THE DIALOGUE DESIGNING DIALOGUE SYSTEM

Thesis by

Tai-Ping Ho

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Computer Science Department
California Institute of Technology

Pasadena, California

1984

(Submitted May 17, 1984)

- fii -

Acknowledgments

[wish to thank my adviser, Professor Frederick B. Thompson, whose guidance,
philosophy and encouragement made this thesis possible.

I wish to thank Professor Bozena H. Thompson, whose linguistics courses made
it possible for me to walk into the world of natural language. I also wish to express
my grateful appreciation to Professor James T. Kajiya for his valuable comments
and suggestions on this thesis.

Thanks are also due to Caltech, as a whole, that provided an ideal academic
environment throughout my stay. In addition, I wish also to thank my former
officemate, Kwang-I Yu, for his helpful discussions on my work; and Mr. and Mrs.
J. L. (Paul) Hurschler for their friendship.

And most of all, I wish to thank my parents, my wife and her parents for their
love and support.

For the financial support for this thesis, I wish to thank the Hewlett Packard
Company, Desktop Computer Division.

- iV -

Abstract

This thesis presents an interactive system, the Dialogue Designing Dialogue
System, that integrates natural language programming of user dialogues with a
natural language system, the ASK system. This interactive system satisfies the
basic criteria of a general programming language.

The system presented in this thesis may be referred to as a “meta-dialogue”
system. Using this meta-dialogue, the user implements domain specific dialogues
which he and others can then use, providing highly succinct and efficient interfaces
for interaction with the computer.

The system combines the use of a syntax-directed and a semantic-directed
system, which gives the user flexibility in specifying additional capabilities, and thus
in turn gives the system itself a much broader domain of application. Further, the
system integrates natural language programming, dialogue directed user interface,
underlying data base, and text handling capabilities, so that it does not require
users to have programming background in order to establish an application system
for themselves.

-V -

Table of Contents

Acknowledgments e ii
Abstract e e e e e e iii
1: INTRODUCTION e e e e 1
1.1: About the Thesis o i et et 1
1.1.1: Objectives of the thesis 1
1.1.2: Contributions of the thesis 2
1.1.3: Organization of the thesis 2
1.2: Criteria of a Programming Language 3
1.3 Natural Language Programming, 5
1.4: Terminology e 6
1.5 Comparison of the Results of this Thesis with Related Work 7
1.5.1: Other dialogue systems, . 7
1.5.2: Expert systems i e 8
2: BASIC NOTIONS et e e e e e e 12
2.1: Additional Terminology Lo o 12
2.2: A Simple Example of a Dialogue 13
2.3: Prompts and Responses 14
2.4: The ConceptofaField 15
2.5: The ConceptofaNode i .. 16
2.5.1: Aninteractionnode e 15
2.5.2: Properties of anode IR T 16
2.5.3: Node response PrOCESSOT . - « . v v v e v v v ot e it ot e e e e e e e u s 17
3: THE UNDERLYING ASK ENVIRONMENT 19
3.1: The ASK Systemo i e s e 19
3.2: Prefix/Prompt Mechanism 21
3.3 Evaluation and Parsing 22

3.4: The Bridge Procedure 23

- Vi~

4: THE DESIGN: INITIATING STATEMENT 24
5: THE DESIGN: DESIGNING ANODE 26
5.1: Characterization of the Node 26
5.1.1: The node prompt i i e 26
5.1.2: The helpmessage 28
5.1.3: Designing the node decision structures 28
5.1.3.1: Condition-action-transition sequences 29
5.1.3.2: Available Actions. 31
5.1.3.3: Transfer tothenextnode 34
5.1.4: Thelastmode i 34
5.2: Issues in Node Comstruction 35
6: THE DESIGN: CALLING A DIALOGUE 39
6.1: The Wait - Resume Mechanism 40
6.2: Dialogue Calling Mechanism, 42
6.3: Parameter Passing in the Calling Mechanism 45
6.4: Addressing Problem in Calls. 46
6.4.1: Problem and sketch of solution 46
6.4.2: Indirect addressing mechanism 47
7: THE DESIGN: DIALOGUE DATA STRUCTURE, TYPE CHECKING,
AND PREFIX/PROMPT GENERATOR 51
7.1 Dialogue Data Structure 51
7.2: Type Checking i e 53
7.3: Implicit Prefix/Prompt Mechanism in the Run Phase 55
8: TWO EXAMPLES i i e, ... b7
8.1: A Simple Dialogue Example 57
8.2: Recursive Case ittt 63
8.2.1: Dialogue recursively calling dialogue 63
8.2.2; Using a queue to handle the recursion 68

- vii -

g: EXAMINING, EDITING AND DELETING A DIALOGUE SYSTEM?73

9.1: Examining a Dialogue 73
9.2: Editing a Dialogue 75
9.3: Deleting a Dialogue e 76
10: CONCLUDING REMARKS 78
REFERENCES 83

APPENDIX A: The Design Phase Protocol with all Help Messages 86
APPENDIX B: Data Base Retrieval and Report Generation 91

CHAPTER 1
INTRODUCTION

1.1: About the Thesis
1.1.1: Objectives of the thesis

This thesis presents an interactive systern that integrates natural language
programming of user dialogues with a natural language system. This interactive
system satisfies the basic criteria of a general programming language.

A user interface system is usually designed to support user interaction relative
to a specific task, for example, word processing, medical diagnosis, graphic design.
It allows the user to interact with the computer in a convenient way but to a rather
limited extent. Here we emphasize a user interface system not limited in its domain,
but one that allows a user’s decision structure to be specified in a much more flexible
format. It supports the user’s capability to design an application specific to his/her
special interest by himself®.

In using an interactive system, the quality of the user interface determines the
success of the system’s man-machine communication. A natural language system
environment goes a long way toward a habitable interface. However, for repetitive
tasks, it may require tedious interaction. A knowledgeable dialogue, in a natural
language system environment, that can carry out such a task using only a few
user inputs provides higher productivity. An interactive system should be easily
extendable to include such dialogue systems. A user’s own knowledge as well as the
user’s decision structure for such an application can be represented best by the user
himself under the system’s guidance.

The system presented in this thesis may be referred to as a “meta-dialogue”
system. Using this meta-dialogue, the user implements domain specific dialogues
which he and others can then use, providing highly succinct and efficient interfaces
for interaction with the computer.

Work on the meta-dialogue system of this thesis was preceded by the design
of two specific Dialogue Systems for forms processing and bulk data input process-

*
Throughout this thesis, the pronouns he, his, himself are used to refer to both sexes; this choice was made purely
on the basis of the minimum of letters in “he”.

ing. This experience has suggested the fundamentals of the meta-dialogue system.
Therefore, based on this successful experience, the integration of natural language
programming and friendly user interface became our research focus, resulting in the
development of this meta-dialogue system.

1.1.2: Contributions of the thesis

The thesis addresses the problem of the design and the implementation of the
meta-dialogue system. It is an interactive system, using non-procedural methods
to access knowledge structures. It is based on a natural language system, the
ASK System (see Chapter 3), which is the “abstract machine” on which this meta-
dialogue system runs. The concrete result of this thesis is the Dialogue Designing
Dialogue System, which is now an integral part of the ASK System.

The main contribution is that the system integrates natural language program-
ming, dialogue directed user interface, underlying data base, and text handling
capabilities, so that it does not require users to have programming background in
order to establish an application system for themselves. The user interface for the
underlying ASK System is natural language. With the addition of the Dialogue
Designing Dialogue, of this thesis, natural language becomes only the primary lan-
guage for ASK. The user can now design and implement his own interfaces and
complex semantic responses, involving data base manipulations and report genera-
tion, tailoring his interactions to specifically fit his immediate needs.

1.1.3: Organization of the thesis

This thesis consists of ten chapters. The remainder of the first chapter contains
an overview of the basic criteria of a programming language, natural language
programming and the user interface, some terminology, and a review of what has
been done by others.

Chapter 2 gives some basic notions involved in a Dialogue System. A simple
computer dialogue will illustrate these notions. The chapter mainly discusses some
properties (e.g., prompt, response, field, node, etc.) used in the Dialogue Designing
Dialogue System.

Chapter 3 introduces relevant parts of the ASK System environment (e.g.,
knowledge base categories, syntax-directed grammar, etc.), the prefix/prompt mechanism,
the parsing and the evaluation, and the the Bridge procedure.

3

Chapter 4 to Chapter 7 describe the design of the Dialogue Designing Dialogue.

Chapter 8 consists of two examples to demonstrate how each application Dialogue
System proceeds in the design phase and the run phase.

Chapter 9 discusses the facilities for examining, editing and deleting a Dialogue
System that has been designed by the Dialogue Designing Dialogue.

Finally, concluding remarks on the system are in Chapter 10. Comparisons are
made between the programming language criteria, stated in Chapter 1, and the
system presented in this thesis. Suggestions for future work are given.

The design phase protocol with all help messages is included in the Appendix A.
A third example of designing and using a Dialogue System is included in Appendix
B.

1.2: Criteria of a Programming Language

A programming language is a notation with which people can communicate al-
gorithms to computers and to one another. Since high level languages are preferable
to machine or assembly languages in regard to the aspects of ease of understanding,
naturalness and efficiency of use, we concentrate on the nature of a high level pro-
gramming language. While there is no widely accepted definition of a programining
language, the following are the basic criteria that we believe a good programming
language should satisfy:

e data type {data structure): basically there are four standard {unstructured)
types: integers, reals, characters and booleans.

A good programming language must have these. The extended types may in-
clude structures like pointers, lists, trees, arrays, queues, stacks, strings, graphs
and records. The selection of these extended types for a given programming
language depends on the nature of the expected application of that language.

e operation set: the set of operators that function on the specified set of data
types;
Basically it includes the operators:

e for real and integer operands, e.g., +,-* /;

o for comparison (to return a boolean value): relational: <,==,>, etc; logical:
and,or,not;

4

e for string-wise (the extension of characters): concatenation, substring (e.g.,
character selection).

The data type and its associated operations constitute a mutually inclusive
integral pair rather than two independent pieces in the design of a programming
language. There must exist some means in the operation set to perform the
creation and deletion of instances of each data type. If a constant is considered
a type, it should only be used globally and not be modified. Operations are
primitively defined if and only if their associated data types are primitively
defined. Problems of either redundant types or insufficient operations would
otherwise occur.

statement: either simple or compound, is for:

e computation {e.g., assignment, by copying or by sharing)
e sequence control (e.g., call)

o structural (e.g., end)

o declaration (e.g., the declaration of type, variable)

o ifo statement (e.g., format)

parameter passing: the choice of calling by address (i.e., call by reference), by
value or by name. Note that each programming language, according to the
nature of its application, may adopt one or more methods of the parameter
passing. For instance, Pascal uses call by value and call by address, Algol uses
call by value and call by name {where Algol 68 uses call by value only), and
(most) Fortran uses call by address only [Wulf81].

storage management for storage allocation:
e static: allocated at compile time

e dynamic: allocated at run time. It has two methods: the stack for handling
recursive functions, and the heap for handling frequently created, destroyed
and modified data whose size varies as the program is running {e.g., for
garbage collection). Storage and associated storage management may have
special structures, such as an available space list for list processing, or stack
or queue processing.

recursive functions: for a procedure that calls itself, directly or indirectly. The
use of recursion {e.g., to traverse a tree) often permits a more natural, lucid
and concise description of algorithm than would be possible without recursion.

5

Issues of variable binding (thus, the parameter passing) and consequently,
storage management, require careful attention.

e program control structure:
» branch constructs (e.g., goto, conditional branch),
o selection constructs (e.g., case),
s iteration constructs {e.g., repeat, while, for),

e variables and scope rules: global, local; scope of program: modularity, block
structure.

o language support: e.g., connection to I/O devices (including graphics), file
handling, data base access facility, a host of other library programs, etc.

These programming language criteria are stated here as they apply to tradi-
tional programming languages. In this thesis, the natural language programming
system being presented is, comparatively, a very high level language, yet must
satisly these same criteria to guarantee all of the functions required. In Chapter 10,
we will return to examine the above list of criteria as it applies to our meta-dialogue
system.

1.3: Natural Language Programming

A major research direction in computer science is aimed at reducing the in-
creasingly serious programming bottleneck and improving currently available software
facilities. Therefore natural language programming systems which can shift the
growing burden of programming to the computer itself have been receiving a great
deal of attention. They allow users to express their problems to the computer
in problem oriented languages, instead of specifying how to solve the problem
in procedure oriented languages. Query languages for data base systems are a
good example of problem oriented languages.

For instance, the LADDER system uses natural language as a query lan-
guage. However, since the system uses a “semantic” grammar which implies that
its grammar (therefore the corresponding semantics, interpreted by the LIFER sys-
tem [Hendrix77]) is tightly coupled to the semantic concepts represented in the
data, any application other than to the Navy database requires the writing of a
new grammar. In contrast, the Dialogue Systems discussed in this thesis, including
the meta-dialogue system that is the result of this thesis, are based on a “syntax”

grammar natural language system. In addition, we combine the use of a syntax-
directed and a semantic-directed system. While in using the Dialogue Designing
Dialogue, the designer can specify a wide range of syntactic forms which are used to
direct and control the resulting dialogues, in this case we use "syntactic-directed”
approach. While the user runs the Dialogue System, since its decision structure
depends on the semantics of the responses occurring in the resulting dialogues
and the underlying data base, we then use the ”semantic-directed” approach (also
referred to as “state driven”). It is because of this mixture that the system gives the
user flexibility in specifying his intention, and thus in turn gives the meta-dialogue
system itself a much more broader domain of application.

The non-procedurality, high level operations and abstract data structures
become the main features in the problem oriented language. That is, in a very high
level language, a task is described in terms of the desired results and is independent
of any specific way of accomplishing the task. Some natural language systems
translate the source language into an intermediate language program which can
then be executed. The NLPQ system [Heidorn75|, for instance, is such an example.
It uses natural language dialogue to specify part of a simple queuing-simulation
problem and then the system generates a GPSS program for solving the problem.
The system we present is of this form. It will not synthesize the problem specification
into a target programming language in the usual sense. Instead, the user’s problem
specifications (including decision structure) for a Dialogue System are transformed
into a corresponding Dialogue Data Structure. No effort is spent on program
optimization, in contrast to most of these systems. Efficiency is obtained since the
translation of the user inputs is, abstractly, into a very high level virtual language
whose operations (e.g., access to data records) have already been highly optimized.
Incomplete information and inconsistent information will also be handled properly.

1.4: Terminology
The following terminology will be used in the remainder of this thesis.
Dialogue: A series of interrelated computer-user interactions.

Dialogue Element: a single computer-user interaction that is part of a
dialogue.

Dialogue System: An application system that, once initiated by a user,
proceeds in a structured way to hold a dialogue with that user. We will call such a
dialogue an instance of the Dialogue System. s

Meta-Dialogue System: A Dialogue System which is used to design or
generate other Dialogue Systems.

Dialogue Designing Dialogue System: The meta-dialogue system of this
thesis.

1.5: Comparison of the Results of This Thesis With Related Work in the
Literature

In this section we will be making two kinds of comparisons:

other Dialogue Systems VERSUS Dialogue Systems designed using the
Dialogue Designing Dialogue System

other Meta-Dialogue VERSUS the Dialogue Designing Dialogue
Systems System

The distinction between these two kinds of comparisons should be kept in mind.

1.5.1: Other Dialogue Systems (with the exception of Expert Systems)

The use of dialogues to provide a friendly communication interface has been
increasing. In this area, we found that most of the systems using dialogues do not
really allow users to express their intent beyond simple responses: a single word or
number. For example, the ambient quality monitoring system [Halpern81] is one
such system.

The TEAM system |[Grosz83|, a natural language interface system, is an
advanced one. This is a special purpose dialogue system for attaching a new data
base “back end” onto the natural language “front end” called Dialogue. It builds
this interface with a given database by conducting a dialogue [Robinson82] with a
database expert who provides information about files, fields in the database, and
the database query language. To translate a natural language query into a database
query, it first translates the query into a “logical form” in the acquisition component,
and then translates the logical form into a formal database query in the data-access
component. The system separates information about the language, the application
domain and the data.

Some systems employ dialogues in a more flexible way. Users can express
their intent in a natural language statement which will be interpreted by the sys-
tem. For example, the SCHED system [Heidorn78] is one such dialogue system.

The SCHED system allows a user to schedule a meeting using a dialogue approach.
The AYPA system [Gershman81] helps users to search the yellow page information
concerning automobile parts and related objects by transforming a user’s responses
during a dialogue into a database query. Another example in [Marburger81] con-
nects a dialogue to a scene analysis system (traffic monitoring at a busy intersec-
tion) to study the interaction between natural language and image understanding,
especially the verbal description of motion. These systems are, of course, specific
systems designed for specific tasks. Dialogue processing is tightly coupled with their
semantics, therefore the applications for such systems are just over specific domains,
as their titles express.

How do these systems compare with the Dialogue Systems that can be defined
using the Dialogue Designing Dialogue? A Dialogue System can be analyzed as hav-
ing three parts: (a) the “dialogue” aspects by which the system elicits information
from the user, (b) the “decision structure” aspect which decides what actions should
be taken as a result of these inputs, (c) the “action” aspects by which it carries out
a resulting complex set of actions. The Dialogue Designing Dialogue could be used
to implement each of the Dialogue Systems discussed above as far as (a) and (b) are
concerned. The actions available to a Dialogue System designed by the Dialogue
Designing Dialogue are querying, updating, extending a database and communicat-
ing via texts. Some of the Dialogue Systems mentioned above can be completely
implemented using the Dialogue Designing Dialogue when the actions to be taken ,
are of these kinds, for example, SCHED and AYPA. Others would require the ad-
dition of specialized capabilities. For example, for the traffic monitoring system,
both a television camera input and image processing capabilities would be needed.
In the case of TEAM, communication capability to access a foreign data base would
be required (see, however [Papachristidis83]).

We know of no research on meta-dialogue systems other than in the expert
system area. We know of no meta-dialogue systems to compare with the Dialogue
Designing Dialogue.

1.5.2: Expert systems

Good examples of advanced user interfaces are the expert systems (or, know-
ledge engineered systems) [Barr82]. They are viewed as “intermediaries between
experts who interact with the system in knowledge acquisition mode, and human
users who interact with the systems in consultation mode.” [Feigenbaum?77| The
expert systems are built through the painstaking interaction of domain experts,

who may find it difficult to articulate all of their knowledge, and system designers
[Barr81]. The resulting system is thus built with particular and profound knowledge
of the domain. The user, who also has some of this knowledge, can expect that
the system will be able to interpret his queries in terms of its deeper knowledge,
assisting him in decision making.

The MYCIN system [Shortliffe76], for instance, acts as a medical consultant,
aiding in the diagnosis and selection of therapy for patients with bacteremia or
meningitis infections. It carries on an interactive dialogue with a physician and
is capable of “explaining” its reasoning. Another example is the PROSPECTOR
[Duda79] system which assists geologists working on certain problems in “hard-
rock” mineral exploration. The user supplies information about the most significant
features of his prospect and the system will help to confirm the best matching model.

However there exist disadvantages in the use of such specific systems. First,
a given system is designed for one special domain only, therefore its application is
inherently restricted. Second, the user can only respond according to the system’s
needs in computer-questions/user-answers style. This implies that he can just
“passively” supply the answers requested, and has no means to “actively” express
his own intention of how to treat some data or how to do some aspect of the task, if
his ideas deviate from those programmed into the system by some distant experts.
Therefore he has no way to update the old knowledge. Third, since the system is
likely to have been designed by experts other than the practitioners who use the
system, when some old information in the system needs to be updated, or deleted,
or new information is to be added, the delay in communicating with the designer to
“fix” the system is inevitable. The delay may take days, weeks, months or forever
[Brook78].

Expert systems are radically different from dialogue systems designed using
the Dialogue Designing Dialogue in that expert systems, by and large, have strong
capabilities for drawing inferences from user inputs and making use of these in-
ferences in the actions they support. This is not the case for dialogue systems
designed using the Dialogue Designing Dialogue. More will be said about this
difference below. By using the decision structure capabilities provided by the
Dialogue Designing Dialogue, weak inference capabilities can be achieved. There
are many such “small size” local knowledge tasks to be done which could utilize the
computer, and a user would like to do so if he could only arrange for such “mini
expert systems” as he foresaw the need.

The difficulty is that each user’s environment has its own idiosyncrasies, and

10

so standard packages of “services” never completely meet his immediate needs. We
therefore would like to have a system for experts to use to satisfy such needs. The
system only requires a user to be expert in his application domain but does not
require him to be expert in “building” his expertise into the system. In contrast
to an expert system, such a system for experts is not created with local knowledge
on any particular application. Instead, it has its own global knowledge to “elicit”
information from the designer to build into itself any particular knowledge structure.
In other words, in addition to the information retrieval and decision making as in
an expert system, the system is specifically designed to be updated by the user,
who may indeed be the designer. There is no unpleasant delay for communication
with a distant designer. In addition, since our system will be integrated with the
wider system environment, therefore all the constituents of this wider system will
be available, enriching the interactive capabilities of the system significantly.

There are several meta-dialogue systems for designing expert systems. Expert
systems are, superficially, much like the dialogue systems that can be designed
using the Dialogue Designing Dialogue System. Thus systems that are used to build
expert systems [Hayes-Roth83] have similar characteristics to that of the Dialogue
Designing Dialogue in the sense that all such systems provide tools for designers
to build various interfaces for users to solve problems. Among these, the following
two representative systems: EMYCIN [van Melle80] and ROSIE [Fain81] will be
discussed. A third such system is the “knowledge acquisition” subsystem of MYCIN,
TEIRESIAS [Davis76], which helps expert physicians expand or modify the rule
base, which contains hundreds of production rules representing human-expert-level
knowledge about the domain.

There are two major differences between expert systems and expert system
building systems, on the one hand, and database systems and the Dialogue Designing
System, on the other hand. The first is that, in the case of an expert system, with
its knowledge base consisting of production rules, the expert building system is just
a mechanism for building the knowledge base, for adding new production rules;
whereas in our case, the knowledge base exists as a separate entity, the ASK system
providing many ways to build and update it, and the Dialogue Designing Dialogue
providing the way to add more productive means for the user to interact with the
data base, namely dialogues, including succinct means of adding new data. The
second major difference is in the basic nature of the algorithm for processing queries.
In the data base case, access to the data base is controlled by the syntactic structure
of the query sentence in the manner of a syntax directed interpreter, thus makes

11

use of only local aspects of the data base. In the expert system case, this algorithm
is driven by a rule matching control structure which requires a more global search
of the knowledge base. It is in terms of this second difference that one can see the
impact of the meta-dialogue system. In the Dialogue Designing Dialogue case, the
resulting dialogue is closely related to a definition. In a definition, a more extensive
syntactic construction is abbreviated by a less extensive one. A dialogue is designed
to replace a much longer free form interaction by a much more succinct interaction.
Thus the role of the Dialogue Designing Dialogue in the context of the ASK System
is completely different from the expert system building systems, even though they
may superficially appear to be similar.

This superficial resemblance is most noticeable in the case of ROSIE. In us-
ing ROSIE, the two striking features are its English-like syntax, which facilitates
the creation and manipulation of the ROSIE database; and its pattern-matching
capability, which provides part of the ability to monitor or control off-site com-
putation which in turn provides the interrupt mechanism to accept new data im-
mediately. Its database actually keeps track of all ROSIE English sentences; the
insertion or the deletion of a data is in terms of the entire sentence. It is hard for
a ROSIE model to add or modify its own rules. It is also impossible to change its
control structure to fit new problem domains.

Another meta-system for building expert systems is EMYCIN. EMYCIN is
a general purpose system that evolved from TEIRESIAS, which in turn was an
attempt to add to MYCIN a capability to add production rules. Thus some fea-
tures (e.g., metarules and the how/why explanation facility) are from TEIRESIAS.
The strength of EMYCIN lies in the realm of human engineering in building an ex-
pert diagnostic system. Its principal method of control is backward-chaining, with
limited provision for forward-chaining. In using EMYCIN, just as in ROSIE, the de-
signer builds both the resulting Dialogue System and also at the same time the un-
derlying knowledge base. The result of using EMYCIN is a complete Dialogue/Know-
ledge Base, i.e., the single, self contained Expert System, but there is nothing
else. It may be used in a mode where it extends an existing Expert System pre-
viously designed with its use, but the above distinction still holds.

12

CHAPTER 2
BASIC NOTIONS

2.1: Additional Terminology

Initiating Statement of a Dialogue System: The unique statement used to
initiate an instance of a Dialogue System by a user.

Dialogue Data Structure: a data structure of a Dialogue System, produced
by the Dialogue Designing Dialogue System. The Initial Dialogue Data Structure
is produced by the design phase of the Dialogue Designing Dialogue System, and
is stored on a disk. Upon the initiation of a dialogue, a copy of its Dialogue Data
Structure is reconstructed in main memory, and is dynamically modified as the
Dialogue System progresses. All the information necessary for the continuation of
the Dialogue System is retained in this structure.

Modes: Two modes exist: the ASK Mode and the Dialogue Mode. The
Dialogue Mode occurs only when a Dialogue System is currently in control of
the user dialogue. All other situations are considered to be in the ASK Mode.
Typically, switching from ASK Mode to Dialogue Mode happens when a user types
the initiating statement of a Dialogue System; from Dialogue Mode to ASK Mode
when the Dialogue System has completed the current dialogue.

User and Designer: A designer is a person who clearly understands his
application area and how the computer can be used to support those users who
wish to use the computer in their work in that area. The designer seeks to achieve
this support by designing a Dialogue System. A user can accomplish some aspect
of his task by applying this Dialogue System. Thus, a designer functions as an
application programmer for his group of users. The designer, in many cases, will
also be a user. Indeed, it is our intent to so facilitate the process of design that
users who have repetitive tasks to be done can themselves, without delay, design
their own Dialogue Systems and immediately make use of these systems.

Each Dialogue System is accomplished through two phases: a design phase and
a run phase. During the design phase, a designer builds an application Dialogue
System for his users. When a user subsequently makes use of this Dialogue System
to carry out a particular task, he is said to be in the run phase of this Dialogue

13

System. Although the designer and the user of a Dialogue System may be the same
person, we will use “designer” when referring to the design phase and “user” when
referring to the run phase.

2.2: A Simple Example of a Dialogue

Here is an example of a simple dialogue for adding items to a bibliography. The
protocol includes:

o an initial query (i.e., “>What are books?”),

o an instance of a simple Dialogue System, initiated by “new bibliography
item”,

e afinal query (i.e., “>Who is the author of each book?”), illustrating the effect
of this dialogue.

(The symbol “>” initiates lines in which the computer will wait for user input.
User inputs are in italics, computer responses are in typewriter fonts.)

> What are books?
Agpects of the Theory of Syntax
Conceptual Information Processing
> new bibliography item
>title: The Natural Language of Interactive Systems
>author: H. Ledgard
>key word: inferactive languages
>key word: programming
>key word:
The nev bibliography item The Natural Language of Interactive
Systems has been entered.
> Who ds the author of each book?

book author
Aspects of the Theory of Syntax H. Chomsky
Conceptuzl Information Processing R. Schank

The Natural Language of Interactive Systems H. Ledgard

Comparing the final query with the initial one, we observe that a bibliography
item (i.e., “The natural Language of Interactive Systems” and other associated data)
has indeed been added into the database. This Dialogue System contains three
different dialogue elements. The user is initially in ASK Mode. When a user types
in a valid initiating statement for a Dialogue System, he is then in the Dialogue

14

Mode. After the user responds, the system will continue to give the next prompt
and wait for a response. The result of running the Dialogue System may involve
the modification of the database, text handling, etc. In this simple example, words
are added to the vocabulary and data recorded in the database. When the dialogue
is finished, the user is returned to ASK Mode.

2.3: Prompt and Response

There are three parts in each dialogue element within a dialogue. The first part,
initiated by the symbol “>”, is a “prompt™ message, issued by the Dialogue System,
calling for a user’s reply. We hereafter refer to this message as a prompt. The
second part of the interaction is the user’s “response” to this prompt. We hereafter
refer to this reply as response. For instance, in the previous example, the message
“>author: ” is the prompt, and the reply “H. Ledgard” is the response. The third
part will be referred to as the decision structure of the dialogue element. It is
this decision structure, using the response and also responses to previous dialogue
elements, that decides on the next dialogue element to be activated. This third part
is, of course, not directly visible to the user.

A prompt may be one of the following:

1) declarative: asking the user to give information; e.g.,

>Transfer to what node?

2) selective: asking the user to select information; e.g.,

>Fhat type of user response is cxpected? nu(mber), no{un phrase),
ti(me), te(zt), se(ntence) or st(ring)?

In the latter case, a string of distinguishable leading characters is expected. For
example, the response, either “nu” or “numb”, is acceptable for “number”.

For each prompt, the response can be classified as one of the following:
e a responsive response: giving the information desired;

e a non-responsive response: e.g.,

>port of entry:several
this is usually considered as a “bad” response;

e a nil response, that is, only a carriage return. Usually this will be interpreted
as using the system-provided default value.

e a service response: three services may be requested, namely:

15

e a “help” response, which allows the user to get more detailed information
concerning the nature of the response that is desired.

e a “wait” response, which allows the user to leave the dialogue for a time,
and then to resume the suspended Dialogue System at the same dialogue
element where he left it. This may happen, for example, if the user finds,
in the course of a dialogue, that he needs additional information from the
underlying knowledge base or wishes to add new information or vocabulary.

e an “exit” response, which allows the user to escape from the current Dialogue
System.

2.4: The Concept of a Field

In a Dialogue System, a field corresponds to the notion of a local variable in
programming languages. It is a primitive structure for communicating information
between the dialogue elements in the Dialogue System. A field is established by the
dialogue designer specifying its field number, its field type (equivalently, its ASK
part of speech), and assigning it a value. A field is referred to by a field symbol:
“<n>", where n is its field number. For example, one may want to use field 3 and
field 7 to represent the author and title of a book, and then indicate a database
update by the statement: “The author of <7> is <3>.”

The value of a field is either given directly by user response, during run time, or
evaluated from an expression specifically assigned to the field. For example, suppose
field <<3> is to hold the author’s name, then the response “N. Chomsky” to the
prompt “>author: ” becomes the value of field <3>. On the other hand, suppose
field <5> is to hold the tax of an item whose price is represented by field <9>,
then the value of field <5> will be obtained only after the value of field <9> is
known in the specified expression. For example, field <5> would be assigned to
the expression “0.065 * <9>”. The assignment of a value to a field is typically
made in an action statement (see section 5.1.3.2).

Any field may also function as a stack or queue. Just as a field may be assigned
a value by an action statement, a value may be pushed on top of a field (treating it
as a stack), pushed on the bottom of a field (treating it as a queue), or popped off
of a field. (see section 5.1.3.2 for specifics concerning the use of fields as stacks or
queues).

2.5: The Concept of a Node

16

2.5.1: An interaction node

There are three prompts in the simple dialogue in section 2.2, where a nil
response to the third prompt (i.e., >key word:) terminates the dialogue with the
issuing of a terminal message. To the designer, each prompt can be considered as
one interaction node (which we will often abbreviate to node). If we sequentially
label those prompts in the simple dialogue with node numbers starting with one,
then we get a node flow as in the following Figure 2.2:

o e + Bt e + nil
gtart -> [node | -> | node | -> | node | -> end

| 1 | I 2 | ->] 8 |>-
new + + + | Aem——— + | The new
biblio- title: author: | key word: | biblio-
graphy | | graphy ...
ikem e A entered.

Fig. 2.2. A simple dialogue node flow, wheres node 3 has a locp

In designing such a dialogue, one must be able to specify in a natural way such
instructions as:

“Repeat node 3 until there is a nil response, then complete actions that have
been indicated and terminate the dialogue.”

“The response to node 2 is to be entered into the knowledge base as the author
of the response to node 1.”

These, and other similar instructions, should be tied to the appropriate nodes
(and fields) in such a way that they will be activated at the time the dialogue
is subsequently used. The Dialogue Designing Dialogue system provides just the
tools for these tasks. The procedures for prompting for and gathering all these
instructions and other properties of any node becomes the nucleus of the system.

2.5.2: Properties of a node

In the Dialogue Designing Dialogue, a node is the embodiment of a single
dialogue element: the prompt, and the associated decision structure that accepts
and acts on the user response to this prompt. An entire Dialogue System is viewed
as a node flow process. In the flow of the dialogue, a node obtains control when the
user has responded to the prompt corresponding to this node. Processing of this

iy

node according to its internal decision structure results in issuing a new prompt
and prefix, and thus in the transfer to a new node.

Each node should be equipped with the following properties:
e a node identifier

¢ a node prompt

e 2 node type

e 2 node response processor to process the various kinds of user responses:
“help”, “exit”, “wait”, nil, responsive and non-responsive

e access to responses that have been entered at previous nodes.

Consider each of these properties in turn. A node identifier is simply for
distinguishing one node from another (a unique number as we have implemented
it). A node prompt is a succinct message that conveys to a user an idea of the
response that is expected of him, e.g., “author: », “P(aper), B(ook) or A{rticle): .
The node type is the data type of the expected user response to this node; it may
be a number, a noun phrase, a time phrase, etc.

2.5.3: Node response processor

What the node response processor is designed to do for the first three kinds
of user responses, namely “help,” “exit,” and “wait,” is rather obvious. A help
message is provided as part of the design. The exit subprocessor allows the user to
quit the design at any time. The wait subprocessor allows the user to temporarily
leave the dialogue design, then on the command: “resume”, go back to where it was
put in recession.

The remaining three subprocessors: nil, responsive and non-responsive proces-
sors, are the central part of the node response processor. The nil response sub-
processor deals with the case of a nil response, i.e., where a single carriage return
key is pressed. The processing of a viable response of the correct type may involve
a complex decision structure. The dialogue will also need to know what to do if
the user's response is not understandable or not of the correct type; whether, for
example, to add the new word to the vocabulary with its associated data structure
or simply to reprompt possibly with a diagnostic message.

Finally, a node needs access to the responses that have been made by the user
prior to reaching the given node. This requires careful record keeping during the

18

design process to ensure that all such responses which the designer anticipates at
a given node will have been made available along all possible paths to that node.
The concept of field was introduced for precisely this purpose.

The dialogue designer indicates the transition to another node in a node decision
structure. The design process keeps track of which nodes have been designed and
which nodes have been named in the transition parts of such a decision structure.
When all nodes so named have been designed, the design of the application dialogue
is finished. However, in using such an application dialogue later on, the dialogue
may end at any node depending on the user’s responses and the decision structure
specified by the designer. The previous bibliography system, for instance, may
very likely be finished at either a nil response to “>title: ” or to “>key word: ”,
depending upon how it was designed.

19

CHAPTER 3
THE UNDERLYING ASK ENVIRONMENT

3.1 The ASK System

The host system for the Dialogue Designing Dialogue system, and its Dialogue
Systems, is called the ASK System, A Simple Knowledgeable System [Thompson83a,
Thompson83b, Thompson84]. It is a total system for the structuring, manipulation
and communication of information. It is being implemented in an extension of the
Pascal programming language. In this section, we will briefly introduce four relevant
aspects in ASK: features of its knowledge base categories, syntax-directed grammar,
list data structure, and global area.

ASK maintains its knowledge base in a semantic net. There are four types of
nodes: Classes, Objects, Attributes and Relations. The objects are single entities,
e.g., “Alamo”, “John Jones”, “Boston”, also “budget memo”, “letter to John”. The
classes are sets of objects, e.g., “ship”, “city”, “letter file”. Aftributes and relations
relate one object to another, with the difference that attributes are single valued,
e.g., “homeport”, “father”, while relations may be multiple valued, e.g., “cargo”,
“child”, “comment”. The following ASK English question exemplifies these types:

>Is Boston the home port of some ship whose cargo is coal and steel?

ASK is a syntax directed system. It contains grammar rules, and each rule is
associated with a semantic procedure. When a user enters a sentence, it is parsed
according to the grammar available and a tree structure is produced, associating
the various grammar rules with the segments of the input to which they apply. A
simple example is: ‘

20

Grammar Rule Agsociated Semantic
Procedurse
. <sentence> => "Fhat is ? <number> 7% OUT_PROC

: <pumber> => ®(% <pumber> ®+% <pumber> 9)*® ADD_PROC
: <pumber> => ®(? <pumber> "%* <pumber> %)® MULT_PROC

BEE

<gentence” i i e
<Oumber>.

<pumber> <pumber> <number>

What is (3 2 (B + 7 7

This tree structure then is used to compose the associated semantic proce-
dures to produce the desired response: “36” = OUT_PROC(MULT_PROC(3,
ADD_PROC(5, 7))). The various semantic procedures are independent of
one another, communicating via the arguments corresponding to their constituent
phrases.

Rules of grammar are stored in the ASK system’s dictionary. Each rule is
specified in the format shown below.

RULE
.. general rewrite rule ..
execution-sequence semantic-procedure

Where the execution-sequence indicates at what point in the processing the proce-
dure is to be executed: during semantic processing as a postfix (POST) or prefix
(PRE) procedure, or during syntax processing (SYN). Here is an example of this
kind of specification for the above rule R2.

RULE
<pumber> => #{% <pumber> "+® <pumber> %)?
POST ADD_PROC

The ASK internal data structures are recorded in lists. Each list has the
following format:

(list identifier, flag, f1, £2, £3)

where the list identifier consists of three characters which identify the type of the
list, the flag records a number, and the type of the element f1, f2 or 3 is determined

21

by the corresponding character in the list identifier. For example, the character “1”
points to a list, “p” points to a disk page, “s” points to a literal, etc. Thus, a list
identifier “Isp” (with flag 2) implies the following list data structure:

(Isp, 2, list_pointer, literal_pointer, page_pointer)

The global area GLOBAL is a work space in the ASK system, and is protected
from the list processor’s garbage collector. The global variable GLOBAL “[current_
dialogue| is preserved for the use of dialogues in maintaining local contexts in the
form of lists. A second global variable GLOBAL"[dialogue_stack] is used by the
wait-resume and call mechanism as a push-down stack.

3.2: Prefix/Prompt Mechanism

“Prompt” and “prefix” are strings that are used as follows. An OUT-response
is in the format: (OUT, flag, lines to be output, prompt, prefix). The system, upon
returning from a call to a semantic procedure and finding that an OUT-response was
returned, first outputs to the user the lines indicated. It then starts a new line with
the character “>”, followed by the prompt (if any), then does a read, leaving the
cursor just following the prompt. For example, (OUT,0,(“aaa”, “bbb”), “more”, “ccc”),
would result in:

2323

bbb
>more.

Suppose the user responded:

aaa
bbb
>MOTEXXX

Thus the read issued by the system would pick up the string “xxx”. It would
concatenate the prefix (if any) onto the beginning of this string, and deliver it to
the sentence analysis portion of the system; in the case of this example, the string:
CCCXXX.

The purpose of this prompt-prefix mechanism is precisely to facilitate dialogues;
specifically, to allow the implementor to ensure that when a specific semantic
procedure gains control, it can be certain of the status of the user computer dialogue.
This mechanism is typically used in the following way. Consider the following two
rules:

22

RULE
<genbtence> =>......
POST start_proc

RULE
<gentence> = ®0ddd@® <poun_phrase>
POST end._proc

Suppose start_proc returns:
(OUT,0,(“New article.”),“Author: ”,“@ddd@”)

Thus at the end of start_proc, the user sees:

Hew article.
>Author: .

and responds:

Hew article.
>Author: Smith

The system then passes to sentence analysis the string: “@ddd@Smith”. Once
“Smith” has been parsed to a noun phrase, the second of the above rules will apply,
and the semantic procedure end_proc will be called. It will have been written with
the anticipation that the input is a response to the prompt: “Author”, and thus will
know how to proceed. The reason that the roles of prompt and prefix have been
separated is so that several prompts may lead to the application of the same rule,

using a common prefix.

3.3: Evaluation and Parsing

The function “evaluate” evaluates a given string or phrase, returning the syn-
tactic and semantic evaluation and an error code (similar to the LISP “eval”). Thus
if the statement: “Scott is the author of Ivanhoe.” is successfully evaluated, then
the specified information will have been added to the database. If “Scott” were
not in the vocabulary, or some other fault were detected, evaluate would return an
appropriate error code. Similar to but rather simpler than the function “evaluate”
is the function “parselist”. It parses an ASK system expression to construct a
parsing graph without further evaluating that expression.

We use both “evaluate” and “parse list” in different situations. While in the
design phase, user input may very likely contain some fields which will not be
instantiated until run time. However, the input should be examined to check its

23

legitimacy. Then we use “parse_list”. In the run phase, when all fields have been
instantiated with proper values, we use the function “evaluate” to obtain the final
value. lllegitimate statements will result in diagnostics in both the design phase
and the run phase.

3.4: The Bridge Procedure

Under a variety of conditions, the user may be expected to use words that the
system has never seen before. This will be the case when adding new words to the
vocabulary, or introducing definitions. The function Bridge, whose format is:

bridge (a character, boolean)

allows the application programmer to pick up such otherwise unrecognized input
in a convenient form. It is a system function, called during syntax analysis, since it
must modify the parsing graph so that sentence correction analysis procedures will
not be called.

Bridge is used in the Dialogue Systems in the following way. Typically, the
grammar rule associated with a dialogue element is of the form:
RULE

<gentence> => #@dddactiong®
SYH dddaction

Bridge is then used to obtain the user response to the prompt.

The boolean argument of Bridge is used to help determine the appearance of
field symbols. If the user input contains field symbols, then the specification of the
true boolean for the second argument will result in a linked list that separates field
symbols and non-field-symbols, while a false will simply return one list element with
no such field symbols separation.

In the Dialogue Systems, for example, if the second argument is set to true while
in calling the function Bridge for the following dialogue element:
>Action: <3> is the author of <i>.
where <3> and <1> are field symbols, the result is a list of four elements

containing successively: “<3>” as a fleld symbol, the string: “is the author of”,
“<1>” as a field symbol, and “.”.

24

CHAPTER 4
THE DESIGN: INITIATING STATEMENT

The initiating statement for the Dialogue Designing Dialogue System itself is:

>Hew Dialogue

The ASK system responds:

You are novw in the dialogue designing dialogue. You may, at any
time, type %help®, ®exit® or Swaiit®.
>%hat user input should initiate this dialogue? _

At this point, the user should enter the initiating statement for the Dialogue System
he is beginning to design.

The format of an initiating statement may be a fixed one, e.g.:

#locad ship®

or may contain field parameters, e.g.:

“load <3>%)
®gend load plan of <1> to <2>%

containing, respectively, the field parameter <3> and the two field parameters
<1> and <2>. If the initiating statement prototype contains parameters, the
values of these parameters will be provided by the user at run time, e.g.:

>load the Alamo
>gend load plan of the Alamo to the task force commander

The inclusion of the parameter(s) will not only make the initiating of a Dialogue
System more natural for the user but also will provide a more flexible format for
potential internal calls, i.e., one dialogue calling another dialogue, providing for the
passing of information to the called dialogue.

If the prototype statement contains parameters, the character of each of these
parameters must be declared by the dialogue designer. First, the type of the
response for each of the parameters must be declared:

25

>What user input should initiate this dialogue? load <3>
>fhat type of user response is expected for field <3>? nu{mber),

no (un phrase), ti(me), te(xt), se(ntence) or st(ring)? noun phrase
>fhat type of noun phrase respomnse should be expected (e.g.,
individual, texzt class, number attribute, etc.) :_

Second, the designer may wish to have the Dialogue System check to see that
the values entered by the user are appropriate, and to issue meaningful diagnostics
if they are not. To this end, the system prompts the designer for this information:

What conditions should the value of field <3> satisfy?
>Condition: <3> is a ship?

>Enter a diagnostic message for the user in case the condition is
not satisfied:

>Condition:

What conditions should the values of fields <1> and <2> satisfy?
>Condition: <1> is a ship?

>Enter a diagnostic message for the user in case the condition is
not satisfied:

>Condition: Is <i> in <2>’s command?

>Enter a diagnostic message for the user in case the condition is
not satisfied:

>Condition:

Note that a condition is stated as a “yes” /“no” ASK English question. At run
time, each condition is checked. The diagnostic messages for all conditions that are
not satisfied are output to the user. If any of the conditions is not satisfied, the
dialogue is not initiated and control stays in ASK mode. After all of the conditions
have been specified, or if there are no conditions or no parameters, the design phase
issues the following:

¥hen the user enters ®...the initiating statement...® s/he will

be at node 1 of the dialogue you are designing. Now define each
node in bturn.

and starts the design of the first node.

26

CHAPTER 5
THE DESIGN: DESIGNING A NODE

5.1: Characterization of the Node

After the initiating statement of the Dialogue System is specified, the designer
will be asked to design the structure of each node, starting with node 1:

Designing node 1.

Suppose we are starting the design of node j. The system will first display all
fields that have been assigned, indicating the assignment statements by which they
were introduced. For example:

Designing node 4.

The fields that have besn assigned on entering the node are:

<i> : Add to what bibliography?

<2> : Title:

<3> : Author:

<i0>: address of <3>
Thus the designer sees immediately which fields are available and what they contain.
If in designing this new node, he uses a field that is not in this list, he is prompted
to include the assignment. All prompts for designing the node will appear in the
following sequence. (Note that at any point in the sequence, the designer can ask
for help, issue a wait thus suspending the design process, or exit aborting the design
session.)

5.1.1: The node prompt

The first step in node design is to specify its prompé:
>%hat is the prompt message for this node?
The designer’s response can be any string, including field symbols. At run time,

these field symbols will be replaced by the literal for the value of the prompt.
Examples of prompt messages are:
>Author :

>Destination of <i>:
>Should <3> be on the L{eft) or R(ight) of <4>?

21

The system proceeds to find out what should be done with the user’s response, and
the nature of the expected user response.

>If you wish the response to this prompt to be assigned to a field,

then give the field number here:

>What type of user response is expected? pu{mber), no{un phrase),
ti(me), te(xt), se(mtence) or et(ring):

If the type of user response is expected to be a noun phrase, then the system needs
to ascertain what to do if it can not parse the user’s response into a phrase of the
form specified. It may be that this response is to be treated as a new word to be
added to the vocabulary; on the other hand, unknown words may not be acceptable
at this point, therefore the system just reprompts. To this end, the system asks the
designer:

>If the user’s response is not understandable, presumably not in the
vocabulary, what should be done: a(ccept) or r(eprompt):

Finally, the system needs to ascertain in what form the user response will be treated:
>¥hat type of noun phrase must the response be? (e.g., individual,
text class, number attribute, etc.):
When the system issues the prompt:
>¥hat is the prompt message for this node?

the designer may give a nil response (i.e., only carriage return). In this case, at run
time when a transfer is executed to this node, no prompt message will be shown
on the user’s terminal, the application Dialogue System proceeds directly to the
underlying decision structure. This feature is useful when, for example, several
nodes transfer to 2 common point and common actions are to be taken. The system
responds to a designer’s nil response with:

Ho user interaction for this node.

and proceeds directly to the design of the node’s decision structure (see section
5.1.3).

Suppose a designer, in designing a “Dialogue System”, were to uniformly, for
every node, give a nil response to the prompt:
>What is the prompt message for this node?
The result would be a computer program without user interaction. In this way,

we see that the Dialogue Designing Dialogue subsumes, as a special case, a pure
automatic programming capability, without dialogue elements.

28

5.1.2: The help message

Suppose a user comes to a given node but finds that he needs more information
in order to proceed. He should be able to ask for “help” and receive some assistance.
Therefore, the designer should provide such help messages. To this end, the system
will ask the designer what message should be displayed:

>Enter a ®help® message for your user at this nods:
If the designer responds with the nil response, then if the user types “help”, this
message will be displayed:

Ho help available

5.1.3: Designing the node decision structures

The final two steps in designing the node are to specify two node decision
structures, one for the case where the user has responded to the prompt with a
nil response, the other where he has responded with a good response. The dialogues
for each of these cases are essentially the same, except for the initial prompts:

>What should be dome if the user returns a nil (carriage return only)

response to this node? r(eprompt), f(inish up), t(ransfer),
a(ction-transfer), or c(ondition-action-transfer) :

>What should be done if the user gives a good respomse? f(inish up),
t(ransfer), af{ction—transfer), or c(ondition-action-transfer):

If there is no prompt for a given node, then the designer is asked:

>What should be done at this node? f(inish up), t(ramsfer),
a(ction-transfer), or c{ondition-action-transfer):

The available design options are:
e reprompt: reissue the prompt for this node;

o finish up: mark this node as a terminal node for user interaction, schedule
the completion of all indicated actions, and return of control to ASK mode;

¢ transfer: transfer directly to another node; the designer will be prompted for
its number;

o action-transfer: the designer will be prompted for actions {see section 5.1.3.2)
that should be scheduled at this node, and then for the number of the node
to which to transfer;

29

o condition-action-transfer: the designer will be prompted for a condition, for
a message to be issued if the condition is not satisfied, and for the actions to
be taken and the transfer to be taken if the condition is satisfied; he will then
be prompted for a second condition, and so forth.

5.1.3.1: Condition-action-transition sequences

Both a nil response and a good response allow the designer to specify a condition-
action-transition (CAT) sequence. These sequences are the principal part of node
design in using the Dialogue Designing Dialogue system. Essentially, they are a
dialogue form of the standard “IF-THEN-ELSE” program segment. When such a
sequence is selected as a response option, the Dialogue Designing Dialogue system
will prompt the designer to build up his decision structure on the node by specifying
first an “IF” part, then the corresponding “THEN” part, cycling back until the “IF”
part is answered with “otherwise” or a nil response.

The prompt to the “IF” part is simply:

>Condition:

and expects an ASK English “yes/no” question, possibly containing field symbols,
or the single word “otherwise”, which represents the “none-of-the-above” condition.
Examples are:

>Condition: is a ship?

b

There is one additional response the designer may give to the “Condition:
This response concerns the use of a field as a stack or queue. As we will see below,
actions may be specified for popping elements off a field, when it is used as a stack
or queue. Thus, to control looping, the designer must be able to indicate a test to
see if the stack or queue is empty. To this end, he may enter the condition: “is
stack/queue <n> empty?”, e.g.:

>Condition: is stack <3> empty?

If any condition is not satisfied, the designer may wish an interpretation of the
situation, or diagnostic information, to be given to the user. It may include field
symbols, which will be replaced by the literals of the associated user responses. If
the designer enters a nil response, no diagnostic will be given the user.

30

>Enter a diagnostic message for the user in case the condition is
not satisfied:

The first prompts to the “THEN” part are for actions:

>Action:

Each action statement is followed by another “Action: ”, until the designer gives

a nil response; thus the designer can specify as many actions as he desires. (The
actions available to the designer are described in section 5.1.3.2.) For example:

>Action: <2> is the author of <1>.

>Bction: Send <1> to <3>,

>Action: <3> is the recipient of <i>.

>Action: (nil)

Finally, the designer is prompted for the number of the next node (see section

5.1.3.3).

After the specification of the first CAT sequence is completed, the Dialogue
Designing Dialogue system, under the assumption that this current condition is not
satisfied, prompts again for another condition specification, so on and so forth, until
all conditions (and associated actions and transitions) have been specified.

bl

A CAT sequence ends after the “Action: "and ”Transfer to what node?
statements following a “Condition: ” response of “otherwise” or nil. At this point,
the design of the node is completed with the message:

Hode j is completed.

The designer is informed by the system to design the next node k where k is not
necessarily to be j+1. In fact, the node that is to be designed next is determined
by the system by the depth-first method (see section 5.2).

By such a repetitive use of the CAT sequences, all of the five patterns of “IF-
THEN-ELSE” program segments can be achieved. This is illustrated in Figure 5.1
with simplified CAT sequences (where actions are omitted and conditions, except

the “condition: otherwise”, are not explicitly specified; and the “next: ” means
“Transfer to what node? ”.)

(a) (v) () (@) (e)
i-—>2 1->2 1->2-—>4 1-—>2 i~-—>2-->85-->4
! ! | ! | |
-> B ! -> B |=> B e
| |
—————> § -> 4
(a) () (@) (e)
node 1: node 1: node 1: node 1:
next: 2 cond: —— cond: - next: 2
next: 2 next: 2
cond: othervise cond: —- node 2:
(b) next: 5 next: 5 next: 5
node 1: cond: —
cond: —— node 2: next: 4 node 5:
next: 2 cond: —- cond: -~
cond: otherwise next: 4 next: 1
next: 8§ cond: otherwise cond: otherwise
next: B next: 4

Fig. 5.1 The comparison of a dialogue form (lower part) with the
general pattern of the IF-THEN-ELSE atructure (upper part};
the one-one corresponding is Por (a)unconditional,

(b) if-then—else, {c) if-then—if, (d)cass, (e) while.

5.1.3.2: Available Actions

The following actions are available to the designer. In each case, the way the
actions are to be specified is shown and examples given.

a) Updating the database: an ASK declarative sentence, possibly including field
symbols, e.g.:

>Action: Publisher of <5> is <6>.
>Action: Changs the lemghbh of <2> to <7>.

b) Display the updating: same as above with the addition that the ASK System’s
response to the declarative sentence will be displayed. e.g.:

>Action: Display: Publisher of <5> is <6>,

thus at run time:

32

>Title: Let’s talk LISP

Prentice-Hall has been added as publisher of Let’s talk LISP.

¢) Display information to user: any ASK English query, e.g.:

>Action: What ships carry or <6>7
>Action: List the length and width of each <5>.

d) Display message to user: any message enclosed in double quotes (including
field symbols) will be replaced by their literal values; e.g.:
>Action: Display: "When you finish, please send a copy of to <4>.®
e) Save information as text: a statement of the form:
Save in -name of a text object~: —an ASK English query-
The information, as text, will be placed at the end of the indicated text; e.g.:

>Action: Save in load plan of <2>: List cargo type, assignment
and destination of each cargo of <5>.

f) Save message as text: a statement of the form:
Save in -name of a text object~: message in double quotes
The information, as text, will be placed at the end of the indicated text; e.g.:

>Action: Save in load plan of <2>: ®Cargo Loading Plan for :%

g) Field assignment: a statement of the form:
Assign to <n>: —an ASK expression-
This may be used to reassign a field’s value, or to introduce a new field whose
value does not come directly from a user response. e.g.:

>Action: Assign to : home port of <2>
>Action: Assign to <8>: <8 + <4>

h) Add an element into a stack: a statement of the form:

Action: push on ~--a field-- : -- any ASK English phrase --; e.g.:
>Action: push om <3>: <5>

In most cases, this phrase will be a simple field that is to be stacked. The
statement inserts the content of field <5> on the top of the stack that is
pointed by field <<3> (after the push, field <3>> points to the newly added
element).

.i) Add an element into a queue: a statement of the form:

33

Action: push under —-a field—- : —— any English phrase —; eo.g.:

>Action: push under <3>:
In most cases, this phrase will be a simple field that is to be queued. The
statement inserts the content of field <<5> into the tail of a queue whose
head is pointed to by field <3>.

j) Remove an element from a stack or from a queue: a statement of the form:
Action: pop ——a stack fisld--
Action: pop --a queue field— e.g.:
>Action: pop <3>
The action takes an element off the top of the stack or the queue (both are
pointed by field <3>>); after the pop, field <3> points to the new top of the
stack or queue, or to nil.(The designer is not protected from programming
errors in using push and pop.)

k) Call another Dialogue System for use: a statement of the form:

Call: -the Initiating Statement of the Dialogue System that
is to be called (including the call of itself)-; e.g.:
>Action: Call: load <8>.

1j Quit the action prompt: upon the specification of one of the above actions,
the Dialogue Designing Dialogue system will reprompt for another action; a
nil response will make this system advance to a node transition prompt.

Note that following each condition the designer may specify any number of actions
of these various types.

Actions specified during a CAT sequence may include such ASK English state-
ments as:
>Action: Create a text named ...

>Action: Mail ..text.. to ..authorized person...
>Action: File ..text.. in ..text file..

o

These action specifications, together with the “Save in ...” actions, allow the
designer to provide convenient protocols for communication between databases and
members of the team or staff using the system. The following segment of a dialogue

design links the user to the outside world:

>Condition: <b6> is an authorized person?

>Action: Hail <4> to .

>Action: {(default, indicating no more actions)
>Iransition: —next node—

34

>Condition: otherwise {(final condition, the ELSE of an IF-THEN-ELSE)
>Action: File <4> in my secretary’s Please Forward file.
(note: ®my® will be interpreted as the user at run time)

”

The “Create a text named ...” actions together with the “Save in ...” actions
provide the capabilities of a standard report generator.

5.1.3.3: Transfer to the next node

The response to a node transition prompt sets up the transfer of control along
the node path. The actual node transfer is done only after the actions are performed.
A direct transfer, one of the options available for a nil or responsive response, does
not traverse a CAT sequence at all.

A nil response to a node transition means that the node is a terminal node of
the newly designed Dialogue System. That is, when a user invokes this Dialogue
System, if he reaches this node, then after carrying out all of the indicated actions,
his dialogue is completed. To have multiple terminal nodes in one Dialogue System
is not unusual.

Suppose the designer, in the process of designing a node, indicates a transition
to a following node that has already been designed. The system checks to see that
all fields referenced in this following node either are available to the current node by
previous assignments or have been assigned in the current node. If a field is found
that is referenced by the indicated following node but has not been assigned along
the node path leading to and including the current node, the designer is prompted
with this fact to include this assignment.

5.1.4: The last node

Finally, when the last node, say node m, has been built, the epilogue of the
Dialogue System will show the following completion message:
>lode m is completed.

Al]1 nodes have bsen designed.
You have completed the design of the nmew dialogue ®load <3>".

If, at this time, some Dialogue Systems were referenced in the “Action: call: ...”
statements but not designed yet (see Chapter 6), then these to be designed Dialogue
Systems (in terms of their initiating statements) will appear in the following mes-
sage:

35

The following dialogues remain to be designed:
Dialogue System ®...instance of the initiating statement...®
Dialogue System ®...instance of the initiating statement...®

Proceed with the design of one of these dialogues.

then followed by the system prompt:

>What user input should initiate this dialogue?

5.2: Issues in Node Construction

In designing a dialogue, a designer may possibly reference a field that is not
yet assigned in the given node path; or may possibly form an entirely closed cyclic
node path (potentially an infinite loop). In general, in a programming language,
there is no way to check whether such an occurrence is an actual error; there
may be mitigating circumstances. However, the potential for such problems can
be detected. We have chosen to do so, giving the user a warning, thus providing
additional support since the system is designed for use by users with little if any
programming experience. In this section, examples of these problems are given, and
the means used for solving these issues discussed.

Each node corresponds to a dialogue element and its underlying decision struc-
ture, therefore a node flow is a conceptual representation of the relationships among
dialogue elements. A node flow is a directed graph, possibly including cycles. A
typical one looks like the following (where “T” means a terminal node):

ol
/\
/ \
—————— > 02 03
I / A\ /\
l / \ / \
<-- ob ob o8
! I
T T

Fig. 5.2. A typical node structure, possibly with cycles

To describe how a node flow is performed, we introduce the term “node path”
in the format: (... nodes sequence ...). The node path (1 2 5), for example, describes

36

that node 1 will be performed first, followed by node 2, then node 5. Two kinds of
node paths exist:

o Node execution paths the sequence of nodes traversed in the run phase.
e Node construction paths the sequence of nodes traversed in the design phase.

It is in the node execution path where problems may occur; it is in the node
construction path that problems must be anticipated.

The node construction path is developed using the depth-first method, which
is similar to the “preorder traverse” [Knuth73] in searching a tree structure (if we
disregard cycles). In the case of Figure 5.2, for example, the resulting path will be
constructed in the (1 2 4 5 3 6) sequence.

In building a node, we must be concerned with the following cases. First, a
field that is used while not yet defined (i.e., an undefined field). Suppose, in Figure
5.2, that field <10>> is to be used in node 5. If field <10> has been defined in
node 2 and has not been defined in node 3 during the node construction, then field
< 10> is such an undefined field. In run time the node execution path (1 2 5)
presents no problem; however, the other path (1 3 5) may cause a problem if <10>
is used indiscriminately. Second is the case in which nodes that form a closed node
transition where none of these nodes will eventually transfer to a terminal node.
If the transfer of node 2 to node 5 does not exist in the node flow of Figure 5.2,
for instance, then node 2 and node 4 form a closed cycle. The algorithm for node
construction should give the user warning of the existence of either of these potential

conflicts.

To detect these problems, the algorithm keeps track, for each node, of (1) the
fields that have been defined in every node path leading to and including this node,
(2) the fields that are used in condition and action statements of this node, and (3)
the nodes to which this node transfers. This information is sufficient to identify
many of these potential errors.

The following two figures of simple node flow are exemplified to illustrate the
system’s response when the above mentioned problems occur.

37

ol ————==> 02
/ 0\ I /N
/ \ l / \
02 o3] 03 o4
\ / | \ /
N/ ! \/
T <—- ob s ob
Fig. 5.3 Fig. 5.4

Consider an example of an “undefined” field. In Figure 5.3 where the node
construction path is (1 2 5 3), node 2 defines field <10> and node 5 uses field
<10>. When node 3 seis up a transfer to node 5, those fields used in node 5
(and its successors, if any) are checked against the fields defined at node 3; thus in
this example, since field <10> is not defined for node 3, the system will warn the
designer. The message will be in one of the following formats:

>Transfer to what node? b
Warning: Field <10> is used in node & or ite successors,
but in at least one path lsading to this node, it will

not have been defined.
>Do you want to retain this transfer? (y/m):

>Transfer to what nods? 5

Warning: Fields <1i0> ... are used in node b or its
guccesgors, bubt in at least one path leading to this
node, they will not have been defined.

>Do you want to retain this transfer? (y/m):

Similarly, in Figure 5.3 where the node path is (1 2 5 3), where node 2 does
not define field <10>. When node 5 sets up an action or condition statement
referencing field <10>, the system will warn the designer. The message will be in
the following format:

>Action: <i0> is a ship.
Warning: Along at least one path leading to thie node,

field <i0> will not have been defined.
>Do you want to retain this action? (y/n):

An example for the case of an infinite loop is given in Figure 5.4. When node
5 sets up a transfer to node 2, the path (2 3 5 2) forms a loop, but it need not be

an infinite one. This is because node 2 also transfers to node 4, which has not been
constructed yet. However, when node 4 sets up a transfer to node 5 and its design is

38

completed with no other transfers, then the path (5 2 4 5) has no way to terminate.
This is because no node in the path leads to an unconstructed node or a terminal
node. Thus, the system will warn the designer with the following message:

>Transfer to what node? B

Warning: the following nodes may potentially form an

infinite loop: (2 3 5 4)

>Do you want to retain this transfer? (y/n):

In view of the fact that a Dialogue System may be quite complex, and what
currently appears to be a source of error may not actually cause an error, the
algorithm plays only an informative role. It leaves the final decision to the designer
with the options that he may respond to the prompt either with a “no” to enter
another input response, or a “yes” to continue the processing. He may later on
modify those aspects of the design that are respomsible for the current error by
using the “dialogue editing” facility (see section 9.2), or “exit” to start over the
entire design.

39

CHAPTER 6
THE DESIGN: CALLING A DIALOGUE

There are three ways that control can pass between the ASK Mode and the
Dialogue Mode, as shown below in Figure 6.1.

ASK System
ASK interactive mode

initiating a dialogue from ASK mede

v I
Dialogue waitg————- >
System A I

e Tesumno
Action:call:... |
I |
| * ..complete————>
| | |
l |
I |
+——] | -t
. complete]

| Dialogue System B |
| |

" .
- T

F o ——— e ————— o —— — — — — — 4
—_—.—_—.—_——}.
e o e — —— o — ——

Fig. 6.1 Three links between ASK mode and Dialogue mode

e a dialogue may be initiated by the user from the ASK Mode; when this dialogue
is completed, control returns to ASK Mode;

40

e a user can type “wait” in answer to a dialogue prompt; control then passes to
the ASK Mode until the user types: “resume”, at which time control returns
to the Dialogue System at the point where it was put in recession;

o one dialogue can call another dialogue, in which case the calling dialogue goes
into recession, much as in a wait/resume sequence; when the called dialogue
is completed, control passes back to the calling dialogue at the point where it
was put into recession.

Initially, when the user is in the basic ASK interactive mode, both GLOBAL"|
current_dialogue] and GLOBAL"[dialogue stack] are nil. When a dialogue is in-
itiated by a user, the GLOBAL"[current_dialogue] will point to the Dialogue Data
Structure of the initiated Dialogue System. When the Dialogue System is finished,
and the GLOBAL‘[dialogue_stack] points to nil, then there is no Dialogue System
waiting for processing and the GLOBAL “[current_dialogue] will again point to nil:

GLOBAL" [current_dialogue] GLOBAL"~ [dialogue_stack]

nil nil
user initiates dialogue D51 DDS1 nil
dialogue DS1 completes nil nil

8.1: The Wait - Resume Mechanism

When the user responds to a prompt with “wait” in a Dialogue System, say
DS1, its current Dialogue Data Structure, DDS1, is then put into a push down
stack, in GLOBAL"| dialogue stack], and the control of processing is transferred to
the ASK Mode where the user can either stay with normal ASK processing for a
while or initiate another Dialogue System DS2 and thus activate its corresponding
Dialogue Data Structure. Later on, when in the ASK Mode, he can get back to
where he was in DS1, resuming its execution, by issuing a “resume” command. The
system responds by taking DDS1 off GLOBAL"[dialogue_stack] and returning it to
GLOBAL " [current_dialogue], thus reactivating it.

Wait Algorithm

Is the user in Dialogue Mode, i.e., is GLOBAL"[current_dialogue] non-nil?

If not, then output the diagnostic message:

41
You are not in a dialogue.
Otherwise:
Add the following element to the top of GLOBAL"[dialogue stack]:
WL[i]": (lI, 0, DDS1, LL, WL[i+1])
LL~ : (ssl, O, current-prompt, current-prefix, prompt-line)

where DDS1 is the Dialogue Data Structure that was in GLOBAL “[current._
dialogue|, and prompt _line contains the message:

Resuming the xzzx dialogue.
where xxx is the name of the curreni_dialogue. If the prompt message

consists of more than one line, then prompt_line also contains all but the
last of these lines.

Set GLOBAL “[current_dialogue] to nil;

Resume Algorithm

Is any dialogue in recession? i.e., is GLOBAL"[dialogue_stack] non-nil?
If no, then output the diagnostic message:

Ho suspended dialogue.
Otherwise:

Take the top element:

WL[1]": (111, 0, DDS1, LL, WL[2])
LL"~ : (ssl, O, prompt, prefix, prompt-line)
off the GLOBAL"[dialogue_stack], leaving it pointing to WLI[2];

Set GLOBAL"[current_dialogue] to DDSI;
Build an OUT_phrase with the following format:
(OUT, 0, prompt-line, prefix, prompt)

ASK will then reactivate this dialogue.

For example, suppose a user wishes to use a Dialogue System “new item”.

The sequence of events is shown in Figure 6.2 {where DDS1 is the Dialogue Data
Structure of “new item”).

42

GLOBAL“ [current_. GLOBAL"[dialogue_

dialogue] stack]
nil nil

> new item
DS nil

o
o
Do you wish the new item to be entered into the

>vocabulary? (yes/no): wait
nil WL[1]
vhere
§L[1]~: (111, 0, DDS1, LL, nil)}
L~ : (ssl, 0, "vocabulary? (yes/no):", prefix,

®*Resuming the mew item dialogue.
Do you wish the new item to be entered into the®)
o
°
> regume
Resuming the new item dialogue.
Do you wish the new item to be entered into the
>vocabulary? (yes/no):
DDs1 nil

Fig. 6.2 Stepwise changes of two global variables in the
wait — resume events

From the above discussion, it is clear that many dialogues can arbitrarily be in
recession in GLOBAL"[dialogue_stack].

8.2: Dialogue Calling Mechanism

A Dialogue System, say DS1, may call another Dialogue System, including itself.
This call function may be achieved by the designer by specifying in the design phase
of DS1 the statement “Action: call: ...”. For example,

>Action: call: DS2

During the run phase of DS1, when the “call” is being executed, the following
call algorithm (similar to the wait algorithm) applies:

43

Call Algorithm
Add the following element to the top of GLOBAL"|dialogue_stack]:
WL~ (11, 1, DDS1, nil, WL[1])

where DDS1 is the Dialogue Data Structure that was in GLOBAL " [current_dialogue]
and WL[1] the previous top of GLOBAL"[dialogue_stack];

Set GLOBAL"[current_dialogue| to DDS2, the Dialogue Data Structure, from
disk, for the called Dialogue System DS2.

When the dialogue DS2 has just about been completed, as the last step, it
checks to see if it was called by another dialogue, i.e., whether the top element
in GLOBAL"| dialogue_stack] has a flag of 1. If not, it simply returns to
the ASK Mode. If so, it returns DDS1, the Dialogue Data Structure for the
calling Dialogue, to GLOBAL"| current_dialogue| and pops it off the GLOBAL"]
dialogue_stack].

For example, suppose a user wishes to use a Dialogue System “dispatch item”
which may call a Dialogue System “load ship”. Relevant pieces of their design
specifications are shown below (in the left and the right side respectively):

o initiating statement: load ship
Designing node 5. Designing node 1.

o °
>node prompt: ship: >node prompt: cargo space:
>apeign to field: <3>]

o Designing node 6.
>Action: call:load ship]
>Action: Display: #<3> is >node prompt: stack height:
being loaded®]

o o

Fig. 6.3A: Dispatch Item Dialogue Fig. 6.3B: Load Ship Dialogue

Suppose DDS1 is the Dialogue Data Structure of the Dialogue System “dispatch
item” and DDS2 is the Dialogue Data Structure of the Dialogue System “load ship”.
Then this call-wait-resume works in the following sequence of events when a user
wishes to run the Dialogue System “dispatch item”.

4

GLOBAL™[current_ GLOBAL"[dialogue_

dialogue] stack]
nil nil
> dispatch item
DDS1 nil
o
o
>ship: Mary
DDS2 WL[1]

where
WL[1]~: (111, 1, DPSi, nil, nil)
>cargo spacsa:

)
o
>stack height: wail
nil WL[2]
where
wL{2]*~: (111, o, Dppbs2, IL, WL[1])
LL~ : (ssl, 0, "stack height: ¥, prefix,

®*Besuming the load ship dialogue.®)
WL[1]~: (111, 1, DDS1, nil, nil)

o
o
> resume
Resuming the lcad ship dialogus.
DDs2 WL[1]
>stack height:
o
o
You have finished the load ship dialogue.
DDS1 nil
Haru is being loaded.
o
o
You have finished the dispatch item dialogue.
nil nil

Fig. 6.4 Stepwise changes of two global variables in the
call-wait-resume event

45

6.3: Parameter Passing in the Calling Mechanism

Suppose the Dialogue System DS1 calls the Dialogue System DS2. This call is
designed into DS1 during the design phase of the Dialogue Designing Dialogue as
an action statement. Then the parameter passing in this call may be in one of the
following cases:

Case 1: Suppose the initiating statement for DS2 does not have any parameters,
e.g., “load ship”. Then the action statement is simply:

>Action: Call: load ship

Case 2: Suppose the initiating statement for DS2 contains parameter(s), e.g., the
initiating statement form for DS2: load <3>, and that DS1 wishes to issue
a call by value. Then the action statement of DS1 may be either

>Action: call: load Alamo

where the parameter is replaced by a constant {e.g., “Alamo”); in this case,
the instantiation of DS2 field <3> will be the value of Alamo; or

>Action: call: load <&>

where the parameter is a variable (ie., field <5> of DS1); in this case the
instantiation of DS2 field <3> will be the current value of the DS1 field

<5>.

Case 3: Suppose the initiating statement for DS2 contains a parameter, e.g.,
“load <3>>”, and it may be that the value of DS2 field <3> is re-assigned
in DS2, and DS1 wishes to issue a call to DS2 in which the value of the
parameter is returned to DS1, that is, a call by address. Then the action
statement in the design of DS1 will be:

>Action: call: load <¥5&>

In case 2 where the value is given by a field number (i.e., <5>) or in case 3 (i.e.,
< V5>), the call processing procedure in Dialogue Designing Dialogue will recognize
this “<number>” or “<Vnumber>”. It does not access directly to where field
< 5> is allocated in DS1, as the usual call by address may do. Instead, it first
instantiates the DS2 field <3> by the value in DS1 field <5>, then runs DS2. It
is this value of field <3> in DS2, not field <<5> in DS1, that will be referenced
during the processing of DS2. In case 3, on completion of DS2, it reassigns the
value in Dialogue Data Structure DDS1 for the DS1 field <5> by the value in the
terminal Dialogue Data Structure DDS2 for the DS2 field <3> and continues the
processing of DS1.

46

8.4: Addressing Problem in Calls
6.4.1: Problem and sketch of solution

In the Dialogue Designing Dialogue system, an expression in an “Action: call:
...” statement is expected to be an initiating statement for a Dialogue System (i.e.,
the name of a dialogue) that has already been defined, and thus is in the dictionary
with the part of speech <dialogue>. Therefore it presents no problem in the
parsing process for the called dialogue. For example, dialogue DS1 calls dialogue
DS2 and DS2 can be found in the dictionary.

However, a problem will occur if DS2 is not defined in the dictionary during
the design stage of DS1 prior to the “Action: call: DS2”. In such a case, we may
use the “delaying compilation” technique to solve the problem. In other words,
we may temporarily mark this call statement in some way as incomplete, confinue
the rest of the design stage {the compilation, in the Dialogue Designing Dialogue’s
viewpoint) of DS1, and then start the design of DS2. As soon as DS2 is completed
and stored in the dictionary, we may then go back to finish the marked incomplete
call statement with the address of DS2.

Normally, in the stack-based language system (e.g., PASCAL) this addressing
problem can be solved in a so called “call forward” technique. The call forward
assures the compiler in advance the existence of the forwarded procedure and helps
the type checking when the yet undefined procedure is called. The relative address
of the call statement to the calling procedure is also recorded somewhere, then with
the aid of the linkage editor the absolute addresses of all the procedures involved
are resolved. However, this technique does not apply to our particular call situation
in the Dialogue Designing Dialogue and the ASK environment.

The nucleus of the problem in our call statement concerns the type of the address
that we need to record. It is not the relative address of the called Dialogue System
to the calling Dialogue System, it is the absolute address of the called Dialogue
System’s data structure in the disk storage. This is because when a Dialogue
System DS2 is about to be finished, its corresponding Dialogue Data Structure
DDS2 will be stored in the hard disk permanently by means of the ASK function
LIST_OUT, which in turn returns the disk address of the first element of the just
stored DDS2. This returned address will then be stored in the dictionary together
with the dialogue name, e.g., DS2. Therefore, when in the design of DS1 the action
statement: “Action: call: DS2” is entered, the disk address of DS2 can be found in
the dictionary and this address of DDS2 can thus be recorded in the successfully
parsed “Action: call:...” phrase of the Dialogue Data Structure of DS1.

i

However the racing problem occurs in the recursive case. When DS1 calls itself,
for example, the disk address of DS1 can be obtained (and then stored into the
dictionary) only after its Dialogue Data Structure DDS1 is listed out, while at this
moment DDS1 still contains an unresolved (disk) address of DDS1 in the action
phrase. The problem is that the dictionary and action phrase race for the disk
address. A technique of listing out DDS1 first to get its disk address, say DA1,
modifying the action phrase with DA1, and then LIST OUT this modified DD51 will
not help because this second list out does not write DDS1 back on the same place.
It returns a different address from the first one, and therefore puts inconsistent
links in the dictionary. An alternative would be to modify the pages on which the
original form of DDS1 had been written; however this would violate the structured
programming aspects of the ASK system design, which provides access to paged
lists only through the LIST_OUT/LIST_IN mechanism.

Our solution to this problem is to provide for an indirect addressing scheme for
accessing the Dialogue Data Structures of Dialogue Systems. This indirect address
is a page address which we will call the Dialogue Indirect Address. (Since a page
may hold many such indirect links, a simple mechanism is used to obtain a new
Dialogue Indirect Address that economizes on pages.) Whenever a user initiates
the Dialogue Designing Dialogue to design a new Dialogue System, say DS1, a new
Dialogue Indirect Address is obtained for it, and at that time the initiating statement
for DS1 is put into the dictionary with a pointer to this indirect address. Thus
in subsequent processing of action statements calling DS1, (i.e., Action:Call:DS1),
either in DS1 itself or in other Dialogue System designs, DS1 appears just as other
Dialogue Systems that have been completely defined, no incomplete reference need
be left to be resolved. Upon completion of the design of DS1, i.e., when its Dialogue
Data Structure is completed, the page address of this DDS1 can be put into its
Dialogue Indirect Address location. When DS1 is subsequently initiated, it is a
simple matter to take the extra step through this indirect address to obtain DDS1.
The details of how this mechanism solves the race problem for recursive calls will
now be explained.

6.4.2: Indirect addressing mechanism

During a dialogue design session, i.e., when the Dialogue Designing Dialogue has
been activated, there are three kinds of Dialogue Systems:

e Those that have already been completely defined; their dialogue names will
. already be in the dictionary, the dictionary entry pointing, indirectly, to their

48

Dialogue Data Structures.

e Those that are partially defined, that have incomplete “Action:call:...” definitions
because the called dialogue has not been defined. Although their dialogue
names will also already be in the dictionary, their Dialogue Data Structures
must still be completed.

e Those that have not yet been defined at all, but have been named in “Action:call:...
statements of dialogues of the second kind, dialogues that must be defined
in this Dialogue Designing Dialogue session so that others may be completed.

We will refer to Dialogue Systems of first, second and third kinds.

The solution is accomplished in three parts: at the start of the design of a new
Dialogue System, during the design when an “Action:call:...” statement is issued,
and at the end of the design.

At the beginning of designing a Dislogue System, say DS1s

e Push this DS1 on GLOBAL"|dialogue_stack] with the format: WL™: (11, 2,
DDS1, nil, WL’) where DDS1 is the Dialogue Data Structure for DS1. The
fourth field, now “nil”, will later be replaced by a link to dialogues of the third
kind that are called by DS1.

e When all parameters in the initiating statement have been recorded with their
respective parts of speech, the system will:

1) get a Dialogue Indirect Address for DS1. (A current partially used page will
be kept in a system variable from which a new address can be allocated.)

2) initialize the content of the element to be nil,

3) enter the initiating statement into the dictionary with the part of speech
<dialogue> and the address that is found in 1) as its semantic content.

Suppose we are now in the midst of designing the Dialogue System DS1, and, in

response to the prompt: “Action:” we respond:
>Action: call: D84
where the Dialogue System DS4 has not yet been defined. Then DS4 is a Dialogue
of the third kind, and is put in the GLOBAL"[dialogue_stack] with the following
format of the entry Ll[i,j] that is linked to the WLJi] entry for DS1:
WL[i]" : (1, 2, DDS1, L[i1], WL[i+1])
L[ij]™: (sll, 0, =>”"DS4”, action address in DDS1, L[ij+1])

49

where =>“DS4” is a literal (string) pointer to the calling statement to DS4 in the
“Action: call: ... ” statement; and the action address in DDS1 contains a dummy
value, waiting for the completion of DS4.

If, for example, the last stored L[i,j] is L[i,3], then DS1 calls Dialogue Systems
of the third kind three times. It could be that the same Dialogue System is called
several times but in different places; it could also be that more than three dialogues
are called but some of them are of the first kind.

When the design of DS1 has been completed, except for completion of “Action:call:

” statements, the Dialogue Designing Dialogue system proceeds as follows:

o Check the GLOBAL"[dialogue_stack| stack to see if DS1 has indeed been com-
pleted, i.e., DS1 has only the form:

WLIi]": (11, 2, DDS1, nil, WL[i+1])

If so, the Dialogue Designing Dialogue system will:

1) use list_out to put DDS1 on a permanent page, getting its disk address;

2) evaluate the initiating statement of DS1; this evaluation will provide the
Dialogue Indirect Address in terms of page number and offset;

3) update the content of the Dialogue Indirect Address with the disk address
of DDS1 obtained from 1);

4) change the flag of WL(i], the DS1 entry, from 2 to 3 in GLOBAL"[dialogue_stack];

o For every Dialogue System remaining in GLOBAL"[dialogue_stack], check each
of the call statements that have been put in the L][i,j] sub-stacks: for example:

WL[i|" : (1, 2, DDSh, L[,1, WL[i+1])
L[i,j]*: (sll, 0, =>"DSk”, action address in DDSh, L[i,j+1])

check “DSk” by evaluating the string “DSk”. If DSk is now in the dictionary,
the evaluation will be successful and the DDSk disk address will be returned
(even though the parameters of DSk will have been instantiated in “DSk”);
in this case DDSk will be put into DDSh at the action address and the L][i,j]
entry will be deleted. If DSk has not been completed, thus the evaluation is
not successful, the L[i,j] entry will be left and the statement “DSk” will be put
aside in a “to be completed” list.

e The GLOBAL"[dialogue stack] is checked to see if there are now any entries of
- the form:

30

WL[i|™: (11, 2, DDSh, nil, WL[i+1])
If so (i.e., all its L[i,j] have been deleted during the above step), then:

1) use list_out to put DDSh on a permanent page, getting its disk address;
2) evaluate the initiating statement of DSh;

3) update the content of the Dialogue Indirect Address with the disk address
of DDSh obtained from 1);

4) change the flag of WL{i], the DSh entry, from 2 to 3 in the GLOBAL"[dialogue_stack];

e Send to the terminal the “to be completed” list of calls to Dialogue Systems of
the third kind, i.e., those which still must be defined. Issue the message:

Proceed with the design of ons of these dialogues.

and loop back to the starting prompt for designing a new Dialogue System:

>What user input should initiate this dialogue?

Warning diagnostics guide the designer to design all required Dialogue Systems.
When this has been done, that is, when there are no more WL[i] entries in GLOBAL"]
dialogue stack] with a flag of 2, then all WL[i] entries with a flag of 3 are purged
from the GLOBAL"[dialogue_stack].

The entire Dialogue Designing Dialogue design session may be aborted. This
happens if the designer issues an “exit” to one of the design prompts. In that case,
for all entries of the GLOBAL"[dialogue_stack] with flags of 2 or 3:

1) the definition of this Dialogue System is deleted from the dictionary;
2) the entry is purged from the GLOBAL "[dialogue_stack].

This algorithm applies to any Dialogue System call, including recursive calls.
The Dialogue Systems designing sequence becomes immaterial.

31

CHAPTER 7

THE DESIGN: DIALOGUE DATA STRUCTURE,
TYPE CHECKING, AND PREFIX/PROMPT GENERATOR

7.1: Dialogue Data Structure

The Dialogue Data Structure for a Dialogue System in the design stage has been
implemented in the ASK-style list data structure (see section 3.1), namely, in the
following format: (list identifier, flag, f1, f2, f3). The structure, as shown below, has
the following five parts: the header list, the parameter list, the node list, the CAT
(condition-action-transition) list, and the field list.

{header list}

GLOBAL- [current_dialogue] .1 : = L1 (the DDS list);

L1 : (111, current node, L2, L3, P1)
L2 : (11i, current field, Ni, Vi, cond_ind/cond_rep)
L3 : (bbb, 0, GVB, GNB, GHR)

GVB {global_field built},
GHB {global_node_built},
GHE {global_node_reserved} : set of 1..32;

{parameter 1list}

Pi : (111, o, P2, para_cond, dialogue_name)
P2 : (11p, O, nil, P2 link, caller dialoguse)
para_cond : (111, 0, para_cond link, cond_phrase, cond_msg)

{node list}

Hi : {111, node#, Hi link, Kz, H3)
H2 + {111, fisldt , nil_resp, DOTHW_TESP, H4)
H3 : (bbb, 0, [nodes transferred], [fielde defined], [fielde used])
H4 : (111, o, nil, help_msg, node_prompt)
nil_resp : (11i, optiom, ci, nil, mnext node/0)
Norm_resp : {1ii, next_node, C1, accept or reject / option,

nodetype/catag_opt)
help_msg : line list

{condition-action-transition list}
ci : (111, o0, c2, C1 link, cond_phrase)

52

c2 : (111, next node, action_list, cat_msg, c3)
c3 : {bbl, O, [fields defined], [fields used], cond_st)
action_list : (111, actopt, action_list link, action_ph, action_param)
cat_meg : line list

{field list}
¥i : (111, field#, ¥z, ¥i link, field_ph)
¥2 : (ili, 0, field type/catag_opt, field_st, 0/node#)

The header part is created at the time an initiating statement for the new
Dialogue System is given by the designer. It contains pointers to all other parts.

The parameter part is created at the same time as the header part is created.
It records the initiating statement in such a form that any parameters are explicitly
referenced. It also records the page addresses of the Dialogue Data Structures of
all the dialogues that call the dialogue. The field list elements corresponding to
these parameters are also created at this time. The condition statements and their
corresponding diagnostic messages are added to this parameter list.

Each node part is created at the time the node is introduced in the node
construction path. It will be gradually completed later on as the node is being
constructed. It contains components such as the field that is assigned to the
node, node number, boolean sets for node transitions, fields defined and fields used,
pointers to the next node part, the help message, and options for the nil response
and normal response, etc.

The CAT sequence part is created at the time the condition-action-transition
sequence is introduced. It may exist for both the nil response and the normal
response. The components each sequence contains are: a parsed condition statement
and/or parsed action statements, and links to the next CAT sequence, etc.

Each field list element is created at the time the field is assigned. It contains
components such as field number, field type, the node number in which this field is
assigned, field option and category option (in case the field type is a noun phrase),
the parsed phrase of the field assignment {e.g., in “Action: assign to ...”), etc.

At the beginning of the run phase, the Dialogue Data Structure is consolidated
to just that information needed during the run phase. The Dialogue Data Structure
in the run stage will be as shown below:

53

{header list}
GLOBAL~ [current_dialogue] .1 : = L1 (the DDS list);
Li : (111, o, Hi, Vi, Pi)

{parameter list}

Pi : {111, O, P2, para_cond, dialogue_name)
para.cond : (111, 0, para.cond link, cond_ph, cond_msg)
P2 : (111, return node#, action-call return address, nil, P3)
P3 : (i11, 0, caller V-field#/called V-field#, P3 link, nil, nil)

{node list}

Ni . (111, node#, N1 link, H2, node_prompt)
N2 ¢ (111, field#, nil_resp, norm_resp, help_msg)
nil_resp : (11i, option, Ci, nil, next node/0)
NOTm_Tesp : {1lii, next_nods, Ci, accept or reject / optien,

nodetype/catag _opt)
help_meg : lipe list

{condition-action-transition list}

ci : {111, 0, c2, Ci link, cond_phrase)
c2 : (111, next node, action_list, cat_msg, nil)
action_list : (111, actopt, action_list link, action_ph, action_param)

{field list}

¥i . (111, field#, inst_ph, Vi link, field phrase)
inst_phrase : (111, 0, stack/queue link, nil, val_pkrase)
where val_phrase is the value assigned to the field.

Note that in the run phase, the list P2 {and its subsequent lists: P3s) in the
parameter list within the Dialogue Data Structure of the calling dialogue has been
replaced for parameter passing. It is created whenever a call occurs. The list P2
records the return information: the node number and the address of the current
action statement that issues the current call, so that the calling dialogue can resume
from the proper place when the called Dialogue System has completed. In the call
by address case, each P3 records a pair of the field number: the <Vfield> in the
“Action: call: ...” statement of the calling dialogue and the corresponding field in
the initiating statement of the called dialogue. When the call has completed, P2
will then be reset to nil.

7.2: Type Checking

We take the notion of “type” from the notion of the type of a variable in many

54

programming languages. In the ASK System, this notion coincides with that of
part of speech (together with features). Since all field types must be known at
compile time, as in most programming languages, only static binding applies. Type
checking in the Dialogue Designing Dialogue system is performed at both compile
time — design phase, and run time — run phase. (It is performed only at compile
time in most programming languages.)

At compile time (i.e., the design phase):

Case 1: If the user’s input is a normal ASK statement (including fields), then the
ASK system function “parse list” is responsible for rejecting any inconsistent
use of types by returning an unsuccessful parsing of the statement. For
example, the statement, “Captain of <3> is <8>.” where type of field
< 8> is number, will be rejected.

Case 2: If a field is assigned in an action statement, e.g., “Action: assign to
<n>:..action phrase...”, then the type of <n>> is taken as the part of speech
of the action phrase. If this is a reassignment of <n>>, then this part of speech
must be consistent with the previous assignments. For example, suppose that
we assign <3> to be “captain of <7>7, later on we assign <3> as “length
of <9>”. Then the resulting field <3> of the second expression (for which
parse_list returns type: number) is in conflict with that of the first one {(which
returns type: noun phrase), therefore the second expression will be rejected.

Case 3: In Dialogue System call case. The type of each parameter in the “Action:
call: ...” statement of the calling Dialogue System will be checked to have the
same type as that of each corresponding field in the initiating statement of
the called Dialogue System. This type checking holds true for either the call
by value or the call by address. For example, suppose the Dialogue System
DS1 includes field <3> in the action statement:

>Action: call: load <3>

where “load <1>” is the initiating statement for Dialogue System DS2.
Then field <3> of DS1 must have the same type as field <1> in the
initiating statement “load <1>7 for the Dialogue System DS2. The initiating
statement with its parameters will have been put into the dictionary as a rule
of grammar. The above initiating statement, for example, will have become
the rule: ’

<dialogue> => “load ® <poun_phrase>

55

Thus a call by value instance of this initiating statement, e.g., “load Alamo”,
or a call by address, e.g., “load <3>7, will be type checked by using parse_list,
checking that it parses to the part of speech <dialogue>.

At run time (i.e., the run phase):

Case 4: If the user’s response to a prompt is not defined in the dictionary and
its node type is noun phrase, then the node type and the category option
designed for the response will be used to define the response; otherwise its
part of speech (obtained from the dictionary) will be checked (by the ASK
system function “evaluate”) with its field type (obtained from the node type).
The response will be rejected if these two types are not the same. For example,
suppose in the dialogue element:

>length: Alamo

the response “Alamo” is defined in the dictionary with part of speech of noun
phrase; but the corresponding node type defined in the design phase is a
number, then this response will be rejected.

7.3: Implicit Prefix/Prompt Mechanism in the Run Phase

Only two grammar rules are needed to support all Dialogue Systems designed
using the Dialogue Designing Dialogue. Namely they are:
RULE initial dialogue rule

<gentence> => <dialogue>
STH init_dialogue

RULE continus dialogue rule
<gentence> => %@ddd@®<whole_number>
STH cont_dialogue

Recall that the initiating statement for a Dialogue System is added to the dic-
tionary with the special part of speech: <dialogue>> at the first step in the Dialogue
Designing Dialogue design phase. Its semantics will consist of a pointer to its
Dialogue Data Structure. When a user enters the statement that initiates a dialogue,
the statement will, therefore, be parsed with the part of speech <dialogue>, with
its Dialogue Data Structure as semantics. This in turn will be parsed by the first
of the above rules, and the semantic procedure init_dialogue will thus be called.
The first action of the init_dialogue procedure is to get the page address of the
Dialogue Data Structure from the <dialogue>> constituent, bring a copy of it into

56

main memory and put it into GLOBAL"[current _dialogue] where it will remain
throughout the dialogue. It then obtains from this structure the prompt for the
first node of the dialogue, and returns the OUT-phrase:

(OUT, 0, message for node 1, the prompt for node 1, “@ddd@1”)
i.e., the output message, the prompt, and the prefix: @ddd@1.

For example, if the dialogue is initiated by the phrase: “new bibliography item”,
and the first prompt is: “Author:”, the following dialogue elements would occur:
>new bibliography item
>Author:
When the user responds “Jensen”, the string “@ddd@1Jensen” would be passed
to the parser. Applying the second of the above grammar rules, we would get the
parsing:

<gentence>
<ghole_number>
&dddo i Jensen

and the semantic procedure cont_dialogue would be called. Using the system func-
tion Bridge, it would pick up the string “Jensen”. From its <whole_number> con-
stituent it will pick up the node number 1; and from GLOBAL “[current_dialogue]
its Dialogue Data Structure. With these it can carry out the designed decision
structure for the node 1.

This same course of events is followed for each subsequent dialogue element.
Thus the response from node n, transferring to node m, would be:

(OUT, 0, ~lines for node m~, prompt for node m, “@dddem”)

the second of the above rules will again apply, the cont_dialogue procedure will again
use Bridge to pick up the user’s response, the number m from the <whole_number>
constituent, and the Dialogue Data Structure from GLOBAL"[current_dialogue],
and proceed to carry out the designed decision structure for node m. At the very end
of the Dialogue System, i.e., either when a node is reached whose transfer is to the
“terminal node”, or when the response option is designed to select to “finish up” the
dialogue, a “nil” will be recorded in GLOBAL"[current_dialogue], and the control
of execution will then be determined by the contents in GLOBAL "[dialogue_stack].

37

CHAPTER 8
TWO EXAMPLES

Two examples are presented here to illustrate how the Dialogue Designing
Dialogue system is utilized to produce Dialogue Systems. We will describe the
design phase and the run phase for each Dialogue System.

The first example is a simple Dialogue System for adding books and articles to a
bibliography, somewhat more complex than that shown in section 2.2. The second
example is about building a family tree into the data base. Two versions of this
are given. Both contain only a few prompts. The first version involves a series of
recursive calls with parameters. The second version uses a queue technique.

Appendix A consists of the transcription of an instance of the Dialogue Designing
Dialogue in which the help messages for all prompts are displayed. This dialogue
thus is a complete, succinet documentation of the functions of each dialogue element
in the Dialogue Designing Dialogue system.

Appendix B comprises a third example, a complex Dialogue System for handling
business invoice transactions. In using this business invoice transaction Dialogue
System, both the information entered through the dialogue and information retrieved
from the data base are to be distributed to different places in different forms, chang-
ing the data base, and composing and dispatching appropriate messages through
the electronic mail system. This invoicing system is based on the “invoicing opera-
tion” system presented in [Tsichritzis82], a system designed for a quite complex
transaction processing application. It was originally presented as an example of
the application of the Office Forms System [KornatowskiS(}] (a system similar in na-
ture to our Forms Designing Dialogue, a precursor system to the Dialogue Designing
Dialogue). The example in Appendix B shows the ease in which a Dialogue System
to accomplish all of these actions can be designed using the Dialogue Designing
Dialogue system. It shows the capabilities of the Dialogue Designing Dialogue
system in the areas of data base retrieval, information and report generation.

8.1: A Simple Dialogue Example
The following is a copy of the actual listing from the computer of both the

58

design phase, using the Dialogue Designing Dialogue System, and the run phase of
the resulting Bibliography Dialogue System. It includes query statements showing
the starting state of the data base, followed by the design phase, the run phase and
final query statements showing the final state of the data base. The mark “***” has
been inserted to indicate the transition between the four parts of this illustration.
(User inputs are in italics, computer responses are in typewriter fonts.)

sus dofine relevant vocabularies in the ASK system

> classes: biblio,article,book

The following new classes have been added:
biblic article book

> Books and articles are biblios.

books articles have been added to the class biblios.

> attributes: title,place of publication

The following new individual attributes have been added:
title place of publication

> vrelation: authorkeyword

The following new individual relations have been added:
author keyvword

> temt: book list

Enter text for book list:

Book List
The new text entity book list has been added.
s#%2 tho design phase of the Bibliography Syatem

> new dialogue

You are now in the dialogue designing dialogue. You may, at any
time, type *help®, ®"exit® or ®“wait®.

>What user input should initiate this dialogue? new ifem

When the user enters ®new item® s/he will be at node 1 of the
dialogue you are designing. Now define each node in turn.

Designing nods 1.

>What is the prompt message for this node? Title:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: I

What type of user response is expected? nu(mber), no(un phrase),
>ti(me), te(xt), se(ntence) or stlring): no

If the user’s response is not understandable, presumably not in the
>vocabulary, what should be done: a(ccept) or r{eprompt): a

59

What type of noun phrase must the response be? (e.g., individual,
>text class, number attribute, etc.): indiwdual
>Enter a “help® message for your user at this node:

What should be done if the user roturns a nil (carriage return only)

response to this nods? r(eprompt), f(inish up), t(ranmsfer),
>a{ction-transfer), or c{ondition-action-transfer): [

What should be done if the user gives a good response? f(inish up),
>t{ransfer), a(ction-transfer), or c(ondition-action-transfer): a
>Betion: Title of <1> 18 <I>.
>Action:
>Transfer to what node? 2

Hode 1 is completed.

Designing node 2.

The fields that have been assigned on entering the node are:

<1> : Title:

>What is the prompt message for this node? Author:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 2

What type of user response is expected? nu{mber), no{un phrase},
>ti(me), te(zt), se(ntence) or st(ring): no
If the user’s response is not understandable, presumably not in the
>vocabulary, what should be done: af{ccept) or r(eprompt): a
What type of noun phrase must the response be? (e.g., individual,
>text class, pumber attribute, etc.): indiwdual
>Enter a ®help® message for your user at this node:
Enter the author of this new ittem.

>

#Fhat should be done if the user returns a nil {carriage return only)
response to this node? r{eprompt), f(inish up), t{ransfer},
>a(ction-transfer), or c{ondition-action—tranafer): r

What should be done if the user gives a good respomnse? f{inish up),
>t {ransfer), a{ction-transfer), or c(ondition-action-transfer): «a
>Action: auwthor of <I> 18 <2>.
>Action:
>Tranasfer to what node? 3

Node 2 is completed.

Designing node 3.

The fields that have been assigned on entering the node are:

<1> : Title:

<2> : Author:
>What is the prompt message for this node? s ¢t an article? (yes/no):
If you wish the response to this prompt to be assigned to a field,
>then give the field number hers: 3

60

What type of user response is expected? nu{mber), no{un phrase),
>ti{me), te(xt), se{ntence) or st(ring): s
>Enter a %help® message for your user at this node:

[<1> 145 an article, you will be
> prompted for the name of the journal or
> anthology in which it appeared.
>
¥hat should be done if the user returnms a nil (carriage return only)
response to this node? r(eprompt), f(inish up), t(ransfer),
>a(ction-transfer), or c{ondition-action-transfer): r
What should be done if the user gives a good response? f(inish up),
>t (ransfer), al(ction-transfer), or c{ondition-action-transfer): ¢
>Condition: ¢8 <3> an initial segment of ‘yes’?
Enter a diagnostic message for the user in case the condition is
>not sabtisfiad:

>Aetion: <1> 5 an article.

>Action:

>Transfer to what node? /4

>Condition: otherwise

shetion: <1> s a book

>Action: save tn book hist:"<2>, <137
>Action:

>Transfer to what node? 5

Hode 3 is completed.

Designing node 4.

The fields that have been assigned on entering the node are:

<1> : Title:

<2> : Author:

<3> : Is it an article? (yes/no):

>What is the prompt message for this node? Journal:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: /

What type of user response is expected? nu(uber), no(un phrase),
sti(me), te(xzt), selntence) or st(ring): no

If the user’s responss is not understandable, presumably not in the
>vocabulary, what should be done? a(ccept), r(eprompt): a

What type of noun phrase must the response be? (e.g., individual,
>text clase, number attribute, etc.): individual
>Enter a "help® message for your user at this nods:

What should be dome if the user returns a nil (carriage return only)
response to this node? r(eprompt), f(inish up), t(ramsferj,
>a{ction—transfer), or c{ondition-action-transfer): r

%hat should be done if the user gives a good response? f(inish up),

61

>t (ransfer), alction-transfer), or c{ondition-action—transfer): a
>4ction: place of publication of <1> is <4>.

>Action: save in book lsi:."<2>, <1>, <4>7

>Action:

>Transfer to what node? J

Hode 4 is completed.

Designing node 5.
The fields that have been assigned on entering the node are:
<i> : Title:
<2> : Author:
<8> : Is it an article? (yes/mo):
<4> : Journal:
>What is the prompt message for thie node? Keyword:
If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 5
What type of user response is expected? nu(mber), no(un phrase),
>ti{me), te(xzt), sef{ntence) or st(ring): =o
If the user’s response is nol understandable, presumably not in the
>vocabulary, what should be done: a{ccept) or r{eprompt): &
¥hat type of noun phrase must the response be? (e.g., individual,
>text class, number attribute, ebtc.): ¢ndividual
>Enter a %help® message for your user abt this node:
Enter a keyword for this dtem. A simple
> carriage return will complete this ilem.
> You will be prompted for as many keywords
> ae you wish.
>

¥hat should be done if the user returms a nil (carriage return only)
response to this noda? r(eprompt), f(inish up), t(ransfer),
>a(ction-tranasfer), or c{ordition-action-transfer): ¢

>Transfer to what node? I

What should be done if the user gives a good response? f{inish up),
>t (ransfer), a(ction-transfer), c(ondition-action-transfer): a
>hetion: keyword of 1> 18 <5>.

>Action:

>Transfer to what node? 5

Node B is completed.

All nodes have been designed.

You have completed the design of the new dialogue ®new item®.

#%% the run phase of the Bibliography System
> new item

>Title: Ivanhoe
>Author: Scott

62

>Is it an article? (yes/mo): help

If Ivanhoe is an article, you ¥ill be prompited for the name

of the journal or anthology in which it appeared.
>Is it an article? (yes/mo}: no
>Keyword: history
>Keyword: love
>Keyword: England
>Keyword:
>Title: Paristioned Networks
>Author: Hendriz
>Is it an article? (yes/no): yes
>Journal: Journal of the AAAT
>Keyword: semantic nets
>Keyword: natural longuage
>Keyword:
>Title: Tele of Two Cities
>Author: Dickens
>Is it an article? (yes/mo): no
>Keyword: history
>Keyword: France
>Keyword:
>Title:

You have finished the new item dialogue.

%% Query Statement

> List title, author and keywords of articles and books.

arbicles and books title author

book Ivanhoe Scott
Tale of Two Cities Dickens

arbticle Partitioned Hetworks Hendrix

> Display book list.
Book List

Scott, Ivanhoe

Hendrix, Partitioned Hetworks, Journal of the AAAT
Dickens, Tale of Two Cities

Display of book list has been completed.

keywords
history

lovs

England

history

France

semantic nets
natural languags

63

8.2: Recursive Case

Our purpose in this example is to show the capability of handling recursion in
the Dialogue Designing Dialogue System. To this end, suppose a user wishes to add
to the data base the family tree for a person and his offspring. In order to keep the
issue simple, we limit our considerations to just one side of the family; thus we will
not include wives and sons-in-law. A simple family tree is shown in Figure 8.1.

Adam

/ \
Bob Bill

/ 0\ \
Clark Clint Cray

Fig. 8.1. A family tree of Adam

We present two example dialogues. The first builds the family tree depth first.
It illustrates how one dialogue may recursively call another dialogue, possibly itself.
The second builds the family tree breadth first. It illustrates the use of the queue
mechanism for accomplishing the recursions.

8.2.1: Dialogue recursively calling dialogue

Suppose the family tree is to be built in depth-first order, that is: for any given
family member, one of his sons, say John, is selected, then one of John’s sons, etc.,
till we reach a member of the family that does not have a son. Then we back up
one level and consider a second son, etc. When this member has no more sons, we
back up one more level, etc. Referring to Figure 8.1, the order in which it will be
built is: Adam, then Bob, Clark, Clint, Bill and Cray.

The following listing is the complete design phase for two Dialogue Systems:
“family tree” and “family of <parameter>”; where the first one calls the second
one, and the second one calls itself recursively. At each point where we “back up”
a level, i.e., at the end of a recursion, we print out the context, namely, all the sons
of the higher level person that have been entered so far so that the user will not get
lost in the midst of building a big family tree. After the design phase we include
an example run phase and a query statement.

64
832 define relevant vocabularies in the ASK system

> c¢lags: person

> relation: son

> Who are the sons of each person?
There are no sons.

3¢ the design phase of the first dialogue system

> new dialogue

You are now in the dialogue designing dialogus. You may, at any
time, type *help®, ®exit® or "wait®.

>What user input should initiate this dialogue? family free

When the user enters ®family tree® s/he will be at node 1 of
the dialogue you are designing. How define each node in turn.

Designing node 1.
>What is the prompt message for this node? Who s the patriarch of

this family?

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: I

What type of user response is expected? nu{mber), no(un phrase),
>ti(me), te(xt), se(ntence) or stlring): ne

If the user’s response is not understandable, presumably not in the
>vocabulary, what should be done: af{ccept) or r(eprompt): r
>Enter a "help® message for your user at this node:

What should be done if the user returns a nil (carriage return only)
response to this node? r{eprompt), f(inish up), t(ransfer),
>a{ction-transfer), or c{ondition-action-transfer): r

What should be done if the user gives a good response? f(inish up),
>t(ransfer), a(ction-transfer), or c(ondition-action-transfer): «
>Action: <I> 18 a person.

>Betion: call: family of <1>.

>Action: display: "You have finished <1>’s family tree.”

>Action:

>Transfer to what node?

Hode 1 is completed.

All nodes have been desigped.

Tou have completed the design of the new dialogue ®family tree®.

The following dialogues remain to be designed:
Dialogue System 2family of <i>®
Proceed with the design of ome of these dialogues.

ss% the design phase of the second dialogue system (depth-first)

65

>What user input should initiate this dialogue? famsly of <I>
What type of user response is expected for field <i>? nu(mber),
>no(un phrase), ti(me), te(xt), se(ntence) or st(ring)? no

¥hat type of noun phrase must the respomse be? (e.g., individual,
>toxt clase, number attribute, etc.): individual

¥hat conditions should the valus of fisld <i> satisfy?
>Condition:

When the user enters ®family of <1>® s/he will be at node 1 of
the dialogue you are designing. How define each node in turn.

Designing node 1.
>What is the prompt message for this node? Does <1> have a son?
If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 2

What type of user response is sexpected? nu{mber), nof{un phrase),
>ti(me), te(xt), se(ntence) or stlring): si
>Enter a “help® message for your user at this node:

What should be done if the user returus a nil (carriage return only)

response to this node? r{eprompt), f(inish up), t{ransfer},
>a{ction-transfer), or c{ondition—action-transfer): »

What should be done if the user gives a good response? f(inish up),
>t (ransfer), a(ction—transfer), or c{onditicn-action—transfer): ¢
>Condition: ¢s <2> an inittal segment of ‘yes'?

Enter a diagnostic message for the user in case the condition is
>pot satisfied:

>Action:

>Transfer to That node? 2
>Condition: otherwise
>Action:

>Transfer to what node?
Hode 1 is completed.

Designing node 2.

The fislde that have been assigned on entering the node ars:

<1> : family of <1i>

<2> : Does <1i> have a2 son?

>What is the prompt message for this node? Name of <I>’s son:

If you wish the response to this prompt to be assigned to a field,
>then give the field numbsr here: 3

¥hat type of user response is expected? nu(mber), no(un phrase},
>ti(me), te(xt), se(ntence) or st{ring): no

If the user’s response is not understandable, presumably not in the
>vocabulary, vhat should be done: a(ccept) or r{eprompt): «

66

What type of noun phrase must the response be? (o.g., individual,
>text class, number attribute, etc.): indiwidual
>Enter a ®help® message for your user at this node:

What should be dome if the user returns a nil (carriage return only)
response to this node? r(eprompt), f{inish up), t{ransfer),
>a({ction-transfer), or c(ondition—action-transfer): r

What should be done if the user gives a good response? f(inish up),
st {ransfer), a(ction-transfer), or c(ondition-action—transfer): a
>Action: <8> s a person.

>Action: display: <8> 15 som of <1>.

>Retion: call: family of <3>.

>Action: display: "Sons of <1>:"

>Action: Who are soms of <1>¢

>Action:

>Transfer to what node? 3

Hode 2 is completed.

Designing node 3.

The fields that have been assigned on entering the node ars:

<1> : family of <i>

<2> : Does <1> have a son?

<3> : Rame of <1>’s son:
>What is the prompt message for this node? Does <1> have amother son?
If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 4

What type of user response is expected? nu{mber), nolun phrase),
>ti(me), te(zt), se(ntence) or st(ring): sof
>Enter a *help® message for your user at this node:

What should be done if the user returns a nil (carriage return only)
response to this node? r({eprompt), f({inish up), t(ransfer),
>a{ction-tranafer), or c{ondition-action-transfer): r

¥hat should be done if the user gives a good response? f (inish up),
>t(ransfer), alction-transfer), or c{ondition-action-transfer): ¢
>Condition: ¢s <4> an tnitial segment of ’yes'?

Enter a diagnostic message for the user in case the condition is
>not satisfied:

>Action:

>Transfer to what node? 2
>Condition: otherwise

>Action:

>Transfer to what node?

Hode 3 is completed.

A1l nodes have been designed.

87

You have completed the design of the new dialogue “family of <1>®.

s%% the run phase of the family tree (depth-first method)

> individual: Adam

> family tree

>Who is the patriarch of this family: Adam
>Does Adam have a son? yes

>Hame of Adam’s son: Hob

Bob has been added as son of Adam.
>Does Bob havs a son? yes

>Name of Bob’s son: Clark

Clark has been added as son of Bob.
>Does Clark have a gon? no

Sone of Bob:

Clark

>Does Bob bave another son? yes
>Name of Bob’s son? Clnt

Clint has been added as son of Bob.
>Does Clint have a gon? no

Sons of Bob:

Clark

Clint

>Does Bob have another son? no

Sons of Adam:

Bob

>Does Adam have another son? yes
>Name of Adam’s som: Bill

Bill has been added as son of Adam.
>Does Bill have a son? yes

>Hame of Bill’s son? Cray

Cray bas been added as son of Bill.
>Does Cray have a son? no

Sons of Bill:

Cray

>Doee Bill have another son? no
Sons of Adam:

Bob

Bill

>Does Adam have another son? no

You have finished Adam’s family tres.
You have finished the family tree dialogue.
> Who are the sons of each person?
person

Adam Bob

68

Bill
Bob Clark

Clint
Bill Cray

8.2.2: Using a queue to handle the recursion

The example presented in Section 8.2.1, above, used recursive calls to build the
family tree in a depth first manner. It could just as well have used a stack or
queue method to accomplish the recursion. We will illustrate the use of a queue by
building the family tree in a breadth first fashion.

Suppose the family tree is to be built in breadth-first order, that is: for any
given family member, all of his sons will be named; then this will be repeated for
each of these sons in turn until all of the original person’s grandsons are named,
etc. Referring to Figure 8.1, the order in which it will be built is: Adam, then Bob,
Bill, Clark, Clint and Cray.

> class: person

> relation: son

> Who are the sons of each person?
There are no sons.

#85 the design phase of the first dialogue system

> new dialogue
You are now in the dialogue designing dialogue. Tou may, at any
time, type ®help®, ®exit® or “wait®.
>What user input should initiate this dialogue? family tree
o
o
]
{The remainder of the family tree design is the same as in Section 8.2.1)
o .
o
o
The following dialogue remains to be designed:
Dialogue System ®family of <i>®

#22 the design phase of the second dialogue system (breadth-first)

69

>What user input should initiate this dialogue? family of <1>
What type of user response is expected for field <1>7 nu {mber},
>no(un phrase), ti{me), te(xt), se(ntence) or st(ring)? no

What type of noun phrase must the respomse be? (e.g., individual,
>text class, number attribute, etc.): individual

What conditions should the value of field <1> satisfy?
>Condition:

When the user enters “family of <i>? s/he will be at node 1 of
the dialogue you are designing. Now define each nods in turn.

Designing node 1.
>What is the prompt message for this node? Does <1> have a son?
If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 2

What type of user response is expected? nu(mber), no(un phrase),
>ti(me), te(xt), se(ntence) or st{ring): ¢ g
>Enter a ®help” message for your ussr at this node:

¥hat should be done if the user returns a nil (carriage return only)
response to this node? r{eprompt), f(inish up), t(ramsfer),
>a(ction-transfer), or c{ondition-action-transfer): r

What should be done if the user gives a good response? f(inish up),
>t (ransfer), afction—transfer), or c{ondition-action-transfer): ¢
>Condition: s <2> an imiral segment of ‘yes'?

Enter a diagnostic message for the user in case the condition is
>not satisfied:

>Action:

>Transfer to what node? 2
>Condition: otherwise
>Action:

>Iransfer to what node? /|
Hode 1 is completed.

Designing node 2.

fhe fieslds that have been 2s8signed on entering the node are:

<i> : family of <i>

<2> : Does <1> have a somn?
>What is the prompt message for this node? Name of <I>’s son:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: &

What type of user response is expected? nu(mber), no(un phrase),
>ti(me), te(xt), se(ntence) or st(ring): no

If the user’s response is not understandable, presumably not in the
>yocabulary, what should be done: a(ccept) or r(eprompt): a

What type of noun phrase must the responmse be? (e.g., individual,

70

>text class, number atbtribute, etc.): individual
>Enter a "help® message for your user at this nods:

¥hat should be done if the user returns a nil {carriage return only)
response to this node? r(eprompt), f(inish up), t(ramsfer),
>a{ction-transfer), or c(ondition-action-transfer): r

¥hat should be done if the user gives a good response? f(inish up),
>t{ransfer), a{ction-transfer), or c{ondition-action-transfer}: a
>Action: <3> i3 a person.

>hebion: display: <8> ts son of <1>.

>Action: push under <4>: <3>

>Action:

>Transfer to what node? 3

Node 2 is completed.

Designing node 3.

The fields that have been assigned on entering the node are:

<1> : family of <1>

<2> : Does <1> have a son?

<3> : Hame of <1>’s son:

<4> : push under <4>: <3>
>What is the prompt message for this node? Does <I> have another sonf
If you wish the response to this prompt to be assigned to a field,
>then give the field number here: J5

What type of user response is expected? nu(mber), no(un phrase),
>ti(me), te(zt), selntence) or st(ring): sf
>Enter a "help® message for your user at this node:

¥hat should be done if the user returns a nil (carriage return only)
response to this node? r{eprompt}, f(inish up), t(ransfer),
>a(ction-transfer), or c(ondition-action-transfer): r

What should be done if the user gives a good response? f(inish up),
>t(ransfer), alction-transfer), or c{ondition-action—transfer): ¢
>Condition: ¢85 <5> an tnitial segment of 'yes'?

Enter a diagpoastic message for the user in czse the condition is
>not satisfied:

>Action:

>Transfer to what node? 2
>Condition: otherwise

>Action: display: "Sons of <1>.7
>Action: Who are sons of <1>¢
>Action:

>Transfer to what node? 4

Hode 38 is completed.

11

Designing node 4.

The fields that have been assigned on entering the node are:

<i> : family of <i>

<2> : Does <1> have a son?

<3> : Hams of <i>’s son:

<4> : push under <4>: <3>

<5> : Does <1> have another son?
>What is the prompt message for this node?

No user interaction for this node.

What should be done at this node? f{(inish up), t(ramsfer),
>a{ction-transfer), or c(ondition—action-transfer): ¢
>Condition: s gquene <{> empiy?

Enter a diagnostic message for the user in case the condition is
>not satisfied:

>&ction:

>Trapsfer to what node?

>Condition: otherwise

>Action: assign fo <I1>:<4{>

>Action: pop <4{>

>Action:

>Transfer to what node? I

Hode 4 is completed.

411 nodes have been designed.

You have completed the design of the nev dialogue "family of <i>®,

#3%% the run phase of the family tree (using breadth-firet method)

> sndividual: Adam

> family tree

>Who is the patriarch of this family: Adam
>Does Adam have a son? yes

>Hame of Adam’s son: Bob

Bob has been added as son of Adam.
>Does Adam bhave another son? yes
>Hame of Adam’s som: Bill

Bill has been added as son of Adam
>Does Adam have another son? no
Sons of Adam:

Bob)

Bill

>Does Bob have a son? yes

>Name of Bob’s son: Clark

Clark has been added as son of Bob.

72

>Does Bob have another son? yes

>Name of Bob’s son: Clnt

Clint has besn added as son of Bob
>Does Bob have another son? no

Sons of Bob:

Clark

Clint

>Does Bill have a son? yes

>Hame of Bill's son: Cray

Cray has been added as son of Bill.
>Does Bill have another son? no

Sons of Bill:

Cray

>Does Clark have a son? no

>Doss Clint have a son? no

>Does Cray have a son? no

You have finished Adam’s family trea.
You have finished the family tree dialogue.
> Who are the sons of each person?

person son

Adam Bob
Bill

Bob Clark
Clint

Bill Cray

13

CHAPTER 9

EXAMINING, EDITING AND DELETING
A DIALOGUE SYSTEM

For any existing Dialogue System, it is very likely that a user may occasionally
desire to investigate its content and review how it was designed, to modify it without
starting over the entire design procedure, or to simply delete it. To this end,
there are three facilities: first, one that allows him to review the design of a given
Dialogue System; the second, a Dialogue System for editing those Dialogue Systems
that have been designed using the Dialogue Designing Dialogue; the third that
allows him to delete a Dialogue System entirely. Though these three utilities are in
parallel with the Dialogue Designing Dialogue, they are rather straightforward in
their implementations. This is because the design of any existing Dialogue System
is completely defined by its Dialogue Data Structure, which is the only structure
that needs to be referenced, modified or deleted.

8.1: Examining a Dialogue

To initiate the utilify for examining an existing Dialogue System, a user only
needs to type the statement “Examine <dialogue> dialogue” where <dialogue>
is the initiating statement of the Dialogue System to be examined. After that, the
utility will display all the design information of the requested Dialogue System in an
easily understood format. To illustrate this format, we examine the first dialogue
example in Chapter 8 to show the complete listing provided by this utility.

> Ezamine new ttem dialogue
Folloving is the design listing of the ®new item® Dialogue System:

Initiating statement: new item

Hode 1:
prompt: Title:
assign to field: <1>, type: noun phrase
ghen not in vocabulary: accept
expected response: individual

14

help message:

nil response option: finish up

good response option: action-transfer
actiocn: Title of <1> is <i>.
transfer: 2

Hode 2:
prompt: Author:
assign to field: <2>, type: noun phrase
when not in vocabulary: accept
expected response: individual
belp message: Enter the author of this new item.
nil response option: reprompt
good Tesponse option: action-transfer
action: Author of <i> is <2>.
transfer: 3

Node 3:
prompt: Is it an article? (yes/no):
agsign to field: <3>, typs: string
help message: If <i> is an article, you will be
prompted for the name of the journal or
anthology in which it appeared.
nil respomnse option: reprompt
good response option: comdition—action—transfer
condition: is <3> an initial segment of ’‘yes’?
fail message:
action: <i> is an article.
transfer: 4
condition: otherwise
action: <1> is a book.
action: save in book list: ®2<2>, <i>®
transfer: 5

Kode 4:

prompt: Journmal:

assign to field: <4>, type: noun phrase
when not in vocabulary: accept
expected response: individual

help messags:

nil response option: reprompt

good response option: action-transfer
action: reference of <1> is <4>.
action: save in book list:®<2>, <i>, <4>%
transfer: b

15

Hode 6:
prompt: Keyword:
asaign to field: <5>, type: noun phrase
when not in vocabulary: accept
expected response: individual
help message: Enter a keyword for this item. A simple
carriage return vill complete this item.
You will be prompted for as many keywords
ag you wish.
nil response option: transfer
transfer: 1
good response option: action-transfer
action: keyword of <1> is <5>.
transfer: &

You have completed the examination of the dialogue ®new item®.
>, '

9.2: Editing a Dialogue

To initiate the second service utility for editing an existing Dialogue System,
a user needs to type: “Edit <dialogue> dialogue”, where <dialogue> is the
initiating statement of the desired Dialogue System. In this editing dialogue, the
user is asked which node he wishes to edit; he then enters the Dialogue Designing
Dialogue node design sequence. The previous design of the indicated node is
displayed as he progresses through the design sequence. Any default response
(carriage return only) is interpreted as the maintenance of the previous design, thus
only changes need to be entered. In this dialogue utility, all the “help”, “exit”, and
“wait” still apply. If, when the user is asked which node he wishes to edit, he gives
a number that is not the number of an existing node, then he is informed that this
is a new node, and then enters the node design sequence in the normal way.

Again, we exemplify the first dialogue example in Chapter 8 and show the
complete listing of the use of the utility.

> Edit new ttem dialogue

>What node do you wish to edit: I
>prompt: Title:

>apsign to field: <1>

>type: noun phrase

>when not in vocabulary: accept
>expected response: individual
>help message:

16

>nil response option: finish up
>good response option: action—transfer
>action: Title of <1> ie <i>.
>transfer: 2 6

Hode 1 is completed.

>What node do you wish to edit: 6

A new node is being added.

>What is the prompt message for this node: Publishing date:
o
o
o

>Transfer to what node: 2

Node 8 is completed.

>What node do you ¥ish to edit:
You have completed the editing of the dialogue "new item®.

After the modification, the new Dialogue Data Structure will be “saved” back in
another disk area due to the nature of LIST_OUT. The utility will then use the new
actual disk address to update the address content of the dialogue in the Dialogue
Indirect Address. No modification on the calling addresses of the existing dialogues
that call this modified Dialogue System is needed.

When the user responds with “¢” to the “What node do you wish to edit? ”,
it means that the initiating statement is to be modified, and the editing dialogue
will consider this case as the creation of a new Dialogue System. In such case, the
editing dialogue will add the new initiating statement to the dictionary with the
part of speech <dialogue>>, write this new dialogue onto disk and add its actual
disk address into a new Dialogue Indirect Address.

8.3: Deleting a Dialogue

To initiate the third service utility for deleting an existing Dialogue System,
a user needs to type: “Delete <dialogue> dialogue”, where <dialogue>> is the
initiating statement of the desired Dialogue System. After that, the system will
indicate if the desired dialogue has been deleted or not. For example, if the user
wants to delete the first and the second dialogue example in Chapter 8, he may
utilize this facility and experience the following:

m

> Delete new item dialogue

The nev item dialogue has bsen deleted.
> Delete family of Adam dialogue

The family of Adam dialogue has been called by the following dialogues:
family tree

The family of Adam dialogue thus can not be deleted.

>Hext dialogue to be deleted:

The second of the above two examples has been rejected. This is because when
the initiating statement <dialogue>> is specified, its Dialogue Data Structure is
checked. If this dialogue is called by other dialogues, then the current delete request
will not be carried out. Rather, all the initiating statements of the dialogues that call
this dialogue will be displayed instead. By trying to delete each of these displayed
dialogues in turn, the user may eventually find out all the “root” dialogues and,
deleting them, in a forward fashion, finally he will be able to delete the original one.

18

CHAPTER 10
CONCLUDING REMARKS

The technical achievement of this thesis is a problem oriented, natural language
programming system, that allows a person with very little programming knowledge
to implement quickly an efficient interface for the accomplishment of his specific,
immediate task.

We know of no research that is related to the general Dialogue Designing
Dialogue capability in the natural language and database area.

In the research area of using natural language as a programming language, we
found that other research in this area has not been very successful because of the
generality of the goals and the weakness of the underlying supporting environment.
Since the Dialogue Designing Dialogue is based on a powerful natural language
database system, when we limit the application of Dialogue Designing Dialogue
to the programming of more responsive ways to use the system, and impose the
dialogue techniques to control the use of natural language (particularly in the
creation of loops), we then have achieved, in this circumscribed framework, a
working natural language programming capability.

In the area of building expert systems, we found that research includes meta-~
dialogue systems, for example, EMYCIN and ROSIE. These systems do indeed
superficially resemble the Dialogue Designing Dialogue; however, they arise from a
very different technology. First, a goal oriented, production system is used in these
systems. Its system structure is radically different from the grammar rules in a
natural language data base system. Second, the knowledge base consists only of
the production rules for the specific domain and specific application, and is therefore
not available for other applications. Third, in an expert system dialogue, the system
asks the questions and the user replies (with the exception that the user may ask
why a particular decision was made), the user has no way to direct the dialogue
into areas the system has not anticipated. Finally, due to the different expertise
required in the design phase, it is very unlikely that users will also be the designers.

In a sense, a Dialogue System designed by the Dialogue Designing Dialogue is
an expert system. For example, the Dialogue Data Structure retains user responses
to be used in its decision structure. One can argue that ASK plus the Dialogue

9

Designing Dialogue provides a significant extension of expert systems. However,
the production rule technology has been developed with efficiencies for its intended
applications that the grammar rule/parsing technology can not achieve in similar
applications. The Dialogue Designing Dialogue system might be said to produce
“mini expert systems”, but beyond that the technology is distinctly different. Of
course, the Dialogue Designing Dialogue itself can rightfully be considered an expert
system, though it does not use the production rule technology.

In Chapter 1, a list of criteria for programming languages was presented. We
review that list here, showing that the Dialogue Designing Dialogue System meets
these criteria.

o data type (data structure): the data structures available in the Dialogue Designing
Dialogue are derived from those of the underlying ASK system. Over and
above numbers, strings and truth value (i.e., boolean), they also include noun
phrases naming individuals and texts, and corresponding classes, attributes
and relations. The underlying data structures are highly complex; however,
this complexity is entirely below the level of attention to the user of the system.

The Dialogue Designing Dialogue includes a variety of data structures of its
own, inciuding nodes, fields, conditions, actions and messages.

e operation type: the operators of the system coincide with the semantic inter-
pretive procedures of the ASK system plus a family of operators specific to

the Dialogue Systems. The latter included: wait-resume, help, exit, call (of a
dialogue) and the components of the condition-action-transfer sequences.

e statement: the prompt/response forms constitute a major class of statement
types specific to the Dialogue Designing Dialogue and the Dialogue Systems
designed by its use. Underlying these forms are complex procedures that give
them meaning.

o parameter passing: a Dialogue System may confain parameters as part of its in-
itiating statement. Such a Dialogue System may be called from other Dialogue
Systems (including itself) by passing parameters through the technique of either
call by address or call by value.

e storage management for storage allocation: the Dialogue Data Structure provides
a highly formatted, versatile data structure for maintaining the current status
of an ongoing dialogue. This Dialogue Data Structure has both static and
dynamic properties, static in abstract format, but dynamic in that variable
instantiations, etc., are maintained during run time in this structure.

80

It also contains a specially formatted stack for dialogues in recession. During
the Dialogue Designing Dialogue, this stack is also used in implementing the call
of one dialogue by another, including recursive calls. In this “dialogue_stack”,
the Dialogue Data Structures are maintained as in a push-down stack.

The Dialogue Designing Dialogue Field acts both as a local variable, stack or
queue. The operations of “assign”, “push” and “pop” on fields automatically
build the appropriate data structures.

o recursive functions: the Dialogue Indirect Address mechanism allows a Dialogue
System to call itself, directly or indirectly.

o program control structure: the node transfer (under the control of the designer),
the “exit” subprocessor, and the prefix/prompt mechanism (internally to the
system) provide the mechanisms for program control; the condition-action-
transfer sequence provides the selection constructs (e.g., case) and iteration
constructs {e.g., while). In addition, the proper use of node transfer also
provides the iteration constructs {e.g., repeat).

e variables and scope rules: fields are for local use within a Dialogue System. No
field is global. When a field is part of an initiating statement of a Dialogue
System DS1 (e.g., initiating statement: “load <1>7), it is local to DS1. When
another Dialogue System DS2 calls DS1 by address (e.g., calling statement
in DS2: “Action: call: load <V5>7), the lack of global variables is handled
by explicit transfer of values between the local variables involved. The ASK
variables: GLOBAL "[dialogue_stack] and GLOBAL [current_dialogue] are for
global use in the general Dialogue Systems context. Type checking, thus scope,
is done in many places, using the parse_list utility of the underlying system.

o language support: the rich functions in the ASK system provide numerous
utilities to connect the Dialogue Designing Dialogue to the outside world.

In using the Dialogue Designing Dialogue, a user is always guided by the system’s
dialogue, thus he need only enter the highest level information needed to specify
his program. Automatic type checking eliminates ambiguous assignments. The
“programming language” is brief, one word responses or, in the case of condition
and action statements, essentially natural language. In this latter case, the domain
specific vocabulary and definitions are directly available to him. The system has no
knowledge of any specific application; the user specifies such knowledge (including
jargon) for himself in his own way, where he only needs to specify what to do
rather than how to do in designing his problem oriented Dialogue System. Further,

81

discrepancies between the desired system and the produced system are far less likely
to arise since the design and the use of a Dialogue System can be accomplished
easily by the same person and thus no misinterpretation of the knowledge about
the application should occur. Furthermore, a user can verify the Dialogue System
immediately to see whether the system produced is what he desired (this has been
called in the literature: “rapid prototyping”), and make modifications easily for
unsatisfactory portions, using the facility of editing an existing dialogue. The
resulting dialogue is automatically integrated into the ASK System and becomes
available to a user immediately. The other two facilities for examining and deleting
a dialogue provide for the user capabilities to review a complete dialogue design and
to eliminate an unwanted dialogue and its associated dialogues, both are presented
in a simple, clear format.

The two most likely design errors, in using such a high level system, are the
use of undeclared variables and the introduction of infinite loops. Although these
can not be entirely protected against, the Dialogue Designing Dialogue System gives
informative warnings to the designer in both of these cases.

Clearly, the range of application can be wide and complex. The examples shown
in the thesis demonstrate the versatile capabilities for handling simple work (e.g.,
adding new bibliography), recursive constructions (e.g., building a family tree), up
to the data base retrieval and report generation (e.g., distributing complex invoice
transaction activities). The existence of the underlying data base system, with its
ability easily to add vocabulary and data, adds to the levels of complexity that may
be handled.

For future work, graphics handling should be added to improve the capabilities
of the current Dialogue Designing Dialogue system. For example, an action of
“display: ...picture... ” or “save inpicture...” should be available in the design
phase so that graphic images can either be output to the user or included in a
document, where the locations, colors, display types (e.g., a pie distribution, a bar
chart, etc.), picture processing, and the associated data that is to be displayed are
specified just as action statements involving texts are handled currently.

93

“Spots” on touch screens, mouse or other cursor control should be specifiable
s0 that these techniques can be used for prompt/responses. The designer should be
able to specify simple, one word voice prompts and voice responses.

Special purpose programs and new object types can be easily added to ASK;
such extensions could be simply and immediately adapted to a Dialogue System as
long as the condition-action-transfer mechanisms contain corresponding grammar

82

rules to invoke these programs. The Dialogue Designing Dialogue System should be
extended so that such extensions to the underlying system are easily incorporated
in the designing of dialogues.

83

REFERENCES

[Barr81] Barr, Avron and Edward A. Feigenbaum, The Handbook of Artificial
Intelligence, Volume 1, William Kaufmann Inc., Los Altos, CA., 1981.

[Barr82] Barr, Avron and Edward A. Feigenbaum, The Handbook of Artificial
Intelligence, Volume 2, William Kaufmann Inc, Los Altos, CA., 1982.

[Brook78] Brook, F.P. Jr., The Mythical Man-Month, Addison-Wesley Publishing
Co., 1978.

[Carlson80] Carlson, E.D. and W. Metz, “Integrating Dialog Management and Data
Base Management,” IBM Research Report RJ2738 (35013), Computer Science, 2/1/80.

[Davis76] Davis, R., Applications of Meta-Level Knowledge to the Construction,
Maintenence, end Use of Large Knowledge Bases, Ph.D. Thesis, Computer Science
Department, Stanford University, Stanford, CA., 1976.

[Duda79] Duda, R.O., Gaschnig, J., and P. E. Hart, “Model Design in the PROSPECTOR
Consultant System for Mineral Exploration,” Ezpert Systems in the Micro-Electronic
Age (ed. by D. Michie), Edinburgh: Edinburgh University Press, 1979.

[Fain81] Fain, J., Gorlin, D., Hayes-Roth, F., et al, The ROSIE Language Reference
Manual, Technical Note N-1647-ARPA, Rand Corp., Santa Monica, CA., 1981

[Feigenbaum?77] Feigenbaum, Edward A., “The Art of Artificial Intelligence: Themes
and Case Studies In Knowledge Engineering,” Proceedings of the 5th International
Joint Conference on Artificial Intelligence, Cambridge, Massachusetts, pp.1014~-
1029, 1977.

[Gershman81] Gershman, A., “Figuring Out What The User Wants - Steps Toward
an Automatic Yellow Pages Assistant,” Proceedings of the 7th International Joint
Conference on Artificiel Intelligence, Vancouver, pp.423-425, August 1981.

[Grosz83] Grosz, B.J., “TEAM: A Transportable Natural-Language Interface System,”
Proceedings of Applied Natural Language Processing, Santa Monica, CA., pp.39-
45, February 1983.

[Halpern81] Halpern, P. and J.W. Rettberg, “User-Definable Software Applied To a
Real-Time Ambient Air Quality Monitoring System,” IBM Systems Journal, V20,
N1, pp.86-103, 1981.

84

[Hayes-Roth81] Hayes-Roth, F., Gorlin, D., Rosenschein, S., Sowizral, H. and D.
Waterman, Rational and Molsvation for ROSIE, Technical Note N-1648-ARPA,
Rand Corp., Santa Monica, CA, 1981

[Hayes-Roth83] Hayes-Roth, Frederick, Waterman, Donald A. and Douglas B. Lenat,
Buslding Ezpert Systems, Addison-Wesley, 1983.

[Heidorn75] Heidorn, George E., Simulation Programming Through Natural Language
Dialogue, Amsterdam: North-Holland, 1975.

[Heidorn76] Heidorn, George E., “Automatic Programming Through Natural Language
Dialogue: A Survey,” IBM Journal of Research and Development, pp.302-313,
July, 1976.

[Heidorn77] Heidorn, George E., “The End of the User Programmer?” The Sofiware
Revolution, Infotech State of the Art Conference, Copenhagen, Denmark, 1977.

[Heidorn78] Heidorn, George E., “Natural Language Dialogues for Managing an
On-Line Calendar,” Proceedings of 1978 ACM Annual Conference, Washington,
D.C., pp.45-562, December 1978.

[Hendrix77] Hendrix, Gary G. and E. D. Sacerdoti, “The LIFER Manual: A Guide
To Building Practical Natural Language Interface,” Al Center Technical Note 138,
SRI International, Menlo Park, CA., February 1977.

[Hendrix81] Hendrix, Gary G. and E. D. Sacerdoti, “Natural-Language Processing:
The Field in Perspective,” BYTE, pp.304-352, September 1981.

[James80] James, E.B., “The User Interface,” Computer Journal, V23, N1, pp.22-28,
1980.

[Knornatowski80] Knornatowski, J. and G. Cheung: Users Manual, CSRG Technical
Note, University of Toronto, 1980.

[Knuth73] Knuth, Donald E., The Art of Compuler Programming,, Volume 1,
Second Edition, Addition-Wesley, Reading, Massachusetts, 1973.

[Lenner82] Lenner, Eric J., “Automating Programming,”, pp.28-33; “Programming
for Nonprogrammers,” pp.33-38; both are in IEEE Spectrum, V19, N8, August
1982.

[Marburger81] Marburger, H., Neumann, B., and H. Novak, “Natural Language
Dialogue About Moving Objects in an Automatically Analyzed Traffic Scene,” Proceed-
sngs of the 7th International Josni Conference on Artificial Intelligence, Vancouver,
pp.49-51, August 1981.

83

[Martin73] Martin, James, Design of Man- Computer Dialogue, Prentice-Hall, Engle-
wood Cliffs, N.J., 1973.

[Papachristidis83] Papachristidis, Alexender, “Heterogeneous Data Base Access”,
Ph.D. Thesis, California Institute of Technology, December 1983.

[Robinson82] Robinson, J. J., “DIAGRAM: A Grammar for Dialogues,” Communica-
tions of the ACM, V25, N1, pp.24-47, January 1982.

[Shneiderman79] Shneiderman, B., “Human Factors Experiments in Designing Inter-
active Systems,” Computer, V12, N12, pp.9-19, 1979.

[Shortliffe76] Shortliffe, E. H., Computer-Based Medical Consuliations: MYCIN,
New York: North-Holland, 1976.

[Thompson83a] Thompson, Bozena H. and Frederick B. Thompson, “Introducing
ASK, A Simple Knowledgeable System,” Proceedings of Applied Natural Language
Processtng, Santa Monica, CA., pp.17-24, February, 1983.

[Thompson83b] Thompson, Bozena H., Thompson, Frederick B. and Tai-Ping Ho,
“Knowledgeable Contexts for User Interaction,” Proceedings of National Computer
Conference, Anaheim, CA., pp.29-38, May 1983.

[Thompson84] Thompson, Bozena H. and Frederick B. Thompson, ASK: A Simple
Knowledgeable System (documentation of the ASK System), forthcoming.

[Tsichritzis82] Tsichritzis, D., “Form Management,” Communications of ACM,
V25, N7, pp.453-478, July 1982.

[van Melle80] van Melle, W., A Domain Independent System That Aids in Construct-
ing Consultation Programs, Ph.D. thesis, Computer Science Department, Stanford
University, 1980.

[Waldinger69] Waldinger, R. J. and R. C. T. Lee, “PROW: A Step Towards Automatic
Program Writing,” Proceedings of the First Joint Conference on Artificial Intelligence,
Washington, D.C., pp.241-252, 1969.

[Wulf81] Wulf, William A., Shaw, Mary, Hilfinger, Paul N. and Lawrence Flon,
Fundamental Structures of Computer Science, Addition-Wesley, Reading, Massachu-
setts, 1981.

86

APPENDIX A

The Design Phase Protocol with all Help Messages

>What user input should initiate this dialogue? help

You are starting the design of 2 new dialogue. As you proceed with
your design, you may at any time type “help® (to find out what to

do next and what the consequences of your action ¥ill be), ®exit®
(which will immediately terminate this design), or ®wait® (in which
case you will exit this design dialogue; you can then re-enter the
design dialogue again at the point where you typed “wait® by typing
“resume®) .

A&t this point you should enter the words the user should use vhen
he wishes to initiate the dialogue you are designing. This
initiating statsment may contain parameters, indicated by field
symbols, e.g., <n>. The user, of course, will replace them by actual
values; these user entered values will then become the values of the
indicated fields. Examples of initiating statements:

P h P
®*new item®, ®load <i>®,

>What is the prompt message for this node? help
The syastem issues a prompt message to the user, indicating the nature
of the response it ezpects. You are to enter the prompt message which
¥ill be issued to your user at this node. It pay incluode field
symbols which will be replaced by the literals of the associated user
rosponses. Examples are: ®Author: ®, ®Hore? (y/m): 9, ®Please enter
text for <2>: %, If you wish no user interaction at this node,
respond with nil (only carriage return}.

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: help :

You may wish to make use of the user’s respomse to this prompt in
specifying how it and furthesr responses are toc be processed. For
example, you may wish to check that the response satisfies certain
conditions, such as that it is a member of a certain class. For
these purposes, you will want to assign it to a %field®. A field is
specified by “<n>® where n is an integer, e.g., ®<8>% indicates
field 8. If you assign the user’s response to field <n> hers, then
you can subsequently refer to this response, for exzample: *<n> is a
ship.®. The sslection of the field number n is up to you.

Vhat type of user response is expected? nuf{mber), no(un phrase),

BT

>til{me), ta(xt), se(ntence) or st(ring): help
A user responss must bes of one of the following types:
o number, e.g., 93.8%, °5 feet®;
o noun phrase, &.g., "Boston®, ®home port of the Haru®;

"o time, e.g., ®July 18, 1981%, ®tomorrow®, ®3 seconds from now®;
o texbt, in which case whatever is entered by the user will be
accepted as a body of text, available for subsequent filing,

editing, etc.;
sentence, e.g., ®List the destination of each ship.®;
o string, so that you can make further tests such as in the
selection of an option, e.g., as in the response to the prompt:
®B(ook), A(rticle) or P(aper): *®.

[+

If the user’s response is not understandable, presumably not in the
>vocabulary, ¥hat should be done: a{ccept) or r{eprompt): help
Under some circumstances, you may wish to consider the user’s
response as possibly a new word to be added to the vocabulary. If so
enter af(ccept); you will then be asked for the type you expect this
nev word to be, e.g., individual, class, etc. If you enter r(eprompt),
the user will be informed that his response is not understood and he
will be reprompted.

%hat type of noun phrase must the responss be? (e.
>text claes, number attribute, etc.): help

Since the user’s response may be added as a nev vocabulary item,
enter the sxpected type which you would use if you were entering the
new item youreelf, as for example: ®"Create a class named xxx®. What
type of noun phrase response should be expected >{e.g., individual,
text class, number attribute, etc.): individual

>Enter a ®help® message for your user at this node: help

If the user responds to this node’s prompt by “help®, what message
should be displayed? If you respond here with nil (only carriage
return), then the help message will be ®No help available®.
Terminate your help message by (exec) (cont).

What should be done if the user returns a nil (carriage return ounly)
response to this node? r(eprompt), f(inish up), t(ramsfer),
>a{ction-tranefer), or c(ondition-action—transfer): help

If the user gives a nil response, then the design options

available to you are:

o reprompt: cycle back, reissuing the prompt for this node;

o finish up: mark this node as a terminal node for user
interaction, schedule the completion of ail indicated actioms,
and return of control to normal processing.

o transfer: transfer directly to another node, you will be

88

prompted for its number.

o action-transfer: you will be prompted for actions that should be
scheduled at this node, and then for the number of the node to
which to transfer.

o condition-action-transfer: you will be prompted for a condition
and for the actions and transfer to be taken if the condition is
satisfied.

Bhat should be done if the user gives a good response? f(inish wup),
>t (ransfer), a(ction-transfer), or c(ondition—action-transfer): help
If the user gives a2 good responss, then the design options available
to you are:

o finish: mark this node as a terminal node for user interaction,
schedule the completion of all indicated actions, and return of
control to normal processing.

o transfer: transfer directly to another node, you will be
prompted for its number.

o action-transfer: you will be prompted for actions that should be
gcheduled at this node, and then for the number of the nede to
which to transfer.

o condition-action-transfer: you will be prompted for a condition
and for the actions and transfer to be taken if the condition is
satiefied.

What should be done at this node? f(inish up), t(zansfer),
>a(ction-transfer), or c{ondition-action-transfer): help

Since there is no user imteraction at this node, the design options
available to you are:

o finish: mark this node as a terminal node for user interactiomn,
gchedule the completion of all indicated actions, and return of
control to normal processing. '

o transfer: transfer directly to another node, you will be
prompted for its number.

o action—transfer: you will be prompted for actions that should be
scheduled a% this node, and then for the pumber of the nods to
which to transfer.

o condition-action-transfer: you will be prompted for a comndition
and for the actions and transfer to be taken if the condition is
sabisfied.

>Condition: help

Enter an ASK English "yes/no® question, possibly including field
symbols; for exzample: ®Is <2> a ship?®, ®Is inventory of <3> at
least <6>7%, ®Ig <3> an initial segment of ’yes’?®; for checking
fields that are being used as stacks or queues: ®Is stack <4>
empty?®. You will then be prempted for the actions to be taken

89

if the answer to this question is ®yes®, i.s., if the condition is
satisfied. Subsequently, you will be prompted for what to do if the
condition is not satisfied. If you wish to specify actions to be
taken without any further condition, or this is the last clause of
an #if ... then ... , otherwise® sequence, then just enter:
Eotherwise® .

Enter a diagnostic message for the user in case the condition is
>not satiefied: help

If the condition, in reference to user responses, is not satisefied,
you may wish an interpretation of the situation, or diagnostic
information, to be given to the user; enter such a message here. It
may include field symbols, which will be repiaced by the literals of
the associated user responses. If you enter a nil responsee, no
diagnostic will be given the user.

>Action: help

Indicate the actions you wish the sysztem to take. After entering an

action, you will be prompted for another actien until you give a nil

(carriage return only) response. There are eleven types of actions

which you can specify:

1: Updating the database: an ASK declarative sentence, possibly
including field symbols, e.g., ®Color of <3> is .®, ®Change
age of <2> to <7>.%,

2: Display the update: same as (1) ¥ith the addition that the
confirmation of the update will be displayed, e.g., "Dieplay:
Author of <3> is .%,

3: Display information to user: any ASK English query, e.g., ®List
the length and width of sach <3>.®, ®What is age of each <4>7%,

4: Display message to user: any message enclosed in double quotes;
included field symbols will be replaced by their literal values;
e.g., "Display:®When you finish, send a copy of <3> to <4>.® 9,

B: Save information as text: a statement of the form: ®5ave in
...name of text object...:...an ASK English query...®. the
information, as texzt, will be placed at thz end of indicated
text; e.g., “Save in load plan of <2>: List cargo type of each
cargo of <2>.%,

8: Save message as text: same as 5, except text to be saved is in
quotes; e.g., “Save in load plan of <2>:®CARGO LOADING PLAR FOR

<2>:8 &
7: Field assignment: a statement: ®Assign to <m>: ... an ASK
expresegion ... ®; this may be used %o reassign a field’s value

or introduce a new field.

8: Add an element into & stack: a statement: ®"Push on --a stack field
-— : —— any ASK English phrase --%; e.g., ®Push on <3>: *%

9: Add an element into a queus: a2 statement: ®Push undsr --a stack

90

field—— : -- any ASK English phrase ——-%; e.g., “Push under <38>: <&>¢
10: Remove an slement from a stack or from a queue: a statement:
sPop ——a stack field——®; e.g., “Fop <3>%
11: Call another Dialogue System: a Statement: %Call: —— The initiating
statement of the Dialogue System to be called --®, e.g.,
8call: load Alamo®. If the initiating statement of the dialogue you
wish to call contains parameters, e.g., “load <4>, you may either
call by valus, e.g., ®load Alamo®, ®load <6>%, or call by address,
e.g., ®load <V8>* (where <6> is a field of the dialogue you are
designing, the V indicating that the value of field <4> of the
called dialogue will be passed back to field <6> of the calling
dialogue) .

>What condition should the value of fields <n>... satisfy? help

When someone types in the initiabting statement for this new dialogue,
he will use specific namee in place of the field eymbols. You may wish
to specify conditions these values should satisfy. For example, in the
initiating statement: ®load <1>%*, it may be that the value given for
field <1> must always be a ship. If you wish to impose such a conditiom,
gtate it here as a yes/no English question, e.g., %Is <i> a ship?®.

81

APPENDIX B

Data Base Retrieval and Report Generation

Sometimes a single event triggers other events. An invoicing system, for example,
is such a case. When we file an invoice for a customer’s order, we would also like a
whole series of actions to be taken, e.g., reduction in inventory records, shipping and
warehouse instructions, billing and accounting. Based on the “invoicing operation”
system shown in [Tsichritzis82], a Dialogue System to accomplish all of these actions
can be designed using the Dialogue Designing Dialogue system. The example shows
the capabilities of the Dialogue Designing Dialogue system in the areas of data base
retrieval, information and report generation.

To start with, the formats of each of the files to be manipulated by the dialogue are
presented. This is followed by the design phase and the run phase of the Invoice
Transaction Dialogue System.

B1. Listing of Files (Some of the contents are filled in for illustrative purposes.)

File A: Invoice Template

® Invoice #: (AA1234) Date: (today’s date) Clerk: {operator)
Customer: (ABC Company)
Address: (807 S. Wilson Ave Pasadena, CA 91108)

Item: (19% coleor TV with remote control) Quantity: (10)
Mapufacturer: (RCA)

Unit Cost: $(...) Unit Weight: (...) Shipping Charge: $(...)
fax: $(...) Coat: $(....) Woight: (...)

Item: (SL-5800 video recorder) Quantity: (8)
Manufacturer: (Sony)

Unit Cost: $(...) Unit Weight: (...) Shipping Charge: $(...)
Tax: $(...) cCost: $(....) Weight: (...)

Total Tax: $(...) Total Amount: $(...)

02

File B: Order Templats

¢ From (ABC Company) Reference (AA1234)
Date (today’s date)

OUrder the following items:
(10) of (19® color TV with remote control) produced by (RCA)
(8) of (SL-5800 video recorder) produced by (Sony)

Please bill and ship merchandise to following address:
(307 S. Wilson Ave Pasadena, CA 91108) @

File €: Shipping Template

@ (ABC Company)
{307 S. Wilson Ave Pagadena, CA ©1108)

Dear Sir,
Following your order {AA1234) you will find enclosed the
following items:
(10) of (19® color TV with remote control) produced by (RCA)
(8) of (SL-5800 video recorder) produced by (Sony)

We will bill you separately. Thank you for being our customer
XYZ Distributing ¢

File D: Warehouse Template

® Load (10) of (19® color TV with remote control) produced by
(RCA) for (ABC Company) reference (AA1234)
Load (8) of (SL-5800 video recorder) produced by
(Sony) for (ABC Company) reference (AA1234) 8

File E: Billing Template

(toc long to copy all; please reference original format in
[Teichritzis82])

93

File F: Accounts Payable Template

SCustomer: (ABC Company) Imvoice: (AA1234) Date: (order date)
Amount Payable: $(...) 2

File G: Purchase Template

®Please purchase (quantity) of (item) produced by
(manufacturer). Reported by (logon id - operator) on (date).®

B2. Design Phase

>new dialogue

You are now in the dialogue designing dialogue. You may, at any
time, type ®help®, "exit? or ®wait®.

>What user input should initiate this dialogue? invoice system
When the user enters "new item® s/he will be at node 1 of the
dialogus you are designing. Now define each node in turm.

Designing node 1.

>What is the prompt message for this node? Invoice pumber:

If you wish the response to this prompt to be aseigned to a field,
>then give the field number here: 1

What type of user response is expectsd? nu{mber), no(un phrase),
>ti{me), te(xt), se(ntence) or st(ring): no

If the user’s response is not understandable, presumably not in the
>vocabulary, what should be dome: a(ccept) or r{eprompt): a

What type of noun phrase must the response must be? (e.g., individual,
>text class, number attribute, etc.): individual

>Enter a "help® message for your user at this node:

Enter a valid invoice number here.

>

What should be done if the user returms a nil (carriage return only)
response to this node? r(eprompt), f(inish up), t{(ransfer),
>a(ction-transfer), or c(ondition-action-transfer): r

What should be done if the user gives a good response? f(inish up),
>t(ransfer), a(ction-transfer), or c(ondition-action-transfer): a
>Action: assign to <8>: today

>Action: assign to <§>: logon identifier

>Action: assign to <i8>: 0

>Action: assign to <17>: 0

94

>Action: save in file A:®Invoice #: <i> Date: <8 Clerk: <0>®
>Action:

>Tranefer to what node? 2

Hode 1 is completed.

Designing node 2.

The fields that have been assigned on entering the node are:

<i>: Tnvoice number:

<8>: today

<@>: logon identifier

<ig>: 0O

<i7>: 0

>What is the prompt message for this node? Customer:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 2

What type of user response is expected? nu(mber), no{un phrase),
>ti(me), te(zt), se(ntence) or st{ring): no

If the user’s response is not understandable, presumably not in the
>vocabulary, what should be done: a(ccept) or r{eprompt): a

What type of noun phrase must the response must be? (e.g., individual,
>text class, number attribute, etc.): individual

>Enter a ®help® message for your user at this node:

I? this is a ne¥ customer, his address will be asked; if this

>ig an old customer, his credit status and address will be shown.

>

What should be done if the user returns a nil (carriage return only)
response to this node? r(eprompt), f(inish up), t{ransfer),
>a{ction—transfer), or c(ondition-action~transfer): r

What should be done if the user gives a good responss? f(inish up),
>t{ransfer), a{ction-transfer), or c{ondition-action—tramsfer): ¢
>Condition: is <2> not a customer?

Enter a diagnostic message for the user in case the condition ie
>not satisfied:

>Bction: assign to <19>: O

>Action: Credit of <2> is 0.

>Action: <2> iz a customer.

>Action: save in file B:®From <2> Befarence <i>®
>Action: save in file B:® Date <8>°®
>Action: eave in file B:® @

>Action: save in file B:®Order the following items:®
>Action:

>Transfer to what node? 3

>Condition: otherwise

>Action: assign to <3>: address of <2>

>Action: assign to <19>: credit of <2>

95

>Action: display: ®<2> has a credit balance of $<ig>.®
>Action: display: ®Address of <2> is <3>.®
>Action: save in file A:%Customer: <2>¢

>Action: eave in file A:®Address: <3>%
>Action: save in file A:® @
>Action: save in file B:®From <2> Reference <1>®
>Action: save in file B:® Date <8>®
.8 8

>Action: save in file

>Action: save in file B:®Order the following items:*®

>Action: save in file C:®<2>®
>Action: save in file C:¥<3>%
-8 a

>Action: save in file

>Action: save in file

>Action: save in file

>Action: save in file C:"Following your order <1> you will
find enclosed the®

>Action: save in file C:®following items:®

>Action:

>Transfer to what node? 4

Hode 2 is completed.

:8Dear Sir,®
:ll

[+ e I+ TR+ IR+ -- T - - - B -

Designing node 3.

The fields that bave been assigned on enterin
<1>: Invoice number:

<2>: Customer:

<8>: today

<@>: logon identifier

<i6>: 0

<i7>: 0

<i9>: ¢ v
>What is the prompt message for this node? Customer address:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 3

What typs of user response is expected? nu(wber), nof{un phrass),
>ti(me), te(zt), se(ntence) or st{ring): te
>Enter a ®help® message for your user at this node:

o
£
[+
=3
[o]
£
[}
[
L]
®

¥hat should be done if the user returms a nil (carriage return only)
responge to this node? r(eprompt), f(inish up), t(ransfer),
>a{ction-transfer), or c{ondition—action-transfer): r

¥hat should be done if the user gives a good response? f {(inish up),
>t(ransfer), a(ction-transfer), or c{ondition-action—transfer): a
>hkcetion: save in file A:%Customer: <2>°8

>Action: save in file A:%Address: <3>°

>Action: save in file A:P ©®
>Bction: save in file C:.®<2>®

06
>Action: save in file C:%<3>®
>Action: save in file C:® ¢
>Action: save in file C:®Dear Sir,*®
>Action: save in file C:2 ¢
>Action: save in file C:?Following your order <i> you will
find enclosed the®
>Action: save in file C:®"following items:®
>Action:
>Transfer to what node? 4
Hode 3 is completed.

Designing node 4.

The fields that have been assigned on entering the node are:

<1>: Invoice number:

<2>: Customer:

<3>: Customer address:

<8>: today

<9>: logon identifier

<18>: ©

<17>: O

<ig>: O

>Fhat is the prompt message for this node? Item:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 4

What type of user response is expected? nun(wber), no{un phrase),
>til{me), te(zt), selntence) or st(ring): no

If the user's response is not understandable, presumably not in the
>yocabulary, what should be done: a(ccept) or r{eprompt): r

>Enter a ®help® message for your user at this node:

What should be done if the user returns a nil (carriage return only)
response to this node? r(eprompt), f{inish up), t(ransfer),
>a{ction-transfer), or c{ondition—action-transfer): t

>Transfer to what node? 7

Fhat should be done if the user gives a good responss? f{inish up),
>t{ransfer), alction-transfer), or c{ondition—action-transfer): &
>Transfer to what nods? B

Hode 4 is completed.

Designing node 5.

The fields that bhave been assigned on entering the node are:
<1»: Invoice number:

<2>: Customer:

<3>: Customer address:

<4>: Item:

<8>: today

97

<@>: logon idemtifier

<i6>: O
<i7>: 0
<ig>: @

>What is the prompt message for this node? Manufacturer:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: b

What type of user response is expected? nu{mber), no{un phrase),
>ti{me), te(zt), se(ntence) or st{ring): no

If the user’s reeponse is not understandable, presumably not in the
>yocabulary, what should be done: a(ccept) or r{eprompt): r

>Enter a *help® message for your user at this node:

¥hat should be done if the user returns a nil (carriage return only)
response to this node? r{eprompt), f(inish up), t(ransfer),
>a{ction-transfer), or c{ondition—action-transfer): r

What should be done if the user giveas a good response? f(inish up),
>t(ransfer), a(ction-transfer), or c{ondition-action-transfer): a
>Action: assign to <10>: unit cost of <4> produced by <5>

>Action: assign to <i1>: unit weight of <4> produced by

>Action: aseign to <iB>: inventory of <4> produced by <B&>

>Action: display: “Unit cost of <4> produced by is $<10>.®
>Action: display: ®We currently have <18> of them on hand.®

>Action:

>Transfer to what node? 8

Hode B is completed.

Designing node 6.

The fields that have been assigned on entering the ncde arse:
<i>: Invoice number:

<2>: Customer:

<3>: Customer address:

<4>: Item:
: Manufacturer:
<@>: today

<9>: logon identifier
<i10>: unit cost of <4> produced by <5>
<11>: unit weight of <4> produced by <G>

<16>: 0
<i7>: ©
<18>: inventory of <4> produced by <b&>
<19>: 0

>§hat is the prompt message for this node? Ruantity:

If you wish the response to this prompt to be assigned to a field,
>then give the field number here: 8

What type of user response is expected? nuf{mber), no(un phrase),

08

>ti(me), te(xzt), se{ntence) or st{ring): nu
>Enter a ®"help® message for your user at this node:

What should be done if the user returms a nil (carriage return only)
response to this node? r(eprompt), f(inish up), t(ransfer),
>a(ction—transfer), or c{ondition—action-transfer): r

¥What should be done if the user gives a good response? f(inish up),
>t(ransfer), a(ction-transfer), or c{ondition—action-transfer): ¢
>Condition: <18> is greater than <6>%

Enter a diagnostic message for the user in case the condition is
>not satisfied:

>Action: assign to <18>: <i8>-<6>
>Action: The inventory of <4> produced by is <18>.
>Action: assign to <14>: <10>#<g>
>Action: assign to <i3>: <14>%0.08
>Action: assign to <1B>: <11>»<@g>
>Action: assign to <12>: shipping charge whose weight is <15>
>Action: aesign to <16>: <18>+<13>
>Action: assign to <17>: <17>+<14>+<12>
>Action: display: ®The cost is $<14>, tax is $<13>, and the

shipping charge is $<12>.®
>Action: assign te <18>: <19>-<i4>-<i3>-<12>
>Action: display: *The customer <2> has a credit balance of

$<19>.®
>Action: save in file A:®"Item: <4> Quantity: <&>°
>Action: save in file A:®Mapufacturer: ®
>Action: save in file A:"Unit Cost: $<10> Unit Weight: <11>

Shipping Charge: $<i2>®
>Action: save in file A:®Tax: $<13> Cost: $<14>
Weight: <1b>*®
>Action: save in file A:® ¥
>Action: save in file B:® <86> of <4> produced by °
>Action: save in file C:® <86> of <4> produced by ®
>Action: save in file D:®Load <8> of <4> produced by"
>Action: save in file D:® for <2> referemce <i>*
>Action:
>Transfer to what node? 4
>Condition: otherwise
>Action: display: ®Imsufficient inventory, this item has only <18>.%
>Action: display: ®ask the customer to reduce the order.®
>Action: assign to <20>: regular purchase quantity of <4> produced
by

>Action: save in file G:®*Please purchass <20> of <4> produced by"
>Action: save in file G:®. Reported by <9>, on <8>%
>Action:

99

>Transfer to what node? 8
Hode § is completed.

Designing node 7.

The fields that have been assigned on entering the node are:
<1>: Invoice number:

<2>: Customer:

<3>: Customer addresas:

<§>: Item:

: Manufacturer:

<8>: Quantity:

<8>: today

<9>: logon identifier

<10>: unit cost of <4> produced by <5>
<1i>: unit weight of <4> produced by <6>
<12>: shipping charge whose weight is <ib>
<13>: <14>50.06

<14>: <10>k

<{B>»: <ii>u<h>

<i6>: O
<i7>: O
<18>: inventory of <4> produced by
<ig>: 0

<20>: regular purchase quantity of <4> produced by <&>

>What is the prompt message for this node?

Ho user interaction for this nods.

¥hat should be done at this node? f({inish up), t{ransfer),

>a (ction-transfer), or c{ondition—action-transfer): a

>Action: Credit of <2> dis <18>.

>Action: assign to <17>: <17>+<16>

>Action: display: ®Total amount payable is $<17>®

>Action: save in file A:"Total Tax: $<16> Total Amount: $<17>®

>Action: save in file B:® ?

>Action: save in file B:®Pleass bill and ship merchandise to
following address:®

*Action: save in file B:® <3>®

>Action: save in file C:® ®

>Action: save in file C:®We will bill you separatsly. Thank
you for being our customer®

>Action: save in file C:® XYZ Distributing®

>Aetbion: save im file F:2Customer: <2> Invoice: <1>
Date: <8>®

>Action: save in file F:®Amount Payabls: $<17>#

>hction:

>Iransfer to what nods?
Hods 7 is completed.

100

Al]l nodes have been designed.
You have completed the design of the new dialogue “invoice system®.

B3. Run Phase

>invoice system

>Invoice number: help

Enter a valid invoice number hers.
>Invoice number: AA1234
>Customer: help

If this is a new customer, his address will be asked; if this is
an old customer, his credit status and address will be shown.
>Customer: ABC Company

ABC Company has a credit balance of $9000.

Address of ABC Company is 307 8. Wilson Ave Pasadena, CA 91108.
>Item: 19® color TV with remote coantrol

>Manufacture: RCA

Unit cost of 18® color TV with remote control produced by

RCA is $350.

We currently have 48 of them on hand.

>Quantity: 10

The cost is $3500, tax is $210, and the shipping charge is $200.
The customer ABC Company has a credit balance of $5090.

>Item: Sony SL-5800 video recorder

>Yanufacture: Sony

Unit cost of SL-5800 video recorder produced by Sony is $500.
We currently have 28 of them on hand.

>Quantity: 8

The cost is $4000, tax is $240, and the shipping charge is $200.
The customer ABC Company has a credit balance of $850.

>Ttem:

Total amount payable is $8350.

You have finished the invoice system dialoguse.

