
Approximation of Surfaces by Normal Meshes

Thesis by

Ilja Friedel

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended May 18, 2005)

ii

c© 2005

Ilja Friedel

All Rights Reserved

iii

For my parents, Alexandra and Klaus Friedel.

iv

Acknowledgements

Foremost, I have to thank my advisor Peter Schröder. He brought me to Caltech and provided

intellectual guidance and support during my whole graduate student career. He believed in me even

in emotionally difficult times. His encouragement and enthusiasm allowed me to find my own path

toward scientific research and helped me finish my dissertation.

It has been tremendous fun to work with Mathieu Desbrun! His sharp mind and quick under-

standing, combined with an office door that always seemed open for me, made him invaluable for

testing and developing ideas. His great passion for computer graphics, pared with seemingly infinite

energy for attacking problems, provided an amazing research experience.

Al Barr and Emmanuel Candes have been great mentors! As members of my candidacy and

defense committees, their discussions and advise have greatly benefited my research—and finally

the writing of this thesis.

When I started graduate school Andrei Khodakovsky was already a member of the Multi-Res

group. Ironically it took us until after he left for NVIDIA, to start a close collaboration. I have

to thank Andrei for preparing experiments during his Christmas vacation for the variational nor-

mal meshes paper! In Andrei I also found a reliable partner for hikes and climbs throughout the

southwestern USA.

I am indebted to Patrick Mullen, who collaborated with me on the fairing project. After gradu-

ation he left academia for a position at Microsoft. I am very happy to see him returning to Caltech

now, to continue research as a graduate student.

Countless discussions with my colleague Nathan Litke gave me a different perspective on many

methods and applications. He truly helped me to obtain a deeper understanding of computer graph-

ics.

Interacting with members and associates of the Multi-Res modeling group provided me with

a great intellectual environment! I am grateful to Burak Aksoylu, Eitan Grinspun, Sharif Elcott,

Liliya Kharevych, Steven Schkolne, Zoë Wood, Yiying Tong, Fehmi Cirak, Sylvain Jaume, Fabio

v

Rossi, Kai Hormann and Igor Guskov for being kind colleagues.

I want to thank Alain Martin for making time for our regular chats on the current state of Europe

and the rest of the world. Also, thank you Mika Nyström, for sharing your encyclopedic knowledge,

for teaching me photography and driving. I am much obliged to the computer science department

assistants Jeri Chittum, Betta Dawson, Louise Foucher and Kathryn Moran. They made my life

easier by dealing with many tedious administrative tasks.

I found numerous friends during my six years at Caltech. They provided distractions from

school that kept me happy and somewhat sane. For this I thank Paul for dragging me into Calaveras,

Rocio for always teasing me, Connie for brightening many a day, Attila for being such a great

cook and epicure, Kerry for chatting with me, Cedric for staying with me for three years, Helia for

showing me her culture, Cici for sharing her wonderful cats, Anelia for reminding me how happy

I am, Sharif for cooking with me, Alexei for many hikes, Dawn for being kind, Rafi for forgiving

how tough a TA I was, Wrighton for being a model conservative, Rassul for some great dives, Dima

for holding the belay, Weiwei and Josh for being crazy, Ann and Bobby for not forgetting me!

Thank you, Clint Dodd, for being one of the greatest teachers I ever had! He showed me the

aquatic world by teaching me to swim, dive and scuba—all in his characteristic, humorous style.

And finally, thank you Anja!

vi

Abstract

This thesis introduces a novel geometry processing pipeline based on unconstrained spherical pa-

rameterization and normal remeshing. We claim three main contributions:

First we show how to increase the stability of Normal Mesh construction, while speeding it up

by decomposing the process into two stages: parameterization and remeshing. We show that the

remeshing step can be seen as resampling under a small perturbation of the given parameterization.

Based on this observation we describe a novel algorithm for efficient and stable (interpolating)

normal mesh construction via parameterization perturbation.

Our second contribution is the introduction of Variational Normal Meshes. We describe a novel

algorithm for encoding these meshes, and use our implementation to argue that variational normal

meshes have a higher approximation quality than interpolating normal meshes, as expected. In

particular we demonstrate that interpolating normal meshes have about60 percent higher Hausdorff

approximation error for the same number of vertices than our novel variational normal meshes.

We also show that variational normal meshes have less aliasing artifacts than interpolative normal

meshes.

The third contribution is on creating parameterizations for unstructured genus zero meshes.

Previous approaches could only avoid collapses by introducing artificial constraints or continuous

reprojections, which are avoided by our method. The key idea is to defineupper boundenergies

that are still good approximations. We achieve this by dividing classical planar triangle energies by

the minimum distance to the sphere center. We prove that these simple modifaction provides the

desired upper bounds and are good approximations in the finite element sense.

We have implemented all algorithms and provide example results and statistical data supporting

our theoretical observations.

vii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Motivation. 2

1.2 Overview . 4

2 Interpolating Normal Meshes 7

2.1 Motivation. 8

2.2 Interpolating Normal Curves. 9

2.2.1 Convergence Analysis of Daubechies, Runborg and Sweldens. 10

2.3 Interpolating Normal Meshes. 10

2.3.1 The Previous Normal Remeshing Algorithm. 12

2.3.2 Our Simplified Algorithm . 12

2.4 Discussion. 17

2.4.1 Efficiency of Computing the INM Transformation. 17

2.4.2 Non-Normal Coefficients. 18

2.4.3 Treatment of Boundaries. 19

2.4.4 Extension to Higher Dimension. 19

3 Variational Normal Meshes 21

3.1 Motivation. 22

3.2 Parametric Correspondence. 23

3.3 Distances and Scalar Products. 23

3.4 Variational Normal Curves. 25

3.5 Variational Normal Meshes. 27

viii

3.6 Implementation and Results. 29

3.7 Future Directions. 34

3.7.1 A Lifting Experiment. 34

4 Unconstrained Spherical Parameterization 36

4.1 Related Work. 37

4.2 Two Approaches to Parameterization. 38

4.3 Variational Sphere Mappings. 39

4.3.1 Classical Parameterization Energies. 40

4.3.2 From Flat to Spherical Energies. 42

4.3.3 Discussion . 45

4.4 Implementation and Results. 46

4.5 Conclusion and Future Work. 47

5 Conclusion 51

5.1 Summary . 52

5.2 Future Work. 52

A Notes on Optimization 54

A.1 The Optimization Problem. 55

A.2 An Attempt to classify Optimization Problems. 57

A.3 Methods for Solving Optimization Problems. 60

A.3.1 First Order Methods. 61

A.3.2 Ensuring Convergence. 64

A.3.3 Second Order Methods. 65

A.3.4 Nonlinear Equations. 67

A.4 Practical Considerations. 69

A.4.1 The Presence of Numerical Noise. 70

A.4.2 A Simple but More Realistic Cost Model. 71

A.4.2.1 The Cost of Objective Function Information. 72

A.4.2.2 The Cost of Linear Algebra Subroutines. 73

A.4.3 Early Truncation and Inexact Solutions. 74

A.4.4 Termination Criteria . 76

A.4.5 Miscellaneous Remarks. 77

ix

A.4.5.1 Libraries and Further Reading. 79

A.5 Conclusion . 80

Bibliography 82

x

List of Figures

1.1 A normal mesh hierarchy. 2

1.2 Geometry processing pipeline. 3

1.3 Subdivision. 4

2.1 Basis transformation. 8

2.2 Interpolating normal curves construction. 9

2.3 The old normal mesh construction algorithm. 11

2.4 Local flattening of mesh. 14

2.5 Our simplified construction of interpolating normal meshes. 15

2.6 Piercing and reparameterization in the parameter domain. 16

2.7 Distribution of non-normal vertices. 17

2.8 Non-Normal Vertices and Aperture. 18

2.9 Normal curve construction in3d . 19

3.1 Comparison of butterfly and Loop reconstructions. 22

3.2 Aliasing Flower. 23

3.3 Construction of approximating normal curves. 25

3.4 North American coast line. 26

3.5 Koch curve . 27

3.6 The variational normal mesh algorithm. 28

3.7 Zone sphere aliasing. 32

3.8 METRO Hausdorff error graphs. 32

3.9 Volume preservation example. 33

3.10 Volume preservation graphs. 33

3.11 Using sombreros for normal detail. 35

3.12 Correlation of sombrero vs. hat coefficients. 35

xi

4.1 Different Spherical Parameterizations. 38

4.2 Comparing Stereographic and Gnomonic Projections. 40

4.3 Notation for Domains and Input Mesh. 41

4.4 The näıve approach to spherical parameterization. 42

4.5 Texture Mapping Spherical Meshes. 48

4.6 Maple code for weighted area and spring energies.. 49

4.7 Parameterization and remeshing of skull model. 50

4.8 Parameterization and remeshing of vase-lion model. 50

A.1 Contours of objective functions. 57

A.2 Simple constraint examples. 59

A.3 Too short and too long optimization steps. 64

A.4 Newton method without step length control. 65

A.5 The basic trust-region algorithm. 67

A.6 Problems with solving nonlinear equations. 69

A.7 Convergence results iterations vs. time. 75

A.8 Newton trust-region truncation accuracies. 76

1

Chapter 1

Introduction

This thesis is about representing and processing geometric surface data in the form of Riemannian

manifolds. In well-chosen coordinate systems these surfaces can be described as scalar functions.

Having methods for selecting these local coordinate systems in a generic way allows the reduction

of vertex coordinate data from3d vectors to scalars. We develop novel algorithms for transforming

surfaces hierarchically intointerpolatingandvariational normal meshes. Because these algorithms

require precomputed parameterizations as input we present a novel approach for computing spher-

ical parameterizations leading to a simple modification of planar energies. This allows a stable

minimization without the need for artificial constraints.

2

1.1 Motivation

Geometry is an integral part of our sensory world. The shape of physical objects can be seen

and experienced every day. Because of this close interaction, most people develop an intuitive

understanding of geometric relationships. For this reason, geometry can be used as an efficient

tool for visualizing physical data and for communicating abstract concepts. The expressive power

of formerly static drawings of geometry has been greatly magnified by the increased processing

speed of computers, and the development of interactive display techniques. It has been an ongoing

project in computer graphics to make the interaction with geometric data as intuitive as dealing with

physical objects.

Thegeometry processing pipelineis a paradigm describing how to handle a large class of ge-

ometric data. This paradigm has been adapted from the signal processing literature to address

manifold surfaces, having inherent curvature and nontrivial topology. The pipeline concept intro-

duces modularity, re-usability and simplicity into the transformation of geometry. This is achieved

by decomposing the transformation into simpler steps. These steps cover all stages from creation

and encoding, denoising, editing, compression, transmission and the final display.

Geometric data, which could be location, shape and spatial relationships of objects, is rarely

observed directly. Indeed most ways of obtaining geometry by physical sensors involves sensing

energy transports, as when structured light, radar or ultrasonic sound are used. Specialized drivers

using computational models of the particular sensors produce raw geometric data. We call this

dataraw, as in most cases it will have many undesirable properties. Physical data is usually noisy

— not just in the positions of surface samples, but also in the topology and connectivity. Data

might be missing, which leads to holes in the surface. Or samples might not have been connected

properly with their neighbors, resulting in unwanted flips or handles. The application or algorithm,

for which the data was originally acquired, might have strong assumptions on its input. Making

such assumptions is useful, as it usually reduces a processing method’s internal complexity. But to

Figure 1.1:Interpolating normal meshes are standard (semi-)regular mesh hierarchies, except that
detail coefficients can be expressed as scalars using the normal directions of the coarser level mesh.

3

Figure 1.2: A 3d surface (left) is sampled by a number of points (center left). Connectivity in-
formation is added to the point cloud to form an irregularly triangulated mesh (center right). The
connectivity between vertices can be simplified by resampling the geometry into a multi-resolution
mesh with (semi-)regular connectivity (right).

satisfy these assumptions, holes might have to be filled, handles removed and the overall shape of

the surface smoothened. Chaining multiple such steps forms a geometry processing pipeline.

Different methods in this pipeline will work best with particular surface representations. One

of the simplest ways to represent surfaces uses an unstructured collection of simple primitives, like

point clouds or polygon soups (Figure1.2). This means few assumptions are made on the coherence

of the data, which is often necessary near the beginning of the geometry processing pipeline. But

having no assumption nor structure to rely on, complicates many algorithms by increasing their

internal complexity to handle special cases. There has been considerable effort to add minimal

structure to point clouds, for instance, by organizing them using spatial trees. This permits extending

a range of complex geometry processing methods to point based surface representations [AGP+04,

KB04].

We will make slightly stronger assumptions about the structure of our data. In particular we

decided to work with triangle meshes having either irregular or (semi-)regular connectivity. For

efficiency reasons we have a strong preference toward (semi-)regular meshes. These meshes are

the result of repeated application of uniform subdivision steps, as illustrated in Figures1.2and1.3.

The regular structure created inside of each base patch allows for dense storage and fast evaluation

using simple2d arrays. This regularity also opens the door for application of classic signal pro-

cessing methods, as wavelet analysis, filtering and compression, to manifold surfaces. For a deeper

understanding on multi-resolution techniques in geometric modeling, we refer the reader to to the

recent survey [DFS05]. The interpolating and variational normal meshes presented in this thesis are

instances of multi-resolution transformations. Both algorithms use (semi-)regular meshes for input

and output. Finally, because (semi-)regular meshes are so useful, we developed for the frequent

class of genus zero meshes an automatic parameterization and remeshing method.

4

Figure 1.3: Subdivision is a process that creates a multi-resolution hierarchy of (semi-)regular
meshes. Each subdivision step replaces all coarser level triangles with4 smaller triangles on the
refined level.

1.2 Overview

One of the fundamental questions of surface representation concerns the relation between approxi-

mation quality and size of the representation. Even though a full theoretical characterization is not

yet available, the practical importance of efficient representations for digital geometry processing is

so great that a broad variety of algorithms have been put forward. Of particular interest in the con-

text of display, editing and compression applications aremulti-resolutionrepresentations based on

irregular [Hop96] and (semi-) regular meshes [ZSS97, GGH02]. The latter have many connections

with classical functional representations such as wavelets [SS96] and Laplacian pyramids [BA83],

which can be leveraged for digital geometry processing applications [SS01].

Normal Meshes Of the (semi-)regular surface representations,normal meshes[GVSS00]—and

their non-hierarchical relatives,displaced subdivision surfaces[LMH00]—are of particular interest.

Normal meshes are a hierarchical representation in which almost all coefficients are scalar rather

than 3-vector valued. That is, levell is given as an offset from the coarser levell−1, with each offset

being along the local normal direction on the surface. This immediate reduction in size by a factor

of three can be exploited,e.g., in compression representation of displacement maps [LMH00].

Unfortunately only few theoretical results, which could guide the construction of normal meshes,

are known so far. For example, in [DRS04] it was shown that normal curve parameterizations pos-

sess (essentially) the same smoothness as the underlying coarse to fine predictor. The bivariate

functionalsetting was studied in [JBL03] for purposes of compression.

One expects that the best results in terms of minimizing approximation error can be achieved

without any constraints on the hierarchical displacement vectors. What is the penalty in terms of

error if one insists on normal displacements only? What is the trade-off between allowing some

non-normal coefficients and associated reduction in error? In this thesis we explore these questions

5

and will provide an algorithm that provides explicit control over this trade-off.

To gain the advantages of normal mesh representations, arbitrary input geometry must be re-

meshed so that almost all offsets are in the normal direction only. Guskov and co-workers [GVSS00]

formulated this as a resampling problem using a recursive triangle quadrisection procedure based

on smooth interpolating subdivision [ZSS96]. All vertices produced by this process are samples of

the original surface. Since no low pass filtering is performed, this leads to aliasing artifacts (see

Figure3.2). Constraining all vertices to lie on the original mesh also increases the approximation

error compared to methods, which allow a more unconstrained placement of vertices. In the method

of Guskovet al. the parameterization needed for resampling was computed on the fly, a process

which is rather expensive and numerically very delicate, in particular for large meshes.

Unconstrained Spherical Parameterization We introduce a novel approach to the construction

of spherical parameterizations based on energy minimization. The energies are derived in ageneral

mannerfrom classic formulations well known in the planar parameterization setting (e.g., confor-

mal, Tutte, area, stretch energies,etc.), based on the following principles: the energy should (1)

be a measure of spherical triangles; (2) treat energies independently of the triangle location on

the sphere; and (3) converge to the continuous energyfrom aboveunder refinement. Based on

these considerations we give a very simple non-linear modification of standard formulas that ful-

fills all these requirements. The method avoids the often observed collapse of flat energies when

they are transferred to the spherical setting without additional constraints (e.g., fixing three or more

points). Ourunconstrainedenergy minimization problem is amenable to the use of standard solvers.

Consequently the implementation effort is minimal while still achieving excellent robustness and

performance through the use of widely available numerical minimization software.

Thesis Overview Our goal is the construction of low error approximations of a given surface with

a (semi-)regular mesh while minimizing the number of non-normal coefficients [FSK04]. We con-

trol this trade-off by controlling theperturbation of an initial, globally smooth parameterization

during the normal mesh construction process (Chapter2). This is in contrast to previous methods

which computed a parameterization on the fly. We will demonstrate, that separating the global pa-

rameterization computation from the remeshing phase, leads to a numerically more stable, efficient

and simple resampling algorithm.

The perturbation of the parameterization creates an explicit association between the original and

approximating surface, which is driven by thegeometry. Consequently, it becomes meaningful to

6

ask for the best approximation in themean squared distancesense (Chapter3). A simple varia-

tional problem, to be solved at each level of the hierarchy, results in an approximation which is least

squares optimalfor all levelssubject to a constraint on the magnitude of the parameterization per-

turbation . We achieve an overall reduction in errorand better control of aliasing—the variational

normal mesh isapproximatingrather than interpolating (see Figure3.2). The trade-off between nor-

mality and least squares optimality can be controlled explicitly, and we show in Section3.6that the

penalty—increase in approximation error—is small compared to the gain—reduction from3-vector

coefficients to scalars.

The construction of normal meshes requires for distortion control reasons the approximate mea-

surement of distances. We show that this can be done very efficiently, if a globally smooth param-

eterization is available. In Chapter4 we discuss the computation of smooth parameterizations for

objects that are topological spheres (have genus zero). We show how to derive simple, approximate

formulas for spherical energies that areupper boundsof the exact spherical integrals. We prove

that our approximation is good in the finite element sense, as its approximation quality isO(R2) if

expressed in terms of the min-containment circle diameterR. Being upper bounds, we show that

the minimization is well-defined and does not collapseeven in the absence of any constraints. This

is important, as constraints often cause unnecessary, additional distortion. Finally, we examine the

approximation properties of our new formulas.

The methods and applications presented in this thesis make heavy use of ideas from the numer-

ical optimization literature. We include AppendixA as a reference on available solution methods

and describe some of our practical experiences with nonlinear optimization.

7

Chapter 2

Interpolating Normal Meshes

Hierarchical representations of surfaces have many advantages for digital geometry processing ap-

plications.Normal meshesare particularly attractive since their level to level displacements are in

the local normal direction only. Consequently, they only require scalar coefficients to specify. We

will review the construction of interpolating normal curves and meshes. We show how to decom-

pose the construction into a parameterization and a perturbation/resampling phase. We explicitly

construct the reparameterization used for perturbing the input mesh. Having a fast way to evaluate

parametric correspondences will allow us later to construct variational normal meshes efficiently.

8

In this chapter we discuss and develop hierarchical transformations defining canonical parameter-

izations based on coarser level data. Because of the “normal” dependence on coarser level data

these representations give up linearity and can’t be written anymore as in equation2.1. We will

see nevertheless that these representations are efficient to compute and well-behaved (in particular

with respect to quantization). This makes this representation attractive for instance in compression

applications [KG02].

2.1 Motivation

For many applications, a continuous signals(t) can be reasonably approximated with a linear com-

bination of basis functions. Of particular interest is the progressive case, where a sequence of pro-

gressively more detailed functionsf l is constructed, approximatings increasingly betterf l → s.

f l(t) =
∑

j

cljφ
l
j(t) (2.1)

It is natural to ask for transformations from the basis functions(φl
j) into another hierarchical ba-

sis, for which the coefficients(c̄lj) are decorrelated (or sparse) for a large class of “interesting”

data (Figure2.1). Answering such questions is one topic of wavelet theory. Our primary focus is

Figure 2.1: Linear interpolating function refinement is one of the simplest basis transformations to
obtain a hierarchical and sparse representation of the data.

on extending very simple ideas from the well-understood setting of one-dimensional functions to

manifolds in higher dimension (curves in the plane and surfaces in3d). A curvec in the plane is

often given in its parametric form:c(t) = (x(t), y(t)). Here, each of the functionsx(t) andy(t)

are one-dimensional signals, and standard wavelet theory can be applied on each signal separately.

As a consequence of this approach, two sequences of coefficientsclx, clx are obtained — which are

usually interpreted as a single sequence ofvectors(cx, cy)l. This sequence of vectors encodes not

only the geometric data, but also the chosen parameterizationp. The curvesc(t) andc(p(t)) define

the same set of points in the plane, as long as the parameterizationp : R → R is a bijection. We

will see that even implicitly encoding the given parameterization is costly.

9

2.2 Interpolating Normal Curves

It is instructive to first analyze the simple setting of curves in the plane to gain insights applicable

to the more complex setting of surfaces in3d. Guskov and coworker [GVSS00] observed that one

can construct curves in the plane by specifying a hierarchy of mostly scalar offsets for the mesh

vertices. In the construction of normal curves, one starts from a polylineS0 that interpolates the

reference curveR. Each segment ofS0 is divided into two smaller segments by inserting a pointp,

using,e.g., the midpoint rule. The point insertion serves as a prediction of the missing data. A detail

S
1

S
2

S
0

n

R

p

r

Figure 2.2: Three levels of interpolating normal curves construction.

coefficient expressing the difference between prediction and given data is constructed by shooting a

ray fromp in the normal directionn at p (see Figure2.2). The ray intersects the reference curveR

one or more times. To avoid folds in the reconstruction only intersections parametricallybetween

the endpoints of the base segment are considered. One of the intersectionsr is picked by some

heuristic—the algorithm works for a range of choices—and the scalar normal offsett is computed

usingr = p+ t · n.

Sometimes even the best intersectionr corresponds to a parametric location onR, which is

“far” from the parametric midpoint. For example, to avoid too high a distortion, one may want to

reject locationsr which are very close to one of the endpoints ofR. As with standard tensor product

refinement, the detail is encoded as a vectorial offset (“non-normal coefficient”) from the prediction

p to the parametric midpoint ofR.1 This decision process is typically controlled by an “aperture”,

defining a feasible region around the parametric midpoint covering a fraction of intervalR. Having

decided and encoded the detail finishes the construction ofS1, the process can now be repeated to

obtain further refinements (Figure2.2).

Higher order schemes than the midpoint rule1
2 [1, 1] are possible (and desirable for smooth input

data) for predicting the positions of the newly inserted points. Examples of such schemes include the

four point rule with coefficients116 [−1, 9, 9,−1] and the six-point rule1
256 [3,−25, 150, 150,−25, 3]

[DRS04]. For predicting the normal directions, higher order rules could be used as well. In practice

1Using the parametric midpoint ofR assumes that the given data is parameterized nicely. Instead one might be
tempted to use any other point inside the interval simultaneously minimizing the approximation error and parametric
distortion.

10

this is rarely done; the reason appears to be a too strong sensitivity to perturbations of the input

data. Because of this, [GVSS00] and [DRS04] restrict themselves to predicting normals with the

midpoint rule.

2.2.1 Convergence Analysis of Daubechies, Runborg and Sweldens

The theoretical behavior of interpolating normal curves was studied by Daubechies, Runborg and

Sweldens in [DRS04]. Their main questions were on the decay of the normal offsets and the regu-

larity of the resulting parameterization. We will discuss some of their results.

Midpoint predictors will always produce valid intersections as long as the input curve is con-

tinuous. If disallowing non-normal detail and aperture control, higher order predictors, such as

the four-point scheme, will fail for certain input curves. Reasons for such failure include a lack

of intersections with the reference curve, invalid intersections with the reference curve outside of

the corresponding parametric interval (creating folds), or due to segments of the curve that are not

refined by the process. Theorem 3.5 in [DRS04] states conditions on the subdivision rules and

the initial spacing of coarsest normal curve points, such that the interpolating normal curve refine-

ment converges without introducing non-normal detail. This theorem also shows that the spacing

between the points declines exponentially with each refinement level. This supports the intuitive

notion that non-normal offsets have less importance on finer reconstruction levels. (See also the

remarks in [GVSS00] on relaxing the aperture for finer levels.)

Under the conditions of Theorem 3.5 the smoothness of the normal parameterization depends on

the smoothness of the reference curve and the regularity of the subdivision scheme. For smooth in-

put, the midpoint rule leads toC1−ε continuous normal curves, while the four-point scheme achieves

C2−ε continuity in the limit.

Normal offsets (“wavelet” coefficients) decline with exponential rate (Theorem 3.6). Even

though the normal curve construction is a nonlinear process: under small perturbations of the coeffi-

cients we can expect to observe a stable reconstruction of the original curve (Theorem 3.7 [DRS04]).

This somewhat justifies using normal meshes in progressive compression applications; quantization

of the coefficients has predictable effect on the approximation quality of the reconstruction.

2.3 Interpolating Normal Meshes

Guskov and coworkers extended the2d algorithm from curves to surfaces by drawing curves onto

irregular meshes [GVSS00]. The surface was pierced by rays as described before in2d. But because

11

The old interpolating normal meshing algorithm

Step 0: Input.
Given an arbitrary (irregular) triangle meshM .

Step 1: Mesh simplification.
Obtain — for instance by half-edge collapses — an irregular hierarchy
(M0,M1, . . . ,ML) with base meshM0 and finest level meshML = M .

Step 2: Building an initial net of curves.
Map the edges of the coarsest meshM0 to the finer meshesM1, . . . ,ML

using bijection between the levels (for instance MAPS).
(This defines a set of curvesC0 on each levelM l.)

Step 3: Fixing the global vertices.
Relax the vertex positions ofC0 to obtain a nicer base curve network.
Redraw curves on finer levels.
(In general these curves will not appear straight or smooth on finer levels.)

Step 4: Fixing the global edges.
Canonically parameterize the area ofM defined by two triangular areas ofCi

sharing an edgec and redraw the curvec as iso-parameter line onM .
(This has the effect of smoothening each curve piece.)

Step 5: Initial parameterization.
Parameterize the interior of each base triangle keeping the boundaries fixed.
(At this stage a smooth global parameterization ofM is obtained.)

Step 6: Piercing.
Subdivide the current net of curves to obtainCl+1.
Predict normals and new point positions — pierce withM .
Reject intersections according to the aperture criterion.

Step 7: Adjusting the parameterization.
Update new point positions.
Redraw curves through intersection points.

Increment levell and continue with step 4.

Figure 2.3: The old normal mesh construction algorithm as described by Guskov and co-workers
[GVSS00]. The algorithm interleaves global parameterization and normal remeshing on each re-
finement level.

curves on manifolds are not necessarily flat, the rays would pierce the surface at some distance from

the existing curve network. This made it necessary to extend the parameter domain from curves to

the whole surface. We will recall how these problems where addressed by Guskov et al. [GVSS00]

before discussing our more modular approach.

12

2.3.1 The Previous Normal Remeshing Algorithm

The interpolating normal meshing algorithm is stated for convenience in Figure2.3. The algorithm

starts with an irregular input meshM . Steps 1 to 3 describe how a “nice” base network of curvesC0

is automatically obtained fromM . This is achieved via mesh simplification ofM to get an irregular

hierarchy of meshes. The base meshM0 is used as an initial approximation of the curve network

C0. In step 3 the aspect ratios of the curves were improved by relaxing the network’s knot positions

with respect toM0. The curve network as observed on the finest meshM was straightened in step

4 by redrawing each curve as an iso-parameter line after parameterization. A natural candidate

for angle preserving parameterizations are harmonic maps computed for instance using the discrete

Dirichlet energy [PP93]. Guskov and coworkers decided on using Floater’s weights [Flo97] which

has the advantage of guaranteeing injective solutions. In addition to straightening the curves this

parameterization was also used to define correspondences for the regions in between the curves

(step 5).

The network of curves was refined in step 6 by a subdivision step and the new point positions

were predicted by the interpolating Butterfly rule [DLG90]. These points and associated normals

were used to intersect the original surfaceM in a piercing step to obtain distance scalars and corre-

sponding intersection parameter values. An aperture criterion was used on the parameter values to

determine acceptable intersection points. To keep the previously computed parameterization con-

sistent with the newly found intersections parameters, the network of curves was redrawn in step 7

through the intersection.

This effectively meant that after each level of refinement the entire surface parameterization

had to be recomputed. Generally, this is costly because the irregular input mesh and the (semi-

)regular curve network overlap arbitrarily across triangle edges and faces. The enforcement of the

intersection constraints during relaxation also has the potential of cutting triangles at poor aspect

ratios. All of this made the original method numerically challenging.

2.3.2 Our Simplified Algorithm

Guskov and co-workers [GVSS00] decided to design an algorithms using irregular meshes as input

and produce (semi-)regular normal remeshes. An option that they mentioned was creating pro-

gressive irregular normal mesh hierarchies. We follow a different approach and describe a normal

remeshing algorithm using (semi-)regular meshes both for input and output. The reasoning be-

hind this is to increase the modularity of the geometry processing pipeline and leave the conversion

13

from irregular triangulations to (semi-)regular meshes to one of the many available globally smooth

parameterization algorithms like MAPS [LSS+98], GI [GGH02], GSP [KLS03], or the spherical

parameterization algorithm presented in Chapter4.

Increasing modularity To achieve increased modularity, we will show how to separate the in-

termingled parameterization and normal remeshing steps 4 to 7 of the old algorithm in Figure2.3,

such that the geometry processing pipeline appears as:

1. Compute a global parameterization for the irregular input meshR.

2. RemeshR into a (semi-)regular mesh̄R.

3. RemeshR̄ into a (semi)-regular interpolating normal mesh.

As a benefit to this, we will see that using precomputed (semi-)regular remeshes simplifies the

implementation,greatly improving the numerical stability of the normal mesh construction. It also

opens the algorithm for extension to variational normal meshes as discussed in Chapter3.

Observations We are now going to make a few observations on the old algorithm [GVSS00].

Extending the2d case to3d surfaces via straight line drawings might appear natural at first sight.

Drawing straight lines on surfaces corresponds to computing geodesics. These can be obtained for

instance by using the angle preserving properties of some parameterization schemes [PP93, Flo97],

or alternatively the direct computation of shortest paths on surfaces [KGH04]. There has been great

progress in speeding these computations up [AKS, KGH04], but because of their frequent use as

an elementary operation by Guskov’s normal remeshing algorithm (steps 4 and 5 in Figure2.3) the

accumulative cost is still relatively high. Our main insight is that encoding interpolating normal

meshes only needs two metric operations: finding “midpoints” between two points and measuring

distances. These operations needed are well supported by (semi-)regular meshes:

� Evaluating a surfaceR for a given base patch ofS at arbitrary barycentric coordinates is easily

realized through a logarithmic time traversal of the (semi-)regular hierarchy.

� The inverse operation,e.g., turning a ray intersection at the finest level into a coordinate value

with respect to the base patch, is similarly easy to implement and efficient to run.

This allows the computation of parametric distanceswithin a base patch. Using a (semi-) regular

parameterization also reduces the complexity of flatteningR locally, which is needed if distances are

to be computedacrossbase patch boundaries. Finally, using a (semi-)regular remesh as input places

14

no greater restriction than using a parameterized irregular mesh, because parameterized meshes can

be converted very efficiently into other representations [AMD02].

Ω
T

Sl-1

R

Figure 2.4: Flattening of a region around remesh triangleT defined by a base patch and its three
neighbors.

The curves drawn on the surface by the old algorithm implicitly established a correspondence

between the remesh and the input data. In the new algorithm we will encode this correspondence

explicitly by using piecewise linearreparameterizationspi. As in the old algorithm we will need

to compute distances. Sometimes this is required across base domains as shown in Figure2.4.

Using (semi-)regular meshes we will attempt to create a larger,flat domain of the input meshR

that includes the triangleT in question and all of its3 neighbors. In [KLS03] exactly this problem

was solved (iteratively) by expressing the barycentric coordinates of one base domain triangle with

respect to a selected neighboring base domain triangle. Doing so is somewhat involved, because

one has to select a specific sequence of domain crossings. We avoid the problem of selecting

this sequence of crossings by performing only one step of the process,e.g., by flattening the three

neighbors of a base domain triangle only (Figure2.4). This is done using thehinge mapof [LSS+98,

KLS03], which simply extends the barycentric coordinates of a triangle to its three neighbors. In

the very rare case that an even larger flattened domain is needed, the algorithm creates a non-

normal vertex. We have not observed any negative impact of this restriction in our experiments.

(Larger parametric displacements are rare and in any event are better dealt with through a non-

normal coefficient.) Thus the worst case requires flattening a base mesh triangle patch ofR and its

three patch neighbors.

Now, associate the new vertices ofSl with the parametric values of the intersections, as in the

curve case, to build the new piecewise linearpl. Because the topology ofpl is the same as ofSl, one

does not need to construct a new mesh forpl. Instead, we store the parameter values as attributes of

the vertices inSl. Figure2.6 (right) shows the newSl with one intersection rejected and replaced

with a point onR, which corresponds to the parametric midpoint (red dot) analogous to the curve

case.

15

Simplified interpolating normal meshing algorithm

Step 0: Initialization.
Given a (semi-)regular triangle mesh hierarchyR = (R0, R1, . . . , RL).
Set remeshS0 = R0 and initialize reparameterizationp0 = id .
Set multi-resolution levell = 1.

Step 1: Subdivide and predict.
Subdivide connectivity of normal meshSl−1 to obtain connectivity ofSl.
Predict new positions and normals of odd vertices (midpoint or butterfly rule).

Step 2: Piercing.
Intersect input meshRL at finest level with normal lines.
Evaluate vertex positions and flattened parameter values.

Step 3: Select intersections.
Reject intersections

if new triangle is flipped in flattened domain.
if intersection deviates too much from parametric midpoint (aperture).

Of remaining intersections select the intersection closest to parametric midpoint.
If all intersections rejected create non-normal offset (parametric midpoint).

Step 4: Update normal mesh and reparameterization.
Update new vertices with

intersection coordinates to obtainSl.
intersection parameter values to obtainpl.

Increment levell and continue with step 1.

Figure 2.5: Our simplified construction of interpolating normal meshes from a semi-regular mesh
hierarchy. The most obvious differences compared to the old algorithm of Figure2.3 is the removal
of any curve drawings. This is achieved by indexing into the precomputed global parameterization
using the piecewise linear (semi-)regular reparameterizationpl and local flattening of the input
domain.

16

TTT

Figure 2.6:Piercing and reparameterization in the parameter domain: One of the new details (blue)
pierces the mesh outside of its aperture (yellow circles). This causes the creation of a non-normal
vertex, whose parameter value (red dot) remains as predicted. The parameter values of normal
vertices on the other hand are slightly perturbed.

Our new algorithm In terms of the above assumption on the input, our algorithm (Figure2.5)

starts with a hierarchy of meshesR0, R1, . . . , RL = R. With S0 := R0 as the base domain, the

parameterization perturbation starts with the identity,p0 := id . Note that if vertex insertion were

always performed at parametric midpoints ofR, all offsets would (in general) be vectorial and for

all i, pl := id .

Let T be some triangle of the normal remeshSl−1. This triangle (green in Figure2.4) and

its neighbors (white) are in most cases completely contained inside a base domain triangle (blue

boundaries). In this case one can compute midpoints and distances within the parametric domain

as described. (For a remesh triangle that is not completely contained within a single base domain

patch see below.)

Once we have flattenedR in a neighborhood ofT , we can make decisions on the piercing

points. The triangleT and its three neighbors (see Figure2.6which shows the parametric domain)

are associated withR via pl−1. The piercing procedure begins by shooting rays from the midpoints

of the edges in the normal direction toSl−1. The normal direction at the midpoint of an edge is

set to bisect the dihedral angle of the two incident triangles. These rays will generate intersections

with R (otherwise the distance to the intersection is set to∞ and a non-normal offset is created).

Given the current parameterization these intersection points correspond to blue dots in Figure2.6

(left). Not all intersection points can be accepted, as flipped triangles and unacceptable parametric

distortion of the remesh might occur.

Triangle flips could be detected using the orientation of the vertices in the parameter domain.

This test only provides the information that a flip occurred, but not which of the vertices was re-

sponsible. Consistency of the orientation is guaranteed, if it is possible to separate the intersection

points onto different half-planes (red dotted lines in Figure2.6). This conservative test is simpli-

fied further by the idea of apertures [GVSS00]. Aperture regions are circular areas (yellow) drawn

17

Figure 2.7: An interpolating normal mesh (INM) of the feline dataset. Vertices of the base meshS0

are shown in blue while non-normal displacements (relative aperture size of0.2) are colored red.
Most non-normal displacements are due to severe geometric distortion (paws, edge of wing,etc.).
However, there also some non-normal coefficients in geometrically “flat” regions. These are due to
parametric distortion (see Fig.2.8) causing essentially tangential displacements. The location of
non-normal coefficients for VNM are very similar for this geometry.

around the parametric midpoints of the edges inT . These regions are separated by lines, if their

radius is at most one quarter of the height of the equilateral parametric triangleT . This corresponds

to an aperture of about0.43. Choosing smaller apertures reduces the deviation of the remesh from

the input parameterization. This permits the user to control the parametric distortion.

2.4 Discussion

2.4.1 Efficiency of Computing the INM Transformation

We are comparing our method with standard (semi-)regular mesh refinement. Parameterization

overhead is not considered.

Construction The most expensive operation in our new interpolating normal mesh algorithm is

the piercing with normal directions. This operation is the same as shooting a ray in a global illu-

mination algorithm. In our experiments, we did not use a hierarchical data structure (BSP, octree

etc.) for speeding these operations up. Instead, we searched and tested intersections directly in the

aperture region. (A similar search has been proposed in [LKK03] using the barycentric coordinate

values of the intersection points for guidance.) This is less efficient for coarse levels in the hierar-

chy but performs very well for finer ones. A combined approach with a global data structure could

improve the encoding times in table3.1further.

18

Figure 2.8: A closeup of the neighborhood of a base mesh vertex (blue) of high valence. The
distortion in the input parameterization is clearly visible (left). Because the geometry is simple, a
nice remesh is achieved if we do not interfere with the normal remesh (aperture0.3, right box). A
small aperture (0.05) allows for only a small perturbation of the input mesh (middle) and results in
more non-normal coefficients due to tangential displacement (red dots).

Reconstruction Reconstruction (semi-)regular meshes from normal coefficients can be done at a

cost of a single normal computation per vertex, which can be obtained as the cross product of the

differences of the4 neighbors positions. (There is no memory access overhead — at least for higher

order schemes — because these vertices are needed for the point position prediction anyways.)

2.4.2 Non-Normal Coefficients

The algorithms discussed in this chapter occasionally produce vertices with non-normal displace-

ment (red dots in Figure2.7). On first thought, the existence of these vertices is undesirable: aren’t

purelynormal meshes preferable over (even so slightly) hybridized ones? The answer depends on

the application. One might argue, that displaced subdivision surfaces [LMH00] encode surface data

in purely normal fashion. But this comes at the cost of a fairly large base mesh.

Running the algorithm on the same model with different apertures, we obtained normal meshes

with a wide range of vectorial coefficients. Unfortunately, remeshes with less non-normal coeffi-

cients typically have a larger parametric distortion. This means that some regions are under-sampled

while others are oversampled in comparison with the input parameterization. Undersampling often

leads to a steep increase of the approximation error (for the same reconstruction level).2 Under-

sampling can be countered by increasing the reconstruction level. This increases the number of

trianglesdramatically. Adaptive reconstruction counters this problem, and, for some applications

(especially for compression applications in combination with a zero-tree coder [KG02]), such an

approach could be feasible. In most cases, it is highly undesirable.

Still, we would like to argue that currently too many non-normal offsets are computed. Some

non-normal coefficients are created in flat regions only to reproduce the input parameterization

(Figure2.8). If this is undesirable one could attempt to get rid of them by using an adaptive aperture.

2Similar observations have been made by Guskov et al. [GVSS00]) and are supported by the analysis in [DRS04].

19

One could analyze which how the approximation error develops with and without introduction of a

particular non-normal vertex. While being a natural criterion — if not done locally and monitored

over multiple refinement levels — it could be expensive.

Parametric distortion needs to be battled only in regions of highly varying curvature: it is here

that the piercing procedure can produce arbitrarily bad intersections compared with the input pa-

rameterization (Figure2.7). For this reason, we propose to analyze the reference surface using

inexpensive discrete differential geometry operators [Mey04]. This could allow the development of

a heuristics to scale the aperture according to the variations encountered.

2.4.3 Treatment of Boundaries

Normal mesh construction does not naturally handle boundaries. One way to process meshes with

nontrivial boundaries is to tag them and encode/transmit their coefficients interleaved on each re-

finement level with the surface data. This approach has been demonstrated in [LKK03].

2.4.4 Extension to Higher Dimension

It has been remarked in [GVSS00] that one should be able to encodem-dimensional manifolds

embedded inn-dimensional space withn−m scalars per vertex.

The extension of curves (m = 1) to n-dimensions does not appear too hard — we know how

to measure distances and find midpoints of curves. All one needs to do is to definen − 1 locally

orthogonal directions (for instance using a Gram-Schmidt orthogonalization) and intersect the curve

with the affine space defined by the prediction point and then−1 directions (Figure2.9). The higher

Figure 2.9: One possible approach to generalize the normal curve construction to3 dimensions is
to intersect with orthogonal planes. This would reduce the data from3-vectors to3−1 = 2-vectors.

the dimension of the curve, the less the relative benefit: a curve in10 dimensions is described by

9 normal scalars. This is hardly something to care about! But on the other extreme, ann − 1

20

dimensional manifold could be encoded like a surface in3d with scalar only! Examples of higher

dimensional data are animations and evolving iso-surfaces over time (4d).

21

Chapter 3

Variational Normal Meshes

The interpolating normal mesh construction creates ageometry drivensurface approximation which

implicitly defines a reparameterization. Using this reparameterization we define aL2 norm in

normal direction. This allows us to replace the difficult geometric distance minimization problem

with a much simpler least squares problem leading to a Laplacian pyramid transformation. This

variational approach reduces magnitudeandstructure (aliasing) of the surface approximation error.

22

3.1 Motivation

The previous chapter’s interpolating normal mesh construction can be seen as a very simple wavelet

scheme. Interpolating schemes are often very simple, but they come with some serious limitations.

One of these limitations is that most higher order interpolative basis functions do not define (pos-

itive) partitions of unity. Interpolating basis functions tend to oscillate between data points. This

often leads to undesirable artifacts in the reconstructed signal and was for instance observed by

[KG02] (Figure3.1). Using approximating scaling functions, such as cubic B-splines or Loop sub-

division in the wavelet reconstruction [LDW97], leads often to a reduction of oscillations artifacts.

When measured by a continuous metric approximating basis functions can provide more efficient

function representations than their interpolating counterparts. For these reason it is natural to ask if

it is possible to extend the definition of normal meshes to the approximating setting.

In this chapter we will introduce ascalarversion of the Laplacian pyramidfor surfaces. Lapla-

cian pyramids were introduced for2d functional setting in [BA83] where they provide the bestL2

approximations oneachlevel of the refinement hierarchy. To obtain the scalar Laplacian pyramid

we will derive a naturalL2 measure for normal meshes and use it to define an inner product. Hav-

ing these tools we will show how to modify the interpolating normal remeshing algorithm to obtain

approximating, or variational normal meshes (VNM).

Figure 3.1: Comparison of partial reconstructions of interpolating normal meshes in a compres-
sion application using butterfly (left) and Loop (right) wavelets. Reconstructions are shown for
approximately the same Hausdorff error (the compressed files are around 10KB). Note the bumps
on the butterfly surface. (Figure used with permission [KG02].)

23

3.2 Parametric Correspondence

We make two observations that will be important for us:

1. The result of the näıve piercing algorithm [GVSS00], which converges under mild technical

conditions [DRS04], depends only on the geometries ofR andS0. Any decisions to interfere

with this process—treating an intersection as “too far off the middle”—are based on the ability

to measure distances and find midpoints in the parametric domainΩ of R.

2. If the interpolating normal curve refinement converges for inputsS0 andR, then a reparam-

eterizationp∞ is naturally defined byS∞(t) = R(p∞(t)) for all t ∈ Ω. This p∞ can be

approximated on each level by a piecewise linearpl such that for all verticessi of Sl we have

interpolationSl(ti) = si = R(ui). Becausesi is attached toR at parameter valueui we can

constructpl(ti) = ui. Now Sl(t) ≈ R(pl(t))—implying that the difference between the two

functions is a good approximation of their geometric distance.

The latter observation is the starting point for our variational approach.

3.3 Distances and Scalar Products

Given a parameterized curve or surfaceR and an approximationSl−1 on level l − 1, we are

interested in finding the coefficients of a refined approximationSl such that distance decreases:

d(R,Sl) < d(R,Sl−1). Ideally, this distance should be measured using the symmetric Hausdorff

metric [CRS98]. Unfortunately this is costly, leading to the common use of theL2 norm of the

Figure 3.2:The approximation errors ofinterpolatingnormal curves (top) are typically larger than
for their variational counterparts (bottom). Note how the latter are low pass approximations un-
til there are enough vertices to resolve the radial frequency avoiding aliasing artifacts (top). All
coefficients (light blue) are scalar.

24

distance function

‖dR‖ :=
(∫

Ω
(dR(ω))2 dω

) 1
2

as a way to evaluate the approximation error. HeredR(ω) is defined onS and gives the distance to

the nearest point onR for all parameter valuesω in the domainΩ.

Since a parameterization of the surface gives a functional description of the surface, an even

simpler norm involves parameterizations of either surface

‖R− S‖ :=
(∫

Ω
(R(ω)− S(ω))2 dω

) 1
2
. (3.1)

This expression, unlike theL2 norm of the distance function, depends on the parameterization cho-

sen forR andS. To make it geometrically meaningful, one needs to ensure that similar parameter

values describe similar regions ofR andS. This can be achieved by carefully selecting a suitable

reparameterizationp : Ω → Ω for one of the surfaces. The main insight of our work is that this type

of reparameterization is precisely what the “piercing” procedure in the normal mesh construction

produces. Using‖R ◦ p−S‖ as a distance measure one can then hope for a behavior that resembles

theL2 norm measure of the distance function. A consequence of using‖R ◦ p− S‖ is that one can

easily solve the variational problem

arg min ‖R ◦ p− (Sl−1 +
∑

i

cliφ
l
i)‖2 (3.2)

to obtain detail vectorscli describingSl relative toSl−1. Theφl
i are the basis functions ofSl—

piecewise linear hats in the case of meshes. The critical advantage of Eq. (3.2) is that it defines

a positive semidefinite quadratic form. Finding optimal detail vectorscli ∈ R3 (or R2 for curves)

requires only the solution of a linear system. Note that we have not yet restricted thecli to be scalars.

Repeating this process at each level of refinement results in a hierarchy of coefficientscli giving

the bestL2 approximationat each level. For surfaces, these coefficients can be arranged in a Lapla-

cian pyramid [BA83]. LettingN be the number of coefficients in the finest levelL, the total number

of pyramid coefficients is(1 + 1
4 + 1

16 + . . .)N ≤ 4/3N , a modest overhead for the flexibility

afforded. Anorthogonalwavelet hierarchy could reduce this toN coefficients; to our knowledge

no such construction is available for general surfaces.

25

ui+ui+1

2

ti+ti+1

2

R

ui+1ui

u2i+1

ti+1
ti S

l-1

R

S
l

S
l-1

Figure 3.3:Construction of approximating normal curves: correspondence of parameter values
(left) and position of vertices after minimization (right).

3.4 Variational Normal Curves

To turn the above ideas into a practical algorithm we need to make some specific choices:

� Scalar detail coefficients are allowed forodd (new) andeven(old) vertices anywhere in the

hierarchy.

� Vectorialdetails are only allowed for odd vertices and will be used sparingly.

� No flags, except whether an odd coefficient is scalar or vectorial, are created.

The last choice is motivated largely by limiting the side information needed to inverse transform the

hierarchical surface representation.

In the standard interpolating construction, normal directions are used only once when moving

a newly created (odd) vertex to its position on the reference curveR. In the variational algorithm,

we need to keep directions fixed, but allow vertices to slide along theirnormal line. A normal line

corresponding to a vertexsi of S is defined by its position and normal vectorat insertion time.

Vertices are free to slide along their normal lines, but are never allowed to leave them. We must

allow such motion to ensure that the vertexsi can converge forl→∞ to the intersection point of its

normal line withR. Directions of normal lines are held fixed once they have been created, though.

The variational refinement algorithm for curves consists of the following steps:

1. Refine meshSl−1 by predicting odd points;

2. Find intersections of predicted normal lines withR;

3. Accept an intersection or select a vectorial offset;

4. Update the parameter perturbationpl from pl−1;

5. Define (tangentially displaced) normal lines for vectorial offsets;

6. Minimize the variational functional restricted to normal lines to obtain coefficients describing

Sl.

26

Figure 3.4:The North American coast line represented using interpolating (left) and variational
normal curves (right).

The first three steps are essentially the same as in the interpolating curve construction. Here we

focus on the remaining steps.

� The perturbationpl is constructed by keepingpl(t2i) := pl−1(ti) for even vertices (see Figure

3.3 for the various parameter locations and values). LetR(u2i+1) be the intersection of the

normal line with the reference surface and setpl(t2i+1) := u2i+1 (blue dot onR). For a non-

normal coefficient, inserted at the parametric midpoint ofR, we would use a parameter value

of (u2i + u2i+2)/2 (red dot onR). This is all we need to define the piecewise linear reparame-

terization on the new level. Note that once a parameter valueu is associated witht through the

perturbationp, it will never change.

� Having defined the new parameterization, Eq. (3.2) is well defined at levell, and we may min-

imize it to determine thecli. In Figure3.3, the coefficientscli move vertices along the normal

lines, but in general do not interpolateR.

� Non-normal offsets should be allowed to participate in the minimization scheme. For this pur-

pose we assign such coefficients a (translated) normal line anchored atR(u2i+1), parallel to

the originally predicted normal directionn2i+1 of S. Instead of recording the vectorial offset

to R(u2i+1) plus the scalar coefficientc2i+1 resulting from the minimization, we only record

the final positionsR(u2i+1) + c2i+1 · n2i+1 of these vertices and use these as the origin of the

associated normal lines.

Computing the minimum of a quadratic form requires the solution of a linear systemb = K · c

of normal equations. The load vector is defined by

bi = 〈R,φl
i〉 =

∫
R(p(t)) · φl

i(t) · ‖(R ◦ p)′(t)‖ dt, (3.3)

and the mass matrix is defined by

Kij = 〈φl
i, φ

l
j〉 =

∫
φl

i(t) · φl
j(t) · ‖(R ◦ p)′(t)‖ dt. (3.4)

27

Figure 3.5:As shown in [GVSS00] interpolating normal curves can describe complicated data like
Koch curves exactly. This requires perfectly picked base mesh and parameter values. If the initial
sampling is chosen without sensitivity to the underlying structure as in this figure, aliasing artifacts
develop (top row). Variational normal curves handle this situation more gracefully (bottom row)
with lower approximation error.

If no area weighting is used, the entries ofK can be computed offline. In practice though it is

more appropriate to take the actual triangle sizes into account. Computation of the entries ofb

requires online quadrature because of their dependence onR. For simple B-spline basis functions

this quadrature, can be performed exactly using algebraic formulas. In any case, the setup of the

linear system is straightforward.

Even though the approximation is not interpolating, we are using the fact that thebasis functions

are interpolating. Consider two neighboring basis functionsφi, φj and suppose thatφi is nonzero at

the normal line ofφj . Changing the coefficient ofci could then “push”cj off its normal line unless

the two normal lines happen to be parallel. Because interpolating basis functions, such as piecewise

linear hats, are zero at the normal lines of all other vertices, we do not need to worry about this

effect.

3.5 Variational Normal Meshes

As during interpolating normal mesh construction, we do not compute a parameterization of the

mesh on the fly but rather rely on a pre-existing parameterization. Please recall that this could be

produced with any of the algorithms now available for the construction of low distortion, globally

smooth parameterizations,e.g., MAPS [LSS+98], GI [GGH02], or GSP [KLS03]. Our only desire is

that the parameterization belocally close to an isometry to simplify finding reasonable “midpoints”

between two vertices onR in the non-normal case. Figure3.6 gives a summary of the variational

normal remeshing algorithm. Notice that Steps 1 to 3 are identical to the interpolating algorithm in

28

Variational normal meshing algorithm

Step 0: Initialization.
Given a (semi-)regular triangle mesh hierarchyR = (R0, R1, . . . , RL).
Set remeshS0 = R0 and initialize reparameterizationp0 = id .
Set multi-resolution levell = 1.

Step 1: Subdivide and predict.
Subdivide connectivity of normal meshSl−1 to obtain connectivity ofSl.
Predict new positions and normals of odd vertices (midpoint or butterfly rule).

Step 2: Piercing.
Intersect input meshRL at finest level with normal lines.
Evaluate vertex positions and flattened parameter values.

Step 3: Select intersections.
Reject intersections

if new triangle is flipped in flattened domain.
if intersection deviates too much from parametric midpoint (aperture).

Of remaining intersections select the intersection closest to parametric midpoint.
If all intersections rejected create non-normal offset (parametric midpoint).

Step 4: Update reparameterization and define normal lines.
Update new vertices with

intersection parameter values to obtainpl.
predicted normal directions.

Step 5: Compute inner products.
Use the new reparameterizationpl to compute

the load vectorbi = 〈R,φl
i〉 and

the mass matrixKij = 〈φl
i, φ

l
j〉.

Step 6: Minimize variational functional.
Solve the linear equation systemb = K · c for the coefficientsc.

Increment levell and continue with step 1.

Figure 3.6: The variational normal mesh algorithm is an extension of the interpolating normal
algorithm as steps 1 to 4 are essentially the same. During the new steps 5 and 6 a least mean square
problem along the normal lines is solved to minimize theL2 approximation error.

29

Figure2.5. Step 4 minimally differs as normal directions are explicitly stored for updates in finer

levels. For this reason we restrict our further discussion to Steps 5 and 6.

Semi-regular meshes efficiently support the numerical evaluation of the surface at arbitrary pa-

rameter values. This comes handy when setting up the least square systemb = K · c for solving for

thecli, i.e., the updated location of the vertices ofSl along their normal lines. The basis functions

of R andS may overlap arbitrarily in the parametric domain. This makes the exact evaluation of

the2d integrals highly impractical. For hat basis functions, without taking account of the surface

element onR, the mass matrix has entriesKii = valencei/12 andKij = 1/12 if i andj are con-

nected by an edge. This matrix, for example, was used in [LDW97] for the construction of wavelets

over (semi-)regular meshes. Since triangles are generally not uniform in size, we use numerical

integration to compute the entries ofK and take the actual surface area into account. For this we

employ the midpoint quadrature rule with between30 and150 samples per triangle ofSl to evaluate

the load vector and mass integrals in equations3.3 and3.4. The numerical evaluation of the basis

elements ofSl is a trivial operation. The evaluation of the correspondingR ◦p can be performed by

direct access inO(1) time, if the coefficients of the (semi-)regular meshR are organized for each

base patch as arrays. Otherwise a logarithmic time traversal is necessary.

Finally, we minimize the quadraticL2 approximation error by solving the linear equation system

restricted to the normal lines and obtain the refinement coefficients ofSl for the new subdivision

level. This concludes the description of the algorithm.

3.6 Implementation and Results

Most of the components needed for the implementation of a variational normal remesher — mesh

library, ray-surface intersection, and linear solver—were taken off the shelf. The only custom im-

plementation was the code for flattening of base triangles ofR. For the variational normal mesh

(VNM) code, a simple numerical integrator (midpoint) was added. We did not explore the trade-offs

due to numerical integration accuracy and final approximation error (we use between30 and150

integration points per triangle).

For both INM and VNM, theobservedruntime is linear in the number of triangles. (Note that

while individual point locations areO(log n) their expected cost isO(1) explaining the observed

behavior.) The runtime of the VNM remesher is completely dominated by the integration code

(see the representative data in Table3.1). The timing differences between INM and VNM are due

to linear equation system setup and solution. The linear solver time is on the order of a second,

30

data set input normal input base remesh non- percent Time
param method mesh size size normal B-box (sec)

(] levels) (vertices) verticesL2 Error

skull MAPS INM 4(8) 32770 368 0.0392 2.5
MAPS VNM 4(8) 32770 494 0.0282 15.2

fandisk MAPS INM 73(4) 4546 103 0.0573* 0.2
MAPS VNM 73(4) 4546 104 0.0345* 1.5

dino MAPS INM 128(4) 8066 228 0.0893* 0.3
MAPS VNM 128(4) 8066 294 0.0576* 2.5

igea MAPS INM 196(5) 49666 136 0.0148 2.3
MAPS VNM 196(5) 49666 121 0.0096 14.9
GSP INM 40(6) 38914 24 0.0156 2.1
GSP VNM 40(6) 38914 38 0.0099 15.1

feline GSP INM 280(5) 72190 589 0.0156 3.4
GSP VNM 280(5) 72190 845 0.0096 25.3

horse GSP INM 140(5) 35330 256 0.0117 1.6
GSP VNM 140(5) 35330 317 0.0081 11.7

rabbit GSP INM 100(5) 25090 20 0.0107 1.1
GSP VNM 100(5) 25090 24 0.0067 8.6

zone- Loop INM 12(7) 40962 570 0.0611 2.8
sphere Loop VNM 12(7) 40962 146 0.0327 17.2

Table 3.1: Using MAPS parameterizations as input to our algorithm gives us similar remeshing
errors as when using GSP. But typically the number of non-normal vertices is higher for MAPS,
reflecting the fact that MAPS parameterizations are not globally smooth. Variational normal meshes
(VNM) typically outperform their interpolating (INM) counterparts. Errors where computed using
METRO with respect to the original, irregular mesh. An exception are the fandisk and dino models,
which where compared against the finest level MAPS remesh. Hence the MAPS remeshing errors
need to be added to these numbers. (We discovered that the MAPS remeshes are scaled/rotated
versions of the irregular models publicly available.)

hence the difference is essentially the cost of integration. The fact that the INM code is now so

fast is partially due to the simpler flattening procedure, but also to having replaced the on the fly

repeated reparameterization [GVSS00] with an up-front parameterization. Even for the variational

remeshing our results compare favorably with Guskovet al.(accounting for our timings being taken

on a2.2 GHz P4). As we relied on available remeshes [LSS+98, KLS03] the time for the initial

parameterization is not reflected in our numbers. Some models are not readily available as remeshes.

Here one has to take the parameterization time into account. Remeshing algorithms have evolved

significantly over the past few years (see for instance [LSS+98, KLS03, AKS, SAPH] for timings).

The best results so far where obtained by [AKS] who report solver timings of under40 seconds for

a model containing580k vertices (David head).

We have run experiments with a range of MAPS and GSP input parameterizations. The remesh-

31

ing errors of our INM algorithm are about the same as in [GVSS00] (see Table3.1for our results).

The anti-aliasing properties of variational normal meshes are clearly visible in the “zone” sphere

example of Figure3.7.

In terms of error, VNM give us a fairly consistent improvements over INM. Typically INM have

up to 60% larger remeshing error (on any level) relative to VNM. Figure3.8 shows comparisons

between different normal mesh types for different models and the GSP input parameterization. In

particular we compare against the vectorial variational mesh (VVN), where detail vectors are not

direction constrained. All errors where computed with METRO [CRS98]. For the feline and igea

models we compared against theoriginal, irregular meshesfrom which the GSP where derived;

while the dino and zone-sphere models are compared against a finer, (semi-)regular mesh. The only

difference observed is the GSP remeshing error on the finest level of feline and igea graphs.

We observe, that both interpolating methods (INM, GSP) and also both approximating methods

(VNM and VVN) show roughly identical convergence behavior. Variational meshes (VNM and

VVM) also preserve volumes equally well - much better than the interpolating hierarchies (INM,

GSP). This behavior is illustrated by the skull series in Figure3.9and the error graphs in Figure3.10.

The number of non-normal coefficients we achieved is typically a little less than in [GVSS00].

This is even though we are using an aperture of0.2 which we keep independent of the current

refinement level, while in [GVSS00] the aperture was relaxed from0.2 on coarse to0.6 on finer

levels. The variability in these numbers is not surprising, because the construction of normal meshes

depends on the base mesh and the parameterization chosen for the metric.

As in the original paper [GVSS00] we have used a spatially invariant aperture to remesh from

one level to the next. This works well in regions with simple geometry and “nice” input parameteri-

zation. In those settings, no non-normal coefficients are inserted (see the feline trunk in Figure2.7).

In regions of high curvature, non-normal coefficientsare inserted, preventing mesh degeneration.

Interestingly, flat regions sometimes produce non-normal coefficients due to excessive distortion in

the original input parameterization (see the feline wing attachment and tips). Increasing the aperture

locally eliminates this problem resulting in a nice reparameterization (see Figure2.8).

The VNM algorithm samples the geometry of the input mesh fairly densely (as part of the

integration routine). Thus one could hope to find a strategy that adopts the aperture locally based

on this information at no extra cost. We did not run experiments to examine such strategies.

32

Figure 3.7: A fine sampling of a “zone” sphere with a displacement field of increasing frequency
(moving along the equator) is used to test for aliasing properties (leftmost image, also showing
the icosahedral base mesh). On the right the upper row shows levels1 to 4 of the interpolating
normal mesh refinement. The right hemispheres, which contain high frequencies in the original
geometry, exhibit aliasing artifacts in the interpolating construction. The corresponding variational
normal meshes (bottom row) correctly low pass filter frequencies which cannot be represented at the
current resolution. On the finest level both IMN and VNM show a disturbance caused by a valence
5 vertex (right hemisphere, center). Again, this effect is much less pronounced for the variational
approximation.

 0.01

 0.1

 1 2 3 4 5
 0.01

 0.1

 1 2 3 4

 0.01

 0.1

 1

1 2 3 4 5 6

 0.1

 1

 1 2 3 4 5 6

level

level

level

level

er
ro

r

er
ro

r
er

ro
r

er
ro

r

GSP

INM
VNM

VVM
GSP

INM
VNM

VVM

GSP

INM
VNM

VVM
GSP

INM
VNM

VVM

Figure 3.8:The METRO mean squared distance errors (percent B-box) are plotted for four different
models using the GSP input, normal remeshes which are: interpolating (INM), variational (VNM);
and also for unconstrained variational solutions (VVM). These examples illustrates how close the
constrained variational normal meshes are to the unconstrained variational meshes. Note that for
the feline and igea models the errors are measured with respect to the original irregular triangle
mesh, while the dino and the zone sphere meshes are compared against the finest level (semi-)regular
mesh available.

33

Figure 3.9: Interpolating normal meshes are completely contained inside of convex regions of
objects (top row, levels1 to 5). This causes large errors for the volume of the reconstruction.
Variational normal meshes place vertices at optimized positions (bottom row) and preserve the
volumes better.

vo
lu

m
e

%

vo
lu

m
e

%

level level

 90

 95

 100

 1 2 3 4 5
 25

 50

 75

 100

 1 2 3 4 5 6 7 8

GSP

INM
VNM

VVM
GSP

INM
VNM

VVM

Figure 3.10:These graphs are typical plots displaying the relative volumes (in percent of the orig-
inal irregular mesh) of the4 mesh hierarchies. Variational meshes consistently preserve volumes
better than interpolating hierarchies. Still they are slightly biased towards underestimating the true
volume. The skull base mesh is a tetrahedron, hence the graphs show a much larger volume de-
fect than other meshes with more detailed base meshes. The relative behavior of interpolating to
variational errors nevertheless is very similar.

34

3.7 Future Directions

Variational normal meshes as Laplacian pyramids are data over-representations. We have shown

the existence and good quality of variational normal remeshes. This result is encouraging from a

theoretical view, because it might show a path towards a critically sampled normal wavelet theory.

We would like to use this space to discuss some challenges that are waiting on the way.

3.7.1 A Lifting Experiment

The lifting scheme, as introduced by W. Sweldens in [Swe96], is an approach to define (biorthog-

onal) wavelets on complex domains. Without going into too much detail, one observes that the

difference between signals on a coarse levell−1 and a finer levell are expressible as a combination

of basis functions on the finer levell. There is some freedom in picking these linear combinations.

A hat function on the coarser level can be expressed as a linear combination of1
2 [1, 2, 1] basis

functions on the finer level [Gri03]. One way of updating detail is by using linear combinations
1
4 [−1, 2,−1] of hat functions on the finer level [SS95]. To solve the problem of pushing neighbor-

ing coefficients parametrically away from the normal lines (as discussed at the end of Section3.4),

one could requirethe coefficients of the linear combinations to be restricted to each normal line.

We will refer to these detail basis functions as briefly as “sombreros”.

The lifting (and other wavelet) schemes operate on the given data from fine to coarse levels.

This approach is the opposite of normal meshing, where important data like the normal directions

andeven the fundamentally important correspondencepl are not defined a priori and have to be

discovered (non-linearly) during the coarse to fine construction. The result of adding coefficients

from coarse to fine using least mean square minimization of sombreros is described in Figures3.11

and3.12. This can be achieved by plugging the basis refinement equation1
2 [−1, 2,−1] into the

linear equation systemb = K · c used in the variational normal curve construction.

We see that sombreros predict the variational normal coefficients with high correlation. But

repeated application detoriates very fast after the first level when compared to the INC and VNC

convergence rates. One obvious reason for this failure is the lack of orthogonality between hats

and sombreros〈ψi, φj〉 6= 0. Even in the classic (purely vectorial) setting, the coarse to fine least

mean square computation will only converge to the original data set when addingorthogonaldetail!

The situation is further complicated, becauselocally supportedorthogonal wavelet schemes for

35

Figure 3.11:Using sombrero functions along each levels newly inserted normal lines we attempt to
reverse the lifting scheme (from coarse to fine). This approach does not converge and fails primarily
because updates on finer levels are not orthogonal to data on coarser levels.

 0.0001

 0.001

 0.01

 0.1

 1

 10 100

m
ea

n
 H

au
sd

o
rf

f e
rr

o
r

vertices

INC
VNC

sombrero

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

–0.02 –0.015 –0.01 –0.005 0.005 0.01 0.015

correlation

Figure 3.12:Refinement using normal sombreros did not converge for any of our examples (graph
left). Plotting coefficients obtained by normal sombrero refinement and variational normal mesh
refinement we observe a strong correlation between them (right).

subdivision surfaces are not available to our knowledge.

A potential remedy for this situation might be to relax the requirement that lifted normal meshes

be bestL2 approximationson each levelof subdivision, as long as the detoriation is “minor” in some

sense. This requires studying the restrictions placed on biorthogonal wavelets by being a Riesz basis.

36

Chapter 4

Unconstrained Spherical
Parameterization

We introduce a novel approach to the construction of spherical parameterizations based on energy

minimization. The energies are derived in ageneral mannerfrom classic formulations well known

in the planar parameterization setting (e.g., conformal, Tutte, area, stretch energies,etc.), based

on the following principles: the energy should (1) be a measure of spherical triangles; (2) treat

energies independently of the triangle location on the sphere; and (3) convergefrom aboveto the

continuous energy under refinement. Based on these considerations, we give a very simple non-

linear modification of standard formulas that fulfills all these requirements. The method avoids the

often observed collapse of flat energies when they are transferred to the spherical setting without

additional constraints (e.g., fixing three or more points). Ourunconstrainedenergy minimization

problem is amenable to the use of standard solvers. Consequently, the implementation effort is min-

imal while still achieving excellent robustness and performance through the use of widely available

numerical minimization software.

37

In this chapter we are going to develop methods for computing spherical parameterizations. By ob-

serving the planar case, where efficient algorithms and a theoretical foundation exist, we will show

how to transfer ideas from planar patches to spherical domains.

4.1 Related Work

There is by now a rich literature on the construction of parameterizations for surface meshes (for

an excellent recent survey we refer the reader to [FH05]). A large class of approaches is based

on quadratic energy formulations which only require the solution of a linear system. Proofs of the

bijectivity of the resulting mapping are available in certain cases. There are also many non-linear

approaches, but their analysis is considerably more involved.

While much of this work has focused on the planar case,i.e., the mapping of a topological disk

region of a given mesh to the plane, spherical parameterizations have been singled out as a special

case occurring frequently enough in practice to warrant their own methods [GGS03, GWC+04,

HAT+00, HBS+99, SGD03, PH03, BF01]. Most of these approaches are based on applying a

specific method known in the planar setting to the sphere; Praun and Hoppe [PH03], for example,

use the method of Sanderet al. [SSGH01].

One set of methods is based on puncturing the spherical topology and solving a discrete har-

monic mapping functional in the plane under stereographic projection [HAT+00, HBS+99]. While

the continuous conformal setting is invariant under stereographic projection this does not hold true

for the discreteproblem where the sphere is decomposed into simplicial cells. Images of spher-

ical triangles are not straight-edge triangles in the plane and vice versa (see Figure4.2). In fact,

even on the sphere itself, the continuous Möbius degrees of freedom are lost, and only the rotations

remain as symmetry group (spherical triangles are only invariant under rotations). To avoid these

issues, it is therefore more natural to consider the problem directly on the sphere. For example,

Gu and co-workers [GWC+04] solve the nonlinear discrete harmonic energy functional directly on

an inscribed polyhedron combined with periodic centering and reprojection. It has been observed

though that such approaches tend toslip toward degenerate solutions (see for example the comments

in [GWC+04] on the use of relaxation procedures). Thus, additional constraints are imposed, for

thesolepurpose of rendering the numerics robust. Other methods, such as the approach of Gotsman

and co-workers [GGS03] and Shefferet al. [SGD03], are highly non-linear and numerically subtle,

making them as yet unsuited for the robust parameterization of large meshes.

The discussion of the spherical setting in [GGS03] is noteworthy as it starts with a general obser-

38

Figure 4.1:Unconstrained solutions for our new, stable spherical parameterization operators:
Tutte, Discrete Conformal Map,(1, 1) and (0.2, 1) weighted Dirichlet to area-distortion combi-
nations; and pure area distortion minimization (left to right).

vation about barycentric coordinate approaches well known from the planar setting and analyzes the

implied matrix problems with the help of a special class of eigenvectors. So far little is known about

specific procedures to construct matrices which satisfy the conditions necessary for the theorems to

apply though.

Our approach also begins with the observation that it would be desirable to construct a general

procedure to take approaches from the planar parameterization case and adapt them to the sphere. As

such we are deliberately agnostic as to the particular weights being used. We will however assume

that the energy derives fromarea integrals(a broad number of approaches satisfy this requirement).

We will argue that many of the numerical difficulties associated with the lack of constraints in the

spherical setting—there is no boundary and no canonical constraints—can be traced back to an

unsuitable approximation of the underlying energy when adapting it to spherical domains (see Sec-

tion 4.3). Assuming only rotation invariance, central projection, and convergence under refinement,

we will give a simple modification of flat energy functionals based on a rapidly-convergingupper

bound on the corresponding integrals over spherical triangles. One of the important upshots of our

new formulation is the creation of an infinite energy barrier for equatorial triangles (a single trian-

gle covering an entire hemisphere) which gracefully prevents degeneracies. More importantly, our

approach permits a robust minimization of the resulting non-linear energywithoutany artificial con-

straints or custom solvers. This allows us to use standard minimization software (see Section4.4).

We demonstrate the practicality of our technique with a number of examples employing different

energies on various meshes of significant size.

4.2 Two Approaches to Parameterization

For patches with disk topology two approaches are popular leading to parameterizations by solv-

ing linear equation systems The first approach is variational and based on aquadratic energies. A

famous example in this category is the Dirichlet energy for piecewise affine maps [PP93]. The min-

39

imum of quadratic energies can be obtained by solving positive (semi-)definite equation systems.

The second parameterization approach is viabarycentric coordinates. Here the position of each

vertex is expressed as the weighted average of its one-ring neighbors [Flo03, MBLD02]. Barycen-

tric coordinates lead naturally to linear equation systems. The main difference of the barycentric

to the variational approach consists in barycentric coordinates having often no natural associations

with continuous energies. Unfortunately this has consequences! Finding low-distortion spherical

parameterizations is a nonlinear problem. For this reason it is not surprising that nonlinear general-

izations of barycentric coordinates lead to systems of nonlinearequations; while the generalizations

of simple quadratic energies leads to general nonlinearenergies(often also referred to as objective

functions).

When we started working on spherical parameterizations our first ideas lead to different gener-

alizations of barycentric coordinates on the unit sphere. We still have all reason to believe that the

theoretical derivations were reasonable. Finding practical solutions for them proved very difficult.

The nonlinear equation system solver was quick to obtain parameterizations for simple meshes with

about100 vertices. With some user input and patience solutions could be obtained after lengthy

computations for meshes with a few hundred vertices. Nevertheless it was impossible to solve

anything involving more than about1000 variables. At this point we switched from barycentric co-

ordinates to the variational approach. Suddenly it was possible to solve parameterizations involving

tens of thousands of variables. While it is possible that other program code could change this result,

we do not believe this to be likely. The libraries we used (PETSc [BBG+01] for solving nonlinear

equation systems and TAO [BMMS04] for optimization) are well tested and share major portions of

code. Instead we believe now, that solving nonlinear equation systems is more difficult than solving

similar optimization problems. For a detailed discussion we refer the reader to SectionA.3.4.

We will describe now the results of computing parameterizations with the variational approach.

4.3 Variational Sphere Mappings

It is an intrinsically non-linear problem to find the embedding of a genus-0 mesh on the unit sphere

with minimal distortion, regardless of the choice of distortion measure. Most previous approaches

have approached this issue by extending distortion measures well-known for planar parameteriza-

tions, leveraging the extensive literature on this topic. As we discuss next, these extensions assume

an (often implicit) mapping between spherical and planar triangulations. If this is not properly

accounted for in the final energy expression, numerical degeneracies occur.

40

Figure 4.2:The stereographic projection identifies straight edged triangles in the plane with
banana-shaped triangles on the sphere (left). The gnomonic projectionG maps spherical to planar
triangles (right).

4.3.1 Classical Parameterization Energies

Let f be (for now) a piecewise-linear map from a given (topological disk) surface patchM to a flat

parameterization rangeN (see Figure4.3). Many classical techniques [FH05] can be formulated as

a minimization of spring-like energies of the form:

E(f) =
∑

(i,j)∈directed edges

wij · ‖xNi − xNj ‖2 (4.1)

where the coefficientswij depend on the given patch, and can often be understood as arising from

area integrals. The distances‖xNi − xNj ‖ are measured in the range of the parameterization. For

example, the celebrated discrete conformal map corresponds to a specificwij involving only the

cotangents of angles inM [PP93]. Many other techniques are also defined through area integrations,

though the resulting (often non-linear) expressions in the unknownsxN can be considerably more

complicated [HG00, SSGH01].

It is natural to seek ways to extend these well-studied energies to the spherical setting by com-

position with a map from a flat triangle to a spherical triangle. Cartographers have long studied such

maps and a long list of candidates exist (for an exhaustive survey see [SV89]). Unfortunately there

appear to be none among these which lead to manageable expressions (see for example the set of

mappings reviewed in [PH03]). Consequently authors have proposed simpler expressions which,

in the continuous limit, converge to their spherical counterpart. Instead of dealing directly with a

spherical triangleTSABC for whichA, B, andC are three vertices on the sphere, the most common

approach considers thesecantflat triangle (i.e., the Euclidean triangle—see Fig.4.3) TNABC sup-

ported by the same vertices but considered in the embedding space. Since this secant triangle is flat,

energies from the planar case immediately apply. Even though one may approximate a spherical tri-

41

M

ξ
v

Ω
u

ψ

f

N G S

Figure 4.3:For an input triangle meshM we want to find an injective function mapping to the
sphereS (such that the inverse of this function is a valid parameterization). Computing this function
directly onS is very difficult. It is generally preferred to obtain an approximationf by mapping
the input mesh only to the spherically inscribed meshN . Not accounting for the influence ofG
creates a bias in the approximation error, which often leads to degenerate solutions. We analyze
this problem and propose a simple remedy for a range of existing methods.

angle with a sequence of ever finer secant triangulations, the approach consistently underestimates

the spherical energies: in effect the map betweenTSABC andTNABC is disregarded.

To understand the consequences of this omission we first study the projection fromTSABC to

TNABC more carefully.

Gnomonic Map: Flattening Spherical Triangles The underlying mapping mentioned above is

part of a more general map type called agnomonic map(or central projection). This projection

maps spherical triangles to planar triangles (see [McC02] and Figure4.2). To be more precise, a

spherical triangleis defined by the intersection of three hemispheres.1 If the three hemispheres are

identical we call it ahemisphericaltriangle. A gnomonic projection maps a hemisphere (centered

around the so-calledstandard pointP) to a plane. By choosing thespecifichemisphere and the

specificprojection plane, one can flatten any given spherical triangle, although flattening the whole

sphere means picking multiple hemispheres to flatteneachspherical triangle.

The first choice then is to pick a projection plane and a specific hemisphere to fix the gnomonic

projection. A natural choice for the plane is the supporting plane of the secant triangle. For the

choice of hemisphere we pick as standard pointPABC the circumcenter of the secant triangle.

This choice is symmetric and provides us with the aforementioned implicit mapping, that we will

now denote byG : S → N (whereS denotes the sphere; see Figure4.3). For finer and finer

triangulationsG becomes the identity as expected. For this reason the mappingG has been exploited

in the past when simple star maps and world globes had to be built in the shape of polyhedra [SV89].

In practice we will actually need only the inverse of this map, which has a particularly simple

formulaG−1
P : R3 → S, G−1

P (x) = x/‖x‖, where we assumed a unit sphere centered at the origin

in R3.
1Sometimes our spherical triangle is called theinner spherical triangle and its larger complement theouterspherical

triangle. This ambiguity creates much confusion and most authors assume only the smaller triangle.

42

Figure 4.4: As the iterations proceed in the solver a triangle starts growing and finally slips over
the equator eventually shrinking the entire mesh to a point.

Ignoring the Gnomonic Map Considered Harmful Consider a classic distortion energy based

on maps from flat triangles (inM) to flat triangles (inN), e.g., the Dirichlet energy. Assume that all

vertices ofN are on the sphereS, producing a spherically inscribed mesh. Treating each of these

range triangles as flat replaces the desired energyE(G−1 ◦ f) with E(f). A finite element error

analysis would typically give us an error estimate of the formE(f)+O(Rk) = E(G−1 ◦f), where

R is a measure of the largest triangle size (andk depends on the particulars of the energy). This type

of analysis appears to confirm the validity of the approximation. However, the typical unconstrained

nonlinear minimization often fails as illustrated in Figure4.4. Considering that we are minimizing

E(f) = E(G−1 ◦ f) − O(Rk), it is easy to see that the minimizer simply found a way to decrease

the energy by steadilyincreasingthe size of the triangle with the largest error—to the point where

the triangle covers more than a hemisphere and the solution collapses. It may be possible to avoid

this degeneracy by adding additional constraints, such as point or moment constraints, for example.

However, this is not necessary for energiesÊ(f) whichboundE(G−1 ◦ f) from above. In the next

section we will derive a very simple modification of standard weights that has this property and is

tight in the sense that the error isO(R2). No additional constraints will be needed to avoid collapse

of the solution.

4.3.2 From Flat to Spherical Energies

Since we assume that the energy measuring distortion arises from area integrals we consider the

energy of an individual triangle with the total energy being a sum over all triangles. We derive our

argument in detail for the spherical Dirichlet energy and then apply the argument to other example

energies.

Spherical Dirichlet Energy Pinkall and Polthier [PP93] wrote the Dirichlet energy for discrete

conformal mappings between triangles as

ED(h|TM) =
∫

TM
tr(DhTDh). (4.2)

43

For a spherical triangle the map ish = G−1
P ◦ fABC and hence

ED(TSABC) =
∫

TM
tr(D(G−1

P ◦ fABC)TD(G−1
P ◦ fABC))

≤
∫

tr
(
DfT

ABC

dmin
· DfABC

dmin

)
=
ED(fABC)

d2
min

=
ED(TNABC)

d2
min

. (4.3)

Here we used the monotonicity of the Dirichlet operator to obtain the inequality, withdmin =

min ‖fABC‖ the minimum distance of triangleTNABC to the center of the unit sphere. For acute

triangles and our choice ofGP this minimum is achieved atPABC , i.e., the circumcenter of the

triangle. For obtuse triangles the minimum distance is achieved at the midpoint of the longest edge.

Note thatdmin is linked to the radiusRmc of the min-containment circle of the flat triangle by

d2
min = 1−R2

mc. Finally rewriting Eq.4.3as

ÊD(TNABC) =
1

d2
min

·
∑

(i,j) edge of TABC

cotαi,j

‖xNi − xNj ‖2

4
(4.4)

shows the familiar cotangent weights in our upper boundÊD. Notice that we now have both lower

and upper bounds on the spherical Dirichlet energyED(TN) ≤ ED(TS) ≤ ÊD(TN). Using

Taylor series expansion we getd−2
min = 1 + O(R2

mc) with a non-negativeerror term, and thus

ED(TS) +O(R2
mc) = ÊD(TN).

The implication is that the approximation error is equivalent to methods using a secant-triangle

approximation; but̂E will approach the real spherical energyfrom aboveand simultaneously keep

min-containment circles sizes under control: as a triangle approaches the entire hemisphered−2
min →

∞. This makes it impossible to collapse to the trivial solution, even in the absence of any constraints.

The argument giving rise to thed−2
min factor, which makes the Dirichlet energy of the secant

triangle suitable for a spherical parameterization, applies to many other integral based energy for-

mulations as well. We give a few examples next (see Figures4.1and4.5for a comparison).

Spherical Tutte Energy The canonical use of unit stiffness springs on edges to derive a planar

parameterization (for details on Tutte’s embedding see [FH05]) trivially extends to the spherical

setting:

ÊT(TNABC) = d−2
min · ((xA − xB)2 + (xB − xC)2 + (xA − xC)2). (4.5)

Spherical Squared Area Energy The Dirichlet energy is based on angles of the input mesh only,

with no notion of preserving areas, and thus performs poorly in (re-)sampling applications. Area

44

dependent energies of various flavors have been considered [FH05, SSGH01] to address this issue.

Using a Taylor expansion of the area formula for spherical caps, we can prove thatarea(TS) ≤

d−1
min · area(TN). For our experiments we will use:

ÊA(TNABC) =
(ANABC)2

d2
min ·AMABC

.

Spherical Stretch Energy The stretch energy of [SSGH01] can be written out as a combination

of the last two energies:

ES(f) = tr(Df−TDf−1) ·AM = (AM/AN)2 · tr(DfTDf) ·AM

= (AM/AN)2 · ED(f).

This expression explains how the stretch based parameterization strikes a balance between area and

angle distortion. More importantly, we can apply our approach to obtain the upper-bound energy

ÊS simply by substitutinĝED forED. Thus one can avoid the mesh refinement step used in [PH03]

and minimize the energy without requiringadditionaldegrees of freedom. Of course approximation

quality questions may still favor refinement for some meshes.

Combined energy We have also experimented with a combined energyÊC that combines the

area and Dirichlet energies additively:

ÊC(f) = wD · ÊD(f) + wA · ÊA(f).

Choosing appropriate constants(wD, wA), the user can trade off angle and area preservation.

The left parameterization, obtained with coefficients(1, 0), was optimized for angle distortion

only. Consequently head and tail are under-sampled. In the center, using coefficients(1, 1), a

reasonable balance between under sampling and angle distortion is achieved. On the right using

(0.2, 1), the areas on the extremities are well-preserved - but curves do not intersect at right angles.

45

Compare with Figure4.1for views of the corresponding spherical domains.

4.3.3 Discussion

A major ingredient in any implementation of an energy minimization method is the numerical treat-

ment of the non-linear equations that arise. The most powerful methods for general smooth non-

linear problems are global Newton or Trust-Region methods. These are designed to ensure global

convergence, which is very important if one starts far from the minimum of the energy. Given that

there is in general no immediately valid embedding of a genus-0 mesh onto the sphere (for example,

without overlap) using solvers that can robustly find a (local) minimum, no matter where one starts,

is critical. It is of course possible to use custom methods, for example, a non-linear hierarchical

approach which might employ a progressive mesh hierarchy to affect the solution coarse to fine.

Unfortunately very little is known in terms of convergence and stability of such methods. Instead

we prefer to rely on proven methods, in particular since powerful libraries implementing sophis-

ticated black box Newton Trust-Region solvers are freely available [BBE+04, BMMS04], greatly

decreasing implementation effort. Coupling these with symbolic methods to compute gradients and

Hessians of energies, rapid experimentation becomes possible.

This convenience comes at a cost. To use a black-box solver and be sure of its guarantees, the

energies themselves must satisfy certain criteria. Chief among these is that Hessians provide good

local (quadratic) views of the energy landscape. In our case, the division byd2
min creates poles near

hemispherical triangles. Luckily, these poles are only reached by exceedingly large perturbations

of the variables and are, in our experience, not a concern. The transition of the energies between

acute and obtuse triangles is more subtle. Clearly it is continuous. According to our experiments

we believe that even the gradient changes smoothly when deforming acute and obtuse triangles

into each other. More precise statements depend on the particulars of the flat energy itself. Spring

energies transition smoothly between opposite triangles orientations—and so do our modifications

Ê. We have not had any problems achieving embeddings without flipped triangles even for large

and convoluted meshes (see Figure4.5). OnlyES—by its very nature of assigning infinite stretch

to degenerate triangles—has poles whenever triangles invert (division byAN). This gives rise to

energy landscapes with many poles, which makes the use of globally perturbing black-box solvers

extremely challenging.

46

4.4 Implementation and Results

Recall that we are optimizing a mapping fromM toN with verticesxN confined to the sphereS,

subject to a chosen upper bound energyÊ evaluated over flat triangles inM. The target variables

xN are parameterized in terms of longitudes and latitudes(x, y, z) = (cos(θ) · sin(φ), sin(θ) ·

sin(φ), cos(φ)). The expression for the energy as a function of the coordinates of a given triangle

TM in the domain and a target triangleTN is implemented in Maple. This Maple function, together

with its gradient and Hessian are automatically translated to C++ code (removing a major source

of errors in implementations of complicated energy expressions). Invoking symbolic differentiation

might appear inefficient. We timed our codes and found that for the highly tuned PETSc [BBE+04]

and TAO [BMMS04] optimization kernels, bus bandwidth is the limiting factor for problems which

do not fit into the processor cache.

When using the cotangent weights appearing in the Dirichlet energy, care must be taken to avoid

negative weights. These can cause fold overs in the planar setting, and we saw the same effect in

the spherical case. To avoid this issue we clip all angles to5◦ < αi,j < 85◦ and found this to be

quite effective. Limiting the angle size from below avoids edges with very large weights (relative to

their neighbors). While this tends to occur only for few angles, the resulting systems are typically

better conditioned.

To initialize the optimization problem, we either start with a linear solution via the stereographic

map [HAT+00], or by simply centering the model at the origin and normalizing all vertices to

unit length (similar to [GWC+04]). We did not experience significant speedups using the former

approach,e.g., [HAT+00] method does not provide a good initial guess for our setting.

Using the initialization by normalization typically leads to many folds. After just a few iter-

ations, models with small dynamic range in their edge lengths produce valid embeddings without

folds (others take longer, but we always achieved fold free embeddings). At this point we already

have a parameterization but it is visually far from being as smooth as the solution achieved at the

energy minimum. For this reason, we continue our efforts until theL2 norm of the gradient drops

below 10−7 . . . 10−9. This may seem excessive, but once the energy is close to the solution, the

accuracy typically improves super-linearly from magnitudes such as10−5 to 10−9 in less than5

iterations due to the fact that a Newton method is applied.

The entire process is performed without any constraints such as fixed vertices. Even the3

rotational degrees of freedom do not impact the solution process. Since the energy is rotationally

invariant, so is the residualmagnitude, and stopping criteria in the solver work as expected.

47

In terms of time performance, we found that the Trust-Region solver finds solutions for small

models, such as triceratops and cow (both just under6k triangles), in just a few seconds. For the

igea model (67k triangles), the timings on a 3GHz Xeon processor are:

(wD, wA) (1.0, 0.0) (1.0, 0.1) (1.0, 1.0) (0.1, 1.0) (0.0, 1.0)

time 34m 5m 4m 12m 366m

We clearly observe a sweet spot from combining area and angle preservation. Our largest model,

the 400k triangle lion vase was parameterized in just over one hour for(wD, wA) = (1.0, 0.01).

We speculate that these performance timings could be further improved by using a hierarchical

preconditioning technique [AKS].

Figure4.5shows a number of examples computed with our solver using theÊC(.) energy. Note

the extreme texture distortion for the harmonic map on the armadillo. The entire upper body was

mapped into a very small region on the sphere robustly. Figure4.1 shows a comparison between

different classical energies all lifted to the spherical setting with ourd−2 modification. The relative

effects in terms of mesh shape are qualitatively identical to the results seen in planar parameteriza-

tions. Figures4.5and4.5show remeshes of the skull and vase-lion geometry. These were obtained

by concatenating a (semi-)regular spherical mesh (with icosahedral base connectivity) and the re-

spective unconstrained spherical parameterization.

4.5 Conclusion and Future Work

We presented a simple approach to modify energies used in planar parameterization, making them

directly usable for spherical parameterization. Thanks to the upper-bound derivation we used, min-

imizing these novel energies doesnot require the addition of constraints simply to avoid degenerate

solutions (and in the process adding additional distortion due to the constraints). Aside from the

generality of this approach, we also proposed a different (additive) balance between area and an-

gle distortion. This energy provides the standard angle versus area conservation tradeoff. Using

symbolic algebra methods to deal with the energies and their derivatives of first and second order,

coupled with the use of canned, highly tuned solvers gives us robust methods for a variety of pa-

rameterizations on the sphere with very little implementation effort. We expect that these methods

can be further improved through the use of hierarchical preconditioning techniques.

48

(1, 0)

(1, 1)

(1, 1)

(1, 0.1) (1, 0.01) (1, 1)

texture map

Figure 4.5: We computed parameterizations for several large (200k . . . 400k triangle) meshes using
the combined energŷEC with weightings(wD, wA) as denoted in the image. No conditions were
enforced during the solve, nevertheless the parameterizations are fold-free.

49

Maple code for spherical parameterization energy

Energy:=proc(θi, φi, θj , φj , θk, φk)
convert angles into3d coordinates
xi:=cos(θi) sin(φi);
yi:=sin(θi) sin(φi);
zi:=cos(φi);
same forxj , yj , zj andxk, yk, zk

triangle edges
Ax:=xi − xj ; Ay:=yi − yj ; Az:=zi − zj ;
Bx:=xi − xk; By:=yi − yk; Bz:=zi − zk;
Cx:=xj − xk; Cy:=yj − yk; Cz:=zj − zk;

compute dot products the old fashioned way
AA:=Ax*Ax+Ay*Ay+Az*Az;
BB:=Bx*Bx+By*By+Bz*Bz;
CC:=Cx*Cx+Cy*Cy+Cz*Cz;
AB:= Ax*Bx+Ay*By+Az*Bz;
AC:=-(Ax*Cx+Ay*Cy+Az*Cz);
BC:= Bx*Cx+By*Cy+Bz*Cz;

Area squared (use symmetric formula)
Area2:=1/16 ∗ (2 ∗AA ∗BB + 2 ∗AA ∗ CC + 2 ∗ CC ∗BB −AA2 −BB2 − CC2);
radius of circumcircle on secant
RR:=AA ∗BB ∗ CC/(16 ∗Area2);

if triangle is acutedmin is distance to circumcircle center
if AB ≥ 0 andAC ≥ 0 andBC ≥ 0 then

d−2
min :=1/(1−RR);

tmp:=d−2
min ∗ (wA ∗ Area2

areaijk
+ wD ∗ (αij ∗AA+ αik ∗BB + αjk ∗ CC));

else
otherwisedmin is distance to midpoint of longest edge
if AA ≥ BB andAA ≥ CC then d−2

min :=4/((xi + xj)2 + (yi + yj)2 + (zi + zj)2);
elif BB ≥ AA andBB ≥ CC thend−2

min :=4/((xi + xk)2 + (yi + yk)2 + (zi + zk)2);
else d−2

min :=4/((xk + xj)2 + (yk + yj)2 + (zk + zj)2);
end if;
tmp:=d−2

min ∗ (wA ∗ Area2
areaijk

+ wD ∗ (αij ∗AA+ αik ∗BB + αjk ∗ CC));
end if;
tmp;

end proc:

Figure 4.6: Maple code for weighted area and spring energies.

50

Figure 4.7: Parameterization and remeshing of skull model. From left to right: original model,
hidden-line irregular mesh, texture-mapped parameterization(wD, wA) = (1, 1), normal shaded
view of the spherical domain, the remesh and a close-up of the remesh.

Figure 4.8: Parameterization and remeshing of vase-lion model. The first row shows texture maps
of the computed parameterization(wD, wA) = (1, 1). The second row displays normal shaded
views of the domain. The third row shows the remesh from different views.

51

Chapter 5

Conclusion

We have presented methods for normal remeshing. Our new method simplifies existing methods

and extends them to approximating construction. Because these methods rely on existing param-

eterizations we developed a method for spherical parameterizations which does not require the

specification of artificial constraints. As a consequence distortion was reduced and less user input

required. This chapter summarizes our work. We will also discuss links to other work and outline

possible future directions.

52

5.1 Summary

We have presented a novel geometry pipeline based on unconstrained spherical parameterization

and normal remeshing. There were three contributions:

First we showed how to increase the stability of Normal Mesh construction while speeding it up

by decomposing the process into two stages: parameterization and remeshing. We showed that the

remeshing step can be seen as resampling under a small perturbation of the given parameterization.

Based on this observation we described a novel algorithm for efficient and stable (interpolating)

normal mesh construction via parameterization perturbation.

Our second contribution was the introduction of Variational Normal Meshes. We described a

novel algorithm for encoding these meshes and used our implementation to argue, that variational

normal meshes have a higher approximation quality than interpolating normal meshes as expected.

In particular we demonstrated that interpolating normal meshes have about60 percent higher Haus-

dorff approximation error for the same number of vertices than our novel variational normal meshes.

We also showed that variational normal meshes have less aliasing artifacts than interpolating normal

meshes.

Our third contribution was the on parameterizations for unstructured genus zero meshes. Pre-

vious approaches could only avoid collapses by introducing artificial constraints or continuous re-

projections, which are avoided by our method. The key idea was to defineupper boundenergies

that are still good approximations. We achieve this by dividing classical planar triangle energies by

the minimum distance to the sphere center. We proved that these simple modification provides the

desired upper bounds and are good approximations in the finite element sense.

5.2 Future Work

Critically sampled normal basis Laplacian pyramids are not orthogonal and are only the first

step toward the development of critically sampled basis transformation using approximating func-

tions. The basis functions in our variational normal mesh construction were still interpolating

(though not the approximation itself). Perhaps even better approximations can be built when us-

ing, e.g., cubic B-splines. As the naı̈ve lifting construction from coarse to fine fails due to missing

orthogonality (see section3.7.1) one would have to solve for the coefficients on all levels simultane-

ously in anon-linearminimization problem. The situation is complicated further, as the number of

coefficients in this construction is not constant: depending on the insertion of non-normal vertices

53

the dimension of the problem can range betweenn in the normal and3n in the fully vectorial case.

Variable dimensions are not trivially covered by the classic optimization theory, posing a major

challenge toward justformulatingthe problem.

Numerical methods It should be possible to improve the optimization times of the spherical pa-

rameterization problem by using more sophisticated numerical methods. The trust-region solver

used [BMMS04] could not be used reliably in combination with a preconditioner. Trust-region

methods need positive definite preconditioning matrices, while planar (linear) parameterization

problems respond well to hierarchical preconditioning [AKS]. Another promising direction is to

extend the trust-region method and permit temporary increase of the objective function during mini-

mization. In cases with narrow and curved valleys in the objective function landscape this relaxation

is sometimes more efficient than imposing strict decline [CGT00].

Displaced volumes Botsch and Kobbelt showed in [BK03] that the displacement of volumes pro-

vides good metaphor for editing subdivision surfaces. They presented a scheme reconstructing a

refined surface from displaced volumes over a single level. Using volumes to specify displacements

leads to an underconstrained optimization problem. The authors augmented this by a smoothing

term to obtain a solution. The connection to variational normal meshes can be seen by the good

volume preservation of our method as observed in section3.6. The application in [BK03] did not

require the measurement of reconstruction errors. Apparently no attempts were made to construct

a multi-level hierarchy. Their regularization during reconstruction requires the knowledge of many

original surface properties. Nevertheless the definition of surface detail as displacement of volumes

is a very attractive idea for the future development of variational normal meshes.

54

Appendix A

Notes on Optimization

This chapter provides a high level review on solving certain types of nonlinear optimization prob-

lems on continuous domains. The key ideas, algorithms and references for a range of problems are

given. Several theoretical limitations are stated and tips on the selection of algorithms are provided.

This chapter is intended to be an introduction to the main ideas and and cannot be exhaustive.

55

Numerical optimization is a concept for dealing with particular linear and nonlinear systems. We

have used optimization for important algorithmic steps throughout this thesis. To illuminate these

steps, this chapter is intended to present background information on a range of ideas for solving

optimization problems. We hope this will give the reader a better insight into our motivation when

designing these algorithms. To establish context and notation SectionA.1 introduces the continu-

ous optimization problem. In SectionA.2 we attempt to classify objective functions by the structure

of available information. SectionA.3 surveys a number of numerical techniques for solving these

problems and recalls important convergence results.

The more experienced reader may skip ahead to SectionA.4 where we will discuss some of the

experiences that were gained during our experiments.

A.1 The Optimization Problem

A continuous optimization problem is given by an objective function

f : Ω → R

with associated domainΩ. We typically assume thatΩ ⊆ Rn, wheren is the number of variables.

Our goal is to find alocal minimizerxmin of the objective, such that

f(xmin) ≤ f(x), ∀x ∈ U(xmin) (A.1)

for all valuesx in a small enough neighborhoodU ⊆ Ω of xmin . The domainΩ is allowed to be all

or a subset ofRn. In the latter case, we speak of aconstrainedoptimization problem.

This is amuchsimpler task than the solving theglobal minimization problem, where the mini-

mum over allx ∈ Ω is sought. We focus on this subproblem for several reasons:

� Some problems have only one minimum. Finding the local solution is equivalent to obtaining

the global answer.

� Many physically motivated processes achieve only local minima:Newton’s apple fell straight to

the ground - it did not tunnel to the lowest point on earth.Hence, finding a nearby local solution

is sometimes more useful than obtaining the global minimizer.

� Finding local minimizer is a subproblem of finding the global optimizer.

� Efficient methods have been developed for finding local minima of smooth objective functions.

What makes the continuous problem more tractable than combinatorial optimization is the ability

56

to resort to neighborhood arguments and the use of derivatives to find downhill directions. Many

ideas for solving the continuous problem are based on the Taylor series expansion.

Theorem 1 (Taylor Series Expansion)Let f : Rn → R be analytic and three times continuously

differentiable. Then

f(x+ d) = f(x) + grad f(x)T · d+
1
2
dT ·Hess f(x) · d+O(‖d‖3). (A.2)

We will repeatedly use the Taylor series expansion to obtain first and second order models of the

objective functionf . There are different approaches that can be used for minimization, such as

stochastic processes [Spa03, Pol87] and convexity [BV04]. Unfortunately, none of these other

approaches is enjoying the same success and popularity in the literature as method based on the

Taylor polynomial.

Most optimization methods are iterative and produce a series of better and better approximations

x0, x1, x2, . . . , xi of the minimizer. Depending on availability, these methods are permitted to query

some of the following properties:

� f(xi) - the scalar value of the objective function. This data is used to check for progress, e.g., to

make suref(xi−1) > f(xi) at a sufficiently fast rate (Wolfe condition [NW99, Kel95, CGT00]).

� grad f(xi) - the gradient of the objective function. The gradient atxi can be represented as an

n−dimensional vector. A vanishing gradient is a strong indicator for a nearby stationary point

of the objective function. (Often called the first order necessary condition.) The gradient can be

used to define descent directions.

� Hess f(xi) - the Hessian of the objective function. The Hessian can be represented as an

(hopefully sparse!)n × n matrix and is often used for scaling or preconditioning the gradient

[BV04, NW99]. Using the Hessian in Newton-like algorithms leads to q-superlinear conver-

gence near the solution. The Hessian is in general not positive definite (only near the solution).

Positive definiteness in addition to a vanishing gradient is a sufficient condition for convergence

to a minimum. (Also called thesecond order sufficient condition.)

For constrained problems it is usually assumed thatΩ can be described in a simple way, for example

by equality and inequalities. There are also developments for solving constraints defined by general

nonlinear equations [CGT00].

57

Figure A.1: Contour plots of objective functions using extra light sources for shading. From left
to right top row: linear function, quadratic function, convex function and non-convex function with
unique minimum. From left to right bottom row: smooth function with two local minima, function
with discontinuous Hessian, function with discontinuous gradient at minimum and a noisy function.

A.2 An Attempt to classify Optimization Problems

In the previous section, we have described uses of the objective function, gradient and Hessian.

The Taylor series expansion also gives us also a way to roughly classify optimization problems by

difficulty. All things being equal, we can sort objective functions by increased unpredictability of

the error term. For now we assume an unconstrained objective function, where allxi can be chosen

arbitrarily fromΩ = Rn (examples are given in FigureA.1). Ideally the objective function is very

smooth (at least two continuous derivatives).

1. Without constraints, affine objective functions (defined by zero second and higher order

derivatives) have no interesting minimizers. Solving constrained affine problems on the other

hand has many important applications for instance in Operations Research and is calledlinear

programming[Van01].

2. Quadratic functions are the simplest unconstrained objectives. These functions are character-

ized by constant, positive definite Hessian matrices. (Otherwise the function shape would be

a saddle and unbounded from below.) Quadratic objectives are usually minimized with linear

equation systems. This means these problems are simple, well understood and very popular

in comparison to problems with variable or no Hessian.

3. Objective functions with varying, but positive definite Hessian (everywhere). Such functions

58

are convex (or “bowl”-shaped). (But convex functions in general are onlyC0.) Convex

functions have a unique minimum. Convexity is not easy to identify, but once known a broad

theory with efficient solution methods exist [BV04]. Nice convex functions can be solved at

the equivalent cost of a few linear solves.

4. Non-convex functions with unique minima. The Hessian is indefinite in some regions away

from the minimum. As a consequence minimization approaches will have to deal with zero

or negative curvature directions (multiple valleys in FigureA.1, upper right) Because of these

negative curvature directions, methods specialized on convex functions will often fail, be-

cause for efficiency reasons they often rely on methods like the Cholesky decomposition of

the Hessian. In regions away from the minimizermultiple narrow valleys might exist, with

the potential of increasing the ill-conditioning of the problem. While there might be a single

minimizer, computationally this problem has to be solved with the same methods as the next.

5. The last fairly nice function class is that of objectives with arbitrary (but hopefully smooth and

bounded) Hessians. These objective functions are assumed to have multiple minima. Given

a reasonable starting guess many algorithms using descent directions will produce a solution

that is in some sense near the starting point. But in general there is no control over which of

the local minimizers is picked. For an efficiently solved problem in this class see [FMS03].

6. Objectives with piecewise discontinuous or unbounded Hessians lead in the experience of the

author to less well conditioned problems (as similar objective functions with nicer Hessians).

In practice using this Hessian information to precondition the gradient is often still desirable.

7. Objective functions that are onlyC1 continuous with no access to Hessian information for

preconditioning. Simple problems of this class can still be solved with high accuracy using

first order (gradient descent) methods.

8. A very hard case areC0 objectives with piecewise continuous or no gradient at all. Here

access to the main stopping criterion (a vanishing gradient) is lacking. With no additional

information (like subgradients [Pol87]) one can only expect to obtain a relaxation of the

objective value.

9. It is even harder to deal with stochastic objective functions. These are assumed to be com-

posed of a deterministic function that is perturbed by an independently, identically distributed

zero mean noise term [Spa03].

59

Figure A.2: Examples of simple constraints (from left to right): identity constraints, linear equal-
ity constraints, nonlinear equality constraints, ball (or distance) constraints and linear inequality
constraints.

Functions that resist above classification scheme are for instanceC0 convex or discontinuous quasi-

convex. The global knowledge implied by the convexity arguments leads to more efficient modeling

than using the Taylor series expansion alone (see Chapter 5 in [Pol87] and Chapter 11 in [CGT00]).

Above classification is mostly done by structure into. Additional difficulty is arises if a particular

problem is ill-conditioned. With this we mean the appearance of long and thin (and even worse:

curved) valleys in the objective function landscape. These valleys are tracked by many methods

with high precision along the bottom, which makes the search for the minimum quite expensive.

Optimization problems can be further classified by their type of constraints. Constraints are used

to describe the domainΩ which is usually called thefeasible set. (Examples are given in Figure

A.2.) Constraints significantly complicate finding the solution of optimization problems. For this

reason we expect that a feasible setΩ is described in a simple way. In particular one wants to have

efficient tests for feasibilityx ∈? Ω and often it helps to know how to navigate on the boundary∂Ω.

1. Identity constraints: some variables are assumed to be constantxj = cj . This is the simplest

form of constraints and often implemented using Lagrange multipliers by modifying gradient

and Hessian of the objective. Such modifications can be numerically rigid and visibly disturb

the gradient and error residual in a neighborhood of the affected variables.

2. Linear equality constraints: A linear combination of variable is assumed to be constant

Ax = c. This constraint is often numerically nicer than the identity constraint, because the

disturbance is distributed over multiple variables. Eliminating equality constraints can make

a sparse Hessian denser, hence some care needs to be taken in their implementation [BV04]

(Chapter 10).

3. Nonlinear equality constraints: The solution vectorx has to satisfy a set of nonlinear equa-

tionsc(x) = 0. Solving nonlinear equations is generalat least as difficultas minimizing an

60

objective, so this is a hard problem. This is complicated by the fact that there are now two

residuals (one for the optimization and one for the nonlinear equations) leading in general to

(slightly) suboptimal and (slightly) infeasible solutions. Sometimes it is possible to combine

both nonlinear problems into either a single objective function or nonlinear system [CGT00].

4. Inequality constraints: Variables are assumed to be bounded:0 ≤ Ax+b. Multiple constraints

of this type will form the faces of a simplex [BV04] (Chapter 11).

5. Ball constraints: Given a norm‖.‖, centerc and radiusr a ball is defined byB = {‖x− c‖ ≤

r}. Solutions of this problem for simple (often quadratic) objective functions form the basis

of trust-region methods [CGT00].

Finding an initial pointx0 ∈ Ω can be a difficult task. Combinations of many constraints can shrink

the domainΩ ⊆ Rn into the empty set and make the optimization probleminfeasible.

A.3 Methods for Solving Optimization Problems

For any non-stationary1 argumentxi and vectord, one of the directionsd or −d points downhill.

Roughly speaking this means half of the directions will lead to a reduction of the objective. Why

don’t we just follow one of these directions and see where it leads us?

Not surprisingly some directions are better than others. A popular choice is to minimize the

objective by varying only one of the coordinates ofxi. This is motivated by the Gauss-Seidel itera-

tion for solving linear systems and in this context calledcoordinate descentmethods. Surprisingly

in the nonlinear setting it was shown that these methods are not guaranteed to converge. Even if

they converge, they might do so only very slowly (see [NW99] p.53ff). Powell constructed in 1973

several examples of three-dimensional objectives for which coordinate descent methods cycle in-

finitely between6 different attractors and fail to converge to a point with zero gradient [Pow73].

One problem of this method is that the descent directions can get arbitrarily close to orthogonal to

the gradient. This makes progressvery slow.

Still, this idea is useful because it introduces the idea of line-searches. The one-dimensional

problem - minimizing a function along a linex+λd - is fairly easy to solve (for instance brute force

using binary search). The exact solution is often not required. In practice one searches for values

of λ ∈ (0, 1] are for whichf(x + λd) is in some sensesufficiently smallerthanf(x). This can be

1A point x is calledstationaryor first order critical if grad f(x) = 0, e.g., the tangent plane of the objective function
is horizontal atx.

61

achieved viabacktracking methods, which start fromλ0 = 1 and iteratively decreaseλi until the

sufficient decrease of the objective in directiond is achieved. This finalλ is often referred to asstep

length.2

We are going to state the convergence rates of different algorithms in terms of their asymptotic

behavior. We will distinguish three different types, namely q-linear, q-superlinear and q-quadratic

rates [Kel95].3 Q-Linear convergence denotes a growth of significant digits that is linear in the

iteration number, e.g.,O(i) (in other words the error declines with geometric rate). q-superlinear

convergence refers to more than geometric error decline, e.g., an escalating increase of significant

digits in each step, e.g.,Ω(i). Q-Quadratic convergence stands for a doubling of significant digits

in each iteration, or exponential growth of significant digitsO(2i).

A.3.1 First Order Methods

A better idea than using simple coordinate descent is based on building a first order model of the

objective, namely

f(xi + di) ≈ f(xi) + grad f(xi) · di (A.3)

and to follow a descent directiond that is obtained from the gradient in each iteration step. If the

descent directiondi = −grad f(xi) is the negative gradient and a step lengthλi is chosen to find

the minimum along this direction, then the very greedysteepest descentmethod (in the Euclidean

norm) is obtained [NW99, BV04, Pol87]. It is surprising, but has been demonstrated again and again

[NW99, BV04, Pol87] that the performance of unpreconditioned descent methods can be quite poor.

One reason for this poor behavior lies in the abrupt direction change in each minimization step, e.g.,

for the steepest descent methoddi−1 · di = 0.

Theorem 2 (Convergence rate steepest descent)Let f be twice continuously differentiable. If

the steepest descent method is started sufficiently close to a minimumx∗ with positive definite

Hess f(x∗), then the sequencef(xi) converges with rate

f(xi+1)− f(x∗)
f(xi)− f(x∗)

≤
(
λn − λ1

λn + λ1

)2

(A.4)

whereλ1 is the smallest andλn is the largest eigenvalue ofHess f(x∗) (Theorem 3.4 in [NW99]

2This is slightly misleading as in general‖d‖ 6= 1.
3The “q” refers to “quotient” and is chosen to disambiguate the introduced terms.

62

p.49). We also obtain convergence for the point sequencexi

‖xi − x∗‖
‖x0 − x∗‖

≤
(
λn − λ1

λn + λ1
+ ε

)i

(A.5)

as Theorem 4 in [Pol87] p.27 shows.

The convergence rate is q-linear and easily observed in practice. The main problem is a factor

that is close to1 for many problems, even of very modest size. Because the factor depends on the

condition number of the Hessian, it can be improved by carefully changing to a different set of

variables defining the objective. In general this is not easy and hence methods have been developed

that are more robust to this problem.

It is quite surprising that following randomly chosen descent directions as for instance described

in the SPSA method ison average as good as following the exact gradient[Spa03, Pol87]. From this

one should realize that following the gradient downhill is not a particularly original or efficient. This

argument should also show on an intuitive level, that better downhill directions than the gradient

exist (because the average includes many directions that perform worse than the gradient).

One idea that performs better than the steepest descent method is physically motivated and

simulates a “heavy ball” rolling down the objective landscape. This dampens the direction changes

and achieves under ideal parameter selection for the damping the same convergence rate as the

popular nonlinear conjugate gradient method (refer to [Pol87] p.74).

Observation 1 (Convergence rate linear conjugate gradient)The linear conjugate gradient method

with constant HessianA converges with geometric (q-linear) rate. The error is bound by

‖xi − x∗‖A

‖x0 − x∗‖A
≤ 2

(√ λ1
λn
− 1√

λ1
λn

+ 1

)i

. (A.6)

(See equation 2.15 in [Kel95] and for a sharper bound Theorem 5.5 in [NW99].))

Compared to the steepest descent method the main difference is the square root on the spectral

condition numberλ1
λn

. This means that,at least in the linear setting for quadratic energies, the

conjugate gradient method converges much faster than the steepest descent method. It also does

not require any tuning of a damping parameter (as for the heavy ball method) to achieve this rate.

Different nonlinearextensions to the conjugate gradient methods exist and behave similarly well

in practice. But because they have a “memory” of previously encountered nonlinear data, their

63

theoretical analysis is complex. The Fletcher-Reeves variant is often less efficient than the Polak-

Ribiére+ algorithm and recommended by different authors [NW99, PTVF92].4

One reason causing the gradient to be a poor downhill direction is itsdependenceeven on simple

affine scaling of the variables.

grad (f(Ax)) = A · grad f(Ax) (A.7)

This means a steepest descent algorithm’s performance will depend on the chosen “parameteriza-

tion” - or on the scaling of the variables [NW99, BV04]. While this appears to be a minor problem,

this sensitivity has great practical implications: for instance in the parameterization problems dis-

cussed in Chapter4 hugedisparities on the edge lengths appear during the minimization. Such

situations need to be handled in a robust way across all scale! Newton-steps are independent of

affine transformations [NW99].5

Poor scaling of the gradient has also the potential to ruin a main termination criterion, which

is based on the vanishing norm of the gradient. For this reason users are required to carefully

pick anapplication dependentthresholdε for the gradient norm‖grad f(xi)‖ ≤ ε for termination

[BMMS04].

A range of methods has been developed to automatically define good preconditioning matrices

to obtain better search directions. Some (often positive definite) matricesBi are updated in each

iteration step from the available gradient information. The gradient direction is scaled with the

inverseHi = B−1
i of this matrix to obtain the new step directiondi = −Hi · grad f(xi). These

methods often try to converge to the Newton method and are commonly referred to asquasi-Newton

iterations. Different construction rules for theBi are, for instance, Broyden’s method [Kel95, Pol87,

NW99], the Davidson-Fletcher-Powell method (DFP) [Pol87, NW99] or the SR1 method [NW99].

What makes these methods particularly attractive, is that direct update-rules for theHi exist. This

means there is no need to invert a matrix in each iteration step!6 All the mentioned methods converge

in a neighborhood of the minimum with q-linear or even q-superlinear rate [Kel95, Pol87, NW99].

But q-superlinear rate is only achieved if theBi converge to the Hessian - which for large dimension

n is rarely practical to await.

Observation 2 (First order methods) The cost of first order methods is very low if counted on a

4The simpler Polak-Ribiére (no “plus”) method performs well in practice but can fail to converge without periodic
restarts.

5The underlying problem does not magically disappear but is handed over to the linear equation systems solver.
6But Hi might not be sparse.

64

x0 x1x2 . . . x0 x1x2 x3x4 x5

Figure A.3: Without step length control the decrease of the objective function can be too small
either because of too short (left graph) or too long (right graph) step lengths.

per iteration basis. Their strength lies in the following situations

a) the sequencexi is still far away from the solution.

b) the dimensionn of the problem is reasonably small or well-posed.

c) or if Hessian information can not be obtained. In practice the most efficient first order meth-

ods are the nonlinear conjugate gradient for well-conditioned and quasi-Newton methods for ill-

conditioned objectives.

A.3.2 Ensuring Convergence

Before we go into more detail and discuss second order algorithms for solving the optimization

problem, we will motivate some results for ensuring convergence for arbitrary starting guess. Just

having a decreasing sequence of objectivesf(x0) > f(x1) > · · · > f(xi) > . . . does not guarantee

convergenceto the sought for minimumf(xmin). Indeed the sequence this sequence might converge

to some value larger thanf(xmin) as shown by the two examples in FigureA.3. To simplify conver-

gence arguments a number of criteria have been developed that provide simple to check conditions

on the step length guaranteeing sufficient progress toward a solution. For line search methods these

checks are based either on theWolfe conditions(leading in combination with backtracking methods

to theArmijo rule) or the less often usedGoldstein conditions[NW99, Kel95]. For trust-region

methods the most often used progress criterion is theCauchy point[NW99, CGT00].

The nature of these conditions is technical, and for this reason we will not repeat the exact

formulas here. But we can’t stress their practical importance enough. Not only do these conditions

virtually guarantee convergence, but they are also designed to be simple and inexpensive to check.

Furthermore they are designed to not interfere with rapid convergence. In particular none of the

three conditions will interfere with the rapid convergence rates achievable by Newton-like methods.

65

0.8

0.6

2

0.4

0.2

-2-4-6

f(x) = 1− cos(arctan(x))

b3 b2 b1 b0a0a1a2

i ai f(ai)

0 0.40e− 0 0.72e− 1
1 −0.28e− 0 0.37e− 1
2 0.80e− 1 0.32e− 2
3 −0.15e− 2 0.12e− 5
4 −0.11e− 7 0.69e− 16

i bi f(bi)

0 0.60e− 0 0.14
1 −2.31e− 0 0.60
2 −3.83e− 0 0.75
3 −5.94e− 0 0.83

Figure A.4:The functionf(x) = 1− cos(arccos(x)) has a unique minimum atx = 0. The Newton
method without step length control converges for the starting guessa0 = 0.4 and diverges for the
slightly larger initializationb0 = 0.6. Using step length control the Newton method can be made
globally convergent. But even then q-superlinear convergence is only observable near the solution!

A.3.3 Second Order Methods

Second order models can be motivated by several observations. We will assume that we can approx-

imate the objective in each iteration step by a model constructed using the Taylor series expansion:

f(xi+1) = f(xi + di) = f(xi) + grad f(xi)T · di +
1
2
dT

i ·Hess f(xi) · di

Assuming a positive definite Hessian, we can solve the constant quadratic model by taking the

gradient with respect todi

di = −Hess f(xi)−1 · grad f(xi) (A.8)

to obtain the formula for theNewton-iteration. Instead of inverting the Hessian, the new search

directiondi is best obtained by solving a linear equation system. The new search directiondi can

also be interpreted as the linearization of the first order optimality condition7 or as the direction of

steepest descentin the Hessian norm‖d‖ = (dTHess f(x)d)0.5. This iterative procedure does not

converge whenx0 is set to be far away from the minimizer, as the example in FigureA.4 shows.

But if convergence is achieved, it happens at an astonishing rate:

Theorem 3 (Convergence rate Newton method)Letf be twice differentiable andHess f be Lip-

schitz continuous and in the neighborhood of the minimumxmin . If the Newton iterationA.8 is

started withx0 sufficiently close toxmin the generated point sequence convergesxi → xmin . The

convergence rate of‖xi − xmin‖ and‖grad f(xi)‖ is q-quadratic.

7This idea is used for indefinite matrices occurring in non-linear equation systems.

66

The Newton method is designed to minimize an objective that happens to be purely quadraticin a

single step. But without step length control as discussed in SectionA.3.2 all Newton-like methods

will fail even for simple convex functionswhen started sufficiently far from the solution (as happened

to sequencebi in FigureA.4)!

To benefit from the good final convergence rate, essentially all second order models will try

to perform the Newton step first. If the Newton step fails to produce a sufficient decrease of the

objective, like that specified by the Wolfe condition, alternative steps have to be considered. These

alternatives are often obtained by backtracking via step length reduction. Computing the Newton

direction requires the solution of a linear problem. This is an expensive step that pays off either when

q-quadratic convergence is observed, or when the problem is too ill-posed for first order methods.

A clever implementation will not spend too much time on the linear solve and terminate early with

an approximate solution, if it can decide that q-quadratic convergence is unlikely. This can be done,

for instance, when negative curvature directions are encountered in the Hessian matrix. Defining

good early truncation criteria is still actively researched and are discussed further in SectionA.4.3.

Observation 3 (Newton methods)Depending on the implementation of the line search, Newton

methods can be fragile when operating far away from the solution. Their ultimate strength is the

end game, where superior convergence rates are achieved. Newton methods can use a variety of

linear solvers (for non-convex problems they must be able to handle indefinite Hessian matrices)

and have no particular restrictions on preconditioners.

Trust-region methodsprovide a more flexible framework compared to line-search methods. In-

stead of finding (approximate) minimizers along line segments, the search is extended to cover finite

volumes. To keep dealing with these regions simple, they are usually defined as balls measured in

some norm‖.‖. FigureA.5 shows the basic framework of a trust-region minimizer as described

in [CGT00]. One motivation behind introducing trust-region methods is the desire to increase the

granularity of the solution process: not only do balls cover more search space than line segments,

but one has more flexibility in designing algorithms for obtaining a solution of the current step.

Interestingly, this is achieved by creating a sequence of simple but non-trivially constrained sub-

problems.

A popular second order trust-region method was proposed independently by Steihaug and by

Toint [NW99, CGT00] and was implemented by the author in [FMS03] and also available in TAO

[BMMS04]. At the heart of this method is a modified linear/nonlinear conjugate gradient solver.

This method is not difficult to implement and works very well in practice. Its main strength is

67

Basic trust-region algorithm

Step 0: Initialization.
An initial point x0 and an initial trust-region radius∆0 are given.
Computef(x0) and seti = 0.

Step 1: Model Definition.
Chose a norm‖.‖i that defines the shape of a ballBi centered atxi with radius∆i.
Define a modelmi for the objectivef on the trust-regionBi.

Step 2: Step calculation.
Compute a stepdi that “sufficiently reduces” the modelmi and
stays inside of the trust-region, e.g.,xi + di ∈ Bi.

Step 3: Acceptance.
Computef(xi + di) and decide if the model predicted the decrease of
the objective function well.

If the prediction was good the step is accepted andxi+1 := xi + di.
Otherwise the step is rejected andxi+1 := xi.

Step 4: Trust-region radius update.
If the prediction of the model turned out to be

very accurate: Allow for a larger trust-region and increase the radius.
reasonably good: Keep the trust region radius∆i+1 := ∆i.
poor: Decrease the trust region radius.

Incrementi by 1 and continue with step 1.

Figure A.5: The basic trust-region algorithm as described in [CGT00].

the relatively efficient handling of pointsxi that are still far away from the region of Newton-

convergence. But there is a serious drawback of this method compared to line-search Newton solvers

in the quadratically convergent region: currently there is no theory on the preconditioning of trust-

region solver witharbitrary preconditioners. According to [CGT00] the preconditioning matrixM

has to be positive definite so it can be used to define a norm‖.‖M for measuring the trust-region

radius. Maybe this problem is minor and easily fixed, but a lack of preconditioning has serious

implications on the practically achievable convergence rate, as we will discuss later.

A.3.4 Nonlinear Equations

Observation 4 If we could only solve nonlinear equation systems efficiently, we would have no

need for developing methods for the more specialized optimization problem.

The first order optimality conditiongrad f(xmin) = 0 connects the continuous optimization prob-

lem defined by equationA.1 with the solution of a system of nonlinear equations. Nonlinear equa-

68

tions are defined by

g(x) = 0 (A.9)

g : Rn → Rn

Jac g : Rn → Rn×n

Two differences are obvious between both problems: nonlinear equations lack an objective function

to check for progress. The Jacobian ofg is also usually neither symmetric or positive definite —

even at the solution! The indefiniteness of the Jacobian is not a serious problem for solving smooth

nonlinear equation systems using the Newton method (see [Kel95, CGT00] and also the detailed

discussion in [BMN01]). But the lack of an objective function has consequences. To be able to

check for progress toward a solution one usually introduces the norm of the residual

1
2
‖g(x)‖2

2 (A.10)

as amerit functionor pseudo energy [NW99, Kel95, CGT00]. Using the square of theL2 norm,

transforms solving nonlinear equations into a smoothglobal optimization problem (Chapter 16 in

[CGT00]). But not all nonlinear equations have a solution: in this case even the global minimum is

meaningless. Similarly, many local minima ofA.10 will not satisfyg(x) = 0. Local methods might

get stuck when trapped between local maxima (see FigureA.6).

In this context, it is worth pointing out the simplicity of the linear conjugated gradient method

(a Krylov iteration solver for quadratic systems defining an objective function) with the algorithmic

complexity for instance of the generalized minimum residual (GMRES) method (which can deal

with indefinite linear equation systems) [Kel95]. In some sense this increased complexity reflects

the consequences that the loss of structure — of not having a proper objective function — has.

We must be cautious of treating formulaA.10 as a proper energy from which gradient and

Hessian energy are derived. In the simple case of a linear, but indefinite equation systemg(x) = Ax,

we could obtain

g(x) = Ax

Jac g(x) = A

f(x) = 1
2x

TATAx

grad f(x) = ATAx

Hess f(x) = ATA.

The new objectivef(x) still needs to be globally minimized to obtain a solution tog(x) = 0.

What makes this transformation really impractical is a condition number of the HessianATA that is

the square of the condition number of the JacobianA. (For a deeper treatment compare the remarks

on the CGNR and CGNE modifications on page 25 in [Kel95].)

69

1

x

0.8

3

0.2

21
0

0-2

0.6

0.4

-0.2

-1-3

-3

-0.2

-0.4

0.2

x

3210-1

0.4

-2
0

0.6

0.5

0.4

0.3

0.2

x

0.1

0
3210-1-2-3

0.05

0
3210-1-2

y

-3

0.2

0.15

0.1

f(x) = 1− cos(arctan(x))

grad f(x)

Hess f(x)

1
2
‖grad f(x)‖2

f(x)

Figure A.6: The objectivef(x) = 1 − cos(arctan(x)) (top) has a unique minimum and poses
no problem to minimization using most local schemes and arbitrary starting guess. Iff(x) (top
graph) is replaced by12‖grad f(x)‖2 (bottom) convergence toxmin requires global minimization
if a starting guessx0 with Hess f(x0) < 0 is used.

Observation 5 We conclude that solving nonlinear equations is a similar, but structurally more

difficult problem than minimizing an objective function. In particular nonlinear equationsrequirea

starting guess near the solution, while for optimization problems this is onlydesirable.

Fortunately there are many problems, in particular time-dependent systems, that allow to track solu-

tions while varying some parameters. Such ideas are also formally explored in continuation methods

([NW99] Chapter 11.3).

A.4 Practical Considerations

In this section we discuss a range of topics that arise during the practical design of objective func-

tions and numerical minimization. In reality, computations are not performed with infinite precision,

might not last long enough to see asymptotic behavior, might fail due to ill-posedness or indefinite-

ness of the objective and so on.

70

A.4.1 The Presence of Numerical Noise

So far, we assumed that all numerical computations were performed with infinite precision. Ob-

viously this assumption does not hold for machine numbers. But there are many more sources of

inaccuracy. For example, the objective function is noisy, because it comes from a physical process

or is computed using numerical quadrature, a gradient is noisy because it is computed via finite

differences, or the Newton-step is noisy because an iterative method for is used for solving the lin-

ear equation system. In general, there are preventable errors, that are reduced by diligent work and

errors that escape control. How do these errors affect the minimization process and which conse-

quences does their propagation have for the convergence results? Higher order algorithms are more

sensitive to noise than simpler methods. This is fairly intuitive, but can be shown rigorously [Pol87].

In general, stochastic noise poses less of an obstacle than deterministic noise, mainly because it has

the tendency to cancel out by the law of large numbers. This sometimes happens naturally for the

algorithms discussed so far, but can be strictly enforced as discussed in [Pol87] (p.98ff) and [Spa03].

First order methods The behavior of the gradient descent method using noisy gradientsgrad f(xi)+

ri yields no surprise. As long as the noise level is smaller than the magnitude of the exact gradient

‖ri‖ < ‖grad f(xi)‖, the usual rate of progress is made toward the minimum. Once the noise

level gets larger than the gradient, the descent breaks down, in general somewhere near the solution

[Pol87].

Second order methods The analysis of the Newton-steps shows more insights. Because of ill-

conditioning the Newton-direction can be noisy, even if gradient and Hessian are exact to machine

precision. This situation can still be analyzed using perturbed gradients.

Theorem 4 (Convergence of inexact Newton-iteration)Let us assume a setting (positive Hes-

sian, starting guess near minimum) where the exact Newton iterationdi = −Hess f(xi)−1grad f(xi)

converges q-quadratically to the minimumx∗. Let us instead use a noisy gradient (or solve the

linear system inexactly) such that the residualri = Hess f(xi)di + grad f(xi) is bound by

‖ri‖ ≤ ηi‖grad f(xi)‖. Then the sequences‖xi − x∗‖ and‖grad f(xi)‖ converge

� q-linearly, if ηi ≤ η for someη ∈ [0, 1).

� q-superlinearly, ifηi → 0.

� q-quadratically, ifηi = O(‖grad f(xi)‖).

(Compare with [NW99] p.136, [Kel95] p.96 or [Pol87] p.103)

71

This result can be directly used for tuning the accuracy of the linear step using particular forcing

sequencesηi as is illustrated in FigureA.8. It assures us that convergence of the inexact Newton-

iteration is at least linear with such a simple choice asηi = 0.5 and can be tweaked in the limit by

using, for example,ηi =
√
‖grad f(xi)‖ for q-superlinear orηi = ‖grad f(xi)‖ for q-quadratic

rate. The q-linear rate can be achieved even in the presence of ill-conditioned Hessians as discussed

by Theorem 6.1.3 in [Kel95].

Achievable convergence rates At this point we would like to highlight the confusing nature of

Theorem4. How can it be that a Newton-solver — which for the sake of argument is based on

a linear conjugate gradient method and usesa constant (!) second order objective function model

— converge q-quadratically, while a nonlinear solverhaving access to continuously updated, exact

objective informationshows only q-linear convergence?8 We offer two answers to this question.

First the simple answer: in our example, the q-quadratic convergence is due to bad accounting.

Even under ideal early termination conditions, CG-Newton-steps should rarely beat the the non-

linear conjugate gradient method! But this answer is slightly naı̈ve. In real implementations, the

Newton-method has two advantages. First, it saves the cost ofmanyexact objective function and

gradient evaluations (used in line-searches) at the cost of asingleHessian evaluation, which is used

to formulate the quadratic model. If objective function and gradient evaluations are expensive, this

provides time savings by aconstantfactor. The second, more hidden advantage is that the Newton-

step defines a large, modular “chunk” ofwell-understoodwork. By Theorem4 near the solution,

the Newton step reduces the problem of efficiently solving nonlinear systems to efficiently solving

linear equations! Particular linear systems may have solution methods and preconditioners that out-

perform the simple conjugate gradient method! This allows to leverage from known techniques and

potentially achieve a q-superlinear speedup as measured in real CPU cycles.

A.4.2 A Simple but More Realistic Cost Model

In SectionA.3 we stated the the algorithmic progress in the limit as a function of iteration steps,

where each step was either a line-search or a minimization in a trust-region. We noticed in Section

A.4.1 that the cost of each iterative step can be highly variable and consequentially influence how

we think about the observed convergence rate.

There are two components that contribute to this cost. The first isproblem specificand accounts

8 This question is rarely asked in the optimization literature. Theorem 3 on page 72 in Polyak discusses a similar
problem.

72

for how expensive the evaluation of the objective function, its gradient and Hessian are. The second

component ismethod specificand has to account for how frequently objective information is updated

and how it is processed. The processing is often dominated by linear algebra routines, in particular

operations on high dimensional vectors and matrices.

A.4.2.1 The Cost of Objective Function Information

If not stated otherwise we will assume that the objective function and its gradient can be evaluated

with high precision.

The objective function Clearly there is no theoretical limit on the complexity of objective func-

tions. Nevertheless if we are interested in solving problems with a large number of variables

n = 103 . . . 106, we have to restrict our attention to functions that can be evaluated efficiently. This

means in particular linear (or at most quadratic) time. One objective type that fits this description is

additive9

f(x1, . . . , xn) =
n∑

i=1

∑
j∈N (i)

fij(xi, xj). (A.11)

Such objective functions appear frequently enough as the solution of integrals over finitely sup-

ported basis functions. For now we assume that thefij(xi, xj) are fairly simple formulas and the

sets of interacting variables|N (i)| < k are not too large (sayk = 3 . . . 100). This particular struc-

ture permits us to evaluate the objective function with very little loss in machine precisionε ≈ 10−16

in linear timeO(n).

The gradient Differentiating equationA.11 gives us a formula

grad f(x1, . . . , xn) =
n∑

i=1

∑
j∈N (i)

grad fij(xi, xj) (A.12)

that allows for easy assembling of the gradient fromgrad fij(xi, xj). If the chain rule is used to

obtain the formulas forgrad fij(xi, xj) one typically observes increased algebraic complexity of

evaluatinggrad fij(xi, xj) overfij(xi, xj). For this reason computinggrad fij(xi, xj) via finite

differences might appear competitive. In some situations this could indeed lead to more efficient

evaluation than symbolic differentiation. But finite differences are hard to tune. Even under per-

fect conditions the finite difference gradient will have at most half the number of significant digits

9Multiplicative formulas can be converted into a summation by taking the logarithm, keeping monotonicity.

73

than the objective function it is computed with (ε ≈ 10−8). Most iterative algorithms will evaluate

the gradient at most once per iteration, while calling the objective function multiple times (particu-

larly for step-length control reasons). This means, in general, that the computation of the gradient

unlikely to be a performance bottleneck.

The Hessian Differentiating our model objective function one more time yields a sparse Hessian

Hess f(x1, . . . , xn) =
n∑

i=1

∑
j∈N (i)

Hess fij(xi, xj). (A.13)

It is often very desirable to store the Hessian matrix in main memory for efficient access by the linear

solver. Memory availability restricts us to storefull matrices to problems with less than103 . . . 104

variables. It can be beneficial to define matrices that have a sparser structure and entries with less

accuracy than the exact Hessian. Such matrices might be used as discussed in SectionA.3.3 for

preconditioning inexact or quasi-Newton steps.

Enforcing some simple constraints like the average ofall variables leads to full Hessians. One

way to handle these without storing huge matrices is to define “matrix-free” matrices. These could

be hybrid, where a sparse part of the Hessian is stored and the simpler full part is evaluated dynami-

cally. Particularly iterative linear solvers only need to have access to the results of the matrix-vector

multiplication. The drawback of this approach is a limitation to available matrix-free or even custom

preconditioners. (Many available preconditioners don’t work without explicit matrix access!)

Evaluating HessiansHess fij(xi, xj) via symbolic differentiation often leads to computations

that nicely fit into the cache and are limited only by FPU throughput, and not by main memory

bandwidth. Matrix entries can be computed independently. For this reason, using a compiler sup-

porting loop parallelization can have dramatic impact on the assembly times of the Hessian.10 The

relative accuracy of the Hessian appears to be less critical than the accuracy of the gradient for some

applications like parameterization (Chapter4). Hypothetically it might be beneficial to evaluate and

store the entries of the Hessian only with32-bit accuracy. In our experiments we did not observe a

significant advantage from this approach. We do not have a satisfactory explanation for this.

A.4.2.2 The Cost of Linear Algebra Subroutines

Solving large linear equation systems can be an expensive task. This is particularly true, if ill-

conditioned matrices are encountered. But for systems with large numbers of variables a mundane

10The Intel Pentium IV CPU for instance supports SIMD SSE2 instructions and hyper-threading.

74

problem moves into the center stage: insufficient cache size and low main memory bandwidth.

Observation 6 A 3 GHz Pentium IV processor has a theoretical peak performance of6 GFlop/s.

The bus bandwidth of2 GBytes/s limits just accessing large vectors likex = (x1, . . . , xn) or

grad f(x) to at most250 million numbers per second! Using vector operations the FPU can’t

be utilized with more than3 percent peak performance.

There is nothing we can do about the cost of vector-vector operations that areO(n) and can be

precisely accounted with the memory bandwidth. The cost of matrix inversion often leads a lot of

room for creativity.

It would be nice if one could partition the optimization problem into cache friendly chunks.

One step in this direction are direct linear solvers like SuperLU [DEG+99], but this only addresses

one part of the problem. At a certain problem size, the vector of variablesx ∈ Rn will not fit into

the cache and just accessing this (or any other) vector will make the cache useless. The obvious

solution is to only work on a moderately sized subset of variables that can reside in the cache and is

independent of the problem size. (On the order of100 . . . 1000 variables for current processors and

reasonably sparse problems.) This subset might be periodically selected by analyzing the descent

direction generated by the classic method and picking the variablesxj that contributed the most

to this direction. (Some form of principal component analysis?) This idea in some sense is a

generalization of coordinates descent or hierarchical methods. (But with a search direction selection

based on the gradient.) If such a method would converge, it will most likely have a higher iteration

count than the original descent method. But with the memory gap continuing to grow (and already

having only3 to 10 percent utilization in the linear algebra kernel), such an approach might well

pay off when factoring memory access in.

Finally, one could implement the linear algebra kernel on hardware that is not as bandwidth

limited, as are GPUs on graphics cards or FPGAs. Currently these chips don’t have high floating

point precision. But they would still be useful in obtaining an approximate solution. The solution

could be improved to full precision with a few Newton steps on the CPU.

A.4.3 Early Truncation and Inexact Solutions

Now that we have cost models both for obtaining objective information and the linear algebra rou-

tines, we need to discuss how to distribute the effort between the two computations. The mini-

mization algorithms discussed in this chapter are modular and alternate between obtaining objective

information and using it in linear algebra subroutines.

75

 1e-11
 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

0.0001
 0.001

 0.01
 0.1

 1

 0 100 200 300 400 500 600

NTR 1e-1
LMVM
CGFR
CGPR

CGPR+

 1e-11
 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

0.0001
 0.001

 0.01
 0.1

 1

 0 0.5 1 1.5 2

NTR 1e-1
LMVM
CGFR
CGPR

CGPR+

Figure A.7: Plotting the distancef(xi) − f(x) over the iteration numberi (left graph) shows
very fast convergence for the Newton trust-region method compared to the q-linear convergence of
all other methods. Plotting progress over CPU-time (right) the picture is more differentiated. The
Newton method still wins, but only by a moderate margin compared to LMVM, a limited memory
quasi-Newton method. (The results for CGPR and CGPR+ are identical in this case.) The test
problem was a small spherical parameterization problem with about1000 variables (a very coarse
version of the igea model in Figure4.5) and the library used was TAO [BMMS04].

During the time spent in the linear solver, the gradient and Hessian information is assumed to be

constant. This is appropriate, if the objective truly is a linear or quadratic function. But in general

functions have nonzero second and third derivatives as discussed earlier in SectionA.2. For this

reason, we need to get a new view of gradient and Hessian information periodically. The question

is, how often should the objective information be updated?

Iterative solvers rarely compute exact solutions in a finite number of steps. Instead, they will

terminate with some residual error. If the objective information used in the solver was relatively

expensive to obtain, we have a motivation to squeeze the last bit of information out of it and solve

the linear algebra computations with high precision. If, on the other hand, the objective information

is cheap to update, then it should be beneficial to do so often to keep the current model as accurate

as possible.

One interesting result is that being inexact often pays off. It can be shown that in many situations

we can afford lower order inaccuracies as long as sufficient progress is made toward the solution.

Examples of ideas where inexact solutions are efficient include: choosing backtracking over exact

line search, solving for the Newton step with only limited accuracy, or approximately enforcing

constraints while being being far from a solution.

76

 1e-11
 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

0.0001
 0.001

 0.01
 0.1

 1

 0 5 10 15 20 25 30 35

NTR 1e-6
NTR 1e-3
NTR 1e-1
NTR 5e-1

 1e-11
 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

NTR 1e-6
NTR 1e-3
NTR 1e-1
NTR 5e-1

Figure A.8: Comparing the convergence rates of the Newton trust-region methods [BMMS04]
using forcing sequencesηi = 10−6, 10−3, 0.1 and 0.5 for the accuracy in the linear step. Using
iteration count as cost model the left graph shows faster than linear convergence for steps with high
accuracy, but mostly linear convergence the low accuracy stepηi = 0.5. Plotting the convergence
rate over CPU time shows a slightly different picture: steps with very high and very low accuracy
take more time to converge than steps with intermediate accuracy. The test problem is the same as
in FigureA.7.

A.4.4 Termination Criteria

At some point, any computation has to stop and return a result. How can we monitor convergence

and make the decision that it is not worth continuing? Only in test cases do we know the solution

xmin . In most other cases, even the objective valuef(xmin) is unknown at the minimum! All we

have access to are the objective reductionδfi = f(xi+1) − f(xi), the stepdi = xi+1 − xi and

the gradient of the objectivegrad f(xi). How are these related? For smooth functions we can

refer once more to the Taylor series expansion. We see that the objective function reductionδfi =

O(‖xi − xmin‖2) is quadratic in the distance from the minimum . (Compare also the numerical

results using test functions stated in [Pol87] p.384ff.) This only restates that smooth functions

appear quadratic at the minimum. This also means that they are very shallow. For convergent

algorithms, the angle between search direction and gradient is bound from below, and hence their

length is of the same order‖di‖ = O(‖grad f(xi)‖) (assuming no scaling by step length control).

For ill-conditioned Newton-iterations [Pol87] argues for usingdi as a termination criterion that

automatically scales with the problem. We were interested in solutions with high accuracy and

reduced‖grad f(xi)‖ until the method broke down.

Observation 7 (Influence of machine precision)Assume a high machine precision ofε = 10−16

for the computation of the objective functionf . Then the objective function is virtually constant in

an area‖x − xmin‖ ≤
√
ε ≈ 10−8 around the exact minimumxmin . (These errors can be much

larger, due to cancellation of large numbers in the objective function.)

77

Even in the best case, how does this fairly large residual relate to the individual variables of the

computed vectorx = (x1, . . . , xn)? Remembering the equivalence of norms we have

1√
n
· ‖x‖2. ≤ ‖x‖∞ ≤ ‖x‖2 ≤

√
n · ‖x‖∞. (A.14)

For a large problem with106, variables the individual error is reasonably bound by0.001 · ‖x‖2 ≤

‖x‖∞ ≤ ‖x‖2.

A.4.5 Miscellaneous Remarks

Scaling and choice of variables The Newton method is invariant toaffinetransformations of vari-

ables, but it is not invariant toarbitrary variable changes. The Newton method will deal very well

with long andstraightvalleys in the objective function landscape, as long as good preconditioners

are available that compress these valleys virtually into nice round bowls. For the lack of such pre-

conditioners, first order methods have great difficulty with any kind of elongated valleys. But the

Newton step has its limits, as it is only linear, it can’t do much in the presence of long andcurved

valleys. For this reason, it is of great practical importance to select variables in which the valleys in

the objective function landscape appear as “straight” as possible.

Singular Hessian and the Newton Step One often faces objective functions that are invariant to

certain variable transformations. Spherical parameterization energies for instance remain constant

under rotations (Chapter4). A consequence of this invariance is that Hessians are singular every-

where. Most convergence theory breaks down in the presence of non-positive definite Hessians

([Pol87] Chapter 6.1). In particular, a convergence of‖xi − x∗‖ might not happen or be very slow.

Indeed, in our spherical parameterization example the data might rotate on the sphere during min-

imization without having influence on the energy. One might be tempted to add constraints — for

instance, in the form of Lagrange multipliers — and force the Hessian to be positive definite. But

is this necessary or even desirable? The answer is not clear. Setting a-priori constraints complicates

the computation of gradient and Hessian somewhat. It might also not make much of a difference

to the unconstrained case if one is only interested in the convergence of‖grad f(xi)‖ and doesn’t

care about which particular finalx is chosen by the minimizer.

Singular Hessians encountered away from the minimum can be a serious problem. The same

is true for Hessians with negative curvature directions. In the first case, the Newton-step can lead

to a very long (or even infinite length) step into the zero-curvature direction. In the second case,

78

the step will point locally upward when projected to the negative curvature direction (compare with

the example in FigureA.4). This means non-positive curvature directions often cause a reduction

of the step-length and may completely ruin the Newton-step. For this reason, methods have been

developed that analyze Hessians and compute similar, but positive definite matrices for use by the

Newton-step [NW99]. But this is often fairly expensive and the problem often better dealt with

conjugate gradient based (trust-region) methods [NW99, CGT00].

Discontinuities at a distance from the minimum In our experience discontinuities are unlikely

to cause any of the first or even second order methods to fail, at least if they don’t pass through the

minimum. But discontinuities that are attempted to be “stepped over” may trigger a reduction of

step length or trust-region size by the control algorithm. This may force very small step lengths and

significantly increase the number of iterations.

Poles Infeasible regions are often delimited by poles. Because one can assign the function value

+∞ to these regions one can think of poles as discontinuities of infinite height — with similar

consequences for the solvers. Other poles, likef(x) = x−2 at x = 0, do not form boundaries of

infeasible regions. They might partition the domainΩ into multiple regions. But in our opinion

their semantics can be troublesome, especially if one is interested in a local minimum that isnear

the starting point: the possibility of crossing a pole is real.

The Taylor series expansion has a convergence radius that does not extend over poles. For

this reason one might be forced to use very short step lengths, especially near poles! (This was

very noticeable in some of our experiments.) When designing objective functions it seems for

solution efficiency reasons very desirable to move poles as far away as possible from solution and

initialization.

Self-concordance Very little theory exists on the minimization progress for non-quadratic func-

tions far away from the solution. But for some special convex functionsf : R → R with the

self-concordanceproperty

‖f ′′′(x)‖ ≤ 2f ′′(x)3/2 (A.15)

results on fast convergence are known. The negative logarithm functionf(x) = − log(x) is self-

concordant and for this reason very popular for defining pole barriers. This comes handy when

dealing with inequality constraints and used withinterior point methods [BV04] (Sections 9.6 and

11.5).

79

Methods with memory and restarts The conjugate gradient, heavy ball, quasi-Newton methods

and some trust-region minimizers keep a memory of objective function data encountered several

iterations ago. This historic data can be misleading, particularly when collected far away from the

minimum. For this reason, implementations often provide a procedure to clear the data and restart

the minimization with the current iteratexi. Restarts can be done periodically, but they are expen-

sive. A restarted minimizer often begins with the steepest descent and slowly learns more about the

objective function. The improved convergence rate will often be achieved in the limit, but only if

no further restarts happen. Sometimes users have the desire to interfere with the minimization, for

instance to perform periodic projections to enforce certain additional conditions. Such interference

by the user invalidates the historic data and might require a restart of the solver.

A.4.5.1 Libraries and Further Reading

Nonlinear problems cannot be solved efficiently without a basic understanding of the available nu-

merical methods. Some first order methods and even the Newton-step are fairly simple to imple-

ment. Fine tuning these methods requires a lot of experience. It also often happens, that particular

problems respond in somewhat unpredictable ways to different solution methods. For this reason

being able to experiment with competing algorithms is very valuable. For this reason we argue, that

one should at least try some of the existing optimization libraries before attempting to implement

competing methods.

Software When searching for libraries, a good starting point is the “Decision Tree for Optimiza-

tion Software” [MS05]. The freely available Toolkit for Advanced Optimization (TAO) offers im-

plementations of conjugate gradient, quasi-Newton, Newton and trust-region solvers [BMMS04].

TAO makes heavy use of PETSc [BEG+97], which provides parallel implementations of linear

and nonlinear solvers. A commercially available solver for convex problems is MOSEK.11 Linear

solvers and preconditioners are for instance provided by the free libraries SuperLU (an efficient

direct solver [DEG+99]) and hypre (a collection of high performance preconditioners [FBC+]).

Many numerical libraries depend on linear algebra kernels, such as the self-tuning ATLAS [Atl] or

the proprietary Math Kernel Library (MKL) for Intel processors [Int], for the efficient computation

of basic vector or matrix operations.

11http://www.mosek.com

80

Literature The following literature has been used for compiling this survey.

� First order methods — [Pol87, NW99]

� Newton methods — [Pol87, Kel95, NW99, CGT00]

� Trust-region methods — [NW99, CGT00]

� Constrained optimization — [Pol87, CGT00, BV04]

� Convex problems — [BV04, Pol87]

� Stochastic methods — [Pol87, Spa03]

[Pol87] provides unique theoretical insights, especially into first order and simple Newton methods.

This book is slightly outdated (it was written in 1987) as, for instance, trust-region methods are not

mentioned. The treatment is unique in its clarity and depth. [NW99] provides a good modern intro-

duction to optimization. It has a brief discussion of first order methods but focuses on trust-region

and quasi-Newton methods. [CGT00] is an exhaustive and recent survey of trust-region methods. It

discusses many adaptions of the basic trust-region algorithmA.5 to problems of practical interest,

such as the treatment of constrained optimization and heuristics for difficult problems, like allowing

non-monotonous decline of the objective function. [BV04] is specialized on convex problems. The

treatment is somewhat theoretical, as its focus is on the formulation of dual problems, feasibility

and other specialized topics are presented. Many examples are given to illustrate new concepts.

Some computational methods are discussed, but not in particular detail. [Kel95] motivates in great

detail linear solvers like conjugate gradient and GMRES. Based on these iterative methods exten-

sions for nonlinear equations like the Newton and quasi-Newton (Broyden’s) method are developed.

The author carefully examines the interplay between linear and nonlinear methods, particular early

truncation, and gives many numerical examples.

A.5 Conclusion

Solving smooth nonlinear optimization problems or nonlinear equations with a starting guess near

the solution can be considered solved from a theoretic point of view. Practically, there is still a lot

of room for tweaking small trade-offs that can add up to large constants. We argue that this could be

done automatic examination of some test problems with an approach similar to that of the ATLAS

library [Atl].

For starting guess ofx that is far away from the solution, we know conditions that guarantee

(slow) progress toward a solution for optimization problems. We have argued that solving nonlinear

equations in this setting is a substantially harder problem.

81

For a bad starting guess, typicallymuch more timeis needed for advancing the sequencexi

closer to the region of Newton-convergence than is needed to solve the final Newton-iterations.

Trust-region minimization is the most promising method in these situations. In particular if the

standard quadratic Taylor-series model can be replaced by a model capturing the qualities of the

particular objective function class in a better way.

The formulation of constraints poses special problems and is actively researched. Best under-

stood are linear equality and convex inequality constraints, especially for convex problems.

Problems with discontinuous gradient are difficult, because we cannot rely on the standard

Taylor series model. For convex problems,subgradientmethods appear to be promising [Pol87,

CGT00].

The theory of stochastic function optimization is surprisingly advanced [Spa03, Pol87]. Effi-

cient practical algorithms are focus of current research [Spa03].

82

Bibliography

[AGP+04] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfister, Marc Stamminger, and

Matthias Zwicker, editors. Point-Based Computer Graphics. Course Notes. ACM SIG-

GRAPH, 2004.

[AKS] Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder. Multilevel solvers for unstruc-

tured surface meshes. accepted, SIAM J. Sci. Comput.

[AMD02] Pierre Alliez, Mark Meyer, and Mathieu Desbrun. Interactive geometry remeshing. In

SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and in-

teractive techniques, pages 347–354, New York, NY, USA, 2002. ACM Press.

[Atl] Atlas. Automatically tuned linear algebra software. http://math-atlas.sourceforge.net.

[BA83] Peter J. Burt and Edward H. Adelson.The Laplacian Pyramid as a compact image code.

IEEE Transactions on Communications, 31:532–540, 1983.

[BBE+04] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,

Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc users

manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

[BBG+01] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Kne-

pley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2001.

http://www.mcs.anl.gov/petsc.

[BEG+97] Satish Balay, Victor Eijkhout, William D. Gropp, Lois Curfman McInnes, and Barry F.

Smith. Efficient management of parallelism in object oriented numerical software libraries.

In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,Modern Software Tools in Scientific

Computing, pages 163–202. Birkhäuser Press, 1997.

[BF01] Samuel R. Buss and Jay P. Fillmore. Spherical averages and applications to spherical

splines and interpolation.ACM Trans. Graph., 20(2):95–126, 2001.

http://graphics.stanford.edu/~mapauly/publications.html
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=161490

83

[BK03] Mario Botsch and Leif Kobbelt. Multiresolution surface representation based on displace-

ment volumes. InSGP ’03: Proceedings of the Eurographics/ACM SIGGRAPH, pages 483–

491. Eurographics Association, 2003.

[BMMS04] Steven J. Benson, Lois Curfman McInnes, Jorge Moré, and Jason Sarich. TAO user

manual (revision 1.7). Technical Report ANL/MCS-TM-242, Mathematics and Computer

Science Division, Argonne National Laboratory, 2004. http://www.mcs.anl.gov/tao.

[BMN01] Richard Byrd, Marcelo Marazzi, and Jorge Nocedal. On the convergence of newton

iterations to non-stationary points. Technical report, 2001.

[BV04] Steven Boyd and Lieven Vandenberghe.Convex Optimization. Cambridge University

Press, 2004.

[CGT00] Andrew R. Conn, Nicholas I. M. Gould, and Phillipe L. Toint.Trust-Region Methods.

SIAM/MPS, 2000.

[CRS98] Paolo Cignoni, C. Rocchini, and Roberto Scopigno.Metro: Measuring Error on Simpli-

fied Surfaces. Computer Graphics Forum, 17(2):167–174, 1998.

[DEG+99] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph

W. H. Liu. A supernodal approach to sparse partial pivoting.SIAM J. Matrix Analysis and

Applications, 20(3):720–755, 1999.

[DFS05] Neil A. Dodgeson, Michael S. Floater, and Malcom A. Sabin, editors.Advances in Mul-

tiresolution for Geometric Modelling. ACM Siggraph, 2005.

[DLG90] N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for surface interpo-

lation with tension control.ACM Trans. Graph., 9(2):160–169, 1990.

[DRS04] Ingrid Daubechies, Olof Runborg, and Wim Sweldens.Normal Multiresolution Approx-

imation of Curves. Constructive Approximation, 2004.

[FBC+] Rob Falgout, Allison Baker, Edmond Chow, Van Emden Henson, Ellen Hill, Jim Jones,

Tzanio Kolev, Barry Lee, Jeff Painter, Charles Tong, Panayot Vassilevski, and Ulrike Meier

Yang. hypre. http://www.llnl.gov/CASC/hypre/software.html.

[FH05] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A.

Dodgson, M. S. Floater, and M. A. Sabin, editors,Advances in Multiresolution for Geomet-

http://vcg.isti.cnr.it/publications/papers/metro.pdf
http://vcg.isti.cnr.it/publications/papers/metro.pdf
http://cm.bell-labs.com/who/wim/papers/normalcurve/
http://cm.bell-labs.com/who/wim/papers/normalcurve/

84

ric Modelling, Mathematics and Visualization, pages 157–186. Springer, Berlin, Heidelberg,

2005.

[Flo97] M. S. Floater. Parameterization and smooth approximation of surface triangulations.Com-

puter Aided Geometric Design, 14:231–250, 1997.

[Flo03] Michael S. Floater. Mean value coordinates.Comput. Aided Geom. Des., 20(1):19–27,

2003.

[FMS03] Ilja Friedel, Patrick Mullen, and Peter Schröder. Data-dependent fairing of subdivision

surfaces. InSM ’03: Proceedings of the eighth ACM symposium on Solid modeling and

applications, pages 185–195, New York, NY, USA, 2003. ACM Press.

[FSK04] Ilja Friedel, Peter Schröder, and Andrei Khodakovsky. Variational normal meshes.ACM

Trans. Graph., 23(4):1061–1073, 2004.

[GGH02] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe.Geometry Images. ACM Transac-

tions on Graphics, 21(3):355–361, 2002.

[GGS03] Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical parameteri-

zation for 3d meshes.ACM Transactions on Graphics, 22(3):358–363, July 2003.

[Gri03] Eitan Grinspun.The basis refinement method. PhD thesis, Caltech, Pasadena, California,

2003.

[GVSS00] Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder.Normal Meshes. Pro-

ceedings of SIGGRAPH 2000, pages 95–102, 2000.

[GWC+04] Xianfeng Gu, Yalin Wang, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau.

Genus zero surface conformal mapping and its application to brain surface mapping.IEEE

Transaction on Medical Imaging, 23(7), 2004.

[HAT+00] Steven Haker, Sigurd Angenent, Allen Tannenbaum, Ron Kikinis, Guillermo Sapiro,

and Michael Halle. Conformal surface parameterization for texture mapping.IEEE Transac-

tions on Visualization and Computer Graphics, 6(2):181–189, 2000.

[HBS+99] Monica K. Hurdal, Philip L. Bowers, Ken Stephenson, De Witt L. Sumners, Kelly

Rehm, Kirt Schaper, and David A. Rottenberg. Quasi-conformally flat mapping the human

http://research.microsoft.com/~hoppe/gim.pdf
http://multires.caltech.edu/pubs/normalmesh.pdf

85

cerebellum. InMICCAI ’99: Proceedings of the Second International Conference on Medi-

cal Image Computing and Computer-Assisted Intervention, pages 279–286. Springer-Verlag,

1999.

[HG00] K. Hormann and G. Greiner. MIPS: An efficient global parametrization method. In P.-J.

Laurent, P. Sablonnière, and L. L. Schumaker, editors,Curve and Surface Design: Saint-Malo

1999, Innovations in Applied Mathematics, pages 153–162. Vanderbilt University Press,

Nashville, 2000.

[Hop96] Hugues Hoppe.Progressive Meshes. Proceedings of SIGGRAPH 96, pages 99–108, 1996.

[Int] Intel. Math kernel library. http://www.intel.com/software/products/mkl/.

[JBL03] Maarten Jansen, Richard Baraniuk, and Sridhar Lavu.Multiscale Approximation of Piece-

wise Smooth Two-Dimensional Functions using Normal Triangulated Meshes. Submitted for

publication., 2003.

[KB04] Leif Kobbelt and Mario Botsch.A Survey of Point-Based Techniques in Computer Graph-

ics. 2004.

[Kel95] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.

[KG02] Andrei Khodakovsky and Igor Guskov.Normal Mesh Compression. In Guido Brunnett,

Bernd Hamann, and Heinrich M̈uller, editors,Geometric Modeling for Scientific Visualiza-

tion. Springer Verlag, 2002.

[KGH04] D. Kirsanov, S. Gortler, and H. Hoppe. Fast exact and approximate geodesic paths on

meshes. Technical Report TR 10-04, Harvard University Computer Science, 2004.

[KLS03] Andrei Khodakovsky, Nathan Litke, and Peter Schröder.Globally Smooth Parameteriza-

tions With Low Distortion. ACM Transactions on Graphics, 22(3):350–357, 2003.

[LDW97] Michael Lounsbery, Tony D. DeRose, and Joe Warren.Multiresolution Analysis for

Surfaces of Arbitrary Topological Type. ACM Transactions on Graphics, 16(1):34–73, 1997.

[LKK03] Kyu-Yeul Lee, Seong-Chan Kang, and Tae-Wan Kim.Remeshing into normal meshes

with boundaries using subdivision. Computers in Industry, 50(3):303–317, 2003.

[LMH00] Aaron Lee, Henry Moreton, and Hugues Hoppe.Displaced Subdivision Surfaces. Pro-

ceedings of ACM SIGGRAPH 2000, pages 85–94, 2000.

http://research.microsoft.com/~hoppe/pm.pdf
http://www.cs.kuleuven.ac.be/~maarten/publications/normaloffsets.pdf
http://www.cs.kuleuven.ac.be/~maarten/publications/normaloffsets.pdf
http://www-i8.informatik.rwth-aachen.de/publications/publications_2004.html
http://www-i8.informatik.rwth-aachen.de/publications/publications_2004.html
http://multires.caltech.edu/pubs/kompress.pdf
http://multires.caltech.edu/pubs/global.pdf
http://multires.caltech.edu/pubs/global.pdf
http://portal.acm.org/citation.cfm?doid=237748.237750
http://portal.acm.org/citation.cfm?doid=237748.237750
http://asdal.snu.ac.kr/korean/researches/papers/2003_04_KSC_computers_in_industry_remeshing.pdf
http://asdal.snu.ac.kr/korean/researches/papers/2003_04_KSC_computers_in_industry_remeshing.pdf
http://research.microsoft.com/~hoppe/dss.pdf

86

[LSS+98] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin.

MAPS: Multiresolution Adaptive Parameterization of Surfaces. Proceedings of SIGGRAPH

98, pages 95–104, 1998.

[MBLD02] Mark Meyer, Alan Barr, Haeyoung Lee, and Mathieu Desbrun. Generalized barycentric

coordinates on irregular polygons.J. Graph. Tools, 7(1):13–22, 2002.

[McC02] John McCleary. Trigonometries.American Mathematical Monthly, 109:623–638, 2002.

[Mey04] Mark Meyer.Discrete differential operators for computer graphics. PhD thesis, Caltech,

Pasadena, California, 2004.

[MS05] H.D. Mittelmann and P. Spellucci. Decision tree for optimization software. 2005.

http://plato.asu.edu/guide.html.

[NW99] Jorge Nocedal and Stephen J. Wright.Numerical Optimization. Springer series in opera-

tions research, 1999.

[PH03] Emil Praun and Hugues Hoppe. Spherical parametrization and remeshing.ACM Trans.

Graph., 22(3):340–349, 2003.

[Pol87] Boris Theodorovich Polyak.Introduction to Optimization. Optimization Software, Inc.,

1987.

[Pow73] M.J.D. Powell. On search directions for minimization algorithms.Mathematical Pro-

gramming, 4:193–201, 1973.

[PP93] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces.Experimental

Mathematics, 2,1:15–36, 1993.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.Nu-

merical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New

York, NY, USA, 1992.

[SAPH] J. Schreiner, A. Asirvatham, E. Praun, and H.. Hoppe. Inter-surface mapping. accepted,

SIGGRAPH 2004.

[SGD03] A. Sheffer, C. Gotsman, and N. Dyn. Robust spherical parameterization of triangular

meshes. InIn Proceedings of 4th Israel-Korea Binational Workshop on Computer Graphics

and Geometric Modeling, pages 94–99, 2003.

http://multires.caltech.edu/pubs/maps.pdf

87

[Spa03] James C. Spall.Introduction to Stochastic Search and Optimization. Wiley-Interscience,

2003.

[SS95] Peter Schr̈oder and Wim Sweldens. Spherical wavelets: Efficiently representing functions

on the sphere.Computer Graphics Proceedings (SIGGRAPH 95), pages 161–172, 1995.

[SS96] Peter Schr̈oder and Wim Sweldens, editors.Wavelets in Computer Graphics. Course Notes.

ACM SIGGRAPH, 1996.

[SS01] Peter Schr̈oder and Wim Sweldens, editors.Digital Geometry Processing. Course Notes.

ACM SIGGRAPH, 2001.

[SSGH01] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture map-

ping progressive meshes. InSIGGRAPH ’01: Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 409–416. ACM Press, 2001.

[SV89] John P. Snyder and Philip M. Voxland.An Album of Map Projections. U.S. Geological

Survey, 1989.

[Swe96] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.

Appl. Comput. Harmon. Anal., 3(2):186–200, 1996.

[Van01] Robert J. Vanderbei.Linear Programming. Springer, 2001.

[ZSS96] Denis Zorin, Peter Schröder, and Wim Sweldens.Interpolating Subdivision for Meshes

with Arbitrary Topology. Proceedings of SIGGRAPH 96, pages 189–192, 1996.

[ZSS97] Denis Zorin, Peter Schröder, and Wim Sweldens.Interactive Multiresolution Mesh Edit-

ing. Proceedings of SIGGRAPH 97, pages 259–268, 1997.

http://multires.caltech.edu/teaching/courses/waveletcourse/
http://multires.caltech.edu/pubs/DGPCourse
http://multires.caltech.edu/pubs/interpolation.pdf
http://multires.caltech.edu/pubs/interpolation.pdf
http://multires.caltech.edu/pubs/meshed.pdf
http://multires.caltech.edu/pubs/meshed.pdf

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Overview

	Interpolating Normal Meshes
	Motivation
	Interpolating Normal Curves
	Convergence Analysis of Daubechies, Runborg and Sweldens

	Interpolating Normal Meshes
	The Previous Normal Remeshing Algorithm
	Our Simplified Algorithm

	Discussion
	Efficiency of Computing the INM Transformation
	Non-Normal Coefficients
	Treatment of Boundaries
	Extension to Higher Dimension

	Variational Normal Meshes
	Motivation
	Parametric Correspondence
	Distances and Scalar Products
	Variational Normal Curves
	Variational Normal Meshes
	Implementation and Results
	Future Directions
	A Lifting Experiment

	Unconstrained Spherical Parameterization
	Related Work
	Two Approaches to Parameterization
	Variational Sphere Mappings
	Classical Parameterization Energies
	From Flat to Spherical Energies
	Discussion

	Implementation and Results
	Conclusion and Future Work

	Conclusion
	Summary
	Future Work

	Notes on Optimization
	The Optimization Problem
	An Attempt to classify Optimization Problems
	Methods for Solving Optimization Problems
	First Order Methods
	Ensuring Convergence
	Second Order Methods
	Nonlinear Equations

	Practical Considerations
	The Presence of Numerical Noise
	A Simple but More Realistic Cost Model
	The Cost of Objective Function Information
	The Cost of Linear Algebra Subroutines

	Early Truncation and Inexact Solutions
	Termination Criteria
	Miscellaneous Remarks
	Libraries and Further Reading

	Conclusion

	Bibliography

