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Abstract 

 

 Chemoattractant cytokines (chemokines) are small proteins that are known to play 

a key role in the development of numerous autoimmune and inflammatory diseases. The 

signal transduction cascade responsible for this pathology is initiated by chemokine 

binding to a G-protein coupled receptor (GPCR). Since therapeutic intervention would 

involve inhibition of ligand binding, it follows that detailed understanding of the 

structures and binding sites of these receptors would lead to the rational design of such 

drugs. However, GPCRs are a class of integral membrane proteins whose structures are 

extremely difficult to determine via the conventional method of X-ray crystallography. 

Additionally, homology models based on the crystal structure of bovine rhodopsin (BR) 

have offered little structural insight into the remotely homologous chemokine receptors. 

In light of this information, our laboratory has developed a novel computational approach 

to predicting the structures and ligand binding sites of GPCRs with no information from 

the atomic coordinates of the crystal structure of BR.  

In this thesis we describe the use of the MembStruk procedure to predict the 

structure of human, mouse, and rat chemokine receptor 1 (CCR1). Interhelical 

interactions that stabilize the conformation of each receptor are discussed in detail, and 

where appropriate comparisons are made to information gleaned from the crystal 

structure of BR. The side chain placements of conserved residues are found to be 

different across the human and rodent species, accounting for binding differentials not 

previously explained by homology models. To improve the binding of a low affinity 

small molecule antagonist, point mutation candidates in human CCR1 are predicted. 



 ix

Validation of the human CCR1 structure is achieved through prediction of the 

antagonist binding site, to which a series of known antagonists are docked and scored for 

comparison to experimental structure-activity data. The ligand binding energies are in 

excellent agreement with the experimentally known trend in binding affinities, and results 

from a virtual ligand screening calculation (Dr. Sabine Schlyer, Berlex/Schering AG) 

also support the validity of the structural model. This work in this thesis provides the 

basis for the design of receptor-specific antagonists to human and rodent CCR1, thus 

accelerating the drug discovery process. 
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Chemoattractant cytokines (chemokines) are small proteins that are known to play a key role in the development of numerous autoimmune and inflammatory diseases. The signal transduction cascade responsible for this pathology is initiated by chemokine binding to a G-protein coupled receptor (GPCR). Since therapeutic intervention would involve inhibition of ligand binding, it follows that detailed understanding of the structures and binding sites of these receptors would lead to the rational design of such drugs. However, GPCRs are a class of integral membrane proteins whose structures are extremely difficult to determine via the conventional method of X-ray crystallography. Additionally, homology models based on the crystal structure of bovine rhodopsin (BR) have offered little structural insight into the remotely homologous chemokine receptors. In light of this information, our laboratory has developed a novel computational approach to predicting the structures and ligand binding sites of GPCRs with no information from the atomic coordinates of the crystal structure of BR. 

In this thesis we describe the use of the MembStruk procedure to predict the structure of human, mouse, and rat chemokine receptor 1 (CCR1). Interhelical interactions that stabilize the conformation of each receptor are discussed in detail, and where appropriate comparisons are made to information gleaned from the crystal structure of BR. The side chain placements of conserved residues are found to be different across the human and rodent species, accounting for binding differentials not previously explained by homology models. To improve the binding of a low affinity small molecule antagonist, point mutation candidates in human CCR1 are predicted.

Validation of the human CCR1 structure is achieved through prediction of the antagonist binding site, to which a series of known antagonists are docked and scored for comparison to experimental structure-activity data. The ligand binding energies are in excellent agreement with the experimentally known trend in binding affinities, and results from a virtual ligand screening calculation (Dr. Sabine Schlyer, Berlex/Schering AG) also support the validity of the structural model. This work in this thesis provides the basis for the design of receptor-specific antagonists to human and rodent CCR1, thus accelerating the drug discovery process.
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Figure 2-1: hCCR1 primary sequence in FASTA format.



40

Figure 2-2: hCCR1 hydrophobicity profile.





41

Figure 2-3: hCCR1 TM regions.






42

Figure 2-4: hCCR1 bundle before rotational optimization.
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Figure 2-5: hCCR1 bundle after rotational optimization.



44

Figure 2-6: hCCR1 TM3 rotational optimization using RotMin.


45

Figure 2-7: hCCR1 putative binding sites.





46

Figure 2-8: hCCR1 binding sites for docking.
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Figure 2-9: hCCR1 salt bridge (TM2-7).
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Figure 2-10: hCCR1 salt bridge (TM3-7) and intra-helical hydrogen bond.

49

Figure 2-11: hCCR1 inter-helical hydrogen bond network (TM1-2-7).

50

Figure 2-12: hCCR1 inter-helical hydrogen bond (TM2-4).



51

Figure 2-13: hCCR1 inter-helical hydrogen bonds (TM3-6).



52

Figure 2-14: hCCR1 inter-helical sigma-pi interaction (TM2-7).


53

Figure 2-15: hCCR1 inter-helical DRY salt bridge (TM1-3).


54

Figure 2-16: Overlay of the hCCR1 and BR structures.



55

Figure 2-17: Structure of BX471 antagonist.





56

Figure 2-18: Structural template for proprietary antagonists.
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Figure 2-19: TM binding motif for CCR1 antagonists.
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Figure 2-20: Ionic interactions in the 5Ǻ BX471 binding cavity.


59

Figure 2-21: Hydrophobic interactions in the BX471 binding cavity (top).

60

Figure 2-22: Hydrophobic interactions in the BX471 binding cavity (side).

61

Figure 2-23: Interactions in the C1 binding cavity (top).



62

Figure 2-24: Interactions in the C2 binding cavity (top).
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Figure 2-25: Interactions in the C3 binding cavity (top).



64

Figure 2-26: Interactions in the C4 binding cavity (top).



65

Figure 2-27: Correlation between experimental (Ki) and theoretical (BE) data.
66

Figure 2-28: Structure of UCB 35625.





67

Figure 2-29: Mutant expression (A) and cell migration assay (B) results.

68

Figure 2-30: Binding mode of UCB 35625 in hCCR1 homology model.

69

Figure 3-1: Structural template for proprietary antagonists.



86

Figure 3-2: Interactions in the C5 binding cavity (top).



87

Figure 3-3: Interactions in the C6 binding cavity (top).



88

Figure 3-4: Repulsive packing in the C6 binding cavity (top).


89

Figure 3-5: Favorable packing between C5 and TM5’s L260 and V263 (side). 
90

Figure 3-6: Overlay of the C5 and C6 binding modes (top).
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Figure 3-7: Leu260 to Gln260 mutation in the C6 binding cavity (top).

92

Figure 3-8: Leu260 to Asn260 mutation in the C6 binding cavity (side).

93

Figure 3-9: Val263 to Gln263 mutation in the C6 binding cavity (top).

94

Figure 3-10: Val263 to Ser263 mutation in the C6 binding cavity (side).

95

Figure 3-11: Val263 to Thr263 mutation in the C6 binding cavity (top).

96

Figure 3-12: Val263 to Tyr263 mutation in the C6 binding cavity (top).
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Figure 4-1: mCCR1 primary sequence in FASTA format.
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Figure 4-2: mCCR1 hydrophobicity profile.
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Figure 4-3: mCCR1 TM regions.
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Figure 4-4: mCCR1 bundle before rotational optimization.
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Figure 4-5: mCCR1 bundle after rotational optimization.
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Figure 4-6: mCCR1 TM3 rotational optimization using RotMin.
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Figure 4-7: mCCR1 putative binding sites.
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Figure 4-8: mCCR1 binding sites for docking.
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Figure 4-9: mCCR1 salt bridge (TM2-7).
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Figure 4-10: mCCR1 salt bridge (TM3-7).
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Figure 4-11: mCCR1 inter-helical hydrogen bonding (TM2-7).
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Figure 4-12: mCCR1 inter-helical hydrogen bonds (TM3-6).
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Figure 4-13: mCCR1 inter-helical hydrogen bond (TM2-4).
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Figure 4-14: Overlay of the mCCR1 and BR structures.
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Figure 4-15: Overlay of the mCCR1 and hCCR1 structures.
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Figure 4-16: TM sequence alignment of hCCR1 and mCCR1.
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Figure 4-17: Structures of BX523, BX511, and BX471 antagonists.


133

Figure 4-18: Ionic interactions in the 5Å BX523 binding cavity (top).

134

Figure 4-19: Ionic interactions in the 5Å BX511 binding cavity (top).

135

Figure 4-20: Ionic interactions in the 5Å BX471 binding cavity (top).

136

Figure 4-21: Binding mode of BX510 in hCCR1 homology model.
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Figure 5-1:  rCCR1 primary sequence in FASTA format.



152

Figure 5-2: rCCR1 hydrophobicity profile.
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Figure 5-3: rCCR1 TM regions. 
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Figure 5-4: rCCR1 TM3 rotational optimization using RotMin.
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Figure 5-5: rCCR1 putative binding sites.





156

Figure 5-6: rCCR1 binding sites for docking.
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Figure 5-7: rCCR1 salt bridge (TM2-7).
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Figure 5-8: rCCR1 salt bridge (TM3-7).
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Figure 5-9: rCCR1 inter-helical hydrogen bond (TM2-7).
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Figure 5-10: rCCR1 inter-helical hydrogen bond (TM2-4).
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Figure 5-11: Overlay of the rCCR1 and BR structures.
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Figure 5-12: Overlay of the rCCR1 and hCCR1 structures.



163

Figure 5-13: Overlay of the rCCR1 and mCCR1 structures.
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Figure 5-14: TM sequence alignment of hCCR1 and rCCR1.
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Figure 5-15: Structure of BX471 antagonist.
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Figure 5-16: Interactions in the 5Å BX471 binding cavity (top).
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Abbreviations

(h/m/r)CCR1


(human/mouse/rat) chemokine receptor 1 


GPCR



G-protein coupled receptor


AVGB



Analytical Volume Generalized Born


RBMD



rigid body molecular dynamics


MSA



multiple sequence alignment


ESP



electrostatic potential


CMM



Cell Multipole Method


QEq



charge equilibration


vdW



van der Waals 

BR



bovine rhodopsin 


BE



binding energy


FF



force field


TM



transmembrane

MD



molecular dynamics


HF



Hartree-Fock


PB



Poisson-Boltzmann

Ki



binding affinity (experimental)


nM



nanomolar (experimental)



















