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Abstract

This thesis introduces a novel geometry processing pipeline based on unconstrained spherical pa-
rameterization and normal remeshing. We claim three main contributions:

First we show how to increase the stability of Normal Mesh construction, while speeding it up
by decomposing the process into two stages: parameterization and remeshing. We show that the
remeshing step can be seen as resampling under a small perturbation of the given parameterization.
Based on this observation we describe a novel algorithm for efficient and stable (interpolating)
normal mesh construction via parameterization perturbation.

Our second contribution is the introduction of Variational Normal Meshes. We describe a novel
algorithm for encoding these meshes, and use our implementation to argue that variational normal
meshes have a higher approximation quality than interpolating normal meshes, as expected. In
particular we demonstrate that interpolating normal meshes have @bpetcent higher Hausdorff
approximation error for the same number of vertices than our novel variational normal meshes.
We also show that variational normal meshes have less aliasing artifacts than interpolative normal
meshes.

The third contribution is on creating parameterizations for unstructured genus zero meshes.
Previous approaches could only avoid collapses by introducing artificial constraints or continuous
reprojections, which are avoided by our method. The key idea is to defiper boundenergies
that are still good approximations. We achieve this by dividing classical planar triangle energies by
the minimum distance to the sphere center. We prove that these simple modifaction provides the
desired upper bounds and are good approximations in the finite element sense.

We have implemented all algorithms and provide example results and statistical data supporting

our theoretical observations.
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Chapter 1

Introduction

This thesis is about representing and processing geometric surface data in the form of Riemannian
manifolds. In well-chosen coordinate systems these surfaces can be described as scalar functions.
Having methods for selecting these local coordinate systems in a generic way allows the reduction
of vertex coordinate data frod vectors to scalars. We develop novel algorithms for transforming
surfaces hierarchically intinterpolatingand variational normal meshe8ecause these algorithms
require precomputed parameterizations as input we present a novel approach for computing spher-
ical parameterizations leading to a simple modification of planar energies. This allows a stable
minimization without the need for artificial constraints.



1.1 Motivation

Geometry is an integral part of our sensory world. The shape of physical objects can be seen
and experienced every day. Because of this close interaction, most people develop an intuitive
understanding of geometric relationships. For this reason, geometry can be used as an efficient
tool for visualizing physical data and for communicating abstract concepts. The expressive power
of formerly static drawings of geometry has been greatly magnified by the increased processing
speed of computers, and the development of interactive display techniques. It has been an ongoing
project in computer graphics to make the interaction with geometric data as intuitive as dealing with
physical objects.

The geometry processing pipeling a paradigm describing how to handle a large class of ge-
ometric data. This paradigm has been adapted from the signal processing literature to address
manifold surfaces, having inherent curvature and nontrivial topology. The pipeline concept intro-
duces modularity, re-usability and simplicity into the transformation of geometry. This is achieved
by decomposing the transformation into simpler steps. These steps cover all stages from creation
and encoding, denoising, editing, compression, transmission and the final display.

Geometric data, which could be location, shape and spatial relationships of objects, is rarely
observed directly. Indeed most ways of obtaining geometry by physical sensors involves sensing
energy transports, as when structured light, radar or ultrasonic sound are used. Specialized drivers
using computational models of the particular sensors produce raw geometric data. We call this
dataraw, as in most cases it will have many undesirable properties. Physical data is usually noisy
— not just in the positions of surface samples, but also in the topology and connectivity. Data
might be missing, which leads to holes in the surface. Or samples might not have been connected
properly with their neighbors, resulting in unwanted flips or handles. The application or algorithm,
for which the data was originally acquired, might have strong assumptions on its input. Making

such assumptions is useful, as it usually reduces a processing method’s internal complexity. But to

Figure 1.1:Interpolating normal meshes are standard (semi-)regular mesh hierarchies, except that
detail coefficients can be expressed as scalars using the normal directions of the coarser level mesh.



Figure 1.2: A 3d surface (left) is sampled by a nhumber of points (center left). Connectivity in-
formation is added to the point cloud to form an irregularly triangulated mesh (center right). The
connectivity between vertices can be simplified by resampling the geometry into a multi-resolution
mesh with (semi-)regular connectivity (right).

satisfy these assumptions, holes might have to be filled, handles removed and the overall shape of
the surface smoothened. Chaining multiple such steps forms a geometry processing pipeline.

Different methods in this pipeline will work best with particular surface representations. One
of the simplest ways to represent surfaces uses an unstructured collection of simple primitives, like
point clouds or polygon soups (Figute?). This means few assumptions are made on the coherence
of the data, which is often necessary near the beginning of the geometry processing pipeline. But
having no assumption nor structure to rely on, complicates many algorithms by increasing their
internal complexity to handle special cases. There has been considerable effort to add minimal
structure to point clouds, for instance, by organizing them using spatial trees. This permits extending
a range of complex geometry processing methods to point based surface represe w&tore|
KBO04].

We will make slightly stronger assumptions about the structure of our data. In particular we
decided to work with triangle meshes having either irregular or (semi-)regular connectivity. For
efficiency reasons we have a strong preference toward (semi-)regular meshes. These meshes are
the result of repeated application of uniform subdivision steps, as illustrated in FipQraasd1.3.

The regular structure created inside of each base patch allows for dense storage and fast evaluation
using simple2d arrays. This regularity also opens the door for application of classic signal pro-
cessing methods, as wavelet analysis, filtering and compression, to manifold surfaces. For a deeper
understanding on multi-resolution techniques in geometric modeling, we refer the reader to to the
recent surveylDFS03. The interpolating and variational normal meshes presented in this thesis are
instances of multi-resolution transformations. Both algorithms use (semi-)regular meshes for input
and output. Finally, because (semi-)regular meshes are so useful, we developed for the frequent

class of genus zero meshes an automatic parameterization and remeshing method.



Figure 1.3: Subdivision is a process that creates a multi-resolution hierarchy of (semi-)regular
meshes. Each subdivision step replaces all coarser level trianglestwsitialler triangles on the
refined level.

1.2 Overview

One of the fundamental questions of surface representation concerns the relation between approxi-
mation quality and size of the representation. Even though a full theoretical characterization is not
yet available, the practical importance of efficient representations for digital geometry processing is
so great that a broad variety of algorithms have been put forward. Of particular interest in the con-
text of display, editing and compression applicationsraudti-resolutionrepresentations based on
irregular Hop9§ and (semi-) regular mesheg$S97 GGHOZ. The latter have many connections

with classical functional representations such as waveg29§ and Laplacian pyramid€BA83],

which can be leveraged for digital geometry processing applicat®®6].

Normal Meshes Of the (semi-)regular surface representatiormmal meshefGVSS0Q—and
their non-hierarchical relativedijsplaced subdivision surfacsMHOO]—are of particular interest.
Normal meshes are a hierarchical representation in which almost all coefficients are scalar rather
than 3-vector valued. That is, levék given as an offset from the coarser lelcell, with each offset
being along the local normal direction on the surface. This immediate reduction in size by a factor
of three can be exploite@,g, in compression representation of displacement mialg#400].
Unfortunately only few theoretical results, which could guide the construction of normal meshes,
are known so far. For example, iDRS04 it was shown that normal curve parameterizations pos-
sess (essentially) the same smoothness as the underlying coarse to fine predictor. The bivariate
functionalsetting was studied inIBLOJ for purposes of compression.
One expects that the best results in terms of minimizing approximation error can be achieved
without any constraints on the hierarchical displacement vectors. What is the penalty in terms of
error if one insists on normal displacements only? What is the trade-off between allowing some

non-normal coefficients and associated reduction in error? In this thesis we explore these questions
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and will provide an algorithm that provides explicit control over this trade-off.

To gain the advantages of normal mesh representations, arbitrary input geometry must be re-
meshed so that almost all offsets are in the normal direction only. Guskov and co-w@k&S0Q
formulated this as a resampling problem using a recursive triangle quadrisection procedure based
on smooth interpolating subdivisio@$596. All vertices produced by this process are samples of
the original surface. Since no low pass filtering is performed, this leads to aliasing artifacts (see
Figure3.2). Constraining all vertices to lie on the original mesh also increases the approximation
error compared to methods, which allow a more unconstrained placement of vertices. In the method
of Guskovet al. the parameterization needed for resampling was computed on the fly, a process

which is rather expensive and numerically very delicate, in particular for large meshes.

Unconstrained Spherical Parameterization We introduce a novel approach to the construction

of spherical parameterizations based on energy minimization. The energies are derigedena
mannerfrom classic formulations well known in the planar parameterization settirgg ¢onfor-

mal, Tutte, area, stretch energiesc), based on the following principles: the energy should (1)

be a measure of spherical triangles; (2) treat energies independently of the triangle location on
the sphere; and (3) converge to the continuous eniayy aboveunder refinement. Based on
these considerations we give a very simple non-linear modification of standard formulas that ful-
fills all these requirements. The method avoids the often observed collapse of flat energies when
they are transferred to the spherical setting without additional constraigtdfiking three or more
points). Oumunconstrainegnergy minimization problem is amenable to the use of standard solvers.
Consequently the implementation effort is minimal while still achieving excellent robustness and

performance through the use of widely available numerical minimization software.

Thesis Overview Our goal is the construction of low error approximations of a given surface with
a (semi-)regular mesh while minimizing the number of non-normal coeffici&8K04. We con-
trol this trade-off by controlling theerturbation of an initial, globally smooth parameterization
during the normal mesh construction process (Chapter his is in contrast to previous methods
which computed a parameterization on the fly. We will demonstrate, that separating the global pa-
rameterization computation from the remeshing phase, leads to a numerically more stable, efficient
and simple resampling algorithm.

The perturbation of the parameterization creates an explicit association between the original and

approximating surface, which is driven by theometry Consequently, it becomes meaningful to
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ask for the best approximation in timeean squared distancense (Chapted). A simple varia-

tional problem, to be solved at each level of the hierarchy, results in an approximation which is least
squares optimdbr all levelssubject to a constraint on the magnitude of the parameterization per-
turbation . We achieve an overall reduction in ermod better control of aliasing—the variational
normal mesh ispproximatingrather than interpolating (see Figu8&). The trade-off between nor-
mality and least squares optimality can be controlled explicitly, and we show in S&cgitihat the
penalty—increase in approximation error—is small compared to the gain—reductiol{ventor
coefficients to scalars.

The construction of normal meshes requires for distortion control reasons the approximate mea-
surement of distances. We show that this can be done very efficiently, if a globally smooth param-
eterization is available. In Chaptémwe discuss the computation of smooth parameterizations for
objects that are topological spheres (have genus zero). We show how to derive simple, approximate
formulas for spherical energies that angper bound®f the exact spherical integrals. We prove
that our approximation is good in the finite element sense, as its approximation qualiti1s if
expressed in terms of the min-containment circle diamBteBeing upper bounds, we show that
the minimization is well-defined and does not collapsen in the absence of any constrainthis
is important, as constraints often cause unnecessary, additional distortion. Finally, we examine the
approximation properties of our new formulas.

The methods and applications presented in this thesis make heavy use of ideas from the numer-
ical optimization literature. We include Appendixas a reference on available solution methods

and describe some of our practical experiences with nonlinear optimization.



Chapter 2

Interpolating Normal Meshes

Hierarchical representations of surfaces have many advantages for digital geometry processing ap-
plications.Normal mesheare particularly attractive since their level to level displacements are in

the local normal direction only. Consequently, they only require scalar coefficients to specify. We
will review the construction of interpolating normal curves and meshes. We show how to decom-
pose the construction into a parameterization and a perturbation/resampling phase. We explicitly
construct the reparameterization used for perturbing the input mesh. Having a fast way to evaluate

parametric correspondences will allow us later to construct variational normal meshes efficiently.
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In this chapter we discuss and develop hierarchical transformations defining canonical parameter-
izations based on coarser level data. Because of the “normal” dependence on coarser level data
these representations give up linearity and can't be written anymore as in equdtioe will

see nevertheless that these representations are efficient to compute and well-behaved (in particular
with respect to quantization). This makes this representation attractive for instance in compression

applications KG02].

2.1 Motivation

For many applications, a continuous sigagl) can be reasonably approximated with a linear com-
bination of basis functions. Of particular interest is the progressive case, where a sequence of pro-

gressively more detailed functiorf$ is constructed, approximatingincreasingly betteff! — s.

fi) = Z chh(t) (2.1)

It is natural to ask for transformations from the basis functi@jis into another hierarchical ba-
sis, for which the coeﬁicientséé) are decorrelated (or sparse) for a large class of “interesting”

data (Figure2.1). Answering such questions is one topic of wavelet theory. Our primary focus is

/

Figure 2.1: Linear interpolating function refinement is one of the simplest basis transformations to
obtain a hierarchical and sparse representation of the data.

on extending very simple ideas from the well-understood setting of one-dimensional functions to
manifolds in higher dimension (curves in the plane and surfac8d)inA curvec in the plane is

often given in its parametric form:(t) = (x(t),y(t)). Here, each of the functions(t) andy(t)

are one-dimensional signals, and standard wavelet theory can be applied on each signal separately.
As a consequence of this approach, two sequences of coefficierisare obtained — which are

usually interpreted as a single sequenceesftors(c,, ¢,)!. This sequence of vectors encodes not

only the geometric data, but also the chosen parameterizatidhe curves:(t) andc(p(t)) define

the same set of points in the plane, as long as the parameterigati®— R is a bijection. We

will see that even implicitly encoding the given parameterization is costly.
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2.2 Interpolating Normal Curves

It is instructive to first analyze the simple setting of curves in the plane to gain insights applicable
to the more complex setting of surfaces3oth Guskov and coworkedVSSO0(Q observed that one
can construct curves in the plane by specifying a hierarchy of mostly scalar offsets for the mesh
vertices. In the construction of normal curves, one starts from a polglingaat interpolates the
reference curvék. Each segment o§° is divided into two smaller segments by inserting a ppint

using,e.g, the midpoint rule. The point insertion serves as a prediction of the missing data. A detail

Figure 2.2: Three levels of interpolating normal curves construction.

coefficient expressing the difference between prediction and given data is constructed by shooting a
ray fromp in the normal directiom atp (see Figure2.2). The ray intersects the reference cuive
one or more times. To avoid folds in the reconstruction only intersections paramethiediigen
the endpoints of the base segment are considered. One of the intersedsopisked by some
heuristic—the algorithm works for a range of choices—and the scalar normal bffsebmputed
usingr =p+t-n.

Sometimes even the best intersectionorresponds to a parametric location 8n which is
“far” from the parametric midpoint. For example, to avoid too high a distortion, one may want to
reject locations which are very close to one of the endpointdbfAs with standard tensor product
refinement, the detail is encoded as a vectorial offset (“non-normal coefficient”) from the prediction
p to the parametric midpoint ak.! This decision process is typically controlled by an “aperture”,
defining a feasible region around the parametric midpoint covering a fraction of infér¥#dving
decided and encoded the detail finishes the constructisi ahe process can now be repeated to
obtain further refinements (Figuge?).

Higher order schemes than the midpoint riz—l!e, 1] are possible (and desirable for smooth input
data) for predicting the positions of the newly inserted points. Examples of such schemes include the
four point rule with coefficients:[—1, 9,9, —1] and the six-point rulg}: 3, —25, 150, 150, —25, 3]

[DRSO04. For predicting the normal directions, higher order rules could be used as well. In practice

1Using the parametric midpoint dk assumes that the given data is parameterized nicely. Instead one might be
tempted to use any other point inside the interval simultaneously minimizing the approximation error and parametric
distortion.
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this is rarely done; the reason appears to be a too strong sensitivity to perturbations of the input
data. Because of thisGVSS0Q and [DRSO04 restrict themselves to predicting normals with the

midpoint rule.

2.2.1 Convergence Analysis of Daubechies, Runborg and Sweldens

The theoretical behavior of interpolating normal curves was studied by Daubechies, Runborg and
Sweldens inDRS04. Their main questions were on the decay of the normal offsets and the regu-
larity of the resulting parameterization. We will discuss some of their results.

Midpoint predictors will always produce valid intersections as long as the input curve is con-
tinuous. If disallowing non-normal detail and aperture control, higher order predictors, such as
the four-point scheme, will fail for certain input curves. Reasons for such failure include a lack
of intersections with the reference curve, invalid intersections with the reference curve outside of
the corresponding parametric interval (creating folds), or due to segments of the curve that are not
refined by the process. Theorem 3.5 DRS04 states conditions on the subdivision rules and
the initial spacing of coarsest normal curve points, such that the interpolating normal curve refine-
ment converges without introducing non-normal detail. This theorem also shows that the spacing
between the points declines exponentially with each refinement level. This supports the intuitive
notion that non-normal offsets have less importance on finer reconstruction levels. (See also the
remarks in 5VSSO0Q on relaxing the aperture for finer levels.)

Under the conditions of Theorem 3.5 the smoothness of the normal parameterization depends on
the smoothness of the reference curve and the regularity of the subdivision scheme. For smooth in-
put, the midpoint rule leads t8' — continuous normal curves, while the four-point scheme achieves
C?~¢ continuity in the limit.

Normal offsets (“wavelet” coefficients) decline with exponential rate (Theorem 3.6). Even
though the normal curve construction is a nonlinear process: under small perturbations of the coeffi-
cients we can expect to observe a stable reconstruction of the original curve (Theor&fRS04).

This somewhat justifies using normal meshes in progressive compression applications; quantization

of the coefficients has predictable effect on the approximation quality of the reconstruction.

2.3 Interpolating Normal Meshes

Guskov and coworkers extended ttgkalgorithm from curves to surfaces by drawing curves onto

irregular meshes3VSSO0Q. The surface was pierced by rays as described bef@®.iBut because
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The old interpolating normal meshing algorithm

Step O: Input.
Given an arbitrary (irregular) triangle mesi.

Step 1: Mesh simplification.
Obtain — for instance by half-edge collapses — an irregular hierarchy
(MO, MY, ..., M*) with base mesi/® and finest level mesh/* = M.

Step 2: Building an initial net of curves.
Map the edges of the coarsest maésHh to the finer meshes/!, ..., M*
using bijection between the levels (for instance MAPS).
(This defines a set of curv&®’ on each levelM'.)

Step 3: Fixing the global vertices.
Relax the vertex positions @f° to obtain a nicer base curve network.
Redraw curves on finer levels.
(In general these curves will not appear straight or smooth on finer levels.)

Step 4: Fixing the global edges.
Canonically parameterize the arealdfdefined by two triangular areas 6¥
sharing an edge and redraw the curveas iso-parameter line aly.
(This has the effect of smoothening each curve piece.)

Step 5: Initial parameterization.
Parameterize the interior of each base triangle keeping the boundaries fixed.
(At this stage a smooth global parameterizatiodbfs obtained.)

Step 6: Piercing.
Subdivide the current net of curves to obtélh™.
Predict normals and new point positions — pierce with
Reject intersections according to the aperture criterion.

Step 7: Adjusting the parameterization.
Update new point positions.
Redraw curves through intersection points.

Increment level and continue with step 4.

Figure 2.3: The old normal mesh construction algorithm as described by Guskov and co-workers
[GVSSOD The algorithm interleaves global parameterization and normal remeshing on each re-
finement level.

curves on manifolds are not necessarily flat, the rays would pierce the surface at some distance from
the existing curve network. This made it necessary to extend the parameter domain from curves to
the whole surface. We will recall how these problems where addressed by Guskozata50(Q

before discussing our more modular approach.
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2.3.1 The Previous Normal Remeshing Algorithm

The interpolating normal meshing algorithm is stated for convenience in Fg8r&he algorithm

starts with an irregular input megii. Steps 1 to 3 describe how a “nice” base network of cu€es

is automatically obtained from/. This is achieved via mesh simplification f to get an irregular
hierarchy of meshes. The base médh is used as an initial approximation of the curve network

Cy. In step 3 the aspect ratios of the curves were improved by relaxing the network’s knot positions
with respect talfy. The curve network as observed on the finest méstvas straightened in step

4 by redrawing each curve as an iso-parameter line after parameterization. A natural candidate
for angle preserving parameterizations are harmonic maps computed for instance using the discrete
Dirichlet energy PP93. Guskov and coworkers decided on using Floater's weidkits9[7] which

has the advantage of guaranteeing injective solutions. In addition to straightening the curves this
parameterization was also used to define correspondences for the regions in between the curves
(step 5).

The network of curves was refined in step 6 by a subdivision step and the new point positions
were predicted by the interpolating Butterfly ruBG90]. These points and associated normals
were used to intersect the original surfaddein a piercing step to obtain distance scalars and corre-
sponding intersection parameter values. An aperture criterion was used on the parameter values to
determine acceptable intersection points. To keep the previously computed parameterization con-
sistent with the newly found intersections parameters, the network of curves was redrawn in step 7
through the intersection.

This effectively meant that after each level of refinement the entire surface parameterization
had to be recomputed. Generally, this is costly because the irregular input mesh and the (semi-
Jregular curve network overlap arbitrarily across triangle edges and faces. The enforcement of the
intersection constraints during relaxation also has the potential of cutting triangles at poor aspect

ratios. All of this made the original method numerically challenging.

2.3.2 Our Simplified Algorithm

Guskov and co-workersVSS0Q decided to design an algorithms using irregular meshes as input

and produce (semi-)regular normal remeshes. An option that they mentioned was creating pro-
gressive irregular normal mesh hierarchies. We follow a different approach and describe a normal
remeshing algorithm using (semi-)regular meshes both for input and output. The reasoning be-

hind this is to increase the modularity of the geometry processing pipeline and leave the conversion
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from irregular triangulations to (semi-)regular meshes to one of the many available globally smooth
parameterization algorithms like MAPS$S98], Gl [GGHO0Z, GSP KLSO03], or the spherical

parameterization algorithm presented in Chagter

Increasing modularity To achieve increased modularity, we will show how to separate the in-
termingled parameterization and normal remeshing steps 4 to 7 of the old algorithm in Zigure

such that the geometry processing pipeline appears as:
1. Compute a global parameterization for the irregular input nfésh
2. RemeshR into a (semi-)regular mesR.
3. RemeshR into a (semi)-regular interpolating normal mesh.

As a benefit to this, we will see that using precomputed (semi-)regular remeshes simplifies the
implementationgreatlyimproving the numerical stability of the normal mesh construction. It also

opens the algorithm for extension to variational normal meshes as discussed in Ghapter

Observations We are now going to make a few observations on the old algoritBMSSO0Q.
Extending the2d case tdd surfaces via straight line drawings might appear natural at first sight.
Drawing straight lines on surfaces corresponds to computing geodesics. These can be obtained for
instance by using the angle preserving properties of some parameterization sdhBe®EIp97],
or alternatively the direct computation of shortest paths on surf&@bklQ4]. There has been great
progress in speeding these computationsARS, KGHO04], but because of their frequent use as
an elementary operation by Guskov’s normal remeshing algorithm (steps 4 and 5 inERBuhe
accumulative cost is still relatively high. Our main insight is that encoding interpolating normal
meshes only needs two metric operations: finding “midpoints” between two points and measuring
distances. These operations needed are well supported by (semi-)regular meshes:
¢ Evaluating a surfac® for a given base patch ¢f at arbitrary barycentric coordinates is easily
realized through a logarithmic time traversal of the (semi-)regular hierarchy.
¢ The inverse operatiore.g, turning a ray intersection at the finest level into a coordinate value
with respect to the base patch, is similarly easy to implement and efficient to run.
This allows the computation of parametric distaneéthin a base patch. Using a (semi-) regular
parameterization also reduces the complexity of flatteRitacally, which is needed if distances are

to be computedcrossbase patch boundaries. Finally, using a (semi-)regular remesh as input places
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no greater restriction than using a parameterized irregular mesh, because parameterized meshes can

be converted very efficiently into other representatigké€D02].

Figure 2.4: Flattening of a region around remesh triandgledefined by a base patch and its three
neighbors.

The curves drawn on the surface by the old algorithm implicitly established a correspondence
between the remesh and the input data. In the new algorithm we will encode this correspondence
explicitly by using piecewise lineaeparameterizationg’. As in the old algorithm we will need
to compute distances. Sometimes this is required across base domains as shown i2.&igure
Using (semi-)regular meshes we will attempt to create a laftggrdomain of the input mesi®
that includes the triangl€ in question and all of it8 neighbors. In KLS03] exactly this problem
was solved (iteratively) by expressing the barycentric coordinates of one base domain triangle with
respect to a selected neighboring base domain triangle. Doing so is somewhat involved, because
one has to select a specific sequence of domain crossings. We avoid the problem of selecting
this sequence of crossings by performing only one step of the prazgsdy flattening the three
neighbors of a base domain triangle only (Fig2m . This is done using thieinge mapf [LSS98,

KLS03], which simply extends the barycentric coordinates of a triangle to its three neighbors. In
the very rare case that an even larger flattened domain is needed, the algorithm creates a non-
normal vertex. We have not observed any negative impact of this restriction in our experiments.
(Larger parametric displacements are rare and in any event are better dealt with through a non-
normal coefficient.) Thus the worst case requires flattening a base mesh triangle patahafts

three patch neighbors.

Now, associate the new vertices $ff with the parametric values of the intersections, as in the
curve case, to build the new piecewise linfaBecause the topology of is the same as &', one
does not need to construct a new meshyfoiinstead, we store the parameter values as attributes of
the vertices inS'. Figure2.6 (right) shows the new$’ with one intersection rejected and replaced
with a point onR, which corresponds to the parametric midpoint (red dot) analogous to the curve

case.



15

Simplified interpolating normal meshing algorithm

Step O: Initialization.
Given a (semi-)regular triangle mesh hierardby= (R°, R!,..., R").
Set remeslt® = R° and initialize reparameterizatigil = id.
Set multi-resolution level = 1.

Step 1: Subdivide and predict.
Subdivide connectivity of normal mes#{~! to obtain connectivity of".
Predict new positions and normals of odd vertices (midpoint or butterfly rule).

Step 2: Piercing.
Intersect input mesik’ at finest level with normal lines.
Evaluate vertex positions and flattened parameter values.

Step 3: Select intersections.
Reject intersections
if new triangle is flipped in flattened domain.
if intersection deviates too much from parametric midpoint (aperture).
Of remaining intersections select the intersection closest to parametric midpoint.
If all intersections rejected create non-normal offset (parametric midpoint).

Step 4: Update normal mesh and reparameterization.
Update new vertices with
intersection coordinates to obtasi.
intersection parameter values to obtgin

Increment level and continue with step 1.

Figure 2.5: Our simplified construction of interpolating normal meshes from a semi-regular mesh
hierarchy. The most obvious differences compared to the old algorithm of RgBi®the removal

of any curve drawings. This is achieved by indexing into the precomputed global parameterization
using the piecewise linear (semi-)regular reparameterizagiband local flattening of the input
domain.



16

Figure 2.6:Piercing and reparameterization in the parameter domain: One of the new details (blue)
pierces the mesh outside of its aperture (yellow circles). This causes the creation of a non-normal
vertex, whose parameter value (red dot) remains as predicted. The parameter values of normal
vertices on the other hand are slightly perturbed.

Our new algorithm In terms of the above assumption on the input, our algorithm (Figue
starts with a hierarchy of meshé®, R',..., RY = R. With S° := R as the base domain, the
parameterization perturbation starts with the idengity;= id. Note that if vertex insertion were
always performed at parametric midpointsifall offsets would (in general) be vectorial and for
alli, pl .= id.

Let T be some triangle of the normal remeSh!. This triangle (green in Figurg.4) and
its neighbors (white) are in most cases completely contained inside a base domain triangle (blue
boundaries). In this case one can compute midpoints and distances within the parametric domain
as described. (For a remesh triangle that is not completely contained within a single base domain
patch see below.)

Once we have flattene® in a neighborhood of’, we can make decisions on the piercing
points. The triangld” and its three neighbors (see Fig@:é which shows the parametric domain)
are associated witR via p!~!. The piercing procedure begins by shooting rays from the midpoints
of the edges in the normal direction £8~!. The normal direction at the midpoint of an edge is
set to bisect the dihedral angle of the two incident triangles. These rays will generate intersections
with R (otherwise the distance to the intersection is seit@nd a non-normal offset is created).
Given the current parameterization these intersection points correspond to blue dots irRFgure
(left). Not all intersection points can be accepted, as flipped triangles and unacceptable parametric
distortion of the remesh might occur.

Triangle flips could be detected using the orientation of the vertices in the parameter domain.
This test only provides the information that a flip occurred, but not which of the vertices was re-
sponsible. Consistency of the orientation is guaranteed, if it is possible to separate the intersection
points onto different half-planes (red dotted lines in FigRr@. This conservative test is simpli-

fied further by the idea of apertureSYSS0Q. Aperture regions are circular areas (yellow) drawn
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Figure 2.7: An interpolating normal mesh (INM) of the feline dataset. Vertices of the basesfiesh
are shown in blue while non-normal displacements (relative aperture si@e)ére colored red.

Most non-normal displacements are due to severe geometric distortion (paws, edge adtajng,
However, there also some non-normal coefficients in geometrically “flat” regions. These are due to
parametric distortion (see Fid2.8) causing essentially tangential displacements. The location of
non-normal coefficients for VNM are very similar for this geometry.

around the parametric midpoints of the edge§’inThese regions are separated by lines, if their
radius is at most one quarter of the height of the equilateral parametric triingleis corresponds
to an aperture of abowt43. Choosing smaller apertures reduces the deviation of the remesh from

the input parameterization. This permits the user to control the parametric distortion.

2.4 Discussion

2.4.1 Efficiency of Computing the INM Transformation

We are comparing our method with standard (semi-)regular mesh refinement. Parameterization

overhead is not considered.

Construction The most expensive operation in our new interpolating normal mesh algorithm is
the piercing with normal directions. This operation is the same as shooting a ray in a global illu-
mination algorithm. In our experiments, we did not use a hierarchical data structure (BSP, octree
etc.) for speeding these operations up. Instead, we searched and tested intersections directly in the
aperture region. (A similar search has been proposeddiKQ3] using the barycentric coordinate
values of the intersection points for guidance.) This is less efficient for coarse levels in the hierar-
chy but performs very well for finer ones. A combined approach with a global data structure could

improve the encoding times in talel further.
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Figure 2.8: A closeup of the neighborhood of a base mesh vertex (blue) of high valence. The
distortion in the input parameterization is clearly visible (left). Because the geometry is simple, a
nice remesh is achieved if we do not interfere with the normal remesh (apérfneght box). A

small aperture ((.05) allows for only a small perturbation of the input mesh (middle) and results in
more non-normal coefficients due to tangential displacement (red dots).

Reconstruction Reconstruction (semi-)regular meshes from normal coefficients can be done at a
cost of a single normal computation per vertex, which can be obtained as the cross product of the
differences of the neighbors positions. (There is no memory access overhead — at least for higher

order schemes — because these vertices are needed for the point position prediction anyways.)

2.4.2 Non-Normal Coefficients

The algorithms discussed in this chapter occasionally produce vertices with non-normal displace-
ment (red dots in Figurg.7). On first thought, the existence of these vertices is undesirable: aren’t
purely normal meshes preferable over (even so slightly) hybridized ones? The answer depends on
the application. One might argue, that displaced subdivision surfat#s(0] encode surface data

in purely normal fashion. But this comes at the cost of a fairly large base mesh.

Running the algorithm on the same model with different apertures, we obtained normal meshes
with a wide range of vectorial coefficients. Unfortunately, remeshes with less non-normal coeffi-
cients typically have a larger parametric distortion. This means that some regions are under-sampled
while others are oversampled in comparison with the input parameterization. Undersampling often
leads to a steep increase of the approximation error (for the same reconstructior levelgr-
sampling can be countered by increasing the reconstruction level. This increases the number of
trianglesdramatically. Adaptive reconstruction counters this problem, and, for some applications
(especially for compression applications in combination with a zero-tree cK@07)), such an
approach could be feasible. In most cases, it is highly undesirable.

Still, we would like to argue that currently too many non-normal offsets are computed. Some
non-normal coefficients are created in flat regions only to reproduce the input parameterization

(Figure2.8). If this is undesirable one could attempt to get rid of them by using an adaptive aperture.

2Similar observations have been made by Guskov eG/gS0Q) and are supported by the analysis BHS04.
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One could analyze which how the approximation error develops with and without introduction of a
particular non-normal vertex. While being a natural criterion — if not done locally and monitored
over multiple refinement levels — it could be expensive.

Parametric distortion needs to be battled only in regions of highly varying curvature: it is here
that the piercing procedure can produce arbitrarily bad intersections compared with the input pa-
rameterization (Figur@.7). For this reason, we propose to analyze the reference surface using
inexpensive discrete differential geometry operatttey04]. This could allow the development of

a heuristics to scale the aperture according to the variations encountered.

2.4.3 Treatment of Boundaries

Normal mesh construction does not naturally handle boundaries. One way to process meshes with
nontrivial boundaries is to tag them and encode/transmit their coefficients interleaved on each re-

finement level with the surface data. This approach has been demonstrdt&&0o8].

2.4.4 Extension to Higher Dimension

It has been remarked ifGlVSS0Q that one should be able to encodedimensional manifolds
embedded im-dimensional space with — m scalars per vertex.

The extension of curves( = 1) to n-dimensions does not appear too hard — we know how
to measure distances and find midpoints of curves. All one needs to do is to defiridocally
orthogonal directions (for instance using a Gram-Schmidt orthogonalization) and intersect the curve

with the affine space defined by the prediction point anchthé directions (Figur®.9). The higher

Figure 2.9: One possible approach to generalize the normal curve constructiBrdimensions is
to intersect with orthogonal planes. This would reduce the data framactors ta3 — 1 = 2-vectors.

the dimension of the curve, the less the relative benefit: a cur¥® dimensions is described by

9 normal scalars. This is hardly something to care about! But on the other extreme;-an
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dimensional manifold could be encoded like a surfacgdnmvith scalar only Examples of higher

dimensional data are animations and evolving iso-surfaces over4ute (
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Chapter 3

Variational Normal Meshes

The interpolating normal mesh construction creatgeametry drivesurface approximation which
implicitly defines a reparameterization. Using this reparameterization we defibe @orm in
normal direction. This allows us to replace the difficult geometric distance minimization problem
with a much simpler least squares problem leading to a Laplacian pyramid transformation. This

variational approach reduces magnitudaedstructure (aliasing) of the surface approximation error.
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3.1 Motivation

The previous chapter’s interpolating normal mesh construction can be seen as a very simple wavelet
scheme. Interpolating schemes are often very simple, but they come with some serious limitations.
One of these limitations is that most higher order interpolative basis functions do not define (pos-
itive) partitions of unity. Interpolating basis functions tend to oscillate between data points. This
often leads to undesirable artifacts in the reconstructed signal and was for instance observed by
[KGO0Z] (Figure 3.1). Using approximating scaling functions, such as cubic B-splines or Loop sub-
division in the wavelet reconstructiohDW97], leads often to a reduction of oscillations artifacts.
When measured by a continuous metric approximating basis functions can provide more efficient
function representations than their interpolating counterparts. For these reason it is natural to ask if
it is possible to extend the definition of normal meshes to the approximating setting.

In this chapter we will introduce scalarversion of the Laplacian pyramidr surfaces Lapla-
cian pyramids were introduced f@d functional setting inBBA83] where they provide the bedt,
approximations omachlevel of the refinement hierarchy. To obtain the scalar Laplacian pyramid
we will derive a naturalL., measure for normal meshes and use it to define an inner product. Hav-
ing these tools we will show how to modify the interpolating normal remeshing algorithm to obtain

approximating, or variational normal meshes (VNM).

\ . W -

Figure 3.1: Comparison of partial reconstructions of interpolating normal meshes in a compres-
sion application using butterfly (left) and Loop (right) wavelets. Reconstructions are shown for
approximately the same Hausdorff error (the compressed files are around 10KB). Note the bumps
on the butterfly surface. (Figure used with permissiksp2].)
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3.2 Parametric Correspondence

We make two observations that will be important for us:

1. The result of the rige piercing algorithmGVSS0Q, which converges under mild technical
conditions DRS04, depends only on the geometries®findS°. Any decisions to interfere
with this process—treating an intersection as “too far off the middle”—are based on the ability

to measure distances and find midpoints in the parametric ddmain?.

2. If the interpolating normal curve refinement converges for inglitand R, then a reparam-
eterizationp™ is naturally defined bys*>°(¢t) = R(p*°(t)) for all t € Q. Thisp> can be
approximated on each level by a piecewise linéauch that for all vertices; of S! we have
interpolationS'(t;) = s; = R(u;). Becauss; is attached ta? at parameter value; we can
construcp! (¢;) = u;. Now S'(t) ~ R(p'(t))—implying that the difference between the two

functions is a good approximation of their geometric distance

The latter observation is the starting point for our variational approach.

3.3 Distances and Scalar Products

Given a parameterized curve or surfaBeand an approximatiors’~! on levell — 1, we are
interested in finding the coefficients of a refined approximasbrsuch that distance decreases:
d(R,S") < d(R,S'"1). Ideally, this distance should be measured using the symmetric Hausdorff

metric [CRS9§. Unfortunately this is costly, leading to the common use of fhenorm of the

CHEESEF RS
L TR AR

Figure 3.2:The approximation errors oihterpolatingnormal curves (top) are typically larger than

for their variational counterparts (bottom). Note how the latter are low pass approximations un-
til there are enough vertices to resolve the radial frequency avoiding aliasing artifacts (top). All
coefficients (light blue) are scalar.
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distance function )
ldnll o= ( [ (dne)? )’
Q

as a way to evaluate the approximation error. Hatév) is defined onS and gives the distance to
the nearest point oR for all parameter values in the domairt).
Since a parameterization of the surface gives a functional description of the surface, an even

simpler norm involves parameterizations of either surface

IR - §|| = </Q(R(w) ~ S(w)* dw) : (3.1)

This expression, unlike the, norm of the distance function, depends on the parameterization cho-
sen forR andS. To make it geometrically meaningful, one needs to ensure that similar parameter
values describe similar regions &fandS. This can be achieved by carefully selecting a suitable
reparameterizatiop : 2 —  for one of the surfaces. The main insight of our work is that this type

of reparameterization is precisely what the “piercing” procedure in the normal mesh construction
produces. Using R op — S|| as a distance measure one can then hope for a behavior that resembles
the L, norm measure of the distance function. A consequence of ljgingp — S|| is that one can

easily solve the variational problem
argmin |Rop— (S'1 +chi¢é)H2 (3.2)

to obtain detail vectors! describingS' relative toS'~!. The ¢! are the basis functions ¢f'—

piecewise linear hats in the case of meshes. The critical advantage @3.Bqs(that it defines

a positive semidefinite quadratic form. Finding optimal detail vectprs R3 (or R? for curves)

requires only the solution of a linear system. Note that we have not yet restrictéddHze scalars.
Repeating this process at each level of refinement results in a hierarchy of coeftifiginisg

the bestl, approximatiorat each levelFor surfaces, these coefficients can be arranged in a Lapla-

cian pyramid BA83]. Letting NV be the number of coefficients in the finest leligthe total number

of pyramid coefficients ig1 + 1 + %6 +...)N < 4/3N, a modest overhead for the flexibility

afforded. Anorthogonalwavelet hierarchy could reduce this 26 coefficients; to our knowledge

no such construction is available for general surfaces.
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Figure 3.3:Construction of approximating normal curves: correspondence of parameter values
(left) and position of vertices after minimization (right).

3.4 Variational Normal Curves

To turn the above ideas into a practical algorithm we need to make some specific choices:
o Scalar detail coefficients are allowed fardd (new) andeven(old) vertices anywhere in the
hierarchy.
o Vectorialdetails are only allowed for odd vertices and will be used sparingly.
o No flags, except whether an odd coefficient is scalar or vectorial, are created.
The last choice is motivated largely by limiting the side information needed to inverse transform the
hierarchical surface representation.
In the standard interpolating construction, normal directions are used only once when moving
a newly created (odd) vertex to its position on the reference clrvia the variational algorithm,
we need to keep directions fixed, but allow vertices to slide along tleemal line A normal line
corresponding to a vertex, of S is defined by its position and normal vectatr insertion time
Vertices are free to slide along their normal lines, but are never allowed to leave them. We must
allow such motion to ensure that the vertgxan converge fok — oo to the intersection point of its
normal line withR. Directions of normal lines are held fixed once they have been created, though.

The variational refinement algorithm for curves consists of the following steps:
1. Refine mests'~! by predicting odd points;

2. Find intersections of predicted normal lines with

3. Accept an intersection or select a vectorial offset;

4. Update the parameter perturbatjgrfrom p'—1;

5. Define (tangentially displaced) normal lines for vectorial offsets;

6. Minimize the variational functional restricted to normal lines to obtain coefficients describing
St
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Figure 3.4:The North American coast line represented using interpolating (left) and variational
normal curves (right).

The first three steps are essentially the same as in the interpolating curve construction. Here we
focus on the remaining steps.

o The perturbation' is constructed by keeping (2;) := p!~!(t;) for even vertices (see Figure
3.3 for the various parameter locations and values). Réty; 1) be the intersection of the
normal line with the reference surface andp‘.‘eétmﬂ) := ug;11 (blue dot onR). For a non-
normal coefficient, inserted at the parametric midpoinRofive would use a parameter value
of (ug; + u2i42)/2 (red dot onR). This is all we need to define the piecewise linear reparame-
terization on the new level. Note that once a parameter walgessociated with through the
perturbatioryp, it will never change.

¢ Having defined the new parameterization, E3j2Y is well defined at level, and we may min-
imize it to determine the!. In Figure3.3 the coefficients! move vertices along the normal
lines, but in general do not interpolak

o Non-normal offsets should be allowed to participate in the minimization scheme. For this pur-
pose we assign such coefficients a (translated) normal line anchofed.at. ), parallel to
the originally predicted normal directiom;; of S. Instead of recording the vectorial offset
to R(ug2;+1) plus the scalar coefficient;;, resulting from the minimization, we only record
the final positionsR(ugi+1) + c2i4+1 - n2i41 Of these vertices and use these as the origin of the
associated normal lines.
Computing the minimum of a quadratic form requires the solution of a linear systerk - ¢

of normal equations. The load vector is defined by

b= (R.d}) = / R(p(t)) - 64(t) - | (R o p) (1) dt, (3.3)

and the mass matrix is defined by

Kij = (¢l ol = / oU(t) - oL(t) - | (Rop) ()] dt. (3.9)
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Figure 3.5:As shown in 3VSSOpinterpolating normal curves can describe complicated data like
Koch curves exactly. This requires perfectly picked base mesh and parameter values. If the initial
sampling is chosen without sensitivity to the underlying structure as in this figure, aliasing artifacts
develop (top row). Variational normal curves handle this situation more gracefully (bottom row)
with lower approximation error.

If no area weighting is used, the entries i§fcan be computed offline. In practice though it is
more appropriate to take the actual triangle sizes into account. Computation of the entries of
requires online quadrature because of their dependenég &or simple B-spline basis functions
this quadrature, can be performed exactly using algebraic formulas. In any case, the setup of the
linear system is straightforward.

Even though the approximation is not interpolating, we are using the fact thaasiefunctions
are interpolating. Consider two neighboring basis functipng; and suppose thaf; is nonzero at
the normal line ofp;. Changing the coefficient @f could then “push’c; off its normal line unless
the two normal lines happen to be parallel. Because interpolating basis functions, such as piecewise
linear hats, are zero at the normal lines of all other vertices, we do not need to worry about this

effect.

3.5 Variational Normal Meshes

As during interpolating normal mesh construction, we do not compute a parameterization of the
mesh on the fly but rather rely on a pre-existing parameterization. Please recall that this could be
produced with any of the algorithms now available for the construction of low distortion, globally
smooth parameterizatiorsg, MAPS [LSS"98], GI [GGHO0Z, or GSP KLS03]. Our only desire is

that the parameterization Iecally close to an isometry to simplify finding reasonable “midpoints”
between two vertices oR in the non-normal case. FiguBe6 gives a summary of the variational

normal remeshing algorithm. Notice that Steps 1 to 3 are identical to the interpolating algorithm in
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Variational normal meshing algorithm

Step O: Initialization.
Given a (semi-)regular triangle mesh hierardby= (R°, R!,. .., RF).
Set remeslt® = R° and initialize reparameterizatigf = id.
Set multi-resolution level = 1.

Step 1: Subdivide and predict.
Subdivide connectivity of normal mes#{—! to obtain connectivity of".
Predict new positions and normals of odd vertices (midpoint or butterfly rule).

Step 2: Piercing.
Intersect input mesiR” at finest level with normal lines.
Evaluate vertex positions and flattened parameter values.

Step 3: Select intersections.
Reject intersections
if new triangle is flipped in flattened domain.
if intersection deviates too much from parametric midpoint (aperture).
Of remaining intersections select the intersection closest to parametric midpoint.
If all intersections rejected create non-normal offset (parametric midpoint).

Step 4: Update reparameterization and define normal lines.
Update new vertices with
intersection parameter values to obtain
predicted normal directions.

Step 5: Compute inner products.
Use the new reparameterizatiphto compute
the load vectob; = (R, ¢}) and
the mass matrix<;; = (¢}, ¢}).

Step 6: Minimize variational functional.
Solve the linear equation systdm= K - ¢ for the coefficients:.

Increment level and continue with step 1.

Figure 3.6: The variational normal mesh algorithm is an extension of the interpolating normal
algorithm as steps 1 to 4 are essentially the same. During the new steps 5 and 6 a least mean square
problem along the normal lines is solved to minimize Eheapproximation error.
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Figure2.5. Step 4 minimally differs as normal directions are explicitly stored for updates in finer
levels. For this reason we restrict our further discussion to Steps 5 and 6.

Semi-regular meshes efficiently support the numerical evaluation of the surface at arbitrary pa-
rameter values. This comes handy when setting up the least square systém c for solving for
the cé, i.e., the updated location of the vertices $f along their normal lines. The basis functions
of R andS may overlap arbitrarily in the parametric domain. This makes the exact evaluation of
the 2d integrals highly impractical. For hat basis functions, without taking account of the surface
element onR, the mass matrix has entrié§; = valence; /12 andK;; = 1/12if s andj are con-
nected by an edge. This matrix, for example, was useddW97] for the construction of wavelets
over (semi-)regular meshes. Since triangles are generally not uniform in size, we use numerical
integration to compute the entries Af and take the actual surface area into account. For this we
employ the midpoint quadrature rule with betwe®rand150 samples per triangle ¢ to evaluate
the load vector and mass integrals in equati®®and3.4. The numerical evaluation of the basis
elements of5! is a trivial operation. The evaluation of the correspondihgp can be performed by
direct access ii®(1) time, if the coefficients of the (semi-)regular meBtare organized for each
base patch as arrays. Otherwise a logarithmic time traversal is necessary.

Finally, we minimize the quadratit; approximation error by solving the linear equation system
restricted to the normal lines and obtain the refinement coefficien$$ fufr the new subdivision

level. This concludes the description of the algorithm.

3.6 Implementation and Results

Most of the components needed for the implementation of a variational normal remesher — mesh
library, ray-surface intersection, and linear solver—were taken off the shelf. The only custom im-
plementation was the code for flattening of base triangleB.ofor the variational normal mesh
(VNM) code, a simple numerical integrator (midpoint) was added. We did not explore the trade-offs
due to numerical integration accuracy and final approximation error (we use bet@eenl 150
integration points per triangle).

For both INM and VNM, theobserveduntime is linear in the number of triangles. (Note that
while individual point locations aré(logn) their expected cost i©(1) explaining the observed
behavior.) The runtime of the VNM remesher is completely dominated by the integration code
(see the representative data in TaBl&). The timing differences between INM and VNM are due

to linear equation system setup and solution. The linear solver time is on the order of a second,
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dataset input normal inputbase remesh non- percent Time
param method mesh size size normal B-box (sec)
(t levels) (vertices) vertices Ly Error

skull MAPS INM 4(8) 32770 368 0.0392 2.5
MAPS VNM 4(8) 32770 494 0.0282 15.2
fandisk MAPS INM 73(4) 4546 103 0.0573* 0.2
MAPS VNM 73(4) 4546 104 0.0345* 15
dino MAPS INM 128(4) 8066 228 0.0893* 0.3
MAPS VNM 128(4) 8066 294 0.0576* 25
igea MAPS INM 196(5) 49666 136 0.0148 2.3
MAPS VNM 196(5) 49666 121 0.0096 14.9
GSP INM 40(6) 38914 24 0.0156 2.1
GSP VNM 40(6) 38914 38 0.0099 15.1
feline  GSP INM 280(5) 72190 589 0.0156 3.4
GSP VNM 280(5) 72190 845 0.0096 25.3
horse GSP INM 140(5) 35330 256 0.0117 1.6
GSP VNM 140(5) 35330 317 0.0081 11.7
rabbit  GSP INM 100(5) 25090 20 0.0107 11
GSP VNM 100(5) 25090 24 0.0067 8.6
zone- Loop INM 12(7) 40962 570 0.0611 2.8
sphere Loop VNM 12(7) 40962 146 0.0327 17.2

Table 3.1: Using MAPS parameterizations as input to our algorithm gives us similar remeshing
errors as when using GSP. But typically the number of non-normal vertices is higher for MAPS,
reflecting the fact that MAPS parameterizations are not globally smooth. Variational normal meshes
(VNM) typically outperform their interpolating (INM) counterparts. Errors where computed using
METRO with respect to the original, irregular mesh. An exception are the fandisk and dino models,
which where compared against the finest level MAPS remesh. Hence the MAPS remeshing errors
need to be added to these numbers. (We discovered that the MAPS remeshes are scaled/rotated
versions of the irregular models publicly available.)

hence the difference is essentially the cost of integration. The fact that the INM code is nhow so
fast is partially due to the simpler flattening procedure, but also to having replaced the on the fly
repeated reparameterizaticdBYSS0Q with an up-front parameterization. Even for the variational
remeshing our results compare favorably with Guskioal. (accounting for our timings being taken

on a2.2 GHz P4). As we relied on available remesheS$"98, KLS03] the time for the initial
parameterization is not reflected in our numbers. Some models are not readily available as remeshes.
Here one has to take the parameterization time into account. Remeshing algorithms have evolved
significantly over the past few years (see for insta@§98, KLS03, AKS, SAPH  for timings).

The best results so far where obtained BAIKE] who report solver timings of undel) seconds for

a model containing80k vertices (David head).

We have run experiments with a range of MAPS and GSP input parameterizations. The remesh-
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ing errors of our INM algorithm are about the same asGWES0(Q (see Table3.1for our results).

The anti-aliasing properties of variational normal meshes are clearly visible in the “zone” sphere
example of Figure.7.

In terms of error, VNM give us a fairly consistent improvements over INM. Typically INM have
up to 60% larger remeshing error (on any level) relative to VNM. Fig8r8 shows comparisons
between different normal mesh types for different models and the GSP input parameterization. In
particular we compare against the vectorial variational mesh (VVN), where detail vectors are not
direction constrained. All errors where computed with METRIRE98. For the feline and igea
models we compared against thgginal, irregular meshegrom which the GSP where derived;
while the dino and zone-sphere models are compared against a finer, (semi-)regular mesh. The only
difference observed is the GSP remeshing error on the finest level of feline and igea graphs.

We observe, that both interpolating methods (INM, GSP) and also both approximating methods
(VNM and VVN) show roughly identical convergence behavior. Variational meshes (VNM and
VVM) also preserve volumes equally well - much better than the interpolating hierarchies (INM,
GSP). This behavior is illustrated by the skull series in Fidu@and the error graphs in FiguelQ

The number of non-normal coefficients we achieved is typically a little less thaB\iS500Q.

This is even though we are using an aperturé).@fwhich we keep independent of the current
refinement level, while inGVSS0(Q the aperture was relaxed froth2 on coarse td.6 on finer

levels. The variability in these numbers is not surprising, because the construction of normal meshes
depends on the base mesh and the parameterization chosen for the metric.

As in the original paperGVSS0Q we have used a spatially invariant aperture to remesh from
one level to the next. This works well in regions with simple geometry and “nice” input parameteri-
zation. In those settings, no non-normal coefficients are inserted (see the feline trunk inZ=yure
In regions of high curvature, non-normal coefficieats inserted, preventing mesh degeneration.
Interestingly, flat regions sometimes produce non-normal coefficients due to excessive distortion in
the original input parameterization (see the feline wing attachment and tips). Increasing the aperture
locally eliminates this problem resulting in a nice reparameterization (see Rdre

The VNM algorithm samples the geometry of the input mesh fairly densely (as part of the
integration routine). Thus one could hope to find a strategy that adopts the aperture locally based

on this information at no extra cost. We did not run experiments to examine such strategies.
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Figure 3.7: A fine sampling of a “zone” sphere with a displacement field of increasing frequency
(moving along the equator) is used to test for aliasing properties (leftmost image, also showing
the icosahedral base mesh). On the right the upper row shows léveld of the interpolating
normal mesh refinement. The right hemispheres, which contain high frequencies in the original
geometry, exhibit aliasing artifacts in the interpolating construction. The corresponding variational
normal meshes (bottom row) correctly low pass filter frequencies which cannot be represented at the
current resolution. On the finest level both IMN and VNM show a disturbance caused by a valence
5 vertex (right hemisphere, center). Again, this effect is much less pronounced for the variational
approximation.

I INM

error
error

level

error
error
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Figure 3.8:The METRO mean squared distance errors (percent B-box) are plotted for four different
models using the GSP input, normal remeshes which are: interpolating (INM), variational (VNM);
and also for unconstrained variational solutions (VVM). These examples illustrates how close the
constrained variational normal meshes are to the unconstrained variational meshes. Note that for
the feline and igea models the errors are measured with respect to the original irregular triangle
mesh, while the dino and the zone sphere meshes are compared against the finest level (semi-)regular
mesh available.
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Figure 3.9:
objects (top row, leveld to 5). This causes large errors for the volume of the reconstruction.

Variational normal meshes place vertices at optimized positions (bottom row) and preserve the
volumes better.
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Figure 3.10:These graphs are typical plots displaying the relative volumes (in percent of the orig-
inal irregular mesh) of thel mesh hierarchies. Variational meshes consistently preserve volumes
better than interpolating hierarchies. Still they are slightly biased towards underestimating the true
volume. The skull base mesh is a tetrahedron, hence the graphs show a much larger volume de-

fect than other meshes with more detailed base meshes. The relative behavior of interpolating to
variational errors nevertheless is very similar.
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3.7 Future Directions

Variational normal meshes as Laplacian pyramids are data over-representations. We have shown
the existence and good quality of variational normal remeshes. This result is encouraging from a
theoretical view, because it might show a path towards a critically sampled normal wavelet theory.

We would like to use this space to discuss some challenges that are waiting on the way.

3.7.1 A Lifting Experiment

The lifting scheme, as introduced by W. SweldensSwg98, is an approach to define (biorthog-
onal) wavelets on complex domains. Without going into too much detail, one observes that the
difference between signals on a coarse lével and a finer level are expressible as a combination

of basis functions on the finer level There is some freedom in picking these linear combinations.

A hat function on the coarser level can be expressed as a linear combina@c@h, ?f1] basis
functions on the finer level@ri03]. One way of updating detail is by using linear combinations

%[—1, 2, —1] of hat functions on the finer leve$[B93. To solve the problem of pushing neighbor-

N O

ing coefficients parametrically away from the normal lines (as discussed at the end of Seftion
one could requiréhe coefficients of the linear combinations to be restricted to each normal line
We will refer to these detail basis functions as briefly as “sombreros”.

The lifting (and other wavelet) schemes operate on the given data from fine to coarse levels.
This approach is the opposite of normal meshing, where important data like the normal directions
andeven the fundamentally important correspondeplcare not defined a priori and have to be
discovered (non-linearly) during the coarse to fine construction. The result of adding coefficients
from coarse to fine using least mean square minimization of sombreros is described in Bigjlires
and3.12 This can be achieved by plugging the basis refinement equéﬁem, 2, —1] into the
linear equation systen= K - c used in the variational normal curve construction.

We see that sombreros predict the variational normal coefficients with high correlation. But
repeated application detoriates very fast after the first level when compared to the INC and VNC
convergence rates. One obvious reason for this failure is the lack of orthogonality between hats
and sombrero$y;, ¢;) # 0. Even in the classic (purely vectorial) setting, the coarse to fine least
mean square computation will only converge to the original data set when aattiwogonaldetail!

The situation is further complicated, becauseally supportedorthogonal wavelet schemes for
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Figure 3.11:Using sombrero functions along each levels newly inserted normal lines we attempt to
reverse the lifting scheme (from coarse to fine). This approach does not converge and fails primarily
because updates on finer levels are not orthogonal to data on coarser levels.
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Figure 3.12:Refinement using normal sombreros did not converge for any of our examples (graph
left). Plotting coefficients obtained by normal sombrero refinement and variational normal mesh
refinement we observe a strong correlation between them (right).

subdivision surfaces are not available to our knowledge.
A potential remedy for this situation might be to relax the requirement that lifted normal meshes
be bestL,; approximation®n each levebf subdivision, as long as the detoriation is “minor” in some

sense. This requires studying the restrictions placed on biorthogonal wavelets by being a Riesz basis.
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Chapter 4

Unconstrained Spherical
Parameterization

We introduce a novel approach to the construction of spherical parameterizations based on energy
minimization. The energies are derived iganeral mannefrom classic formulations well known

in the planar parameterization setting.g, conformal, Tutte, area, stretch energiet¢), based

on the following principles: the energy should (1) be a measure of spherical triangles; (2) treat
energies independently of the triangle location on the sphere; and (3) confvergeaboveto the
continuous energy under refinement. Based on these considerations, we give a very simple non-
linear modification of standard formulas that fulfills all these requirements. The method avoids the
often observed collapse of flat energies when they are transferred to the spherical setting without
additional constraints€.g, fixing three or more points). Ouwrnconstraine&gnergy minimization
problem is amenable to the use of standard solvers. Consequently, the implementation effort is min-
imal while still achieving excellent robustness and performance through the use of widely available

numerical minimization software.
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In this chapter we are going to develop methods for computing spherical parameterizations. By ob-
serving the planar case, where efficient algorithms and a theoretical foundation exist, we will show

how to transfer ideas from planar patches to spherical domains.

4.1 Related Work

There is by now a rich literature on the construction of parameterizations for surface meshes (for
an excellent recent survey we refer the readeridd5). A large class of approaches is based

on quadratic energy formulations which only require the solution of a linear system. Proofs of the
bijectivity of the resulting mapping are available in certain cases. There are also many non-linear
approaches, but their analysis is considerably more involved.

While much of this work has focused on the planar case the mapping of a topological disk
region of a given mesh to the plane, spherical parameterizations have been singled out as a special
case occurring frequently enough in practice to warrant their own metlf@@$03 GWC'04,

HAT 00, HBS™99, SGD03 PHO3 BF01]. Most of these approaches are based on applying a
specific method known in the planar setting to the sphere; Praun and HeHP4 [ for example,
use the method of Sandetral.[SSGHO].

One set of methods is based on puncturing the spherical topology and solving a discrete har-
monic mapping functional in the plane under stereographic projedtiéi { 00, HBS™99]. While
the continuous conformal setting is invariant under stereographic projection this does not hold true
for the discreteproblem where the sphere is decomposed into simplicial cells. Images of spher-
ical triangles are not straight-edge triangles in the plane and vice versa (see £Rurln fact,
even on the sphere itself, the continuougtMis degrees of freedom are lost, and only the rotations
remain as symmetry group (spherical triangles are only invariant under rotations). To avoid these
issues, it is therefore more natural to consider the problem directly on the sphere. For example,
Gu and co-workersGWC'04] solve the nonlinear discrete harmonic energy functional directly on
an inscribed polyhedron combined with periodic centering and reprojection. It has been observed
though that such approaches tendltp toward degenerate solutions (see for example the comments
in [GWC'04] on the use of relaxation procedures). Thus, additional constraints are imposed, for
thesolepurpose of rendering the numerics robust. Other methods, such as the approach of Gotsman
and co-workersGGS03 and Sheffeet al.[SGDO03, are highly non-linear and numerically subtle,
making them as yet unsuited for the robust parameterization of large meshes.

The discussion of the spherical setting@GS03 is noteworthy as it starts with a general obser-



Figure 4.1:Unconstrained solutions for our new, stable spherical parameterization operators:
Tutte, Discrete Conformal Map(l, 1) and (0.2, 1) weighted Dirichlet to area-distortion combi-
nations; and pure area distortion minimization (left to right).

vation about barycentric coordinate approaches well known from the planar setting and analyzes the
implied matrix problems with the help of a special class of eigenvectors. So far little is known about
specific procedures to construct matrices which satisfy the conditions necessary for the theorems to
apply though.

Our approach also begins with the observation that it would be desirable to construct a general
procedure to take approaches from the planar parameterization case and adapt them to the sphere. As
such we are deliberately agnostic as to the particular weights being used. We will however assume
that the energy derives froarea integralqa broad number of approaches satisfy this requirement).

We will argue that many of the numerical difficulties associated with the lack of constraints in the
spherical setting—there is no boundary and no canonical constraints—can be traced back to an
unsuitable approximation of the underlying energy when adapting it to spherical domains (see Sec-
tion 4.3). Assuming only rotation invariance, central projection, and convergence under refinement,
we will give a simple modification of flat energy functionals based on a rapidly-conveogiper

bound on the corresponding integrals over spherical triangles. One of the important upshots of our
new formulation is the creation of an infinite energy barrier for equatorial triangles (a single trian-
gle covering an entire hemisphere) which gracefully prevents degeneracies. More importantly, our
approach permits a robust minimization of the resulting non-linear endgtggutany artificial con-
straints or custom solvers. This allows us to use standard minimization software (see &&gtion

We demonstrate the practicality of our technique with a number of examples employing different

energies on various meshes of significant size.

4.2 Two Approaches to Parameterization

For patches with disk topology two approaches are popular leading to parameterizations by solv-
ing linear equation systems The first approach is variational and baseduadeatic energiesA

famous example in this category is the Dirichlet energy for piecewise affine lR&23[ The min-
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imum of quadratic energies can be obtained by solving positive (semi-)definite equation systems.
The second parameterization approach isbaaycentric coordinates Here the position of each
vertex is expressed as the weighted average of its one-ring neigthads, [MBLDO02]. Barycen-

tric coordinates lead naturally to linear equation systems. The main difference of the barycentric
to the variational approach consists in barycentric coordinates having often no natural associations
with continuous energies. Unfortunately this has consequences! Finding low-distortion spherical
parameterizations is a nhonlinear problem. For this reason it is not surprising that nonlinear general-
izations of barycentric coordinates lead to systems of nonliegaationswhile the generalizations

of simple quadratic energies leads to general nonliraargieqoften also referred to as objective
functions).

When we started working on spherical parameterizations our first ideas lead to different gener-
alizations of barycentric coordinates on the unit sphere. We still have all reason to believe that the
theoretical derivations were reasonable. Finding practical solutions for them proved very difficult.
The nonlinear equation system solver was quick to obtain parameterizations for simple meshes with
about100 vertices. With some user input and patience solutions could be obtained after lengthy
computations for meshes with a few hundred vertices. Nevertheless it was impossible to solve
anything involving more than aboti000 variables. At this point we switched from barycentric co-
ordinates to the variational approach. Suddenly it was possible to solve parameterizations involving
tens of thousands of variables. While it is possible that other program code could change this result,
we do not believe this to be likely. The libraries we used (PEBRG"01] for solving nonlinear
equation systems and TAGMMSO04] for optimization) are well tested and share major portions of
code. Instead we believe now, that solving nonlinear equation systems is more difficult than solving
similar optimization problems. For a detailed discussion we refer the reader to S&@&idn

We will describe now the results of computing parameterizations with the variational approach.

4.3 Variational Sphere Mappings

It is an intrinsically non-linear problem to find the embedding of a genus-0 mesh on the unit sphere
with minimal distortion, regardless of the choice of distortion measure. Most previous approaches
have approached this issue by extending distortion measures well-known for planar parameteriza-
tions, leveraging the extensive literature on this topic. As we discuss next, these extensions assume
an (often implicit) mapping between spherical and planar triangulations. If this is not properly

accounted for in the final energy expression, humerical degeneracies occur.



Figure 4.2:The stereographic projection identifies straight edged triangles in the plane with
banana-shaped triangles on the sphere (left). The gnomonic projeGtinaps spherical to planar
triangles (right).

4.3.1 Classical Parameterization Energies

Let f be (for now) a piecewise-linear map from a given (topological disk) surface péttth a flat
parameterization rang¥ (see Figurel.3). Many classical techniqueEIH05 can be formulated as

a minimization of spring-like energies of the form:

Ef)y= Y wy-le -2 (4.1)
(i,j)Edirected edges

where the coefficients);; depend on the given patch, and can often be understood as arising from
area integrals. The distancgs) — a:é\/H are measured in the range of the parameterization. For
example, the celebrated discrete conformal map corresponds to a spegifiwolving only the
cotangents of angles iv [PP93. Many other techniques are also defined through area integrations,
though the resulting (often non-linear) expressions in the unkna#hsan be considerably more
complicated HG0OO, SSGHO1.

It is natural to seek ways to extend these well-studied energies to the spherical setting by com-
position with a map from a flat triangle to a spherical triangle. Cartographers have long studied such
maps and a long list of candidates exist (for an exhaustive surveyps@8). Unfortunately there
appear to be none among these which lead to manageable expressions (see for example the set of
mappings reviewed inAHO0J3). Consequently authors have proposed simpler expressions which,
in the continuous limit, converge to their spherical counterpart. Instead of dealing directly with a
spherical triangl@jBC for which A, B, andC are three vertices on the sphere, the most common
approach considers theecantflat triangle (.e., the Euclidean triangle—see Fig.3) T%C sup-
ported by the same vertices but considered in the embedding space. Since this secant triangle is flat,

energies from the planar case immediately apply. Even though one may approximate a spherical tri-
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Figure 4.3:For an input triangle mesh\ we want to find an injective function mapping to the
sphereS (such that the inverse of this function is a valid parameterization). Computing this function
directly onS is very difficult. It is generally preferred to obtain an approximatipioy mapping

the input mesh only to the spherically inscribed mash Not accounting for the influence 6f
creates a bias in the approximation error, which often leads to degenerate solutions. We analyze
this problem and propose a simple remedy for a range of existing methods.

angle with a sequence of ever finer secant triangulations, the approach consistently underestimates
the spherical energies: in effect the map betw&§p,, and74;,, is disregarded.
To understand the consequences of this omission we first study the projectiofl figmto

N
T%'sc More carefully.

Gnomonic Map: Flattening Spherical Triangles The underlying mapping mentioned above is
part of a more general map type callegjmomonic magor central projection). This projection
maps spherical triangles to planar triangles ($§de02 and Figure4.2). To be more precise, a
spherical triangleis defined by the intersection of three hemisphértighe three hemispheres are
identical we call it shemisphericatriangle. A gnomonic projection maps a hemisphere (centered
around the so-calledtandard pointP) to a plane. By choosing thepecifichemisphere and the
specificprojection plane, one can flatten any given spherical triangle, although flattening the whole
sphere means picking multiple hemispheres to flaterhspherical triangle.

The first choice then is to pick a projection plane and a specific hemisphere to fix the gnomonic
projection. A natural choice for the plane is the supporting plane of the secant triangle. For the
choice of hemisphere we pick as standard pdiz- the circumcenter of the secant triangle
This choice is symmetric and provides us with the aforementioned implicit mapping, that we will
now denote byG : S — N (whereS denotes the sphere; see Figdr&). For finer and finer
triangulationg7 becomes the identity as expected. For this reason the ma@iiag been exploited
in the past when simple star maps and world globes had to be built in the shape of poly\éiia |
In practice we will actually need only the inverse of this map, which has a particularly simple
formulaGpl : R® — S,G5' () = x/||z||, where we assumed a unit sphere centered at the origin
in R3.

1Sometimes our spherical triangle is called iieer spherical triangle and its larger complement tluter spherical
triangle. This ambiguity creates much confusion and most authors assume only the smaller triangle.
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Figure 4.4. As the iterations proceed in the solver a triangle starts growing and finally slips over
the equator eventually shrinking the entire mesh to a point.

Ignoring the Gnomonic Map Considered Harmful Consider a classic distortion energy based

on maps from flat triangles (M) to flat triangles (inV), e.g, the Dirichlet energy. Assume that all
vertices of V' are on the spher&, producing a spherically inscribed mesh. Treating each of these
range triangles as flat replaces the desired engigy—! o f) with E(f). A finite element error
analysis would typically give us an error estimate of the f@r) + O(RF) = E(G~' o f), where

R is ameasure of the largest triangle size (At pends on the particulars of the energy). This type

of analysis appears to confirm the validity of the approximation. However, the typical unconstrained
nonlinear minimization often fails as illustrated in Figurd. Considering that we are minimizing

E(f) = E(G™'o f) — O(RF), itis easy to see that the minimizer simply found a way to decrease
the energy by steadilncreasingthe size of the triangle with the largest error—to the point where

the triangle covers more than a hemisphere and the solution collapses. It may be possible to avoid
this degeneracy by adding additional constraints, such as point or moment constraints, for example.
However, this is not necessary for energigls’) whichboundE(G~! o f) from above In the next

section we will derive a very simple modification of standard weights that has this property and is
tight in the sense that the errorG¥ R?). No additional constraints will be needed to avoid collapse

of the solution.

4.3.2 From Flat to Spherical Energies

Since we assume that the energy measuring distortion arises from area integrals we consider the
energy of an individual triangle with the total energy being a sum over all triangles. We derive our
argument in detail for the spherical Dirichlet energy and then apply the argument to other example

energies.

Spherical Dirichlet Energy Pinkall and PolthierPP93 wrote the Dirichlet energy for discrete

conformal mappings between triangles as

Ep(h|pm) = /T y te(DhY Dh). (4.2)
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For a spherical triangle the maplis= G;,l o fapc and hence

Ep(T3pc) = /TM tr(D(Gp' o fapc)' D(Gp' o fapc))

- /tr(Df‘z;BC ' DfABc> _ Ep(fasc) _ ED(T%BC) (4.3)

dmin dmin din dpin

Here we used the monotonicity of the Dirichlet operator to obtain the inequality, dyith =

min || fapc|| the minimum distance of triangl’Eﬁch to the center of the unit sphere. For acute
triangles and our choice @ p this minimum is achieved aP4p¢, i.e. the circumcenter of the
triangle. For obtuse triangles the minimum distance is achieved at the midpoint of the longest edge.
Note thatd,,;, is linked to the radiusk,,,. of the min-containment circle of the flat triangle by

d2

min

= 1— R? . Finally rewriting Eq.4.3as

AV ¥ — 2|
Ep(Tape) = 7 Z cot a; 1 (4.4)

N (3,5) edge of Tapc

shows the familiar cotangent weights in our upper bofilpd Notice that we now have both lower
and upper bounds on the spherical Dirichlet enefgiy (7)) < Ep(T°) < Ep(TV). Using
Taylor series expansion we géf>, = 1+ O(R2,) with a non-negativeerror term, and thus
Ep(T®) + O(R},.) = Ep(TV).

The implication is that the approximation error is equivalent to methods using a secant-triangle
approximation; butz will approach the real spherical enerfygm aboveand simultaneously keep
min-containment circles sizes under control: as a triangle approaches the entire hemﬂ;ﬁ;pese
oo. This makes it impossible to collapse to the trivial solution, even in the absence of any constraints.

The argument giving rise to thé 2 factor, which makes the Dirichlet energy of the secant

min

triangle suitable for a spherical parameterization, applies to many other integral based energy for-

mulations as well. We give a few examples next (see Figreand4.5for a comparison).

Spherical Tutte Energy The canonical use of unit stiffness springs on edges to derive a planar
parameterization (for details on Tutte's embedding $¢40f) trivially extends to the spherical
setting:

Br(Thpe) = dpl, - (wa — 2p)? + (z5 — 20)* + (14 — 20)?). (4.5)

Spherical Squared Area Energy The Dirichlet energy is based on angles of the input mesh only,

with no notion of preserving areas, and thus performs poorly in (re-)sampling applications. Area
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dependent energies of various flavors have been considerib| SSGHO0] to address this issue.
Using a Taylor expansion of the area formula for spherical caps, we can proverthél'®) <

d-1 . area(TV). For our experiments we will use:

min

.y (AN pe)?
EA(Typc) = P AM
min ABC

Spherical Stretch Energy The stretch energy oSSGHO0] can be written out as a combination

of the last two energies:

Es(f) = tr(Df"Df)- AM = (AM/AN)? tr(DfTDF) - AM
= (AM/AN)?. Bp(f),

This expression explains how the stretch based parameterization strikes a balance between area and
angle distortion. More importantly, we can apply our approach to obtain the upper-bound energy
Eg simply by substitutingzp for Ep. Thus one can avoid the mesh refinement step usé?HOg

and minimize the energy without requiriagditionaldegrees of freedom. Of course approximation

quality questions may still favor refinement for some meshes.

Combined energy We have also experimented with a combined endtgythat combines the

area and Dirichlet energies additively:

A

Ec(f) =wp - Ep(f) +wa - Ea(f).

Choosing appropriate constaritsp, wa ), the user can trade off angle and area preservation.

The left parameterization, obtained with coefficiefits0), was optimized for angle distortion
only. Consequently head and tail are under-sampled. In the center, using coeffitidntsa
reasonable balance between under sampling and angle distortion is achieved. On the right using

(0.2,1), the areas on the extremities are well-preserved - but curves do not intersect at right angles.
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Compare with Figurd.1for views of the corresponding spherical domains.

4.3.3 Discussion

A major ingredient in any implementation of an energy minimization method is the numerical treat-
ment of the non-linear equations that arise. The most powerful methods for general smooth non-
linear problems are global Newton or Trust-Region methods. These are designed to ensure global
convergence, which is very important if one starts far from the minimum of the energy. Given that
there is in general no immediately valid embedding of a genus-0 mesh onto the sphere (for example,
without overlap) using solvers that can robustly find a (local) minimum, no matter where one starts,
is critical. It is of course possible to use custom methods, for example, a non-linear hierarchical
approach which might employ a progressive mesh hierarchy to affect the solution coarse to fine.
Unfortunately very little is known in terms of convergence and stability of such methods. Instead
we prefer to rely on proven methods, in particular since powerful libraries implementing sophis-
ticated black box Newton Trust-Region solvers are freely availd®RE["04, BMMSO04], greatly
decreasing implementation effort. Coupling these with symbolic methods to compute gradients and
Hessians of energies, rapid experimentation becomes possible.

This convenience comes at a cost. To use a black-box solver and be sure of its guarantees, the
energies themselves must satisfy certain criteria. Chief among these is that Hessians provide good
local (quadratic) views of the energy landscape. In our case, the divisidf) hcreates poles near
hemispherical triangles. Luckily, these poles are only reached by exceedingly large perturbations
of the variables and are, in our experience, not a concern. The transition of the energies between
acute and obtuse triangles is more subtle. Clearly it is continuous. According to our experiments
we believe that even the gradient changes smoothly when deforming acute and obtuse triangles
into each other. More precise statements depend on the particulars of the flat energy itself. Spring
energies transition smoothly between opposite triangles orientations—and so do our modifications
E. We have not had any problems achieving embeddings without flipped triangles even for large
and convoluted meshes (see Figdrg. Only Es—Dby its very nature of assigning infinite stretch
to degenerate triangles—has poles whenever triangles invert (divisiet"By This gives rise to
energy landscapes with many poles, which makes the use of globally perturbing black-box solvers

extremely challenging.
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4.4 Implementation and Results

Recall that we are optimizing a mapping froi to A with verticesz”" confined to the sphers,

subject to a chosen upper bound enefjgvaluated over flat triangles ifvf. The target variables

2 are parameterized in terms of longitudes and latitudeg, z) = (cos(f) - sin(¢), sin(6) -

sin(¢), cos(¢)). The expression for the energy as a function of the coordinates of a given triangle
TM in the domain and a target trianglé” is implemented in Maple. This Maple function, together
with its gradient and Hessian are automatically translated to C++ code (removing a major source
of errors in implementations of complicated energy expressions). Invoking symbolic differentiation
might appear inefficient. We timed our codes and found that for the highly tuned PBB&c 4]

and TAO BMMSO04] optimization kernels, bus bandwidth is the limiting factor for problems which

do not fit into the processor cache.

When using the cotangent weights appearing in the Dirichlet energy, care must be taken to avoid
negative weights. These can cause fold overs in the planar setting, and we saw the same effect in
the spherical case. To avoid this issue we clip all angles tet «; ; < 85° and found this to be
quite effective. Limiting the angle size from below avoids edges with very large weights (relative to
their neighbors). While this tends to occur only for few angles, the resulting systems are typically
better conditioned.

To initialize the optimization problem, we either start with a linear solution via the stereographic
map HAT 00|, or by simply centering the model at the origin and normalizing all vertices to
unit length (similar to GWC*04]). We did not experience significant speedups using the former
approache.g, [HAT 700 method does not provide a good initial guess for our setting.

Using the initialization by normalization typically leads to many folds. After just a few iter-
ations, models with small dynamic range in their edge lengths produce valid embeddings without
folds (others take longer, but we always achieved fold free embeddings). At this point we already
have a parameterization but it is visually far from being as smooth as the solution achieved at the
energy minimum. For this reason, we continue our efforts untillth@orm of the gradient drops
below10~7...107°. This may seem excessive, but once the energy is close to the solution, the
accuracy typically improves super-linearly from magnitudes suchbas to 10~? in less tharb
iterations due to the fact that a Newton method is applied.

The entire process is performed without any constraints such as fixed vertices. Ew&n the
rotational degrees of freedom do not impact the solution process. Since the energy is rotationally

invariant, so is the residuatagnitudeand stopping criteria in the solver work as expected.
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In terms of time performance, we found that the Trust-Region solver finds solutions for small
models, such as triceratops and cow (both just uGdriangles), in just a few seconds. For the

igea model ¢7k triangles), the timings on a 3GHz Xeon processor are:

(wp,wa) || (1.0,0.0) | (1.0,0.1) | (1.0,1.0) | (0.1,1.0) | (0.0,1.0)
time 34m 5m 4m 12m 366m

We clearly observe a sweet spot from combining area and angle preservation. Our largest model,
the 400k triangle lion vase was parameterized in just over one houfdgy, w4) = (1.0,0.01).
We speculate that these performance timings could be further improved by using a hierarchical
preconditioning techniquedKS].

Figure4.5shows a number of examples computed with our solver usinﬁﬁ(e) energy. Note
the extreme texture distortion for the harmonic map on the armadillo. The entire upper body was
mapped into a very small region on the sphere robustly. Figurshows a comparison between
different classical energies all lifted to the spherical setting withdodrmodification. The relative
effects in terms of mesh shape are qualitatively identical to the results seen in planar parameteriza-
tions. Figuregt.5and4.5show remeshes of the skull and vase-lion geometry. These were obtained
by concatenating a (semi-)regular spherical mesh (with icosahedral base connectivity) and the re-

spective unconstrained spherical parameterization.

45 Conclusion and Future Work

We presented a simple approach to modify energies used in planar parameterization, making them
directly usable for spherical parameterization. Thanks to the upper-bound derivation we used, min-
imizing these novel energies dosst require the addition of constraints simply to avoid degenerate
solutions (and in the process adding additional distortion due to the constraints). Aside from the
generality of this approach, we also proposed a different (additive) balance between area and an-
gle distortion. This energy provides the standard angle versus area conservation tradeoff. Using
symbolic algebra methods to deal with the energies and their derivatives of first and second order,
coupled with the use of canned, highly tuned solvers gives us robust methods for a variety of pa-
rameterizations on the sphere with very little implementation effort. We expect that these methods

can be further improved through the use of hierarchical preconditioning techniques.
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(1,0.1) (1,0.01) (1,1)

Figure 4.5: We computed parameterizations for several lagf#k . . . 400k triangle) meshes using
the combined energlc with weightings(wp, wa ) as denoted in the image. No conditions were
enforced during the solve, nevertheless the parameterizations are fold-free.
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Maple code for spherical parameterization energy

Energy:=procd;, ¢, 0;, ¢;, O, o)
# convert angles int8d coordinates
x;:=cos(6;) sin(¢;);
yi:=sin(6;) sin(¢;);
Zi::COS(¢i);

#same fore;, y;, z; andxy, Y, 2k

#triangle edges

AXi=x; — x5, A=Yy — Yy AZ=z — 25,

Bx:=z; — xy; By:=y; — yi; BZi=z; — zi;
Cx:=x; — xp; CY:=y; — yi; CZ:=z; — 21;

# compute dot products the old fashioned way
AA=AXAX+HAY*AY+AZ*AZ;
BB:=Bx*Bx+By*By+Bz*Bz;
CC:=Cx*Cx+Cy*Cy+Cz*Cz;

AB:= Ax*Bx+Ay*By+Az*Bz,
AC:=-(AX*Cx+Ay*Cy+Az*Cz);

BC.= Bx*Cx+By*Cy+Bz*Cz;

# Area squared (use symmetric formula)

Area2:=/16 x (2« AAx BB +2% AA« CC +2+CC x BB — AA®> — BB? —

# radius of circumcircle on secant
RR:=AA x BB« CC/(16 * Area2);

#if triangle is acuted,,,;,, is distance to circumcircle center
if AB > 0 andAC > 0 andBC > 0then

tmp -d
else

# otherwised,,,;, is distance to midpoint of longest edge

Areaz | (aij ¥ AA 4 i, * BB + ajj, % CC));

min ( WA * areaqj

ceC?);

if AA> BBandAA > CCthen d,72 :=4/((z; +x;)% + (yi + )% + (zi + 2))2);

m’L’fL

elif BB> AAandBB > CC thend;m =4/((x; + )% + (yi +yr)? + (2 + 21)?);
else mzn._4/(($k + .’I}]) + (yk + y]) (Zk + ZJ)2)

end if;
tmp:=d;, 2 * (wa * 2792 4 wp (i % AA + g * BB+ aji x CC));
area;jk
end if;
tmp;
end proc:

Figure 4.6: Maple code for weighted area and spring energies.




Figure 4.7: Parameterization and remeshing of skull model. From left to right: original model,
hidden-line irregular mesh, texture-mapped parameterizatiop,w4) = (1,1), normal shaded
view of the spherical domain, the remesh and a close-up of the remesh.

Figure 4.8: Parameterization and remeshing of vase-lion model. The first row shows texture maps
of the computed parameterizatid¢wp,w4) = (1,1). The second row displays normal shaded
views of the domain. The third row shows the remesh from different views.
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Chapter 5

Conclusion

We have presented methods for normal remeshing. Our new method simplifies existing methods
and extends them to approximating construction. Because these methods rely on existing param-
eterizations we developed a method for spherical parameterizations which does not require the
specification of artificial constraints. As a consequence distortion was reduced and less user input

required. This chapter summarizes our work. We will also discuss links to other work and outline
possible future directions.
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5.1 Summary

We have presented a novel geometry pipeline based on unconstrained spherical parameterization
and normal remeshing. There were three contributions:

First we showed how to increase the stability of Normal Mesh construction while speeding it up
by decomposing the process into two stages: parameterization and remeshing. We showed that the
remeshing step can be seen as resampling under a small perturbation of the given parameterization.
Based on this observation we described a novel algorithm for efficient and stable (interpolating)
normal mesh construction via parameterization perturbation.

Our second contribution was the introduction of Variational Normal Meshes. We described a
novel algorithm for encoding these meshes and used our implementation to argue, that variational
normal meshes have a higher approximation quality than interpolating normal meshes as expected.
In particular we demonstrated that interpolating normal meshes have@bpetcent higher Haus-
dorff approximation error for the same number of vertices than our novel variational normal meshes.
We also showed that variational normal meshes have less aliasing artifacts than interpolating normal
meshes.

Our third contribution was the on parameterizations for unstructured genus zero meshes. Pre-
vious approaches could only avoid collapses by introducing artificial constraints or continuous re-
projections, which are avoided by our method. The key idea was to dgfimer boundenergies
that are still good approximations. We achieve this by dividing classical planar triangle energies by
the minimum distance to the sphere center. We proved that these simple modification provides the

desired upper bounds and are good approximations in the finite element sense.

5.2 Future Work

Critically sampled normal basis Laplacian pyramids are not orthogonal and are only the first
step toward the development of critically sampled basis transformation using approximating func-
tions. The basis functions in our variational normal mesh construction were still interpolating
(though not the approximation itself). Perhaps even better approximations can be built when us-
ing, e.g, cubic B-splines. As the iitge lifting construction from coarse to fine fails due to missing
orthogonality (see sectidh7.1) one would have to solve for the coefficients on all levels simultane-
ously in anon-linearminimization problem. The situation is complicated further, as the number of

coefficients in this construction is not constant: depending on the insertion of non-normal vertices
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the dimension of the problem can range betweeémthe normal andn in the fully vectorial case.
Variable dimensions are not trivially covered by the classic optimization theory, posing a major

challenge toward jugbrmulatingthe problem.

Numerical methods It should be possible to improve the optimization times of the spherical pa-
rameterization problem by using more sophisticated numerical methods. The trust-region solver
used BMMSO04] could not be used reliably in combination with a preconditioner. Trust-region
methods need positive definite preconditioning matrices, while planar (linear) parameterization
problems respond well to hierarchical preconditioniddk§]. Another promising direction is to
extend the trust-region method and permit temporary increase of the objective function during mini-
mization. In cases with narrow and curved valleys in the objective function landscape this relaxation

is sometimes more efficient than imposing strict decl@&T0d.

Displaced volumes Botsch and Kobbelt showed iBKO3] that the displacement of volumes pro-

vides good metaphor for editing subdivision surfaces. They presented a scheme reconstructing a
refined surface from displaced volumes over a single level. Using volumes to specify displacements
leads to an underconstrained optimization problem. The authors augmented this by a smoothing
term to obtain a solution. The connection to variational hormal meshes can be seen by the good
volume preservation of our method as observed in se@i6nThe application in BKO3] did not

require the measurement of reconstruction errors. Apparently no attempts were made to construct
a multi-level hierarchy. Their regularization during reconstruction requires the knowledge of many
original surface properties. Nevertheless the definition of surface detail as displacement of volumes

is a very attractive idea for the future development of variational normal meshes.
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Appendix A

Notes on Optimization

This chapter provides a high level review on solving certain types of nonlinear optimization prob-
lems on continuous domains. The key ideas, algorithms and references for a range of problems are
given. Several theoretical limitations are stated and tips on the selection of algorithms are provided.

This chapter is intended to be an introduction to the main ideas and and cannot be exhaustive.
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Numerical optimization is a concept for dealing with particular linear and nonlinear systems. We
have used optimization for important algorithmic steps throughout this thesis. To illuminate these
steps, this chapter is intended to present background information on a range of ideas for solving
optimization problems. We hope this will give the reader a better insight into our motivation when
designing these algorithms. To establish context and notation Sektlantroduces the continu-
ous optimization problem. In Sectign2 we attempt to classify objective functions by the structure
of available information. SectioA.3 surveys a number of numerical techniques for solving these
problems and recalls important convergence results.

The more experienced reader may skip ahead to Se&tibwhere we will discuss some of the

experiences that were gained during our experiments.

A.1 The Optimization Problem

A continuous optimization problem is given by an objective function
f:Q9->R

with associated domaifl. We typically assume th& C R", wheren is the number of variables.

Our goal is to find docal minimizerz,,;, of the objective, such that

f(@min) < f(x), VYa € U(zmin) (A.1)

for all valuesz in a small enough neighborhoad C (2 of x,,;,. The domairn is allowed to be all
or a subset oR™. In the latter case, we speak ofanstrainedoptimization problem.
This is amuchsimpler task than the solving tligobal minimization problem, where the mini-
mum over allz € 2 is sought. We focus on this subproblem for several reasons:
o Some problems have only one minimum. Finding the local solution is equivalent to obtaining
the global answer.
o Many physically motivated processes achieve only local minitewton’s apple fell straight to
the ground - it did not tunnel to the lowest point on eatttence, finding a nearby local solution
is sometimes more useful than obtaining the global minimizer.
¢ Finding local minimizer is a subproblem of finding the global optimizer.
o Efficient methods have been developed for finding local minima of smooth objective functions.

What makes the continuous problem more tractable than combinatorial optimization is the ability
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to resort to neighborhood arguments and the use of derivatives to find downhill directions. Many

ideas for solving the continuous problem are based on the Taylor series expansion.

Theorem 1 (Taylor Series Expansion)Let f : R™ — R be analytic and three times continuously

differentiable. Then
f(z+d) = f(z) + grad f(2)7 - d + %dT ‘Hess f(z) -d+ O(|ld|]*). (A.2)

We will repeatedly use the Taylor series expansion to obtain first and second order models of the
objective functionf. There are different approaches that can be used for minimization, such as
stochastic processeSpa03 Pol87 and convexity BV04]. Unfortunately, none of these other
approaches is enjoying the same success and popularity in the literature as method based on the
Taylor polynomial.

Most optimization methods are iterative and produce a series of better and better approximations
xo,T1, T2, ... ,x; Of the minimizer. Depending on availability, these methods are permitted to query
some of the following properties:

o f(x;) - the scalar value of the objective function. This data is used to check for progress, e.g., to
make suref (x;—1) > f(z;) ata sufficiently fast rate (Wolfe conditioNfV99, Kel95, CGT0Q).

o grad f(z;) - the gradient of the objective function. The gradientatan be represented as an
n—dimensional vector. A vanishing gradient is a strong indicator for a nearby stationary point
of the objective function. (Often called the first order necessary condition.) The gradient can be
used to define descent directions.

o Hess f(z;) - the Hessian of the objective function. The Hessian can be represented as an
(hopefully sparse!yn x n matrix and is often used for scaling or preconditioning the gradient
[BV0O4, NW99]. Using the Hessian in Newton-like algorithms leads to g-superlinear conver-
gence near the solution. The Hessian is in general not positive definite (only near the solution).
Positive definiteness in addition to a vanishing gradient is a sufficient condition for convergence
to a minimum. (Also called theecond order sufficient conditign

For constrained problems it is usually assumedfhean be described in a simple way, for example
by equality and inequalities. There are also developments for solving constraints defined by general

nonlinear equationgJGTO0Q.
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Figure A.1: Contour plots of objective functions using extra Ilght sources for shading. From left
to right top row: linear function, quadratic function, convex function and non-convex function with
unique minimum. From left to right bottom row: smooth function with two local minima, function
with discontinuous Hessian, function with discontinuous gradient at minimum and a noisy function.

A.2 An Attempt to classify Optimization Problems

In the previous section, we have described uses of the objective function, gradient and Hessian.
The Taylor series expansion also gives us also a way to roughly classify optimization problems by
difficulty. All things being equal, we can sort objective functions by increased unpredictability of
the error term. For now we assume an unconstrained objective function, wheyeatl be chosen
arbitrarily fromQ = R™ (examples are given in Figue1). Ideally the objective function is very

smooth (at least two continuous derivatives).

1. Without constraints, affine objective functions (defined by zero second and higher order
derivatives) have no interesting minimizers. Solving constrained affine problems on the other
hand has many important applications for instance in Operations Research and isresied

programming Van01].

2. Quadratic functions are the simplest unconstrained objectives. These functions are character-
ized by constant, positive definite Hessian matrices. (Otherwise the function shape would be
a saddle and unbounded from below.) Quadratic objectives are usually minimized with linear
equation systems. This means these problems are simple, well understood and very popular

in comparison to problems with variable or no Hessian.

3. Objective functions with varying, but positive definite Hessian (everywhere). Such functions
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are convex (or “bowl”-shaped). (But convex functions in general are 6fily Convex
functions have a unique minimum. Convexity is not easy to identify, but once known a broad
theory with efficient solution methods exi®Y04]. Nice convex functions can be solved at

the equivalent cost of a few linear solves.

. Non-convex functions with uniqgue minima. The Hessian is indefinite in some regions away
from the minimum. As a consequence minimization approaches will have to deal with zero
or negative curvature directions (multiple valleys in FigAr&, upper right) Because of these
negative curvature directions, methods specialized on convex functions will often fail, be-
cause for efficiency reasons they often rely on methods like the Cholesky decomposition of
the Hessian. In regions away from the minimireultiple narrow valleys might exist, with

the potential of increasing the ill-conditioning of the problem. While there might be a single

minimizer, computationally this problem has to be solved with the same methods as the next.

. The last fairly nice function class is that of objectives with arbitrary (but hopefully smooth and

bounded) Hessians. These objective functions are assumed to have multiple minima. Given
a reasonable starting guess many algorithms using descent directions will produce a solution
that is in some sense near the starting point. But in general there is no control over which of

the local minimizers is picked. For an efficiently solved problem in this class$d803.

. Objectives with piecewise discontinuous or unbounded Hessians lead in the experience of the
author to less well conditioned problems (as similar objective functions with nicer Hessians).

In practice using this Hessian information to precondition the gradient is often still desirable.

. Objective functions that are only! continuous with no access to Hessian information for
preconditioning. Simple problems of this class can still be solved with high accuracy using

first order (gradient descent) methods.

. A very hard case ar€’ objectives with piecewise continuous or no gradient at all. Here
access to the main stopping criterion (a vanishing gradient) is lacking. With no additional
information (like subgradientsPpl87) one can only expect to obtain a relaxation of the

objective value.

. Itis even harder to deal with stochastic objective functions. These are assumed to be com-
posed of a deterministic function that is perturbed by an independently, identically distributed

zero mean noise ternspa03.
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Figure A.2: Examples of simple constraints (from left to right): identity constraints, linear equal-
ity constraints, nonlinear equality constraints, ball (or distance) constraints and linear inequality
constraints.

Functions that resist above classification scheme are for instghcenvex or discontinuous quasi-
convex. The global knowledge implied by the convexity arguments leads to more efficient modeling
than using the Taylor series expansion alone (see ChapteP5i®7 and Chapter 11 inGQGT0Q).
Above classification is mostly done by structure into. Additional difficulty is arises if a particular
problem is ill-conditioned. With this we mean the appearance of long and thin (and even worse:
curved) valleys in the objective function landscape. These valleys are tracked by many methods
with high precision along the bottom, which makes the search for the minimum quite expensive.
Optimization problems can be further classified by their type of constraints. Constraints are used
to describe the domaift which is usually called théeasible set (Examples are given in Figure
A.2.) Constraints significantly complicate finding the solution of optimization problems. For this
reason we expect that a feasible Qds described in a simple way. In particular one wants to have

efficient tests for feasibility: €’  and often it helps to know how to navigate on the bound¥y

1. Identity constraints: some variables are assumed to be constant’. This is the simplest
form of constraints and often implemented using Lagrange multipliers by modifying gradient
and Hessian of the objective. Such modifications can be numerically rigid and visibly disturb

the gradient and error residual in a neighborhood of the affected variables.

2. Linear equality constraints: A linear combination of variable is assumed to be constant
Axz = c. This constraint is often numerically nicer than the identity constraint, because the
disturbance is distributed over multiple variables. Eliminating equality constraints can make
a sparse Hessian denser, hence some care needs to be taken in their implem&wadpn [
(Chapter 10).

3. Nonlinear equality constraints: The solution vectonas to satisfy a set of nonlinear equa-

tionsc(z) = 0. Solving nonlinear equations is geneaalleast as difficulas minimizing an
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objective, so this is a hard problem. This is complicated by the fact that there are now two
residuals (one for the optimization and one for the nonlinear equations) leading in general to
(slightly) suboptimal and (slightly) infeasible solutions. Sometimes it is possible to combine

both nonlinear problems into either a single objective function or nonlinear sy&&m(qqJ.

4. Inequality constraints: Variables are assumed to be bouridgdAz+b. Multiple constraints

of this type will form the faces of a simpleBl04] (Chapter 11).

5. Ball constraints: Given a norh||, centerc and radius- a ball is defined byB = {||z —¢|| <
r}. Solutions of this problem for simple (often quadratic) objective functions form the basis
of trust-region methodsJGTO0(.

Finding an initial pointzy € €2 can be a difficult task. Combinations of many constraints can shrink

the domairf2 C R™ into the empty set and make the optimization probiefaasible

A.3 Methods for Solving Optimization Problems

For any non-stationatyargumentz; and vectord, one of the directiong or —d points downhill.
Roughly speaking this means half of the directions will lead to a reduction of the objective. Why
don’t we just follow one of these directions and see where it leads us?

Not surprisingly some directions are better than others. A popular choice is to minimize the
objective by varying only one of the coordinatesmgf This is motivated by the Gauss-Seidel itera-
tion for solving linear systems and in this context cakedrdinate descemhethods. Surprisingly
in the nonlinear setting it was shown that these methods are not guaranteed to converge. Even if
they converge, they might do so only very slowly (sB8\[99] p.53ff). Powell constructed in 1973
several examples of three-dimensional objectives for which coordinate descent methods cycle in-
finitely between6 different attractors and fail to converge to a point with zero gradifot/3.
One problem of this method is that the descent directions can get arbitrarily close to orthogonal to
the gradient. This makes progressy slow

Still, this idea is useful because it introduces the idea of line-searches. The one-dimensional
problem - minimizing a function along a line+ \d - is fairly easy to solve (for instance brute force
using binary search). The exact solution is often not required. In practice one searches for values

of A € (0, 1] are for whichf(z + Ad) is in some senssufficiently smallethan f(z). This can be

A point z is calledstationaryor first order criticalif grad f(z) = 0, e.g, the tangent plane of the objective function
is horizontal atc.
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achieved viabacktracking methodsvhich start from\y, = 1 and iteratively decreask; until the
sufficient decrease of the objective in directibis achieved. This final is often referred to astep
length?

We are going to state the convergence rates of different algorithms in terms of their asymptotic
behavior. We will distinguish three different types, namely g-linear, g-superlinear and g-quadratic
rates Kel95].° Q-Linear convergence denotes a growth of significant digits that is linear in the
iteration number, e.g()(¢) (in other words the error declines with geometric rate). g-superlinear
convergence refers to more than geometric error decline, e.g., an escalating increase of significant
digits in each step, e.gQ(7). Q-Quadratic convergence stands for a doubling of significant digits

in each iteration, or exponential growth of significant digt&?).

A.3.1 First Order Methods

A better idea than using simple coordinate descent is based on building a first order model of the
objective, namely
f(@i +d;) = f(z;) + grad f(z;) - d; (A.3)

and to follow a descent directiahthat is obtained from the gradient in each iteration step. If the
descent directiod; = —grad f(z;) is the negative gradient and a step lengtlis chosen to find

the minimum along this direction, then the very grestigepest descentethod (in the Euclidean
norm) is obtainedIW99, BV04, Pol87. Itis surprising, but has been demonstrated again and again
[NW99, BV04, Pol87 that the performance of unpreconditioned descent methods can be quite poor.
One reason for this poor behavior lies in the abrupt direction change in each minimization step, e.g.,

for the steepest descent methfyd; - d; = 0.

Theorem 2 (Convergence rate steepest descentpt f be twice continuously differentiable. If
the steepest descent method is started sufficiently close to a minifhwith positive definite

Hess f(z*), then the sequencgx;) converges with rate

f@iv1) — f(z*) An — A1)
o) — @) = (An T A1> (A4)

where)\; is the smallest and,, is the largest eigenvalue #ess f(z*) (Theorem 3.4 in[{W99

2This is slightly misleading as in genetfad|| # 1.
3The “q” refers to “quotient” and is chosen to disambiguate the introduced terms.
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p.49). We also obtain convergence for the point sequence

Ay — A\ ¢
< .
<)\n+>\1+6> (A.5)

as Theorem 4 infol87] p.27 shows.

The convergence rate is g-linear and easily observed in practice. The main problem is a factor
that is close td for many problems, even of very modest size. Because the factor depends on the
condition number of the Hessian, it can be improved by carefully changing to a different set of
variables defining the objective. In general this is not easy and hence methods have been developed
that are more robust to this problem.

Itis quite surprising that following randomly chosen descent directions as for instance described
in the SPSA method isn average as good as following the exact grad[@ua03Pol87. From this
one should realize that following the gradient downhill is not a particularly original or efficient. This
argument should also show on an intuitive level, that better downhill directions than the gradient
exist (because the average includes many directions that perform worse than the gradient).

One idea that performs better than the steepest descent method is physically motivated and
simulates a “heavy ball” rolling down the objective landscape. This dampens the direction changes
and achieves under ideal parameter selection for the damping the same convergence rate as the

popular nonlinear conjugate gradient method (refePw§7 p.74).

Observation 1 (Convergence rate linear conjugate gradient)The linear conjugate gradient method

with constant Hessiad converges with geometric (g-linear) rate. The error is bound by

i — o] LY
li*f“ <o X2 ). (A.6)
o — [ N

(See equation 2.15 irKel95 and for a sharper bound Theorem 5.5 iN|99.))

Compared to the steepest descent method the main difference is the square root on the spectral
condition numberi—:l. This means thatat least in the linear setting for quadratic energi¢he
conjugate gradient method converges much faster than the steepest descent method. It also does
not require any tuning of a damping parameter (as for the heavy ball method) to achieve this rate.
Different nonlinear extensions to the conjugate gradient methods exist and behave similarly well

in practice. But because they have a “memory” of previously encountered nonlinear data, their
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theoretical analysis is complex. The Fletcher-Reeves variant is often less efficient than the Polak-
Ribiére+ algorithm and recommended by different authbil&/p9, PTVF92.4
One reason causing the gradient to be a poor downhill directiondsjitsndenceven on simple

affine scaling of the variables.
grad (f(Az)) = A - grad f(Ax) (A.7)

This means a steepest descent algorithm’s performance will depend on the chosen “parameteriza-
tion” - or on the scaling of the variableBlYV99, BV04]. While this appears to be a minor problem,

this sensitivity has great practical implications: for instance in the parameterization problems dis-
cussed in Chaptet hugedisparities on the edge lengths appear during the minimization. Such
situations need to be handled in a robust way across all scale! Newton-steps are independent of
affine transformationdyW99].°

Poor scaling of the gradient has also the potential to ruin a main termination criterion, which
is based on the vanishing norm of the gradient. For this reason users are required to carefully
pick anapplication dependerthresholde for the gradient nornfigrad f(z;)|| < e for termination
[BMMSO04].

A range of methods has been developed to automatically define good preconditioning matrices
to obtain better search directions. Some (often positive definite) matficase updated in each
iteration step from the available gradient information. The gradient direction is scaled with the
inverseH,; = B;l of this matrix to obtain the new step directidn= —H, - grad f(x;). These
methods often try to converge to the Newton method and are commonly referregutasksNewton
iterations. Different construction rules for ti& are, for instance, Broyden’s methd¢d195, Pol87,

NW99], the Davidson-Fletcher-Powell method (DFIPp]87 NW99] or the SR1 methodyW99.
What makes these methods particularly attractive, is that direct update-rules fdy éxést. This
means there is no need to invert a matrix in each iteration®#dpthe mentioned methods converge
in a neighborhood of the minimum with g-linear or even g-superlinear ka®5b, Pol87 NW99].

But g-superlinear rate is only achieved if tBgconverge to the Hessian - which for large dimension

n is rarely practical to await.

Observation 2 (First order methods) The cost of first order methods is very low if counted on a

“The simpler Polak-Ritgire (no “plus”) method performs well in practice but can fail to converge without periodic
restarts.

The underlying problem does not magically disappear but is handed over to the linear equation systems solver.

5But H; might not be sparse.
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o T1T2 ... Xo o4 T5T3T1
Figure A.3: Without step length control the decrease of the objective function can be too small
either because of too short (left graph) or too long (right graph) step lengths.

per iteration basis. Their strength lies in the following situations
a) the sequence; is still far away from the solution.
b) the dimensiom of the problem is reasonably small or well-posed.

¢) or if Hessian information can not be obtained. In practice the most efficient first order meth-
ods are the nonlinear conjugate gradient for well-conditioned and quasi-Newton methods for ill-

conditioned objectives.

A.3.2 Ensuring Convergence

Before we go into more detail and discuss second order algorithms for solving the optimization
problem, we will motivate some results for ensuring convergence for arbitrary starting guess. Just
having a decreasing sequence of objectiffes) > f(z1) > --- > f(x;) > ... does not guarantee
convergencéo the sought for minimurfi(x,,.;,, ). Indeed the sequence this sequence might converge

to some value larger thaf{z,,;,) as shown by the two examples in Figéte3. To simplify conver-

gence arguments a number of criteria have been developed that provide simple to check conditions
on the step length guaranteeing sufficient progress toward a solution. For line search methods these
checks are based either on #elfe conditiongleading in combination with backtracking methods

to the Armijo rule) or the less often use@oldstein conditiongNW99, Kel95]. For trust-region
methods the most often used progress criterion idugchy poin{NW99, CGT0Q.

The nature of these conditions is technical, and for this reason we will not repeat the exact
formulas here. But we can't stress their practical importance enough. Not only do these conditions
virtually guarantee convergence, but they are also designed to be simple and inexpensive to check.
Furthermore they are designed to not interfere with rapid convergence. In particular none of the

three conditions will interfere with the rapid convergence rates achievable by Newton-like methods.
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Figure A.4:The functionf(z) = 1 — cos(arccos(z)) has a uniqgue minimum at= 0. The Newton
method without step length control converges for the starting gugss 0.4 and diverges for the
slightly larger initializationby = 0.6. Using step length control the Newton method can be made
globally convergent. But even then g-superlinear convergence is only observable near the solution!

A.3.3 Second Order Methods

Second order models can be motivated by several observations. We will assume that we can approx-

imate the objective in each iteration step by a model constructed using the Taylor series expansion:
1
f(ziz1) = f(xi +d;) = f(z;) +grad f(z;)T - d; + §dz‘T -Hess f(x;) - d;

Assuming a positive definite Hessian, we can solve the constant quadratic model by taking the

gradient with respect ta;
d; = —Hess f(x;)"! - grad f(z;) (A.8)

to obtain the formula for thé&ewton-iteration Instead of inverting the Hessian, the new search
directiond; is best obtained by solving a linear equation system. The new search diréctian
also be interpreted as the linearization of the first order optimality conditioas the direction of
steepest desceint the Hessian nornijd|| = (d Hess f(x)d)". This iterative procedure does not
converge wherx is set to be far away from the minimizer, as the example in Figudeshows.

But if convergence is achieved, it happens at an astonishing rate:

Theorem 3 (Convergence rate Newton method).et f be twice differentiable anHess f be Lip-
schitz continuous and in the neighborhood of the mininuyy,. If the Newton iteratiomA.8 is
started withzq sufficiently close ta:,,,;, the generated point sequence converges- x,,;,. The

convergence rate dfr; — x| @and||grad f(z;)|| is g-quadratic.

"This idea is used for indefinite matrices occurring in non-linear equation systems.
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The Newton method is designed to minimize an objective that happens to be purely quadxatic
single step But without step length control as discussed in Sectidh2 all Newton-like methods
will fail even for simple convex functiowen started sufficiently far from the solution (as happened
to sequencé; in FigureA.4)!

To benefit from the good final convergence rate, essentially all second order models will try
to perform the Newton step first. If the Newton step fails to produce a sufficient decrease of the
objective, like that specified by the Wolfe condition, alternative steps have to be considered. These
alternatives are often obtained by backtracking via step length reduction. Computing the Newton
direction requires the solution of a linear problem. This is an expensive step that pays off either when
g-quadratic convergence is observed, or when the problem is too ill-posed for first order methods.
A clever implementation will not spend too much time on the linear solve and terminate early with
an approximate solution, if it can decide that g-quadratic convergence is unlikely. This can be done,
for instance, when negative curvature directions are encountered in the Hessian matrix. Defining

good early truncation criteria is still actively researched and are discussed further in 2edt®n

Observation 3 (Newton methods)Depending on the implementation of the line search, Newton
methods can be fragile when operating far away from the solution. Their ultimate strength is the
end game, where superior convergence rates are achieved. Newton methods can use a variety of
linear solvers (for non-convex problems they must be able to handle indefinite Hessian matrices)

and have no particular restrictions on preconditioners.

Trust-region methodgrovide a more flexible framework compared to line-search methods. In-
stead of finding (approximate) minimizers along line segments, the search is extended to cover finite
volumes. To keep dealing with these regions simple, they are usually defined as balls measured in
some norm||.||. FigureA.5 shows the basic framework of a trust-region minimizer as described
in [CGTOQ. One motivation behind introducing trust-region methods is the desire to increase the
granularity of the solution process: not only do balls cover more search space than line segments,
but one has more flexibility in designing algorithms for obtaining a solution of the current step.
Interestingly, this is achieved by creating a sequence of simple but non-trivially constrained sub-
problems.

A popular second order trust-region method was proposed independently by Steihaug and by
Toint [NW99, CGTO0( and was implemented by the author FMS03 and also available in TAO
[BMMSO04]. At the heart of this method is a modified linear/nonlinear conjugate gradient solver.

This method is not difficult to implement and works very well in practice. Its main strength is
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Basic trust-region algorithm

Step O: Initialization.
An initial point zy and an initial trust-region radiu&, are given.
Computef (o) and set = 0.

Step 1: Model Definition.
Chose a norn|.||; that defines the shape of a b&l] centered at; with radiusA,;.
Define a modein; for the objectivef on the trust-regiorB;.

Step 2: Step calculation.
Compute a steg; that “sufficiently reduces” the modet; and
stays inside of the trust-region, e.g;,+ d; € B;.

Step 3: Acceptance.
Computef(z; + d;) and decide if the model predicted the decrease of
the objective function well.
If the prediction was good the step is acceptedand := z; + d;.
Otherwise the step is rejected and ; := ;.

Step 4: Trust-region radius update.
If the prediction of the model turned out to be
very accurate Allow for a larger trust-region and increase the radius.
reasonably goodKeep the trust region radius; ;; := A,.
poor. Decrease the trust region radius.

Increment by 1 and continue with step 1.

Figure A.5: The basic trust-region algorithm as described @G T0Q.
the relatively efficient handling of points; that are still far away from the region of Newton-
convergence. But there is a serious drawback of this method compared to line-search Newton solvers
in the quadratically convergent region: currently there is no theory on the preconditioning of trust-
region solver witharbitrary preconditioners. According t&€[GT0(Q the preconditioning matrix/
has to be positive definite so it can be used to define a nojfm for measuring the trust-region
radius. Maybe this problem is minor and easily fixed, but a lack of preconditioning has serious

implications on the practically achievable convergence rate, as we will discuss later.

A.3.4 Nonlinear Equations

Observation 4 If we could only solve nonlinear equation systems efficiently, we would have no

need for developing methods for the more specialized optimization problem.

The first order optimality conditiograd f(x.;») = 0 connects the continuous optimization prob-

lem defined by equatioA.1 with the solution of a system of nonlinear equations. Nonlinear equa-
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tions are defined by

g(z) =0 (A.9)

g:R*"— R"

Jacg : R" — R™™

Two differences are obvious between both problems: nonlinear equations lack an objective function
to check for progress. The Jacobiangok also usually neither symmetric or positive definite —
even at the solution! The indefiniteness of the Jacobian is not a serious problem for solving smooth
nonlinear equation systems using the Newton method ¢sel®%, CGT0Q and also the detailed
discussion in BMNO1]). But the lack of an objective function has consequences. To be able to

check for progress toward a solution one usually introduces the norm of the residual

llg(a) 3 (A.10)

as amerit functionor pseudo energyNW99, Kel95, CGT0(J. Using the square of thé, norm,
transforms solving nonlinear equations into a smaygltbal optimization problem (Chapter 16 in
[CGTOQ). But not all nonlinear equations have a solution: in this case even the global minimum is
meaningless. Similarly, many local minimaAfLOwill not satisfyg(z) = 0. Local methods might
get stuck when trapped between local maxima (see Figyuie

In this context, it is worth pointing out the simplicity of the linear conjugated gradient method
(a Krylov iteration solver for quadratic systems defining an objective function) with the algorithmic
complexity for instance of the generalized minimum residual (GMRES) method (which can deal
with indefinite linear equation system$J€l95]. In some sense this increased complexity reflects
the consequences that the loss of structure — of not having a proper objective function — has.

We must be cautious of treating formual0 as a proper energy from which gradient and
Hessian energy are derived. In the simple case of a linear, but indefinite equation gfystemAx,
we could obtain

flz) = %CCTATAx
g(z) = Ax grad f(r) = AT Ax
Jacg(z) = A Hess f(z) = AT A.

The new objectivef (z) still needs to be globally minimized to obtain a solutioryte:) = 0.
What makes this transformation really impractical is a condition number of the He$5idnhat is
the square of the condition number of the JacoblalfFor a deeper treatment compare the remarks
on the CGNR and CGNE maodifications on page 254alp5].)



69
f(x) =1 — cos(arctan(x))

\

grad f(z)

Hess f(z)

3llgrad £ ()|

Figure A.6: The objectivef(z) = 1 — cos(arctan(z)) (top) has a uniqgue minimum and poses
no problem to minimization using most local schemes and arbitrary starting guegs$x)If(top
graph) is replaced by‘j”grad f(x)||? (bottom) convergence to,,;, requires global minimization

if a starting guess;y with Hess f(z¢) < 0 is used.

Observation 5 We conclude that solving nonlinear equations is a similar, but structurally more
difficult problem than minimizing an objective function. In particular nonlinear equatiegsairea

starting guess near the solution, while for optimization problems this isdegirable

Fortunately there are many problems, in particular time-dependent systems, that allow to track solu-
tions while varying some parameters. Such ideas are also formally explored in continuation methods
(INW99] Chapter 11.3).

A.4 Practical Considerations

In this section we discuss a range of topics that arise during the practical design of objective func-
tions and numerical minimization. In reality, computations are not performed with infinite precision,
might not last long enough to see asymptotic behavior, might fail due to ill-posedness or indefinite-

ness of the objective and so on.
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A.4.1 The Presence of Numerical Noise

So far, we assumed that all numerical computations were performed with infinite precision. Ob-
viously this assumption does not hold for machine numbers. But there are many more sources of
inaccuracy. For example, the objective function is noisy, because it comes from a physical process
or is computed using numerical quadrature, a gradient is noisy because it is computed via finite
differences, or the Newton-step is noisy because an iterative method for is used for solving the lin-
ear equation system. In general, there are preventable errors, that are reduced by diligent work and
errors that escape control. How do these errors affect the minimization process and which conse-
guences does their propagation have for the convergence results? Higher order algorithms are more
sensitive to noise than simpler methods. This is fairly intuitive, but can be shown rigor&a$8y].

In general, stochastic noise poses less of an obstacle than deterministic noise, mainly because it has
the tendency to cancel out by the law of large numbers. This sometimes happens naturally for the

algorithms discussed so far, but can be strictly enforced as discus s8] [(p.98ff) and Spa03.

Firstorder methods The behavior of the gradient descent method using noisy gragjeadsf (x;)+

r; yields no surprise. As long as the noise level is smaller than the magnitude of the exact gradient
Ilrill < |lgrad f(x;)||, the usual rate of progress is made toward the minimum. Once the noise
level gets larger than the gradient, the descent breaks down, in general somewhere near the solution
[Pol87.

Second order methods The analysis of the Newton-steps shows more insights. Because of ill-
conditioning the Newton-direction can be noisy, even if gradient and Hessian are exact to machine

precision. This situation can still be analyzed using perturbed gradients.

Theorem 4 (Convergence of inexact Newton-iteration)Let us assume a setting (positive Hes-
sian, starting guess near minimum) where the exact Newton iterdtien—Hess f(z;) " 'grad f(x;)
converges g-quadratically to the minimum. Let us instead use a noisy gradient (or solve the
linear system inexactly) such that the residual = Hess f(x;)d; + grad f(z;) is bound by
lrill < millgrad f(z;)||. Then the sequencés; — x| and||grad f(z;)|| converge

o g-linearly, ifn; < n for somen € [0, 1).

o g-superlinearly, ify; — 0.

o g-quadratically, ifn; = O(||grad f(z;)||).
(Compare with NW99 p.136, [Kel95 p.96 or [Pol87] p.103)
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This result can be directly used for tuning the accuracy of the linear step using particular forcing
sequences; as is illustrated in Figurd.8. It assures us that convergence of the inexact Newton-
iteration is at least linear with such a simple choicejas- 0.5 and can be tweaked in the limit by

using, for exampley; = \/||grad f(z;)]| for g-superlinear ory; = ||grad f(z;)| for g-quadratic

rate. The g-linear rate can be achieved even in the presence of ill-conditioned Hessians as discussed
by Theorem 6.1.3 inel95].

Achievable convergence rates At this point we would like to highlight the confusing nature of
Theorem4. How can it be that a Newton-solver — which for the sake of argument is based on
a linear conjugate gradient method and use®nstant (!) second order objective function model

— converge g-quadratically, while a nonlinear solkiering access to continuously updated, exact
objective informatiorshows only g-linear convergen&e®e offer two answers to this question.

First the simple answer: in our example, the g-quadratic convergence is due to bad accounting.
Even under ideal early termination conditions, CG-Newton-steps should rarely beat the the non-
linear conjugate gradient method! But this answer is slightlivealn real implementations, the
Newton-method has two advantages. First, it saves the castinfexact objective function and
gradient evaluations (used in line-searches) at the cossiobéeHessian evaluation, which is used

to formulate the quadratic model. If objective function and gradient evaluations are expensive, this
provides time savings by@nstantfactor. The second, more hidden advantage is that the Newton-
step defines a large, modular “chunk”well-understoodvork. By Theoren¥ near the solution,

the Newton step reduces the problem of efficiently solving nonlinear systems to efficiently solving
linear equations! Particular linear systems may have solution methods and preconditioners that out-
perform the simple conjugate gradient method! This allows to leverage from known techniques and

potentially achieve a g-superlinear speedup as measured in real CPU cycles.

A.4.2 A Simple but More Realistic Cost Model

In SectionA.3 we stated the the algorithmic progress in the limit as a function of iteration steps,
where each step was either a line-search or a minimization in a trust-region. We noticed in Section
A.4.1that the cost of each iterative step can be highly variable and consequentially influence how
we think about the observed convergence rate.

There are two components that contribute to this cost. The fipsbldem specifiand accounts

8 This question is rarely asked in the optimization literature. Theorem 3 on page 72 in Polyak discusses a similar
problem.
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for how expensive the evaluation of the objective function, its gradient and Hessian are. The second
component isnethod specifiand has to account for how frequently objective information is updated
and how it is processed. The processing is often dominated by linear algebra routines, in particular

operations on high dimensional vectors and matrices.

A.4.2.1 The Cost of Objective Function Information

If not stated otherwise we will assume that the objective function and its gradient can be evaluated

with high precision.

The objective function Clearly there is no theoretical limit on the complexity of objective func-
tions. Nevertheless if we are interested in solving problems with a large humber of variables
n =103%...105, we have to restrict our attention to functions that can be evaluated efficiently. This
means in particular linear (or at most quadratic) time. One objective type that fits this description is
additive’

flat e =3 Y fij(al,ad). (A.11)

=1 jeN(4)
Such objective functions appear frequently enough as the solution of integrals over finitely sup-
ported basis functions. For now we assume thatfther?, z7) are fairly simple formulas and the
sets of interacting variabled/(i)| < k are not too large (saly = 3...100). This particular struc-
ture permits us to evaluate the objective function with very little loss in machine preeisici) 16

in linear timeO(n).

The gradient Differentiating equatiom\.11 gives us a formula

grad f(z!,...,2") = i Z grad fij(:z:i,xj) (A.12)
i=1 jEN (i)
that allows for easy assembling of the gradient frgrad fij(xi,:cj). If the chain rule is used to
obtain the formulas fograd f;;(z", x7) one typically observes increased algebraic complexity of
evaluatinggrad f;;(z*, z7) over f;;(«*, 27). For this reason computingrad f;;(x*, 27) via finite
differences might appear competitive. In some situations this could indeed lead to more efficient
evaluation than symbolic differentiation. But finite differences are hard to tune. Even under per-

fect conditions the finite difference gradient will have at most half the number of significant digits

®Multiplicative formulas can be converted into a summation by taking the logarithm, keeping monotonicity.



73

than the objective function it is computed with£ 10~%). Most iterative algorithms will evaluate
the gradient at most once per iteration, while calling the objective function multiple times (particu-
larly for step-length control reasons). This means, in general, that the computation of the gradient

unlikely to be a performance bottleneck.

The Hessian Differentiating our model objective function one more time yields a sparse Hessian

Hess f(z',...,2") = Zn: > Hess f;;(2',27). (A.13)
i=1 jEN(4)
Itis often very desirable to store the Hessian matrix in main memory for efficient access by the linear
solver. Memory availability restricts us to stdtél matrices to problems with less thae® . .. 10*
variables. It can be beneficial to define matrices that have a sparser structure and entries with less
accuracy than the exact Hessian. Such matrices might be used as discussed inAS@&ifom
preconditioning inexact or quasi-Newton steps.
Enforcing some simple constraints like the averagalb¥ariables leads to full Hessians. One
way to handle these without storing huge matrices is to define “matrix-free” matrices. These could
be hybrid, where a sparse part of the Hessian is stored and the simpler full part is evaluated dynami-
cally. Particularly iterative linear solvers only need to have access to the results of the matrix-vector
multiplication. The drawback of this approach is a limitation to available matrix-free or even custom
preconditioners. (Many available preconditioners don't work without explicit matrix access!)
Evaluating HessianHess f;;(z*,z7) via symbolic differentiation often leads to computations

that nicely fit into the cache and are limited only by FPU throughput, and not by main memory
bandwidth. Matrix entries can be computed independently. For this reason, using a compiler sup-
porting loop parallelization can have dramatic impact on the assembly times of the HEsElam.
relative accuracy of the Hessian appears to be less critical than the accuracy of the gradient for some
applications like parameterization (Chapter Hypothetically it might be beneficial to evaluate and
store the entries of the Hessian only wat+bit accuracy. In our experiments we did not observe a

significant advantage from this approach. We do not have a satisfactory explanation for this.

A.4.2.2 The Cost of Linear Algebra Subroutines

Solving large linear equation systems can be an expensive task. This is particularly true, if ill-

conditioned matrices are encountered. But for systems with large numbers of variables a mundane

9The Intel Pentium IV CPU for instance supports SIMD SSE2 instructions and hyper-threading.



74

problem moves into the center stage: insufficient cache size and low main memory bandwidth.

Observation 6 A 3 GHz Pentium IV processor has a theoretical peak performandeGiFlop/s.
The bus bandwidth of GBytes/s limits just accessing large vectors like= (z!,...,z") or
grad f(x) to at most250 million numbers per second! Using vector operations the FPU can't

be utilized with more thaf percent peak performance.

There is nothing we can do about the cost of vector-vector operations thé(ajeand can be
precisely accounted with the memory bandwidth. The cost of matrix inversion often leads a lot of
room for creativity.

It would be nice if one could partition the optimization problem into cache friendly chunks.
One step in this direction are direct linear solvers like SupeBGET99), but this only addresses
one part of the problem. At a certain problem size, the vector of variable®R™ will not fit into
the cache and just accessing this (or any other) vector will make the cache useless. The obvious
solution is to only work on a moderately sized subset of variables that can reside in the cache and is
independent of the problem size. (On the ordet@f. . . 1000 variables for current processors and
reasonably sparse problems.) This subset might be periodically selected by analyzing the descent
direction generated by the classic method and picking the variablésat contributed the most
to this direction. (Some form of principal component analysis?) This idea in some sense is a
generalization of coordinates descent or hierarchical methods. (But with a search direction selection
based on the gradient.) If such a method would converge, it will most likely have a higher iteration
count than the original descent method. But with the memory gap continuing to grow (and already
having only3 to 10 percent utilization in the linear algebra kernel), such an approach might well
pay off when factoring memory access in.

Finally, one could implement the linear algebra kernel on hardware that is not as bandwidth
limited, as are GPUs on graphics cards or FPGAs. Currently these chips don’t have high floating
point precision. But they would still be useful in obtaining an approximate solution. The solution

could be improved to full precision with a few Newton steps on the CPU.

A.4.3 Early Truncation and Inexact Solutions

Now that we have cost models both for obtaining objective information and the linear algebra rou-
tines, we need to discuss how to distribute the effort between the two computations. The mini-
mization algorithms discussed in this chapter are modular and alternate between obtaining objective

information and using it in linear algebra subroutines.
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Figure A.7: Plotting the distancef(z;) — f(z) over the iteration numbei (left graph) shows

very fast convergence for the Newton trust-region method compared to the g-linear convergence of
all other methods. Plotting progress over CPU-time (right) the picture is more differentiated. The
Newton method still wins, but only by a moderate margin compared to LMVM, a limited memory
guasi-Newton method. (The results for CGPR and CGPR+ are identical in this case.) The test
problem was a small spherical parameterization problem with alb00® variables (a very coarse
version of the igea model in Figuse5) and the library used was TABMMS04.

During the time spent in the linear solver, the gradient and Hessian information is assumed to be
constant. This is appropriate, if the objective truly is a linear or quadratic function. But in general
functions have nonzero second and third derivatives as discussed earlier in @e2tidfor this
reason, we need to get a new view of gradient and Hessian information periodically. The question
is, how often should the objective information be updated?

Iterative solvers rarely compute exact solutions in a finite number of steps. Instead, they will
terminate with some residual error. If the objective information used in the solver was relatively
expensive to obtain, we have a motivation to squeeze the last bit of information out of it and solve
the linear algebra computations with high precision. If, on the other hand, the objective information
is cheap to update, then it should be beneficial to do so often to keep the current model as accurate
as possible.

One interesting result is that being inexact often pays off. It can be shown that in many situations
we can afford lower order inaccuracies as long as sufficient progress is made toward the solution.
Examples of ideas where inexact solutions are efficient include: choosing backtracking over exact
line search, solving for the Newton step with only limited accuracy, or approximately enforcing

constraints while being being far from a solution.
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Figure A.8: Comparing the convergence rates of the Newton trust-region metligid81504
using forcing sequenceg = 1075,1073,0.1 and 0.5 for the accuracy in the linear step. Using
iteration count as cost model the left graph shows faster than linear convergence for steps with high
accuracy, but mostly linear convergence the low accuracy step 0.5. Plotting the convergence
rate over CPU time shows a slightly different picture: steps with very high and very low accuracy
take more time to converge than steps with intermediate accuracy. The test problem is the same as
in Figure A.7.

A.4.4 Termination Criteria

At some point, any computation has to stop and return a result. How can we monitor convergence
and make the decision that it is not worth continuing? Only in test cases do we know the solution
Tmin- IN MoOSt other cases, even the objective valge,,;,) is unknown at the minimum! All we

have access to are the objective reductign=f(z;+1) — f(«;), the stepd; = z;4+1 — x; and

the gradient of the objectivgrad f(x;). How are these related? For smooth functions we can
refer once more to the Taylor series expansion. We see that the objective function redgiction

O(||; — zmin||?) is quadratic in the distance from the minimum . (Compare also the numerical
results using test functions stated iR0J87 p.384ff.) This only restates that smooth functions
appear quadratic at the minimum. This also means that they are very shallow. For convergent
algorithms, the angle between search direction and gradient is bound from below, and hence their
length is of the same ordérl;|| = O(||grad f(z;)||) (assuming no scaling by step length control).

For ill-conditioned Newton-iterationgPjpl87 argues for usingl; as a termination criterion that
automatically scales with the problem. We were interested in solutions with high accuracy and

reduced|grad f(z;)|| until the method broke down.

Observation 7 (Influence of machine precision)Assume a high machine precisioneot 1016
for the computation of the objective functign Then the objective function is virtually constant in
an area||z — x| < Ve ~ 1078 around the exact minimum,,;,,. (These errors can be much

larger, due to cancellation of large numbers in the objective function.)
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Even in the best case, how does this fairly large residual relate to the individual variables of the

computed vector = (.CCl, .. ,x") ? Remelnbering the equivalence of norms we have
\/ﬁ 2 [e's] 2 [e's]

For a large problem with0°, variables the individual error is reasonably boundp1 - ||z||2 <

[2]loo < ll2-

A.45 Miscellaneous Remarks

Scaling and choice of variables The Newton method is invariant &dfinetransformations of vari-
ables, but it is not invariant tarbitrary variable changes. The Newton method will deal very well
with long andstraightvalleys in the objective function landscape, as long as good preconditioners
are available that compress these valleys virtually into nice round bowls. For the lack of such pre-
conditioners, first order methods have great difficulty with any kind of elongated valleys. But the
Newton step has its limits, as it is only linear, it can't do much in the presence of longuaved
valleys. For this reason, it is of great practical importance to select variables in which the valleys in

the objective function landscape appear as “straight” as possible.

Singular Hessian and the Newton Step One often faces objective functions that are invariant to
certain variable transformations. Spherical parameterization energies for instance remain constant
under rotations (Chapteh. A consequence of this invariance is that Hessians are singular every-
where. Most convergence theory breaks down in the presence of non-positive definite Hessians
([Pol87 Chapter 6.1). In particular, a convergence|of — x| might not happen or be very slow.
Indeed, in our spherical parameterization example the data might rotate on the sphere during min-
imization without having influence on the energy. One might be tempted to add constraints — for
instance, in the form of Lagrange multipliers — and force the Hessian to be positive definite. But
is this necessary or even desirable? The answer is not clear. Setting a-priori constraints complicates
the computation of gradient and Hessian somewhat. It might also not make much of a difference
to the unconstrained case if one is only interested in the convergerigead f(z;)| and doesn’t
care about which particular finalis chosen by the minimizer.

Singular Hessians encountered away from the minimum can be a serious problem. The same
is true for Hessians with negative curvature directions. In the first case, the Newton-step can lead

to a very long (or even infinite length) step into the zero-curvature direction. In the second case,
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the step will point locally upward when projected to the negative curvature direction (compare with
the example in Figurd.4). This means non-positive curvature directions often cause a reduction
of the step-length and may completely ruin the Newton-step. For this reason, methods have been
developed that analyze Hessians and compute similar, but positive definite matrices for use by the
Newton-step INW99]. But this is often fairly expensive and the problem often better dealt with
conjugate gradient based (trust-region) methdda/99, CGTOQ.

Discontinuities at a distance from the minimum In our experience discontinuities are unlikely

to cause any of the first or even second order methods to fail, at least if they don’t pass through the
minimum. But discontinuities that are attempted to be “stepped over” may trigger a reduction of
step length or trust-region size by the control algorithm. This may force very small step lengths and

significantly increase the number of iterations.

Poles Infeasible regions are often delimited by poles. Because one can assign the function value
+oo to these regions one can think of poles as discontinuities of infinite height — with similar
consequences for the solvers. Other poles, fike) = z=2 atz = 0, do not form boundaries of
infeasible regions. They might partition the dom&irinto multiple regions. But in our opinion

their semantics can be troublesome, especially if one is interested in a local minimumrtbat is

the starting point: the possibility of crossing a pole is real.

The Taylor series expansion has a convergence radius that does not extend over poles. For
this reason one might be forced to use very short step lengths, especially near poles! (This was
very noticeable in some of our experiments.) When designing objective functions it seems for
solution efficiency reasons very desirable to move poles as far away as possible from solution and

initialization.

Self-concordance Very little theory exists on the minimization progress for non-quadratic func-
tions far away from the solution. But for some special convex functipnsR — R with the
self-concordanceroperty

" (@) < 2" (x)*? (A.15)

results on fast convergence are known. The negative logarithm funttion= — log(x) is self-
concordant and for this reason very popular for defining pole barriers. This comes handy when
dealing with inequality constraints and used witterior point methods BV04] (Sections 9.6 and
11.5).
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Methods with memory and restarts The conjugate gradient, heavy ball, quasi-Newton methods
and some trust-region minimizers keep a memory of objective function data encountered several
iterations ago. This historic data can be misleading, particularly when collected far away from the
minimum. For this reason, implementations often provide a procedure to clear the data and restart
the minimization with the current iteratg. Restarts can be done periodically, but they are expen-
sive. A restarted minimizer often begins with the steepest descent and slowly learns more about the
objective function. The improved convergence rate will often be achieved in the limit, but only if
no further restarts happen. Sometimes users have the desire to interfere with the minimization, for
instance to perform periodic projections to enforce certain additional conditions. Such interference

by the user invalidates the historic data and might require a restart of the solver.

A.4.5.1 Libraries and Further Reading

Nonlinear problems cannot be solved efficiently without a basic understanding of the available nu-
merical methods. Some first order methods and even the Newton-step are fairly simple to imple-
ment. Fine tuning these methods requires a lot of experience. It also often happens, that particular
problems respond in somewhat unpredictable ways to different solution methods. For this reason
being able to experiment with competing algorithms is very valuable. For this reason we argue, that
one should at least try some of the existing optimization libraries before attempting to implement

competing methods.

Software When searching for libraries, a good starting point is the “Decision Tree for Optimiza-
tion Software” MS05. The freely available Toolkit for Advanced Optimization (TAO) offers im-
plementations of conjugate gradient, quasi-Newton, Newton and trust-region s@&&x$304].

TAO makes heavy use of PETSBEG'97], which provides parallel implementations of linear
and nonlinear solvers. A commercially available solver for convex problems is MGSEikear
solvers and preconditioners are for instance provided by the free libraries SuperLU (an efficient
direct solver PEG™99]) and hypre (a collection of high performance precondition&Bg"]).

Many numerical libraries depend on linear algebra kernels, such as the self-tuning ARLASY|

the proprietary Math Kernel Library (MKL) for Intel processotst], for the efficient computation

of basic vector or matrix operations.

Hhttp://www.mosek.com



80

Literature  The following literature has been used for compiling this survey.
o First order methods —Hol87, NW99|
¢ Newton methods —Hol87, Kel95, NW99, CGTO0(

Trust-region methods —NW99, CGT0(Q

¢ Constrained optimization —Fol87, CGT0Q BV04]

o Convex problems —BV04, Pol87

¢ Stochastic methods —Ppl87, Spa03

[Pol87 provides unique theoretical insights, especially into first order and simple Newton methods.

<

This book is slightly outdated (it was written in 1987) as, for instance, trust-region methods are not
mentioned. The treatment is unique in its clarity and depthV99] provides a good modern intro-
duction to optimization. It has a brief discussion of first order methods but focuses on trust-region
and quasi-Newton method<C(GT0Q is an exhaustive and recent survey of trust-region methods. It
discusses many adaptions of the basic trust-region algoAtfanio problems of practical interest,

such as the treatment of constrained optimization and heuristics for difficult problems, like allowing
non-monotonous decline of the objective functioBYD4] is specialized on convex problems. The
treatment is somewhat theoretical, as its focus is on the formulation of dual problems, feasibility
and other specialized topics are presented. Many examples are given to illustrate new concepts.
Some computational methods are discussed, but not in particular d&&B5] motivates in great

detail linear solvers like conjugate gradient and GMRES. Based on these iterative methods exten-
sions for nonlinear equations like the Newton and quasi-Newton (Broyden’s) method are developed.
The author carefully examines the interplay between linear and nonlinear methods, particular early

truncation, and gives many numerical examples.

A.5 Conclusion

Solving smooth nonlinear optimization problems or nonlinear equations with a starting guess near
the solution can be considered solved from a theoretic point of view. Practically, there is still a lot
of room for tweaking small trade-offs that can add up to large constants. We argue that this could be
done automatic examination of some test problems with an approach similar to that of the ATLAS
library [Atl].

For starting guess of that is far away from the solution, we know conditions that guarantee
(slow) progress toward a solution for optimization problems. We have argued that solving nonlinear

equations in this setting is a substantially harder problem.
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For a bad starting guess, typicallyuch more times needed for advancing the sequenge
closer to the region of Newton-convergence than is needed to solve the final Newton-iterations.
Trust-region minimization is the most promising method in these situations. In particular if the
standard quadratic Taylor-series model can be replaced by a model capturing the qualities of the
particular objective function class in a better way.

The formulation of constraints poses special problems and is actively researched. Best under-
stood are linear equality and convex inequality constraints, especially for convex problems.

Problems with discontinuous gradient are difficult, because we cannot rely on the standard
Taylor series model. For convex problenssipgradientmethods appear to be promisingd87,
CGTOQ.

The theory of stochastic function optimization is surprisingly advan&(3 Pol87. Effi-

cient practical algorithms are focus of current resea8gap3.
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