
Topics in gravitational-wave physics

Thesis by

Geoffrey Lovelace

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended May 14, 2007)



ii

c© 2007

Geoffrey Lovelace

All Rights Reserved



iii

Acknowledgements

First, I would like to thank Kip Thorne, my advisor, for suggesting some of the problems investigated

in this thesis, for many helpful discussions regarding both my research and other topics in relativity,

for his assistance with some of the prose in Chapter 4, for helping me to improve my technical

writing and presentations, and for introducing me to physics with his book Black Holes and Time

Warps: Einstein’s Outrageous Legacy. Without his advice, guidance, and encouragement, this work

would not have been possible.

I would also like to thank Harald Pfeiffer for his advice and encouragement, for his patience in

teaching me arcane details of the Caltech-Cornell numerical-relativity code, and for many productive

discussions. I am also grateful to Lee Lindblom for his advice and encouragement, for many helpful

discussions, and for suggesting the project described in Chapter 6. Mark Scheel and Larry Kidder

have my thanks for helpful discussions and technical assistance with the Caltech-Cornell numerical-

relativity code.

I would like to thank Duncan Brown, Hua Fang, and Chao Li, for collaborating with me and

for many useful discussions. Rob Owen has my thanks for many useful discussions regarding my

research and for introducing me to some formal, mathematical aspects of relativity.

Sterl Phinney and Kenneth Libbrecht have my thanks for serving on my thesis committee.

I would also like to thank Juri Agresti for helpful discussions as well as for providing the data that

will be published in J. Agresti and R. DeSalvo (2007, currently in preparation), for the comparison

in Sec. 2.4.2. I am grateful to Greg Cook for helpful discussions, including the initial suggestion to

add radial motion to quasi-circular initial data (Chapter 5). I would also like to acknowledge Ilya

Mandel for useful discussions as well as for suggesting the comparison to Peters’ calculation [P. C.

Peters, Phys. Rev. 136, B1224 – B1232 (1964)], which was helpful in the investigation reported in

Chapter 5.

I am grateful to Mike Boyle, Jeandrew Brink, Yanbei Chen, Michael Cohen, Steve Drasco,

Jonathan Gair, Keith Matthews, Yasushi Mino, Niall O’Murchadha, Yi Pan, Sherry Suyu, Etienne

Racine, and everyone who attended Kip and Lee’s group meetings, for helpful discussions.

JoAnn Boyd, Jennifer Formichelli, and Shirley Hampton have my thanks for help with adminis-

trative matters.



iv

The research presented in this thesis was supported in part by NASA grants NAG5-12834,

NAG5-10707, NNG04GK98G, NNG05GG52G, NNG05GG51G; by NSF grants PNY-0099568, PHY-

0601459, PHY-0244906, DMS-0553302, PHY-0312072, PHY-0354631; by the Sherman Fairchild

Foundation, and by the Brinson Foundation.

Some of the simulations discussed in Chapters 5 and 6 were produced with LIGO Laboratory

computing facilities. LIGO was constructed by the California Institute of Technology and Mas-

sachusetts Institute of Technology with funding from the National Science Foundation and operates

under cooperative agreement PHY-0107417.

Mathematica and Maple for Mac OS X were used to verify some of the equations in this thesis.

Some of the figures were prepared using Grace 5. Some of the simulations in this thesis were run on

the Shared Heterogeneous Cluster at Caltech. Some of the simulations described in this thesis were

run on a Mac Pro workstation. The LATEX style file used in this thesis was developed by Daniel M.

Zimmerman.

Finally, I would like to thank my parents, Robert and Diane, my brother Jason, and my sister-

in-law Margaret for their encouragement and support, without which this work would not have been

possible.



v

Abstract

Together with ongoing experimental efforts to detect gravitational waves, several fronts of theoretical

research are presently being pursued, including second-generation detector design, data analysis, and

numerical-relativity simulations of sources. This thesis presents a study in each of these topics: i) The

noise in the most sensitive frequency bands in second-generation ground-based gravitational-wave

interferometers is dominated by the thermal noise of the test masses. One way to reduce test-mass

thermal noise is to modify shape of the laser beam so that it better averages over the thermal

fluctuations. When edge effects are neglected, the test-mass thermal noise is related to the beam

shape by simple scaling laws. This thesis presents a rigorous derivation of these laws, along with

estimates of the errors made by neglecting edge effects. ii) An important class of gravitational-wave

sources for space-based gravitational-wave interferometers is extreme-mass-ratio inspirals (EMRIs).

These are binaries in which an object of a few solar masses spirals into a (typically million-solar-mass)

supermassive black hole (or, if any exist, other type of massive body). Ryan (1995) proved that,

under certain simplifying assumptions, the spacetime geometry is redundantly encoded in EMRI

waves. One of Ryan’s assumptions was negligible tidal coupling. After first finding that only the

time-varying part of the induced tide is unambiguously defined when the central body is a black

hole, this thesis extends Ryan’s theorem by showing that both the spacetime geometry and details

of the tidal coupling are encoded in EMRI waves. iii) Merging black holes with comparable masses

are important sources of gravitational waves for ground-based detectors. The gravitational waves

near the time of merger can only be predicted by numerically solving the Einstein equations. Initial

data in numerical simulations must contain the desired physical content but also satisfy the Einstein

constraint equations. But conventional binary-black-hole initial data has physical flaws: a nonzero

orbital eccentricity and an initial, unphysical pulse of spurious gravitational radiation. Using the

Caltech-Cornell pseudospectral code, this thesis develops and implements methods to reduce both

of these effects.
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Chapter 1

Introduction

The direct measurement of gravitational waves promises to give us an unprecedented tool for observ-

ing the universe. Gravitational waves can be used to directly probe systems in which gravity is very

strong and (consequently) the spacetime geometry is strongly warped. These systems include both

the calm (e.g., a steller-mass object spiraling into a supermassive black hole) and the most violent

(e.g., two black holes colliding, releasing a significant fraction of their mass as gravitational waves).

Some systems (like colliding black holes) emit tremendous amounts of energy as gravitational waves

without any electromagnetic signature.

Over the past three decades, a great experimental effort has worked toward the goal of using

gravitational waves to probe experimentally such strongly-gravitating systems. Ground-based de-

tectors including LIGO [1], VIRGO [2], GEO600 [3, 4], and TAMA300 [5], are presently searching

for high-frequency (∼ 10 – 104 Hz) gravitational-wave signals; in particular, LIGO is nearing the

completion of a year-long science run at its design sensitivity [6]. A planned upgrade of LIGO (“ad-

vanced LIGO”), for which funding will begin in 2008 [7], will increase the event rate by a factor of

103. In the next decade, the Laser Interferometer Space Antenna (LISA) [8] will detect low-frequency

(∼ 10−4 – 0.1 Hz) gravitational waves.

In parallel with the experimental program, theoretical investigations are being pursued on sev-

eral fronts, including i) maximizing the sensitivity of next-generation gravitational wave detectors,

ii) recovering the physical information that is encoded in astrophysical gravitational-wave signals,

and iii) using numerical relativity to simulate highly nonlinear sources, such as the gravitational-

waveforms emitted by colliding black holes. In this thesis, I describe investigations in each of these

three topics:

• Reducing test-mass thermal noise in advanced gravitational-wave detectors. In

advanced LIGO’s most sensitive frequency band (∼ 40 – 200 Hz), the sensitivity is limited

primarily by test-mass thermal noise (e.g., Fig. 2 of [9]). The test-mass thermal noise is

manifested by random fluctuations of the shape of the mirror face. One way to reduce this
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noise is by changing the laser-beam shape so that it better averages over these fluctuations.

In Sec. 1.1 and in Chapter 2, I discuss and derive simple scaling laws that determine how the

test-mass thermal noise depends on the beam shape when edge effects are neglected.

• Probing tidal coupling using gravitational waves. A primary objective of LISA is

to probe, with high accuracy, supermassive black holes (and, should any exist, other kinds

of massive central bodies) using gravitational waves from smaller inspiraling objects (such

as neutron stars and small-mass black holes). [Such gravitational-wave sources are called

“extreme-mass-ratio inspirals” (EMRIs).] Specifically, LISA will measure i) the central body’s

spacetime geometry (metric), ii) the details of the small object’s orbit, and iii) the tidal coupling

between the small object and the central body. Recovering this information in practice is one

of LISA’s data-analysis challenges; this goal was motivated in part by Ryan [10], who proved,

under several simplifying assumptions, that the full details of the central body’s spacetime

geometry are encoded in the EMRI waves. One of Ryan’s assumptions was that tidal coupling

is negligible; in this thesis, I consider how to lift this restriction. First, in Sec. 1.2.2 and

Chapter 3 I consider how to describe tidal coupling when the central object is a black hole.

Then, in Sec. 1.2.3 and Chapter 4 I extend Ryan’s analysis to include tidal coupling.

• Reducing eccentricity and junk radiation in binary-black-hole simulations. Gravi-

tational-wave detectors such as LIGO and LISA need accurate predictions of the gravitational

waves they are likely to see. These predicted waveforms will serve as templates in the LIGO

and LISA data analyses. One of the most important sources of gravitational waves for LIGO

is the inspiral, merger, and ringdown of two binary black holes of comparable mass. The

gravitational waves before and after the merger can be computed using perturbative methods;

however, near the time of the merger, the spacetime is so strongly and dynamically warped that

the waveforms can only be predicted by numerically solving the Einstein equations. Numerical

simulations of binary black holes begin with the choice of initial data. In this thesis, I will

discuss how, with improved choices for the initial data, binary-black-hole simulations can be

made more physically realistic in two ways. In Sec. 1.3.2 and Chapter 5 I describe how to

reduce the orbital eccentricity. Then, in Sec. 1.3.3 and Chapter 6 I describe how to reduce

the amount of junk radiation (i.e., spurious gravitational waves) present at early times in

binary-black-hole simulations.

The remainder of this introductory chapter summarizes the investigations listed above. Further

details are given in subsequent chapters.
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1.1 Reducing thermal noise in advanced gravitational-wave

interferometers

A gravitational-wave interferometer such as advanced LIGO measures two perpendicular arms’ dif-

ference in length. At each end of each arm is a test mass (i.e., a mirror). If mirrors 1 and 2 are in

one arm, and mirrors 3 and 4 are in the other, then the interferometer measures

h ≡ [(q1 − q2) − (q3 − q4)]/L, (1.1)

where q1,2,3,4 are the positions of the four test masses and L is the length of each arm. Ideally, h = 0

in the absence of a gravitational wave. When a wave passes through the detector, the lengths of the

two arms change, giving a nonzero h(t) as a function of time t.

The actual measurement of h includes both the gravitational-wave signal and noise. Reducing

the noise power (i.e, the spectral density, defined below) by a factor of n2 is equivalent to increasing

the maximum range of the interferometer by a factor of n. The total volume of space seen by the

interferometer (and thus the event rate of the detector) then increases by a factor of n3.

For frequencies f ∼ 40 – 200 Hz (where advanced LIGO is most sensitive), the noise is dominated

by thermal fluctuations in the test-mass substrates and coatings. There are two types of these

fluctuations: Brownian (in which thermally excited normal modes are coupled via imperfections

in the substrate and coating), and thermoelastic (in which random heat flow causes temperature

fluctuations, producing random thermal expansion and contraction). To maximize the event rate in

the f ∼ 40 – 200 Hz band, one must minimize each type of thermal noise.

These thermal fluctuations in substrate and coating lead to fluctuations Z(t; r, ϕ) in the position

of each point (r, ϕ) on the coating face. The laser beam averages over these fluctuations. The average

is weighted by the shape p of the laser beam’s power distribution. If the beam is axisymmetric, so

p = p(r), then the laser beam measures

q(t) ≡
∫

drr

∫

dϕZ(t; r, ϕ)p(r), (1.2)

where p(r) is normalized so 2π
∫

drrp2(r) = 1.

The wider and flatter the beam shape p(r), the better the beam averages over the fluctuating

mirror surface and the lower the resulting thermal noise. However, the light power must be small

enough near the mirror edges that no more than ∼ 10ppm is lost to diffraction per bounce. To

balance these two requirements, mesa beams [11, 12, 13] have been proposed as an alternative to

gaussian beams. For the same diffraction losses, the mesa beams are flatter and thus better average

over the mirror fluctuations. Other beam shapes are also being explored [14].
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Because changes to the laser beam shape can significantly affect the detector’s sensitivity, it is

important to understand deeply the relationship between the beam shape and the thermal noise. To

that end, O’Shaughnessy, Vyatchanin, and Vinet [13, 15, 16, 17] have proposed (with varying degrees

of rigor, and sometimes with unnecessary assumptions) simple scaling laws relating the beam shape

to the thermal noise when the beam is small compared to the mirror (“negligible edge effects”). The

scaling laws are

S1,n

S2,n
=

∫∞
0

dkkn [p̃1(k)]
2

∫∞
0

dkkn [p̃2(k)]
2 (1.3)

where n = 1 for coating Brownian and coating thermoelastic noise, n = 0 for substrate Brownian

noise, and n = 2 for substrate thermoelastic noise. Here p̃(k) is the Hankel transform of the beam

shape p(r), or equivalently its two-dimensional Fourier transform

p̃(k) =

∫ ∞

0

drrJ0(kr)p(r),

p(r) =

∫ ∞

0

dkkJ0(kr)p̃(k), (1.4)

where J0(x) is the 0th Bessel function of the first kind. If the noise S2 for beam shape 2 is known,

then it is easy to use Eq. (1.3) to compute the noise S1 if the beam shape were changed to p1(r)

while holding everything else constant, provided that edge effects can be neglected.

In Chapter 2, I present a rigorous derivation of these scaling laws and critique the prior deriva-

tions. My derivation is based on a variant of the fluctuation-dissipation theorem [18] that relates

the fluctuations (characterized by the spectral density) to the dissipated power Wdiss if a sinusoidal

pressure, with the same distribution p(r) as the laser beam’s intensity distribution, were applied to

the mirror. The fluctuation-dissipation theorem is

Sq(f) =
2kBT

π2f2

Wdiss(f)

F 2
. (1.5)

Here f is the frequency, F is the amplitude of the imagined applied pressure, andWdiss is proportional

to F 2, so that Sq is independent of F . Each of the four types of thermal noise leads to a dissipated

power and a corresponding thermal noise.

Also in Chapter 2, using recent results by Agresti [19, 20] that include edge effects for the specific

case of mesa beams, I estimate the scaling laws’ errors due to neglecting edge effects.

I have submitted Chapter 2 to Classical and Quantum Gravity; I am the sole author.
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1.2 Probing tidal coupling with gravitational waves

1.2.1 Background

One of the scientific goals of the LISA mission is to use EMRI gravitational waves to measure the

tidal response of the massive central black hole (or, perhaps, other massive body). Finn and Thorne

[21] have shown that tidal coupling can influence the phase of the inspiral gravitational waves by

as much as a few percent. LISA will be able to measure the EMRI-wave phase to an accuracy of a

fraction of a cycle out of ∼ 104 – 105 cycles; this motivates the possibility of using the EMRI waves

that LISA detects to probe tidal coupling with high precision.

In order to use EMRI waves to probe massive central bodies in this way, there must be an

algorithm to recover the physical parameters of the EMRI—including the central body’s spacetime

geometry, the details of the small object’s orbit, and the tidal coupling—from the emitted waves.

In practice, this may be quite difficult.

As a first step toward demonstrating the feasibility of recovering EMRI parameters from the

waves, Fintan Ryan [10] proved that in principle the central body’s spacetime geometry (i.e., its

multipole moments) can be extracted from the EMRI waves, provided that the following assumptions

hold:

1. The massive central body’s exterior is a vacuum, stationary, axisymmetric, reflection-symmetric,

and asymptotically flat (SARSAF) solution of Einstein’s equations.

2. The small object travels on a nearly circular, nearly equatorial orbit, with fundamental fre-

quencies Ωρ, Ωz, and Ωφ. (The primary component of the waves has frequency f = Ωφ/π; Ωρ

and Ωz show up in the orbit’s precession and in the waves’ precessional sidebands.)

3. Tidal coupling is negligible.

Additionally, Ryan proved that the multipole moments are encoded redundantly both in the “pre-

cession frequencies” Ωρ and Ωz and in the waves’ phase evolution

∆N(f) ≡ f2

df/dt
. (1.6)

(Here f = Ωφ/π.)

Several studies have sought to generalize Ryan’s theorem to more realistic situations by lifting

some of these restrictions. Assumption 1 has been extended to electrovacuum spacetimes by Sotiriou

and Apostolatos [22]. Assumption 2 of nearly circular, nearly equatorial orbits is relaxed in a paper

by Li [23]. In this thesis, I consider how to define tidal coupling when the central body may be a

black hole (Chapter 3); then, I relax Assumption 3 by generalizing Ryan’s theorem to include tidal

coupling (Chapter 4).
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1.2.2 Defining tidal coupling

In Chapter 3, I consider how best to define tidal coupling when the central body may a black hole.

Black-hole tidal coupling has previously been defined in terms of the flux of gravitational waves down

the hole (e.g., [24]) and in terms of the perturbation of the horizon’s intrinsic metric (e.g. [25, 26]).

Both definitions depend on the central body being a black hole.

Thorne [27] has argued that, in defining tidal coupling, one should allow for the possibility that

the central body is some other kind of object [such as a boson star (e.g. [28, 29]), soliton star

(e.g. [30]), or naked singularity]. Specifically, Thorne proposed that for all types of central bodies,

the tides be defined by analogy with Newtonian tides:

When a Newtonian fluid planet is perturbed by a small, orbiting moon, a quadrupole moment is

induced on the central body. The induced quadrupole moment Iij is manifested both in the change

of the planet’s shape and in the induced tidal field acting back on the moon to change its orbit.

This induced quadrupole moment can be characterized by two scalars:

1. Polarizability. The induced quadrupole moment Iij is proportional to the moon’s tidal field

Eij :

Iij = PL5
Eij . (1.7)

Here L is the characteristic size of the central body and P is a number of order unity called the

body’s polarizability. The polarizability characterizes the strength of the tidal perturbation

that the central body exerts back on the moon.

2. Phase shift. Because of viscous dissipation as the fluid planet’s shape changes in its own

rest frame, there is a torque back on the moon, so that energy and angular momentum are

transferred between the moon and the central body. In the case of a stationary moon outside

a slowly rotating planet, the lag angle is (Eqs. (3.8) and (3.12) of [26])

δ =
19

2

Ων

gL
, (1.8)

where g is the acceleration of gravity, Ω is the angular velocity of the planet, and ν is the

fluid’s kinematic viscosity.

In Chapter 3, in collaboration with Hua Fang, I investigate Thorne’s proposal for the case of

a central black hole. When a small object orbits a nonrotating black hole, we find that the only

gauge-invariant portion of the induced quadrupole moment (defined in terms of the induced tidal

field acting back on the moon) is

I
ind
ij =

32

45
M6 d

dt
Eext

ij . (1.9)

where M is the black hole’s mass and Eext
ij is the moon’s perturbing tidal field. This induced
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quadrupole moment is proportional not to the perturbing tidal field but to its time derivative. The

part proportional to Eext
ij itself turns out to be ambiguous; in the particular coordinates that Fang

and I used in deriving Eq. (1.9), it vanishes. The unambiguous part (1.9), proportional to d
dtEext

ij ,

produces a torque back on the moon that changes its orbital energy by an amount equal and opposite

to the rate that energy flows into the black hole:

dEmoon

dt
= −dEH

dt
− 32

5
M4µ2Ω6, (1.10)

Here µ and Ω are the mass and orbital angular velocity of the moon, respectively. This agrees with

the result previously derived (using the “waves down the hole” picture) by Poisson [31].

Our analysis shows that the lag angle δ and polarizability P of the black hole, as defined in

terms of the induced quadrupole moment, are ambiguous. However, there is an unambiguous lag

angle (i.e., “phase shift”) defined in terms of the orientation of the horizon’s tidal bulge (relative to

the moon’s angular location). Hartle [26] has computed this tidal phase shift on the horizon when

a stationary moon orbits a spinning hole. In terms of the hole’s mass M , horizon angular velocity

ΩH , and moon radius b≫M , he finds (after a sign error in his analysis is corrected):

δ = −8

3
MΩH − 4

M2ΩH

b
. (1.11)

The phase shift is negative, meaning that the tidal bulge leads, rather than lags, the perturbing

tidal field. Hartle attributes this difference to the teleological nature of the horizon [26]: a fluid

planet’s evolution is computed from initial conditions, while the horizon evolves backward from a

final condition (giving a phase lead, not a phase lag).

When a nonspinning hole (with mass M) is orbited by a stationary moon (with angular velocity

Ω, at a radius b≫M), the situation considered in Chapter 3, Fang and I find the analog of Hartle’s

phase shift:

δ = −8

3
MΩ − Ω[b+ 2M log(b/2M − 1)]. (1.12)

The phase shift is still a phase lead, but the second term is different from Hartle’s.

The terms depending on b in Eqs. (1.11) and (1.12) are consequences of the way Hartle defines

the angle between the bulge on the horizon and the moon.

In Chapter 3, Hua Fang and I each performed all of the calculations independently of each other,

except for the generalization of Hartle’s phase shift (which was solely my work); we jointly wrote

the prose. We have published Chapter 3 in Physical Review D.
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1.2.3 Extending Ryan’s theorem to include tidal coupling

In Chapter 3, Fang and I find that only the time-dependent part of the induced quadrupole moment

is unambiguous. Motivated by this result, in Chapter 4, (in collaboration with Chao Li) I define

tidal coupling by dEbody/dt, the energy absorption of the central body. (Because the orbit is nearly

circular, the corresponding angular-momentum absorption is simply dLbody/dt = ΩorbitdEbody/dt,

where Ωorbit is the small object’s orbital angular velocity.)

Using this definition, we extend Ryan’s analysis to include tidal coupling. In our analysis, we

retain Ryan’s other two assumptions [passage preceding Eq. (1.6)]. The inclusion of tidal coupling

breaks the redundancy in his theorem.

In Ryan’s analysis, as in the analysis of Chapter 4, the small mass is presumed to be sufficiently

distant that the adiabatic approximation is valid [10]. That is to say, the moon inspirals on a time

scale much greater than an orbital period. The frequencies Ωφ = πf , Ωρ, and Ωz slowly evolve

as the orbit loses energy and angular momentum to gravitational waves and the particle spirals

inward. On the time scale of an orbit, the particle essentially follows a single geodesic (when the

tiny, conservative self-force is neglected, as it can be in the limit µ/M → 0).

In Ryan’s original theorem, the spacetime geometry can be recovered independently from either

of the precession frequencies Ωρ and Ωz. Since these frequencies are related only to the geodesic

motion of the small mass, and not to its slow, secular evolution, the precession frequencies are

independent of tidal coupling. Therefore, the spacetime geometry, via its multipole moments, can be

recovered from Ωρ(f) and Ωz(f) using Ryan’s argument without modification. Additionally, with

knowledge of the spacetime geometry in hand, we show that the orbital parameters can, in principle,

be deduced from the amplitudes of the waves’ precession-induced modulations.

The tidal coupling information is then contained in the waves’ phase evolution ∆N(f) ≡ f2

df/dt .

The total energy loss of the orbit is related to ∆N by

Ėtotal = −Ėorbit = −dEorbit

df

df

dt
= −f2 dEorbit

df

1

∆N
. (1.13)

Here dEorbit

df depends only on the geodesic motion (not on tidal coupling), ∆N is the measured

phase evolution, and dots represent time derivatives. In the absence of any influence of the central

body, the phase evolution would have a different value ∆NNBI (obtainable in principle, as Ryan

showed [10], from the spacetime geometry). Here “NBI” means “no body influence.” Therefore,

Ėtotal,NBI = −f2dEorbit

df

1

∆NNBI
(1.14)
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is also observable. The difference

Ėtotal,BI = Ėtotal − Ėtotal,NBI = Ėbody + Ė∞BI, (1.15)

is the influence of the body on the rate of energy loss from the orbit. By energy conservation it

consists of two parts: Ėbody is the energy absorption of the central body, and Ė∞BI is a small

influence in the rate of energy flux to infinity due to the details of the central body’s influence.

Both quantities are very small; contrary to a conjecture by Thorne, we see no way in general to

deduce the central body’s absorption by itself. However, in the case that the central body is very

compact, we argue that it is likely that Ė∞BI/Ėbody ∼ O(v5), where v is the (small) velocity of the

orbiting particle. The relative smallness of Ė∞BI comes from the difficulty gravitational waves have

in penetrating the “effective potential” of the compact central body’s metric. Perturbations being

absorbed by the central body must cross the potential once, while perturbations carrying Ė∞BI

must cross the potential twice (once to come in contact with the central body, and a second time to

escape back to infinity).

Chao Li and I performed all of the calculations in Chapter 4 independently, except for the

Appendix, which is primarily Chao’s work. The text of this chapter is largely mine, but with

significant contributions from Li and from Thorne. Li and I have submitted it to Physical Review

D.

1.3 Improving binary-black-hole initial data

1.3.1 Background

In numerical simulations of binary black holes, one divides the four-dimensional spacetime (with

metric gµν) into a series of three-dimensional spatial slices (with spatial metric gij). The spacetime

and spatial metrics are related by

ds2 = gµνdx
µdxν = −α2dt2 + gij(dx

i + βidt)(dxj + βjdt). (1.16)

Here the lapse α and the shift βi specify how the coordinates change from slice to slice.

Choosing initial data amounts to choosing the metric gij and the extrinsic curvature Kij of the

initial spatial slice. The extrinsic curvature is essentially the derivative of gij normal to the spatial

slice; it is related to the coordinate time derivative of the metric ∂tgij by

∂tgij = −2αKij + 2∇(iβj), (1.17)

where ∇ is the covariant derivative in the slice.
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The tensors gij and Kij must be chosen in accord with the desired physical content of the simu-

lation (here, a spacetime with two inspiraling black holes). However, gij and Kij cannot be chosen

freely; together, they must ensure that the (vacuum) Einstein constraint equations are satisfied:

G00 = 0,

G0j = 0. (1.18)

(This requirement is analogous to the restriction that, when solving Maxwell’s equations in vacuum,

the electric and magnetic field are initially divergence free.) The remaining Einstein equations,

Gij = 0, determine the solution on subsequent slices, given constraint-satisfying initial data, and if

the constraints (1.18) are satisfied perfectly in the initial data, then the evolution equations Gij = 0

will preserve them.

Several methods (e.g. [32, 33]) for generating constraint-satisfying initial data are known. How-

ever, the constraint-satisfying initial data that they generate can have undesirable, unphysical prop-

erties all too easily. In this thesis, I reduce two such effects for equal-mass, nonspinning black hole

binaries: orbital eccentricity and junk radiation.

1.3.2 Reducing eccentricity in binary-black-hole simulations

As two black holes in a binary orbit each other, they spiral together and emit gravitational waves.

During the inspiral, the holes’ orbits tend to circularize (faster than the holes inspiral) due to the

emission of gravitational waves [34]. (Qualitatively, this circularization happens because, on an

eccentric orbit, the holes radiate more power when they are closer together and less when they are

farther apart.)

To construct black holes on nearly circular orbits, my colleagues and I use quasicircular initial

data (e.g. [32]). In quasicircular data, the separation of the holes is initially constant in time;

however, this condition does not lead to noneccentric orbits. This is because quasicircular data

ignore the inspiraling motion of the holes.

If the initial data are constructed in coordinates that move with the black holes (“comoving

coordinates”), then the motion of the holes is captured by the asymptotic behavior of the coordinates.

In the asymptotically flat region, gij = δij and α = 1, and the spacetime metric is then

ds2 = gµνdx
µdxν = −dt2 + δij(dx

i + βidt)(dxj + βjdt). (1.19)

If the black holes are at rest, the comoving coordinates are asymptotically inertial, which implies

that βi(r → ∞) = 0 in Eq. (1.19).

On the other hand, if the black holes are moving, the comoving coordinates have nonvanishing
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shift. Quasicircular data in particular require that the comoving coordinates be asymptotically a

pure rotation:

βi(r → ∞) = (Ω× r)i. (1.20)

This is a “pure rotation” in the sense that the gradient of the shift ∇iβj is purely antisymmetric.

Physically, the holes should also be slowly spiraling together. By requiring that the holes’ inward

velocity be initially zero, quasicircular data ensure that the holes are initially at a turning point of an

eccentric orbit. To construct a non-eccentric orbit, the comoving coordinates must asymptotically

contract as well as rotate:

βi(r → ∞) = (Ω× r)i +
vr

r
ri. (1.21)

where vr < 0. The second term is a “pure expansion” in the sense that its gradient is a pure trace.

The appropriate choices for Ω and vr, at the modest hole separations s ≃ 2r ∼ 15M (with M

the total mass of the binary), are found by the following iterative scheme:

1. Start with the quasicircular guess for Ω and with vr = 0. Solve for the initial data and evolve

it.

2. Plot ds/dt, the rate of change of the proper distance between the holes’ apparent horizons, as

a function of time t. Find the best fit of ds/dt having the form

ds

dt
= A0 +A1t+B sin(ωt+ ϕ). (1.22)

3. If the binaries were Newtonian point particles, the following changes to Ω and vr would remove

the eccentricity:

ΩN = Ω − Bω

2s(t = 0)Ω
cosϕ, (1.23)

vN
r = vr −

B

2
sinϕ. (1.24)

Here the superscript “N” stands for “Newtonian.”

4. In the relativistic case, these changes will not remove the eccentricity completely. Instead, use

ΩN and vN
r as an initial guess, and go back to step 1.

Each iteration will reduce the orbital eccentricity.

In Chapter 5 I describe this argument and implement it using the Caltech and Cornell pseu-

dospectral code [35, 36, 37]. In this work, I collaborated with Harald Pfeiffer, Duncan Brown,
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Lawrence Kidder, Lee Lindblom, and Mark Scheel. My contribution to this work was limited to the

following:

• I independently arrived at Eq. (1.21), using the argument presented in this introduction. An

alternative derivation by Pfeiffer is presented in Chapter 5.

• I developed the code that, using the spectral elliptic solver developed by Pfeiffer [35], solves

the constraint equations (1.18) using the extended conformal thin sandwich (e.g. [38]) method

with (aside from modifications described above) the quasiequilibrium boundary conditions

suggested by Cook and Pfeiffer [32].

• I solved the constraint equations for several quasicircular and noneccentric initial data sets.

• I checked Pfeiffer’s derivation of the iterative scheme described in this introduction. Although

I did not carry out the scheme myself for the results described in Chapter 5, I did use the

method to reduce eccentricity in other initial data, such as that presented in Chapter 6.

• I made some minor contributions to the prose of Secs. 5.2 and 5.7.

My coauthors and I have submitted this chapter to Classical and Quantum Gravity, and it has been

accepted for publication.

1.3.3 Reducing junk radiation in binary-black-hole simulations

Current simulations of binary-black-hole spacetimes contain, in addition to the black holes, an initial

pulse of spurious, unphysical gravitational waves (e.g., Sec. 3.2 of [39]) that we refer to as “junk

radiation.”

This “junk” is a consequence of the way the initial data are constructed. The constraints (1.18)

are typically solved by a conformal decomposition [40, 41] of the initial spatial metric:

gij = ψ4g̃ij . (1.25)

The conformal metric g̃ij is freely specified; ψ is determined by solving the constraint equations.

Binary black hole initial data are usually taken to be conformally flat:

gij = ψ4δij . (1.26)

However, it is known that isolated black holes in equilibrium do not admit conformally-flat spatial

slices if the hole has linear [42] or angular [43] momentum; the holes in a binary, in general, have

both. Consequently, the simplifying demand for conformal flatness leads to initial data in which

the black holes are initially not in equilibrium; instead, they are unphysically perturbed. During
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the evolution, the holes vibrate, quickly relaxing to an equilibrium configuration, but as they do,

gravitational waves are emitted.

These spurious gravitational waves (called “junk radiation”) are unphysical (since there is no

physical mechanism behind the holes’ initial excitation), and they are computationally expensive.

Before extracting the physically-meaningful gravitational waves from a binary black hole evolution,

the simulation must run until the spurious gravitational waves have left the computational domain.

Moreover, the spurious waves have fine structure that necessitates higher resolution than would

otherwise be needed. Therefore, it is optimal to reduce this junk radiation as much as possible, even

when the holes initially are nonspinning and move at a small (v ∼ 0.1) velocity.

One way of reducing the junk radiation is to choose a conformal metric that superposes two

boosted binary black holes:

g̃ij = g̃SBS
ij ≡ δij + e−r2

A/w2 (

gA
ij − δij

)

+ e−r2

B/w2 (

gB
ij − δij

)

. (1.27)

Here “SBS” stands for “superposed-boosted-Schwarzchild,” and gA
ij and gB

ij are metrics of boosted

Schwarzschild black holes centered at positions rA and rB, respectively. The Gaussians force the

metric to be conformally flat far from the holes, which ensures that gij is consistent with asymptotic

flatness (i.e., that g̃ij is asymptotically flat and that ψ(r → ∞) = 1).

In Chapter 6, I construct initial data using Eq. (1.27) for the conformal metric. Otherwise,

the initial data scheme is the same as that described in Chapter 5 (and summarized in the previous

subsection). Then, I evolve the SBS data (again using the Caltech-Cornell pseudospectral code [35]).

I compare the SBS and conformally-flat junk waves, and find them to be smaller in the SBS case

by a factor of approximately two in amplitude (four in power). This is a significant improvement.

Chapter 6 is solely my own, though the research described there was carried out under the guidance

of H. Pfeiffer and L. Lindblom. Some variant of it will be part of a future publication.
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Chapter 2

The dependence of test-mass
thermal noises on beam shape in
gravitational-wave interferometers

In second-generation, ground-based interferometric gravitational-wave detectors such as

Advanced LIGO, the dominant noise at frequencies f ∼ 40 Hz to ∼ 200 Hz is expected

to be due to thermal fluctuations in the mirrors’ substrates and coatings which induce

random fluctuations in the shape of the mirror face. The laser-light beam averages over

these fluctuations; the larger the beam and the flatter its light-power distribution, the

better the averaging and the lower the resulting thermal noise. In semi-infinite mirrors,

scaling laws for the influence of beam shape on the four dominant types of thermal noise

(coating Brownian, coating thermoelastic, substrate Brownian, and substrate thermoe-

lastic) have been suggested by various researchers and derived with varying degrees of

rigour. Because these scaling laws are important tools for current research on optimizing

the beam shape, it is important to firm up our understanding of them. This paper (1)

gives a summary of the prior work and of gaps in the prior analyses, (2) gives a unified

and rigorous derivation of all four scaling laws, and (3) explores, relying on work by J.

Agresti, deviations from the scaling laws due to finite mirror size.

Originally published as G. Lovelace, submitted to Class. Quantum Grav. (2007),

preprint available online at http://arxiv.org/abs/gr-qc/0610041.

2.1 Introduction and summary

Second-generation interferometric gravitational wave detectors such as Advanced LIGO will be ap-

proximately ten times more sensitive than the current LIGO interferometers, leading to an improve-

ment in event rate such that the first few hours of data at design sensitivity will contain more signals
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than the entire year-long science run that is presently under way [1]. In Advanced LIGO’s most

sensitive frequency band (f ∼ 40 to 200 Hz), the sensitivity is limited by internal thermal noise,

i.e., by noise in the substrates and reflective coatings of the four test masses (see, e.g., Fig. 1 of [2]).

Lowering the internal thermal noise would increase Advanced LIGO’s event rate throughout that

band.

Internal thermal noise can be divided into two different types: Brownian thermal noise (due

to imperfections in the substrate or coating material, which couple normal modes of vibration to

each other) and thermoelastic noise (due to random flow of heat in the substrate or coating, which

causes random thermal expansion). When the laser beam shape is Gaussian, the Brownian and

thermoelastic noises in the substrate (e.g. [3]) and in the coating (e.g. [4, 5]) are well understood.

One way of lowering the internal thermal noise is to i) flatten the shape of the laser beam that

measures the test mass position so it better averages over the mirror faces’ fluctuating shapes, and ii)

enlarge it to the largest size permitted by diffraction losses. A specific enlarged, flattened shape, the

mesa beam, has been proposed by O’Shaughnessy and Thorne and explored (theoretically) in detail

by them, d’Ambrosio, Strigin and Vyatchanin [6, 7, 8], and by Agresti and DeSalvo [9, 10]. The mesa

shape was found to reduce the thermal noise powers by factors of order two, with corresponding

significant increases in the distances to which the planned interferometers can search. Motivated by

this, mesa beams are currently being explored experimentally [11, 12].

The mesa shape is unlikely to be optimal. Bondarescu and Chen (Caltech/AEI) are currently

seeking the optimal beam shape for each of the four types of noise; they are also seeking a balance

between the competing demands of the four optimal shapes. Further research will require balancing

practical aspects of mirror design against the (possibly impractical) ideal shapes.

In all this current research, a crucial tool is a set of scaling laws for the dependence of the

four types of thermal noise on the beam shape, in the limit of a mirror that is large compared

to the beam diameter (“semi-infinite mirror”). These scaling laws have been proposed by various

researchers over the past several years, and they have been derived with varying degrees of rigour,

and in some cases with unnecessarily restrictive assumptions. This prior work will be discussed and

critiqued in Sec. 2.2.2.

Because these scaling laws are so important for current research, this paper scrutinizes them and

their accuracies in some detail. In Sec. 2.2 the scaling laws and assumptions underlying them are

presented and prior research on them is described. Then in Sec. 2.3 a unified and rigorous derivation

of all four scaling laws is presented. In Sec. 2.4 the breakdown of the scaling laws due to finite mirror

size is explored. And finally, in Sec. 2.5 a few conclusions are given.
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2.2 The scaling laws and prior research on them

2.2.1 Model and summary

To explore the effect of the beam shape on the internal thermal noise, I consider a cylindrical test

mass substrate of radius R and thickness H and suppose that these size scales are comparable:

R ∼ H . I choose a cylindrical coordinate system (r, ϕ, z) such that r = 0 is the mirror axis, z = 0

is the reflectively coated surface of the mirror substrate, and points with 0 < z < H are inside the

mirror substrate.

An axisymmetric laser beam with intensity profile p(r) is normally incident on the mirror1. The

intensity profile is normalized, so

2π

∫ R

0

drrp(r) = 1. (2.1)

The beam measures q(t), a weighted average of the mirror’s longitudinal position Z(r, ϕ, t)

(Eq. (3) of [13])

q(t) ≡
∫ 2π

0

dϕ

∫ R

0

drrp(r)Z(r, ϕ, t). (2.2)

In LIGO, so as to keep diffraction losses . 1 ppm, the beam radius over which, say, 95% of the

signal q(t) is collected, is kept significantly smaller than the mirror radius R and thickness H . This

motivates the idealization of the mirror as a semi-infinite slab bounded by a plane, R→ ∞, H → ∞.

(The accuracy of this infinite-test-mass (ITM) approximation will be discussed in Sec. 2.4.2.)

Internal thermal noise will cause small fluctuations in the longitudinal position of the mirror

Z(r, ϕ, t). The spectral density Sq associated with the measurement of the mirror position q is given

by the fluctuation dissipation theorem (Eq. (1) of [13]):

Sq =
2kBT

π2f2

Wdiss

F 2
. (2.3)

Here kB is Boltzmann’s constant, T is the temperature of the material, and Wdiss is the power that

would be dissipated if a longitudinal force of amplitude F , frequency f , and pressure distribution

p(r) were applied to the mirror surface (Levin’s thought experiment [13]). Because the frequencies

of interest (i.e., f ∼ 100 Hz) are far below the lowest resonant frequencies of the mirror fres ∼
(a few km/s)/(about 10 cm) ∼ 104 Hz, the hypothetical applied force can be idealized as static

when computing the resulting strain of the mirror.

Thus the noise Sq can be computed using the following algorithm:

1. Statically deform the (semi-infinite) mirror with a force with amplitude F and pressure distri-

bution p(r) the same as the light’s intensity profile;

1The shape of the mirror faces must also be changed slightly (by height changes . one wavelength of the laser
light) so that p(r) is an eigenmode of the arm cavity. In this paper, I assume that the mirror faces take whatever
shape is necessary to support a beam with intensity profile p(r).
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2. compute the Brownian and thermoelastic dissipated powerWdiss due to the deformation caused

by the applied force;

3. substitute Wdiss into Eq. (2.3) to get the spectral density Sq of the thermal noise of a mea-

surement of the average position q.

Note that from Sq, one can easily compute the thermally-induced gravitational-wave-strain noise

power Sh(f) in a measurement by the interferometer. If mirrors 1 and 2 are in one arm (of length

L = 4 km), and mirrors 3 and 4 are in the other arm (also of length L), the interferometer measures

h ≡ [(q1 − q2) − (q3 − q4)]/L, where q1,2,3,4 are the measured positions of the four mirrors. Because

the noises in the four test masses are uncorrelated, the spectral density Sh is just Sh = (4/L2)Sq. In

the remainder of this article, when referring to the noise of a single test mass, the subscript “q” will

be suppressed (i.e., S ≡ Sq), while the gravitational-wave-strain noise power will always be referred

to as Sh.

In Sec. 2.3.1, I compute the strain distribution that results from applying the pressure Fp(r) to a

homogeneous, isotropic, semi-infinite mirror with a very thin reflective coating of a possibly different

material. The calculation is a straightforward generalization of Sec. 2 of [4]. In this calculation, I

model the coating as a thin layer (of order microns, as compared to the cm size scales of the substrate)

which adheres to the mirror surface. In Sec. 2.3.2 I use the strain distributions to compute each of

the four types of thermal noise S(f). I find that if p1(r) and p2(r) are two different beam shapes,

then
S1,n

S2,n
=

∫∞
0

dkkn [p̃1(k)]
2

∫∞
0

dkkn [p̃2(k)]
2 (2.4)

where n = 1 for coating Brownian and coating thermoelastic noise, n = 0 for substrate Brownian

noise, and n = 2 for substrate thermoelastic noise. Here p̃(k) is (up to factors of 2π) the two-

dimensional Fourier transform of p(r) over the surface of the mirror:

p̃(k) =

∫ ∞

0

drrJ0(kr)p(r),

p(r) =

∫ ∞

0

dkkJ0(kr)p̃(k). (2.5)

Here J0(x) is the 0th Bessel function of the first kind (the axisymmetry allows the 2D Fourier

transform to reduce to a 1D Hankel transform).

If one knows S1,n, computing S2,n amounts to computing simple integrals of p̃(k). If one holds

everything else fixed but changes the beam shape, the scaling law (2.4) makes it straightforward

to determine the improvement in the thermal noises and the corresponding improvement in the

interferometer sensitivity.

In the remainder of this paper, I derive these scaling laws, comment on their implications for

Advanced LIGO, and estimate their accuracy for finite test masses. In Sec. 2.2.2, I discuss prior



20

work related to the scaling laws. In Sec. 2.3.1, I compute the strain Sij due to a hypothetical applied

force with amplitude F and pressure distribution p(r). Then, in Sec. 2.3.2, I compute the dissipated

power Wdiss for the Brownian and thermoelastic dissipation in the coating and the substrate and

insert Wdiss into Eq. (2.3) to determine how the noise depends on the beam shape. In Sec. 2.4.1, I

discuss implications of this result for Advanced LIGO, and in Sec. 2.4.2 I discuss the accuracies of the

infinite-test-mass (ITM) scaling laws by comparing with others’ finite-test-mass (FTM) predictions

for the cases of Gaussian and mesa beam shapes. I make some concluding remarks in Sec. 2.5.

2.2.2 Discussion of prior research

2.2.2.1 Thermoelastic substrate noise

In Levin’s thought experiment, the dissipation associated with thermoelastic noise arises from heat

flow down temperature gradients, which are induced by compression of the coating or substrate by

the applied force. The increase in entropy corresponds to a dissipated power.

In 2003, in connection with his invention of the mesa beam and exploration of its properties,

O’Shaughnessy used Levin’s thought experiment to derive the following scaling law for the thermoe-

lastic substrate noise:

STE
sub = CTE

sub

∫ ∞

0

dkk2p̃2(k), (2.6)

where CTE
sub does not depend on the beam shape. This scaling law ultimately motivated the other

three. O’Shaughnessy included his derivation of this law as Appendix H of his (as yet unpublished)

2004 paper with Strigin and Vyatchanin [8] on mesa beams. He used a slightly different (but no

less rigorous) method from the unified derivation I give in Sec. 2.3.2.4 [Eq. (2.38)]. O’Shaughnessy

wrote the scaling law in terms of 2D Fourier transforms; the reduction to 1D Hankel transforms

makes numerical evaluation of the scaling law (2.6) very efficient (Sec. 2.4.1).

2.2.2.2 Thermoelastic coating noise

Braginsky and Vyatchanin (Appendix B.2 of [5]) and Fejer and collaborators (Sec. IV D of [14])

have independently calculated the thermoelastic coating noise for Gaussian beam shapes (though

the analysis in [5] is only valid when the coating and substrate elastic properties are identical [14]).

Scrutinizing the derivation in [14], Thorne speculated in 2004 (unpublished) that the thermoelastic

coating noise obeys a scaling law of the form

STE
coat = CTE

coat

∫ ∞

0

dkkp̃2(k). (2.7)

In 2006 I verified Thorne’s conjecture via almost trivial generalizations of the Braginsky-Vyatchanin

and Fejer et al. analyses; my derivation is given in Sec. 2.3.2.2 [Eq. (2.28)]. In 2006 O’Shaughnessy,
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learning of my work but not knowing my result, extended a clever dimensional analysis argument

(Sec. 2.2.2.5) that he originally invented for Brownian coating noise (below) to the other three types

of noises [15]; but for thermoelastic coating noise he got an answer that disagrees with Thorne’s

conjecture and my result (2.7). When I pointed out the discrepancy, O’Shaughnessy found an error

in his dimensional analysis and revised his manuscript to give the correct scaling law (2.7) [16].

2.2.2.3 Brownian coating noise

In Levin’s thought experiment, the dissipation associated with Brownian thermal noise can be mod-

elled as arising from a loss angle, which is an imaginary (i.e., damping) correction to the material’s

Young’s modulus caused by coating or substrate imperfections.

In 2004, Thorne communicated to O’Shaughnessy and Vyatchanin his conjecture (2.7) for the

scaling law for thermoelastic coating noise, and challenged them to find an analogous scaling law for

Brownian coating noise. Independently, they each devised simple arguments that led to the law

SBR
coat = CBR

coat

∫ ∞

0

drrp2(r) = CBR
coat

∫ ∞

0

dkkp̃2(k). (2.8)

O’Shaughnessy gave both an argument based on dimensional analysis (Sec. 2.2.2.5) and a derivation

for the special case that the substrate and coating have the same elastic properties. Vyatchanin’s

analysis [17] was based on a derivation for Gaussian beams, followed by an argument that, if a beam

with another shape p(r) can be constructed by superposing Gaussian beams, then this scaling law

must hold also for that other shape.

The scaling law (2.8) is local, i.e., the noise at a point on the mirror depends only on the beam

intensity evaluated at that point. Thorne’s intuition, however, led him to believe (incorrectly) that

the scaling law should be nonlocal2. Consequently, Thorne was so highly sceptical of O’Shaughnessy’s

and Vyatchanin’s arguments and the claimed scaling law that he—unfortunately—dissuaded both

O’Shaughnessy and Vyatchanin from publishing their arguments and result.

The following year (2005), Thorne, still sceptical of the O’Shaughnessy-Vyatchanin result (2.8),

suggested to me that I carry out a detailed derivation of the Brownian-coating-noise scaling law

from first principles. My analysis, based on Levin’s method and reported in this paper, gave the

result (2.8), in agreement with O’Shaughnessy and Vyatchanin, and motivated O’Shaughnessy to

publish [16] his dimensional-analysis argument.

O’Shaughnessy’s derivation is restricted (unrealistically) to identical elastic properties for sub-

strate and coating. My derivation [Eq. (2.23) below] allows the substrate and the coating to have

different elastic properties. Vyatchanin’s derivation is valid only for those beam shapes that can be

achieved by superposing Gaussians—though it might well be that any shape can be achieved in this

2It turns out (Sec. 2.3.2.1) that nonlocal terms do appear at intermediate steps in the derivation but do not

contribute to the scaling law itself.
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way. My derivation is definitely valid for any axially symmetric beam shape p(r).

2.2.2.4 Brownian substrate noise

In 2005 Vinet proposed [18] the following scaling law for the substrate Brownian noise:

SBR
sub = CBR

sub

∫ ∞

0

dkp̃2(k). (2.9)

He deduced this law as a trivial consequence of his Eqs. (1)–(3). He did not present a derivation of

those equations, but he recognized that they can be obtained by generalizing the derivation in [19],

which assumes that the beam shape is Gaussian. In Sec. 2.3.2.3, I explicitly derive Eq. (2.9). In

parallel with my work, O’Shaughnessy applied his dimensional analysis technique to verify Vinet’s

scaling law (2.9).

2.2.2.5 Dimensional analysis

O’Shaughnessy’s dimensional analysis argument, referred to above, consists of three steps:

1. The scaling laws must take the form of a translation-invariant inner product of p(r) with itself,

since the mirror is taken to be semi-infinite. In the Fourier domain, for axisymmetric beam

shapes p1(r) and p2(r), the scaling law must then take the form:

S1

S2
=

∫∞
0

dkkG̃(k)p̃2
1(k)

∫∞
0 dkkG̃(k)p̃2

2(k)
. (2.10)

2. The only length scale (other than the width of the beam) is the small coating thickness d, so

G̃(k) = knd for coating thermal noise and G̃(k) = kn for substrate thermal noise.

3. The power n is chosen by demanding that, when the beam shape is a Gaussian, the noise scale

as the correct power of the beam width.

This argument turns out to produce the correct scaling laws, but without sufficient care, it can

also lead one amiss. For instance, when considering thermoelastic coating noise, step (ii) must be

amended, since there is a second length scale: the characteristic length of diffusive heat flow [5, 14].

In his original manuscript [15], O’Shaughnessy neglected this second length scale, and incorrectly

deduced that n = 3 for coating thermoelastic noise. After I contacted O’Shaughnessy regarding

this error, he corrected his analysis [16] and obtained the same result, n = 1, as I had derived

(Sec. 2.3.2.2) below.
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2.3 Derivation of the infinite-test-mass (ITM) scaling laws

2.3.1 Strain of a semi-infinite body with thin facial coatings due to a

static, axisymmetric force

The thermal noise is determined by the symmetric part of the strain Sij that the test mass would

experience if a normal force with pressure p(r) were applied to the mirror surface. In this section, I

evaluate Sij in the mirror substrate and coating. In Sec. 2.3.2, I use these results to compute Wdiss

[which, by Eq. (2.3), determines the thermal noise].

If the displacement vector of an element of the test mass is ui, then the strain Sij is Sij = ∇jui.

Following the methods developed in [19] (but correcting some typographical errors), Eq. (19) of [3]

gives the cylindrical components of the displacement of the test mass substrate:

ur =
1

2µ

∫ ∞

0

dkJ1(kr)e
−kz

(

1 − λ+ 2µ

λ+ µ
+ kz

)

p̃(k),

(2.11a)

uϕ = 0, (2.11b)

uz =
1

2µ

∫ ∞

0

dkJ0(kr)e
−kz

(

1 +
µ

λ+ µ
+ kz

)

p̃(k).

(2.11c)

Here λ and µ are the Lamé coefficients of the substrate. The vector ui satisfies the equilibrium

equation ∇jTij = 0. (Throughout this paper, I use the Einstein summation convention.)

The non-vanishing components of the symmetric part of the strain are [with commas denoting

partial derivatives]

θ = Sii, (2.12a)

Srr = ur,r = θ − Szz − Sϕϕ, (2.12b)

Sϕϕ =
ur

r
, (2.12c)

S(rz) = S(zr) =
1

2
(ur,z + uz,r), (2.12d)

Szz = uz,z. (2.12e)

Evaluating the derivatives of Eqs. (2.11a)–(2.11c) and inserting the result into Eqs. (2.12a)–(2.12e)
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gives

θ =
1

2µ

∫ ∞

0

dkkJ0(kr)

( −2µ

λ+ µ

)

e−kz p̃(k),

(2.13a)

Srr = θ − Szz − Sϕϕ,

(2.13b)

Sϕϕ =
1

2µ

∫ ∞

0

dk
J1(kr)

r
e−kz

(

1 − λ+ 2µ

λ+ µ
+ kz

)

p̃(k),

(2.13c)

S(zr) = − 1

2µ

∫ ∞

0

dkkJ1(kr)(kz)e
−kz p̃(k),

(2.13d)

Szz =
1

2µ

∫ ∞

0

dkkJ0(kr)

(

− µ

λ+ µ
− kz

)

e−kz p̃(k).

(2.13e)

Setting z = 0 in Eqs. (2.13a)–(2.13e) and combining with Eq. (2.5) yields the nonvanishing stresses

on the substrate surface:

θ|z=0 =

( −1

λ+ µ

)

p(r), (2.14a)

Srr |z=0 =
1

2

( −1

λ+ µ

)

p(r) − Sϕϕ |z=0 , (2.14b)

Sϕϕ |z=0 =
1

2

( −1

λ+ µ

)∫ ∞

0

dk
J1(kr)

r
p̃(k), (2.14c)

Szz |z=0 =
1

2

( −1

λ+ µ

)

p(r). (2.14d)

Here I have used the identity

∫ ∞

0

dkkJ0(kr)J0(kr
′) =

δ(r′ − r)

r′
. (2.15)

Note that on the surface of the substrate θ and Szz are local [i.e., their values at any point depend

only on the value of p(r) at that point], while Sϕϕ is nonlocal. The component Srr can be written

as the sum of a local part and a nonlocal part; the nonlocal part of Srr is just −Sϕϕ.

The thin-coating approximation gives the nonvanishing components of the coating strain in terms
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of the strain on the substrate surface (Eq. (A4) of [4]):

θcoat =
λ+ 2µcoat

λcoat + 2µcoat
(θ − Szz)|z=0

+
λ+ 2µ

λcoat + 2µcoat
Szz |z=0 , (2.16a)

Scoat
rr = Srr|z=0 = θcoat − Scoat

ϕϕ − Scoat
zz ,

(2.16b)

Scoat
ϕϕ = Sϕϕ|z=0 ,

(2.16c)

Scoat
zz =

λ− λcoat

λcoat + 2µcoat
(θ − Szz)|z=0

+
λ+ 2µ

λcoat + 2µcoat
Szz |z=0 .

(2.16d)

In [4], these conditions are said to hold in the limit that the Poisson ratio of the substrate and

coating are “not too different,” but this restriction is unnecessary (see 2.7).

Finally, after inserting Eqs. (2.14a)–(2.14d) into Eqs. (2.16a)–(2.16d) I conclude that θcoat and

Scoat
zz are local ; while Scoat

ϕϕ and Scoat
rr are nonlocal. However, this nonlocality turns out not to

influence the coating noises. This is because, after using Eq. (2.16b) to eliminate Scoat
rr , it turns out

that the remaining nonlocal part Scoat
ϕϕ only appears in the coating Wdiss [according to Eqs. (2.22)

and (2.27)] via the integral

∫ ∞

0

drrScoat
(ij) S

coat
(ij) =

∫ ∞

0

drr
[

(Scoat
rr )2 + (Scoat

ϕϕ )2 + (Scoat
zz )2

]

=

∫ ∞

0

drr
[

(

θcoat − Scoat
zz

)2
+ (Scoat

zz )2 + 2(Scoat
ϕϕ )2 − 2Scoat

ϕϕ

(

θcoat − Scoat
zz

)

]

. (2.17)

In 2.6, I show that

∫ ∞

0

drr(Scoat
ϕϕ )2 − Scoat

ϕϕ

(

θcoat − Scoat
zz

)

= 0, (2.18)

so only the local parts of the strain (θcoat and Scoat
zz ) influence the thermal noise. This fact turns

out to imply local coating scaling laws in agreement with O’Shaughnessy’s [16] and Vyatchanin’s

[17] arguments (Sec. 2.3.2).
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2.3.2 Internal thermal noise

2.3.2.1 Brownian coating noise

For Brownian thermal noise in an elastic material, the dissipated power is [Eq. (12) of [13] with a

static applied force and with U = −(1/2)SijTij ]

Wdiss = −πf
∫ d

0

dz

∫ 2π

0

dϕ

∫ ∞

0

drrφ(f)SijTij . (2.19)

Here φ is the loss angle (i.e., the imaginary, damping part of the Young’s modulus of the coating

material) and Tij is the stress. When the material is the thin reflective coating of a mirror, there

are effectively two loss angles [4], φ‖ and φ⊥, defined so that in the previous equation

φ(f)SijTij → φ‖(f)
(

Scoat
rr T coat

rr + Scoat
ϕϕ T coat

ϕϕ

)

+ φ⊥(f)Scoat
zz T coat

zz

= φ‖(f)Scoat
ij T coat

ij +
(

φ⊥ − φ‖
)

Scoat
zz T coat

zz . (2.20)

This result can be obtained by combining Eqs. (4) and (13)–(15) of [4] with Eq. (9) of [13] and

recalling that in the coating, the strain [Eqs. (2.16a)–(2.16d)] is diagonal.

For a homogeneous coating, the stress T coat
ij is

T coat
ij = −λcoatθcoatδij − 2µcoatScoat

(ij) , (2.21)

where λcoat and µcoat are the Lamé coefficients of the coating, Scoat
(ij) is the symmetric part of the

coating strain, and θ ≡ Sii is the expansion. Combining Eqs. (2.20), (2.19), and (2.21) gives the

following expression for Wdiss:

Wdiss = 2π2fdφ‖(f)

∫ ∞

0

drrA + 2π2fd
[

φ⊥(f) − φ‖(f)
]

∫ ∞

0

drrB,

A =
(

λcoatθ2coat + 2µcoatScoat
(ij) S

coat
(ij)

)

,

B = Scoat
zz

(

λcoatθcoat + 2µcoatScoat
zz

)

. (2.22)

Combining Eqs. (2.22), (2.16a)–(2.16d), (2.14a)–(2.14d), and (2.18) and then inserting the result

into Eq. (2.3) gives the spectral density S of the Brownian coating noise. However, for the present

purpose, only terms involving the beam shape are relevant. Absorbing all other terms into a single

constant CBR
coat yields

SBR
coat = CBR

coat

∫ ∞

0

drrp2(r). (2.23)

This is a local scaling law; i.e., the noise at each point on the mirror’s surface is proportional to the

square of the beam intensity there. This law is the same as O’Shaughnessy’s [16] and Vyatchanin’s
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[17] scaling law for the Brownian coating thermal noise.

Parseval’s equation [which follows from Eq. (2.5)] makes it easy to rewrite this scaling law in the

Fourier domain, which will facilitate comparison with the substrate noise. The result is

SBR
coat = CBR

coat

∫ ∞

0

dkkp̃2(k). (2.24)

2.3.2.2 Thermoelastic coating noise

The calculation of the thermoelastic coating noise is similar to the calculation of Brownian coating

noise. But now, in response to the static, normal applied pressure p(r), the dissipated power Wdiss is

caused by heat flow, ∝ ∇δT , down a temperature gradient∇δT caused by the material’s deformation:

Wdiss =
πκ

T

∫ ∞

0

dz

∫ ∞

0

drr (∇δT )2 . (2.25)

[Eq. (5) of [3] in the case of a static applied force and after evaluating the time average and trivial

ϕ integral]. Here T is the temperature of the coating in the absence of the deformation and κ is the

material’s coefficient of thermal conductivity.

Braginsky and Vyatchanin [5] and Fejer and collaborators [14] have independently solved for

the thermoelastic coating noise. The results obtained in [5] are correct only when the coating and

substrate have the same elastic properties (Sec. I in [14]); however, this restriction is not relevant

here, since [14] and [5] agree on the coating thermoelastic noise’s dependence on the beam shape

p(r).

If the temperature change were adiabatic, δT would simply be proportional to θcoat (see, e.g.,

Eq. (12) of [3]). (Physically, this simply means that the temperature of an element in the coating

changes linearly with volume.) However, as noted in [5], the diffusive heat characteristic length ℓD

of the substrate and coating (on the order of mm) is far larger than the coating thickness d (which

is on the order of a few microns). Because diffusive heat flow in the longitudinal direction is not

negligible, heat flow in the direction normal to the coating cannot be treated adiabatically [5]. By

contrast, the substrate thermoelastic noise can be treated adiabatically (Sec. 2.3.2.4), as can the

heat flow in the plane of the coating (“tangential” heat flow).

Because the tangential heat flow is adiabatic, ∂δT/∂r ∼ θ/w, where w ∼ cm is the length scale

over which p(r) varies. On the other hand, ∂δT/∂z ∼ θ/ℓD, where ℓD ∼ mm is the diffusive heat

characteristic length. Because the tangential derivatives are much smaller than the longitudinal

derivatives, all derivatives except ∂/∂z may be neglected. It follows that Wdiss will depend only on

p(r) and not on its radial derivatives.

Based on these observations, Braginsky and Vyatchanin [5] and Fejer and collaborators [14] solve

the thermoconductivity equation (e.g., Eq. (1) of [14]) for the temperature perturbations δT . Both
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[5] and [14] assume that the beam shape is Gaussian, but it is quite easy to generalize their arguments

to non-Gaussian beam shapes. Combining Eqs. (B5)–(B7), (66), and (68) of [14] (but now regarding

their function ρ(r) as a generic beam shape) shows that the temperature perturbations in the coating

have the form

δT ∝ p(r) × F (z), (2.26)

where F (z) is a function of z only. [Equivalently, Eq. (2.26) can be obtained by combining Eqs. (B.10)

and (B.12) of [5] (but now regarding θ as an expansion corresponding to a generic beam shape) with

Eqs. (2.14a) and (2.16a).] The precise form of F (z) is given in [5] and [14] but is not needed in the

present discussion.

Next, Braginsky and Vyatchanin compute the squared gradient (∇δT )2 ≃ (∂δT/∂z)2 in Eq. (2.25)

to obtain Wdiss; Fejer and collaborators instead compute Wdiss by considering the interaction of i)

the unperturbed stress and strain [i.e., the stress and strain due to p(r) when temperature perturba-

tions are neglected], and ii) the (complex) perturbations of the stress and strain caused by the small

temperature perturbations δT . Both methods lead to the following expression forWdiss: (Eqs. (B.13)

and (B.10) of [5]; Eq. (69) of [14])

Wdiss = const ×
∫ ∞

0

drrp2(r). (2.27)

Plugging this result into Eq. (2.3) gives the scaling law

STE
coat = CTE

coat

∫ ∞

0

drrp2(r) = CTE
coat

∫ ∞

0

dkkp̃2(k). (2.28)

This is the same scaling law as for Brownian coating thermal noise. The coating thermoelastic noise

is local and is the same as O’Shaughnessy’s [16] and Vyatchanin’s [17] law for Brownian coating

thermal noise.

2.3.2.3 Brownian substrate noise

For Brownian substrate thermal noise there is only one relevant loss angle, φ, so the dissipated power

is (Eq. (49) of [3] with a static applied force)

Wdiss = 2π2fφ(f)

∫ ∞

0

dz

∫ ∞

0

drr
(

λθ2 + 2µS(ij)S(ij)

)

.

(2.29)
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The integral of the squared strain can be expanded as

∫ ∞

0

dz

∫ ∞

0

drrS(ij)S(ij) =

∫ ∞

0

dz

∫ ∞

0

drr
(

S2
rr + S2

ϕϕ + S2
zz

)

=

∫ ∞

0

dz

∫ ∞

0

drr
[

(θ − Szz)
2
+ S2

zz + 2S2
(rz) + 2S2

ϕϕ − 2Sϕϕ (θ − Szz)
]

. (2.30)

In 2.6, I show that

∫ ∞

0

drr
[

S2
ϕϕ − Sϕϕ (θ − Szz)

]

= 0. (2.31)

Substituting this result into Eq. (2.30) yields

Wdiss = 2π2fφ(f)

∫ ∞

0

dz

∫ ∞

0

drr
[

λθ2 + 2µ (θ − Szz)
2

+ 2µS2
zz + 4µS2

(rz)

]

. (2.32)

This expression can be evaluated term by term. Inserting Eq. (2.13a) into the integral of θ2 gives

Iθ ≡
∫ ∞

0

dz

∫ ∞

0

drrθ2

=
1

4µ2

(

2µ

λ+ µ

)2 ∫ ∞

0

dkkp̃(k)

∫ ∞

0

dk′k′p̃(k′)

∫ ∞

0

dze−(k+k′)z

∫ ∞

0

drrJ0(kr)J0(k
′r). (2.33)

Using the identity
∫ ∞

0

drrJn(kr)Jn(k′r) =
δ(k − k′)

k
(2.34)

on Eq. (2.33) and evaluating the integral over z yields

Iθ =
1

8µ2

(

2µ

λ+ µ

)2 ∫ ∞

0

dkp̃2(k). (2.35)

The other terms in Eq. (2.32) can be evaluated similarly; they all turn out to have the same depen-

dence on p̃(k) as Iθ. Inserting this result for Wdiss into Eq. (2.3) gives the scaling law

SBR
sub = CBR

sub

∫ ∞

0

dkp̃2(k). (2.36)

This scaling law is the same as the scaling law (2.24) for the coating thermal noise except that the

z integration has reduced the power of k in the integrand by one. This scaling law agrees with

Eqs. (1)–(2) of [18].

2.3.2.4 Thermoelastic substrate noise

In contrast to the case of coating thermoelastic noise, the substrate thermoelastic noise can be

treated using the adiabatic approximation. Therefore, the temperature perturbations δT that drive
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the substrate thermoelastic noise STE
sub are proportional to the expansion, i.e., δT ∝ θ. This implies

(e.g., by Eq. (2.25), or Eq. (13) of [3])

STE
sub = CTE

sub

∫ ∞

0

dz

∫ ∞

0

drr(∇θ)2 (2.37)

with CTE
sub independent of the strain (and thus also the beam shape). Inserting Eq. (2.13a) into

Eq. (2.37) gives the scaling law; after absorbing all constants into CTE
sub, it takes the form

STE
sub = CTE

sub

∫ ∞

0

dkk2p̃2(k), (2.38)

which O’Shaughnessy, Strigin, and Vyatchanin obtain in [8]. This scaling law is the same as the

scaling law (2.36) for the substrate Brownian noise except that the gradient raises the power of k

by two.

2.4 Applying the ITM scaling laws to second-generation

gravitational-wave interferometers

To illustrate the scaling laws (2.23), (2.28), (2.36), and (2.38), suppose that the noise Sτ,k [with

beam shape pk(r) and thermal noise type τ ] is known. Here and throughout the remainder of this

article, τ is a label that takes one of the following values: coating Brownian (Coat BR), coating

thermoelastic (Coat TE), substrate Brownian (Sub BR), or substrate thermoelastic (Sub TE).

Now, if the beam shape were changed to pu(r) [while holding everything3 else fixed], then the

unknown noise Sτ,u [with beam shape pu(r)] would be [Eq. (2.4)]:

Sτ,u = C2
ITM[τ ; pu, pk]Sτ,k, (2.39)

with

C2
ITM[τ ; pu, pk] ≡

∫∞
0

dkkn(τ)p̃2
u(k)

∫∞
0

dkkn(τ)p̃2
k(k)

(2.40)

and

n(τ) ≡



















1 : τ = Coat BR or Coat TE

0 : τ = Sub BR

2 : τ = Sub TE .

(2.41)

When the beam shape is changed from pk to pu, the amplitude sensitivity changes by a factor

3Since here I am neglecting edge effects, “everything” means the temperature, the materials’ elastic and thermal
properties, the coating thickness, and the frequency. In Sec. 2.4.2, when edge effects are considered, it will be the
diffraction loss, not the mirror size, that is held fixed.
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Figure 2.1: A plot of pgauss(r/b) and pmesa(r/b) for beams with 1 ppm diffraction losses (in the

clipping approximation) on a mirror with radius R = 17 cm. Here b =
√

Lλ/2π = 2.6 cm is the
width of the smallest Gaussian beam that can resonate in a LIGO arm cavity with length L = 4 km
and light wavelength λ = 1064 nm.

of CITM[τ ; pu, pk].

2.4.1 Implications for Advanced LIGO

In Advanced LIGO, the thermal noise may be significantly reduced by changing the shape of the laser

beam. One proposal is to replace the Gaussian beam shape with a mesa beam (also called a flat-top

beam) [6]. O’Shaughnessy, Strigin, and Vyatchanin [8] have calculated the resulting reduction in

substrate thermoelastic noise, Vinet has done the same for substrate Brownian thermal noise [18],

and Agresti [2] and Agresti and DeSalvo [9, 10] have done the same for both substrate and coating

thermal noises—all for the realistic case of finite mirrors. The reduction in thermal noise can also

be understood as a consequence of the simple ITM scaling laws derived above. Although I only

compare Gaussian and flat-top beams here, the scaling law given in Eq. (2.4) makes it simple—if

one neglects finite-test-mass (FTM) effects—to compute the relative change in sensitivity for any

two beam shapes.

The normalized Gaussian beam shape is

pgauss(w; r) =
e−r2/w2

πw2
(2.42)

where w is the width of the Gaussian beam. It is straightforward to compute p̃gauss(w; k), since the

integral can be done analytically; the result is

p̃gauss(w; k) =

∫ ∞

0

drrJ0(kr)
e−r2/w2

πw2
=

1

2π
e−k2w2/4. (2.43)
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Figure 2.2: A log-log plot of the Gaussian beam-width parameter w and mesa beam-width parameter
D as a function of mirror radius R (top of figure), for mirrors with 1 ppm diffraction loss in the
clipping approximation. The ratio D/w is shown on the bottom of the figure. The parameter b is
defined in Fig. 2.1.

In position space, the mesa beam can be written as (Eq. (2.5) of [7])

pmesa(D; r) = N

∣

∣

∣

∣

∣

2π

∫ D

0

dr′r′ exp

[

− (r2 + r′2)(1 − i)

2b2

]

× I0

[rr′(1 − i)

b2

]

∣

∣

∣

∣

∣

2

. (2.44)

Here D is a measure of the width of the beam, b ≡
√

λL/2π, with L = 4 km the arm length

and λ = 1064 nm the wavelength of the laser beam’s primary frequency, and N is a normalization

constant adjusted so Eq. (2.1) is satisfied. Note that pmesa(r) must be evaluated numerically; to

compute p̃(k) efficiently, I use the Fast Hankel Transform algorithm [20].

Examples of the Gaussian and mesa shapes are plotted in Fig. 2.1. In Fig. 2.2, the width

parameters w and D of a sequence4 of Gaussian and mesa beams are plotted as a function of mirror

radius R for beams with 1 ppm of diffraction loss in the clipping approximation5. The ratio D/w

is also shown on the bottom horizontal axis. It is sometimes useful to regard D and w (for 1 ppm

losses) as functions of D/w rather than of R—with D/w actually being a surrogate for R.

The following three cases use Eqs. (2.39)–(2.41) to illustrate how the thermal noise in Advanced

LIGO changes with different choices of Gaussian and mesa beam shapes.
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Figure 2.3: The scaling of thermal noises with beam width w for Gaussian beams in the infinite-test-
mass (ITM) approximation. More specifically: a log-log plot of CITM[τ ; pgauss(w; r), pgauss(wo; r)] as
a function of w/b. Here wo/b = 1.24, which corresponds to R = 12 cm and 1 ppm diffraction losses.
Each curve is a power law obeying C ∝ 1/wγ .

2.4.1.1 Noise of a resized Gaussian beam

Suppose pk(r) = pgauss(wo; r). Then the thermal noises for a Gaussian beam of some different size w

are determined by evaluating CITM[τ ; pgauss(w; r), pgauss(wo; r)] [Eq. (2.40)] and inserting the result

into Eq. (2.39). In this well-known case (see, e.g., the discussion and references in [10]), CITM can

be evaluated analytically, yielding the following relation:

C2
ITM[τ ; pgauss(w; r), pgauss(wo; r)] ∝

1

wn(τ)+1
. (2.45)

In Fig. 2.3, CITM[τ ; pgauss(w; r), pgauss(wo; r)] is plotted as a function of the beam width w.

2.4.1.2 Noise of a resized mesa beam

Suppose pk(r) = pmesa(Do; r). Then the thermal noises for a mesa beam of some different size D

are determined by evaluating CITM[τ ; pmesa(D; r), pmesa(Do; r)] [Eq. (2.40)] and inserting the results

into Eq. (2.39). As shown in Fig. 2.4, in this case CITM does not scale as an exact power of D

(although the actual relations are very well approximated by power laws).

4This particular sequence was chosen to facilitate comparison with the results of [10], which includes edge effects.
5In the clipping approximation, the diffraction loss is simply 2π

R

∞

R
drrp(r), where R is the mirror radius. In the

ITM approximation, R is larger than all other length scales; however, the actual, finite value of R must be used in
the clipping approximation for the diffraction loss to be nonvanishing.
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Figure 2.4: The scaling of thermal noises with beam-width parameter D for mesa
beams in the infinite-test-mass approximation. More specifically: a log-log plot of
CITM[τ ; pmesa(D; r), pmesa(Do; r)] as a function of D/b. Here Do/b = 1.76, which corresponds to
a mirror radius of 12 cm and 1 ppm diffraction losses. The curves are well approximated by power
laws of the form C ∝ 1/Dγ .

2.4.1.3 Noise reduction by switching from a Gaussian beam to a mesa beam with the

same diffraction loss and mirror radius

Finally, the scaling law (2.39) can be used to estimate the reduction in thermal noise by switching

from a Gaussian beam to a mesa beam that has the same clipping-approximation diffraction loss on

a mirror of the same radius.

Two complications in the resized-beam scalings are not present when scaling from Gaussian to

mesa beams. First, while the original and resized beams were associated with different-sized mirrors,

now the Gaussian and mesa beams are associated with the same mirror. Second, when relating the

Gaussian and mesa beams, there is no need to specify a fiducial beam size (i.e., there is no analogue of

wo and Do). Without these two complications, the Gaussian-to-mesa scaling is perhaps conceptually

cleaner than the resized-beam scalings.

Fig. 2.5 shows CITM[τ ; pmesa(D; r), pgauss(w; r)] for the sequence of beams shown in Fig. 2.2

(beams with 1 ppm diffraction loss in mirrors of the same radius R). The relative improvement in

amplitude sensitivity increases monotonically with the mirror radius R, or equivalently, with D/w;

however, when edge effects (i.e., finite-test-mass effects) are included, there is a limit to how much

the sensitivity can be improved (Sec. 2.4.2).

2.4.2 Errors due to neglecting finite-test-mass (FTM) effects

In the previous section, the ITM scaling laws predicted that, if the diffraction losses are held fixed,

then the coating and substrate noises decrease monotonically with increasing beam width [Figs. 2.3,
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Figure 2.6: How the Gaussian beam width parameter w compares to the mirror radius R and
thickness H , when i) the radius R is fixed so the clipping-approximation diffraction loss is 1 ppm
(unless a 10 ppm loss is indicated), and ii) the thickness H is then determined by holding the mass
at 40 kg, the Advanced-LIGO baseline mirror mass. Each curve is proportional to wγ . FS and Sap
mean fused-silica and sapphire substrates.
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Figure 2.7: How the mesa beam width parameter D compares to the mirror radius R and thickness
H , when i) the radius R is fixed so the clipping-approximation diffraction loss is 1 ppm (unless a
10 ppm loss is indicated), and ii) the thickness H is then determined by holding the mass at 40 kg.
The mirror radius R for 1 ppm losses is shown on the top axis; the 10 ppm mirror radii are (from
left to right) R10 ppm =13.94 cm, 15.7 cm, 16.37 cm, 18.85 cm, and 21.36 cm. FS and Sap mean
fused-silica and sapphire substrates.

2.4, and 2.5]. In other words, for a given diffraction loss, the optimal beam width is simply “as large

as possible.”

However, this conclusion is only as strong as the ITM approximation. Its validity can be checked

by comparing the beam widths to the corresponding mirror dimensions. In our modelling, the mirror

radii R are adjusted to maintain a constant clipping-approximation diffraction loss (CADL) [Fig.

2.2], while the thicknesses H is then determined by requiring the mirror mass be 40 kg—the design

specification for Advanced LIGO. (Thus H will depend on whether the substrate is fused silica (FS)

or sapphire (Sap), since the densities of these materials differ by a factor of about 2.)

As shown in Figs. 2.6 and 2.7, for the sequences of beam widths considered in Sec. 2.4.1, w

and D can approach or even exceed H while simultaneously being significant fractions of the R.

Consequently, edge effects (finite test-mass effects) may significantly change the sensitivity scalings

depicted in Figs. 2.3, 2.4, and 2.5.

To estimate the importance of these edge effects, I compare the results in Secs. 2.4.1.1–2.4.1.3 to

the finite-test-mass (FTM) results6 of Agresti and DeSalvo [10] (all types of thermal noise, 1 ppm

CADL) and O’Shaughnessy, Strigin, and Vyatchanin [8] (substrate thermoelastic noise only, 10 ppm

6The FTM data used here assume that the coating extends all the way to the edge of the substrate face. In
Advanced LIGO, the coating radius will actually be several mm smaller than the substrate radius (the baseline
substrate radius for Advanced LIGO is 170 mm).
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Figure 2.8: A log-log plot of ∆[τ ; pgauss(w; r), pgauss(wo; r)]. The fractional error of the sensitivity
change made by neglecting edge effects is |1−∆|. Here wo/b = 1.24, which corresponds to R = 12 cm
and 1 ppm diffraction losses. The FTM values are obtained by taking ratios of the noises calculated
by Agresti and DeSalvo (2007). FS and Sap mean fused-silica and sapphire substrates.

CADL). Specifically, from these data I read off the ratio

CFTM[τ ; pu(r), pk(r)] ≡
√

SFTM
τ,u

SFTM
τ,k

. (2.46)

This change in sensitivity can be compared to CITM[τ ; pk(r), pu(r)], the change in sensitivity obtained

by the ITM approximation. Specifically, if

∆[τ ; pu(r), pk(r)] ≡ CFTM[τ ; pu(r), pk(r)]

CITM[τ ; pu(r), pk(r)]
, (2.47)

then |1−∆| is the fractional error made by using the ITM approximation to compute C[τ ; pu(r), pk(r)].

In the following subsections, I consider the errors |1−∆| made [Secs. 2.4.1.1–2.4.1.3] by neglecting

FTM effects.

2.4.2.1 Resized Gaussian beam

Fig. 2.8 plots ∆[τ ; pgauss(w; r), pgauss(wo; r)] for mirror substrates made of fused silica, the baseline

material for Advanced LIGO mirrors [1]. For comparison, the figure also shows the corresponding

values of ∆ for sapphire substrates.

When the substrate is fused silica, the ITM and FTM scaling laws agree to better than about

10% so long as R . 17 cm, the Advanced-LIGO baseline mirror radius [1]. As R increases beyond

about 17 cm, |1−∆| for fused silica increases dramatically (to about 50% when R = 21 cm), because

for such large radii the noise increases (e.g. [10, 8]) with R, while the ITM scaling laws predict [Fig.

2.3] that the noise always decreases with increasing R.
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Figure 2.9: A log-log plot of ∆[τ ; pmesa(D; r), pmesa(Do; r)]. The fractional error of the sensitivity
change made by neglecting edge effects is |1 − ∆|. Here the diffraction losses are 1 ppm (unless
10 ppm is indicated), and Do/b = 1.76 (D10 ppm

o = 3.00), which corresponds to a mirror radius
R = 12 cm (R10 ppm = 13.94 cm). The corresponding mirror radii are given on the top axis (1 ppm
losses) and in Fig. 2.7 (10 ppm losses). The FTM values are obtained by taking ratios of the noises
calculated by Agresti and DeSalvo (2007), except for the 10 ppm values due to O’Shaughnessy,
Strigin, and Vyatchanin (2003). FS and Sap mean fused-silica and sapphire substrates. (The fused-
silica substrate thermoelastic noise is negligible; this case is omitted from the figure.)

When the substrate is sapphire, the FTM effects for the thermoelastic noises lead to errors that

are comparable to the fused-silica FTM errors. For a mirror radius of7 R = 16 cm, the fractional

error |1 − ∆| for sapphire substrates is about 15% for substrate thermoelastic noise and about 20%

for coating thermoelastic noise.

2.4.2.2 Resized mesa beam

The FTM effects in the resized-mesa-beam case are similar to the resized-Gaussian-beam FTM

effects. Fig. 2.9 plots ∆[τ ; pmesa(D; r), pmesa(Do; r)]. When the substrate is fused silica and R .

17 cm, the ITM scaling law errs by less than about 10% for the coating noises and by less than

about 25% for the substrate Brownian noise. (The substrate thermoelastic noise is negligible when

the substrate is fused silica [10].) Again, the ITM scaling law disagrees more and more strongly as

R is increased beyond 17 cm. In this regime, the noise increases with R, but the ITM scaling law

[Fig. 2.4] predicts that the noise always decreases with increasing R.

When the substrate is sapphire, the FTM effects for the thermoelastic noises are comparable to

the Brownian-substrate errors for fused silica. When R = 16 cm, the FTM effects on the sapphire

thermoelastic noises correspond to a fractional error |1 − ∆| of 20%–30%.

7When sapphire was the baseline test-mass material for Advanced LIGO (it has since been abandoned in favour
of fused silica), the baseline mirror radius was R = 15.7 cm [21].
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Figure 2.10: A log-log plot of ∆[τ ; pmesa(D; r), pgauss(w; r)]. The beam width parameters w and D
are chosen so that the diffraction loss is 1 ppm (unless 10 ppm is indicated). The corresponding
mirror width for 1 ppm diffraction losses is shown on the top axis; the 10 ppm point corresponds
to a mirror radius of 15.7 cm. The fractional error of the sensitivity change made by neglecting
edge effects is |1 − ∆|. The FTM values are obtained by taking ratios of the noises calculated by
Agresti and DeSalvo (2007), except for the 10 ppm value, which is due to O’Shaughnessy, Strigin,
and Vyatchanin (2003). FS and Sap mean fused-silica and sapphire substrates. (The fused-silica
substrate thermoelastic noise is negligible; this case is omitted from the figure.)

2.4.2.3 Switching from a Gaussian beam to a mesa beam with the same diffraction

loss and mirror radius

The errors due to neglecting FTM effects in the Gaussian-to-mesa case behave qualitatively differ-

ently from (and are generally smaller than) the resized-beam errors. Fig. 2.10 plots

∆[τ ; pmesa(D; r), pgauss(w; r)] for fused silica and sapphire substrates. For both fused-silica and

sapphire substrates, the coating sensitivity changes are not strongly sensitive to edge effects; in

these cases, CFTM and CITM differ by less than about 10% even when the beam widths exceed 17

cm (and thus are significant fractions of R and H [c.f. Figs. 2.6 and 2.7]). The substrate sensitivity

changes are more sensitive to edge effects, but even then the edge effects remain below about 15%,

provided that R . 17 cm for fused-silica substrates and R . 16 cm for sapphire substrates.

2.5 Conclusion

Changing the shape of the laser beam in Advanced LIGO can reduce the thermal noise, which is

the limiting noise source at frequencies from 40 Hz to 200 Hz. In the Fourier domain, the relations

between the thermal noise and the beam shape for semi-infinite mirrors take the form of simple

scaling laws. Moreover, the coating thermal noises obey the same local scaling law. These results

enable a straightforward comparison of the thermal noises for two different beam shapes when

edge effects are neglected. The scaling laws predict the improvement of mesa-beam sensitivities vs.
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Gaussian-beam sensitivities quite well. For 40 kg, fused-silica mirrors the substrate-noise scaling

laws agree with the finite-mirror results within approximately 15% for mirror sizes not larger than

the Advanced-LIGO baseline size of about 17 cm; the coating-noise scaling laws agree with the

finite-mirror predictions to better than about 10%. Therefore, the infinite-test-mass scaling laws

may be a very useful tool for estimating optimal beam shapes for Advanced LIGO and other future

gravitational-wave interferometers.

2.6 Appendix A: Derivation of equations (2.31) and (2.18)

In this appendix, I derive Eq. (2.31), which I use in the derivation of the scaling law (2.36) for

Brownian substrate noise. Then, I deduce Eq. (2.18), which I use in the derivation of the scaling

law (2.23) for Brownian coating noise.

First, consider the integral

∫ ∞

0

drr
[

S2
ϕϕ − Sϕϕ (θ − Szz)

]

. (2.48)

Combining Eqs. (2.13a) and (2.13e) gives

θ − Szz =
1

2µ

∫ ∞

0

dke−kz p̃(k)

[ −µ
λ+ µ

+ kz

]

kJ0(kr).

(2.49)

Inserting Eqs. (2.49) and (2.13c) into the left-hand side of Eq. (2.48) yields

∫ ∞

0

drr
[

S2
ϕϕ − Sϕϕ (θ − Szz)

]

=
1

4µ2

∫ ∞

0

dk

∫ ∞

0

dk′e−(k+k′)z

[ −µ
λ+ µ

+ kz

] [ −µ
λ+ µ

+ k′z

]

p̃(k)p̃(k′)I, (2.50)

where

I =

∫ ∞

0

dr
J1(kr)J1(k

′r)

r
− k′

∫ ∞

0

drJ1(kr)J0(k
′r). (2.51)

Since k and k′ are variables of integration, and since aside from I itself, (2.50) is unchanged by

letting k ↔ k′, I can be rewritten as

I =

∫ ∞

0

dr
J1(kr)J1(k

′r)

r
− 1

2
k′
∫ ∞

0

drJ1(kr)J0(k
′r) − 1

2
k

∫ ∞

0

drJ1(k
′r)J0(kr). (2.52)
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The integrals in (2.52) are special cases of Eqs. (11.4.33), (11.4.34), and (11.4.42) of [22]:

∫ ∞

0

dr
J1(kr)J1(k

′r)

r
=

k′

2k
η(k − k′) +

k

2k′
η(k′ − k),

(2.53a)
∫ ∞

0

drJ1(kr)J0(k
′r) =

η(k − k′)

k
. (2.53b)

Here η is the unit step function. Inserting (2.53a) and (2.53b) into (2.52) shows that

I = 0 ⇒
∫ ∞

0

drr
[

S2
ϕϕ − Sϕϕ (θ − Szz)

]

= 0, (2.54)

which is Eq. (2.31).

Next, combining Eqs. (2.16a)–(2.16d) shows that

Scoat
ϕϕ = Sϕϕ |z=0 (2.55a)

θcoat − Scoat
zz = (θ − Szz)|z=0 . (2.55b)

Thus, setting z = 0 in (2.54) gives

∫ ∞

0

drr
[

(

Scoat
ϕϕ

)2 − Scoat
ϕϕ

(

θcoat − Scoat
zz

)

]

= 0, (2.56)

which is Eq. (2.18).

2.7 Appendix B: Junction conditions for the stress and strain

of a statically deformed, semi-infinite mirror with thin

coating

The junction conditions (2.16a)–(2.16d) are listed in Eq. (A4) of [4] along with the statement that

for these conditions to hold, the Poisson ratios of the coating and substrate should not be “too

different.” This restriction is actually unnecessary, provided that the coating is sufficiently thin.

One can see this as follows:

Because the coating adheres to the substrate surface, the substrate surface and coating have the

same tangential displacement. Continuity of ur and uϕ immediately implies continuity of Srr and

Sϕϕ. A straightforward pillbox integration of the equilibrium condition ∇jTij = 0 then shows that

Tzz and Trz are also continuous across the junction.

All of the other junction conditions given in Eq. (A.4) of [4] then follow, with one exception: the

junction condition on S(rz) should read µcoatScoat
(rz) = µsubSsub

(rz), not Scoat
(rz) = Ssub

(rz). But since Trz = 0
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on the coating surface (and thus also to high accuracy throughout the thin coating), this error is

irrelevant; the correct junction condition is simply Scoat
(rz) = Ssub

(rz) = 0.
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Chapter 3

Tidal coupling of a Schwarzschild
black hole and circularly orbiting
moon

We describe the possibility of using LISA’s gravitational-wave observations to study,

with high precision, the response of a massive central body (e.g., a black hole or a soliton

star) to the tidal gravitational pull of an orbiting, compact, small-mass object (a white

dwarf, neutron star, or small-mass black hole). Motivated by this LISA application, we

use first-order perturbation theory to study tidal coupling for a special, idealized case: a

Schwarzschild black hole of mass M , tidally perturbed by a “moon” with mass µ ≪ M

in a circular orbit at a radius b ≫ M with orbital angular velocity Ω. We investigate

the details of how the tidal deformation of the hole gives rise to an induced quadrupole

moment Iij in the hole’s external gravitational field at large radii, including the vicinity

of the moon. In the limit that the moon is static, we find, in Schwarzschild coordinates

and Regge-Wheeler gauge, the surprising result that there is no induced quadrupole mo-

ment. We show that this conclusion is gauge dependent and that the static, induced

quadrupole moment for a black hole is inherently ambiguous, and we contrast this with

an earlier result of Suen, which gave, in a very different gauge, a nonzero static-induced

quadrupole moment with a sign opposite to what one would get for a fluid central body.

For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a

recent result of Poisson) a time-varying induced quadrupole moment that is proportional

to the time derivative of the moon’s tidal field, Iij = (32/45)M6Ėij and that therefore

is out of phase with the tidal field by a spatial angle π/4 and by a temporal phase shift

π/2. This induced quadrupole moment produces a gravitational force on the moon that

reduces its orbital energy and angular momentum at the same rate as the moon’s tidal

field sends energy and angular momentum into the hole’s horizon. As a partial analog of
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a result derived long ago by Hartle for a spinning hole and a static distant companion,

we show that the orbiting moon’s tidal field induces a tidal bulge on the hole’s hori-

zon, and that the rate of change of the horizon shape (i.e., the horizon shear) leads the

perturbing tidal field at the horizon by an angle 4MΩ. We prefer to avoid introducing

an ingoing null geodesic, as Hartle did in his definition of the phase shift, because the

moon is in the central body’s near zone (b ≪ 1/Ω) and thus should interact with the

horizon instantaneously, not causally. We discuss the implications of these results for

LISA’s future observations of tidal coupling, including the inappropriateness of using the

concepts of tidal polarizability and tidal lag or lead angle, for the massive central body,

when discussing LISA’s observations.

Originally published as H. Fang and G. Lovelace, Phys. Rev. D. 72 (2005) 124016.

Copyright (2005) by the American Physical Society.

3.1 Introduction and summary

3.1.1 Motivations

One of the primary scientific requirements for LISA (the Laser Interferometer Space Antenna) is to

map, in exquisite detail, the spacetime geometries of massive black holes (and, if they exist, other

massive, compact bodies) by using the gravitational waves emitted by inspiraling white dwarfs,

neutron stars, and small-mass black holes. This emission process has come to be called “Extreme

Mass Ratio Inspiral” (EMRI, pronounced emm-ree). The possibility of making such maps from

EMRI waves was discussed by Thorne in the early 1990s (e.g., in [1, 2]). In 1995 Ryan [3] laid

the first detailed foundation for such mapping: he showed that, when the massive, central body

is general-relativistic, axisymmetric, and reflection-symmetric, and when the orbiting object is in

a near-equatorial, near-circular orbit in the vacuum region surrounding the body, the full details

of the central body’s metric are encoded in (i) the phase evolution of the waves and also in (ii)

the evolution of the frequencies (or phases) of wave modulation produced by orbital precession.

Phinney [4] has given the name “bothrodesy” to the mapping of a black hole’s metric via EMRI

waves, and bothrodesy has been identified, by the LISA International Science Team (LIST), as one

of the prime goals for LISA [5]. The initial phase of scoping out LISA’s data analysis challenges for

EMRI waves is now underway [6, 7].

Ryan’s proof that the EMRI waves carry a map of the central body’s metric ignored completely

the influence of tidal coupling between the central body and the orbiting object. Finn and Thorne [8]

have shown that, for values of the body and object masses in the range relevant to LISA, the tidal

coupling can have an influence as large as a few percent on the evolution of the waves’ inspiral phase—
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a phase that should be measurable to a fraction of a cycle out of tens or hundreds of thousands of

cycles. Thus, the influence of the tidal coupling may be measurable with rather high precision.

Because, in Ryan’s analysis, the map is encoded redundantly in the EMRI waves’ inspiral phase and

in their modulations, it is reasonable to hope that the tidal coupling will break that redundancy in

such a manner as to permit extraction of both the map and details of the central body’s response

to the tidal gravitational pull of the orbiting object [9].

Thorne [10] has argued that if we are to keep an open mind about the physical nature of the

central body from the outset [e.g., if we are to allow for the possibility that it is a boson star

(e.g., [11, 12]) or a soliton star (e.g., [13]) rather than a black hole], then we must describe the tidal

coupling in a manner that can encompass all possible types of central bodies—a body-independent

manner.

In the case of the earth and moon, the tidal coupling is normally described in terms of the rise

and fall of the earth’s surface or ocean’s surface, and in terms of energy dissipation in the earth’s

oceans. Noticeably different from this, the tidal coupling in the case of a black hole has always,

until now, been described in terms of the influence of the orbiting object’s gravitational field on the

hole’s horizon—the perturbation of the horizon’s 2-metric (e.g., [14, 15]), or the conversion of the

tidal field into gravitational radiation at the horizon by gravitational blue-shifting and the energy

and angular momentum carried inward by those waves (e.g., [16]).

One tidal feature in common between a black hole, the earth, a boson or soliton star, and all

other conceivable central bodies, is the body’s tidally-induced multipole moments and multipolar

gravitational fields. It is these induced fields, acting back on the orbiting object, that change the

object’s orbital energy and angular momentum, secularly change its orbit, and thereby alter the

emitted gravitational waves. For this reason, Thorne [10] has proposed that we adopt these induced

multipole fields or moments as our body-independent description of tidal coupling when analyzing

LISA data.

As a first step in exploring Thorne’s proposal, we compute in this paper the tidally induced

quadrupole moment and its back reaction on the orbiting object in the special case where the

central body is a Schwarzschild black hole, and the object is a distant, circularly orbiting moon.

3.1.2 Framework and results

Consider a moon of mass µ orbiting around a massive central body at a large distance. When the

central body is a planet [17] (see Sec. III of [15] for a review), the external tidal field produced by

the moon, denoted by Eext
ij , raises a tide on the central body and induces a quadrupole moment I ind

ij

that is proportional to Eext
ij . The proportionality constant is the body’s polarizability. Because of

viscous dissipation, the induced quadrupole moment I ind
ij will be slightly out of phase with Eext

ij ;

it will have a small phase lag with respect to the applied field. This phase lag is generally referred
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to as the tidal lag angle, and can be defined equivalently as the ratio of the tangential and radial

component of the tidally-induced force acting back on the moon. One objective of this paper is to

explore whether this type of characterization via polarizability and lag angle is also reasonable when

the central body is a black hole.

To explore this, we study a model problem where the moon is orbiting circularly around a massive

Schwarzschild black hole of mass M (≫ µ) at large distance b (≫M). We assume the separation b

is large enough that there exists an intermediate region between the hole and moon where (i) gravity

is weak so space is nearly flat; (ii) the moon’s tidal field does not vary appreciably. This region is

referred to as the black hole’s local asymptotic rest frame (LARF) [18]. Because the spacetime is

nearly flat, one can write down the full tidal field in the LARF (in Cartesian coordinates) to linear

order in each multipole moment as [19]

Eij ≡ R0i0j = −
∞
∑

ℓ=0

(−1)ℓ

ℓ!
IAℓ

(1

r

)

,ijAℓ

−
∞
∑

ℓ=2

(2ℓ− 1)!!

(ℓ− 2)!
QijAℓ−2

XAℓ−2
. (3.1)

Here IAℓ
and QAℓ

are the ℓth internal and external moments; they are symmetric and trace free

(STF) in their tensor indices Aℓ ≡ a1...aℓ [20]. The “internal moments” IAℓ
characterize the central

body, while the “external moments” QAℓ
characterize the gravitational fields of distant sources that

perturb the central body. In our problem, the tidal field Eext
ij is physically the same as the external

quadrupole moment Qij ; they differ only by a constant scaling factor, Eij = −(1/3)Qij. The internal

quadrupole moment is induced by the applied tidal field and characterizes the tidal deformation of

the central body.

Eq. (3.1) is the gravitational analogy to the multipole expansion of an electromagnetic field. It

will be sufficiently accurate for our purpose, since we shall compute the nonspherical parts of the

Riemann curvature tensor by solving the linearized Einstein field equations. It will be shown in

Sec. 3.2 that only multipole moments with ℓ = 0, 2 are relevant to our problem. Dropping all other

terms in Eq. (3.1) and contracting with the unit spatial vector yields

Eijn
inj = −2M

r3
+ Eext

ij ninj −
18I ind

ij ninj

r5
, (3.2)

where we have identified I in Eq. (3.1) as the total mass of the black hole and substituted the

external tidal field Eext
ij for Qij . In the last term, I ind

ij represents the quadrupole moment induced

on the black hole by the external tidal field.

In Secs. 3.3 and 3.4.1 of this paper we compute the induced quadrupole moment in Regge-Wheeler
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gauge, obtaining

I
ind
ij =

32

45
M6Ėext

ij . (3.3)

The same result was recently derived by Poisson from calculating the averaged rate of change of

mass and angular momentum of the perturbed black hole [21]. Note that I ind
ij is proportional to the

time derivative of Eext
ij (a time derivative caused by the moon’s motion) and is therefore completely

out of phase with the external tidal field (by 90 degrees in time and 45 degrees in space). As we

will show in Sec. 3.5, this out-of-phase induced moment is gauge invariant and is responsible for the

torque that changes the orbital energy and angular momentum. Thus it is also responsible for the

tidally-induced portion of the orbital evolution and the phase evolution of the gravitational waves.

The piece of the induced quadrupole moment that is proportional to and in-phase with the

applied tidal field is ambiguous (in a sense that we shall discuss in Sec. 3.4.2); in Schwarzschild

coordinates and Regge-Wheeler gauge, it vanishes. If there had been an unambiguous piece of I ind
ij

in phase with Eext
ij , then this in-phase piece would have defined a polarizability, and the ratio of

out-of-phase piece to the in-phase piece would have been, in a certain well-defined sense, the small

tidal lag angle. Thus, our result can be regarded as saying that both the polarizability and the lag

angle of a black hole are ambiguous (in the sense discussed in Sec. 3.4.2).

Although we find that the tidal lag angle in the LARF, in the case of a Schwarzschild black hole,

is ambiguous, we can still define and calculate an angular tidal shift on the horizon (as opposed to

in the LARF or out at the moon). We study this horizon phase shift in Sec. 3.5. Hartle [15] has

calculated1 the tidal lag angle for the problem of a bulge raised on slowly rotating hole’s horizon by

a stationary moon, and he has shown it to be negative: the horizon’s tidal bulge leads the applied

tidal field due to the horizon’s teleological definition (i.e., a definition in terms of the future fate of

null rays). As in Hartle’s case, we can compare the phase of the shape of our nonrotating horizon

to our moving moon’s position by mapping the moon to the horizon with an ingoing, zero-angular

momentum, null geodesic. In Sec. 3.5, we find that this prescription leads to a lead angle between

the moon and the horizon

δnull map =
8

3
MΩ + Ωb∗, (3.4)

where Ω is the orbital angular frequency of the moon and b∗ is the moon’s tortoise coordinate

b∗ ≡ b + 2M log(b/2M − 1).

For comparison, Hartle’s result [15] for the tidal lead angle in the case of the rotating hole and

distant, stationary moon in the equatorial plane, is (after correcting a sign error, as discussed in

footnote 6)

δHnull map =
2a

3M
+
a

b
=

8

3
MΩH + 4

M2ΩH

b
, (3.5)

1We review the principal results of Hartle’s investigation in Sec. 3.5.2.1.
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Here a is the hole’s specific angular momentum, and ΩH is the horizon angular velocity. The radius

of the moon’s position b is sufficiently large that the moon is essentially stationary. Throughout

this paper, we use the superscript “H” to indicate results corresponding to Hartle’s system, i.e., to

a system with a stationary moon and rotating horizon. Other results (without the subscript “H”)

correspond to our system of a distant moon, orbiting at frequency Ω, which perturbs a Schwarzschild

black hole).

Our result (3.4) differs from Hartle’s (3.5)—even though we initially expected that the tidal

phase shift should depend only on the difference in angular velocities of the applied tidal field and

the horizon generators, so the results would be the same. The terms that differ arise from the

particular choice to map the moon to the horizon using an ingoing, zero-angular momentum null

ray.

We prefer an alternative definition of the tidal lead angle, one that is independent of b∗; we

prefer to define the tidal phase shift as the angle between the perturbing tidal field at the horizon

and the shear (which is the rate of change of the shape) of the horizon [22]. This definition avoids

introducing null connections between the moon (which, at radius b≪ Ω−1, is in the near zone) and

the horizon. Using this definition, we find that the shear of the central hole leads the perturbing

tidal field at the horizon by an angle

δHorizon = δHHorizon = 4MΩ. (3.6)

The tidal lead angle is the same whether one considers a stationary moon perturbing a rotating hole

or an orbiting moon perturbing a non-rotating hole.

The rest of paper is organized as follows. In Sec. 3.2, we decompose the applied tidal field in the

LARF into a time-dependent part and a static part. In Sec. 3.3 we analyze fully the time-dependent

part and deduce the dynamical part of the induced quadrupole moment [Eq. (3.24)]. In Sec. 3.4, we

solve for the static perturbation and discuss the ambiguity in defining the static part of the induced

quadrupole moment. In Sec. 3.5, we study the phase shift between the deformation of the horizon

and the applied tidal and compare the result with the phase shift as defined by Hartle. A brief

conclusion is made in Sec. 3.6. Throughout the paper, we use geometrized units with G = c = 1.

3.2 Problem setup

We study small perturbations of a non-spinning black hole caused by an orbiting moon. The unper-

turbed background metric is the Schwarzschild metric:

ds2 = −
(

1 − 2M

r

)

dt2 +
dr2

1 − 2M/r
+ r2(dθ2 + sin2 θdφ2), (3.7)



50

where M is the mass of the central hole. At large radii (i.e., in the LARF), we will study the per-

turbations in a notation that treats the Schwarzschild coordinates (r, θ, φ) as though they were flat-

space spherical coordinates. These coordinates are related to the Cartesian coordinates (x, y, z) =

(x1, x2, x3) by

(x1, x2, x3) = r(sin θ cosφ, sin θ sinφ, cos θ).

We will denote the radial vector with length r by x, the unit radial vector by n, and their components

by xj and nj , respectively.

Let a moon of mass µ move along a circular orbit with radius b in the equatorial plane (b ≫
M ≫ µ). The moon’s position is specified by

xs = b ns = b (cos Ωt, sinΩt, 0), (3.8)

where the superscript “s” stands for the “source” of the perturbation and Ω =
√

M/b3 is the moon’s

orbital angular frequency, satisfying Ωb ≪ 1. The moon’s tidal field Eext
ij is the double gradient of

the moon’s Newtonian gravitational potential. Its value in the LARF (at r ≪ b but r ≫M) is well

approximated by

Eext
ij = −

(

µ

|x − xs|

)

,ij

∣

∣

∣

∣

∣

r=0

=
µ

b3
(

δij − 3ns
in

s
j

)

. (3.9)

Note that although the applied tidal field is defined in the LARF, the induced quadrupolar field

I ind
ij of greatest interest is not in the LARF, but further out in the vicinity of the moon’s orbit,

where it interacts with the moon.

The tidal field (3.9) can be decomposed into spherical, harmonic modes [23]. The result of the

decomposition is

Eext
ij =

µ

b3

√

6π

5

(

√

2

3
Y

20
ij − Y

22
ij e

−iωt − Y
2–2

ij eiωt

)

≡ Eext,20
ij + Eext,22

ij + Eext,2–2
ij (3.10)

with ω ≡ 2Ω and Eext,2m
ij (m = 0,±2) equal to the corresponding Y 2m

ij term. Here the Y 2m
ij are

position-independent, rank-2, symmetric trace-free (STF) tensors defined in Eqs. (3.68)–(3.69) and

are related to the familiar ℓ = 2 spherical harmonics Y 2m(θ, φ) by Eq. (3.67). (See Eqs. (2.7)–(2.14)

of [23] for the general mapping between order ℓ spherical harmonics and rank-ℓ STF tensors). The
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explicit values of the tidal field components are

Eext,20
ij = − µ

2b3











1 0 0

0 1 0

0 0 −2











, (3.11a)

Eext,2±2
ij = − 3µ

4b3











1 ±i 0

±i −1 0

0 0 0











e∓iωt. (3.11b)

The tidal field Eext
ij [Eq. (3.10)] is the source of perturbations of the central hole; it is an even-

parity ℓ = 2 external tidal field. We shall therefore perform our calculation in the even-parity

Regge-Wheeler gauge, mode by mode (ℓ = 2,m = 0,±2). The tidal field Eext
ij also sets the outer

boundary condition for the problem: the O(r0) terms in the perturbed tidal field Eij must go to Eext
ij

in the LARF [Eq. (3.2)].

The inner boundary condition is set differently, depending on whether the perturbations are static

or time-dependent. For the static perturbations generated by E20
ij , we impose a “regularity bound-

ary condition”: the perturbations must be physically finite at r = 2M . For the time-dependent

perturbations generated by Eext,2±2
ij , we impose the “ingoing-wave boundary condition”: the per-

turbations have the asymptotic behavior ∼ e∓iωr∗

when approaching the horizon. Here r∗ is the

tortoise coordinate r∗ ≡ r + 2M log(r/2M − 1).

3.3 Time-dependent part of the perturbation

3.3.1 The perturbed metric

We will specialize to (ℓ,m) = (2, 2) in solving for the time-dependent part of the metric perturbation.

The (ℓ,m) = (2,−2) results can be obtained by complex conjugating the (2, 2) results. For briefness,

a superscript “22” will not be added to quantities calculated in this harmonic mode in this section,

unless a distinction is needed. Throughout this section, we refer to Appendix 3.8 for details of the

perturbation calculation.

In the standard Regge-Wheeler gauge, the (ℓ,m) = (2, 2) time-dependent perturbations take the
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form [24]

h
(22)
ab = Y 22(θ, φ)e−iωt

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H(1 − 2M
r ) H1 0 0

H1 H(1 − 2M
r )−1 0 0

0 0 r2K 0

0 0 0 r2K sin2 θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(3.12)

Here H , H1 and K are functions of r alone. These radial functions are solutions of the perturbed

Einstein equations; they can be constructed from the Zerilli function Z(r) [25], which satisfies a

second-order ordinary differential equation [Eq. (3.73)]. Specifically, H1, K, and H are given in

terms of Z(r) by Eqs. (3.70)–(3.72). Instead of solving for Z(r) directly, one may obtain the Zerilli

function from its odd-parity correspondent, the Regge-Wheeler function X(r), which obeys a simpler

differential equation [24, 26] that is easier to solve [Eq. (3.74)]:

[

d2

dr∗2
+ ω2 −

(

1 − 2M

r

)( ℓ(ℓ+ 1)

r2
− 6M

r3

)

]

X(r) = 0,

where d/dr∗ = (1−2M/r)d/dr. The Zerilli function Z(r) is expressed in terms of X(r) by Eq. (3.75).

Thus, the metric perturbation is determined by the single radial function X(r), by way of Eq. (3.75)

to get Z(r) and then Eqs. (3.70)–(3.72) to get H1, K, and H .

The analytic solution for X(r) with the ingoing-wave boundary condition at horizon was derived

by Poisson and Sasaki [27]. Their solution, XH in their notation and for the limiting case ωr ≪ 1, is

what we have used in our analysis. With our slow motion assumption Ωb≪ 1, XH(ωr ≪ 1) will be

sufficient to cover the region inside the moon’s orbit—including the LARF, where we read out the

induced quadrupole moment. Following Poisson and Sasaki’s notation, we define the dimensionless

quantity

ε ≡ 2Mω. (3.13)

We then combine Eqs. (3.4), (3.11), and (3.12) of [27] to obtain

XH(ωr ≪ 1) = A

( r

2M

)3

eiω(r−2M)

× F (c1, c2; c3; 1 − r

2M
)e−iωr∗

, (3.14)

where A is an overall scaling factor that did not appear in [27] but will be determined by the outer

boundary condition in our problem; F is the hypergeometric function with parameters [Eq. (3.11)
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of [27] with ℓ = 2]

c1 = −iε+O(ε2),

c2 = 5 − iε+O(ε2), (3.15)

c3 = 1 − 2iε.

Note that expression (3.14) for XH is only accurate to first order in ε. We then expand Eq. (3.14)

in large r and keep terms to first order in ε

XH = A

[

(

1 +
13

12
iε
)

r̃3 +

∞
∑

n=5

iε

nr̃n−3
+O(ε2)

]

, (3.16)

where r̃ ≡ r/2M is the dimensionless radius. Next, we use Eq. (3.75) to get Z(r). Then the perturbed

metric components can be constructed using Eqs. (3.70)–(3.72). In the following, all quantities will

be calculated up to first order in ε and we will suppress “O(ε2)” in our expressions.

3.3.2 Induced quadrupole moment in the LARF

Once the perturbed metric is known, it is straightforward to calculate the full Riemann tensor and

extract from it the first-order tidal field in the LARF:

E(1)
ij ≡ R

(1)
0i0j = R0i0j −R

(0)
0i0j , (3.17)

where a superscript of “(0)” or “(1)” indicates the quantity is of zeroth or first order in the pertur-

bation. In our calculation, we found it convenient to look at the 0r0r component of the first-order

Riemann tensor in the LARF, since

R
(1)
0r0r = R

(1)
0i0jninj = E(1)

ij ninj . (3.18)

From this equation we can read off E(1)
ij = R

(1)
0i0j , the first-order tidal field in Cartesian coordinates

in the LARF, from the Riemann tensor in Schwarzschild coordinates. By the procedure outlined in

this paragraph we have deduced the following (ℓ,m) = (2, 2) part of E(1)
ij in the LARF:

E(1),22
ij = − 3A

4M3

[

1 +
4

3
iε+

∞
∑

n=5

iε

nr̃n

]

Y
22

ij e
−iωt. (3.19)

The outer boundary condition states that the O(r0) [i.e., O(r̃0)] term of E(1),22
ij must equal Eext,22

ij



54

[Eq. (3.11b)]. This determines the scaling factor to be

A =
4µM3

b3

√

2π

15

(

1 − 4

3
iε

)

. (3.20)

Inserting Eq. (3.20) into Eq. (3.19), we can write E(1),22
ij as

E(1),22
ij = Eext,22

ij − µ

b3

√

6π

5

∞
∑

n=5

iε

nr̃n
Y

22
ij e

−iωt. (3.21)

Here the O(1/r̃5) term, by Eq. (3.2), contains the induced quadrupole moment. The O(1/r̃6) and

higher terms are proportional to the O(1/r̃5) term and contain no new information; they represent

the non-linear coupling between the induced quadrupole and the black hole’s monopole moment.

Comparing the O(1/r̃5) term in Eq. (3.2) and the O(1/r5) term in Eq. (3.21), we find that

I
22
ij =

32

45
M6Ėext,22

ij . (3.22)

Complex conjugating this equation yields the (ℓ,m) = (2,−2) part of the induced quadrupole

moment:

I
2–2
ij =

32

45
M6Ėext,2–2

ij . (3.23)

Thus, the time dependent part, i.e., the dynamical part (DP), of the induced quadrupole moment

is given by

I
ind, DP
ij =

32

45
M6
(

Ėext,22
ij + Ėext,2–2

ij

)

=
32

45
M6Ėext

ij . (3.24)

This agrees with the result recently obtained by Poisson [21] by a very different method. Note that

the induced quadrupole moment is proportional to the time derivative of the applied tidal field.

Hence the induced quadrupole moment and the applied tidal field are completely out of phase with

each other (π/4 phase shift in space, π/2 in time). This leads to a dissipative force acting back on

the moon.

From the induced quadrupole moment (3.24), we define a corresponding Newtonian potential in

the LARF and out to the moon’s orbit:

Φ = −3

2
I

ind, DP
ij

ninj

r3
. (3.25)

Then the force acting back on the moon can be found by evaluating the gradient of Φ at the moon’s

position:

F = −∇Φ|xs = −32

5

(µ

b

)2
(

M

b

)13/2

eφ. (3.26)

Eq. (3.26) shows that the force is tangential and opposite to the moon’s motion. The energy loss
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from the moon’s orbital motion is then

Ė = −F · v =
32

5
M4µ2Ω6, (3.27)

where v = Ωbeφ. It is straightforward to show that there is also an angular momentum loss of

magnitude Ė/Ω. Eq. (3.27) agrees with Poisson and Sasaki’s calculation of the rate at which the

perturbation carries energy into the black hole’s horizon at the leading post-Newtonian order [27].

3.4 The static, axisymmetric part of the perturbation

3.4.1 Static-induced quadrupole moment

We now specialize to the even-parity, static part of the moon’s perturbation: (ℓ,m) = (2, 0). The

Regge-Wheeler metric for this type of perturbation has the form [24]

h
(20)
ab = Diag

[(

1 − 2M

r

)

Ĥ2,
Ĥ2

1 − 2M/r
, (3.28)

r2K̂2, r
2K̂2 sin2 θ

]

× Y 20(θ, φ)

where “Diag” is short for diagonal matrix and Ĥ2 and K̂2 are functions of r only. The general

solution to the field equation governing Ĥ2 can be expressed in terms of the associated Legendre

functions [14]:

Ĥ2(r) = α2P
2
2

( r

M
− 1
)

+ β2Q
2
2

( r

M
− 1
)

, (3.29)

where α2 and β2 are constants to be determined. The solution to K̂2 can then be obtained from

that of Ĥ2 (Appendix C). As r approaches 2M , we have [28]

Q2
ℓ(r/M − 1) ∼ (r/M)−1/2,

so the Q2
2 term in Eq. (3.29) becomes divergent at r = 2M and we must set the coefficient β2 to be

zero in order for the perturbation to be finite there. As r goes to infinity2,

P 2
ℓ (r/M − 1) ∼ (r/M)ℓ.

Therefore the remaining P 2
2 term in Eq. (3.29) keeps growing quadratically as r becomes large,

corresponding to the non-asymptotic-flatness due to the presence of the moon.

With the metric perturbation h
(20)
ab , we compute the Riemann tensor from the full metric and

series expand the result up to linear order in α2 (i.e., first order in the perturbation). The 0r0r

2Valid for all Re ℓ > −1/2
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component of the resulting first-order Riemann tensor is found to be

R
(1)
0r0r =

3α2

M2
Y 20(θ, φ). (3.30)

From this and from Eq. (3.10), we obtain the first-order tidal field in the Cartesian basis

E(1)
ij =

3α2

M2
Y

20
ij . (3.31)

The static, first-order tidal field thus contains only an O(r0) term, which should be identified as the

static part of the applied external field Eext,20
ij [Eq. (3.11a)]. The coefficient α2 is determined from

this identification to be α2 =
√

4π/45 µM2/b3. Since there is no O(1/r5) term present in Eq. (3.31),

we infer that there is no static-induced quadrupole moment:

I
20
ij = 0. (3.32)

This is quite a counter-intuitive result. It is worth pointing out, however, that the absence

of negative powers of r in Eq. (3.31) follows directly from the regularity condition we imposed at

r = 2M . If the radius r = 2M were well inside the central body itself, which naturally is the case

for any nonrelativistic body with weak self-gravity, then the Q2
2 term in Eq. (3.29) would survive

and give rise to an induced quadrupole moment. Eq. (3.32) may also be the consequence of the

gauge (Regge-Wheeler) we choose to work in. Is it possible to give a gauge-invariant definition of

static, induced multipole moment in a non-asymptotically-flat spacetime? This is the question we

shall investigate in the next subsection.

We now summarize and conclude that the total induced quadrupole moment in our chosen gauge

is

I
ind
ij = I

20
ij + I

22
ij + I

2–2
ij =

32

45
M6Ėext

ij , (3.33)

which is proportional to the time derivative of the external tidal field—not the field itself as one

would expect for Newtonian tidal couplings.

Lastly, we move from the LARF to the perturbed horizon and examine the effect of the static

perturbation there. Hartle has shown [14] that to first order in the perturbation, the coordinate

location of the event horizon of a slowly rotating black hole perturbed by a stationary distribution of

matter is still at r = 2M . This is also true for a Schwarzschild black hole under static perturbations.

Evaluating the full metric at r = 2M , we find the horizon metric is given by

ds2H = 4M2
[

1 − 2µ(M2/b3)P2(cos θ)
]

(

dθ2 + sin2 θdφ2
)

, (3.34)

where P2 is the Legendre function. From this metric the scalar curvature of the horizon is obtained
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as

R =
1

2M2

[

1 − 4µ(M2/b3)P2(cos θ)
]

. (3.35)

So it is clear that the shape of the horizon does acquire a small quadrupolar component. But this

deformation is not accompanied by an induced quadrupole moment in the LARF, at least in our

chosen gauge.

3.4.2 Ambiguity of the static-induced quadrupole moment

In the previous subsection, we found that a Schwarzschild black hole has a vanishing static-induced

quadrupole moment (SIQM) in response to the external tidal field Eext,20
ij . To see that this van-

ishing of the SIQM might possibly be a gauge effect, imagine replacing the radial coordinate

r in the expression Φ = (1/2)Eext,20
ij ninjr2 for the external tidal Newtonian potential by r =

r̄(1 + χM5/r̄5)1/2, where χ is some dimensionless number of order unity. The result is Φ =

(1/2)Eext,20
ij ninj r̄2 + (χ/2)M5Eext,20

ij ninj/r̄3. By comparing this expression with Eq. (3.2) we read

off a SIQM Iij = (χ/18)M5Eext,20
ij . In Newtonian theory this procedure would obviously be naive,

but in general relativity, where the unperturbed black hole metric can be expanded in powers of

M/r and the coefficients in that expansion depend on one’s choice of radial coordinate and that

choice is a “gauge” issue, this type of procedure is not obviously naive at all.

From our point of view, the best way to explore the gauge dependence of the SIQM is to ask

whether it is physically measurable. If (as we shall find) physical measurements give a result that is

ambiguous at some level, then that ambiguity constitutes a sort of gauge dependence of the SIQM.

In this section we shall study a thought experiment for measuring the SIQM, one based on

coupling to a small, static external “test” octupole field Eijk (proportional to the symmetrized and

trace-removed gradient of some fiducial external quadrupolar tidal field). For simplicity we take Eijk

to be axisymmetric around the same z axis as our static external tidal field Eext,20
ij ; i.e., we take it

to be proportional to a tensor spherical harmonic of order (ℓ,m) = (3, 0):

Eijk ∼ Y
30

ijk.

The analysis in [29] says that, any SIQM Iij (created in the black hole by Eext,20
ij ) will couple

to the external octupole moment to produce a force that gradually changes the hole’s momentum3:

Ṗ i = −1

2
E i

jkIjk. (3.36)

(Eq. (1.12) of [18]; Eq. (4b) of [29]). The same will be true if the central black hole is replaced by a

3The test octupole field may also induce a static octupole moment Iijk in the central black hole, which will couple
to the external quadrupolar tidal field. This coupling, as we shall show, contributes to the ambiguities in the definition
of the SIQM.
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neutron star or any other spherical body. The rate of change of momentum Ṗ i can also be evaluated

by a surface integral of the Landau-Lifshitz pseudotensor tijLL in the LARF [18]:

Ṗ i = −
∮

(−g) tijLL dSj . (3.37)

Eqs. (3.36) and (3.37) for the coupling-induced force on the hole actually have ambiguities that

arise from nonlinearities in the Einstein field equations. The origin of those ambiguities is discussed

with care in Sec. I of Thorne and Hartle [18]. In this subsection we use Eq. (3.37) to calculate the

force on the hole, and shall identify the ambiguities as those terms in which the force depends on

the location of the integration surface. The result of our calculation will tell us, by comparison with

Eq. (3.36), the SIQM and the amount by which it is ambiguous.

To compute the pseudotensor for insertion into Eq. (3.37), we must solve for the metric pertur-

bation containing both the quadrupole and octupole terms:

hab = h
(20)
ab + h

(30)
ab

=
∑

ℓ=2,3

Diag
[

(1 − 2M/r) Ĥℓ,
Ĥℓ

1 − 2M/r
, (3.38)

r2K̂ℓ, r
2K̂ℓ sin2 θ

]

× Y ℓ0(θ, φ).

When ℓ = 2, the general solution to Ĥ2 is given in Eq. (3.29). For ℓ = 3, we have

Ĥ3(r) = α3P
2
3

( r

M
− 1
)

+ β3Q
2
3

( r

M
− 1
)

. (3.39)

In order that both types of perturbation be finite at r = 2M , β2 and β3 must be set to zero [see

Eq. (3.30)]. In order to deal with more general cases, however, we keep non-vanishing values for β2

and β3 in Eqs. (3.29) and (3.39) so the following analysis will be valid for stars as well as black holes.

[For central bodies other than black holes, β2 and α2 (and similarly β3 and α3) are not independent

of each other: β2 is proportional to α2 with a proportionality constant that depends on the body’s

internal physical properties]. Having specified the metric perturbation, we then insert the full metric

into the expression for the pseudotensor (Eq. (20.22) of [30])

(−g)tαβ
LL =

1

16π

{

g
αβ

,λg
λµ

,µ − g
αλ

,λg
βµ

,µ + gλµg
νρ

g
αλ

,νg
βµ

,ρ

−
(

gαλgµνg
βν

,ρg
µρ

,λ + gβλgµνg
αν

,ρg
µρ

,λ

)

+
1

2
gαβgλµg

λν
,ρg

ρµ
,ν +

1

8

(

2gαλgβµ − gαβgλµ
)

× (2gνρgστ − gρσgντ ) g
ντ

,λg
ρσ

,µ

}

, (3.40)
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and evaluate the surface integral at some radius r = R in the LARF. Because of the axisymmetry

of the perturbed spacetime, only the z-component of Ṗ i is nonzero. The result, up to first-order

coupling and with uninteresting numerical coefficients being suppressed, has the following form:

Ṗ z = α3α2

[

R4

M4
&

R3

M3
&

R2

M2
&

R

M
& 1 & ...

]

(3.41)

+ α3β2

[

1 &
M

R
& ...

]

+ β3α2

[

M3

R3
&
M4

R4
& ...

]

,

where “&” is to be read “and a term of the order.”

The constant terms in Eq. (3.41) [i.e., the “1”s] that are independent of the integration radius R

are the ones to be compared with Zhang’s result (3.36) so as to deduce the gauge-invariant SIQM.

Other terms that depend on R constitute ambiguities4. Terms with positive power(s) of R/M

appear because the spacetime is not asymptotically flat, and they prevent us from minimizing the

ambiguities by simply pushing the integration surface to infinity.

Let us step back and write down the most general form that the SIQM can take. By order of

magnitude analysis of the response of any physical body (black hole, star, planet, moon, ...) to a

tidal field, we must have

Iij ∼ L5(1 + ξ) Eext,20
ij . (3.42)

Here L is the size of the body (L ∼M for a black hole) and ξ is a dimensionless number describing

the SIQM’s dependence on the integration radius R—deviations from being well-defined. From

Eq. (3.31), we know the external tidal field scales as ∼ α2/M
2. Similarly for the external octupole

field, Eijk ∼ α3/M
3. Using these relations, Eq. (3.36) becomes

Ṗ i ∼ L5(1 + ξ) Eext,20
jk E i

jk

∼ α2α3

[

L5

M5
+
ξL5

M5

]

. (3.43)

Here the first term in the square bracket should be identified as the “1”s in Eq. (3.41) [note again

that β2 and α2 are not independent of each other for stars]; and the second term should be identified

as the sum of all R-dependent terms:

ξL5

M5
=

R4

M4
& ... &

R

M
&
M

R
& .... (3.44)

In the case of a black hole we have L ∼ M and the smallest the right-hand side of Eq. (3.44)

4The M2/R2 term includes the effect of any octupole moment induced on the central body by the test octupole
field. Note that Ṗ i is a dimensionless vector. On dimensional grounds, the coupling between any induced octupole
moment and the external tidal field must take the form I ijkEjk/R2 to contribute to Ṗ i. (Nonlinear coupling to the
monopole moment can lead to similar terms that scale as higher, but not lower, powers of 1/R).
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can be is ∼ 1 (for R ∼ M), so ξ & 1, i.e., the SIQM for a Schwarzschild black hole is ambiguous

by an amount & M5Eext,20
ij , i.e., totally ambiguous, since the largest we could expect Iij to be is

∼M5Eext,20
ij .

For central objects with L ≫ M (e.g., the Earth) we must choose R > L. The right-hand side

of Eq. (3.44) is then minimized by setting R ≃ L, giving ξ ∼ M/L ≪ 1 (∼ 10−9 in the case of the

Earth) for the fractional ambiguities in the SIQM.

We comment that our result for a Schwarzschild black hole differs from what Suen has de-

rived. Suen has given an unambiguous prescription to read out static multipole moments in non-

asymptotically-flat spacetimes, which is based on transforming coordinates into a particular set of

de Donder coordinates [31]. He has used his prescription to calculate the induced quadrupole mo-

ment of a Schwarzschild black hole when it is perturbed by a static, equatorial matter ring at large

distances [19]. According to his prescription, the SIQM does not vanish. It is proportional to the

tidal field produced by the ring:

Iij = − 4

21
M5Ering

ij . (3.45)

The incompatibility between this result and the vanishing SIQM that we derived in Sec. 3.4.1 in

Regge-Wheeler gauge and Schwarzschild coordinates illustrates the ambiguities of the SIQM. Both

results, zero and (−4/21)M5Eij , are less than or of order the ambiguity.

3.5 The tidal phase shift

In the LARF, the time-dependent induced quadrupole moment is π/4 out of phase with the perturb-

ing tidal field (Sec. 3.3.1). This large phase shift is quite different from the small phase lag angle,

caused by viscous dissipation, between a planet’s induced quadrupole moment and the perturbing

tidal field. A closer black-hole analogy to a planet’s viscous phase lag may be found by considering

the tide raised on the hole’s horizon by an orbiting moon.

In this section, we compute the tidal phase shift on the horizon for our perturbed Schwarzschild

black hole. We will discuss in what sense it is and is not analogous to the fluid-planet’s viscous phase

lag. To calculate this phase shift, it is convenient to use the Newman-Penrose formalism [32] (see,

e.g., Chapter 1 of [33] for a review of the Newman-Penrose formalism). Appendix 3.10 summarizes

some details of the Newman-Penrose formalism that are relevant for our purpose.

We consider two approaches to defining the tidal phase shift. In Sec. 3.5.1, we define the phase

shift only in terms of quantities on the horizon (following the method suggested in Sec. VIIC of [22]),

while in Sec. 3.5.2, we define a phase between the tide raised on the horizon and the “retarded”

position of the moon (following the method used by Hartle in [15]).



61

3.5.1 Phase of the tidal bulge on the horizon

For Sec. 3.5 and Appendix 3.10 only, we use ingoing Eddington-Finkelstein coordinates (Ṽ , r, θ, φ)

and a (+ − − −) signature of the metric. The Schwarzschild metric in these coordinates is

ds2 =

(

1 − 2M

r

)

dṼ 2 − 2dṼ dr − r2
(

dθ2 + sin2 θdφ2
)

. (3.46)

The ingoing Eddington-Finkelstein null time coordinate Ṽ is related to the Schwarzschild time

coordinate t and radial coordinate r by the following equation (Eq. (1b) of Box 32.2 of [30]):

Ṽ = t+ r∗ = t+ r + 2M ln |r/2M − 1| , (3.47)

and the Eddington-Finkelstein radial and angular coordinates {r, θ, φ} are identical to those of

Schwarzschild.

Our slowly orbiting moon deforms the Schwarzschild event horizon. By analogy with Newtonian

tides, we would like to describe the horizon deformation as a perturbation that co-rotates (at a

slightly different phase) with the tidal field that drives it. But this viewpoint inherently envisions the

perturbed event horizon as a two-dimensional, evolving surface, rather than as a three-dimensional,

global surface in spacetime. Therefore, before we can consider the phases of quantities on the

horizon, we must first specify what we mean by time on the horizon.

Begin by considering the Schwarzschild event horizon (which is, of course, the three-surface

r = 2M). There is a preferred way to slice the horizon into a single-parameter family of two-

surfaces; this preferred slicing uses two-surfaces that are orthogonal to the Schwarzschild Killing

vector ∂t = ∂Ṽ that is timelike at the moon and null on the horizon. Following Hartle [15], we

call this family of two-surfaces the “instantaneous horizon.” The instantaneous horizon can be

pictured as an evolving two-surface defined by r = 2M and Ṽ = const, so that Ṽ plays the role

of a “time” coordinate. Throughout this section, we use the terms “horizon” and “instantaneous

horizon” interchangeably unless otherwise indicated.

We now consider how the horizon’s perturbation evolves with time Ṽ . The moon’s tidal field,

characterized in the LARF by [Eq. (3.10)]

Eext
ij = Eext,20

ij + Eext,22
ij + Eext,2–2

ij ,

deforms the otherwise spherical, static horizon. Because Eext,20
ij is static and axisymmetric, it cannot

contribute to the phase shift. For the remaining tidal fields, Eext,2±2
ij , we shall consider only the (2, 2)

mode in detail and the result for the (2,−2) mode follows immediately.

On the horizon, it is the tangential-tangential components of the perturbing tidal field that drive
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the deformation (see, e.g., Eq. (6.80) of [22]); knowledge of these components is physically equivalent

to knowledge of the Teukolsky function Ψ0 [16] (see, e.g., Eq. (A7) of [34]). The Teukolsky function

is a particular component of the Weyl tensor [Eq. (3.86a)].

The horizon deformation is governed by the Newman-Penrose equation (Eq. (2.11) of [15])

(∂Ṽ − 2ǫ)σ(1) = −2(iΩ + ǫ)σ(1) = Ψ
(1)
0 . (3.48)

This is also the “tidal force equation” (equation (6.80) of [22]). Here σ = −Σ(1) is a Newman-

Penrose spin coefficient [Eq. (3.84e)] and Σ(1) is the shear (i.e., the rate of change of the shape5) of

the instantaneous horizon. Note that because Σ and Ψ0 vanish on the unperturbed instantaneous

horizon, the spin coefficient ǫ takes its Schwarzschild value, which (in our tetrad) is the surface

gravity of the instantaneous horizon gH = (4M)−1.

Knowing Ψ
(1)
0 , we can evaluate the horizon shear. Because Ψ

(1)
0 is first order in the perturbation,

it may be evaluated on the horizon simply by letting r go to 2M .

Beginning with the (ℓ,m) = (2, 2) metric perturbation [Eq. (3.12), except we now choose the

metric signature to be (+ − − −)], we compute the perturbed Riemann tensor near the horizon

and read off the component Ψ
(1)
0 . The result is

Ψ
(1)
0 = −i

√

π

5

µMΩ

b3
2Y

22e−2iΩṼ +(8/3)MΩ +O(M2Ω2)

= |Ψ(1)
0 | exp

[

2i

(

φ− ΩṼ +
4

3
MΩ − π

4

)]

+O(M2Ω2). (3.49)

Here 2Y
22 is the spin-weighted spherical harmonic

2Y
22 =

1

2

√

5

π
sin4

(

θ

2

)

e2iφ.

With Ψ
(1)
0 in hand, we can calculate Σ(1) via Eq. (3.48). Inserting ǫ = 2gH and ω = 2Ω into

Eq. (3.48) yields

Σ(1) =
Ψ

(1)
0

iω + 2ǫ

= 4MΨ
(1)
0 e−2iΩ/gH +O(M2Ω2)

= |Σ(1)| exp

[

2i

(

φ− ΩṼ +
4

3
MΩ − π

4
− δHorizon

)]

+O(M2Ω2) (3.50)

5Recall that the shape of the instantaneous horizon (a two-dimensional surface) is completely specified by its
intrinsic scalar curvature R.
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where

δHorizon ≡ Ω/gH = 4MΩ. (3.51)

The shear Σ(1) leads Ψ
(1)
0 (or equivalently, the perturbing tidal field at the horizon) by an angle

δHorizon. [Note that the first equality in Eq. (3.50) appears in [15] as Eq. (2.12).]

The shear is the time derivative of the shape. Therefore, the shape has a phase

R
(1) = |R(1)| exp

[

2i

(

φ− ΩṼ − 8

3
MΩ

)]

. (3.52)

In other words, the shear leads the shape by π/4.

The horizon phase shift in Eq. (3.51) follows directly from the tidal force equation (3.48). It

is gauge-invariant since it only makes reference to gauge-invariant quantities measured on the in-

stantaneous horizon. In [22] [Eq. (7.45), Fig. 57, and the surrounding discussion], an analogous

horizon phase shift δHHorizon was deduced from the tidal force equation for a slowly rotating black

hole perturbed by a stationary, axisymmetric tidal field—physically the same problem as Hartle

studied [15]:

δHHorizon = ΩH/gH = 4MΩH = δHorzion |Ω→ΩH
. (3.53)

Here ΩH is the horizon angular velocity.

Although Hartle also used the tidal force equation in his calculations, he chose to define the tidal

phase shift in a different way and made his result gauge-invariant by making a connection between

the angular positions on the horizon and angular positions at infinity through a null ray—a choice

we will consider in detail in Sec. 3.5.2.1 and apply to our problem in Sec. 3.5.2.2.

The phase lead δHorizon is, in some ways, analogous to the phase shift of a tide raised on a non-

rotating fluid planet. In the latter case, viscous dissipation causes the shape of the planet’s surface

to lag the normal-normal component of the perturbing tidal field by a small angle δvisc; somewhat

analogously, the horizon shear leads the tangential-tangential component of the perturbing tidal

field. Both phase shifts are small angles associated with dissipation (which manifests itself as a

secular evolution of the energy and angular momentum of the moon’s orbit). In the absence of

dissipation, there is no phase shift. On the other hand, the phase shift δHorizon is a lead angle while

δvisc is a lag angle. Hartle explains this difference as a consequence of the teleological nature of the

horizon [15]. Also as Hartle observed, when the angular velocity Ω is not small compared with 1/M ,

the deformation of the horizon cannot be described in terms of a phase shift [15].

3.5.2 Phase shift between the tidal bulge and the moon

As an alternative to the above way of defining the tidal phase shift, one can define it as the angle

between the tidal bulge on the horizon and the location of the moon in its orbit. Hartle used this
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approach when he computed the tidal lead on a rotating hole perturbed by a stationary moon [15].

First, we will briefly summarize the aspects of Hartle’s analysis which are relevant to our purpose.

Then, we will apply his method to a slowly rotating moon around an otherwise Schwarzschild black

hole.

3.5.2.1 Tidal phase shift between a rotating horizon and stationary moon

In [15], Hartle considers the problem of a distant, stationary moon perturbing a slowly rotating

black hole.

The Kerr metric can be written as

ds2 =

(

1 − 2Mr

Σ

)

dṼ 2 − 2dṼ dr +
4aMr sin2 θ

Σ
dṼ dφ̃

+2a sin2 θdrdφ̃ − Σdθ2

− sin2 θ

(

a2 + r2 +
2a2Mr sin2 θ

Σ

)

dφ̃2. (3.54)

Here Σ ≡ r2+a2 cos2 θ. The coordinates Ṽ and φ̃ are related to the usual Boyer-Lindquist coordinates

t and φ by

dt = dṼ − r2 + a2

∆
dr

dφ = dφ̃− a

∆
dr (3.55)

where ∆ ≡ r2−2Mr+a2. When a = 0, Eq. (3.54) reduces to the Schwarzschild metric in Eddington-

Finkelstein coordinates [Eq. (3.46)].

The event horizon is the surface r = r+ ≡ M +
√
M2 − a2. Just as in the Schwarzschild case

considered above, the event horizon can be sliced into a single-parameter family of two-dimensional

surfaces using the Killing vector ∂Ṽ which is timelike at infinity and null on the horizon. This family

of surfaces is the instantaneous horizon.

The distant moon raises a tidal bulge on the central hole’s instantaneous horizon. In the limit

that the moon is far away, the change in the horizon’s shape (or equivalently, the change in the

scalar curvature R of the instantaneous horizon), is purely quadrupolar.

The deformation is driven by the transverse-transverse component of the tidal field at the horizon,

which is physically equivalent to the Teukolsky function, a particular component of the Riemann

tensor Ψ0 [Eq. (3.86a)]. This component vanishes in the unperturbed Kerr spacetime [Eq. (3.93a)],

and the first-order correction Ψ
(1)
0 has the form

Ψ
(1)
0 = Sℓm(r) 2Y

ℓm(θ, φ̃) (3.56)
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where 2Y
ℓm is a spin-weight-2 spherical harmonic. Because the perturbation is purely quadrupolar,

we need only consider the case ℓ = 2,m = 2 here, although Hartle considers the generic case. Hartle

uses Teukolsky’s solution [35] for the stationary radial functions Sℓm due to the ℓ-pole perturbation

caused by a distant, stationary point particle with mass µ. Furthermore, while Hartle treats the case

of a moon at any location (θ, φ̃), for concreteness we specify the moon’s position as (θ, φ̃) = (π/2, 0).

On the horizon, the Teukolsky function turns out to have the value (combining Eqs. (4.30), (4.31),

(4.15), and (4.18) of [15])

Ψ
(1),H
0 =

iµMΩH

2
√

6b3
sin4

(

θ

2

)

exp
[

2i
(

φ̃+ 2MΩH

)]

+O

(

M4

b4

)

+O
(

M2Ω2
H

)

. (3.57)

The tidal field deforms the instantaneous horizon, changing its shape and thus its two-dimensional

scalar curvature R. Hartle computes the quadrupolar correction to the scalar curvature, R(1),ℓ=2,H,

of the instantaneous horizon [Eq. (3.90)]. His result is (Eqs. (4.26)–(4.27) of [15])

R
(1),ℓ=2,H ∝ cos

[

2

(

φ̃+
14

3
MΩH

)]

+O

(

M4

b4

)

+O
(

M2Ω2
H

)

. (3.58)

Instead of measuring the angle between the shear σ and the tidal field Ψ0 on the horizon, Hartle

defines his phase lead as the angle between the shape and the moon’s angular position. To make

this definition gauge-invariant, Hartle chooses ingoing, zero-angular-momentum, null geodesics to

be “lines of constant angle.” He then compares the angular position of the horizon tidal bulge,

φ̃H
bulge = −14

3
MΩH (3.59)

to the angular position of the moon on the horizon.

Consider stationary moon in the equatorial plane at (large) radius r = b and at angular position

φ = 0. An ingoing null ray, originating from the moon, intersects the instantaneous horizon at

angular position6

φ̃H
moon = a/b− a/2M. (3.60)

6 Note that there is a sign error in Hartle’s analysis. Hartle incorrectly states that the ingoing null ray intersects
the horizon at +a/2M + O(a/b), not −a/2M + O(a/b). Had we also made this error, there would be a coefficient of
20/3 instead of 8/3 in Eq. (3.61).
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The tidal bulge therefore leads the moon’s position by an amount

δHnull map = φ̃H
moon − φ̃H

bulge

=
8

3
MΩH + 4

M2ΩH

b
. (3.61)

Here we have used the relation (valid for small a/M) that a = 4M2ΩH , with ΩH being the angular

velocity of the hole. For simplicity, one can then take the limit b→ ∞.

Before continuing, we should remark that Hartle’s prescription for constructing δHnull map can be

described without reference to the moon’s position. Begin by computing the angular location of

the tidal bulge on the horizon. Next, ingoing, zero-angular-momentum null rays from infinity define

lines of constant angle, so that there is a one-to-one correspondence between angular positions on

the horizon and angular positions at infinity. The angular position at infinity of the tidal bulge

can thus be computed. Finally, perform the calculation again, but this time perturb a non-rotating

spacetime; in this case, there will be no tidal friction. Because the Kerr and Schwarzschild spacetimes

are asymptotically identical, one can unambiguously compare the angular position of the tidal bulge

in the presence and in the absence of tidal friction: δHNull Map = φH
bulge − φH

bulge, no friction. This is

equivalent to the previous definition of δHnull map provided that b→ ∞.

However, this alternative formulation of δHnull map breaks down when the moon, not the horizon,

rotates. The rotation is then described by Ω, which is a parameter of the perturbation, not of

the background spacetime. To eliminate tidal friction, one must let Ω → 0, which eliminates the

perturbation7. Because of this failure, we prefer to consider Hartle’s phase shift as a comparison of

the position of the tidal bulge with the position of the moon.

3.5.2.2 Tidal phase shift between a non-rotating horizon and rotating moon

A similar analysis can be applied to our system, in which a distant moon in a slow, circular orbit

raises a tide on a non-rotating black hole.

The moon orbits the central black hole along the world line specified by Eq. (3.8). In other

words, the moon has a phase given by

φmoon(Ṽ ) ≡ Ωt = Ω(Ṽ − b∗). (3.62)

This must be compared with the location of the bulge on the hole’s future horizon. Eq. (3.52) for

R(1) [or, alternatively, inserting Eq. (3.49) into Eq. (3.90)] shows that the tip of the tidal bulge has

a phase given by

φbulge = ΩṼ +
8

3
MΩ. (3.63)

7Even if Ω → 0 resulted in a non-zero perturbation, it is unclear how to distinguish such a perturbation from a
small change in the coordinates of the background spacetime.
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As time Ṽ passes, this bulge rotates around and around the horizon, with the same angular velocity

Ω as the moon that raises the tide.

Following Hartle, we compare the angular location of the tidal bulge, φbulge(Ṽ ), with the angular

location of the moon, φmoon(Ṽ ), using ingoing, zero angular momentum (ZAM) null rays to provide

the connection between φ at the moon’s orbit and φ on the horizon. In the ingoing Eddington-

Finkelstein coordinates that we are using, these ZAM rays have a very simple form:

{Ṽ , θ, φ} = constant , r decreases from b to 2M . (3.64)

Since Ṽ , θ, and φ are all constant along these rays, they give us a one-to-one map of events {Ṽ , r =

b, θ, φ} at the moon’s orbital radius to events {Ṽ , r = 2M, θ, φ} on the horizon that have identically

the same Ṽ , θ, and φ. With the aid of this map, we conclude that the angle by which the horizon

bulge lags the moon’s position is

δnull map ≡ φbulge(Ṽ ) − φmoon(Ṽ ) =
8

3
MΩ + Ωb∗. (3.65)

[Eqs. (3.62) and (3.63)]. Again, the phase shift is a phase lead, not a phase lag, due to the teleological

nature of the horizon.

In addition to the teleological phase shift of order MΩ, δnull map contains a much larger term of

magnitude Ωb∗; this term reflects the choice to use an ingoing-null-ray mapping between the moon

and the horizon. A similar term appears in Hartle’s calculation [Eq. (3.61)], but in Hartle’s system

the term is much smaller than the teleological phase shift size (specifically, smaller by a factor of

M/b), whereas Ωb∗ ≫MΩ.

One could avoid this problem by defining the phase shift to include only terms of order MΩ and

MΩH . With this definition, the remaining tidal phase leads are the same: (8/3)MΩ, as one would

expect, given that a there should be no tidal shift at all if the moon were to rotate at the hole’s

angular velocity, i.e., if Ω = ΩH .

We prefer, however, to define the tidal lead angle in as the angle δHorizon = 4MΩ by which the

horizon shear leads the horizon tidal field. This angle, in contrast to δnull map, is defined in terms of

an “instantaneous” (spacelike) connection between the moon and the horizon, i.e., by the near zone

mapping of the moon’s position to the horizon tidal field’s [Ψ
(1)
0 ’s] maximum. [Had the moon been

in the radiation zone (b≫ λ/2π), one would have expected the connection to be light-like.]

3.6 Conclusion

For our simple system of a Schwarzschild black hole and circularly orbiting moon, we have found that

the time-dependent part of the moon’s tidal field induces a quadrupole moment that is unambiguous.
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The static-induced quadrupole moment was found to be zero in the Regge-Wheeler gauge, but it is

ambiguous in general. The ambiguity of the static-induced quadrupole moment leads to an ambiguity

in the phase of the induced quadrupole moment in the LARF; however, the tidal bulge on the horizon

still has a well-defined phase shift with respect to the orbiting moon. Because of the ambiguity of

the induced quadrupole moment and the LARF phase shift, we conclude that the polarizability and

phase shift are not suitable for constructing a body-independent description of tidal coupling in

EMRIs.

However, this conclusion does not eliminate the possibility of developing a body-independent

language to describe tidal coupling, including cases where the central body is a black hole. It might

be possible, for instance, to define a new set of induced “dissipative multipole moments” for the

central body—i.e., moments that vanish in the absence of tidal friction. Such dissipative moments

would still be linear in the perturbing tidal field, so one could still define a polarizability. Also,

by ignoring any non-dissipative tidal coupling, the phase shift might no longer contain additional

information. Even if such an extension does not prove feasible, tidal coupling can still be described

in the more conventional (but still body-independent) language of energy and angular momentum

transfer between the moon and the central body.

Other future work could include generalizing our analysis to spinning black holes, treating noncir-

cular, non-equatorial orbits, and (most importantly) studying how information about tidal coupling

in EMRIs can be extracted from the gravitational waves detected by LISA.

3.7 Appendix A: Symmetric trace-free tensor notation for

spherical harmonics

The scalar spherical harmonics Y ℓm(θ, φ) can be written in terms of of rank-ℓ symmetric trace-free

(STF) tensors [23]. The spherical harmonics Y 2m(θ, φ) that have been used in this paper are

Y 2±2(θ, φ) =
1

4

√

15

2π
sin2 θe±2iφ (3.66a)

Y 20(θ, φ) =
1

8

√

5

π
(1 + 3 cos 2θ) . (3.66b)

They can be written in terms of rank-2 STF tensors as (Eq. (2.11) of [23])

Y 2m(θ, φ) = Y
2m

ij ninj , (3.67)
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where ni ≡ xi/r and Y 2m
ij are the STF tensors given by (Eq. (2.12) of [23]):

Y
20

ij = −1

4

√

5

π











1 0 0

0 1 0

0 0 −2











, (3.68)

Y
2±2

ij =
1

4

√

15

2π











1 ±i 0

±i −1 0

0 0 0











. (3.69)

3.8 Appendix B: Time-dependent perturbation equations

In Regge-Wheeler gauge, the metric perturbation for a given even-parity (ℓ,m, ω) mode depends on

the three radial functions H , H1, and K. In this appendix, we introduce the Zerilli function Z and

the Regge-Wheeler function X and describe how we obtain the radial functions from them. The

description here will hold for a general (ℓ,m, ω), while the results derived in Sec. (3.3) rely on the

special case when (ℓ,m, ω) = (2, 2, 2Ω).

The original Zerilli’s master function is defined implicitly through its relation with the two radial

functions H1 and K [Eqs. (13) and (14) of [25] with RLM
(e) replaced by Z]:

H1 = −iω λr
2 − 3λMr − 3M2

(r − 2M)(λr + 3M)
Z − iωr

dZ

dr
, (3.70)

K =
λ(λ+ 1)r2 + 3λMr + 6M2

r2(λr + 3M)
Z +

dZ

dr∗
, (3.71)

where

λ ≡ 1

2
(ℓ− 1)(ℓ+ 2).

Using the algebraic relationship (Eq. (10) of [26])

(

3M

r
+ λ

)

H =

[

iωr − i(λ+ 1)M

ωr2

]

H1 +

(

λ+
M

r
− M2/r2 + ω2r2

1 − 2M/r

)

K

one can obtain H in terms of the Zerilli function

H =

[

ω2r2

2M − r
+

s1
r2(3M + λr)2

]

Z + s2
dZ

dr
, (3.72)
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in which

s1 = 9M2(M + λr) + λ2r2[3M + (λ+ 1)r],

s2 =
−3M2 − 3λMr + λr2

r(3M + λr)
.

The Zerilli function obeys the wave equation (Eqs. (18) and (19) of [25]):

[

d2

dr∗2
+ ω2 − V (r)

]

Z = 0, (3.73)

in which the potential term is given by

V (r) =
2(r − 2M)

r4(λr + 3M)2

[

λ2(λ+ 1)r3 +

3λ2Mr2 + 9λM2r + 9M3
]

.

The odd-parity master function, the Regge-Wheeler function, is defined in Eq. (23) of [24] (and

is called Q in Regge and Wheeler’s notation). It obeys the differential equation (Eq. (7) of [26]):

[

d2

dr∗2
+ ω2 −

(

1 − 2M

r

)( ℓ(ℓ+ 1)

r2
− 6M

r3

)

]

X = 0. (3.74)

The connection between the Regge-Wheeler and Zerilli functions was first found by Chandrasekhar

and is listed, e.g., in Eq. (152) of Ch. 4 of [33]:

[

λ(λ+ 1) − 3iMω
]

Z =

[

λ(λ+ 1) +
9M2(r − 2M)

r2(λr + 3M)

]

X

+ 3M

(

1 − 2M

r

)

dX

dr
. (3.75)

This completes our metric reconstruction scheme from the Regge-Wheeler function. We are now

ready to evaluate the radial metric perturbation functions H , H1, and K for the (ℓ,m) = (2, 2)

mode of the perturbations. Expanding XH [given in Eq. (3.16) in powers of r̃ ≡ r/2M to first order

in ε ≡ 2Mω], we obtain

XH = A

[

(

1 +
13

12
iε
)

r̃3 +

∞
∑

n=5

iε

nr̃n−3
+O(ε2)

]

. (3.76)

Here A is an overall scaling factor (Eq. (3.20) in Sec. 3.3.1). While the summation can be rewritten

as a closed-form expression, we prefer to stay in the series notation, since our interest is in reading

various powers of r in the resulting first-order tidal field. Eq. (3.76) is the value of the Regge-Wheeler

function in the LARF; inserting it into Eq. (3.75) yields the expression for Z in the LARF [We shall
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suppress “O(ε2)” hereafter]:

Z = A

(

1 +
4iε

3

)[

r̃3 +
3r̃2

4
− 9r̃

16
− 21

64
+

63

256r̃

]

+ A

[−945− 236iε

5120r̃2
+

8505 + 15436iε

61440r̃3
+O

( 1

r̃4

)]

.

Inserting Z into Eqs. (3.70), (3.71), and (3.72) yields H1, K, and H . Expanded in powers of r̃ and

to first order in ε, these radial functions are given by

H =
A

M

[

(3 + 4iε)(r̃2 − r̃) +
iε

10r̃3
+

3iε

20r̃4

]

+O
(

r̃−5
)

H1 =
iAε

4M

[

− 8r̃3 − 2r̃2 + 4r̃ + 1

+ r̃−1 + r̃−2 + r̃−3 + r̃−4
]

+O(r̃−5)

K =
A

M

[

(3 + 4iε)
(

r̃2 − 1

2

)

+
iε

10r̃3

+
iε

8r̃4
+

9iε

70r̃5
+

iε

8r̃6

]

+O(r̃−7). (3.77)

3.9 Appendix C: Time-independent perturbation equations

As is evident from the time-dependent perturbation theory, as ω → 0, H1 goes to zero. In the

static case, then, there are only two radial functions, Ĥ and K̂ (where the hats signify that they

represent the time-independent perturbations). Specializing to the axisymmetric case, the metric

perturbation is

h
(ℓ0)
ab = Diag

[

(1 − 2M/r) Ĥ,
Ĥ

1 − 2M/r
,

r2K̂, r2K̂ sin2 θ
]

× Y ℓ0(θ, φ).

The linearized Einstein equations governing Ĥ and K̂ are given in Eqs. (9d) and (9e) of [26] with

H1 = 0 and ω = 0 (k = 0 in Edelstein and Vishveshwara’s notation):

dK̂

dr
=

dĤ

dr
+

2M

r2

(

1 − 2M

r

)−1

Ĥ, (3.78)

2M

r2
dK̂

dr
=

(

1 − 2M

r

)

d2Ĥ

dr2
+

2

r

dĤ

dr
− ℓ(ℓ+ 1)

r2
Ĥ.

(3.79)
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Eliminating dK̂/dr from these two equations, we can then write a single second-order differential

equation for H in terms of the variable z ≡ r/M − 1 (same as Eq. (4.9) of [14]):

(1 − z2)
d2Ĥ

dz2
− 2z

dĤ

dz
+

[

ℓ(ℓ+ 1) − 4

1 − z2

]

Ĥ = 0.

This takes a form of the associated Legendre differential equation. The general solution for Ĥ is

therefore

Ĥ = αℓP
2
ℓ (r/M − 1) + βℓQ

2
ℓ(r/M − 1). (3.80)

With the general solution for Ĥ , we can integrate Eq. (3.78) or (3.79) to find K̂. For ℓ = 2, we have

K̂2(r) =
[

α2P
1
2 (r/M − 1) + β2Q

1
2 (r/M − 1)

]

× 2M
√

r(r − 2M)
+ Ĥ2(r). (3.81)

3.10 Appendix D: Newman-Penrose formalism

In this appendix, we summarize some equations of the Newman-Penrose formalism for our choice

of tetrad. In this Appendix and in Sec. 3.5 only, we use ingoing Eddington-Finkelstein coordinates

(Ṽ , r, θ, φ) and a (+ − − −) signature of the metric.

3.10.1 Newman-Penrose quantities for Schwarzschild

We adopt the Hartle-Hawking null tetrad, which is given by Eqs. (4.2) of [15], together with the

normalization conditions ℓµnµ = 1 and mµm̄µ = −1. The tetrad vectors have components [using

the notation eµ = (eṼ , er, eθ, eφ)]

ℓµ =

(

1,
1

2
− M

r
, 0, 0

)

(3.82a)

nµ = (0,−1, 0, 0) (3.82b)

mµ =

(

0, 0,
1√
2r
,

i√
2r sin θ

)

(3.82c)

m̄µ =

(

0, 0,
1√
2r
,− i√

2r sin θ

)

. (3.82d)

Note that throughout this Appendix, an overbar denotes complex conjugation.

From these basis vectors, we define the direction derivatives

D = ℓµ∂µ, ∆ = nµ∂µ, δ = mµ∂µ and δ̄ = m̄µ∂µ. (3.83)
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Our conventions for the spin coefficients follow [15] [specifically, Eqs. (2.2) and (2.3)]. The spin

coefficients are defined by

κ = ℓµ;νm
µℓν (3.84a)

π = −nµ;νm̄
µℓν (3.84b)

ρ = ℓµ;νm
µm̄ν (3.84c)

µ = −nµ;νm̄
µmν (3.84d)

σ = ℓµ;νm
µmν (3.84e)

λ = −nµ;νm̄
µm̄ν (3.84f)

ǫ =
1

2
(ℓµ;νn

µℓν −mµ;νm̄
µℓν) . (3.84g)

α =
1

2
(ℓµ;νn

µm̄ν −mµ;νm̄
µm̄ν) . (3.84h)

β =
1

2
(ℓµ;νn

µmν −mµ;νm̄
µmν) . (3.84i)

The spin coefficients for the Schwarzschild spacetime are

κ = σ = λ = ν = τ = π = γ = 0 (3.85a)

ǫ =
M

2r2
(3.85b)

ρ = −r − 2M

2r2
(3.85c)

µ = −1

r
(3.85d)

α = −β = − 1

2
√

2r tan θ
. (3.85e)

Because we are only interested in vacuum regions of spacetime, the Riemann and Weyl tensors

are interchangeable. The Weyl components are defined in vacuum by

Ψ0 = −Rαβγδℓ
αmβℓγmδ (3.86a)

Ψ1 = −Rαβγδℓ
αnβℓγmδ (3.86b)

Ψ2 = −1

2
Rαβγδ

(

ℓαnβℓγnδ + ℓαnβmγm̄δ
)

(3.86c)

Ψ3 = −Rαβγδℓ
αnβm̄γnδ (3.86d)

Ψ4 = −Rαβγδn
αm̄βnγm̄δ. (3.86e)
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Their values for the Schwarzschild spacetime are

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0, (3.87a)

Ψ2 = −M
r3
. (3.87b)

The Ricci identities are

(∇µ∇ν −∇ν∇µ) eγ = Rσγµνe
σ. (3.88)

Inserting the null tetrad vectors for eσ and projecting along the tetrad yields the Ricci identities in

Newman-Penrose notation. One of these equations is, in our tetrad and evaluated on the horizon,

Dσ(1) − 2ǫσ(1) = ∂Ṽ σ
(1) − 2ǫσ(1) = Ψ

(1)
0 . (3.89)

(Note that we have used the fact that σ and Ψ0 vanish for Schwarzschild.) This is the tidal force

equation; it relates Ψ
(1)
0 , which is physically equivalent to the tangential-tangential component of

the perturbing tidal field on the horizon, to σ, which is physically equivalent to the shear of the

instantaneous horizon.

The shape of the perturbed instantaneous horizon is determined by its two-dimensional scalar

curvature R + R(1) where R is the curvature of the unperturbed horizon. According to the tidal

force equation (3.89), Ψ
(1)
0 drives the shear, which is the “rate of change of the shape” of the horizon

as measured by fiducial observers on the horizon [22]. Thus, it is not surprising that R(1) can be

computed directly from Ψ
(1)
0 . Hartle [15] has derived the explicit formula, a consequence of Gauss’

relation [36], in the Newman-Penrose formalism with the present choice of coordinates and tetrad:

R
(1) = −4Im

[

(δ̄ + 2π − 2α)(δ̄ + π − 4α) + 2ǫλ

ω(iω + 2ǫ)

]

Ψ
(1)
0 (3.90)

where ω is the frequency of the perturbation. When a Schwarzschild black hole is perturbed by a

distant moon in a slow, circular, orbit with angular velocity Ω, then ω = 2Ω.

3.10.2 Newman-Penrose quantities for Kerr

Finally, to facilitate our comparison to Hartle’s results, we here list the relevant Newman-Penrose

quantities for the Kerr spacetime [Eq. (3.54)] using Hartle’s choice [15] of coordinates and tetrad. In

the limit a = 0, Hartle’s tetrad and spin coefficients reduce to those listed in the previous subsection.
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The null tetrad vectors [using the notation eµ = (eṼ , er, eθ, eφ̃)] are

ℓµ =

(

1,
r2 − 2Mr + a2

2 (r2 + a2)
, 0,

a

r2 + a2

)

(3.91a)

nµ =

(

0,− 2(a2 + r2)

2r2 + a2 + a2 cos 2θ
, 0, 0

)

+
−a2 + a2 cos 2θ

2 (a2 + 2r2 + a2 cos 2θ)
ℓµ

+
−a sin θ√

2 (ir + a cos θ)
mµ

+
−a sin θ√

2 (−ir + a cos θ)
m̄µ (3.91b)

mµ =

(

0,− a sin θ
(

r2 − 2Mr + a2
)

2
√

2 (r2 + a2) (−ir + a cos θ)
,

1√
2 (r + ia cos θ)

,
(ir + a cos θ) csc θ√

2 (r2 + a2)

)

(3.91c)

m̄µ =

(

0,− a sin θ
(

r2 − 2Mr + a2
)

2
√

2 (r2 + a2) (ir + a cos θ)
,

1√
2 (r − ia cos θ)

,
(−ir + a cos θ) csc θ√

2 (r2 + a2)

)

.

(3.91d)

Then, one can compute the spin coefficients for this tetrad from Eqs. (3.84a)–(3.84i):

κ = σ = 0 (3.92a)

λ = O(a2) (3.92b)

ν = O(a2) (3.92c)

τ =
−i(2M + r) sin θa

2
√

2r3
(3.92d)

π =
i(4M + r) sin θa

2
√

2r3
(3.92e)

γ =
−i cos θa

2r2
+O(a2) (3.92f)

ǫ =
M

2

r2 − a2

(r2 + a2)
2 =

M

2r2
+O(a2) (3.92g)
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ρ = −r − 2M

2r2
− i(r − 2M) cos θa

2r3

+O(a2) (3.92h)

µ = −1

r
+O(a2) (3.92i)

α =
− cot θ

2
√

2r
− i[−3M + (2M + 2r) cos 2θ]a

4
√

2r3 sin θ

+O(a2) (3.92j)

β =
cot θ

2
√

2r
− i[M + r + (r −M) cos 2θ]a

4
√

2r3 sin θ

+O(a2). (3.92k)

The directional derivatives are then given by Eq. (3.83).

Using the Kerr metric [Eq. (3.54)] and Hartle’s choice for the tetrad [Eqs. (3.91a)–(3.91d)], one

can compute the curvature for Kerr and read off the curvature scalars via Eqs. (3.86a)–(3.86e):

Ψ0 = Ψ1 = 0 (3.93a)

Ψ2 = − M

(r − ia cos θ)
3 (3.93b)

Ψ3 = − 3iaM sin θ√
2 (r − ia cos θ)

4 (3.93c)

Ψ4 =
3ia2M sin2 θ

(ir + a cos θ)5
. (3.93d)

The tidal force equation (3.89) relates Ψ
(1)
0 to σ(1). The correction to the scalar curvature of the

horizon, R(1), is given by Eq. (3.90).

For a stationary moon perturbing a slowly rotating Kerr black hole, the frequency of the pertur-

bation is ω = −2ΩH = −8M2ΩH .
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[28] A. Erdélyi et al., Higher Transcendental Functions, Vol. I (McGraw-Hill, New York, 1953).

[29] X.-H. Zhang, Phys. Rev. D 31, 3130 (1985).

[30] C. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and Company, New

York, 1973).

[31] W. M. Suen, Phys. Rev. D 34, 3617 (1986).

[32] E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

[33] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford,

1985).

[34] R. H. Price and K. S. Thorne, Phys. Rev. D 33, 915 (1986).

[35] S. Teukolsky, Ph.D. thesis, California Institute of Technology (1973).

[36] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II (Interscience, New

York, 1963).



79

Chapter 4

A generalization of Ryan’s
theorem: probing tidal coupling
with gravitational waves from
nearly circular, nearly equatorial,
extreme-mass-ratio inspirals

Extreme-mass-ratio inspirals (EMRIs) and intermediate-mass-ratio inspirals (IMRIs)—

binaries in which a stellar-mass object spirals into a massive black hole or other massive,

compact body—are important sources of gravitational waves for LISA and LIGO, re-

spectively. Thorne has speculated that the waves from EMRIs and IMRIs encode, in

principle, all the details of (i) the central body’s spacetime geometry (metric), (ii) the

tidal coupling (energy and angular momentum exchange) between the central body and

orbiting object, and (iii) the evolving orbital elements. Fintan Ryan has given a first par-

tial proof that this speculation is correct: Restricting himself to nearly circular, nearly

equatorial orbits and ignoring tidal coupling, Ryan proved that the central body’s metric

is encoded in the waves. In this paper we generalize Ryan’s theorem. Retaining Ryan’s

restriction to nearly circular and nearly equatorial orbits, and dropping the assumption

of no tidal coupling, we prove that Thorne’s conjecture is nearly fully correct: the waves

encode not only the central body’s metric but also the evolving orbital elements and (in

a sense slightly different from Thorne’s conjecture) the evolving tidal coupling.

Originally published as C. Li and G. Lovelace, submitted to Phys. Rev. D (2007),

preprint available online at http://arxiv.org/abs/gr-qc/0702146.
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4.1 Introduction and summary

The LIGO-GEO-VIRGO-TAMA network of broadband ground-based laser interferometers, aimed at

detecting gravitational waves in the high-frequency band 10–104 Hz, is already operating at or near

its initial design sensitivities. In the next decade, LISA (the Laser Interferometer Space Antenna)

will open up the low-frequency gravitational-wave window (10−4–0.1 Hz).

Among the most important sources of gravitational waves for LISA are extreme-mass-ratio inspi-

rals (EMRIs), which are systems in which a small object (with mass µ ∼M⊙) orbits a supermassive

black hole or other central body (boson star [1, 2] or soliton star [3] or naked singularity or ...) with

mass M ∼ 106M⊙. Recently, Brown and collaborators [4] have estimated that advanced detectors in

LIGO (the Laser Interferometric Gravitational-Wave Observatory) may detect up to ∼ 10–30yr−1

intermediate mass ratio inspirals (IMRIs), which are analogous to EMRIs but have less massive

central bodies (masses M in the range of ∼ 102–104M⊙).

Thorne has conjectured1 that the waves from an EMRI or IMRI contain, encoded in themselves

(at least in principle): (i) the spacetime geometry (metric) of the massive central body, (ii) the tidal

coupling (evolving rate of energy and angular momentum exchange) between the orbiting object and

the central body, and (iii) the evolving orbital elements. This conjecture (which has been partially

proved; see below) has motivated placing EMRIs high on LISA’s list of target sources [8], and has

motivated research to: (a) prove Thorne’s conjecture with the widest generality possible, or, if it

is false, determine what information actually is encoded in the EMRI and IMRI waves [4, 9]; (b)

develop data analysis techniques for searching for EMRI and IMRI waves in LISA [10, 11] and

LIGO [12] data; (c) scope out the accuracy with which LISA and LIGO can extract the encoded

information from EMRI and IMRI waves (and if the central body appears to be a black hole, the

accuracy with which its properties agree with those of a hole) [13, 14]; and (d) develop data analysis

techniques for extracting the waves’ information [15].

Fintan Ryan [6] has proved a theorem that is an important step toward verifying Thorne’s conjec-

ture. Specifically, he has proved that it is possible in principle to recover the full spacetime geometry

from EMRI waves under the following assumptions: i) the central body is general-relativistic, sta-

tionary, axisymmetric, reflection-symmetric, and asymptotically-flat (SARSAF), ii) the small object

travels on a nearly circular and nearly equatorial orbit, and iii) there is no tidal coupling. Moreover,

Ryan has shown that the multipole moments that determine the spacetime geometry are redun-

dantly encoded in the gravitational waves and can be extracted using either of the two precession

1Thorne’s conjecture has grown over time. Originally, in the early 1990s, he conjectured (or, more precisely,
asserted!) that the waves encode “a portion” of the spacetime geometry (e.g., p. 326 of [5]). By 1994, when Fintan
Ryan proved his theorem, Thorne was arguing that the entire spacetime geometry would be encoded (see, e.g., the
introduction to Ryan’s paper [6]). In 2002, when thinking about how LISA might test the laws of black-hole physics,
Thorne realized that the tidal coupling might also be encoded along with the central body’s spacetime geometry;
see [7]. Only recently, when advising the authors about their research, did Thorne realize that the evolving orbital
elements might also be extractable (private communication).
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frequencies (about a circular orbit and about the equatorial plane) or the waves’ phase evolution.

The purpose of this paper is to generalize Ryan’s theorem. We retain assumptions (i) and

(ii) (SARSAF spacetime and nearly circular, nearly equatorial orbit) but relax assumption (iii) by

allowing for a small amount of tidal coupling. We show that in this case, Thorne’s conjecture is

nearly correct: the waves encode not only the central body’s metric but also the evolving orbital

elements and (in a sense slightly different from Thorne’s conjecture) the evolving tidal coupling.

(Assumption (ii), that the orbit is nearly circular and nearly equatorial, is relaxed in a companion

paper by Li [9]). Assumption (i) has been generalized to the case of electrovacuum spacetimes in [16].

Motivated by the result of Fang and Lovelace [17] that the only unambiguous part of the tidal

coupling is the time-dependent, dissipative portion (at least when the central body is a non-spinning

black hole and the orbit is large and circular), we characterize the tidal coupling by the rates of

energy and angular momentum exchange between the central body and the orbiting object, Ėbody

and L̇body. (Throughout this paper, a dot means derivative with respect to the coordinate time t,

which is the time measured by an inertial observer in the asymptotically flat region of the spacetime.)

Actually, we only need to consider Ėbody, because once it is known, L̇body can be deduced from the

standard energy-angular momentum relation for circular orbits and their influence on waves and

tides, Ė = ΩorbitL̇. (Here Ωorbit is the orbital angular velocity, which is the same as the waves’

observed primary angular frequency aside from a factor 2.)

This paper is organized as follows: In Sec. 4.2, we begin by noting that, when there is a small

amount of tidal coupling (as we assume), then the redundancy in Ryan’s analysis is broken. One

can still use Ryan’s algorithm for the precession frequencies to recover the central body’s spacetime

geometry. Then, by making use of the observed (time-independent) spacetime geometry and the

measured, evolving amplitudes associated with the precession frequencies, one can also recover from

the EMRI waves the evolving orbital parameters. Having relied on non-dissipative aspects of the

waves to deduce the spacetime geometry and orbit, one can then—as we show in Sec. 4.3—use the

waves’ dissipation-induced phase evolution to deduce the tidal coupling.

In our somewhat delicate discussion of deducing the tidal coupling (Sec. 4.3), we begin by noting

that the sum of the power radiated to infinity and the power fed into the central body via tidal

coupling, Ėtotal = Ė∞ + Ėbody is equal to the power lost from the orbit, which can be deduced from

the waves’ observed phase evolution. The central body influences this observed Ėtotal in two ways:

(i) by generating a nonzero Ėbody, the quantity that interests us, and (ii) by very slightly altering

Ė∞. To help quantify these two body influences, in Sec. 4.3.2 we show how one can deduce, from

the observations, the rate Ė∞NBI that energy would be radiated to infinity if there were no body

influences. The difference between the measured Ėtotal and the deduced Ė∞NBI is the influence

of the body’s structure on the total energy loss from the orbit, Ėtotal,BI ≡ Ėtotal − Ė∞NBI. This

measured/deduced body influence on the total energy loss consists of two tiny pieces: the power that
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actually goes into the body via tidal coupling, Ėbody, and the body’s tiny influence on the power

radiated to infinity, Ė∞BI ≡ Ė∞ − Ė∞NBI:

Ėtotal,BI ≡ Ė∞BI + Ėbody . (4.1)

In principle (as described above), from the observational data plus general-relativity theory we

know the body’s influence on the total energy loss Ėtotal,BI with complete precision. This is not

quite what Thorne conjectured, but it is close, and it is the only complete-precision statement we

have been able to make about measuring the influence of tidal coupling.

Thorne conjectured we could deduce Ėbody from the observed waves. This, in fact appears not to

be possible (in principle) with complete precision. However, we argue in Sec. 4.3.3 and the Appendix

that, if the central body is highly compact, then the unknown Ė∞BI will be smaller than Ėbody by

∼ vn ≪ 1, where v is the orbital velocity and n is some high power; and we show that, when the

body’s external metric is that of Schwarzschild or Kerr, then n = 5. As a result, aside from a very

small O(vn) uncertainty due to the influence of the body on the energy radiated to infinity, the tidal

coupling power Ėbody is equal to the known influence of the body on the total energy loss Ėtotal,BI.

A brief conclusion is made in Sec. 4.4.

4.2 Extracting the spacetime geometry and orbital elements

Aside from allowing tidal coupling, we treat the same class of EMRIs as did Ryan:

First, we assume the central body’s exterior spacetime is a vacuum, stationary, axisymmetric,

reflection symmetric, and and asymptotic flat (SARSAF) solution of Einstein’s equations. The

exterior spacetime metric can be written as (e.g., Eq. (7.1.22) of [18])

ds2 = −F (dt− ωdφ)2 +
1

F
[e2γ(dρ2 + dz2) + ρ2dφ2], (4.2)

where F, ω and γ are functions of ρ and |z|. In SARSAF spacetimes, there is a one-to-one correspon-

dence between the spacetime metric and a series of scalar multipole moments (M2i, S2i+1), i =

0, 1, · · · [19, 20]. Here M0 ≡ M is the mass of the central body, S1 is its spin, M2 is its mass

quadrupole moment, etc. To extract the geometry of the spacetime surrounding the central body,

it is sufficient to extract the multipole moments {Mℓ, Sℓ} [6].

Second, we let a small object with mass µ≪M move about the central body in a nearly circular,

nearly equatorial orbit.

For precisely circular, equatorial, geodesic motion, the waves obviously have a single fundamental

frequency Ωφ that is associated with the circular motion φ = Ωφt. When the geodesic orbit is slightly

nonradial, it is easy to show that its radius ρ undergoes periodic motion with some angular frequency
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Ωρ; and when slightly nonequatorial, its vertical coordinate z undergoes periodic motion with another

angular frequency Ωz. These geodesic motions give rise to gravitational waves that are triperiodic:

a discrete spectrum with frequencies equal to Ωφ, Ωρ, Ωz, and their sums and differences (see [9] for

a proof, patterned after the proof by Drasco and Hughes [21] for the Kerr metric). The frequency

difference Ωρ − Ωφ shows up as an orbital periapsis precession, and Ωz − Ωφ as an orbital plane

precession; these precessions produce corresponding modulations of the gravitational waveforms.

In our case, the orbits are not geodesics; they evolve due to gravitational radiation reaction.

Because of the extreme mass ratio, the radiation reaction can be described by the adiabatic approx-

imation. In this approximation, on the timescale of an orbital period, the small object moves very

nearly along a geodesic of the central body’s gravitational field. On a timescale much larger than

the orbital period, the object moves from one geodesic to another as it loses energy and angular

momentum to gravitational radiation. It follows that the three frequencies {Ωφ(t),Ωρ(t),Ωz(t)} each

evolve with time on the radiation reaction timescale, which is much longer than the orbital periods.

In principle, a large amount of information can be encoded in the time evolution of the waves’

three fundamental frequencies {Ωφ(t),Ωρ(t),Ωz(t)} and the complex amplitudes (amplitudes and

phases) of the various spectral components. The largest amplitudes are likely to be those for the

second harmonic of Ωφ and for the two precessions, h2Ωφ
(t), hΩρ−Ωφ

(t), and hΩρ−Ωz
(t). We shall

call these the primary-frequency component, and the precessional components of the waves. To

simplify our prose, we shall refer to Ωρ and Ωz as the “precession frequencies” even though the

actual frequencies of precession are Ωρ − Ωφ and Ωz − Ωφ.

Thorne’s conjecture can be expressed mathematically as the claim that these time-evolving fre-

quencies and amplitudes encode fully and separably,

1. The values of all the central body’s multipole moments {Mℓ, Sℓ},

2. The rates Ėbody and L̇body at which the orbiting object’s tidal pull deposits energy and angular

momentum into the central body, and

3. The time-evolving orbital elements, i.e., the orbit’s semi-latus rectum p(t), eccentricity e(t),

and inclination angle ι(t).

Ryan’s theorem [6] states that, if there is no tidal coupling, then all the SARSAF moments

{M2i, S2i+1} are encoded in the time evolving frequencies fully, separably, and redundantly. Ryan

did not explicitly address the encoding of the three orbital elements p(t), e(t) and ι(t). However,

their encoding is an almost trivial extension of his analysis:

Specifically, Ryan noticed that the three fundamental frequencies are independent of e and ι to

first order in these small quantities, i.e., they are functions solely of the moments and the semi-latus

rectum p. One can eliminate p by regarding the precession frequencies Ωz and Ωρ as functions of

the moments and Ωφ, or equivalently as functions of the moments and the Post-Newtonian (PN)
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expansion parameter v ≡ (MΩφ)1/3 ≃ (orbital velocity). Expanding Ωz(v;Sℓ,Mℓ) and Ωρ(v;Sℓ,Mℓ)

in powers of v, Ryan found the following pattern of coefficients (with each moment first appearing

at a different power of v), from which all the moments can be extracted separably (Eqs. (18)–(19)

of [6]):

Ωρ

Ωφ
= 3v2 − 4

S1

M2
v3 +

(

9

2
− 3M2

2M3

)

v4 + · · ·

Ωz

Ωφ
= 2

S1

M2
v3 +

3M2

2M3
v4 + · · · . (4.3)

This result leads to Ryan’s algorithm for extracting information. First, from the waves’ observed

time-evolving precession frequencies and time-evolving primary frequency, one can deduce the func-

tions Ωz,ρ(Ωφ) and thence Ωz,ρ(v); second, expanding in powers of v, one can then read out the

multipole moments {Mℓ, Sℓ} from either Ωz(v) or Ωρ(v).

We almost trivially augment onto Ryan’s algorithm the following steps for extracting the time-

evolving orbital elements: Third, knowing the moments and thence the metric, one can use the

geodesic equation to deduce p(t) from Ωφ(t). Fourth, one can use wave-generation theory and

knowledge of the metric to deduce e(t) and ι(t) from the amplitudes hΩρ−Ωφ
and hΩz−Ωφ

of the

wave modulations due to periapse precession and orbital plane precession.

4.3 Probing tidal coupling

We now drop Ryan’s restriction of no tidal coupling. This does not alter Eqs. (4.3) for Ωρ and Ωz

as functions of v, i.e., of the orbital frequency Ωφ, since all three frequencies only depend on the

geodesic motion and hence only depend on the multipole moments {Mℓ, Sℓ}. On the other hand,

the evolution of the frequencies, as functions of time, will depend on the tidal coupling.

More generally, we can divide the physical quantities of our analysis into two categories: i)

“static”: those quantities related to the geodesic motion of the orbiting object, and ii) “dynamic”:

those quantities related to the inspiral of the object (i.e., to the evolving rate at which the object

moves from geodesic to geodesic). All static quantities are independent of tidal coupling and all

dynamic quantities depend on it.

This suggests that Ryan’s analysis can be extended to include tidal coupling. First, the static

quantities can be used to deduce the the central body’s multipole moments, just as in Ryan’s

original argument as sketched above. Then, the dynamic quantities, combined with knowledge of

the spacetime metric, can be used to extract tidal-coupling information. This extension is discussed

in the following subsections.
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4.3.1 The phase evolution when tidal coupling is neglected

Following Ryan, we characterize the phase evolution of EMRI waves by the number of primary-

frequency cycles of waves per logarithmic frequency interval, as a function of the primary waves’

slowly increasing frequency f = Ωφ/π. This quantity can be written as (Eq. (4) of [6])

∆N(f) ≡ fdt

d ln f
=

f2

df/dt
. (4.4)

This phase evolution ∆N(f) can be measured by gravitational-wave detectors with high precision.

If there is no tidal coupling and no other influence of the structure of the central body on the

waves, as Ryan assumed, then it is possible to read off the multipole moments (and also the small

object’s mass2) from a PN expansion of ∆N(f) (Eq. (57) of [6]):

∆NNBI =
5

96π

(

M

µ

)

v−5

[

1 +
743

336
v2 − 4π|v|3

+
113

12

S1

M2
v3 +

(

3058673

1016064
− 1

16

S2
1

M4
+ 5

M2

M3

)

v4

+
∑

ℓ=4,6,...

(−1)ℓ/2(4ℓ+ 2)(ℓ+ 1)!! [Mℓ + TNILM] v2ℓ

3ℓ!!M ℓ+1

+
∑

ℓ=3,5,...

(−1)(ℓ−1)/2(8ℓ+ 20)ℓ!! [Sℓ + TNILM] v2ℓ+1

3(ℓ− 1)!!M ℓ+1

]

.

(4.5)

Here “NBI” stands for no body influence and “TNILM” stands for terms nonlinear in lower moments.

[Recall that v = (MΩφ)1/3 = (πMf)1/3.] So long as tidal coupling is negligible, then, the spacetime

multipole moments can be determined redundantly from either ∆N(f) [Eq. (4.5)] or the periapse

precession frequency Ωρ(Ωφ) or the orbital-plane precession frequency Ωz(Ωφ) [Eqs. (4.3)].

4.3.2 Tidal coupling and the phase evolution

When tidal coupling effects are included, the redundancy is broken. The multipole moments {Mℓ, Sℓ}
can still [Eq. (4.3)] be determined from Ωρ,z(Ωφ), while (as the following discussion shows), the tidal

coupling can be determined from {Mℓ, Sℓ} and ∆N(f).

As a preliminary to discussing this, we explain why it is sufficient, in analyzing tidal coupling, to

focus on energy exchange between the orbit, the body and the waves, and ignore angular momentum

exchange. Since the body is in a (nearly) circular, geodesic orbit, changes in its orbital energy and

2The mass of the small object can be determined from ∆N(f) even when there is tidal coupling. The leading-PN-
order part of the energy flux (equivalently, the leading-PN-order part of ∆N(f)) is independent of tidal coupling. One
can thus equate the leading-PN-order parts of ∆N(f) and ∆NNBI [Eq. (4.5)]. After inserting the mass M (obtained
from one of the precession frequencies), one can solve for µ. The precession frequencies, in contrast, are independent
of µ [Eq. (4.3)].
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angular momentum are related by

Ėorbit = Ωφ L̇orbit, (4.6a)

aside from second-order corrections due to the slight orbital ellipticity and inclination angle. Our

entire analysis is restricted to first-order corrections, so those second-order corrections are negligible.

Similarly, since the energy and angular momentum radiated to infinity are carried by the primary

waves, with angular frequency ω = 2πf = 2Ωφ (aside from negligible contributions from the pre-

cessions, which are second order in the ellipticity and inclination), each graviton carries an energy

~ω = 2~Ωφ and an angular momentum 2~ (with this last 2 being the graviton spin). Therefore, the

energy and angular momentum radiated to infinity are related by

Ė∞ = Ωφ L̇∞. (4.6b)

Conservation of energy and of angular momentum, together with Eqs. (4.6a) and (4.6b), then imply

that

Ėbody = Ωφ L̇body, (4.6c)

for the energy and angular momentum deposited in the body by tidal coupling. Eq. (4.6) implies

that, once we understand, observationally, the energy exchange, an understanding of the angular

momentum exchange will follow immediately.

Now turn to the influence of the body’s internal structure on the observed energy exchange.

The total rate that energy is lost from the orbit (which then goes to infinity and the body) is

related to the phase evolution ∆N(f) by

Ėtotal = −Ėorbit = −dEorbit

df

df

dt
= −f2 dEorbit

df

1

∆N
. (4.7)

The phase evolution ∆N and the primary frequency f are known from observation, and, after using

the precession frequencies to compute the spacetime metric (Sec. 4.2), it is possible to compute

dEorbit/df via the geodesic equation3. Thus everything on the right-hand side of Eq. (4.7) can be

determined from observed quantities, which means that Ėtotal is measurable.

Another measurable quantity, we claim, is the rate that energy would be lost from the orbit if

3To do this, first insert the multipole moments {Mℓ, Sℓ} into the geodesic equation. Then, solve the geodesic
equation for the family of circular, equatorial orbits about the central body. Each orbit i will have a particular value
of energy Eorbit,i and frequency fi; this one-to-one mapping between Eorbit and f can then be used to compute
dEorbit/df .
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the body’s structure had no influence. This quantity is [by analogy with Eq. (4.7)]

Ėtotal,NBI = −f2 dEorbit

df

1

∆NNBI
. (4.8)

Knowing the moments as a function of frequency from measurements of the precessions, ∆NNBI

can be computed from the moments via Ryan’s phasing relation4 (4.5), and, as we have seen,

dEorbit/df can also be computed from the observations; so Ėtotal,NBI is, indeed, observable, as

claimed. Therefore the influence of the body’s structure on the orbit’s total energy loss

Ėtotal,BI = Ėtotal − Ėtotal,NBI (4.9)

is also observable.

This body influence on the total energy loss consists of two parts: the energy that goes into the

body via tidal coupling, Ėbody, and a tiny body-influenced modification of the rate that the waves

carry energy to infinity

Ėtotal,BI = Ėbody + Ė∞BI , (4.10)

where

Ė∞BI = Ė∞ − Ėtotal,NBI . (4.11)

Thorne conjectured that the energy exchange due to tidal coupling, Ėbody, would be observable.

We doubt very much that it is, since in general we see no way to determine the relative contributions

of Ėbody and Ė∞BI to the observed total body influence Ėtotal,BI. The best one can do, in general, in

validating Thorne’s conjecture, is to extract the central body’s total influence on the orbital energy

loss, Ėtotal,BI. However, in the special case of a body that is exceedingly compact, we can do better,

as we shall explain in the next subsection.

4.3.3 The dependence of the Ė∞ on the central body’s internal structure

Consider a central body sufficiently compact that gravity near its surface blue-shifts the orbiting

object’s tidal field, making it appear like ingoing gravitational waves as seen by stationary observers.

This is the case, for example, when the central body is a black hole. Then, we claim, the ratio

4Ryan calculates the phasing relation to 2PN order (i.e., to O(v4) past leading order). By extending Ryan’s
calculation to higher post-Newtonian orders, the terms omitted from Eq. (4.5) can be written explicitly.
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Ė∞BI/Ėbody is very small:

Ė∞BI

Ėbody

∼ vn ≪ 1 , (4.12)

where n is a large number, very likely 5. For LISA, almost all of the wave cycles used in extracting

information from the waves will be from radii where v . 0.5 so v5 . 0.03. For example, for a Kerr

black hole, if the spin parameter is a/M . 0.5, then at the innermost stable circular orbit, v . 0.5.

Consequently, almost all of the measured Ėtotal,BI will go into the body itself via tidal coupling, so

Ėbody will be measured to good accuracy.

To understand our claim that Ė∞BI/Ėbody ∼ vn for some large n, consider a central body whose

external metric is that of a Kerr black hole. In this case, one can use the Teukolsky formalism

[22] (first-order perturbation theory in the mass ratio µ/M) to compute the energies radiated to

infinity and tidally coupled into the central body. We have carried out that Teukolsky analysis for

general a/M and present the details for the special case a = 0 in the Appendix. Here we explain

the underlying physics. We begin with some preliminaries:

We need only consider the primary-frequency waves, f = Ωφ/π, since they account for all the

energy loss and transfer, up to corrections second order in the eccentricity e and inclination angle

ι. This means, correspondingly, that we can restrict ourselves to a precisely circular and equatorial

orbit. The waves and tidal coupling then have predominantly spheroidal harmonic order ℓ = m = 2

and frequency f (angular frequency ω = 2πf = 2Ωφ). Since we only want to know, to within factors

of order unity, the ratio Ė∞BI/Ėbody, it will be sufficient to restrict ourselves to these dominant

ℓ = m = 2, ω = 2Ωφ perturbations.

In the Teukolsky formalism, these perturbations are embodied in a radial “wave function” that

can be normalized in a variety of different ways. The usual normalization, based on the Newman-

Penrose field ψ4, is bad for physical insight because it treats outgoing waves and ingoing waves quite

differently (see the Appendix). One normalization that treats them on the same footing sets the

radial wave function equal to that of the tidal gravitational field (“electric-type” components of the

Weyl or Riemann curvature tensor) measured by “zero-angular-momentum” observers, ZAMOs (a

family of observers, each of whom resides at fixed radius r and polar angle θ). We shall denote that

tidal field [with e−iωt × (spheroidal harmonic) factored out so the field is complex, not real] by E .

Another, closely related normalization for the radial wave function sets its modulus squared equal

to the rate of flow of energy. We shall denote this choice by Ψ. At large radii, E ∼ (ḧ+ + iḧ×) =

ω2(h+ + ih×), where h+ and h× are the dimensionless gravitational wave fields; so the radiated

energy is Ė∞ ∼ r2|ḣ+ + iḣ×|2 ∼ (r/ω)2E2
∞, which tells us that Ψ∞ ∼ (r/ω)E∞. Near the body’s

surface (i.e., near where the horizon would be if the body were a Kerr black hole), the energy flux

is Ė ∼ (r/ω)2|α2E|2, where α is the Kerr-metric lapse function, which goes to zero at the horizon
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Figure 4.1: The renormalized tidal gravitational fields Ψ produced near a central body’s surface and
at large radii by the orbiting object, when the central body has the same exterior metric as a Kerr
black hole.

radius. (The ZAMOs’ divergently large outward speed, relative to infalling observers, causes them to

see a divergently large tidal field; the factor α2 corrects for that divergence; see, e.g., the discussion

in Sec. VI.C.2 of [23].) Thus, in order to ensure that the power flow is the square of the renormalized

radial wave function,

Ė ∼ |Ψ|2 , (4.13)

we must renormalize the ZAMO-measured tidal field E by

Ψ ∼ (r/ω)E at r → ∞ ,

Ψ ∼ (α2r/ω)E near body . (4.14)

With these preliminaries finished, we can give our physical argument for Eq. (4.12) in terms of

the radial wave function Ψ. Our argument relies on Fig. 4.1.

If the central body is a Kerr black hole, then the boundary condition on Ψ at its surface (the

horizon) is purely downgoing waves, and at infinity, purely outgoing waves. The ratio of down-

going power at the horizon to outgoing power at infinity has the standard Kerr values [24, 25]:

Ėbody/Ė∞NBI ∼ v8 if the hole’s spin angular velocity ΩH is much less than the orbital angular ve-

locity Ωφ; and Ėbody/Ė∞NBI ∼ v5 if ΩH ≫ Ωφ. (Here we have used the no-body-influence notation

Ė∞NBI for the outgoing power because a central black hole’s internal structure is unable to influence

the waves radiated to infinity.) Correspondingly, by virtue of Eq. (4.13), the ratio of the downgoing

field at the horizon Ψ↓ to the outgoing field at infinity Ψ∞NBI is

Ψ↓
Ψ∞NBI

∼







v4

v5/2







for







ΩH ≪ Ωφ

ΩH ≫ Ωφ







. (4.15)

This suppression of the downgoing field relative to the outgoing is due, mathematically, to a reflective

effective potential in the wave equation that Ψ satisfies (Fig. 4.1). Physically, it is due to coupling

of the field Ψ to the central body’s spacetime curvature.
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Now suppose the central body is not a black hole, but some other object so compact that

its surface is well beneath the peak of the effective potential. This mathematical assumption is

equivalent to our physical assumption that the ZAMOs see the downgoing field Ψ↓ so strongly blue-

shifted by the central body’s gravity that it looks like radiation. The only way, then, that the central

body can influence the energy radiated to infinity is to reflect a portion of this downgoing radiation

back upward. Mathematically, this corresponds to replacing the black hole’s downgoing boundary

condition by

Ψ↑ = Rψ↓ (4.16)

at some chosen radius just above the body’s surface. Here Ψ↓ and Ψ↑ are the downgoing and

upgoing components of Ψ; see Fig. 4.1. For simplicity, we shall assume that the amplitude reflection

coefficient R is small, |R| ≪ 1. Otherwise we would have to deal with a possible resonant buildup of

energy between the reflective central body and the reflective effective potential—though that would

not change our final answer (see, e.g., the more detailed analysis in the Appendix).

The upgoing waves Ψ↑ have great difficulty getting through the effective potential. The fraction

of the upgoing power that gets transmitted through, successfully, is ∼ (Mω)6 if the hole rotates

slowly, and ∼ (Mω)5 if rapidly [Eq. (8.83) of [23] with ℓ = 2 and σ∞ = ω]. Since the fields Ψ are the

square roots of the powers (aside from complex phase) and since Mω = 2MΩφ = 2v3, this power

transmissivity corresponds to

Ψ∞BI

Ψ↑
∼







v9

v15/2







for







ΩH ≪ Ωφ

ΩH ≫ Ωφ







. (4.17)

Combining Eqs. (4.17), (4.16), and (4.15), we see that

Ψ∞BI

Ψ∞NBI
∼







v13

v10







for







ΩH ≪ Ωφ

ΩH ≫ Ωφ







. (4.18)

If these two complex outgoing fields are not precisely out of phase with each other (phase differ-

ence ±π/2), then the outgoing power is |Ψ∞NBI + Ψ∞BI|2 ≃ |Ψ∞NBI|2 + 2ℜ (Ψ∞NBIΨ
∗
∞BI), which

means that the ratio of the radiated body-influenced power to radiated no-body-influence power is

Ė∞BI

Ė∞NBI

∼







v13

v10







for







ΩH ≪ Ωφ

ΩH ≫ Ωφ







. (4.19)

In the unlikely case (which we shall ignore) that the two fields are precisely out of phase, the ratio

will be the square of this.
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By combining Eq. (4.19) with the square of Eq. (4.15), we obtain the ratio of the body-influence

power radiated to infinity over the tidal coupling power into the central body:

Ė∞BI/Ėbody ∼ v5 (4.20)

independent of whether the body rotates slowly or rapidly. This is the claimed result.

If the central body’s external metric is not Kerr, then the first-order perturbation equations for

the orbiting body’s spacetime curvature will probably not be separable in {r, θ}, so the analysis

will be much more complex. Nevertheless the physical situation presumably is unchanged in this

sense: The body’s spacetime curvature will couple to the perturbation field in such a way as to resist

energy flow through the region between the body’s surface and the object’s orbit. Correspondingly,

the perturbation fields and power flows are very likely to behave in the same manner as for the Kerr

metric, with the same final result, Ėbody/Ė∞BI ∼ vn with n very likely still 5 but possibly some

other number significantly larger than one.

If this is, indeed, the case, then for any sufficiently compact central body the power tidally

deposited into the body Ėbody will be very nearly equal to Ėtotal,BI , which is measurable; and

therefore the tidal power will be measurable.

4.4 Conclusion

In this paper, we have extended Ryan’s analysis to show that in principle it is possible to recover

not only the spacetime geometry of the central body, but also the evolving orbital parameters of the

inspiraling object and the evolving tidal coupling between the small object and the central body.

Therefore, in principle we can obtain a full description of the SARSAF spacetime, the tidal coupling,

and the inspiral orbit from EMRI or IMRI waveforms. In practice, the method of extracting the

information is likely to be quite different from the algorithm we have presented here.

Further generalizations of Ryan’s theorem and development of practical methods to implement

it are topics of our ongoing research.

4.5 Appendix A: An explicit derivation of results in Sec-

tion 4.3.3

4.5.1 Teukolsky perturbation formalism

In this subsection, we use the Teukolsky perturbation theory to justify our results in Sec. 4.3.3.

We first briefly review the standard Teukolsky perturbation formalism. Details can be found, e.g.,
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in [26]. To shorten our expressions, in this appendix we restrict ourselves to a nonrotating central

body with external metric the same as a Schwarzschild black hole but with a finite reflectivity. The

generalization to the Kerr metric is straightforward but with more cumbersome algebra. We have

carried it out, obtaining the same result as is found by the physical argument in the text.

In the Teukolsky formalism, people usually calculate the perturbation to a Newman-Penrose

quantity ψ4 that is related to the ZAMO-measured tidal field E by a linear transformation of the

basis vectors. This ψ4 can be decomposed into Fourier-Harmonic components according to

ψ4 =
1

r4

∫ ∞

−∞
dω
∑

lm

Rωlm(r)−2Ylm(θ, φ)e−iωt, (4.21)

where −2Ylm(θ, φ) are the spin-weighted spherical harmonics. The radial function Rωlm(r) satisfies

the inhomogeneous Teukolsky equation

[

r2α2 d
2

dr2
− 2(r −M)

d

dr
+ U(r)

]

Rωlm(r) = Tωlm, (4.22)

where α2 = 1 − 2M/r is the lapse function for the Schwarzschild metric. The expressions for the

potential U(r) and the source Tωlm can be found, e.g., in [24], Eqs. (2.3), (A1).

In order to solve this equation, we construct two linearly independent solutions to the homoge-

neous Teukolsky equation, which satisfy the following boundary conditions,

RIN
ωlm →







(ωr)4α4e−iωr∗

, r → 2M

(ωr)−1Qin
ωlme

−iωr∗

+ (ωr)3Qout
ωlme

iωr∗

,r → +∞

RUP
ωlm →







(ωr)4α4P out
ωlme

−iωr∗

+ P in
ωlme

iωr∗

, r → 2M

(ωr)3eiωr∗

, r → +∞
(4.23)

where d/dr∗ = α2d/dr. From these two homogeneous solutions, we can construct the inhomogeneous

solution according to

Rωlm(r) =
1

Wronskian[RUP
ωlm, R

IN
ωlm]

(

RUP
ωlm(r)

∫ r

2M

dr′RIN
ωlm(r′)Tωlm(r′)

+RIN
ωlm(r)

∫ ∞

r

dr′RUP
ωlm(r′)Tωlm(r′)

)

, (4.24)

where Tωlm(r) ≡ Tωlm(r)(r2−2Mr)−2. This solution has only outgoing waves at infinity and satisfies

the purely ingoing boundary condition: ([24], Eqs. (2.8) and (2.9))

Rωlm(r → ∞) ∼ µω2ZIN
ωlmr

3eiωr∗

,

Rωlm(r → 2M) ∼ µω3ZUP
ωlmr

4α4e−iωr∗

, (4.25)
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where

ZIN,UP
ωlm =

1

2iµω2Qin
ωlm

(4.26)

×
∫ ∞

2M

dr
[

(r2 − 2Mr)−2RIN,UP
ωlm (r)Tωlm(r)

]

.

At infinity, where the spacetime is almost flat, ψ4 is directly related to the outgoing gravitational

wave strains according to

ψ4 =
1

2

(

ḧ+ − iḧ×
)

, (4.27)

and we can obtain the luminosity formula ([24], Eq. (2.21))

Ė∞ =
1

4π

( µ

M

)2∑

lm

(Mω)2|ZIN
ωlm|2. (4.28)

4.5.2 Inner boundary condition

The above purely ingoing boundary condition makes sense when the central body is a black hole

because we know everything is absorbed at the horizon of the black hole. If the central body is some

other kind of object, the only way it can influence the perturbation field Rωlm just above its surface

is by producing an outgoing-wave component via some effective reflectivity R. The result will be a

modified field

Rωlm(r → 2M) ∼ e−iωr∗

+ (something)eiωr∗

. (4.29)

The “something” will be proportional to R, and it will also have a peculiar radial dependence,

because ψ4 relies for its definition on an ingoing null tetrad and thereby treats ingoing and outgoing

waves in very different manners.

4.5.3 Chandrasekhar transform

To learn what the “something” should be, we can transform to a new radial wave function that

treats ingoing and outgoing waves on the same footing. Two such functions were introduced and

used in Sec. 4.3.3: the ZAMO-measured tidal field E and a field Ψ whose modulus squared is the

power flow, for both outgoing and ingoing waves. Those choices are good for Sec.4.3.3’s physical,

order-of-magnitude arguments, but at general radii r they not related in any simple way to ψ4. A

choice that is simply related to ψ4 is the Regge-Wheeler function X , and we shall use it here.

The radial wave function R for the Newman-Penrose ψ4 is related to the Regge-Wheeler function
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X by the Chandrasekhar transform, Eq. (A6) of [24]. This Chandrasekhar transform takes the form

RIN,UP
ωlm = χIN,UP

ωlm CωX
IN,UP
ωlm , (4.30)

where

χIN
ωlm =

16(1 − 2iMω)(1 − 4iMω)(1 + 4iMω)

(l − 1)l(l + 1)(l + 2) − 12iMω
(Mω)3,

χUP
ωlm = −1

4
. (4.31)

Cω is a second-order differential operator, and X IN,UP
ωlm are two linearly independent solutions of the

homogeneous Regge-Wheeler equation

[

d2

dr∗2
+ ω2 − V (r)

]

Xωlm(r) = 0, (4.32)

where

V (r) = α2

[

l(l − 1)

r2
− 6M

r3

]

. (4.33)

The asymptotic expressions for X IN,UP
ωlm are ([24], Eq. (2.7))

X IN
ωlm →







e−iωr∗

, r → 2M

Ain
ωlme

−iωr∗

+Aout
ωlme

iωr∗

, r → +∞
(4.34)

XUP
ωlm →







−Bout
ωlme

−iωr∗

+ Bin
ωlme

iωr∗

, r → 2M

eiωr∗

, r → +∞.

Here we note that by the conservation of the Wronskian, it is straightforward to show that Bin,out =

Ain,out.

4.5.4 Ė∞ with a reflective inner boundary condition

Because the Regge-Wheeler function treats outgoing and ingoing waves on the same footing, the

desired, reflective inner boundary condition for it takes the simple form

X̃ IN
ωlm(r → 2M) ∼ e−iωr∗

+ Reiωr∗

. (4.35)

Here X̃ IN
ωlm is a new homogeneous solution of the Regge-Wheeler equation.

This new homogeneous solution is a superposition of both ingoing and outgoing waves at the

horizon. It is shown in [27] that because the Regge-Wheeler function treats outgoing and ingoing
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waves in the same manner, |R|2 has the physical meaning of the energy flux reflectivity, i.e., the

ratio between outgoing and ingoing energy flux at the horizon.

The homogeneous solution (4.35) which satisfies the new inner boundary condition can be con-

structed from the old homogeneous solutions:

X̃ IN
ωlm = β1X

IN
ωlm + β2X

UP
ωlm, (4.36)

where

β1 = 1 +
RAout

ωlm

Ain
ωlm

, β2 =
R

Ain
ωlm

. (4.37)

After doing an inverse Chandrasekhar transform, we obtain the corresponding homogeneous

solution of the homogeneous Teukolsky equation

R̃IN
ωlm = RIN

ωlm +
β2

β1

χIN
ωlm

χUP
ωlm

RUP
ωlm. (4.38)

Now we can replace RIN by R̃IN in Eq. (4.24) to obtain the solution R̃ωlm(r) which satisfies the

inhomogeneous Teukolsky equation with upgoing and downgoing waves at the horizon and purely

outgoing waves at infinity. From this R̃ωlm(r) we identify the new amplitudes Z̃IN
ωlm as in Eq. (4.25):

Z̃IN
ωlm = ZIN

ωlm +
β2

β1

χIN
ωlm

χUP
ωlm

ZUP
ωlm. (4.39)

From these new Z̃IN
ωlm the calculation of the luminosity at infinity is straightforward.

In [24] Poisson and Sasaki have already worked out all the relevant formulae, so we only give

the results. For the original expressions in [24], please refer to Eq. (3.25) for Ain, Aout; Eq. (A7) for

χIN, χUP; and Eqs. (5.4), (5.6), (5.11), (5.12) for ZIN
ωlm, Z

UP
ωlm.

The leading luminosity correction comes from the l = 2,m = ±2 mode, and we have

Ė∞ = Ė∞
∣

∣

∣

Schwarzschild

∣

∣

∣

∣

1 − 128iRv13

15β1

∣

∣

∣

∣

2

, (4.40)

where v is the same PN expansion parameter as that in Sec. 4.3.3. Unless the reflection coefficient

R is precisely real, this gives

Ė∞ = Ė∞
∣

∣

∣

Schwarzschild

[

1 +
256

15
ℑ
(R
β1

)

v13

]

(4.41)
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in agreement with Eq. (4.19). The change in Ėbody should be

Ėbody = Ėbody

∣

∣

∣

Schwarzschild

(

1 − |R|2
|β1|2

)

(4.42)

where β1 is defined in Eq. (4.37).
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Chapter 5

Reducing orbital eccentricity in
binary-black-hole simulations

Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) ini-

tial data have orbits with small but non-zero orbital eccentricities. In this paper the

quasi-equilibrium initial-data method is extended to allow non-zero radial velocities to

be specified in binary black hole initial data. New low-eccentricity initial data are ob-

tained by adjusting the orbital frequency and radial velocities to minimize the orbital

eccentricity, and the resulting (∼ 5 orbit) evolutions are compared with those of quasi-

circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits,

with eccentricity that decays over time. The precise decay rate depends on the definition

of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate

agrees well with the prediction of Peters (1964). The gravitational waveforms, which

contain ∼ 8 cycles in the dominant l = m = 2 mode, are largely unaffected by the ec-

centricity of the quasi-circular initial data. The overlap between the dominant mode in

the quasi-circular evolution and the same mode in the low-eccentricity evolution is about

0.99.

Originally accepted for publication as Harald P. Pfeiffer, Duncan A. Brown, Lawrence E.

Kidder, Lee Lindblom, Geoffrey Lovelace, and Mark A. Scheel, as a special issue article in

Class. Quantum Grav. (2007), preprint available online at http://arxiv.org/abs/gr-qc/0702106.

5.1 Introduction

The inspiral and merger of binary black holes is one of the most promising sources for current and

future generations of interferometric gravitational wave detectors such as LIGO and VIRGO [1, 2].

The initial LIGO detectors, which are currently operating at design sensitivity, could detect binary
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black hole inspirals up to distances of several hundred megaparsecs. In order to take full advantage

of the sensitivity of these detectors, detailed knowledge of the gravitational waveform is required.

Recent breakthroughs in numerical relativity have allowed several research groups to simulate

binary black hole inspirals for multiple orbits [3, 4, 5, 6, 7]. Because of the large computational

cost of these simulations, only a small number of orbits can be followed. Therefore it is important

to begin these simulations with initial data that closely approximate a snapshot of a binary black

hole system that is only a few orbits from merger. During the inspiral, the orbits of binary compact

objects circularize via the emission of gravitational waves [8], so binaries formed from stellar evolution

(rather than dynamical capture) are expected to have very small eccentricities by the time they enter

the sensitive band of ground based detectors. Because of this, the assumption of a quasi-circular

orbit (i.e., zero radial velocity) has been widely used in the construction of binary black hole initial

data [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Specifically, quasi-equilibrium

data [17] and the “QC-sequence” [24] of puncture data [25] seem to be the most popular, and both

of these assume a quasi-circular orbit. However, inspiraling compact objects have a small inward

radial velocity, and neglecting this velocity when constructing initial data will lead to eccentricity in

the subsequent evolution, as discussed in the context of post-Newtonian theory in [26], and found

numerically in [27].

The Caltech/Cornell collaboration has recently completed successful long-term simulations of

inspiraling binary black holes [6] using a pseudo-spectral multi-domain method. This technique

was used to evolve a particular quasi-circular quasi-equilibrium binary black hole initial data set

(coordinate separation d = 20 from Table IV of [17]). Figure 5.1 shows the proper separation s

between the horizons and the radial velocity ds/dt as functions of time for this evolution. The rapid

convergence afforded by spectral methods is apparent; the medium and high resolutions are nearly

indistinguishable on the plot. Eccentricity of the orbit in the form of oscillatory variations in s and

ds/dt is, unfortunately, also clearly apparent.

This noticeable eccentricity suggests two questions: First, how can initial data with the appropri-

ate black hole radial velocities be constructed for non-eccentric inspirals? Second, how do evolutions

of quasi-circular initial data differ from those of non-eccentric initial data? This paper addresses both

questions. In Sec. 5.2, we incorporate nonzero radial velocities into the quasi-equilibrium method to

construct binary black hole initial data. This results in one additional parameter for equal mass ini-

tial data, the radial velocity vr. Sec. 5.3 briefly discusses our numerical methods. Sec. 5.4 describes

how we choose vr and the the orbital frequency Ω0 for equal mass co-rotating binary black holes,

and presents numerical evolutions of the resulting low-eccentricity initial data. This section also

presents convergence tests of these binary black hole evolutions; we examine both convergence with

respect to spatial resolution and convergence with respect to the radius of the outer boundary of the

computational domain. Sec. 5.5 examines the differences between evolutions of quasi-circular initial
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Figure 5.1: Evolution of quasi-circular initial data. The left panel shows the proper separation s
between the apparent horizons, computed at constant coordinate time along the coordinate line
connecting the centers of the horizons, and the right panel shows its time derivative ds/dt. This
evolution was run at three different resolutions, with the medium and high resolution tracking each
other very closely through the run.

data and low-eccentricity initial data. We close with a summary and discussion of these results in

Sec. 5.6.

5.2 Quasi-equilibrium data with nonzero radial velocity

In this section we extend the quasi-equilibrium approach [14, 16, 17, 20] to allow specification of

nonzero radial velocities of the black holes. We proceed in three steps: First, we summarize the

construction of quasi-equilibrium data using co-rotating coordinates [17, 20]. Second, we show that

the identical quasi-circular initial data can be obtained by solving essentially the same equations but

in an asymptotically inertial coordinate system; the major difference is that one must require the

black holes to move on circular trajectories, rather than remaining fixed in the coordinate system.

Third, we generalize from black holes moving on circular trajectories to black holes moving on

inspiral trajectories.

5.2.1 Overview

We use the nomenclature of [17]; the spacetime line element is written in the usual 3+1-form,

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (5.1)

where γij is the 3-metric induced on a t = constant spatial hypersurface, α is the lapse function

and βi is the shift vector. Latin indices label spatial coordinates, and Greek indices label spacetime
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coordinates. The extrinsic curvature of the hypersurface is defined by

Kµν ≡ −γµ
ργν

σ (4)∇(ρnσ), (5.2)

where (4)∇ is the spacetime derivative operator and nµ is the future-pointing unit normal to the

slice1. We use the extended conformal thin sandwich formalism [28, 29] to construct constraint-

satisfying initial data. In this approach, the three-dimensional metric is spit into a conformal metric

γ̃ij and a positive conformal factor ψ,

γij = ψ4γ̃ij , (5.3)

and the extrinsic curvature is split into trace and trace-free parts,

Kij = Aij +
1

3
γijK. (5.4)

The freely specifiable data consist of the conformal metric γ̃ij , its time derivative ũij ≡ ∂tγ̃ij (which

is taken to be trace free), the mean curvature K ≡ Kijγ
ij , and its time derivative ∂tK. It follows

that the trace-free part of the extrinsic curvature takes the form

Aij =
1

2α

[

(Lβ)ij − ψ4ũij

]

= ψ−2Ãij , Ãij =
1

2α̃

[

(L̃β)ij − ũij

]

, (5.5)

where

(Lβ)ij ≡ 2∇(iβj) − 2

3
γij∇kβ

k, (L̃β)ij ≡ 2∇̃(iβj) − 2

3
γ̃ij∇̃kβ

k. (5.6)

The symbols (Lβ)ij and (L̃β)ij represent the conformal Killing operators in physical and conformal

space, respectively, and are related by (Lβ)ij = ψ−4(L̃β)ij . Indices on conformal tensors are raised

and lowered with the conformal metric, for example, (L̃β)ij ≡ γ̃ik γ̃jl(L̃β)kl = ψ−4(Lβ)ij . Further-

more, ∇ and ∇̃ denote the physical and conformal spatial covariant derivative operators, and the

conformal lapse is defined by α = ψ6α̃. Inverting Eq. (5.5) yields

ũij = ∂tγ̃ij = −2α̃Ãij + (L̃β)ij . (5.7)

Substituting these relations into the constraint equations and into the evolution equation for

the extrinsic curvature, one arrives at a system of five elliptic equations, often referred to as the

1Since Kµν is a spatial tensor, Kµνnν = 0, its spatial components Kij carry all its information. Almost all tensors
in this paper are spatial, and we use spatial indices here whenever possible.
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extended conformal thin sandwich (XCTS) equations:

∇̃2ψ − 1

8
R̃ψ − 1

12
K2ψ5 +

1

8
ψ−7ÃijÃij = 0, (5.8a)

∇̃j

( 1

2α̃
(L̃β)ij

)

− 2

3
ψ6∇̃iK − ∇̃j

( 1

2α̃
ũij
)

= 0, (5.8b)

∇̃2(α̃ψ7) − (α̃ψ7)

[

R̃

8
+

5

12
K4ψ4+

7

8
ψ−8ÃijÃij

]

= −ψ5(∂tK − βk∂kK). (5.8c)

Here R̃ denotes the trace of the Ricci tensor of γ̃ij . These equations are to be solved for ψ, α̃, and

βi; given a solution, the physical initial data (γij ,Kij) are obtained from Eqs. (5.3)–(5.5).

Note that a solution of the XCTS equations includes a shift vector βi and a lapse function

α = ψ6α̃. If these values of lapse and shift are used in an evolution of the constructed initial data,

then the time derivative of the mean curvature will initially equal the freely specifiable quantity

∂tK, and the trace-free part of the time derivative of the metric will initially equal ψ4ũij . Thus, the

free data of the XCTS equations allow direct control of certain time derivatives in the evolution of

the initial data.

The next step is to choose the free data that correspond to the desired physical configuration.

The quasi-equilibrium quasi-circular orbit method of constructing binary black holes [17, 20] (see

also [11, 12, 14]) provides a framework for many of these choices. This method is based on the fact

that the inspiral time scale for a binary compact object is much larger than the orbital time scale, so

that time derivatives should be very small in the co-rotating coordinate system. Furthermore, the

black holes should be in equilibrium, which provides conditions on the expansion θ and shear σij of

the outgoing null geodesics passing through the horizon. The complete set of physically motivated

choices for the free data within the quasi-equilibrium method are

ũij = 0, (5.9a)

∂tK = 0, (5.9b)

ψ → 1, α→ 1, as r → ∞, (5.9c)

βi → (Ω0 × r)i, as r → ∞, (5.9d)

∂t is tangent to SAH, (5.9e)

θ = 0 on S, (5.9f)

σij = 0 on S, (5.9g)

where S denotes the location of the apparent horizons in the initial data surface, and SAH is the world

tube of the apparent horizon obtained by evolving the initial data with lapse α and shift βi. The first

two conditions are the assumptions that the time derivatives are small. The boundary conditions in

Eqs. (5.9c) and (5.9d) enforce asymptotic flatness and co-rotation. The orbital frequency Ω0 entering
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Eq. (5.9d) can be chosen by the effective potential method [9] or the Komar-mass ansatz [11], with

similar results [20].

To discuss the remaining conditions, we need to introduce a few additional geometrical quantities.

Denote by si and s̃i the physical and conformal outward-pointing spatial unit normals to S. They

obey the relations

sisjγij = 1, s̃is̃j γ̃ij = 1, si = ψ−2s̃i. (5.10)

Then introduce the induced metric on S in physical and conformal space by hij = γij − sisj , and

h̃ij = γ̃ij − s̃is̃j , respectively. Because nµs
µ=0, the space-time components of the unit normal are

given by sµ = [0, si]. The outward-pointing null normal to S can then be written as

kµ =
1√
2

(nµ + sµ) . (5.11)

Eq. (5.9e) simply means that the apparent horizon is initially at rest when the initial data is

evolved in the co-rotating coordinate system. It implies that the shift must take the form

βi = αsi + βi
|| on S, (5.12)

where βi
|| is tangent to S. Eq. (5.9f) ensures that S is an apparent horizon, and implies a boundary

condition on the conformal factor,

s̃k∂kψ = −ψ
−3

8α̃
s̃is̃j

[

(L̃β)ij − ũij

]

− ψ

4
h̃ij∇̃is̃j +

1

6
Kψ3. (5.13)

Finally, Eq. (5.9g)—which forces the apparent horizon to be in equilibrium—restricts βi
|| to be a

conformal Killing vector within the surface S,

(L̃Sβ||)
ij ≡ 2D̃(iβ

j)
|| − h̃ijD̃kβ

k
|| = 0, (5.14)

where D̃i is the covariant derivative compatible with h̃ij . As discussed in detail in [17, 20], βi
||

controls the spin of the black holes in addition to the spin required for co-rotation.

Quasi-equilibrium considerations have now led us to choices for half of the free data (ũij and

∂tK) for the XCTS equations, and for all boundary conditions except a lapse boundary condition

on the horizon S. As argued in [17], Eqs. (5.9a)–(5.9e) are compatible with any spin of the black

holes, with any choice of boundary conditions for the lapse on S, and with any choice of γ̃ij and K.
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For concreteness, we choose

γ̃ij = fij , (5.15a)

K = 0, (5.15b)

∂r(αψ) = 0 on S, (5.15c)

where fij is the Euclidean metric. The last two conditions, Eqs. (5.15b) and (5.15c), are gauge

choices [17]. The choice of the conformal metric, however, does influence the physical gravitational

radiation degrees of freedom of the system. Since a black hole binary is not conformally flat at

second post-Newtonian order [30], our simple choice of conformal flatness, Eq. (5.15a), is probably

responsible for the initial burst of unphysical gravitational radiation found in the evolution of these

initial data.

5.2.2 Initial data in an asymptotically inertial frame

It is possible to re-formulate the quasi-equilibrium method in asymptotically inertial coordinates

in such a way that identical physical initial data are obtained. To do so, we solve the XCTS Eqs.

(5.8a)–(5.8c) with the same choices for the free data and boundary conditions, except that Eqs.

(5.9d) and (5.9e) are replaced by

βi → 0 as r → ∞, (5.16a)

∂t + ξi
rot∂i is tangent to SAH, where ξi

rot = (Ω0 × r)i. (5.16b)

The second condition implies that the apparent horizons move initially with velocity ξi
rot, i.e., tangent

to circular orbit trajectories.

Let (ψco, β
i
co, αco) be the solution to the XCTS equations in the co-rotating coordinates. We show

in 5.7 that the solution in the asymptotically inertial coordinates is (ψ, βi, α) = (ψco, β
i
co− ξi

rot, αco),

and that this solution leads to the same physical metric γij and extrinsic curvatureKij as the original

solution in co-rotating coordinates. The proof of this relies on two observations: First, the shift enters

the XCTS equations and the boundary conditions (almost) solely through the conformal Killing

operator, (L̃β)
ij

; and second, ξi
rot is a conformal Killing vector, (L̃ξrot)

ij = 0, for the conformally

flat case considered here. Hence the term −ξi
rot that is added to βi

co drops out of the equations.

In 5.7, we also show that Eq. (5.16b) and the shear condition Eq. (5.9g) require the shift on the

inner boundary S to take the form

βi = αsi − ξi
rot + ζi on S, (5.17)
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where ζi is a vector that must be tangent to S (ζisi = 0) and must be a conformal Killing vector

within the surface S:

σij = 0 ⇔ 0 = (L̃Sζ)
ij . (5.18)

Comparing Eq. (5.17) with Eq. (5.12), we see that the vector ζi plays the role of βi
|| in the

earlier treatment; choosing it as a rotation within S will impart additional spin to the black holes

in addition to co-rotation, as described in detail in [20]. Note that at large radii the comoving shift

βi
co is a pure rotation, since βi

co → ξi
rot [Eq. (5.16a)] and ∇jξi

rot is antisymmetric [Eq. (5.16b)].

5.2.3 Initial data with nonzero radial velocity

After rewriting the standard quasi-equilibrium method in an asymptotically inertial frame, it is

straightforward to incorporate nonzero initial radial velocities for the black holes. As discussed in

Sec. 5.2.2, quasi-circular initial data can be generated by specifying that the horizons move initially

on circles in an asymptotically inertial coordinate system. This is accomplished by the shift boundary

conditions in Eqs. (5.16a) and (5.16b). We include initial radial velocities simply by requiring the

black holes to move initially on inspiral rather than circular trajectories.

Consider the problem of giving a black hole located a distance r0 from the origin an initial radial

velocity vr. This can easily be accomplished by replacing the boundary conditions in Eqs. (5.16a)

and (5.16b) with

βi → 0 as r → ∞, (5.19a)

∂t + ξi
insp∂i is tangent to SAH, where ξi

insp ≡ (Ω0 × r)i + vr
ri

r0
. (5.19b)

As before, we place the center of rotation at the origin of the coordinate system. Note that ξi
insp

is still a conformal Killing vector, (L̃ξinsp)ij = 0, for the conformally flat case considered here.

Therefore the analysis in 5.7 of the boundary conditions in Eqs. (5.16b) and (5.9g) also applies to

Eqs. (5.19b) and (5.9g), and so we find that the inner shift boundary condition must be of the form

βi = αsi − ξi
insp + ζi, on S, (5.20)

where ζi is a conformal Killing vector within S.

The boundary conditions in Eqs. (5.19a) and (5.19b) depend on two parameters, the orbital fre-

quency Ω0 and a radial velocity vr (or, more precisely, an overall expansion factor vr/r0, reminiscent

of the Hubble constant). For unequal mass binary systems the needed radial velocities for each hole

would be different, but the needed expansion factors, vr/r0, are expected to be the same for the two

holes.

The changes discussed in Sec. 5.2.2 are superficially similar to the changes discussed in Sec. 5.2.3,
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yet the former amounts to a mere coordinate transformation while the latter produces different

physical initial data. This can be understood by noting that the change from co-rotating coordinates

[Eqs. (5.9d) and (5.9e)] to inertial coordinates [Eqs. (5.16a) and (5.16b)] is accomplished by adding

the same conformal Killing vector field ξi
rot to the shift at both inner and outer boundaries, but

the change from Eqs. (5.9d) and (5.9e) to initial data with nonzero radial velocity [Eqs. (5.19a)

and (5.19b)] is accomplished by adding different conformal Killing fields to the shift on different

boundaries: ξi
rot at the outer boundary and ξi

insp at the inner boundaries. Only in the former case

can the change be expressed as a global transformation of the shift of the form βi → βi + ξi
rot.

5.3 Numerical methods

The initial value equations are solved with the pseudo-spectral elliptic solver described in [31]. This

elliptic solver has been updated to share the more advanced infrastructure of our evolution code and

is now capable of handling cylindrical subdomains. This increases its efficiency by about a factor of

three over the results described in [31] for binary black hole initial data.

The Einstein evolution equations are solved with the pseudo-spectral evolution code described

in [6]. This code evolves a first-order representation [32] of the generalized harmonic system [33, 34].

We use boundary conditions [32] designed to prevent the influx of unphysical constraint violations

and undesired incoming gravitational radiation, while allowing the outgoing gravitational radiation

to pass freely through the boundary. The code uses a fairly complicated domain decomposition.

Each black hole is surrounded by three concentric spherical shells, with the inner boundary of the

inner shell just inside the horizon. The inner shells overlap a structure of 24 touching cylinders,

which in turn overlap a set of outer spherical shells—centered at the origin—which extend to a large

outer radius. Outer boundary conditions are imposed only on the outer surface of the largest outer

spherical shell. We vary the location of the outer boundary by adding more shells at the outer edge.

Since all outer shells have the same angular resolution, the cost of placing the outer boundary farther

away (at full resolution) increases only linearly with the radius of the boundary. Some of the details

of the domain decompositions used for the simulations presented here are given in Table 5.1.

5.4 Choice of orbital frequency and radial velocity

We now describe how to construct binary black hole initial data sets with low orbital eccentricity.

This is done by tuning the freely adjustable orbital parameters Ω0 and vr iteratively to reduce the

eccentricity of the inspiral trajectories. For each iteration we choose trial orbital parameters Ωo and

vr, evolve the corresponding initial data, analyze the resulting trajectories of the black holes, and

update the orbital parameters to reduce any oscillatory behavior in quantities like the coordinate
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separation of the black holes d(t), the proper separation between the horizons s(t), or the orbital

frequency ω(t). All of these quantities (and many others) exhibit similar oscillatory behavior; we

choose d(t) as our primary diagnostic during the tuning process because it is most easily accessible

during the evolutions.

To make this procedure quite explicit, we begin by evolving quasi-circular initial data for about

two orbits. Then we measure the time derivative of the measured coordinate separation of the

holes ḋ(t) (in the asymptotic inertial coordinates used in our code [6]) as illustrated, for example, in

Fig. 5.3. We fit this measured ḋ(t) to a function of the form:

ḋ(t) = A0 +A1t+B sin(ωt+ ϕ), (5.21)

where A0, A1, B, ω, and ϕ are constants determined by the fit. The A0 + A1t part of the solution

represents the smooth inspiral, while the B sin(ωt+ϕ) part represents the unwanted oscillations due

to the eccentricity of the orbit. For a nearly circular Newtonian orbit, B is related to the eccentricity

e of the orbit by e = B/ωd. So reducing the orbital eccentricity is equivalent to reducing B. The

values of the orbital parameters Ω0 and vr are now adjusted iteratively to make the coefficient B in

this fit as small as desired. After each adjustment of Ω0 and vr, the initial value equations described

in Sec. 5.2 [in particular, using the boundary condition (5.19b) which depends on Ω0 and vr] are

solved completely (to the level of numerical truncation error).

For this paper, our goal is to reduce B, and hence the orbital eccentricity, by about a factor

of ten compared to quasi-circular initial data. This level of reduction is sufficient to allow us to

evaluate the significance of the orbital eccentricity inherent in quasi-circular initial data. A variety

of methods could be used to find orbital paramters that make B small. One possibility is simply to

evaluate B(Ω0, vr) numerically as described above, and then to use standard numerical methods to

solve the equation B(Ω0, vr) = 0. Since our goal in this paper is to reduce B by about a factor of

ten, simple bisection root finding methods are sufficient.

A more efficient method is to use our knowledge of the behavior of nearly circular orbits to

make informed estimates of the needed adjustments in the orbital parameters. Evaluating the fit

Eq. (5.21) at the initial time t = 0, we see that the ellipticity-related component B sin(ωt + ϕ)

contributes B sin(ϕ)/2 to the radial velocity of each hole and Bω cos(ϕ)/2 to its radial acceleration.

(The factor 1/2 arises because d measures the distance between the holes.) For a Newtonian binary,

this eccentricity-induced radial velocity can be completely removed by changing the initial radial

velocity by

δvr = −B sin(ϕ)

2
. (5.22)

Furthermore, changing the orbital frequency Ω0 by a small amount δΩ0 changes the radial acceler-

ation of each black hole by the amount Ω0δΩ0d0, where d0 = d(0) is the initial separation of the
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Table 5.1: Summary of evolutions presented in this paper. The labels ‘QC,’ ‘E,’ and ‘F’ refer to
the different initial data sets, with numerical suffix (‘E1,’ ‘E2,’ etc.) denoting different values of the
initial outer boundary radius of the evolutions, Router.

Label Initial data Router

MADM
# outer approx # of points

shells low med. high
QC MADMΩ0 =0.029792, vr =0.0 133 8 523 643 763

JADM/M
2
ADM = 0.98549

Mirr/MADM = 0.50535
E1 MADMΩ0 =0.029961, vr =−0.0017 171 10 593 663 743

E2 JADM/M
2
ADM = 0.99172 293 18 643 723 813

Mirr/MADM = 0.50524
F1 MADMΩ0 =0.029963, vr =−0.0015 133 8 523 643 763

F2 JADM/M
2
ADM = 0.99164 190 12 553 663 783

F3 Mirr/MADM = 0.50525 419 28 623 743 873

holes. Thus the change δΩ0 needed to remove the eccentricity-induced initial radial acceleration,

Bω cos(ϕ)/2, is

δΩ0 = −Bω cos(ϕ)

2d0Ω0
≈ −B cos(ϕ)

2d0
. (5.23)

Eqs. (5.22) and (5.23) still hold approximately for relativistic binaries. We have found that simul-

tanously adjusting vr and Ω0 by Eqs. (5.22) and (5.23) typically reduces B by about a factor of

ten.

The smallest eccentricity data set produced here (by the simple bisection method described

above) is labeled ‘F,’ and the data from the next to last iteration of this method is labeled ‘E.’

These initial data sets, together with the quasi-circular data labeled ‘QC’ were evolved with multi-

ple numerical resolutions and with multiple outer boundary locations; Table 5.1 summarizes these

evolutions. The orbital frequency used in the final evolution is only 0.6 per cent larger than the

value of Ω0 used in the quasi-circular case. As expected, this change is comparible to the magnitude

of the radial velocity vr in the low eccentricity case. The smallness of these quantities shows that

the quasi-circular approximation is quite good.

Fig. 5.2 shows the orbital phase (as measured by the coordinate locations of the centers of the

apparent horizons) for the evolutions of quasi-circular initial data, QC, and the least-eccentric initial

data, F1, F2, and F3. (The numerical suffix, F1, F2, etc., denotes simulations with different values of

the outer boundary radius as defined in Table 5.1.) These evolutions proceed for about five orbits and

then crash shortly before the black holes merge. The upper left inset shows differences between the

orbital phase computed with different resolutions for the QC and the F2 runs. The phase difference

between the high- and low-resolution runs is . 0.35 radians, which is a good estimate of the error in

the low-resolution run. The phase difference between the medium- and high-resolution runs drops

to ≈ 0.02 radians, which can be taken as the error in the medium-resolution run. Between low and

medium resolutions, the error drops by about a factor of 20. Assuming exponential convergence,
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Figure 5.2: Evolution of the orbital phase. The main panel shows the phase of the trajectories of
the centers of the apparent horizons as a function of time for the quasi-circular (dotted curves) and
low-eccentricity (solid curves) initial data. The top left inset shows the phase differences between
different resolution runs, which decreases at higher resolutions. The lower right inset shows the
difference in the orbital phase between evolutions with different outer boundary locations.

the error of the high-resolution run should be smaller by yet another factor of ∼ 20, i.e., . 0.001

radians. The lower right inset in Fig. 5.2 shows phase differences between evolutions of the same

initial data, but run with different outer boundary radii. These differences are small, so we do not

expect the influence of the outer boundary on our results to be significant. Our analysis in Sec. 5.5

is based mostly on comparisons between the high resolution QC and F2 runs.

Fig. 5.3 illustrates the radial velocities (determined from the time derivatives of both the co-

ordinate and the intra-horizon proper separations) for the quasi-circular run QC and for the two

low-eccentricity runs E and F. Orbital eccentricity causes periodic oscillations in these curves; the

amplitudes of these oscillations are clearly much smaller in runs E and F than in run QC. By fitting

the proper separation speed ds/dt to a linear function plus sinusoid, ds/dt = A0+A1t+B sin(ωt+ϕ),

the approximate amplitude of the oscillations can be estimated. We find BQC ≈ 5.5 · 10−3,

BE ≈ 5.8 · 10−4, and BF ≈ 4.1 · 10−4. This confirms that we have succeeded in our goal of re-

ducing the oscillations by an order of magnitude. These fits are not very accurate because the fit

must cover at least one period of the oscillations, and significant orbital evolution occurs during this

time. If we vary the fit interval 40 < t/MADM < T by choosing T between 300 and 450, the quoted

amplitudes AQC,E,F change at about the 10% level.

The coordinate separation d(d)/dt shows some noise at early times as the binary system equili-

brates and an initial burst of ‘junk’ gravitational radiation travels outward. There are also short-
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Figure 5.3: Radial velocity during evolutions of quasi-circular and low-eccentricity initial data. The
left panel shows the coordinate velocity ḋ(t), the right panel the velocity determined from the intra-
horizon proper separation ṡ(t).

lived, high-frequency features apparent in Fig. 5.3 at intermediate times. The earlier feature occurs

at t/MADM ∼ 140 for the QC run, t/MADM ∼ 200 for F2, and t/MADM ∼ 300 for E2; these times

coincide with the light-crossing time to the outer boundary. We believe that this early feature is

caused by a small mismatch between the initial data and the outer boundary conditions used by

the evolution code; this mismatch produces a pulse that propagates inward from the outer bound-

ary starting at t = 0. A later (and larger) feature occurs at t/MADM ∼ 280 for the QC run,

t/MADM ∼ 400 for F2, and at t/MADM ∼ 600 (off the scale of Fig. 5.3) for E2. This later feature

occurs at twice the light-crossing time, and is caused by reflection of the initial ‘junk’ gravitational

radiation burst off of the outer boundary. The outer boundary conditions used in this paper perform

well for the physical gravitational-wave degrees of freedom [32], but comparatively poorly for the

gauge degrees of freedom (as demonstrated in recent tests [35]). These results plus the observation

that the high-frequency features in Fig. 5.3 are greatly diminished in less gauge-dependent quantities

like ds/dt suggest that these features may be caused by perturbations in the gauge or coordinate

degrees of freedom of the system.

Fig. 5.4 shows the orbital trajectories of the centers of the black holes during evolutions of

the low-eccentricity initial data E 2, and the quasi-circular initial data QC. The low-eccentricity

run forms a smooth spiral with no apparent distortion. In contrast, the evolution starting from

quasi-circular initial data has clearly visible irregularities.

2We plot the evolution E1 because it was pushed somewhat closer to merger than the F runs; the trajectories of
the E runs are indistinguishable from those of the F runs on the scale of this figure.
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Figure 5.4: Trajectories of the center of the apparent horizons in asymptotically inertial coordinates
for the runs E1 (left plot) and QC (right plot). The solid/dashed line distinguish the two black
holes; the circles and ellipsoids in the left figure denote the location of the apparent horizon at the
beginning and end of the evolution.

5.5 Comparing quasi-circular and low-eccentricity initial data

Figs. 5.3 and 5.4 show clearly that evolutions of the quasi-circular initial data, QC, are not the same

as those of the low-eccentricity initial data, F. In this section, we characterize and quantify these

differences in more detail.

5.5.1 Time shift

The black holes approach each other more quickly in the QC run, with the time of coalescence

appearing to be about 60MADM earlier than in the F2 run. Fig. 5.2, for example, shows that the

orbital phase increases more quickly during the QC run, with a late time phase difference of about

π (almost a full gravitational wave cycle) compared to the F2 run. Similar differences are also seen

in the graphs of the proper separation and orbital frequency shown in the upper panels of Fig. 5.5.

We find that most of the difference between the QC and F runs is just a simple coordinate

time shift. The dashed lines in the upper panels of Fig. 5.5 represent the QC evolution shifted by

∆T = 59MADM. With this time shift, the QC evolution oscillates around the low-eccentricity F2

run. Therefore, the apparent earlier merger time of the QC run is just a consequence of the fact

that coordinate time t = 0 in the QC run represents a later stage in the inspiral than it does in

the F2 evolution. The QC and F2 runs were started with the same spatial coordinate separation at

t = 0; however, this point is the apocenter of the slightly eccentric QC orbit, so the point in the F2
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Figure 5.5: Proper separation (left) and orbital frequency (right) for evolutions of the QC and F
initial data. The lower panels show the differences between the time-shifted QC and the F2 runs.
The dotted lines in the lower panels show the differences between the E1 and F2 runs, providing an
estimate of the remaining eccentricity in the F2 run.

run with the same phase (measured from merger) has smaller separation.

The lower left panel of Fig. 5.5 shows the proper separation difference, δs = sF (t)−sQC(t−∆T ),

which emphasizes the oscillations of the QC evolution around the F2 orbit. These differences are

plotted for three different time shifts ∆T . The right panels of Fig. 5.5 present information about

the orbital angular frequency ω as determined from the coordinate locations of the centers of the

apparent horizons. The upper right panel shows ω for evolutions of QC and F2 initial data. Time-

shifting the QC run by the same ∆T = 59MADM also lines up the frequency curves very well. The

lower right plot shows the difference in orbital frequency between the F2 run and the time-shifted

QC run, δω = ωF(t) − ωQC(t− ∆T ). The differences δs and δω are very sensitive to the time offset

∆T applied to the QC run. In particular, at late times, when s and ω vary rapidly, even a small

change in ∆T causes the differences to deviate significantly from their expected oscillatory behavior

around zero. Looking at both δs and δω, we estimate a time offset ∆T/MADM = 59 ± 1 between

the QC run and the F runs.

5.5.2 Measuring eccentricity

The evolution of the F initial data appears to have very low orbital eccentricity, so it can be used as a

reference from which the eccentricity of the QC run can be estimated. We can define an eccentricity



113

8 9 10 11 12

0.012

0.016

0.020

0.024 e
s

eω

∝  s
1.19

∝  s
1.51

∝  s
19/12

s/M
ADM

Figure 5.6: Orbital eccentricity of the QC evolution estimated from variations in proper separation,
es, and from variations in orbital frequency, eω. Also shown in this log-log plot are best-fit power
laws to each set of data, as well as the scaling predicted by Peters (1964) with power 19/12 ≈ 1.58.

for the QC evolution, for example, from the relative proper separation,

es =
|δs|
s
, (5.24)

where this equation is to be evaluated at the extrema of δs. Similarly, we can define a different

measure of eccentricity from the variations in ωorbit by evaluating

eω =
|δω|
2ω

(5.25)

at the extrema of δω. The factor of two in the definition of eω arises from angular momentum

conservation, which makes the orbital frequency proportional to the square of the radius of the

orbit. In Newtonian gravity, es = eω to first order in eccentricity. Since the F initial data results in

a factor of ten smaller oscillations in ds/dt than the QC data, we expect these eccentricity estimates

to be affected by the residual eccentricity of the F run at only the 10% level.

The orbital eccentricity of the QC run, estimated using Eqs. (5.24) and (5.25), is plotted as a

function of proper separation between the black holes in Fig. 5.6. We see that these eccentricities

decay during the inspiral, as expected. Within our estimated 10% errors, these eccentricities are

consistent with a power law dependence on the proper separation, e ∝ sp. The eccentricity es

based on the proper separation is consistently somewhat larger than eω, and it decays somewhat

more slowly. Peters [8] derived the evolution of the orbital eccentricity during an inspiral due to
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the emission of gravitational waves using the quadrupole approximation. His result in the e ≪ 1

limit predicts that e ∝ a19/12, where a is the semi-major axis of the orbit and where the constant

of proportionality depends on the initial conditions. Using a ≈ s/2, his formula predicts that the

eccentricity should decay as

e ∝ s19/12. (5.26)

Fig. 5.6 confirms that eω follows this prediction quite closely, while es has a somewhat smaller power

law exponent.

The eccentricities measured here are actually the relative eccentricities of the QC and the F

orbits. The eccentricity of the QC run that we infer depends therefore on the residual eccentricity

of the F run. A more intrinsic approach, used recently by Buonanno et al. [27], is to fit some

eccentricity-dependent quantity to a full cycle (or more) of the orbital data. This approach yields

similar, but somewhat smaller, eccentricities than those found here (despite our use of a QC orbit

having larger initial separation and so presumably smaller initial eccentricity).

5.5.3 Waveform extraction

We now turn our attention to the problem of extracting the gravitational wave signals from our

numerical simulations using the Newman-Penrose quantity Ψ4. Given a spatial hypersurface with

timelike unit normal nµ, and given a spatial unit vector rµ in the direction of wave propagation, the

standard definition of Ψ4 is the following component of the Weyl curvature tensor,

Ψ4 = −Cαµβνℓ
µℓνm̄αm̄β , (5.27)

where ℓµ ≡ 1√
2
(nµ − rµ), and mµ is a complex null vector (satisfying mµm̄µ = 1) that is orthogonal

to rµ and nµ. Here an overbar denotes complex conjugation.

For (perturbations of) flat spacetime, Ψ4 is typically evaluated on coordinate spheres, and in

this case the usual choices for rµ and mµ are

rµ =

(

∂

∂r

)µ

, (5.28a)

mµ =
1√
2r

(

∂

∂θ
+ i

1

sin θ

∂

∂φ

)µ

, (5.28b)

where (r, θ, φ) denote the standard spherical coordinates. With this choice, Ψ4 can be expanded in

terms of spin-weighted spherical harmonics of weight -2:

Ψ4(t, r, θ, φ) =
∑

lm

Ψlm
4 (t, r)−2Ylm(θ, φ), (5.29)
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Figure 5.7: Waveforms for the F2 run. Plotted are the six dominant Ψlm
4 coefficients, scaled by

the factor 1000 rMADM. Solid lines represent the real parts and dashed lines the imaginary parts of
Ψlm

4 . The time axes are labeled in geometric units at the bottom, and in SI units for a 20+20 M⊙
binary at the top.

where the Ψlm
4 are expansion coefficients defined by this equation.

For curved spacetime, there is considerable freedom in the choice of the vectors rµ and mµ, and

different researchers have made different choices [27, 36, 37, 38, 39, 40, 7] that are all equivalent

in the r → ∞ limit. We choose these vectors by first picking an extraction two-surface E that is a

coordinate sphere (r2 = x2 + y2 + z2) centered on the center of mass of the binary system (using

the global asymptotically Cartesian coordinates employed in our code). We choose rµ to be the

outward-pointing spatial unit normal to E (that is, we choose ri proportional to ∇ir). Then we

choose mµ according to Eq. (5.28b), using the standard spherical coordinates θ and φ defined on

these coordinate spheres. Finally we use Eqs. (5.27) and (5.29) to define the Ψlm
4 coefficients. Note

that our mµ is not exactly null nor exactly of unit magnitude at finite r, so our definition of Ψlm
4 will

disagree with the waveforms observed at infinity (and with those computed by other groups). Our

definition does, however, agree with the standard definition given in Eqs. (5.27)–(5.29) as r → ∞, so

our definition only disagrees with the standard one by a factor of order 1+O(1/r). In this paper we

compute Ψlm
4 in the same way and at the same extraction radius for all runs, so the O(1/r) effects

should not significantly affect our comparisons of these waveforms.
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Since our simulations use high spatial resolution all the way to the outer boundary, the outgoing

radiation is fully resolved everywhere. Therefore, we could extract waveforms at very large radii.

The extracted wave signal lags the dynamics of the binary by the light-travel time to the extraction

radius, and our evolutions currently fail shortly before merger. So extracting the wave signal at a

very large radius would miss the most interesting part of the waveform close to merger. In order to

retain most of the signal, we compromise by extracting the radiation at an intermediate distance:

R/MADM = 57. Fig. 5.7 presents the dominant waveform coefficients Ψlm
4 . The Ψ44

4 coefficient is

about a factor of ten smaller than the largest coefficient, Ψ22
4 . The Ψ32

4 and Ψ66
4 coefficients are

smaller by about another order of magnitude; and the Ψ42
4 and Ψ54

4 coefficients have amplitudes

that are only about ∼ 1/1000 that of Ψ22
4 .

5.5.4 Waveform comparisons

In this section we make a number of quantitative comparisons between the waveforms produced by

the evolution of quasi-circular, QC, initial data and those produced by the lower eccentricity, F,

initial data.

We can define a gravitational wave frequency associated with Ψlm
4 by writing

Ψlm
4 = Alm(t)e−iφlm(t), (5.30)

where Alm(t) is its (real) amplitude and φlm(t) its (real) phase. The frequency, Ωlm, associated with

Ψlm
4 is then defined as

Ωlm =
dφlm

dt
. (5.31)

Fig. 5.8 shows comparisons of the frequency of the dominant mode, Ω22, from the QC and the F

runs. This figure confirms the basic picture that emerged from our discussion in Secs. 5.5.1 and 5.5.2:

a time offset ∆t must be used to compare the QC and F runs properly; the QC run has an orbital

eccentricity which causes Ω22 to oscillate; and these oscillations are largely absent from the F run.

Indeed, apart from the factor of 2 difference between orbital and the gravitational wave frequencies,

the top panel of Fig. 5.8 looks very much like Fig. 5.2. This indicates that our coordinates are very

well behaved—a feature that has also been observed in other numerical simulations, e.g., [41].

In order to make more detailed comparisons between the QC and the F waveforms, a phase offset

∆φ in addition to the time offset ∆T must be taken into account. These offsets are used then to

redefine the waveform of the QC run:

Ψ̃lm
4 QC(t) ≡ e−im∆φ Ψlm

4 QC(t− ∆T ). (5.32)

The same time and phase offsets are used for all values of l and m. Note that ∆φ and ∆T represent
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Figure 5.8: Frequency Ω22 of the gravitational waves extracted from the phase of Ψ22
4 . The

left/bottom axes show geometric units, the right/top axes present SI-units for a 20+20 M⊙ bi-
nary. The dotted line in the lower panel represents the difference between the E1 and F2 runs.

differences between the QC and F evolutions. These offsets differ therefore from those often used

in LIGO data analysis, where offsets are used to set the time and orbital phase at which a binary

signal enters the LIGO band at 40Hz.

We now estimate the phase offset ∆φ needed in Eq. (5.32) to allow us to make direct comparisons

between the QC and the F2 waveforms. We consider two effects: First, the orbital phase of the time-

shifted QC run differs from that of the F2 run by the phase accumulated by the F2 run during the

time 0 ≤ t ≤ ∆T . Second, the orbital frequencies of the QC and F2 runs differ, and this difference

oscillates in time (cf. the right panel of Fig. 5.5), so the orbital phase difference between the two

runs also oscillates in time. We take both of these effects into account: first, we evaluate the time-

dependent phase difference, ∆φ(t), between the waveforms of the time offset QC run, Ψ4QC(t−∆t),

and the F run, Ψ4F(t); second, we evaluate the time average of this ∆φ(t) to obtain ∆φ ≈ 1.83.

Using this value of ∆φ leads to waveforms for the QC and F2 evolutions that agree as well as can

be expected in the presence of the other systematic errors, described below.

The two gravitational wave polarizations, h+(t) and h×(t), are the real functions related to Ψ4

by

Ψ4 = ḧ+ − iḧ×. (5.33)

Consequently, the −2Ylm components of h+(t) and h×(t) can be obtained by the double time integral,

hlm
+ (t) − ihlm

× (t) =

∫ t

ti

dτ

∫ τ

ti

dτ ′Ψlm
4 (τ ′) + Clm +Dlmt. (5.34)
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Figure 5.9: Waveforms hlm
+ (normalized by r/MADM) for the six dominant −2Y

lm modes. The solid
lines represent evolution of the low-eccentricity initial data (run F2). The dashed lines represent
evolution of QC initial data time-shifted by ∆T = 59MADM and phase-rotated by ∆φ = 1.83. The
time axes are labeled in geometric units at the bottom and in SI-units for a 20+20 M⊙ inspiral at
the top.

The constants Clm and Dlm account for the (unknown) values of h and ḣ at the initial time ti. If the

full waveform were known, they could be determined either at very early times or at very late times

(i.e., after the merger and ringdown). Since we do not have complete waveforms for the present

evolutions, we choose Clm and Dlm that make the average and the first moment of hlm
+×(t) vanish:

∫ t2

t1

dτ hlm
+×(τ) = 0 =

∫ t2

t1

dτ τ hlm
+×(τ). (5.35)

The integration interval [t1, t2] = [160MADM, 706MADM] is chosen to be the largest interval (exclud-

ing the initial transient radiation burst) on which data is available for both runs.

Fig. 5.9 shows the waveforms hlm
+ for the evolution F2 (solid lines) and QC (dashed lines). To

the eye, the waveforms look essentially identical. To quantify how well the two waveforms match,

we use simple overlap integrals in the time domain:

µ =
〈h1, h2〉

||h1|| ||h2||
, (5.36)
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Table 5.2: Waveform overlaps between the low-eccentricity run F2 and quasi-circular run QC (com-
puted from runs with medium and high resolution). Each mode of QC has been time shifted and
rotated by ∆T = 59MADM and ∆φ = 1.83. These numbers are subject to additional systematic
effects as discussed in the text.

high resolution medium resolution
mode µ(hlm

+F , h̄
lm
QC+) µ(hlm

F×, h̄
lm
QC×) µ(hlm

+F , h̄
lm
QC+) µ(hlm

F×, h̄
lm
QC×)

l=2, m=2 0.998 0.998 0.998 0.998
l=3, m=2 0.997 0.997 0.997 0.998
l=4, m=2 0.996 0.997 0.996 0.998
l=4, m=4 0.991 0.991 0.993 0.993
l=5, m=4 0.987 0.979 0.983 0.982
l=6, m=6 0.981 0.980 0.986 0.982

where 〈h1, h2〉 ≡
∫ t2

t1
dt h1(t)h2(t), and ||h||2 ≡ 〈h, h〉. The quantity µ gives the loss of signal to noise

ratio obtained by filtering waveform h1 with waveform h2. We evaluate the overlap integral in the

time domain, rather than the frequency domain, to allow us to truncate the waveforms easily to the

interval [t1, t2] during which both waveforms are available. During the evolutions presented here the

gravitational-wave frequency changes by only a factor of two, so our decision not to weight by the

LIGO noise spectrum should not change our results significantly for frequencies near the minimum

of the noise curve. Furthermore, we evaluate µ directly for the different modes hlm
+,×, rather than

for specific observation directions. This allows us to compare differences in the higher-order modes

with smaller amplitudes, which would otherwise be swamped by the dominant l = m = 2 mode.

The overlaps between the QC and the F2 waveforms, obtained at ∆T = 59MADM and ∆φ = 1.83,

are summarized in Table 5.2. Both medium- and high-resolution overlaps are given in Table 5.2,

confirming that the overlaps are not dominated by numerical errors. We note, however, that the

medium resolution runs have more noise in the higher order modes at early times; so we shortened the

integration interval to [t1, t2] = [200MADM, 706MADM] to avoid contamination in those waveforms.

The dominant uncertainty in the computed overlap µ arises because of our uncertainties in the

integration constants Clm andDlm in Eqs. (5.34) and (5.35). Because the waveform has finite length,

these constants are known only to an accuracy of ∼ 1/Ncyc, where Ncyc is the number of cycles in

the waveform. This error depends only on the length of the evolution, and can only be reduced

by longer evolutions, not by higher resolution evolutions. We show in 5.8 (to lowest order in the

uncertainties of Clm and Dlm) that the overlaps quoted in Table 5.2 are upper bounds. We also

derive lower bounds for these overlaps there, which are smaller than the values given in Table 5.2 by

about 12/(πNcyc)
2. So these lower bounds are about 0.02 smaller than the Table 5.2 values for the

m = 2 modes, and 0.002 smaller for the m = 6 modes. This systematic uncertainty is much larger

than the mismatch of the waveforms for the m = 2 modes, so maximizing the overlaps by varying

∆T and ∆φ as independent parameters is not justified.
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5.6 Discussion

In this paper, we have extended the quasi-equilibrium initial-data formalism to binary black holes

with nonzero radial velocities. We have also used this formalism to construct initial data whose

evolution results in very low eccentricity orbits: about an order of magnitude smaller than the

orbits of quasi-circular initial data.

The main differences between evolutions of the quasi circular, QC, and the low eccentricity, F,

initial data sets are overall time and phase shifts: the QC initial data represents the binary at

a point closer to merger. When we correct for these shifts, the orbital trajectories of the black

holes and the gravitational waveforms they produce agree very well between the two runs. Various

parameters measured in the QC run (e.g., orbital frequency or proper separation) oscillate around

the corresponding values from the F run. The gravitational wave phase oscillates as well, but

no significant coherent phase difference builds up during the five orbits studied here. We find

waveform overlaps between the high-eccentricity and low-eccentricity runs of about 0.99. Therefore

it appears that for the last five orbits before merger the differences between quasi-circular and

low-eccentricity initial data are not important for event detection in gravitational wave detectors.

Longer evolutions (e.g., equal mass binaries starting at larger separation, as well as unequal mass

binaries with a longer radiation reaction time scale) have more cycles during which phase shifts could,

in principle, accumulate. However, orbital eccentricity tends to decay during an inspiral and the

orbital eccentricity in quasi-circular data should decrease as the initial separation increases, so longer

evolutions are probably less sensitive to the eccentricity in the initial data. Thus we anticipate that

the eccentricity of quasi-circular initial data will not play a significant role when longer evolutions

are used for event detection, but further study would be needed to confirm this.

Finally, we note that construction of low-eccentricity inspiral initial data may be more difficult

when the black holes carry generic spin. The process described in this paper merely adjusts the

orbital parameters to obtain a trajectory without oscillations on the orbital timescale. For non-

spinning equal-mass black holes sufficiently far from merger, a non-oscillatory inspiral trajectory

seems to be a reasonable choice. But if non-negligible spins are present, this is not likely to be the

case. For spins that are not aligned with the orbital angular momentum, the approximate helical

Killing vector is lost, and there are likely to be a variety of oscillations on the orbital time scale.

In these cases a more sophisticated model of the desired circularized orbit will be needed before a

procedure for adjusting the orbital parameters to the appropriate values can be formulated.
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5.7 Appendix A: Quasi-equilibrium initial data in inertial

coordinates

In this appendix we show that (ψco, β
i
co−ξrot, αco), where ξi

rot = (Ω0×r)i, is a solution to the XCTS

Eqs. (5.8a)–(5.8c) in asymptotically inertial coordinates (with appropriately modified boundary

conditions) whenever (ψco, β
i
co, αco) is a solution in co-rotating coordinates. We also show that this

solution leads to the same physical metric γij and extrinsic curvature Kij as the original solution

in co-rotating coordinates. The proof relies on three key observations: First, both solutions are

assumed to make the same choice of free data Eqs. (5.9a), (5.9b), (5.15a), and (5.15b); second, the

shift enters the XCTS equations and the boundary conditions (almost) solely through the conformal

Killing operator, (L̃β)
ij

; and third, ξi
rot is a conformal Killing vector, so (L̃ξrot)

ij = 0. Hence the

term −ξi
rot that is added to βi

co (mostly) drops out of the equations.

We first show that the XCTS equations remain satisfied: Since (L̃ξrot)
ij = 0, it follows from

Eq. (5.5) that Ãij is unchanged by the addition of ξi
rot. So Eqs. (5.8a) and (5.8b) remain satisfied.

The only other shift containing term in Eq. (5.8c) is βi∂iK, which vanishes because ∂iK = 0 from

the choice of free data (K = 0) in Eq. (5.15b); so Eq. (5.8c) also remains satisfied.

We turn next to the boundary conditions: The boundary conditions used for the co-rotating

coordinate representation of the XCTS equations are Eqs. (5.9c)–(5.9g) and (5.15c), while those

used for the inertial frame representation are the same, except Eqs. (5.9d) and (5.9e) are replaced

by Eqs. (5.16a) and (5.16b). The boundary conditions, Eqs. (5.9c) and (5.15c), depend only on ψ

and α and therefore remain satisfied. The apparent horizon boundary condition, Eq. (5.9f), implies

the boundary condition on the conformal factor Eq. (5.13), which is unchanged since (L̃ξrot)
ij = 0;

and the new outer boundary condition, Eq. (5.16a), also holds because βi
co satisfies Eq. (5.9d).

The only remaining boundary conditions then are Eqs. (5.16b) and (5.9g). Because θ = 0 and

σij = 0, the null surface generated by kµ coincides with the world tube of the apparent horizons, SAH.

The normal to this null surface is kµ, because kµ is normal to S by construction, and because kµkµ =

0. Therefore, in order for ∂t + ξi
rot∂i to be tangent to SAH, as required by the boundary condition

Eq. (5.16b), it must be orthogonal to kµ. The vector ∂t + ξi
rot∂i has components αnµ + βµ + ξµ

rot,

where βµ = [0, βi] and ξµ
rot = [0, ξi

rot]. Using kµ = (nµ + sµ)/
√

2, it follows that

0 = (∂t + ξi
rot∂i) · k =

1√
2

[

−α+ (βi + ξi
rot)si

]

. (5.37)

This condition implies

βi = αsi − ξi
rot + ζi on S, (5.38)

with ζisi = 0, i.e., Eq. (5.17) in the main text. So the boundary condition Eq. (5.16b) is satisfied

because βi
co = αsi + ζi satisfies Eq. (5.12).
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The vector ζi that appears in Eq. (5.38) is further constrained by the shear boundary condition,

Eq. (5.9g), which we consider next. The shear σij is defined as

σµν =⊥ ρσ
µν

(4)∇ρkσ, (5.39)

where ⊥ ρσ
µν = hµ

(ρhν
σ) − 1

2hµνh
ρσ. Substituting Eq. (5.11) into this expression, and subsequently

using Eqs. (5.2), (5.4), and (5.5) results in

√
2σij = − 1

2α
⊥ kl

ij

[

(Lβ)kl − ψ4ũkl

]

+ ⊥ kl
ij ∇ksl. (5.40)

For any vector field vi decomposed into normal and tangential parts, vi = vmsm si + vi
||, it follows

that

⊥ kl
ij (Lv)kl = (LSv||)ij + 2vmsm ⊥ kl

ij ∇ksl. (5.41)

Using this identity and Eq. (5.17), the shear can be rewritten as

√
2σij =

1

2α
⊥ kl

ij

[

(Lξrot)kl + ψ4ũkl

]

− 1

2α
(LSζ)ij . (5.42)

Once more, ξi
rot drops out because it is a conformal Killing vector. Also, since ũij = 0 by Eq. (5.9a),

we find that the shear vanishes if and only if ζi is a conformal Killing vector within the 2-surface S:

σij = 0 ⇔ 0 = (LSζ)
ij . (5.43)

Eq. (5.18) now follows from the identity (LSζ)ij = ψ−4(L̃Sζ)ij . This implies then that the boundary

condition Eq. (5.9g) is satisfied since it is assumed to be satisfied in the co-rotating case.

Finally, we note that the physical metric γij and extrinsic curvature Kij produced by the inertial

frame version of the problem are identical to those of the original co-rotating frame version. The

conformal metric and conformal factor are identical in the two versions, so the physical metrics

are identical trivially from Eq. (5.3). Since ξi
rot is a conformal Killing vector, it follows that Aij is

identical from Eq. (5.5); so it follows from Eq. (5.4) (with K = 0) that the extrinsic curvatures are

identical as well.

5.8 Appendix B: Errors caused by finite-length waveforms

The error in the waveform overlaps caused by the uncertainty in the integration constants can be

determined as follows: Denote our numerically computed waveforms by hx + εx, where hx stands

for the unknown “true” waveform obtained with the correct values of the integration constants, and

εx represents the error introduced by computing these constants with a truncated waveform. The
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label x stands for either F or QC.

The quantity of interest is the overlap between the “true” waveforms,

µ(hF , hQC) =
〈hF , hQC〉

||hF || ||hQC ||
, (5.44)

where 〈h1, h2〉 ≡
∫ t2

t1
h1(t)h2(t)dt, and ||h||2 ≡ 〈h, h〉. The errors εx are those caused by the un-

certainty in the constants Clm and Dlm in Eq. (5.34), and the εx are therefore linear functions of

time. Furthermore, choosing the integration constants by Eq. (5.35) makes the numerical waveforms

hx +εx orthogonal to functions linear in time, so that 〈hx +εx, εy〉 = 0, where x, y ∈ {F,QC}. Using

this result, and neglecting terms of order O(ε3), one finds

µ(hF + εF , hQC + εQC) = µ(hF , hQC)

+µ(hF , hQC)

( ||εF ||2
2||hF ||2

+
||εQC ||2
2||hQC ||2

− 〈εF , εQC〉
||hF || ||hQC ||

)

. (5.45)

It is straightforward to show that µ(hf , hQC) = 1 − O(δh2) where δh = hF − hQC . Therefore,

replacing µ(hF , hQC) → 1 in the last term of Eq. (5.45) changes the result only by terms of order

O(δh2 ε2x). Furthermore, replacing ||hQC || → ||hF || in the denominators of Eq. (5.45) affects the

result only by terms of order O(δh ε2). Neglecting both of these higher order contributions, we find

µ(hF + εF , hQC + εQC) = µ(hF , hQC) +
||εF − εQC ||2

2||hF ||2
. (5.46)

Because the last term is non-negative, the “true” overlap µ(hF , hQC) is always smaller than the

numerically computed overlap µ(hF + εF , hQC + εQC). Using the triangle inequality, we can bound

the last term in Eq. (5.46) by the error ||εx||2/||hx||2 in either the F or the QC waveform:

||εF − εQ||2
2||hF ||2

≤ (||εF || + ||εQC ||)2
2||hF ||2

≈ 2
||εx||2
||hx||

. (5.47)

Finally, we estimate ||εx||2/||hx||2 by applying Eqs. (5.34) and (5.35) to a pure sine-wave: h(t) =

sin(t). It is straightforward to evaluate the integrals in Eq. (5.35) for this simple case, giving the

bound ||ε||2/||h||2 ≤ 6/(πNcyc)
2, where Ncyc = (t2 − t1)/(2π) is the number of cycles in the interval

[t1, t2]. Therefore, we arrive at the bounds

µ(hF + εF , hQC + εQC) ≥ µ(hF , hQC) & µ(hF + εF , hQC + εQC) − 12

π2N2
cyc

, (5.48)

as mentioned in the main text.
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[25] S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606 (1997).

[26] M. Miller, Phys. Rev. D 69, 124013 (2004).

[27] A. Buonanno, G. B. Cook, and F. Pretorius (2006), gr-qc/0610122.

[28] J. W. York, Jr., Phys. Rev. Lett. 82, 1350 (1999).

[29] H. P. Pfeiffer and J. W. York, Phys. Rev. D 67, 044022 (2003).

[30] R. Rieth, in Mathematics of Gravitation. Part II. Gravitational Wave Detection, A. Królak,

Ed., (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997), pp. 71–74.

[31] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A. Teukolsky, Comput. Phys. Commun. 152,

253 (2003).

[32] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne, Class. Quantum Grav. 23,

S447 (2006).

[33] H. Friedrich, Commun. Math. Phys. 100, 525 (1985).

[34] F. Pretorius, Class. Quantum Grav. 22, 425 (2005).

[35] O. Rinne, L. Lindblom, and M. A. Scheel (2007), arXiv:0704.0782.

[36] D. R. Fiske, J. G. Baker, J. R. van Meter, D.-I. Choi, and J. M. Centrella, Phys. Rev. D 71,

104036 (2005).

[37] C. Beetle, M. Bruni, L. M. Burko, and A. Nerozzi, Phys. Rev. D 72, 024013 (2005).

[38] A. Nerozzi, C. Beetle, M. Bruni, L. M. Burko, and D. Pollney, Phys. Rev. D 72, 024014 (2005).

[39] L. M. Burko, T. W. Baumgarte, and C. Beetle, Phys. Rev. D 73, 024002 (2006).

[40] M. Campanelli, B. J. Kelly, and C. O. Lousto, Phys. Rev. D 73, 064005 (2006).

[41] F. Pretorius, Class. Quant. Grav. 23, S529 (2006).



126

Chapter 6

Reducing junk radiation in
binary-black-hole simulations

At early times in numerical evolutions of binary black holes, current simulations contain

unphysical, spurious gravitational radiation (called “junk radiation”). The junk radiation

is a consequence of how the binary-black-hole initial data are constructed: specifically, the

initial data are typically assumed to be conformally flat. In this paper, I adopt a non-flat

conformal metric that is a superposition of two boosted, non-spinning black holes that are

approximately 15 orbits from merger. I extend the method of reducing the eccentricity

of the holes’ trajectories developed by Pfeiffer et al. (2007) to the non-conformally-flat

case considered here. I compare junk radiation of the superposed-boosted-Schwarzschild

(SBS) initial data with the junk of corresponding, conformally-flat (CF) initial data. The

SBS junk is smaller in amplitude than the CF junk by a factor of order two.

6.1 Introduction

One of the most important sources of gravitational waves for LIGO [1] is the inspiral and merger

of two black holes. LIGO is now taking data at design sensitivity and can detect stellar-mass

binary-black-hole mergers as distant as about 100 megaparsecs [2]. The gravitational waveform of

a binary-black-hole merger cannot be computed using analytic techniques but must be obtained by

solving the Einstein equations numerically.

Recently, great progress in numerical relativity has been made, allowing several groups to evolve

binary black holes, beginning at several orbits before merger [3, 4, 5, 6, 7]. These evolutions are

based on splitting the four-dimensional spacetime into a series of three-dimensional spatial slices;

to start an evolution, one must first construct initial data for the first slice. This initial data must

i) represent the desired physical situation (i.e., two black holes about to merge), and ii) satisfy the
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vacuum Einstein constraint equations:

G00 = 0,

G0j = 0. (6.1)

The time-time and time-space equations are called the Hamiltonian and momentum constraints,

respectively. The vacuum Einstein evolution equations, Gij = 0, are solved to step from the initial

slice to subsequent slices.

There are several methods that generate constraint-satisfying initial data (for a review, see,

e.g., [8] and [9]); however, these generally assume that the initial spatial metric gij is conformally

flat:

gij = ψ4δij . (6.2)

This simplifying assumption causes unphysical, spurious gravitational radiation (called junk radia-

tion) to be present in the early phases of the simulation. Specifically, it is known that a stationary,

isolated black hole with linear [10] or angular [11] momentum cannot be sliced so that the spatial

metric is conformally flat. Attempting to construct constraint-satisfying, conformally flat initial

data for boosted or spinning black holes yields holes that are not in equilibrium but are unphysically

perturbed. As they relax to an equilibrium configuration, gravitational waves are emitted.

In general, the black holes in a binary have both linear and angular momentum; therefore, the

binary black hole simulations will also contain junk radiation. Before one can extract the physically

relevant gravitational wave signal, one must first evolve the unphysical system until the spurious

waves have left the computational domain. Because these evolutions are computationally expensive,

it is desirable to reduce the junk radiation as much as possible.

Hannam et al. [12] have constructed non conformally flat initial data to reduce the amount of

junk radiation in head-on mergers of spinning holes; their non-flat metric is a superposition of two

spinning black holes. Also, Kelly et al. [13] have constructed non-flat initial data that incorporates

post-Newtonian waves into the initial data. In this chapter, I construct non conformally flat initial

data for nonspinning black holes initially in a non-eccentric, inspiral orbit.

By using a metric that is a superposition of two boosted black holes, the spurious gravitational

radiation is significantly reduced. Specifically, I will use a superposition of free data for analytic

individual black-hole solutions to construct the free data for the binary. This is similar in spirit

to the superposed-Kerr-Schild initial data proposed in [14]. However, I apply this superposition

in the context of the conformal-thin-sandwich equations, and our analytic black-hole solutions are

based on maximal slices of Schwarzschild rather than on Schwarzschild in Kerr-Schild coordinates.
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I then combine these free data with quasiequilibrium boundary conditions developed by Cook [15],

Cook and Pfeiffer [16], and Caudill et. al. [17]. I solve the constraint equations using the Caltech-

Cornell pseudospectral code [18]. After reducing the eccentricity of the holes’ orbits by extending

the technique of Pfeiffer et. al. [19] to the non conformally flat case, I evolve the holes using the

Caltech-Cornell code [20, 6].

The remainder of this paper is organized as follows. In Sec. 6.2, I summarize the formalism used

in this paper to solve the initial value problem. In Sec. 6.3, I describe how to construct initial data

whose conformal metric is a superposition of two boosted Schwarzschild black holes. In Sec. 6.4, I

choose a conformally flat (CF) data set and a superposed-boosted-Schwarzschild (SBS) initial data

set that is physically comparable. In particular, I use the eccentricity-reduction technique of [19]

(originally developed under the assumption of conformal flatness) so that sets CF and SBS both have

very little orbital eccentricity. In Sec. 6.4.1.2, the junk radiation of sets CF and SBS are compared.

A brief conclusion is made in Sec. 6.5.

6.2 The initial value problem

6.2.1 The constraint equations

To construct constraint-satisfying initial data, I begin with the usual 3+1 split, in which the four-

dimensional spacetime, with metric gµν , is split into a series of three-dimensional spatial slices with

spatial metric gij . The spacetime metric gµν is related to the spatial metric gij , the lapse α, and

the shift βi by

ds2 = gµνdx
µdxν = −α2dt2 + gij(dx

i + βidt)(dxj + βjdt). (6.3)

Here and throughout the rest of this paper, the Einstein summation convention is assumed. Greek

indices refer to spacetime coordinates and are raised and lowered with the spacetime metric gµν and

its inverse. Latin indices refer to spatial coordinates of a t = const slice and are raised and lowered

with the spatial metric gij and its inverse.

On the initial (t = 0) slice, the initial data must specify gij and the extrinsic curvature Kij ,

which is essentially the rate of change of gij in the normal direction. The extrinsic curvature is

related to the time derivative of the metric ∂tgij and to the lapse and shift by

∂tgij = −2αKij + 2∇(iβj). (6.4)

The initial values of gij and Kij must be chosen so that i) the solution contains the desired physical

content, and ii) the constraint equations (6.1) are satisfied.

A systematic way to solve these equations is given by the extended conformal thin sandwich
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(XCTS) formalism [21, 22]. In this formalism, one expands gij and Kij as follows:

gij = ψ4g̃ij ,

Kij = Aij +
1

3
gijK. (6.5)

Then, one chooses the conformal metric g̃ij , the trace of the extrinsic curvature K, and the time

derivatives of both, ũij ≡ ∂tg̃ij and ∂tK. The constraint equations (6.1) are then reduced to elliptic

equations for the conformal factor ψ and the shift βi. A fifth elliptic equation for αψ determines the

lapse; it is not a constraint, but appears because the free data include ∂tK instead of α̃ ≡ ψ−6α.

(Alternatively, one could use the “standard” conformal thin sandwich equations [21, 22], in which

the free data are g̃ij , ũij , K, and α̃.)

Together, these equations form a second-order, nonlinear, coupled elliptic system called the

extended conformal thin sandwich (XCTS) equations, which are (e.g., Eq. (8) of [19]):

∇̃2ψ − 1

8
R̃ψ − 1

12
K2ψ5 +

1

8
ψ−7ÃijÃij = 0, (6.6a)

∇̃j

( ψ7

2(αψ)
(L̃β)ij

)

− 2

3
ψ6∇̃iK − ∇̃j

( ψ7

2(αψ)
ũij
)

= 0, (6.6b)

∇̃2(αψ) − (αψ)

[

R̃

8
+

5

12
K4ψ4+

7

8
ψ−8ÃijÃij

]

= −ψ5(∂tK − βk∂kK). (6.6c)

Here ∇̃ is the gradient with respect to g̃ij , the “longitudinal operator” L̃ is twice the symmetric,

trace-free gradient (i.e., the “shear”) with respect to g̃ij , i.e.,

(L̃V )ij ≡ ∇̃iVj + ∇̃jVi −
2

3
g̃ij∇̃kV

k, (6.7)

and

Ãij = ψ10Aij =
ψ7

2(αψ)

[

(L̃β)ij − ũij
]

. (6.8)

The initial value problem now amounts to i) choosing the free data ( g̃ij , ũij , K, and ∂tK),

ii) choosing boundary conditions for ψ, αψ, and βi, and iii) solving Eqs. (6.6a)–(6.6c) for ψ, αψ,

and βi. Most of these have preferred choices, motivated by the requirement that, in the comoving

coordinates, the initial data contain two black holes at rest. These quasiequilibrium conditions will

be discussed in the next subsection. The remaining quantities will be dealt with in Sec. 6.3.

6.2.2 Quasiequilibrium free data and boundary conditions

In the XCTS formalism described in the previous subsection, the physical content of the data is

selected by the choice of both the free data (g̃ij , K, and their time derivatives) and by the boundary

conditions. We wish to make choices that represent the physical situation of two (otherwise isolated)
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black holes orbiting each other. In the quasiequilibrium method [23, 24, 15, 16, 17, 19] used in this

paper, there are preferred choices for many of the free data and boundary conditions.

6.2.2.1 Free data

In quasiequilibrium initial data, the coordinates are required to (initially) be comoving with the

black holes. If the holes are also in equilibrium, time derivatives in the comoving frame should

initially be small. Quasiequilibrium initial data therefore choose

ũij = 0, (6.9)

∂tK = 0. (6.10)

The remaining free data, g̃ij and K, can be chosen freely. In Sec. 6.3, I make particular choices for

g̃ij and K.

6.2.2.2 Outer boundary conditions

The computational domain can be represented by only a finite number of gridpoints, so it necessarily

will have an outer boundary B, which here is taken to be a coordinate sphere whose radius R is

so much larger than all other length scales that it is effectively “infinitely far away.” (In practice,

the outer boundary is roughly 109 times larger than the size of each black hole.) The physical

requirement that the binary is isolated (i.e., that the spacetime is asymptotically flat) corresponds

to the conditions

ψ = 1 on B, (6.11)

α = 1 on B, (6.12)

provided that g̃ij is asymptotically flat.

The outer boundary condition on the shift is set by the requirement that the coordinates are ini-

tially comoving with the black holes. Therefore, in the asymptotically flat region—and in particular,

on B—the coordinates will not be inertial ; instead, they will rotate (due to the orbital motion) and

contract (due to the holes’ inspiral). That is, if r is a coordinate radius measured from the system’s

center of energy, and if ri is a radial position vector in the asymptotically flat region, then

βi = (Ω × r)i +
vr

ro
ri on B. (6.13)

Here ro = do/2, where do is the initial coordinate separation of the holes. The precise values of Ω

and vr will be set so that the holes’ subsequent trajectories are not eccentric (Sec. 6.4.1.1).
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6.2.2.3 Inner boundary conditions

The singularities of each black hole are excised from the computational domain. The excision surface

S is the apparent horizons H of the two holes (labeled “A” and “B”), i.e., S = HA

⋃HB. This

requirement leads to a boundary condition on the conformal factor (Eq. (13) of [19]):

s̃k∂kψ = −ψ
−3

8α̃
s̃is̃j

[

(L̃β)ij − ũij

]

− ψ

4
h̃ij∇̃is̃j +

1

6
Kψ3 on S (6.14)

where si is an outward-pointing1 unit normal vector on S, and hij = gij − sisj = ψ4 (g̃ij − s̃is̃j) =

ψ4h̃ij is the induced metric on S.

When the initial data are evolved in the comoving system, the apparent horizon (itself in equi-

librium) should remain at rest. This leads to the following boundary condition on the shift (Eq. (12)

of [19]):

βi = αsi + Ωrξ
i on S. (6.15)

Here Ωr is a parameter that determines the amount of spin on the hole in addition to corotation, and

ξi is a conformal Killing vector within S. (If the holes are to have different spins, different values of

Ωr are used on HA and HB.) The (k)th component of the quasilocal spin [25, 26, 27] of each hole

can be written as (e.g., Eq. (37) of [17])

a
(k)
H ≡ 1

8π

∮

H
(Kij − gijK) ξj

(k)d
2Si, (6.16)

where H is either HA or HB , and ξi
(k) is a Killing vector on H that defines rotations about the k

axis. In this paper, I consider only non-rotating binaries, in which Ωr is selected so that a
(k)
H is very

close to zero.

The inner condition on α is a gauge choice [16]; i.e., it does not affect the physical content of the

initial data. The particular choices used in this paper are discussed in Sec. 6.3.

6.3 Nonspinning, non-eccentric binary-black-hole initial data

6.3.1 Conformally flat data

Initial data for binary-black-holes are typically assumed to be conformally flat:

g̃ij = δij . (6.17)

1Here “outward-pointing” points away from the black hole, toward infinity.
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In Sec. 6.4, the conformally-flat data set CF is the same as that of [19], except that the black holes

begin at a larger coordinate separation (in this paper, the holes begin about 15 orbits from merger).

Specifically, in set CF,

K = 0, (6.18)

∂r(αψ) = 0 on S. (6.19)

6.3.2 Non conformally flat data

To reduce the amount of junk radiation, it is necessary to use a non-flat conformal metric. In this

section, I build up a suitable conformal metric for two non-spinning black holes in an initially circular

orbit.

6.3.2.1 Schwarzschild with maximal slicing

The Schwarzschild metric can be split into maximal slices (i.e., slices with K = 0.) With maximal

slicing, the Schwarzschild spacetime is (e.g., Eq. (52) of [16]):

go
ijdx

idxj = α−2dR2 +R2dΩ2,

α =

√

1 − 2M

R
+
C2

R4
,

βi =
C

R2
αei

R, (6.20)

where R is the Schwarzschild areal radial coordinate and ei
R is a unit vector normal to constant-R

surfaces. The choice of C specifies which maximal slicing is used (and thence the coordinate radius

of the horizon). To facilitate comparison with [19], in this paper I choose C = 1.737M , which implies

the horizon radius is at rexc = 0.8595M .

6.3.2.2 Metric of a boosted Schwarzschild hole

To construct the metric of a boosted, Schwarzschild hole, I begin with the Schwarzschild metric go
µν

[Eq. (6.20)]. Then, I apply the following two coordinate transformations:

1. First, I apply a radial coordinate transformation to make the spatial metric conformally flat.

Any spherically-symmetric metric can be made conformally flat by i) writing it as

gijdx
idxj = f(R)dR2 +R2dΩ2, (6.21)

where R is an areal radial coordinate, and then ii) making a radial coordinate transformation
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r = r(R) so that the metric is conformally flat:

f(R)dR2 +R2dΩ2 = ψ4
(

dr2 + r2dΩ2
)

(6.22)

⇒ ψ2 = R/r and
dr

dR
=

r

R

√

f(R). (6.23)

For a given f(R), determining r(R) amounts to solving a first-order ordinary differential equa-

tion. For the choice f(R) = α−2 [cf. Eq. (6.20)], the analytic solution to the ODE is unknown,

so the ODE (6.23) is solved numerically.

2. Once the spatial metric is conformally flat, I give the Schwarzschild hole a velocity v in the y

direction by performing a Lorentz boost. The resulting spacetime metric is gBoost
µν (v).

6.3.2.3 Superposing two boosted, non-spinning holes

Suppose two nonspinning black holes, “A” and “B,” are initially separated by coordinate distance

do. Suppose they are in a circular orbit with speed v = Ωdo/2.

I seek free data that accurately describes the boosted black holes. The simplest choice is to

merely superpose two boosted-Schwarzschild black-holes:

g̃ij = g̃NSBS
ij ≡ δij +

(

gA
ij − δij

)

+
(

gB
ij − δij

)

, (6.24)

K = KNSBS ≡ KA +KB. (6.25)

Here “NSBS” stands for “naive superposed, boosted Schwarzschild.” For hole A, gA
ij and KA are

obtained by translating gBoost
µν (v) so that the hole is centered about (x, y, z) = (do/2, 0, 0). Likewise,

for hole B, gB
ij and KB are obtained by translating gBoost

µν (−v) so that the hole is centered about

(x, y, z) = (−do/2, 0, 0). Note that as v → 0, g̃NSBS
ij → ψ4

oδij and KNSBS → 0; after absorbing ψo

into the conformal factor ψ, the v = 0 superposed-boosted-Schwarzschild data in fact reduces to the

well-examined (conformally flat) quasiequilibrium data by Cook and Pfeiffer [16].

I used the Caltech-Cornell pseudospectral code [18] to solve the XCTS equations with the free

data and boundary conditions described previously. When the conformal metric is g̃NSBS
ij , I find that

the elliptic solver does not converge [Fig. 6.1].

The source of the difficulty can be seen by inserting the outer boundary conditions (6.11), (6.12),

and (6.13) into the Hamiltonian constraint [the first of Eq. (6.1)], which gives an equation of the

form

−∇̃2ψ − (L̃Ω × r)ij(L̃Ω× r)ij + · · · = 0. (6.26)

The source term shown here vanishes when the metric is conformally flat, because (Ω × r)i is a
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Figure 6.1: When the conformal metric is g̃NSBS
ij , the constraints do not decrease exponentially with

increasing radial resolution.

conformal Killing vector of flat space. But when the conformal metric is the naive superposition

(6.24), the term (L̃Ω× r)xy contains a spherically-symmetric part that decays only as O(1/r) [Fig.

6.2]. It follows that ψ → const× log r as r → ∞, but this is incompatible with the requirement that

ψ → 1 as r → ∞.

6.3.2.4 Scaling the non-flat terms by Gaussians

The inconsistency described in the previous subsection can be avoided by requiring that the non-flat

terms fall off sufficiently quickly far from the holes. This can be accomplished by scaling the non-flat

terms by Gaussians:

g̃ij = g̃SBS
ij ≡ δij + e−r2

A/w2 (

gA
ij − δij

)

+ e−r2

B/w2 (

gB
ij − δij

)

, (6.27)

K = KSBS ≡ e−r2

A/w2

KA + e−r2

B/w2

KB. (6.28)

Here “SBS” stands for “superposed, boosted Schwarzschild,” and rA and rB are the coordinate

distances from the centers of holes A and B, respectively. The width w can be adjusted to minimize

the junk radiation. Further investigation is needed to find an optimal choice for w. The Gaussians

used here may seem similar to the attenuation functions of [28]; however, the attenuation functions

here approach zero at large radii, whereas those of [28] approach unity. In Sec. 6.4, data set SBS uses

w = 20rexc. With this choice, the elliptic solver converges, and the constraints decay exponentially

with resolution, as expected [Fig. 6.3].
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Figure 6.2: The xy component of (L̃Ω × r)ij includes a spherically-symmetric term that decays
only as 1/r when the conformal metric is gNSBS

ij ; this term causes the conformal factor to diverge

logarithmically as r → ∞. The other nonzero components decay as 1/r2 or faster.

Finally, as noted in Sec. 6.2.2.3, the inner boundary condition on the lapse α is a gauge choice;

in set SBS, the condition is

αψ = 1 + e−r2

A/w2 (

αA − 1
)

+ e−r2

B/w2 (

αB − 1
)

on S. (6.29)

Here αA is obtained by translating gBoost
µν (v) so that hole A is centered about (x, y, z) = (do/2, 0, 0);

likewise, αB is obtained by translating gBoost
µν (−v) so that hole B is centered about (x, y, z) =

(−do/2, 0, 0).

6.4 Comparing the junk radiation of conformally flat and

superposed-boosted-Schwarzschild initial data

6.4.1 The conformally flat (CF) and superposed-boosted-Schwarzschild

(SBS) initial data sets

To compare the size of the junk radiation, I have constructed and evolved two initial data sets:

a conformally flat set (CF), and a superposed-boosted-Schwarzschild set (SBS). The method for

constructing the initial data is described in Sec. 6.3.

Table 6.1 compares some physical properties of the two data sets. The irreducible mass Mirr is
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defined in terms of the apparent-horizon area AAH by

Mirr =

√

AAH

16π
. (6.30)

The ADM Mass is a measure of the total energy in the system. It is defined by the following surface

integral at ∞:

MADM =
1

16π

∫

∞
(∂jgij − ∂igjj) d

2Si. (6.31)

In practice, this integral is evaluated on the outer boundary of the initial-data grid (i.e., on B, which

is a sphere whose radius is approximately 109Mirr).

The initial coordinate separation is do. The initial “proper separation” so is defined in terms of

the following line integral along the x-axis of the comoving frame:

so =

∫

ds =

∫ d/2−rexc

−d/2+rexc

dx
√
gxx (6.32)

Here the limits of integration are the coordinate locations where the holes’ apparent horizons intersect

the x axis. The excision radius (given by rexc = 0.8595M at t = 0) is the coordinate radius of the

apparent horizon. Note that the “proper separation” is coordinate-dependent (since the integral is

taken along the x-axis, rather than along a geodesic of extremal length) and slicing-dependent (since
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Quantity CF SBS
Mirr 1.039 1.027
MADM 2.062 2.039

do/MADM 14.55 14.71
so/MADM 17.51 17.65
MADMΩ 0.0165787 0.0162814

vr −4.3 × 10−4 −3.5 × 10−4

|ax/M2
irr| and |ay/M2

irr| < 3 × 10−13 < 4 × 10−10

az/M2
irr −1.1 × 10−4 −5.3 × 10−5

Table 6.1: A comparison of the two initial data sets presented in this paper. Set CF is conformally
flat, and set SBS uses a conformal metric that is a superposition of two boosted Schwarzschild black
holes. The initial data sets describe physically comparable situations: the masses, separations, and
frequencies agree to within about 1%. The radial velocities are comparable [and are chosen so that
the eccentricity is small (Fig. 6.4)], and the spins of the holes are close to zero in both cases.

the distance is measured within the spatial slice).

The spins of the holes are computed [29] using the quasilocal Brown-York spin [[25]; Eq. (6.16)].

The spin on the holes is small in both the CF and SBS data sets.

6.4.1.1 Evolutions and reducing eccentricity

The CF and SBS data sets were evolved using the Caltech-Cornell spectral evolution code. The

evolution grid’s outer boundary is at approximately 1000Mirr. The excision boundaries are slightly

inside the apparent horizons; this is accomplished by extrapolating the initial data from S to points

slightly inside S. (For set CF, the evolution-grid excision spheres are at radius rev = 0.97rexc; to

accommodate nonspherical horizons, the evolution-grid excision spheres are at rev = 0.93rexc for

set SBS.) Aside from differences in extrapolation, sets CF and SBS were evolved using identical

computational domains and at identical resolutions2.

The holes initially move at a coordinate angular velocity Ω and a coordinate radial velocity

vr; both are chosen to reduce the eccentricity of the orbit. The set CF has much less eccentricity

than does the equivalent conformally flat, quasicircular initial data; it is comparable (aside from the

greater initial separation of the holes) to the non-eccentric data sets in [19].

To make the SBS data set non-eccentric, I initially guess that Ω and vr have the same coordinate

values as in the non-eccentric, conformally flat case. Then, I tune them using the iterative scheme

described in Sec. 4 of [19]. Each iteration would completely remove the eccentricity if the binary were

Newtonian; in the relativistic case, successive iterations converge to non-eccentric orbits. Figure 6.4

shows the proper separation vs. time of the CF data and of the SBS data sets. “Reduction iter #2”

is the SBS data set used in the remainder of this paper.

2The initial data were evolved on grids of several different resolutions. The waveforms appear to agree to “good”
accuracy, and the constraints appear to converge exponentially. Rigorous convergence tests are a subject of future
research.
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6.4.1.2 Junk radiation comparison

The gravitational waves are extracted from the CF and SBS evolutions at the same coordinate

radius rextr ≈ 116rexc. Specifically, the simulation computes the Newman-Penrose scalar Ψ4, which

at large radii is related to the outgoing +-polarized and ×-polarized gravitational-wave amplitudes

by

Ψ4 =
d2

dt2
h+ − i

d2

dt2
h×. (6.33)

The scalar Ψ4 is evaluated on a sphere of radius rextr and then expanded in spin-weighted-spherical-

harmonic modes. (For further details on the wave-extraction method, see Sec. 5.5.3 in this thesis.)

At early times, the waveform consists of spurious gravitational waves; they are recognizable as

such by their frequencies, which are much higher than the dominant frequencies f ∼ Ω/π of the

physical, quadrupolar gravitational waves. Figure 6.5 plots the dominant, quadrupolar components

of the junk waves; they have a frequency f ∼ (15MADM)−1, which is significantly higher than the

physical frequency f ∼ Ω/π ∼ (200MADM)−1. The SBS junk waves are smaller in amplitude by

about a factor of 2 when compared with the CF waves.

Figure 6.6 compares all of the spherical harmonic modes from ℓ = 2 through ℓ = 8. The

amplitudes of the higher modes are reduced by a significantly larger amount than were the l = 2

modes’ amplitudes.
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6.5 Conclusion

The junk radiation in binary-black-hole simulations can be significantly reduced by using initial data

that is not conformally flat. For the case of two non-spinning black holes initially 15 orbits from

merger, the amplitude of the junk gravitational waves decreases by a factor of order 2. As of this

writing, sets CF and SBS have only been evolved at a “typical” resolution; future work will include

convergence tests at a variety of evolutions. Also, future investigations will seek to generalize this

work to black hole binaries in which the holes have spin.
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[7] B. Brügmann, J. A. Gonzalez, M. Hannam, S. Husa, U. Sperhake, and W. Tichy (2006),

gr-qc/0610128.

[8] G. B. Cook, Living Rev. Rel. 5, 1 (2000).

[9] H. P. Pfeiffer, J. Hyperbolic Differential Equations 2, 497 (2005), gr-qc/0412002.

[10] J. W. York, Jr., in Essays in general relativity, F. Tipler, Ed., (Academic, New York, 1981),

Ch. 4, p. 39.

[11] A. Garat and R. H. Price, Phys. Rev. D 61, 124011 (2000).

[12] M. Hannam, S. Husa, B. Bruegmann, J. A. Gonzalez, and U. Sperhake, Special “New

Frontiers in Numerical Relativity” issue of Class. Quantum Grav. (submitted) (2006), URL

http://arxiv.org/abs/gr-qc/0612001.



141

[13] B. J. Kelly, W. Tichy, M. Campanelli, and B. F. Whiting, Phys. Rev. D (submitted) (2007),

URL http://arxiv.org/abs/0704.0628v1.

[14] R. A. Matzner, M. F. Huq, and D. Shoemaker, Phys. Rev. D 59, 024015 (1999).

[15] G. B. Cook, Phys. Rev. D 65, 084003 (2002).

[16] G. B. Cook and H. P. Pfeiffer, Phys. Rev. D 70, 104016 (2004).

[17] M. Caudill, G. B. Cook, J. D. Grigsby, and H. P. Pfeiffer, Phys. Rev. D 74, 064011 (2006),

gr-qc/0605053.

[18] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A. Teukolsky, Comput. Phys. Commun. 152,

253 (2003).

[19] H. P. Pfeiffer, D. A. Brown, L. E. Kidder, L. Lindblom, G. Lovelace, and M. A. Scheel

(2007), special issue of Class. Quantum Grav. (in press), Chapter 5 of this thesis, URL

http://arxiv.org/abs/gr-qc/0702106.

[20] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne, Class. Quantum Grav. 23,

S447 (2006).

[21] J. W. York, Jr., Phys. Rev. Lett. 82, 1350 (1999).

[22] H. P. Pfeiffer and J. W. York, Jr., Phys. Rev. D 67, 044022 (2003).

[23] E. Gourgoulhon, P. Grandclément, and S. Bonazzola, Phys. Rev. D 65, 044020 (2002).

[24] P. Grandclément, E. Gourgoulhon, and S. Bonazzola, Phys. Rev. D 65, 044021 (2002).

[25] J. D. Brown and J. W. York, Jr., Phys. Rev. D 47, 1407 (1993).

[26] A. Ashtekar and B. Krishnan, Phys. Rev. D 68, 104030 (2003).

[27] A. Ashtekar and B. Krishnan, Living Rev. Relativity 7 (2004), (online article cited 19 Apr

2005), URL http://www.livingreviews.org/lrr-2004-10.

[28] P. Marronetti, M. Huq, P. Laguna, L. Lehner, R. A. Matzner, and D. Shoemaker, Phys. Rev.

D 62, 024017 (2000).

[29] R. Owen et al., (in preparation).


