Exploiting Parallel Memory Hierarchies for Ray

Casting Volumes

Thesis by

Michael E. Palmer

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997
(Submitted April 4, 1997)

1

© 1997
Michael E. Palmer
All Rights Reserved

iii

The Visible Male
dataset (357 MB).
Squares in this
image partition
correspond to indi-
vidual processors.
Colors correspond
to separate nodes
of a Power Chal-
lenge Array.

Manipulation of
the mapping be-
tween voxel values
and opacity re-
veals the internal
musculature and
vasculature of the
leg of the Visible
Male.

A view of the hip
joint of the Visible
Female dataset.
In this work, we
render the Visible
Female at full
spatial resolution:
1610x894x5192
voxels, for a to-
tal of 7.1 GB,
the largest vol-
ume dataset ever
rendered.

v

Acknowledgements

This thesis would not have been possible without the help of many people. First of all,
I would like to thank my family and my fiancée, Jessica Liu, for their unconditional
love and support.

I would like to thank my advisor, Stephen Taylor, for all his advice and support
over the past six years. Steve is truly a man of integrity and generosity. He combined
a respect for letting me follow my own path, with just enough gentle nagging to make
sure I would submit my work for publication on a periodic basis.

Thanks to Brian Totty, who contributed a great deal to this thesis. He promoted
my work within Silicon Graphics, and collaborated with me on several papers. Brian is
also responsible for most of the performance-tuning optimizations to the ray casting
kernel. Brian also contributed the tongue-in-cheek name for my experimental ray
casting code: RendAsunder

I would like to thank Paul Woodward, Steve Anderson, and the rest of the Labo-
ratory for Computational Science and Engineering (LCSE) at the University of Min-
nesota. The work I did there in the summer of 1994 was the genesis of RendAsunder,
my experimental ray casting code. The LCSE also provided the vorticity dataset used
in many of my experiments. Steve Anderson has been a good friend to me, gave me
much technical advice when I was just beginning on the Silicon Graphics platform,
and contributed to early versions of RendAsunder. Some of his code is still running
in the current version.

I would like to thank Silicon Graphics for the opportunity to participate in Su-
percomputing 94 and ’95. Silicon Graphics also gave me the opportunity to present ’-
RendAsunder at two other conferences. Specifically, thanks to John Brown of Sili-
con Graphics for taking an interest in RendAsunder, promoting its development, and

-spoiling me with ample machine time on a Power Challenge Array.

Further machine time, in particular for the experiments in chapter 6 and for the

A%

rendering of the largest volume dataset ever, the 7.1 GB Visible Female dataset, was
provided by the National Center for Supercomputing Applications (NCSA) at the
University of Illinois, Urbana-Champaign. The excellent operations staff at NCSA
were very helpful.

Jerrell Watts” SCPlib message passing library allowed me to achieve high perfor-
mance on the NCSA machines. Jerrell went above and beyond the call of duty several
times with late night emergency sessions of performance tuning.

Thanks to John Thornley for discussions of my thesis and journal paper, and for
advice on how to handle the whole process of putting together a Ph.D. thesis.

Thanks to H. Ross Harvey for contributing the Power Challenge “cache bashing”
benchmark in Chapter 5.

Thanks to Peter Schroder for giving me access to the machines in his lab to finish
up many odds and ends.

Thanks to Al Barr and Cindy Ball of the Graphics Group at Caltech for access
to, and much help with, video equipment, respectively.

Thanks to Michael Ackerman of the Visible Human Project at the National Li-
brary of Medicine for providing the Visible Male and Visible Female datasets.

This research was sponsored by the Defense Advanced Research Projects Agency
(DARPA) under contract number DABT63-95-C-0116, and AASERT award number
N0014-93-1-0843.

vi

Abstract

Previous work in single-processor ray casting methods for volume rendering has con-
centrated on algorithmic optimizations to reduce computational work. This approach
leaves untapped the performance gains which are possible through efficient exploita-
tion of the memory hierarchy.

Previous work in parallel volume rendering has concentrated on parallel parti-
tioning, with the goals of maximizing load balance and minimizing communication
between distributed nodes. This implies a simplified view of the memory hierar-
chy of a parallel machine, ignoring the relationship between parallel partitioning and
memory hierarchy effects at all but the top level.

In this thesis, we progressively develop methods to optimize memory hierarchy
performance for ray casting: 1) on a uniprocessor, using algorithmic modifications
to isolate cache miss costs, specialized hardware to monitor cache misses on the bus,
and a software cache simulator; 2) on the a shared-memory Power Challenge mul-
tiprocessor, examining the fundamental dependence of algorithmic design decisions
regarding parallel partitioning upon memory hierarchy effects at several levels; and 3)
on a distributed array of interconnected Power Challenge multiprocessors, on which
we implement a logical global address space for volume blocks, and investigate the
tradeoff between replication (caching) and communication of data.

The methods we develop permit us to exploit the coherence found in volume ren-
‘dering to increase memory locality, and thereby increase n;lemory system performance.
This focus on the optimal exploitation of the entire memory hierarchy, from the pro-
cessor cache, to the interconnection network between distributed nodes, yields faster
frame rates for large (357 MB to 1 GB) datasets than have been previously cited in
the literature, and allows us to efficiently render a 7.1 GB dataset, the largest ever
rendered.

Our results have implications for the parallel solution of other problems which, like

Vil
ray casting, require a global gather operation, use an associative operator to combine
partial results, and contain coherence. We discuss implications for the design of a
parallel architecture suited to solving this class of problems, specifically, that these

algorithms are best served by a deep memory hierarchy.

viii

Contents

Acknowledgements

Abstract

1 Intreduction

1.1 Motivation

2 Background Material and Terminology

2.1 Volumerendering

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5

Coordinate systems for computer graphics
Representing three-dimensional data
Physical models for volume datasets
Algorithms for direct volume rendering

Algorithmic optimizations to ray casting

2.2 Parallel architectures for ray casting [P

2.3 Parallel partitioning for ray casting

2.3.1
2.3.2

The two goals of parallel partitioning

Algorithms for parallel partitioning and load balance

2.4 Memory hierarchies and exploiting locality of memory access

24.1
2.4.2
243
2.4.4

Uniprocessor cache architecture
Shared memory
Distributed memory L.

A hybrid architecture: the Power Challenge Array

2.5 The relationship between parallel partitioning and memory hierarchy

performance

iv

vi

-~J [(&3 [}

S Nej

ix
3 Experimental Goals, Methodology, and Tools

3.1 Experimentalgoals L o oL
3.2 Experimental methodology L.
3.3 Hardware platform: the Silicon Graphics Power Challenge Array . . .
3.4 Experimental software platform:RendAsunder . . . >,
3.4.1 General features of RendAsunder
3.4.2 RendAsunder as an experimental tool
3.4.3 The high performance of RendAsunder
3.4.4 RendAsunder as a demonstration vehicle for interactive volume
rendering

3.4.5 Summary of features of RendAsunder

4 One Processor

4.1 Ray casting cost analysis L.

4.2 Datasels e,

4.4 Experimental procedure Lo
4.5 View direction dependence of time per ray-voxel intersection
4.6 Isolation of time due to cache effects
4.7 Hardware bus-snooping board L.
4.8 Cachesimulator L

4.9 Conclusions

5 One Shared-Memory Node, Multiple Processors

5.1 Load balancing for ray casting on a shared-memory machine

5.1.1 Image partition L

5.1.2 Object partition
5.2 The shared bus of the Power Challenge
5.3 Experimental procedure
54 Parallel speedup
5.5 Load balance

38
39

42
42
44
45

47
51
55
57
63

X

5.6 Comparison of partitioning methods 74
5.7 Maximum frame rates L 75
5.8 Conclusions 78
Multiple Distributed Shared-Memory Nodes 80
6.1 Volume rendering requires a global gather operation 81

6.1.1 Transferring 2D subimages versus 3D subvolumes 82

6.1.2 The tradeoff between replication of data and communication

EXPEISE . i e e e e e e e e e e e e e 84

6.2 A software block caching system for the Power Challenge Array . .. 86
6.3 Datasets and the typicalview test suite 89
6.4 Experimental results 0 L. 92
6.4.1 Experimental procedures 92
6.4.2 Communication due to block transfers 94
6.4.3 Load balance 0. 98
6.4.4 Communication due to tile transfers. 104
6.4.5 Frametimes 109
6.4.6 Parallel speedup. oL 111
6.4.7 Relative costs of computation and communication 11‘2
6.4.8 Performance on a very large dataset 113

6.5 Conclusions 113
Related Work 117
7.1 Closely related papers o 117
7.1.1 Lower levels of the memory hierarchy 117
7.1.2 Higher levels of the memory hierarchy 118

7.2 Performance comparison L 119
Conclusions 121
8.1 Results and implications for ray casting volume rendering 121

8.2 Implications for other parallel algorithms 124

Xi

8.3 Implications for parallel architecture design.
A A fine-grained MIMD implementation with no replication

Bibliography

List

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

4.1
4.2
4.3
4.4

4.6
4.7
4.8

Xii

of Figures

Example ray casting output, male dataset

Coordinate systems in Volume Rendering
Cubes in orthogonal projection and perspective projection
Transmission, reflection, and refraction in ray tracing
Transmission and emission in ray casting
Rendering by ray casting or “image order” rendering
Rendering by projection or “object order” rendering
Dynamic resolution refinement for higher framerate
A typical memory hierarchy for a single-processor architecture
A typical memory hierarchy for a shared-memory architecture

A typical memory hierarchy for a distributed-memory architecture . .
A hybrid distributed/shared memory hierérchy, the Power Challenge
Array . ..,

Sample performance points for RendAsunder

Hardware configuration at Supercomputing 95

A typical memory hierarchy for a single-processor architecture
Sizes of experimental datasets
Example images of the female (top) and vorticity (bottom) datasets .
The azisorbit test suite
Dependence of time/intersection on view direction

Cache lines fetched by a ray traveling down the X, Y, or Z axis. . . .

11
12
13
16
20
26
27
28

30

37
38

42
45
45
46
48
92

Time/intersection: with-memory, no-memory, and memory-only, 1 block 53

Time/intersection: with-memory, no-memory, and memory-only, opti-

mal number of blocks for a given dataset

4.9

4.10
4.11
4.12

5.1
5.2
3.3
5.4
5.5
5.6
5.7
5.8

6.1

6.2
6.3
6.4
6.5
6.6

6.7
6.8

6.9

6.10
6.11
6.12
6.13

xiii
Left: bus-snoop L2 misses/intersection. Right: “mem-only” and “bus-
snoop L2”7 time/intersection L. 56
simulation of L1 and L2 cache misses/intersection 58

Simulated and bus-snooping board L2 misses/intersection, male dataset 60

Simulated and “mem-only” memory hierarchy time/intersection . . . 62
A typical memory hierarchy for a shared-memory architecture 65
Saturating the shared bus e 67
Parallel speedup, image partition, clippingoff 70
Parallel speedup, object partition, clippingoff 71
Load balance, image partition, clipping off 72
Load balance, object partition, clippingoff 73
Time per frame, eight processors 76
Time per frame, sixteen processors 77

A hybrid distributed/shared memory hierarchy, the Power Challenge

Array . .o 80
An image partition based on binary subdivision 85
The typicalview test suite 0L 90
Sizes of datasets for multiple node experiments. 91

Average block transfer bytes per frame on four nodes of eight processors 94
Block transfer bytes per frame on four nodes of eight processors, female

dataset 96
Average block transfer bytes per frame on two nodes of eight processors 97

Average block transfer bytes per frame on eight virtual nodes of four

PTOCESSOTS o i e e e 98
Average load balance on fournodes L. 99
Load balance on four nodes, female dataset 101
Load balance on four nodes, male dataset 102
Average load balance on twonodes 103

Average load balance on eight virtual nodes of four processors 103

6.14
6.15

6.16
6.17

6.18

6.19
6.20
6.21
6.22
6.23

8.1

Al
A2

X1V
Average tile transfer bytes per frame on four nodes of eight processors 105
Tile transfer bytes per frame on four nodes of eight processors, female
dataset oL 106
Average tile transfer bytes per frame on two nodes of eight processors 107
Average tile transfer bytes per frame on eight virtual nodes of four
PTOCESSOTS .« v v v v v e i o v e e e e e e e e 107

Assignments of blocks to nodes for projection, for replication factors

of one (left) and four (right), 108
Average frame times on four nodes of eight processors (sec) 109
Average frame times on two nodes of eight processors (sec) 110
Average frame times on eight virtual nodes of four processors (sec) . . 111
Parallel speedup over single node (percentage of number of nodes) . . 112

Relative costs of computation and communication on four nodes, fe-

male dataset (sec) 114
The impact of ray divergence 123
Three views of a set of partitioning lines 128

Three views of the lines after a head rotation 128

Chapter 1 Introduction

1.1 Motivation

As the data sets generated by computational simulations and medical imaging grow
larger, scientists are swamped by their large (multi-gigabyte) three-dimensional da-
tasets. The most intuitive way for a scientist to understand these vast volumes of
data is to explore them interactively through high-performance volume rendering.
Interactivity requires certain minimum frame rates (e.g., 10 frames per second). This
level of performance for rendering very large datasets is not possible on contemporary
single-processor machines. Parallelism offers the promise of rendering large datasets
at interactive frame rates. However, the leap to parallelism introduces a host of new
algorithmic design considerations. One of the most important is the consideration of
the interaction between parallel partitioning and efficient exploitation of the memory

hierarchy at all levels.

Figure 1.1: Example ray casting output, male dataset

Figure 1.1 shows example images generated by the ray casting volume rendering

implementations described in this thesis using the Silicon Graphics Power Challenge.

2

Manipulation of the mapping between voxel value and opacity, and use of a front
clipping plane, yield views of the interior muscle and bone structure of this human

body dataset [Ackerman95].

1.2 Contributions of this thesis

Early research in uniprocessor ray casting volume rendering focused on algorithmic
optimizations to improve performance; for example, by reducing the total number
of rays that must be cast, or the number of intersections between rays and data
voxels that must be calculated. However, previous work has left largely untapped
the performance benefits to be gained through optimal exploitation of the memory
hierarchy. The primary means to achieve this on a uniprocessor is by increasing
locality of memory access through the manipulation of the order of memory accesses.

Past research in parallel volume rendering has concentrated on the partitioning
problem, with the specific goals of maximizing load balance and minimizing commu-
nication between distributed processors. Past work has not, in general, considered
the more complex problem of exploiting the entire memory hierarchy of the parallel
machine. The focus on communication between distributed processors, to the exclu-
sion of other levels of the memory hierarchy, implies an oversimplified model of the
operation of the entire machine. A parallel computer is a machine dedicated not only
to performing operations on data, but also to moving the data efficiently from the
memory locations where it is stored, through many levels of a deep memory hierarchy,
to the processor registers where it can be operated on. Hardware from the level of
the processor cache, to the interconnection network between distributed nodes, plays
a role in this task. The performance of each level of this system is extremely sensitive
to algorithmic characteristics such as locality of memory access. Consideration of
the efficient exploitation of all levels of a deep memory hierarchy must be reflected
in algorithmic design, and fundamentally affects design decisions regarding parallel
partitioning.

Although poor load balance is commonly the focus of parallel rendering work, we

3

will show that poor performance at any level of the memory hierarchy can also thwart
parallel speedup. Optimal performance at all levels of the memory hierarchy is even
harder to achieve than optimal load balance, in part because memory hierarchy effects
can be complex and unintuitive.

This thesis focuses on the volume rendering of volumetric data defined on regular
cartesian grids by ray casting. Regular grids, because of their simplicity, are the
obvious place to begin the characterization of memory hierarchy effects for ray casting.
They are used commonly in a range of applications, from magnetic resonance image
(MRI) to some computational fluid dynamics (CFD) work.

Our primary experimental hardware platform is the Silicon Graphics Power Chal-
lenge Array, an example of a hybrid distributed /shared memory architecture, con-
sisting of a distributed array of up to eight Power Challenge shared-memory multi-
processors, each containing up to eighteen MIPS R8000 processors.

In this thesis, we progressively develop techniques to maximally exploit the mem-
ory hierarchy on a uniprocessor; within a shared-memory Power Challenge multipro-
cessor; and finally on a distributed array of interconnected Power Challenge multi-
processors.

On a single processor, we focus on the optimization of the performance of the level
one (L1) and level two (L2) caches of the R8000 microprocessor. Our investigative
techniques include 1) algorithmic changes to isolate the costs of cache misses; 2) direct
observation of L2 cache misses using a limited-edition hardware bus-snooping board:;
and 3) simulation of both L1 and L2 cache misses with a software cache simulator,
which can be configured to mimic the caching behavior of the L1 and L2 caches of
the R8000.

On multiple processors within a single shared-memory Power Challenge node,
we investigate the relationship between parallel partitioning and cache performance,
studying both image-based and object-based parallel partitions. We evaluate these
partitioning options in terms of achievable cache hit rates, load balance, parallel
speedup, the tendency to saturate the shared bus as the number of processors in-

creases, and the applicability of common algorithmic optimizations to ray casting.

4

Across multiple distributed Power Challenge Array nodes, we implement in soft-
ware a system providing a logical global address space for accessing and caching
blocks of volume data. We investigate both image-based, and object-based, parallel
partitioning algorithms for distributed machines, evaluating them in terms of volume
of data communication, attainable load balance, parallel speedup, and their perfor-
mance under conditions of limited memory resources for use by the distributed block
caching system.

This attention to the performance of each level of the deep memory hierarchy
yields higher frame rates for large volume datasets than we have previously seen cited
in the literature, both for large datasets (357 MB to 1 GB) on a single shared-memory
array node, and for very large datasets (up to 7.1 GB) on multiple array nodes, which
have not been previously rendered.

Our findings have implications to other parallel algorithms, which share with
ray casting volume rendering the characteristics of: 1) they require a global gather
operation (i.e., the entire distributed dataset contributes to a solution that will end up
stored on a single node), 2) the operator which combines partial results is associative,
and 3) they contain some form of coherence which can be exploited to increase memory
locality. These algorithms are not scalable, because the communication they require
increases with increasing numbers of nodes. However, the coherence they contain can
be exploited on a machine with a sufficiently deep memory hierarchy to obtain good
parallel speedup on moderate numbers of nodes.

This, in turn, has implications to the design of parallel architectures. The ideal
architecture for solving these problems on moderate numbers of processors is not a
distributed architecture with a slow but “scalable” interconnection network. Rather,
expansion to moderate numbers of parallel processors should be achieved by creat-
ing a deeper memory hierarchy. The top level of the memory hierarchy should be
implemented by connecting shared-memory multiprocessors with a high performance
network that is scalable only to a low number of connected nodes. (This is unlike the
“scalable” but relatively low performance HIPPI crossbar network used in the Power

Challenge Array.)

Chapter 2 Background Material and

Terminology

In this chapter, we define a number of terms and concepts relevant to parallel volume
rendering. Some of these concepts are developed in more detail in other chapters as
they become relevant. More detailed discussion of closely related papers is presented

in Chapter 7, Related Work.

2.1 Volume rendering

Volume rendering is the process of rendering two-dimensional images, from a par-
ticular viewpoint, from discretized three-dimensional scalar fields. The data to be

rendered consists of space-filling discretized regions called vozels.

2.1.1 Coordinate systems for computer graphics

We call the coordinate system of the three-dimensional dataset object space. In Fig-
ure 2.1, this set of coordinate axes is labeled X, Y, and Z. The coordinate system
of the viewer is called image space, and is labeled U (to the viewer’s right), V (the
viewer’s “up” direction), and N (opposite to the direction in which the viewer is look-
ing). We call the discrete volume elements making up the dataset vozels and the
discrete squares making up the image plane pizels.

As the viewer peers about the dataset, flying around and through it, the relation-
ship between object space and image space changes. This relationship is specified by
a coordinate transformation matrix called the view matriz, which maps any point in
object space to a point in the viewer’s image space.

Two methods of projection are commonly used in computer graphics. Orthogonal

projection assumes that all rays projected from the eye point are parallel, making a

Voxel
Ray ‘
\
Y
Volumetric Data
X
Z

Figure 2.1: Coordinate systems in Volume Rendering

7

projected cube look like the one on the left of Figure 2.2. The parallel edges of a cube
preserve their parallelism in this projection. In our day-to-day experience in viewing
the world, we are more familiar with seeing objects in perspective projection. In the
perspective projection, rays projected from the eye point diverge from the eye point.
This projection makes all parallel edges of objects, such as the cube on the right of
Figure 2.2, appear to converge. Since projection of a three-dimensional object onto
a two-dimensional surface implies a loss of information, the perspective projection
gives important depth cues to a viewer accustomed to perceiving three-dimensional
objects in this way. The orthogonal projection allows certain algorithmic optimiza-
tions which increase performance, but it has become less popular in contemporary

volume rendering because of the unusual appearance it lends to objects.

\

Figure 2.2: Cubes in orthogonal projection and perspective projection

Rendering using the perspective projection requires, in addition to the view ma-
trix, a value specifying the severity of the perspective transformation. This is specified
as the field of view, the angle that the full width of the image subtends from the eye
point. This specifies the angle of divergence between a ray at one edge of the screen

and a ray at the other edge.

2.1.2 Representing three-dimensional data

A continuous three-dimensional scalar field must be discretized for storage on a dig-
ital computer. A convenient means is spatial discretization. We can approximately

represent the scalar field with a finite collection of small volume elements. giving each

8

element a single value corresponding to the average value of the continuous scalar
field within that volume element. Alternatively, we could approximate the field by
storing its value at a finite set of points in space.

Instead of discretizing in space, we could alternatively take a fourier transform of
the scalar field, and represent the resulting frequencies in discrete form. There are
countless other possible representations. A band-limited function can be exactly rep-
resented by a finite set of discrete samples. If the input function is not band-limited,
each type of representation yields characteristic deviations, or errors, compared to
the original input.

We primarily consider spatial discretization in this work. A variety of geometries
can be used in spatial discretization, including regular cartesian grids, rectilinear and
curvilinear grids, unstructured grids (e.g., irregular tetrahedra), hierarchical grids
(e.g., octrees), and multiresolution grids (i.e., regular blocks of varying resolution,
which may or may not overlap).

Regular grids, for instance grids consisting of identical cubes (or other identical
solids, like regular tetrahedra), are the simplest form of grid. The entire grid can be
uniquely specified by a small number of parameters. For instance, a regular cubical
grid can be specified by the dimensions of the grid and the size of one cubical element.
There exist very efficient algorithms to find the path of a ray traversing a regular
cubical grid.

Slightly more complicated are rectilinear grids. These grids are formed by stretch-
ing one or more of the axes of a regular grid. These grids can be completely specified
with the same information necessary to specify a regular grid, plus information about
the stretching function along each axis. Curvilinear grids are more complex in that
the grid lines may curve; however, each data element still has the same number of
neighbors (e.g., six in the case of cubical grid cells).

Many interesting scalar fields contain large regions in which the value of the field
does not change greatly, and other regions where rapid change is concentrated. Such
scalar fields can be stored relatively compactly by multiresolution methods. For

example, octree subdivision consists of a hierarchy of cubes recursively divided into

9

eight subcubes. In relatively constant regions of the scalar field, a large cube can serve
to represent the entire region. If the scalar field is not constant within the region of
a cube, then the cube is divided again. Another means to achieve a multiresolution
subdivision of space is to define regions or blocks which each contain grids of a different
resolution.

In contrast to the small number of parameters that are required to specify a regular
grid, irregular grids generally require that each grid point be specified explicitly, since
each grid point is placed without adherence to an overall regular structure. Such
grids are commonly constructed of irregular tetrahedra. They can become quite
complex in that grid cells may not all have the same number of neighbors. These
grids could be constructed of elements with varying numbers of sides, although this is
uncommon. Tetrahedral grids are often useful in computational fluid dynamics, since
the faces of the tetrahedra can be aligned with the faces of solid surfaces impeding
the flow of the fluid, reducing the error in the representation of such surfaces. It is
relatively expensive to compute the path of a ray through an irregular grid; however,
a small total number of properly placed irregular tetrahedra can often yield less
approximation error than a much larger number of regular cubes.

In this thesis, we are primarily concerned with volume data represented on regular
carteslan grids. These grids are commonplace, ray casting on them is efficient, and
their simplicity makes them the obvious first subject of an investigation into the

importance of memory hierarchy effects in ray casting volume rendering.

2.1.3 Physical models for volume datasets

Given an approximation of a three-dimensional scalar field in a computer’s memory,
there is not a single best representation of the data which will bestow maximum
understanding upon a human observer. In an extreme example, the volume dataset
could be dumped onto the screen as a long sequence of 0’s and 1’s. More usefully,
we might extract some statistics from the dataset that summarize it in a table; for

instance, in a fluid flow simulation, we might calculate the average velocity, maximum

10

velocity, and the variance in the velocities of the fluid particles. However, in order to
promote deeper understanding of complex three-dimensional data by scientists, we
may exploit the human visual system by making an analogy to the physical world. We
can model our three-dimensional dataset as a three-dimensional object with certain
visual characteristics. We will choose a location in three space for the viewpoint,
choose a view direction, and generate two-dimensional images of this object that
properly obey the rules of perspective.

Much research in ray tracing [Kajiya84] has attempted to realistically model the
physics of the transmission, reflection, and refraction of light, as shown in Figure 2.3.
Ray tracing can reproduce an impressive array of visual and optical effects, including
motion blur, depth of field, penumbras, translucency, and glossy reflections [Cook84].
However, the goal of scientific visualization is to allow scientists to understand their
datasets, not to accurately model the physics of the transport of light. Complex
reflective effects, for example, could cause features to appear to be where they arc not
present in the data. Therefore, most scientific volume visualization follows a simpler
and more practically oriented physical model. Volume rendering for this purpose
generally includes features that aid in the visual interpretation of the images as three-
dimensional objects, and eschews others in exchange for clarity of interpretation,
simplicity of implementation, and higher performance.

There are two common types of physical models for three-dimensional datasets:
1) isosurface extraction [Lorensen87] models, which reduce the volume data to a set of
discretized surfaces approximating those at which the scalar field assumes a constant
value, and 2) direct volume rendering models [Upson88, Sabella8s, Drebin88], which
treat the scalar field as a cloud of translucent material of varying opacity and color.

Isosurface extraction models reduce the volume data to a set of polygons defin-
ing surfaces at which the discretized scalar field assumes a constant value. These
sets of polygons are commonly generated by an algorithm called “marching cubes”
[Lorensen87]. The polygons are then typically illuminated by a light source and ren-
dered as opaque or translucent objects, which may or may not cast shadows on each

other. Self-shadowing is not generally required, since directional shading (shading

11

|
AN b / 7/
~ -
- - light source
- ~
7/ N
[N

transmitted rays

reflected rays

B

refracted rays

>

observer

Figure 2.3: Transmission, reflection, and refraction in ray tracing

based on the surface normal of the polygons, and the direction of the light from
the light source) provides sufficient visual cues. The human visual system does not
effectively identify the “missing” self-shadowing. True self-shadowing is much more
expensive computationally than directional-based shading.

The set of polyhedra representing the isosurface typically has much smaller storage
requirements than the original dataset, and polygons can be rendered economically
and quickly by specialized graphics hardware. The disadvantage of this approach is
that the entire dataset is not represented in the resulting images, and that aliasing
artifacts are common. For example, one may wish to extract from an MRI dataset the
set of polygons lying on the surface of the bones. However, a single signal intensity
does not define the bone surface (the signal varies due to bone density and due to
artifacts in the MRI data). A common result is that some bones that are not actually
connected may appear to be fused together. Since this method is a reduction of the
dataset, information is lost, and such errors can occur.

Direct volume rendering algorithms model the data volume as a cloudy material
of varying color and opacity. A mapping from the scalar voxel values to a color and
opacity is defined. [Blinn82, Kajiya84, Max86] A simplified model of light emittance

and light transmission is commonly used: the cloudy material both emits light and

12

transmitted rays
S

=

(light also emitted
by objects)

observer

Figure 2.4: Transmission and emission in ray casting

partially occludes light passing through it [Porter84], as shown in Figure 2.4. Shadows
from external light sources are generally omitted: true self-shadowing of the cloudy
material is expensive, and no well-defined surface normals exist a priori to be used
for inex?ensive directional shading. (Surface reflections can be defined, at additional
expense, using the gradient of the scalar field [Levoy88].) Scattering and reflection of
light are omitted, since these properties can make clear understanding of the resulting

images more difficult, and are in addition expensive.

2.1.4 Algorithms for direct volume rendering

There are several algorithms which can be used for direct volume rendering, i.e.,
used to produce results that accord with the physical model of a cloudy material
of varying opacity and color. These include ray casting [Sabella88, Nieh92]; projec-
tion methods [Westover90, Shirley90, Laur91, Wilhelms91] in which individual vol-
ume elements are projected on to the image plane and composited together; and
shear-warp methods, which decompose the view matrix into a series of shears and Jor
warps [Drebin88, Schréder9l, Wittenbrink94, Lacroute94] and process slabs of the

entire volume at once.

13
Ray casting

Figure 2.5 illustrates an algorithm known as ray casting. A ray originating at the
eye strikes an image pixel on the display screen, and passes through objects in the
data volume. The ray accumulates color and opacity depending on the voxels that
it intersects. This is reverse of the direction that a light ray in our physical model

would travel, but can be made to yield equivalent pixel values.

a4

observer

[NS S]]/
[/X))

™~
™~
™~
™~
N
~

]
~_
™~
~

[/]] N,

Figure 2.5: Rendering by ray casting or “image order” rendering

Models developed for the realistic simulation of light transport [Blinn82, Kajiya84,
Max86] were discretized [Sabella88], simplified, and combined with the concept of the
opacity channel [Porter84], to yield discrete equations for the accumulation of color
and opacity by a ray passing through voxels of varying color and opacity.

Each ray has an associated four-vector of red, green, blue, and opacity, which is
initialized to the zero vector. A ray intersects an ordered set of voxels V; to V,,; this
set of voxels depends on the manner in which the ray intersects the dataset. As the
ray passes through each voxel, it accumulates color and opacity from it, depending
on the color and opacity of the voxel, and the length of the intersection between the

ray and the voxel. Opacity is accumulated in the following manner:

14

rayg = rayf_, + (1 —rayg_,) * V& L(Vi)

where rayf is the total opacity accumulated for the ray. for voxels 1 through k. The
voxels which comprise this path depend on the eye point and the direction of the ray.
Vi 1s the opacity of voxel V4; and L(V4) is a function of length of the line segment
formed by the intersection of the ray with the voxel.!

Color is accumulated in a similar way:

7"“%?2 = ray,]f_l + (1 - rayy_;) * VkR * L(Vk)
7“ay,? = mykG_l + (1 —ray) * VkG * L(V)

rayf = rayg , + (1= rayi_y) * VE « L(V)

where rayf, ray?, and rayP are the red, green, and blue color values accumulated
for voxels 1 through k; and ViE, V¢ and V;B are the color values of voxel Vj.

If we measure opacity on a scale of zero to one, the opacity of the ray asymptot-
ically approaches one (1). As the ray becomes completely opaque, each subsequent
voxel makes a smaller contribution to the color and opacity of the ray. After a ray
has passed completely through the volume, the effect of a background color may also
be accumulated. The final color is assigned to the image pixel associated with the
ray.

In vector form, the four equations for composition of voxels, above, can be stated

as:
R,G,B R,G,B R,G.B
rayy = rayp; + (1 —rayg_,) =V * L(Vi)

Researchers found that manipulation of the opacity channel could be used to an-
tialias the images, and to delineate complex relationships among surfaces and interior

structures. [UpsonSs, Drebiﬁ88]

! An exponential function of the length is more accurate to the canonical light transport integral,
but a linear approximation to this is commonly used for steps of small length.

15

Composition is associative but not commutative

We have some flexibility in the order in which we composite the voxels. This is the
property that will allow us to manipulate the order of memory accesses to influence
access locality. We define the composition operator, C, as:

?R,GfB e V7‘R7G?‘B 7R7GIB
TC‘JZ = 0(7'“3/1?—1) koj—l)

This operator is used to take the value of the ray at step k, and accumulate the value
of the kth voxel upon it. Note that the composition operator is associative but not

commutative. That is:
C(C(a,b),) = Cla,C(b,c))
but, in general:
Cla,b) # C(b,a))

Therefore, we need not composite an ordered set of voxels V; through V,, strictly in
order. We can composite any contiguous subset of voxels without regard to whether
neighboring contiguous subsets have yet been completed.? The results from these
subsets can then be composited together to generate the results for larger contiguous
subsets, until ultimately the entire set of voxels through V,, has been included.

[t is this flexibility in the order of composition that will allow us to manipulate
the order of memory accesses, to increase memory locality. This flexibility also makes

projection methods possible:

?An assumption made here is that addition is associative. This is only approximately true in
general with digital representations of floating point numbers. However, the color and opacity values
remain within a small range of values (generally 0.0 to 1.0), and the error due to this approximation
is negligible in practice.

16

Projection methods

In contrast to ray casting, which considers each pixel and calculates the data voxels it
intersects, projection methods [Westover90, Shirley90, Laur91, Wilhelms91] consider

each data element in turn, and calculate the element’s contribution to the image.

N
™~
]

YN/ S
[AN /]

[/

—

observer

\
™~

Figure 2.6: Rendering by projection or “object order” rendering

These methods are more commonly used with irregular grids, for which it is rel-
atively expensive to do ray traversal. They are also used to render sets of three-
dimensional objects that do not fill space. As shown in Figure 2.6, the objects (or
irregular voxels) in the dataset are sorted in order of their distance from the eye point.
Some projection operator P is applied to each object to determine its projected im-
age on the pixels of the image plane. These two-dimensional projected images are
composited together to form the final image. The same composition equations stated
in the previous section are used.

Shear-warp methods [Drebin88, Schréder9dl, Wittenbrink94, Lacroute94] decom-
pose the view matrix into a a sequence of computationally inexpensive shearing and /or
warping operations. The operations are applied to an entire slab of data at a time,
determining the projected image of the slab onto the image plane. The subimages

are then composited together. This type of algorithm can be considered an optimized

17

projection method.

Volume rendering algorithms used in this thesis

In this thesis, we will primarily use ray casting methods. However, for considerations
of cache locality and parallel partitioning, we will also divide the regular dataset into
blocks. We will treat these blocks semantically as objects to which we apply some
projection operator P to determine their projected image, which are then composited
together, as in projection methods. At the level of the individual block, the operator P
which we use is ray casting. We will exploit the flexibility afforded by the associativity
of the composition operator to manipulate the order of memory accesses, thereby

increasing memory access locality and memory hierarchy performance.

2.1.5 Algorithmic optimizations to ray casting

Since this work focuses on ray casting for direct volume rendering, we discuss some
algorithmic optimizations that are commonly made to the ray casting algorithm.
Algorithmic optimization seeks to obtain higher performance, while accepting certain

rendering artifacts in return.

Coherence in volume rendering

Many algorithmic optimizations to ray casting take advantage of some form of coher-

ence [Sutherland74], for example:

e Object coherence

That objects tend to be connected, bounded bodies.

o Area coherence
That the two-dimensional projection of a three-dimensional body tends to have

a connected, bounded range.

e Frame coherence

That one frame of an animated sequence is likely to resemble the previous frame.

18
(e.g., in the colors assigned to given pizels; in the costs to render given units of

work.)

e Coherence (locality) of memory reference
That a memory reference to a given location is likely be temporally close to

references to logically neighboring locations.

Many optimizations to ray casting take advantage of some form of coherence:

Bounding boxes

Object coherence is often exploited by placing bounding boxes around the non-empty
regions of the dataset. [Kay86, Glassner84, Levoy90] These “boxes” need not neces-
sarily be rectangular solids. Only rays which intersect non-empty volumes need to
be processed. If a ray exits such a volume, it can skip to where it next enters such a
volume, ignoring the intermediate voxels. This optimization exploits object coherence
and the performance improvement it yields is dataset dependent. This optimization
need not result in any rendering artifacts. |
Five-dimensional bounding boxes (3D spatial plus a 2D solid angle) are placed
around sets of rays originating from nearby points and pointing in the similar direc-

tions in [Arvo87].

Adaptive pixel subsampling

Area coherence can be exploited by casting fewer rays where the image does not con-
tain much fine detail. For example, initially, a sampling of rays distributed randomly
around the image are cast. If the final accumulated values of neighboring rays differ
by more than a certain threshold, then more rays are cast in their neighborhood;
otherwise, a ray is used to color more than a single pixel. A common artifact is for

small objects to be missed entirely.

19
Data blocking

A primary focus of this thesis is improving memory hierarchy performance. One
means to achieve this on at the level of the processor cache is to subdivide a large
dataset into blocks that are stored contiguously in memory. If these blocks are sized
appropriately relative to the size of the cache, and are processed serially, then both
cache locality, and overall performance, can be greatly increased. [Palmer97a] This is
a primary focus of this thesis, and these concepts are discussed in greater depth in

section 2.4.

Opacity clipping

A ray’s accumulated opacity value will asymptotically approach 1 at a rate that de-
pends on the opacity of the intersected data voxels. A common algorithmic optimiza-
tion known as opacity clipping [Levoy90] stops the further advancement of rays that
have become nearly opaque. This optimization is quite dataset dependent: it works
best on datasets with large opaque areas, and not at all on completely translucent da-
tasets where rays never become completely opaque. A two- to four-fold performance

improvement is possible in practice on many interesting datasets.

Re-use of information between frames

When the change in viewpoint between frames is small, temporal coherence results.
This can be exploited to reduce redundant computation [Badt88]; in this thesis and
in [Palmer94a, Palmer94b, Palmer95, Palmer97a, Palmer97b], we rely on this coher-
ence in order to use workload estimates from one frame to predict workloads for the

next frame.

Variable pixel density:

In ray casting, there is a near-linear relationship between the number of pixels ren-

dered (i.e., the resolution of the image) and the time to render a frame. ® By the

3This relationship is true if we neglect cache effects, which are discussed in detail below.

20
technique of dynamic resolution reduction, it is possible to automatically choose which
of these is most important to the user. One pattern of resolution reduction is shown
in Figure 2.7. In the center of the screen, we maintain full resolution. Around this
central area, we place concentric bands of reduced resolution. When the user stops
moving, we refine the image in several steps until the entire screen is at full resolution,
as shown from left to right in the figure. With this technique, we obtained [Palmer95]
a typical four-fold reduction in total number of rays cast, and a corresponding four-
fold frame rate increase, when it is most needed during user movement. This perhaps
exploits coherence of user interest: the user will tend to place the region of the data

in which they are currently most interested in the center of the screen.

IR ‘i
Ime T\ \

/1 1/2 1/4 1/1 1/2 1/1

Figure 2.7: Dynamic resolution refinement for higher frame rate

Dynamic subsampling of the dataset by distance from viewpoint

Due to perspective, data voxels far from the eye appear smaller than those that
are very close. At a certain distance, the projected area of a voxel is smaller than
a single image pixel. When a ray reaches this distance, a more aggressively band-
filtered dataset (which can be represented accurately with a smaller number of discrete
samples) may be substituted for the original dataset with little visible effect on the
image. [Laur91, Danskin92] As the ray travels further, still lower resolution datasets
may be substituted. This has two effects: it decreases the total number of ray-voxel
intersections which must be made, and improves cache hit rates if intersections are
calculated in an appropriate order. It exploits the coherent and constant divergence

of rays in the perspective proiection.

21

Types of coherence exploited in this thesis

In some of the experiments described in later chapters, we use the algorithmic op-
timizations of opacity clipping, which exploits ray coherence; and bounding boxes,
which exploits object coherence. For the purposes of load balancing, we exploit frame
coherence, using load measurements for one frame to predict the likely load for the
next frame. Most importantly, we focus on how to effectively maximize coherence
(locality) of memory access, in order to tap significant gains m memory hierarchy

performance.

2.2 Parallel architectures for ray casting

A number of researchers have constructed specialized hardware for volume rendering.
A notable example is the PixelPlanes architectures [Fuchs89], however, this hardware
was never distributed commercially. The first version of this architecture appeared as
early as 1981. [Cabral94] used the texture mapplng hardware of the Silicon Graphics
RealityEngine graphics subsystem to do volume 1endermg (a task for which it was not
explicitly designed). This implementation was quite fast (10Hz) for small volumes,
but volumes were limited to the size of the memory in the graphics subsystem (16MB).
This thesis is primarily concerned with algorithms that do not require a high fraction
of the machine cost to be dedicated to special-purpose graphics hardware.

Volume rendering algorithms have been implemented on a wide variety of general-
purpose architectures. Two early implementations on the Connection Machine CM-
2 [Schroder91, Schroder92] achieved near-interactive rates for small volumes by sac-
rificing perspective projection. Both algorithms were specifically designed for the
fine-grained SIMD architecture of the CM-2.

Early distributed-memory implementations were [Dippé84, Cleary86, Nemoto86].
[Corrie92] was the first distributed—mem(;ry implementation which used caching of
volume blocks among the nodes. A large number of other distributed-memory algo-

rithms have been described.

22
[Challinger91] implemented both ray casting and projection algorithms on the
shared-memory BBN TC2000. [Nieh92] was a high-performance implementation on
the shared-memory Stanford DASH. [Cox93] took specific advantage of the shared
bus with a snooping algorithm to optimize pixel merging.
This thesis will primarily concern itself with MIMD (both shared- and distributed-
memory) architectures, rather than SIMD architectures, whose prominence has waned

in recent years.

2.3 Parallel partitioning for ray casting

2.3.1 The two goals of parallel partitioning

Ray casting is replete with parallelism. However, a primary concern in both shared-
memory and distributed-memory MIMD implementations is selection of a suitable
algorithm for partitioning the work (and, for distributed-memory architectures, the
data) on a parallel machine. Parallel partitioning and load balancing algorithms have

traditionally been designed to satisfy two often conflicting goals:

e Equal balance of workload among processors

e Minimization of communication among distributed nodes

2.3.2 Algorithms for parallel partitioning and load balance

Finding such algorithms suitable for ray casting volume rendering is nontrivial. There
exists a wide variety of such algorithms, which can be classified by partition type and

by the method used for load balancing.

Image partitioning versus object partitioning

In ray casting, work units can be created by subdividing the two-dimensional dis-
play screen, assigning sets of rays to each processor; or by subdividing the three-

dimensional volume database, assigning sets of voxels to each processor.

23

Image partitioning [Challinger91, Nieh92, Corrie92, Whitman93, Palmer94b] meth-
ods partition the two-dimensional image plane, and assign subdomains (e.g., scanlines
or rectangles) to the processors. The appeal of image partitioning is that the dispo-
sition of a pixel can be solely determined by the owning processor, without the com-
position of contributions from other processors. This allows global opacity clipping,
the early termination of rays that become opaque before completely traversing the
dataset. This algorithmic optimization yields performance gains which are dataset
dependent but sometimes substantial. The primary disadvantage of image partition-
ing is lack of locality in accessing the three-dimensional volumetric data set. Since
the relationship between image space and object space is not fixed, a processor may
in general need to access any voxel in the dataset to cast a single ray. This lack
of locality can result in cache thrashing in shared-memory systems. In distributed-
memory systems, large communication volumes can result, unless the entire dataset
is replicated on each distributed node. On fine-grain distributed-memory systems,
the cost of either replication or communication can become prohibitive, and the im-
age partition may not be suitable for use. (An exception is [Schréder92], who were
able to reduce communication costs by using regular communication patterns on a
data-parallel architecture.)

Object partitioning [Dippé84, Nemoto86, Cleary86, Kobayashi87, Priol89], an al-
ternate approach, assigns subdomains of the object space called blocks (e.g., rectangu-
lar solid subsets of the data volume) to processors. In the projection step, processors
cast rays through each block individually, generating a tile, the volume rendered im-
age of a single block. The tiles are sorted according to their distance from the eye
point, and composited together in the composition step to create the final image of
the entire data volume.

Most importantly for the goals of this thesis, object partitioning schemes have a
natural potential to improve local memory system performance. Blocks are stored
contiguously in memory, so by processing an entire block at once, locality of memory
access is dramatically increased. For properly sized blocks, orientation-dependent

memory system delays all but vanish, offering the potential of reliable, interactive

rendering rates.

One drawback of object partitions is that global opacity clipping is infeasible
because blocks are rendered individually. Intra-block opacity clipping can still be
done, but it is not as effective, particularly with large numbers of small blocks. In
addition, there is overhead associated with the composition phase of the algorithm:;
this phase is parallelizable (the most straightforward method would use an image
partition for the composition step), but has a cost proportional to the total area of

the projected tiles (or proportional to the cube root of the number of blocks).

Static versus dynamic load balancing

Another important characteristic of parallel partitioning methods is how an equal
balance of workload can be assigned among the parallel processors.

Static load balancing algorithms [Cleary86, Kobayashi88] make a fixed assignment
of units of work to processors. Static load balance is simpler to implement than
dynamic load balancing. These methods rely on a statistical tendency toward equal
load balance due to a high granularity of work units, and a low variance in their
cost (both among themselves and temporally). If these conditions are met, then
a random assignment of work units to processors will tend to yield an equal load
balance. For example, one can assign individual scan lines of an image to processors
in round-robin fashion. Unfortunately, this yields the side effect of very low locality
of memory reference. Increasing locality among assigned work units tends to increase
the correlation between their costs, causing poor load balance. Furthermore, the
dynamic nature of interactive volume rendering tends to yield a high variance in the
cost of work units. For image partitions, regions of the screen may have high cost,
or have no cost if we are able to cheaply determine that they do not overlap the
projected image of the dataset; for an object partition, subvolumes of the dataset
may have a high cost, or may not currently be visible on the screen, and have no cost.

Dynamic load balancing algorithms [Dippé84, Nemoto86, Nieh92] change the as-
signments of work units to processors when necessary. This may be when load balance

falls below a certain threshold, or when the expected improvement in load balance is

25
worth any communication costs that will be entailed. Dynamic load balancing algo-
rithms often rely on frame coherence, the tendency of one frame (and one set of costs
for the units of work) to be similar to the previous frame. Under the constraint of
smooth movement of the view point and view direction, the temporal variance in the
cost of a given unit of work remains low. This allows continuous adjustment of load
balance through a gradual change in load conditions. Setting the required minimum
load balance threshold too high can result in load balance thrashing, in which work
units are shuttled back and forth among processors, without a payoff in improved

load balance.

2.4 Memory hierarchies and exploiting locality of

mermnory access

2.4.1 Uniprocessor cache architecture

Fast memory is generally more expensive than slow memory. Fortunately, typical
access patterns to memory exhibit the property of locality: A memory reference to
a given location will tend to be temporally near references to neighboring locations.
Therefore, a hierarchy of increasingly small amounts of increasingly faster types of
memory can be constructed, yielding higher cost effectiveness than a single layer of
any one kind of memory.

A typical memory hierarchy for a single-processor architecture, shown in Fig-
ure 2.8, has one or two layers of fast cache memory between the processor and the
main memory, called the level one (L1) and level two (L2) caches. The L1 cache is
smaller and faster than the L2 cache. The caches are divided logically into cache
lines. When the processor first requests a word from memory, the entire line con-
taining that word is copied into the L2 cache, then into the L1 cache, then into the
processor registers. The next time the processor needs a word from that line, the re-
quest can be satisfied from fast cache memory without the necessity of going to main

memory. Likewise, if the processor needs to write to a word of memory, the write will

Registers

L1 Cache

L2 Cache

Main Memory

Disk Storage

Tape Archive

Figure 2.8: A typical memory hierarchy for a single-processor architecture

be faster if the cache line containiﬁg that word is already in the cache. The cache
memory is much smaller than the main memory, so it will eventually become full,
and some lines will have to be discarded. A common policy is to discard those which
were least recently accessed. When a line is discarded from the cache, its contents
are written back to memory if the line is “dirty” — if it has been written to.

Carefully written programs can be made to have increased locality of memory
access, yielding better cache performance at each level of the cache; however, the
interaction between a given program, other programs, the operating system, and
multilevel cache hardware, is often complex. User programs generally do not have
control over which blocks are maintained in the cache, since the caching policies are
usually built into the hardware. This does not necessarily result in the most efficient
use of the cache. There are certainly cases in which the programmer has information
about future memory accesses that is not available to the cache hardware.

Copies of a given word of data are replicated vertically in this simple single-
processor memory hierarchy. Each copy of the word can be considered to be con-
suming precious system resources. Algorithm designers are accustomed to conserving
operations and program size; efficient use of each copy of a word of data is no less

important.

27
2.4.2 Shared memory

Many algorithms are structured such that more than one processor can simultaneously
work contribute to a solution. A shared-memory design is one way to build a parallel
machine.

Shared memory systems consist of multiple processors, each with their own reg-
isters and caches, connected by a bus to a shared main memory, as in Figure 2.9. A

typical example is the Silicon Graphics Power Challenge.

Registers Registers Registers Registers

| | | |

1.1 Cache L1 Cache L1 Cache L1 Cache
[[I |

L2 Cache L2 Cache L2 Cache L2 Cache

l I ! I
Shared ——% |

Bus Shared Main Memory

Figure 2.9: A typical memory hierarchy for a shared-memory architecture

In such a system, a given word of memory is replicated not only vertically, but can
also be replicated horizontally, across the processors. This introduces the problem of
maintaining cache coherence horizontally among the processors. For example, suppose
two processors read the value “0” from the same location in memory into their caches,
increment that value in their caches, and (when the cache lines are purged) each
write the line back to the shared main memory. If special provision were not made
to maintain cache coherence, then slight variations in the timing of these operations
could result in nondeterministic results - equivalent to a single processor incrementing
the value either once or twice. One hardware mechanism for assuring the property of
cache coherence is referred to as directory based, in which a central directory of the
sharing status of each cache line (whether a copy exists on more than one processor)
1s maintained; another is bus-snooping, in which each processor watches the bus for

transactions involving cache lines of which it currently holds a copy.

28
The point-to-point bandwidth and latency of the bus shared by the processors is
generally much higher than that of the interconnection network connecting processors
of a distributed memory machine. However, this design is not scalable to as many
processors as a distributed memory design, described below. It is possible to saturate

the shared bus with requests so that bus contention among the processors limits the

bandwidth available to each.

2.4.3 Distributed memory

Distributed memory systems consist of multiple processors, each with their own reg-
isters, cache, and local main memory; the processors are connected some intercon-
nection network, as in Figure 2.10. A wide variety of interconnection topologies have

been used.

Registers Registers Registers Registers
! l l |

L1 Cache L1 Cache L1 Cache L1 Cache
| I I l

L2 Cache L2 Cache L2 Cache L2 Cache

Local Memory Local Memory Local Memory Local Memory

Interconnection 7

Network

Figure 2.10: A typical memory hierarchy for a distributed-memory architecture

Many commercial distributed memory machines do not allow the programmer
to access the entire memory of the machine as a single global address space. Each
processor is able to read its own local memory; access to data stored in other pro-
cessors’ local memories must be transferred by the explicit passing of messages. On
such machines, the programmer has complete control over how data moves between
distributed nodes and over how what data, if any, is replicated.

On machines that do not provide a global shared address space. the programmer

29
can implement one logically in software. This allows the use of information not avail-
able to an automatic caching hardware to optimize cache performance. We examine

such a system, complete with provision for caching, in this thesis.

2.4.4 A hybrid architecture: the Power Challenge Array

The memory hierarchy of the Power Challenge Array is a hybrid: it consists of multi-
ple shared-memory Power Challenge nodes connected by a HIPPI crossbar network,
as shown in Figure 2.11. For certain problems, such non-uniform memory access
(NUMA) architectures allow efficient scaling to greater numbers of parallel processors
than either shared-memory machines (with their fast but non-scalable bus) or dis-
tributed memory machines (with their “scalable” but relatively slow interconnects).
The deep memory hierarchy of such machines allows better use to be made of the
coherence in some problems, in order to increase memory locality.

Our use of this architecture in our experimentation allows us to explore shared
memory performance considerations, distributed memory considerations, and consid-
erations for a relatively deep memory hierarchy, which requires particular attention
to exploiting memory hierarchy to achieve the maximum available performance. It is
quite difficult, both algorithmically, and in terms of implementation, to achieve the

peak performance on such an architecture. This is one of the goals of this thesis.

2.5 The relationship between parallel partitioning
and memory hierarchy performance

Most previous work in parallel volume rendering has sought to satisfy the two goals

of parallel partitioning stated in section 2.3, which we restate here:

e Equal balance of workload among processors

e Minimization of communication among distributed nodes

30

LRegisters I l chistex?l l Registers | | Registers I LRegistem l } chistcrs—l ‘ Registers I I chisters—l
HiPPI
! L1 Cache] LLI Cache] | L1 Cache l [L1 Cache I lnte;%cg‘l"l/r:;;txon IE Cachcq I L1 Cache . l L1 Cache] [L1 Cachew
(crossbar switch)
! 1.2 Cache I [LZ Cacm ! L2 Cache [l L2 Cache l [LZ Cachc—, l L2 Cache [LLZ Cache] ’ L2 Cache l
[[f —_ | J
Shared ———%" I Shared % I
Bus L Shared Main Memory I Bus] Shared Main Memory l
I Registers | I chistcx?l I Registers l Lchisters l [Registers | [Registcrs] l Registers l l chistcrs—I
| L cache | | LI Cache] | Lt Cache | | Lt cache | | L1 Cache | [L1 cache | | L1 Cache l | L1 Cache |
I
I L2 Cache] I L2 Cache f LL2 Cache l [L2 Cache l l L2 Cachc—l l L2 Cache l 1 12 Cachc—l] L2 Cache]
| i —] l I J
Shared ——F I Shared ———%F]
Bus [Shared Main Memory l Bus Shared Main Memory]

Figure 2.11: A hybrid distributed/shared memory hierarchy, the Power Challenge
Array

However, past work has ignored the effects caused by a particular choice of par-
allel partition on the performance of lower levels of the memory hierarchy, e.g., the
processor cache. |

We will show in this thesis that choices made regarding parallel partitioning have
fundamental implications to performance at all levels of the memory hierarchy — from
the processor cache, to the level of the communication network between distributed
nodes — which must not be ignored. Poor performance at any level of the memory
hierarchy can nullify the performance benefits of equal load balance, and prevent
effective parallel speedup.

We will amend the two goals of parallel partitioning to:
o Equal balance of workload between processors

o Maximization of locality of data access at every level of the memory hierarchy

The memory system on the individual nodes of a distributed-memory or hybrid
architecture machine, along with the connection network between the nodes, should

be considered as a single deep memory hierarchy. Algorithm designers face the difficult

31
task of optimizing the memory system performance at every level of this hierarchy.
Each replicated copy of a word should be considered to be consuming precious system
resources; if a copy is not accessed repeatedly, the usefulness of its existence should
be questioned. Such a view yields a clearer picture of the constraints that must be

placed on parallel partitioning and load balancing to achieve maximum performance

from the hardware investment.

32

Chapter 3 EXperimental Goals,
Methodology, and Tools

3.1 Experimental goals

As we have outlined in Chapter 2, many variants of volume rendering have been im-
plemented on a wide variety of parallel architectures. This thesis focuses on memory
hierarchy performance, something that we believe has not received due attention.
Most parallel volume rendering research has focused on load balance, and minimizing
communication at high levels of the memory hierarchy, i.e., the communications net-
work between distributed nodes. This implies a simplistic and inadequate model of
the memory hierarchy of the machine, since poor efficiency at any level of the memory
hierarchy can have a strong impact on performance. This impact can be as important
as that caused by poor load balance (which has been the gremlin preoccupying many
researchers). Memory hierarchy efficiency at all levels has not received the attention
merited by its performance impact.

Obtaining optimal memory hierarchy performance on parallel machines is more
difficult than on uniprocessor machines because parallel machines often have deeper
and more complex memory hierarchies, and because of the fundamental relationship
between selection of a parallel partition and memory hierarchy performance. Choices
made about distribution of data and work units dictate memory access and commu-
nication patterns. Optimization of memory hierarchy performance at several levels
constrains the choice of parallel partition.

It is our goal to identify the constraints required to optimize exploitation of each
level of a deep memory hierarchy, on both shared- and distributed-memory archi-
tectures; and to define parallel partitioning and load balancing algorithms which

maintain good load balance while efficiently using the memory hierarchy.

33
3.2 Experimental methodology

Our approach proceeds from the bottom up. We study memory hierarchy performance
at lower levels first, on a single processor, in Chapter 4. Qur focus is level one (L1) and
level two (L2) cache misses. We employ a test suite (consisting of views of the dataset
from a sequence of viewpoints) designed to discover the directional dependence of 1,1
and L2 misses. We use three tools in this exploration: 1) algorithmic modifications
designed to isolate the time attributable to cache misses, 2) a hardware performance
monitoring board, which counts L2 misses on the bus, and 3) a cache simulation
library, which simulates the entire state of the L1 and L2 caches, and allows detailed
examination of the causes of cache misses.

In Chapter 5, we progress to memory hierarchy effects on a shared-memory multi-
processor (the Silicon Graphics Power Challenge). The same test suite is used, since
our goal remains the characterization of L1 and L2 misses. Two other subjects enter
the mix: first, the issue of processor contention for the shared bus, and second, the
selection of a suitable parallel partitioning and load balancing algorithm. We will ~
explore two such algorithms, one image partition and one object partition.

In Chapter 6, we move to explorations on the Silicon Graphics Power Challenge
Array, which is constructed of distributed Power Challenge nodes networked together.
No shared-memory model between the nodes is provided in system software, so we
describe our system for replicating and caching blocks of volume data among the
nodes, based on a message-passing layer. Our focus becomes the tradeoff between
increased memory use (replication of data) and increased communication. We adopt
a new test suite which is designed to exercise our software block caching scheme,
proving that the scheme results in a very low penalty for no replication of the data,
relative to the case of complete replication of the data on each node. That is, the
system makes very efficient use of the memory hierarchy.

We will conclude the thesis with a discussion of the implications to algorithms
that share certain characteristics with ray casting, and the implications to parallel

architecture design.

34
3.3 Hardware platform: the Silicon Graphics Power

Challenge Array

We conduct our investigations on the Silicon Graphics Power Challenge, and Power
Challenge Array. The Power Challenge, a shared-memory multiprocessor, contains
up to 18 MIPS R8000 CPUs clocked at 90 MHz. The processors communicate via
a bus with a peak bandwidth of 1.2 GB/sec to a shared memory of up to 4 GB of
RAM. The R8000 is a superscalar RISC processor, capable of 2 integer and 2 floating
point operations per cycle. The R8000 has a two-level cache system: the on-chip, L1
cache consists of 512 blocks of 32 bytes for a total of 16K, and is direct mapped; the
L2 cache consists of 32768 blocks of 128 bytes for a total of 4MB, and is four-way
interleaved. The function of the two levels of the cache system is partitioned by data
type: for integer numbers, the L2 cache serves as a streaming cache for the L1 cache;
for floating point numbers, L2 serves as a single-level cache between the processor
and memory. We access our data voxels as 1-byte integer values, so they receive the
benefits of a two-level cache.

Up to eight Power Challenge nodes can be connected together by a HIPPI network
to form a Power Challenge Array. On this system, there is no explicit sharing of
memory between nodes of the array, nor is a logical global address space provided in
software. The user is left to employ the message passing system of his or her choice
to accomplish explicit communications between the nodes. The TCP/IP prototcol is
provided over HIPPI. Several message passing libraries for TCP/IP exist which can
be optimized for use over HIPPI, including MPI and SCPlib [Watts97].

The HIPPI hardware consists of a pair of boards per node: one to send and one to
receive. Each of the two boards is connected by a HIPPI cable to a full crossbar HIPPI
switch. HIPPT has a high peak bandwidth: 91 MB/sec using the TCP/IP protocol is
cited by Silicon Graphics [Skibo95]. However, HIPPI is unable to maintain this high
rate except under ideal conditions.

We have matched the SGI measurement of a peak rate of 91MB /sec using TCP /1P,

in an experiment measuring the time for a large send operation (100 times as large as

35

the 1MB buffer) to return. This measurement was made on a single unloaded machine
sending to another unloaded machine over an unloaded HIPPI connection, where the
message buffers were page aligned, and the message length was an integer multiple
of the page size (16384 bytes). However, when one of the machines or the HIPPI
link is slightly loaded, or the messages are not an integer multiple of the page size,
we have observed that the practical bandwidth quickly decreases. If the messages
are relatively small, e.g., 100-200KB, and there is contention on the network — such
as four nodes all attempting to send to each of their three neighbors simultaneously
— we have observed that the effective bandwidth of the HIPPI network decreases to
9-10 MB/sec per node.

3.4 Experimental software platform:RendA sunder

Over the past three years, we have developed a flexible, high-performance parallel
renderer based on ray casting, called RendAsunder. RendAsunder is the primary
experimental tool used in this thesis. This code can employ a number of optional
parallel partitions on a variety of configurations of the Power Challenge and Power
Challenge Array. RendAsunder contains many features to increase its usefulness as
an experimental tool for the investigation of ray casting performance characteristics
at all levels of a deep memory hierarchy. It contains other user interface and display
features that allowed it to be used as a demonstration of parallel supercomputing
technology at the Silicon Graphics vendor booth at several conferences, including

Supercomputing 94 and ’95.

3.4.1 General features of RendAsunder

At the core of RendAsunder is a high-performance ray casting kernel which we opti-
mized heavily for efficiency on the super-scalar R8000. The inner loop of the kernel
advances a ray to the next voxel that it intersects, and adds the contribution of the
voxel to the accumulated color and opacity of the ray. The ray advancement primarily

involves integer onerations and the calar and anacitv calenlatinne neirmanilo fnalons

36
floating point operations. The R8000 contains two integer units and two floating
point units which can work in parallel under suitable conditions. Careful algorithmic
tuning keeps each of these units maximally busy, while allowing unrolling of loops to
eliminate loop overhead.

Within a single Power Challenge node, RendAsunder can use either 1) an object
partition, 2) an image partition derived from a dynamic recursive subdivision, which
divides the screen into a number of tiles equal to the number of processors, or 3) a
static tiling into a number of tiles larger than the number of processors, which are
then taken in turn by the processors off of a work queue.

Among multiple Power Challenge nodes, RendAsunder can partition its work with
an object partition or the recursive image partition. The volume dataset can be
completely replicated on each node, or RendAsunder can employ its software block
caching system, in order to save memory. In this system, blocks move dynamically
among the nodes to maintain load balance. The blocks do not have an affinity to any
particular processor; however, RendAsunder can be configured to guarantee that at
least one copy of each block is present in the collective memory of the nodes at all
times.

RendAsunder can employ one of three different message passing libraries: the Sil-
icon Graphics implementation of MPI, the mpi_ch implementation of MPI, or Jerrell
Watts’ SCPlib message passing library [Watts97]. Fach of these uses regular Unix

sockets, and can operate over ethernet or HIPPI networking hardware.

3.4.2 RendAsunder as an experimental tool

RendAsunder has been given advanced instrumentation to facilitate experimental
studies, including extensive performance logging capability, which records the perfor-
mance of various components of computation and communication in detail.
RendAsunder has the capability of operating and collecting statistics from the
“PF3” hardware bus-snooping board for the Power Challenge. This board counts bus

events of several types, including L2 cache misses by passively observing bus traffic.

37

! nodes x procs ‘ dataset size l resolution l partition type ‘ fps—‘
8 x 8 584x1878x341 (357 MB) | 400x300 |image w/ replication | 10.0
8 virtual x 8 | 1610x894x5192 (7.1 GB) | 800x600 object w/ caching | 0.48

Figure 3.1: Sample performance points for Rend Asunder

In addition, RendAsunder employs a software cache simulation library, which can
be configured to mimic the cache sizes and caching policies of the R8000. This library
simulates the state of every cache line. This library allows the study of both 1.1 and

L2 miss patterns in greater depth than is afforded by the bus-snooping board.

3.4.3 The high performance of RendAsunder

RendAsunder is capable of both high frame rates in the absolute sense, and of frame
rates that are high relative to the task of rendering very large datasets at high reso-
lution. Figure 3.1 shows two sample performance points. On an array of eight Power
Challenges of eight processors each, RendAsunder attained up to 10 frames per second
on average rendering a large 584x1878x341 (357 MB) dataset at 400x300 resolution;
this frame rate is generally considered to be a minimum for true interactivity. On a
virtual array of four nodes of sixteen processors each (logically arranged into eight
nodes of eight processors, to avoid a 2GB per-process memory use limit), RendA-
sunder was able to render images of what is, to our knowledge, the largest single
dataset ever rendered: 1610x894x5192 (7.1 GB). At the high resolution of 800x600
pixels on this very large dataset, RendAsunder attained 0.48 frames per second, i.e.,
2.1 seconds per frame. (The reason eight virtual nodes were mapped on to the four

physical nodes was due to an operating system per-process memory limit of 2 GB.)

38
3.4.4 RendAsunder as a demonstration vehicle for interac-

tive volume rendering

RendAsunder has been presented as a demonstration of supercomputing technology
in the Silicon Graphics (SGI) vendor booth of four conferences: Supercomputing 94
in Washington, D.C., Supercomputing ’95 in San Diego, HPCN ’95 in Milan, Italy,
and Parallel Computational Fluid Dynamics 95 in Pasadena. The installation was
equipped with a joystick and foot pedals, for a total of six degrees of freedom, to
allow visitors to fly around the 357MB Visible Human Male dataset at interactive
frame rates.

RendAsunder can send its output to a single display screen; or multiple screens on
a single machine; or multiple screens on multiple machines, of a Power Challenge Ar-
ray. At Supercomputing '94 and ’95, RendAsunder was presented in conjunction with
the Power Wall project of the Laboratory for Computational Science and Engineering

at the University of Minnesota.

2 x POWER Onyx

8 procs/node The "POWER Wall

T T T T T 3200 x 2400 pixels total
4 backprojection TVs
POWER Challenge Array 150GB
8 nodes, 84 procs total Disk
-
I Re?]
POWER (ke
Onyx gt ——T"

N\ I/ =

POWER |ReA|™—— 4
HIPPIswitch ====""""1 Onyx [pg2

P | \B
Ve 150GB

Indy Disk
Workstation —

Figure 3.2: Hardware configuration at Supercomputing 95

Figure 3.2 shows the hardware configuration used: In the center are two SGI Power
Onyx nodes; each contains eight R8000 processors, 2GB of shared memory, 300GB of
disk, and two SGI Reality Engine? graphics boards. Each of the four Reality Engines

39
drives a projection TV display at a resolution of 1600 by 1200 pixels. The four TV
projectors are aligned to display one large image of 3200 by 2400 pixels. To the
left of the figure, connected by two HIPPI links to the Onyx machines, is the Power
Challenge Array; this consists of eight nodes, with 2GB of RAM per node, a total
of 84 R8000 processors, and no graphics hardware. The Challenge Array nodes are
connected to each other and to the Onyxes by HIPPL An Indy workstation is used
to run the graphical user interface. Control messages are transmitted by ethernet

between the machines.

3.4.5 Summary of features of RendAsunder

e General features:

— high-performance, software-pipeline ray casting kernel

— configurable algorithmic optimizations, e.g., opacity clipping
o Peatures aiding experimentation:

— extensive performance logging
— provisions to collect data from bus-snooping board

— built-in cache simulation library
o Parallel partitioning options:

— Shared-memory parallel partitions
* Image partition with recursive bisection
* lmage partition with many fixed tiles and work queue
* object partition with many blocks and work queue
— Distributed node parallel partitions
* image partition with dataset replication
* object partition for projection; image partition for composition, with

dataset replication

40
* object partition for projection; image partition for composition, with

dynamic block caching

— Software implemented global address space for volume blocks with provi-

sion for dynamic caching
e Choices for message passing:

— mpi-ch version of MPI message passing library
— SGI version of MPI message passing library
— SCPlib [Watts97]

— message passing over HIPPI or ethernet
e Piloting modes:

— experimental test suites
— interactive graphical user interface
— Joystick and footpedals interface

— recorded flight path
o Choices of hardware configuration for display:

— display to a local array node
- display to an external node
— display to multiple nodes

— display to multiple screens on multiple nodes
e 1/0:

— input of uncompressed or run-length-encoded volume data

— output of images in “ppm” format

e Compatible Hardware Platforms:

41
— One or more 64-bit R8000/R10000 single- or multi-processors

— One or more 32-bit R4400 single- or multi-processors

42

Chapter 4 One Processor

Figure 4.1 recalls our view of the memory hierarchy of a typical single-processor. This
chapter is a detailed analysis of memory hierarchy effects for ray casting on a single
processor - specifically the behavior of the L1 and L2 caches. We use three tools
to characterize memory hierarchy performance: 1) experimental timings designed to
isolate the time attributable to cache miss penalties; 2) a hardware bus-snooping
board, which keeps a detailed log of bus traffic, including L2 cache misses; and 3)
a configurable software cache miss simulator, which enables us to separate the total

cache miss penalty into L1 and L2 miss portions.

Registers

L1 Cache

L2 Cache

Main Memory

Figure 4.1: A typical memory hierarchy for a single-processor architecture

4.1 Ray casting cost analysis

Most of the time to render a frame is spent in the inner kernel of the ray caster,
iteratively advancing a ray into the next voxel, reading the voxel’s value, mapping
1t to an opacity and color, and adding the opacity and color appropriately to the
accumulated opacity and color of the ray. This memory read of the voxel’s value is the
single memory access that causes nearly all of the memory hierarchy effects described

below. The distribution of memory accesses has a great impact on performance. This

43
depends largely on two parameters, the number of blocks into which the dataset
is divided, and the view direction. These entail a certain distribution of memory
accesses, and a corresponding number of L1 and L2 misses.

The total time per frame can be broken down into the following parts:

3

total time per frame(view direction, number of blocks, number of rays cast) =
time per intersection(view direction, number of blocks) x
number of intersections(view direction, number of rays cast) +
a X number of blocks +

b x number of rays cast + ¢ (4.1)

where the tume per intersection and number of intersections refer to the inter-
sections of rays with voxels. a, b, and ¢ are scalar factors associated with constant
time costs per block, per ray, or per frame (e.g., loop overheads). The time on average

to intersect a ray with a single voxel can be separated into:

time per intersection(view direction, number of blocks) =
d* L1 misses(view direction,number of blocks) +

e * L2 misses(view direction, number of blocks) + f (4.2)

where d, e are constant factors reflecting the averaged behavior of complex cache
interactions, and f is a constant factor. |

We use a three-dimensional Bresenham algorithm to calculate the path of a ray.
The Bresenham algorithm yields more advancement steps for diagonal rays than
straight rays of the same length (i.e., it causes the number of intersections to be
a function of view direction), and a division opération must be done to correct for
the varying distance of each step, but this was the fastest of several ray advance-
ment strategies we implemented, because we were able to achieve very good software
pipelining on the superscalar R8000.

We do not consider optimizations to minirize the number of intersections in

44
this work. Likewise, there are methods which exploit forms of coherence to reduce
the total number of rays cast which we do not explore here (we cast one ray for
cach pixel). We focus on the tradeoff between decreasing the time per intersection
due to increased locality from blocking of the data, and the resulting overhead from
increasing the number of blocks.

The number of ray-voxel intersections in one frame varies with view direction due
to several factors, including the dataset extent in each dimension, effects of diagonal
rays in the Bresenham algorithm, and the portion of the dataset currently visible.
Therefore a useful normalized measure of ray casting speed is the average time per
intersection, i.e., the average time to advance a ray one step and intersect it with a
single voxel.

We will show that most of this time for the slowest view directions is attributable
to memory hierarchy effects, in the context of the extreme demands placed on the
memory system by the casting of hundreds of thousands of rays through hundreds of

millions of voxels.

4.2 Datasets

We use three datasets in our experiments: 1) the female dataset, derived frém the
Visible Human Female dataset [Ackerman95], which was produced by freezing a fe-
male cadaver and shaving it into over 5100 slices (in this chapter, we use this dataset
at one-half this resolution), which were digitally photographed; 2) the male dataset,
derived from the Visible Human Male dataset [Ackerman95], produced by shaving a
male cadaver into 1900 slices; 3) a computational fluid dynamics vorticity dataset,
courtesy of the Laboratory for Computational Science and Engineering at the Univer-
sity of Minnesota [Woodward95], which displays the vorticity of a simulated turbulent
fluid. The dimensions of each dataset are given in Figure 4.2. Each was stored at 1
byte per voxel. Example images of the three datasets are shown in F igures 1.1 and
4.3. Note that since the female and male datasets were produced photographically,

the colors are true to the actual colors of the bodily tissues represented.

45

| Dataset Name I Dimensions I Total Size |

vorticity 512x512x512 | 128 MB
male 584x1878x341 | 357 MB
female 840x2595x480 1 GB

Figure 4.2: Sizes of experimental datasets

Whereas the performance heuristic of opacity clipping will be shown to be useful
for the female and male datasets, in that they both contain large opaque objects, the
vorticity dataset is different since it is largely translucent. In addition, the vorticity
dataset is cubical, which is useful for removing effects due to non-unity aspect ratios

when comparing performance between views from different directions.

Figure 4.3: Example images of the female (top) and vorticity (bottom) datasets

4.3 The axisorbit test suite

The azisorbit test suite consists of a sequence of 132 views of the dataset. This
suite is intended to uncover the directional dependence of the time per intersection
and of the two types of cache miss. Selected frames from this suite, called the “axisor-
bit” suite, are shown in Figure 4.4. Note that the suite is broken into four discrete

segments, each consisting of the rotation of the dataset about a different axis. In

46

Rot. about Y Rot. about X Rot. about Z Rot. about Y, X

i

frame 33 frame 66 frame 99 frame 132

Figure 4.4: The axisorbit test suite

47

frames 1-33, the dataset is rotated 180 degrees about Y in frames 34-66 about X;
in frames 67-99 about Z; and in frames 100-132 the dataset is initially rotated by 45
degrees about Y, and then from 0 to 180 degrees about X. All views are rendered at
a resolution of 400 by 300 pixels.

The three-dimensional datasets are linearized in memory by X first, then Y, then
Z. When the cadaver in the female or male datasets is standing upright and facing
the viewer, the object space X direction points to the viewer’s right, the ¥ direction
points up, and the Z direction is toward the viewer. This will be important to the
consideration of cache effects, which we will find have a strong dependence on the

view direction.

4.4 Experimental procedure

We conducted all experiments in this chapter on one processor. Each dataset was di-
vided into multiple blocks, and each block was processed serially by a single processor.
We assured ourselves that there would be no interblock effects that would prevent
these results from carrying over to multiple processors by performing an experiment
in which the cache was flushed between the processing of blocks - we found negligible
interblock effects. This should be expected since blocks do not interleave in memory

and so share at most one cache line.

4.5 View direction dependence of time per ray-
voxel intersection

Figure 4.5 establishes the strong dependence of the time per ray-voxel intersection on
view direction, and that this dependence can be controlled by blocking. We conducted
all experiments in this section on one processor with opacity clipping turned off. The
figure plots frame number versus time per intersection for datasets blocked to different

degrees, between 1 and N blocks, where N is 1024 for the female dataset, 256 for the

48

female dataset male dataset
secfintersection x 10°6 secfintersection x 10°6
Tblock Tblock
120 Pt z::::s 110 p N 2’:’““
RN NI
g 256 blocks

ATARE il
™M .
[.
|
I

o] | ik
0.80 f l
|

0.70

VYV T -

W
- T
[AV -
: r

0.70

0.60 ———A

i

\

Ao T
¥

0_50__ i lv,,.-i A
e : v
® frame-oumber . frame-number
000 2000 4000 6000 §000 10000 12000 000 2000 4000 6000 8000 10000 12000
‘ ‘ : vorticity dataset

l:dmrenecumxw‘ .

i blocks

5 {{—J * 32 blocks

110 128 blocks

" [N,

o YR

ol 1 Wt

VAN M

ol R L T

ot A AT AT

wl M Y 1] |

0.30 — . [ﬁ

o fame-number

0.00 20.00 40.00 60.00 8000 10000 120.00

Figure 4.5: Dependence of time/intersection on view direction

49
male dataset, and 128 for the vorticity dataset. The maximum number of blocks N
was chosen for each dataset to yield minimum sized blocks of approximately 1 MB,
a fraction of the size of the 4 MB L2 cache (i.e., we selected the minimum-size block
to be smaller than what we expected would be the optimal size).

The time for a single block (shown in red) shows strong directional dependence
for all three datasets. Appropriately-sized blocks reduce this dependence: as the
number of blocks increases, locality increases, and cache hit rates improve. However,
making the blocks smaller past a certain point yields no benefit, and there is an
overhead cost associated with increasing numbers of blocks. For the female dataset,
the optimal number of blocks for a broad range of view directions is 512 (light blue,
female dataset). For the male and vorticity datasets, respectively, the number is 128
(purple, male dataset), and 64 (purple, vorticity dataset). For the three datasets,
these numbers yield block sizes of 2 MB, 2.8 MB, and 2 MB. for the three datasets,
respectively. This size fits easily into the 4 MB L2 cache.

We determined experimentally that interblock effects are negligible by comparing
the ordinary algorithm with one that completely flushes the cache between blocks.
However, interpixel effects are quite significant; the specific effects manifested can
be unintuitive. We consider a single large block (red in Figure 4.5). The data is
linearized in memory by X first, then Y, then Z. One might naively assume that
viewing directly down the X direction (e.g., frame 17 in Figure 4.4) would yield the
best cache performance, and therefore the lowest time per intersection. This is not
the case; instead, a view directly down the Y axis (frame 50) is better. This is due
to somewhat complex interpixel effects:

Recall that the dataset is linearized in memory X first, then Y, then 7. Recall also
that, as we cast rays, we scan across the display screen in horizontal rows. The R8000
has an L1 cache line length of 32 bytes and an L2 cache line length of 128 bytes.

In the case in which a ray travels directly down the X axis (frame 17 in Figure 4.4),
1t 1s intersecting voxels in steps of 1 byte through memory. It misses in the L1 cache
only once in every 32 ray-voxel intersections, and misses in L2 only once in every 128

intersections. The first intersection that misses will fetch into L1 the values for the

50

next 31 intersections, and into L2 the values for the next 127 intersections, yielding
good cache performance. However, (in the approximation that all rays are traveling
in parallel down the X axis) none of these cached voxels will be used by the next ray,
which starts one pixel to the right of the last one on the display screen.

In contrast, when a ray is traveling directly down the Y axis (frame 50 in Fig-
ure 4.4), the first ray misses in cache at every ray-voxel intersection: it is traveling
through memory in steps equal to the X dimension of the dataset, which is greater
than both 32 and 128 bytes for all three datasets. However, it leaves behind in the
cache an entire X-Y plane of voxel values in the L2 cache. The dimensions of this
“plane” are the entire Y dimension of the datéset in one direction, by the length of a
cache line in the other direction. (Since the L1 cache consists of 512 lines of 32 bytes,
and the datasets each have a Y dimension of 512 or greater, it is likely that casting a
single ray down the Y direction completely flushes the L1 cache for all three datasets.
However, such a ray will not flush the L2 cache completely.) In the approximation
that it travels straight down the Y axis, the next ray (one pixel to the right on the
display screen) is translated from the last ray by 1 voxel in the X direction. It lies
entirely in the same X-Y plane of voxels that was fetched by the last ray, so it does
not miss L2 cache at all - and nor do the next 127 rays.! Note that frame 116 is just
45 degrees rotated from frame 50, but it gets far worse cache performance because
rays that are adjacent on the screen do not share an X-Y plane of voxels.

A ray traveling directly down the Z axis will miss cache every time, but will leave
an X-Z plane of voxel values behind in the L2 cache. There are two interesting cases
in our test suite: 1) If the next ray cast is translated from the last ray by 1 voxel in
the X direction (as in frames 1, 33, 34, 66, 67, 99), it will hit cache every time. This
yields quite good performance - nearly as good as the best case of frame 50, above,
for the female and male datasets. 2) However, if the next ray cast is translated from
the last ray by one voxel in Y (as in frame 83), it will miss every time. F urthermore,

by the time the ray one row down on the screen (which would intersect the same

'The question of why looking directly down the X axis is not at least equally good to looking
directly down the Y axis has not been answered by this simple model; it will turn out to involve
rays being cast in perspective projection. We discuss it further in section 4.8.

51
X-Z plane of voxels) is cast, the plane has already been flushed from the cache by
the intervening cache activity. This is the worst possible cache performance: every
ray misses at every intersection. However, note that the worst performance case of
frame 83 could be turned into the very good performance case (near to the best case
for the male and female datasets) of frame 1 simply by scanning across the display
in columns instead of by rows.

The cache lines fetched into the cache by a ray traveling orthogonally down the
X, Y, or Z axes are shown in Figure 4.6. Note that the cache lines always go in the
X direction. A ray traveling directly down X experiences fewer cache misses, but
leaves fewer lines behind in the cache where they might be reused by other rays; a
ray traveling down the Y axis or the Z axis leaves a Y-X or a Z-X plane of voxels in
the cache, respectively.

Analysis of the cache behavior for perspective-projection rays traveling in direc-
tions not parallel to the coordinate axes becomes so complex that a cache simulator
must be used, as we do below in section 4.8.

In summary: Interframe and interblock pixel effects are negligible. Complex in-
terpixel effects cause the dependence of ray-voxel intersection time on view direction.

This directional dependence can be minimized with appropriate blocking of the data.

4.6 Isolation of time due to cache effects

In order to determine how much of the total frame time is due exclusively to memory
hierarchy effects, rather than to other overheads, we modify the ray casting kernel,
replacing the access to the currently intersected voxel with an access to a single, fixed
voxel. This of course does not generate correct images of the dataset, but eliminates
the costs associated with cache miss penalties. After the first access to this fixed voxel,
subsequent accesses will result in no cache misses. We call the modified algorithm
the “no-mem” algorithm. Figure 4.7 shows the result for a single block. The time
per intersection of the original algorithm is labeled “with-mem” (red). The time per

intersection of the modified algorithm is labeled “no-mem” (green); this is the time

52

N OO E IO OTT T
— e] .—_-._—_._.—_._—.--—_-._’

— A A R LT

X

Figure 4.6: Cache lines fetched by a ray traveling down the X, Y, or 7 axis

53

» _— female dataset, 1 block i - male dataset, 1 block
: e e AR
1.00 \ 3 0.90 i
L "L N YA
T KA T A
AW JIER.. NN [11
o LI “TIA RS
RV A o

T o L
R/ o AL
RN 1 \l
N ;\\7’; o oo i 0.10 hY LV'JJ T

0.00 20.00 40.00 60.00 8000 10000 12000

0.00 2000 40.00 60.00 8000 10000 12000

vorticity dataset, 1 block

secintersection x 10°6

130

120

110

1.00

090

0.80

0.70

0.60

0.50

0.40

0.30

020

0.10

0.00

‘with-mem

e e

——
[
>3
e

]
L]

S
| &
rd
C
At

—
L1

0.00

frame-number
20.00 40.00 60.00 80.00 10000 120.00

Figure 4.7: Time/intersection: with-memory, no-memory, and memory-only, 1 block

54

female dataset, 512 blocks male dataset, 128 blocks

sec/intersection x 102 sec/intersection x 10°?

600.00 anh-meln_ 450.00 with-mem

- PRy =
ATEEETAYNAN 23 Al N

=T 0 ol CICA T
AV ANEN] \ NANEIERE
666 ! \V/ \”ﬁ'\\ /m \V . 1,\ . Lf'\ " v .
BUAVASN)/ S8/ YA o ASNATVN S
NI AV A Pava NIAN A

::l/\/\\ i]HW \ ::: A /xyx\.: \ -
O A I VAL A

0.00 0.00

frame-number frame-number
0.00 20.00 4000 60.00 80.00 10000 120.00 0.00 20.00 40.00 60.00 80.00 10000 120.00

vorticity dataset, 64 blocks
sec/intersection x 100
240,00 Wbl
A A no-mem

o A ==

380.00 ’ ‘
e A, , \\
o IA\ /A\ .
el T B
{
I

=]

I et

280.00
26000
240.00
¥ A\

22000

el VAV AV AVE Ve
18000
160.00
140.00 l
120.00 ’,
100.00

556 f/\' {
6000 — it
40.00
20.00
000

-20.00 frame-number
0.00 20.00 40.00 60.00 8000 10000 120.00

|
L.7]
<\

)

A
YR
v

3
i

Figure 4.8: Time/intersection: with-memory, no-memory, and memory-only, optimal
number of blocks for a given dataset

55

attributed to everything but memory hierarchy effects. The line labeled “mem-only”
(blue) is the difference between the “with-mem?” and the “no-mem” lines. This is the
time per intersection which we attribute directly to memory hierarchy effects. The
“mem-only” time per intersection is the dominant fraction of the total cost. With the
optimal number of blocks for each dataset (not shown here), the “mem-only” time is
actually reduced to slightly below the “no-mem” time for all viewpoints. In addition,
it 1s strongly directionally dependent. We will next separate the time we attribute
to cache miss penalties into L1 and L2 miss portions, and compare the total time
attributable to cache misses to the “mem-only” measured time.

In Figure 4.8, the datasets are blocked into their optimal number of blocks (512,
128, and 64 for the female, male, and vorticity datasets, respectively). This reduces
the cost attributable to memory hierarchy effects for all views, and greatly reduces
the directional dependence of this cost, which is important for reliable interactive
performance.

In summary: When a single block is used, memory system delays account for the
vast majority of the directionally dependent cost associated with ray-voxel intersec-
tions. Appropriate blocking cuts this fraction to less than half of the total cost, for

all view directions.

4.7 Hardware bus-snooping board

The hardware bus-snooping board passively monitors the bus, counting various bus
events, including L2 cache misses (L1 misses do not directly generate bus events). The
left side of Figure 4.9 shows hardware measurements of L2 misses per intersection for
several different numbers of blocks for the male dataset. Note that the maximum
number of misses per intersection (between frames 70 and 96) is up to ten percent
higher than 1.0: there are slightly more L2 misses than intersections. This is because
the bus-snooping board records not only misses from accesses to the data voxels, but
those from all other sources. Blocking into 128 blocks reduces cache misses; division

into 256 blocks does not yield further benefit.

56

male dataset male dataset
PF3 miss/intersection erection 10.6
115 Thlock w:d Tem-only, 1 biock
- o e
o i A A 0s0 L la o s ARG
0‘95 ! J ¥6 I \ t 256 blocks 085 i * l ‘ n
v LI e - I
. TR s “AA
075 11; ’\{ ” H 065 #‘? U ﬁ
— I FERE o 1Y
0.60 A LA T V] 3" 055 ﬁ n ; :
ol i I [050 i] &
oot I I A 545 | I L
Pl A T T o0 LN
cagemled LI} I L i sis b HL
et LT VT | oso LU
o I I T l ozs I 4 1
ot A =
0.20) e R} | AY L g ' PN
22 J {\Jﬁ \ J 1’4 }\: 0.15 ! m 13 [¥ .a"U"h
oA . = ‘ 4 e
e Y o o :
°® ! | frame-number ' frame-number
0.00 20.00 40.00 60.00 80.00 100.00 120.00 000 50.00 100.00

Figure 4.9: Left: bus-snoop L2 misses/intersection. Right: “mem-only” and “bus-
snoop L2” time/intersection

On the right side of Figure 4.9, we compare the “mem-only” time for the male
dataset for one and 128 blocks, to the time we can attribute to L2 misses measured
by the bus-snooping board. The latter is derived by multiplying the number of L2
misses per intersection by an L2 miss penalty factor, to get time per intersection
attributable to L2 misses. The commonly cited L2 miss penalty factor for the R8000
is 690ns. It turns out that L2 misses cannot account for all of the “mem-only” time.
(If it could, the red and green lines would match, and the blue and purple lines would
match.) Not only is the bus-snoop L2 time too low, it is too low by a non-constant
factor: i.e., the 690ns penalty factor may be low, but that alone could not make up
for the difference. The additional memory hierarchy cost that we have not included
here is due to L1 misses, as identified in the next section.

In summary: Estimated time derived from actual L2 cache misses accounts for

most, but not all, of the time we attribute to memory system delays.

57
4.8 Cache simulator

To investigate the behavior of the cache system, we designed a cache simulator which
simulates the state of the R8000 L1 and L2 caches at the cache-line level. In our ray
casting kernel, we replace the memory read of the current voxel with a call to the
simulator. The call returns the proper voxel value, with the side effect of updating the
state of the simulated caches and counting both L1 and L2 cache misses. We use the
simulator to count only accesses to the data voxels, which cause the vast majority of
all cache misses, ignoring all other memory accesses. The simulator can be configured
to mimic the caching policies and cache sizes of the R8000: a direct-mapped L1 cache
of 32 byte blocks totaling 16 KB, and a four-way interleaved L2 cache of 198 byte
blocks, totaling 4 MB. We use a random block replacement policy.

Figure 4.10 shows the simulated counts of .1 and L2 misses per intersection,
for the three datasets, for two block sizes each. Note that here, unlike the bus-
“snooping results on the left side of Figure 4.9, the maximum number of misses per
voxel intersection is 1.0, since the simulation counts only cache misses due to accesses
to the voxels in the dataset.

As we predicted in section 4.5, the L2 miss rate for 1 block (blue) is nearly 1.0
for frames 72 to 94 (when we are looking down the 7 axis and adjacent rays do not
share an X-7 plane); and for frames 105 to 127 (when we are looking down a skew
axis except for frame 116); or for frame 116 (when we are looking down the Y axis
and adjacent rays do not share and X-Y plane). Also as we predicted, L1 misses
for one block (red) are low when we are looking directly down the X axis (frame
17) but are otherwise relatively high. The reason for worse L1 performance for the
vorticity dataset than the other datasets over a wide range of views is likely to be due
to the fact that the cubical vorticity dataset fills more of the screen than the other
two datasets, so that more rays are at skew angles to the data due to perspective
projection.

We wish to analyze more precisely those frames for which we are not looking

directly down one of the major axes of the dataset. We define three more coordinate

58

female dataset male dataset
simulated miss/intersection simulated miss/intersection
Llmiss, 1block 105 L1 miss, 1 block
a e o ‘“’Yﬂ AN e
o::Z L2 miss, 512 blocks 0:90 ’Y 1 1 A‘}\‘ L2 miss, 128 blocks
0385 0385 TRRAN
a i v il e
e il | ﬁg\ -
wo— — -t —A—)
o 7 T & e A léL*P‘
0ss LU el i1 TENE 1
A Al e LRI | -
s LB M AR |] |
s i oso b 411 v il |
oss L1 1l oas UM w i
o/ YT R "
ons Lt Ay oo | A W I W 4
oA A [T Y 7~ om VLl W
I AYA = I o, N i
S .- o AN
3 - L v
vorticity dataset
simulated miss/intersection
105 LT miss, 1 block
o IS M e -
o 11] N memsies—
ol T 1 A
oso_L_1 I T |
ol B W l 1
i l 1§ |
o { | [
=
e 1 . [
bl I ¥
b |
as LALT V]
030 [f x\' J
Wl
ool 18]I]
o & J A
5 g = Y
_0405 fi be

Figure 4.10: Simulation of L1 and L2 cache misses/intersection

99

axes. Whereas the X, Yl, and Z axes were fixed to the voxel dataset, we will define
axes U, V, and W to be fixed to the frame of reference of the viewer (or alternatively,
to the display screen). U is the viewer’s “up” direction; V is the “straight ahead” view
direction, and W points to the viewer’s left (in order to make U, V, W a right-handed
coordinate system). When a ray accesses a voxel and an L2 cache hit occurs, there
are two alternative reasons for that cache line to already be present in the cache: 1)
it was fetched during a previous voxel intersection by the same ray; we will call such
hits “help yourself” hits; or 2) it was fetched by a previous ray; we will call these hits
“help your neighbor” hits.

We can expect “help yourself” hits to be most common when the V axis approaches
the X axis: when the viewer is looking directly along X. As V turns gradually away
from X, these hits will drop off gradually: with the perspective projection, all rays
diverge slightly from V except the one in the exact center of the screen; as V moves
away from X, the number of rays which point nearly down X and are still visible on
the display screen will decrease slowly. Before V becomes perpendicular to X, there
will be no such rays on the screen.

We can expect “help your neighbor” hits to be most common when the W axis
approaches X: when the 128 byte cache lines are aligned with our horizontal scan
lines across the screen. In this situation, rays that are cast near to one another in
time will tend to share cache lines. (In fact, the cache lines generated by several rows
of rays can be held in the cache at once).

Note in Figure 4.4 that, throughout frames 34 to 66, W is exactly aligned with X.
In Figure 4.10, this sequence of frames has nearly uniform low L2 miss rates due to
many “help your neighbor” hits.

The case for frames 1 to 33 is quite interesting. Frame 1 begins with W aligned
with X: we get many “help your neighbor” hits. As the dataset rotates about Y, L2
misses increase. By frame 9, we reach a local maximum of L2 misses. However, as we
move toward frame 17, where V aligns with X, we begin to get more “help yourself”
hits. Frame 17 is a local minimum of L2 misses. As the dataset continues to rotate,

we reach another local maximum of cache misses at frame 25, where X is again 45

60

degrees between V and W. Miss rates decrease again as we approach frame 33, which
has many “help your neighbor” hits as W again aligns with X.

In frames 70 through 96, X is aligned with neither V nor W; we expect few
“help yourself” or “help your neighbor” hits. This region indeed has the worst cache
performance. The case is similar for frames 103 to 129, except we expect a small
number of “help your neighbor” hits as W gets within 45 degrees of X at frame 116;

this effect is observed as a slight reduction in cache misses near this frame.

male dataset, 1 block male dataset, 128 blocks
L2 missfintersection L2 missfintersection x 10°3

L15 ‘bussnoop LZ, 1 block 160.00 ‘bus snoop L2, 128 blocks
0 I oo . PSS e das i

108)
166 |]
155 [y
050 |-
0.85
0.80
075
0.70
0.65
0.60
0.55
0.50
045
040
0.35
0.30
025
0.20
0.15
0.10
0.05 —
0.00

150.00

140.00

o |k

1204
110.00 —
100.00

oA

1

| —otet
o

<te=d
i
:;:

e B g

£

L e

P e APt B g S
i

——

g

i~
i~
=
8
8
|

-

| T

e
Tt

T
8
s

e~

—

ST
R
5 2
8 8
J
K

| =]
=
—

-
-

(e ——ta |

L
8
8

J":
o 9
8 8

frame-number frame-number
0.00 50.00 100.00 0.00 50.00 100.00

Figure 4.11: Simulated and bus-snooping board L2 misses/intersection, male dataset

Figure 4.11 validates the simulation results, showing the close correspondence
between actual L2 misses per intersection counted by our simulated misses per inter-
section (green), and those actually measured by the bus-snooping board (red). The
simulated misses are always an underestimate of actual misses, because the simulator
takes into account only misses arising from access to the current dataset voxel. Not
only does this neglect misses due to accesses to other data structures (such as the
pixel accumulation buffer), it also neglects cache thrashing between the data voxels
and other data structures. We would expect this to cause more error when L2 miss
rates are very high and the cache begins to thrash more heavily. Indeed, note that

the pair of lines for 128 blocks (right side of the figure) matches more closely than

61

the pair for 1 block (left side of the figure). We can expect our simulator to yield a
slightly low estimate when there are large numbers of cache misses.

This comparison also tells us that the memory access to the current data voxel
is the source of the majority of all L2 misses in the algorithm. We cannot directly
validate the simulation of L1 misses because L1 misses cannot be measured on the
R8000; however, we have some degree of confidence in our simulator due to its success
in matching the complex irregular features of the measured L2 misses in the figure.

Figure 4.12 compares the simulation results for two block sizes against our “mem-
only” time per intersection (red and blue). The simulated time per intersection (green
and purple) is derived from the cache miss counts of Figure 4.10. We multiply the
counts per intersection of both types of miss by their corresponding penalty factor,
and sum them, to generate the green and purple lines. Commonly cited estimates for
L1 and L2 miss penalties are 89ns and 690ns, respectively.

The resulting simulated time (green and purple) and the corresponding empirical
mem-only time (red and blue) lines are strikingly similar in shape for all three datasets
and both numbers of blocks. For the optimal number of blocks for each dataset, the
correlation between the blue and purple lines is extremely close. For one block (red
and green), the simulated time is consistently somewhat lower than the “mem-only”
time, most likely because of L2 cache thrashing between data voxels and other data
structures when miss rates are high, which is not included in the simulated time.

In summary: The accuracy of our cache simulator is validated for L1 and L2
cache misses by a close match to L2 cache miss counts, and a close match to the time
we attribute to melﬁory system delays, to which both L1 and L2 misses contribute.
Complex interpixel and intrapixel effects explain the directional dependence of cache
miss patterns; these effects depend primarily on the relationship between the object

space coordinate system, and the coordinate system of the viewer.

62

) ' . female dataset » ' § male dataset
| IR = EIIATA
a V g:: ¥a¥al f t
& o i 1]
oo a2\ g 1
L] f o I
w L] 1 ! T
A TREN —
030 1N o f’f\%}!ﬂ\‘\

A A A mAVAY
o nva T Y o LUl .

u or0 AN U " |
0.10 o Y h:'
vorticity dataset

secfintersection x 10°6

‘mem-only, 1 block
sim. mem. time, 1 block

mem-only, 64 blocks
sim. mem. time, ﬁ Bmi

o |]

L 4

o PN
il

TR rﬁ

0.50

0.40

030

0.20

0.10

0.00

0.00

frame-number

Figure 4.12: Simulated and “mem-only” memory hierarchy time/intersection

63
4.9 Conclusions

In this chapter, we have analyzed in detail the memory hierarchy effects present in
uniprocessor ray casting through regular volumetric data, using experimental timings,
bus monitoring hardware, and a software cache system simulator.

We have identified and characterized the main expense in a ray casting kernel
with highly efficient instruction scheduling: cache miss penalties due to reads of the
dataset voxels, in the context of extreme demands on the memory system. We have
shown that this expense 1s extremely dependent on view direction. We have also
demonstrated, however, that this dependence on view direction can be controlled
by appropriate blocking of the data. The optimal block size for varied datasets is
between 0.5 and 1.0 times the size of the L2 cache. We have isolated the L1 and L2
cache miss components contributing to this cost. Complex interpixel and intrapixel
effects account for the majority of the dependence of miss rates upon view direction.
These in turn depend on the relative orientations of the V and W axes (in the frame
of reference of the viewer) to the X axis (in the frame of reference of the dataset).
Interblock and interframe cache effects are negligible because of the high rates at
which the cache is completely flushed.

We can predict that, were the bandwidth from the main memory increased to the
bandwidth of the L2 cache (or, equivalently, if the L2 cache were the same size as main
memory), performance for all frames would resemble the performance of frames 34 to
66, where L2 miss rates are almost zero. Using Figures 4.5 and 4.8, we can estimate
that this would result in an average time per intersection of 320 ns /intersection for
the female dataset; most of this time (approximately 250 ns/intersection) is due to
“no-mem” costs, i.e., the time required by the processor to process instructions. In
comparison to this, a single block requires 800 ns/intersection on average for all
directions, and the optimal number of blocks requires 430 ns /intersection. Therefore,
appropriate blocking achieves performance not far inferior to what could be achieved
on a machine whose memory system was effectively “all cache.” Further performance

galn would require a faster processor clock.

64
We next apply these lessons to parallelization of the algorithm on the shared-
memory Power Challenge architecture. Since we found interblock effects to be neg-
ligible, we expect our uniprocessor results to be largely applicable to the case of
multiple shared memory nodes, independent of the processor to which a block is as-
signed, or the order in which the blocks are rendered. Minimizing cache miss rates
will become even more important as multiple processors contend for use of the shared

bus.

65

Chapter 5 One Shared-Memory Node,

Multiple Processors

Figure 5.1 recalls our view of the memory hierarchy of a shared memory machine.
On this architecture, the control of cache miss rates becomes even more important,
because multiple processors contend for use of the bus. We will show that this in-
hibits parallel speedup in the case of poor cache performance, but that we can obtain
excellent parallel speedup on all sixteen nodes when we manage cache performance
carefully. Our choice of parallel partition will fundamentally affect how well we can
exploit coherence to increase memory locality, and thereby improve memory system

performance.

Registers Registers Registers Registers

I I | I

L1 Cache L1 Cache L1 Cache 1.1 Cache

L2 Cache 1.2 Cache L2 Cache L2 Cache

l I l |
Shared —% I

Bus Shared Main Memory

Figure 5.1: A typical memory hierarchy for a shared-memory architecture

5.1 Load balancing for ray casting on a shared-
memory machine

We examine two combined parallel partitioning/load balancing algorithms suitable

for ray casting on shared-memory architectures. Note that cache coherence can he

66

exploited most effectively by grouping data voxels into roughly cubical blocks (rather
than thin slabs or long columns of voxels). This maximizes the average chance over
all directions that if a ray intersects the block, a neighboring ray will also intersect the
block. Likewise, if an image partition is used, grouping of rays into roughly square
tiles (instead of scanlines) maximizes locality of memory access. We will use these

guidelines to eliminate many of the myriad possible choices of parallel partition.

5.1.1 Image partition

The first partition, the image-tiled partition, is a two-dimensional static subdivision
of the image into M regular rectangles, or tiles, where M is greater than or equal to
N, the number of processors. Load balance is achieved by dynamic self-scheduling.
Tiles are placed on a work queue, and idle processors take tiles from the queue and
render that sub-rectangle of the entire image. Good load balance can be achieved
if M is sufficiently large relative to N, and in particular if the tiles can be roughly
sorted in decreasing order of their cost. We use a tile’s cost from the last frame as
a predictor for its cost in the current frame, exploiting a graphics concept known as

viewpoint coherence, the tendency for one viewpoint to be close to the previous one.

5.1.2 Object partition

The second partition, the object-blocked partition, divides the three-dimensional da-
taset into M regular rectangular solids, or blocks with M again larger than N. These
blocks are placed on a similar work queue to the one used in the image-tiled parti-
tion, and load balancing is achieved in a similar manner. In the first phase of the
algorithm, the projection step, idle processors take an individual block and cast rays
through it to generate a tile, the projected image of the block. In the second phase of
the algorithm, the composition step, the resulting M tiles are then sorted in increas-
ing depth order and composited together to generate the entire image. There is some
overhead associated with the composition step which is proportional to the total area

of all tiles. The composition step is parallelizable by an image partitioning method

67
which recursively combines the partial images. This two-step method is similar to
that used in [Ma93] (but we do not use the same “binary swap” in the second step,
because we are using a shared-memory architecture and do not have to communicate
the partial images).

The image-tiled partition can easily accommodate global opacity clipping, since
the disposition of a pixel is entirely determined by a single processor. In the object-
blocked partition, the value of a pixel depends on the contributions of many tiles,
rendered a priori, so global opacity clipping is infeasible. Intra-block opacity clip-
ping is still possible, but is less effective. Object partitions, however, quite naturally
conform to subdivision of the data into blocks that are stored contiguously in mem-
ory, providing the memory hierarchy performance gains associated with data locality
discussed in the previous chapter. The image-tiled partition can be expected to have

low data access locality since it treats the dataset as one large block.

5.2 The shared bus of the Power Challenge

saturating the shared bus
GB/sec

1.0 - bus bandwidih

100 e

0.90 7

025 /
020

number of processors
5.00 10.00 13.00

Figure 5.2: Saturating the shared bus’

To measure the maximum total bus bandwidth of the Power Challenge, we wrote

a simple program that causes as many L2 caches misses as possible. Tt allocates an

68
array many times the size of the L2 cache, and then steps through it at a stride of 128
(missing in L2 each time), reading the values and adding their sum to an accumula-
tor. We ran between one and sixteen such processes concurrently, obtaining the plot
of total achieved bus bandwidth versus number of processors shown in Figure 5.2.
We measured a maximum bus bandwidth of 1.0 GB/sec. (The machine we used
for our experiments had two-way memory interleaving. We also measured the bus
bandwidth of an eight-way interleaved machine, and found a maximum bandwidth of
about 1.1 GB/sec.) The figure shows that more than eight processors making con-
current memory requests as fast as possible can saturate the bus. Therefore, other
parallel programs with poor cache hits rates (e.g., our volume renderer when using a
single large block) may saturate the bus and not exhibit parallel speedup past nine

processors.

5.3 Experimental procedure

For the object-blocked partition, we determined empirically that for the female, male,
and vorticity datasets, respectively, the optimal number of blocks (limiting ourselves
to numbers that are powers of two) was 512, 128, and 64 (corresponding to block
sizes of 2 MB, 2.8 MB, and 2 MB, respectively). This number is low enough that
composition overhead does not begin to dominate, high enough to break the dataset
into blocks smaller than the L2 cache, and high enough to allow good load balance
on sixteen processors (we found that at least four blocks per processor provided the
necessary granularity). All of the object-blocked experiments presented below were
conducted with the optimal number of blocks for each dataset.

For the image-tiled partition, we found that there was negligible overhead asso-
ciated with increasing numbers of tiles (up to at least several thousand), and that
at least 32 tiles per processor were needed to provide the necessary granularity for
good load balance from a variety of viewpoints. The optimal number of tiles did not
depend on the dataset. Therefore, all image-tiled experiments, for all three datasets,

were conducted with 512 tiles, yielding 32 tiles per processor when running on sixteen

69

Processors.

5.4 Parallel speedup

Figure 5.3 shows parallel speedup, compared to a single processor, for the image
partition. The image partition does not exhibit parallel speedup past eight processors
(as predicted by our bus saturation experiments, which found that nine or more
processors experiencing high L2 miss rates can saturate the bus). The figure shows
good parallel speedup on one, two, and four nodes for all view directions. However,
for those views that have high L2 cache miss rates (ie., 6 to0 12, 22 to 28, 69 to 97, and
102 to 130), eight processors do not exhibit perfect speedup, and sixteen processors
exhibit poor speedup. The results match those we obtained with our cache saturating
experiment in Figure 5.2: the bus can become saturated by more than eight processors
querying it as fast as they can.

As shown in Figure 5.4, however, the object partition obtains much better par-
allel speedup: better than 7.5 on eight processors for all datasets; and on sixteen
processors, averages of 13, 14, and 14.5 for the female, male, and vorticity datasets,
respectively. Speedups with clipping turned on are not shown here for brevity but

are qualitatively similar.

5.5 Load balance

Figures 5.5 and 5.6 show a measurement of the load balance for the image and object
partitions, respectively. Our metric of load balance takes the ratio of the average time
for all processors to complete a frame to the maximum time for any processor. If the
value of this ratio is one, then the maximum and average are equal, and the time
for all processors is equal: perfect load balance. As the ratio decreases, the average
processor spends more time idle waiting for the slowest processor to finish. Note that
a log scale is used so that small deviations from perfect load balance are visible.

For the image partition, in Figure 5.5, load balance is extremely good across all

70

female dataset, image partition, 512 tiles, clip off

speedup
14.00

2

13.00

Aprocessors

12.00

P

8
16 processors

11.00

f

10.00

9.00

8.00

|
\—hw

v Lo T e

i

6.00

Y T N
MLA

5.00

400 ——

3.00

2.00

1.00

0.00

0.00

speedup

13.00
1200
11.00
10.00
9.00
8.00
7.00
600
500
400
3.00
200
100

0.00

frame-number

male dataset, image partition, 512 tiles, clip off

speedup
2 processors
13.00
\\ 8 processors
12.00

11.00 MI L\h‘.ﬁ —
10.00 —} J y § J
A
700 il TN YM l ‘vf
6.00 WW WWWK_W el

5.00
400 oo
e W

3.00

2.00 — e

1.00

0.00

frame-number
0.00 50.00 100.00

vorticity dataset, image partition, 512 tiles, clip off

L AL =
l L m
N oA
I L \
\n/ t N T
S’ W WQE\U}*

Figure 5.3: Parallel speedup, image partition, clipping off

71

female dataset, object partition, 512 blocks, clip off

male dataset, object partition, 128 blocks, clip off

speedup speedup
1600 Zpoocessons 1600 z L
T — s s AV =
. i\ i " b t g T6processors
14.00 ! —
p— NARINPEYIL O W ML TN IR | T Y
I FU/ N A ool : LI
1100 St ‘*lv—- 11.00
1000 10.00
9.00 9.00
800 800 K
7.00 "‘"m" 7.00
600 600
500 500
400 — — - 400 >
300 3.00
200 2,00 st
1.00 1.00
0.00 0.00
0.00 50.00 100.00 R 000 50.00 10000 e
vorticity dataset, object partition, 64 blocks, clip off
speedup
16.00 1 Zpmectss;
1500 — dpocidt
oo NI A | i1 NAl™ !Xf N o
N 1L A P
=] EERUE
11.00 ‘
1000
9.00
s00] =t I s
700
=
500
4.00 [A - A o~ '
300
200 .
100
0.00
frame-number
0.00 50.00 10000

Figure 5.4: Parallel speedup, object partition, clipping off

12

female dataset, image partition, 512 tiles, clip off

load balance

1e+00

9.9

9.8

9.7

0.00 50.00 100.00

frame-number

male dataset, image partition, 512 tiles, clip off

load balance

99

Zprocessors
4processors
Bprocessors
16 processors

0.00 50.00

vorticity dataset, image partition, 512 tiles, clip off

load balance
2 processors
1e+00 4
a 8 processors
16 processors
99 i T
9.8
9.7
9.6
9.5
24
frame-number
0.00 50.00 100.00

frame-number
100.00

Figure 5.5: Load balance, image partition, clipping off

73

female dataset, object partition, 512 blocks, clip off

foad balance
2 processors
1400 — 4processors
8 processors
9.9 \ + y w 16 proce:
9.8 }
w N
96
9.5
9.4
93
9.2
9.1
9
8.9
frame-number
0.00 50.00 100.00

male dataset, object partition, 128 blocks, clip off

load balance

1e+00 —+

2 processors
Aprocessors
Sprocessors
16 processors

!

95

b
N W{W

89

88

87

S

86—

85

84

83

8.2

8.1

T

0.00

frame-number
50.00 100.00

vorticity dataset, object partition, 64 blocks, clip off

load balance

1e+00

99—

-

97

9.6

9.5

24

93

2

9.1

I

|

2 processors
4 processors
r 8 processors

16 processors
:k p

P

|
V

—

St

0.00

100.00

frame-number

Figure 5.6: Load balance, object partition, clipping off

74

datasets and all frames. For all datasets, load balance never falls below 94, and is
almost always above .99. The lack of parallel speedup of the image partition past
eight processors is not due to poor load balance - all processors slow down equally,
which accords with our explanation that bus contention is responsible for the lack of
speedup on sixteen processors.

For the object partition, in Figure 5.6, the load balance metric is generally above
:95. Only during frames 50 and 116 for the male and female datasets is the load
balance slightly worsened. In both of these cases, the feet of the cadaver swing
quickly past the viewer. This causes rapid changes in the rendering costs for the
blocks in the feet of the cadaver: at one moment they are off the screen, and have
no cost; at the next moment they take up a large part of the screen, and have a very
high cost. Since we use costs from the previous frame to estimate the cost of the
current frame, this rapid change can cause some blocks to be sorted out of order in
terms of their true cost, causing load imbalance. Note that the vorticity dataset does
not show this worsening of load balance at these frames; since the dataset is cubical
in shape, one “end” of the dataset does not sweep particularly close to the viewer at
these frames, so the rapid change in costs does not occur.

The generally high levels of load balance also further assure us that the lack
of parallel speedup, which we are attributing to bus saturation due to poor cache

performance, was not simply to poor load balance.

5.6 Comparison of partitioning methods

The image partition is inferior to the object partition as both a serial and a parallel
algorithm. On a single processor it simply obtains worse cache performance; on more
than eight processors, this poor cache performance leads to saturation of the bus,
and the image partition is unable to produce further parallel speedup. However,
recall that the image partition does have one advantage over the object partition: it
allows the optimization of global opacity clipping to be effective. The efficacy of this

optimization is dataset-dependent, but can be significant. (The object partition can

75

only do per-block opacity clipping, which is much less effective.)

Figure 5.7 compares four variations of the algorithm on eight processors: the image
partition with clipping on (red), and clipping off (green); and the object partition
with clipping on (blue), and clipping off (purple). The image partition with clipping
on (red) is slightly superior to the object partition (blue and purple) for the male
and female datasets for many of the frames with low L2 miss rates (frames 1 to
61). Both datasets contain a large opaque ob ject, and these algorithmic performance
gains outweigh the other factors. However, for frames with worse L2 miss rates, the
object partition is superior. Furthermore, on the largely translucent vorticity dataset,
opacity clipping is less effective. On this dataset, the object partition is much superior
to the image partition for all views except where L2 miss rates are lowest (frames 42
to 58) — there it is slightly superior. Notice further that for the vorticity dataset, the
object partition with clipping off (purple) is actually faster than the object partition
with clipping on (blue); rays become opaque within a single small block so rarely that
1t 1s cheaper not to bother testing for them at all.

To further champion the object partition, F igure 5.8 compares the same four
variations with sixteen processors. On sixteen processors, the image partition does
not run much faster than on eight, but the object partition continues to speed up. For
the female and male datasets on sixteen processors, the object partition with clipping
on (blue) is fastest for most views. For the vorticity dataset, the object partition with

clipping off (purple) is again the fastest for nearly all views.

5.7 Maximum frame rates

Taking the best partition for each dataset in Figure 5.8, we calculate the average
frame rate across all viewpoints for each dataset. For the 1 GB female dataset, on
sixteen processors at a resolution of 400 by 300 pixels, we get an average of 1.0
frames per second, using the object partition with clipping on. This is faster than
has been previously cited in the literature for a dataset this large. Furthermore, we

have attempted to find the most expensive view directions and include them in our

76

female dataset, 8 processors male dataset, 8 processors
12.00 image, 512 tiles, clipon 7.00 image, 512 tiles, clip on
h image, 512 tiles, clip off ﬂ image, 512 tiles, clipoff
11.00 object, 512 blocks, clip on 6.50 bject, 128 blocks, clip on
{ W object, 512 blocks, clip off T T object, 128 blocks, clipoff
1000 1 ! 600 f i
| j{ 550 I
9.00 :
I -
e ; - |
7.00 1‘ A‘] 400 { {
M S
I I
500 | M '!i 3.00 j ‘“‘ $ N l\
o | 1 o R TRTR
w0 ‘ R
A L1 i
3.00
AR ; LN
50
200 — 2] ¥ "
X T 1.00 b s .
1.00 R A ~ 0.50 _w
0.00 0.00 N
frame-number frame-number
0.00 50.00 10000 000 50.00 100,00
vorticity dataset, 8 processors
sec
3.60 image, 512 tiles, clipon
8 i e
3.20 f Il object, 64 blocks, clip off
3.00 :
i
2.60 Gt
sl
2.20 ‘
200 A
== RYAN
v \\ frb i
140 A SRS
ALY/ AW Y
w N BN
0.80 —|
0.60 —|
0.40
0.20
0.00
frame-number
0.00 50.00 100.00

Figure 5.7: Time per frame, eight processors

77

female dataset, 16 processors male dataset, 16 processors
image, 512 tiles, clip on 6.00 image, 512 tiles, clip on

1050 ‘L‘ image, 512 tiles, clip off ﬁ image, 512 tiles, clip off
1000 i Shject, 512 blocks, clip on S Ghject, 128 blocks, clip on
9.50 hject, 512 blocks, clip off J 1 bject, 128 blocks, clipoff
9.00 [l 500

850 1 I

800 [l 450

7.50 l) ! l

7 400
= - . i
6.00 -)
i
= LR 0 L i
%

- RN i (BT

o il : LAl

s L TR 5 g

o AR FEMRY ,‘ i/ H

7% f |FER Y 150

n A] Pl W A

100 050 ALY N \—

050 —| oy,

000 000

= 000 50.00 100.00 frame-mmbe 0.00 50.00 100.00 frame-mmber

vorticity dataset, 16 processors

3.40
320
3.00
2.80
2.60
240
220
2.00

1.60
140
1.20
1.00
0.80
0.60
0.40
020
0.00

image, 512 tiles, clip on

Shject, 64 blodks, clip on

object, 64 blocks, cfip off

A

0.00

frame-number

Figure 5.8: Time per frame, sixteen processors

78
average. For the 357 MB male dataset, using the same partition, we get an average
of 1.9 frames per second. For the 128 MB (512%) vorticity dataset, using the object

partition with clipping off, we get an average of 2.9 frames per second.

5.8 Conclusions

In this chapter, we have applied our results regarding the management of memory
locality from the previous chapter to rendering on multiple shared-memory processors.
In this context, the goal of minimizing L2 miss rates becomes even more important,
since multiple processors must contend for use of a shared bus. We have shown that,
if considerations about L2 misses are not taken into consideration, parallel speedup
beyond eight processors (on the Power Challenge system) can be thwarted due to
bus saturation; however, if the coherence present in ray casting is carefully exploited,
cache performance can be improved, and excellent speedup on all sixteen processors
can be obtained.

We have demonstrated the consequences of memory hierarchy effects on two types
of parallel partition: one object partition, and one image partition. The object
partition is generally superior because of the natural blocking of the data that it
affords. Only in the limited case of certain views with low L2 miss rates, on datasets
with large opaque areas which make opacity clipping effective, is the image partition
more effective. We obtain good load balance on both partitions, and good parallel
speedup up to sixteen nodes on the object partition, which achieves better cache
performance.

We believe that the hardware designers of the Power Challenge struck a good
balance between the bus bandwidth and the combined processor power of the Power
Challenge. It is possible for the processors to saturate the bus, but careful algorithmic
design can help avoid this.

We can predict that frame rates could not be achieved simply by adding more
processors onto the same bus: With the poor cache performance of a single block,

the image partition saturates the bus for most view directions on more than eight

79

nodes. With the better cache performance due to appropriate blocking on the object
partition, we achieve good parallel speedup on sixteen processors. However, the fact
that this speedup is better for the vorticity dataset than for the larger female dataset
(and, in particular, the way in which the parallel speedup for sixteen processors on
the female dataset in Figure 5.4 drops off for exactly those frames with worst cache
performance), tells us that on the female dataset, we are close to saturating the
bus with sixteen processors, even with good blocking. Therefore, if we added more
processors to the bus, our performance would not improve unless the bus performance
were also proportionally increased.

This focus on the two primary algorithmic factors important to shared-memory
rendering performance: efficient exploitation of the low levels of the memory hier-
archy; and a parallel partitioning algorithm that provides accurate dynamic load
balance; has allowed us to attain the highest frame rates for large 357 MB to 1.0
GB datasets that we have seen heretofore cited in the literature, 1.9 and 1.0 frames
per second average, respectively, on the azisorbit test suite, which was specifically
designed to reveal poor cache performance.

The results of chapters 4 and 5 can be found summarized in [Palmer97a]. In the
next chapter, we further extend our characterization of memory hierarchy effects for

ray casting to multiple shared-memory nodes.

80

Chapter 6 Multiple Distributed
Shared-Memory Nodes

Figure 6.1 recalls our view of the hybrid distributed/shared memory architecture.
The task before us in this chapter is to combine what we have learned from previous
chapters, with the answers to the new empirical questions posed in this chapter, to
devise the optimal means to exploit the entire deep, heterogeneous memory hierarchy

of this system.

Lchlstexs—l | chme:‘] Reglsxm—l [Registers l Registers | Lchistcrs] E(cgistcx's] Lchisle:]
[I I I I

HiPPi

|
bl Cach;I [L1 Cachc , [L1 Cache l LLI Cac]lc?l 'me;‘:::;ﬁmn l L1 Cachc] ! L1 Cache] l L1 Cache] b,l Caci;]
[| I I I

(crossbar switch)

I i
LZ chhc—' l L2 Cac;l [L2 Cach?l ' L2 Cache l [L2 Cache I ! 1.2 Cache I [L2 Cache l l L2 Cachc—l
| [I f — [I J
Shared % [Shared — %
Bus 'L Shared Main Memory I Bus I Shared Main Memory W

l Regmc:jl l Regls cers] chlstm:l LRcmstcm l l chlstcrl [Rcmsleﬂ LReglstm:l I Rcblstcm
I [I

Dl Cacl;! li,l Cachc [L1 Caclﬂ | L1 Cache l b Cach—l LL! Cach—l u Cach?l LLI Cachc I
I } [

l L2 Cache ' I L2 Cachc] l L2 Cachcl I L2 Cach;l [LZ Cachc | l L2 Cache I l L2 Cachcl l L2 Cachc]
= I J

]
Shared e I Shared _____,v |

Bus Shared Main Memory T Bus L Shared Main Memory l

Figure 6.1: A hybrid distributed/shared memory hierarchy, the Power Challenge
Array

Connecting multiple nodes together with a network adds another level to the
memory hierarchy. As before, this level is characterized by slower communication
than the level beneath it.

Chapter 4 demonstrated that memory locality within a single node can be opti-

mized by blocking the dataset into blocks between 0.5 and 1.0 times the size of the

81
L2 cache. Chapter 5 shows that this approach was required for good parallel speedup
within a single shared-memory node. This helps us to prune the vast space of pos-
sible parallel partitions. To maximize cache performance within each node, we will
continue, within a single node, to use the methods developed in these chapters. We
will also use the same blocks as a unit of data to be distributed and cached across
the parallel nodes.

In a distributed memory system, memory “accesses” from remote nodes take the
form of explicitly passed messages, and no automatic caching of these accesses is
available to the applications programmer. Since we have more information available
to us than is available to an automatic caching system, we can make extremely efficient
use of the available cache memory.

The system we have implemented dedicates a fixed amount of memory per node
to storing the dataset. This amount is a factor between 1 and N times the size of
the dataset. If we set the factor to 1, we have exactly as much distributed storage
as 1s needed for one copy of all blocks. As the factor approaches N, we can begin
to replicate blocks, until there is enough storage to replicate the entire dataset on
each node. Blocks will not have an affinity to any particular node; they may float
dynamically among the nodes. However, we will guarantee that there remain at
least one copy of each block in the collective memory of the nodes. Since there is
no “master” copy of any block, the distinction between “cache memory” and “main
memory” is made irrelevant: one node’s locally “cached” copy of a block is another

node’s remote “main” copy.

6.1 Volume rendering requires a global gather op-
eration

Since every voxel will in general make a contribution to an image that will ultimately
reside in the memory of a single node, volume rendering requires a global gather

operation. Consider a ray intersecting the data volume. This ray intersects an ordered

82

set of voxels, whose colors and opacities must be composited together to generate the
final color of the ray. On a distributed computer, these voxels may be stored in either:
1) a replicated fashion, in which every node holds a copy of the entire dataset (which
1s not a scalable solution), or 2) a distributed fashion, in which each node holds a
subset of the voxels. In the latter case, all the voxels intersected by a ray will not, in
general, be stored on the same node. Therefore, in the absence of complete replication
of the dataset, global communication is an integral part of the generation of a frame.
Some representation of the entire dataset must pass over the HIPPI communication
network for every frame. Our goal is to minimize the communication required for this
task (without sacrificing memory hierarchy performance at lower levels).

Such communication is to be distinguished from occasional communication for the
purpose of load balance, which is not an integral part of the global gather operation

of the ray casting algorithm per se.

6.1.1 Transferring 2D subimages versus 3D subvolumes

How can we accomplish the global gather operation required to generate a frame with
minimal communication? Since composition is associative (but not commutative), as
described in section 2.1.4, we have several options of how to partition the task among
the distributed nodes. We will suggest two prominent ones, distinguished by whether
they require the transfer of volume blocks, or image tiles. .

As we consider object and image partitions below, we will restrict ourselves to
near-cubical blocks (i.e., not slabs or shafts) and low numbers of near-square tiles
(i-e., not scanlines), in order to maximize locality within tiles and voxels.

Perhaps the most straightforward method would be to assign a region of the screen
to each node (an image partition), and send to each node a copy of all volume blocks
overlapping its region of the screen. This transfer would represent the required global
communication to generate a frame. This node could then cast rays through all
the blocks without further communication. However, this method would, in general,

require that the volume blocks move again for the next frame. In the worst case,

83

the entire dataset might have to move for each frame; although we could hope this
would be lessened by frame coherence, which would cause blocks to tend to overlap
the same areas of the screen for one frame as they did for the previous frame.

Note, however, that if we have chosen to replicate the entire dataset on each
node, then this image partitioning method can function with no communication at
all (except to display the final image at a central location, which is required for any
partition we choose). We will note this and continue under the assumption that we
would like to avoid replication of the entire dataset.

Alternatively, we could keep the volume blocks stationary (except for occasional
load balance), and transfer the tiles generated by projection. Each node will generate
the projected two-dimensional tiles from the blocks it holds. The composition step will
require that overlapping sets of tiles be collected at some location to be composited
together. We may use an image partition to assign single large regions of the screen
to processors for the composition step; each processor will reccive a copy of all tiles
that overlap its region of the screen (this is the required global communication to
generate a frame), and will generate the final image for that region.

The choice is between using an image partition, and moving the 3D blocks; and
using an object partition, and moving the 2D tiles. Roughly equal numbers of objects
will need to be transferred in either case. In earlier chapters, we showed that the
blocks are larger than typical tiles: The block size for optimal L2 cache performance
on the R8000 is between 2MB and 4MB. The average tile for typical views of the
dataset in our experiments was one-fifteenth this size at 150 KB (i.e., 100 pixels, at
4 floating point values per pixel). Our conclusion is that, for the case of a distributed
dataset, communication volume can be reduced by using an object partition, which
requires that we communicate the 2D tiles, but allows the 3D blocks to remain in
place.

We therefore employ an object partition among each of the distributed nodes
for the projection step, and an image partition among the nodes for the composition
step. The global gather operation will consist of the transfer of tiles. (Note that some

transfer or replication of blocks may still occasionally be required for load balance.)

84

If we do choose to replicate the entire dataset on each node, however, note that
the image partition can operate with no communication at all, other than transport

of the final image to a central location for display, which is required by any partition.

6.1.2 The tradeoff between replication of data and commu-

nication expense

A continnum of memory expenditure exists between complete replication of the entire
dataset on each node, and the distribution of the dataset such that only a single
copy of each volume block exists anywhere in the collective memory of the nodes:
we can also partially replicate any fraction of the dataset. That is, if the number of
distributed nodes is N, we can usefully expend any amount of memory between 1 and
N times the size of the entire dataset. Blocks may be statically replicated, or may
(occasionally) move dynamically among the distributed nodes, with some scheme of
caching. Communication can be decreased when the dataset is completely replicated
on each node. However, we would like to minimize replication so that we can render
a larger dataset on a given machine. The interesting engineering question becomes:
As the replication factor of the data decreases from N to 1, how can we minimize the
associated performance degradation?

Before discussing the dynamic caching/replication scheme used in our most recent
work, we will describe two of our early attempts at each extreme of the replication

continuum:

Complete replication

Our first attempt to extend our work on single shared-memory nodes to multiple
nodes involved complete replication. We were considering only a few (four to eight)
distributed nodes, and sought the highest performance. The dataset under consider
ation was 357MB, much smaller than the memory (2GB to 4GB) of the individual
nodes, giving us no reason not to replicate the entire dataset on each node.

We used the recursive binary image partition shown in Figure 6.2. The screen is

85
divided by N recursive cuts where N is the total number of processors on all nodes.
The lines dividing the screen can be adjusted dynamically to maintain load balance,

both among the distributed nodes, and among the processors within each node.

Ownership of areas of screen

Ct Al C3

B1

[3%)
(5]

Cc2 C4

Figure 6.2: An image partition based on binary subdivision

This partition was the one used at Supercomputing '94 and 95, and it attained
extremely high performance. For the 357MB male dataset, we attained rates of up
to 10 frames per second for a “fly through” sequence of frames, at a resolution of
400 by 300 pixels, using a cluster of eight Silicon Graphics Power Challenge machines
with a total of 64 processors. This is better performance than previously cited in the

literature for this size of dataset.

No replication

Prior to our work on the Power Challenge, we implemented a volume rendering system
for irregular tetrahedral data on the Intel Delta machine, using projection methods.
This system is described in [Palmer94b] and Appendix A of this thesis. We chose
to use an image partition on a relatively fine-grained MIMD machine, and did not
replicate the data. Communication (predictably, in hindsight) was the limiting factor

of the algorithm.

86
6.2 A software block caching system for the Power

Challenge Array

Between the two extremes of no replication and N-fold replication lies the option of
partial replication, or caching, of some the data blocks. Although a Power Challenge
Array consists of only two to eight nodes (as opposed to the 512 of the Intel Delta),
replication by those factors is still a high memory overhead to pay. If we could save
this memory overhead, we could render datasets two to eight times larger in total size.
(For instance, below we render a 7.1 GB dataset, which is larger than the memory of
any individual node.)

Although volume rendering requires global operations, most MIMD machines do
not provide to the programmer a logical global address space for the collective memory
of all the nodes. Therefore, we have implemented in software the semantic equivalent
of a logical global address space for the volume blocks, with a mechanism for caching
blocks. The object partition we have chosen does not require communication of
the blocks as an integral part of the algorithm; however, the replication of some
blocks, and the occasional communication of some blocks, gives us great flexibility
with respect to reassigning blocks to nodes for load balancing. As the replication
factor of the blocks increases, the flexibility in choices of reassignment of blocks that
do not require communication also increases. As the replication factor decreases, it
will become more common that attaining adequate load balance will require some
communication of blocks. In addition, this allows us to avoid the communication
of many tiles: we can assign many blocks for projection to the same node that will
require them for composition, eliminating the need to transfer a tile.

In the absence of automatic caching between the nodes, we can implement what-
ever caching scheme we want. Because we have absolute control over what blocks to
send to each node and complete information on what blocks are currently held by
each node, we can achieve more efficient use of memory than could be achieved by
an automatic cache. We can also precisely regulate communication: when assigning

blocks to nodes for projection, we can be sure to assign blocks only to nodes which al-

87

ready hold a copy of them. Although maintaining load balance will sometimes require
the transfer of blocks, this communication will only occur when we explicitly initiate
it. This is not the case for an automatic cache, for which the programmer can only
have a rough idea of how to reduce cache misses on average. In particular, we will
specify that there be no “master” copy of any block, although we will guarantee that
a copy of each block exists somewhere in the collective memory of the nodes. This
causes a blurring of the distinction between a separate “cache” and “main memory.”

We designed and implemented the following distributed memory caching system
to handle the storage, communication, and caching of the data blocks. This system
has a number of parameters that are adjustable at run time.

Each node has a fixed number of cache slots that it can use to store a block
(which are all nearly the same size). Given a number of blocks B in the dataset, the
replication factor we choose specifies how many slots will be required collectively on
the N nodes. A replication factor of R requires that each node maintain Ejﬁvﬁ cache
slots, for a total of R x B slots on all nodes collectively.

The contents of the caches of all nodes are maintained and coordinated from a
central master process — the same process that is connected to the user interface and
sends the viewpoint to be rendered to all nodes at the beginning of each frame.

The B blocks are initially assigned to the nodes for projection in round-robin
fashion. (We found that random assignment worked equally well.) The intent is to
avoid concentrating the blocks assigned to any node in any region of the dataset;
this would tend to cause load imbalance since the costs of adjacent blocks are highly
correlated. Before starting the projection step for the first frame, each node will load
from disk the blocks which it is assigned to project. If R is greater than one (1), then
there will be room in the collective memory of the nodes for more than one copy of
each block. The master process instructs the nodes to fill up their caches with (fairly
assigned) additional blocks that they will not be projecting for this frame.

The nodes then project their blocks, send the resulting tiles to the nodes whose
assigned regions of the screen for the composition step overlap the tiles, perform

composition, and send the final results to a central location for display.

88

At the end of each frame, the master receives information about the times to render
each block for that frame. This information is used for dynamic load balancing after
the first frame. The blocks are placed on a list sorted in decreasing order of cost
Blocks are removed, most expensive first, and assigned to nodes by a modified greedy
algorithm, in the following way:

If the projected tile of a block overlaps the screen area assigned to a node, we
will say that the block requires the tile for composition. Based on the load balancing
threshold and the work required for the last frame, we determine the work threshold,
the maximum amount of estimated work that can be assigned to any node. The
algorithm will assign no more blocks to a node that has passed this threshold (unless
all nodes have).

We desire an ordered set of priorities for the algorithm: 1) keep the estimated
“load balance above the load balancing threshold, 2) avoid communication of blocks,
3)asﬁgn]ﬂockstothesanuanodesw&ﬁchrequﬁethenlﬂm<xnnposﬁjon(themﬂnfawﬁd—
ing communication of tiles). We implement this set of priorities with the following

multitiered greedy algorithm.

For each block, in decreasing order of cost:
{
Find the node with the lowest assigned work so far, which holds a

copy of the block, and requires its tile for composition.

If the total estimated work assigned to this node, plus the

estimated cost of the block is under the work threshold, then:

Assign the block to this node.
t else {
Find the node (besides the previous one) with the lowest assigned
work so far which holds a copy of the block.

If the total estimated work assigned to this node, plus the

89

estimated cost of the block is under the work threshold, then:

Assign the block to this node.
} else {
Find the node with the lowest assigned work so far.

Assign the block to this node.

Ifﬁisumuhedthatabkmkbetmnmﬁxnﬁﬁanmﬁernodennwtbe&mndthathdds
a copy of the block. If more than one other node holds a copy, we use a fair algorithm
to choose between these nodes, so that the average number of blocks served by each
node is the same.

Since the caches of the nodes are generally kept completely full, a node must
delete a block to make room for each block it receives. The master decides which
blocks each node will delete from its cache, making sure that at least one copy of
each block remains somewhere in the collective memory of the nodes (alternatively, if
the communication network is much slower than disk access, the master could allow
blocks to be flushed from the cache to be later reloaded from disk, but that is not the
case with HIPPT).

We know that complete replication is likely to yield better performance than no
rephcaﬁonJ'The;mhnaryexperhnentalquemﬁonXNe\thJM)answeristhefoﬂowdng:as
we decrease the replication factor, how drastically does performance suffer? We will
show that the algorithm outlined above performs extremely well to exploit coherence
to generate memory locality, and only requires a small performance penalty as the

replication factor is decreased.

6.3 Datasets and the typicalview test suite

For our multiple node experiments, we were interested primarilv in the internade

90

frame 1

frame 40 frame 79

frame 119

frame 9

frame 48 frame 87

frame 126

frame 17

frame 56 frame 95

frame 25

frame 64 frame 103

frame 32

frame 72 frame 111

frame 150

Figure 6.3: The typicalview test suite

91
caching effects of our logical distributed global address space. To exercise this system
fully, a different test suite was required from the azisorbit test suite used in previous
chapters, which was intended to explore the directional dependence of low-level cache
performance. Figure 6.3 shows the typicalview test suite. This suite is intended to
create 1) concentrations of load in physical space, and 2) high temporal and interblock
variance in the projection costs of the volume blocks. These tend to increase the need
for load balancing by block transfer. In frame 1, all blocks are visible, and the variance
in their costs is low; the viewer zooms in and up so that by the midpoint at frame
75 (not shown), many blocks are not visible on the screen, causing them to have no
cost. All the cost of the projection step is concentrated in the blocks in the upper
quarter of the dataset. The viewer continues to rotate around the body and zoom
out and down again, back to the original viewing position by frame 150, where all
blocks are again in view, and again all have roughly equal cost. The suite is named
the typicalview suite because it follows a typical smooth path that a viewer might

take under the constraint of frame coherence.

LData,set Name j Dimensions ’ Total Siza
female 840x2595x480 1 GB
male 584x1878x341 357 MB

full-female 1610x894x5192 7.1 GB

Figure 6.4: Sizes of datasets for multiple node experiments

Figure 6.4 shows the sizes of the datasets used for our multinode experiments. We
have deleted the vorticity dataset from our experiments, because 1) it is too small
for running on multiple Power Challenge machines; and 2) its cubical shape makes it
unsuitable for the typicalview suite, which zooms in to the top half of the dataset to
intentionally push some blocks out of view. We add an additional very large dataset,
the full-female dataset. This dataset is derived from the same Visible Female data
as the female dataset, but it is at the full spatial resolution of the original data,

whereas the female dataset was subsampled in each dimension by a factor of two.!

1The female and full-female datasets are rotated 90 degrees about X relative to one another:

92
The full-female dataset cannot be used in all our experiments because of its size: it
is too large to fit on less than four nodes (including the size of the dataset and other
overheads associated with rendering). At 7.1 GB this is, to our knowledge, the single

largest regular volume dataset yet rendered.

6.4 Experimental results

6.4.1 Experimental procedures

We conducted our multinode runs on the Power Challenge Array at the National Cen-
ter for Supercomputing Applications at the University of Illinois, Urbana-Champaign.
We selected to use eight processors per node in most runs, for two reasons: 1) we
wanted to concentrate on the highest level of the memory hierarchy, and did not want
to incur the chance of saturating the bus, a lower-level effect, which could complicate
our results; 2) NCSA had available four R8000 machines; two of them had sixteen
processors, and two had eighteen processors. It has been our experience on the Power
Challenge that it is beneficial to leave one or two processors of the machine free for
operating system tasks, to prevent unpredictable contention. If this contention oc-
curred on two of the nodes, and not on the other two, it could introduce noise into our
timings that would be difficult to analyze. Therefore, for most of our experiments, we
used eight processors per node (an exception: the attempt in Section 6.4.8 to achieve
maximum frame rates on the 7.1 GB dataset). This reduces the speed of projection
and composition, but does not effect the volume of data communicated among the
nodes, which is the primary subject of study of this chapter.

Certain complications existed for the 7.1 GB full-female dataset. First, this da-
taset, plus the other memory overheads of our implementation, is too large to fit in
the collective memory of only one or two nodes (which have 4GB of RAM each).

Therefore, we run the full-female GB dataset on four nodes only. In addition, the

however, we rotate the view matrix for the full-female dataset before rendering it, so the body has
the same final orientation on the screen (although the memory stride is still rotated about X). The
orientation of the full-female is the orientation of the original source data.

93

IRIX operating system contains a 2 GB limit on the total memory allocated to a
single process. Therefore, we were required to map eight virtual nodes on to the four
physical nodes. Each of the eight rendering processes then required less than 2 GB of
total memory. This virtual mapping makes it impossible to compare communication
timings between runs of the full-female dataset and the other datasets, because mes-
sages sent to “remote” nodes may sometimes physically be on the same node, and
may have different performance characteristics.? However, valid comparisons can still
be made about the number of bytes communicated, which would be identical to the
number of bytes sent among eight true physical nodes.

We chose not to use any dataset-dependent algorithmic optimizations for most of
our runs (an exception: the attempt in Section 6.4.8 to achieve maximum frame rates
on the 7.1 GB dataset) In this chapter, we are most concerned with studying the
movement of data at top level of the memory hierarchy, rather than optimizations to
ray casting, and want our results to be generalizable to any dataset regardless of the
values of the voxels.

We chose to render a larger image size (800x600 pixels) for the multinode experi-
ments, for two reasons: 1) the image size we used in the previous chapters (400x300
pixels) is small relative to the increased computational power in a multinode array;
2) since this chapter concerns the movement of data among the nodes, which consists
primarily of the transfer of image tiles, we wanted to increase the average size of the
tiles to generate more communication load.

We conducted our experiments with four settings of the “load balance threshold”
(.65, .80, .90, and ..95) described in Section 6.2, and for three cache replication factors
(on four nodes, factors of 4, 2, and 1; on two nodes, replication factors of 2, 1.5, and
1). We are primarily interested in these two variables’ effect on: 1) the total bytes
of data blocks communicated (for the purpose of load balance), 2) the total bytes

of image tiles communicated (for the purposes of the global gather operation of ray

ZThere is the possibility that the operating system will recognize network packets intended for
the local machine, and not send them physically over the HIPPI network; also, hardware contention
might exist, for instance for resources on the HIPPI board, that would not exist on eight true physical
nodes.

94

casting), 3) the achievable load balance, and 4) the final average frame time.

6.4.2 Communication due to block transfers

Figure 6.5 shows the average bytes per frame due to the transfer of volume blocks, for
the male and female datasets on four nodes. Each table shows the results of twelve
experimental uns (four values of the load balancing threshold by three replication
factors). The replication factor is expressed as a fraction: number of blocks cached
per node over the total number of blocks. For example, “512 /512 cached” means that
each node cached all 512 of the 512 total blocks; on four nodes, this corresponds to a
replication factor of four.

The values in the table show the total number of bytes sent by any node to any

other node, summed over all 150 frames of the typicalview test suite.

Female dataset, four nodes:
| Ib threshold | 512/512 cached | 256/512 cached | 128/512 cached |

65 0 0 0

80 0 0 0

90 0 262,156 180,232
95 0 1,179,703 4,980,970

Male dataset, four nodes:
| Ib threshold | 128/128 cached | 64/128 cached | 32/128 cached |

65 0 0 0

80 0 0 910,360
90 0 273,258 4,076,100
95 0 1,502,919 7,173,026

Figure 6.5: Average block transfer bytes per frame on four nodes of eight processors

Note that no communication of blocks is required for low load balancing thresh-
olds or high replication factors. As the load balancing threshold increases from top
to bottom, the number of bytes transferred tends to increase, as we demand that the

algorithm attempt to achieve higher load balance. As the replication factor decreases

95
from left to right, it becomes generally harder to satisfy a given load balancing thresh-
old with the blocks currently held by each node, so the algorithm attempts to rectify
this by moving blocks. Note that there is one exception to this tendency: the values
262,156 and 180,232 are reversed in this respect. However, the difference between the
two “reversed” values is only 80 KB, whereas a single block is between 2 MB and 3
MB. This represents a difference of only four or five blocks over the entire test suite.
This type of noise can occur, because the attempt to improve load balance by moving
a block is not guaranteed, and can result in several frames of adjustment. We can
still expect a general tendency of increasing block transfers when the load balance
threshold increases, or the replication factor decreases.

The boldface cells in Figure 6.5 indicate the cells that are plotted in detail in
Figure 6.6, which shows, frame by frame, the number of block transfer bytes that
were sent. The upper half of Figure 6.6 corresponds to a load balance threshold of
.90, for three different replication factors. The case for 512/512 blocks cached on
each node (green) requires no block transfers for any frame; this is full replication of
the dataset on each node. The cases for 256/512 cached (blue) and 128/512 cached
(red) are the “reversed” pair of values mentioned above. Note that all transfers are
concentrated about frame 75, the middle of the typicalview suite, where the observer
zooms in closely to the data, and many blocks are out of view, causing a rapid shift
in block costs, and a need for block transfer to balance the changing workload. The
number of total blocks transferred per frame (the number of bytes per frame can be
seen to vary in increments of 2.5MB, the size of a block) is low, according with our
explanation of random noise for this “reversal.”

The lower half of the figure corresponds to a load balancing threshold of .95.
This causes the transfer of many more blocks for the cases for 256 /512 cached (blue)
and 128/512 cached (red). In this case, 128/512 clearly requires more transfers than
256/512. Again, the transfers are clustered about the rapid changes in block costs in
the middle of the test suite.

Figure 6.7 shows average block transfers on two nodes. Note again the general

tendency for transfers to increase as either the load balancing threshold increases, or

96

Block transfer bytes for load balancing threshold of .90
T T T T T

1e+07 T T
512/512 blocks cached -+
256/512 blocks cached -+~
%e+06 |- 128/512 blocks cached -&-- -
8e+06 |- -
7e+06 |- -
6e+06 |- 1
]
5e+06 [~ -
= o
46406 | | E
i
i
3e+06 |- | 1 1 &
ik 3] I
2e+06 ‘ i ' 1
il
| i
1e+06 | i i 4
| i
| N
0
0 20 40 80 100 120 140 160
frame
Block transfer bytes for load balancing threshold of .95
8e+07 T T T T T T T

¥ 512/512 blocks cached -

i 256/512 blocks cached —+--
7e+07 | 128/512 blocks cached -&-- |
6e+07 - .
5e4+07 |- i L

P

% 40407 | i o
3e+07 1
2e+07 |-]
1e+07 | i -\(1

o o i

i @ it

{4 i1

0
0 20 40 120 140 160

Figure 6.6: Block transfer bytes per frame on four nodes of eight processors, female
dataset

97

the replication factor decreases.

Female dataset, two nodes:

| Ib threshold | 512/512 cached | 256/512 cached | 128/512 cached |

.65 0 0 0
.80 0 0 0
.90 0 0 0
95 0 458,774 1,343,551

Male dataset, two nodes:

| Ib threshold [128/128 cached | 64/128 cached | 32/128 cached |

65 0 0 0

80 0 45,543 91,086
.90 0 569,288 318,801
95 0 1,594,006 2,322,694

Figure 6.7: Average block transfer bytes per frame on two nodes of eight processors

Figure 6.8 shows average bytes due to block transfers per frame, using the 7.1 GB
full-female dataset on virtual eight nodes of four processors each. Recall that we were
required to map eight virtual nodes onto four physical nodes for this large dataset, as
described in Section 6.4.1. Using four processors per virtual node results in a total of
eight active processors on each of the four physical nodes. For this very large dataset,
we ran only at a replication factor of 1 (i.e., 256/2048 blocks cached on each of eight
nodes).

No block transfers were required for this large dataset up until a load balancing
threshold of .90. (We did not run an experiment using .95 because four-node time on
the NCSA machines was extremely limited, and we were confident that this would
require a greater volume of transfers. As shown below, the extra communication for
a load balancing threshold of .90 consisted of “load balance thrashing”, and did not
result in performance benefits.)

In summary, the volume of bytes communicated due to block transfers, in general,
tends to increase: 1) as we demand a higher load balancing threshold; and 2) as the

replication factor is decreased, allowing less flexibility in the assignment of blocks to

98

Full-Female dataset, eight virtual nodes:
| Ib threshold | 256/2048 cached |

.65 0
.80 0
.90 26,989,872

Figure 6.8: Average block transfer bytes per frame on eight virtual nodes of four
processors

meet a given load balancing threshold.

6.4.3 Load balance

There are two factors contributing to load balance: 1) Active attempts to achieve load
balance by the transfer of blocks; and 2) a high granularity, together with round-robin
initial assignment of blocks to eliminate concentrations of cost, will tend statistically
to yield a near-average value on all nodes. This force will continue to act even as
block costs change, as long as the changes are also well distributed among the nodes.
We will call this effect stochastic load balance.

If the load balancing threshold is set too high, our algorithm may transfer blocks
without reaping a corresponding improvement in load balance. We will call this situ-
ation load balancing thrashing. This can happen, for instance, because our estimates
for the costs of blocks, based on the costs for the last frame, are imperfect.

Figure 6.9 shows the average load balance achieved for the female and male data-
sets. The results are complex to interpret. Recall that our load balancing algorithm
is attempting to make a compromise between several factors, in this order: 1) re-
quiring that the estimated load balance be over a certain threshold, 2) minimizing
block transfers, and 3) minimizing tile transfers by assigning blocks for projection to
the same nodes that will require their tiles for composition. Note that attempting to
satisly factors 2 and 3 can actually result in slightly worse estimated load balance; the

only constraint is that the estimated load balance be no worse than the threshold,

99

Female dataset, four nodes:
| Ib threshold | 512/512 cached | 256/512 cached | 128/512 cached |

.65 0.883 0.946 0.960
.80 0.887 0.947 0.961
.90 0.912 0.947 0.956
.95 0.934 0.951 0.956

Male dataset, four nodes:

| Ib threshold | 128/128 cached | 64/128 cached | 32/128 cached |

.65 0.924 0.928 0.890
.80 0.923 0.927 0.896
.90 0.924 0.930 0.914
.95 0.934 0.932 0.928

Figure 6.9: Average load balance on four nodes

not that it be maximized.

For the female dataset, the reader may be initially surprised to see that load
balance values in the column for 512/512 blocks cached are actually worse than those
for 128/512 blocks. This is because the load balance is good even without the transfer
of blocks. When the estimated load balance is above the required threshold, the
algorithm allows some imbalance to occur, in order to increase the number of blocks
assigned to a node that would require them for composition (factor 3, above). In
the 128/512 case, the algorithm did not have this flexibility; it could not change
the assignments without incurring communication cost. The result is that the load
balance for 128/512 is better, but more tiles have to be communicated.

Note further, that for the male dataset, the situation is reversed: the 128/512
column achieves worse load balance than 512/512 case. This is because the granularity
of the dataset is much lower. This results in less stochastic load balance; in turn, as
the estimated load balance falls below the thresholds, this causes the algorithm to
attempt many more block transfers. The resulting load balance thrashing yields an
overall worse load balance for the 128/512 case. At this low granularity, our estimates

of block cost are not accurate enough to yield better values of load balance than .92

100
or .93 (on average) for the male dataset; the algorithm will therefore experience this
thrashing if the load balance threshold is set too high; the problem is exacerbated at
load replication factors.

Figures 6.10 and 6.11 show detail from the boldface rows of Figure 6.9. The upper
half of Figure 6.10 shows the detail for a load balancing threshold of .65 for the female
dataset. Note that for a load balance threshold of .65, no block traﬁsfers occurred
(recall the block transfer bytes in the upper half of Figure 6.6). In the case of 128/512
blocks cached (red), stochastic load balance at this high granularity provides excellent
load balance even without these transfers. The case for 512 /512 blocks (green) is able
to take advantage of this load balance, which far exceeds the required threshold, and
improve the assignment of tiles for composition to the nodes that projected them.
The 128/512 case does not have this flexibility of tile assignment, since reassignment
would require communication of blocks; it can only take this windfall in the form of
good load balance. The case for 256/512 nodes has a moderate amount of flexibility
(less than the 512/512 case), and so exchanges some of the “excess” load balance for
a better assignment of tiles.

The lower half of Figure 6.10 shows the case for a load balancing threshold of
.95 for the female dataset. The stochastic load balance is so good that even for this
extreme load balancing threshold, the 512/512 case (green) is still able to exchange
some extra load balance for improved tile assignment.

The upper half of Figure 6.11 shows a load balance threshold of .65 for the male
dataset. Note again, that no block transfers occurred for this case (recall the block
transfer bytes in the lower half of Figure 6.6). With the reduced granularity of the 128
blocks of the male dataset, the 32/128 (red) case struggles to maintain a load balance
above the threshold, because stochastic load balance is less effective. However, the
64/128 and 128/128 cases do better, and are able to again exchange some load balance
for improved tile assignment.

In the lower half of Figure 6.11, for a load balancing threshold of .95, all three
replication factors must resort to many block transfers to try to improve their load

balance. However, it does not do much good. The accuracy of our load balancing

101

hold of .65
T

+h

for load bal;

d load bal:

s

A

hoccis

s ——
R EEEER LR

st

512/512 blocks cached -~
256/512 blocks cached -+--
128/512 blocks cached -8--

' L s
100 120 140

1
80
frame

160

1
60

n
40

L
20

oouefeq pEo)

0.75 |

0.7

hold of .95
T

th

for load bal

load bal

5

A

s

512/512 blocks cached
256/512 blocks cached
128/512 blocks cached -8--7]

s

0.84

89uE[Rq PEO)

0.82

80 100 120 140 160
frame

60

Figure 6.10: Load balance on four nodes, female dataset

ing threshold of .65

102
d load bal; for load bal

160

160

1

140
'

140

64/128 blocks cached ~+--
32/128 blocks cached -8--
32/128 blocks cached -&--7

L
120

1

128/128 blocks cached -+
128/128 blocks cached ——
64/128 blocks cached -+--

Id of .95

i
00

&
1
100

1
80
frame
for load bx

L
e
d load bal

0

0.75 -
0.7
1

eduE[Eq PEO|

frame
Figure 6.11: Load balance on four nodes, male dataset

103
is limited by our imperfect estimates of the costs of blocks for a future frame. In
this case, the algorithm is unable to achieve good load balance despite the transfer of

many blocks, that is, it is experiencing load balance thrashing.

Female dataset, two nodes:

| 1b threshold | 512/512 cached | 256/512 cached | 128/512 cached |

65 0.926 0.981 0.978
.80 0.926 0.982 0.978
.90 0.942 0.982 0.978
93 0.963 0.983 0.976

Male dataset, two nodes:
| Ib threshold | 128/128 cached | 64/128 cached | 32/128 cached |

.65 0.947 0.931 0.907
.80 0.947 0.940 0.925
.90 0.949 0.941 0.945
.95 0.956 0.958 0.951

Figure 6.12: Average load balance on two nodes

Figure 6.12 shows average load balance on two nodes. The trends seen in the
four node case are repeated. For the high granularity of the female dataset, a lower
replication factor leads in general to better load balance (but with the side effect
of worse tile assignments). For the lower granularity of the male dataset, a higher
replication factor can achieve better load balance than a low replication factor, in the
absence of good stochastic load balance by turning its flexibility of assignment into

better average load balance.

Full-Female dataset, eight virtual nodes:
| Ib threshold | 256/2048 cached |

.65 0.915
.80 0.914
.90 0.923

Figure 6.13: Average load balance on eight virtual nodes of four processors

104

Figure 6.13 shows load balance for the full-female dataset. We observe that load
balance increases slightly with increasing load balance factor; however, recall from
Figure 6.8 that this required enormous amounts of block transfer. It is better, with
the extremely high granularity of this dataset, to rely on stochastic load balance, and
select a lower load balancing threshold to avoid these block transfers.

In summary, the load balance achieved results from a complex interaction of gran-
ularity, replication factor, the competing goals of the load balancing algorithm: re-
quiring that estimated load balance be above a threshold, avoiding block transfers,
and improving tile assignments when possible), and the accuracy of our predictions
of future block costs.

High granularity yields benefits in term of stochastic load balance. In cases of high
replication factor, the algorithm can take advantage of this with better load balance
(in the case of a high load balance threshold) or with improved tile assignments (in
the case of low load balance threshold); in the case of low replication factor, the gains
may only be taken as improved load balance.

Low granularity yields worse stochastic load balance. In cases of high replication
factor, the algorithm is able to use its flexibility of assignment to its advantage, gaining
in either load balance or improved tile assignments; in cases of low replication factor,

the algorithm is less equipped to do well in the absence of stochastic load balance.

6.4.4 Communication due to tile transfers

There are two reasons a tile may have to be transferred: 1) it overlaps the screen
area of some node, but since optimization of tile transfers is only the third priority of
our load balancing algorithm, it was assigned to be projected by a different node; or
2) it overlaps the screen areas of two nodes; one of them must be selected to project
it, and a copy of the resulting tile must be sent to the other. The transfers resulting
from reason 1 are those which we expect can be decreased when the block replication
factor is high.

Figure 6.14 shows the average number of bytes communicated as a result of tile

105

Female dataset, four nodes:
| Ib threshold | 512/512 cached | 256/512 cached | 128/512 cached |

65 6,018,071 9,032,861 11,382,769
80 6,079,764 9,033,617 11,382,769
.90 6,335,405 9,105,326 11,390,147
95 6,570,445 9,233,823 11,341,547

Male dataset, four nodes:

| Ib threshold | 128/128 cached | 64/128 cached | 32/128 cached |

65 4,362,365 5,552,798 6,589,883
80 4,368,541 5,553,604 6,591,031
90 4,441 437 5,640,588 6,708,717
95 4,556,869 5,902,784 6,694,678

Figure 6.14: Average tile transfer bytes per frame on four nodes of eight processors

transfers. There is a clear pattern of increasing tile transfers as replication factor
decreases from left to right, which is to be expected due to the flexibility of assignment
associated with higher replication factors.

In addition, there is a somewhat weak tendency for increasing load balance factor
to require more tile transfers. This tendency is more pronounced for the male dataset,
which has lower granularity than the female dataset; this results in less stochastic
load balance, yielding less “excess” load balance above a given threshold which can
be applied to improving tile assignments.

The boldface rows from Figure 6.14 are detailed in Figure 6.15. The features to
be noted are: 1) that for every frame (not just on the average), a higher replication
factor yields fewer bytes of tile transfers; and 2) that tile transfers are not very volatile,
even with a load balance factor of .95, because they are the last priority of the load
balancing algorithm.

Figure 6.16 shows tile transfers for two nodes. Figure 6.17 shows tile transfer
bytes for eight nodes on the full-female dataset. The same general trends we noted
in Figure 6.14 appear.

In summary, there is a strong tendency for decreasing replication factor to yield

106

Tile transfer bytes for load balancing threshold of .65

T T T T T T
512/512 blocks cached -+
256/512 blocks cached —+-
128/512 blocks cached -8--

2.5e+07 T

2e+07

1.5e+07]
8
=
1e+07 E
5e+06 -
0 L L N L L L 1
0 20 40 60 80 100 120 140 160
frame
Tile transfer bytes for load balancing threshold of .95
2.5e+07 T T T T T T T
512/512 blocks cached -
256/512 blocks cached ~+-
128/512 blocks cached -8--
2e+07 &
1.5e+07 -
0
o
7
1e+07 =
5e+06 -
0 ' L ' L L L L
0 20 40 60 80 100 120 140 160

frame

Figure 6.15: Tile transfer bytes per frame on four nodes of eight processors, female
dataset

107

Female dataset, two nodes:
| Ib threshold [512/512 cached | 256/512 cached | 128/512 cached |

65 1,742,831 5,143,475 5,438,966
80 1,760,193 5,143,475 5,438,966
90 2,018,003 5,143,475 5,438,966
05 2,239,843 5,095,816 5,454,861

Male dataset, two nodes:

[Ib threshold [128/128 cached | 64/128 cached | 32/128 cached |

65 1,804,601 3,201,983 3,311,906
.80 1,804,692 3,155,543 3,315,993
90 1,832,170 3,010,116 3,364,375
95 1,893,350 2,924,169 3,398,617

Figure 6.16: Average tile transfer bytes per frame on two nodes of eight processors

Figure 6.17: Average tile transfer bytes per frame on eight virtual nodes of four

processors

65 25,420,754
.80 25,420,754
90 25,442 592

Full-Female dataset, eight virtual nodes:
| Ib threshold | 256/2048 cached |

108

increasing tile transfers, and a weaker tendency for increasing load balancing factor

to require increased tile transfers.

The tradeoff between replication and tile transfers

Figure 6.18 compares replication factors of one and four, on four nodes. Each quadrant
of the screen represents the area assigned to one of the four nodes for composition.
(Each of the eight white squares shows the area assigned to one processor; there are
two processors on each of the four nodes.) The colored squares indicate tiles projected
from their corresponding volume blocks by a particular node (each of the four colors
corresponds to a specific node). The left side of the figure shows a replication factor
of one, and the right side shows a replication factor of four. On the right side, due
to the high replication factor, most blocks can be assigned for projection to the same
nodes which will need them for composition. On the left side of the figure, the low
replication factor requires that most blocks be assigned for projection to nodes other
than those that will require them for composition (specifically, to the nodes which
hold a copy of them). The situation on the left side of the figure, with low replication
factor, entails many more tile transfers than the situation on the right side of the

figure, with high replication factor.

Figure 6.18: Assignments of blocks to nodes for projection, for replication factors of
one (left) and four (right)

109
6.4.5 Frame times

The ultimate measure of the success of choosing a particular load balancing factor,
and of the consequences of using a low replication factor, is the frame rate achieved.
All the tradeoffs between load balance, two types of communication, and replication

factor, can be judged by the metric of the resulting frame rate.

Female dataset, four nodes:

| Ib threshold | 512/512 cached | 256/512 cached | 128/512 cached |

63 1.615 1.652 1.723
.80 1.613 1.676 1.716
90 1.619 1.668 1.705
.95 1.638 1.701 1.837

Male dataset, four nodes:

| Ib threshold | 128/128 cached | 64/128 cached | 32/128 cached |

.65 1.229 1.258 1.261
.80 1.243 1.267 1.300
.90 1.220 1.282 1.395
.95 1.233 1.346 1.499

Figure 6.19: Average frame times on four nodes of eight processors (sec)

Figure 6.19 shows the average frame rates achieved on four nodes for the female
and male datasets for our twelve combinations of parameters. The primary feature of
interest is that as we move from left to right along each row, the penalty for using a
low replication factor is not large. In other words, our load balancing algorithm and
caching system function very effectively to exploit the memory locality present in ray
casting. There is some benefit to be had in complete replication, but our algorithm
degrades smoothly as the replication factor is decreased, and does extremely well with
no replication at all.

The second feature of interest is that frame rates are, in general, superior with
a low load balancing factor, particularly when the replication factor is low. The
granularity of both datasets is high enough to make this the case. We would expect

a higher load balancing threshold to be beneficial: 1) as the granularity became

110
lower, or 2) as the cost of communication decreased. We will show in Section 6.4.6
that the HIPPI performance is well below the peak of 91 MB /sec cite which SGI
claims [Skibo95].

Female dataset, two nodes:
| Ib threshold ['512/512 cached | 256/512 cached | 128/512 cached |

.65 2.500 2.624 2.636
.80 2.503 2.624 2.641
.90 2.490 2.621 2.653
.95 2.492 2.665 2.712

Male dataset, two nodes:

| Ib threshold | 128/128 cached | 64/128 cached | 32/128 cached |

.65 1.726 1.829 1.844
.80 1.730 1.833 1.831
.90 1.714 1.859 1.862
.95 1.731 1.886 1.950

Figure 6.20: Average frame times on two nodes of eight processors (sec)

Figure 6.20 shows that the same patterns hold for two nodes: our algorithm
effectively manages locality to keep the penalty for no replication quite low.

Figure 6.21 shows the frame times for the full-female dataset. Since the full-female
~ dataset was so large, we render it at a replication factor of one (1) only. However, as
expected, the figure shows that for the extremely high granularity of the full-female
dataset, high load balancing factors result in slower frame times due to load balance
thrashing.

In summary, our load balancing algorithm and caching system function very effec-
tively to exploit the memory locality present in ray casting. There is some benefit to
be had in complete replication, but our algorithm degrades smoothly as the replication

factor is decreased, and does extremely well with no replication at all.

111

Full-Female dataset, eight virtual nodes:
| Ib threshold || 256/2048 cached |

.65 4.543
.80 4.539
.90 5.196

Figure 6.21: Average frame times on eight virtual nodes of four processors (sec)

6.4.6 Parallel speedup

On a single node, it took 4.291 seconds on average to render a frame for the female
dataset, and 2.827 seconds for the male dataset. Note that, for a single node, neither
load balance factor (i.e., the load balance factor among parallel nodes) nor replication
factor are relevant parameters.

Figure 6.22 shows parallel speedup on two and four nodes, compared to the times
to render a frame on one node. While our speedups are less than sometimes expected
for algorithms that do not require a global gather operation, ray casting does require
this operation. Speedup will never be perfect unless the communication is free.

Note that, on a shared-memory architecture, our jump from one to sixteen pro-
cessors did not require the addition of an extra level of the memory hierarchy: both
a single processor and sixteen processors had to communicate with memory over the
same bus. We were able to achieve good parallel speedup until the capacity of this bus
ran out (up to eight processors for the poor cache performance of the image partition,
and up to sixteen for the better cache performance of the object partition). When
jumping from one to multiple distributed nodes, a new level of the memory hierarchy
is created that did not exist on a single node. Parts of the global gather operation
In ray casting must travel over the new, slower channel, ruling out perfect parallel
speedup.

We can derive the effective HIPPI bandwidth achieved, in the context of heavy
contention during the many-to-many transfers required during a frame, by dividing

the total number of bytes sent for tile and block transfers, by the total time spent

112

Female dataset:

| | 512/512 cached | 256/512 cached | 128/512 cached |

speedup on 2 nodes 1.72 1.64 1.63
speedup on 4 nodes 2.66 2.60 2.49

Male dataset: :
! | 128/128 cached | 64/128 cached | 32/128 cached f
speedup on 2 nodes 1.64 1.55 1.53
speedup on 4 nodes 2.30 2.25 2.24

Figure 6.22: Parallel speedup over single node (percentage of number of nodes)

sending or receiving those bytes. For blocks, HIPPI achieved an effective bandwidth
per node of 9.6 MB/sec; for tiles, HIPPI achieved an effective bandwidth of 8.7
MB/sec. This is well below its 91 MB/sec peak rate.

Since we know the details of our communication costs, we can make the prediction
that if the HIPPI network were five times faster on average (i.e., achieving on average
approximately half of its 91 MB/sec peak), then, with no replication, we would attain
3.0 times speedup on four nodes for the female dataset, and 2.5 times for the male

dataset.

6.4.7 Relative costs of computation and communication

Figure 6.23 shows the relative costs of projection, composition, block transfer, and
tile transfer, for two typical experiments: the female dataset, with no replication,
for load balancing thresholds of .65 and .95. These costs are all summed over the
four nodes. In real time, there was high overlap among the four nodes for each of
these components; therefore the wall clock time of each component was approximately
one-fourth as large.

The primary computational cost is projection. Composition, even for this large
number of tiles (512), represents a tiny fraction of the cost of projection.

For a load balancing threshold of .65, there are no block transfers; the entire

communication cost is due to tile transfers. At the midpoint of the test suite. when

113
there are few large tiles on the screen, this communication cost approaches the com-
putational cost of projection. For a load balancing threshold of .95, there are many
block transfers, particularly about the midpoint of the test suite, where the costs of
all the blocks change dramatically. The cost of block transfer, in wall time, is bursty,

sometimes surpassing both the cost of tile transfers, and the cost of projection.

6.4.8 Performance on a very large dataset

Wanting to push the limits of our system, and take full advantage of its ability to
efficiently render without replication of data, we attempted to achieve the maximum
frame rate on the full-female dataset, which at 7.1 GB is the largest single volume
dataset yet rendered. We doubled the number of processors to eight, on each of the
eight virtual nodes. With no replication, and a load balancing factor of .65, at a
resolution of 800x600 pixels, we achieved an average of 3.4 seconds per frame for the
typicalview suite, using no dataset-specific optimizations. When we added two dataset
specific algorithmic optimizations (opacity clipping and the discarding of completely
empty volume blocks), we achieved a rate of 2.1 seconds per frame on average. This

is very high performance relative to the dataset size and image resolution.

6.5 Conclusions

We have used lessons from previous chapters — specifically that using blocks of 0.5
and 1.0 times the size of the cache maximizes cache performance, that roughly equilat-
eral blocks and tiles are superior, and knowledge about effective parallel partitioning
within a single node — and used them to prune our choices of parallel partitioning
and load balancing on a higher level of the memory hierarchy. We determined that,
for typical image resolutions, it is cheaper to achieve the global gather operation
required by ray casting by moving the image tiles than moving the volume blocks.
This led us to the following ordered set of priorities for our load balancing algo-
rithm: 1) keep the estimated load balance above a certain threshold, 2) avoid the

transfer of volume blocks, 3) assign blocks for projection to a node that will reauire

114

hold of .65, 128/512 blocks cached

$h

for load t

tile transfers —--

projection step -
composition step -&--
block transfers -x—

80 100 120 140 160
frame

60

40

6

Cumulative costs of computation and commt
T

SpUC2es BAljE|NWND

hold of .95, 128/512 blocks cached

ection step
tile transfers -

(o]

i
position step -8
block transfers -

pre

comj

120

for load bal

Ounéulativs costs of computation and comm

Spucoes eAlje|nwInd

160

40 60 80 100
frame

20

four nodes, female

ion on

1cat

d commun

101 an

ts of computat

1ve Ccos

Relati

Figure 6.23

dataset (sec)

115
the associated tile for composition (thereby avoiding the transfer of tiles). We imple-
mented this set of priorities in a tiered greedy algorithm, which functioned effectively
to exploit locality. The cost for rendering at a replication factor of 1 (no replication)
was only slightly more than rendering with complete replication (a factor of 2 or 4
on two and four nodes, respectively). This is possible despite the global gather op-
eration required by ray casting; and possible because ray casting contains sufficient
coherence, which is effectively exploited by our algorithm to produce memory locality.

The volume of bytes communicated due to block transfers for load balance, in
general, tends to increase: 1) as we demand a higher load balancing threshold; and
2) as the replication factor is decreased, allowing less flexibility in the assignment of
blocks to meet a given load balancing threshold.

Attainable load balance depends on many factors: interaction of granularity, repli-
cation factor, the competing goals of the load balancing algorithm (requiring that
estimated load balance be above a threshold, avoiding block transfers, and improving
tile assignments), and the accuracy of our predictions of future block costs.

High granularity yields benefits in term of stochastic load balance: High replica-
tion factors allow the algorithm to use this to improve load balance, or to decrease
communication of tiles; low replication factors do not have this flexibility, and can
only receive these gains as improved load balance.

Low granularity yields worse stochastic load balance. High replication factors can
draw on their flexibility to maintain load balance and relatively low communication
of tiles, whereas low replication factors perform less well.

With no replication, we attain speedup on four nodes of 2.48 times on the female
dataset, and 2.24 times on the smaller male dataset. There is more communication
relative to computation for the smaller dataset. In the context of heavy network
contention, HIPPT attains on average 8.7 and 9.6 MB/sec for blocks and tiles, respec-
tively; well below its peak performance of 91 MB/sec. If HIPPI attained half its peak
performance on average, we would expect, without replication, 3.0 times speedup on
four nodes for the female dataset, and 2.52 times for the male dataset. As intern-

ode communications costs drop to zero, we can increase the required load balancing

116

threshold with a vanishing communications cost. The improved load balance together
with decreased communications cost would improve parallel efficiency.

Our methods allowed us to exploit memory locality, and thereby to pay only a
small cost for no replication of data. This allowed us to efficiently render a dataset
larger than the individual memory of any node. We attained a frame rate of 2.1
seconds per frame on this 7.1 GB dataset at a resolution of 800x600 pixels, including
dataset-specific optimizations; and 3.4 seconds per frame without such optimizations.
This is the largest dataset yet rendered. Rendering this dataset, and rendering it at
a reasonable frame rate, was made possible only by the efficient exploitation of many
levels of the memory hierarchy of the hybrid architecture of the Power Challenge
Array.

The results of Chapter 6 can be found summarized in [Palmer97b].

117

Chapter 7 Related Work

7.1 Closely related papers

7.1.1 Lower levels of the memory hierarchy

In [Challinger91], it was noted that using a task size of one pixel as the unit of
parallelism resulted in worse performance than a task size of one scan line. The
author hypothesized that this was due to less efficient use of the processor cache in
the former, but did not explore this in depth.

Papers by a group of colleagues at Stanford University, [Lacroute95, Singh94,
Nieh92], did consider the lower level memory hierarchy characteristics of volume ren-
dering. In [Nieh92] and [Singh94], which used the same volume rendering code),
however, cache miss penalties were not found to be the main cost component of the
algorithm, and the strong directional dependence of caches miss rates was not jden-
tified. We suspect two reasons for this: 1) we systematically searched the sphere for
the worst viewpoint directions — the variation could otherwise be easily overlooked;
and 2) we spent a considerable effort in optimizing our inner loop for the R8000: this
involved tuning the source code to allow the compiler to efficiently software pipeline
~loops, yielding a performance gain of three or four times. This factor of improvement
was due to more efficient scheduling of instructions, not actual reductions in numbers
of memory accesses, or significant changes in the order of memory accesses. It is to
be expected that the cost of memory accesses would become the largest remaining
cost.

[Singh94] contained cache simulation results, and identified, for a 256° dataset,
an “important working set” (or optimal cache size) of 16K. The implication is that
making the cache any larger is not useful. This work did not discover the the utility

of a large cache like the 4MB L2 cache of the Power Challenge, or investigate the

118

qualitatively different performance effects of a cache large enough to contain an entire
volume block. We found that caches of this size could either perform very effectively
or very poorly (both in terms of number of cache misses, and in terms of the cost
of memory system delays), depending on whether or not we actively took steps to
improve memory locality (by appropriate blocking).

Memory hierarchy costs were pointed to in [Lacrouted5] as a primary cost compo-
nent, but it was difficult to further improve the locality of the shear-warp factorization

algorithm used for rendering.

7.1.2 Higher levels of the memory hierarchy

[Funkhouser92] discussed data management for interactive architectural walkthroughs,
using a predictive model to load from disk the parts of an architectural database which
would soon come into the view of the user of the system.

Two papers coauthored by Corrie and Mackerras, [Corrie92] and [Mackerras94],
implemented a global distributed caching system for volume blocks on the Fujitsu
AP1000. They used an image partition, which required much communication of
volume blocks. They distinguished between a persistent list of blocks, and a cache list;
the former were fixed in the memory of a given node, while the latter were temporary
replicated copies. They found that performance had a directional dependence, but
analyzed this in terms of the top level of the memory hierarchy only. In order to
avoid the communication of the entire dataset each frame, as would be required by
an image partition without replication, they replicated the dataset in what they term
netghborhoods. Each neighborhood of processors would own one entire copy of the
data. In the extreme case, they placed each processor in its own neighborhood, with
a complete copy of the data. We believe, for the reasons outlined in section 6.1.1,
that a method that involves moving the volume blocks in order to accomplish the
global gather operation is inherently less efficient that one involving the movement
of image tiles. However, this work was quite innovative in its implementation of a

software block caching system. In addition, this work recognized that square tiles

119

are superior to elongated ones, citing their superior memory locality characteristics.
[Corrie92] briefly mentions memory hierarchy effects at a lower level, but does not
explore them in depth.

On the Cray T3D, [Law96a] recently implemented a distributed block caching and
replication scheme which was a “cache only” memory system, like our system. That
is, it allowed volume blocks to migrate and replicate dynamically among the nodes,
without a “master copy” of any block. On 128 nodes, they found that replication
factors of up to four and six, for 2563 and 1283 datasets, respectively, yielded sig-
nificant performance benefits. In [Law96b], these authors addressed the problem of
“thrashing” of volume blocks among nodes with an “advancing ray front” method,
which increases memory locality by advancing a plane of rays through the set of vol-
ume blocks that are currently in local memory. They also extended this method to be
“thrashless” across a sequence of similar frames. In [Law96c¢], the same authors used
disk storage to deepen the memory hierarchy to render very large datasets. They

stored blocks of data in compressed form on disk.

7.2 Performance comparison

The following tables contain maximum performance claims from a, number of parallel
volume rendering papers. The rows of the tables contain the volume dataset size, the
image resolution, and the time (in seconds) required to render a frame; the tables for
RendAsunder also note the test suite used. Note that RendAsunder has the highest
frame rates for datasets of 128 MB and more, and is the only implementation to
render a dataset larger than 1 GB (i.e., 7.1 GB). The two times shown for the 7.1

GB dataset are with, and without, dataset-specific optimizations.

[Schroder9l], CM-2, 64K proc, 1-D shears
128% (2 MB) [128 x 128 | 502 sec

[Nieh92], Stanford DASH, 48 proc, ray casting
256 x 256 x 226 (14 MB) | 416 x 416 | .34 sec

120

[Mackerras94], Fujitsu AP1000, 1024 proc, ray casting

512% x 4 bytes (512 MB)

256 x 256

315 sec

[Wittenbrink94], Proteus, 32 procs, permutation warp

256% (16 MB) | 2567

1.4 sec

[Karia94], Fujitsu AP1000, 128 proc, ray casting

256 x 256 x 113 (7 MB)

5122

33 sec

[Singh94], SGI Challenge, 16 proc, ray casting

256% (16 MB) | 416 x 416

25

[Lacroute95], SGI Challenge, 16 proc, shear-warp

128% (2 MB) | 2562

0.032 sec (grayscale)

256° (16 MB) | 2562

0.077 sec (grayscale)

[Westermann95], CM-5, 64 proc, ray casting

2563 (16 MB) | 2562 6.7 sec
5123 (128 MB) | 5122 55 sec
1024® (1 GB) | 1024 445 sec

[Law96a], Cray T3D, 128 proc, ray casting

256% (16 MB)

5122

0.25 sec

RendAsunder, SGI Power Challenge, 16 procs, ray casting

5123 (128 MB) 400 x 300 | 0.34 sec | axisorbit
584 x 1878 x 341 (357 MB) | 400 x 300 | 0.53 sec | axisorbit
840 x 2595 x 480 (1 GB) | 400 x 300 | 1.0 sec | axisorbit

RendAsunder, SGI Power Challenge Array, 8 x 8 procs, ray casting

984 x 1878 x 341 (357 MB)

400 x 300

0.10 sec | fly through

RendAsunder, SGI Power Challenge Array, 4 x 16 procs, ray casting

1610 x 894 x 5192 (7.1 GB)

800 x 600

2.1 sec

typicalview, w/ opts

1610 x 894 x 5192 (7.1 GB)

800 x 600

3.4 sec

typicalview, no opts

121

Chapter 8 Conclusions

8.1 Results and implications for ray casting vol-
ume rendering

In this thesis, we have analyzed methods to optimize the performance of all levels
of a deep memory hierarchy, in the context of ray casting volume rendering through
regular volumetric data. We have analyzed in detail the memory hierarchy effects
present in single-processor, shared-memory, and distributed-memory ray casting.

On a single node, using 1) algorithmic modifications to isolate cache miss costs, 2)
bus monitoring hardware, and 3) a software cache simulator, we have identified and
characterized the main expense in a ray casting kernel with highly efficient instruction
scheduling: cache miss penalties due to reads of the dataset voxels, in the context
of extreme demands on the memory system. We have shown that this expense is
extremely dependent on view direction. We have also demonstrated, however, that
this dependence on view direction can be controlled by appropriate blocking of the
data. We have isolated the separate L1 and L2 cache miss components contributing
to this expense. Complex interpixel and intrapixel effects account for the majority
of the dependence of miss rates upon view direction. These in turn depend on the
relative orientations of the V and W axes of the viewer to the X axis of the dataset.
Interblock and interframe cache effects are negligible, because of the high rates at
which the cache is completely flushed.

Grouping volume data into roughly cubical blocks, and pixels into roughly square
tiles, offers superior memory locality, and therefore superior memory hierarchy per-
formance at all levels, to flattened slabs, or scan lines, respectively. The optimal block
size for varied datasets is between 0.5 and 1.0 times the size of the L2 cache.

On a shared-memory multiprocessor, we have examined the fundamental rela~

122

tionship between parallel partitioning the memory hierarchy performance at all lev-
els, studying one object partition, and one image partition. The object partition is
generally superior because of the natural blocking of the data that it affords, and
the relative directional independence of its performance. The image partition allows
global opacity clipping, but the benefit of this algorithmic optimization is dataset de-
pendent. We obtain good load balance on both partitibns, and good parallel speedup
on the partition with better cache performance.

We demonstrate that high rates of L2 cache misses, such as those that occur
during ray casting through a single large block, can cause bus saturation of the Power
Challenge when using more than eight nodes. This bus saturation compounds the
performance degradation of the poor performance at the L2 cache level. This makes
the impact of cache performance considerations on algorithm design on such machines
even more important.

On a cluster of distributed nodes, we have considered a number of parallel par-
titioning and data replication options in terms of the constraints of achieving good
memory hierarchy performance at all levels. We have explored the tradeoff between
communication cost and memory expenditures for data replication.

We have implemented in software a global logical address space for the volume
blocks, complete with caching, and developed a caching/load balancing method which
balances the competing goals of load balance, minimizing communication of volume
blocks, minimizing communication of projected tiles, and minimizing memory use.
We have shown that this system performs extremely well with no data replication at
all: relative to the N-fold replication of the data on N nodes, only a small performance
penalty must be paid.

Our parallel speedup across multiple nodes (2.6 times on four nodes, 1.65 times
on two nodes) was less than is commonly expected for algorithms that do not require
global communication as an integral part of the algorithm; however, volume rendering
does require this global communication, and our parallel speedup is in accordance with
that achieved in other research. We predict that, were the HIPPI network capable

of four times its measured average bandwidth, under contention, of 10MB/sec, we

123
would achieve 3.0 times speedup on four nodes.

Our focus on the efficient exploitation of all levels of the deep memory hierarchy
has allowed us to break several performance records, including the fastest recorded
time for 357 MB to 1.0 GB dataset, and the first rendering of a 7.1 GB dataset.

We do not expect that the next step for ray casting volume rendering will be to
render a yet larger regular dataset. Figure 8.1 illustrates why. The projected image
of dataset of 1600x900x5200 pixels, at full resolution, contains more information than
can be displayed in an image of typical resolution, e.g., 800x600. Many voxels in such
a dataset would simply fall between the rays generated by the array of pixels, unless
the view is zoomed in close to the data (in which case many other voxels are out of
view). The transfer of these missed voxels represents a waste of memory hierarchy
bandwidth. More efficient would be the multiresolution replication of data: the data
is loaded at full resolution, and copies at (e.g.,) 1/2 and 1 /4 resolution are automat-
ically generated. Rays diverge at a constant rate, and it would be inexpensive to
dynamically choose the copy of the dataset at the appropriate resolution for the cur-
rent distance between the rays. This idea has been explored in [Laur91, Danski{PQQ],

but was not understood in terms of efficient use of memory hierarchy bandwidth.

800 pixels

a
| v

600 pixels
5200:voxels

1600 voxels

Figure 8.1: The impact of ray divergence

124
8.2 Implications for other parallel algorithms

Ray casting volume rendering is only one example of a parallel algorithm that requires
a global gather operation.

Consider the extreme case of a global sum: each node of a Power Challenge Array
contains a large set of integers; we wish to know the global sum of all of them. In this
case, the most straightforward method happens to yield optimal memory hierarchy
performance: At the top level of the memory hierarchy, each node sums its own
integers; then the N resulting integer values from each node are sent to a central
location and summed. At the lower levels of the memory hierarchy, each individual
node will sum its own integers in the order they are stored in memory.

We need only make the example slightly more complicated for memory hierarchy
effects to dominate the algorithmic design: for example, take a large two-dimensional
array, stored in contiguous, uniform squares on N nodes; we want to find the sums of
the rows and columns of the array. The optimal order in which to perform operations
is now more complex: values will be used more than once, and we would like to read
each value from main memory as few times as possible. Within a node, we would use
blocking to improve local cache performance. We would find the sums of rows and
columns for individual nodes, and send these results to a central location where the
partial results could be combined.

As a third example, imagine that the array is not stored contiguously, but that
its elements are dealt out in round-robin fashion to the nodes. The optimal order of
operations and communications pattern would now depend on many things, including
the relationships between the width of the array, the number of nodes, and the sizes
of the cache lines. In addition, if the width of the array were not an integer multiple
of the number of nodes, we might profitably pad the array with extra columns of
zeros, to increase locality down the columns.

The experimental results in this thesis, and the analytical models they support,
provide a useful framework to analyze the parallel memory hierarchy performance of

other problems in which: 1) the operator which combines partial results is associative,

125
2) the entire distributed dataset contributes to a solution that will end up stored on a
single node, and 3) there exists coherence which can be exploited to increase memory
locality.
This class of problems requires global communication. Furthermore, the amount of
communication increases with increasing numbers of processors, making them strictly
not scalable algorithms. However, they contain coherence that allows careful algo-

rithmic design to increase memory locality.

8.3 Implications for parallel architecture design

Ray casting volume rendering is perhaps not best suited to MIMD processors, con-
nected by relatively slow interconnection networks. This class of problems is better
suited to parallel machines employing a fast, shared bus, but these machines can only
scale to a low number of processors before the bus becomes saturated. The Power
Challenge Array, a hybrid distributed/shared memory architecture, was an attempt
to go beyond this number of processors by connecting multiple shared-memory nodes.
However, the decision to use a slow but “scalable” HIPPI crossbar network limits the
achievable parallel speedup. A better means to scale to a moderate number (hun-
dreds) of total processors would be to connect multiple shared-memory nodes with a
network designed for maximum speed between a limited number of nodes. A logical
global address space, with caching built into hardware, would simplify implementa-
tion. Ideally, there would be provisions for the programmer to give “hints” to the
automatic cache, indicating which blocks should remain in local memory. This type
of architecture would provide good peak performance for any problem that satisfies
conditions 1 and 2 in the previous section. It would allow more efficient exploitation
of memory locality for problems that contain coherence.

Such an architecture has already been designed by Silicon Graphics: the recently
released Origin 2000. The findings in this thesis validate many of the design choices
in the Origin 2000. Attaining peak performance on this architecture would still be

difficult, requiring careful attention to cache optimization at multiple levels, but,

126
when this care is taken, this architecture is likely to be capable of much better parallel
speedup than either a hybrid architecture with a slow interconnect, like the Power
Challenge Array, or a true “scalable” distributed-memory architecture. Since the
communication in this class of problems increases as the number of nodes Increases,
it is not indefinitely scalable. However, on moderate numbers of nodes, these problems
contain coherence which can be used to increase memory locality; doing this effectively

requires a deep memory hierarchy.

127

Appendix A A fine-grained MIMD

implementation with no replication

Prior to our work on the Power Challenge, we implemented a volume rendering system
for irregular tetrahedral data on the Intel Delta machine, using projection methods.
This system was unsuccessful at achieving interactive performance: we attained rates
of 30 seconds per frame on 512 processors. (Note that irregular volume rendering
can be expected to be somewhat slower than regular volume rendering for the same
number of volume elements.) However, the system was innovative. In a desire to go
against the conventional reasoning in the literature, we chose to use an image partition
on a relatively fine-grained MIMD machine, and did not replicate the data. At each
frame, every node was assigned a square region of the image, using the recursive
binary image subdivision. To render its region of the screen, each node required a
copy of every tetrahedral voxel overlapping that region. The tetrahedral voxels did
not have a fixed location, but moved dynamically about the machine. We guaranteed
(with a distributed algorithm) that at all times there would be at least one copy of
each voxel somewhere on the machine. When a voxel overlapped a boundary between
two processors’ screen regions, more than one copy of that voxel would be temporarily
created.

Communication (predictably, in hindsight) was the limiting factor of the algo-
rithm. As the viewpoint changed, large volumes of the dataset would need to be
communicated. Desire to minimize this led us to invent a novel parallel partitioning
method: the rotation-invariant partition, which is intended to minimize communica-
tion caused by head rotations of the observer. [Palmer94b)]

This partition is illustrated in Figure A.1. The figure shows three representations
of the same distribution of partitioning lines. On the left of the figure is a view of

the display screen. The screen is recursively divided by three sets of lines labeled Al,

Ox CiC2 A1 C3 C4Px Al
Ox C1 At C3 FPx
Oy
114 s . c2
B1 B2 | screen ’ screen
2 3 6 /I \ viewpoint / ci . . cs
Py \ periphery 7 viewpoint
ce / ca N -
7 ~ >
Ox=Ppx C4
Figure A.1: Three views of a set of partitioning lines
OxC2A1 C3 C4 At
Ox A1 C3 C1 Px -
Oy /
114 5 Jo / \
B4 By lscreen \ screen
\ A /
2 6 7 viewpoint /
Py N periphery .
c2 C4 ~ \ g

Figure A.2: Three views of the lines after a head rotation

129
Bl, B2, and CI, C2, C3, C4. Ox and Px are the left and right boundaries of the
screen in the X direction; Oy and Py are the boundaries in the Y direction. Each of
the vertical lines, i.e., Al, C1, C2, C3, C4, Ox, Px, corresponds to a plane cutting
through object space. In the center of the figure is a view from above the observer.
The display screen appears as a solid arc. The viewpoint of the observer is in the
center of the circle. Each of the cutting planes previously mentioned is shown here
as a line radiating from the viewpoint. The dashed arc passes through the volume of
image space which is currently in the periphery of the observer’s field of view. On the
right side of the figure, Ox and Px have been stretched around the circle until they
become a common point, and the periphery has been spliced out; the screen has been
mapped onto a torus (the mapping of the Y direction is not illustrated in the figure).

Figure A.2 shows what happens after a head rotation of 20 degrees to the right.
Note in the center of the figure that Ox and Px have moved 20 degrees clockwise
around the circle; Lines Al, C2, C3, and C4 have remained stationary, but line C1
has scrolled off the left side of the screen and wrapped around to the other side. The
left and right sides of the figure show alternate views of the same set of line positions.
Instead of moving the voxels, we have rotated the entire image partition beneath
them on the torus; this eliminates the need to move many of the voxels.

If the screen fills a V' degree field of view (in Figures A.1 and A.2, the angle
between Ox and Px is 80 degrees), then, during a head rotation of 360 degrees, each
processor will scroll across the screen from left to right 22 times.

To make the load balancing lines follow the bulk movement of the data at each
frame, the partitioning lines are translated on the screen some vector 7. The T we
use approximates how much the center of mass of the currently visible data elements
has moved in between frames. We find the center of mass of all data elements for
the last frame, matrix-multiply it by the difference between the current and last view
matrices, and discard the Z coordinate. We then translate the origin of the image
partition by this vector on the torus.

These partitions are designed to eliminate communications costs due to head ro-

tations about the X and Y axes. Communication incurred by panning (X or ¥ pure

130
translation) is not completely eliminated by this technique, but is reduced, especially
for elements that are far from the observer.
This partitioning method did reduce overall communication compared to the or-
dinary image partition. However, this unconventional method still required the com-
munication of many volume blocks as an integral part of ray casting. Without the

benefits of caching, this method was still communication-bound.

131

Bibliography

[Ackerman95]

[Amin95]

[Arvo8T7]

[Arvo8S]

[Badt88]

[Blinn82]

[Cabral94]

The Visible Human dataset is publicly available from the Visible
Human Project, ¢/o Dr. Michael J. Ackerman, National Library of

Medicine.

M. Amin, A. Grama, and V. Singh. “Fast Volume Rendering Using
an Efficient, Scalable Parallel Formulation of the Shear-Warp Algo-

rithm.” Proceedings of the 1995 Paraliel Rendering Symposium, pp.
7-14. ACM Press, October, 1995

J. Arvo, D. Kirk. “Fast Ray Tracing by Ray Classification.” ACM
Computer Graphics 21(4):55-64, July, 1987.

J. Arvo, D. Kirk. “A Survey of Ray Tracing Acceleration Tech-
niques.”, in An Introduction to Ray Tracing, Andrew Glassner, Ed-

itor. Academic Press, Harcourt Brace Jovanovich, Publishers, New

York, 1989.

S. Badt, Jr. “Two Algorithms for Taking Advantage of Temporal
Coherence in Ray Tracing.” The Visual Computer (1988), 3:123-131,
Springer-Verlag, 1988.

J. Blinn. “Light Reflection Functions for Simulation of Clouds and

Dusty Surfaces.” ACM Computer Graphics, 16(3):21-29. 1982.

B. Cabral, N. Cam, J. Foran, “Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware,” in Proc.
1994 Symp. Volume Visualization, Washington, D.C., pp. 91-98, Oct.
1994.

132

[Challinger91] J. Challinger. “Parallel Volume Rendering on a Shared-Memory Mul-

[Cook84]

[Corrie92]

[Cleary86]

[Cox93]

[Danskin92]

[Dippéd4]

[Drebings|

[Fuchsg89)

tiprocessor.” Technical Report UCSC-CRL-91-23, Board of Studies
in Computer and Information Sciences, University of California at

Santa Cruz, March 1992.

R. Cook, R. Porter, L. Carpenter. “Distributed Ray Tracing.” ACM
Computer Graphics, 18(3):137-145. 1988.

B. Corrie, P. Mackerras. “Parallel Volume Rendering and Data Co-
herence on the Fujitsu AP1000.” Department of Computer Science,
The Australian National University, Tech Report TR-CS-92-11, Au-
gust,1991.

J. Cleary, B. Wyvill, G. Birtwistle, R. Vatti. “Multiprocessor Ray
Tracing.” Computer Graphics Forum, 5:3-12. North-Holland. 1956,

M. Cox, P. Hanrahan. “Pixel Merging for Object-Parallel Rendering:
a Distributed Snooping Algorithm.” Proceedings of the 1999 Parallel
Rendering Symposium, pp. 49-56. ACM Press, October 1993.

J. Danskin, P. Hanrahan “Fast Algorithms for Volume Ray Tracing.”
Proceedings of the Workshop on Volume Visualization, pp. 91-95.
ACM Press. October, 1992.

M. Dippé, J. Swensen. “An Adaptive Subdivision Algorithm and Par-
allel Architecture for Realistic Image Synthesis.” ACM Computer
Graphics 18(3):149-158, 1984.

R.A. Drebin, L. Carpenter, P. Hanrahan. “Volume Rendering.” ACM
Computer Graphics 22(4):65-74, 1988.

H. Fuchs, et al. “Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories.” ACM Com.-
puter Graphics 23(3):79-88. 1989.

133

[Funkhouser92] T. Funkhouser, C. Séquin, S. Teller. “Management of Large Amounts

[Glassner84]

[Hanrahan90]

[Kajiya84]

[Karia94]

[Kay86]

[Kobayashi87]

[Kobayashi8g]

[Lacroute94]

[Lacroute95]

of Data in Interactive Building Walkthroughs.” Proc. ACM SIG-
GRAPH °92, pp. 11-20. Boston, March, 1992.

A. Glassner. “Space Subdivision for Fast Ray Tracing.” IEEE Com-
puter Graphics and Applications, 4(10):15-22, October, 1984.

P. Hanrahan. “Three-Pass Affine Transforms for Volume Rendering”.

Compuler Graphics, 4(5):71-77, November 1990.

J. Kajiya, B. Von Herzen. “Ray tracing volume densities.” ACM
Computer Graphics 18(3):165-174. 1984.

R.J. Karia. “Load Balancing of Parallel Volume Rendering with
Scattered Decomposition.” Proceedings of the 1994 Scalable High-

Performance Computing Conference, pp. 252-258.

T. Kay, J. Kajiya. “Ray Tracing Complex Scenes.” ACM Computer
Graphics 20(4):269-278. August, 1984.

H. Kobayashi, T. Nakmura, Y. Shigei. “Parallel processing of an ob-
Ject space for image synthesis using ray tracing.” The Visual Com-

puter (1987), 3:13-22, Springer-Verlag 1987.

H. Kobayashi, S. Nishimura, K. Kubota, T. Nakamura, Y. Shigei.
“Load balancing strategies for a parallel ray-tracing system based
on constant subdivision.” The Visual Computer (1988), 4:197-209,
Springer-Verlag 1988. .

P. Lacroute, M. Levoy. “Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation.” Proc. ACM

SIGGRAPH 9/, pp 451-445. Orlando, Florida, July 24-29, 1994.

P. Lacroute. “Real-time Volume Rendering on Shared Memory Mul-

tiprocessors Using the Shear-Warp Factorization.” Proceedinas of the

[Laur91]

[Law96a]

[Law96b)]

[Law96c]

[Levoy88]

[Levoy90]

[Lorensen87]

[Ma93]

134
1995 Parallel Rendering Symposium, pp. 15-22. ACM Press, October,
1995.

D. Laur, P. Hanrahan. “Hierarchical splatting: A progressive refine-
ment algorithm for volume rendering.” ACM Computer Graphics,

25(4):285-288. 1991.

A. Law, R. Yagel. “The Active-Ray Approach to Rendering on Dis-
tributed Memory Multiprocessors.” Proc. IEEE Symposium on Par-
allel an Distributed Architectures, 1996, pp. 441-421.

A. Law, R. Yagel. “Multi-Frame Thrashless Ray Casting with Ad-
vancing Ray-Front.” Proc Graphics Interface ‘96, Canadian Infor-
mation Processing Society, pp. 70-77.

A. Law, R. Yagel. “An Optimal Ray Traversal Scheme for Visualizing
Colossal Medical Volumes.” Proceedings of Visualization in Biomed-
ical Computing, VBC 96, pp.33-43. Hamburg, Germany, September,
1996.

M. Levoy. “Display of surfaces from volume data.” IEEE Computer
Graphics and Applications, May 1988:29-37.

M. Levoy. “Efficient ray tracing of volume data.” ACM Transactions
on Graphics, 9(3), July 1990.

W.E. Lorensen, H.E. Cline. “Marching cubes: A high resolu-
tion 3d surface construction algorithm.” ACM Computer Graphics,

21(4):163-169. 1988.

K. Ma, J. Painter, C. Hansen, and M. Krogh. “A Data Distributed
Parallel Algorithm for Ray-Traced Volume Rendering.” Proceedings
of the 1993 Parallel Rendering Symposium, pp. 15-22. ACM Press,
October 1993.

[Max86]

[Max90]

[Mackerras94]

[Nemoto&6]

[Neumann93]

[Nieh92]

[Palmer94a]

[Palmer94b]

[Palmer95]

135
N. Max. “Light Diffusion through Clouds and Haze.” Computer Vi-
sion, Graphics, and Image Processing, 33:280-292, 1986.

N. Max, P. Hanrahan, R. Crawfis. “Area and volume coherence for ef-
ficient visualization of 3D Scalar functions.” ACM Computer Graph-
ics, 24(5):27-33. 1990.

P. Mackerras, B. Corrie. “Exploiting Data Coherence to Improve Par-
allel Volume Rendering. IEEE Parallel and Distributed Technology,
2(2), Summer 1994, pp. 8-16.

K. Nemoto, T. Omachie. “An adaptive subdivision by sliding bound-
ary surfaces for fast ray tracing.” Proc Graphics Interface ‘86, Cana-

dian Information Processing Society, pp. 43-48.

U. Neumann. “Parallel Volume-Renderin g Algorithm Performance on
Mesh-Connected Multicomputers.” Proceedings of the 1993 Parallel
Rendering Symposium, pp. 97-104. ACM Press, October 1993.

J. Nieh, M. Levoy. “Volume rendering on scalable shared-memory
MIMD architectures.” ACM SIGGRAPH 1992 Workshop on Volume
Visualization, pp. 17-24.

M.E. Palmer. Immersing the Scientist in Data: Interactive Visual-
wzation of Unstructured Scientific Data on Concurrent Architectures.
Master’s Thesis, Dept. of Computer Science, California Institute of

Technology, Pasadena, CA. Caltech-CS-TR-94-06. 1994.

M.E. Palmer, S. Taylor, “Rotation Invariant Partitioning for Con-
current Scientific Visualization.” Parallel Computational Fluid Dy-

namics '94, Kyoto, Japan. Elsevier Science Publishers B.V., 1994.

M.E. Palmer, S. Taylor, B. Totty. “Interactive Volume Rendering

on Clusters of Shared-Memory Multiprocessors.” Parallel Computa-

[Palmer97a]

[Palmer97b]

[Porter84]

[Priolsg]

[Sabella88]

[Shirley90]

[Singh94]

[Sutherland74]

136
tional Fluid Dynamics ’95, Pasadena, CA. Elsevier Science Publish-
ers B.V., 1995.

M.E. Palmer, B. Totty, S. Taylor.“Ray Casting Volume Rendering on
Shared-Memory Architectures: Efficient Exploitation of the Memory
Hierarchy.” To appear in IEEE Concurrency, fall 1997.

M.E. Palmer, S. Taylor, B. Totty. “Exploiting Deep Parallel Mem-
ory Hierarchies for Ray Casting Volume Rendering.” Submitted to
Proceeedings of the 1997 Parallel Rendering Symposium. ACM Press,
November, 1997.

T. Porter, T. Duff. “Compositing Digital Images.” ACM Computer
Graphics 18(3):253-259, July, 1984.

T. Priol, K. Bouatouch. “Static load balancing for a parallel ray
tracing on a MIMD hypercube.” The Visual Computer (1989), 5:100-
119, Springer-Verlag 1989.

P. Sabella. “A rendering algorithm for visualizing 3d scalar fields.”
ACM Computer Graphics, 22(4):51-58. 1988.

Shirley P., and Tuchman, A. “A Polygonal Approximation to Direct
Scalar Volume Rendering.” ACM Computer Graphics, 24(5):63-70.
1990.

J.P. Singh, A. Gupta, M. Levoy, “Parallel Visualization Algorithms:
Performance and Architectural Implications.” Computer 27(7), July

1994, pp. 44-55.

LE. Sutherland, R.F. Sproull, R.A. Schumacker. “A characterization
of ten hidden-surface algorithms.” Comput. Surv. 6(1), 1-55, March
1974.

[Schréder9i]

[Schroder92]

[Skibo95]

[Upson88]

[Watts97]

137

P. Schroder, J. Salem. “Fast Rotation of Volume Data on Data Par-

allel Architectures.” Visualization ’91, San Diego, October, 1991.

P. Schréder, G. Stoll. “Data Parallel Volume Rendering as Line Draw-
ing.” Proceedings of the Workskop on Volume Visualization, pp. 25-
31. ACM Press. October, 1992.

Skibo, T. Results of HIPPI benchmark test performed by
Thomas Skiboof Silicon Graphics, skibo@sgi.com, August, 1995.
http:/ /reality.sgi.com/employees/skibo/hippiTcpPerf.html

C. Upson, M. Keeler. “V-BUFFER: Visible volume rendering.” ACM
Computer Graphics, 22(4):59-65. 1988.

SCPIib was created by Jerrell Watts of the Scalable Concurrent Pro-

gramming Laboratory, http://www.scp.syr.edu.

[Westermann95] R. Westermann. “Parallel Volume Rendering.” Proceedings of the

[Westover90]

[Whitman93]

[Wilhelms91]

1995 International Parallel Processing Symposium (IPPS 795), pp.
693-699.

L. Westover. “Footprint evaluation for volume rendering.” ACM

Computer Graphics, 24(4):367-376. 1990.

5. Whitman. “A Task Adaptive Parallel Graphics Renderer.” Pro-
ceedings of the 1998 Parallel Rendering Symposium, San Jose, Cali-
fornia, 1993, pp. 27-34, color plate page 107. ACM Press, October,
1993.

J. Wilhelms, A. Van Gelder. “A Coherent Projection Approach for
Direct Volume Rendering.” ACM Computer Graphics, 25(4):275-284.
1991.

[Wittenbrink93] C. Wittenbrink, A. Somani. “Permutation warping for volume ren-

dering.” Proceedings of the 1993 Parallel Renderina Summnosinm San

138
Jose, California, 1993, pp. 57-60, color plate page 110. ACM Press,
October, 1993.

[Wittenbrink94] C. Wittenbrink. “A Scalable MIMD Volume Rendering Algorithm.”
Proceedings of the 1994 International Parallel Processing Symposium

(IPPS ’94), pp. 916-919.

[Woodward95] The vorticity dataset was provided courtesy of Paul Woodward of
the Laboratory for Computational Science and Engineering (LCSE),

University of Minnesota.

