Corollary 2.7.

Lemma 2.16. Suppose thatB is a positive definite diagonal matrix, andγ is a positive

vector, then the eigenvalues ofB + 1γT have positive real parts.

Proof: See Appendix 6.5.

The theorem can be generalized to include more than one multi-hop flows, provided

they all belong to the same typeL + 1 and the sets of links they traverse are nested, i.e.,

L(xL+1
1 ) ⊇ L(xL+1

2 ) ⊇ · · · ⊇ L(xL+1
n ) for n multi-hop flows. This result implies that the

two 2-link flows in Example 2.1 are necessary to demonstrate non-uniqueness.

Experiment 2.1: linear network: unique equilibrium

We further provide a Dummynet experiment to verify Theorem 2.15 for a three-link

network with topology shown in Figure 2.8. The topology is the same as the one used in

Experiment 1.1. Each Dummynet router is configured to have 40ms one-way propagation

delay and 200-packet buffer. The link bandwidth is 100 Mbps for link 1, 150 Mbps for link

2, and 120 Mbps for link 3. There are three FAST TCP flows using the paths 1, 2, and 3

with one flow on each path. There are eight Reno flows using path 4. Thirty experiments

are done for each scenario.

The average aggregate flow rates and their standard deviations on each of paths 1, 2,

3, and 4 are shown in Table 2.4. They suggest that the network has reached the same

equilibrium regardless of which flows start first. This is further confirmed by the queue

and throughput trajectories at links 1–3 in Figures 2.9–2.11. At each link, the queue and
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Path1 Path2 Path3

Path4

Link1 Link2 Link3

Figure 2.8: Experiment 2.1: unique equilibrium.

Path 1 (FAST) Path 2 (FAST) Path 3 (FAST) Path 4 (Reno)
FAST start first (47.8, 2.7) Mbps (96.2, 2.8) Mbps (67.2, 2.8) Mbps (47.9, 2.7) Mbps
Reno start first (46.1, 0.8) Mbps (94.2, 0.8) Mbps (64.6, 3.7) Mbps (43.7, 1.9) Mbps

Table 2.4: Average aggregate rates and their standard deviations of all flows on paths 1, 2,
3, 4.

throughput behaviors are very similar regardless of whether FAST or Reno flows start first.

150 200 250 300 350 400 450 500
60

80

100

120

140

160

Simulation Time(sec)

L
in

k
1

: 
Q

u
e

u
e

 S
iz

e
(p

k
ts

)

FAST Starting First
Reno Starting First

150 200 250 300 350 400 450 500
7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Simulation Time(sec)

L
in

k
1

: 
T

h
ro

u
g

h
p

u
t(

p
k
ts

/m
s
)

Figure 2.9: Experiment 2.1: queue size and aggregate throughput at link 1.

2.3.6.3 Case 3: networks with no flow using more than two links

Theorem 2.7 implies the global uniqueness of equilibrium for any network with no more

than 2 links. In this case, the Jacobian matrixJ(p) is strictly diagonally dominant with

negative diagonal entries, and hence its determinant is(−1)L.
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Figure 2.10: Experiment 2.1: queue size and aggregate throughput at link 2.
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Figure 2.11: Experiment 2.1: queue size and aggregate throughput at link 3.
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Theorem 2.17.Suppose assumptions A1–A2 hold andR has full row rank. A network that

has multiple equilibria must have at least three links.

Proof. When there is only one link, the Jacobian matrixJ(p) reduces to a negative real

number, sinceRjDj(p)(Rj)T is negative, and∂mj/∂p is positive. Therefore, any equilib-

rium is locally stable. Hence it is unique by Theorem 2.7.

When there are two links, the Jacobian matrix at anyp is

J(p) =
∑

j

RjDj(p)(Rj)T ∂m
j(p)

∂p

It can be checked thatJT (p) is diagonally dominant with strictly negative diagonal en-

tries. Moreover, the full rank condition onR implies that there are sources(j, i) such that

Rj
1iR

j
2i = 0, and henceJT (p) is strictly diagonally dominant. This implies thatJT (p) is

negative definite with strictly negative real eigenvalues.SinceJ(p) andJT (p) have the

same eigenvalues,J(p) and hence all equilibria are locally stable. According to Theorem

2.7, there is a unique equilibrium.

Remark: If R does not have full row rank, then there are two-link networksthat have

multiple equilibria; see Appendix 6.4.

2.4 Related Work in Economics

Our formulation is close to the general equilibrium theory in economics from which we

borrow ideas and techniques [51]. See [18, 21, 22, 57, 58, 78,17, 19] and [49, 6] for a

fairly complete treatment of related works in economics literature. A typical model of the

pure exchange economy consists ofL commodities andN consumers. Each consumeri

has an initial endowment vectorωi = (ωil ≥ 0, l = 1, . . . , L) and its goal is to choose a

consumption vectorxi = (xil, l = 1, . . . , L) to maximize its utility subject to its wealth

constraint, i.e.,

max
xi≥0

Ui(xi) subject to pTxi ≤ pTωi
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wherep = (pl, l = 1, . . . , L) are unit prices for the goods andT denotes matrix transpose.

For each goodl = 1, · · · , L, demand and supply are balanced if

N
∑

i=1

xil =
N
∑

i=1

ωil

A consumption vectorx∗ = (x∗i , i = 1, . . . , N) and a price vectorp∗ are called acompeti-

tive equilibrium(or Walrasian equilibrium) if x∗i maximizesi’s utility and demand equals

supply for all goods.

In general equilibrium theory, consumers are assumed to be price takers. This aspect is

similar to our model where sources do not take into account how their decisions affect the

link prices or each other. Both problems are concerned with characterizing fixed points of

a continuous mapping, and hence there are considerably similarities in terms of the char-

acterizations and the mathematical tools to derive them. The main mathematical tools used

in this paper are the Nash theorem in game theory [56, 9], which is an application of Kaku-

tani’s generalized fixed point theorem, and results from differential topology, especially the

Poincare-Hopf index theorem [53]. They are used to prove existence and study uniqueness

of network equilibrium, respectively. There are however several differences.

First, the effective prices to different sources (consumers) are generally different in our

model, whereas the prices in the economic model are independent of consumers. Differ-

ential pricing is what makes networks with heterogeneous protocols much more difficult.

Second, in the economic model, there is a concept of initial endowment that defines both

the demand-supply relation and a consumer’s consumption possibility through the wealth

constraint. In our model, the wealth constraint is replacedby the link capacity constraint.

Third, in the economic model, consumers maximize their utilities whereas in our model,

sources maximize their utilities minus bandwidth costs. Finally, in our model, every source

consumes exactly the same amount of bandwidth at each link inits path (xil = xi, for all

l ∈ L(i)), whereas, in the economic model, consumers can consume different goods at

different amounts. This guarantees that the demand for every good is exactly balanced by

its supply in a pure exchange economy; yet in networks, the set of bottleneck links where

demand for and supply of bandwidth is balanced can be non-unique and a strict subset of all
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links. The propertyxil = xi is the key structure that allows us to obtain interesting results

on global uniqueness in fairly general settings. In contrast, global uniqueness in general

equilibrium analysis usually requires very strong conditions and most literature focuses on

local uniqueness [17, 19, 6]. We will return to related problems in general equilibrium

theory at the end of chapter 5.
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Chapter 3

Optimality and Stability

A central issue in networking is how to allocate bandwidth toflows efficientlyandfairly,

in a decentralized manner. A series of recent work, e.g. [39,46, 55, 84, 47, 41, 44], has

shown that a bandwidth allocation policy can be expressed interms of a utility function

Ui(xi) in the sense that the desired bandwidth allocationx∗ = (x∗i , all sourcesi) solves

the utility maximization problem (2.10)–(2.11). As shown in section 2.1.3, (2.10)–(2.11)

characterize equilibrium completely for homogeneous price case and the optimality here

includes guarantee for both efficiency and fairness. However, as we have shown in chapter

2, for heterogeneous congestion control networks, equilibrium can not be characterized

by (2.10)–(2.11) anymore. In this chapter, we first look at the deviation of efficiency and

fairness in section 3.1. In terms of efficiency, it is shown that qualitatively equilibrium is

still Pareto efficient but quantitatively there is efficiency loss about which we can provide

an upperbound. On fairness, we show that intra-protocol fairness is still decided by utility

maximization problem while inter-protocol fairness is thepart which we don’t have control

over. However it is shown that we can achieve any desirable inter-protocol fairness by

properly choosing protocol parameters. This analysis provides insights on networks with

heterogeneous congestion signals and further motivates the algorithm design in chapter 4.

For an engineering system, stability of equilibrium is essential. We investigate it in section

3.2 and in particularly show that if the degree of pricing heterogeneity is small enough,

then not only is the network equilibrium unique, it is also locally stable.
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3.1 Optimality

3.1.1 Efficiency

In this section, efficiency of equilibrium of networks with heterogeneous protocols is ex-

plored. We first make the following key observation, which not only leads to the remaining

results of this subsection, but also will be the starting point of our algorithm design in

Chapter 4.

3.1.1.1 Qualitative results: Pareto efficiency

Theorem 3.1.Given an equilibriump∗, there exists a positive vectorγ, such that the equi-

librium rate vectorx∗(p) is the unique solution of following problem:

max
x≥0

∑

i,j

γj
iU

j
i (xj

i ) (3.1)

subject to Rx ≤ c (3.2)

Proof. The KKT (Karush-Kuhn-Tucker) optimality conditions for (3.1), (3.2) are:

γj
i

(

U j
i

)′
(xj

i ) =
∑

l

Rj
ilpl for all (i, j) (3.3)

pT (Rx− c) = 0 (3.4)

Rx− c ≤ 0 (3.5)

where the(x, p) are the primal-dual variables. We now claim our system satisfies those

conditions with equilibrium rates and prices(x∗, p∗) by choosing

γj
i =

∑

l R
j
ilp

∗
l

∑

l R
j
ilm

j
l (p

∗
l )

(3.6)

To see this, note (3.4) and (3.5) are conditions for equilibrium. After substituting (3.6) into
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(3.3), we have

(

U j
i

)′
(xj∗

i ) =
∑

l

Rj
ilm

j
l (p

∗
l ) (3.7)

That is also an equation used to define equilibrium.

It is worthwhile to note that Theorem 3.1 gives an underlyingconvex optimization

problem an equilibrium solves, but this optimization problem itself depends on equilib-

rium. Hence it cannot be used to find equilibrium directly, nor does it give existence and

uniqueness as in the single-protocol case [76].

As stated by the celebrated first fundamental theorem of welfare economics, any com-

petitive equilibrium is Pareto efficient. That explains themost basic reason that congestion

signals are used to regulate source rates and hence realize bandwidth allocation. We know

the unique equilibrium is Pareto efficient when there is a single price. Now we can show

that the same holds for networks with heterogeneous protocols as a direct corollary of The-

orem 3.1:

Corollary 3.2. All equilibrium points are Pareto efficient.

3.1.1.2 Quantitative results: price of heterogeneity

Pareto efficiency can be viewed as a qualitative requirementfor an optimal allocation. How-

ever, it does not give a quantitative criterion for optimum.Aggregate utility (social welfare)

is the standard criterion for optimum. As shown in Section 2.1.3, when there is only one

price, the unique equilibrium achieves the maximum aggregate utility. For heterogeneous

protocols cases, we now study efficiency loss by lower-bounding the ratio of the achieved

aggregate utility to its maximum.

Theorem 3.3. Assume all utility functions are nonnegative, i.e.,U(x) ≥ 0. Suppose the

optimal aggregate utility isU∗ and Û is the achieved aggregate utility at equilibrium of a

network with heterogeneous protocols. Then

Û

U∗
≥
γ

γ
(3.8)
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whereγ andγ are the lower and upper bounds ofγj
i

1.

Proof. Assumex̂ is one of the solutions of Theorem 3.1, then

max
x

∑

i,j

γj
iU

j
i (xj

i ) =
∑

i,j

γj
iU

j
i (x̂j

i ) ≤ γÛ (3.9)

On the other hand,

max
x

∑

i,j

γj
iU

j
i (xj

i ) ≥ γmax
x

∑

i,j

U j
i (xj

i ) = γU∗ (3.10)

Combining the two equalities above, we get

Û

U∗
≥
γ

γ

It has been known for a long time that price can serve as the “invisible hand” to coor-

dinate competing users and realize optimal resource allocation. That however requires two

basic assumptions. The first assumption is that users are allprice takers. If instead they are

noncooperative game players, there will be efficiency loss.Such “price of anarchy” was

recently bounded from above for both routing [62] and congestion control [36]. The second

assumption is the homogeneity of price that all users see, which does not hold in networks

with more than one type of congestion control protocols. Ourresult above quantifies the

efficiency loss as a “price of heterogeneity”.

The following simple example is used here to show the efficiency loss can be arbitrarily

large. Consider two flows sharing a single link with unit capacity. Flow 1’s utility is β1
√
x1

and flow 2’s isβ2
√
x2 whereβ1 > β2 > 0. Suppose flow 2 reacts to pricep2 while flow

1 reacts top1 = kp2, in other words,m1(p) = kp andm2(p) = p. It is straightforward to

1Both γ andγ can be bounded usinġmj
l . For example, for a network with both loss based and delay

based protocols and assuming RED is used, the slopes of RED atdifferent links can provide information on

ṁ
j
l .
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calculate that

U∗ =
√

(β1)2 + (β2)2

and

Û =
(β1)

2 + k(β1)
2

√

(β1)2 + k2(β2)2

Whenk →∞, Û → β2 and

Û

U∗
→ 1

1 + (β1

β2
)2

Therefore Û
U∗ can be arbitrarily close to zero whenβ1

β2
is sufficiently large.

3.1.2 Fairness

In this section, we study fairness in networks shared by heterogeneous congestion control

protocols. Two questions we address are: how the flows withineach protocol share among

themselves (intra-protocol fairness) and how these protocols share bandwidth in equilib-

rium (inter-protocol fairness).

3.1.2.1 Intra-protocol fairness

As indicated above, when the network is shared only by flows using the same protocol,

the equilibrium flow rates are the unique optimal solution ofa utility maximization prob-

lem. In other words, the utility functions describe how the flows share bandwidth among

themselves. For instance, thelog utility function of FAST implies that it achieves weighted

proportional fairness. When flows using different congestion signals share the same net-

work, it turns out that this feature is still preserved “locally” within each protocol, as we

now show. In particular, e.g., it implies that the intra-protocol fairness of FAST is still

proportional fairness.
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Theorem 3.4. Given an equilibrium(x̂, p̂) ≥ 0, let ĉj := Rjx̂j be the total bandwidth

consumed by flows using protocolj at each link. The corresponding flow ratesx̂j are the

unique solution of:

max
xj≥0

Nj
∑

i=1

U j
i (xj

i ) subject toRjxj ≤ ĉj (3.11)

Proof: Since(x̂j, p̂j) ≥ 0 is an equilibrium, from (2.2)to (2.5), we have

(

U j
i

)′ (
x̂j

i

)

=
∑

l

Rj
lip̂

j
l for i = 1, ..., N f

This, together with (from the definition of̂cj)

∑

i

Rj
lix̂

j
i ≤ ĉjl , p̂j

l

(

∑

i

Rj
lix̂

j
i − ĉjl

)

= 0, ∀l

forms the necessary and sufficient condition forx̂j andp̂j to be optimal for (3.11) and its

dual respectively.

Note that in Theorem 3.4, the “effective capacities”ĉj ’s are not preassigned. They are

the outcome of competition among flows using different congestion prices and are related

to inter-protocol fairness, which we now discuss.

3.1.2.2 Inter-protocol fairness

Even though flows using different congestion signals individually solve a utility maximiza-

tion problem to determine their intra-protocol fairness, they in general do not jointly solve

any convex utility maximization problem. This makes the study of inter-protocol fairness

hard. Here we provide a feasibility result, which says any reasonable inter-protocol fairness

is achievable by linearly scaling congestion control algorithms.

Assume flow (j,i) has a parameterµj
i with which it decides its rate in the following
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way:

xj
i

(

qj
i

)

=
(

U j
i

)′−1
(

1

µj
i

qj
i

)

For example, if we consider FAST’s utility functionα log(x), then theα parameter in the

protocol can be viewed asµ here. Our main result in this subsection says for a network

with J protocols, ifJ − 1 protocols have their linear scalar vectorsµj, then there exists

aµ vector such that one of the resulting equilibria with thatµ can achieve any predefined

bandwidth partition. Before we get to the theorem itself, we first characterize the feasible

set of predefined bandwidth allocation.

Assume that except forj = J , flow (i, j) has parameterµj
i . Or equivalently, we can

defineµJ
i = 1. The equilibrium ratesxj clearly depend on parameterµ. Forj = 1, 2, ...J−

1, let xj(µ) be the unique rates of flows using protocolj if there were no other protocols

in the network. Letxj(µ) be the unique rates of typej flows if network capacity were

(c−∑k 6=j R
kxk)+.

Let

X∗ := { x, |xj(µ) ≤ xj ≤ xj(µ), µ ≥ 0, Rx ≤ c}

X∗ includes all possible rates of flows using protocolj if they were given strict priority over

other flows or if others were given strict priority over them,and all rates in between. In this

senseX∗ contains the entire spectrum of inter-protocol fairness among different protocols.

The next result says that every point in this spectrum is achievable by an appropriate choice

of parameterµ.

Let xj(µ) denote the equilibrium rates (may not be unique) of flows using pricej shar-

ing the same network(R, c) with other protocols when the protocol parameter isµ.

Theorem 3.5. For every link l, assume there is at least one typeJ flow that only uses

that link. Given anyx∗ ∈ X∗, there exists anµ∗ ≥ 0 such thatxj(µ∗) = (xj)∗ for

j = 1, 2, ..., J − 1.

Proof: Given anyx∗ ∈ X∗, the capacity for all typeJ flows isc −∑k 6=J R
k(xk)∗. Since



57

Rx∗ ≤ c (for all coordinates), we havec −∑k 6=J R
k(xk)∗ ≥ (xJ)∗, which is greater than

or equal to 0. Hence the following utility maximization problem solved by flows of typeJ

is feasible:

max
xJ≥0

∑

i

UJ
i (xJ

i )

subject to RJxJ ≤ c−
∑

k 6=J

Rk(xk)∗

Let pJ be an associated Lagrange multiplier vector. By the assumption that every link

has at least one single-link typeJ flow, we knowpJ
l > 0 for all l. Choose(µj)∗ with

(µj)∗i = (xj)∗i
∑

l R
j
lim

j
l ((m

J)−1
l (pJ

l )). It can be checked that all equilibrium equations are

satisfied.

Remarks:

1. In general, one can view Theorem 3.1 as defining fairness offlows using heteroge-

neous protocols and can conclude that price mapping functions (router parameters)

affect fairness. This is very different from the case when there is only one type of

protocol and we will return to this point in Chapter 4. Clearly,if one can choose

price mapping functions, one can achieve any predefined fairness. More interesting,

Theorem 3.5 shows that we can achieve any reasonable predefined fairness without

modifying router parameters but only by choosing a linear scalar in source algorithm.

This opens up the possibility of maintaining the end-to-endfeature of TCP.

2. Theorem 3.5 implies that given any reasonable fairness among flows using different

congestion signals, in terms of a desirable rate allocationx∗, there exists a proto-

col parameter vectorµ∗ that achieves it. It is however yet unclear how to compute

µ∗ dynamically in practice using only local information. In chapter 4, we will dis-

cuss distributed algorithms to compute a particularµ∗, which will result in optimal

bandwidth allocation.
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3.2 Stability

3.2.1 Low dimensional results

For general dynamical systems, a globally unique equilibrium point may not even be locally

stable [65, 38]. We start with some low dimensional cases. For networks with heteroge-

neous protocols, we prove that global uniqueness implies local stability for networks with

no more than three bottleneck links, we also prove global stability for networks with no

more than two bottleneck links. By the end of this section, We proceed to general networks

with any number of links.

Theorem 3.6.For a network withL ≤ 3, if there is only one equilibrium, it is also locally

stable.

Proof. We want to prove all eigenvalues ofJ(p) lie in the left half plane, whereJ(p) is the

Jacobian of equilibrium equations (J(p) = ∂y

∂p
) evaluated at equilibrium. By index theorem

and global uniqueness analysis [76], we havedet(−J) > 0 for the unique equilibrium.

WhenL equals 1 or 2, it is obvious asJii < Jij < 0 for j 6= i. Let’s consider the case

with L = 3. Supposeλ3 + ρ1λ
2 + ρ2λ+ ρ3 = 0 is the characteristic equation forJ . Then

ρ1 is the trace of−J , ρ2 is sum of all2× 2 principle minors of−J andρ3 = det(−J ).

The Routh array for the equation is

















1 ρ2

ρ1 ρ3

(ρ1ρ2 − ρ3)/ρ1 0

ρ3 0

















Applying Routh stability criterion [26], we need all quantities in the left column to be

positive to guarantee all roots lie in the left half plane. Clearly ρ1 > 0. Global uniqueness

impliesρ3 > 0. Hence we only need to checkρ1ρ2 > ρ3. This is true because
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det(J) = J11(J22J33 − J23J32)− J12(J21J33 − J23J31)

+J13(J21J32 − J22J31)

> J11J22J33 − J11J23J32 + J11J22J33

−J12J21J33 + J11J22J33 − J13J22J31

= J11(J22J33 − J23J32) + J22(J11J33 − J13J31)

+J33(J11J22 − J12J21)

> (J11 + J22 + J33)((J11J22 − J12J21)

+(J11J33 − J13J31) + (J22J33 − J23J32))

= −ρ1ρ2

The first inequality follows fromJii < Jij < 0 for j 6= i. The second one follows from

JiiJjj − JijJji > 0 for j 6= i. One is referred to [76] for detail properties ofJ .

Therefore

ρ3 = det(−J) = − det(J) < ρ1ρ2

As reviewed in 2.1.3, when there is only one kind of price, global stability is proved by

using the objective function of the dual of the system problem as a Lyaponov function. For

heterogeneous protocols, we have the following.

Theorem 3.7.For a network withL ≤ 2, the equilibrium is globally asymptotically stable.

Proof. The uniqueness of the equilibrium for a network with no more than two bottleneck

links is shown in section 2.3.6.3. Assume the equilibrium price isp∗. We now prove global

stability.
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WhenL=1, consider the simple quadratic Lyaponov function

L(p(t)) = (p(t)− p∗)2

Clearly,L(p(t)) ≥ 0 andL(p∗) = 0. We now evaluate its derivative

L̇ = 2(p− p∗)ṗ = 2γ(p− p∗)(y(p)− cl) < 0

Hence the equilibrium is globally asymptotically stable.

WhenL=2, let

L(p(t)) = |p1(t)− p∗1|+ |p2(t)− p∗2|

We haveL(p(t)) ≥ 0 andL(p∗) = 0. If p1(t) ≤ p∗1 andp2(t) ≤ p∗2, we havey1(t) ≥ c1

andy2(t) ≥ c2. ThereforeL̇ = −(ṗ1(t) + ṗ2(t)) = −(y1(t) − c1) + (y2(t) − c2) ≤ 0.

Similarly, whenp1(t) ≥ p∗1 and p2(t) ≥ p∗2, L̇ ≤ 0. Now considerp1(t) ≤ p∗1 and

p2(t) ≥ p∗2, L(p(t)) = p∗1 − p1(t) + p2(t)− p∗2. It then follows thatL̇ = −ṗ1(t) + ṗ2(t) =

−(y1(t)− c1) + (y2(t)− c2). Let y11,y22 andy12 be the aggregate rates of flows using only

link 1, only link 2 and both link 1 and 2. Theny1 = y11 + y12 andy2 = y22 + y12.

L̇ = −(y11 + y12 − y∗11 − y∗12) + (y22 + y12 − y∗22 − y∗12)

= −(y11 − y∗11) + (y22 − y∗22) ≤ 0 (3.12)

3.2.2 General case

We now state the general result on local stability in the following theorem. It essentially

says that if the similarity condition on price mapping functions that guarantees uniqueness

(theorem 2.8) is satisfied, the unique equilibrium is also locally stable.

Theorem 3.8. Suppose assumptions A1–A2 hold. If, for any vectorj ∈ {1, . . . , J}L and
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any permutationsσ,k,n in {1, . . . , L}L,

L
∏

l=1

ṁ
[k(j)]l
l +

L
∏

l=1

ṁ
[n(j)]l
l ≥

L
∏

l=1

ṁ
[σ(j)]l
l (3.13)

then the equilibrium of a regular network is locally stable.

Proof. See Appendix 6.6.

Theorem 3.9.For every equilibrium and any of its neighborhood, there is at least one point

outside the neighborhood, starting from which the trajectory goes into the neighborhood.

Proof. Consider the vector field generated by

ṗ = f(p)

For any equilibriump∗ and its neighborhoodV with boundary∂V . Divergence theorem

says the following:

∫

V

(∇ • f) dV =

∫

∂V

(f • n) da (3.14)

Here,dV is "volume" element andda is "area" element with unit outward normaln. It is

straightforward to see that

∇ • f =
L
∑

l=1

∂fl

∂pl

< 0 (3.15)

Hencef •n has to be negative somewhere on∂V , i.e., at those places the trajectories point

inwards.
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Chapter 4

A Slow Timescale Update

As shown in the analysis in Chapters 2 and 3, because of the lackof a global coordinate

signal, networks with heterogeneous congestion control protocols have complicated be-

haviors (e.g. multiple equilibria; see section 2.3) and maysuffer from efficiency loss and

unpredictable fairness (section 3.1). On the other hand, Theorem 3.1 and 3.5 suggest that

properly setting a linear scaling factor in source algorithms is enough to achieve optimality

(best efficiency and fairness). These motivate the work in this chapter in which we try to

answer the following question in the affirmative. Can we steera heterogenous network to

the equilibrium point which is optimal in the sense of maximizing aggregate utility in a

distributed and stable manner? We propose a general algorithm that is simple, scalable,

and deployable to achieve this goal. The basic idea is simple. Besides regulating their rates

according to their congestion signals, sources also adapt aparameter in aslow timescale

based on a common congestion signal. This allows a source to choose a particular con-

gestion signal in a fast timescale (and therefore maintain benefits associated with it) while

asymptotically reach the optimal equilibrium. The roadmapof this chapter is as follows.

Two experiments involving Reno and FAST are reported in section 4.1 which imply that

we cannot predict, nor control, the bandwidth allocation through just the design of conges-

tion control algorithms. In section 4.2, a simple source-based algorithm is presented that

decouples bandwidth allocation from network parameters and flow arrival patterns in a het-

erogenous network. The rest of the chapter is then devoted tothe general framework of this

slow timescale control. Analysis on existence of a unique, optimal and stable equilibrium

of this algorithm is provided (section 4.3). Numerical examples are used to demonstrated
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its correctness and convergence in different operation environments (section 4.4). Finally,

more realistic experiments that are conducted using WAN in Lab are reported to show the

algorithm’s effectiveness and some of its byproducts (section 4.5).1

4.1 Two Examples

In this section, we describe two experiments to illustrate some bandwidth allocation prob-

lems in heterogenous networks. In the next section, we describe a simple algorithm that

solves these problems. Both the problems and the solution will be greatly extended to

general networks and protocols in the following sections.

Both experiments use Reno TCP, which uses packet loss as congestion signal, and FAST

TCP, which uses queueing delay as congestion signal. The firstexperiment shows that when

a Reno flow shares a single bottleneck link with a FAST flow, the relative bandwidth allo-

cations depend critically on the link parameter (buffer size): The Reno flow achieves much

higher bandwidth than FAST when the buffer size is large and much smaller bandwidth

when it is small. This implies that one cannot control the fairness between Reno and FAST

through just the design of TCP congestion control algorithms, since fairness is now linked

to network parameters, unlike the case of homogeneous networks.

The second experiment shows that even on a fixed (multi-link)network, one cannot

control the fairness between Reno and FAST because the relative allocation changes de-

pending on which flow start first!

4.1.1 Dependence of bandwidth allocation on buffer size

Experiment 4.1a: dependence of bandwidth allocation on buffer size

In this example, one FAST flow and one Reno flow share a single bottleneck link with

capacity of 8.3 pkt per ms (equivalent to 100Mbps with standard packet size) and round

trip propagation delay 50ms. The topology is shown in Figure4.1. The FAST flow fixes

its α parameter at 50 packets. This means that the bottleneck bandwidth will be equally

1Most results in this chapter are based on a working paper [77].
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shared between FAST and Reno when the buffer sizeB is 150 packets.
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Figure 4.1: Single link example.

In all of the NS-2 simulations in this chapter, heavy-tail noise traffic is introduced in

each link with an average rate of10% of the link capacity.2 Figure 4.2 shows the result with

a bottleneck buffer sizeB = 400 packets. In this case, FAST gets an average of 2.1 pkt

per ms while Reno gets 5.4 pkt per ms. Figure 4.3 shows the result with B = 80 packets.

Since the bottleneck buffer size is smaller, the average queue in the bottleneck is smaller.

Therefore FAST gets a much higher throughput of 3.4 pkt per msand Reno gets a lower

throughput of 0.6 pkt per ms. In this case, the loss rate is fairly high and the aggregate

throughput is lower than the bottleneck capacity due to manytimeout events.

In summary, bandwidth sharing between Reno and FAST depends on network param-

eters in a heterogeneous network, contrary to the case of homogeneous network. This is

undesirable since the bandwidth allocation among all competing flows in a network should

depend only on their valuation of bandwidth (utility functions) but not on AQM parameters.

In the next section, we propose a simple source-based solution to achieve this.

4.1.2 Dependence of bandwidth allocation on flow arrival pattern

Experiment 4.2a: dependence of bandwidth allocation on flow arrival pattern

The topology of this network is shown in Figure 4.4. We use RED algorithm [25] and

2The sample figure shows the rate trajectory in one simulationrun. The rate value is measured every

2 seconds. The summary figure presents the rate trajectory averaged over 20 simulation runs with different

random seeds. Each point in the summary figure represents theaverage throughput over a period of one

minute. The error bars are also shown in the figure.
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Figure 4.2: FAST vs. Reno with a buffer size of 400 pkts.
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Figure 4.3: FAST vs. Reno with a buffer size of 80 pkts.
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packet marking instead of dropping. The marking probability p(b) of RED is a function of

queue lengthb:

p(b) =



















0 b ≤ b

1
K

b−b

b−b
b ≤ b ≤ b

1
K

b ≥ b

(4.1)

whereb, b andK are RED parameters. Links 1-2 and 3-4 are both configured with 9.1 pkts

per ms capacity (equivalent to 111 Mbps), 30 ms one-way propagation delay, and a buffer

of 1500 packets. Their RED parameters are (b, b, K) = (300, 1500, 10000). Link 2-3 has

a capacity of 13.8 pkts per ms (166 Mbps) with 30 ms one-way propagation delay and a

buffer size of 1500 packets. Its RED parameters are set to (0, 1500, 10).

There are eight Reno flows on path 1-2-3-4, utilizing all threelinks, with one-way

propagation delay of 90 ms. There are two FAST flows on each of paths 1-2-3 and 2-3-4.

Both of them have one-way propagation delay of 60 ms. All FAST flows use a common

α = 50 packets.

1
 2

c=9.1pkt/ms

30ms one way

(300,1500,10000)


Path 1

(2 FAST flows)


Path 3

(8 Reno flows)


3
 4

c=9.1pkt/ms

30ms one way

(300,1500,10000)


c=13.8pkt/ms

30ms one way

(0,1500,10)


Path2

   (2 FAST flows)


Figure 4.4: Multiple equilibria scenario.

Two sets of simulations have been carried out with differentstarting times for Reno

and FAST flows. The intuition is that if FAST flows start first, link 2-3 will be saturated

and links 1-2 and 3-4 will not. Since the RED dropping slope of link 2-3 is steep, when

Reno flows join, they will experience so many losses that links1-2 and 3-4 will remain

unsaturated. If Reno flows start first, on the other hand, links1-2 and 3-4 are saturated

while link 2-3 is not because link 2-3 has a higher capacity. Since the RED dropping slopes

of link 1-2 and 3-4 are not steep, they can generate enough queueing delay to squeeze FAST

flows when they join and keep link 2-3 unsaturated. In the simulations, one set of flows
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(Reno or FAST) start at time zero, and the other set of flows start at the 100th second. We

present the throughput achieved by one of the FAST flows and one of the Reno flows. Each

point in the summary figures represents the average rate over5 minutes.
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Figure 4.5: Bandwidth shares of Reno and FAST when FAST starts first.
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Figure 4.6: Bandwidth shares of Reno and FAST when Reno starts first.

4.2 One Solution

We propose a simple source-based algorithm to solve the problems on unfairness and un-

predictable parameter sensitivity illustrated by the examples in the last section. Complete

development, theoretical confirmation, and simulation verification of the solution form the

rest of the paper after this section. The solution meets all of the following requirements:
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Algorithm 1 α adaptation algorithm
1. Everyα update interval (2 minutes by default), calculate:

α∗ =
q

lw

q and l are average queueing delay and average packet loss rate overtheα update
interval, w is a parameter. Then

α =

{

min {1.1α, α∗} if α < α∗

max {0.9α, α∗} if α > α∗

2. Every window update interval (20ms by default), run FAST algorithm (1.2).

1. Always achieve a unique equilibrium that efficiently utilizes the bandwidth.

2. Maintain good fairness between different flows using different protocols.

3. Allocation is independent of AQM setting.

4. Only use end-to-end local information that is available to each flow.

5. Only require simple parameter updates, such as the linearparameterα in FAST.

This α adaptation algorithm, Algorithm 1, fine-tunes the value ofα according to the

signal of queue and loss in a large time scale (several RTTs).The basic idea of the solution

is that FAST should adjust its aggressiveness (α) to the proper level by looking at the ratio

of end-to-end queueing delay and end-to-end loss. In other words, FAST also reacts to loss

in the slow timescale.

4.2.1 Independence of bandwidth allocation on buffer size

Experiment 4.1b: independence of bandwidth allocation on buffer size

We repeat the simulations in experiment 4.1a with Algorithm1, w is set to be 125s.

Figure 4.7, Figure 4.8, Figure 4.10 and Figure 4.11 should becompared with Figure 4.2,

Figure 4.3, Figure 4.5 and Figure 4.6 correspondingly.

With Algorithm 1, FAST achieves 3.4 pkt per ms with buffer size of 400 and 3.2 pkt per

ms with buffer size of 80, while Reno gets 4.2 pkt per ms and 4.1 pkt per ms, respectively.
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The fairness is greatly improved and only slightly depends on buffer size now, which we

summarize in table 4.1 by listing the ratio of bandwidth thatReno gets and FAST gets in

different scenarios.

B=400 B=80
Without Algorithm 1 5.4/2.1=2.6 0.6/3.4=0.18

With Algorithm 1 4.2/3.1=1.4 4.1/3.2=1.3

Table 4.1: Ratio of Reno’s rate and FAST’s rate
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Figure 4.7: FAST vs. Reno, with buffer size of 400 pkts and Algorithm 1

The trajectory ofα is presented in Figure 4.9. It is clear that although both starting for

α = 50, FAST finally uses a much largerα to deal withB = 400 case thanB = 80 case as

it experiences larger delay whenB = 400.

4.2.2 Independence of bandwidth allocation on flow arrival pattern

Experiment 4.2b: independence of bandwidth allocation on flow arrival pattern

We repeat the simulations in Experiment 4.2a with Algorithm1, w is set to be 1820s.

Figure 4.10 and Figure 4.11 show the effect ofα adaptation in the multiple-bottleneck case

that we introduced in Example 2. As we proved in Theorem 4.1, there is always a unique

equilibrium if we adaptα according to Algorithm 1. In this particular case, this single

equilibrium is around the point where each Reno flow gets a throughput of 0.6 pkt per ms
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Figure 4.8: FAST vs. Reno, with buffer size of 80 pkts and Algorithm 1
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Figure 4.9:α trajectory in experiment 4.1b
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and each FAST flow gets 1.5 pkt per ms. At this single equilibrium, link 1 and link 3 are

the bottleneck links. In Figure 4.10, FAST flows start on timezero and link 2 becomes

the bottleneck. When Reno flows join on the 100th second, the ratio of queue to loss on

link 2 is much higher than the target value. The FAST flows hence reduce theirα values

gradually and the bottleneck switches from link 2 to link 1 and 3 on 2000th second. After

that, FAST flows and Reno flows converge to the unique equilibrium. The trajectory ofα

is presented in Figure 4.12. As we can see, depending on whichflows start first,α follows

a very different path although it finally reaches the same targeted value.
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Figure 4.10: FAST starts first with Algorithm 1.
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Figure 4.11: Reno starts first with Algorithm 1.
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Figure 4.12:α trajectory in experiment 4.2b

4.3 Analysis

As pointed out in Corollary 3.2, all equilibria are Pareto efficient. However, no guarantee

on fairness can be provided. We now turn from analysis to design, and develop a readily

implementable control mechanism that “drives” any networkwith heterogeneous conges-

tion control protocols to any desired operating point with afair and efficient bandwidth

allocation. This also explains the intuition behind and thetheoretical foundation of Algo-

rithm 1 in section 4.2. The central problems that motivate our study include: What is the

equilibrium the system should be driven to? Can we make it unique? Will it solve any

global optimization problem? How to do that in a distributedway? In this section, we

propose an answer by introducing slow timescale updating. Our target equilibrium is still

the maximizer of some weighted aggregate utility. The first step is to show the existence

and uniqueness of such a solution.

Theorem 4.1.For any given network(c,m, U,R), for any positive vectorw, there exists a

unique positive vectorµ such that if every source scales their own prices byµj
i , i.e.,

xj
i =

(

U j
i

)′−1
(

1

µj
i

∑

mj
l (pl)

)
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then, at equilibrium(x∗, p∗), x∗ solves

max
x≥0

∑

(i,j)

1

wj
i

U j
i (xj

i ) (4.2)

subject to Rx ≤ c (4.3)

Moreover,

µj
i =

1

wj
i

∑

l∈L(j,i)m
j
l (p

∗
l )

∑

l∈L(j,i) p
∗
l

Proof. We claim that the optimality conditions of (4.2) and (4.3) are the same as equations

that characterize the equilibrium of the above system ((2.2), (4.2), (2.4) and (2.5)). Capacity

constraints, nonnegativity, and complementary slacknessare obviously the same. We only

need to check the relation between rates and prices at equilibrium. For our system, that are

µj
i

(

U j
i

)′
(xj

i ) =
∑

l∈L(j,i)

mj
l (pl) (4.4)

and

µj
i =

1

wj
i

∑

l∈L(j,i)m
j
l (p

∗
l )

∑

l∈L(j,i) p
∗
l

(4.5)

Combining them, we get
1

wj
i

(

U j
i

)′
(xj

i ) =
∑

l∈L(j,i)

pl (4.6)

which is the relation betweenx andp specified by the optimality conditions of problem

(4.2)-(4.3). On the other hand, givenx andp that satisfy (4.6), one can always defineµj
i by

(4.5), and (4.4) will also be satisfied.

Remarks:

1. Parameterw enables us to measure fairness and to achieve any desired fair band-

width allocation. The above result generalizes a theorem in[72], which asserts that

by properly choosingα parameters in FAST flows, essentially any desired fairness
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Algorithm 2 Two timescale control scheme
1. Every source chooses its rate by

xj
i (t) = (U ′)−1 (

q
j
i (t)

µ
j
i (t)

);

2. Every source updates itsµj
i by

µj
i (t+ T ) = µj

i (t) + κj
i

(

∑

l∈L(j,i) m
j

l
(pl(t+T ))

∑

l∈L(j,i) pl(t+T )
− µj

i (t)

)

whereκj
i is stepsize for flow(j, i) and T is long enough so that the fast timescale

dynamics amongx andp can reach steady state.

between FAST and Reno is possible.

2. We only need all sources to have access toonecommon price. For example, when

FAST and Reno coexist, since FAST also has access to the congestion price of packet

loss, if it updates its parameter taking into account of loss, Theorem 4.1 holds.

Theorem 4.1 naturally suggests Algorithm 2 as a two-timescale scheme to control the

operating point of networks with heterogenous congestion control protocols. The behavior

of Algorithm 2 will be demonstrated in Section 4.4 through numerical examples.

In the extreme case, ifµj
i is also updated at the same timescale asxj

i , then sources

all react top and the system will be globally asymptotically stable. The essential idea

in Algorithm 2 is that by reacting to the same price in slow timescale, uniqueness and

fairness of equilibrium is guaranteed in the long run. Yet the algorithm allows sources

to react to their own effective pricesmj
i (pl(t)) at the fast timescale. This flexibility is

important in practice when, for example, the link pricespl are loss probability that are hard

to reliably estimate at the fast timescale. The slow timescale algorithm only updates a linear

scalar, which is readily implementable, e.g., this corresponds to update a parameterα in

FAST/Vegas. Indeed, if we specialize Algorithm 2 to FAST/Neno networks using loss as

the common pricep, we get Algorithm 1 in section 4.2.

We now use the following coupled dynamical system to model TCPnetworks with the

above scheme and study its convergence:
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xj
i

(

qj
i (t)
)

=
(

U j
i

)′−1
(

1

µj
i

qj
i (t)

)

(4.7)

qj
i (t) =

∑

l

Rj
lim

j
l (pl(t)) (4.8)

ṗl(t) = yl(p(t))− cl (4.9)

εµ̇j
i (t) =

qj
i

∑

l∈L(i,j) pl

− µj
i (4.10)

Whenε is zero, differential equation (4.10) reduces to an algebraic equation andµj
i is

updated instantaneously. Sources essentially react top and the system is globally asymp-

totically stable. The following theorem shows that globally asymptotic stability still holds

when we introduce dynamics to updateµj
i (t) as in (4.10).

Theorem 4.2.There exists anε∗ > 0, such that for all0 < ε < ε∗, the system described by

(4.7)–(4.10) is globally asymptotically stable.

Proof. See Appendix 6.7.

4.4 Numerical Examples

Throughout this subsection, we provide some Matlab numerical results to further validate

the effectiveness of the control scheme proposed in section4.2. For simplicity we choose

w to be a vector will all components being 1, i.e., we attempt tomaximize the aggregate

utility.

Example 4.1: L=2

We consider a two-link network with six flows using two prices. The routing matrices are:

R1 = R2 =





1 0 1

0 1 1





All sources have log utility functions. Both links have capacities 10 units. We start with

µj
i = 1. In each step, we directly updateµj

i =
∑

m(p)
∑

p
(κj

i = 1). We can easily find the equi-
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librium by solving the utility maximization problem and obtain the following equilibrium,

x1
1 = x1

2 = x2
1 = x2

2 = 10/3, x1
3 = x2

3 = 5/3, p1 = p2 = 0.3.

Case 1: The price mapping functions are linear :mj
l (pl) = kj

l pl where

K1 = I, K2 = diag(2, 4)

We show the steady state prices after each iteration in Table4.2. µ3
2 for each step is also

shown. Note that otherµj
i ’s are always 1 in this case. The system converges to the predicted

equilibrium after three iterations.

Table 4.2: Steady state after each iteration: case 1
Iterations µ2

3 p1 p2

1 1.0000 0.2233 0.1861
2 2.9091 0.2985 0.2985
3 3.0000 0.3000 0.3000

We then move to the case of nonlinear price mapping function.In the following two

cases, we again show the steady states after each iteration and its convergence to the target

equilibrium. See Table 4.3 and 4.4.

Case 2: m2
1(p1) = (p1)

2,m2
2(p2) = 2(p2)

2.

Case 3: m2
1(p1) =

√
p1,m2

2(p2) = 3
√
p2.

Table 4.3: Steady state after each iteration: case 2
Iterations µ2

1 µ2
2 µ2

3 p1 p2

1 1.0000 1.0000 1.0000 0.4685 0.3582
2 0.4685 0.7163 0.5759 0.3489 0.3171
3 0.3489 0.6342 0.4848 0.3151 0.3050
4 0.3151 0.6100 0.4601 0.3047 0.3014
5 0.3047 0.6028 0.4530 0.3015 0.3004
6 0.3015 0.6008 0.4509 0.3005 0.3001

Example 4.2: L=3 with multiple equilibria
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Table 4.4: Steady state after each iteration: case 3
Iterations µ2

1 µ2
2 µ2

3 p1 p2

1 1.0000 1.0000 1.0000 0.2155 0.1672
2 2.1543 7.3364 4.4187 0.3331 0.3691
3 1.7326 4.9380 3.4174 0.2909 0.2817
4 1.8542 5.6520 3.7228 0.3208 0.3061
5 1.8174 5.4228 3.6299 0.2992 0.2981
6 1.8282 5.4943 3.6580 0.3002 0.3006

In this experiment, we use the following example that was used in example 2.3 (section

2.3.2) to demonstrate existence of multiple isolated equilibria. The network is shown in

Figure 2.1 with three unit-capacity links,cl = 1. There are three different protocols with

the corresponding routing matrices

R1 = I, R2 =





1 1 0

0 1 1





T

, R3 = (1, 1, 1)T

The price mapping functions are assumed to be linear with coefficients

K1 = I, K2 = diag(5, 1, 5), K3 = diag(1, 3, 1)

Utility functions of sources(j, i) are

U j
i (xj

i , α
j
i ) =







βj
i (x

j
i )

1−α
j
i/(1− αj

i ) if αj
i 6= 1

βj
i log xj

i if αj
i = 1

with appropriately chosen positive constantsαj
i andβj

i shown in table 2.1 (section 2.3.2).

These utility functions can be viewed as a weighted version of theα-fairness utility func-

tions proposed in [55].µj
i ’s are updated every 20 time units. We show that although the

system reaches different equilibria after the first iteration, it nevertheless finally reaches

the unique target. In terms of convergence time, not surprisingly, both being too cautious

(κj
i = 0.1) and too aggressive (κj

i = 0.9) are not optimal, which can be clearly seen by

comparing with theκj
i = 0.5 case.

Case 1: We start with initial pointp1(0) = p2(0) = p3(0) = 0.3. After the first iteration,
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the network goes to equilibrium (p∗1 = p∗3 = 0.165, p∗2 = 0.170). p1(t) with different

updating stepsizeκj
i is shown in Figures 4.13.
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Figure 4.13: Case 1:p1(t) with differentκj
i

Case 2: We choose another initial pointp1(0) = p3(0) = 0.1, p2(0) = 0.3 As shown in

Figure.4.14. After the first iteration, the system reaches another equilibrium,p∗1 = p∗3 =

0.135 andp∗2 = 0.230. However finally, the system still reaches the same steady state as in

Figure 4.14 (Both converge to about 0.222).
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Figure 4.14: Case 2:p1(t) with differentκj
i

Example 4.3: L=5 with asynchronous updating

In this experiment, we have a larger network with five links and 15 flows. Also, the scheme

is tested in an asynchronous environment. We assume every five time units, flows can

update theirµj
i and they do so with some probability. Hence every five time units, only a

portion of flows update theirµj
i .
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We randomly set link capacities uniformly between 1 and 10, and take price mapping

functions to bem1(p) = p andm2(p) = pα, whereα is randomly chosen between 0.5

and 5 with uniform distribution. Flows 1 to 5 use links 1 to 5 respectively while a random

routing matrix with entries 0 or 1 with equal probability is used to define routes for other

flows. Finally each flow randomly chooses to use price 1 or 2 with equal probability.

All of the 1000 trials converge to the right target. Some typical convergence patterns

are shown in Figure 4.15. It shows clearly that although asynchronism causes longer con-

vergence time, the system still converges to the same equilibrium.
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Figure 4.15: p(t) with different probability of updating

4.5 WAN in Lab Experiments

The objective of experiments in this subsection is to show the effectiveness of our slow

timescale updating algorithm in a more realistic setting. We achieve that by carrying out

experiments with TCP Reno and FAST in WAN in Lab [2] and by considering more prac-

tical scenarios not considered before (e.g., small buffer size, only FAST flows).

WAN in Lab is a wide area network consisting of an array of reconfigurable routers,

servers and clients. The backbone of the network is connected by two 1600 km OC-48

links that can provide a large real propagation delay. We test our algorithm with a single

bottleneck link shown in Figure 4.16.

Experiment 4.3: small buffer size
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Figure 4.16: WAN in Lab experiment setup

In this experiment, we show a byproduct of our slow timescalealgorithm, namely au-

tomatically matching FAST’s parameterα to the buffer size in the network. As we know,

every FAST flow tries to maintainα packets in the queues along its path. Clearly if the

buffer capacity is smaller than theα used, a constant high packet loss rate will occur and

both Reno and FAST will have very poor throughput. Here we showthat our algorithm can

adjustα automatically to a proper value when it sees a high loss rate.

One FAST and one Reno compete for bandwidth of the bottleneck link with 1Gbps

(80pkts/ms) capacity. The buffer capacity is 480pkts. The initial α is set to beα0=800. The

results are summarized in Figure 4.17. As the left part of thefigure shows, both Reno and

FAST get very low throughput due to the high packet loss rate (FAST: 135Mbps; Reno:

22Mbps). However, using the slow timescale update, FAST decreases itsα as it sees high

loss and finally both flows get high throughput (FAST: 593Mbps; Reno: 246Mbps). The

utilization is increased dramatically from 15.7 percent to83.9 percent.

Experiment 4.4: only FAST flows

Although the slow timescale update shows desirable properties in various tests we have

discussed so far, there is a problem we have not touched, namely the case when there are

only FAST flows in a network. As FAST is designed to achieve a steady state with no loss,

flows will keep increasing theirα until the buffer is filled and loss is generated. This is not
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(a) Without the slow timescale algorithm (b) With the slow timescale algorithm

Figure 4.17: Bandwidth partition between Reno and FAST

desirable and we propose to turn off the slow timescale updating algorithm when a flow

has not seen any loss for a certain amount of time (one second by default). We conduct

an experiment using three FAST flows all withα0=200 and test this idea. The throughput

trajectory is shown in Figure 4.18. We can see that after a period of adjusting, all flows

are stabilized. The steady state throughputs are 128Mbps, 234Mbps and 566Mbps, which

result in a high utilization of 92.8 percent even though the initial sum ofα exceeds the

buffer capacity. However, this introduces potential fairness problem as we cannot control

the exactα values when they stop updating when no loss is generated. Forexample, instead

of achieving perfect fairness with a Jain index [34] of 1 , we have 0.733 in this experiment.

We tend to think that this short term unfairness is not so important as in practice, flows

come and go, which will give many chances for existing flows toreshuffle and the random

short term unfairness can be averaged out to yield long term fairness.

Figure 4.18: Bandwidth sharing among FAST flows
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Chapter 5

Conclusion

Writing is a deed of eternity. Its ups and downs are known only to the author.

— Du Fu (712 – 770), A Great Poet in Tang Dynasty, China

The central motivation of this thesis is to investigate end-to-end flow control in an environ-

ment with multiple pricing signals, or more generally, the resource allocation problem with

heterogeneous prices. It is demonstrated in this thesis that when sources sharing the same

network react to different pricing signals, the current duality model no longer explains the

equilibrium of bandwidth allocation. We have introduced a mathematical formulation of

network equilibrium for multi-protocol networks and studied several fundamental proper-

ties such as existence, uniqueness, optimality, and stability. We prove that equilibria exist,

and are almost always locally unique. The number of equilibria is almost always finite and

must be odd. The equilibrium is globally unique if the price mapping functions are similar,

or theJ(p) is “negative definite” along certain directions. By identifying an optimization

problem associated witheveryequilibrium, we show that every equilibrium is Pareto ef-

ficient. It also yields an upper bound on efficiency loss due topricing heterogeneity. On

fairness, we show that intra-protocol fairness is still decided by a utility maximization prob-

lem while inter-protocol fairness is the part over which we don’t have control. However it is

shown that we can achieve any desirable inter-protocol fairness by properly choosing pro-

tocol parameters. Regarding dynamics, various stability results are provided. In particular

we prove that if the degree of pricing heterogeneity is properly bounded, then the network

equilibrium is not only unique but also locally stable. Finally, we propose a scheme to steer
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an arbitrary network to a unique equilibrium that maximizesthe total utility, by updating

in a slow timescale a linear parameter in sources’ algorithms. The scheme uses only lo-

cal information. In addition to analysis and numerical examples, we have presented NS-2

simulations and WAN in Lab experiments using TCP Reno and FAST to demonstrate the

correctness and convergence of the scheme.

There are a number of features of this study. First, our emphasis is on general networks

with multiple sources and links that use a large class of algorithms to adapt their rates and

congestion prices. Often, interesting and counter-intuitive behaviors arise only in a net-

work setting where sources interact through shared links inintricate and surprising ways

[73, 74]. Such behaviors are absent in single-link models and are usually hard to discover or

explain without a fundamental understanding of the underlying structure. Second, starting

from a concrete engineering system, we set up a mathematicalframework to further explore

structures, clarify ideas, and suggest improvements. In the process of doing so, we have

borrowed some tools and techniques from other communities that are not widely used in

the field of communication networking, e.g., general equilibrium analysis from economics,

and Sard’s theorem and Poincare-Hopf index theorem from differential geometry. More in-

terestingly, we have also developed some new mathematical techniques; see Appendix 6.2

and 6.6 for example. These results can potentially be usefulin solving important problems

in economics and mathematics, as we will discuss in more detail later. Finally, though it is

mainly theoretical, this thesis also includes experimental verification of its key predictions.

These supporting data come from a range of methods that span from numerical calculation

and packet-level simulations to Dummynet and WAN in Lab experiments.

It is always exciting to look ahead. We now conclude by discussing possible future

directions. There are two natural extensions we need to address.

The first question is that of the global stability of heterogeneous congestion control

protocols. We know there can be multiple equilibria, and they cannot all be locally stable

unless there is only one. We have conditions under which the equilibrium is unique and

locally stable. However, we still don’t know the global dynamics of the system in general.

One plausible conjecture is that every trajectory ends up with one of the equilibria. The

intuition is that heterogeneity of prices makes the underlying dynamics no longer an exact
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gradient field, but the monotonicity of price mapping functions still guarantees that the

system reacts in a qualitatively correct way. In general, mathematically showing this is

quite hard as only limited tools are available to deal with multiple equilibria, e.g., recent

developments in monotone dynamic systems [69] and the dual of the Lyaponov method

[60].

The other problem concerns the convergence property of the slow timescale update

scheme. We have shown that, if the update is fast enough, the system will converge to the

unique optimal point. However, in reality, we want to updatemuch more slowly compared

to the underlying TCP dynamics. Addressing global stabilityfor this hybrid system then

becomes very challenging, especially given that the underlying TCP system can have mul-

tiple equilibria. The current conjecture is that if the stepsize sequence satisfies some certain

condition [11], the system converges globally.

This thesis deals with a problem at the intersection of engineering and economics and

also involves mathematics such as asymmetric matrix and vector field analysis. Some re-

sults and techniques here can potentially have much wider applications beyond the study of

congestion control systems. We now list a few long term directions, one for each discipline.

Economics: “Bounded heterogeneity implies regularity”Economists began to seri-

ously study dynamics of market behaviors long time ago when Hicks advocated its impor-

tance in [30], in which he proposed his stability concepts (imperfect stability and perfect

stability). It was later found that Hicksian stability is only remotely related to real dynamic

stability, which is pointed out by Samuelson [63].

In general equilibrium theory in economics, with the classical Arrow-Debreu model

(see section 2.4 for the version of pure exchange economics and [6, 51] for more details),

existence, uniqueness, and stability1 of equilibrium have been carefully and rigorously in-

vestigated in the last half century. Unlike existence, which was a triumph of mathematical

economics [19], results on global uniqueness and stabilityare limited in the sense that the

conditions to guarantee those properties are quite restrictive. Moreover, failure to provide

applicable results on global uniqueness and stability weakens the significance of existence

1The most commonly studied stability model is the Tatonnement process, whose differential equation

version was proposed in [64]. One is referred to [5, 7, 8, 65, 68, 13, 24, 20, 28] for the development.
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and welfare theorems. These all cause confusion and even skepticism about the future of

general equilibrium theory [50, 4].

We observe that the examples that have multiple equilibria or limit cycles typically in-

volve some assumptions that may not accurately reflect reality. For example, in his classical

work [65], Scarf demonstrated that it is possible for a pure exchange economy with three

consumers to have a globally unique equilibrium that is not even locally stable. The util-

ity functions of users are completely complementary in the sense that consumer 1 values

commodity A while commodities B and C do not affect its utility, while consumers 2 and

3 value commodities B and C, respectively.

A natural question is then whether we can provide a bound on heterogeneity of con-

sumers’ utility functions or their initial endowments to guarantee a unique and globally

attractive equilibrium. In short, does “bounded heterogeneity imply regularity”? By reg-

ularity, we mean desirable properties such as uniqueness and stability. If that turns out to

be true, then we can potentially overcome the difficulty of general equilibrium theory by

justifying the needed bound on the degree of heterogeneity using some statistical argument

for large systems.

Engineering: “How to use multiple prices optimally” We have analyzed networks

with heterogeneous congestion control protocols where every protocol uses exactly one

kind of price. As sources may have access to multiple prices,it is interesting to consider

the optimal way for sources to regulate their rates based on all information they can ob-

serve. Some steps are taken in this direction by combining delay-based and loss-based

congestion control protocols [15, 71]. We are interested ina general framework under

which we can explore various basic questions, e.g., Is thereany performance limit due to

the finite feedback information? If so, how do we express thatand what is its implication

in practice? Hopefully the answers to these questions can lead to more systematic designs.

Mathematics: “Asymmetric P -matrix analysis” The general matrix stability prob-

lem has been studied for 200 years. See [26] for detailed classic results and [29] for an

excellent survey on recent progress. In the last 50 years, people have begun to look at

nonsymmetric cases. We take theP -matrix as an example here.

A P -matrix is a real square matrix all of whose principal minorsare positive. Positive
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definite matrices are symmetricP -matrices. One of the important questions being asked in

the linear algebra community is, what is the required “symmetry” to guarantee the stability

of a P -matrix, i.e., all its eigenvalues have positive real parts. This is a very difficult

problem and so far the only general (but conservative) result is due to Carlson [14], which

asserts that every positive sign-symmetric matrix is positive stable. A matrixA is said to

be positive sign-symmetric if it is aP -matrix andA(α, β)A(β, α) ≥ 0 for all α, β ∈ Qn,

|α| = |β|. Here,Qn = {(i1, i2, . . . , ik) |1 ≤ i1 < i2 < · · · < ik ≤ n}. Given a matrixA

andα, β ∈ Qn, A(α, β) means the minor ofA whose rows are indexed byα and whose

columns are indexed byβ.

People have tried to identify a set of properties from positive definite matrices that is

critical for the stability ofP -matrices. Various conjectures have been proposed, but allfail

for the general case. One can find these results in [31] and references therein.

Motivated by the analysis ofJ(p) in this thesis, which is aP -matrix once the price

similarity condition holds, we have also carried out study on generalP -matrices. In par-

ticular, we were able to find another condition on the degree of symmetry that is sufficient

for the stability of aP -matrix [3]. A current conjecture is that aP -matrix is stable if its

diagonal terms are all positive and larger than the absolutevalue of any term that is in the

same row (column). Clearly, this is a stronger statement thanTheorem 3.8. Theorem 3.6’s

proof covers cases when the dimension of the matrix does not exceed three. It remains to

see to what extent techniques in section 6.6 can be used to deal with this problem.
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Chapter 6

Appendix

6.1 Simulation of Multiple Equilibria

The Dummynet experiments provide qualitative evidence of multiple equilibria with prac-

tical protocols. We could not have verified the experimentalresults with quantitative pre-

dictions because a Droptail router does not admit an accurate mathematical model for the

price mapping functionml. In this section, we present simulation results using NS-2 on

multiple equilibria and fairness. The network simulator NS-2 allows us to use RED routers

for which the price mapping functionml is known. We can thus compare simulation mea-

surements with our theoretical predictions. For all the simulations in this section, TCP

Vegas is used, which has the same equilibrium structure as FAST.

The network simulator ns-2 version 2.1b9a is used here. We use the RED algorithm

and packet marking instead of dropping. The marking probability p(b) can be expressed as

in (4.1).

The network topology is as shown in Figure 1.2. The link capacities of link 1 and link

3 are set to be 100 Mbps (8.33pkts/ms) and the one way propagation delay to be 50 ms.

For link 2, the capacity is 150 Mbps (12.5pkts/ms) and one waypropagation delay is 5 ms.

There are 10 Vegas flows on each of paths 1 and 2, and 20 Reno flows on path 3. As in NS

simulations,αd is the number of packets the flow maintains along its path, which has been

calledα before by convention. Hence every flow tries to put 5.5 packets along its path as

we setα = 50.
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Experiment 6.1: varyingK2.

We set(b1, b1, K1) to be (0, 1000, 10000) at link 1 and link 3. Set(b2, b2) to be (100,

1500) at link 2, and vary the slopeK2 at link 2 from 10 to 600. Figure 6.1 shows the

aggregate throughput of all Reno flows and the link utilization at link 1 for different values

of K2. Theoretical predictions are calculated by solving equilibrium equations and the

price mapping function (4.1) for RED. As can be seen, the prediction matches the measured

curve very well.
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Figure 6.1: Experiment 6.1: Aggregate Reno throughput and link utilization at link 1.

From Figure 6.1, the aggregate throughput and utilization at link 1 are independent of

K2 if Reno flows start first. This is because link 2 is not saturatedin this scenario, as

explained earlier, and hence varying its parameter does notaffect the equilibrium. When

Vegas flows start first, on the other hand, link 2 is the bottleneck link, and hence asK2

increases, Reno achieves more and more bandwidth since the mapping function penalizes

Reno less and less.

As K2 increases, one may expect that the Reno throughput curve in Figure 6.1 that

correspond to Vegas starting first will converge to the same value for the case when Reno

starts first. It is not possible to exhibit this beyondK2 = 600 at link 2. As shown in

Figure 6.1, the utilization at link 1 is more than 95% whenK2 = 600. Even though link 1

is not saturated yet, it is so close to being saturated that random fluctuations in the queue

can readily shift the system from the current equilibrium where only link 2 is saturated to

the other equilibrium where links 1 and 3 are saturated (while link 2 is not). See a clear
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demonstration of this phenomenon in Experiment 6.3.

Experiment 6.2: varyingK1.

In this experiment, we fixK2 = 100 at link 2 and varyK1 at link 1 and link 3 simul-

taneously from 5,000 to 11,000. The results are summarized in Figure 6.2. When Vegas
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Figure 6.2: Experiment 6.2: Aggregate Reno throughput and link utilization at link 2.

flows start first, the bottleneck link is link 2 and therefore both the aggregate Reno through-

put and the utilization at link 2 are independent ofK1. When Reno flows start first, on the

other hand, links 1 and 3 become saturated and varyingK1 affect both the aggregate Reno

throughput and link 2’s utilization. The theoretical predictions track the measured data,

but are generally larger than the data. The main reason is that Vegas flows overestimated

base RTT when Reno flows start first and maintain a nonzero queue. Then Vegas flows be-

come more aggressive and suppress Reno flows more than they should; see [47] for more

discussion on the effect of error in base RTT estimation.

AsK1 decreases at links 1 and 3, Reno flows see more losses and the system may shift

to the other equilibrium where only link 2 is saturated. For instance, from Figure 6.2, the

utilization at link 2 is close to 95 percent whenK1 = 5000.

Experiment 6.3: shifting equilibria.

This experiment shows that the system can shift back and forth between the two equi-

libria when the utilization of the unsaturated link(s) is sufficiently close to 100 percent so

that the system can readily jump between two disjoint activeconstraint sets due to random
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fluctuation. The slopesK1 = 3500 at link 1 and link 3 andK2 = 500 at link 2. The simu-

lation duration is 1000 sec. The queues at link 1 and link 2 areshown in Figure 6.3. This

result unambiguously exhibits that there are two equilibria and they are both achieved.
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Figure 6.3: Experiment 6.3: Queue sizes at link 1 and link 2. The system shifts between
the two equilibria with disjoint active constraint sets.

6.2 Proof of Theorem 2.8

By Corollary 2.7, we only need to prove thatI(p) = (−1)L for any equilibriump ∈ E.

Sincedet(J(p)) = (−1)L det(−J(p)), the condition reduces todet(−J(p)) > 0. Now

−J(p) = −
∑

j

RjDj(p)
(

Rj
)T ∂mj

∂p
(p)

=
∑

j

BjM j

whereM j = M j(p) = ∂mj

∂p
(p) is a diagonal matrix, andBj = Bj(p) is defined by its

elements

Bj
kl =

∑

i

RkiRli

(

− ∂2U j
i

∂(xj
i )

2

)−1

(6.1)
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Hence

det(−J(p)) = det

[

∑

j

BjM j

]

=
∑

k

sgnk
L
∏

l=1

J
∑

j=1

[

BjM j
]

kll
(6.2)

Here, the summation overk = (k1, . . . , kL) ∈ {1, . . . , L}L is over allL! permutations

of theL items{1, . . . , L}. The function sgnk is 1 if the minimum number of pairwise

interchanges necessary to achieve the permutationk starting from(1, 2, . . . , L) is even and

−1 if it is odd.

Let π denote anL-bit binary sequence that represents the path consisting ofexactly

those linksk for which thekth entries ofπ are 1, i.e.,πk = 1. LetΠ(k, l) := {π|πk = πl =

1} be the set of paths that contain both linksk andl. Let Ij
π = {i|Rj

li = 1 if and only if

πl = 1} be the set of typej sources on pathπ, possibly empty. Let

rj
π = rj

π(p) =
∑

i∈I
j
π

(

− ∂2U j
i

∂(xj
i )

2

)−1

(6.3)

whererj
π is zero if Ij

π is empty. Since all utility functions are assumed concave,rj
π ≥ 0.

Then we have from (6.1) and (6.3)

Bj
kl =

∑

π∈Π(k,l)

rj
π (6.4)

This together with (6.2) implies

det(−J(p)) =
∑

k

sgnk
L
∏

l=1

J
∑

j=1



ṁj
l

∑

π∈Π(kl,l)

rj
π



 (6.5)

Consider any sequenceaij, j ∈ Ji, i = 1, . . . , I, whereJi is a finite index set that
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depends oni. We have

I
∏

i=1

∑

j∈Ji

aij =
∑

j

I
∏

i=1

aiji
(6.6)

wherej denotes the vector indexj = (j1, . . . , JI) and the summation is over all values in

J1 × · · · × JI .

Using (6.6) to change the order of product overl and summation overj in (6.5), we

have

det(−J(p)) =
∑

k

sgnk
∑

j

L
∏

l=1



ṁjl

l

∑

π∈Π(kl,l)

rjl
π





where the vector indexj = (j1, . . . , jL) ranges over{1, . . . , J}L. Applying (6.6) again to

change the order of product overl and summation over the indexπ, we have

det(−J(p)) =
∑

k

sgnk
∑

j

µ(j)
∑

π∈Π(k,l)

ρ(j,π) (6.7)

where

µ(j) :=
L
∏

l=1

ṁjl

l (6.8)

ρ(j,π) :=
L
∏

l=1

rjl

πl (6.9)

The last summation in (6.7) is over the vector indexπ = (π1, . . . , πL) that takes value in

the set{ all L-bit binary sequences}L. As mentioned above,l = (1, . . . , L) denotes the

identity permutation, and “π ∈ Π(k, l)” is a shorthand for “πl ∈ Π(kl, l), l = 1, . . . , L”.

Denote by1(a) the indicator function that is1 if the assertiona is true and0 otherwise.

Then (6.7) becomes

det(−J(p)) =
∑

j

∑

π

C(j,π) ρ(j,π) (6.10)
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where

C(j,π) :=
∑

k

1(π ∈ Π(k, l)) sgnk µ(j) (6.11)

Hencedet(−J(p)) is a summation, over the index(j,π), of termsρ(j,π) with coef-

ficientsC(j,π). We now show that only those terms for which the constituentrj
π in the

productρ(j,π) are all distinct have nonzero coefficients.

Lemma 6.1. Consider a term in the summation in (6.21) indexed by(j,π). If there are

integersa, b ∈ {1, . . . , L} such thatja = jb andπa = πb, thenC(j,π) = 0.

Proof. Fix any (j,π). Suppose without loss of generality thatj1 = j1 andπ1 = π2 and

ρ(j,π) 6= 0. We now show that its coefficientC(j,π) = 0.

Consider any permutationk in (6.11) that gives a nonzero coefficient inC(j,π):

1(π ∈ Π(k, l)) sgnk µ(j) = sgnkµ(j) (6.12)

This means that

π1 ∈ Π(k1, 1) and π2 ∈ Π(k2, 2)

Hence, sinceπ1 = π2, the pathπ1 goes through all links1, 2, k1, k2. In particular

π1 ∈ Π(k2, 1) and π2 ∈ Π(k1, 2)

Therefore there is a permutation̂k in (6.11) with k̂1 = k2, k̂2 = k1, andk̂l = kl for l ≥ 3

for which 1(π ∈ Π(k̂, l)) = 1 but sgn̂k = −sgnk. This yields a term−sgnk µ(j) in

C(j,π) which exactly cancels the term in (6.12). Since the argumentapplies to anyk in

(6.11),C(j,π) = 0.

In view of Lemma 6.1, we will restrict the summation over the index(j,π) in (6.21) to

the largest subset of{1, . . . , J}L where the constituentrj
π in ρ(j,π) are all distinct. LetΘ
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denote this subset. We abuse notation and define permutationσ ∈ {1, . . . , L}L onΘ by

σ(j,π) = (σ(j),σ(π))

Then letΘ0 be the largest subset ofΘ that ispermutationally distinct, i.e., no vector inΘ0

is a permutation of another vector inΘ0. The set of permutationsσ ∈ {1, . . . , L}L is in

one-one correspondence with the set of(j ′,π′) that are permutations of a given(j,π) in

Θ0.1 This allows us to carry out the summation over(j,π) in (6.21) first over(j,π) that

are permutationally distinct and then over all their permutations. Notice that, given any

(j,π) and any permutationσ, we have from (6.9)

ρ(σ(j),σ(π)) = ρ(j,π)

i.e.,ρ is invariant to permutations. Hence, we can rewrite (6.21)–(6.11) as

det(−J(p)) =
∑

(j,π)∈Θ0

D(j,π) ρ(j,π) (6.13)

where

D(j,π) =
∑

σ

∑

k

1(σ(π) ∈ Π(k, l)) sgnk µ(σ(j))

(6.14)

In the above,L-vectorsσ andk are permutations.

The next lemma converts a condition onσ(π) into one onπ. It follows directly from

the definition of permutation.

Lemma 6.2. For anyπ and any permutationsσ,k, we have

σ(π) ∈ Π(k, l) ⇔ π ∈ Π(σ−1k,σ−1)

i.e., [σ(π)]l ∈ Π(kl, l) for all l if and only ifπl ∈ Π(kσ−1
l
, σ−1

l ) for all l.

1The one-one correspondence fails to hold for permutations not in Θ.
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Applying Lemma 6.2 to (6.26), we have

D(j,π) =
∑

σ

∑

k

1(π ∈ Π(σ−1k,σ−1)) sgnk µ(σ(j))

Sincek, and henceσ−1k, range over all possible permutations, we can replace the index

variableσ−1k by k to get

D(j,π) =
∑

σ

∑

k

1(π ∈ Π(k,σ−1)) sgn(kσ)µ(σ(j))

(6.15)

We now use (6.15) to derive a sufficient condition under whichD(j,π) are nonnegative

for all permutationally distinct(j,π). The main idea is to show that for every negative

term in the summation in (6.15), either it can be exactly cancelled by a positive term, or

we can find two positive terms whose sum has a larger or equal magnitude under the given

condition. This lemma directly implies Theorem 2.8.

Lemma 6.3. Suppose assumptions A1–A3 hold. Suppose for anyj ∈ {1, . . . , J}L and any

permutationsσ,k,n in {1, . . . , L}L, we have for a regular network

µ(k(j)) + µ(n(j)) ≥ µ(σ(j))

Then, for all(j,π) ∈ Θ0,D(j,π) ≥ 0.

Proof. Fix any(j,π) ∈ Θ0. Each term in (6.15) is indexed by a pair(σ,k).

Fix also a permutationσ in (6.15). Suppose there is only one permutationk for which

the term indexed by(σ,k) has a negative sign given by1(π ∈ Π(k,σ−1))sgn(kσ) = −1.

This term is then−µ(σ(j)) < 0. Since the summation overk ranges over all permutations,

we can find a positive term, indexed by(σ, k̂) with k̂ = σ−1, that exactly cancels this

negative term. This is because1(π ∈ Π(k̂,σ−1)) is always1 and sgn(k̂σ) = sgnl = 1,

yielding the termµ(σ(j)). Hence we have shown that, givenσ, if there is only onek

that yields a negative term, then it is always cancelled by another positive term indexed by

(σ, k̂) with k̂ = σ−1.
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Given aσ, suppose now there are two permutationsk,n for which

π ∈ Π(k,σ−1) and π ∈ Π(n,σ−1) (6.16)

and sgn(kσ) = sgn(nσ) = −1. Each of (σ,k) and (σ,n) yields a negative term

−µ(σ(j)) in the summation in (6.15). Notice that (6.27) says that, forall l = 1, . . . , L, the

pathπl contains link pairs(kl, σ
−1
l ) and(nl, σ

−1
l ). Henceπl also pass through link pairs

(σ−1
l , σ−1

l ), (kl, nl) and(nl, kl), i.e.,

π ∈ Π(σ−1,σ−1)) (6.17)

π ∈ Π(k,n), π ∈ Π(n,k) (6.18)

(6.29) implies that there is a positive term in the summationin (6.15) indexed by(σ, k̂)

with k̂ = σ−1:

sgn(σ−1σ)µ(σ(j)) = µ(σ(j)) > 0

It cancels the negative term−µ(σ(j)) in the summation indexed by(σ,k).

To deal with the negative term−µ(σ(j)) indexed by(σ,n), note that (6.30) implies

that there are two nonzero terms in the summation, indexed by(n−1,k) and(k−1,n), that

we now argue are positive. Indeed the term indexed by(n−1,k) is

sgn(kn−1) µ(n−1(j)) = sgn(kσ(nσ)−1) µ(n−1(j))

= sgn(kσ) sgn(nσ)−1 µ(n−1(j))

= µ(n−1(j)) > 0

where we have used the hypothesis that sgn(kσ) = −1 and sgn(nσ)−1 = sgn(nσ) = −1.

Similarly, the term with index(k−1,n) isµ(k−1(j)). The hypothesis of the lemma implies

that

µ(n−1(j)) + µ(k−1(j))− µ(σ(j)) ≥ 0
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Hence, we have shown that, givenσ, if there are two negative terms in the summation in

(6.15) indexed by(σ,k) and(σ,n), then we can always find three positive terms, indexed

by, (σ,σ−1), (n−1,k) and(k−1,n), so that the sum of these five terms is nonnegative.

If there are more than two negative terms, take anyadditionalnegative term, indexed

by, say,(σ, n̂). The same argument shows that it will be compensated by the two (unique)

positive terms indexed by(n̂−1,k) and(k−1, n̂). This completes the proof.

Since the network is regular,det(−J(p)) 6= 0. Lemma 6.3, together with (6.13), im-

plies thatdet(−J(p)) > 0, or equivalently,I(p) = (−1)L for any p ∈ E, under the

condition of the lemma. Theorem 2.8 then follows from Corollary 2.7. An illustration for

the proof of Lemma 6.3 via a concrete example (L = 3, J = 2) can be found in Appendix

6.3.

Remark: The sufficient condition in Theorem 2.8 can be conservative because many

rj
π may be zero (no source of typej takes pathπ).

6.3 Proof of Theorem 2.10

Proof. It is straightforward to check that only the following sixρ(j,π) in (6.13) can have

negative coefficientsD(j,π):

(λ2 + λ3 − λ1)ṁ
2
1ṁ

2
2ṁ

2
3r

1
111r

2
101r

2
110 (6.19)

(λ1 + λ3 − λ2)ṁ
2
1ṁ

2
2ṁ

2
3r

1
111r

2
011r

2
110

(λ1 + λ2 − λ3)ṁ
2
1ṁ

2
2ṁ

2
3r

1
111r

2
011r

2
101

(
1

λ2

+
1

λ3

− 1

λ1

)ṁ1
1ṁ

1
2ṁ

1
3r

2
111r

1
101r

1
110

(
1

λ1

+
1

λ3

− 1

λ2

)ṁ1
1ṁ

1
2ṁ

1
3r

2
111r

1
011r

1
110

(
1

λ1

+
1

λ2

− 1

λ3

)ṁ1
1ṁ

1
2ṁ

1
3r

2
111r

1
011r

1
101

The condition in the theorem guarantees that these terms areall nonnegative. By (6.13),

det(−J(p)) ≥ 0. Since the network is regular, we havedet(−J(p)) > 0 for all equilibria

p. Hence the equilibrium is globally unique.
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We close this section by illustrating how we determine the coefficientD(j,π) in the

proof of Lemma 6.3. Consider the term forρ(j,π) = r1
111r

2
101r

2
110 in (6.19). Herej =

(1, 2, 2) andπ = ((111), (101), (110)). By (6.26), we need to look at the sum overσ and

k. First, look atσ = (3, 1, 2), the onlyk such that1(σ(π) ∈ Π(k, l)) = 1 and sgnk = −1

is k = (2, 1, 3). By the argument in the proof of Lemma 6.3, if we letk = l = (1, 2, 3),

we have1(σ(π) ∈ Π(k, l)) = 1 and sgnk = 1 and the sum of these two terms in (6.26) is

zero.

We can visualize this operation as follows: Each entry of−J(p) is a sum ofṁj
l r

j
π

with appropriate signs. When we expand its determinant, we obtain, from (6.13)–(6.26), a

sum, over a set of source typesj, pathsπ and permutationsσ,k, of termsρ(j,π) that are

products ofrj
π. Hence we can identify each term in (6.13)–(6.26), indexed by (j,π,σ,k),

with the original position in−J(p) of each constituentrj
π in ρ(j,π). This is illustrated

below: The negative term











r1
111

r2
110

r2
101











(σ = (3, 1, 2),k = (2, 1, 3), sgnk = −1)

is cancelled exactly by the positive term











r2
110

r1
111

r2
101











(σ = (3, 1, 2),k = (1, 2, 3), sgnk = 1)

Similarly, we have the following two terms that cancel one another:











r1
111

r2
110

r2
101











(σ = (2, 3, 1),k = (3, 2, 1), sgnk = −1)



99










r2
101

r2
110

r1
111











(σ = (2, 3, 1),k = (1, 2, 3), sgnk = 1)

Now considerσ = (1, 3, 2). We have the following two terms with sgnk = −1.











r2
101

r2
110

r1
111











(σ = (1, 3, 2),k = (3, 2, 1), sgnk = −1)











r2
110

r1
111

r2
101











(σ = (1, 3, 2),k = (2, 1, 3), sgnk = −1)

Settingk = l = (1, 2, 3) gives the following positive term:











r1
111

r2
110

r2
101











(σ = (1, 3, 2),k = (1, 2, 3), sgnk = 1)

As described in the proof of Lemma 6.3, we can find two positiveterms indexed by some

(σ,k). One is(σ = (3, 2, 1)(1, 3, 2) = (2, 3, 1),k = (3, 2, 1)−1(2, 1, 3) = (3, 1, 2)) and

the other is(σ = (2, 1, 3)(1, 3, 2) = (3, 1, 2),k = (2, 1, 3)−1(3, 2, 1) = (2, 3, 1)). They

can be visualized as the following:











r2
110

r1
111

r2
101











(σ = (2, 3, 1),k = (3, 1, 2), sgnk = 1)











r2
101

r2
110

r1
111











(σ = (3, 1, 2),k = (2, 3, 1), sgnk = 1)

For π = ((111), (101), (110)), we can actually verify that only the nine terms dis-
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cussed above have1(σ(π) ∈ Π(k, l))sgnk 6= 0. Therefore, the coefficientD(j,π) =

µ((2, 3, 1)(j)) + µ((3, 1, 2)(j))− µ((1, 3, 2)(j)). Notingj = (1, 2, 2), we finally get

D(j,π) = µ((2, 2, 1)) + µ((2, 1, 2))− µ((1, 2, 2))

= ṁ2
1ṁ

2
2ṁ

1
3 + ṁ1

1ṁ
1
2ṁ

2
3 − ṁ1

1ṁ
2
2ṁ

2
3

= (λ3 + λ2 − λ1)ṁ
2
1ṁ

2
2ṁ

2
3

6.4 Smallest Network with Multiple Equilibria

Example 6.1: a two-link network with non-unique equilibria

In this example, we assume that all of the sources use the sameutility function defined

as

U j
i (xj

i ) = −1

2

(

1− xj
i

)2

The network has two links with capacity vectorc = [1, 1]. The corresponding routing

matrices for these two protocols are

R1 = R2 =





1

1





We use linear price mapping functionsmj(p) = Kjp, j = 1, 2, whereKj are2×2 matrices

given by

K1 = I, K2 = diag(1, 3)

As for Example 1, we check the matrix

2
∑

i=1

Ri(Ri)TKi =





1 4

1 4





which has determinant 0, implying multiple equilibria. It is easy to verify that the following
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points are all equilibria:

p1 = ε, p2 = 1/4− ε/2, where ε ∈ [0, 1/2]

The corresponding rates are

x1
1 = 3/4− ε/2, x2

1 = 1/4 + ε/2

The capacity constraints are all tight.

Remarks: Note that even with a single protocol, the example above has non-unique equi-

librium price vectors since the routing matrix is not full rank. However, in that case, the

equilibrium rate vector is unique, unlike the case of multiple protocols.

6.5 Proof of Lemma 2.16

Proof. Suppose thatλ is an eigenvalue ofB + 1γT , then diag(βi − λ) + 1γT is singular.

If λ = βi for certaini, then, sinceβi > 0, λ is positive. Otherwise the following matrix is

also singular:

I + diag

(

1

βi − λ

)

1γT (6.20)

The rank of matrix diag(1/(βi − λ))1γT is 1. Moreover it has only one nonzero eigen-

value equal to
∑

i γi/(βi − λ). For the matrix in (6.20) to be singular, it must have a zero

eigenvalue, and this is possible if and only if

∑

i

γi

βi − λi

= −1

The real part ofγi/(βi − λi) is γi(βi −Reλ)/|βi − λ|2. If Reλ ≤ 0, the sum of the real

part ofγi/(βi − λi) cannot be−1. So we must haveReλ > 0.
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6.6 Proof of Theorem 3.8

For a real matrixA, if all its principle minors are positive,A is called aP -matrix. If

aii ≥ 0, aij ≤ 0, thenA is called anM -matrix.2 Clearly if aP -matrix is symmetric, then

it is positive definite and hence stable. However, the Jacobian matrix in our problem is

not symmetric due to the fact that multiple protocols exist,which is the main difficulty of

setting up stability. Before getting into the main proof, we state three lemmas here. One is

refered to [10] for other related results.

Lemma 6.4. If A is aP -matrix and also anM -matrix, then all its eigenvalues have positive

real parts.

Proof: Chooseα ≥ maxi aii, thenG = αI − A ≥ 0. By the classical Perron-Frobenius

theorem [10], we can find a non-negativeγ that is an eigenvalue ofG with the largest

modulus. Letµ = α − γ, thenµ is an eigenvalue ofA. Let λ be another eigenvalue of

A andλ 6= µ. Thenβ = α − λ is an eigenvalue ofG. Hence|β| ≤ γ. As β 6= γ, we

have<(β) < γ where<(β) is the real part ofβ. Then<λ = α − <(β) > α − γ = µ. In

short,A has an eigenvalueµ, which is real and whose real part is less than that of any other

different eigenvalues ofA.

On the other hand, asA is also aP -matrix, it is well known thatA cannot have a

nonpositive real eigenvalues, which can be clearly seen from the characteristic polynomial

of A. Now suppose there is an eigenvalueλ of A whose real part is not positive, as we

showed in the last paragraph, there is another eigenvalueµ of A, which is real andµ <

<(λ) ≤ 0. This contradicts the fact thatA is aP -matrix and hence all eigenvalues ofA

have positive real parts.

Remark: It is well known in mathematical economics that if the Jacobian matrix is an

M -matrix then it is also aP -matrix. The main reason is there is another property of the

2We use terminologies from the mathematics community. As closely related problems are extensively

studied in economics, there are parallel terminologies. e.g., if A is aP -matrix, then−A is called Hecksian;

anM -matrix with positive diagonals is referred to as Metzlerian or as having gross substitution property.
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Jacobian matrix that can be obtained by Walras’s law or the fact that the demand func-

tion is of homogeneity zero. In our problem, although complementary slackness condition

can generate the same property as Walras’s law does (only at equilibrium), our Jacobian

matrix is not anM -matrix. TheM -matrix on which we will use this lemma does not

have that additional property and hence needs an additionalassumption to be aP -matrix

here. Checking whether a matrix is aP -matrix or not is known to be NP-complete [16].

However, using the structure of our problem we can still analytically check theP -matrix

condition and hence set up our main result in the next section.

Let e be the column vectore = [1, 1, · · · , 1]T .

Lemma 6.5. If A is an M-matrix and all its eigenvalues have positive real parts, then there

is anD = diag[d1, · · · , dn], di > 0 for all i, such thatD−1ADe = h > 0. In other words,

A is diagonally dominant.

Proof: As all eigenvalues ofA have positive real parts, then the real one with the smallest

real part is greater than 0, i.e.,µ > 0. Still defineG = αI −A with α ≥ maxi aii and letγ

be an eigenvalue ofG with the largest modulus. We then haveα = µ + γ > γ. Again by

the Perron-Frobenius theorem,(αI −G)−1 = A−1 ≥ 0.

Pick any positive vectorv > 0, we can concludeA−1v > 0 as every row of the nonsin-

gular matrixA−1 contains at least one positive element. Define a diagonal matrix D > 0

uniquely byDe = A−1v. ThenD−1ADe = D−1v > 0.

Remark: The above claim provides a sufficient condition to test whether anM -matrix is

diagonally dominant, the condition is actually also necessary [66].

For a matrixA, we define its comparison matrixM(A) = (mij) by settingmii = |aii|,
andmij = −|aij| if i 6= j. ClearlyM(A) is anM -matrix. The following lemma points

out a simple yet important fact that relates diagonal dominance property ofA with positive

diagonal entries and that ofM(A).

Lemma 6.6.Suppose all diagonal entries ofA are positive. If there is a anD = diag[d1, · · · , dn],

di > 0 for all i, such thatD−1M(A)De = h > 0. ThenD−1ADe > 0, i.e.,A is also diag-

onally dominant.
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Proof: For anyi, we have

(D−1ADe)i = aii −
∑

j 6=i

dj

di

|aij| = (D−1M(A)De)i > 0

We now state the proof of Theorem 3.8.

Proof: We need to show all eigenvalues of−J have positive real parts. It is enough to show

−J is diagonally dominant and by Lemma 6.6 we only need to showM(−J) is diagonally

dominant as all diagonal entries of−J are positive (each link has at least one flow using

it). Using Lemma 6.5, it suffices to show thatM(−J) is positive stable, which then can be

reduced to check whetherM(−J) is aP -matrix by Lemma 6.4. By similar arguments in

[75], it is enough to showdet(M(−J)) > 0, which will be done in the remainder of the

proof. Following section 6.2, we have

det(−J(p)) =
∑

j

∑

π

C(j,π) ρ(j,π) (6.21)

where

C(j,π) :=
∑

k

1(π ∈ Π(k, l)) sgnk µ(j) (6.22)

For any permutationk, DefineL+
k = {l|kl = l} andL−

k = {l|kl 6= l}. We then have

det(M(−J)) =
∑

j

∑

π

G(j,π) ρ(j,π) (6.23)

where

G(j,π) :=
∑

k

1(π ∈ Π(k, l)) sgnk(−1)|L
−

k
| µ(j) (6.24)

HencedetM(−J(p)) is a summation, over the index(j,π), of termsρ(j,π) with coeffi-
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cientsG(j,π).

Then letΘ0 be the largest subset of the set of all possible(j,π)’s that ispermutationally

distinct, i.e., no vector inΘ0 is a permutation of another vector inΘ0. We then have

det(M(−J(p))) =
∑

(j,π)∈Θ0

H(j,π) ρ(j,π) (6.25)

H(j,π) =
∑

σ∈Σ(j,π)

∑

k

1(σ(π) ∈ Π(k, l))T (6.26)

where

T = sgnk(−1)|L
−

k
| µ(σ(j))

and Σ(j,π) is the largest subset of the set of all permutationsσ that generate distinct

σ(j,π).

We now use (6.26) to derive a sufficient condition under whichH(j,π) are nonnegative

for all permutationally distinct(j,π). The main idea is to show that for every negative

term in the summation in (6.26), either it can be exactly cancelled by a positive term, or

we can find two positive terms whose sum has a larger or equal magnitude under the given

condition. This lemma directly implies Theorem 3.8.

Lemma 6.7. Suppose assumptions A1–A3 hold. Suppose for anyj ∈ {1, . . . , J}L and any

permutationsσ,k,n in {1, . . . , L}L, we have for a regular network

µ(k(j)) + µ(n(j)) ≥ µ(σ(j))

Then, for all(j,π) ∈ Θ0,H(j,π) ≥ 0.

Proof. Fix any (j,π) ∈ Θ0. Each term in (6.26) is indexed by a pair(σ,k). Fix also

a permutationσ in (6.26). Suppose there is only one permutationk for which the term

indexed by(σ,k) has a negative sign given by1(σ(π) ∈ Π(k, l)))sgn(k)(−1)|L
−

k
| = −1.

This term is then−µ(σ(j)) < 0. Since the summation overk ranges over all permutations,
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we can find a positive term, indexed by(σ, k̂) with k̂ = l, that exactly cancels this negative

term. This is because1(σ(π) ∈ Π(l, l)) is always1 and sgn(l)(−1)|L
−

l
| = 1, yielding the

term µ(σ(j)). Hence we have shown that, givenσ, if there is only onek that yields a

negative term, then it is always cancelled by another positive term indexed by(σ, k̂) with

k̂ = l.

Given aσ, suppose now there are two permutationsk,n for which

σ(π) ∈ Π(k, l) and σ(π) ∈ Π(n, l) (6.27)

and

sgn(k)(−1)|L
−

k
| = sgn(n)(−1)|L

−
n | = −1 (6.28)

Each of(σ,k) and(σ,n) yields a negative term−µ(σ(j)) in the summation in (6.26).

Notice that (6.27) says that, for alll = 1, . . . , L, pathsσ(π)l contains link pairs(kl, l) and

(nl, l). Henceσ(π)l also pass through link pairs(l, l), (kl, nl) and(nl, kl), i.e.,

σ(π) ∈ Π(l, l)) (6.29)

σ(π) ∈ Π(k,n), σ(π) ∈ Π(n,k) (6.30)

(6.29) implies that there is a positive term in the summationin (6.26) indexed by(σ, k̂)

with k̂ = l:

sgn(l)(−1)|L
−

l
|µ(σ(j)) = µ(σ(j)) > 0

It cancels the negative term−µ(σ(j)) in the summation indexed by(σ,k).

To deal with the negative term−µ(σ(j)) indexed by(σ,n), note that (6.30) im-

plies that there are two nonzero terms in the summation, indexed by (n−1σ,n−1k) and

(k−1σ,k−1n), that we now argue are positive. Indeed the term indexed by(n−1σ,n−1k)
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is sgn(n−1k) (−1)|L
−

n−1k
| µ(n−1(j)). We further have

|L−
n−1k
| = |L−

k ∪ L−
n| − |(L−

k ∩ L−
n)| (6.31)

= |L−
k |+ |L−

n| − 2|(L−
k ∩ L−

n)|

Hence

sgn(n−1k) (−1)|L
−

n−1k
| = sgn(n)sgn(k) (−1)|L

−

k
| (−1)|L

−
n |

= 1

The last equality follows from (6.28). Therefore,

sgn(n−1k) (−1)|L
−

n−1k
| = µ(n−1(j)) > 0

Similarly, the term with index(k−1σ,k−1n) is µ(k−1(j)). The hypothesis of the lemma

implies that

µ(n−1(j)) + µ(k−1(j))− µ(σ(j)) ≥ 0

Hence, givenσ, if there are two negative terms in the summation in (6.26) indexed

by (σ,k) and (σ,n), then we can always find three positive terms, indexed by,(σ, l),

(n−1σ,n−1k) and(k−1σ,k−1n), so that the sum of these five terms are nonnegative.

If there are more than two negative terms, take anyadditionalnegative term, indexed

by, say,(σ, n̂). The same argument shows that it will be compensated by the two (unique)

positive terms indexed by(n̂−1σ, n̂−1k) and(k−1σ,k−1n̂). This completes the proof.



108

6.7 Proof of Theorem 4.2

Proof. The analysis uses the standard singular perturbation stability results [40]. By plug-

ging

µj
i =

qj
i

∑

l∈L(i,j) pl

into (4.9), we get the reduced system

ṗl(t) = yl(p(t))− cl (6.32)

where

xj
i =

(

U j
i

)′−1





∑

l∈L(i,j)

pl





In other words, the reduced system has exactly the same dynamics as a network with a

single congestion price. Hence it is globally asymptotically stable, which can be verified

by choosing a Lyaponov functionV1(p) = D(p) − min(D(p)), whereD(p) is the dual

function. Letφ1(p) = |(y(p)− c)|, which is a positive definite function. Then

∂V1

∂p
(ṗ) = −(y(p)− c)2 ≤ −φ2

1(p) (6.33)

Let

zj
i = µj

i −
qj
i

∑

l∈L(i,j) pl

and scale timet by τ = t
ε
. we get the boundary-layer system

dzj
i

dτ
= −zj

i (6.34)

By using a Lyaponov functionV2(w) = 1
2
wT ∗w, one can show the boundary-layer system
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is globally asymptotically stable. Letφ2(z) = sqrt(zT z), which is a positive definite

function. Then

∂V2

∂z

dzj
i

dτ
= −zT z ≤ −φ2

2(z) (6.35)

Following arguments in [40], to prove the existence ofε∗ > 0 in the theorem, we only

need to further check

||∂V2

∂z
|| ≤ k1φ2(z)

and

||y(p, z)− y(p)|| ≤ k2φ2(z)

wherek1 andk2 are constants. The first one is true by the definition ofV2 and we can

simply choosek1 = 1, the second requirement is also met asy is Lipschitz continuous

[46].
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