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Abstract

Investigations on the dispersive properties of photonic crystals, modified scattering in
ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and
advanced data processing techniques for the finite-difference time-domain method are
presented.

Photonic crystals are periodic mesoscopic arrays of scatterers that modify the
propagation properties of electromagnetic waves in a similar way as “natural” crys-
tals modify the properties of electrons in solid-state physics. In this thesis photonic
crystals are implemented as planar photonic crystals, i.e., optically thin semiconduc-
tor films with periodic arrays of holes etched into them, with a hole-to-hole spacing
of the order of the wavelength of light in the dielectric media. Photonic crystals can
feature forbidden frequency ranges (the band-gaps) in which light cannot propagate.
Even though most work on photonic crystals has focused on these band-gaps for ap-
plication such as confinement and guiding of light, this thesis focuses on the allowed
frequency regions (the photonic bands) and investigates how the propagation of light
is modified by the crystal lattice. In particular the guiding of light in bulk photonic
crystals in the absence of lattice defects (the self-collimation effect) and the angular
steering of light in photonic crystals (the superprism effect) are investigated. The lat-
ter is used to design a planar lightwave circuit for frequency domain demultiplexion.
Difficulties such as efficient insertion of light into the crystal are resolved and previ-
ously predicted limitations on the resolution are circumvented. The demultiplexer is
also fabricated and characterized.

Monolithic integration of vertical-cavity surface-emitting lasers by means of reso-
nantly enhanced grating couplers is investigated. The grating coupler is designed to

bend light through a ninety degree angle and is characterized with the finite-difference
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time-domain method. The vertical-cavity surface-emitting lasers are fabricated and
characterized.

A purely theoretical section of the thesis investigates advanced data processing
techniques for the finite-difference time-domain method. In particular it is shown
that an inner product can be used to filter out specific photonic crystal modes or
photonic crystal waveguide modes (Bloch-modes). However it is also shown that the
numerical accuracy of this inner product severely worsens for Bloch modes with very
low group velocities. Analytical functions of the bounds of these inaccuracies are

formally derived.
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Schematic of (a) a square lattice PPC and (b) a triangular lattice PPC. The unit cell
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Schematic of reciprocal Fourier space for (a) a square lattice and (b) a triangular lattice.
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This figure shows the normalized frequency of the first two photonic bands of a square
lattice PPC as a function of the normalized in-plane k-vector (wa/2mwc = a/\, where w
is the angular frequency and A the wavelength). The light cone is also shown. The PPC
is a square lattice crystal with lattice constant a and is etched into a silicon membrane
of thickness t = 0.57a. It is cladd by air, and the radius of the holes is r = 0.3a.

This figure shows EFCs for the 15t (a) and 2°¢ (b) bands of the square lattice PPC
already introduced in figure 2.3. It can be seen that the contours are not circles as in an
unpatterned slab. The group velocity is perpendicular to the contour and is indicated
by arrows. It is pointing inside the contour rather than outside the contour in the case

of the second band (section 2.5). . . . . . . . ...
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beam is coupled from an unpatterned slab into a PPC. In (b) the lattice of the PPC is
rotated by 45° relative to (a). While in (a) the beam stays collimated inside the crystal,
in (b) the beam undergoes very strong broadening. (c) and (d) show the corresponding
Fourier space diagrams. The projection of the k-vector onto the PPC boundary is
conserved modulo 27/a in (a) and modulo 27/v/2a in (b). The projection from the
circular EFC of the unpatterned slab onto the squarish EFC of the PPC is visualized
by the dashed lines. The EFCs are shown with a continuous line. The resulting group
velocities are represented by arrows. It can be seen that in (c) beam-broadening is
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This figure illustrates the propagation of a Gaussian beam when coupled from a material
with refractive index n; to a material with refractive index —n;. The dashed line shows
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and the group velocities are indicated by arrows. . . . . . ... .. o000 L
Negative index of refraction can be achieved if the group velocity points inside the
tangent circle determined by the local curvature of the EFC. Even though the group
velocity points inside the EFC for the second band, the curvature of the sides can be
concave rather than convex so that the side of the EFC corresponds to a (very large)
positive index. However, the corner region corresponds to a (small) negative index.
Conversely, the EFC of the first band can be locally approximated by a negative index
in certain cases (chapter 7), even though the group velocity points outside the EFC
when represented inside the first BZ. . . . . . . . . ... oo
Schematic of a SP. A waveguide is terminated at one boundary of the PPC. Light prop-
agates inside the PPC with a direction of propagation dependent on the wavelength.
An array of waveguides collects the light at the other boundary of the PPC. The unit
vectors €1 = [1 0] and & = [0 1] are represented. The orientation of the waveguides is
given by . . .. L e
This Fourier space diagram illustrates a possible way to use a square lattice PPC as
a SP. The first BZ is shown by a dashed square, and the EFC is shown both inside
the 1%t BZ and in higher order BZs. The orientation of the contours corresponds to
the orientation of the PC in figure 2.8. The k-vector of the light inside the waveguide
is labeled as kwgq, and 6 is the angle between the waveguide and the normal to the
interface. The group velocity of light inside the crystal is labeled by v,. The three high-
symmetry points [', M and X are also shown. The projection of kwg onto the contour
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This figure illustrates the correspondence between the reduced k-vector located on the
EFC in the 15 BZ and the dominant Fourier component(s) (shown by arrows). The
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(“open” arrowhead) shows the correspondence between a mode located on the side of
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(a) Schematic view of the Si slab patterned with a 2D square lattice of holes. External
light is incident on the slab at an angle . The unit cell of the PC, with boundary
conditions used in the 3D FDTD calculation, is also indicated. (b) Band diagram for
TE-like modes (vertically even) of the square lattice PPC. The gray region represents
the light cone. The inset shows the high symmetry points in the 1 BZ. . . . . . . . .
(a) Full band diagrams for the first two bands of the PPC. w(k) is calculated for all
k-vectors in the 15¢ BZ. The light cone is also represented. The EFCs for the first and
second band are respectively shown in (b) and (c). The color code corresponds to the
normalized frequency (a/)\). The vectors represent the group velocity. . . . . . . . ..
The dispersion of the first two bands supported in the unpatterned Si slab. The light
cone is represented as an unshaded mesh. The EFCs are circles since all in-plane
directions are equivalent. . . . . . . . . . .. L e
(a) The EFCs of the 2°¢ band of a square lattice PPC. Only the region outside of the
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dipole source at frequencies (a) a/A = 0.295, (b) a/\ = 0.295 and (c) a/\ = 0.2086//2.
(b) corresponds to self-collimation in the second band. In this case, light is radiated
predominantly along I'X directions. (c) corresponds to self-collimation in the first band.
(c) has been rotated by 45° and rescaled by /2 to show structural similarities in the
emission patterns that will be elaborated on in section 3.5. . . .. .. ... ... ...
The band-diagram for TE-like (vertically even) modes of the square lattice PPC as
calculated by 3D FDTD is shown by dots in (a) and (b). In (a), circles show the bands
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(a) Self-collimated beam (a/A = 0.2596) after different propagation distances (top
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broadens, and a beating pattern appears. (b) Self-collimated beam (a/\ = 0.25) after
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EFCs of the second band of PC1 (a) and of the first band of PC2 (b). The unit cells
are shown in the insets. The dashed lines show the first BZs of PC1 and PC2. The
shaded region corresponds to where the band structures differ, and the white region
to where they are similar. (c¢) The 1%* and 2°¢ bands of PC1 (dots) and the 15¢ band
of PC2 (circles). The 15* band of PC2 is folded back into the first BZ of PC1. The
labels X and M refer to the high symmetry points of PC1 (the labels would need to
be interchanged for PC2, since it has been rotated). The band structures of the two
EFCs are almost identical but for the frequency range of the PBG of PC1. . . . . ..
(a) Spatial Fourier transform of a Bloch mode of PC1 and (b) of the mode of PC2 that
has the same normalized frequency and approximately the same extended k-vector.
EFCs in the normalized frequency range 0.22 to 0.31 are overlaid. It can be seen that
the Bloch mode of PC1 differs in that it has a weak but non zero component in the
first BZ of PC1; however, this component only makes up a tiny fraction of the power
of the Blochmode. . . . . . . . . e
(a) Self-collimated beam at frequency a/A = 0.2596 that propagates from PC1 (r/a=0.3)
to PC2 (r = 0.322//2a). (b) rms of the self-collimated beam in PC2 after crossing the
boundary as a function of the line dislocation introduced at the interface. The rms of

the beam is normalized by the rms before the interface. . . . . .. .. ... ... ...

Schematic view of a planar PC and a waveguide oriented in the I'X direction above the
PPC. This waveguide orientation corresponds to the coupling mechanism described in
section 4.1 that results in launching a self-collimated beam inside the PPC. . . . . . .
Band diagram of the coupled PPC waveguide system. The x-axis corresponds to the
projection of the k-vector onto the I'X direction (as imposed by the BBC) and the
y-axis to the inverse wavelength 1/ of the resulting modes. Modes are detected as
resonances in time series recorded from the simulations. Labels indicate modes that
correspond to the PC and to the waveguide. They are clearly defined far from the
coupling region; however, the 2°¢ band of the PC anticrosses with the waveguide.

FDTD simulation of the decaying field in the frequency range of the mini stop-band
(A = 1.48 pym). The mode of the stand alone waveguide, previously obtained with a
numerical mode solver, is launched into the waveguide. (a) shows B, in the waveguide
and (b) shows B, on the center plane of the PPC. As light is transferred from the
waveguide to the PPC, the decay of the field inside the waveguide as well as the build-
up inside the PPC can be clearly seen. The field in the PPC propagates in the opposite

direction than the field in the waveguide. . . . . . .. . ... .00
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Field profile (B,) in the coupled waveguide-PPC system recorded on the yz symmetry
plane. Light is within the mini-stop band (A = 1.48 pum) and decays. The field is
coupled from the waveguide to the PPC and back-propagates in the opposite direction.
(a) Spatial Fourier transform of a typical Bloch mode of the second band of PC1 and
(b) the spatial Fourier transform of the corresponding Bloch mode (same frequency and
same main component k-vector) of PC2. The 15¢ Brillouin zone of PC1 is indicated by
the continuous square, and the 2"¢ Brillouin zone is indicated by the dashed square.
The Bloch mode of PC2 does not contain the Fourier component that is phase matched
to the waveguide; thus by transmitting a beam from PC1 to PC2 the coupling to the
waveguide can be switched on and off. Due to the fact that PC2 is rescaled and rotated
relative to PC1, the 15¢ Brillouin zone of PC2 corresponds to both the 15t and the 274
Brillouin zones of PC1. This explains why a Bloch mode of PC2 has only one Fourier
component where a Bloch mode of PC1 has two. k-vector components are given in
dimensionless units of k - a, where a is the lattice constant of PC1. . . . . . .. .. ..
A waveguide is located above a heterojunction between lattices of type 1 and 2. This
way the coupling between the PPC and the waveguide can be turned on and off and a
self-collimated beam can be launched into PC2.. . . . . . ... ... ... ... ..
The modes excited inside the PPC by the waveguide can be determined by conservation
of the k-vector component in the TM direction (modulo 27/(v/2a) due to the discrete
translation symmetry of period v/2a). (a) shows the idealized EFC inside the 1%t
Brillouin zone (dashed square), as well as higher order EFCs in extended Fourier space.
The position of the horizontal line is determined by the k-vector of the waveguide mode
and intersects all the PPC modes that are coupled to. Four modes are excited, labeled
1 to 4. The high-symmetry points are shown on the diagram (I', M and X). The
directions of propagation (given by the group velocity) are indicated in (b) for each of
the excited modes. . . . . . . . oL L
Spatial Fourier transform of the field inside the PPC, to the left of the waveguide (B,
is recorded on the center plane of the PPC in a region of 15 by 15 lattice periods,
and subsequently a Fourier transform is operated). Modes 1 and 2 propagate to the
left of the waveguide and are present in the obtained spatial spectrum. The field was
simulated by FDTD with a 10 nm discretization, waveguide dimensions are 520 nm X
100 nm and A = 1.54 pm. The corresponding coupling process is illustrated in figure
4.7. The Fourier components are labeled in the same way as in figure 4.7. k-vector

components are given in dimensionless units of k - a, where a is the lattice constant.
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This is a similar diagram to figure 4.7. However the geometry of the waveguide has been
modified so that different Bloch modes are targeted. In particular only two Bloch modes
are coupled to, that propagate in opposite directions relative to the waveguide. This
also illustrates the importance of considering extended Fourier space when investigating
coupling mechanisms. Indeed the horizontal line does not intersect the EFC in the 15¢
BZ, but in higher order BZs. . . . . . . . . . ..
As in figure 4.8 a Fourier transform is taken of the field inside the PPC to the left of
the waveguide. However this data corresponds to the situation schematized in figure

4.9. On each side of the waveguide, a single Bloch mode is coupled to. . . . . . . . ..

This figure illustrates how the structure of the 2°¢ band is formed by turning on
coupling between higher order Fourier components. The circle centered on I' is the
EFC of an unpatterned slab of effective index ((a®> — 7r®)nglap + 7r2nsio,)/a® (at
A = 1.54 pm), where a is the lattice constant of the PPC (0.5 ym). The effective index
is the weighted mean of the effective index of the unpatterned slab and of the refractive
index of silicon dioxide (holes) so that the finite holes are taken into account by the
modified effective index; however, the coupling and the anisotropy induced by the holes
is ignored. To modelize the latter we represent by circles centered on aK 1+ bK_’} the
generated higher order Fourier components, where a and b are integers. The circles
centered on [1 0] and [0 1] intersect inside the 15¢ BZ (represented by the black square)
and anticross when coupling is turned on. The red contour represents the 2°¢ band,
and the green contour represents the 3' band in the case of infinitesimal coupling. The
real EFC of the 2°¢ band at A = 1.54 um is also represented (black squarish contour).
Even though the structure is more complex in the case of finite coupling, the mode on
the cusp is essentially composed of two Fourier components offset by K, and K, from
the 15¢ BZ. The exact Fourier structure of such a mode is represented in figure 5.2.
The axes are labeled with the projections of the k-vector on €; and &5 (k1 = k- €1 and
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(a) Field profiles (amplitude of the out-of-plane component of the B-field, Bs, on the
center plane of the PPC) of modes of the 2°¢ and 3™ bands located on T'M (at A =
1.55 pm). The mode of the 2" band has a field maximum in the high index region at
the center of the inset, where the mode of the 3"¢ band has a field minimum. (b) Fourier
structure of the mode of the 2°¢ band obtained by taking the Fourier transform of Bs.
The amplitudes of the Fourier components are shown. The Fourier components are
represented in a checkerboard pattern and are labeled by integers a and b. The Fourier
components are respectively offset from the 15 BZ component (the [0 0] component)
by ak. 1+ bEK. D e e e e
This schematic illustrates the Fourier structure of the Bloch modes. The squarish
EFC originates from folding back the circular EFC of the slab into the 15¢ BZ. The
15¢ BZ is shown by the dashed square, and the dashed circle represents the dispersion
characteristic of the unpatterned slab. Even after folding back the circle into the 15¢
BZ, most of the power of the mode is still contained in the higher-order components
that are close to the original circle. These components are indicated by a thickened line
along the higher-order contours and are labeled by a and d (this nomenclature is used
in section 5.3, see figure 5.18). They are offset from the component in the 15¢ BZ by
inverse lattice vectors represented by arrows and labeled by [0 1] and [1 0]. This model is
a simplification, as the lattice of holes not only perturbs the contour at the anticrossing
points, but also perturbs slightly the rest of the contour. For example, a flattening of
the sides as is the case for the EFC shown in figure 5.1 leads to self-collimation.

Transmission (a), coupling efficiency (b) and reflection (c) of the multilayered grating
(hole size 40 nm) as computed by the transfer matrix method for A=1.52 ym. The
coupling efficiency is defined as the power transferred from the 0" order into the 15t
order; the transmission is defined as the power remaining in the 15¢ order. Optimum
coupling is obtained with 27 layers. . . . . . . . . .. . 0oL
Coupling efficiency (upper plot), transmission (middle plot) and reflection (lower plot)
of the MLG as a function of the wavelength and of the number of cascaded gratings.
The optimum coupling efficiency is obtained with 27 layers at A=1.52 um; however,

the passband of the MLG is higher for a smaller number of cascaded gratings.
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This figure shows the field distribution (B,) inside the MLG (white is high intensity).
The holes are shown with continuous circles. In this case the holes are large (0.15
pum), this corresponds to the geometry used in 5.2.5; however, it can also illustrate the
derivations made in this section. The dashed circles indicate the position where the
PPC would be placed. It can be seen that there is a field maxima in the high index
region between the PPC holes and that this region is located 3d/4 away from the last
row of the MLG. . . . . . . . . o e
Configuration of the simulation. The width (x-direction) is A so that a single hole per
cascaded grating is placed inside the computational domain. Bloch boundary conditions
are applied (x-direction) so as to effectively simulate an MLG and a PPC with infinite
lateral extent. The field is launched in the unpatterned slab, propagates through the
MLG and is transmitted into the PPC. Field probes are periodically placed inside the
MLG and inside the PPC (probes are also spaced by d). The distance between the
MLG and the PPC is chosen so as to impose the correct phase relationship between
the 0" and the 15¢ order for optimum insertion into the Bloch mode. This results in
the distance 3d/4 between the last grating of the MLG and the 1% row of the PPC
(hole center to hole center). . . . . . . . . ...
Field decomposition extracted from the field probes. (a) and (b) correspond to a non-
mode-matched PPC (A = 1.51 pum) and (c) corresponds to a PPC integrated with an
MLG of 14 layers that operates partial mode-matching (A = 1.49 um). (c) corresponds
to the same device as figure 5.9a, but the wavelength has been detuned from the
optimum. In (a) [(¢o|®)|>+|(11]|4)|? is shown for various time steps after the start
of the FDTD simulation. It can be seen that at 50000 time steps the Bloch mode
has propagated all the way to the +y interface. The ABC at +y absorbs forward
propagating plane waves, but Bloch modes are partially reflected. Thus we stop the
other simulations at 50000 time steps to avoid these reflections bias the data. In (b) and
(c) the black curve shows |{1)o|#)|? (i in the text), the blue curve shows |{¢1 |#)|? (ii), the
green curve shows |(1o|@)|>+|(1b1|#)|? (iii) and the red curve shows |(1g|@)|>+| (1)1 |$)|?
(iv). Tt is apparent in (b) that the 0" order (black line) is reflected (red line). In (c) it
is apparent that the 1% order is transmitted (blue line). Inside the MLG the O order
is progressively transfered into the 15¢ order (black to blue). The power remaining in

the 0'® order is reflected at the interface (black tored). . . . . ... ... .......
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Field decomposition extracted from the field probes. The PPC is integrated with an
MLG of (a) 14 layers, (b) 19 layers and (c) 23 layers (A = 1.51 um in all three cases).
The MLG in (a) has less than the optimum number of layers (not enough power coupled
into the 15 order), (b) maximizes the insertion efficiency and (c) has too many layers.
In (c) the coupling from the 0*" order into the 15* order is maximized; however, the
insertion efficiency into the PPC is suboptimum due to the small fraction of the Bloch
mode contained inside the 0'* order ([1 1] Fourier component). The color conventions
are the same asin figure 5.8. . . . . . ... Lol
(a) Insertion efficiency as a function of the number of cascaded gratings in the MLG
for A=1.51 pm and (b) fraction of the output power of the MLG transmitted into the
PPC. (b) normalizes out the losses due to out-of-plane scattering inside the MLG in
order to evaluate the insertion losses uniquely due to mode mismatch. . . . . . . . ..
Insertion efficiency as a function of frequency for (a) 19 layers and (b) 14 layers. Opti-
mum insertion efficiency is achieved in the case of 19 layers at 1.51 um (84%); however,
the bandpass is higher in the case of 14 layers (45 nm versus 28.5 nm). . .. ... ..
Transmission (a), coupling efficiency (b) and reflection (c) of the MLG as a function
of the number of cascaded gratings. The data corresponds to the target wavelength
A = 1.52 pum, and the hole radius is 0.15 gm. The optimum coupling efficiency is
achieved with 3 cascaded gratings. The coupling efficiency is limited by out-of-plane
scattering losses. It can be seen that transmission and reflection of the 3-layer MLG

are close to zero and are not limiting the coupling efficiency in a significant way. The

envelope of (a) and (b) follows an exponential decay due to out-of-plane scattering losses. 69

Transmission through the stand alone PPC (dashed) and through the mode-matched
PPC (continuous). In both cases the upper curve is the total power transmission, and
the lower curve is the power transmitted into the 0" order. Points show computed data
points. The oscillations in the transmission might be due to a Fabry-Perot resonance
between the edges of the PPC. The 3" band has an antisymmetric B-field and is not
excited so that the transmission between A = 1.4 ym and A = 1.62 pum corresponds
uniquely to the 2" band. . . . . ... ...
Device imaged with a dark field microscope. On the left, a waveguide is connected to a
mode-matched PPC. The waveguide is delimited by 2 ym wide trenches etched into the
silicon membrane. These trenches can be seen as white horizontal lines. An amorphous
crystal is placed to the right. Diffraction orders are numbered and represented by

arrows. The white boxes show the regions imaged by the IR camera (figure 5.16).
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(a) Dark field microscope image of the waveguide region before the photonic crystal.
On the left three waveguides are seen. The center one is tapered out and couples into
the photonic crystal (figure 5.14). In the center of the image the white bar corresponds
to an amorphous crystal that extracts stray light coupled from free space into the slab
(outside of the waveguide). This ensures that the light imaged in the region of the
PPC originates from the center waveguide. The upper and lower waveguides on the
left of the picture are used as fiducials to optimize coupling from free space: in order
to center the position of the spot from the focusing lens, we aimed to have an equal
amount of light extracted by the amorphous crystals at the terminations of the two
outer waveguides. The inset is a picture taken with the IR camera. The spot from the
focusing lens can be seen as well as the three waveguides. (b) is a SEM micrograph of
the mode-matched PPC, and (c¢) is a SEM view of the amorphous crystal. . . . . . . .
(a) Experimental results for the non-mode-matched PPC. The amorphous crystal is
imaged with an IR camera for each subsequent wavelength. The intensities of all
diffraction orders are shown. (b) Experimental results for the mode-matched PPC.
The diffraction orders 1 and -1 are suppressed. In (a) and (b), the color scaling is the
same for the three diffraction orders. The settings of the IR camera were the same,
and the spots were imaged on the same region of the InGaAs diode array. . . . . . . .
In (a) the superprism configuration is illustrated. The waveguide direction relative to
the PC as well as the orientation of the PC interfaces are shown. The hole size is
varied in the adiabatic transition regions. Holes offset by the [1 -2] vector have the
same radius. (b) illustrates the coupling from the waveguide to the photonic crystal.
The k-vector of the waveguide-mode ky ¢ is projected onto the EFC of the PC, with
a projection direction perpendicular to the interface. At wavelengths shorter (higher)
than A = 1.54 um, kw increases (decreases), and light is coupled to modes left (right)
of the cusp. The direction of propagation is indicated by arrows inside the EFC. The

I', M and X high symmetry points are also shown. . . . . . ... ... ... ......
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This schematic illustrates how the different components of the Bloch mode project onto
the interface between the crystal and the slab. The squarish contours show the EFC
inside the first BZ (shown by the dashed square) and in higher Brillouin zones (outside
the dashed square). The four main Fourier components of the Bloch mode located on
the lower cusp as well as their projection onto the interface of the crystal are shown by
dots and by a curve along the interface. The curve corresponds to real data and gives
an idea of the relative intensity of these components. They are spaced by 27/(av/5) and
labeled for reference in the text. Components a, b, ¢ and d correspond to m=-2, -1, 0
and 1. It is apparent that component a, which we are coupling to as we chose m=-2, is
one of the two dominant components. We also show the real-space lattice-vectors, the
unit-vector of the interface, [1 -2], and the direction of propagation of light at A\ = 1.54,
[L1] . o o
(a) illustrates the mechanism underlying the adiabatic transition. To simplify the
schematic we show a step in hole radius rather than a continuous change, but the
general idea is the same. Due to the change in hole size, the contour is deformed.
In particular, for the same wavelength, the contour in the region of smaller holes is
smaller. Because the translation invariance is conserved along the [1 -2] direction, it is
straightforward to predict how a Bloch mode couples from one crystal to the other by
projecting it along the [2 1] direction. Modes that were in the vicinity of the cusp in
the “bulk” PC (with larger holes) couple to modes on the side of the contour in the PC
with smaller holes. Those modes have a dominant Fourier-component and are easy to
couple to. When the transition is made adiabatic, rather than stepwise, the reflections
induced at the interface are suppressed. (b) illustrates the real-space behavior of the
light propagation. In the adiabatic transition region, the group-velocity is progressively
deflected. The interface of the PC is along the x-direction (the coordinate frame of (b)

is rotated relative to the other figures). . . . ... ... ... . . Lo oL,
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We propagate light at A = 1.54 pm through a bulk PC ((a) and (b)) and through
an adiabatic PC ((c) and (d)). The abscissae correspond to the projection onto the
interface of the reduced k-vector of the Bloch mode (the zero abscissa has been shifted
so that it corresponds to the mode on the I'M direction). In (a) and (c) the upper
continuous curve is the incoming power, and the lower continuous curve is the outgoing
power. The dashed curve is the prediction of the output power based on equation
5.17. The left dash-point curve corresponds to component d (figure 5.18), the right
dash-point curve to component a and the pointed curve to component b. All the
Fourier-components corresponding to the same Bloch mode are represented at the
same abscissa. In (b) and (d) we show both the actual insertion-efficiency (continuous
curve) and the predicted insertion-efficiency based on equation 5.17 (dashed curve). In

(a) and (c), the trailing edge of the incoming Gaussian beam is due to the fact that

the interface of the PC is rotated in respect to the direction of propagation of the beam. 82

Power transmission through the “adiabatic crystal”. A Gaussian beam with a FWHM
of 3 um and an angle § = 60.95° is launched into the slab and coupled to the crystal (150
layers, 100 of which are split between the adiabatic transitions on both interfaces).
is chosen so that light at A = 1.54 um propagates along the [1 1] direction. The

transmission is in excess of 90% over the wavelength range 1.47 ym to 1.68 pm.
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These schematics illustrate how the adiabatic transition behaves when several photonic
bands are present in the same frequency range, which is for example the case when
the holes defining the crystal are small. (a) and (b) illustrate the case when the 274
and 3¢ bands are present, while (c¢) and (d) illustrate the case when the 1' and
27d bands are present. The black contours represent the EFC of the bulk crystal,
while the grey contours represent the EFC for smaller holes, at some point inside the
adiabatic transition. The red arrows indicate the dominant Fourier components of
the cusp modes of the bulk crystal. In all the illustrated cases there are two dominant
components that carry an equal fraction of the total power. The green arrows illustrate
the mechanism underlying the adiabatic transition. The first green arrow represents
the slanted projection from the bulk EFC to the modified EFC. The cusp modes are
projected onto modes of the modified crystal that have a single dominant Fourier
component. This Fourier component is indicated by the second green arrow. (a) and
(b) show the mechanism respectively for the 2°¢ and 3¢ band (in the frequency range
where both bands are present), and (c) and (d) show the mechanism respectively for
the 1%t and 279 band, for a lower frequency range where these latter bands are present.
The situation shown by (c¢) and (d) is not encountered in a bulk crystal with a complete
band gap; however, it will occur inside the adiabatic transition. For all the depicted
examples, when there are two bands present that are mode-matched at the same time,
these bands are converted to different plane waves so that cross talk between the
photonic bands is not anissue. . . . . .. ..o Lo
These schematics show the geometric constructions that lead to equations 5.18 and 5.19.
In both (a) and (b) the black circles represent the higher order Fourier components
generated by the periodic array of holes (see section 5.1). The EFC of the 2" band is
assumed to be the squarish shape formed by the intersection of those circles inside the
15¢ BZ (the latter is represented by a black square). This approximation ignores higher
order deformations of the EFC, in particular the rounding of the corners induced by
anticrossing. In (a) the corner of the EFC is on the light cone (shown in red) so that
any further frequency increase would lead the corner to be inside the light cone. In
(b) the corner of the EFC is at the corner of the 15* BZ so that any further frequency

decrease would transform the EFC into four disconnected contours. . . . . ... . ..
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(a) Band-diagram showing the first three TE photonic bands along the I'M direction.
The black dot corresponds to A = 1.54 pm. The lattice-constant of the PC was chosen
for the 2°¢ band to be the only one present in the frequency range of interest (C-band).
(b) shows the EFC of the 2°¢ band for A = 1.54 um. The contour has a squarish shape
with rounded corners. The corners can be approximated by the arc of a circle with a
radius of 0.3-27/1.54. Thus Gaussian beams with a distribution of k-vectors restricted
to that k-space region diffract inside the PC as if they were in a material of refractive
index -0.3. . . L oL e e e
This figure is a schematic of the beam-expansion inside the unpatterned slab and inside
the PC. The lengths and angles are labeled for reference in the text. . . . . . ... ..
This figure shows the dependence on the expansion length inside the unpatterned slab
(dsiap) of the beam width at the input (dashed line) and output (continuous line)
boundaries of the PC. The beam profiles are labeled by dgap/do, where dy is the opti-
mum expansion length predicted by equation 6.6. The beam is assumed to propagate
perpendicular to the PC interface inside the PC. At dgan, = 0 (that is, the waveguide
terminates directly in front of the PC interface) the beam is significantly broadened at
the output edge of the PC. At the optimum expansion length dy the diffraction inside
the slab and inside the PC compensate each other, and the beam recovers its transform
limited width at the PC output interface. . . . . . . . . . ... ... ... ...
In (a) a transform-limited beam (leftmost beam) is launched inside the PC. The shape
of the beam at the output of the PC is shown for the free-space wavelengths 1.6 um,
1.54 pm and 1.48 pm (left to right). (b) shows the same data for a beam that has been
propagated 80 pm inside the slab before being coupled to the PC. The leftmost beam
is the cross-section of the beam at the input edge of the PC after propagation through
the slab. In this case the beam is approximately transform-limited at the output of the
PC. Both in (a) and in (b) the relative positions of the output beams are correct, but

the input beams have been separated out, so as not to overlay too many plots.
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SEM micrographs of a fabricated superprism. (a) shows an overview of the device. At
the bottom of the picture, seven grating couplers couple light to single mode waveguides.
The rightmost grating coupler is the input port, while the six grating couplers to the left
are the output ports for the various demultiplexed frequencies. The output waveguides
are bundled into a tree-like structure. At the top the waveguide bundle is bent, and
each individual waveguide is adiabatically tapered to the width Wywg (b). The input
waveguide is also tapered to the same width. The photonic crystal can be recognized in
(a) as a rotated white square. (c) shows a detailed view of the adiabatic transition at
the input edge of the PC. It can be seen that the interface makes an angle ¢ = atan(1/5)
relative to the [1 0] crystallographic direction. . . . . . . . ... ... ... oL
(a) shows the EFCs of the first band of the PPC, in the wavelength range [1.34 pym 1.78
pm] for which they feature a squarish shape. To show the similarities with the EFCs
of the second band we didn’t represent the contours in the 15¢ BZ, but in a section
of Fourier space centered on the high symmetry point X (the lower left corner of the
diagram delimited by the dashed lines belongs to the 15¢ BZ). P is the k-space point to
which light from the waveguide couples at the wavelength A\g. It is located on XM. (b)
shows the effective index of the waveguide (upper curve, right axis) and of the PPC
(lower curve, left axis). The red section of the curves corresponds to the wavelength
range A € [1.45 ym, 1.64 pm]. It can be seen that although the PC negative effective
index undergoes strong variations, it stays roughly proportional to the slab index in
that frequency range. . . . . . . . . L e
(a) EFCs for the bulk PPC (r/a = 0.3) for A €[1.34 um 1.78 pm]. The black line
shows the modes to which the waveguide couples to for A €[1.518 pym 1.558 pm]. (b)
shows the same data for the lattice with the smallest hole size (r/a = 0.15). The EFCs
are smaller, and the black line is completely to the right of the cusp, so that the pass
band of the adiabatic transition should encompass the four channels. ¢ =atan(1/5)
and 6 = 55°. . . L e
Dependance of the propagation angle inside the PPC («) on the wavelength. tan(a) is
shown rather than a, as it is the tangent that determines the lateral beam steering.

Screen shot of the electron beam lithography mask showing the tapered outgoing
waveguides. They are oriented with an angle 8 relative to the edge of the PPC. At the
end of the taper the waveguide width is Wy, which results in a width Wy /cos(9)
along the interface direction. Black corresponds to the region that is etched into the

silicon film. . . . . . L e e e e e e e
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Comparison of a Gaussian beam with a FWHM of 0.7 yum (red curve) and the mode
profile of a 1.4 pm wide dielectric waveguide etched into the silicon film (black curve).
The squared B-field on the center plane of the dielectric waveguide is represented in
the latter case. . . . . . . . L
This figure shows the transmission through the demultiplexer as evaluated with Gaussian
overlap integrals. Three channels are shown. In one case (black lines), dgap is assumed
to take its ideal value, while in the other case it is assumed to be off by a 100 um. This
is an extremely simplified model, but it is useful to evaluate the tolerance on the beam
expansion length. . . . . . . ... oL
SEM micrograph of a cleaved sample after etching of a test pattern into the spin-on
glass layer. It can be seen that the side walls are fairly straight with the optimized
Process parameters. . . . .. ..o oL e e e e e e e e e e e e e e e
SEM micrographs of samples after etching the Si layer. In this instance the oxygen
descum was not applied after the CHF3 etch, and the residue deposition was particu-
larly disruptive. In most cases the residue redeposition was much weaker (less than a
particle per um?) and could be removed with an oxygen plasma. . . . ... .. .. ..
(a) Snapshot of a chip aligned to a fiber array. Several superprisms can be seen. The
right side of the tree-like structure corresponds to multiple grating couplers separated
by a fixed pitch (250 pm) corresponding to the pitch of the fiber array. The waveguides
are bundled, bent (on the left side of the structure) and oriented towards the photonic
crystal (rotated square). (b) shows a detailed view of a device. After bending the fiber
bundle the waveguides are tapered on the left side of the device. On the right side of
the device, the topmost isolated structure corresponds to the in port, while the fiber
bundle corresponds to the output ports. . . . . . . .. .. ... L ..
(a) shows a SEM micrograph of a fabricated grating coupler, and (b) is a typical
coupling spectrum for a single grating coupler. . . . . . ... ..o
Experimentally obtained transmission spectra for the characterized superprisms. (a)
shows the transmission spectrum for a loop fiber coupled with two grating couplers,
including losses incurred elsewhere in the measurement setup. This spectrum has been
subtracted from the device spectra shown in (b) and (c) so as to normalize out the effect
of both the finite grating coupler efficiency and additional losses in the measurement
setup (of about 5.5 dB). (b) shows the transmission spectra for a device with § = 57°
and for the sixth (black curve) and fourth (red curve) output channels. Output channels
are numbered by the position of their output taper, from left to right. dga.p = do —
200 pm. (c) shows spectra recorded for the sixth output channel of devices with § = 57°

and dgjap = do — 200 pum (black curve), do (red curve) and dy + 200 pym (blue curve). .

108

111



8.1

8.2

8.3

8.4

8.5

8.6

XXix

E-field (|E.|) in the vertical cavity and in the GC (red corresponds to high intensity
and blue to low intensity). The gray lines show interfaces between films of different
refractive index. Alternating GaAs and AlGaAs layers define the VCSEL. Above the
multilayer stack, an oxidized AlGaAs layer separates the waveguiding GaAs layer (with
the grates) from the VCSEL. . . . . . . . .. .. oL
(a) Amplitude of E, along the center of the topmost (waveguiding) GaAs layer, in
the region of the grating. The field enters from the left and reaches a maximum at
the defect. In the region of the grating the field has nodes and antinodes due to the
standing wave. (b) Amplitude of E, inside the oxidized AlGaAs cladding layer 4 um
below the stand-alone GC (continuous line). The best Gaussian fit (FWHM=3.1 pm)
is also shown (dashed line). Due to the profile of the grating defect mode, the emitted
field has a naturally “humped” shape with a good overlap with a Gaussian beam.

Coupling efficiency (dots), back-reflection into the waveguide (circles) and transmission
to the other side of the grating (squares) as a function of wavelength. This data
corresponds to a stand-alone GC. The plotted coupling efficiency is the sum of the
coupling efficiency in the +y and in the -y directions. . . . . . .. .. ... .. .. ..
Schematic representation of lateral electrical confinement by means of an implantation
induced resistivity profile. The electrical current flow is shown with bent arrows, and
the implanted region is shown by grey shading. . . . . . . ... ... ... ... ...
Schematic of a slab waveguide with gain guiding. The refractive index of the cladding
is n, and the refractive index of the core is 7. In the case of gain guiding An =7 —n
is complex. The functional dependence of the lateral field profile is indicated. . . . . .
(a) shows three fabricated devices that share a common electrode. The TiAu electrode
can be seen at the top of the image. The VCSELSs are coupled to segmented waveguides
that run in the vertical direction (in the image). (b) is a detailed micrograph of a single
VCSEL. A circular aperture is left unmetalized above the VCSEL, and a rectangular
aperture is left unmetalized above the segmented waveguide. The waveguide is defined
by two trenches etched into the topmost GaAs layer. The trenches are periodically
interrupted by small “bridges” to prevent the waveguide from peeling off. The AlGaAs
buffer layer is selectively oxidized around the waveguide and can be seen as a rectangular

shaded region. . . . . . . . .
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This figure shows the structure of the epitaxially grown wafer. The “humped” curve
shows the field distribution inside the cavity (square of the E-field in arbitrary units).
The other curve shows the refractive index distribution. From right to left the following
layers can be identified: the waveguiding GaAs layer (weakly p-doped), the AlGaAs
buffer layer (weakly p-doped) followed by 18 pairs of A/4 layers (p-doped), the defect
with the QW (intrinsic) and finally n-doped A/4 films. . . . . . ... . ... ... ...
SEM micrographs of the wafer structure. In (a) the structure has been imaged with
a low acceleration voltage (10 keV). Under these conditions the individual layers of
the multilayer stack can be well resolved. Also the doping profile can be seen as the
n-type region is imaged with a darker shade (bottom of the picture). In (b) the GaAs
layers have been selectively etched to increase the contrast after cleaving. A mixture
of citric acid and hydrogen peroxide was used (C¢HgO7:H2045:H20) [111]. In (c) the
AlGaAs layers have been selectively oxidized after cleaving. High aluminum contents
significantly decrease oxidation temperatures. . . . . . . ... ..o
Cross-section of photoresist structures used to optimize the photoresist process needed
to define the implantation stop. The photoresist film is 8 ym thick in order to provide
an adequate stopping layer for the high velocity hydrogen ions. . . . . . . . .. .. ..
SEM micrographs of Ag/Cl etches on GaAs. In both (a) and (b) process parameters
were 200 W ICP power, 50 W forward (acceleration) power, 5 mTorr chamber pressure.
In (a) the chlorine made up for 20% of the gas flow, and in (b) it made up for 50% of
the gas flow. It can be seen that in (a) the side walls are fairly straight while in (b)
the GaAs is undercut. In (a) the side wall roughness might be due to underexposure
of the PMMA mask. In (b) the PMMA can be recognized as the topmost layer.

(a) shows the cross-section of an oxidized chip where delamination took place (delam-
ination actually took place before cleaving). (b) was oxidized for 5 minutes at 550
°C. It shows how selective oxidation can be achieved by defining local openings in the
topmost GaAs film. . . . . . ...
Schematic of the measurement setup. A beam splitter is added to the camera port of
the microscope so that both a CCD camera and a fiber can be connected to the port.
The procedure used to align both the fiber and the camera to the sample is described

inthe text. . . . . . . L e e e e e e e e e
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(a) shows the emission spectrum of a fabricated VCSEL. The FWHM is 2.1 nm. (b)
LL curve for 5 VCSELs operated by a single top electrode. The threshold current is
2 mA per VCSEL. The power is measured with a photodiode, and the output voltage
of the photodiode is plotted on the y-axis. The inset shows a picture taken of the
VCSEL with a CCD camera. The bright spot corresponds to the VCSEL emission.

The electrode and the GaAs waveguide can also be seen in the picture. . . .. .. ..

Cross section of the computational domain. A dipole source launches a field with

symmetries o,, = —1, 0, = +1. Every second lattice period a field probe saves the

Mode profile for fa = 0.07n (lower band of el). The colormap shows |B,|. The thick
black lines delimit the high index region (n = 3.43). The two maxima have the same
phase (i.e., B, is even). Units are in microns for a lattice constant of @ = 0.52um.

20log; o (|{¢", ¥ 3a=0.07x)|) is plotted with circles, where ¢! is the field profile at the It"
probe and tg,—0.07~ is the field cross section of the PCW Bloch mode with reduced
wave number Ba = 0.077. 10log;o(|(#, ¢')|) is plotted with crosses. Probes are spaced
by two lattice constants. It can be seen that the unfiltered energy flux decreases faster
than the flux carried by the mode. . . . . . . . .. ... ... L oL
The phase of ((bl, ¥Ba=0.07x) is plotted. The expected linear behavior is seen. . . . . .
(a) Dispersion diagram of the lower band of el, and (b) losses of the lower band of el.
The straight line in (a) represents the light line. Losses in dB/mm correspond to a
lattice constant of a = 0.52um. . . . . . . ...
Ba as set by the BBC during the mode solving is compared to the fa extracted from the
phases of (¢',15,). Away from the mini-stop band, in the high group velocity regime,
there is a good correspondence. However, near the mini-stop band the spatial evolution
of the phase of (¢!,15,) differs from what would be expected from the dispersion
diagram due to the fact that numerical errors in the mode profile dominate the values

returned by the inner product. . . . . .. ..o oL

135

136



A7

A8

A9

xxxii
Field evolution inside a corrugated waveguide. In (a) the corrugation stops after 15 ym
and in (b) the corrugation stops after 100 ym. The different boundary conditions lead
to a different field evolution. In particular, in the case of the short waveguide the losses
of the total energy flux are almost twice those expected from the Bloch mode, due to
the negative flux carried by the reflected Bloch wave, while in the second case the field
evolution at the beginning of the waveguide is close to the losses expected from the
Bloch mode (the reflected Bloch mode is almost completely decayed at that point). The
parameters were assumed to be 8 = 2rnwa /A, £ =6 pm™, A = Xo/nwa, v = 0.01
pum™, nwg = 2.7, A = 1.4 ym and A\g = 1.5 um. The red curve shows the total
power, the straight black curve shows the power contained in the forward propagating
Bloch mode and the oscillating black curve shows the power contained in the forward
propagating unpatterned waveguide mode. . . . . . . .. . ..o
This figure shows the field distribution inside the same corrugated waveguide (same
parameters as in figure A.7, with a corrugation length of 50 um) for different wave-
lengths. In (a) A = 1.4555 pum is very close to the band edge, while in (b) A = 1.4 ym.
As in figure A.7 the black straight line is F(2)?, the red line is A(z)? — B(z)? and the
curvy black line is A(2)2. . . . . ..
This figure shows the field distribution inside the corrugated waveguide (same para-
meters as in figure A.7, with a corrugation length of 150 pm) for A = 1.4555 um
(a) and A = 1.4 pm (b). It can be seen that when the length of the waveguide is
longer than the 1/e? intensity decay length, the field evolution at the beginning of
the waveguide is dominated by the forward propagating Bloch mode, and the beating
pattern has a small amplitude. This is to be put in contrast with short waveguides as
in figure A.7(a), where the logarithm of the field intensity is almost linear, but where
the waveguide losses would be overestimated by a factor 2 if directly evaluated from

that slope. . . . . L e
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Glossary of Acronyms

ABC Absorbing boundary condition

BBC Bloch boundary condition

DBR Distributed Bragg reflector

EFC Equi-frequency contour

FDTD Finite-difference time-domain computation
GC Grating coupler

GVD Group velocity dispersion

ICPRIE Inductively coupled plasma reactive ion etch
MBE Molecular beam epitaxy

MLG Multi layered grating

PBG Photonic band-gap

PC Photonic crystal

PCW Photonic crystal waveguide

PMMA Polymethylmethacrylate

PPC Planar photonic crystal

PR Photoresist

QW Quantum well

RIE Reactive ion etch

SEM Scanning electron microscope

SP Superprism

TE Transverse electric

TM Transverse magnetic

VCSEL Vertical-cavity surface-emitting laser
WGM Whispering gallery mode



Chapter 1

Introduction

Photonic crystals (PCs) are artificial metamaterials formed by a mesoscopic periodic array of scat-
terers [1,2]. They have attracted a lot of attention due to their ability to control the flow of light on
a very small length scale [3-17] and due to their ability to modify spontaneous emission of emitters
such as atoms or quantum dots [1,18-23]. More recently their diverse dispersive properties have also
led to applications such as self-collimation of light [25-30] or compact planar demultiplexers [31-41].
Inside photonic crystals, distributed Bragg reflection induced by the periodic array of scattering
sites can create frequency regions in which light cannot propagate inside the crystal—the photonic
band-gap (PBG)—in analogy to the electronic band-gap in semi-conductor crystals [2].

Due to their artificial nature, the properties of PCs can be tailored to satisfy specific needs. Line
defects and point defects in the crystal lattice can define waveguides [3-5] and cavities [6-8] on a
micron scale. These optical elements can be coupled to form complex optical systems [16,17].

Photonic crystal point defects have been used to fabricate micro-lasers in the near [9-13] or far
infrared [14, 15]. More recently, additional functionalization has resulted from the integration of
photonic crystal lasers with liquids [42], liquid crystals [43] and photo-addressable polymers [44].
Electrical tunability of the lasing wavelength [43] and active switching of the laser polarization [44]
have been achieved this way.

However, the bulk properties of PCs are also of interest [24-41]. Their anisotropic nature leads
to modified, anisotropic spatial dispersion that can be tailored for specific engineering applications.
In certain crystallographic directions the beam broadening is inhibited so that light stays collimated
within the crystal even in the absence of waveguiding (self-collimation) [25-30]. On the other hand
the dispersion is enhanced in other crystallographic directions. The latter can be used to achieve
frequency domain demultiplexion, with an effect dubbed the superprism effect [31-41] due to its
similarity to the conventional dielectric prism. However, the achievable frequency resolution per
device size is much higher for the superprism (SP) due to the enhanced, tailored dispersion. This
makes the SP a promising device for integrated micro-optics, although difficulties such as insertion

losses [39-41] and beam-broadening within the crystal [38,41] have to be overcome.
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In its most general form a photonic crystal can be any type of mesoscopic periodic structure, i.e.,
the dimensionality of the periodicity can be one, two or three. Three dimensional photonic crystals
(3D PC) [18,19,45-50] offer the advantage of a completely depleted density of states inside the PBG,
which is particularly important for applications such as suppression of spontaneous emission. Many
advances have been made in the fabrication of such structures in the form of inverted self-assembled
opals [18,19], square spiral photonic crystals [47], 3D structures formed by photo-electro-chemical
etching [48], holographic lithography [49] or two-photon absorption lithography [50]. However, an-
other type of photonic crystals, the planar photonic crystal (PPC) [51], represents a promising
structure for integrated optics, since its fabrication is compatible with conventional microelectronics
patterning techniques. A PPC is an optically thin dielectric slab perforated with a two-dimensional
(2D) lattice of holes. Light is confined in the slab in the vertical direction by means of total internal
reflection and in the lateral direction by means of distributed Bragg reflection induced by the 2D
lattice of holes [52,53]. This technology has certain drawbacks as the PBG is only complete for
modes that are bound to the slab. Although the optical density of states is reduced inside the PBG,
it stays finite due to radiative free space modes.

Most of this thesis (chapters 2 to 7) is dedicated to dispersive properties of PCs, with a particular
emphasis on the superprism effect [40,41]. However, the self-collimation effect [27,28] is also investi-
gated in the third chapter. A large fraction focuses on insertion of light at the interface between the
PCs and other optical elements, and coupling mechanisms are proposed both for the self-collimation
effect [28] (chapter 4) and for the superprism [40,41] (chapter 5). The coupling difficulties are shown
to be related to the Bloch mode structure (chapter 5), which is first derived from high-level concepts
such as band-folding and then substantiated with a numerical analysis. Several coupling schemes are
presented, such as evanescent coupling between the PPC and a dielectric waveguide located above
the PPC (chapter 4), efficient butt-coupling between the slab waveguide and the PPC with help of
a mode matching interface composed of a series of cascaded diffraction gratings (chapter 5), and
finally an adiabatic transition of the hole size at the onset of the PPC. The latter operates a similar
mode conversion to the multilayered grating but does not rely on resonant mechanisms and has a
wider angular and spectral passband (chapter 5).

The propagation properties of light inside the PC are also investigated. In particular we show
how limitations of self-collimation can give rise to beating profiles in beams propagated for distances
of the order of or longer than ~ 100 um in the case of the implemented PPC (chapter 3). We also
show how negative index of refraction [54-56] in PCs [57-59] can be used to suppress cross-talk inside
the SP (chapter 6). Limits on the resolution that have been previously predicted in the literature [38]
are overcome in this way and the scaling law of the resolution is improved to a linear dependency
(resolution versus device size). Finally a superprism incorporating several of these improvements is

designed, fabricated and characterized (chapter 7).
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At several points in this thesis an inner product [60] is applied to field cross-sections obtained by
finite-difference time-domain computations (FDTD) [61] in order to filter out specific modes. This
inner-product is introduced in the appendix. A short proof of its applicability to Bloch modes is
provided. As an example of possible applications it is used to compute intrinsic photonic waveguide
losses. We show that by using this inner product to analyze data generated by FDTD, the size of
computational domains can be significantly reduced while maintaining the accuracy of the obtained
results. However it is also shown that the numerical accuracy of this method breaks down when
applied to Bloch modes with very low group velocity. The origin and bounds of the numerical
accuracy are formally derived.

The tool box used to analyze the dispersion in PCs increases in complexity throughout the first 6
chapters. Chapter 2 briefly introduces the general concepts that are used in the following chapters,
such as group velocity in photonic crystals, the generalized Snell’s law used at the interface of the
superprism, etc... Chapter 3 is dedicated to self-collimation and analyzes propagation of light inside
the photonic crystal. Chapters 4 and 5 then investigate the coupling of light in and out of PCs.
Chapter 6 further investigates how the interaction between the dispersive properties of a PPC and
conventional waveguide based integrated optics [62-65] can lead to dramatic improvements in device
performance. One of the recurrent tools used throughout this thesis is the equi-frequency contour
(EFC) introduced in chapter 2. The results derived in chapter 3, i.e., both the emergence of self-
collimation and its limitations, can be entirely derived from the shape of the EFC restricted to
the 15¢ Brillouin zone (BZ). However in order to understand coupling of light into PCs, and the
interaction of PCs with the surrounding optics, the structure of Bloch modes also has to be carefully
analyzed (chapter 5), and coupling conditions have to be derived in extended Fourier space. Chapter
7 combines all these techniques to optimize a planar demultiplexer that is subsequently fabricated
and characterized.

Chapter 8 is independent from the rest of the thesis. It introduces a resonantly enhanced grating
coupler (GC) that couples light around a 90 degree angle and is used to monolithically integrate
vertical-cavity surface-emitting lasers (VCSELS) to on-chip waveguides [66]. In particular the VC-
SELs are coupled to planar waveguides without the need to place the GC inside the laser cavity such
as in previous designs [68]. Rather, the GC is etched in the topmost epitaxial layer of the chip and
does not necessitate regrowth after etching. However, in order to achieve good coupling efficiencies
around a 90 degree angle a resonant mechanism has to be used. This is solved by introducing a de-
fect into the grating. Electrically pumped VCSELs are fabricated in an aluminum-gallium-arsenide

(AlGaAs) based material system and subsequently characterized.



Chapter 2

Engineered dispersion in photonic
crystals

The dispersion characteristics of PCs can be engineered for practical applications such as guiding of
light with the self-collimation effect [25-30], wavelength demultiplexion with the superprism effect
[31-41], spot size conversion [24] or superlensing with negative index of refraction [54-59]. In this
chapter we will introduce the basic concepts related to these effects. The first section introduces
general concepts such as the Bloch theorem, the Brillouin zones (BZs), photonic crystal bands, the
light cone, equi-frequency contours (EFCs) and the group velocity in PCs. The second, third and
fourth sections are brief introductions to self-collimation, negative index of refraction, superlensing
and the superprism (SP) effect. The fifth section relates the dispersion properties of PCs as well as
the Bloch mode structure to band-folding. A more indepth version of this analysis can be found at

the beginning of chapter 5.

2.1 Basic concepts

A planar photonic crystal (PPC) [51-53] is a thin dielectric slab in which a periodic array of scattering
sites has been introduced. In the following the PCs are implemented as a periodic lattice of holes
lithographically defined in a silicon film. The silicon film is clad on both sides by silicon dioxide,
and the holes are backfilled with silicon dioxide. The fabrication process is described in section 7.2.
The lattice of holes is generated from its unit cell by two primitive lattice vectors & and &, (figure
2.1). The unit cell is defined as the smallest piece of the PPC from which the full crystal can be
reconstructed with a periodic tiling.

Unlike a slab waveguide a PPC does not have a continuous translation symmetry. However,

it has discrete translation symmetries generated by the unit lattice vectors. Due to these discrete



Figure 2.1: Schematic of (a) a square lattice PPC and (b) a triangular lattice PPC. The unit cell is
delimited by a dashed line, and the lattice vectors are shown by arrows.

symmetries, light propagating in PCs can be described by modes 1) = (E, E) that verify

E@® = E@erT (2.1)
B = B(@)e*" (2.2)

where 7 is the position-vector and E, B are functions that have the same periodicity as the PC. In
other words E(7*+ mé; + néy) = E(¥), where m and n are integers. This property is known as the
Bloch theorem, and PC modes are called Bloch modes [2].

By operating a Fourier transform, equation 2.1 can also be cast into the form

E( = Y B(m,n)eitmEitnka)r (2.3)
m,n

ZB(myn)ei(l_c'-i-mf('l-i-nf('g)f (2'4)

m,n

&
3
I

where m and n are integers and K 1 and 1?2 are the inverse lattice vectors (so called because they

belong to reciprocal k-space). They verify

—

é} . Kj = 27T(5ij (25)

where 7, j € {1,2}. In other words a Bloch mode can be described as a superposition of plane waves,
where the relative phase and amplitude of the plane waves are linked by the Bloch mode structure.
The term “plane wave” has to be taken with caution in this context as each individual component
is not a solution of Maxwell’s equations on its own. They are referred to as plane waves due to the
fact that they feature planar wavefronts.

The vector k in equation 2.3 is not uniquely determined for a given Bloch mode; it is only
determined modulo the inverse lattice vectors. In fact, replacing k by E +mK, + nk, would only
lead to a renumbering of the terms inside the sum 2.3. However there is only one possible choice

of k inside a region of reciprocal k-space called the 1°¢ Brillouin zone (BZ). It is defined as the
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Figure 2.2: Schematic of rec1pr0cal Fourier space for (a) a square lattice and (b) a triangular lattice.
The inverse lattice vectors K 1 and Kg are represented by arrows, and the 15¢ BZ is shown with a
continuous line. Each of the cells delimited by the dashed line contains a single Fourier component
of the Bloch mode. The inverse lattice vectors in the case of the triangular lattice are rotated by 30°
relative to the lattice vectors in order to satisfy equation 2.5. Furthermore the magnitude of K 1/2

is 27/a in the case of the square lattice crystal and 47/(v/3a) in the case of the triangular lattice
crystal, where a is the lattice constant of the PC.

region of k-space delimited by the lines bisecting the inverse lattice vectors (figure 2.2). k is then
called the reduced k-vector and will be noted as 1_50.

When photonic crystal Bloch modes are plotted as a function of their frequency and of their
reduced k-vector, they form continuous surfaces called photonic bands [2]. A Bloch mode is
uniquely determined by its band and its reduced k-vector. The first two photonic bands of a square
lattice PPC are represented in such a manner in figure 2.3. The radiative modes of the cladding are
also represented by a conical surface in the diagram. The set of all the cladding modes is delimited
by that surface and is called the light cone!. Due to the isotropic nature of the cladding, the light
cone has a cylindrical symmetry (that is the frequency does not depend on the in-plane orientation
of the k-vector). If the cladding is assumed to be dispersion-free—which in the case of a real material
such as silicon dioxide is an approximation—the light cone is truly a cone. In that case the k-vector
is given by 27n /A, where n is the refractive index of the cladding (1.46 in the case of SiO2) and A
is the free space wavelength. Cladding modes located on the surface of the light cone correspond
to light propagating parallel to the plane of the PPC, while modes inside the light cone propagate
with a finite angle relative to the plane of the PPC. The PPC has a discrete translation symmetry

so that the in-plane component of the k-vector is conserved modulo the inverse lattice vectors (in

1Band diagrams are often represented as 2D plots instead of the 3D full band diagrams. In that
case the bands are only represented along the lines linking the high symmetry points, I'M, MX and
XT'. The light cone is then represented as a line and is called the light line. The modes above the
light line are the modes inside the light cone and are thus the lossy ones. In this thesis most band
diagrams are full band diagrams in order to derive the dispersive properties of the crystal; thus we
use the light cone nomenclature.
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Figure 2.3: This figure shows the normalized frequency of the first two photonic bands of a square
lattice PPC as a function of the normalized in-plane k-vector (wa/2mc = a/\, where w is the angular
frequency and A the wavelength). The light cone is also shown. The PPC is a square lattice crystal
with lattice constant a and is etched into a silicon membrane of thickness ¢t = 0.57a. It is cladd by
air, and the radius of the holes is r = 0.3a.

other words the reduced k-vector is conserved). Thus PPC modes located outside the light cone
cannot couple to the cladding and are lossless in an ideal crystal (that is in the absence of material
absorption and fabrication imperfections). Only Bloch modes outside the light cone are truly bound
eigenmodes of the PPC, while “modes” inside the light cone are lossy resonances of the PPC.

The set of all the reduced k-vectors of Bloch modes belonging to the same band, and correspond-
ing to the same frequency, forms a continuous contour called an equi-frequency contour (EFC).
It is the equivalent of the Fermi surface in solid state physics. In figure 2.3 this would correspond
to the intersection of the bands with a horizontal plane (such contours are shown in figure 2.4). In
general, the direction of propagation of a wave-packet is given by the group velocity 7, = Vi (w),
where w is the angular frequency. This also holds for Bloch modes, in that case Vi is replaced
by ﬁko, where kg is the reduced k-vector. The group velocity is perpendicular to the EFCs (the
gradient of w is perpendicular to contours of constant w) so that the direction of propagation of
Bloch modes can be derived in a trivial way from the EFC. This makes the EFC a very powerful
tool for the analysis of PCs. In the following sections it will be used to explain the self-collimation

effect and the superprism (SP) effect.

2.2 Self-collimation

The anisotropic shape of the EFCs in PCs fundamentally modifies the propagation of light inside

the slab. In particular, modes centered on the corners of the contour propagate in a very different
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manner than modes located on the sides of the contour. The corners or other sharp features of the
contour are also referred to as “cusps” in the following pages (this nomenclature makes particular
sense in the case of triangular crystals where the EFCs can take the form of a six-branched star or
of a hexagon). In this section, we will show how broadening of a finite cross-section beam can be
suppressed to a large extent inside PPCs. This guiding mechanism is called self-collimation. We
will start with a quick derivation of the beam-broadening in planar waveguides. We will then show
how this diffraction is modified in PCs.

In a plain dielectric slab, an initially collimated beam broadens while propagating through the
slab. The spatial Fourier transform of its finite cross-section also has a finite width. The individual
components of the Fourier transform propagate in different directions so that the beam broadening
can be related to the spatial Fourier spectrum. In turn, the width of that spectrum can be related to
the width of the beam cross-section. The standard deviation (std) of the lateral k-vector component

0k, and the std of the field intensity distribution along the cross-section 4, verify the inequality

Su0k, > 1/2 (2.6)
where 0, and J, are given by
fI Yo2dx
0y = 2.7
Tz 27
I 2
Op, = M (2.8)
J Ik,

where I(z) is the field intensity along the cross-section and I(k,) the field intensity distribution
in k-space. The beam is assumed to be centered on x = 0 and to propagate in the y-direction.
For a transform limited Gaussian beam the inequality turns into an equality, i.e., a Gaussian beam
minimizes the width of the k-vector distribution for a given beam width, provided the widths are
measured with the std?. In the case of a Gaussian beam the local beam width follows a hyperbolic

dependence. The amplitude of the beam is given by A(y)e=2"/7=(®)* where W (y) = 20,(y) is the

2When the widths are measured with another metric, other functional forms might have a lower
0, -0y product. For example if the full width at half maximum (FWHM) is used to evaluate the beam
width, a hyperbolic secant 1/cosh(x/20) transform limited beam profile leads to Ay - A, > 0.315-27
while a Gaussian beam leads to Ay - A, > 0.441 - 27.



local beam width and is given by [71]

W(y) = Wo[1+<j—0>211/2 (2.9)
aWan

Yo = 4)‘\) (2.10)
2

ap = T (2.11)

where n is the effective index of the slab, yo the Rayleigh range defined as the length after which the
beam width is broadened by a factor v/2 and aq is the diffraction angle. The Fourier transform of
a Gaussian beam also has a Gaussian functional dependence exp(—kZ2/o?). Equation 2.6 then turns

into an equality at the beam waist and can be expressed in terms of o, and oy, as
Op - O = 2 (2.12)

Finally the FWHM of the Gaussian beam can be expressed as \/m%v. These expressions will
be used in chapter 7 to evaluate design parameters for the superprism.

In PCs this situation is modified due to their anisotropic nature. The EFCs are no longer circles,
but have features such as flat sides and cusps (figure 2.4). Along a flat side, the direction of the
group velocity is constant, even if the k-vector is varied, so that diffraction is suppressed. On the
other hand in the vicinity of a cusp, the direction of the group velocity undergoes sharper changes
than what would be expected in the case of a circular contour of similar size. Thus, in a PC the
diffraction is unevenly distributed in k-space. The propagation of light inside the PC is strongly
dependent on the coupling conditions as they determine whether the k-vector distribution of the
beam is located in the strong diffraction region or in the suppressed diffraction region (figure 2.5).
It is relatively straightforward to see how a different crystal orientation can lead to self-collimation

and suppressed diffraction, or to enhanced diffraction (figure 2.5).

2.3 Negative index refraction

This section is dedicated to negative index of refraction in PCs. First, we will introduce negative
index on a high level—that is, we will describe the properties of negative index of refraction by
taking the material properties as granted and show how a Gaussian beam can be refocused. We will
then proceed by showing how these properties can be implemented with a PPC.

We first consider a Gaussian beam propagating from a material with refractive index n; > 0 to a
material with refractive index ny = —nq. In this case the Gaussian beam will refocus in the second
material. In fact, the EFC is a circle of identical radius in both materials, but the group velocity

points outside the contour in the first material and inside the contour in the second material. The
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Figure 2.4: This figure shows EFCs for the 1t (a) and 2°¢ (b) bands of the square lattice PPC already
introduced in figure 2.3. It can be seen that the contours are not circles as in an unpatterned slab.
The group velocity is perpendicular to the contour and is indicated by arrows. It is pointing inside
the contour rather than outside the contour in the case of the second band (section 2.5).

(b)

. (C). : (d)'

Figure 2.5: This figure illustrates how two different coupling conditions can lead to self-collimation,
or conversely to very strong beam broadening inside the PC. In (a) and (b) a Gaussian beam is
coupled from an unpatterned slab into a PPC. In (b) the lattice of the PPC is rotated by 45°
relative to (a). While in (a) the beam stays collimated inside the crystal, in (b) the beam undergoes
very strong broadening. (c) and (d) show the corresponding Fourier space diagrams. The projection
of the k-vector onto the PPC boundary is conserved modulo 27/a in (a) and modulo 27/v/2a in
(b). The projection from the circular EFC of the unpatterned slab onto the squarish EFC of the
PPC is visualized by the dashed lines. The EFCs are shown with a continuous line. The resulting
group velocities are represented by arrows. It can be seen that in (c) beam-broadening is actually
suppressed inside the PPC, while in (d) it is enhanced.
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Figure 2.6: This figure illustrates the propagation of a Gaussian beam when coupled from a material
with refractive index n; to a material with refractive index —n;. The dashed line shows the boundary
between the two materials. The circles show the EFCs in the materials, and the group velocities are
indicated by arrows.

consequence is that for a given k,, the angle of propagation in the second material as is the exact
opposite of the angle in the first material «; it is then easy to see in a ray-approximation that the
beam reconverges (figure 2.6). The situation is more complicated when ns is not the exact opposite
of ny. In that case tan(az) ~ —ni/|n2ltan(a;) only holds asymptotically around k, = 0 so that
the beam reconverges imperfectly inside the negative index material, at the distance d|nz|/ny from
the interface, where d is the distance between the waist of the beam in the first material and the
interface.

Negative index of refraction in metamaterials has attracted a lot of attention due to the fact
that in a “left-handed” material, that is an artificial material with both a negative permittivity and
a negative permeability, sub-diffraction-limit imaging (sometimes referred to as superlensing) is
achievable. Such materials have the property of reamplifying evanescent waves that were exponen-
tially decreasing in the positive index material. The emission profile of a light source or scatterer
is composed of evanescent waves and propagative waves. The evanescent waves decay, and the
corresponding information is lost. The propagative waves can be refocused, but the resolution is
then limited by the diffraction limit A/2. However if the evanescent waves can be reamplified and
refocused this limitation does not apply anymore [54]. These properties have been shown in metallic
left-handed metamaterials in the microwave regime [55,56]. These materials are also the first to
have been characterized with a negative refractive index. There has been originally some contro-
versy over whether superlensing is achievable with photonic crystals; however, sub-diffraction-limit
imaging has since been demonstrated in dielectric PCs [57,58]. However, in the following we only use
negative index to refocus Gaussian beams. Thus we have not verified if and under which conditions
superlensing occurs for the particular PPC used in chapters 6 and 7; this is why we sometimes refer
to it as quasi negative index.

As already mentioned, the group velocity of modes belonging to the second band points inside
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Figure 2.7: Negative index of refraction can be achieved if the group velocity points inside the
tangent circle determined by the local curvature of the EFC. Even though the group velocity points
inside the EFC for the second band, the curvature of the sides can be concave rather than convex
so that the side of the EFC corresponds to a (very large) positive index. However, the corner
region corresponds to a (small) negative index. Conversely, the EFC of the first band can be locally
approximated by a negative index in certain cases (chapter 7), even though the group velocity points
outside the EFC when represented inside the first BZ.

the EFC. Indeed the slope of the second band is negative, so that v i (w) points inward. This is also
related to the fact that the contour is folded back inside the first BZ (section 2.5). Furthermore,
the EFC takes a circular shape near the high symmetry points so that an effective index can be
unambiguously defined in these regions [72]. This can be seen in figure 2.4 where the contours take
a circular shape around E=0 (T point)®. Under these conditions, i.e., a circular EFC with the
group velocity pointing inside the circle, the diffraction inside the photonic crystal can be described
by a negative index of refraction. This is why negative refraction in PCs is often associated to the
second band.

While the effective index approximation is straightforward for circular EFCs, it is not limited to
them. In the case of contours with more general shapes, an effective index cannot describe the overall
behavior of light. However, it is possible to associate an effective index to the local curvature of the
EFC. Propagation of light can then be described by this index provided the k-vector distribution
of the beam is limited to the region of the contour approximated by the tangent circle (figure
2.7) [41,58]. For example in figure 2.5(d) the corner of the EFC has a rounded shape. If the lateral
k-vector distribution {k,} were confined to that region the propagation of light could be described
by an index —n. s, where the radius of curvature of the rounded corner is 2wn.ss/A. This will be
used in chapter 6 to refocus a beam exciting a SP. However, when the local curvature is used to
derive an effective index, that index is not automatically positive for the first band and negative for

the second band, as the tangent circle can be outside or inside the contour. In fact it doesn’t matter

3This effective index is not constrained by |n| > 1; in fact the radius of the contour vanishes while
approaching the high symmetry point. However in the immediate vicinity of the high symmetry
point, the group velocity also tends to zero, and dispersion becomes very high [27] which leads to
broadening of pulses in the time domain and to high insertion losses.
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whether the group velocity points inside or outside the contour, but rather whether it points inside
or outside the tangent circle determined by the local curvature of the EFC. Indeed in chapter 7 we
use quasi negative index in the first band, while there can be regions of the second band where the

effective index is positive (figure 2.7).

2.4 Superprism effect

The dispersive properties of PPCs can also be used to build planar wavelength demultiplexers. The
most common configuration is known as the “superprisms” (SP). Figure 2.8 shows the general setup
of such a device. An angled waveguide terminates at the boundary of the PPC. Depending on the
frequency, light propagates in different directions inside the PPC and is guided to various waveguides
at the output of the prism. The SP is similar to the conventional prism in that light is deflected at
the boundary of the prism. In the case of the conventional prism the deflection of light can be derived
from Snell’s law, and the frequency dependence is linked to the chromatic dispersion of the dielectric,
while in the SP a generalized Snell’s law has to be applied. It consists in the conservation of
the reduced k-vector component parallel to the interface. In the configuration shown in figure 2.8,
the waveguide needs necessarily to be angled to achieve demultiplexion due to the orientation of the
PC (the normal to the interface is a symmetry axis of the crystal lattice). Otherwise light would
be coupled to modes on the I'M axis that all propagate in the same direction, perpendicular to the
interface, regardless of the frequency. Due to the fact the I'M axis is a symmetry axis of the
crystal, the group velocity has to be on I'M when kg is on I'M.

Light does not need to be coupled to the PC through Fourier components located inside the
15t BZ, but can also be coupled through components in higher order BZs. Equation 2.3 shows
that a Bloch mode with a reduced k-vector E(] can also have components in extended Fourier
space at k-vectors EO + mK; + nK,. Thus we represent the EFCs as a tiled pattern in extended
Fourier-space, where the contours are offset by mK, + nk,. Figure 2.9 illustrates one way to use
a square lattice crystal as a SP; light is coupled to higher order BZs in order to couple to the cusp
of the EFC while maintaining a large incident waveguide angle. The k-vector corresponding to light
propagating in the waveguide is labeled as kwg and makes an angle 6 in respect to the normal
to the interface of the PPC (8 also corresponds to the waveguide orientation). kwg is shown for
three slightly different frequencies so that the magnitude of the vector changes. Vertical dashed
lines show how kwg projects onto the EFC. Due to the steep angle they do not project onto the
EFC in the 1%t BZ but in a higher order BZ. Figure 2.9 is simplified in that the shape of the EFC
doesn’t change. In reality it does, we only opted for that representation to avoid overwhelming the
schematic with details. A rigorous analysis of the SP that takes this into account can be found in

chapter 7 (equation 7.3). In fact we will show that in this particular case the deformation of the



Figure 2.8: Schematic of a SP. A waveguide is terminated at one boundary of the PPC. Light
propagates inside the PPC with a direction of propagation dependent on the wavelength. An array
of waveguides collects the light at the other boundary of the PPC. The unit vectors & = [1 0] and
€, = [0 1] are represented. The orientation of the waveguides is given by 6.

EFC actually reduces the resolution. Without going into a detailed analysis at this point, we can
already see that for sin(8)kwg = 27/(av/2) light couples to the center of the cusp (on the higher
BZ equivalent of the I'M axis) and propagates strictly forward. For sin(f)kwq < 27/(av/2) light
couples to the left of the center and propagates to the right, and for sin(8)kwg > 27/(av/2) light
couples to the right of the center and propagates to the left.

There is another approximation in figure 2.9. The process is represented as if for each frequency
light were coupled to a single point of the EFC. This only holds if the incoming light corresponds to
a plane wave with infinite extent. However, when the incoming light is coupled from a waveguide,
kwga does not have a single well-defined value, but rather corresponds to a distribution whose width
depends on the waveguide width (equation 2.6). The wider the waveguide, the more beam steering
will be necessary to separate two frequencies (they need to be separated by the width of the waveguide
or more if beam broadening occurs inside the PC), and thus the PPC needs to be wider. However,
the wider the waveguide, the smaller the k-vector distribution corresponding to one frequency, and
the smaller the overlap between the k-vector distributions of two distinct frequencies. The highest
achievable frequency resolution will be higher for wider waveguides. Indeed for an infinitely large
PPC, the frequency resolution would be uniquely limited by the overlap of the k-vector distributions.
Thus there is a trade-off that determines the optimum waveguide width for a given PC size. The

waveguides shown in figure 2.8 are represented as being fairly wide. There is actually a minimum
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Figure 2.9: This Fourier space diagram illustrates a possible way to use a square lattice PPC as a
SP. The first BZ is shown by a dashed square, and the EFC is shown both inside the 15t BZ and in
higher order BZs. The orientation of the contours corresponds to the orientation of the PC in figure
2.8. The k-vector of the light inside the waveguide is labeled as kwq, and 6 is the angle between the
waveguide and the normal to the interface. The group velocity of light inside the crystal is labeled
by v4. The three high-symmetry points I', M and X are also shown. The projection of kwg onto
the contour is represented by dashed lines. kwg and v, are shown for three different frequencies.

waveguide size that makes sense for demultiplexion, even if a very low resolution is targeted. If the
waveguide is too thin, a situation as in figure 2.5(d) occurs, where most of the light gets coupled to the
flat sides of the EFC (on both sides of the cusp) and propagates in the directions of self-collimation
(£45° relative to the interface) regardless of the frequency. This analysis will be developed in details

in chapter 6, and in chapter 7 an optimum waveguide width will be calculated for a specific design.

2.5 Band-folding and the shape of equi-frequency contours

The dispersive properties of PCs can be understood in terms of band-folding [40,41]. Figure 2.10
illustrates this for the case of the second band of a square lattice crystal. We start with the EFC of
the unperturbed slab (central circle). To the first order, the periodic lattice of holes generates other
circular contours offset from the original one by an inverse lattice vector. These contours intersect
in the first BZ (shown by the dashed square) and anti-cross, which gives rise to the rounded corners.
Also the group velocity points outside of the circles, and thus inside the square contour. Of course
the lattice of holes gives rise to higher order perturbations in the case of a finite hole size. In
particular, the radius of the circles has to be modified from 27n45/A to 2mnesp/A. Taking for neys
the weighted mean of the effective slab index ng; (weighted by 1 —7(r/a)?) and the cladding index
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Figure 2.10: This figure illustrates how the EFC can be derived in terms of band-folding. The
dashed square represents the first BZ. The central circle shows the EFC of the unperturbed slab,
with a possible effective index correction. The 2D lattice of holes generates higher order contours
offset by inverse lattice vectors (the center of the circles are indicated by black dots). Where they
intersect, anti-crossing occurs giving rise to the rounded corners. The final contour is shown with
the thicker line.

(weighted by 7(r/a)?) is a good first order correction (this is shown in section 5.1)*. The section of
the circles located in the corners of the 15¢ BZ (i.e., the fractions of the circles inside the 15¢ BZ that
do not belong to the squarish EFC of the 2"d band) would eventually give rise to the third band.
However, due to the large splitting between the bands, there is a frequency region where only the
second band is present. The large splitting is due to the fact that on the I'M direction the second
and the third bands have opposite symmetries in respect to € + €. This leads to a higher overlap
with the silicon for the second band and a higher overlap with the low index holes for the third band
(section 5.1).

The Fourier structure of the modes—that is the relative intensity of the Fourier components for
a given Bloch mode—can also be explained by this model. The dominant Fourier component is the
one closest to the unfolded circle centered on the origin (the EFC of the unperturbed slab after
correction for the effective index ngap, — mppc). This can be visualized by progressively turning
on the coupling induced by the lattice of holes. At zero coupling the dominant component contains

100% of the power. In figure 2.11 arrows indicate the correspondence between the EFC in the first

4The effective index of photonic crystals can be derived by homogenization theory in the limit
of long wavelengths. In this limit the effective dielectric constant for the TM modes (E-field along
the axis of the holes) of 2D photonic crystals is the weighted mean of the dielectric constants of
the materials [73], while the effective indezx for TE modes seems to be the mean of the refractive
indices of the materials. For a 2D square lattice photonic crystal with air pores of radius r/a = 0.3
etched into silicon, we calculated with FDTD the effective index to be 2.7453 in the limit of large
wavelengths. The weighted mean of the refractive indices is 2.7429, which is the same number
within the numerical accuracy of the calculations. In this thesis the crystals are PPCs, and the
large wavelength condition is not verified; however, it seems that the weighted mean of the effective
slab index and of the refractive index of the material filling the holes is a good approximation before
folding back into the 15* BZ, as shown in section 5.1.
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Figure 2.11: This figure illustrates the correspondence between the reduced k-vector located on the
EFC in the 1%* BZ and the dominant Fourier component(s) (shown by arrows). The dashed square
shows the 1* BZ, and EFCs are shown by thick lines. The green arrow (“open” arrowhead) shows
the correspondence between a mode located on the side of the EFC and its single dominant Fourier
component. The red arrows (filled arrowheads) indicate the two dominant Fourier components of a
mode located on the cusp of the EFC.

BZ and the dominant Fourier component(s). The modes on the corner of the EFC correspond to the
anti-crossing region and have their power equally split between two dominant Fourier components.

The Bloch mode structure also gives some physical insight into how modes can propagate in
the opposite direction than their reduced k-vector. The labeling of Bloch modes by their reduced
k-vector is somewhat arbitrary from the point of view of the physics as it does not correspond
to the dominant Fourier component in the case of the 2°d band. The k-vector of the dominant
component is offset by 27 /a and is on the other side relative to the origin (I') so that it points
in the same direction as the group velocity. Thus the relationship between the direction of the
k-vector and the group velocity can be of a purely formal nature and misleading. The emergence
of an actual physical phenomenon, negative refraction, is usually accompanied by strong coupling
between Fourier components and complex mode structures, such as on the cusp of the EFC or in
the vicinity of high-symmetry points.

Finally, the sharp change in direction of propagation at the cusp can also be correlated to the
Bloch mode structure. In the corner-region of the contour the group velocity undergoes a drastic
change in direction. However, at the same time the Bloch mode structure also undergoes a drastic
change. On one side of the corner one component is dominant, while on the other side another
component is dominant. The change in direction of propagation is due to a change in the relative
weight of these two components. The coupling efficiency to and from the PPC is strongly dependent
on the Bloch mode structure, which makes this analysis very important for the design of practical

SP-based demultiplexers (chapter 5).



18

Chapter 3

Self-collimation and limitations

In chapter 2 the dispersive properties of PCs were introduced. In particular, it was shown that
broadening of finite cross-section beams can be suppressed in bulk PCs without defining line-defects
and without requiring non-linear effects [25]. This so-called self-collimation effect [25-30] will be
numerically investigated in this chapter by means of square-lattice PPCs. In the first section self-
collimation is introduced in detail. Also a specific PPC is investigated and shown to exhibit self-
collimation without intrinsic radiation losses, provided the beam is coupled from free-space with
an angle smaller than 54°. The second section explores the applicability of less computationally
intensive 2D FDTD calculations. In the third section the group-velocity dispersion (GVD) for this
PPC is investigated. A region in parameter space is given where group-velocity is maximized, GVD
minimized and the self-collimation effect optimized. Group-velocity dispersion is expressed in terms
of a generalized “8y” (B2 is taken from the optical fiber literature [74] and precisely defined in
section 3). Self-collimation is not perfect due to the fact that the sides of the EFC are not perfectly
flat. This leads to finite beam-broadening and to the emergence of beating patterns in the beam-
profile [27]. They are investigated in section 4 by looking at the detailed shape of the EFC and by
operating a Fourier analysis on the beam profiles. In the last section self-collimation in the first

band is compared to self-collimation in the second band.

3.1 3D FDTD analysis of self-collimation in a square lattice
planar photonic crystal

The structure that we are considering here is a silicon slab (refractive index ng; = 3.5) of thickness
t = 0.57a and patterned with a 2D square lattice of holes of radius r = 0.3a, where a is the periodicity
of the lattice. The slab is surrounded by air on both sides. We have used a three-dimensional FDTD
code [61] to analyze one unit cell of the structure by applying appropriate boundary conditions

to the sides of the computational domain, as indicated in the Figure 3.1(a). The discretization
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Figure 3.1: (a) Schematic view of the Si slab patterned with a 2D square lattice of holes. External
light is incident on the slab at an angle . The unit cell of the PC, with boundary conditions used
in the 3D FDTD calculation, is also indicated. (b) Band diagram for TE-like modes (vertically
even) of the square lattice PPC. The gray region represents the light cone. The inset shows the high
symmetry points in the 15¢ BZ.

used in our 3D FDTD algorithm was 30 computation points per lattice period. By applying the
mirror boundary condition at the center of the slab it was possible to reduce by half the size of the
computational domain (the slab half thickness was ¢/2 = 8 computational points). Choosing the
type of mirror symmetry (even or odd) we could select between TE-like (vertically even) or TM-like
(vertically odd) eigenmodes of the PPC. Mur’s absorbing boundary conditions [61] were applied at
100 computational points away from the surface of the slab, yielding a computational domain of
30-30-108 cubic cells. More details on the band diagram analysis of PPCs using the FDTD method
can be found in the literature [3].

The starting point for the investigation of any PPC based device is the calculation of a dispersion
diagram of the modes supported by the PPC. In Figure 3.1(b) we show such a band diagram for
the case of a square lattice PPC, obtained by using 3D FDTD. The band diagram is calculated
only along the high symmetry directions in the first Brillouin zone (15¢ BZ), and the light cone is
represented by the gray region. Only the modes that lie outside the light cone (below the light line)
are guided in the PPC by total internal reflection, i.e., without any losses other than absorption,
scattering and imperfect lithography. In other words, only modes outside the light cone are lossless
in the ideal PPC (chapter 2). We can see that this structure has a small PBG. However, the width
of the PBG is not what concerns us here. We instead hope to find unusual phenomena associated
with the difference between the dispersion diagram of this structure and the dispersion diagram of
an unpatterned slab. In order to do so, we have to calculate the full band diagram for all k-vectors
in the 15t BZ and not only along the I'X, XM and I'M directions.

Figure 3.2(a) shows such a dispersion diagram for the first two bands [black circles in figure
3.1(b)] for all k-vectors in the 1%* BZ. The band diagram was calculated from 325 equally spaced
points in 1/8 of the 15 BZ [shaded region in the inset of figure 3.1(b)], the data were then fitted
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Figure 3.2: (a) Full band diagrams for the first two bands of the PPC. w(k) is calculated for all
k-vectors in the 1t BZ. The light cone is also represented. The EFCs for the first and second band
are respectively shown in (b) and (c¢). The color code corresponds to the normalized frequency (a/).
The vectors represent the group velocity.

with a polynomial of the fifth order and finally were mapped into the entire 15¢ BZ. The light
cone is represented by the unshaded mesh. From figure 3.2(a) we conclude that the 15¢ band is
entirely outside the light cone (guided), while the 2" band is guided only for normalized frequencies
a/\ < 0.306. In Figure 3.2(b) and (c) we plot the EFCs of the 15t and 2" bands. The group velocity
ﬁ,;w is indicated by vectors along the EFCs. In the case of the 2" band the group velocity points
inside the contour, an indication that the band is folded back into the first BZ. In addition, EFCs
of the 2" band are almost perfect squares in the frequency range where the 2°¢ band is guided.
This is very different from the unpatterned Si slab, where EFCs of the guided modes are circles
[Figure 3.3]. This modification of the EFCs from circles to squares leads to collimation-like effects
in privileged directions (I'X). This collimation effect is intrinsic to PPCs in that it does not require
defects or non-linear effects. It is called self-collimation.

In Figure 3.4(a) we again show EFCs of the 2" band of the square lattice PPC but this time only
for frequencies that lie outside the light cone (a/A € (0.273,0.306)). The light cone is represented by
a dashed circle for a/A = 0.306 (for higher frequencies part of the EFC is inside the light cone due
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Figure 3.3: The dispersion of the first two bands supported in the unpatterned Si slab. The light
cone is represented as an unshaded mesh. The EFCs are circles since all in-plane directions are
equivalent.

to the fact that the EFC becomes smaller but the cross-section of the light cone becomes larger).
It can be seen that the EFCs can be approximated by squares for a/\ € (0.295,0.306). The energy

propagation of the excited mode is given by the group velocity that can be calculated as

By = Vi) = &+ b, ky) 45 o
ok,

%, (ko ky) 3.1)

It is useful to reformulate this equation in terms of the normalized frequency a/A and the normalized
k-vector (a-E), as band-diagrams are usually shown in those dimensionless units. Ty = 27rc§,;.a(a /A).
The direction of propagation is perpendicular to the EFC. Therefore, if we consider light incoming
from an unpatterned slab onto a PPC with a range of k-vectors so that their projection onto the
interface (k) is comprised between —ko and ko [Figure 3.4(a)], light in the PPC will propagate
along the y-axis direction (I'X). This is indicated by the gray color in Figure 3.4(a). In other words,
the light beam in the PPC can be self-collimated. This property of square PPCs is entirely due
to the fact that EFCs for the 24 band look like squares. In contrast to the PPC case, EFCs of
an unpatterned Si slab are circles [Figure 3.4(b)]. When such a slab is excited with a range of k,
components, light in the slab diverges as schematically indicated by the gray region in Figure 3.4(b).

We consider a PPC with a cleaved edge along the xOz plane and a light beam incident on the
edge with an angle 0 [Figure 3.1(a)]. In order for the beam to be self-collimated, the x-component
of the k-vector inside the PC (k) has to be within the approximately flat side of the EFC [Figure
3.4(a)]. However, k, is determined by the wavelength of the incident light as well as the angle of
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Figure 3.4: (a) The EFCs of the 2 band of a square lattice PPC. Only the region outside of the
light cone is shown [a/A € (0.273,0.306)]. The light cone is represented for a/A = 0.306 by the
dashed circle. Light coupled to the side of the EFC is self-collimated and propagates in the direction

indicated by the gray color. (b) EFCs of the unpatterned Si slab are circles, and beam broadening
occurs.

incidence 6 [Figure 3.1(a)]. Therefore, self-collimation might occur only for a restricted range of
fs. The x-component of the reduced k-vector is conserved at the interface of the PC. This is due
to the fact that both the slab and the PC verify the same discrete translation symmetry along the
interface. k, can be expressed as k, = (27/A) - sin(f). In order for k, to belong to the flat side of
the EFC it has to satisfy | k, |< ko, where 2 - (kg - a) is the normalized width of the side minus the

rounded corners and is a function of normalized frequency. Combining these two expressions we get

(ko - a)

@/ 2n >| sin(6) | (3:2)

It can be easily verified that if the EFCs were perfect squares, inequality 3.2 would be verified
for all EFCs outside the light cone. It is the most stringent at the highest frequency for which the
EFC is still below the light cone. At that frequency the light cone is the inscribed circle of the
squarish EFC so that kg is also the radius of the light cone 27/A provided the EFC is a perfect
square. The left hand side of equation 3.2 then turns to 1 so that the equation is satisfied for any
angle 6. However, since the equi-frequency squares are rounded at the corners, we have to assume
a more conservative value ko - a = 1.502 for a/X\ = 0.306 [Figure 3.4(a)]. Then, the left hand side of

(3.2) becomes

% = 0.817 (3.3)
and | 0 |< arcsin(0.817) = 54°. Therefore, the square lattice PPC acts as a self-collimator for
incident angles | 8 |< 54° and a/A € (0.295,0.306). The group velocity of a PPC Bloch mode
depends both on the normalized frequency and on the k-vector, and is calculated to be in the range
vy € (0.16,0.25) - ¢ (co is the speed of light in vacuum) for a/A € (0.295,0.306) and | 6 |< 54°.

In order to verify the predictions that self-collimation is possible in a square lattice PPC we have
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used 3D FDTD modeling on such a structure. Figure 3.1 shows the field evolution (B, component)
in an unpatterned (a) and patterned (b, c) Si slab. The structures were excited with a dipole
source placed at the center of the slab. In the case of the unpatterned slab, the characteristic dipole
radiation, with spherical wavefronts, is observed [Figure 3.1(a)]. The PPC structure shown in figure
3.1(b) was excited with a dipole source with a frequency (a/\ = 0.295) chosen to be in the frequency
region of the 2°! band where EFCs are squares [Figure 3.4(a)]. Because of that, it is expected that
light is radiated predominantly in the four I'X directions that are perpendicular to the four sides of
the EFC. Indeed, the 3D FDTD simulation of the structure [Figure 3.1(b)] shows such a behavior.
Therefore, we conclude that the square lattice PPC has modified the radiation pattern of the dipole
source in the way predicted by the above analysis of EFCs. It is also important to notice that this
interesting phenomenon is taking place outside the light cone. Thus, the light is self-collimated as
it propagates in the ideal PPC without any intrinsic losses. Self-collimation can also be obtained
by exciting the 15* band; this time light propagates in the T'M direction, as shown in Figure 3.1(c).
This figure has been rotated by 45° and rescaled by 1/4/2 in order to show structural similarities
between self-collimation in the 15¢ and in the 2"¢ bands (section 3.5).

In summary, based on a 3D FDTD analysis, we have found a PPC geometry as well as a range
of parameters, frequency and incident angle of light for which self-collimation can be observed. The
next sections are dedicated to phenomena that require more intensive computations. First, we briefly
investigate the difference between 2D and 3D calculations and their applicability to self-collimation
in PPCs. We then proceed with a more detailed analysis of EFCs and validate our conclusions with

corresponding 2D FDTD simulations.

3.2 Applicability of a 2D FDTD analysis to planar photonic
crystals

In the following several properties relating to self-collimation, such as group velocity dispersion
(GVD), the emergence of beating patterns and structural similarities between self-collimation in the
first and in the second photonic bands are investigated. Real space simulation of large PCs are per-
formed in order to demonstrate these properties. Due to limitations of the available computational
power we reverted to use 2D FDTD. In this section we briefly investigate the difference between 2D
and 3D calculations as far as self-collimation is concerned. It is by no means an exhaustive analysis
but it provides some useful insights.

In order to accurately predict the frequencies of the bands of 3D PPC structures using 2D
calculations, it might seem a good approach to replace the index of the slab material by the effective
index of the slab [Figure 3.6(a)]. In fact, by reducing the slab index from 3.5 (the index assumed

in the 3D FDTD computations) to 2.7 it was possible to get a better overall overlap between the
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Figure 3.5: Evolution of the out of plane component of the B-field in (a) the unpatterned slab and
(b,c) the slab patterned with a square lattice PPC. The structures were excited with a dipole source
at frequencies (a) a/\ = 0.295, (b) a/A = 0.295 and (c) a/A = 0.2086/+/2. (b) corresponds to self-
collimation in the second band. In this case, light is radiated predominantly along I'X directions.
(c) corresponds to self-collimation in the first band. (c) has been rotated by 45° and rescaled by v/2
to show structural similarities in the emission patterns that will be elaborated on in section 3.5.

04 uoo 0 0.4
035 "%% © o7 e®® 0.35 909% 9999
(a) (b) “ x
03 .99 90?000222.. 03 0.. Geseei® o
*assssecsd®o22lt, Saeenseese®CCls
025 ° . 025 . .
8583 3 < --".. *
[é 0.2 .0883 ;. 3 02 .n' hd
.'o0 ce QQ s!
015 e oe 0.15 . .
0.1 *s° o® | ol o N
. T ST 8
[ ] [+]
005F 4° o 1 Q_%.of' 0
o [+]
ohe . L L o 0 L L
X M 0
ka ¥ ka M

Figure 3.6: The band-diagram for TE-like (vertically even) modes of the square lattice PPC as
calculated by 3D FDTD is shown by dots in (a) and (b). In (a), circles show the bands calculated
for a 2D square lattice PC with an index of 2.7 assumed for the slab. In (b), a slab index of 3.5
(same index as in the 3D calculation) has been assumed and a constant normalized frequency offset

was added (0.0533).
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calculated bands in the 2D and in the 3D cases. However this comes with the price of a significant
distortion of the bands. We found that calculating the band diagram with 2D FDTD with the
original index and subsequently adding a fixed frequency offset to the bands yielded a much better
overlap [Figure 3.6(b)]. For the particular PPC investigated in this chapter a constant normalized
frequency offset of 0.0533 results in the best overlap between 2D and 3D calculations. For normalized
frequencies between 0.15 and 0.35 there is a very close overlap. This includes the useful frequency
range for self-collimation. In the following 2D FDTD simulations, this frequency offset must be

added to all reported frequencies in order for them to apply to the 3D PPC .

3.3 Group velocity, group velocity dispersion

The maximum group velocity in the second band is calculated to be 0.276 times the speed of light
and is reached in the region of strong self-collimation, where the EFCs are squares with maximally
flat sides [Figure 3.7]. This region also corresponds to a local minimum of the GVD, as the derivative
of the group velocity is zero at its maximum. Thus, a self-collimated beam in that regime (minimum
spatial pulse dispersion) would also have maximum group velocity and minimum GVD (temporal
pulse dispersion). This occurs at the normalized frequency a/A = 0.261 and at a normalized k-vector
k-a=1.795 in the T'X direction. It corresponds to an effective index of 1.096 > 1' and would thus
correspond to a non-leaky mode had this been a 3D calculation. However, in the case of the 3D
PPC, the normalized frequency is shifted up by 0.0533. This mode is then situated inside the light
cone and is leaky. That is why in the 3D analysis the maximum v, for non-leaky modes was found to
be 0.25 instead of 0.276 predicted by the 2D calculation. In other words, in order to avoid radiative
losses we have to settle with a slightly sub-optimum mode as far as group velocity and GVD are
concerned.

In the fiber optics literature, the GVD is given by S8y [74]

g 1 1%

ﬁ2=%( )=

(3.4)

V. )
Vg vy Ow

After propagating an initially transform-limited pulse for a length L through a fiber characterized

1 “Effective index” is not used in the same way here as in section 2.3. In the latter the refractive
index is related to the local curvature of the EFC; however, the center of the tangent circle is not
the T' point. This is a good approach to predict beam propagation, but not to evaluate whether a
beam is inside or outside the light cone. Here the effective index is related to the reduced k-vector,
that is, to the distance between the I' point and the 15 BZ Fourier component. It is not suitable
to predict propagation properties (the EFC is not a circle with the reduced k-vector as radius; in
fact beams are self-collimated); however, with the latter definition neg > nciaa is @ good criterion to
verify whether light is outside the light cone. ncj.q is the refractive index of the cladding.



Figure 3.7: The EFCs of the second TE-like band (dashed lines) and the group velocity isocurves
(continuous line). The group velocity is given as a fraction of the vacuum speed of light. The
contours of constant group velocity are ragged because the numerical differentiation amplifies the
numerical inaccuracies of the raw data.

by (2, the temporal pulse width would become
| B2 | -L-Aw (3.5)

where Aw is the spectral pulse width. 3> is unambiguously defined in a fiber because v, is a function
of w. However, in a PC v, depends both on w and on the specific k-vector. For a specific frequency,
the k-vector is constrained to be on the EFC, but this still leaves a degree of freedom. In the

following we use a generalized (5 to estimate beam broadening in a PC.

1) |

3
Yg

B2 (3.6)

In a 2D crystal the group velocity for a given normalized frequency is independent of the lattice
constant a (the formula for the group velocity in terms of normalized frequency and normalized
k-vector is given at the beginning of this chapter). However Vi =aVgr is proportional to a. Thus

B2 is dependant on the scaling of the PC, but f2/a is independent of a [Figure 3.8].

3.4 Beating patterns

Due to the fact that the EFC is a square with approximately flat sides, beam broadening is suppressed
to a large extent. However the sides of the contour are not perfectly flat so that a small amount of

beam broadening is still present. In this section we will show that beam broadening can also lead to
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Figure 3.8: Isocurves for 32 /a - ¢ (dimensionless normalized units) for the second band of a square
lattice PC with r/a = 0.3. The group velocity calculated previously was smoothed before further
differentiation. (a) Isocurves for B2/a-cg from 0 to 10 and (b) isocurves for B2/a - c3 from 10 to 100.

the emergence of beating patterns. Due to the slightly concave shape of the side and to the convex
shape of the corners, there are only three points along each side with the group velocity exactly
aligned along I'X [Figure 3.9]. If we propagate a self-collimated beam for a long distance we expect
these three components to become dominant. In fact we will show that these three components
can give rise to a beating pattern in the self-collimated beam once they become dominant. The
emergence of this beating pattern is dependant on the initial conditions with which the beam is
launched. Indeed if the initial k-vector distribution is thin enough to contain only one of the three
points the beam will simply broaden and no beating pattern will appear, while if at least two of the
points are in the initial k-vector distribution the beating will appear.

We took the spatial Fourier transform of a beam propagated for 400 periods. The Fourier
transform was operated on a region of 15 - 15 periods, centered on the self-collimated beam (a/\ =
0.2596). Three distinct components are strongly dominant in the spatial Fourier spectrum [Figure
3.4].

The beating pattern along the direction of propagation will depend on dk, [Figure 3.4]. 0k, is
very small, and the beating length is thus long. We propagated a self-collimated beam of normalized
frequency 0.2596 (distributed 2D FDTD) and observed a beating pattern along the center of the
beam. The beating length is about 1000 lattice periods. This corresponds to adk, = 2 - 7/1000 =
0.0063 and is relatively close to the adk, extracted from the EFC (0.0093). In order to confirm that
the beating length can be related to dk,, we propagated a self-collimated beam corresponding to a
different frequency (a/A = 0.25) with a larger 6k,. We found the beating length to be 133 periods.
This corresponds to adk, = 2-7/133 = 0.047 and is very close to the adk, extracted from the EFC
(0.057).
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Figure 3.9: Zoom of one of the sides of the EFC at normalized frequency 0.2596. The arrows indicate
the k-vectors for which the group velocity is perfectly aligned to the y axis.

We also observed in both cases the emergence of side lobes. This transverse interference pattern
is due to the different k, of the three perfectly collimated components. The transverse interference
pattern can only be seen if the self-collimated beam is wide enough, after significant broadening.
As the continuum of Bloch-modes decays to the superposition of three discrete modes (or more
precisely three narrow k-vector distributions), the beam broadens (dk, - dx > 1/2, see chapter 2) and
an interference pattern emerges. This interference pattern has a beating length of 27/1.16 = 5.4a
in the case of a/A = 0.2596 and of 27/1.38 = 4.5a in the case of a/\ = 0.25.

A tiling pattern is generated by the simultaneous effect of longitudinal and lateral beating. Be-
cause 0k, << 0k, the beating length in the y-direction is much larger than the period of the
transverse interference pattern, and the overall effect is one of a comb of side lobes that offsets by
half the period of the transverse interference pattern every half longitudinal beating length. Figure
3.11 shows the emerging lateral interference pattern as well as the longitudinal beating. In order to
correctly resolve the side lobes, very wide PCs must be simulated. Because of computational limita-
tions we reduced the discretization to 22 points per unit cell for this calculation. This computational
change introduced a 1% frequency down shift of the bands (0.003 in units of normalized frequency)
around a/\ = 0.2596.

It is important to take this beating pattern into account if self-collimation is to be used in real
devices. For example, if a self-collimated beam is to be coupled to a waveguide, it is important to
know that the field might have a minimum at the center of the self-collimated beam.

So far we have analyzed self-collimation in the 2°¢ band of a square lattice PPC. However, light
can also be self-collimated in the 1%¢ band of a square lattice PC, but in the I'M direction instead
of the I'X direction. In the next subsection we will show that a self-collimated beam can even be
transmitted at the interface between two different PCs so that it corresponds to the 15¢ band in one
and to the 2"? band in the other. This transmission occurs with low losses and low distortion. We
will investigate structural similarities (in reciprocal space) between self-collimation in the 15* and

the 27 bands that show self-collimation to be essentially identical in both bands.
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Figure 3.10: The spatial Fourier transform of a self-collimated beam at normalized frequency 0.2596
respectively 30 periods (a) and 400 periods (b) after launching it with a dipole source. Three discrete
components become dominant. The EFCs are overlaid.
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Figure 3.11: (a) Self-collimated beam (a/\ = 0.2596) after different propagation distances (top
down: 30, 80, 130, 180, 230, 280 and 330 lattice periods). The self-collimated beam broadens,
and a beating pattern appears. (b) Self-collimated beam (a/A = 0.25) after propagation over 220
lattice periods. The beating pattern and the transverse interference pattern are clearly seen: the
comb of lobes correspond to the transverse beating pattern; the offset of the comb between the top
and the bottom of the figure is due to the longitudinal beating. Light on the sides of the beam
corresponds to weakly self-collimated light that disperses out of the beam. It corresponds to the
Fourier components of the continuum of k-vectors of the original beam that do not belong to the
three remaining k-vector groups.

3.5 Comparative analysis of self-collimation in the first and

second bands

The first and the second band of a square lattice PPC seem to have very different structures. Indeed,
the group velocity points out of the EFCs in the first band, while in the second band it points inside.
Also, self-collimation takes place in the T'M direction in the first band and in the I'X direction in
the second band. However, we can show that the two bands are related by a simple transformation
consisting of a 45° rotation and a rescaling. In particular, the regions where self-collimation takes
place, where the sides of the EFCs are flat, have the same structure in both bands. Indeed the
reciprocal space transformation maps these two regions one onto the other, except for a slight
frequency offset (0.007 in units of normalized frequency).

In order to show this we will introduce a second PC lattice (PC2), that is in fact the same PC
rescaled and rotated, and show similarities between the two PCs. The transformation in real space
that maps PC1 onto PC2 is the equivalent of the inverse space transformation that maps the 15t
band onto the 2°¢ band. By showing that the 1* band of PC2 overlaps with the 2" band of PC1
we conclude that self-collimation in the 15t and 2°¢ bands has similar properties.

We define PC2 as a square lattice 2D PC with lattice constant a/v/2 (where a is the lattice
period of PC1), hole radius r/+/2 (where r is the hole radius of PC1) and with a lattice rotated by
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45° in respect to PC1. r/a is conserved, the bands of PC2 are obtained by rotating the bands of
PC1 by 45° and by rescaling both the frequencies and the k-vectors according to equations 3.7 and
3.8. The area of the 15 BZ of PC2 is then twice the area of the 15 BZ of PC1 [Figure 3.12(b)]. It
contains both the 15 BZ and the 24 BZ of PC1 (the 2°¢ BZ of PC1 is composed by the 4 “corners”
of the BZ of PC2, that is, the white region in figure 3.12).

liy = V/2 - Totyse (k1) (3.7)
_ (a/M
(a/X)2 = NG (3.8)

Figures 3.12(a) and (b) show the EFC of the second band of PC1 and of the first band of PC2.
The contours are almost identical in the white regions and differ in the grey shaded regions. Indeed
the white region of PC2 corresponds to the second band of PC1, while the grey region of PC2
corresponds to the first band of PC1. The only significant difference between PC1 and PC2 is that
PC2 does not have a PBG around a/\ = 0.18 (Figure 3.12(c)). This frequency region corresponds
to the interface between the white and the grey zones in the band diagram of PC2 (figure 3.12(b)).

As already mentioned, the structural similarities between PC1 and PC2 correspond to structural
similarities between the first and the second band of PC1. In other words, self-collimation in the first
band will closely resemble self-collimation in the second band modulo a 45° rotation and a rescaling
by V2.

There is a slight frequency offset as PC1 and PC2 overlay closely, but not perfectly. The EFC
corresponding to the 2°¢ band of PC2 at a/\ = 0.2596 overlays the EFC of the 1% band of PC1 at
a/X\ = 0.2526 (2.7% offset). We can compensate this frequency offset for a/A = 0.2596 by using a
hole radius of r/v/2 = 0.322 - a//2 for PC2 instead of 0.3 - a/+/2. In the following discussion this
hole radius compensation is applied.

We compare the width of a beam of normalized frequency a/A = 0.2596, self-collimated in the
2°d band of PC1 (r/a = 0.3), with the width of a beam of normalized frequency a/\ = 0.2596/+/2 =
0.1836, self-collimated in the 15¢ band of a PC of same lattice period a and with r/a = 0.322. The
beams are excited by a dipole source predominantly radiating in T'X (a/A = 0.2596) and the TM
(a/X\ = 0.1836) directions and located in the center of one of the holes. The respective root mean

square (rms) of the beams [Equation 3.9] are respectively 2.3060 - a and 2.7881 - /2 - a.

+/ [ x?B2d
M (3.9)

rms =
\/ [ B2dx
Ttband -\ /3.1.91 (3.10)
I'MSondpand

The ratio between the beam widths [Equation 3.10] could lead to the erroneous conclusion that self-
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Figure 3.12: EFCs of the second band of PC1 (a) and of the first band of PC2 (b). The unit cells
are shown in the insets. The dashed lines show the first BZs of PC1 and PC2. The shaded region
corresponds to where the band structures differ, and the white region to where they are similar. (c)
The 1% and 2°¢ bands of PC1 (dots) and the 15* band of PC2 (circles). The 15 band of PC2 is
folded back into the first BZ of PC1. The labels X and M refer to the high symmetry points of PC1
(the labels would need to be interchanged for PC2, since it has been rotated). The band structures
of the two EFCs are almost identical but for the frequency range of the PBG of PC1.
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collimation is significantly stronger in the 2"d band. However, if a beam of normalized frequency
a/X = 0.1836 were to be self-collimated in the 2°¢ band instead of the 1°¢, the PC would need to be
rescaled to a lattice constant of av/2, rescaling the rms by v/2 at the same time. For a fixed frequency
the beam width is thus similar independently whether the beam has been self-collimated in the first
or in the second band. However it is easier to fabricate a PC so that a given frequency is self-
collimated in the second band, as the lattice constant is v/2 times larger, requiring less demanding
lithography. However these conclusions can also be applied to a 3D PC: in Figure 3.1, we showed a
self-collimated beam in the 2°d band at a/X = 0.295 and in the 1°¢ band at a/\ = 0.295/v/2 = 0.2086.
However there is an additional constraint in the case of the 2"d band in that Bloch modes need be
outside the light cone to avoid radiative losses. This problem is alleviated by using the 1%* band.

The second practical consequence is that a self-collimated beam can be transmitted almost
undistorted between PCs of type 1 and type 2. Indeed PC1 and PC2 have a lattice matched
interface, as shown in Figure 3.14. As they also have a similar band structure, we could be tempted
to conclude that they have similar Bloch modes, and thus a good interface. However, this cannot be
directly concluded from the EFCs, since Bloch modes have more than one Fourier component [Figure
3.5]. They are indexed by the Fourier component inside the first BZ, but have Fourier components
shifted from the “base” component by an integer number of reciprocal lattice vectors (defined in
chapter 2). In fact the 15¢ BZ of PC2 has twice the size of the 15¢ BZ of PC1, so that the modes
in PC2 have only one Fourier component where PC1 has two. The component inside the 15* BZ of
PC2 is the same as the component inside the 2" BZ of PC1. The component inside the 15¢ BZ of
PC1 does not have an equivalent in PC2. However we evaluated that component to contain only
0.057 times the amount of power contained in the common, dominant component, so that it should
only have a very minor impact on most applications.?

Due to the almost identical EFCs of PC1 and PC2 in the frequency region of interest for self-
collimation, it would seem that a self-collimated beam should be transmitted with very small distor-
tion from PC1 to PC2. This turns out to be true, although the analysis leading to this conclusion
also has to take into account the Bloch-mode structure in PC1 and PC2. In fact, not only is the
Fourier structure of the corresponding modes very similar, but the small component that is unique
to PC1 projects onto the interface at the same position as the dominant component: If an interface
is created between PC1 and PC2 such as in figure 3.14(a), the k-vectors of the components in the
1%t and 274 BZ of PC1 have the same projection onto the interface so that they can both couple to
the same component in the 15t BZ of PC2. Thus it is not surprising that we were able to achieve
very low loss transmission between the two types of PCs. The beam distortion is also expected to

be very low due to the similarity of the EFCs.

2A counter example is given in chapter 4, where a waveguide coupling scheme is implemented
that relies on this very component to achieve phase matching. There the presence or absence of the
component is used to turn the coupling on or off.
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Figure 3.13: (a) Spatial Fourier transform of a Bloch mode of PC1 and (b) of the mode of PC2 that
has the same normalized frequency and approximately the same extended k-vector. EFCs in the
normalized frequency range 0.22 to 0.31 are overlaid. It can be seen that the Bloch mode of PC1
differs in that it has a weak but non zero component in the first BZ of PC1; however, this component

only makes up a tiny fraction of the power of the Bloch mode.
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Figure 3.14: (a) Self-collimated beam at frequency a/A = 0.2596 that propagates from PC1 (r/a=0.3)
to PC2 (r = 0.322/v/2a). (b) rms of the self-collimated beam in PC2 after crossing the boundary
as a function of the line dislocation introduced at the interface. The rms of the beam is normalized
by the rms before the interface.

In order to verify this, we simulated a beam propagating from PC1 to PC2. At the junction
between PC1 and PC2 we introduced an extra line defect of width 6 = 0.14a that optimized the rms
of the transmitted beam, after crossing the interface. We found that in the best case the rms after the
interface was 1.07 times the rms before the interface and that 94% of the power was transmitted.
The interface between these two PCs could be adapted to triangular lattice PCs by using a 30°
rotation and by rescaling the lattice period by 1/v/3.

In summary, we have conducted a 3D analysis of self-collimation and have given a range of
parameters to experimentally explore self-collimation in a PPC. For the PC investigated in this
chapter, minimum temporal and spatial distortion of self-collimated beams was found to take place
at a k-space point slightly inside the light cone, and thus in an intrinsically lossy region. However by
shifting the k-space point slightly outside the light cone a good compromise should be obtained. In-
depth analysis of self-collimation, based on analysis in reciprocal space, was performed. We showed
the occurrence of beating patterns and beam broadening that must be taken into account when
designing devices based on self-collimation. Finally we showed that it is possible to make a low loss
interface between two square lattice PCs with different orientations and scaling, again achieved by
matching the Bloch-modes in reciprocal space. This interface might be used in integrated optics in

order to build multi-functional PPC structures.
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Chapter 4

Vertical coupling between a
waveguide and a photonic crystal

There has been an ongoing effort to develop efficient methods to couple light in and out of PPC
structures, either from other planar structures such as dielectric waveguides [24,76-78] or by coupling
PC modes and PC waveguide modes to free space [20,75]. Furthermore, there have been several
investigations on how to combine PC based devices with more conventional integrated optics [77,78].
This chapter investigates how vertical coupling between a conventional dielectric waveguide and a
PPC can be used to couple light between these two optical elements. A very similar method has
been used experimentally to couple light from a tapered optical fiber to photonic crystal cavities and
photonic crystal waveguides [79,80]. Here we couple to bulk photonic crystals for applications such as
the self-collimation effect. In section 4.1 a self-collimated beam is launched inside the PPC from the
waveguide. The waveguide-PPC system then operates in a very similar manner to a contradirectional
coupler. In section 4.2 the orientation of the waveguide is changed so as to excite a single Bloch
mode inside the PPC. In both sections the Bloch mode Fourier structure is used to obtain phase
matching between the waveguide and individual Fourier components of the Bloch mode. In chapter
3 we have shown that a self-collimated beam can be transmitted almost distortionless through a
heterojunction between two types of photonic lattices. In section 4.1 we use this heterojunction to
switch on and off the coupling between the waveguide and the PPC, as the waveguide is only phase
matched to one of the two lattices and thus is only coupled to one of them.

In both sections we consider a silicon slab (refractive index ng; = 3.5) of thickness ¢t = 0.57a,
where a is the lattice constant of the PC. This slab is patterned with a 2D square lattice of holes
of radius 7 = 0.3a. The slab is surrounded by a material of index ncaq = 1 on both sides. In the
photonic crystal literature, dimensions, frequencies and k-vectors are usually given in normalized
units. However, we chose a particular set of dimensions, so that the phenomena described below
are valid for A = 1.5 um and take place outside the light cone, and so that reported dimensions are

realistic from a fabrication point of view (a = 0.45 pm, r = 0.135 pm, ¢ = 0.2565 um, where a is
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Figure 4.1: Schematic view of a planar PC and a waveguide oriented in the I'X direction above the
PPC. This waveguide orientation corresponds to the coupling mechanism described in section 4.1
that results in launching a self-collimated beam inside the PPC.

the lattice constant, r the hole radius and ¢ the thickness of the slab). Furthermore A = 1.5 pm
corresponds to Bloch modes in the second band of the PC where EFCs are approximate squares, so
that self-collimation takes place at this wavelength. Self-collimation has been described extensively
in chapter 3. The dimensions of the waveguide are critical as they determine the phase velocity of
the waveguide mode, and thus to which PPC modes the waveguide is coupled to.

A silicon waveguide is placed above the PC and is separated by a 200 nm vertical gap (figure
4.1). In section 4.1 the waveguide is oriented in the I'X direction, whereas in section 4.2 it is aligned
in the I'M direction (the crystallographic directions are defined at the beginning of chapter 2). The

cross-section of the waveguide varies in the different cases.

4.1 Coupling between a waveguide and a self-collimated beam

In this section a dielectric waveguide mode is coupled to a self-collimated beam that propagates
inside the PPC. We locate a silicon waveguide of width = 350 nm and height = 100 nm above the
PPC, with a spacing of 200 nm. The waveguide is oriented along the I'X direction of the PC. This
geometry is illustrated in figure 4.1.

The dimensions of the waveguide have been chosen so that the dispersion diagram of the
waveguide crosses the 2°d band of the PPC at A = 1.5 um. In other words, the waveguide is phase
matched to the Fourier component of the Bloch mode located inside the 15* BZ. The corresponding
mode in the PPC is in the second band (folded back once). This has the crucial consequence that
the PPC modes propagate in the opposite direction than the waveguide mode, since their group ve-
locities (vq) point inside the EFC. Light is self-collimated along the I'X direction inside the PPC so
that it stays in the vicinity of the waveguide. Furthermore, as the side of the EFC is approximately
flat and all the modes located on that side have the same phase velocity in the direction of the
waveguide, the waveguide is coupled to the whole side of the EFC and excites a continuum of modes

inside the PPC. Because two contrapropagating waves are coupled together, anticrossing occurs and
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2" photonic crystal band

1% photenic crystal band

k (;em")

Figure 4.2: Band diagram of the coupled PPC waveguide system. The x-axis corresponds to the
projection of the k-vector onto the I'X direction (as imposed by the BBC) and the y-axis to the inverse
wavelength 1/ of the resulting modes. Modes are detected as resonances in time series recorded
from the simulations. Labels indicate modes that correspond to the PC and to the waveguide. They
are clearly defined far from the coupling region; however, the 2°¢ band of the PC anticrosses with
the waveguide.

a mini stop-band is opened in the coupled system (Figure 4.2). Of course the mini-stop band is
only seen by the PPC in the immediate vicinity of the waveguide. Away from the waveguide, the
PPC remains unperturbed and has no stop band. The Band diagram was obtained through FDTD
calculations [3] with a 10 nm discretization. Bloch boundary conditions (BBC) were applied in
the translation direction of the waveguide. The BBC impose the phase velocity of the recorded
modes along the I'X direction and act as a filter. Modes with the right phase velocity are then
seen as resonances in the recorded spectrum (the Fourier transform of the recorded time-series).
However modes can correspond to waveguide modes, PPC modes or supermodes of the coupled
system in the frequency region where phase matching is achieved. In order to discriminate between
these categories of modes several field probes are placed inside the computational domain, inside
the waveguide, inside the PPC immediately below the waveguide and inside the PPC away from
the waveguide. Mur absorbing boundary conditions (ABC) were applied on the other boundaries so
that the k-vector component perpendicular to the waveguide direction was not determined (there is
no third component as only bound modes concern us here). In figure 4.2, PC modes corresponding
to the I'X direction are plotted as thick lines (1°¢ and 2°¢ photonic bands). However, PC modes
that propagate in arbitrary directions but with the same k-vector component on I'X also appear in
the simulations. The grey shaded regions correspond to those modes and result from projecting the
first two photonic bands onto the I'X direction.

If light in the frequency range of the mini stop-band is launched into the waveguide, it will

exponentially decay in the coupled system. The light progressively couples into the PPC and back-
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Figure 4.3: FDTD simulation of the decaying field in the frequency range of the mini stop-band
(A = 1.48 ym). The mode of the stand alone waveguide, previously obtained with a numerical mode
solver, is launched into the waveguide. (a) shows B, in the waveguide and (b) shows B, on the
center plane of the PPC. As light is transferred from the waveguide to the PPC, the decay of the
field inside the waveguide as well as the build-up inside the PPC can be clearly seen. The field in
the PPC propagates in the opposite direction than the field in the waveguide.

propagates (figure 4.3). If the waveguide starts where the pulse was launched, the light will propagate
unperturbed inside the PPC behind the point of entry in the form of a self-collimated beam. This
might be difficult to achieve, however, as coupling schemes such as grating couplers have a finite
size. This is why we revert to a heterojunction between photonic crystals at a later point in this
section.

We simulated the structure by FDTD with a 20 nm discretization step. The wavelength of the
light source (A = 1.48 um) was chosen to correspond to the lower edge of the mini stop-band. Figure
4.3 shows the out of plane component of the B-field in two cross-sections of the device. Figure 4.3(a)
shows the field inside the waveguide and figure 4.3(b) shows the field along the center plane of
the PPC. In both cases it can clearly be seen that the field decreases in the y-direction as it gets
progressively coupled from one optical element to the other. Also in figure 4.3(b) it can be seen that
it forms a self-collimated beam inside the PPC.

Figure 4.4 shows a different cross-section of the device (along the centermost yz plane). It
illustrates how the field couples from the waveguide to the PPC. The field in the PPC seems to have
a different phase velocity than the field in the waveguide, as the apparent wavelength inside the PPC
is shorter than the wavelength inside the waveguide. This might appear surprising as the waveguide
and the PPC are coupled together without an additional phase matching mechanism. In fact the

waveguide is coupled to the Bloch mode by means of the Bloch mode Fourier component located
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inside the 15¢ BZ. As this component carries only a small fraction of the total power of the Bloch
mode (sections 2.5 and 5.1), the wavefronts seen in the PPC correspond to the another, dominant
Fourier component that is not phase matched to the waveguide.

To use this power transfer mechanism in a device, it is beneficial to have the ability to switch
on and off the coupling between the PC and the waveguide. To this effect we introduce a second
type of PC lattice, rotated by 45° and rescaled by 1/4/2, which we refer to as PC2. We refer to
the original lattice as PC1. In chapter 3 we have shown that PC2 supports self-collimated beams
and that a self-collimated beam can be transmitted between PC1 and PC2 with small distortion
and small insertion losses. The corresponding modes in PC2 lack the Fourier component in the
first Brillouin zone of PC1, which is the one that is coupled to the waveguide (figure 4.5). Thus no
anticrossing will occur if the waveguide is positioned above PC2. By substituting PC2 by PC1, the
coupling can be switched on. The power is then transferred into a self-collimated beam in PC1 that
back-propagates and crosses again the boundary between PC1 and PC2, this time inside the PPC
rather than inside the waveguide (figure 4.6).

The coupling scheme proposed in this section is very similar to a contradirectional coupler [81],
where two waveguides are coupled by means of a corrugation of one or both of the waveguides.
The mode of one of the waveguides is then coupled to the contrapropagating mode of the other
waveguide. In a directional coupler full power transfer is only achieved through careful control of
the coupling length. However in the case of a contradirectional coupler, the coupling efficiency is
very robust to variations in the coupling length (the coupling length needs only to be long enough,
rather than having exactly the right length as in a forward coupling scheme). This is of particular
advantage with PCs where a small process bias modifying the hole size could severally impact the
effective coupling length and thus the efficiency of a forward coupling scheme.

In a contradirectional coupler, the coupling condition is given by Ei —ky =mK , where m is an
integer and K is the reciprocal lattice vector given by the periodicity of the waveguide modulation
(K = 27/A where A is the modulation period). m is usually chosen to be 1, as higher order
back-reflections also induce radiative losses, in general. This coupled wave approach is intuitive in
the limit of small corrugations (first order perturbation theory). In a similar way the 2D lattice
of holes acts as a “perturbation” that couples the waveguide to the silicon slab. However, in this
case the modulation is provided by a deeply etched lattice of holes, which no longer satisfies small
perturbation assumptions. The slab modes are strongly modified by the lattice so that the original
slab modes are not a satisfactory expansion basis to describe Bloch modes with coupled-mode theory.
In that case it is a better approach to directly consider coupling between the waveguide mode and
the PPC Bloch modes rather than between the waveguide mode and slab modes [82]. Thus the
periodic modulation of the medium is already taken into account by the structures of the Bloch

modes, that comprise several Fourier components. The coupling condition then translates into an
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Figure 4.4: Field profile (B,) in the coupled waveguide-PPC system recorded on the yz symmetry
plane. Light is within the mini-stop band (A = 1.48 um) and decays. The field is coupled from the
waveguide to the PPC and back-propagates in the opposite direction.
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Figure 4.5: (a) Spatial Fourier transform of a typical Bloch mode of the second band of PC1 and
(b) the spatial Fourier transform of the corresponding Bloch mode (same frequency and same main
component k-vector) of PC2. The 15¢ Brillouin zone of PC1 is indicated by the continuous square,
and the 2" Brillouin zone is indicated by the dashed square. The Bloch mode of PC2 does not
contain the Fourier component that is phase matched to the waveguide; thus by transmitting a beam
from PC1 to PC2 the coupling to the waveguide can be switched on and off. Due to the fact that
PC2 is rescaled and rotated relative to PC1, the 15¢ Brillouin zone of PC2 corresponds to both the
1%t and the 2"¢ Brillouin zones of PC1. This explains why a Bloch mode of PC2 has only one Fourier
component where a Bloch mode of PC1 has two. k-vector components are given in dimensionless
units of k - a, where a is the lattice constant of PC1.

PC2 PC1
No Anticrossing Anticrossing

Figure 4.6: A waveguide is located above a heterojunction between lattices of type 1 and 2. This
way the coupling between the PPC and the waveguide can be turned on and off and a self-collimated
beam can be launched into PC2.
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equality, EWG = EPPC’Z', where EWG is the k-vector of the waveguide mode and Eppc,i the extended
k-vector of one of the Fourier components of the coupled Bloch mode.

There is one important difference between the PPC coupler and a standard contradirectional
coupler. In a contradirectional coupler, two waveguides are coupled together so that lateral confine-
ment of light is provided by the waveguiding mechanism, whereas here a waveguide is coupled to
a two-dimensional system. In both conventional and contradirectional couplers light coupled from
one waveguide to the other interferes destructively with the remaining light when coupled back to
the original waveguide. Usually, if a waveguide is coupled to a 2D system with no collimation mech-
anism, the field will diffract in the 2D system and not couple back to the original waveguide. Due
to the lack of interference the light transfer mechanism will require a longer length to take place
(for a given coupling strength). However, as the PC supports self-collimation along the orientation
of the waveguide (I'X), lateral confinement is still provided, even in the 2D system. The coupled
system then behaves in every aspect as a contradirectional coupler. This is to be contrasted with the
next section in which a waveguide is coupled to Bloch modes that propagate in a different direction
than the waveguide. In that case the waveguide behaves rather like a leaky waveguide as there is no
significant back-coupling mechanism.

In order to avoid constraints linked to the light cone, a self-collimated beam could be launched
in the 15¢ band rather than in the 2°¢ band. However the coupling mechanism will then have to be
a forward coupling scheme if light is coupled by means of the Fourier component inside the 15t BZ,

as the group-velocity points outside the EFC in the case of the 1% band.

4.2 Selective excitation of a single Bloch mode

If the waveguide is oriented in the I'M direction rather than in the I'X direction, it is coupled to
only a few Bloch modes rather than to a continuum of modes, as the latter relied on the flatness of
the EFC associated to self-collimation. We will show that it is possible to selectively excite a single
Bloch mode if the waveguide cross-section is adequately tailored. The Bloch modes excited in the
PC have a propagation direction that is different than the waveguide direction. We again use FDTD
to simulate the coupled system (10 nm discretization size).

In order to illustrate that the phase matching mechanism can lead to the excitation of one or
more PC modes, we investigate two different waveguide geometries. First we will show a case where
multiple Bloch modes are excited inside the PPC. We will then adjust the waveguide phase velocity
by modifying the waveguide cross-section so as to target a single Bloch mode. In the first case,
we took a waveguide of dimensions 520 nm x 100 nm, positioned above the PPC with a 200 nm
vertical gap. When light couples into the PC, the projection of the k-vector onto I'M is conserved

(inside the 15 BZ) as the discrete translation symmetry along T'M is not broken by the waveguide.
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This conservation law selects the Bloch modes to which the waveguide can couple to. Figure 4.7(a)
illustrates this. The squarish contours are an idealized form of the EFCs of the PC at A = 1.5 um.
The waveguide k-vector is conserved, so only the modes that lie on the horizontal line (distant from
I by the magnitude of the k-vector) can be coupled to. In other words the intersection of the
horizontal line and the EFCs corresponds to the set of excited PPC modes. It can be seen that only
four PC modes are coupled to. Figure 4.7(b) shows the propagation directions of those modes in real
space. The propagation direction is given by the group velocity Vj(w), which is perpendicular to
the EFC and points inside the EFC in the case of the 2°¢ band. Although 4 modes are excited, there
are only two modes on either side of the waveguide. To show this, we perform a Fourier transform
on the field on the left side and label each Fourier component with the corresponding Bloch mode
(figure 4.8). To map out the transverse electric (TE) Bloch modes, we operate the spatial Fourier
transform on the field recorded from the center plane of the PPC (B, recorded over a region of 15
by 15 periods). It should be noted that TM modes are marginally excited, although a TE mode was
launched into the waveguide. Because the xy-plane symmetry is broken in the coupled system, the
overlap integral between the TE waveguide mode and the TM PC mode can be non zero.

In order to obtain single mode excitation on each side of the waveguide, we changed the waveguide
geometry to 400 nm x 200 nm. This waveguide has a larger effective index and a smaller k-vector, so
that the situation shown in figure 4.9(a) is obtained. The waveguide was designed so that k-a = 0.4
was barely smaller than /2 - 7 = 4.44, and thus the waveguide k-vector is slightly inside the 15!
Brillouin zone, near the corner. Again, we operated a Fourier transform of the field to the left of
the waveguide (figure 4.10). It can be seen that all of the Fourier components belong to the same
Bloch mode.

It should be noted that the decay of the waveguide mode leads to a Lorentzian broadening of
the spatial Fourier spectrum. By increasing the separation between the waveguide and the PPC,
the coupling strength can be reduced and the decay length inside the waveguide increased. Thus a
wider beam can be obtained inside the PPC, with a narrower mode distribution.

In conclusion, we have shown that through out of plane coupling between a PPC and a waveguide,
a self-collimated beam as well as a single Bloch mode can be launched inside the PPC. This mecha-
nism might enable further integration of self-collimation based devices and conventional integrated

optics.
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Figure 4.7: The modes excited inside the PPC by the waveguide can be determined by conservation
of the k-vector component in the TM direction (modulo 27/(v/2a) due to the discrete translation
symmetry of period v/2a). (a) shows the idealized EFC inside the 1%¢ Brillouin zone (dashed square),
as well as higher order EFCs in extended Fourier space. The position of the horizontal line is
determined by the k-vector of the waveguide mode and intersects all the PPC modes that are
coupled to. Four modes are excited, labeled 1 to 4. The high-symmetry points are shown on the
diagram (I', M and X). The directions of propagation (given by the group velocity) are indicated in
(b) for each of the excited modes.

Figure 4.8: Spatial Fourier transform of the field inside the PPC, to the left of the waveguide (B, is
recorded on the center plane of the PPC in a region of 15 by 15 lattice periods, and subsequently a
Fourier transform is operated). Modes 1 and 2 propagate to the left of the waveguide and are present
in the obtained spatial spectrum. The field was simulated by FDTD with a 10 nm discretization,
waveguide dimensions are 520 nm x 100 nm and A = 1.54 ym. The corresponding coupling process
is illustrated in figure 4.7. The Fourier components are labeled in the same way as in figure 4.7.
k-vector components are given in dimensionless units of k - a, where a is the lattice constant.
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Figure 4.9: This is a similar diagram to figure 4.7. However the geometry of the waveguide has
been modified so that different Bloch modes are targeted. In particular only two Bloch modes are
coupled to, that propagate in opposite directions relative to the waveguide. This also illustrates the
importance of considering extended Fourier space when investigating coupling mechanisms. Indeed
the horizontal line does not intersect the EFC in the 15 BZ, but in higher order BZs.

Figure 4.10: As in figure 4.8 a Fourier transform is taken of the field inside the PPC to the left of
the waveguide. However this data corresponds to the situation schematized in figure 4.9. On each
side of the waveguide, a single Bloch mode is coupled to.
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Chapter 5

Mode-matching interfaces for the
superprism

In this chapter we investigate methods to butt-couple a beam into a planar photonic crystal with high
insertion efficiencies. In particular, we consider a PPC of finite extent, etched into a thin dielectric
slab, and we address how to transfer a beam from the unpatterned slab to the PPC. We do not
investigate how to initially transfer the light into the slab as efficient methods to do the latter can be
found in the literature [83-92]. Two mode-matching interfaces with different underlying mechanisms
are described. The mode-matching mechanisms described in this section could provide insight on
how to couple light into photonic crystal waveguides (PCW); however, the primary target is to
couple into bulk PCs. They were developed specifically to be applied to the demultiplexion of light
by means of the superprism (SP). Indeed, one of the crucial difficulties in using the superprism effect
for practical planar demultiplexers is the coupling of light into the photonic crystal with acceptable
insertion losses. These insertion losses can be very high in the absence of mode-matching because
of the complex structure of the Bloch modes involved in the superprism effect. This is a crucial
difficulty and has received an increasing amount of attention in the literature [39-41].

The mode-matching difficulties are particularly stringent in the vicinity of sharp features of the
EFCs, due to the complexity of the Bloch modes. In fact, this is quite a general problem as the
sharp features in the EFCs correlate with brusk changes in the mode structure regardless of whether
the PPC has a square or triangular lattice and independently of the photonic band that is used.
However, these sharp features are very useful for devices such as the SP as beam steering relies on
changes in the EFC. Thus there is a strong incentive to solve the mode-matching problem in these
k-space regions.

In section 5.1 the Bloch mode structure is derived from band folding, and it is shown that it
undergoes strong changes in the vicinity of the cusps. The large changes in propagation direction
are linked to drastic changes in the mode structure and to high insertion losses in the absence of

additional insertion mechanisms.
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The mode-matching interface described in section 5.2 converts a “plane wave” (slab mode of
infinite extent) into the previously derived Bloch mode structure by cascading a series of diffraction
gratings. The distance between successive gratings is constrained by interference conditions (con-
structive build-up of the Bloch mode and anti-reflection conditions to suppress reflections induced
by individual gratings). Individual gratings are defined as a row of holes into the dielectric slab so
that the definition of the MLG does not create any additional fabrication steps. We refer to this
interface as the “multilayered grating” (MLG). It has several limitations. As it relies on coherent
interference between the cascaded gratings, the distance between the gratings has to be carefully
calibrated, and the MLG has a limited pass-band for which these interference conditions hold. Fur-
thermore it was designed to couple to a specific mode (the very center of the cusp). As already
mentioned the difficulty of coupling into a PPC at the cusp is two-fold: the Bloch modes have a
complex Fourier structure that needs to be reconstructed from a plane wave or a Gaussian beam
by the mode-matching interface. This is adequately solved by the MLG. However, the Bloch mode
structure also undergoes strong changes for small displacements along the EFC. For an application
such as the SP it is particularly important to mode-match to modes on both sides of the cusp, so as
to exploit the full steering potential of the cusp (that is the angular pass-band has also to be high).

These limitations are overcome in 5.3 with an adiabatic transition. The hole size is progressively
ramped down at the boundary of the PPC so as to adiabatically convert Bloch modes to slab modes.
Adiabatic mode conversion has been previously investigated in the context of PCWs [77,93-95].
However, an adiabatic transition on its own is not sufficient to couple into bulk PCs at the cusp of
the EFC. It needs to convert a Bloch mode into a single slab mode and a PC beam into a single
slab beam (or in other words it needs to suppress higher diffraction orders of the PC emission).
This is achieved by choosing the orientation of the PPC so as to break certain symmetries. For
example, in the implementation shown in section 5.3, the orientation of the interface needs to break
the symmetry by I'M, otherwise the Bloch mode at the center of the cusp (on I'M) will be converted
to two rather than to a single slab mode. We show that this latter approach yields high insertion
efficiencies for a wide range of k-vectors and frequencies and is thus suitable for the superprism

effect.

5.1 Band folding and Bloch-mode Fourier-structure

We start the analysis with the Bloch theorem already introduced in chapter 2. Due to the periodic
nature of photonic crystals, photonic crystal modes (Bloch modes) can be described by functions of

the following form

GE (5-)
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where 7 is the position-vector, k is the reduced k-vector of the Bloch mode (in the 1%t BZ) and f is
a function with the same periodicity as the photonic crystal. In the case of a PPC (2D periodicity)

the Fourier transform of such a function takes the form

Z fa’bei(l_c‘+a151+blfz)-7'"‘ (5.2)
a,b

where K. 1 and K. o are the inverse lattice vectors of the PPC and a and b are integers. We call the
lattice vectors of the PPC €71 and é5. K. 1 and Ifg verify I?l -€; = 0;;2m. When more than one of the
Fourier components in equation 5.2 carries a significant portion of the mode’s power, there can be
a significant mode mismatch between the Bloch mode of the PPC and any incoming single “plane
wave” (slab mode with planar wavefront), as the latter corresponds to a single Fourier component.

In a photonic crystal EFCs have features such as approximately flat sides and cusps (figure 5.1).
This causes light to propagate in a PPC in a fundamentally different way than in an unpatterned
slab (chapters 2 and 3) and enables the frequency selective steering of light inside the PC (SP effect,
chapters 2, 6 and 7). These abrupt changes in the direction of propagation are accompanied by
abrupt modifications of the mode structure that makes coupling into a SP particularly challenging.

The cusps in the EFC are due to coupling between two higher order Fourier components. This
coupling is induced by the periodic array of holes. On either side of the cusp, the Bloch mode is
dominated by one of the Fourier components, while at the cusp itself the two components are of
equal magnitude. In the case of the 2"d band of a square lattice PPC, the EFCs have a cusp at their
intersection with the I'M direction, where I' and M are the high-symmetry points shown in figure
5.1.

Before we numerically analyze the Bloch mode structure, we derive it from band folding so as
to relate it to the presence of the cusp rather than to a particularity of the square lattice. As a
thought experiment, we start with a homogeneous media and progressively turn on coupling between
higher order Fourier components. This gives an adequate description of the mode structure in the
limit of very small hole size. In the case of finite hole size the EFCs as well as the Bloch mode
structure undergo further modification; however, the essential characteristics stay the same and can
be intuitively understood with the weak coupling model. As an example we will derive the mode
structure of the second band of a square lattice PPC etched into a 205 nm silicon film, with lattice
constant @ = 0.5 ym and hole radius » = 0.15 pm.

In figure 5.1 the circle centered on I' represents the EFC of an unpatterned slab with a modified

2 — ) nglap + mnsio,))/a®. The effective index is the weighted mean of the

effective index ((a
effective index of the unpatterned slab (ngap = 2.76 at A = 1.54 um) and of the refractive index of
the holes (ngio, = 1.46). This corresponds to an isotropic media with a modified effective index that

takes into account the lower refractive index of the holes, but where the anisotropy and the coupling
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induced by the holes is ignored. This would be a good description of the PPC in the limit of long
wavelengths, as shown by homogenization theory (see footnote 4 in chapter 2). However, for A of
the order of the lattice period, coupling to higher order components and the resulting distortions of
the EFC have to be taken into account. Thus we also represent the higher order Fourier components
generated by the lattice (circles centered on aIf"l + beg where a and b are integers). At the k-
space points where two of these circles cross, modes that were originally non-degenerate (located at
different points on the circle centered on I') are coupled together and anti-cross. Fragments of the
circles that were originally connected are disjoint in the modified contour, such as the green and red
portions of the circles in figure 5.1. In order to obtain the complete band structure it is sufficient to
identify such crossings in the 15 BZ as the circles tile the extended k-space in a periodic manner.

If the reduced k-vector of a Bloch mode is on a circle centered on aK; + bK- 2, it is also offset by
aKi + bK> from the initial, uncoupled component that is also the dominant component. In other
words the dominant component is offset by —aK, 1 — beg from the component in the 15t BZ. Thus
when the reduced k-vector lies on a point where 2 circles cross, the Bloch mode has 2 dominant
components, while if it is not at a crossing point the Bloch mode has only one dominant Fourier
component. For example the circles centered on [1 0] and [0 1] intersect inside the 1% BZ on I'M,
at the upper right corner of the EFC of the second band. When the coupling between the Fourier
components is “turned on” (small but non-vanishing hole size) the two circles anticross, and disjoint
contours are formed. The resulting contours correspond to the second (red) and to the third (green)
photonic bands. Anticrossing also gives rise to the rounded corners on the actual EFC (shown by
the black contour). The corresponding Bloch mode thus has two dominant Fourier components
respectively offset by [-1 0] and [0 -1] from the 15t BZ. When anticrossing occurs, the two-fold
degeneracy is also removed by the creation of two disjoint contours belonging to separate bands.
On I'M, the Bloch modes of the second and third band are essentially composed of two Fourier
components respectively offset from the 15t BZ by —K, and by —K_';; however, they differ by their
symmetry in respect to M. The cusp mode of the 2°¢ band has an even Bz (out-of-plane B-field
component B3 = B - &; with &3 = & x &) as shown in figure 5.2(a) while the cusp mode of the 3"
band has an odd B-field as shown in figure 5.2(b). In the case of a regular PPC with large hole size
this leads to the large splitting between the two bands as the second band has a field maximum in
a high index region while the third band has a field minimum. This large splitting explains why
there is a significant frequency region for which the second band is unique (figure 6.1). The circles
centered on [1 1] (or equivalent k-space points) also intersect I'M inside the 1%* BZ. They correspond
to the 4*" band that is thus composed of a single dominant Fourier component on T'M.

In the case of a finite hole size there will also be other Fourier components in the Bloch mode
structure, and the EFC has a slightly different shape (compare the true EFC in figure 5.1 to the red

contour), but the Bloch mode is still dominated by the same two higher order components. As an
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Figure 5.1: This figure illustrates how the structure of the 2°¢ band is formed by turning on coupling
between higher order Fourier components. The circle centered on T is the EFC of an unpatterned
slab of effective index ((a® — mr®)ngiap + 7r°nsio,)/a® (at A = 1.54 pm), where a is the lattice
constant of the PPC (0.5 pm). The effective index is the weighted mean of the effective index of
the unpatterned slab and of the refractive index of silicon dioxide (holes) so that the finite holes
are taken into account by the modified effective index; however, the coupling and the anisotropy
induced by the holes is ignored. To modelize the latter we represent by circles centered on aK1+bK,
the generated higher order Fourier components, where a and b are integers. The circles centered
on [1 0] and [0 1] intersect inside the 15* BZ (represented by the black square) and anticross when
coupling is turned on. The red contour represents the 2°¢ band, and the green contour represents
the 3'4 band in the case of infinitesimal coupling. The real EFC of the 2 band at A = 1.54 pm is
also represented (black squarish contour). Even though the structure is more complex in the case of
finite coupling, the mode on the cusp is essentially composed of two Fourier components offset by
K 1 and K. 5 from the 1%* BZ. The exact Fourier structure of such a mode is represented in ﬁgure 5.2.
The axes are labeled with the projections of the k-vector on & and & (k; = k- é1 and ks = k- €3).
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Figure 5.2: (a) Field profiles (amplitude of the out-of-plane component of the B-field, Bs, on the
center plane of the PPC) of modes of the 2°¢ and 3¢ bands located on TM (at A = 1.55 um).
The mode of the 2°¢ band has a field maximum in the high index region at the center of the inset,
where the mode of the 3'¢ band has a field minimum. (b) Fourier structure of the mode of the 279
band obtained by taking the Fourier transform of B3. The amplitudes of the Fourier components
are shown. The Fourier components are represented in a checkerboard pattern and are labeled by
integers a and b. The Fourier components are respectively offset from the 15t BZ component (the [0
0] component) by aK; + bK.

example, we operated a Fourier decomposition of an actual Bloch mode of the 2°¢ band located on
I'M at A = 1.55 pym. Figure 5.2 shows the detailed Fourier structure of the mode. The power shared
between the two main components is calculated to be 87%.

Most of the power of the Bloch modes is still contained in Fourier components close to the
dispersion of the unpatterned slab, as schematically shown in figure 5.3. In particular when moving
along the EFC from one side of the squarish contour to another side of the contour, through the cusp,
the mode structure undergoes a sharp change. On the left side of the corner the [1 0] component is
dominant (component d), while on the other side the [0 1] component is dominant (component a).
The mode that is exactly on the M direction has an equal fraction of its power in the [1 0] and in
the [0 1] components. The mode structure can then be related to the direction of propagation. On
the flat sides of the EFC the Bloch modes are dominated by a single Fourier component and the
direction of propagation is almost collinear to the extended k-vector of this component. In the case
of schematic 5.3 the group velocity is exactly collinear (this corresponds to the limit of small lattice
induced coupling). In a real PPC the concavity of the sides of the EFC is modified as can be seen
in figure 5.1 where the sides are flattened out. This leads to a small discrepancy between the two
directions, which is accompanied by the emergence of additional weak Fourier components. In the
case of the cusp the abrupt change of propagation direction corresponds to one Fourier component

becoming dominant over the other.
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Figure 5.3: This schematic illustrates the Fourier structure of the Bloch modes. The squarish EFC
originates from folding back the circular EFC of the slab into the 15¢ BZ. The 15¢ BZ is shown by the
dashed square, and the dashed circle represents the dispersion characteristic of the unpatterned slab.
Even after folding back the circle into the 15 BZ, most of the power of the mode is still contained in
the higher-order components that are close to the original circle. These components are indicated
by a thickened line along the higher-order contours and are labeled by a and d (this nomenclature
is used in section 5.3, see figure 5.18). They are offset from the component in the 15* BZ by inverse
lattice vectors represented by arrows and labeled by [0 1] and [1 0]. This model is a simplification,
as the lattice of holes not only perturbs the contour at the anticrossing points, but also perturbs
slightly the rest of the contour. For example, a flattening of the sides as is the case for the EFC
shown in figure 5.1 leads to self-collimation.
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5.2 Multilayered grating

Here we will use the Bloch mode structure derived in the previous section to design a mode-matching
interface based on cascaded diffraction gratings. We aim to couple to the Bloch mode located on
the cusp of the EFC. As the functionality that needs to be fulfilled by the interface is clearly
defined (converting a plane wave into the known mode profile), it can be designed and simulated
independently of the planar photonic crystal (PPC). In section 5.2.1 we introduce the multilayered
grating (MLG) used to implement the mode-matching interface. In particular, the MLG relies on
interference conditions between the individual gratings that will be derived in that section. In
section 5.2.3 we optimize the stand alone MLG with a transfer matrix method. This method is
considerably faster than FDTD so that design iterations can be accelerated. After characterizing
the stand alone MLG, we evaluate the mode-matching efficiency by integrating the MLG with the
PPC and by simulating the combined device with 3D FDTD (section 5.2.4). The data resulting
from the simulations is analyzed by means of an inner product introduced in section 5.2.2 (the
applicability of this inner product to Bloch modes is further investigated in appendix A). One of the
conclusions of section 5.2.3 is that cascading a higher number of diffraction gratings with a reduced
single grating efficiency is beneficial because it reduces out-of-plane scattering losses and enables a
finer adjustment of the MLG (one of the degrees of freedom in the design is the number of cascaded
gratings). However, when a Gaussian beam rather than a slab mode of infinite extent is coupled
into the PPC, additional difficulties arise. In that case a more compact MLG with bigger holes and
fewer cascaded gratings needs to be used (section 5.2.5). Indeed, the Fourier components created
inside the MLG propagate in different directions and spatially separate if the MLG is too wide.
Finally, we give experimental evidence of the Bloch mode structure by letting a Bloch mode diffract
into the unpatterned slab and by imaging the diffraction pattern (section 5.2.6). This experiment is
repeated both with a bare PPC (without mode-matched interfaces) and with a mode-matched PPC
to show that the MLG suppresses higher diffraction orders.

Although the mode-matching interface could easily be adapted to a triangular crystal lattice (the
Bloch mode structure at the cusps of the EFCs is essentially the same in that it is dominated by two
Fourier components), we restrict ourselves to a square lattice PPC to compute quantitative results.
A square lattice of holes (radius r=0.15 pm) is etched into a silicon slab of thickness t=205 nm. The
holes are backfilled with silicon dioxide, and the slab is clad on both sides with silicon dioxide. The
lattice constant is linked to the design of the MLG and varies slightly from case to case, but is kept
between 0.47 pym and 0.5 pym. In the calculations the refractive index of silicon is assumed to be
3.43, and the refractive index of silicon dioxide to be 1.46. The effective index of the slab (ngpp) is
equal to 2.77 at 1.52 pm. X is the free space wavelength.

The I'M direction corresponds to €7 + €3 in real space. The interface between the PPC and the
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slab is chosen to be along €] — €3 so that a slab mode with a propagation direction perpendicular
to the interface is coupled to a Bloch mode on the I'M direction on the cusp of the EFC. For a
graphical representation of the PC interface and of the unit vectors see figure 2.8 in chapter 2.

Before introducing the MLG in the next section we will define more precisely the functionality
it needs to fulfill. When a Bloch mode crosses the interface from the PPC to the unpatterned slab
it generates multiple diffraction orders. Conversely, in order to insert a slab mode (single Fourier
component) into the PPC, these multiple Fourier components need to be generated from the slab
mode by the mode-matching interface. In order to design the mode-matching interface, the relative
strength and phase of these diffraction orders need to be evaluated from the structure of the Bloch
mode. Thus we need to establish a correspondence between the Fourier components of the Bloch
mode and the diffraction orders in the slab. We denote by 7, the normalized vector along the
interface, (€1 — €3)/||€1 — é€3||. The projection of the k-vector of the Fourier components onto the
interface, k;, = k-t 1, indicates the diffraction orders to which the Fourier components contribute.
The Fourier component [1 1] corresponds to the 0% diffraction order, k; = k-7, = 0. The
projections of the two dominant components, [1 0] and [0 1], are k, = (k + K;/Q) -, = 27 /A.
They contribute to higher diffraction orders. A = /2a is the periodicity of the holes along the
interface. The correspondence between the Fourier components in the Bloch mode structure and
the amplitude of their contribution is exactly one to one only if we assume 100% transmission at
the bare interface from the PPC to the slab. Otherwise, reflection and radiative losses of individual
Fourier components creates a deviation from this ideal correspondence. The total transmission from
the PPC to the slab is indeed very high (section 5.2.5) so that the Bloch mode structure provides an
excellent design target. Here “total transmission” is used in the sense of transmission into multiple
slab modes.

Furthermore, we can classify Bloch modes on the T'M direction by their symmetry relative to
I'M (in real space the surface generated by €7 + €5 and €3 = €1 A €3). More precisely we consider the
symmetry operator S defined by a surface generated by €1 +¢é3 and €3 and passing through the center
of a hole. Then og = —1 for the second band (even B-field and odd E-field) and o5 = 1 for the
third band (odd B-field and even E-field). The mode profiles and their corresponding symmetries
can be seen in figure 5.2. We consider quasi-TE modes so that the field intensity on the center plane
of the slab is best described by B3 = B - €. Thereis a high index region on the symmetry plane S
(at the center of the square defined by four adjacent holes, figure 5.2). For the 2°¢ band, B; has a
maximum in that region, while for the 3" band Bs is antisymmetric and has an antinode on S. The
different field overlaps with the low and the high index regions create the wide splitting between
these two bands. For more details on symmetries in photonic crystals see ref. [2].

In conclusion, the MLG needs to create two dominant Fourier components with equal power,

with k-vectors that project onto the interface as +4/v/2 and which verify og = —1. This model
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can be refined, and we will show that due to the finite power contained in the [1 1] component this

conversion should be slightly less than 100%.

5.2.1 Multilayered grating

A grating formed by a row of holes of pitch A, parallel to the edge of the PPC, diffracts an incoming
plane wave to higher diffraction orders offset by Kgrating = £27 /A and is as such suitable to generate
the higher order components composing the Bloch mode. However, the diffraction efficiency of a
single grating is insufficient (for example 15% diffraction efficiency was computed by FDTD for holes
of radius » = 0.15 um). Hence several gratings are cascaded. To improve efficiency, constructive
interference conditions are imposed between the contributions of the successive gratings to the
higher diffraction orders and destructive interference conditions are imposed between the reflections
generated by the successive gratings (anti-reflection conditions). We will show that these interference
conditions can be reduced to two independent equations and that it is possible to satisfy both
conditions at the same time for certain values of the PPC lattice constant. In the following, “coupling
efficiency” characterizes the stand-alone MLG and corresponds to the power transfer from the 0"
order into the 15¢ order. On the other hand, “insertion efficiency” characterizes the MLG integrated
with the PPC and corresponds to the insertion efficiency into the PPC.

For the range of lattice constants used in this investigation the only diffraction orders that are
supported by the slab are -1, 0 and 1 (in order to correspond to a propagative field, the diffraction
order m has to verify [2rm/A| < 27ngan/A). The correct field symmetry to couple into the 29
band (0s = —1) is obtained when the holes of the gratings are in front of the holes of the PPC, or
when the holes of the gratings are offset by A/2. This can be seen by the fact that the incoming TE
slab mode has the correct symmetry and that the symmetry along S is preserved by the gratings in
these two cases. If the offset is different from 0 or A/2 (modulo A), the symmetry is broken. In the
following the holes of the grating will be offset by A/2 (figure 5.7). The 1 and -1 diffraction orders
have the same magnitude and have the same phase (defined as the phase of Bs on S) so that they
can be described by a single scalar, referred to as order 1 in the following (in other words, as the
two higher diffraction orders have a fixed symmetry, they can be described by a single scalar). The
characteristic of the grating then reduces to scattering between four slab modes of identical symmetry
relative to S (order 0, order 1 and their counter-propagating counterparts) and to scattering to free
space modes (out-of-plane scattering losses). Hence, the grating can be described by a four by four
lossy scattering matrix.

We call 6 the diffraction angle. It takes the value § = sin™*(27/(Ak)), where k = 2mngap /) is
the wave number of the slab modes. g = (g_s¢ is the phase accumulated by the 0" order due to
transmission through a single grating, ¢; = ;1 is the phase accumulated by the 15¢ order and

o1 is the phase acquired by the fraction of the 0 order scattered into the 15t order by a single
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grating (¢o, ¢1 and ¢o—1 are the phases of elements of the scattering matrix of a single grating).
Ao is the target wavelength, and d is the spacing between successive gratings. The constructive
interference condition between the two forward propagating modes (order 0 and order 1) is obtained
when

2 2
wo + dnslab—7r =1 + cos(9)dnslab—7r + 2wmy (5.3)
Ao Ao

where m; is an integer. The anti-reflection conditions, respectively for reflections from the 0t order
to the 0" order (equation 5.4), from the 15 order to the 1% order (equation 5.5) and from the 0!

order to the 1% order (equation 5.6) are given by

2w

20 + 2dngiab =T + 2mmy (5.4)
0
27
21 + 200s(9)dnslab)\— =7+ 2mmg (5.5)
0
2w
wo + 1+ dnslab/\—(l + cos(f)) = w4+ 27wmy (5.6)
0

where mo, ms and my are integers. Equation 5.6 is also the anti-reflection condition for reflections
from the 1% order to the 0" order. Equation 5.3 implies that equations 5.4-5.6 are equivalent with
mz = mo — 2mq and my = mo — my so that only equations 5.3 and 5.4 need to be satisfied to
suppress all the types of reflections. Since d, § and a are functions of m, ms and A, the lattice
constant of the PPC is linked to the design of the MLG!.

Equations 5.4-5.6 ensure that zero reflection is achievable in the limit of small MLG holes. The
small holes are necessary because otherwise the reflection of the first grating can not be compensated.
This is the same phenomenon as the reflections from a distributed Bragg reflector (DBR) at the anti-
reflection condition, i.e., if the scattering efficiency of a single grate is too high [96] the reflections
due to the first grate can not be compensated [97]. When the reflections vanish, the two forward
traveling diffraction orders can be modeled as two forward traveling waves coupled by an effective
two by two transfer matrix. The device behaves like a directional coupler with a coupling length
that can only take a set of discrete values whose step is dependant on the hole size. In the limit
of vanishing hole size the effective coupling length behaves like a continuous parameter. Equation
5.3 implies that the elements on the diagonal of the effective 2 by 2 transfer matrix have the same
phase (i.e., the 0" diffraction order and the 1%t diffraction order accumulate the same phase while

propagating forward and are thus phase matched). (2po—1 — @o — ®1)/2 is the phase difference

UIf a specific value for a is targeted, the right choice of m; and ms will result in a close approxi-
mation of the target value; however, large values of ma might lead to higher out-of-plane scattering
losses as the higher order Bragg condition is matched to a large number of free space modes. The
k-vector corresponding to the longitudinal periodicity of the MLG is Kiong = k/(1/4 + mo/2). If
my = 0, Kiong = 4k and it can be seen that no free space mode satisfies the Bragg condition.
However, for mo > 0 there are free space modes that verify the Bragg condition.
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Figure 5.4: Transmission (a), coupling efficiency (b) and reflection (c) of the multilayered grating
(hole size 40 nm) as computed by the transfer matrix method for A=1.52 pm. The coupling efficiency
is defined as the power transferred from the 0" order into the 15t order; the transmission is defined
as the power remaining in the 15 order. Optimum coupling is obtained with 27 layers.

between the coupling coefficient in the 2 by 2 transfer matrix and the diagonal terms.

There is one last condition that is necessary to achieve 100% extinction of the 0" order (i.e., a
coupling efficiency of the MLG uniquely limited by out-of-plane scattering losses). If (2091 — @0 —
©1)/2 = £m/2 the MLG behaves like a symmetric directional coupler, and 100% power transfer is
possible if the adequate coupling length is chosen (power coupled from the 0" order into the 15!
order and then back into the 0" order interferes destructively with the field that stayed inside the
0™ order). If (201 — o —1)/2 # £7/2 the maximum power transfer is less than 100%. It can be
derived from first principles (power conservation and reciprocity imposed on the scattering matrix)
that in the limit where individual holes constituting the grating have small coupling efficiency (small
radius) this phase tends to —#/2. In that limit ¢y — 0 and ¢; — 0 (if the scattering efficiency
of the holes is vanishing, a slab mode is transmitted unperturbed through the grating and does
not accumulate an extra phase). It can then be derived from power conservation (unitarity of the
transfer matrix) and from reciprocity that ¢g_; — £7/2.

The coupling efficiency is still limited by scattering losses. With numerical examples we will show
that a structure with more layers of smaller holes has less scattering losses than a structure with
fewer gratings of larger holes. The MLG described in section 5.2.3 (figure 5.4) is composed of 40 nm
holes while the MLG described in section 5.2.5 (figure 5.12) is composed of 0.15 pm holes. With the
bigger holes the maximum coupling efficiency is 70% and is limited by out-of-plane scattering losses.

In short, we showed that if the MLG is designed with small holes, reflections are suppressed and
out-of-plane scattering losses reduced, and that the coupling efficiency of the MLG can be chosen
between 0 and near 100 % on a quasi continuous scale. In section 5.2.3 we will implement an MLG

with a hole size of 40 nm that verifies this.
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5.2.2 Inner product

The analysis conducted in the next sections is based to a large extent on the decomposition of the
electromagnetic field into modes of the unpatterned slab. This decomposition is performed with an
inner product introduced in this section.

For waveguides with continuous translation symmetry, orthogonality conditions are well estab-
lished [98]. In particular, for a non-absorbing waveguide with translation symmetry in the z-direction
and two modes (bound or radiative) ¢ = (E,H) and (¢ = E, H) with the same implicit time de-

pendence exp(—iwt)

E = e(z,y)e’” H = h(z,y)e"* (5.7)

The following holds if 3 — 3 # 0
/{eXl_l*-l-é*Xh}'ﬁdA:O (5.9)
A

where w is the angular frequency, # and 3 are the wave numbers and A is a surface normal to the
direction of propagation (2).
This functional is taken as the inner product. We show in appendix A that Bloch modes also
verify orthogonality conditions for this inner product [60], but we do not use this property here.
|¢) is a field profile to be analyzed (field cross-section perpendicular to €1 + €3) and |¢) a
normalized mode profile ((¢)|¢)) = +1, normalized to 1 if it is forward propagating and to -1 if it is

backward propagating). Then
P = (¢|¢) (5.10)

Py = (]¢)?sign((144)) (5.11)

where P is the power carried by |¢) and Py the power carried by the projection of |¢) onto [)).
Note that P =", (s @) sign((hs]ei)) = >-; Py, where the sum is taken over all the modes of the
system. However, due to the fact that the inner product is not positive definite P < Y, [(¢:]¢)[?.
The Bloch mode is decomposed into forward propagating modes of the unpatterned slab (|¢)rp)
and backward propagating modes of the unpatterned slab (|¢)pp). These components correspond
to the projection of the Bloch modes onto the propagative modes of the unpatterned slab (equations
5.12 and 5.13). We ignore the evanescent slab modes as the individual gratings are widely spaced
(~ 1 pm); this is a valid approximation due to the fact that the evanescent waves decay before
reaching the next grating. By considering the effects of evanescent coupling between closely spaced

rows of holes, a much more powerful mode-matching interface is designed in section 5.3 (adiabatic
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coupling). The slab is single mode so that the TE-modes of the slab can be unambiguously referred
to by the angle between €7 + €5 and their direction of propagation. Furthermore, only slab modes
with propagation directions corresponding to 6, 0° and —6 as well as their counter-propagating
counterparts have a finite overlap with the Bloch mode and its diffraction pattern. The forward
propagating modes are |1)_g), |[t)oo) and |1pg); the backward propagating modes are |t)1800—g), |180¢)
and |¢18004+0). We couple to Bloch modes with a given symmetry (o5=-1) so that we only need
to take into account [ihr) = 1/v2(l0—g) + [Y6)), o) = [toe), 1) = 1/v/2(th1s0e—a) + [1s0e10))

and [hg) = |11800), where the relative phase between modes in the sums is chosen so as to satisfy

os = —1. |[) and |t)1) correspond to the 0" and 1 diffraction orders.
|9Yrp = (tol@)|tho) + (t1|d)[¢1) (5.12)
[6) 8P = —(Wold)|vbo) — (v1]6) 1) (5.13)

The minus signs in equation 5.13 are due to the fact that the backwards propagating modes are

normalized to -1.

5.2.3 Characterization of the stand-alone multilayered grating

We design an MLG with holes of radius 40 nm and with design parameters Ag = 1.52 pym, m; =1
and ms = 4, which results in a = 0.470 ym and d = 1.240 um.

First, the transfer matrix characterizing a single row of holes is computed by using FDTD with
a spatial discretization of 20 nm and a time step codt = 0.01143 pm~! (where cq is the speed of
light in vacuum). A silicon slab with a single hole (r=40 nm) is placed in a computational domain
of dimensions A x 1.2 um x 100 pum (respectively x, y and z, where x is along the interface € — €3,
y is along the out-of-plane direction €3 and z is along the direction of propagation €7 + €3). Bloch
boundary conditions (BBC) with a 0 phase are applied in the x-direction so as to effectively simulate
an infinite grating. Absorbing boundary conditions (ABC) are applied in the other directions.
The zero phase is compatible with |¢g) (k, = k1 = 0) and with the higher diffraction order |¢)
(kL = +2m/A so that k; - A = 0 modulo 27).

|tbo) and |¢;) are successively launched and propagated through the hole. Probes store field
profiles before and after the hole. By taking the inner products with |¢), |¢1), |1) and |¢;) all
the coefficients of the scattering matrix are extracted. The transfer matrix is then computed from
the scattering matrix. By exponentiating the transfer matrix and imposing as a boundary condition
only forward propagating waves at the output boundary of the MLG, the properties of MLGs with
a variable number of cascaded gratings are computed.

Figure 5.4 shows the transmission (0*" order to 0" order), coupling (0*" order to 1%¢ order) and



61

k1

50

A
:0'2 E

10
13 14 145 15 155 186
50
30

10
1.35

so |
30
5

10
1.3

145 15 155 18

Number of Cascaded Gratin
Fraction of Input Pow

1.4
1.4
Figure 5.5: Coupling efficiency (upper plot), transmission (middle plot) and reflection (lower plot)
of the MLG as a function of the wavelength and of the number of cascaded gratings. The optimum

coupling efficiency is obtained with 27 layers at A=1.52 um; however, the passband of the MLG is
higher for a smaller number of cascaded gratings.

145 15 155 186 1.65
Wavelength (;:m)

reflections of the MLG as a function of the number of cascaded gratings at the target wavelength
Ao=1.52 pm, as computed by the transfer matrix method. It is apparent that the optimum coupling
efficiency is reached with 27 layers. FDTD simulations of the full MLG are in good agreement with
the transfer matrix method (at A=1.51 um, the optimum is computed to be 26 layers with the
transfer matrix method and to be 23 layers with a full FDTD simulation). Figure 5.5 shows the
results of the transfer matrix method as a function of both the number of cascaded gratings and of
the wavelength. The triangular shape of the transmission shows that there is an inherent trade-off
between the maximum coupling efficiency and the pass band (the maximum coupling efficiency is
achieved with 27 layers; however, the pass band is higher for a smaller number of layers). This will
be reflected in the insertion efficiency and pass band of the mode-matched photonic crystal shown

in section 5.2.4 (figure 5.11).

5.2.4 Integration of the multilayered grating with the planar photonic

crystal

In section 5.1 we have shown that the structure of the Bloch mode located on I'M is dominated by |41 )
(the two dominant Fourier components with the correct symmetry). It was also mentioned that the
[1 1] Fourier component contains a small but still significant amount of power. The [1 1] component
couples to [1hg) so that the best overlap with the Bloch mode is achieved with a|i)1) + Blg), where
a~1and |f] << |a|. However, |f] > 0 so that the coupling efficiency of the MLG should be high
but slightly below 100% in order to obtain the best insertion efficiency. We have shown in section

5.2.3 that the power distribution between |t) and |¢1) could be tailored by choosing adequately
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Figure 5.6: This figure shows the field distribution (B, ) inside the MLG (white is high intensity). The
holes are shown with continuous circles. In this case the holes are large (0.15 pm), this corresponds
to the geometry used in 5.2.5; however, it can also illustrate the derivations made in this section.
The dashed circles indicate the position where the PPC would be placed. It can be seen that there
is a field maxima in the high index region between the PPC holes and that this region is located
3d/4 away from the last row of the MLG.

the number of cascaded gratings inside the MLG. However, it was not mentioned how to tailor the
relative phase between the two components. Fortunately, as there is only one phase that needs to
be adjusted, the problem can be solved by choosing the distance dasr.gc— ppc between the last row
of the MLG and the first row of the PPC (figure 5.7). Indeed |¢9) and |¢1) propagate with different
phase velocities inside the unpatterned slab so that their relative phase can be adjusted this way.
In the following we will derive dyrrg—ppc SO as to satisfy this constraint.

Inside the PPC, |¢)0) and |¢;) are in phase in the high index region between four adjacent holes
(figure 5.2a). This also holds for the first row of the PPC and constrains dy;g— ppc. For mq = 1 and
Y01 — po = —7/2, this results in dyrg— ppe = 3d/4. Indeed the distance 3d/4 introduces a phase
shift @y, ) — @pey = —3/4m12m = =37 /2. At the last row of the MLG @|y,) — ©|yo) = Po—s1 — Qo0 =
—m/2 so that the resulting phase difference at the 1% row of the PPC is —37/2— /2 = —27. Figure
5.6 illustrates this by showing the field distribution inside the MLG. It can be seen that there are
field maxima displaced by 3d/4 (or -d/4) from the gratings.

We will now proceed by simulating the combined PPC and MLG with 3D FDTD. As for the
calculation of the transfer matrix we apply BBC in the x-direction to a computational domain of
dimensions Ax1.2 pmx100 pym. The slab mode |¢)y) is launched at the beginning of the MLG.
After 40000 time steps the wave packet traveling inside the PPC reaches the absorbing boundary
condition (ABC) at +2z (figure 5.8a). Between subsequent layers of the MLG, as well as inside the
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Figure 5.7: Configuration of the simulation. The width (x-direction) is A so that a single hole per
cascaded grating is placed inside the computational domain. Bloch boundary conditions are applied
(x-direction) so as to effectively simulate an MLG and a PPC with infinite lateral extent. The field
is launched in the unpatterned slab, propagates through the MLG and is transmitted into the PPC.
Field probes are periodically placed inside the MLG and inside the PPC (probes are also spaced
by d). The distance between the MLG and the PPC is chosen so as to impose the correct phase
relationship between the 0" and the 15! order for optimum insertion into the Bloch mode. This
results in the distance 3d/4 between the last grating of the MLG and the 1% row of the PPC (hole
center to hole center).

PPC, probes store the field-profiles (|¢)). We stop all simulations after 50000 time steps so that
the reflection of the Bloch mode at the 4z interface does not reach the field probes and biasing
the data. The inner product is taken between the field profiles and 1), |¢1), |to) and |¢);) (see
figures 5.8 and 5.9). The inner product is defined between field cross-sections of same implicit time
dependence so that a temporal Fourier transform needs to be applied to the field profiles before the
inner product can be calculated.

We compute throughout the MLG and the PPC the power carried by (i) the O*" order (|(1|¢)|?),
(ii) the 15¢ order (|(11]|¢)|?), (iii) the total power carried by forward propagating slab modes (i.e.,
the sum of the previous two) and (iv) the total power carried by backward propagating slab modes

(|{2o| @) > +]{¢1]9)|?). We evaluate the insertion efficiency by

Ptya,pprc — Pywd,pPC
Py

(5.14)

where Py,q ppc is the power carried by forward propagating slab modes inside the PPC (iii) and
Pyya,ppc is the absolute value of the power carried by backward propagating modes (iv). Py is the
power that was initially launched. Forward propagating Bloch modes in a PPC have components
that would correspond to backward propagating modes in the slab so that Py,q4,ppc has to be taken
into account in equation 5.14. This equation corresponds to the projection of the Bloch mode onto
slab modes. It is an approximation as the Bloch modes also contains other components. Evanescent
modes of the slab do not carry power; however, the Bloch mode probably has a non vanishing overlap
with radiative modes of the cladding, even though the Bloch mode itself is below the light line and
contained. This is a somewhat subtle point as the Bloch mode has zero overlap with radiative
modes of the cladding with a perforated PPC membrane in its mist; however, it can have a finite

overlap with the radiative modes of the cladding with an unperturbed membrane. Even though some
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Figure 5.8: Field decomposition extracted from the field probes. (a) and (b) correspond to a non-
mode-matched PPC (A = 1.51 pum) and (c) corresponds to a PPC integrated with an MLG of 14
layers that operates partial mode-matching (A = 1.49 pum). (c¢) corresponds to the same device as
figure 5.9a, but the wavelength has been detuned from the optimum. In (a) |(1o|p)|>+|(v1|#)|* is
shown for various time steps after the start of the FDTD simulation. It can be seen that at 50000
time steps the Bloch mode has propagated all the way to the +y interface. The ABC at +y absorbs
forward propagating plane waves, but Bloch modes are partially reflected. Thus we stop the other
simulations at 50000 time steps to avoid these reflections bias the data. In (b) and (c) the black
curve shows [(1o]|#)|? (i in the text), the blue curve shows [(¢;|#)|? (ii), the green curve shows
[(xho|#)|>+| (b1 |#)|? (iii) and the red curve shows |(to|p)|>+|(¥01]|¢)|? (iv). It is apparent in (b) that
the 0 order (black line) is reflected (red line). In (c) it is apparent that the 15 order is transmitted
(blue line). Inside the MLG the 0" order is progressively transfered into the 15¢ order (black to
blue). The power remaining in the 0" order is reflected at the interface (black to red).
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components might be neglected, the slab modes make up for the quasi totality of the Bloch mode
power and the obtained results are very compelling.

Figure 5.8 shows (i), (ii), (iii) and (iv) as a function of the propagation distance (z) for a bare
PPC and for a PPC integrated with an MLG that operates partial mode-matching. In figure 5.8b
the PPC is not mode-matched, and almost all the power is reflected (9% insertion efficiency). In
figure 5.8c the MLG operates partial mode-matching. At the interface, the power remaining in the
0" order is almost completely reflected, while the power in the 15¢ order is transmitted into the
photonic crystal.

This picture can be further refined. The Bloch modes have most of their power in the higher
diffraction order, but there is still a finite amount of power in the 0" order. Thus the optimum
insertion efficiency is not at 100% coupling efficiency (defined as the power transfer from the 0"
to the 15¢ order inside the MLG) but at a slightly lower coupling efficiency. This is illustrated by
figure 5.9. In (a) the coupling into the 15¢ order is insufficient, and there is a significant reflection
at the interface due to the excess power carried by the 0" order. In (c) the MLG has near 100%
power transfer into the 15 order but the situation is still sub-optimal, this time because the coupling
efficiency is too high. At the interface, the power in the 0 order increases while the power in the
15t order decreases so that the ratio between the two components is modified. This corresponds to a
mode mismatch, and there are additional reflections as compared to (b). The situation is optimum
in (b) and the reflection is minimized. Note that both the powers in the 1%* and in the 0'" order
increase at the interface. This does not contradict power conservation because the power carried in
back propagating slab modes also increases.

We plotted the insertion efficiency at the target wavelength (Ag=1.51 pm) as a function of the
number of gratings composing the MLG (figure 5.10), i.e., the power transmitted into the PPC
normalized by the power initially launched (a). We also plotted the power transmitted into the
PPC normalized by the power contained in forward traveling modes at the interface between the
MLG and the PPC (b). The latter normalizes out the losses incurred inside the MLG due to out-
of-plane scattering and is a better characterization of the mode mismatch. It is apparent that mode
mismatch is the main limiting factor (the maximum power transmission is 83.7%, versus 86.9%
without out-of-plane scattering losses).

There are some limits to this coupling scheme that may explain the remaining insertion losses.
Only the components of the Bloch mode that correspond to forward propagating modes of the slab
(ltbo) and |1p1)) are generated. However, the Bloch mode also contains components that would be
back-propagating in the slab, such as component E in figure 5.2. This is not a fundamental limit of
this coupling scheme but is rather a consequence of not having been taken into account in section
5.2.1. The transfer matrix method could be generalized to take it into account by modifying the

output boundary condition to the Bloch mode profile rather than imposing uniquely outgoing waves.
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Figure 5.9: Field decomposition extracted from the field probes. The PPC is integrated with an
MLG of (a) 14 layers, (b) 19 layers and (c) 23 layers (A = 1.51 pm in all three cases). The MLG
in (a) has less than the optimum number of layers (not enough power coupled into the 15¢ order),
(b) maximizes the insertion efficiency and (c) has too many layers. In (c) the coupling from the 0*!
order into the 1% order is maximized; however, the insertion efficiency into the PPC is suboptimum
due to the small fraction of the Bloch mode contained inside the 0*" order ([1 1] Fourier component).
The color conventions are the same as in figure 5.8.
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Figure 5.10: (a) Insertion efficiency as a function of the number of cascaded gratings in the MLG

for A=1.51 pum and (b) fraction of the output power of the MLG transmitted into the PPC. (b)

normalizes out the losses due to out-of-plane scattering inside the MLG in order to evaluate the
insertion losses uniquely due to mode mismatch.

There are also components orthogonal to the radiative modes of the slab, for example higher order
Fourier components with &k, > 27n /) that can not propagate in the unpatterned slab (for example
components C and D in figure 5.2). This is a fundamental limit of this approach as evanescent waves
cannot be regenerated from grating to grating, due to the large spacing.

In figure 5.11 we show the insertion efficiency as a function of wavelength. As predicted there
is a tradeoff between the best peak efficiency (19 layer MLG) and the pass band. For a 19 layer
MLG the peak efficiency is 84% (as compared to 9% without mode-matching interface), and the full
width at half maximum (FWHM) is 28.5 nm. For a 14 layer MLG the peak efficiency is 79%, and
the FWHM is 45 nm.

5.2.5 Compact design for Gaussian beams

In section 5.2.1 we have shown that if a slab mode of infinite extent is coupled into the PPC, an
MLG composed of many layers of small holes is more efficient than an MLG with fewer cascaded
gratings and larger holes. Reflections are suppressed, maximum achievable coupling efficiency is
higher and out-of-plane scattering losses decrease. However, when a beam of finite width (e.g., a
Gaussian beam) is coupled into the PPC, the higher diffraction orders generated inside the MLG
propagate in different directions than the 0*" order so that the three beams separate. The MLG will
only function as an efficient coupling scheme if the initial beam is much wider than the length of the
MLG (number of cascaded gratings times d). Then the beam separation will only be a fringe effect.

We design an MLG with a hole size » = 0.15 pym and with design parameters m; = 1, mo = 4,

Ao = 1.52 pm, which results in a = 0.483 pm and d = 1.3141 um. Three cascaded layers are
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Figure 5.11: Insertion efficiency as a function of frequency for (a) 19 layers and (b) 14 layers.
Optimum insertion efficiency is achieved in the case of 19 layers at 1.51 um (84%); however, the
bandpass is higher in the case of 14 layers (45 nm versus 28.5 nm).

sufficient to achieve optimum coupling, but this optimum is only 70% at 1.52 pum due to large out-
of-plane scattering losses (figure 5.12). The insertion efficiency at the non-mode-matched interface
is calculated to be 8% + 2%, and the peak insertion efficiency with the mode-matched interface is
calculated to be 58% at 1.54 pm.

We simulate by FDTD the transmission through a PPC of 31 rows. We compute both the case of a
PPC with two mode-matched interfaces and the case of a non-mode-matched PPC (the “bare” PPC).
We launch |¢9) and let it propagate through the structure. The transmission spectrum through
the PPC (figure 5.13) results from the two interfaces, as well as Fabry-Perot resonances between
interfaces, losses inside the PPC for modes above the light line and near zero transmission inside the
band-gap. Both the total transmission through the PPC and the fraction of the transmitted power
contained in |¢)o) are shown. We attribute oscillations in the transmission spectrum to Fabry-Perot
resonances between the interfaces.

In the absence of mode-matching the transmission suddenly increases at the onset of the 4*" band
because Bloch modes of the 4" band essentially correspond to [¢), as explained in section 5.1. In
the frequency range of the 2 band, the transmission through the PPC is enhanced by the MLG. The
3'4 band does not play any role in the transmission because it has the opposite symmetry (o5 = +1).
Also the fraction of the transmitted power contained in |t)g) is much higher in the mode-matched
case than in the non-mode-matched case (respectively 81.45% and 8.6% at their peak transmission
at 1.55 pm and 1.57 pm). This ratio also corresponds to the mode mismatch, and in the second case
to the insertion efficiency. In the case of the mode-matched crystal, the insertion efficiency (58%) is
actually smaller due to the out-of-plane scattering losses occuring inside the MLG.

The two interfaces of the PPC have a completely different transmission characteristic: in the case
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The coupling efficiency is limited by out-of-plane scattering losses. It can be seen that transmission
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Figure 5.13: Transmission through the stand alone PPC (dashed) and through the mode-matched
PPC (continuous). In both cases the upper curve is the total power transmission, and the lower curve
is the power transmitted into the 0*" order. Points show computed data points. The oscillations in
the transmission might be due to a Fabry-Perot resonance between the edges of the PPC. The 3"
band has an antisymmetric B-field and is not excited so that the transmission between A = 1.4 ym
and A = 1.62 um corresponds uniquely to the 24 band.
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of the bare PPC there is an almost total reflection at the 15t interface (8% transmission), but high
transmission at the second because the Bloch mode is free to diffract in all diffraction orders. Thus
the transmission through the bare PPC corresponds to the insertion efficiency at the 15¢ interface.
However, in the case of the bare PPC the out-of-plane scattering losses due to the 3-layer MLG
occur at both interfaces, and most of the transmission is contained inside the 0" order so that the
insertion efficiency is expected to be of the order of the square root of the total transmission.

This can be formulated quantitatively: the insertion efficiency from the slab mode |¢)) into the
PPC at the 15 interface is the same as the transmission efficiency from the PPC into |¢g) at the
2°d interface (reciprocity principle). Hence, the insertion efficiency can be calculated as the square
root of the fraction of the power transmitted into the 0" order. This way the insertion efficiency is
confirmed to be 8% + 2% for the non-mode-matched interface and is estimated to be 50% for the
mode-matched interface at 1.55 um, the wavelength of maximum transmission. The discrepancy
from the previous estimate (58%) based on the same methodology as section 5.2.4 is easily taken
into account by the Fabry-Perot effect.

The total power transmission through the PPC could be optimized by putting a mode-matching
interface only at the first interface. However, for integrated optics applications it will usually be
necessary to mode-match both interfaces, since the figure of merit will be the transmission into a
particular slab mode if the PPC is interfaced with single mode optics.

In the case of the bare PPC, the insertion efficiency can also be evaluated by the ratio between
the power transmitted into |¢)g) and the total transmitted power. Indeed this ratio is calculated
to be 8.6% and is in accordance with the insertion efficiency calculated previously. However, this
is not a good estimate in the case of the mode-matched PPC because there are significant out-of-
plane scattering losses. However, the ratio between the transmitted power contained in |¢)) and the
total transmitted power can serve to estimate the mode-overlap, i.e., the insertion efficiency with
the internal losses of the MLG normalized out (81%). This number is very close to the insertion
efficiency obtained with the MLG composed of 40 nm holes that is not limited by out-of-plane
scattering (84%). In other words, the compact 3-layer MLG creates almost the same mode overlap
with the Bloch mode than the 40 nm holes MLG. The lower efficiency of the 3-layer MLG can be

almost completely attributed to out-of-plane losses.

5.2.6 Experimental demonstration

We experimentally image the diffraction pattern of a Bloch mode after it propagates through the PPC
and crosses the interface to the unpatterned slab. We compare the case of a non-mode-matched PPC
and of a mode-matched PPC. In the latter case a three layer MLG with holes of radius » = 0.15 pym
is added to the interface. In the absence of a mode-matching interface the Bloch mode gives rise to

higher diffraction orders that are the signature of the higher order Fourier components in the Bloch
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mode structure. When the MLG is added to the PPC, the higher diffraction orders are suppressed.
Because of reciprocity, this is expected when the mode-matching efficiency is high.

In order to compensate for small variations in refractive indeces and film thickness, we fabricated
several samples corresponding to variations in Ao, the target wavelength of the MLG (varying Ao is
equivalent to varying nsi,p in equations 5.3 and 5.4). The best suppression of the higher diffraction
orders at the output of the mode-matched PPC was achieved for Ay = 1.565 um. The lattice constant
of the PPC is dependant on A as indicated in section 5.2.1 and varies slightly throughout the span.
Ao = 1.565 pum leads to a = 0.470 ym and d = 1.277 pym. For a description of the fabrication
procedure see chapter 7.

Polarized light is butt-coupled into a 10 um wide waveguide with a 100X long working distance
lens. The high magnification is necessary to get light into the thin, 205 nm thick silicon slab. In
order to generate a wide beam, the waveguide is expanded with a parabolic taper [62] to the final
width W = 70 um. A microscope image of the taper can be seen in figure 5.15a. The local width
of the taper is given by W(y)? = (2a)o/n)y + W§, where A\g = 1.52 ym and Wy = 10 pm and
a = 1. The criterion to design the taper was for the local expansion angle of the waveguide to
be smaller than the diffraction angle of a beam with the local waveguide width, so as to always
constrain the field. In particular the expansion angle of the waveguide is chosen to be proportional
to the beam expansion angle, with a being the proportionality factor. The smaller « is, the better
the mode conversion (i.e., the smaller the cross talk to higher order modes of the wide waveguide).
The conversion efficiency drops severely for o > 1.

A PPC with 59 rows of holes (figure 5.15b), with bare or mode-matched interfaces, is placed at
the end of the waveguide. The field then diffracts into the unpatterned slab. 325 um away from the
PPC an amorphous “crystal” (figures 5.14 and 5.15¢) vertically extracts light that is subsequently
imaged by an IR camera (Indigo systems, Merlin InGaAs NIR). The “crystal” is amorphous so that it
has an isotropic in plane behavior, i.e., light guided by the slab is vertically extracted independently
of its angle of incidence. The crystal is designed in such a way as to keep the distance between
adjacent holes as close as possible to a predetermined mean (~ \/neg), but so that the relative
orientation of two adjacent holes is random. The Fourier transform of such a structure is a circle
rather than a set of discrete components. The positions of the holes are determined with a simple
algorithm. They are placed into a computational domain and assigned an interaction potential. The
positions are incremented each time step by updating them with a small displacement pointing in
the opposite direction than the potential gradient. Circular boundary conditions are imposed on
the computational domain, that is, if a hole is pushed out of the domain it reenters at the opposite

boundary. The operation is repeated until the system achieves steady state. The potential associated
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Figure 5.14: Device imaged with a dark field microscope. On the left, a waveguide is connected to
a mode-matched PPC. The waveguide is delimited by 2 pm wide trenches etched into the silicon
membrane. These trenches can be seen as white horizontal lines. An amorphous crystal is placed
to the right. Diffraction orders are numbered and represented by arrows. The white boxes show the
regions imaged by the IR camera (figure 5.16).

to “hole” j, Vj, and the corresponding displacement, 7, have the form

N o NS
V= Z 1 (5.15)
T = —eVVi/ | VV; | (5.16)

In the above equations d;; is the distance between holes i and j, ( is the characteristic length scale
of the potential and € is the magnitude of the small displacement. Even though the potential has
a characteristic length scale, the mean distance between holes will be determined by the density of
holes inside the computational domain. This density has to be high enough to avoid the holes forming
a cluster in the center of the domain. They should be closely packed; maybe a good analogy would
be a compressed gas with an interaction potential. Finally, for the light to see a truly homogeneous
media, the penetration distance of the light inside the amorphous crystal should be large enough.
In that respect, the hole size in figure 5.15(c) is rather on the large side.

Figure 5.16 shows the diffraction patterns as imaged by the IR camera. The diffraction orders
-1, 0 and 1 have different propagation directions and separate into three separate beams inside the
slab. These beams then impact on the amorphous crystal and get extracted out of the slab, thus
three bright spots appear on the amorphous crystal. These spots are imaged by the IR camera
and are shown in figure 5.16. The light is generated by a tunable laser and this measurement is
repeated for free space wavelengths ranging from 1.5 ym to 1.58 ym. The white boxes in figure 5.14

correspond to the imaged regions shown in figure 5.16. It can be seen that the -1 and 1 diffraction
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Figure 5.15: (a) Dark field microscope image of the waveguide region before the photonic crystal.
On the left three waveguides are seen. The center one is tapered out and couples into the photonic
crystal (figure 5.14). In the center of the image the white bar corresponds to an amorphous crystal
that extracts stray light coupled from free space into the slab (outside of the waveguide). This
ensures that the light imaged in the region of the PPC originates from the center waveguide. The
upper and lower waveguides on the left of the picture are used as fiducials to optimize coupling
from free space: in order to center the position of the spot from the focusing lens, we aimed to have
an equal amount of light extracted by the amorphous crystals at the terminations of the two outer
waveguides. The inset is a picture taken with the IR camera. The spot from the focusing lens can
be seen as well as the three waveguides. (b) is a SEM micrograph of the mode-matched PPC, and
(c) is a SEM view of the amorphous crystal.
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Figure 5.16: (a) Experimental results for the non-mode-matched PPC. The amorphous crystal is
imaged with an IR camera for each subsequent wavelength. The intensities of all diffraction orders
are shown. (b) Experimental results for the mode-matched PPC. The diffraction orders 1 and -1 are
suppressed. In (a) and (b), the color scaling is the same for the three diffraction orders. The settings
of the IR camera were the same, and the spots were imaged on the same region of the InGaAs diode
array.

orders are suppressed in figure 5.16b. The pass band of the mode-matched device is 40 to 50 nm
and corresponds to the pass band calculated in section 5.2.4.

In conclusion, we have shown that a diffraction grating composed of multiple rows of holes can
be designed to mode-match an unpatterned slab to a planar photonic crystal. We achieved 84%
insertion efficiency with a multilayered grating composed of 19 layers of holes with a radius of 40
nm, compared to 9% without mode-matching. It is possible to design more compact structures with
bigger holes at the cost of significant out-of-plane scattering losses and a corresponding decrease in
insertion efficiency. In particular 58% insertion was achieved with a multilayered grating composed
of three rows of holes with a radius 0.15 pym. Despite their reduced insertion efficiency, these more
compact structures are of interest because they enable coupling into a planar photonic crystal of

beams with small widths.

5.3 Adiabatic transition

In this section we mode-match the slab to the PPC by introducing an adiabatic transition inside the
PPC. This approach differs by several points from the MLG introduced in the last section. Indeed,
the MLG could be designed with transfer matrices uniquely taking into account the propagative
modes of the slab. The evanescent coupling between successive gratings could be ignored due to the
fact that the individual gratings were separated by a fairly wide distance (greater than a micron).

On the other hand, inside the adiabatic transition, the successive rows of holes are closely packed
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so that evanescent coupling plays an essential part. This gives a much wider design freedom, but
the underlying physics would also be much more difficult to modalize in a reductionist manner
(that is by breaking down the adiabatic transition into individual rows). Fortunately the adiabatic
transition can be modeled in different ways. Instead of breaking the transition down into individual
rows, the transition is locally characterized by the band diagram of the local crystal lattice. In
the previous section the transfer matrix of a single row was calculated by FDTD; subsequently the
rows were assembled. Here, the bulk properties of the local lattice are calculated by FDTD, and
then the light propagation properties derived from deformations of the local EFCs. The evanescent
coupling between holes is taken into account by the FDTD calculation and hidden inside the band
diagram. The adiabatic transition has compelling advantages over the MLG. For one, light inside
the adiabatic transition corresponds to the local Bloch mode so that the problem incurred inside the
MLG of various Fourier components spatially separating is alleviated. Furthermore, the adiabatic
transition does not depend on strict interference conditions. As a consequence it has a wider pass-
band. Most importantly, it has a wide angular pass-band, which makes it particularly compelling
for the superprism. Finally, it does not rely on constructive and destructive interference condition
such as the MLG. Thus the restrictions on the design are much more relaxed. It does not need to
be carefully fine-tuned like the MLG and can be easily adapted to different lattices.

We are able to achieve a high insertion-efficiency on the order of 95% throughout a wide frequency
range (1.47 ym to 1.68 pm) by adiabaticlly reducing the hole size at the PC interfaces. The two
interfaces of the PC are along the [1 -2] crystallographic axis (figure 5.17(a)), and the hole size is
adiabatically reduced along the direction orthogonal to the interface (the [2 1] direction). Inside the
adiabatic transition region, holes that are offset by the [1 -2] vector have the same size. As will be
explained in the next section, the orientation of the interface is crucial for the adiabatic transition
to fulfill its function.

In section 5.3.1 we will show that the adiabatic transition projects the complex Bloch modes
at the cusp of the EFCs onto modes located on the sides of the EFC. The latter have a single
dominant Fourier component and are gradually converted into a single plane wave. We will also
give a quantitative model for the insertion efficiency in the absence of mode-matching, and we will
evaluate the efficiency of the adiabatic transition. All calculations are performed with 2D FDTD
due to the large size of the devices. In the case of the MLG, 3D FDTD was crucial to take into
account the out-of-plane radiation losses at the interface. In the case of the adiabatic transition,
such losses should be suppressed if the transition is slow enough so that 2D FDTD is adequate.
However, this only holds if the Bloch modes stay outside the light cone, both in the “bulk” PPC
and in the adiabatic transition. The resulting design constraints are derived in section 5.3.3 and
numerical examples for realistic lattices are given. In particular, it is shown that it is beneficial to

chose the thickest possible slab thickness (before the PPC turns multi-mode). The problem can also
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Figure 5.17: In (a) the superprism configuration is illustrated. The waveguide direction relative to
the PC as well as the orientation of the PC interfaces are shown. The hole size is varied in the
adiabatic transition regions. Holes offset by the [1 -2] vector have the same radius. (b) illustrates
the coupling from the waveguide to the photonic crystal. The k-vector of the waveguide-mode ky
is projected onto the EFC of the PC, with a projection direction perpendicular to the interface. At
wavelengths shorter (higher) than A = 1.54 um, kw¢ increases (decreases), and light is coupled to
modes left (right) of the cusp. The direction of propagation is indicated by arrows inside the EFC.
The I'; M and X high symmetry points are also shown.

be completely avoided by working with the 15¢ rather than with the 2" band.

5.3.1 Investigation with 2D FDTD

In the following we investigate a 2D square lattice PC with the 2D FDTD method. The refractive
index of the slab is assumed to be 3.43 (silicon), and the holes are assumed to be backfilled with silicon
dioxide (refractive index 1.46). The lattice-constant of the crystal (a) is 0.4 ym, and the radius of the
holes in the bulk part of the crystal (that is outside the adiabatic transition) is 0.12 ym. All fields
are transverse-electric (TE) with the B-field pointing out-of-plane. The discretization is 0.01 pm,
and the time-step is dtcy = 0.005 pm (where ¢q is the speed of light in vacuum).

In a superprism, an angled waveguide is coupled to a PC. In order to predict to which Bloch mode
the waveguide is going to couple, the conservation of the k-vector component parallel to the interface
(K ) is used (figure 5.17(b)). Due to the discrete translation symmetry along the PC interface, this
conservation is only exact modulo 27/A where A is the periodicity of the PC along the interface.

The PC we investigate in this section has both its interfaces along the [1 -2] direction so that in
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this case A = v/5a. Ky can be deduced from the waveguide geometry by k| = sin(0)2mnwa/A,
where ny ¢ is the effective index of the waveguide and 6 is the angle between the waveguide and the
normal to the interface of the PC (figure 5.17(a)). 6 is chosen in such a way as to couple light at
A = 1.54 pym to a Bloch mode located at the center of the cusp. This corresponds to the condition
k\ = kjj,cusp + m2m A, where k|| cysp is the projection of the reduced k-vector (inside the 1% BZ) of
the center of the cusp onto the interface, and m is an integer. The projection of the various Fourier
components of the Bloch mode onto the interface is shown in figure 5.18. k| .ysp corresponds to
the position of component ¢ in figure 5.18. Depending on the value of m, the light exciting the
waveguide couples to the Bloch mode through a different Fourier component, respectively m = -2,
-1, 0 and 1 correspond to Fourier components a, b, ¢ and d (the letters label the Fourier components,
while the integer m refers to a coupling condition, thus we keep the two separate notations). Here
m is chosen to be —2 so that we couple to a higher-order Fourier-component (component a in figure
5.18) outside the first BZ. This results in § = 60.95°.

It is useful to work with m = —2 because this leads to enhanced demultiplexion compared to
m = 0 (see chapters 2 and 6). There is a second compelling reason to work with m = —2. Even in
the absence of a mode-matching mechanism, much higher insertion efficiency is achievable this way.
Indeed m = —2 corresponds to coupling to component a, which is one of the two dominant Fourier
components of the Bloch mode on the cusp and which is the dominant component for modes to the
right of the cusp. m = 0 however would correspond to couple to component ¢, which contains only
a small fraction of the power of the Bloch mode. Later in this section we will show with numerical
examples that in the absence of a mode-matching mechanism the insertion efficiency can be modeled
as

I, = Pp/(Py + Py + P. + Py) (5.17)

where I, is the insertion efficiency corresponding to coupling through component x and P, is the
fraction of the Bloch mode contained in component z (z €{a, b, ¢, d}). This formula corresponds
to a simple mode overlap integral. It is then apparent that the insertion efficiency is proportional
to the fraction of the Bloch mode contained in the Fourier component that is coupled to by the
waveguide. For the case m = —2 investigated in this paper, in the absence of mode-matching the
insertion efficiency is high for modes to the right of the cusp; however, the insertion efficiency is
low for modes to the left of the cusp that are dominated by component d rather than component a
(figure 5.20Db).

The principle of the adiabatic transition is illustrated in figure 5.19(a). The hole size is progres-
sively decreased inside the adiabatic transition region. The main effect of decreasing the hole size
is shrinking the EFC. This can be explained to the first order by an increase of the effecting index

of the PC slab due to a higher volume ratio of high index material so that the unfolded contour
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Figure 5.18: This schematic illustrates how the different components of the Bloch mode project onto
the interface between the crystal and the slab. The squarish contours show the EFC inside the first
BZ (shown by the dashed square) and in higher Brillouin zones (outside the dashed square). The
four main Fourier components of the Bloch mode located on the lower cusp as well as their projection
onto the interface of the crystal are shown by dots and by a curve along the interface. The curve
corresponds to real data and gives an idea of the relative intensity of these components. They are
spaced by 27/ (a\/g) and labeled for reference in the text. Components a, b, ¢ and d correspond to
m=-2, -1, 0 and 1. It is apparent that component a, which we are coupling to as we chose m=-2, is
one of the two dominant components. We also show the real-space lattice-vectors, the unit-vector
of the interface, [1 -2], and the direction of propagation of light at A = 1.54, [1 1].
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(dashed circle in figure 5.3) is enlarged. After folding back the contour into the 15¢ BZ the resulting
squarish contour is smaller. In other words, due to the fact that the 2°¢ band is folded back once,
the dependence of the size of the contour on the index of the materials constituting the slab is the
opposite of what would be expected from an unpatterned slab. Due to the slanted orientation of
the interface, the Bloch modes originally in the vicinity of the cusp are not projected onto the cusp
of the smaller contour (as would happen if the interface had been along the [1 -1] direction and the
hole size varied along the [1 1] direction). Rather, while propagating through the adiabatic region,
the Bloch modes originally in the vicinity of the cusp are progressively projected onto the side of the
smaller squarish contours corresponding to the local band structure. On the sides of the contour,
the Bloch modes are dominated by a single Fourier-component and are easy to couple to. Further-
more, with decreasing hole size this single Fourier-component dominates more and more the overall
Fourier structure until 100% of the mode is contained in this single component. In order to simplify
the diagram, figure 5.19(a) shows a step change of the hole radius instead of a continuous change
over a large number of layers. Such a brusk change would induce reflections as well as out-of-plane
scattering losses in a planar PC defined in a finite thickness slab. The slow transition from the full
hole size to the small holes in figure 5.19(b) suppresses these loss mechanisms. It is essential for the
interface to be along an orientation other than [1 -1] when modes on both side of the cusp are being
mode-matched. Indeed, if the orientation were [1 -1], the mode on the center of the cusp would stay
at the center of the cusp throughout the mode-matching interface and would finally be converted to
two distinct plane waves.

Figure 5.19(b) illustrates the real-space behavior of light in the slab, superprism and adiabatic
transition region. In the latter, the direction of propagation progressively undergoes a change in
direction. This is an additional advantage over the MLG introduced in section 5.2. Indeed inside the
MLG the two Fourier-components containing most of the power of the Bloch mode were progressively
generated, but had different directions of propagation so that the MLG had to be compact to avoid
the two components spatially separating. In the adiabatic transition region, the light corresponds to
the local Bloch mode at each point of the transition so that all the generated components copropagate
in the same direction. In particular in the case of the MLG there was a tradeoff between compactness
and insertion-efficiency, which is not an issue in the present design, as there is no disadvantage in
increasing the size of the adiabatic transition other than a slight loss of real estate on the chip.

We evaluated the insertion-efficiency of the adiabatic transition by 2D FDTD computation. In
the following simulations we adiabatically reduced the hole radius from 0.12 ym to 0.06 ym. We
did not go all the way to zero for practical reasons, both due to limitations of the FDTD method
(discretization) and due to the resolution limitations of lithography in a fabricated device. We
transmit light through PCs with both interfaces oriented along the [2 -1] direction, in one case the

PC consists in a “bulk” PC and in the other case by a PC with adiabatic transitions at the input and
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Figure 5.19: (a) illustrates the mechanism underlying the adiabatic transition. To simplify the
schematic we show a step in hole radius rather than a continuous change, but the general idea is
the same. Due to the change in hole size, the contour is deformed. In particular, for the same
wavelength, the contour in the region of smaller holes is smaller. Because the translation invariance
is conserved along the [1 -2] direction, it is straightforward to predict how a Bloch mode couples
from one crystal to the other by projecting it along the [2 1] direction. Modes that were in the
vicinity of the cusp in the “bulk” PC (with larger holes) couple to modes on the side of the contour
in the PC with smaller holes. Those modes have a dominant Fourier-component and are easy to
couple to. When the transition is made adiabatic, rather than stepwise, the reflections induced at
the interface are suppressed. (b) illustrates the real-space behavior of the light propagation. In the
adiabatic transition region, the group-velocity is progressively deflected. The interface of the PC is
along the x-direction (the coordinate frame of (b) is rotated relative to the other figures).
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at the output facets (the “adiabatic PC”). The bulk PC is 150 layers wide, where “layer” refers to a
row of holes along the [2 -1] direction (for example the PC in figure 5.17(a) would correspond to 23
rows). The adiabatic PC consists of 150 layers, where the hole radius is ramped up from r = 0.06 um
to r = 0.12 pm in the 15¢ 50 layers, kept constant in the next 50 layers, and finally ramped back
down to r = 0.06 pm in the last 50 layers. In figure 5.20 we show data for a wide range of k-vectors
but for a fixed wavelength A\ = 1.54 um. A transform-limited Gaussian beam is launched in the
unpatterned slab before the PC, with an angle § = 60.95° relative to the normal to the interface
of the PC. However, the waist of the beam is chosen to be narrow; due to the small waist the light
source contains a wide range of k-vectors centered on kj cysp +m2m/A (with m = —2), rather than
a narrow k-vector distribution generated by a wider light-source so that data can be collected for
a wide range of k-vectors. The field at the output facet of the PC is Fourier-transformed, and the
component of the Poynting-vector along the y-direction P, (k) is calculated as a function of k.
Three items are confirmed by this data: first that the Bloch mode structure indeed undergoes the
predicted transition from one Fourier-component to the other, second that equation 5.17 is adequate
to predict the insertion-losses in the vicinity of the cusp and in the absence of an adiabatic transition,
and third that the adiabatic transition does solve the insertion problem for a wide range of k-vectors.
In order to evaluate the insertion-efficiency, in both cases we compare the incoming power to the
transmitted power. In order to show the Bloch mode structure, we decompose the transmitted power
into the various Fourier-components. Finally, to verify the validity of equation 5.17, we compare the
actual transmitted power to the transmitted power predicted by equation 5.17.

Figures 5.20(a) and 5.20(c) show the raw data respectively for the bulk PC and for the adiabatic
PC. Figures 5.20(b) and 5.20(d) show the actual transmission through the PC as well as the predicted
transmission. In figure 5.18 we can see that there are 4 peaks in the k-space transmission spectrum,
three of which, a, b and d, are significant. In figure 5.20(a) and 5.20(c) we show peaks a (rightmost
dash-pointed curve), b (pointed curve) and d (leftmost dash-pointed curve) as a function of their
reduced k-vector so that all the components corresponding to the same Bloch mode share the same
abscissa. In other words the Fourier components corresponding to k) +p27/A with p € {-2-10 1} are
all plotted with the abscissa k||. In all four figures the zero abscissa corresponds to the intersection
of the contour with the I'M direction, the center of the cusp. The total outgoing power is the sum of
those three components and is shown by the lower continuous curve. The incoming power is shown by
the upper continuous curve. The dashed curve, almost identical to the outgoing power, corresponds
to the outgoing power predicted by equation 5.17 from the power distribution in components a, b
and d. In figures 5.20(b) and 5.20(d), the continuous curve is the actual transmission, that is, the
outgoing power divided by the incoming power, while the dashed curve is the predicted transmission.

There are some comments that can be made on this data. In figure 5.20(a) the Bloch mode

structure predicted by the model shown in figure 5.3 can be clearly seen. Modes to the left of
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Figure 5.20: We propagate light at A = 1.54 ym through a bulk PC ((a) and (b)) and through an
adiabatic PC ((c) and (d)). The abscissae correspond to the projection onto the interface of the
reduced k-vector of the Bloch mode (the zero abscissa has been shifted so that it corresponds to
the mode on the T'M direction). In (a) and (c) the upper continuous curve is the incoming power,
and the lower continuous curve is the outgoing power. The dashed curve is the prediction of the
output power based on equation 5.17. The left dash-point curve corresponds to component d (figure
5.18), the right dash-point curve to component a and the pointed curve to component b. All the
Fourier-components corresponding to the same Bloch mode are represented at the same abscissa.
In (b) and (d) we show both the actual insertion-efficiency (continuous curve) and the predicted
insertion-efficiency based on equation 5.17 (dashed curve). In (a) and (c), the trailing edge of the
incoming Gaussian beam is due to the fact that the interface of the PC is rotated in respect to the
direction of propagation of the beam.
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the cusp, with a negative abscissa, propagate to the right, and the dominant component is d.
Conversely, modes to the right of the cusp, with a positive abscissa, propagate to the left, and the
dominant component is a. In figure 5.20(b) it can be seen that the predicted insertion-efficiency is
S-shaped, where modes with a higher abscissa, that are dominated by component a, have a higher
insertion-efficiency because component a is provided by the light source in the slab. The actual
insertion-efficiency is close to the predicted one for a large range of k-vectors. At positive abscissae
there is also another limiting mechanism on the insertion-efficiency that we did not investigate. In
the case of the adiabatic PC, as predicted, component a is heavily dominant in the transmission
spectrum around the zero abscissa. This leads to an insertion-efficiency above 90% for a large range
of k-vectors on both sides of the cusp (i.e., with positive and negative abscissae). Also, it can be
seen that the transition point from one dominant Fourier-component to the other is shifted from
kj = 0to kj = —1.12 pm~"'. That is to be expected from the model shown in figure 5.19(a), where a
mode originally left of the cusp (with k) = —1.12 um~1t) gets projected onto the cusp of the smaller
contour, while all the mode to its right, including the mode originally on the cusp (with kj = 0), get
projected on the side of the contour where a is dominant. Finally, in the case of the adiabatic PC,
the transition from one Fourier-component to the next is much more abrupt, as visualized by the
slope at k| = —1.12 um~! in figure 5.20(d). This is due to the fact that the field at the output of the
crystal corresponds to the modes of the PC with reduced hole size (r = 0.06 um), where the coupling
strength between Fourier-components as well as the extent in k-space over which anticrossing occurs
are reduced.

As explained in detail in chapter 6, for an angled waveguide coupled to a PC, there is a one-
to-one relationship between the wavelength and the k-vector of the Bloch mode that is coupled
to. The true figure of merit of a mode-matching interface used in conjunction with a superprism
is the insertion-efficiency at each of these frequency/k-vector points that determines the frequency
dependent coupling-efficiency of the complete system. We show this data in figure 5.21. The field
is launched from a much wider Gaussian beam, the full width at half minimum (FWHM) is 3
pm so that a narrow range of k-vectors is targeted at each frequency, rather than averaging the
insertion-efficiency over a wide range of k-vectors. The Gaussian beam approximates the mode
profile of the waveguide leading to the superprism in a real device. It can be seen that the insertion-
efficiency (transmittance through two interfaces with adiabatic transition) is above 90% for a range of
wavelengths (1.47 pm to 1.68 pum) including the telecommunication C-band (1.528 pm to 1.570 pm)
and L-band (1.570 pym to 1.605 pm).

5.3.2 Effect of higher order bands

The numerical study presented in the last section was restricted to a design and a frequency domain

where a unique photonic band was present, the second band. However, it is an important question
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Figure 5.21: Power transmission through the “adiabatic crystal”. A Gaussian beam with a FWHM
of 3 um and an angle # = 60.95° is launched into the slab and coupled to the crystal (150 layers,
100 of which are split between the adiabatic transitions on both interfaces). 6 is chosen so that light
at A = 1.54 um propagates along the [1 1] direction. The transmission is in excess of 90% over the
wavelength range 1.47 pym to 1.68 pm.

how the mode-matching mechanism would be modified by the presence of a higher order band in
the same frequency range. This is also a relevant question for the design described above as in the
adiabatic transition region the splitting between the second and third band decreases as the hole
size decreases. Thus even though in the bulk PPC only the second band is present, the second
and third bands coexist in the transition region. We did not do numerical simulations to verify
what happens; however, by using the same techniques that led to the initial design, that is, by
considering deformations of the EFC and projections from the original EFC to the modified EFC
along preferential directions imposed by the orientation of the interface, a fairly precise picture can
be derived. We will show that the third band does not perturb the mode-matching mechanism as
modes of the third band get converted to a different slab mode.

As shown in section 5.1, the modes of the second and of the third band take the form 1/v/2(a+b)
at the cusp, where a and b are the [1 0] and [0 1] Fourier components. We have already shown for
the previous design, where only the second band is present, that the mode of the second band
1/v/2(a + b) gets converted into a single plane wave, @ (where a is the diffraction order that would
be generated in the unpatterned slab at the interface to the PPC if the Bloch mode were uniquely
composed of a?). From the discrete translational symmetry of the system and from the conservation
of the lateral k-vector component we conclude that the mode of the third band has to be converted
to a field of the form aa + Bb. Since the two Bloch modes 1/v/2(a + b) are orthogonal we expect

them to be converted into orthogonal fields (due to conservation of the flux, appendix A) so that

2q is distinguished from a@ because even though they have the same k-vector along the interface,
their k-vector component perpendicular to the interface is different.
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the third band should be converted into b. The effect of the adiabatic transition then takes the
form of a change of base. Without the transition, a single plane wave would excite both bands with
limited efficiency. With the adiabatic transition a single plane wave will excite a single band, with

an insertion efficiency close to 1. This is confirmed by the band diagrams (figure 5.22).

5.3.3 Constraints due to the light cone

The calculations in the last section were made with 2D FDTD that does not account for radiative
losses of modes inside the light cone. Thus, in order to apply the calculations to a real device, an
additional constraint has to be added to ensure that the modes are outside the light cone. For a given
lattice constant (a), slab thickness (¢), minimum hole size (rmin) and maximum hole size (rmax), we
derive the frequency range in which modes are outside the light cone at any point of the adiabatic
transition and in which the EFCs of the second band are closed contours with corners inside of the
15t BZ. Ideally one would like to ramp down the hole size from 7.« to zero inside the adiabatic
transition. This is not realistic from a fabrication point of view. Also we found that for ryj, = 0
and rmax = 0.3a it is extremely difficult to find geometries for which the useful frequency range is
not empty. In the numerical examples shown below we assume ry;, = 0.1a and rpax = 0.2a.

First, we derive the constraint that ensures Bloch modes are below the light line. This constraint
is the most restrictive for the highest frequency at which the demultiplexer is utilized (fmax = co/A1),
at which the light cone has the widest cross section and the EFC is the smallest. Furthermore this
constraint is also the most restrictive in the region of the adiabatic transition where the hole size is
the smallest. This is due to the fact the size of the EFC shrinks with decreasing hole size (2"¢ Band).
The radius of the light cone is then 27n¢jaqa/A1 (Where nejaqq is the refractive index of the cladding).
The radius of the EFC before folding back into the 15 BZ is 27neg/N1. Here neg is the modified
effective index corresponding to the smallest hole size (1—7 (rmin/a)?)nsiab +7(Pmin/@)*Nelada (where
ngiap is the effective index of the unperturbed slab). The condition for the cusp of the folded-back

EFC to be on the light cone can then be obtained after some derivations as

a
A> N = (/272 = n21aaa + nctada ) (5.18)

This corresponds to the cusp of the EFC to be exactly on the light cone and to the rest of the
EFC to be inside the light cone. As modes on the side of the EFC are also used (in particular
at A; and at Ao, the extremum of the demultiplexion range) this restriction needs to be reinforced
a little, depending on how far the modes deviate from the center of the cusp. Furthermore this
relation assumes that the EFC is derived from a simple umklapp process and ignores higher order
deformations of the EFC. In particular it ignores the rounding of the cusp induced by anticrossing.

This is another reason why relation 5.18 is an optimistic estimate.
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Figure 5.22: These schematics illustrate how the adiabatic transition behaves when several photonic
bands are present in the same frequency range, which is for example the case when the holes defining
the crystal are small. (a) and (b) illustrate the case when the 2"? and 3'¥ bands are present, while (c)
and (d) illustrate the case when the 15* and 2°¢ bands are present. The black contours represent the
EFC of the bulk crystal, while the grey contours represent the EFC for smaller holes, at some point
inside the adiabatic transition. The red arrows indicate the dominant Fourier components of the
cusp modes of the bulk crystal. In all the illustrated cases there are two dominant components that
carry an equal fraction of the total power. The green arrows illustrate the mechanism underlying
the adiabatic transition. The first green arrow represents the slanted projection from the bulk EFC
to the modified EFC. The cusp modes are projected onto modes of the modified crystal that have a
single dominant Fourier component. This Fourier component is indicated by the second green arrow.
(a) and (b) show the mechanism respectively for the 2°¢ and 3' band (in the frequency range where
both bands are present), and (c) and (d) show the mechanism respectively for the 15¢ and 2" band,
for a lower frequency range where these latter bands are present. The situation shown by (c) and
(d) is not encountered in a bulk crystal with a complete band gap; however, it will occur inside
the adiabatic transition. For all the depicted examples, when there are two bands present that are
mode-matched at the same time, these bands are converted to different plane waves so that cross
talk between the photonic bands is not an issue.
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Figure 5.23: These schematics show the geometric constructions that lead to equations 5.18 and
5.19. In both (a) and (b) the black circles represent the higher order Fourier components generated
by the periodic array of holes (see section 5.1). The EFC of the 2"¢ band is assumed to be the
squarish shape formed by the intersection of those circles inside the 15¢ BZ (the latter is represented
by a black square). This approximation ignores higher order deformations of the EFC, in particular
the rounding of the corners induced by anticrossing. In (a) the corner of the EFC is on the light
cone (shown in red) so that any further frequency increase would lead the corner to be inside the
light cone. In (b) the corner of the EFC is at the corner of the 15 BZ so that any further frequency
decrease would transform the EFC into four disconnected contours.

A second constraint enforces that the EFC is a closed contour inside the 15* BZ and has a cusp.
This time the constraint is the most restrictive at the lowest frequency fimin = co/A2 and for the
biggest hole size. We obtain

A< Ay = afiegV2 (5.19)

where fieg is the modified effective index corresponding to the biggest hole size (1 —7(rmax/a)?)nes +
7(Pmax /@) Nclaqd- For example for a square lattice PPC with parameters @ = 0.46 ym, t = 205 nm,
min = 0.1a, "max = 0.2a etched into a silicon slab cladd by silicon dioxide, nga, = 2.757 at
1.54 pym, Ay = 1.542 ym and Ay = 1.584 ym. For a square lattice PPC with parameters a =
0.4 um, t =300 nm, rnin = 0.1a, rmax = 0.2a, ngap = 3.006 at 1.54 um, A\; = 1.519 pm and
A2 = 1.587 um. The useful frequency range is 1.6 times wider for the thicker slab. Thus it is
preferable to design a SP in the thickest possible slab that still results in a single mode PPC when
the second band is used.

Figure 5.23 shows the geometrical constructions that lead to constraints 5.18 and 5.19. The
formulas derived above hold for a square lattice PPC and need to be modified for a triangular
lattice.

In chapter 7 a superprism that incorporates the adiabatic transition is implemented and experi-

mentally characterized. To avoid the stringent constraints derived above, the 1% band rather than
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the 274 photonic band will be used. In fact all the concepts derived so far can also be applied to
the third band. This is illustrated by figure 5.22 for the adiabatic transition. We have also shown in
chapter 3 that in the “bulk” region of the bands, i.e., away from the band-gap, the first and second

band have a very similar structure given the right geometric transformation (rotation and rescaling).



89

Chapter 6

Enhancing the frequency resolution
of the superprism

In this chapter we address the issue of superprism compactness versus frequency resolution. In
section 6.1 we describe the limitations first derived by T. Baba and T. Matsumoto in ref. [38]. In
the following two sections we show an alternate geometry that overcomes these limitations [41]. In
the analysis conducted in section 6.1, beam broadening inside the PC is in competition with beam
steering and limits the frequency resolution. Indeed, the criterion to demultiplex two frequencies
is for the corresponding beams to be spatially separated at the output edge of the PC. If the
beams broaden inside the PC, more beam steering is necessary to separate them. In the geometry
introduced in section 6.3, instead of terminating the incoming waveguide right at the boundary of
the PC, the waveguide is terminated some distance before the PC. Thus the beam broadens in the
unpatterned slab before entering the PPC. The PPC is designed for the beam to propagate with
a negative effective refractive index [58]. Thus, instead of further broadening inside the PPC, the
beam can be refocused. The expansion distance in the unpatterned slab (the distance between the
end of the waveguide and the beginning of the PPC) is chosen so that the positive refraction in the
slab and the negative refraction in the PPC can compensate each other. If the SP is laid out in
such a way, beam broadening inside the PPC does not limit the SP resolution, and the limitations
introduced in section 6.1 do not hold. In particular, compensating for the beam broadening modifies
the scaling law of the resolution. While the model derived in 6.1 predicts (AX/A)~! o VL, the
modified geometry leads to (AX/A)~! o« L. In sections 6.2 and 6.3 we use the same PPC geometry
as in section 5.3. In section 6.2 we show under which conditions this crystal supports quasi-negative
refraction, and in section 6.3 we show how negative refraction inside the PPC can be used to enhance

the SP resolution.
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6.1 Usual limitations of the frequency resolution

In this section we derive limitations of the SP resolution that were first derived by T. Baba and
T. Matsumoto in [38]. It describes in a formal way the competition between beam broadening and
beam steering inside the PPC. The derivation assumes that the beam is transform limited at the
input boundary of the PPC. It is important to keep this assumption in mind, as we will show that
it does not necessarily lead to the best resolution for certain PPC geometries. Indeed we will show
in section 6.3 that better resolution can be achieved in certain cases by first broadening the beam
in the unpatterned slab prior to the PPC.

First we will define “transform limited”. This concept is most often found in relation to the
time domain, i.e., references to “transform limited pulses” is often found. If a train of pulses is
analyzed with an optical spectrum analyzer, the power spectrum of the pulses is available; however,
the phase information is lost. That is, we know how the power is distributed between wavelengths;
however, the relative phase between the various frequencies is not accessible. Due to this missing
phase information, we cannot directly deduce the temporal pulse width without making additional
assumptions. However, there are assumptions on the phases that minimizes the pulse width. That
minimum pulse width is called the transform limited width because it is not limited by the relative
phases but by the distribution of the power spectrum. This concept can also be applied to beam
widths and spatial Fourier transforms. The cross section of a beam can be Fourier transformed, and
the power spectrum of the Fourier transform can be derived. A beam width is said to be transform
limited if it is the minimum beam width for all possible assumptions on the relative phases. The
concept of transform limitation is very powerful for the analysis of the SP. Indeed in all the geometries
investigated below, the SP has two parallel interfaces. The discrete translation symmetry along
these interfaces is never broken so that the power spectrum of the k-vector distribution is conserved
throughout the device (modulo 27 /A, where A is the periodicity of the interface). This conservation
law corresponds to a generalized Snell’s law introduced in chapter 2. Beam broadening, beam
refocusing and beam steering are only a function of the relative phases. This is for example not the
case with conventional lenses that have curved interfaces. Indeed a lens can focus a plane wave (as
such transform limited) to a tiny spot.

In order to predict how light coupled from the waveguide propagates inside the PPC the general-
ized Snell’s law is applied, i.e., the projection of the k-vector onto the interface is conserved modulo
27 /A (chapter 2). The incoming light has a finite beam width. Thus it corresponds to a finite-width
distribution of k-vectors. We start by considering uniquely the center component of the k-vector
distribution, i.e., we start out the analysis by ignoring beam broadening. In a configuration as in
figure 2.8, the projection of the k-vector of the incoming beam is 2rnwgsin(f)/A, where 8 corre-

sponds to the waveguide orientation and nwq is the effective index of the waveguide. As explained
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in chapter 2, the Bloch mode that is coupled to can be determined from the fact that the projection
of its k-vector onto the interface has to take the same value modulo 27/A. The correspondence
between the frequency and the reduced k-vector of the Bloch mode can be represented by a curve
E(w) inside the 15t BZ of the PPC. The Bloch modes along that curve have varying group velocities,
which in turn leads to the frequency dependent direction of propagation and to the SP effect. In
the following, we will refer to E(w) as the “coupling point”.

The frequency dependence of the group velocity can be broken down into two factors. On
the one hand, the magnitude of the k-vector of the incoming light changes, i.e., the magnitude of
2mnwegsin(f) /A is modified. This would lead to another portion of the EFC to be coupled to, even
if the shape of the EFC had not any frequency dependence. This can be referred to as a “frequency
dependent sampling” the EFC. On the other hand, the EFC changes shape with frequency. This
could lead to a change of the group velocity even if the magnitude of 2rnwasin(f) /A stayed constant.
Of course both effects occur at the same time, and it might seem a bit arbitrary to separate them.
However, as shown below, there are cases where one of them is dominant. In the context of this
chapter it is important to distinguish between them. Indeed, we will show that if sampling of
the EFC is the dominant effect, beam broadening necessarily also has an important role. In this
case the analysis of sections 6.2 and 6.3 is very relevant as it shows how to compensate for beam
broadening. If the deformation of the EFC is dominant, and if it consists in the change of orientation
of an otherwise flat portion of the EFC, there can be frequency dependent beam steering and self-
collimation at the same time so that beam broadening is not an issue. Nevertheless, the 15 case
can be very attractive because of very strong beam steering and because the beam broadening can
be compensated, as we will show in 6.3.

We will now proceed by explaining how beam broadening has been taken into account in reference
[38]. The derivations assume that the waveguide is terminated right at the boundary of the PC.
Waveguide modes are often approximated by a transform limited Gaussian (or more precisely the
cross section of a waveguide mode is often approximated by the waist of a Gaussian beam). Thus
in the following it is assumed that a transform limited Gaussian beam is coupled into the PC.

We assume the amplitude of the beam to have a cross section of the form A - exp(—z?/0?) at
the input boundary of the PC. The width of the beam is then defined as Wy = 20. As already
mentioned in chapter 2, the beam would then have an angular divergence 2\/mnga,Wo inside the
unpatterned slab. As explained above, for a given frequency, the angle of propagation inside the PC
(apc) can be determined from the angle of propagation inside the unpatterned slab (agap). In order
to relate the beam broadening inside the PC to the beam broadening inside the slab we introduce
the parameter p defined as p = dapc/dasap. After propagation for a distance L through the PC,

the beam is broadened to the width
4\L

— P
TNglab Wo

(6.1)
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This corresponds to the beam broadening that would have occured in the slab, multiplied by p to
take into account the modified propagation inside the PPC. It is valid if the propagation length inside
the PPC is longer than the Raleigh length (in other words, this formula describes the broadening
correctly if the final width is significantly larger than the initial width). This is given by the condition

2
TNslab Wo 1

L>
4\ p

(6.2)

In order to achieve demultiplexion, the displacement due to beam steering has to be larger than
beam broadening. The displacement due to beam steering is given by dapc/d(a/N) - aAN/X? - L =
qaLAXN/)\? where q = dapc/9(a/N). The resolution (AX/A)~! then takes the form!

-1
<Q) _ mansian Wo ¢ 6.3)

A 422 p

The analysis given in ref. [38] stops at this point. However the resolution is given in terms of
Wo, rather than in terms of the SP dimension (L). The latter is an important relation as it gives
the scaling law of the resolution of the SP as a function of its size. In order to resolve AX/A the
beam steering has to be at least wider than the initial beam width Wy. This leads to
qaL (A/\

: T) > W (6.4)

By combining equations 6.3 and 6.4 we obtain

<%> 2 _ Waz;lzlab (JP;L (6.5)
Thus the resolution of the SP goes as the square root of its length. The beam displacement does
increase in a linear fashion with the length of the SP; however, in order to increase the resolution
W has also to be increased. This is why the linear increase of the beam displacement does not lead
to a linear increase of the resolution. The object of this chapter is to design a geometry where the
beam is refocused, and where beam broadening is thus not an issue. We will show that in this way
a linear scaling law of the resolution can be recovered.

The SP described in section 5.3 relies on the cusp of the EFC to achieve demultiplexion (as
shown in figure 5.17(b)). Light is coupled to different points of the cusp depending on the frequency.
In particular light is first coupled to one side of the cusp and then to the other side. In the
process, the direction of propagation undergoes a near to 90° change. This scheme relies mostly

on sampling the EFC at different points rather than on a deformation of the EFC (in this case the

IThere is a difference in notations compared to ref. [38] because we defined Wy as 20 in order to
keep coherent notations with the rest of this thesis and with ref. [41].
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deformation of the EFC even works against the dominant beam steering mechanism, see chapter
7). The sampling of the EFC is accelerated by the steep injection angle 8 = 60.95° of the incoming
waveguide (dk = 2mnwgsin(f)d(1/A) « sin(d)). This is another benefit of coupling through higher
order BZs as it leads to a higher injection angle.

A superprism where the frequency dependence of the group velocity is dominated by the defor-
mation of the EFC can be found in [35]. Compared to the previous case, light stays much more
collimated inside the PC due to the fact that it is coupled to a rather flat section of the EFC. The
direction of the group velocity changes with frequency because the orientation of the EFC changes.
However in this case the available angular swing is of the order of 20° and is much smaller than the
swing available in the region of the cusp (~ 90° for a square lattice). This would make the latter
type of SP very attractive if the difficulties related to beam broadening could be resolved. This is

the topic of the next two sections.

6.2 Negative effective index of the superprism

In the following two sections computations are made for the same lattice as in section 5.3, that
is, a square lattice 2D PC etched into silicon with silicon dioxide backfilling the holes, a lattice
constant of 0.4 pm and a hole radius of 0.12 ym. In this section we examine under which conditions
quasi-negative refraction (chapter 2) can be associated to the cusp of the EFC.

Figure 6.1(a) shows the band-diagram for this crystal along the I'M direction, and figure 6.1(b)
shows the EFC of the 2" photonic band at the free-space wavelength A = 1.54 ym. In the corner-
region, the group-velocity v 7w, perpendicular to the contour, undergoes a strong shift in direction.
In a small k-space region around the cusp this shift in direction can be characterized by a single
number. The rounded corner can be approximated as an arc of a circle as shown in figure 6.1(b).
The radius of that circle is approximately 0.3 - 27/1.54 so that the diffraction of a Gaussian beam
can be predicted inside the PC by an effective index of —0.3, provided the range of k-vectors of the
beam is restricted to the corner-region approximated by the arc. The negative sign in the effective
index comes from the fact that the group velocity points inside the circle. Negative refraction and
superlensing have been experimentally investigated in a similar geometry by E. Cubucku et al. in
ref. [58].

In the next section we will show that negative refraction in the PC and positive refraction in the
unpatterned slab can compensate each other so that a beam diffracting in the slab can be deflected
and refocused at the same time inside the PC. In such a way cross talk induced by beam broadening

is suppressed.
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Figure 6.1: (a) Band-diagram showing the first three TE photonic bands along the TM direction.
The black dot corresponds to A = 1.54 um. The lattice-constant of the PC was chosen for the 274
band to be the only one present in the frequency range of interest (C-band). (b) shows the EFC of
the 274 band for A = 1.54 ym. The contour has a squarish shape with rounded corners. The corners
can be approximated by the arc of a circle with a radius of 0.3 -27/1.54. Thus Gaussian beams with
a distribution of k-vectors restricted to that k-space region diffract inside the PC as if they were in
a material of refractive index -0.3.

6.3 Resolution enhancement with help of negative refraction

Here we examine the situation where the waveguide stops some distance before the interface so
that the beam diffracts inside the unpatterned slab before coupling into the PC. As shown in the
previous section, the propagation inside the PC is determined by a quasi-negative index of refraction
so that diffraction inside the unpatterned slab and inside the PC can compensate each other. If the
diffraction length in the unpatterned slab is adequately chosen, the beam can be nearly transform-
limited at the output facet of the PC. The impact of beam-broadening on the superprism resolution
can then be neglected. There is still a price to pay in the form of chip space necessary to expand the
beam. However the chip space needed to expand the beam is of the same order as the chip space
needed for the PC (see chapter 7 and figure 7.1 for a concrete example). Furthermore we will show
that with this scheme the resolution scales linearly with the device size (comprising both the PC
and the slab region), while without it the resolution scales with the square root of the device size.
In the following we derive the diffraction length in the slab (dgjap) necessary to compensate for the
diffraction inside the PC (dpc). If the PC is mode matched with the adiabatic transition introduced
in section 5.3, the width of the transition has to be split in some way between dga;, and dpc that
we do not quantify here; however, in a real device the width of the adiabatic transition would be
much smaller than both the width of the bulk part of the PC and the diffraction length inside the

slab so that it can be neglected. As shown in figure 6.2, dpc is the width of the PC (because we
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Figure 6.2: This figure is a schematic of the beam-expansion inside the unpatterned slab and inside
the PC. The lengths and angles are labeled for reference in the text.

optimize dgap for the wavelength at which light propagates in the [2 1] direction normal to the [1 -2]
interface), and dgap, is the distance over which the beam is propagated inside the slab. We assume
the beam to be a transform-limited Gaussian beam at the output edge of the waveguide and we aim
for a transform-limited Gaussian beam at the exit of the superprism. The width of the beam at the
end of the waveguide is Wy (as in 6.1 the width of the beam is defined as 20, where the functional
dependence of the amplitude along the cross-section of the beam is given by exp(—z2/0?)). The
diffraction angle inside the unpatterned slab is aglap = 2A/(7ns1abWo) so that the width of the
beam at the input interface of the superprism is Winterface = 2tan(asiab)dsian /cos(d). The additional
1/cos(8) factor comes from the fact that the interface of the PC makes an angle 7/2 + 6 with
the direction of propagation of the beam (instead of 7/2 as would usually be expected for a cross
section). The width of the transform-limited beam at the output facet of the PC should also be Wy
as the power spectrum is conserved throughout the device. The width of the beam along the output
facet should then be Wy/cos(f). The beam propagates along the normal to the interface inside the
PC so that the relevant width to evaluate the diffraction angle inside the PC is Wy/cos(f) and not
Wo. The diffraction angle inside the PC is then derived to be apc = 2Acos(8)/(mnpcWo). The size

of the beam at the input facet of the PC can also be expressed as Winterface = 2tan(apc)dpc. By
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equating the two expressions for Wintertace We obtain the equation

2Acos(6 2\ 1
A)dpc - tan(ﬂn 1abWo ) dstan cos(h)

tan( (6.6)

™pC Wo

Because the Gaussian beam expanding in the slab is cut at an angle 6, the beam-profile along
the interface of the PC is not exactly Gaussian. As a consequence the beam is not exactly Gaussian
inside the PC. Thus the model exposed above is an approximation in that it derives the expansion
angle inside the PC as if the beam were Gaussian. To further validate equation 6.6, we investigated
the dependence of the width of the beam exiting the PC as a function of dg,, without making this
approximation. We use a simple beam propagation code based on a scalar description of the field and
an effective index approximation inside the PC. As above, the effective index approximation is only
valid for a beam with a small enough k-vector distribution to be completely contained within the
rounded part of the cusp. At the boundaries of the PC an extra transformation has to be operated
on the field. Indeed, inside the PC light is described by an effective k-vector that corresponds to the
offset between the center of the circle approximating the cusp of the EFC and the reduced k-vector
of the Bloch-mode. Light with a lateral k-vector of ke, || + m2m/A is in fact at the center of the
cusp and propagates inside the PC as if it had a 0 lateral k-vector in a material of index npc. At the
input boundary m2n/A (where m is the coupling parameter introduced in 5.3) has to be subtracted
from the lateral k-vector (k) in order to convert the k-vector into the reduced k-vector. Then the
projection of the cusp onto the interface, kcysp,||; has to be subtracted to compute the offset from the
center of the circle. At the output boundary m2m/A + kcysp, has to be added again before further
propagation in the slab.

This model is a little more sophisticated than the simple considerations that led to equation
6.6; for example it takes into account the exact Fourier spectrum of the field rather than making
Gaussian beam approximations throughout the structure. For the numerical results shown in figure
6.3 the PC is assumed to be 300 pum thick, and the FWHM of the waveguide is assumed to be 5 pym.
The optimum diffraction length in the slab is then calculated to be 655 um with equation 6.6. In
figure 6.3 we show the beam profile at the input boundary and at the output boundary of the PC,
as a function of dgjap. It can be seen that in this model the optimum expansion length is still given
by equation 6.6.

As mentioned in the first section, the diffraction of the beam inside the PC is described by an
effective index npc = —0.3 that is much smaller than the index of the silicon slab (ngap = 3.43). As
a consequence the beam needs to propagate a longer distance in the slab than in the PC in order
for the diffraction lengths to compensate each other (section 2.3). However, due to the fact that the
beam propagates inside the slab along a slanted direction, the distance between the waveguide edge

and the edge of the PC (655 -cos(f) = 318um) is of the same order as the width of the PC (300 pm).
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Figure 6.3: This figure shows the dependence on the expansion length inside the unpatterned slab
(dsiap) of the beam width at the input (dashed line) and output (continuous line) boundaries of the
PC. The beam profiles are labeled by dgjan /do, where dy is the optimum expansion length predicted
by equation 6.6. The beam is assumed to propagate perpendicular to the PC interface inside the
PC. At dgap = 0 (that is, the waveguide terminates directly in front of the PC interface) the beam
is significantly broadened at the output edge of the PC. At the optimum expansion length dy the
diffraction inside the slab and inside the PC compensate each other, and the beam recovers its
transform limited width at the PC output interface.

By applying equation 6.6 we also got convincing results with a full 2D FDTD simulation. We
simulated the transmission through the adiabatic PC introduced in the previous section (same PC
as in figures 5.20 and 5.21). We use a transform-limited beam as a light source at the input-interface
of the PC in (a) and a beam that has been propagated 80 pm before hitting the interface in (b).
The results are shown in figure 6.4. It can be seen that the separation between beams corresponding
to different frequencies at the output of the superprism is much better in the second case. It can
also be seen in the second case that the beam-profile at the output interface is very close to the

transform-limited beam-profile, while it is significantly broadened in (a).

6.4 Modified scaling law of resolution versus device size

The frequency resolution shown in figure 6.4 is 60 nm and is quite low due to the small size of the
simulated device (the PC is only 26.8 ym wide). However this can be easily resolved by making a
larger device. In particular in this case the resolution scales linearly with the size of the SP rather
than the square root scaling derived in section 6.1 due to the fact that beam broadening is alleviated.
The difference between the case depicted here and the case depicted in section 6.1 is that here the
waveguide width does not need to be increased when the SP is scaled up and the resolution increased.
In both cases, for a given wavelength change the beam deflection scales linearly with the PC size.

However in the case depicted in 6.1 the spacing between output waveguides becomes larger at higher
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Figure 6.4: In (a) a transform-limited beam (leftmost beam) is launched inside the PC. The shape
of the beam at the output of the PC is shown for the free-space wavelengths 1.6 um, 1.54 ym and
1.48 um (left to right). (b) shows the same data for a beam that has been propagated 80 pm inside
the slab before being coupled to the PC. The leftmost beam is the cross-section of the beam at the
input edge of the PC after propagation through the slab. In this case the beam is approximately
transform-limited at the output of the PC. Both in (a) and in (b) the relative positions of the output
beams are correct, but the input beams have been separated out, so as not to overlay too many
plots.

resolutions so that the needed deflection also increases (6.3). In the case depicted in this section the
length of the PC goes as L o< (AX/A)~!, while in the case depicted in 6.1 we obtain L oc (AX/X)~2.

In chapter 7 a particular implementation of the superprism incorporating the mechanisms de-
picted in this and in the previous chapter is described in detail. In particular the figure of merit
for the resolution versus size is derived as a function of the frequency dependent effective index of
the SP and of the deformation of the EFC, i.e., of the position of the center of the cusp and of the

radius of curvature of the cusp.
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Chapter 7

Experimental characterization of
the superprism

In this chapter a superprism (SP) is designed, fabricated and measured. It incorporates the design
ameliorations introduced in previous chapters. It uses an adiabatic transition to reduce insertion
losses (chapter 5) [41], and the resolution of the superprism is enhanced by compensating beam
broadening with the technique described in chapter 6 [41]. The only fundamental difference is that
here we use the first photonic band of a square lattice photonic crystal instead of the second, in order
to avoid the very limiting constraints imposed by the light cone. Indeed we have shown in chapter
3, section 3.5, that away from the photonic band gap (PBG), the band structure of the first band is
almost identical (figure 7.2(a)), provided the crystal is adequately rotated and rescaled [40]. Also,
the photonic crystal can be mode matched with the same adiabatic mechanism as when the 2°4 band
is used (figure 5.22). Furthermore, instead of expanding the field in the slab only on one side of
the PPC as in chapter 6, the expansion distance is equally split to both sides (figure 7.1(a)) as this
reduces the necessary lateral extent of the PPC. Finally, the orientation of the PPC interface is taken
to be along a different crystallographic orientation as in chapter 5, resulting from a trade off between
pass band of the adiabatic interface and frequency sensitivity of the device. In section 7.1 we derive
adequate values for all the critical design parameters from analytical expressions and from a full
band diagram of the PPC. Section 7.2 describes the fabrication process used for silicon on insulator
(SOI) based SPs. Next, we describe the measurement method and the on-chip grating couplers used
to fiber couple light on and off the chip (section 7.3). Finally the experimental results are shown
in section 7.4. The devices are etched into a 205 nm thick SOI silicon membrane (refractive index
3.43) and are clad by SiO, and polymethylmetacrilate (PMMA) (with respective refractive indeces
1.46 and 1.5). In the bulk of the PPC, the normalized hole radius is r/a = 0.3. A¢ = 1.538 um is
the center wavelength of the demultiplexed wavelength range, and we aim for a 10 nm resolution, 4

channels demultiplexer.
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Figure 7.1: SEM micrographs of a fabricated superprism. (a) shows an overview of the device.
At the bottom of the picture, seven grating couplers couple light to single mode waveguides. The
rightmost grating coupler is the input port, while the six grating couplers to the left are the output
ports for the various demultiplexed frequencies. The output waveguides are bundled into a tree-like
structure. At the top the waveguide bundle is bent, and each individual waveguide is adiabatically
tapered to the width Wwg (b). The input waveguide is also tapered to the same width. The
photonic crystal can be recognized in (a) as a rotated white square. (c) shows a detailed view of the
adiabatic transition at the input edge of the PC. It can be seen that the interface makes an angle
¢ = atan(1/5) relative to the [1 0] crystallographic direction.
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7.1 Design parameters

In this section we will derive numerical values for the critical design parameters that determine the
device geometry. The last two chapters were aimed at demonstrating the concepts involved in the SP
design, while this section only briefly goes through the calculations for the specific implementation
demonstrated in this chapter. However the constraints on the SP design are exhaustively covered.
The reader will find this section useful when attempting to reproduce or improve the experimental

results. The important design parameters are

e The lattice constant (a).

The incident angle of the waveguides onto the SP ().

The (tapered) width of the waveguides! (Wwg).

The width of the PPC (dpc).

The expansion length (dgjap)-

e The width of the adiabatic transition.

Lattice constant: 6, dpc and dg,p are represented in figure 6.2. As in the previous chapter,
nwg and npc denote the effective indeces of the waveguide and of the PPC, where npc is derived
from the curvature of the rounded EFC corner. For the beam to be correctly refocused into the
outgoing waveguides, equation 6.6 has to hold over the whole demultiplexed frequency range. To

the first order (by linearizing the tangents), this imposes

dnpc _ dnglan (7.1)
nec TNslab

We derived the frequency dependence of npc from a full band diagram and found that it has very
high derivatives near the M and I' high symmetry points, but has a maximum at a k-space point
near the center of I'M (figure 7.2(b)). We found that for a lattice periodicity a = 0.37 pm, npc/nsiab
stayed within half a percent of its mean value in the wavelength range A € [1.5 ym, 1.58 pm].
Incident waveguide angle: As we use the first band in this chapter, the crystallographic
directions reported in chapters 5 and 6 have to be rotated by 45° to apply (this transformation
is introduced in section 3.5). In chapter 5 we have shown that for the adiabatic transition to
work, the interface of the PPC cannot be along the “natural” crystallographic direction. Here the

interface of the PPC has to be rotated away from the [1 0] direction. We chose the interface to

1The waveguide width Wy corresponds to the width of the waveguide as drawn, while the
notation Wy used in previous chapters corresponds to 2o, see equations 2.9 to 2.11. As the FWHM
of the first mode of wide dielectric rectangular waveguides is close to Wy /2 (figure 7.6) they can

be related by Wwa = /2log(2)Wp.
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Figure 7.2: (a) shows the EFCs of the first band of the PPC, in the wavelength range [1.34 pum 1.78
pm] for which they feature a squarish shape. To show the similarities with the EFCs of the second
band we didn’t represent the contours in the 15¢ BZ, but in a section of Fourier space centered on the
high symmetry point X (the lower left corner of the diagram delimited by the dashed lines belongs to
the 15t BZ). P is the k-space point to which light from the waveguide couples at the wavelength ).
It is located on XM. (b) shows the effective index of the waveguide (upper curve, right axis) and of
the PPC (lower curve, left axis). The red section of the curves corresponds to the wavelength range
A € [1.45 pm, 1.64 pm]. It can be seen that although the PC negative effective index undergoes
strong variations, it stays roughly proportional to the slab index in that frequency range.

be along [5 -1] so that it makes an angle ¢ = atan(1/5) with the [1 0] direction?

. The adequate
incident waveguide angle can then be deduced by projecting the cusp of the EFC (P) at the center
frequency ¢/ Ao onto the interface (k) and by matching it to the projection of the waveguide k-vector.
The interface is oriented along the [cos(¢) -sin(p)] crystallographic direction. TP = M + MP =
m/a-[~1 0]+ MP - [0 1], which results in k; = —cos(¢)m/a — MPsin(p). By projecting the k-vector
of the incoming waveguide mode onto the interface we obtain k| = —2mngansin(#)/Xo. The value of
MP is derived from the full band diagram to be 5.32um=! (figure 7.2(a)) so that we obtain 6 = 55°.
This procedure is described in detail in chapter 5, in particular the reader will find a graphical
representation of the projections.

Orientation of the PPC interface: The choice of ¢ is not arbitrary, but is also carefully
optimized. As the mode matching mechanism inside the adiabatic transition relies on a slanted
projection of the k-vector (chapter 5), its frequency and angular pass bands are wider if ¢ is bigger.
However a large ¢ reduces the resolution of the superprism. Indeed the wavelength dependence of

the projection of the waveguide k-vector onto the interface is given by 27ngapdAsin(#) /A%, while the

wavelength dependence of the projection of the cusp of the EFC is given by —sin(¢)(OMP/dA)déA. To

2Here ¢ is smaller than the angle used in chapter 5 for the reason that in the latter the focus
was on the optimization of the adiabatic transition, while here a compromise is being made between
frequency resolution and the pass band of the mode matching mechanism

nslab
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Figure 7.3: (a) EFCs for the bulk PPC (r/a = 0.3) for A €[1.34 um 1.78 pm]. The black line shows
the modes to which the waveguide couples to for A €[1.518 um 1.558 pm]. (b) shows the same
data for the lattice with the smallest hole size (r/a = 0.15). The EFCs are smaller, and the black
line is completely to the right of the cusp, so that the pass band of the adiabatic transition should
encompass the four channels. ¢ =atan(1/5) and 6 = 55°.

demultiplex light, the projection of the waveguide k-vector has to be displaced relative to the projec-
tion of the cusp when the wavelength is varied. The displacement is given by 2mngapdAsin(6) /A% +
sin(p) (OMP /OX)dA. As OMP /O is negative, the second term tends to reduce the resolution. As it
is proportional to sin(yp), it is better to keep ¢ as small as possible while maintaining the smallest
necessary mode matching pass band.> The adiabatic transition is chosen to ramp the hole radius
from r/a = 0.15 to r/a = 0.3. From the full band diagrams of the bulk PPC (r/a = 0.3) and of
the full band diagram of the lattice corresponding to the smallest local hole size at the onset of the
adiabatic transition (r/a = 0.15) we deduced that ¢ = atan(1/5) is a good estimate (figure 7.3). ¢
has to take the form atan(1/N) with N a positive integer, so that the interface has a well-defined
periodicity. The adiabatic interface is chosen to ramp the radius up over 25 layers of holes. The
width of each adiabatic transition is then given by 25 - 3a/10/cos(¢) = 2.83 pm.

Figure of merit for lateral beam steering per PPC size: The frequency dependent angle
of propagation inside the PPC («) can be calculated from the frequency dependent effective index of
the PPC npc, from the incident waveguide angle § and from the frequency dependence of MP. The
lateral displacement of the beam position at the output edge of the PPC can then be determined
to be tan(a)dpc. Figure 7.4 shows tan(a) as a function of the wavelength. It can be seen that
the dependency is extremely close to linear in the considered wavelength range. Thus equal spacing
between the output waveguides should result into equal spectral spacing between the demultiplexed

channels. The figure of merit to determine the required PPC thickness for a given lateral beam

3An exact optimization of ¢ would also need to take into account the dependence of 6 on ¢.
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Figure 7.4: Dependance of the propagation angle inside the PPC (a) on the wavelength. tan(a) is
shown rather than a, as it is the tangent that determines the lateral beam steering.

steering is
_ Otan(a)

—_ —1
o 3.0 pm (7.2)

As we operate in the frequency range where the radius of curvature of the cusp is almost constant

(figure 7.2), n can also be approximated as

A
2wnpc

ne~— (27T$1ab sin(#) + ag[—)\Psin(go)>
OMP/OX = —13.4 um~2, which results in n = —2.95 ym~!.

Waveguide width: For a channel spacing 6, the lateral beam steering is dAndpc and should
be equal to the spacing between the outgoing waveguides that pick up the signal at the output facet
of the PPC. This spacing is of the order of Wiy /cos(#) (in fact the spacing has to be a little wider
to provide room for some separation between the waveguides). This is shown in figure 7.5.

The k-vector distribution of light coupled to the PPC has to be contained within the rounded
part of the EFC cusp. This constrains the minimum waveguide width (Wwg). The width of the cusp
is extracted from the EFC to be 6k = 1.2 um~'. When projected onto the interface this results in
0k = dkcos(p). On the waveguide side the broadening of the k-vector distribution has two sources.
One is the finite width of the waveguide (dk1), the other is the frequency dependent position of
the center of the distribution (dk2). The incoming light is assumed to be a Gaussian beam. The
Fourier amplitude distribution is then given by exp(—k}/o7) where o), = 2/0, = 2+/2log(2)/FWHM.
Setting 6k = 2 - 0.80% leads to erf(v/2-0.8) = 89% of the power to be taken into account, where
erf is the error function erf(z) = [ exp(—t?)dt (there is a factor /2 inside erf due to the fact

that the power corresponds to the squared amplitude). dko = 2mngapd(1/A) = 0.2933 um~! for
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Figure 7.5: Screen shot of the electron beam lithography mask showing the tapered outgoing
waveguides. They are oriented with an angle 6 relative to the edge of the PPC. At the end of
the taper the waveguide width is Wy, which results in a width Wy /cos(6) along the interface
direction. Black corresponds to the region that is etched into the silicon film.
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Figure 7.6: Comparison of a Gaussian beam with a FWHM of 0.7 ym (red curve) and the mode
profile of a 1.4 um wide dielectric waveguide etched into the silicon film (black curve). The squared
B-field on the center plane of the dielectric waveguide is represented in the latter case.

A € [1.518 pm 1.558 pm] (we aim at 4 channels with a 10 nm channel spacing). By equating
cos(p)dk = cos(0)dk; + sin(#)dks we obtain FWHM=2.3 ym and Wywg ~ 4.6 pym (the cosine and
sine factors come from projecting the k-vector distributions onto the interface of the crystal). Large,
multimode dielectric waveguides tend to have a FWHM of about Wywg/2 (figure 7.6). We also
checked that a separation of 600 nm between the wide waveguides was sufficient for waveguide
coupling to be negligible over the length of the tapered region (elsewhere the waveguides are thinner
and the evanescent field penetrates deeper into the cladding, but the waveguide separation is also
much wider).

PPC dimensions: The minimum dimensions of the PPC can now be determined. The spacing
between waveguides along the direction of the PPC edge is (Wwg + 0.6 pm)/cos(f) = 9 pm. For a
resolution A = 10 nm, this leads to a minimum PPC width dpc = 9/6A/n = 300 pum. With equation
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Figure 7.7: This figure shows the transmission through the demultiplexer as evaluated with Gaussian
overlap integrals. Three channels are shown. In one case (black lines), dgap is assumed to take its
ideal value, while in the other case it is assumed to be off by a 100 um. This is an extremely
simplified model, but it is useful to evaluate the tolerance on the beam expansion length.

6.6 we determine dgap to be 3.5 dpc (in equation 6.6 Wy refers to 20, while in this chapter Wwq
refers to the waveguide width). The lateral extent of the PPC must be enough to accommodate
the lateral extent of the beam, that has been broadened after propagating for dgan/2 through the
unpatterned slab (dgiap is equally split before and after the PPC). It must also accommodate the
lateral displacement induced by beam steering, although the latter is much smaller than beam
broadening. FWHM=2.3 um corresponds to a diffraction angle of \/M)\/ (nglapmFWHM) =
5.2°. The beam width at the interface is then 2tan(5.2°)(dsian /2)/cos(d) = 167 pm.

Tolerance on incident waveguide angle: The most critical parameter is the incidence angle
of the waveguides. The devices are fiber coupled with grating couplers with a relatively low pass
band (~ 50 nm if -6 dB from maximum coupling is used as a cutoff criterion) so that only relatively
small deviations of # can be compensated by shifting the channel frequencies. Here we evaluate
the tolerance on # to obtain a rationale for the parameter space exploration (small variations in
slab thickness and material indeces have to be experimentally compensated). When setting the
deviation of k|| from its target value to zero, i.e., (JA(8/ON) + 06(0/00)) (2rnsiapsin(f)/A) = 0, we
obtain 60 = tan(#)0A/A. 660 = 0.5° then results in shifting the frequency comb by one channel
(6 = 10 nm).

Tolerance on beam expansion length: The tolerance on dg,p, dd, verifies tan(5.2°)dd = o, =
FWHM/ \/W(Q) . This results in dd = 21 um. Figure 7.7 evaluates the transmission through the
demultiplexer with simple Gaussian overlap integrals. It is a highly simplified model, but provides
an estimate of the impact of deviations of dg.,. It shows both the case of zero deviation and of a

deviation of 100 pm.
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7.2 Fabrication process

The PPC as well as the waveguides leading to and from the PPC are defined in a 205 nm silicon
film. The film is surrounded by silicon dioxide (n = 1.46) and PMMA (n = 1.5) that act as the
cladding materials. The fabrication process starts with silicon on insulator (SOI) material, with
a 3 pm thick silicon dioxide layer below the silicon film. The oxide layer is chosen large so as to
optically isolate the silicon film from the silicon substrate and to avoid losses due to coupling to
the substrate. A silicon dioxide layer is then deposited on top of the SOI to act as a hard mask
layer for the subsequent etch step. We use spin on glass (Spintronics 15A) spun at 3000 rpm for 1
min. and subsequently baked on a hot plate (1 min. at 80 °C, 1 min. at 180 °C and 1 min. at 250
°C). This results in a 120 nm thick silica layer. 4% 495K PMMA is spun 1 min. at 3000 rpm and
baked for 1 min. 30 sec. at 180 °C. The PMMA is exposed by e-beam lithography with the LEICA
5000+ e-beam writer at 100 keV and 1000 uC/ cm?® and subsequently developed for 1 min. in a 1:3
mixture of MIBK:TPA (methyl isobutyl ketone and isopropanol alcohol). Subsequently, an oxygen
reactive ion plasma (RIE) descum process is applied for 5 sec. (90 W, 90 sccm, 30 mTorr chamber
pressure). The pattern is then transfered from the PMMA into the silicon dioxide with a CHF3 RIE
process (4 min. 30 sec. at 40 mTorr, 20 sccm, and 100 W) followed by a 5 min. Oy descum in an
inductively coupled plasma reactive ion etch (ICPRIE) to remove residues formed during the CHF;
etching process (100 sccm O, 5 W forward power, 800 W ICP power, 20 mTorr chamber pressure
and 10 mTorr strike pressure, cooled with 20° water). The SiO, etch rate in the CHF3 RIE process
is 50 to 60 nm per minute (figure 7.8). The residues formed during the CHF; process are quite
resistant and act as a mask during subsequent Si etching, which leads to the formation of micro
pillars (figure 7.9). The residues might be a form of fluo-carbon as both elements are provided by
the etching gas. The oxygen descum successively removes them in most cases (there was still a little
bit of variability from chip to chip).

Finally the pattern is transferred from the silicon dioxide into the silicon film with a C1 ICPRIE
process (1 min. 45 sec., 80 sccm Cl, 50 W fwd power, 800 W ICP power, 12 mTorr chamber pressure,
10 mTorr strike pressure, cooled with 20° water). After the final etching step 950K PMMA is spun
on top of the structure to backfill the holes and act as the top cladding layer (the layer is several
microns thick). We use PMMA as a top cladding layer as it has a refractive index very close to the
index of SiOs so that the PPC conserves a vertical symmetry. Furthermore it has been shown that

PMMA has very low absorption in the infrared [69,125].
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Figure 7.8: SEM micrograph of a cleaved sample after etching of a test pattern into the spin-on glass
layer. It can be seen that the side walls are fairly straight with the optimized process parameters.

1 m 400 nm

Figure 7.9: SEM micrographs of samples after etching the Si layer. In this instance the oxygen
descum was not applied after the CHF3 etch, and the residue deposition was particularly disruptive.
In most cases the residue redeposition was much weaker (less than a particle per um?) and could be
removed with an oxygen plasma.
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Figure 7.10: (a) Snapshot of a chip aligned to a fiber array. Several superprisms can be seen. The
right side of the tree-like structure corresponds to multiple grating couplers separated by a fixed
pitch (250 pum) corresponding to the pitch of the fiber array. The waveguides are bundled, bent (on
the left side of the structure) and oriented towards the photonic crystal (rotated square). (b) shows
a detailed view of a device. After bending the fiber bundle the waveguides are tapered on the left
side of the device. On the right side of the device, the topmost isolated structure corresponds to the
in port, while the fiber bundle corresponds to the output ports.

7.3 Grating couplers

The chips are grating coupled [83-92] to polarization maintaining single mode fiber arrays (figure
7.10). A tunable laser and a photodetector are then used to obtain a spectrum from the devices.
The grating couplers consist of grates completely etched through the 205 nm thick silicon membrane.
Two improvements are applied to the grating coupler as compared to the most basic design, variable
grate strength and curved grate geometry. Indeed constant grate strength limits the overlap between
the fiber mode and the grating coupler emission. The constant decay rate of the waveguide mode
inside the grating coupler leads to an exponentially decaying intensity profile inside the waveguide,
and in turn to an exponential shape of the grating coupler emission. A variable grate strength
can lead to a Gaussian shaped emission profile with a higher overlap with the fiber mode [83,84].
In particular it has been shown that a grating coupler with linearly tapered grates leads to an
approximately Gaussian field emission [83].

The grating coupler couples an optical fiber to a much smaller single mode waveguide and needs
thus to focus the field [85-89]. Compared to the size of the fiber mode the on-chip waveguide size
can be approximated as a point source. Thus the phase matching condition is operated between the
circular wavefronts of the point source (the edge of the on-chip waveguide) and the linear wavefronts
of the fiber (cleaved along an angled plane). This leads to elliptic grates [89]. Most optical fibers
are cleaved along an 8° angle to minimize back reflections. This shallow angle leads to elliptic grates

with an eccentricity close to 1, so that circular grates are an appropriate approximation. Other
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Figure 7.11: (a) shows a SEM micrograph of a fabricated grating coupler, and (b) is a typical
coupling spectrum for a single grating coupler.

techniques, such as multilayer stacks below the grating coupler can be used to further enhance the
efficiency [89,90]. Here however we worked with the geometry of the available SOI material and did
not attempt to optimize this last aspect.

We designed grating couplers with linearly tapered circular grates. The rate at which the grate
strength is ramped up was experimentally optimized by parameter space exploration. Figure 7.11
shows a fabricated grating coupler as well as the coupling efficiency of a typical structure. We found
that a 5 nm increment of grate width per grate and starting from a lithography limited smallest

grate size gave good results (figure 7.11(b)).

7.4 Experimental results

We fabricated and measured devices with various incident waveguide angle (6 € {53°, 55°, 57°}) and
a range of expansion distances (dgap € {do — 200 pm, dy, do + 200 pm}, where dy is the calculated
optimum dg1ap). The best devices corresponded to # = 57° and had a maximum transmission at
1565 nm for the 6" output channel (rightmost taper in figure 7.1(b)). The spectrum is shown
in figure 7.12(b) (black curve). In the last section we calculated that a deviation of the incident
waveguide angle of §8 = 0.5° corresponds to a wavelength shift of about 10 nm at fixed output
waveguide position. From this and from the spectral position of the 8 = 57° device we conclude that
the maximum transmission should have occured at A = 1525 nm for § = 55°. This is outside the
pass band of the grating coupler used for this experiment (figure 7.12(a)) this is why no useful data
was recorded for the other devices. Furthermore we only obtained useful data for the fourth and

sixth output channels (with tapers numbered from left to right), as the fourth channel was already
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Figure 7.12: Experimentally obtained transmission spectra for the characterized superprisms. (a)
shows the transmission spectrum for a loop fiber coupled with two grating couplers, including losses
incurred elsewhere in the measurement setup. This spectrum has been subtracted from the device
spectra shown in (b) and (c¢) so as to normalize out the effect of both the finite grating coupler effi-
ciency and additional losses in the measurement setup (of about 5.5 dB). (b) shows the transmission
spectra for a device with § = 57° and for the sixth (black curve) and fourth (red curve) output
channels. Output channels are numbered by the position of their output taper, from left to right.
dsiap = do —200 pum. (c) shows spectra recorded for the sixth output channel of devices with § = 57°
and dgjap = do — 200 pum (black curve), do (red curve) and do + 200 pum (blue curve).

halfway out of the range of the tunable laser, and the transmission through the fifth channel was
very low, probably due to some defect in the waveguide. Had there been additional tapers to the
right, more channels would have been recorded.

However the obtained data is in good agreement with the design targets. The fourth channel
is shifted by 20 nm from the sixth channel, which corresponds exactly to the targeted resolution
of 10 nm per channel, as shown in figure 7.12(b). This figure corresponds to 8 = 57° and dgap =
do—200 pm. In figure 7.12(c) we show the dependency of the spectrum on the expansion length dgjap.
0 is fixed at 57° but dgap is varied. It can be seen that the spectrum shifts to higher wavelengths
when dgap is lengthened. This might seem surprising at first as the position of the spectrum of
the devices was meant to stay unchanged, only the width of the spectrum should change as shown
by figure 7.7. However it was assumed that the Gaussian beam propagates inside the unpatterned
slab in the direction given by the orientation of the taper of the input channel (figures 7.1(a) and
6.3). This is indeed a very good approximation, but not exactly true as the effective index of the
wide dielectric waveguide at the end of the taper is close but not exactly equal to the effective
index of the slab, as the tapers are not terminated perpendicular to the direction of propagation
of the waveguide, but along an angle 6 relative to the direction of propagation (figures 7.1(b) and
7.5). In order to evaluate the effective index of the lowest mode of the tapered waveguide we
used a one dimensional approximation, where we solved for a waveguide with the effective index
of the slab (ngap) in the core and the SiOs index in the cladding (effective index or Marcatelli
approximation). Of course the Marcatelli approximation [99] is not really appropriate here as it is

only applicable for low index contrast geometries, but we use it to obtain an order of magnitude of
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the expected spectrum shift. By setting ngap = 2.76 we obtain nwg = 2.7554. By applying Snell’s
law, nwqsin(f) = ngapsin(d), where 6 is the direction of propagation inside the unperturbed slab,
we obtain § = 56.85°. As dgap is incremented by 200 pm, this would correspond to a lateral position
shift of 200 - (tan(f) — tan(#)) = 1.72 um, or about 2 nm spectral shift for a fixed output waveguide
position. The experimentally obtained spectral shift is more around 3.5 nm, but it is in the expected

direction and is well within the right order of magnitude.
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Chapter 8

Monolithic integration of
vertical-cavity surface-emitting
lasers with in-plane waveguides

The ability to couple light from a vertical-cavity surface-emitting laser (VCSEL) [100-103] into
a planar, on-chip waveguide creates new opportunities for achieving higher levels of integration
and functionality [66,68]. For example it enables the monolithic integration of VCSELs, p-i-n
photodetectors and lithographically defined planar photonic devices in a single chip. Previously,
VCSELs have been coupled to on-chip, planar waveguides by introducing a weak grating within the
internal waveguide [68]. However, it is advantageous to be able to define the grating coupler (GC) in
the top layer of the structure rather than inside the vertical cavity because this removes the necessity
for regrowth. In addition, this decouples the growth process from the lithography so that a variety
of planar devices can be subsequently etched into the top layer. Such an external grating could also
be used to transfer light from a VCSEL to a silicon on insulator (SOI) chip for applications such as
optical clocking in CMOS technology. The VCSEL could be defined in a III-V chip flip-chip bonded
to the SOI chip, and the GC located in the top silicon film of the SOI chip.

However, coupling light through a ninety degree bend with a strong external grating presents
difficulties due to the fact that the Bragg condition of the grating also corresponds to its second
order bandgap. In previous designs where the GC was inside the VCSEL cavity, the efficiency of the
GC was not an issue because non-coupled light stayed inside the cavity. However an external GC
needs to have a high efficiency. Here these coupling difficulties are overcome by introducing a defect
into the grating and defining a horizontal cavity [66]. There are numerous examples in the literature
of designs where bending of light is modified by resonant mechanisms, such as resonantly enhanced
sharp waveguide bends [104] or waveguide crossings with suppressed cross talk [105]. In section 8.1
we derive the diffractive optics related to this device, and we evaluate the efficiency of the GC with

FDTD. We achieve 40% coupling efficiency between the waveguide and the vertical laser cavity. We
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also show that polarization control of the VCSEL can be enhanced by coupling to the defect mode,
provided the vertical spacing between the VCSEL and the GC is adequately chosen. Section 8.2
briefly introduces VCSELs based on ion implantation and gain guiding. In section 8.3 we fabricate

and measure gain guided VCSELs that incorporate the coupler.

8.1 Design and FDTD calculations

We investigate with the finite-difference time-domain method (FDTD) a vertical cavity defined
by a multilayer stack of alternating GaAs and Alg ge6GaAs \/4 films, where A=0.959 um is the
lasing wavelength of the VCSEL. The refractive indeces of the thin films are ngaas = 3.52 and
nalGaas = 3.02. A defect is introduced in the thin film stack by increasing the thickness of one of
the AlGaAs layers to A\/2/najgaas- Above the stack an 807 nm thick oxidized Alg¢sGaAs buffer
layer separates the top GaAs waveguiding layer from the VCSEL. The refractive index of the oxide
(Noxide) 1s assumed to be 1.56, and the thickness of the top GaAs layer is A\/2/ngaas (140 nm).
A grating is etched into the top GaAs layer to transfer the light emitted by the VCSEL into the
waveguide. The individual grates consist of 60 nm wide, 50 nm deep trenches. A defect is introduced
into the GC by locally changing the distance between two successive grates (the “grating defect” as
opposed to the vertical-cavity defect). Finally, an SiO» cladding layer is assumed to be deposited
on top of the grating after etching, in order to symmetrize the refractive index around the GaAs
waveguiding layer (ng;0, = 1.46). The geometry of the device as well as the emitted E-field are
shown in figure 8.1. For the purpose of FDTD simulations a small lateral index contrast is introduced
in the defect layer of the vertical stack so as to force the vertical cavity mode to have a Gaussian
cross section (the FWHM is 4.67 pm). In a real device this function is taken over by gain guiding.

First, the grating is optimized in such a way as to maximize the coupling between the transverse
electric (TE) mode of the waveguide (E-field along the z-axis and B-field along the y-axis) and a
Gaussian beam propagating normal to the waveguide (E-field along the z-axis and B-field along the
x-axis). The axes are defined in figure 8.1. Then the coupling between the grating defect and the
vertical cavity is investigated. One of the limitations of the GC is that it only couples TE polarized
light; thus it is necessary to control the polarization of the VCSEL. The thickness of the AlGaAs oxide
buffer layer determines the feedback from the grating defect into the vertical cavity. This feedback
is used to enhance the quality factor (Q) of the TE vertical-cavity mode. FDTD calculations are
performed with a spatial resolution of 0.01 ym and a time step of codt = 0.005 pm™!, where cq is

the speed of light in vacuum.
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Figure 8.1: E-field (|E.|) in the vertical cavity and in the GC (red corresponds to high intensity
and blue to low intensity). The gray lines show interfaces between films of different refractive index.
Alternating GaAs and AlGaAs layers define the VCSEL. Above the multilayer stack, an oxidized
AlGaAs layer separates the waveguiding GaAs layer (with the grates) from the VCSEL.

8.1.1 Resonant grating coupler with defect mode

First, we consider a defectless, homogeneous grating, defined by etching trenches into the GaAs
waveguiding layer. To outline the difficulties linked to the ninety degree bend, it is convenient to
consider the converse problem that consists in coupling from the waveguide into the vertical cavity.
The Bragg condition to couple light out of the waveguide at a ninety degree angle also corresponds
to the second order bandgap of the grating so that most of the power incoming from the waveguide is
reflected back instead of coupled out. In this particular geometry, the effective index of the waveguide
is nwag = 2.92, and the grating period is A=0.336 pm. In order to compensate for these reflections,
a second mirror is needed to recycle them, i.e., we need a cavity in the waveguide plane. Thus we
introduced a defect into the grating by increasing locally the distance between two successive grates.
The number of grates on the right side of the defect is chosen to be very large (20 grates) so that
almost no power is transmitted to that side of the cavity; the number of grates left of the defect are
chosen so as to minimize reflections (9 grates). In order to efficiently couple into a Gaussian field
the displacement has to be carefully chosen. Indeed the fractions of the grating before and after
the defect may scatter the field out of the waveguide with different phases. However, in order to
couple into a single lobe Gaussian beam, the fields extracted on the two sides of the defect have to
be in phase. Here we form a defect by increasing the separation by A\/4/nwq that corresponds to a
defect mode with even E,. Defects have been previously used in horizontal-cavity, surface emitting

distributed feedback (DFB) lasers to obtain a single lobe far field radiation pattern [106].
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Figure 8.2: (a) Amplitude of E. along the center of the topmost (waveguiding) GaAs layer, in the
region of the grating. The field enters from the left and reaches a maximum at the defect. In the
region of the grating the field has nodes and antinodes due to the standing wave. (b) Amplitude of
E. inside the oxidized AlGaAs cladding layer 4 um below the stand-alone GC (continuous line). The
best Gaussian fit (FWHM=3.1 um) is also shown (dashed line). Due to the profile of the grating
defect mode, the emitted field has a naturally “humped” shape with a good overlap with a Gaussian
beam.

The definition of a defect inside the grating has the additional benefit of enhancing the overlap
of the far field pattern of the grating with the VCSEL emission idealized as a Gaussian beam (figure
8.2). Indeed the field intensity has a naturally “humped” shape around the defect that has a bigger
overlap with a Gaussian beam than the decaying exponential obtained with homogeneous gratings.
Usually, the field overlap with a Gaussian is enhanced by varying the scattering strength of the
grates throughout the grating [83,84]. However, we found this to be impractical in the case of
a 90 degree coupling angle. Due to the strong back-reflections induced by the grating, the field
penetration into the grating is very short. In order to compensate for this, we chose the grates to
be as weak as we estimated reasonable for standard fabrication techniques (60 nm wide with a very
shallow etch), leaving no degree of freedom for additional tailoring. We calculated the overlap of
the grating far-field pattern 4 ym away from the waveguide with Gaussian beams of varying width
(vectorial calculation) and found that the best overlap was with a Gaussian with a full width at half
maximum (FWHM) of 3.1 um (93% overlap).

Figure 8.3 shows the efficiency of the stand alone coupler over a range of wavelengths. By stand
alone we mean that the coupler is not combined with the vertical cavity, but merely clad by SiO,
on the patterned side and AlGaAs oxide on the other side. In such a configuration, we found that
the extracted field had the same intensity and profile in the +y and -y directions, even though the
structure is slightly asymmetric (this may be linked to the fact that the thickness of the waveguiding
GaAs layer is chosen to be A\/2/ngaas and has a resonance in the y-direction). In figure 8.3, we
plotted the sum of the power extracted to +y and -y, or equivalently two times the power extracted

towards -y. Due to the resonant nature of the coupling mechanism, the pass-band is quite small
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Figure 8.3: Coupling efficiency (dots), back-reflection into the waveguide (circles) and transmission
to the other side of the grating (squares) as a function of wavelength. This data corresponds to a
stand-alone GC. The plotted coupling efficiency is the sum of the coupling efficiency in the +y and
in the -y directions.

compared to non-resonant GCs, but it is still wider than the line width of a VCSEL. The coupling

efficiency of the stand-alone GC is 46% in each direction.

8.1.2 Feedback and polarization control of the VCSEL

In this section, we investigate the interaction between the grating defect and the VCSEL cavity.
When the Gaussian beam is coupled from the oxidized AlGaAs layer into the waveguide, there

is also a strong grating induced back-reflection (26%)! [107]. The reflected power is not lost but

1The 26% reflection has been calculated with FDTD; however, it could also have been easily
derived from first principles that the anomalous reflection should be close to 25%. Indeed we have
shown that the waveguide to free-space process is very efficient and almost 100% at resonance.
The waveguide mode couples to a free-space mode propagating in the +y direction with a phase
exp(iky + ) and a free-space mode propagating in the -y direction with the phase exp(—iky +¢_).
Due to reciprocity, if two free-space modes impact the grating, one propagating in the -y direction
with the phase exp(—iky — ¢+) and the other propagating in the +y direction with the phase
exp(iky — p—), the converse coupling occurs, and the coupling efficiency is close to 100%. The light
generated from the VCSEL corresponds to light propagating in the +y direction; however, it can
be described as the sum of two fields: The same as previously described (a beam propagating in
the -y direction with the prefactor 1/2-exp(—iky — @) and a beam propagating in the +y direction
with the prefactor 1/2-exp(iky — ¢_)) plus a second field composed of a beam propagating in the
-y direction with the prefactor —1/2-exp(—iky — ¢4) and a beam propagating in the +y direction
with the phase +1/2-exp(iky — ¢—). The down-propagating components of the two films then cancel
each other so that the resulting field corresponds to the VCSEL emission. As already mentioned,
the first of the two fields is coupled into the waveguide; however, the second is orthogonal to the
coupled field and is either reflected or transmitted through the thin film. We can assume that the
grating itself has very little effect on the second field so that it essentially sees a thin film with a
vertical resonance. We can then conclude that the field resulting from the scattering of the second
field has equal amplitude on both sides of the thin film, 1/2. The reflection thus carries 1/4 of the
total power.



118

recycled inside the VCSEL cavity, thus increasing the Q-factor of the VCSEL provided the thickness
of the oxidized AlGaAs layer is chosen so that the reflection adds constructively to the VCSEL
mode. Also the reflection induced by the grating has a different phase than the reflection from a
plain dielectric interface so that the thickness of the AlGaAs oxide layer has to be modified from
A/4/Nozide to compensate for the extra phase. In the final design we obtained a 40% coupling
efficiency from the vertical cavity to the waveguide.

The TM-mode of the waveguide (B-field along the z-axis) has a different effective index than the
TE-mode (E-field along the z-axis) so that the TM-polarization is not resonant at A=0.959 ym and
does not verify the Bragg condition for the second bandgap. As a consequence, the strong grating-
induced reflection does not occur for the TM-polarized vertical-cavity modes; it is actually quite
small because the thin film had a vertical resonance before the grating was etched, and the grating
has a small effect on the TM-mode. The reflection of the TM-mode was evaluated to be (8%).
This can be used to enhance polarization control inside the VCSEL by tailoring the vertical-cavity
Q-factors of the TE and the TM polarizations. In particular, the presence of the grating has only
a small effect on the Q-factor of the TM-polarization, while the Q-factor of the TE-polarization is
strongly enhanced. We simulated a device with 19 layers stacked between the vertical-cavity defect
and the oxidized AlGaAs layer (10 layers of GaAs and 9 layers of AlGaAs, interleaved). This cavity
had a Q-factor of 450 without the GC. After the unpatterned waveguiding layer was added, the
Q-factor of the TE-mode stayed roughly unchanged (Q=555) due to the fact that this layer has a
resonance in the y-direction (thickness A/2/ngaas) and hardly induces any reflections. When the
grating was included, the Q-factor of the TE-mode was enhanced to 1520 while the Q-factor of the
TM mode stayed quite low (600). The enhancement of the Q-factor of the TE-mode is slightly more
than what would be expected from the 26% reflection (1400). This might be due to a folded cavity
effect (i.e., the effective pathlength of the cavity is enhanced). On the other hand the enhancement
of the Q-factor of the TM-mode is lower than what would be expected from the 8% reflection (800).
This is due to the fact that the reflection adds a different phase increment to the TM field than to
the TE field so that the AlGaAs oxide layer does not have the correct thickness to optimally enhance
the Q-factor of the TM-mode.

The relative enhancement of the Q-factor of the TE-mode will facilitate polarization control in
the VCSEL and might remove the need for more complex polarization splitting GCs [91,92]. The
strong reflection induced by a GC defined on top of a VCSEL has been previously used to reduce
the Q-factor of one of the modes for polarization-control, but in that case the goal was not to
outcouple into a waveguide, and the Q-factor of the grating-coupled mode was reduced rather than
enhanced [108].

In conclusion, we have shown theoretically that by introducing a defect into a GC, light can

be efficiently coupled around a ninety degree bend. We obtained 40% coupling efficiency from a
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Figure 8.4: Schematic representation of lateral electrical confinement by means of an implantation
induced resistivity profile. The electrical current flow is shown with bent arrows, and the implanted
region is shown by grey shading.

vertical cavity to an in-plane waveguide defined in the topmost layer of the same chip. Furthermore,
feedback from the defect mode of the GC to the vertical cavity enhances polarization-control of the

VCSEL.

8.2 Gain guided vertical-cavity surface-emitting lasers

The design shown in the previous section will be implemented with electrically pumped gain guided
VCSELSs in the next section. Here we briefly discuss such VCSELs. The electrical current is laterally
confined in the VCSEL by selective ion implantation (typically hydrogen). The ion implantation
creates lattice defects and locally increases the resistivity of the material so that the current is
constrained to pass in the non-implanted regions (typically a circular aperture of ~ 10 um radius).
Typical implantation doses are 2.5-10'% cm™2 at 300 keV. The implantation energy should be large
enough to reach the quantum well (QW) as the lateral carrier diffusion in the QW can be quite high
due to the vertical carrier confinement. A schematic of such a structure is shown in figure 8.4.

Lateral confinement of the light is obtained by gain guiding, that is, the gain in the electrically
pumped region confines the field so that the optical mode profile automatically overlaps with the
electrically pumped quantum well region. In the following we will derive gain guiding in a slab
geometry. It is relatively straightforward to extend the model to the cylindrical VCSEL geometry
by replacing cosines and exponentials by Bessel functions and modified Bessel functions.

In the presence of gain the evolution of the electrical field is given by
E(z) = e~ % (nidra): (8.1)

where n is the refractive index of the media and « the gain coefficient (typically of the order of 1
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Figure 8.5: Schematic of a slab waveguide with gain guiding. The refractive index of the cladding
is n, and the refractive index of the core is 7. In the case of gain guiding An = 71 — n is complex.
The functional dependence of the lateral field profile is indicated.

em ™! for a heavily pumped laser medium). The complex valued refractive index is then defined as
. = n+1iXa/27. Asin the case of a conventional slab waveguide we describe the field independently
in spatial regions with a given index and then proceed by solving the continuity equations. As shown
in figure 8.5, the functional dependence of the field is cos(ux/a) in the core and exp(—w(|z| — a)/a)
in the cladding (as in the case of index guiding). Phase matching at the interface between media

leads to

w? 4+ u? = (%T“)?(ﬁ2 _n?) = (%TG)QQn[Re(An) + i%a] (8.2)

Re(An) might be non zero as thermal effects or carrier density effects might modify the refractive
index. The continuity equations further impose w = u - tan(u) for even modes and w = —u/tan(u)
for odd modes. In the case of gain guiding, u and w are complex numbers. Positive gain leads to
gain guiding that is robust to perturbations.

It has been experimentally determined in the case of circular aperture VCSELs (10 pum radius)

that the 1/e? intensity point of the emitted Gaussian beam is about half the aperture radius [102].

8.3 Fabrication and measurements

In this section we will describe how electrically pumped VCSELs can be fabricated in conjunction
with the in-plane waveguides and the defect mode GC. One of the difficulties is to selectively oxidize
the AlGaAs buffer layer below the waveguides and above the VCSELs, but without oxidizing it
below the electrodes. Indeed the buffer layer has to be oxidized in the immediate vicinity of the
optical structure in order to provide the high index contrast relative to the GaAs layer. However it
has to remain unoxidized for electrical conduction below the electrodes. In order to achieve this the
VCSELSs are defined by hydrogen implantation [101], and the waveguides are delimited by trenches
etched into the topmost, waveguiding GaAs layer. The AlGaAs buffer layer can then be locally

oxidized around the waveguides, as the AlGaAs buffer layer is only exposed to the thermal oxidation
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Figure 8.6: (a) shows three fabricated devices that share a common electrode. The TiAu electrode
can be seen at the top of the image. The VCSELs are coupled to segmented waveguides that run
in the vertical direction (in the image). (b) is a detailed micrograph of a single VCSEL. A circular
aperture is left unmetalized above the VCSEL, and a rectangular aperture is left unmetalized above
the segmented waveguide. The waveguide is defined by two trenches etched into the topmost GaAs
layer. The trenches are periodically interrupted by small “bridges” to prevent the waveguide from
peeling off. The AlGaAs buffer layer is selectively oxidized around the waveguide and can be seen
as a rectangular shaded region.

process by means of these trenches. In the following the individual processing steps will be described
in detail, and the emission of the electrically pumped VCSELSs characterized.

Figure 8.6 shows fabricated devices. The VCSELs are defined by selective hydrogen implantation
and gain guiding. Circular apertures are left unmetalized at the location of the VCSELs and rectan-
gular apertures are left unmetalized around the segmented waveguides [109,110]. Trenches etched
into the GaAs layer define the segmented waveguides. The trenches are interrupted to prevent the
waveguides from peeling off. In order to electrically pump the VCSELSs, the AlGaAs buffer layer is
only selectively oxidized through the trenches (the oxidized region can be recognized as the shaded
region around the waveguides). Below the TiAu electrode the AlGaAs buffer layer is not oxidized
and stays conductive (p-doped) so that the current can pass through. The grates are etched above
the VCSELSs in the circular apertures; however, the grates are not resolved in these micrographs.
The images were taken before deposition of the top SiOy cladding layer.

The VCSEL fabrication starts with an epitaxial wafer grown by molecular beam epitaxy (MBE).
A defect is placed inside a vertical stack of alternating Alg ggeGaAs (n=3.02) and GaAs (n=3.52)
A/4 films that form a distributed Bragg reflector (DBR). An InGaAs quantum well (QW) is grown
in the center of the defect. The DBR, defect and QW are optimized for emission at 980 nm. 18
pairs of AlygesGaAs and GaAs \/4 layers are grown above the defect. Many more layers are grown
below as the VCSELSs are aimed to be top emitting. A 735 nm thick Aly¢5GaAs layer and a 140

nm GaAs layer (topmost) are grown on top of the multilayer stack. The former corresponds to
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Figure 8.7: This figure shows the structure of the epitaxially grown wafer. The “humped” curve
shows the field distribution inside the cavity (square of the E-field in arbitrary units). The other
curve shows the refractive index distribution. From right to left the following layers can be identified:
the waveguiding GaAs layer (weakly p-doped), the AlGaAs buffer layer (weakly p-doped) followed
by 18 pairs of A\/4 layers (p-doped), the defect with the QW (intrinsic) and finally n-doped /4
films.

the (to be oxidized) buffer layer that optically isolates the topmost GaAs waveguiding layer from
the rest of the structure. For subsequent electrical contacting the layers above the QW are grown
p-doped, while the substrate and the layers below the QW were chosen to be n-doped. The wafer
does not have exactly the structure assumed in the theoretical section of this chapter. For one, the
AlGaAs oxide layer is thinner. Indeed oxidation of high aluminum content AlGaAs leads to about
6% contraction of the layer thickness, resulting in ~ 691 nm rather than 807 nm (this discrepancy
was not deliberate but was due to constraints on the available material). Furthermore the AlGaAs
buffer layer has a 95% aluminum content rather than 98%. This resulted in relatively high oxidation
temperatures (480 °C) that led to a degradation of the QW efficiency (the growth temperature of
the QW is 550 °C and gives an idea of the temperatures at which intermixing starts to occur). As
a consequence the optimization of the oxidation process was critical (see below). It is beneficial to
have some Ga in the AlGaAs layer as pure AlAs layers tend to form granularities during oxidation,
but the Ga content should be kept below 2% when thermal budget is an issue. Figure 8.7 shows the
structure of the wafer.

The first fabrication step consists in H ion implantation to define the gain guided VCSELs
(section 8.2). The implantation profile typically consists in leaving out 10 pum diameter circles or
12 pym by 8 um rectangles. For circular VCSELSs, the 1/e? radius is about half the radius of the
implantation profile (R) [102] so that the FWHM of the laser beam is /2log(2)R/2 = 5.88 pm.

It has been reported that the polarization of gain guided VCSELs with InGaAs QWs tends to
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Figure 8.8: SEM micrographs of the wafer structure. In (a) the structure has been imaged with
a low acceleration voltage (10 keV). Under these conditions the individual layers of the multilayer
stack can be well resolved. Also the doping profile can be seen as the n-type region is imaged
with a darker shade (bottom of the picture). In (b) the GaAs layers have been selectively etched
to increase the contrast after cleaving. A mixture of citric acid and hydrogen peroxide was used
(C¢HgO7:Hy02:H20) [111]. In (c) the AlGaAs layers have been selectively oxidized after cleaving.
High aluminum contents significantly decrease oxidation temperatures.

be along the cleaving axes (<110>) in the absence of other anisotropies [102]. In order to increase
polarization control, the rectangular VCSELs are oriented along the <110> axes. However both
possible orientations (long side by short side and short side by long side) are implemented. Indeed
the polarization of rectangular VCSELSs can depend on the relative spectral position of the maximum
QW gain and the ground and higher order modes of the rectangular cavity so that it can be hard to
predict in which mode the VCSEL is going to lase. In particular it has been observed that thermal
tuning of the QW emission can switch the polarization of the VCSEL emission [103].

In order to selectively implant hydrogen an 8 pum thick implantation stop photoresist (PR) mask
is deposited and patterned. First a hexamethyldisilizane (HMDS) layer is deposited for adhesion
promotion. Then SPR 220-7 PR is spun at 3000 rounds per minute (rpm) for 40 seconds and soft
baked for 10 minutes at 90 °C. It is exposed for 3 minutes, developed for 1 minute in MF 319 and
finally hard baked 20 minutes at 115 °C.

Table 8.1 shows the implantation recipe. Due to the additional AlGaAs buffer layer and the
waveguiding GaAs layer, the QW is buried deeper inside the chip than in typical ion implanted
VCSELs (3.7 pm). The implantation energies have to be quite high to reach the QW (400 keV). In
this design we were not concerned in electrical cross talk between the structures so that the topmost

material (depth < 100 nm) could be left with low implantation. In order to reduce ion channeling
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Figure 8.9: Cross-section of photoresist structures used to optimize the photoresist process needed
to define the implantation stop. The photoresist film is 8 ym thick in order to provide an adequate
stopping layer for the high velocity hydrogen ions.

Table 8.1: Implantation Recipe

Energy (keV) Dose (cm™2) Implantation depth (nm)

150 1.5e14 1180
200 1.5e14 1610
260 1.5e14 2117
330 1.7e14 2751
400 2el4 3417

the implantation was made at a 7 © angle.

After implantation the PR is removed with an O, plasma in an ICPRIE (same process as in
chapter 7). We prefer the ICPRIE to the RIE process described in chapter 7 due to the ability to
decouple the plasma energy from the acceleration voltage. This way minimum acceleration voltage
is achieved and surface damage is minimized.

The top electrodes are defined with a lift-off process using a bi-layer PMMA film. Bi-layer PMMA
is used to achieve a slight undercut of the PMMA during development. This way the metal films
deposited directly on the surface of the chip are disconnected from the metal films on top of the
PMMA and lift-off is facilitated. First a layer of 4% 495K PMMA is spun at 4000 rpm for 1 minute
and baked 30 minutes at 180 °C. Then a second layer of 4% 950K PMMA is spun at 4000 rpm for
1 minute and baked 8 minutes at 150 °C. The PMMA is exposed with a dose of 650 uC/cm~2 at a
100 keV. The dose is fairly low due to the fact that large areas are exposed that lead to a significant
proximity effect. The PMMA is developed for 5 minutes in a 1:3 solution of methyl-isobutyl-ketone
(MIBK) and isopropyl alcohol (IPA). 10 nm of titanium is e-beam evaporated, followed by the

thermal evaporation of 100 nm of gold. The backside n-type contacts are made of 5 to 10 nm of
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Figure 8.10: SEM micrographs of Ag/Cl etches on GaAs. In both (a) and (b) process parameters
were 200 W ICP power, 50 W forward (acceleration) power, 5 mTorr chamber pressure. In (a) the
chlorine made up for 20% of the gas flow, and in (b) it made up for 50% of the gas flow. It can
be seen that in (a) the side walls are fairly straight while in (b) the GaAs is undercut. In (a) the
side wall roughness might be due to underexposure of the PMMA mask. In (b) the PMMA can be
recognized as the topmost layer.

Nickel followed by 200 nm of AuGe. Finally the chip is left in a chloroform bath for a few minutes,
blow dried and put in an acetone ultrasound bath to operate the lift-off. The gold alloys (TiAu and
AuGe) are chosen to delta-dope the surface in order to overcome the Schottky contacts at the metal
semiconductor interface. The role of the nickel in the n-type contact is to penetrate the surface
during annealing and to induce lattice defects that promote the diffusion of AuGe. It also acts as
a sticking layer to prevent the AuGe contact peeling off. For the p-type contact titanium acts both
as a delta-dopant and as a sticking layer.

Next the trenches defining the GC are etched into the topmost GaAs film. 4% 495K PMMA
is used as a mask for a Cl/Ag ICPRIE etch. The argon is used to dilute the chemical action of
the chlorine and to obtain the correct ratio between overcutting and undercutting for straight side
walls (the more chlorine, the more undercutting). Figure 8.10 shows etches with different Ag/Cl
ratios. In one case straight side walls are obtained while in the other case the film is undercut. In
the optimized process, 20% chlorine versus 80% argon is used, the ICP power is 200 W, the forward
power 50 W and the chamber pressure 5 mTorr. The chip is placed on a cooled wafer. The heat
transfer is obtained with a helium flow between the wafer and waterlines cooled to 20 °C. The etch
rate is approximately 200 nm per minute.

The GC is composed of shallow grates that do not go all the way through the GaAs film. Before
proceeding to thermal oxidation, trenches have to be defined in the GaAs film for the water vapor
to access the AlGaAs film (pure GaAs acts as an efficient oxidation stop; during oxidation we found
that even the thin A/4 film below the buffer layer was enough to stop diffusion of water vapor and

to prevent the next AlGaAs layer to be oxidized). These trenches define the segmented waveguides
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Figure 8.11: (a) shows the cross-section of an oxidized chip where delamination took place (delami-
nation actually took place before cleaving). (b) was oxidized for 5 minutes at 550 °C. It shows how
selective oxidation can be achieved by defining local openings in the topmost GaAs film.

at the same time (figure 8.6). The same etching recipe is used with a shorter etching time to define
the GCs after another e-beam lithography step.

After etching the trenches the Aly g5 GaAs layer is thermally oxidized in a furnace. Nitrogen flows
through a bubbler with boiling water before being led through the furnace tube (200 sccm). The
temperature of the furnace is maintained at 480 °C, and the sample is oxidized for 20 minutes. The
timing of the oxidation is crucial as the oxidized region should only minimally overlap with the region
below the electrodes. Otherwise an increased current path would lead to inefficient current injection.
More importantly the thermal threshold for QW damage is already reached so that unnecessarily
prolonged oxidation times would lead to a deterioration of the VCSEL efficiency and to an increase
of the lasing threshold. The oxidation step also serves as an indiffusion and annealing step for the
contacts. This is an important step as the germanium and titanium have to penetrate the GaAs
lattice in order to overcome the Schottky barrier. Longer oxidation at lower temperature (which
might result in less deterioration of the QWs) led to delamination of the topmost GaAs layer (figure
8.11(a)). This might be prevented in later designs by digitally growing the AlGaAs layer (that is one
atomic layer at a time). This would lead to better material quality and would make delamination
during the oxidation process less likely. In this case the AlGaAs layer was not digitally grown as it
was originally meant as a sacrificial layer.

The VCSELs were characterized with an emission spectrum and an LL curve (LL stands for
light in, light out; here the input is characterized by the current used to pump the VCSELs and the
analog voltage output of a photodetector).

In order to measure the VCSELs we built a measurement setup by retrofitting a probe station.
A beam splitter was added to the camera port of the microscope. One port of the beam splitter is

connected to a charge-coupled device (CCD) camera for imaging (inset of figure 8.13(b)). A fiber
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Figure 8.12: Schematic of the measurement setup. A beam splitter is added to the camera port of
the microscope so that both a CCD camera and a fiber can be connected to the port. The procedure
used to align both the fiber and the camera to the sample is described in the text.

coupler was added to the other port. The fiber coupler is composed of a lens that can be translated
on a rail system. An xy-stage is also affixed to the rail system, and the fiber is attached to the
xy-stage. Both the CCD camera and the fiber have to project their focal point onto the surface
of the VCSEL so that the structure can be imaged and a spectrum or an LL curve taken at the
same time. In order to achieve this, the focal adjustment of the microscope is first adjusted so as to
obtain a sharp image from the CCD camera. Then a fiber coupled diode laser is connected to the
xy stage. The emission of the laser diode is reflected by the chip and imaged by the CCD camera.
Next, the position of the lens in the fiber coupler setup is adjusted to focus the laser beam to the
smallest possible spot on the chip (the spot is imaged by the CCD during this procedure). The
xy-stage is then adjusted to center the spot on the VCSEL. Finally the laser diode is detached from
the xy-stage and replaced by a multi-mode fiber leading to the detector (to obtain the LL curve)
or to the optical spectrum analyzer (OSA) to obtain a spectrum. A schematic of the measurement
setup is shown in figure 8.12

Figure 8.13 shows both the spectrum and the LL curve of a VCSEL. The LL curve features
the characteristic onset of lasing at 10 mA (or at 2 mA per VCSEL as 5 VCSEL share a common
electrode and all 5 started lasing within a very narrow current range) in continuous wave (CW)

operation. For currents higher then 11 mA the emitted power is reduced.
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Figure 8.13: (a) shows the emission spectrum of a fabricated VCSEL. The FWHM is 2.1 nm. (b) LL
curve for 5 VCSELs operated by a single top electrode. The threshold current is 2 mA per VCSEL.
The power is measured with a photodiode, and the output voltage of the photodiode is plotted on
the y-axis. The inset shows a picture taken of the VCSEL with a CCD camera. The bright spot
corresponds to the VOSEL emission. The electrode and the GaAs waveguide can also be seen in the
picture.
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Appendix A

Orthogonality between Bloch
modes and computation of intrinsic
photonic crystal waveguide losses

In this appendix we show how advanced data analysis can be used in conjunction with FDTD
simulations to evaluate intrinsic losses of corrugated waveguides, photonic crystal waveguides (PCW)
and segmented waveguides. In most cases, by using this method we can both shrink the necessary
computational domain and increase the accuracy of the extracted waveguide losses. Complications
arise when Bloch modes with very low group velocity are investigated.

Line-defects formed in a PPC by changing the properties of one or several rows of holes [3-5]
can be used for waveguiding. In such a system the guided wave is confined in the vertical direction
by total internal reflection and in the lateral direction by distributed Bragg reflection or by effective
index confinement. Recently, propagation losses as low as 11dB/mm have been reported for silicon
on insulator (SOI) based photonic crystal waveguides [5]. Losses can be due to material absorption,
surface roughness, random variations due to finite fabrication tolerances or intrinsic losses due to
coupling to free space. The latter only occurs when the Bloch modes have Fourier components
inside the light cone. The coupling to free space from PPC modes and PCW modes has been used
for light extraction [20] and experimental mode mapping [75,127]. Several experimental [127,128]
and theoretical [127-134] investigations of the intrinsic losses of photonic crystal waveguides have
been published. In this appendix we show a novel method for evaluating intrinsic losses with FDTD
simulations [61]. Intrinsic PCW losses have previously been investigated by FDTD [127,133], but
previous methods were based on evaluating the power transmission through a device [134] or the
intensity decay along the waveguide [127,133]. In both cases the separation of insertion losses due
to mode mismatch from propagation losses is problematic. In the first case, several simulations need
to be done to find the asymptotic value of losses versus device length (and to ensure that there is no

tunneling). In the second case the field needs to be propagated for a long enough distance to ensure
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that it has converged to a waveguide mode. Both methods require computational domains with a
longitudinal dimension on the order of the length scale required for the field to converge to a mode.
In ref. [133], mode profiles are calculated, but are not used for the propagation loss calculations.
In order to shorten the computational domain necessary to evaluate waveguide losses, the ability
to extract the power contained in a given Bloch mode from the raw FDTD data is crucial. If the
spatial dependence of the power is taken without previous filtering, reflected Bloch modes, radiative
free space modes or tunneling of waves that would be reflected in a longer simulation can make the
data difficult to exploit. It is then necessary to propagate the field for a longer distance for these
waves to decay (in the case of spurious free space modes and tunneling). Reflected Bloch modes are
always present as existing FDTD implementations of absorbing boundary conditions (ABCs) are
not adapted to Bloch waves. However, if the simulated waveguide is long enough (on the order of
1.5 times the 1/e? intensity decay length) the field is dominated by the forward propagating wave
in the beginning of the waveguide (section A.3, figure A.9). To circumvent these difficulties and to
shrink the computational domain to a few lattice periods, we have developed a method to extract
the power carried by specific Bloch modes from the recorded fields. This is done with an inner
product that verifies orthogonality conditions for Bloch modes [60]. Prior to the actual filtering, the
mode profile of the Bloch modes has to be obtained by FDTD [3] or with a numerical mode solver.
It is then possible to revert to very small FDTD computational domains and to propagate the field
only for a few lattice constants, as the relevant energy flux can be extracted from the other fields.
In section A.1 we will introduce the inner product and show that in the absence of absorption losses
it verifies orthogonality for Bloch modes. Moreover, this inner product only necessitates data over a
field cross section rather than over an extended volume. This makes it particularly practical for the
computation of waveguide losses that require the evaluation of the local intensity of the Bloch mode.
In section A.2 we develop the methodology to extract intrinsic waveguide losses with the concrete
example of an W1 PCW (the W1 geometry will be defined below). This also provides additional
validation of the arguments derived in section A.1. The results are compared with waveguide losses
reported in the literature that were computed with different methods, and the data are found to be
in good agreement. However, we observe that the numerical accuracy decreases when the method is
applied to Bloch modes with very low group velocities. In section A.2 we argue that the problems
arise from the fact that the inner product is not positive definite. In particular the inner product is
related to the energy fluz so that at fixed energy density the value of the inner product decreases with
the group velocity. To further exemplify these limitations, the corrugated waveguide is investigated
in section A.3. In this case analytical expressions for the Bloch mode structure and for the reflection
of Bloch modes at the boundary of the media can be derived with coupled mode theory. These
expressions will be used in the following section to illustrate the limitations of the method with

explicit analytical examples.
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A.1 Inner product

In this section we will show that an inner product commonly used for continuous waveguides can also
be applied to PCWs and segmented waveguides when there is no material absorption. The quadratic
function associated to the inner product corresponds to the energy flux and is as such a conserved
quantity in a system without absorption or gain. From the conservation of the quadratic function
(power conservation) and from the discrete translation invariance of the mode structure (Bloch
theorem), we conclude that Bloch modes verify orthogonality conditions for this inner product.
This inner product is particularly attractive as it only needs data across a field cross section rather
than over an extended volume.

For waveguides with continuous symmetry, orthogonality conditions between bound modes and
between bound modes and radiative modes are well established [98]. In particular for a non absorb-
ing waveguide with translation symmetry in the y-direction, and two modes (bound or radiative)

v; = (E,H) and (¢ = E, H) with the same implicit time dependence exp(—iwt)

E ej(w, z)e~ iy H = hj(z,2)e ¥

E = ex(z,2)e H = hy(z,2)e"

(A.1)

where w is the angular frequency and f3;/;, are the propagation constants (wave numbers), the

following holds
(B; — Br) /S{ej x hy + ey xhj}-ydS=0 (A.2)

where ¥ is the unit vector in the y-direction and S is an xz plane. PCW modes can be written as
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where (3; and 3, are the reduced wave numbers in the first Brillouin zone and e;/ and h;y verify
the same periodicity in the y-direction as the waveguide (A), for example ej(z,y + A, z) = ej(z,y, 2).

We use functional A.2 as an inner product for photonic crystal waveguides

_ 1 N
Wb =7 [ feyx bt e x by} yds (A.4)
S{y=yo}

This inner product will be denoted as (.,.),, in the following, where yo refers to the xz plane
S{y = yo} over which the field cross sections are taken. It corresponds to a symmetrized version
of the time averaged Poynting vector, integrated over the field cross section. It is not a scalar
product as backward propagating modes have a negative square product and standing waves are

null vectors.! For this choice of inner product, the square of a steady state field v, (1, 1),,, is the

1“Null vector” refers to the fact that the square of a standing wave is zero, as it transports no
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time averaged energy flux propagating in the y-direction and is thus independent of the position of
the reference plane provided its orientation is conserved (we assumed non-absorbing materials and S
is an infinite plane). In particular the transfer matrix Ty, .46y = Tsy that maps the field from one
cross section S1{y = yo} to another cross section S2{y = yo+dy} offset by dy conserves (1, 1)). From

the conservation of the quadratic function we conclude on the conservation of the inner product

(1 + aho, 1 +atha)y, = (Y1 4+ ahe, P1 + atha)yoysy (A.5)
(1,91)yo + @ (W2, P2)yo + 2Re (W1, 12) o)

= (1, P1)yorsy + |af* (Y2, 92)yorsy + 2Re((t1,¥2)yoroy)

= (1, P1)yo + * (W2, 02) gy + 2Re((th1, Pa)yo+5y) (A.6)
(1, 02)ye = (Y1, V2)yo+sy

= (01 Ty, Tsytha)y, (A7)

In the above « is an arbitrary complex number. We choose dy to be the period of the waveguide
(A). The EM-field can be decomposed into eigenmodes of operator T (Bloch modes) because of
the periodicity of the PCW (Bloch theorem). T then conserves the inner product and is diagonal
in the basis given by the Bloch modes.? This is sufficient to prove that Bloch modes with different
reduced wave numbers and same implicit time dependence are orthogonal. For two modes v; and

Wy satisfying Tap, = P2 and Thepy = €722y, we have

(1T, Tarpa) = e F27B0A (4 ) (A.8)

From equations A.7 and A.8 we conclude that (i1,12) = 0 if §1 # (2 (that is, when the

energy and the quadratic function associated to this inner product is the energy flux. This does not
necessarily imply that it is in the kernel of the inner product as the cross product between a standing
wave and another field can be non zero. For example if ¢4 and ¢_ are the forward and backward
propagating modes of a waveguide, ([ +v_1/VZ, [ix +¥_]/v2) = 0, but ([ioy +_]/v/2,1b4) =
1/ V2. Evanescent waves belong to the kernel of the inner product, as well as Bloch modes with
zero group velocity of the inner product which is restricted to fields that are physical solutions of a

specific waveguide geometry.
2This is a similar situation as for the standard scalar product used in quantum mechanics that

is derived from the conservation of the probability density, ¥ - 12 = [193d3r. “Modes” are
then defined as energy eigenstates and are eigenmodes of the Hamiltonian H. The time evolution
operator, exp(iHt), both conserves the probability density and is diagonal in the basis given by
these modes. As a consequence the energy eigenstates verify orthogonality with that particular
scalar product. In electromagnetics the scalar product can also be derived from the energy density
as 1/4- [(eEE* + pHH*)d?r. It has the advantage of being positive definite. However, the integral
needs to be taken over the whole universe (or over the whole mode volume in the case of bound
modes). This is due to the fact that the energy is only globally conserved due to mode beating
and interference effects. For this reason this scalar product is not practical for the computation of
waveguide losses.
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Bloch modes are nondegenerate). When two bands cross we can conclude from the continuity of the
photonic bands (or more precisely, the continuity of the Bloch mode structure for adjacent modes on
a given band) that (11,12) = 0 also holds at the crossover point. This is a somewhat subtle point as
there is a degree of freedom to choose the basis at the cross-over point. It means that orthogonality is
verified provided the basis is chosen to be the “natural” one, which verifies continuity of the photonic
bands. Whether orthogonality will indeed hold at the cross-over point in a numerical application
depends on the mode solving method and whether it provides a field decomposition in the natural
basis. This is for example not, the case with FDTD iterations of a unit cell, with Bloch boundary
conditions (BBC) and Fourier filtering, as it doesn’t distinguish between two degenerate modes and
returns a superposition of the two modes dependent on their overlap with the initial field launched
inside the simulation.

In the next section the inner product will be used to calculate intrinsic PCW losses, which might
seem contradictory as the orthogonality has been derived in this section for strictly lossless PCW
modes. However it seems natural to assume that for small losses the deviation from orthogonality
should be small. In the next section we will proceed directly to the application of the inner product

to the computation of intrinsic PCW losses.

A.2 Computation of intrinsic photonic crystal waveguide losses

In this section we evaluate PCW losses with help of the inner product. The obtained results are
in good agreement with the literature. In A.2.1 we describe how raw data is generated by FDTD
and in A.2.2 we filter the data with the inner product. It is observed that the obtained numerical

accuracy decreases for Bloch modes with very low group velocities.

A.2.1 Setup of the simulations

We analyze a W1 waveguide formed by leaving out 1 row of holes in a triangular lattice PPC of
lattice constant a, radius r = 0.3a and slab thickness ¢ = 0.577a [127]. In this case the period of
the waveguide A is equal to one lattice constant a. The slab is made out of silicon (refractive index
3.43); the holes and the cladding have an index of 1. The photonic crystal is in the xy plane, and the
direction of propagation is y. We evaluate the losses for the el mode, which has an even symmetry
relative to the xy plane (0., = +1) and an odd symmetry relative to the yz plane (o,, = —1). All
simulations are performed with 3D FDTD with a discretization of 26 points per lattice constant. In
order to get stable simulations with Bloch boundary conditions (BBC), the time step dt was reduced
to dx/(4co), where dx is the spatial discretization and ¢g is the speed of light in vacuum. Results
are given in normalized frequency a/A and normalized wave number a8, where A is the free space

wavelength and 8 the reduced wave number.
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In order to obtain the modal profiles of the PCW, we simulate one unit cell of the waveguide
with a BBC applied in the direction of propagation (y-axis) [3]. The BBC forces the field on the
y = a boundary to be exp(i¢) times the field on the y = 0 boundary, where ¢ is a fixed phase.
By applying a discrete Fourier transform to a time series collected by a field probe, the spectral
resonances are found. The simulation is then run a second time, with the field stored over an entire
cross section. In order to reduce the amount of stored data, the field is directly Fourier transformed
during the simulation. The Fourier transformed field is stored and updated at each time step. As
the resonant frequencies are already known from the previous simulation, the size of the array that
has to be stored is the number of points of the cross section multiplied by the number of investigated
resonances, rather than the number of points times the number of time steps. The obtained field
is already Fourier transformed and thus corresponds to a steady state field with an implicit time
dependence so that the assumptions of section A.1 are satisfied. This way, modes and leaky modes of
the PCW are obtained. These simulations will further be referred to as “mode solving”. We store the
modal field profile along an xz plane (the “mode profile”). For all that follows the specific position of
the xz plane is not important as long as it is consistent. In order to obtain the forward propagating
mode, the BBC is set to a phase —fa, as the dispersion diagram has a negative slope (the group
velocity points in the opposite direction than ). Alternatively, the field could also be solved with
a BBC set to fa, followed by a field transformation that inverts the direction of propagation with

respect to y [98].

(Ey, Ey,E.) — (Ey,—Ey, E.)" (B, By, B.) — (—B;,B,,—B.)" (A.9)

We then simulate the field propagation along 10 photonic crystal periods. Fig. A.1 shows the
computational domain. We use a dipole source to launch a pulse into the PCW and save the
field profile every second lattice period, at the same position relative to the unit cell than in the
mode solving procedure. As before, the field is directly Fourier transformed during the simulation by
updating a finite number of monitored frequencies at each time step. In the following this simulation
will be simply referred to as “the simulation”, as opposed to the mode solving procedure.

In the next subsection we will proceed with the data analysis. We use the inner product to filter

out the portion of the field that corresponds to the el mode, and we evaluate the waveguide losses.

A.2.2 Computational results

The computational domain is 7v/3a x 3.84a in the xz plane and 10a in the y direction. The properties
of the inner product (orthogonality and flux conservation) have been derived for an integral over an
infinite plane. When taking an inner product between an arbitrary field cross section and a bound

mode, the integration domain can be reduced to a finite cross section due to the exponential decay



135

Y

y

Figure A.1: Cross section of the computational domain. A dipole source launches a field with
symmetries 0,y = —1, 0,, = +1. Every second lattice period a field probe saves the field.
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Figure A.2: Mode profile for fa = 0.077 (lower band of el). The colormap shows |B.|. The thick
black lines delimit the high index region (n = 3.43). The two maxima have the same phase (i.e., B,
is even). Units are in microns for a lattice constant of a = 0.52um.

of the bound modes in the evanescent field region. However, this does not hold when radiative
modes are present on both sides of the inner product. In particular, the total energy flux (¢, ¢) is
not conserved along the y-direction because radiative modes are absorbed by the perfectly matched
layer absorbing boundary condition (PML ABC). In the following, ¢ is used to refer to field cross
sections recorded from the simulation while v refers to cross sections of bound PCW modes.

The same simulation could have been performed with Bloch boundary conditions (BBC) with a
phase of 0 applied to the xy and yz boundaries. This would create a supercell, and bound modes of
the several mirror PCWs would be coupled to each other. However, if the computational domain is
big enough in the x and z dimensions the induced band splittings are negligible. In such a case we
would expect (¢, ) to be conserved.

We analyze losses for the first band of the el mode between the light line and the T point (8 = 0).
At that point a mini stop-band opens, and the group velocity goes to zero [127]. Indeed, it can be
seen in figure A.5(a) that the dispersion diagram flattens out. Figure A.2 shows |B,| for the el
mode at a/\ = 0.3383 (Sa = 0.077). The field amplitude has two maxima, but they have the same
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Figure A.3: 20log;,(|(#', ¥sa=0.07x)|) is plotted with circles, where ¢! is the field profile at the [
probe and ¢ga—0.07x is the field cross section of the PCW Bloch mode with reduced wave number
Ba = 0.077. 10log,o(|(¢', ¢')|) is plotted with crosses. Probes are spaced by two lattice constants.
It can be seen that the unfiltered energy flux decreases faster than the flux carried by the mode.

phase (i.e., B, is even and o,, = —1). Fig. A.3 shows 20log;o(|(%/ga=0.07x> ¢')|), Where ¥ g,—0.07x is
a PCW mode and ¢' is the field profile at the l;, probe (subscripts label modes by their reduced
wave number, and superscripts label the real space position of the field cross sections). In both cases
a/X\ = 0.3383. The field intensity features the expected exponential decrease. On the same plot the
unfiltered energy flux 10log;,(|(#, ¢')|) is also shown. It can be seen that using the latter would
result in an overestimate of the losses because the field has not yet converged to the PCW mode.
The additional field decay is due to insertion losses, to absorption of free space modes by the PML
ABC and to the reflected Bloch wave. If the lattice constant a is chosen to be 0.52um, the intrinsic
losses are 110 dB/mm at that frequency. The very high losses are due to the fact that the frequency
was chosen to be near the band edge for this example.

As an additional test we plotted the phase of (1ga=0.07x,®') [Fig. A.4]. Tt can be seen that it has
the expected linear behavior. The wave number is determined to be 0.06987 from the slope of the
curve. This is very close to the wave number initially fixed in the mode solving procedure (0.077).

Fig. A.5 shows the computed waveguide losses and the dispersion diagram of the lower band of
the el mode. Losses first increase away from the light line, but then decrease again in the vicinity
of the mini stop-band before diverging at the stop-band.

This numerical method should be very accurate in the region of high group velocity (from a/A =
0.28 to a/A = 0.33). However, this method cannot be used to calculate the quality factor of zero
group velocity modes as they are null vectors of the inner product. For modes of decreasing group
velocity, numerical inaccuracies in the mode profile become dominant and lead to inaccurate results.
To illustrate this, we compared for each data point the wave number extracted from the inner
products to the wave number initially fixed in the mode solve procedure [Fig. A.6]. It is seen that

these values correspond for modes away from the mini-stop band. However, the first 8 data points
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Figure A.4: The phase of (¢!, ¥a=0.07x) is plotted. The expected linear behavior is seen.
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Figure A.5: (a) Dispersion diagram of the lower band of el, and (b) losses of the lower band of el.
The straight line in (a) represents the light line. Losses in dB/mm correspond to a lattice constant
of a = 0.52um.
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Figure A.6: Sa as set by the BBC during the mode solving is compared to the Sa extracted from
the phases of (¢!,13,). Away from the mini-stop band, in the high group velocity regime, there
is a good correspondence. However, near the mini-stop band the spatial evolution of the phase of
(#',15,) differs from what would be expected from the dispersion diagram due to the fact that
numerical errors in the mode profile dominate the values returned by the inner product.

from Ba = 0 to Ba = 0.047 show a discrepancy. While the field profiles of the computed modes look
good (comparable to Fig. A.2), the numerical error that is associated with forward propagating
power dominates the inner products. Consequently we didn’t plot these 8 data points on Fig. A.5.

The decrease of radiative losses of the lower band of el when approaching the mini-stop band has
been experimentally observed [127] and theoretically investigated by other methods [132]. Ref. [132]
is based on a 2D, effective index analysis combined with a variational estimation of radiative losses
based on Fermi’s golden rule. In that model, an upturn of losses in the immediate vicinity of the
mini-stop band is also observed, but in a frequency range too narrow to be experimentally resolved,
while in our analysis the upturn occurs between a/A = 0.33 and a/A = 0.34. It is not completely
clear whether this is an artifact of the low group velocity and of the limitations of the inner product

or whether this is due to 3D behavior not contained in the other model.

A.3 Corrugated waveguide

A corrugated waveguide is the simplest case of waveguide with discrete translation symmetry. When
the corrugation is weak, the propagation of light in the corrugated waveguide can be described by
coupled mode theory with analytical expressions. In this section we derive the analytical expressions
for the Bloch mode structure as well as the reflections of Bloch modes occurring at the end of the
corrugation. This gives some insight about the difficulties encountered when analyzing waveguide
losses without additional filtering mechanisms. In particular the effect of the reflected Bloch wave

on the unfiltered power flux is quantified. It is important to take this into account as existing
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implementations of ABCs for the FDTD method cannot absorb certain types of Bloch waves and
induce reflections at the boundary of the computational domain. The coupled mode equations are
first exactly solved in the absence of free space coupling, and the Bloch modes of the corrugated
waveguide are calculated. The effect of radiative losses is then heuristically added to the model by
adding an exponentially decreasing prefactor to the spatial evolution of the Bloch modes. Finally
the outgoing boundary condition (that leads to reflections) is solved again with the modified Bloch
modes. Numerical examples of field distributions within the corrugated waveguide are given.

We assume a weak corrugation so that the Bloch modes of the corrugated waveguide can be
expressed within a very high degree of accuracy by coupled mode theory. We call 1, and _ the
forward and backward propagating modes of the unperturbed waveguide. They are coupled by the
corrugation so that the supermodes of the complete system take the form a(z)y; + b(2)y_ where
a(z) and b(z) are complex functions with constant magnitude but varying phase. We note by k the
reduced wave number of the Bloch mode and by § the reduced wave number of the uncorrugated
waveguide. In order for the Bloch mode to satisfy the Bloch theorem, a(z) and b(z) have to take

the form

a(z) = |ale”*k-Ftman/A) (A.10)

b(z) = [pem FHIEmRT/A) (A.11)

where m, and my are integers and A is the period of the corrugation. This can be exemplified by
explicitly calculating a(z) and b(z) with coupled mode theory.

We will now proceed by solving the coupled mode equations for the corrugated waveguide and
by decomposing the obtained field distribution into Bloch modes. The amplitudes of the forward
and backward propagating unperturbed waveguide modes are described by the envelope functions
A(z) and B(z). Along the propagation direction z they have the dependency A(z)exp(—iBz) and
B(z)exp(+iBz). The coupled mode equations are [81]

% = i Be(20-%)- (A.12)
% — irde—i(28-%)= (A.13)

where k is the coupling coefficient. We define ¢ as § — /A and p as \/¢? — k2. Equations A.12
and A.13 are solved with the adequate boundary conditions (only outgoing waves at the end of the

waveguide at z = L, i.e., B(L) = 0). We only consider light outside the bandgap where there are
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propagative Bloch modes (|| > &). This leads to

A(2)e™#* = Ag(pcos[p(z — L)] — igpsin[p(z — L)])e""%* (A.14)

B(2)e* = iAgksin[p(z — L)]e'** (A.15)

where Ay is proportional to the amplitude of the forward propagating unperturbed waveguide mode
initially launched into the corrugated waveguide (the exact amplitude is (pcos(pL) + ipsin(pL))Ao).
This field distribution has Fourier components with wave numbers 7 /A= p or equivalently (by folding
back inside the 1%* BZ) with reduced wave numbers +(7/A — p). By decomposing the sines and

cosines in exponentials, the field can be decomposed into two contrapropagating Bloch modes.

A@)e ™) _Ag [((p=9)e™ 7\ oy Ao [(pe)e 35 )

+ (A.16)
B(Z)ei,@z 2 Klei%z 2 _Klei%z
If ¢ > 0 (upper band)
A(z)e~ 7 /o — pe ixF\ + peik? .
) e | YT T ey o [ VI T | el (A
Bl VTS Ve

If ¢ < 0 (lower band)

A(z)e~ 8% Vel + pe”ixF\ — pe k% A
B o i [ VAP it _ = (VI vy
B(z)e'* Vel = pei®= Vel + pe's=

(A.18)
It can be seen that the field is decomposed into two Bloch modes (1%¢ and 2°¢ terms of the sum). The
a(z) and b(z) coefficients of the Bloch modes can be extracted from these formulas. For example in
the case of the forward propagating Bloch mode of the upper band (second term in equation A.17),

the coefficients are

arwa(z) = % e A
_ @;;)pe—i(k+27”—ﬁ)z (A.19)
brwa(z) = - *’2;”6—@'@—%@2
— _ [PTP —ik+B)2 A.20
2p € ( * )

where k = —x/A + p. They take the form predicted by equations A.10 and A.11 with m, = 1 and
myp = 0. The extra 1/4/2p term is due to normalization. The coefficients of the backward propagat-

ing Bloch mode (first term in equation A.17) are apack(z) = brwa(2)* and bpack(2) = agwa(2)*. This
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transformation corresponds to time reversal; thus they are each other’s contrapropagating coun-
terparts. We can also verify that they are orthogonal as {(afwa®+ + btwd¥—, Gbwd¥+ + bpwath—) =
a(b*)* Yy, vy +b(a*)* (_, ) = a(d*)* —b(a*)* = 0 (in the following a and b will refer to agywq and
bewa). We call U and ¥_ the forward and backward propagating Bloch modes. The transformation
from unperturbed waveguide modes to Bloch modes is then given by

i) [alz) b(z) ) [v+ (A21)

U_ b(z)* a(z)* Yo
Radiative losses can be heuristically added to the system by introducing the loss coefficient v and
by replacing a(z) and b(z) by a(z)exp(—vz) and b(z)exp(—~vz) for the forward propagating Bloch
mode, and by a(z)exp(vz) and b(z)exp(yz) for the backward propagating Bloch mode. This is an

adequate description if the coupling length !

is significantly smaller than the characteristic length
for radiative losses y~!. This assumption is necessary as the description assumes that light has locally
the unperturbed Bloch mode structure. The field inside the lossy corrugated waveguide can then be
solved for by assuming a superposition of Bloch modes and verifying the outgoing boundary condition
(no back-propagating unperturbed waveguide mode at the end of the corrugation). If we call F'(z) the
amplitude of the forward propagating Bloch mode and R(z) the amplitude of the reflected (backward

propagating) Bloch mode, the boundary condition translates into B(L) = F(L)b(L)+R(L)a*(L) =0

R(z) P =P 200+ 7)(L2)
= JE L : A22
F(z) p+p (4.22)

It can be seen that the reflection at the end of the corrugation is the same as in the case without

attenuation. The exp(—2vy(L — z)) multiplicative factor takes into account the attenuation over a
round trip. The field inside the waveguide then takes the form
A(z) a(z) b(2)* F(z)

- (A.23)
B(2) b(z) a(z)") \R(z)

which leads to

—ifz A iRz /AL ne—ixz
A(z)e xvo—p popet elintn(=1) | Votp prpet e~ (ir+7)(2—L)

B(Z)eiﬁz /—(P +pei%z _ /_90 — pei%z
(A.24)

Figure A.7 shows the field evolution inside a corrugated waveguide and compares the evolution
of the total power A(z)? — B(z)? to the evolution of the power contained in the forward propagation
unperturbed waveguide mode A(z)? and the power contained in the forward propagating Bloch mode

F(2)%2. Two different boundary conditions are applied. In (a) the corrugation stops after 15 um
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Figure A.7: Field evolution inside a corrugated waveguide. In (a) the corrugation stops after 15 pym
and in (b) the corrugation stops after 100 ym. The different boundary conditions lead to a different
field evolution. In particular, in the case of the short waveguide the losses of the total energy flux are
almost twice those expected from the Bloch mode, due to the negative flux carried by the reflected
Bloch wave, while in the second case the field evolution at the beginning of the waveguide is close
to the losses expected from the Bloch mode (the reflected Bloch mode is almost completely decayed
at that point). The parameters were assumed to be 8 = 2mnwg/A, & = 6 um~—t, A = \o/nwa,
v =0.01 pm~, nwe = 2.7, A = 1.4 um and \g = 1.5 um. The red curve shows the total power,
the straight black curve shows the power contained in the forward propagating Bloch mode and the
oscillating black curve shows the power contained in the forward propagating unpatterned waveguide
mode.
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Figure A.8: This figure shows the field distribution inside the same corrugated waveguide (same
parameters as in figure A.7, with a corrugation length of 50 um) for different wavelengths. In (a)
A = 1.4555 um is very close to the band edge, while in (b) A = 1.4 um. As in figure A.7 the black
straight line is F'(z)?2, the red line is A(2)? — B(z)? and the curvy black line is A(z)2.
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Figure A.9: This figure shows the field distribution inside the corrugated waveguide (same parame-
ters as in figure A.7, with a corrugation length of 150 pm) for A = 1.4555 pm (a) and A = 1.4 pm (b).
It can be seen that when the length of the waveguide is longer than the 1/e? intensity decay length,
the field evolution at the beginning of the waveguide is dominated by the forward propagating Bloch
mode, and the beating pattern has a small amplitude. This is to be put in contrast with short
waveguides as in figure A.7(a), where the logarithm of the field intensity is almost linear, but where
the waveguide losses would be overestimated by a factor 2 if directly evaluated from that slope.

and in (b) the corrugation stops after 100 um. The parameters were assumed to be 8 = 2mnwa /A,
k=6 pum=t A= X/nwg, v =001 um™, nwe = 2.7, A = 1.4 ym and \g = 1.5 um. Figure
A .8 shows the effect of changing the offset of the wavelength relative to the band edge. It can
be seen that using the total power to evaluate the waveguide losses can be very misleading if the
waveguide length is short. In this situation the problem only arises from the partial reflection of the
Bloch wave at the end of the corrugation, and it is possible to fit the total power as the difference
of two exponentials (with opposite decay directions) to extract waveguide losses. In a real FDTD
simulation the situation will be much more complex as the field at the beginning of the waveguide
will not be exactly a waveguide mode but may contain radiative modes that need to be filtered out.
In the case of a PCW, the situation is also more complex due to the fact that the Bloch mode cannot
be completely decomposed into slab modes. Furthermore tunneling may occur in PCWs, which also
does not occur in the case of the corrugated waveguide outside the bandgap. In these situations it is
very helpful to be able to extract directly the intensity of the forward propagating Bloch wave by
using the inner product.

In conclusion we have shown that an inner product usually applied to waveguides of continuous
symmetry also verifies the orthogonality condition between PCW modes. The inner product was
used to analyze data from an FDTD simulation and to evaluate losses of an W1 waveguide. General
trends exposed in the literature are verified. However, the accuracy of the method is reduced when
modes with a very low group velocity are analyzed. The numerical inaccuracy has at least two
sources. Mode orthogonality was derived for lossless Bloch modes (“true” modes). When radiative

losses are high, numerical cross talk between Bloch modes can become significant. Also, when the
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group velocity of the analyzed Bloch mode is low, numerical cross talk with noise in the reference

mode profile can become dominant.
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