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Abstract 
 

 A series of experiments were conducted on zebrafish (Danio rerio) in 

order to gain a better understanding of how blood flow and blood flow related 

forces, such as shear stress, affect vertebrate heart development.  Zebrafish 

were used as a model due to their external fertilization and optical accessibility to 

the heart and vasculature. The flow field inside the 4.5 day post fertilization (dpf) 

embryo was analyzed using a combination of manual particle tracking and digital 

particle image velocimetry (DPIV) software. Our results present the first case of 

intracardiac microscale DPIV. Additionally, a minimally invasive and reversible 

technique of delivering and localizing magnetic microspheres inside the 

vasculature of the embryo was developed. The results of blocked flow induced 

with this method were compared with previous experiments and controls. 

The results of the flow field analysis showed the existence of an extremely 

dynamic flow environment containing jets with a velocity of 5 mm/s and regions 

of vorticity in a low Reynolds number environment. Calculations of the flow at the 

4.5 dpf A-V resulted in wall shear stress levels of 70 dynes/cm2, levels much 

higher than needed for endothelial cell response. 

We also showed that injected magnetic microspheres can be delivered 

and localized within the embryonic vasculature to reversibly block blood flow in 

the dorsal artery and at the inflow to the heart. Blocked blood flow of 12 hours 

and longer resulted in lower blood velocity and a less developed heart, exhibiting  
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edema, regurgitance, decreased contractile function, and delayed development. 

These findings are consistent with previous studies showing that blood flow is a 

necessary factor for heart development. Furthermore an unexpected result was 

observed. Exposure to a localized magnetic field eventually caused the 

absorption of magnetic microspheres into the surrounding tissue. It is theorized 

that this could be utilized in future studies modeling the effects of reduced 

cardiac contractility. 
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Chapter 1: Introduction 

1.1 Introduction 
 

The development of the vertebrate heart is of great interest to the fields of 

science and medicine. The heart is the first organ to form and is necessary for 

the distribution of blood throughout the developing embryo. Furthermore, errors 

in cardiogenesis are the leading form of congenital birth defects (Olson et al., 

1996). Many conditions must be met to ensure proper heart development. Over 

the last century experiments have shown that both genetic programming and 

epigenetic factors, such as blood flow induced forces, can affect both normal and 

patho-physiological cardiac development. Nevertheless, how epigenetic factors 

and genetic programming interact remains poorly understood.  

A better understanding of the subtle interplay between these processes, 

and their role in controlling heart development, offers the potential to begin to 

uncover the etiology of congenital heart diseases, many of which are believed to 

have their origins during embryonic development (O’Brien, 1999). 

The difficulty of imaging blood flow in vivo has in turn made it difficult to 

ascertain the role of epigenetic factors, such as blood flow and pressure, in 

controlling heart development. Recent technological advances (i.e., high-speed 

confocal microscopy, high-speed CCD cameras, and flow visualization software) 

now allow us to make these kinds of quantitative flow measurements. Simple 

observation of the blood flow is not sufficient to understand the role it plays in 
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heart development. In order to demonstrate whether or not the fluid dynamic 

forces produced by blood flowing within a closed-circuit vascular system actually 

influence cardiac morphogenesis, we must devise a technique for: i) 

quantitatively measuring and ii) experimentally altering the flow environment in 

vivo.  With the results of this technique we wish to correlate subsequent changes 

in blood flow patterns to developmental morphology.  It is the purpose of this 

dissertation to develop a minimally invasive method of creating localized flow 

disturbances in order to better understand the role of blood flow in heart 

development. 

 

1.2 Background 

1.2.1 Zebrafish Heart Formation 
 

The zebrafish (Danio rerio) has become an important biological model 

since its introduction to science nearly two decades ago (Streisinger et al., 1981). 

External fertilization, rapid development, ease of handling, and profound optical 

accessibility have led to its widespread use in biological research (Hove, 2004). 

Pelster and Burggren (1996), through a series of experiments that blocked 

hemoglobin-facilitated oxygen transport, showed that due to their small size, 

zebrafish are able to obtain oxygen and nutrients through diffusion alone for the 

first 5 to 7 days post fertilization (dpf). The ability to survive without a functioning 

heart or circulation has made the zebrafish an indispensable model for vertebrate 

heart development. Perhaps the most important aspect of zebrafish physiology 

for biological studies is their optical transparency. Zebrafish are naturally 
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transparent until approximately 32 hours post fertilization (hpf). Subsequent 

melanin formation can be prevented for several days by exposure to 1-phenyl 2-

thio-urea (PTU) between 18-24 hpf (Karlsson et al., 2001). This optical 

accessibility coupled with external fertilization gives researchers unparalleled 

access to development as compared to mammalian and avian models. Zebrafish 

hold relevance to human heart development since, as vertebrates, the early 

developmental stages are evolutionarily conserved. 

The zebrafish heart is a two-chambered organ consisting of an atrium and 

ventricle that begins to acquire its characteristic shape at 72 hpf, although the 

cardiogenetic process begins much earlier. Differentiation of zebrafish 

myocardial precursors begins around 16 hpf, when these cells reside within 

bilateral regions of rostral lateral plate mesoderm. Integration of these lateral 

populations into a single heart tube requires their migration toward the midline, 

which occurs in concert with the medial movement of the entire rostral lateral 

plate mesoderm. Cardiac migration appears to proceed in an organized fashion, 

with the medially located ventricular precursors advancing ahead of the laterally 

located atrial precursors (Yelon et al., 1999).  

Once the myocardial precursors reach the midline (~18 hpf), they begin to 

interact and combine in a process called cardiac fusion.  Initial contact occurs 

when the two myocardiocytes caudal to the initial junction join each other, 

creating a V-shape.  Finally, the most rostral portions of both populations 

connect, creating a rostral border to a central lumen.  Viewed laterally, it is 
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apparent that the myocardiocytes have formed a shallow cone, with its 

ventricular apex raised dorsally above its atrial base (Yelon et al., 1999). 

Following cardiac fusion, the cardiac cone extends, gradually converting 

into a linear heart tube by 24 hpf.  At about 30 hpf the linear heart tube begins to 

gradually bend at the boundary between the ventricle and the atrium to create an 

S-shaped loop with the heart tube to the right, resulting in the atrium lying to the 

right and slightly dorsal of the ventricle. This looping is considered the test for 

left-right heart asymmetry (Chen et al., 1997; Chin et al., 2000). The looping 

process, usually completed in about 6 hours (Stainier, 2001), is common to all 

vertebrates.  

The heart tube begins to function as soon as it forms. Contraction begins 

at 22 hpf at a rate of 90 contractions per minute (Stanier et al., 1993) and drives 

circulation with regular contractions by 26 hpf (Kimmel et al., 1995). This flow 

becomes unidirectional despite lack of valves at 36 hpf, using sequential 

contractions (Warren and Fishman, 1998). Coinciding with the initiation of heart 

contraction, blood cell differentiation occurs in a region called the intermediate 

cell mass (ICM) that lies dorsal to the yolk tube (Thisse and Zon, 2002). While 

the heart is working, cardiac differentiation and morphogenesis continue, building 

on the foundation of the initial embryonic tube to produce the final form of the 

adult heart.  In addition to cardiac looping, other aspects of cardiac remodeling 

include valve formation, thickening of the ventricular wall, and the formation of 

ventricular trabeculae (finger-like projections of myocardium).  Recent work has 
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begun to investigate the molecular mechanisms responsible for these 

modifications that enhance cardiac function (Hu et al., 2000, 2001). 

The heart develops two sets of valves, the atrio-ventricular (AV) and 

ventriculo-bulbus (V-B) valves. A-V valve formation begins with the formation of 

endocardial cushions at the atrioventricular boundary by 48 hpf. These cushions 

are later replaced by fully functional valves by 5 dpf (Hu et al., 2000).  

Endocardial cushions are believed to be created by an epithelial–mesenchymal 

transformation that is stimulated by signaling between specialized endocardial 

and myocardial cells at the atrioventricular boundary (Eisenberg and Markwald, 

1995). 

 

1.2.2  Genetic Factors in Heart Development 

Zebrafish have also particularly become a popular model for studying 

genetic aspects of vertebrate development. Zebrafish are particularly well suited 

for loss of heart function experiments as, unlike chicks or mice, they are not 

dependent on blood flow for early survival. Given the advances in DNA 

sequencing and genetic screening, it is not surprising that a large number of 

genes have been shown to play a role in heart development. Stanier et al. (1996) 

list 58 mutations, which affect the function and morphogenesis of the heart and 

vascular system in zebrafish. They can be grouped by effect or phenotype. 

Descriptions of some of the mutations affecting cardiac morphogenesis include: i) 

Cloche, which prevents the endocardium from developing; ii) Valentine, Heart of 

Glass, and Santa mutations, which result in an oversized and distended heart; iii) 
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Heart and Soul, which results in a smaller heart; iv) Pandora, which causes 

ventricle defects; v) Miles Apart and Bonnie and Clyde ,which prevent the two 

cardiac primordial tubes from fusing, thus developing two independently 

contracting linear heart tubes and; vi) the Jekyll mutation, which prevents valve 

formation in the heart. 

Since Stanier’s 1996 paper, many more mutations have been discovered 

that influence zebrafish heart development. Notably, Reiter et al. (1999) showed 

that a mutation in the GATA5 zinc finger transcription factor led to cardia bifida, 

or two independent linear heart tubes. Additionally, the Hand gene has been 

shown to be responsible for the morphogenesis of the ventricle (Yelon, 2000), 

and silent heart embryos lack a heartbeat (Sehnert et al., 2002). It is certain that 

with more screens and sequencing data, yet more essential genes will be found 

that play a critical role in heart development.  

Along with specific gene knock outs, experiments show that neural crest 

ablation leads to cardiovascular and hemodynamic deficiencies. Experiments in 

which the neural crest cells in chicks were ablated resulted in outflow track 

abnormalities and also altered flow patterns in the developing heart tube, even 

before contraction began (reviewed by Creazzo, 1998).   

These types of genetic and ablation studies are important because they 

demonstrate that there is certainly a major role for genetic programming in 

vertebrate heart development. These studies begin to clarify the necessary steps 

and sequences that genetics play in developing the heart. However, despite the 

knowledge that certain genes or transcription factors are needed for normal heart 
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development, these studies alone cannot answer the question of what controls 

the activation of these genes in different cases and how epigenetic variables 

factor in. 

1.2.3 Endothelial Cell Response to Blood Flow

Since it has traditionally been difficult to observe the effect of blood flow 

on the vasculature in vivo, most experiments have been conducted in vitro. One 

important area of study in the field of biofluid dynamics is the effect of blood flow 

on vascular endothelial cells.  Many of these studies have been motivated by the 

apparent relationship between the onset of atherosclerosis, a condition in which 

hard plaques build up along the arterial wall, and localized blood flow conditions. 

Atherosclerosis can cause hardening of the arteries, flow blockage, and in 

serious cases stroke. The flow-dependent nature of atherosclerosis is based on 

the observation that plaque formation seemed to be localized within bifurcations 

and bends in the arteries, regions where the blood flow is disturbed. Perhaps 

more revealing was the realization that in these bifurcations and bends, the 

plaques mostly tended to form on the outside curves, which are regions of flow 

separation and lower shear stress (Jou and Berger, 1998; Jou and Saloner, 

1998). In an effort to better understand the link between flow and the onset of 

atherosclerosis, researchers focused on the response of endothelial cells to 

blood flow. 

 Endothelial cells (ECs), which line the entire vasculature in vertebrates, 

act as a barrier between the blood stream and the rest of the body by selectively 

allowing certain nutrients and cells to pass through, while keeping others out. 
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Additionally, they also act as force sensors and transducers. In vitro experiments 

conducted by Fry et al. (1965), Caro et al. (1969), Davies et al. (1989), Dewey et 

al. (1981), and others showed that ECs responded to varying levels of shear 

stress. Olesen (1988) found that the cells could sense levels of shear stress as 

low as 0.2 dyne/cm2. Cellular response depends on both the magnitude and 

direction of shear stress applied to the ECs.   

Endothelial cells respond differentially under conditions of low or high 

shear stress. Under conditions of low shear stress, defined as less than 4 

dyne/cm2, cells produce higher levels of compounds such as adhesion 

molecules, inflammatory mediators, and vasoconstrictors, which lead to an 

atherosclerotic phenotype. Conversely, at levels of shear stress greater than 15 

dyne/cm2, cells decrease production of the agents listed above and increase 

production of vasodilators, anti-oxidants, and growth inhibitors, protecting the 

cells from atherosclerosis (reviewed by Malek et al., 1999).  This research has 

led to the conclusion that to remain healthy, ECs need to be exposed to a 

minimum level of shear stress. If the shear stress drops below this level, or 

extensive retrograde flow exists, the process of atherosclerosis is facilitated 

(Gharib and Beizaie, 2003). 

1.2.4  Flow Alteration Studies 

 The notion of flow affecting heart development is partly based on in vitro 

studies, which show that ECs, which comprise the lumen of the entire 

cardiovascular system, change their morphology, orientation, behavior, and 

transcription patterns as a result of changes in flow conditions. As the heart’s 
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luminal surface is lined with endothelial cells, the notion of heart development 

also changing to flow conditions is reasonable. 

However, with regard to the flow-dependent effects of heart development, 

studies will remain highly speculative until the intracardiac milieu in developing 

hearts has been quantitatively analyzed.  Flow across a cultured monolayer of 

cells is largely one-dimensional, unlike the flow one would expect in vivo. 

Furthermore, it seems likely that a monolayer of cultured cells interacts quite 

differently from ECs in their natural environment (Davies et al., 1995), which grow 

on a basal membrane and interact with the additional underlying layers. In order 

to truly establish the importance of blood flow on not only ECs, but also heart 

development, flow studies will have to be conducted in the system’s natural 

environment, i.e., in vivo.  

The mechanisms responsible for early heart development, and particularly 

for looping, have been debated since the late 1800s. At that time, most 

researchers could be divided into two different schools of thought. One believed 

that heart looping was completely intrinsic and preprogrammed (e.g., Stohr, 

1924, 1925, 1927), whereas the other believed that flow was responsible for 

proper heart development. On the flow-dependence side, the belief was that 

heart tube looping was a result of asymmetric flow impinging differentially on 

different regions, hence causing the development of the different heart structures 

(e.g., Roux,1895; Spritzer,1923).  

Experimental results supporting both schools of thought have been 

presented. Studies in which portions of the early heart were reimplanted in a 
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different host showed that the heart developed normally, even though it 

experienced a different flow environment than its original position (e.g., Ekman, 

1925). In 1932 Bremer described twin swirling blood streams from the vitelline 

veins as the factors responsible for the differentiation of the heart. However, 

Yoshida et al. (1983) revisited the flow patterns described by Bremer and found 

that the descriptions had been different than observed, thus discrediting Bremer’s 

argument.  

An important experiment arguing against the necessity of flow in heart 

looping is Manasek and Monroe’s 1972 paper, which showed that in Hamburger-

Hamilton (HH) stage 9+ chick embryos, blood flow is not needed for the looping 

of the heart. Chick embryos were placed in cultures, and potassium was added 

to block heart contraction. The authors observed that despite the absence of 

blood flow and heart contraction, the heart still began the looping process. In 

more developed chicks where the heart had already undergone early looping, the 

heart continued to loop. This seems to indicate that after stage 9 in chicks, flow is 

not needed for certain aspects of heart development. Although looping in the 

heart was shown to occur in the absence of both flow and heart contraction, one 

should take care to differentiate between form and function. That is, although the 

heart looped to a certain stage, the research does not imply that the heart was 

morphologically sound.  

More recently, the idea that flow is indeed needed for normal heart 

function and development has resurfaced in experiments using avian (Clark et 

al., 1984) models. Additionally, Sedmera et al. (1999) conducted two sets of 
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experiments on HH stage 21 chicks in which different vessels were ligated or 

constricted. To increase the afterload of the heart, the conotruncus was banded. 

The observed results included ventricular dilation, thickening of the myocardium, 

spiraling of the trabeculature, and the right atrio ventricular valve developing as a 

bicuspid valve instead of the normal tricuspid.  Left atrial ligation, causing 

decreased left ventricle preload and increased right ventricle preload, resulted in 

hypoplasia of the left heart and compensation via growth in the right heart.   

Another set of experiments blocking one of the vitelline veins in HH stage 

17 chicks (Hogers et al., 1997) found that at later stages (34, 37, and 45) a large 

group of deformations was observed. These deformations included ventricular 

septal defects, semilunar valve analomies, atrioventricular anomaly, and 

pharyngeal arch artery malformations. This study, using dye to mark blood flow, 

concluded that flow patterns in the heart were significantly altered due to the 

vitelline vein blockage. 

A recent study by Hove et al. (2003) makes a strong case that blood flow 

is necessary for proper heart development in the zebrafish. Hove et al. showed 

that blocking the flow of blood either into or out of the heart results in abnormal 

heart development. In this experiment, 50 um glass beads were implanted into 

the space between the yolk sac and epithelium of 37 hpf zebrafish embryos. In 

many of the fish, the bead ended up in the blood stream and was brought to the 

heart. The control fish were considered those in which the bead ended in a 

position near the heart, but did not affect the blood flow.   
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Fish in which the flow of blood was blocked demonstrated three 

characteristic phenotypes. First, their hearts had greatly reduced outflow tracts 

(i.e., bulbus arteriosus).  In addition, the hearts did not loop. Finally, the walls of 

the inflow and outflow tracts collapsed and fused, beginning at 3 dpf. The 

similarity of the defects resulting from disrupting either inflow or outflow suggests 

that it is not the changes in transmural pressure in the cardiovascular system that 

is responsible, as the two different blockades should decrease (blocked inflow) or 

increase (blocked outflow) the pressure.  Instead, the decreased shear force, the 

common feature of the two treatments, seems most likely to generate the 

developmental phenotype. These studies make a strong case that blood flow is a 

necessary factor for functional heart development in vertebrates.   

Bartmann et al. (2004) argue that the lack of endocardial cushions 

observed by Hove et al. were not a result of lack of flow, but rather a lack of 

function, since many fish pharmacologically treated to prevent heart function still 

developed an endocardial ring.   

Based on the previous body of data it appears evident that specific 

developmental windows in time enhance or decrease the sensitivity of vascular 

ECs to mechanical stimulation. The paucity of studies linking hemodynamics and 

development is most likely due to the difficulty of not only imaging blood flow in 

vivo, but making quantitative measurements as well. In order to better define 

these development windows, more precise and reversible methods for flow 

alteration are needed. 
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1.2.5  In Vivo Flow Imaging 

 Techniques such as ink injection (Bremer, 1932; Hogers et al., 1997) and 

microangiography (Yoshida, 1983; Weinstein et al., 1995; Weinstein, 2002) 

provide structural data and qualitative information regarding flow fields, but they 

do not provide the quantitative information required for detailed flow-structure 

interaction studies. 

 Quantitative flow data have been acquired using a suite of non-invasive 

methods. Ultrasound in chick embryos (Clark and Hu, 1982), zebrafish and mice 

(Phoon and Turnbull, 2003), particle tracking in the zebrafish (Schwerte and 

Pelster, 2000), and a novel use of fast confocal line scanning in mice embryos 

(Jones et al., 2004) have been used to acquire blood velocity. These techniques 

are useful, but are limited to vessel size (small vessels for particle tracking and 

large vessels for ultrasound) or to making a measurement at a single point or 

radial slice.   

Although better suited for studying structure due to slow scan times, MRI 

has been used to capture flow data inside the human heart (Kilner et al., 2002), 

cerebral aneurysms (Tsuchiya et al., 2004) and cerebral spinal fluid velocity 

through the foramen magnum (Haughton et al., 2003). Using cardiac gated 

images, the flow throughout the cardiac cycle in these regions has been 

assembled. MRI is limited for use at scales approaching that of embryonic blood 

vessels because of its low spatial resolution. 
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In regions such as the embryonic heart where there is a large density of 

particles (blood cells) and rapid velocity changes, flow particle tracking and MRI 

will not work. A technique that can deal with these conditions is to study Digital 

Particle Image Velocimetry (DPIV).  

DPIV is a whole-field, two-dimensional flow analysis technique that 

statistically follows groups of particles between pairs of consecutive images. 

Planar flow images are digitally acquired and stored. In software, each image is 

subdivided into many smaller, user-defined, interrogation windows. The Fourier 

transforms of corresponding interrogation windows are then cross-correlated, 

producing a peak corresponding to the average displacement within that window. 

By compiling all of the results from the individual interrogation windows, the 

velocity of the particles within the field of view can be calculated (Willlert and 

Gharib, 1991). Meinhart et al. (1999) have developed a technique for using DPIV 

in 30 um channels. The sizes of the channels used in their experiments are on 

the same order as those found in the embryonic heart chamber lumens.  

In vivo DPIV has been limited to slower more external vessels such as rat 

and mouse mesentery vessels (Sugii et al., 2002; Nakano et al., 2003; and 

Koutsiaris et al., 2004). The difficulty so far in utilizing DPIV in vivo has been the 

high blood flow rates in the larger vessels and heart. Optimal DPIV is performed 

when the particles being used are not blurred in the images. In the larger 

vessels, blood flow is too rapid for most microscope based imaging systems to 

effectively freeze the motion of the cells.  
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1.3 Objective and Organization 

The formation of a functional heart is regulated by the coordinated 

interplay between a genetic program, fluid mechanical stimuli, and the inter- and 

intra-cellular processes that link them (Nerem et al., 1993; Takahashi et al., 

1997; Taber, 1995; Hove et al., 2003).  This process is genetically regulated at 

many different stages, including differentiation, migration, and pattern formation.  

This study investigates the relationship between altered blood flow and 

altered heart shape and function. The goal is to develop a technique that allows 

for reversible, precise, and minimally invasive control of vascular blood flow. 

Additionally, in vivo quantitative flow measurements on the micron-scale existing 

in the zebrafish embryo were developed to map the resulting flow fields and 

correlate them to altered heart morphology.  This work will allow us to 

quantitatively compare hemodynamic variables such as flow velocity and shear 

stress in both test and control fish.  Furthermore, the heart morphologies 

resulting from different flow regimes should serve as strong evidence that blood 

flow is an important morphogen during vertebrate heart development  

More specifically, the goals are to: i) apply a novel technique (DPIV) to the 

problem of mapping internal blood flow during development, ii) develop a 

technique for delivering and positioning small magnetic particles into the 

developing circulatory system, and iii) determine the effects of occluded and 

restarted flow on the major events of cardiogenesis.  

Quantitative flow visualization will be accomplished through the use of 

state-of-the-art optical (high-speed imaging) and fluid-mechanical (digital particle 
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image velocimetry [DPIV]) techniques.  The flow occlusion methodology 

presented herein is the result of a technology transfer from a fluid mechanical 

engineering application (Hayes et al., 2001) involving the use of micron-sized 

paramagnetic particles under the control of a custom-designed micro-

electromagnet. Initial tests of this modified methodology are performed in vitro 

with controlled flow manipulations in capillary tubes and are then applied to an 

established vertebrate model organism, the zebrafish. 
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Chapter 2: Experimental Set-up and Methods 

2.1  Introduction 

This chapter is divided into 3 sections describing the experimental setups 

and methods utilized in our experiments. The first section deals with zebrafish 

handling. The second and third sections describe the imaging and injection 

methods, respectively. 

 

2.2  Zebrafish Handling 

Due to their numerous advantages, the zebrafish (Danio rerio) was 

chosen as our model (Fig.1). The imaging experiments were conducted at 

Caltech’s Biological Imaging Center, which has extensive experience in working 

with zebrafish. Additionally, a dedicated zebrafish rearing facility houses wild 

type as well as different transgenic zebrafish. 

 
Figure 1:  A magnified 37 hpf zebrafish embryo and the embryo to the left of a penny 
placed for scale.  
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As wild type fish are separated by sex, they are joined in smaller tanks for 

mating. Two females and one male are placed overnight in  specialized breeding 

housing (Aquatic Habitats). The housing consists of two plastic tanks: a smaller 

tank sits inside the larger tank. Small holes on the bottom of the small tank allow 

eggs to fall into the outer container, safely away from the adult fish that may 

cannibalize them. A timer controls the lighting in the fish room, 14 hours of light 

and 10 of darkness, mimicking the lighting conditions during their springtime 

mating season. 

The next morning, after the lights turn on, the adult fish are returned to 

their respective tanks, and any eggs are collected by pouring the contents of the 

outer tank through a tea strainer. The eggs are washed in a gentle stream of 

egg water (100X Egg water = 6g Instant Ocean sea salt in 1L distilled water) 

and are then transferred to a plastic petri dish and a solution of egg water with 

1g/l of methylene blue for fungal inhibition. 

Any dead embryos and waste products are removed from the dish to 

minimize bacterial growth, and the remaining eggs are rinsed several times to 

prevent fungal infections. The dish is then stored in an incubator maintained at 

28.5 °C.  At about 14 hpf the eggs are transferred to a solution of 30% Danieus 

Ringer with .003% phenylthiourea to prevent pigment formation and to make the 

fish optically transparent for several days. In the event that embryos are needed 

before 48 hpf, tweezers are used to puncture and remove the chorion to free the 

fish. Once free of their eggs, the fish are kept in 30% Danieus solution. 
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In all experiments requiring immobilization of the fish, the procedure was 

the same. Fish were anesthetized in a 0.02% solution of Finquel/tricane in 30% 

Danieus. Then, individually, the fish were transferred to a small vial of 1.0% ultra 

low gelling temperature agarose (Sigma) and then placed in a drop of agarose in 

a petri dish that has been chilled to 0 °C. Before the agarose hardens, the tip of 

an Eppendorf microloader is used to position the fish as desired in the drop of 

agarose (Westerfield, 2000). When using an inverted microscope, the fish are 

mounted ventral side down in a modified petri dish that consists of a 1cm 

diameter hole cut out in the center with a round slide-cover glued to the bottom of 

the dish over the hole (Fig. 2). The use of the cover slip provides a thinner 

surface and allows the fish to be mounted within the working distance of the 

objective lenses. In both cases, the agarose is allowed to harden and is then 

covered with a 30% Danieus solution with PTU and/or finquel. 

 

Figure 2: Modified petri dish for inverted microscopes 
 

In experiments where the imaging only lasted a couple of minutes and no 

mounting was required, the fish were placed either in a drop of water or in non-
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hardened agarose on a cover slip. The viscosity of the agarose was useful in 

slowing down the movements of the fish since they were not anesthetized.   

 

   

2.3 Imaging Modalities 

2.3.1 Confocal Microscopy  

The first confocal microscope used in these experiments was a Zeiss 

LSM400.  Fluorescent staining was performed in an effort to increase the 

contrast between the blood cells and the surrounding tissues. Embryos were 

soaked overnight in 0.001% Bodipy FLC5-Ceramide (Molecular Probes). The 

fish were washed several times in fresh Danieu's solution to remove excess 

stain and were then transferred to a new dish.  After staining, the fish were 

mounted on the modified petri dishes to allow inverted confocal imaging. A 

computer running the Zeiss LSM software controlled the scanning, and a FITC 

filter set was used to allow the proper wavelength of light (505 nm) to excite the 

Bodipy stain. Images were acquired at 20 °C at the microscope’s maximum 

frame rate of 0.7 frames per second, which is much slower than the cardiac 

cycle. The lower temperature, as compared with the incubator temperature of 

28.5 °C, slowed the heart beat, providing more images per cardiac cycle. All 

images were stored on the computer, then transferred to a disk, and analyzed 

and processed using LSM software (Zeiss), Object-Image 2.05, Photoshop 5.02 

(Adobe), and Freehand 8 (Macromedia). 
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2.3.2 High-Speed CCD Cameras 

A) Dalsa 

The high-speed imaging was performed using a borrowed Dalsa CA-D6-

0256 (256 by 256 pixels) CCD camera and an EPix frame grabber housed in a 

computer running Windows 2000. The camera was mounted on the optical port 

of a Axiovert Microscope (Zeiss). Namarksi optics were used on the microscope 

to enhance contrast and provide thinner optical slices. The fish were imaged 

using a 10x objective lens at a frame rate of 440 fps. The high degree of 

apparent magnification is due to the camera’s small imaging area. The images 

were stored as TIFs on the computer's hard drive. After collection, the images 

were transferred to a dedicated hard drive for permanent storage. The images 

were copied and converted to RAW files using Adobe Photoshop 5.02 for use in 

DPIV processing. 

 

B)  Kodak 

Additional high-speed imaging was performed using a Kodak 1000HR 

high-speed camera that was mounted horizontally on a Nikon Eclipse TE2000-S 

inverted microscope (Fig. 3). The images were stored and processed as 

described above.  To calculate blood cell velocities manually, the images from a 

given data set were imported as an image series and opened as a stack in 

ImageJ (NIH).  The change in the position of a blood cell or particle from one 

frame to the next was measured, and since the frame rate and scaling factors 

are known, the distance and time of travel can be used to calculate velocity. 
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 Figure 3: Kodak HRC 1000 on the left and Nikon Microscope on the right. 
 

2.4  DPIV  

The red blood cells in the images acquired from the Dalsa camera were 

used as the tracer particles in our standard DPIV software. Interrogation 

windows of 16 x 16 pixels with an 8 x 8 pixel overlap (50%) were used to reduce 

errors caused by out of plane motion and the movement of the surrounding 

tissues.  DPIV analysis was performed on images acquired at 20, 25, and 28 °C.  

The intracardiac blood flow patterns appeared to be temperature invariant 
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across this range, although flow velocity did decrease slightly with lower 

temperatures (data not shown).   

 

2.5  Injections 

Twelve 48-52 hpf fish at a time were mounted, resting on their right sides, 

on one petri dish using the procedures described above. Injection needles, 

prepared using a Sutter Industries Laser puller with Plain Quartz microtubes 

(Sutter Instruments O.D. 1.0 mm, I.D. 0.70 mm, 10 cm length, Catalog #100-70-

10) at the following settings: Heat 850, Filament 14, Velocity 20, Delay 110, Pull 

Strength 190, provided an effective tip for these injections. The micropipettes 

were backfilled with 3-4 ul of 250 nm PEG 300 fluorescent magnetic particles 

suspended in distilled water (Micromod, Germany) using Eppendorf 

Microloaders. The micropipette was then loaded into a General Valve PLC-100 

Pico-Spritzer assembly and a micromanipulator. Tweezers were used to break 

off the tip of the micropipette at an angle as the sharper edge made injections 

easier. The open tip diameter was approximately 15 um as observed under a 

dissecting microscope (Zeiss Stemi SV 11). The petri dish was illuminated with a 

dual arm Zeiss KL 1500 LCD light source (Fig. 4). 
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Figure 4: Microinjection setup with micromanipulator and micropipette on the right side of 
image. 

 

Due to the difficulty in injecting solid particles into the vasculature, a 

custom protocol was developed. The balance pressure (Pbal) on the Pico Spritzer 

was increased to 0.2-0.3 PSI until the slug of fluid traveled down to the tip of the 

micropipette; it was then lowered back to 0.1 PSI. The tip of the micropipette was 

brought to rest against the dorsal artery near the middle of the embryo’s tail. The 

pipette was withdrawn and the pressure was increased until there was a slow 

continuous flow of the magnetic suspension from the tip into the Danieu’s 

solution in the dish. The tip was brought back to the fish, and then pushed 

through the epithelium and into the dorsal artery. Since the internal pressure of 
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the fish is higher than the ambient fluid, Pbal was raised to 0.3 or 0.4 PSI. When 

positioned correctly in the blood vessel, a small cloud of magnetic particles was 

seen to enter and travel along the blood stream of the fish. Only one successful 

injection was done per fish, in order to prevent excessive fluid volume from 

accumulating in the fish. Observation showed that within 15 minutes after 

injection, the magnetic particles settled above the yolk sac posterior to the heart 

and did not obstruct the flow.  

In experiments where the fish were reoriented after injection, to provide 

better views of the hearts, the fish were removed from the agarose and 

remounted in a new drop of agarose, ventral side up. Danieus solution was 

added after the agarose hardened.  

 

2.6   Miniature Electromagnet 

Figure 5 shows the magnet, developed by Dr. Mladen Barbic of Caltech, 

used in these experiments. It consists of a 50 um soft-ferromagnetic (i.e., 

requires low relatively weak magnetic field to become magnetized) core, 

wrapped with 25 um diameter magnetic wire. The tip is sharpened by electro-

chemical etching (Barbic, 2001). This assembly is mounted on a small chip, with 

two leads attached to the core windings allowing for connection to external 

power sources. The small tip size increases the field gradient, allowing for a 

stronger force to be exerted on magnetic particles.  
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Figure 5: Miniature electromagnet. 50 um soft-ferromagnetic core is surrounded by two 
sets of 25 um magnetic wire windings. 
 

 The magnet was held by an alligator clip attached to a wooden rod that in 

turn was held by an electrode holder (WPI). The entire assembly was mounted 

onto a micromanipulator as shown in Figure 6. 
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Figure 6: The magnet setup. The magnet is at the end of the wooden rod. The whole 
assembly is controlled by a 3-axis micromanipulator. 
 

A Kepco Bipolar Operational Power Supply/Amplifier was used to supply 

the current to drive the magnet. A simple circuit, shown in Figure 7, containing a 

156 Ohm Power Resistor with a 500 W rating, used to prevent resistor break 

down by overheating, provided a constant current to the magnet. The amplifier 

was run in voltage control mode, with the voltage set at approximately 50 V. This 

resulted in a current of 320 mA, well above the 100 mA at which the magnet was 

calculated to exert a force of 10 pN on 1 um magnetic particles (Barbic, 2001), 

and well above the estimated drag forces on the particles due to blood flow 

(1pN). 
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Figure 7: The different components of the circuit to drive the electromagnet. 
 

2.7  In Vivo Magnetic Particle Control  

The entire dish was placed underneath the Nikon SMZ1000 dissecting 

scope. The micromanipulator/magnet assembly was positioned near the stage of 

the microscope and arranged such that the tip of the magnet came in contact 

with the fish as shown in Figure 9.  
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Figure 8: The electromagnet is brought up against the fish near the heart. 
 

To prevent any current spikes from damaging the magnet, only one lead 

of the magnet was connected to the circuit before the voltage source was turned 

on. The magnet was positioned such that the tip of the magnet was touching the 

fish along the ventral centerline. The particles that had settled out of the blood 

stream tended to collect on either side of this centerline. When the magnet was 

placed on the fish, the particles migrated towards its tip; by moving the magnet 

slowly on either side of the centerline, a small bolus of particles was formed. In 

intervals of approximately 5 minutes, the magnet was moved towards the inflow 
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of the heart. When the flow was blocked, the blood cells began to accumulate 

upstream of the blockage and on the sides of the yolk sac. 

Once the bolus was in place, to minimize particle absorption into the 

tissues, the voltage was reduced from 50 V to approximately 25 V thereby 

reducing the current and magnetic field strength.  

The methods described in this chapter were used to visualize the blood 

flow inside the fish and to control the position of magnetic particles within the 

blood stream.  
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Chapter 3: The Use of Confocal Microscosopy for In 

Vivo Flow Imaging  

3.1  Introduction  

This chapter discusses the use of confocal microscopy to image intra-

cardiac blood flow and heart morphology during zebrafish development.  

 

3.2  Experimental Conditions 

4.5 dpf fish were stained and mounted as described in Chapter 2. An 

appropriate filter set (FITC) and the maximum frame rate of the confocal 

microscope (0.7 sec per frame) were used to acquire the images. Initially, it was 

thought that the Bodipy Ceramide, with its relatively high permeability into living 

cells, would stain the red blood cells along with the membranes of the heart, 

allowing the cells to be used as tracer particles for the flow. However, the 

opposite occurred, with the serum taking up the dye. The procedure was similar 

for the high-speed CCD experiments, but no staining was performed. 

 

3.3  Confocal Imaging Results 

Laser scanning confocal microscopy was used to obtain a general map of 

the heart and the resulting flow. At the maximum scan rate of 0.7 sec per frame, 

the blood flow was too fast to freeze the individual cells in motion resulting in 

black streaks in the fluorescent serum (Fig. 10). However, these images provided 
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excellent heart structure information and a qualitative map of the intracardiac flow 

field. 

 

Figure 9: Confocal image of the 4.5 dpf heart during systole. The serum appears white in 
the image. 
  

Given the small size of the heart, with a length of approximately 150 um 

and a Reynolds number less than 1 (0.02), implying that the ratio of viscous 

forces to inertial forces is very large, such a dynamic system was unexpected. 

The long streaks observed in the image indicated a relatively high blood velocity 

since the particles traveled across the image in the time it took to scan. The 
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presence of circular white patterns near the valve also suggested regions of 

vorticity just downstream of the ventricular valve. Due to the slow scan time 

relative to the cardiac cycle, the series of images were not acquired in 

consecutive phase order and were sequentially ordered manually. The resulting 

image sequence showed that the heart contractions themselves were extremely 

dynamic. An ejection fraction systole of approximately 60% was calculated by 

fitting a curve to half of the projection of the heart at end diastole and end 

systole. Then making the assumption that the heart was symmetric about this 

line, the volume was calculated by rotating the curve about the symmetry line. 

The ejection fraction was the difference in the two volumes.  

Despite our inability to extract quantitative information, the images showed 

the presence of an extremely dynamic and complex flow environment, with the 

formation of a jet between the atria and ventricle and between the ventricle and 

bulbus. Furthermore, based on the confocal microscope images, the V-B valves 

were shown to be present and functioning at this stage and were subjected to 

regions of vorticity on their downstream surface. Figure 11 shows a 

representational image with the vorticity calculated from the DPIV analysis 

superimposed on the confocal image. The relatively high velocity implied by the 

streaks in combination with the small size of the heart and viscous blood 

suggests a high shear environment in the heart. 
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Figure 10: Hybrid of DPIV and confocal laser scanning microscopy results, representing 
the region of vorticity just downstream of the V-B valve. The reddish circles imply counter-
clockwise vorticity and blue represents clockwise vorticity. 
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Chapter 4: In Vivo Flow Analysis  

4.1 Digital Particle Image Velocimetry 

Digital Particle Image Velocity (DPIV) is a whole-field, two-dimensional 

flow analysis technique that statistically correlates groups of particles between 

pairs of consecutive images.  Developed initially as a diagnostic quantitative flow 

visualization tool for the field of fluid mechanics, the use of DPIV has spread to 

many different branches of fluid dynamics since its development over 10 years 

ago.  

DPIV experiments are conducted by seeding a flow with small neutrally 

buoyant particles. The particles are selected such that they both follow the flow 

patterns and do not alter the flow properties. For experiments using liquids, small 

(10-100 um) reflective or fluorescent particles are used, while for gas 

experiments, oil or alcohol droplets are often used.  These particles are typically 

illuminated using a planar light sheet, and sequential images are acquired of the 

flow. These images are acquired with a CCD camera, which sends them to 

computer memory. The images are in turn processed using the DPIV software. 

The key to illumination and acquisition is to provide high contrast between the 

particles and the background, freeze the motion of the particles in each image, 

maintain short time between images so that particles do not move out of the area 

of interest, and avoid regions of high three-dimensionality in the flow.  

The rapid exposure time necessary to freeze the image has been 

achieved with mechanical shutters in front of the camera, and more recently by 
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asynchronous frame triggering of a CCD camera in conjunction with pulsed 

lasers. Improvements in CCD data transfer rates have allowed for the use of 

DPIV in higher velocity flows than initially possible. The width of the laser sheet 

can also be controlled to some degree to allow some flexibility in any 3-D 

movements of the particles. 

In processing the data, sequential pairs of images are compared. Each 

image is divided into smaller interrogation windows. In contrast to particle 

tracking, DPIV statistically follows patterns of particles from one image to the 

next. Using the intensity or gray levels of the particles, the two-dimensional 

cross-correlation is calculated. The peak value of the cross-correlation 

corresponds to the displacement and direction that gives the best overlap 

between the particles in the two images. Since the time between images is 

known, this displacement vector is easily converted into a velocity vector. By 

repeating this process for each interrogation window, a vector field map of the 

flow area is produced.  

In order to optimize this process, several conditions must be met. First, the 

introduction of the particles should not alter the properties of the flow. Secondly, 

there should be enough particles to provide a high degree of accuracy in the 

calculations. Additionally, the interrogation windows should be small enough to 

minimize any velocity gradients, yet maintain enough particles (5-7) within each 

window to lower the error in the statistical calculation. 

DPIV differs from particle tracking in that the software is not following 

individual particles from frame to frame. Rather, the software is following 
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statistically groups or patterns of particles. The advantage of this method is that 

the entire flow field has markers with which to analyze the flow; there are no 

voids. However, the high number of particles makes it difficult and tedious to 

perform these calculations by hand. The density of the particles is a balance 

between leaving no voids, yet not having a density so high that the particles 

begin to overlap each other. Figure 11 below shows representative densities of 

particles for three different flow analysis methods, particle tracking, DPIV, and 

laser speckle velocimetry (LSV). Figure11a shows what a reasonable 

concentration of particles for particle tracking could be. Due to the low number of 

particles, it would not be overly tedious to manually track these particles from one 

frame to the next. Figure 11c shows the density typical of LSV. In this technique 

rather than follow groups of particles, the software follows “speckles” of light and 

dark regions. With the overlapping of particles, DPIV would have a hard time 

calculating a meaningful cross-correlation due to the overlapping pixel patterns. 

 

Figure 11: The three modes of particle density. The white points represent the tracer 
particles. A)  A low density of particles is appropriate for particle tracking. B) A high 
concentration with no overlapping of particles for DPIV. C) A higher density of particles is 
used for laser speckle velocimetry (LSV). 
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Another factor to optimize the accuracy of DPIV is setting up the 

interrogation windows so the shift of particles from one frame to the next is not 

greater than approximately one quarter of a window length (Gharib and Dabiri, 

2000). Under this constraint, the majority of particles in the first image are still 

present in the second one, a small portion have either left or entered the 

windows. For example, using 16 x 16 pixel windows, the average displacement 

should not be larger than 4 to 5 pixels. Further techniques such as slightly 

shifting the interrogation window itself from one frame to the next can be used to 

maintain a sufficient number of particles within the interrogation region. Also, 

outlier removal and other error detecting schemes are normally implemented 

(see Gharib and Dabiri for more details). 

In order to save computational expense, instead of performing all the 

addition required of the cross correlation in the spatial domain, the FFT (Fast 

Fourier Transform) of the spatial information is performed, and the complex 

conjugates are multiplied. The inverse FFT is performed on the product, and the 

output produces a velocity vector in the spatial domain. For a window of N pixels 

by N pixels, this results in N2LogN calculations as opposed to N4 calculations in 

the spatial domain. The calculations can further be reduced by taking advantage 

of the symmetry of the FFT (Willert, thesis). By compiling all of the results from 

the individual interrogation windows, the flow properties within the field of view 

can be calculated (Willlert and Gharib,1991). For a deeper mathematical 

description of DPIV, Willert and Gharib (1991), as well as Westerweel (1993), 

provide excellent references. 
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4.2 Micro-PIV 

With the increase of MEMS devices aimed at biological use, interest in 

mircofluidics has increased.  The application of DPIV at such small sizes has not 

been a simple adaptation. Along with the normal constraints on performing DPIV, 

and additional set of problems are encountered at the smaller length scales. One 

of the difficulties in microPIV has been the selection of particles. Particle 

selection is not immediately obvious, because there is a need for enough 

particles to seed a flow in sub-millimeter channels, yet they should not be overly 

subject to the effects of Brownian motion, which would add random movement to 

the particles. Additionally, the typical laser-sheet illumination method is not as 

easy when the flow chamber is placed underneath a microscope. Since the flow 

chambers are so thin, the entire flow volume is illuminated by the laser sheet, so 

extra care must be taken to account for any visible 3-D effects. Devasenathipathy 

et al. (2003) have managed to lessen the restrictions of the above problems by 

performing microPIV in microfabricated 100 um wide channels in which dual 

Nd:Yag lasers were used to illuminate the motion of 500 nm fluorescent particles 

using a fiber optic cable to localize the illumination. The images were captured 

using a cooled CCD camera. A combination of PIV and particle tracking 

(Takehara et al., 2000) was used in the analysis to provide higher resolution 

results. The techniques used in these experiments may lend themselves to 

straight and non-moving biological systems. 
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4.3 In Vivo DPIV 

As mentioned in earlier chapters, there is strong evidence suggesting that 

blood-flow induced forces play a role in vertebrate heart development. However, 

in order to better understand any interplay between flow and development, a 

means of analyzing the intra-cardiac flow field must be developed. As it stands 

now, analysis of the intra-cardiac flow field is limited to qualitative methods only.  

One of the goals of this thesis is to develop a method of using DPIV for in 

vivo flow analysis. There has been some use of DPIV for analyzing the flow of 

blood in straight, slow moving surface vessels, such as the arterioles in the 

mesentery tissue of rats (Sugii et al., 2002).  Use of DPIV in deeper tissues and  

more complicated flow has not yet been performed. The constraints on 

microDPIV are further compounded when working with an in vivo model. Along 

with the issues of particle selection, optical accessibility, and moving boundaries 

are other factors that must be addressed. 

 The hypothesis for this project is that a combination of microscopy and 

digital imaging will provide images suitable for in vivo DPIV. We choose the 

zebrafish (Danio rerio) as our model due to the optical accessibility and rapid 

development time. We commence with a laser scanning confocal microscope 

and then use CCD cameras and Nomarksi optics to acquire images. 

Following our use of confocal microscopy as discussed in Chapter 3 we 

switched over to the use of CCD cameras. A Pulnix 9701 TM CCD camera was 

connected to the camera port of an inverted compound microscope (Zeiss 

Axiophot) and used to acquire images of the blood flow in a 4.5 dpf zebrafish 
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embryo.  However, the maximum frame rate of 30Hz was too slow to freeze the 

image of the cells in each frame, so a faster camera was required. 

A high-speed CCD camera (Dalsa CD-D6-0256) was next used. To 

support the weight of the camera on the vertical camera port, ropes were hung 

from the ceiling and passed underneath the camera. The camera was 

connected to an Epix frame grabber in a computer running Epix software (XCAP 

v.1.0). The embryos were mounted in agarose as previously described and 

imaged at room temperature. Nomarski optics were used to enhance the 

contrast and provide thinner optical sectioning. This resulted in a reduction of 

the amount of light passing through the embryo so the maximum illumination 

setting of the microscope was required. Due to the vertical positioning of the 

camera some data collection runs were not useable because of a slight 

“rocking” of the image due to camera shake. Side ports such as those found on 

the Nikon were easier to use. A frame rate of 440 frames per second (fps) 

successfully froze the movement of the blood cells in each frame.  Figure 12 

shows images acquired using the technique above, with the different heart 

chambers and blood cells labeled for identification. 
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Figure 12: Two frames from the data set showing systole and diastole of the 4.5 dpf heart. 
The red contours are the heart lumen boundaries. 
 

At this frame rate, individual blood cells were distinguishable, and the 

different cardiac phases (e.g., systole and diastole) were evident. Imaging was 

set up to maximize the focus on both the A-V and V-B valves. For the heart, a 

magnification provided by a 10x objective lens seemed to provide the best 

compromise between resolution and a large enough viewable area to capture the 

entire flow field. It should be noted that the magnification required depends on 

the camera and the microscope being used. The Dalsa has a 256 x 256 pixel 

sensor, and in combination with the camera port on the Zeiss microscope, the 

heart filled the field of view with a 10x objective. However in later experiments 

using a Kodak high-speed camera, a 20x objective was required to view the 

same area. 
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4.4 DPIV Settings 

 Based on the image size of 256 x 256 pixels, an interrogation window size 

of 32 x 32 pixels with a 50% overlap was initially chosen. However, it soon 

became evident that the window size was too large for the heart lumen, since the 

windows extruded quite a way into the surrounding tissues and additionally did 

not provide many vectors for the results. Window sizes of 16 x 16 and 8 x 8 were 

subsequently used. In the end the 16 by 16 windows were finally chosen. 

Disturbingly, the peak velocity calculations changed according to the window 

size. Manual particle tracking was used to calculate the velocities presented 

below. 

The results of the DPIV processing confirmed the qualitative data obtained 

using the confocal scanning images. The resultant velocity vectors demonstrated 

the existence of jets through the V-B and A-V valves and regions of vorticity 

downstream of the valves during both diastole and systole (Fig. 13).  



 44

 

Figure 13: Comparison of confocal images and resultant DPIV from high-speed CCD 
images. (b=bulbous, v=ventricle, a=atrium, vbv=ventriculu-bulbar valve) First row (1a,c,e) 
shows  the heart during diastole. 1c shows the DPIV vector field, and 1e shows the 
vorticity field for the same data. The second row shows the same fields but during systole. 
(From Nature 412: 172-177) 
 

 

4.5 Results 

 Resulting velocities from the images acquired using the Dalsa high-speed 

camera between the atrium and the ventricle were calculated to be 0.5 cm/sec.  

Shear stress is defined as the partial derivative of the flow profile, 

perpendicular to the direction of flow. For example, for a two dimensional 

flow profile traveling along the x-axis, with height along the y-axis, shear stress 

would be calculated by: 

)(yu
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For the shear stress calculations through the V-B valve, a no-slip linear 

flow profile, y
h
Uyu =)( , where h is vessel radius, was chosen since the flow from 

the atrium to the ventricle does not have time to fully develop. This results in a 

shear of  

h
Uµτ =  . 

There are no exact numbers for the viscosity of the blood in the zebrafish 

since there is not enough blood to perform normal viscosity measurements.  

Further complicating the measurement, the viscosity of blood is dependent on 

velocity, hematocrit (blood cell concentration) and strain. Given the relatively 

large size of the vessel under examination and the relatively high velocity flow, µ 

was assumed to be constant at 5x10-3 N·s·m-2, roughly 5 times that of water. 

This number may be slightly incorrect, but since shear stress scales linearly with 

viscosity, a small change in viscosity would not cause a large change in the 

shear stress. The shear stress on the wall at the A-V valve was calculated to be 

over 70 dynes/cm2, well over the 0.2 dynes/cm2 needed for endothelial cells to 

sense. We also did tests at 25 and 27 °C and found similar flow patterns, with a 

negligible increase in velocity. 

To ensure that the shear results are not largely dependent on flow profile 

assumptions, the wall shear stress for a fully developed flow as well as a 
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partially developed flow were calculated and found to be higher than a linear 

flow profile (Appendix A). 

 

4.5.1 37 hpf fish

The success in imaging the 4.5 dpf fish, and the high shear rates 

encountered, encouraged us to study the flow in the 37 hpf embryo. At this stage 

the atrium and ventricle are aligned in a tube-like configuration, the bulbus is not 

present, and the valves have not yet developed.  Due to the orientation of the 

heart at this stage, only the inflow of the blood to the heart over the yolk sac was 

visible (Fig. 14a). As the velocity at this stage and location is much slower than 

the flow in the 4.5 dpf heart, the Pulnix CCD camera with its 30 Hz frame rate 

was sufficient to freeze the individual blood cells in motion. 

DPIV was performed on the acquired images, and the results captured the 

flow over the yolk sac and into the heart (Fig. 14b). The erythrocyte velocities 

were calculated to be 0.5 mm/s. With this velocity and the vessel dimensions, the 

wall shear stress was calculated to be 1 dyne/cm2. Previous literature has set the 

shear sensitivity threshold of in vitro endothelial cells at 0.2 dyne/cm2 (Olesen, 

1988), which implies that the endothelial cells in the primitive heart may respond 

to the shear stress imparted upon them by the blood flow. 
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Figure 14:  A) The original image of the 37 hpf embryo showing the blood flow over the 
yolk sac. B) DPIV results superimposed over the original image showing the relative 
velocities of the flow (red is highest velocity, blue the slowest). 
 
4.6 Manual Processing 

 As mentioned above, due to inconsistencies in DPIV velocity calculations, 

manual particle tracking was used to calculate velocity values. Even with an 

acquisition rate of 440 fps, comparing sequential images proved difficult. During 

the peak flow periods, many blood cells appear blurred into the surroundings and 

may be traveling out of the plane of view. The gray on gray images make it 

difficult to be sure if a cell has moved along the path of flow, or whether a new 

cell has just entered the plane of view. It is interesting to note, that when playing 
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the images back as a movie at 30 fps, the flow and cells appear obvious, yet 

when going frame by frame it is not so clear. Roughly 10 pairs of images during 

peak systole were examined for pairs of cells that could be tracked. On average, 

there were about 5 cells that could be followed between two images. The issue of 

focus is paramount, and the inherent lack of contrast in these images is not 

optimal.  

 These results demonstrate the first use of in vivo DPIV. The use of particle 

tracking and DPIV calculated relatively high velocities and extremely high wall 

shear stress in the 4.5 dpf fish. Furthermore, levels of shear stress in the 37 hpf 

fish were calculated to be well above the experimental minimum that cultured 

cells can detect. These results suggest that the forces imparted by blood flow on 

the heart lumen are large enough to cause an endothelial cell response, which in 

turn increases the probability that hemodynamic forces play a role in early 

vertebrate heart development  

 

4.7 Problems 

Despite the novel results discovered using DPIV and particle tracking, 

there are some problems that need to be overcome to improve future use of in 

vivo DPIV. These include a lack of contrast between the blood cells and the 

surrounding tissues, moving boundaries, and blood cell size relative to the 

vessels. As mentioned previously, the peak velocity calculation varied according 

to the interrogation window size. For comparison the same images were 

processed using 32 x 32 windows, 16 x 16 windows, and manual particle 



 49

tracking.  The manual tracking resulted in a peak displacement (from one frame 

to the next) of 7 pixels, while the 32 pixel windows resulted in a peak 

displacement of 3 pixels and the 16 pixel windows with a displacement of 5 

pixels. 

The inconsistency in the velocity calculations is likely due to several of the 

problems mentioned above.  Perhaps the most important factor is the large size 

of the blood cells relative to the heart lumen. This large size makes interrogation 

window selection difficult. We wish to obtain the optimal five to seven particles 

per interrogation window, yet making the windows larger creates further 

problems by including the heart tissues in the calculations and allowing for 

velocity gradients. As mentioned earlier, the moving boundaries of the heart can 

show up as velocity vectors and skew the analysis and further calculations.   

The lack of contrast between the cells made particle tracking difficult as 

well; it was often difficult to tell where a cell had moved from one frame to the 

next. The few cells that could be tracked from one frame to the next did not 

provide a sufficiently large data set.  

 

4.8 Attempted Solutions via Image Processing 

In an effort to increase the contrast of the images, several different image 

processing methods were used prior to DPIV and manual tracking operations. 

Edge detection was first used to see if it became easier to follow individual cells 

from one frame to the next. However, it became evident that defining the edges 

did not solve the problem of identifying corresponding cells from one frame to the 
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next.  Edges appeared as light rings against a dark background. However, 

because of gray on gray images, many objects that were not cells also appeared 

as rings or lines. This method was not compatible with DPIV since it requires 

localized discrete points, not rings (Fig. 15). 

 

 

Figure 15: Image of systolic phase passed through an edge detection filter in an attempt to 
enhance cell contrast. 
 

 

The last method used was to perform DPIV and particle tracking on the 

differences between images. When performing this operation, only the 

differences between the two images show up on a black field (e.g., if you subtract 

an image from itself you end up with a black field). The expectation was that 

differences in cell movement would register as the only points in the differenced 

images. This worked in some images (Fig. 16a), but in other pairs there was 



 51

movement of the entire region from one frame to the next (Fig. 16b), making it 

un-useable for DPIV.  Schwerte and Pelster (2000) had better success using this 

method in the blood vessels, rather than the heart, of the zebrafish since they do 

not tend to move as much. 

 

 

Figure 16: (A) Difference between images 117 and 116. The white points represent the 
movement of the blood cells. B) Difference between images 119 and 118. The gray 
background indicates that the background has moved between the frames. The variability 
between pairs of images makes this process unsuitable for DPIV analysis. 

 

 

 

These methods suffered from the fact that the fish heart is not a rigid 

environment. The walls move and change the lumen shape. Therefore there is 

more motion than just the particles to subtract or average, resulting in “difference 

regions” in the tissues that further complicate calculations. The lack of contrast 
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also plays a role in the difficulty of tracking individual cells. If the contrast were 

sufficient to better distinguish between the cells and the surrounding tissues and 

fluids, particle tracking could still occur even under conditions where the particles 

were blurred in the images. However, due to the low contrast, it was nearly 

impossible to tell where the cell boundaries lay, or whether objects were cells at 

all. 

 

4.9 Fluorescent Imaging 

 In an effort to bypass the contrast limitation discussed above, a series of 

experiments were conducted using quail embryos for blood flow imaging.  In ovo 

stage E 2.5 quail embryos were injected with Syto-11 nuclear staining dye 

(Molecular Probes) and mounted on an upright fluorescent microscope (Zeiss 

Axiophot). Staining the cells provided much better contrast between the blood 

cells and the surrounding tissue and media compared to the transmitted light 

images previously used. Several different high-sensitivity cameras were utilized 

for these experiments. The cameras were either mounted directly on the 

microscope or attached to an image intensifier. Due to either frame limitations or 

light sensitivity, the cameras were limited to slow acquisition speeds, so only 

slow moving extra-embryonic vessels were used. The flow velocity was further 

reduced since the eggs were imaged at room temperature, rather than the 

physiologic temperature of 37°C.  

The i-PentaMax (Princeton Instruments) camera was extremely sensitive 

to light and was able to provide very clean images. The DPIV results were also of 
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good quality. However the frame rate of 15 Hz limited it to all but the slowest 

flows (Fig. 17). 

 

Figure 17: A) Image of labeled blood cells (white points) traveling through an 
extraembryonic vessel of quail embryo.  B) Filtered DPIV results from image pair including 
the above image. Red vectors symbolize higher velocities. 

 

A Phantom v4.2 (Visible Solutions) camera was also used for imaging. 

With an acquisition speed of up to 1000 fps, the phantom has the ability to image 

faster flows. However the camera was not as sensitive as the I-PentaMax and 

had to be used in conjunction with an image intensifier (Hammatsu). Due to the 

high levels of noise introduced by the image intensifier, the camera had to be 

kept at a low frame rate to keep the intensifier settings as low as possible. The 
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flow image and resultant DPIV reflect the higher noise levels with an increase in 

spurious velocity vectors (Fig. 18). 

 

Figure 18: A) Image of flow inside an extraembryonic vessel in a quail embryo using the 
Phantom v 4.2 camera at 50 fps. Due to the use of an image intensifier there is a relatively 
high level of noise in the image. B) Filtered DPIV result of image pair including image A. 
Note the abundance of spurious vectors and the missing data in the right hand corner. 
This is believed to be caused by a thicker region of tissue partially obstructing the view 
into the vessel. 
  

 To summarize, the sensitivity and frame rate of exisiting cameras were 

not high enough at the same time. The sensitive cameras were too slow, and the 

fast ones not sensitive enough to produce images with a sufficiently high signal 

to noise ratio and close together in time. The use of an image intensifier 

(Hamamatsu) was tested, but the noise introduced to the images was too high. 

Despite the problems encountered, the use of fluorescent staining for DPIV 

analysis was able to capture the qualitative aspects of the flow, such as direction 

and general size of vessels (Fig. 19). 
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Figure 19: DPIV vectors overlayed with noise outliers removed for representational 
purposes.  Along with the noise, the processing does seem to capture the essence of the 
flow. 
 

 DPIV analysis was performed on images acquired through a VIDIM 

microscope (20X objective, 1 sec between frames) of epsilon-globin::GFP 

transgenic mouse, which express GFP in their blood cells. Movement of blood 

through the blood-islets was recorded. At this stage, the lumens of the future 
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vessels are quite small, and only 1-2 cells can fit at a time through the channel. 

The results demonstrate the effects of large vessel size relative to the lumen. In 

the image below, there are many vessels crossing the screen, with about a 1 to 2 

cell diameter width (Fig. 20A). In order to maintain enough cells within the 

interrogation region, the windows had to be large relative to the vessel widths. 

From the DPIV results (Fig. 20B), it can be seen that the necessary windows 

resulted in non-flow areas appearing to contain vectors. In other words, the area 

of flow is widened relative to the original image. 

 

 

Figure 20: A) Original image of the blood islets (courtesy of Paul Kulesa). B) DPIV results, 
demonstrating widening of the flow region due to large window size. 
 

 

4.10 New Fluorescent Techniques 

Recent developments in high-speed fluorescent imaging have provided an 

exciting new route to in vivo DPIV. With advances in on-board chip gain for CCD 
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and CMOS cameras, the ability to have concurrent sensitivity and high frame rate 

has become reality. 

For example, new work being done with a Zeiss 5-Live high-speed 

confocal microscope has acquired images at 175 fps of transgenic zebrafish 

(gata1::GFP) that express GFP in the blood cells.  This frame rate may not be 

able to resolve the fastest flows in the heart, but in other vessels it has provided 

striking images. This new system allows to acquire fluorescent images at much 

higher frames, yet does not suffer noise issues encountered with earlier systems 

(Fig. 21).  

 

 

Figure 21: Image of flow inside embryonic gata1::gfp  zebrafish heart acquired using Zeiss 
high-speed confocal microscope.  
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Chapter 5: Flow Modification 

 

5.1  Introduction 

 The purpose of this work is to develop a method of altering blood flow in 

vivo in order to study the interplay of blood flow and vertebrate heart 

development. In this chapter the use of a implanted bead, then a magnetically 

induced bolus, to form obstructions in the blood flow are described. 

 As discussed in the first chapter, previous in vivo flow alteration 

experiments have focused on ligating, constricting, or ablating vessels in 

animals, a process that involves invasive surgery and possible side effects to the 

model. We seek to create flow alterations in embryonic zebrafish (Danio rerio) 

using novel and less invasive methods.  

 

5.2 Bead Implantation 

In the first experiment, 50 um glass beads were used to block blood flow 

in tie2::GFP transgenic embryonic zebrafish. These transgenics express GFP 

throughout the endocardium at early stages and then only in developed valves. 

Several 37 hpf embryo were anesthetized as previously described then mounted, 

ventral side up, on a 100 mm diameter petri dish in individual drops of low 

temperature melting agarose. After the agarose set, a small incision was made 

using a pulled glass micropipette tip, on the epithelium over the point where the 

two blood streams joined prior to entering the heart. Several beads were 
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sprinkled over the fish in an attempt to get some to end up on the fish near the 

incision. Using a tungsten needle, the bead closest to the incision was 

maneuvered over the incision and pushed down into the embryo. The fish were 

then returned to an incubator 

Images were taken of the fish the following day at 57 hpf on the Zeiss 

Axiophot to note any changes in the position of the beads within the fish. In 

several cases the bead had come back out of the incision. Dish water was 

changed daily. 

 At 4.5 dpf, the fish were once again imaged to record the heart 

morphology as well as to note the position of the bead. Additional imaging was 

also performed on a confocal microscope (Zeiss 410) to check for the distribution 

of GFP, and thus to infer the state of valve development. There were 4 main 

bead positions observed: 1) the bead had left the fish, 2) the bead remained 

within the fish, but was not in the blood-inflow path, 3) the bead was lodged at 

the inflow to the heart, cutting off blood flow, and 4) the bead had entered the 

heart and was lodged at the outflow, cutting off all flow. The control fish were 

considered those in which the bead ended in a position near the heart, but did 

not affect the blood flow.  Additionally, some fish had the beads removed an hour 

after implantation as a control of the implantation process itself. These fish 

demonstrated no effects from the procedure at 4.5 dpf. 

Fish in which the flow of blood was blocked demonstrated three 

characteristic phenotypes. First, their hearts had greatly reduced outflow tracts 

(i.e., bulbus arteriosus),  and the hearts did not loop. Additionally, the walls of the 
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inflow and outflow tracts collapsed and fused, beginning at 3 dpf. Furthermore, 

the second and third cases did not demonstrate valve development, as is shown 

by the lack of GFP localization in the confocal images (Figs. 22k, 22l). 

 

 

Figure 22: Comparison of embryonic hearts subject to bead implantation. First column 
shows little effects due to sole presence of bead when not blocking blood flow. The 
second and third columns show fusion of heart inflow and outflow, and lack of valve 
development as shown by the fluorescent images (22k and 22j). (From Nature 421: 172-177) 

 

The similarity of the defects resulting from disrupting either inflow or 

outflow suggests that it is not the changes in cardiovascular transmural pressure 

that is responsible for the observed effects, as the two different blockages should 

decrease (blocked inflow) or increase (blocked outflow) the pressure. Lack of 

oxygen or nutrients is not likely to be a factor in the results either based on 
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experiments by Pelster and Burggren (1996), which showed that embryonic 

zebrafish do not depend on hemoglobin for oxygen transport during the first 7 

days post fertilization, and that due to their small size and low metabolism they 

can obtain oxygen and nutrients through diffusion. The lack of effects to the heart 

in the bead removal controls as well as the fish with implanted non-affecting 

beads indicates that the implantation process is not responsible for the observed 

effects either. Instead, the decreased shear force, the common feature of these 

treatments, seems most likely to generate the developmental phenotype. These 

studies make a strong case that blood flow is a necessary factor for functional 

heart development in vertebrates.   

Although this technique is effective, there are several areas for 

improvement. The primary drawback with the bead occlusion method is that the 

final location of the beads is a matter of chance. The three final bead positions 

discussed in the paper: blocking inflow, blocking outflow, and outside the direct 

path of blood to the heart, are not controlled during the surgical procedure. As 

such, one cannot choose a priori where to place the beads. This makes the 

method unsuitable for creating flow disturbances at specific points in the 

vasculature. 

 A third drawback of the bead occlusion method is that it only creates a 

binary (on or off) flow blockage. Due to the bead position being a matter of 

chance, it is not possible to devise an experiment that blocks the flow for only a 

certain amount of time or at a specific developmental stage. Additionally the 

beads cannot be made to partially obstruct the flow (e.g., to create a 50% 
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blockage of the blood flow into the heart). Our magnetic technique presented in 

the next section not only allows one to pinpoint the location of the flow blockage 

or disturbance, but also allows one to decide when and how long to leave the 

blockage in place. 

 In the process of conducting our flow experiments, we discovered an 

unexpected side-effect that may reduce the compliance of the heart wall itself, a 

potentially useful means of mimicking certain cardiac pathologies that result in 

reduced cardiac performance.  

 

5.3 Magnetic Flow Control 

A magnetic flow control technique was chosen as an alternative means of 

creating a site-specific, reversible flow alteration. The work of Hayes et al. (2001) 

demonstrated the effects of a suspension of magnetic particles in small diameter 

tubing, providing the basis of our approach. In Hayes’ work, a suspension of 

paramagnetic particles was loaded into a thin (80 um ID) capillary tube. When a 

rare-earth magnet was brought into the proximity of the capillary tubing, the 

particles aligned themselves in thin columns parallel to the magnetic field lines. 

Moving the magnet relative to the tube caused the columns of particles to adjust 

their position in order to remain parallel to the field lines. To test the potential 

utility of this procedure we reproduced these experiments (Fig. 23).  
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Figure 23: Magnetic particles orient themselves according to the position of a rare earth 
magnet.  The magnet is directly below the green particles in the picture on the left, and 
offset by 50 degrees on the right. 
 

We chose to use a miniature electromagnet developed by Dr. Barbic of 

Caltech in conjunction with the paramagnetic particles rather than following the 

design of Hayes because the rare-earth magnets used in his experiments were 

the same size as the embryo, therefore making the possibility of localizing the 

magnetic particles to a specific site within the embryo unlikely. Depending on the 

voltage passed through it, the magnet was capable of producing forces of at least 

10 pN.  Our primary hypothesis was that a slurry of particles, introduced into the 

embryonic circulation, could be precisely placed at a desired location within the 

zebrafish vasculature by attraction to the field lines of a properly positioned 

micro-electromagnet. The rotation of the field lines, and hence the particles, was 

to act as an on-off valve for the flow. The result of such an accumulation of 

particles would be a disruption in the normal blood flow patterns. To find the 

optimal parameters for using this technique in vivo, different materials and 

experimental conditions were evaluated. Magnetic particles, fish orientation, and 

field strength were all considered appropriate variables to be tested.  
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5.4   Preliminary Baseline (In Vitro) 

 We first conducted in vitro experiments to test the effectiveness of the 

magnet with our paramagnetic particles. Although rare-earth magnets had been 

shown to work, the ability of the electromagnet to form either columns of particles 

or a bolus was not known. A Beckmann micro-loader tip was filled with a 1:4 

dilution of stock 2.5% solids suspension of 1-2 um Polystyrene 

Superparamagnetic Microspheres (Polysciences Inc.) in water, and then placed 

underneath a microscope. Based on Barbic’s work, a wall thickness of 

approximately 40 um is desirable for the magnetic forces to be strong enough to 

move the particles under static flow conditions.  Our magnet was positioned 

manually using a micromanipulator (M3301, World Precision Instruments) and 

was powered by a regulated current source. We observed that when the magnet 

tip approached the tube, the particles, instead of forming parallel columns, 

formed a bolus at the point nearest the magnet tip and could be readily moved 

within the tube (Fig. 24). While these experiments demonstrated that the 

electromagnet could attract a large group of particles at scales similar to that 

encountered in the fish, the resultant shape was quite different compared to the 

rare-earth magnet. Despite the inability to create “valves” using the particles, the 

presence of a bolus could be enough to alter blood flow. The ability of the 

magnet to manipulate the particles even through a plastic barrier suggested that 

the thinner barriers between the blood stream of the fish would not pose a 

problem for our experiments.  
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Figure 24: The miniature electro-magnet is able to collect magnetic particles inside of a 
microloader tip. 
 
5.5   Preliminary In Vivo Static Experiments 

 Two different types of magnetic particles were tested for these 

experiments. 1 um paramagnetic particles (iron oxide embedded in polystyrene) 

and 250 nm (nanomag-D-greenF –PEG 300; Micromod, Germany) were 

examined. The first in vivo tests involved injecting the 1 um sized particles 

directly into the yolk sac of a 48 hpf embryo to examine if the magnet would be 

strong enough to localize the dispersed particles through a viscous medium such 

as the yolk sac. The magnet was placed against the epithelium, and the 

movement of the particles was tracked. Figure 25 shows the movement of the 
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particles over the course of approximately 175 minutes. Particles first reached 

the magnet’s location at 62 minutes after the magnet was positioned against the 

fish. 

 

 

Figure 25: Time sequence of particles moving toward magnet in embryonic zebrafish. The 
particles start on the edge of the yolk sac on the left side of the fish and slowly migrate 
towards the anterior end of the fish. 
 

The 250 nm magnetic was next tested for response in the yolk sac of a 48 

hpf fish. It was noted that overall ease of injection with a 15 um micropipette tip 

opening was greater with the smaller particles due to less micropipette clogging.   

As before, the magnet was brought near the bolus of magnetic particles, and the 

time necessary to position the bolus was recorded. The undiluted suspension of 

particles formed a bolus near the point of contact between the fish and the 
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magnet (Fig. 26). It was observed that the smaller particles had a more rapid 

response time to the magnet than the 1 um particles: 15 minutes as compared to 

62 minutes for the larger particles. 

 

 

Figure 26: Movement of 250 nm particles injected into the yolk sac after application of the 
magnet. Notice the difference between the initial dispersion area and the final compact 
bolus. 
 

Based on the more rapid response time and ease of injection, the 250 nm 

particles were chosen for the rest of our experiments. 
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To test the behavior of the particles in a more dynamic environment than 

the yolk sac, the magnetic particles were injected into the fish at the point of 

confluence between the two veins returning flow to the heart. The particles did 

not enter the blood stream, but ended up in the pericardial sac surrounding the 

heart. The particles responded immediately to the placement of the magnet near 

the heart, even though the moving heart walls were adjacent to the particles, and 

most particles had formed a bolus around the magnet in 45 minutes (Fig. 27). 

The magnet was removed after 14 hours. The particle clump began to disperse 

immediately upon removal of the magnet, and upon inspection 2 days later the 

bolus of magnetic particles had dispersed from the cardiac region. Based upon 

these observations, it was determined that the particles would remain in position 

even when exposed to forces caused by wall motion under the presence of the 

magnetic field, and yet would also disperse afterwards. 
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Figure 27: Collection and movement of magnetic particles in the pericardial sac of the 
embryo. 
 

 

5.6  In Vivo Flow Alteration 

Practice and smaller micropipette tip diameter allowed for more precise 

positioning of the injection site. Two different sets of flow blockage experiments 

were performed on 48 hpf embryos. Flow blockages were created in a caudal 

region of the dorsal aorta (DA) and at the sinus venosus.  

 To test whether the magnet would be able to form a bolus of particles in a 

dynamic flow environment subject to fluid drag, using the injection techniques 
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mentioned in the methods chapter, a small volume of particles was injected into a 

caudal region of the DA in a 48 hpf embryo. This region was chosen as the 

injection site for its superior optical and surgical accessibility. Additionally, the 

distance of the injection site to the heart minimized potential injection-related 

trauma to the heart itself. The intravascular-injection introduced particles into the 

bloodstream as well as depositing some in the surrounding tissues (e.g., Fig. 28). 

The fish were transferred from the injection room to a separate magnet 

workstation within 5 minutes after the injection procedure was complete. 

Microscopic observation revealed that the injection itself had obstructed blood 

flow to the lower tail (Fig. 28), and that there was no circulation in the fish 

although the heart was still beating.  

 

Figure 28: The magnet was placed near the blockage in the tail and was able to prevent 
blood flow from reaching the lower tail. 
 

 One hour after particle injection the blood flow in the caudal region of the 

tail spontaneously restarted with small clumps of magnetic particles traveling with 
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the blood. The magnet was applied to the fish at a voltage of 50V and positioned 

near the original injection site; one of the circulating clumps was captured. 

Careful manipulation of the magnet resulted in repositioning of the bolus near a 

bend in the vessel, again stopping blood flow. Approximately 75 minutes later we 

observed that while the flow to the caudal region remained obstructed, blood was 

being shunted from the DA to the dorsal vein (DV) via an intersegmental vessel 

and was thus able to return to the heart. The magnet was removed from the fish 

after 10 hours, and consequently the bolus dispersed, resulting in flow being 

restored to the lower tail and throughout the fish. 

 High-speed imaging of the heart revealed numerous changes in the test 

fish including lower average systolic blood velocity through the V-B valve (2.1 

mm/s) than was recorded for control fish (3.3 mm/s).  To estimate contractile 

fraction, the major and minor axes of the heart during end diastole and end 

systole (denoted with a subscript 1) were measured and their ratios compared. 

The test fish (n=1) showed a larger contraction a1/a= 0.6 and b1/b = .5 while the 

control fish (n=1) had fractions of a1/a= .8 and b1/b= 0.8. The discrepancy in 

contractile fraction in this case may be attributed to the slightly different viewpoint 

obtained while imaging.  
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5.7  Cardiac Flow Alteration Experiments 

 We observed that after the intravascular injections, the particles 

accumulated and then settled out just before the inflow to the heart, directly 

above and to the side of the yolk sac (e.g., Fig. 30).  Although the settling out of 

the particles was expected due to a density greater than water, the location was 

a surprise. This unexpected result was advantageous as it wasn’t necessary to 

perform the injection near the heart itself; instead the particles still could be 

injected in the tail and then collected over the yolk sac after they had settled out 

of the mainstream flow. Two sets of experiments were conducted to alter the 

blood flow into the heart. Embryos were injected at 50 hpf with two different 

magnet orientations used to form a bolus and block blood flow. Blood flow 

velocity, heart beat frequency, and contractile fraction were measured at 4.5 dpf 

to determine the effects of the treatments on the system. 

  

5.7.1 Side Mounting 

 A 50 hpf embryo was injected with particles in the DA. Leaving the fish on 

its side, the magnet at full voltage was placed near the yolk sac to capture the 

deposited magnetic particles. The gathered particles formed a bolus near the 

magnet tip after several minutes of exposure to the magnetic field. By changing 

the position of the magnet and the bolus over the course of 9 hours, the inflow to 

the heart was ultimately blocked. During the period of flow stoppage the red 

blood cells pooled on the side of the yolk sac, upstream from the blockage.  
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The fish was left overnight, and upon returning 11 hours later, the particles had 

formed small unresponsive boluses, and the flow had resumed. Dynamic 

response of the heart to treatments at 4 dpf could not be examined due to fish 

death. 

 Another side-mounted fish was prepared for testing. The particles 

responded immediately to the presence of the magnet, and the flow was blocked 

within 2 hours. The fish and magnet position were monitored every 2 hours for 6 

hours. The magnet was maintained at full power, and its position was adjusted 

when necessary to maintain the flow blockage. The next morning flow had 

restarted, and just as in the previous case, the bolus of particles had broken into 

smaller and unresponsive individual boluses. Upon closer examination it 

appeared that the particles had been pulled through the tissues surrounding the 

heart.  Observation two days later showed an abnormal heart shape, lower 

velocity, edema, and strong regurgitation (Fig. 29). 

 

 

Figure 29: The fish in (A) had its blood flow blocked with the magnetic particles.   
Notice the edema and undeveloped heart. (B) and (C) show the control fish hearts. (B)  
shows the heart from the side, highlighting the normal pericardial shape. 
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The test fish’s (n=1) average peak systolic velocity through the V-B valve was 

calculated to be 2.2 mm/s while the average velocity for two control fish was 4.3 

mm/s (Standard deviation, σ, =0.27).  The test fish showed a depressed 

contractile fraction with an a1/a of 0.7 and b1/b of 0.9 compared to a1/a and b1/b 

measurements of 0.6, 0.7 and 0.5, 0.4, respectively, for the two control fish.  

Neither of the control fish hearts demonstrated edema or regurgitance. 

 

5.7.2 Dorsal Mounting  

 A third fish was oriented yolk sac upwards instead of on its side after 

injection. The improved view of the cardiac area allowed for better positioning of 

the magnet and bolus. The blood flow was blocked within one half hour (Fig. 30), 

compared to a minimum of 2 hours using the side-mounted orientation.  
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Figure 30: The bolus of particles sits at the entrance to the heart blocking the flow and 
blood pools on the side of the yolk sac. 
 

 In an attempt to prevent the particles from being drawn into the tissue 

surrounding the blood vessels, the voltage was lowered from the maximum of 50 

V to approximately 25 V after the bolus was formed. This seemed to delay the 

absorption of the particles into the surrounding tissues to 17 hours. Observation 

at 4.5 dpf showed that the test fish had a slower systolic flow, 3.9 mm/s, 

compared to 8.8 mm/s and 5.6 mm/s for control fish 1 and 2 (Fig. 31). The heart 

contractions were noticeably weaker with an a1/a and b1/b of 0.99 and 0.6 while 

the control fish had measurements of 0.7 and 0.4 for the same ratios. The heart 
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itself was more elongated than the control hearts, although the valves were 

present and functioning.  

 

 

Figure 31: Test case 3, fish on the left, had underdeveloped and poorly performing heart 
as compared to the controls (1, 2). 
 

5.8  Control Experiments 

 To test that the presence of a local electromagnetic field or the particles by 

themselves did not have any deleterious effects on the fish that could be 

responsible for the observed changes in the heart morphology, a series of 

control studies were carried out. The first focused on the effect of the particles in 

the blood stream with no applied magnetic field, the second on the effects of the 

magnetic field itself.  

 For the first set, particles were injected into the blood stream of three 

embryos at 50 hpf. In addition, one fish was not injected but was exposed to a 

magnetic field for 19 hours, and three fish were mounted but were not subjected 

to either injections or magnetic field exposure. The intracardiac blood flow and 

heart morphology of the fish were observed at 4.5 dpf. Visual inspection 
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revealed no obvious morphological differences caused by the injection of the 

particles (Fig. 32 and Table 1), although one control fish did develop edema. 

Figure 32: Hearts at 4.5 dpf. The top three fish were injected with magnetic particles, while 
the three fish on the bottom had nothing done to them. All fish developed multichambered 
hearts, although fish 12 displayed edema. 
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Table 1: Measurements for injection and magnetic controls at 4.5 dpf. 

Fish type Vel(mm/sec) a1/a b1/b bpm edema regurgitance valves 

present 

1 inject 2.8 0.49 0.52 123 N N Y 

3 inject 2.8 0.47 0.5 135 N N Y 

7 inject 2.8 0.47 0.53 115 N N Y 

9 magnet 
only 

1.8 0.93 0.71 115 Y Y (V-B) N 

10 control 2.6 0.53 0.57 129 N N Y 

11 control 2.5 0.45 0.43 137 N N Y 

12 control 2.4 0.55 0.32 151 Y N Y 

σ(treating 
fish 9 as an 
outlier) 

 .18 .04 .09 12.4 

 

 The magnetic test fish, fish 9, developed a non-looped heart with severe 

edema and regurgitance (Table 1 and Fig. 33).  

 Additionally, it exhibited a slower velocity than both the injected and 

control fish, 1.8 mm/s as compared to an average of 2.8mm/s for the injected fish 

and 2.5 mm/s for the control fish. Furthermore this heart contracted much less 

than both the control and injected fish and had a lower heart rate than the 

averages for both groups (Table 1). 
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Figure 33: Magnet-only control fish heart at 4.5 dpf. Note the lack of looping, small size, 
and large edema. 
 
 A possible explanation for the defects in fish 9 could be compression by 

the agarose. In the course of positioning the magnet for these experiments, it 

was observed that in pushing the magnet towards the fish, the agarose was 

pushed in and often compressed the vessels leading into the heart, thereby 

reducing blood flow. 

 The experiment was repeated with five fish. Fish number 5 was exposed 

to the magnetic field for 12 hours at approximately 35 V, and the other four fish 

served as controls. This time, some of the agarose near the heart of the fish was 

removed in an attempt to not impact the heart by pushing the agarose against it 

during placement of the magnet. The five fish were collected and observed under 

the high-speed camera at 4.5 dpf.  All five fish had looped hearts as expected for 

that developmental stage (Fig. 34 and Table 2).  
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Figure 34: Test (Fish 5) and controls for magnetic effects at 4.5 dpf.  

 

 

Table 2: Measurements for magnetic field controls at 4.5 dpf. 

fish Vel(mm/sec) a1/a b1/b bpm edema regurgitance valves 

1 3.02 .55 0.41 181 N N Y 

2 3.75 .66 0.28 145 N N Y 

3 6.28 0.51 0.25 170 N N Y 

4 3.8 0.62 0.67 164 N N Y 

5(test fish) 2.5 0.52 0.38 142 N N Y 

σ 1.5 .07 .17 16.6 

 

 

 The experiment was repeated again with four 48 hpf fish. One was 

exposed to the magnetic field for 10 hours. Unfortunately, the fish floated free 

from the agarose during the night, so individual identification was not possible. 



 81

Regardless, the fish were imaged at 4.5 dpf to compare their hearts  (Table 3 

and Fig. 35). All were found to have looped and to possess valves. Two fish had 

slight regurgitance back into the atrium at the end of diastole. 

Table 3: Measurements from second magnetic field control set. 

fish Vel(mm/sec) a1/a b1/b bpm edema regurgitance valves 

1 4.0 0.35 0.38 131 N N Y 

2 4.1 0.51 0.51 115 N slight(atrium) Y 

3 3.8 0.61 0.68 131 N slight(atrium) Y 

4 4.2 0.64 0.54 131 N N Y 

σ .17 .13 .12 8 
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Figure 35: A comparison between the 4.5 dpf hearts of the last control set. 

 

From Table 3, we can see that the velocities were within 10% of each 

other and none of the fish suffered from edema or regurgitance. There was some 

variation in the contractility, but not as much as in previous cases. Fish 2 had a 

slower heart rate, but the velocity and contractility were not markedly different 

from the other fish. The fact that one fish does not express an extremely altered 

morphology is a promising indicator that the magnet does not necessarily impact 

the fish.
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Chapter 6: Conclusions 

 

The objectives of this study were to apply a novel technique to the 

problem of mapping internal blood flow during development, develop a technique 

for delivering and positioning small magnetic particles into the developing 

circulatory system, and determining the effects of occluded and restarted flow on 

the major events of cardiogenesis. Several sets of experiments were carried out 

in an attempt to accomplish these goals. In the first set, a high-speed CCD 

camera mounted on a compound microscope was used to obtain images of the 

intracardiac flow environment in an embryonic zebrafish (Danio rerio). These 

images were then processed using DPIV. This demonstrated the first instance of 

in vivo intracardiac microscale DPIV, which in conjunction with particle tracking, 

produced quantitative flow data.  

The second set of experiments created a novel technique combining sub-

micron particles and a micro-electromagnet to create localized and reversible in 

vivo flow alteration in embryonic zebrafish. The particles were injected into the 

blood stream of the fish, and the magnet was used to localize the particles into a 

moveable bolus. The effects of altered flow were compared against control fish 

and expected stage-specific heart morphology. The zebrafish was chosen as our 

model due to its numerous advantages in imaging and handling over other 

vertebrate models, and the specific stage was chosen to allow easy comparison 

with non-injected fish. The results from both sets of experiments are presented 
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below. Using both of the first two objectives, the effects of flow on cardiogenesis 

were examined. 

First, the intracardiac flow in embryonic zebrafish is highly dynamic. The 

results from DPIV showed the presence of jet in both the ventricle and bulbus 

arteriosus during diastole and systole, respectively. Additionally, regions of 

vorticity were observed on either side of these jets, along with extremely high 

levels of wall shear stress near the constriction or valve regions. 

Secondly, altering the flow in early stages of zebrafish development 

resulted in abnormal heart development. Fish subject to flow blockage using the 

technique developed in this project generally demonstrated hearts with weaker 

contractions, slower heart beats, and lower flow rates. Additionally, increased 

levels of cardiac edema and blood regurgitation as well as less developed valves 

were observed. Based on the results of these experiments several conclusions 

can be drawn. 

The first conclusion to be drawn is that DPIV has the potential to become 

an important tool for mapping the internal flows. Due to the large size of the cells 

relative to the vasculature and to lack of contrast between the cells and 

surrounding tissues, as used in the project, DPIV alone cannot quantitatively be 

used to describe the flow field. Overall flow patterns can be obtained from DPIV, 

but in this study manual particle tracking was needed to extract velocity 

information. 

New developments in high-speed confocal microscopy may also help in 

improving the quality of in vivo DPIV data. As mentioned, it was necessary to use 
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a combination of DPIV and particle tracking to extract blood velocity from the 

images. With improvements in high-speed confocal microscopy and CCD motion 

cameras, it is now easier to acquire images at rates greater than 30 fps (Coates 

et al., 2004; Nakano, 2002). Zebrafish lines that express GFP on the blood cells 

(Long et al., 1997) could prove useful for particle tracking methods, or small 

fluorescent particles could be injected into the blood and used as tracer particles 

to provide a more ideal DPIV data set. Care would need to be taken to ensure 

that the particles were small enough and of proper density to accurately follow 

the blood flow, and that they had a sufficient concentration for DPIV yet did not 

disturb the cardiac function of the fish. The ability to extract more accurate 

quantitative data will be extremely important in linking altered blood flow and its 

effect on the heart.  

Improvements in software may also aid in utilizing DPIV for in vivo flow studies. 

Due to the large size of the particles relative to the vasculature, an automated 

approach using particle tracking to guide the DPIV would be extremely useful. 

The second conclusion to be drawn is that blood flow is needed for proper 

heart development. As demonstrated in the text, in cases where blood flow was 

obstructed then restarted, the heart exhibited a decrease in contractility, blood 

velocity, and heart rate, coupled with an increase in edema and regurgitance. 

Hove et al. showed that when blood flow was completely cut off to the heart after 

37 hpf, the heart remained in its 37 hpf stage at 4.5 dpf. Our work builds upon 

these results by showing that even a temporary flow blockage of 8-12 hours 
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between 48 hpf-72 hpf hinders proper heart development, suggesting that this 

developmental window is sensitive to flow induced forces.  

To better verify the conclusion drawn above, a larger sample size would 

ideally be collected. More experiments blocking blood flow in fish are needed. 

While the cases presented here are promising, a larger data set would instill 

greater confidence in the results. Also, perhaps more importantly, more control 

cases testing for any effects due to exposure to the magnetic field need to be 

conducted. The number of controls conducted for the magnetic field was low and 

plagued by mishaps in the laboratory. To instill more confidence that the effects 

observed in the fish were solely due to flow blockage, more successful effects 

from the magnetic field should be ruled out. 

The third conclusion to be drawn from this thesis is that the technique 

described herein is able to deliver and reversibly position small magnetic 

particles within the vasculature. Utilizing a miniature electromagnet and 250 nm 

magnetic particles, a bolus of particles was positioned so as to temporarily block 

blood flow in the tail and to the heart. The ability to introduce the particles at a 

different location than the heart will allow it to be of use for further heart studies. 

Perhaps the most important feature of this technique is the reversibility of the 

flow obstructions. Most flow obstruction techniques have been permanent and 

invasive.  Even with exciting new technologies such as the MicroPoint Nitrogen 

laser system (Photonics Instruments Inc.), which allows occlusion of specific 

points within a vessel (Dr. Jay R. Hove, personal communication), one is still 

faced with a permanent change to the vasculature. With our technique, changes 
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to the flow can be induced and removed as desired, allowing for more detailed 

studies in specific developmental windows. 

To fully realize the potential of this technique, further research needs to be 

conducted. For example, the technique needs to be modified to allow for a longer 

flow alteration time as the maximum flow blockage time in this work was 

approximately 17 hours. It would be beneficial to be able to keep the blockage in 

place indefinitely. Additionally, the ability to create specific partial blockages 

would be useful for further studies linking blood flow with cardiovascular 

development. 

More importantly, the ability to automate the procedure will be vital. As it 

stands now, this technique can only perform one test case per experiment. In 

projects where a large sample size is needed, the current technique would prove 

prohibitively time consuming. An automated array of these magnets would allow 

many tests per set and increase throughput.  

Another area that needs to be addressed is the improvement of the ability 

to pinpoint the delivery of the magnetic particles. In this work, the particles were 

delivered to the inflow of the heart. Attempts at positioning the particles inside the 

heart resulted in the particles being washed downstream. To study problems 

such as heart valve development it would be desirable to position particles inside 

the heart, not just at the inflow. 

The techniques and results presented in this work may prove useful in a 

wide range of applications. Beyond the flow studies mentioned above, this 

technique could possibly be used for targeted drug delivery. With an 
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improvement in the ability to pinpoint the delivery of magnetic particles, it is 

conceivable that a similar system could be used in patients to deliver drugs via 

small magnetic capsules (Lubbe et al., 2001; Babincova et al., 2000). For 

example in the case of an inoperable tumor, a smaller enclosed version of the 

magnet could be placed, similarly to a wire probe, near the tumor. Drugs could 

be delivered to the tumor via small magnetic capsules injected into the blood 

stream that would be attracted by the magnet. A more direct application from our 

work would be to block blood vessels leading to the tumor. A theoretical 

technique quite similar to this, but using magnetizable wires, has been proposed 

by Iacob et al. (2004). Computer simulations by Rotariu et al. (2004) found that 

acupuncture needles, magnetized using an external magnetic field, were able to 

embolize blood vessels leading to tumors using injected micromagnetic particles. 

The technique developed for the zebrafish flow blockage could be used in the 

place of magnetized acupuncture needles to provide a more controlled and 

efficient treatment for patients. 

Another potential use of this technique could be in studying flow effects on 

cultured endothelial cells. One area of current research is the effects of small 

gradients on adjoining cells (Davies et al., 2001)  Using a system similar to ours, 

microscopic obstructions could be placed upstream of individual cells, thereby 

changing the flow the cell would experience.  

 The observation that the magnet is able to pull magnetic particles into the 

tissue is perhaps the most surprising and interesting result. By pulling magnetic 

particles into selective tissues it may be possible to change the properties of that 
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tissue. For example, to simulate an infarct, the particles could be drawn into the 

heart tissue, possibly stiffening it. If so, it seems likely that the contraction in that 

part of the heart would be reduced, thereby changing cardiac output. This sets 

the stage for a mechanical means to simulate the effect of infarcts and diseases 

such as dilated cardiomyopathy in vertebrates. This would serve as an 

alternative or complementary means of genetic techniques of implementing heart 

disease, such as experiments by Xu et al. (2002), in which alternatively spliced  

zebrafish genes for titin resulted in dilated cardiomyopathy. 

A key step in this project, as well as future studies of flow effects on heart 

development, will be to separate the effects caused by the flow blockage and 

diminished heart contractility. 
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Appendix A: Wall Shear Stress Calculations 

To ensure that the shear results are not largely dependent on flow profile 

assumptions, the wall shear stress for a fully developed flow as well as a 

partially developed flow are presented below. 

Shear stress, τ ,  is defined as the partial derivative of the flow profile.  

y
yu

∂
∂

=
)(µτ , where is the equation for a two dimensional flow profile, with 

height along the y-axis. 

)(yu

Since the flow from the atrium to the ventricle does not have time to fully 

develop, a no-slip linear flow profile was assumed. y
h
Uyu =)( , where h is the 

radius of the vessel. This gives us a shear of  

h
Uµτ =   (1). 

For a parabolic flow in a tube of diameter 2h and peak velocity U, the velocity 

profile is described by the equation: 
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h
yUyu −= . 

2

2))((
h
Uy

dy
yud

−= ,  to calculate the shear stress at the wall, we set . hy −=

Substituting in to 
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h
Uµτ 2

=  (2), 
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 which is 2 times greater than the shear that would be caused by a linear profile 

(1).  

If one assumes a partially develop flow as modeled below, 

h

h

Uy=0 b

 

where the velocity profile between by = and hy =  is given by 

by
bh

Uyu +
−

=
)(

)(  

then the shear is described by 
)( bh

U
−

= µτ  (3), 

which is again greater than the shear stress calculated for the linear flow profile 

(1).  
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Appendix B: Basic Electromagnetic Theory  
 

Current traveling through a wire gives rise to magnetic field B that decays 

radially away from the wire. A method  for  calculating the field B  from a moving 

current utilized the Biot-Savart Law: 

∫
×

=Β 3
0

4 r
rsid

π
µ  

where  “r” is the radial vector from the current source to the point in space at 

which the field is being calculated, and “i” is the current.  

To find the field in a solenoid, one can get a close approximation by 

treating the solenoid as a series of individual loops and combine the field created 

by each one. In the figure below, the solenoid is seen in cross section. At a point 

“P” inside the solenoid, each of the individual loops contributes to the total 

magnetic field. Near the center of the solenoid and on the axis, non-axial 

components of the field cancel out due to symmetry.  
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By integrating over the length of the solenoid, one finds that the field in the 

axial direction along the axis of the solenoid is: 

Bz =
1
2
µ0ni0(cosθ2 + cosθ1)  

where n is the number of loops in the solenoid and io is the current running 

through the coil. 

In cases of high geometric symmetry Ampere’s law can be used to 

simplify the calculation. Ampere’s law states: 

enclosedsd Ι=⋅Β∫ 0µ . 

In the case of a solenoid, Ampere’s law is quite useful. If one assumes an infinite 

solenoid, the calculation can be performed as follows: 
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The right hand side of  enclosedsd Ι=⋅Β∫ 0µ  is non-zero only on the segment of the 

integration path running through the solenoid and equals Bh.  

If there are “n” loops per unit length “h” in the solenoid, then the right hand 

side gives us:  µ0nhi0  since Ienclosed is equal to i0 multiplied by number of loops 

(nh).   

This leaves us with 00niµ=Β .  If one takes the result of the finite solenoid 

and takes the limit as the length goes to infinity,  both angles go to zero, and the 

result becomes 

00niµ=Β .

It should be noted that this result is for an ideal solenoid in which the 

length is much greater than its diameter. Barbic’s magnet has a length that is not 

that much greater than the radius. As such, to be precise, edge effects would 

have to be taken into account. However, for the most part, we can assume a 

constant field in the interior of the coil.

 

In the magnet used in these experiments, the coils of the solenoid were 

wrapped around a ferromagnetic core, which increases the total magnetic field 

emanating from the solenoid. 

In this case the core gets magnetized and obtains a magnetization that is 

defined as the net dipole moment per unit volume, 

V
M i∑= µ

 , where µ is a dipole moment and V is the volume. 
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When the material is placed in the solenoid’s magnetic field, all of the dipoles in 

the material align in the direction of the field and create their own magnetic field 

in the same direction. 

Therefore the total magnetic field is a combination of B0, the field from the 

solenoid, and the field produced by the aligned dipole, Bm = µ0 M. The magnetic 

field from the core is generally much greater than the field from the solenoid; 

however, it is not easy to measure or determine the field strength directly in our 

device. 

 

Force experienced by a particle due to this electromagnet. 

The force on the bead from the magnet is a result of the field strength as 

well as the magnetic field gradient at the bead. 

 

totaltotalbeadbead BBmF ))(( ∇⋅=  

 

The small size and sharp tip of the electromagnet work to enhance the field and 

field gradient produced, and therefore maximize the magnetic force on the 

sample being manipulated. 
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