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Abstract -IV-

The Anosov splitting into stable and unstable manifolds of hyperbolic 

dynamical systems has been known to be Holder continuous always and 

differentiable under bunching or dimensionality conditions. It has been known, 

by virtue of a single example, that it is not always differentiable. High 

smoothness implies some rigidity in several settings. 

In this work we show that the right bunching conditions can guarantee 

regularity of the Anosov splitting up to being differentiable with derivative of 

Holder exponent arbitrarily close to one. On the other hand we show that the 

bunching condition used is optimal. Instead of providing isolated examples we 

prove genericity of the low-regularity situation in the absence of bunching. This 

is the first time a local construction of low-regularity examples is provided. 

Based on this technique we indicate how horospheric foliations of 

nonconstantly curved symmetric spaces can be made to be nondifferentiable by a 

smoothly small perturbation. 

In the last chapter the Hamenstadt-description of the Margulis measure is 

rendered for Anosov flows and with a simplified argument. The Margulis 

measure arises as a Hausdorff measure for a natural distance on ( un)stable leaves 

that is adapted to the dynamics. 
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0: Summary 1 

One aim of this thesis is to understand the regularity of the stable and 

unstable distributions for Anosov systems. After a comprehensive introduction it 

begins with a chapter containing a theorem that guarantees a certain amount of 

regularity based on a bunching assumption on the rates of contraction and 

expansion of the Anosov system. The regularity obtained is between Holder 

continuous and differentiable with almost Lipschitz derivative, depending on the 

amount of bunching. 

In the following chapters it is shown that at least in the category of 

symplectic Anosov systems this regularity theorem is optimal. It is shown that 

generically symplectic Anosov systems fail to have Anosov splitting exceeding 

the regularity asserted by the regularity theorem. The proof extends over three 

chapters in which appropriate coordinates are obtained, a necessary condition for 

excessive regularity is derived, and perturbations causing this condition to be 

violated are constructed. 

Finally, applications to geodesic flows in negative curvature are outlined. 

Another independent aim of this thesis is to give a new description of the 

Bowen-Margulis measure of maximal entropy for Anosov flows. This is done in 

the last chapter. 

The last section of the introduction contains a summary of results. 
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Anosov flows and diffeomorphisms 

The dynamical systems we are going to consider are Anosov systems and 

geodesic flows on manifolds of negative curvature . We will usually assume that 

they are C 00
, but this is rarely needed. 

Definition 1.1: Let M be a compact Riemannian manifold and t.pt: M-M 

a C 00 flow (i.e., a one-parameter group of diffeomorphisms). t.pt is called an 

Anosov flow if <,0,t:O and the tangent bundle TM of M decomposes into a direct 

sum TM= Em EBE" EB E'P, where E'P = < <p > is generated by the flow direction <p 

and 

( 3 a, b, CE IR+) ( 'v' p EM, t > 0, u E Ern(p ), v E E"(p)) 

be-at II vii ~ II Dt.pt( v) II ~ C e-bt II vii 

be-at !lull~ IIDt.p-t(u)II ~ Ce-bt !lull 

Remark 1.2: The classical reference is the book [Al] by Anosov. 

In the Russian literature the names C-, U- or Y-system are also used 

(because the Russian word for "condition" begins with the cyrillic letter "Y", 

which is transliterated as "U" and sometimes replaced by "C" for "condition"). 

It actually turns out that only estimates from above are needed. 

These estimates shall be called the Anosov estimates. 

Theorem/Definition 1.3: i) The subbundles Em and E" are tangent to 

foliations wrnand W" respectively, whose leaves are called the strong unstable 

and strong stable manifolds. 

ii) The leaves of the foliations W" and w• obtained similarly from 
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Eu:=ErnffiEr.p and E':=E"ffiEr.p are referred to as the (weak) unstable and 

(weak) stable manifolds respectively. The pair of subbundles (EU, E') is referred 

to as the Anosov splitting. 

iii) The leaves of the foliations wrn 
' 

immersed copies of Euclidean space. 

W", Wu and w• are C 00 injectively 

iv) The foliations wrn, W", Wu and w• are always Holder continuous in the 

C 1 -topology, in the sense that the distributions Em, E", Eu:= Em ffi E'P and 

E': = E" ffi Er.p are Holder continuous. 

v) The foliations wrn and Wu as well as W" and w• form transversal pairs. In 

other words, at every intersection point of leaves of wrn and W" ( W" and W') 

the leaves intersect transversally. (This is by definition.) 

vi) If (Eu, E') is the Anosov splitting for r.pt then ( E', Eu) is the Anosov splitting 

for 1/;t: = r.p-t. (Thus often it suffices to consider Eu in proofs.) 

In order to make sense of the regularity laims here we need the 

Definition 1.4: A distribution ( i.e., a sub bundle of the tangent bundle of 

the manifold) on a differentiable manifold is said to be Holder continuous with 

Holder exponent /3 if in local coordinates it can be spanned by vector fields 

which have coefficients that are Holder with exponent /3. 

Analogously regularity of higher order (Lipschitz, C 1
, C 1 with Holder 

derivative, Ck etc.) is defined via representations in local coordinates. 

Alternative viewpoints for defining regularity are the following: 
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Definition 1.5: A foliation on a compact smooth manifold M is a 

decomposition M = LJ M, (disjoint) such that M, c M are smooth submanifolds and 
,d 

for all · p E M there exists an open neighborhood U of p, k E N and a 

homeomorphism h: U-+ VclR" = IRkxlRn-k such that h sends connected components 

of UnM, to sets of the form Vn(Rkx{x}) for some xE R"-k. 

The foliation is said to be ,a-Holder if h can be chosen to be ,a-Holder. 

Similarly for Lipschitz, C 1
, C 1 with Holder derivative, Ck etc. 

Or one can take as a measure of regularity of the stable and unstable 

foliations the regularity of the holonomy maps as defined in the last chapter. 

Definition 1.6: Let M be a compact Riemannian manifold and </): M-+ M 

a diffeomorphism. <P is called an Anosov diffeomorphism if the tangent bundle 

TM of M decomposes into a direct sum TM= EuffiE', such that 

( 3 a, b, CE R+) ( 'v' p EM, n EN, u E Eu(p), v E E'(p)) 

be-an llvll ~ IID</J"(v)II ~ ce-bn llvll 

be-an !lull~ 11nr"( u)II ~ Ce-bn !lull 

As in the case of flows, one obtains foliations Wu and w•. In analogous 

situations their regularity and the smoothness of their leaves always correspond 

to that of the foliations Wu and w• for flows. In other words a comprehensive 

discussion of flows and diffeomorphisms should subsume Wu and w• for flows 

and diffeomorphisms under one label and treat the foliations Wsu and W" for 

flows as peculiar to flows. Specifically, time changes for flows, (which have no 

counterpart for diffeomorphisms) can affect the regularity of wsu and W" while 
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leaving the regularity of the weak foliations Wu and w• unchanged [P]. 

Definition 1.7: Let ipt:M--+M be a C 00 flow. A flow v/ is said to have 

been obtained from ipt by a time change if there exists /E C 00 (M,IR+) such that 

Plante [P] has shown, in essence, that Anosov flows in dimension three 

generically do not have strong stable and strong unstable foliations of class C 1
. 

He explicitly indicates how a time change can lead to breakdown of regularity of 

the strong stable and unstable foliations. 

We, in contrast, will prove here regularity results for the weak stable and 

unstable foliations. Therefore we want to point out that the time changes here do 

not play a role. On one hand, time changes leave the weak stable and unstable 

foliations invariant. On the other hand, the data controlling regularity appear in 

the form of a bunching condition, which is by definition invariant under time 

changes: 

Definition: Let M be a compact Riemannian manifold and ipt: M--+M an 

Anosov flow. For a E (0, 2] ipt is called a-bunched if 

and 

(3 µ 1,µ 2,v2,v1:MxlR+--,.1R) (v pEM) (v vEE"(p), uEErn(p)) (v t>O) 

b µ1 (p, t) II vii ~ II Dipt( v) II ~ C µip, t) II vii 

b v1(P, t) II ull ~ II Dip-t( u)II ~ Cv2(P, t) II ull 

µ 2 • v 2 ~ ( min (µ 1 , v1 ) )a. 
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Remark 1.8: In the case of symplectic flows, ( which we define below) 

d b h. . . 1 t t 2 °' °' 2 °' °' µ; = 11; an a- unc mg 1s eqmva en o µ 2 ~ µ 1 ~ µ 2 or 11 2 ~ 11 1 ~ 112. 

The bunching condition can thus be viewed as a condition restricting the 

spread of the spectrum of Lyapunov exponents. 

One can take µi, 11i so that there are P.i, D;: M-+IR for which 

Thus in this work we will use the following bunching condition: 

Definition 1.9: Let ipt be an Anosov flow on a Riemannian manifold M. 

For a E (0, 2] we call p EM a-bunched if one can take O < µ 1 < µ 2 < 1 < v 2 < 11 1 < oo, 

C > 0 such that 

and 

b µi llvll ~ IIDipt( v)II ~ C µ~ llvll 

b 11it !lull~ IIDip-t( u)II ~ C11;t llull-

Otherwise call p a-spread. 

We call p u-a-bunched if 

and s-a-bunched if 

ipt is called a-bunched if every p EM is a-bunched with uniform C. 

ipt is called strongly a-bunched if there exists an f > 0 such that all p EM are 

Define (strong) u-a-bunching and (strong) s-a-bunching for ipt m the obvious 

way. 
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Example 1.10: Although IR 4 is not compact, it is instructive to consider 

the linear diffeomorphism of IR 4 given by 

Here 

and 

ef;: (x, y, z, w) ........ (2•x,4•y, z/2, w/4). 

W"(xo, Yo, Zo, Wo) = {(x, Y, z, w)J z= Zo, W = Wo} 

W'(xo, Yo, Zo, Wo) = {(x, Y, z, w)I x= Xo, Y = Yo}. 

The leaves of W" are characterized by the fact that d(</>n(p),</>n(q))-+O for 

qE W"(p), n<O, the leaves of W' by d(</>n(p),</>n(q))-+O for qE W'(p), t>O. 

As the Anosov estimates would suggest, this convergence is actually 

exponential. Here it is furthermore possible to discern different exponential rates 

of convergence within such a leaf. In the example we have fast stable leaves 

w1"(xo, Yo, Zo, Wo) = {(x, y, z, w)I x= Xo, z = Zo, w = Wo} 

and w1'(xo, Yo, Zo, Wo) = {(x, Y, z, w)I x= Xo, y = Yo, z = zo}-

These leaves are characterized by the fact that e-3 ·n·d(ef>n(p),<l>n(q))-+O for 

qE W1"(p), n<O and e3 ·n·d(</>n(p),</>n(q))-+O for qE W'(p), n>O. 

Example 1.11: To give a similar example on a compact manifold, 

consider the following map of the 4-torus: Project the linear map of IR 4 given by 

to the torus 7r 4 = IR 4 (11. 4 under the natural projection. (The map projects since it 

has unit determinant and thus the inverse also has integer entries and 

consequently the integer lattice l. 4 is mapped onto itself.) The map has four 

distinct positive eigenvalues and, being symmetric, thus an orthonormal basis of 

eigenvectors. As above, one obtains two-dimensional contracting and expanding 
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subspaces and these have one-dimensional fast contracting and expanding 

subspaces spanned by the eigenvectors associated to the smallest and largest 

eigenvalue respectively. 

To be more explicit we compute the eigenvalues and eigenvectors here. 

Observe that A=[: ; 3] with M=[ ~ ~], so the eigenvalues are those of Mand 

their cubes. But 

-12-A 1 I- 2 h 3±.Js . - ._3+.Js - -1 detM-U- l l-A -A -3A+l as zeros-2-, z.e., ..\ 1 -A.--2-, A2 -A . 

Thus we have eigenvalues A, A 3, A- 1
, A- 3

. The associated eigenvectors are 

obtained from solving [ 
2

/ 1 ~A] v = 0 and are ( without normalization) 

A +--+ Vi = ( 1, A - 2' 0' 0) ' A 3 
+--+ V2 = ( 0' 0' 1, A - 2) 

The unstable direction is spanned by v1 and v2 , the fast unstable direction by v2 ; 

the stable direction is spanned by w1 and w2 , the fast stable direction by w2 • 

In general, at a periodic point an Anosov flow (or diffeomorphism) will 

have a substructure of the stable and unstable manifold. It is called the stable 

and unstable filtration and consists of nested submanifolds in the stable manifold 

and nested submanifolds in the unstable manifold. The stable filtration will 

consist of a family of submanifolds W;, i = 1, ... , k of the stable manifold with the 

property that W;+i is a submanifold of Wi and W 1 is the stable manifold of the 

periodic point p. Furthermore there are numbers Ai such that 

W; = { x E M: A! d( <pt x, <pt p)-+ O}. In other words these manifolds correspond to 

"increasingly faster stable manifolds." The proof of this fact works along the 

same lines as the proof of existence of stable manifolds by Hadamard and thus 

these fast stable manifolds are also smooth and vary continously under 
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perturbations of the Anosov system. Note that their tangent spaces at p 

correspond to sums of root spaces for the return map associated to those 

eigenvalues inside disks in C of different size. That is, if we take a closed disk in 

C of radius r ~ 1 and consider the eigenvalues of the return map contained in this 

disk, then the sum of the root spaces for these eigenvalues is the tangent space to 

one of the submanifolds mentioned above, in the case of r= 1 for example, the 

entire stable direction. In the future we will usually refer to the lowest

dimensional element Wk of the filtration as "the" fast stable leaf of p. 

In a slightly different guise this issue arises for a return map directly, z.e., 

we consider a periodic orbit p for an Anosov flow and take a hypersurface 

transversal to the flow through p. Thus, taking the return map to this transversal 

(locally) we are looking at a fixed point p of an Anosov diffeomorphism <f>. Then 

here, too we have the stable and unstable filtration. As above, the stable 

filtration will consist of a family of submanifolds W;, i = 1, ... , k of the stable 

manifold with the property that W;+i is a submanifold of W; and W1 is the stable 

manifold of the periodic point p. Furthermore there are numbers A; such that 

W; = {xE M: A?d(<f>nx,</>"p)-+O}. 

Again, when D¢,jp has an eigenvalue µ such that jµj is minimal, then we 

have a fast stable leaf with contraction at a rate jµj, which is a proper 

submanifold of the unstable leaf of p. 
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Geodesic Flows 

To define geodesic flows consider a Riemannian manifold N with tangent 

bundle TN. For t E IR and a vector v E TN following the geodesic , v defined by 

i'v(O)=v for time t gives a new vector <pt(v): = i'v(t). 

Definition 1.12: Let N be a Riemannian manifold with tangent bundle 

TN. Define the geodesic flow <pt: TN--+ TN by <pt( v): = i'v(t), where ,v is the 

geodesic with i'v(O)=v E TN. 

Geodesic flows have a special structure. They can be described as 

Hamiltonian flows on TN. Let M be a 2n-dimensional differentiable manifold. A 

symplectic form on M is a nondegenerate differential 2-form w on M. 

(wn=w/\w/\···/\w then defines a volume form.) In the setting of Riemannian 

geometry the cotangent bundle rt' N of N has a natural symplectic structure 

given m coordinates ( u, v) on T* N by I: du; I\ dvi. Via the isomorphism between 
i,j 

TN and rt' N this gives a symplectic structure on TN. The geodesic flow then 

arises from the energy functional H: TN--+ IR, X ........ ~g( X, X) as the flow generated by 

the Hamiltonian vector field ~H defined by w(~H, •)=DH. Being a Hamiltonian 

flow, the geodesic flow leaves H and w invariant. Since H measures speed, 

geodesics have constant speed, i.e., llvll = ll<pt(v)II. Thus one can restrict the 

geodesic flow to the unit tangent bundle SN:= {vE TNI llvll = 1}. This restriction 

corresponds simply to restricting a Hamiltonian flow to an energy surface. But 

while in general, Hamiltonian flows will have rather distinct restrictions to 

different energy surfaces, the restrictions of a geodesic flow to different sphere 

bundles Sa N: = { v E T NI II vii = a} are isomorphic in that they differ only by a 

reparametrization [K]. (Thus no information is lost in this process.) Symplectic 
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structures exist only in even-dimensional manifolds, but <p 1 lsN admits a 

description as a "transversally" symplectic flow, i.e., a flow preserving symplectic 

structures on transversals. In fact, the restriction of the symplectic form w on TN 

to SN is an antisymmetric 2-form of rank 2n-2, which is nondegenerate on 

transversals to the geodesic flow. We will often refer also to such a form as 

symplectic. 

The symplectic form w on TN is the exterior derivative of a 1-form 0 on 

TN, which descends to SN. Thus the geodesic flow on SN is an example of a 

contact flow. 

Definition 1.13: Let M be a differentiable manifold of dimension 2n-1. 

A contact structure on Mis a differential one-form 0 such that 8A(d0t-1 1s a 

volume on M. A contact flow is a flow preserving a contact structure. 

In particular, geodesic flows ( on SN) are contact flows. 

A relation between geodesic flows and Anosov flows is given by 

Theorem 1.14 [Al,K]: If N is compact and negatively curved then the 

geodesic flow is an Anosov flow. 

(Negative curvature is not necessary for geodesic flows to be Anosov, but 

there can only be "very little" positive curvature. This is discussed briefly on 

page 10 of [Al] and in [Ho].) Let us note here that in the case of geodesic flows 

"the manifold" N is called the configuration space and its tangent bundle or unit 

tangent bundle is called the phase space M, i.e., the manifold on which the 

geodesic flow acts. 
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Let us point out here that the presence of an invariant contact form 

makes the regularity of strong and weak distributions coincide, essentially by 

providing a canonical choice of time and thus preventing time changes that could 

reduce regularity of strong stable and unstable distributions. To be more specific 

Ern =Eun ker0 and E" = E' n ker0, so since 0 is smooth, E'° and E" are as 

smooth as Eu and E' respectively. 

In the geometric setting the stable and unstable foliations correspond to 

the horospheric foliations: On the universal cover of a negatively curved 

Riemannian manifold horospheres are defined as level sets Hv( t) of Busemann 

functions hv(x):= Lim ((d(x, 1v(t))-t) for vESM. We call Hv(t)={xEMJhv(x)=t} 
t-+ 00 

the horospheres at "'fv( oo ). In the Poincare disk model of the two dimensional real 

hyperbolic space they are circles touching the boundary of the disk with v as an 

inward normal. They can also be thought of as the boundaries of horoballs 

Bv(O) := LJ B 1( 1 v(t)), where B 1 denotes the ball of radius t. If w is another inward 
t>D 

normal to Hv then "'fv and "'fw are positively asymptotic (i.e., d( 1 v(t),"'fw) is 

bounded for t>O). The inward normal bundle E"(v) of Hv is thus the strong 

stable manifold of v. In other words, in the geometric setting strong stable 

manifolds project under the footpoint projection TM-+M to horospheres, which 

are natural geometric objects. Thus the stable foliation in TM ( or SM) is referred 

to as the horoshperic foliation. Note that reversing time along geodesics or by 

applying the flip map J: TM-+ TM, v,_. -v we get the strong unstable manifold: 

Em( v) = J E"(Jv). It is the outward normal bundle of the horosphere centered at 

"'fv( -oo ). This reproves the previous remark that the regularity of the stable and 

unstable foliations coincides for geodesic flows. 
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Symplectic Flows 

Our discussion here will also consider symplectic Anosov flows. The 

setting is that of an odd-dimensional manifold with a 2-form that is 

nondegenerate on transversals to the flow and invariant under the flow. We will 

usually refer to this form as an invariant symplectic form for the flow. (This 

terminology is consistent with that of [An], but very different from [AM], where 

this is called a "contact form" and our contact form an "exact contact form.") 

We provide a few more pertinent facts about symplectic structures. 

Associated with a symplectic form is the concept of Lagrangian subspaces. 

A Lagrangian subspace of TpM is a maximal linear subspace V so that wpl v=O. 

Note that the stable and unstable distributions consist of Lagrangian subspaces 

since invariance of w combined with the Anosov estimates forces w to vanish on 

stable and unstable subspaces. Take two vectors x, y in an unstable subspace. 

Then 

A frequently useful theorem about local representations of a symplectic 

form w is 

Theorem 1.15: (Darboux) At any point pE M there exist local 

coordinates in which w is represented as J = [-~ ~] , where I is the nx n identity 

matrix. 

(This contrasts sharply with the situation for a Riemannian metric where 

a similar statement is true only for flat metrics.) This theorem simplifies 

thinking about a symplectic form in local terms. We will give a proof ( of a 

stronger result) in a later chapter. 
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History 

Let us now give an indication of some results that motivated this study. 

As mentioned above, the Anosov splitting associated with an Anosov flow (in 

particular a geodesic flow for a negatively curved manifold) is always Holder 

continuous. 

Theorem 1.16 [A2]: The Anosov splitting is Holder continuous. 

(We will reprove this result here.) It seems striking that the regularity of 

the Anosov splitting might be as low as C'. Thus its regularity has been 

investigated for some time. Anosov [Al] showed by constructing an example 

that the Anosov splitting may not be C 1
• 

Theorem 1.17 ([Al),§24): The Anosov splitting is not always C 1
. 

(Anosov also mentions, but does not carry out "simple but lengthy 

considerations in the neighborhood of periodic points." In a way that will be our 

undertaking.) His example is of a glooal nature in that it is constructed from a 

product of toral ·automorphisms, thus in a very specific and computable 

situation. Also the spectrum of that system is spread much further than 

necessary to destroy smoothness. It does, however, exhibit exactly the Holder 

exponent that one would guess from the spectrum (in terms of the relation 

between spectral bunching and regularity to be established here). Indeed, in the 

terminology of our example 1.11, he modifies the automorphism M x A of 

7r 6 = 7r 2 x 7r 4
, which has eigenvalues .\ and ,\ 3 and thus is ~-bunched. The system 

he obtains is also lbunched and he computes that the Holder exponent of the 

stable and unstable distributions is ~' which corresponds to the relations we shall 



1: Introduction 15 

discuss below. It is also more effective than the examples given m this work 

inasmuch as in his example the distributions are nondifferentiable almost 

everywhere. Although this is not entirely unlikely to be the case in the 

construction given here, we here only prove nondifferentiability at suitable 

periodic points. 

Considering geodesic flows on negatively curved surfaces Hopf proved the 

following theorem in 1940: 

Theorem 1.18 [Ho]: For the geodesic flow on a negatively curved 

surface the horospheric splitting is C 1
• 

In 1974 Hirsch and Pugh proved this theorem for manifolds of higher 

dimension under a pinching assumption on the sectional curvature I<. 

Definition 1.19: A manifold is said to be absolutely a - pinched if 

inf J{P min 
a< ' 

sup I< p, max ' 

(relatively) a - pinched if 

. I<P, min 
a< mf I{ , 

p,max 

where a E (0, 1), sup and inf are taken over p EM and 

I<p,max = sup{II<(p,II)I :II a 2-plane in TpM} 

and I<P, min= inf{ II<(p,II)I: II a 2-plane in TpM}. 

Hirsch and Pugh proved 

Theorem 1.20 [HP]: For the geodesic flow on an absolutely 1/4-pinched 

manifold of negative curvature the Anosov splitting is C 1
. 
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Their proof is very dynamical in nature and uses essentially that this 

pinching assumption guarantees strong !-bunching. (We improve the theorem 

here as a corollary of our work, using that, by continuity of the sectional 

curvature, relative a-pinching implies strong 2 • {a-bunching [K].) In fact Hirsch 

and Pugh proved that in the case of Anosov systems bunching implies some 

regularity: 

Theorem 1.21 [HP]: For o: E (0, 1] call a diffeomorphism ¢ HP-o:-bunched 

if (3C>l,µ 1 <µ 2 <1<v2 <v1)(VpEM)(VvEE'(p),uEE"(p),nEN) 

with 

bµf llvll::; IID</Jn(v)II::; Cµ~ llvll 

b vin II ull ~ II Dip-n( u)II ::; Cv;n II ull 

Then the Anosov splitting of a HP-a-bunched Anosov flow is co:. 

(Note that this bunching condition is much more stringent than our 

strong bunching condition since some quantifiers have been exchanged in 

comparison to our definition 1.9.) 

They prove the theorem for hyperbolic sets of diffeomorphisms. 

The theory for surfaces has recently been completed by Hurder and 

Katok. Their methods are more local and more refined than those used by 

Hirsch and Pugh. Their results apply to volume preserving Anosov flows on 

three-dimensional manifolds. By distributions of smoothness C1+w we mean 

distributions that in local C 00 -coordinates are spanned by vector fields of class C 1 

whose derivatives have modulus of continuity w. Here we take w(x): = - x•logx. 
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Theorem 1.22 [HK]: Let ipt be a volume preserving C 00 Anosov flow on 

a three-dimensional Riemannian manifold M. Then the Anosov splitting is c 1
+w, 

where w(x): = -x-logx. If it is C 1+w with w = o(-x·logx) then it is C 00
• 

For geodesic flows the last conclusion implies that the curvature 1s 

constant [HK, G]. 

While the theory for surfaces is thus complete in this respect there is no 

full understanding of the situation in higher dimensions. On one hand there have 

been studies very recently that explored the implications of high smoothness of 

the Anosov splitting for geodesic flows, which have yielded fascinating rigidity 

results. These have been initiated by work of Kanai [Kn], which has been 

developed further by Katok, Feres and Flaminio. Without trying to explain 

their methods we outline two results by Feres and Katok. The first result is a 

step towards the following 

Conjecture 1.23: Let M be a compact C 00 Riemannian manifold with 

negative curvature and C 00 Anosov splitting for the geodesic flow. Then the 

geodesic flow on M- is C 00 isomorphic to that of a locally symmetric Riemannian 

space. 

Indeed, one conjectures more boldly that the manifold has to be isometric 

to the locally symmetric Riemannian space. 

This first result is contained in 
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Theorem 1.24 (Feres & Katok [FKl]): Let M be a compact C 00 

Riemannian manifold with 1/4-pinched negative curvature and C 00 Anosov 

splitting. Then the geodesic flow on Mis C00 isomorphic to that of a Riemannian 

space of constant negative curvature. 

together with 

Theorem 1.25 (Feres, [Fl): If M is odd-dimensional the hypothesis of 

1/4-pinching can be omitted in theorem 1.24. 

The second result is: 

Theorem 1.26: (Feres & Katok, [FK2]) Let M be a five-dimensional 

manifold with an Anosov flow preserving a transverse symplectic form and a 

smooth ergodic probability measure. If the Anosov splitting is C 00 then either 

i) the manifold has a flow-invariant structure of an affine locally symmetric space 

or 

ii) its Oseledetz decomposition extends to a splitting of TM and the Lyapunov 

exponents are -2x, -x, 0, x, 2x where x is a flow-invariant measurable function. 

This result is interesting here because it shows that those methods can be 

used for Anosov flows, but also because it complements the situation considered 

in the work at hand. 

It is, by the way, believed that these rigidity results should be true with 

C 00 replaced by C 2
• We will be able to provide some evidence to support ( at 

least the reasonableness of) this conjecture: Symplectic Anosov systems 

generically do not have C2 Anosov splitting. 
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On the other hand, while this research is going on and the idea is being 

reinforced that having very smooth Anosov splitting is a rare occurrence, there 

has been no full understanding of the regularity issue in the absence of pinching 

or bunching. For example, so far there has been no complete answer to the 

question: Is the Anosov splitting C1 in the absence of strong I-bunching or 1/4-

pinching? While there is the example by Anosov where this is not the case, the 

more delicate question remains: Does the Anosov splitting typically fail to be 

C1 in the absence of (strong) I-bunching? Put the other way around: Are 

theorems like those of Hirsch and Pugh optimal in some sense? It has been 

believed by most people in the field that this is indeed the case. Now finally we 

can shed some light on this issue. We show that already low regularity exceeding 

the degree provided by our regularity theorem is rather special. 

The work by Katok and Hurder has not only been mentioned for 

"historical" reasons, but also because the local methods used there have inspired 

this study and proved quite useful in it. One major tool in their approach can be 

traced to an idea of Anosov. In [Al] he proves that the Anosov splitting need 

not be C2 by observing that for a symplectic map having C2 Anosov splitting 

forces a relation on the third jet of the return map at periodic points. He then 

shows that this relation can be violated. Katok and Hurder observed that this 

"relation" actually describes the vanishing of a globally defined cocycle. 

Exceeding the critical smoothness forces this cocycle to vanish and this permits 

them to carry out a bootstrapping process that gives arbitrarily high smoothness. 

Let us briefly discuss the connection to this work. The condition we find 

to be necessary for Ca-regularity is of a different nature than that found for C2
-
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regularity. Instead of a construct involving a jet of the return map we obtain a 

geometric horizontality condition on unstable directions of points in the fast 

stable leaf of a periodic point. If any global meaning of this condition is to be 

found one should expect it to have the nature of an invariant distribution or 

some invariance property of unstable directions, rather than being a cocycle. 

It should be pointed out that while Anosov obtained his condition 

necessary for C 2 by considering a periodic point, Katok and Hurder obtain an 

expression at arbitrary points and observe that having C 2 Anosov splitting forces 

it to vanish at periodic points. (They then verify that they have a cocycle at 

hand.) Our coordinates here appear to be too specifically adapted to a periodic 

point to immediately be able to obtain global information. One particularly 

obvious weakness is the fact that we use the concept of a fast stable leaf here, 

which may not be defined everywhere. (This aspect motivates the desire to study 

perturbations of symmetric spaces of nonconstant negative sectional curvature: 

Here, as well as for small perturbations, fast stable leaves are well-defined 

everywhere by work of Pesin [Ps]1 .) This then is an issue awaiting clarification: 

What intrinsic meaning does the condition developed in this work have and is it 

the manifestation of some global object or structure? 

To return to the specific usefulness of Katok and Hurder's methods we 

remark that it is there that the semilocal analysis along orbits, both to obtain as 

well as to limit smoothness, was developed. It is when our bunching condition is 

violated that we can expect the Anosov splitting to "typically" fail to be highly 

regular. 

1Although this paper contains some errors, the conclusion we need is valid. 
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Hirsch and Pugh show in their papers that for a :s; 1 HP-a-bunching implies 

ca Anosov splitting. Using the more local methods of Katok and Hurder yields 

the following result: 

Theorem 1.27: Let M be a Riemannian manifold and 'Pt an a-bunched 

Anosov flow, a E (0, 1 ). Then the Anosov splitting of 'Pt is ca-£ for all f > o. If 'Pt 

is strongly a-bunched then the Anosov splitting of 'Pt is caH for some f > O. 

In order to unify the treatment we used here: 

Definition 1.28: A function f: IR--+IR is said to be ,8-Holder if f is [,8] times 

differentiable and the [,Brh derivative is Holder continuous in the usual sense 

with Holder exponent ,8 - [,B]. 

A distribution is said to be ,8-Holder or Holder with Holder exponent ,8 if in local 

coordinates it can be generated by vector fields represented by coordinate 

functions that are ,8-Holder. 

Remark 1.29: Note that 1/4-pinching implies strong 1-bunching. We 

thus proved that in the geodesic-flow-theorem of Hirsch and Pugh one can 

conclude that the Anosov splitting is indeed C1
H for some f > 0. 

Recall that in the example given by Anosov in [Al] the diffeomorphism 

has contraction and expansion constants given by O < v- 3 < v- 1 < 1 < v < v3 < oo. 

Thus his system is ~-bunched. And indeed, by explicit computation, he shows 

that the Anosov splitting has Holder exponent exactly j. 

We expect that in the absence of a-bunching the Anosov splitting should 

typically fail to be ca. The theory we develop can be summarized as follows. 
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Definition 1.30: Let M be a Riemannian manifold, l EN. Define 

6: = { transversally symplectic A nosov flows 1/: M-+ M on M with the C 00 -topology }· 

Here the C 00 
- topology is defined as follows: 

We say that r.pn - r.p E 6 if \;/ E > 0 , k E N 3 NE N \;/ n ~ N 

ll'Pn - 'Pllck < f and llwn - wllc, < f, 

where wn and w denote invariant transversal symplectic forms for r.pn and r.p 

respectively. 

Remark 1.31: Since the invariant symplectic forms are not unique ( one 

can, e.g., rescale them) the closeness condition for them is intended to say that 

wn and w can be chosen so as to be close. 

Definition 1.32: Define 

and 6a: = { r.pt E 6: r.pt has an a-spread periodic orbit}. 

Remark 1.33: 6a is open in 6. We shall use the induced topology. 

Theorem 1.34: For a E (0, 2] flows in 6a generically do not have Anosov 

splitting of class ca. 

Remark 1.35: We show that at the a-spread periodic orbit the regularity 

of both stable and unstable distributions can be made to be less than ca by 

small perturbations causing a necessary condition for such regularity to be 

violated. We then remark that the set of Anosov flows violating this condition is 

open. 

From our discussion it will be evident that, mutatis mutandis, we also 

have 
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Theorem 1.36: Let a E (0, 2]. Denote by !Der the set of symplectic Anosov 

diffeomorphisms that possess an a-spread periodic orbit p. Then diffeomorphisms 

in !Der generically do not have Anosov splitting of class ca. 

Remark 1.37: Note that we are making statements about absence of 

regularity between C 2 and Cf for small €. Specifically we obtain genericity of 

failure of the Anosov splitting to be C 2
, breakdown of differentiability in the 

absence of !-bunching and the fact that the Holder exponent of the Anosov 

splitting may be arbitrarily small. 

Contemplating theorems 1.27 and 1.34 immediately raises an obvious 

question of what happens "in between." Ideally one should hope that the data on 

periodic points determine the bunching behavior to the following extent: "a

bunching along all periodic orbits forces a-bunching." In that case one could 

assert the following 

Conjecture 1.38: If all periodic orbits are a-bunched then the flow is a

bunched and thus the Anosov splitting is ca-f for all f > 0. 

If there is a periodic orbit that is not a-bunched then the Anosov splitting 1s 

generically not ca. 

(This latter part is known for symplectic systems.) 

Our hope is that this question can be resolved reasonably soon. The 

statement "a-bunching along all periodic orbits forces a-bunching" has a flavor of 

Lifschitz theory [L] and similar methods might yield a positive answer. 
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Statement of Results 

In this section, intended for use as a reference, we briefly summarize the 

results obtained here. 

Proving Regularity: 

Definition 1.39: Let 1.pt be an Anosov flow on a Riemannian manifold M. 

C > 0 such that 

and V vE E'(p),uE E"(p),t>O) 

b µr llvll ~ IID1.pt( v)II ~ C µ~ llvll 

b vit II ull ~ II D1.p-t( u)II ~ Cv;t II ull-

Otherwise call p a-spread. 

We call p u-a-bunched if 

and s-a-bunched if 

1.pt is called a-bunched if every p EM is a-bunched with uniform C. 

1.p 1 is called strongly a-bunched if there exists an f > 0 such that all p EM are 

(a+ f )-bunched. 

Define (strong) u-a-bunching and (strong) s-a-bunching for 1.pt m the obvious 

way. Similarly for diffeomorphisms. Write 

~: = { ¢: </J is an Anosov system} 

~a : = { ¢: ¢ is an a-bunched A nosov system} 

~~: = { ¢: </J is a strongly a-bunched Anosov system} 

~. : = {¢: </J is an i-a-bunched Anosov system}, i = u, s 
i-a 

~~ : = {¢: ¢ is a strongly i-a-bunched A nosov system}, i = u, s. 
i-a 
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A manifold is said to be (relatively) a-pinched (aE(0,1)) if 

where 

and 

Write 

J{ . 
a< inf ,P• min , 

p<M lip, max 

Kp,max=sup{IK(p,IT)l:IT a 2-plane in TpM} 

Kp,min=inf{IK(p,IT)l:IT a 2-plane in TpM}. 

@a:= { a-pinched geodesic flows}. 
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Remark 1.40: By [K] and continuity of curvature a-pinching implies 

strong 2 • --.{a-bunching, i.e., @a C &;fa. 

Theorem I: Denote by Eu, E• the unstable and stable distributions 

respectively and let i = u, s. 

The Anosov splitting is Holder continuous. (Since & = U &a.) 
(0, 2] 

If aE(0,2), ¢E&a, E>O then the Anosov splitting of¢ is ca-E_ 

If aE(0,2), ¢Efil~, then 3E>0 such that the Anosov splitting of¢ is caH_ 

If a E(O, 2), ¢ E fil. , l > 0 then Ei is ca - l _ 
i-a 

If a E(O, 2), ¢ E fili-a' then 3€ > 0 such that Ei is caH. 

If E; for ¢ E fil has codimension one, then 3 E > O such that it is c 1H. 

If a E [O, 1), ¢ E @a then 3E > 0 such that the horospheric foliations of¢ are c 2 --.faH_ 

Low Regularity: 

Definition 1.41: Define 

6: = { transversally symplectic Anosov systems ¢ with the C 00-topology }· 

For aE(0,2) define 

and 6a: = { ¢ E 6: ¢ has an a-spread periodic orbit}. 
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Remark 1.42: LJ Sais open and dense (i.e., generic) in 6. 
(0, 2) 

Theorem II: 

If a E(O, 2] then ¢i E 6a generically does not have C°' Anosov splitting. 

¢i E 6 generically does not have c1+x pag xi Anosov splitting. 
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Remark 1.43: The breakdown of regularity occurs at the a-spread 

periodic orbits. It can be achieved simultaneously for stable and unstable 

distributions. 

Although the proof given here 1s m1ssmg some technical detail we also 

state 

Theorem III: Compact quotients of symmetric spaces of nonconstant 

negative curvature admit a finite cover that can be perturbed so as not to have 

C 1 horospheric foliations. Compact quotients of spaces of constant negative 

curvature admit a finite cover that can be perturbed so as not to have C 2 

horospheric foliations. 

Margulis measure: 

Finally we prove: 

Theorem IV: The Margulis measure of a transitive Anosov flow arises 

from a Hausdorff measure for a natural distance on (un)stable leaves. 
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In the introduction we stated that by using the methods of Katok and 

Hurder one can obtain the following result: 

Theorem 2.1: Let M be a Riemannian manifold and ,pt an a-bunched 

Anosov flow. Then the Anosov splitting of ,pt is ca-f for all f > 0. 

Corollary 2.2: Let M be a Riemannian manifold and ,pt a strongly a

bunched Anosov flow. Then the Anosov splitting of ,pt is ca+< for some f > 0. 

In order to unify the treatment we used here: 

Definition 2.3: A function f: IR-+IR is said to be ,a-Holder if f is [.Bl times 

differentiable and the [,B] th derivative is Holder continuous in the usual sense 

with Holder exponent .B - [.Bl. 

A distribution is said to be ,a-Holder or Holder with Holder exponent .B if in local 

coordinates it can be generated by vector fields represented by coordinate 

functions that are ,a-Holder. 

In this chapter we will outline a proof of this fact. Since the methods are 

adapted from [HK] we will not go into as much detail here as in the later 

chapters. 

Remark 2.4: Recall that it suffices to investigate the regularity of the 

unstable distribution. 
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Holder continuity 

In this paragraph we outline the proof of one part of this theorem, namely 

Proposition 2.5: Let a E (0, 1], M a Riemannian manifold and r.p 1 a u-a

bunched Anosov flow. Then for any f > 0 the unstable distribution is Holder 

continuous with exponent a - c 

Proof: We first choose appropriate coordinates. For all p E M take a 

hypersurface GJ" P transversal to I{) of ( small but) uniform size, so that the GJ" P 

depend C 00 on p. For fixed p we abuse notation and write wu for wu n GJ" P and 

w• for w• n GJ" P· Denote the tangent distributions to these wu and w• by Eu and 

E'. These then are (by [A2]) Holder continuous distributions on GJ" P· We want to 

show that they have Holder exponent a. 

We choose coordinates 2: Mx[-f, E]-+M such that 

wu and w• are coordinate planes (Wu~IRkx{O} and W'~{O}xlR1
) 

the induced map ¢ 1: GJ" p-+ GJ" t has differential at zero of the form D</> 1 =[At Co ] 
- r.p p O t 

with 

( Although we do not need this, we remark that they can be taken to depend 

Holder continuously on pin the C 1-topology.) 

We shall write the coordinates as (x, y) such that 

We define a cone field 
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V( o). -{ k + I-dimensional distributions v on M such } 
· - that v(p) contains cp(p) and is o-close to Eu 

We will represent elements vE V(o) in the coordinates Sp by identifying 

v(p) with v(p) n TGJ P· Note that by the same token we can represent v(q) in 

coordinates SP for q E GJ P. 

Thus a-closeness is determined in the coordinates Sp by representing v(p) 

as the graph of a linear map D: IRk - IR1 and using the norm topology. 

The flow r.p t acts on V( o) by transformations ij' t defined by 

i.e., 

Fort sufficiently large il't(V(o))c V(o) and for vE V(o) we have 'iJtv-->Eu as t-->oo. 

W'(p) 

Now let /3 = a - t for some E > 0 and recall that for all p EM we have 

-1 -/3 
V2 µ2µ1 < 1. 

In order to prove the proposition it suffices to show 
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Lemma 2.6: There are I<,<o>0 such that if vE V(b(co)) and IIYII <<o then 

( :3 TE IR) ( 'v t E [ T, 2 T]) 

and if 

then 

where (0, z) = ¢,t(o, y). 

Ir' t ( V( b ( < o))) C V( b (co)) 

llv(0, Y)II < KIIYll,8 

IICirtv)(0,z)II < I<llzll,8, 

This lemma implies the proposition since by applying it inductively we 

obtain the 

Corollary 2.7: There are K,<o>0 such that if vE V(b(co)) and IIYII <<o 

and if 

then 

where (0, z) = ¢>'(0, y). 

lft( V(b(co))) C V(b(co)) 

llv(0, y)II < Kjjyjifi 

ll(a' t v)(0, z) II< KIi zlifi, 

Thus we showed that for all t > T Ir t preserves the collection of 

distributions that are ,8-Holder with given constant Kin the stable direction. But 

since a'tv-+E" as t-+oo and this condition is closed (by equicontinuity) this forces 

E" to be Holder continuous in the stable direction with exponent ,8 = o: - c Since 

E" is smooth in the directions of 'P and E" we conclude that E" is ( o: - < )-Holder. 

Proof of lemma: In this proof we consider only points on the stable leaf 

and thus write v(y), etc. instead of v(0, y), etc. 

Suppose llv(y)jj < Kjjyjj,8. 

The differential of the map ¢,t at y is [ At 
0 

] 

D¢,'(y) = 
Bt Ct 

and there exists L > 1 such that 
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Using that 

one can show that 

IIA1(Y) - A1(0)II:::; L IIYII 

11Ai1(y) - A;:1(0)11:::; L IIYII 

II C1(Y) - C1(0)II:::; L IIYII 

IIBi(Y)II:::; L IIYII for t< 1. 

IIA/(O)II:::; Lv;1 

II Ci(O)II:::; L µ; 
B 1(0) = 0 

(38>0, L>l) ('v'IIYll<8) 

IIA;1(Y)II:::; Lv;1 

IIBi(Y)II:::; L(t)IIYII 

IICi(y)II:::; Lµ; 

IIYII:::; Lµi 1 ll¢l(y)II-

31. 

The Lipschitz constant L(t) for B 1(y) depends on t and we do not attempt 

to control its growth. We may assume that it is nondecreasing in t. 

The last statement follows from an analogous one about II Ci 1(y)JI and the 

mean value theorem. The first one is shown in the same way as the third. Thus 

we prove the second and third statement here. We begin with the second one: 

Since 

and 

z.e., 

we find 
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Since 11An_1(y)II and IIC1(efin-l(y))II are bounded by constants depending 

only on n and inductively B1( 4in- 1(y)) and Bn_ 1(y) are Lipschitz continuous we 

conclude that 

The claim follows since 

IIBn(Y)II ~ L(n)IIYII

IIBt(Y)II ~ LIIYII fort< 1. 

For the third claim, IIC1(y)II ~ Lµ~, it clearly suffices to show: 

Proof: We use induction. Note first that we can find L> l >,\such that 

and assume 

II C1(Y) - C1(0)II ~ L IIYII 

II Ci(O)II ~ L µ~ 

n-1 
+ L IICn-j(<Pj+lY)ll · IIC1(efijy)- C1(0)Jl · IIC/O)IJ + 

j=l 
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~ L µ~ (1 + J<AIIYII) · L IIYII + 

n-1 . . . . 
+ L Lµ;-J (1 + J{,\J+lllYII). L2 A1 IIYII · Lµ~ + 

j=l 

n . . . . 

~ L Lµ;-J (1 + J{,\J+lllYII)' L2 A1 IIYII · Lµ~ = 
j=O 

n 

= L 4 µ~ IIYII L ,xi (1 + J{,\j+lllYII) ~ 
i=O 

Now we use these estimates to investigate the action of If t • 

If we represent v(p) by a linear map Das indicated above we can as well consider 

the graph of D as the image of the map represented in matrix form as [ £] where 

Jis the (k,k)-identity matrix. 

where ~ indicates that the two maps have the same graph. In other words if we 

let z= <j)ty then D(z) = (Bi(y) + Ci(y)D(y))A; 1(y) and thus 

IID(z)II = 
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for t E [ T, 2 T], where T is such that 

and I< such that 

L2+p. µf T <; 
K> 2 L( t) L µ1t · L v;t 

We also take T large enough so that ir' t ( V( 8)) c V( «5) for t > T. 

34 

for t E [ T, 2 T]. 

□ 
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Differentiability 

We now want to prove 

Proposition 2.8: Let M be a Riemannian manifold and <pt a strongly u-1-

bunched Anosov flow. Then the unstable distribution is differentiable. 

Remark 2.9: The previous section already yields that the unstable 

distribution is Lipschitz-continuous. 

Again we need only show transversal differentiability ([HK], [LMM]). 

Proof: Let us first explain how differentiability can be proved using 

estimates only and without knowledge of the derivative. For this introduction 

consider first function f:IR-+IR. Note that if f is differentiable at x E IR then 

f(x+hi-f(x)-+ J'(x) 

and f(x) -,(x- k) -+ J'(x) 

whence 
l

f(x+h)-f(x)_f(x)-f(x-k)I _ o 
h k (h, k)-+0 

or equivalently 
h
lk• lkf(x+ h) + hf(x- k) - (h + k)f(x)j - 0. 

(h, k)-+0 

Conversely, the last statement implies differentiability at x. 

If we now consider f: !Rn -+IR then in order to prove differentiability it 

h 1 h •lh2h3f( x+ Vi hi)+ hi h3f( x+ V2h2)+ hi h2f( x+ V3h3)-( h2h3 +hi h3 + hi h2)f( x)j-o 
i 2 3 

as (hi,h2,h3)-+O and convergence is uniform in (vi,v2 ,v3 )EIRnxlRnxlRn. 

The reason is that taking v3 = O gives a proof of existence of directional 
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derivatives analogous to the case of the real line ( with convergence uniform in 

direction) and then this formula proves that directional derivatives depend 

linearly on the direction. For a function on a manifold we have to replace the 

arguments (x+ v;h;) by c;(h;), where c; is a curve with c;(O) = v;. The rest of the 

proof is the same. 

In order to prove differentiability of the unstable distribution we recall 

first that it again suffices to prove transversal differentiability ( i.e., in the stable 

direction). 

Choose coordinates as in the previous paragraph. We shall consider 

<p acts on m by: 

where 

~tis the scale factor needed to have (i\,v 2,v 3 ) Em. 

Note that 

In light of the previous paragraph and the introduction to this one, it should now 

be clear that in order to show differentiability it suffices to prove 

Lemma 2. 10: There exist l > 0, p < 1, KE IR such that if 

( v P E M) ( v (vi, v2 , v3 ) E m, o < hi, h2 , ha < () 

llh2 h3 D(; Vi (p )(hi)) + hi h3 D(; v
2
(p{ h2)) + hi h2 D(; va(P) ( h3 ) )II< K hi h2 h3 

where ; ( ) are geodesics in GJ' P with t ( )(0) = v;(P), then 
~p ~p 

( 3 TE IR) ( 'v' p EM, t E [ T, 2 T], (iii, v2 , v3) E ~tm, 0 <hi, h2 , h3 < l) 
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where,- () are geodesics in ~P with i'- ( )(O)=ii;(p) and h;=lt·h;. 
V; p V; p 

Proof: Let us first evaluate the above expression with arguments 

+Ct(, ( t )(h;))·D(-y ( t )(h;))·A/(-y ( t )(h;)). 
V; If) p V; If) p V; If) p 

Thus we get the following estimates: 

Here we used the shorthand f; for the argument 1 ( t )(h;)
v; ip p 

Note that the first of these two terms contains only differentiable 

expressions, hence is bounded by some (uniform) multiple of h1h2 h3 • We estimate 

the second term by using contractiveness of Ct and A; 1 to get the bound 



2: Regularity 38 

For t E [ T, 2 T] we then choose I{ large enough so that the first term is also 

dominated by !I(h/i/i 3 • If we now pass to the argument ('ii;(p/~ih;)) instead of 

(¢,\,v;('PtP)(h;))) we simply observe that the curves ('i\(p)(~is)) and 

(¢,\,v;(tptp)(s))) considered in these two instances are tangent at zero, so that the 

error term engendered is of order o(h/i/i 3 ) and thus our estimates imply the 

lemma. □ 
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Holder continuity of the derivative 

We now want to prove 

Proposition 2.11: Let a> 1, M a Riemannian manifold and <p 1 a u-a

bunched Anosov flow. Then for f > 0 the unstable distribution is co: - i, z.e., 

differentiable with derivative (a - £ -1)-Holder continuous. 

Remark 2.12: Note that we can conclude that strong 1-bunching implies 

that the Anosov splitting is cl+< for some £ > 0 and that if the unstable foliation 

is of codimension one then, since µ 1 = µ 2 , i.e., µ 2v;1 < µr = µ 1 for a= 1, this 

implies that the unstable distribution is of class c 1+<. 

We already know that the unstable distribution is differentiable. 

Proof: We shall be rather brief here, since the explanations relating our 

estimates to the result of the proposition are along the same lines as in the 

previous proofs. Let 

Then our bunching assumption is µ 2v21 µ1o: ~ 1, 

z.e., 

then 

We need to show that if 

IIDyD(y) - DyD(O)I ~ KIIYll,8 

!DzD(z)- DzD(O)I ~ Kllzll,8, 

where z denotes </Jt(y) and Dis the linear map representing Eu in our coordinates. 

The reader will note the uniformity in the estimates below. 

We first distinguish linear and nonlinear parts by writing 
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with L D(y) linear in y and N D(y) differentiable in y with Dy N D(O) = O. 

\Ve use similar notation for the matrices A;1, Bi and Ci, i.e., 

Ai1(y) = Ai 1(0) + L Ai 1(y) + N A/(y) 

Bi(Y) = LBi(y) + NBi(Y) 

Ci(Y) = Ci(O) + Lci(Y) + Nci(Y), 

Note that then our claim reduces to showing that if 

then 

where z denotes ¢,i(y). 

IIDy ND(y)j ~ Kllyll'B 

IIDz ND(z)j ~ Kllzli 1\ 

This is now a relatively easy computation: 

LD(tf}y) + ND(q/y) = 

= D(¢iy) = 

= Bi(Y) Ai 1(y) + Ci(Y) D(y) Ai 1(y) = 

= [ L Bi(y) + NBi(Y)][ A/(0) + L Ail(y) + N Atl(y)] + 
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+ [ci(O) + Le i(Y) +NC i(y)][ L D(y) + N D(y)][ Ail(O) + L A;1(y) + N Ail(y)] = 

by separating linear parts 

=[ L Bi(y)A;1(o)] + [Bi(y)A/(y) - L Bi(Y)Ai 1(0)] + 

+ [ Ci(O) L D(y)Ai 1(0)] + [ Ci(Y)D(y)Ai 1(y) - Ci(O) L D(y)Ai 1(0)] = 

= [ Bi(y)Ai1(y) - L Bi(y)A; 1(0)] + [ Ci(y)D(y)A; 1(y) - Ci(O) L D(y)A/(o)] + 
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+ [Linear part]. 

Therefore 

= [B1(y)A11(y) - L B 1(y)A11(0)] + [ C1(y)D(y)A/(y) - C1(0) L D(y)A,1(0)] = 

= [B1(y)A/(y) - L B1(y)A11(0)] + [ Ct(y) L D(y)A11
( y) - C1(0) L D(y)A, 1(0)] + 

+ [ C1(y) N D(y)A,1(y)] 

=:RHS 

applying Dy to the left hand side now gives by the chain rule 

Thus 
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Note however that in IIDy[RHS]~ the first two terms of RHS only contribute 

O(JJyJJ). Thus (by the usual technique of enlarging constants in the end) we only 

consider the term IIDy [ C1(y) ND(y)A11(y)JII· 

Again, since ND( y) is Lipschitz in y we have 

II Dy [ C1(Y) N D(y)A,1(y)JII ~ llc1(Y)[ N DyD(y)] A,1(y)II + o(JJyJJ) 

and it suffices to control llct(y)[ N DyD(y)] A11(y)~. But 
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~ IIC1( Y)IIII N DyD(y)II IIA; 1(Y)II llc; 1(Y)! ~ 

~ IJCi(Y)II IIA;1(y)II llc;1(y)II KiiYlt ~ 

Thus for T large enough to make 

L4µf T < ~ 

and I< large enough to overcome the 0( II YII )-terms for t E [ T, 2 T], we obtain the 

desired result. □ 
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This chapter is the first of those devoted to studying the absence of high 

regularity in insufficiently bunched symplectic systems. In this chapter we set 

the stage for some local calculations in a neighborhood of a periodic point. The 

first statement we want to prove is rather natural: At a periodic point p we can 

choose coordinates adapted to the symplectic structure and the stable and 

unstable filtrations of p. Since this is a local theorem we assume without loss of 

generality that we are considering an Anosov diffeomorphism of IR 20 preserving a 

symplectic structure. 

Proposition 3.1: Let UC IR 20 be open, 0 EU and F: U-+IR 2
" an Anosov 

diffeomorphism onto its image with O as a fixed point and preserving a 

symplectic form w. Let Wf c w; c ... c W~ = W"(O) be submanifolds of the stable 

leaf W"(O) of O with OE Wt and dim Wt= i and let Wt c W:f c ... c W~ = Wu(O) be 

submanifolds of the unstable leaf wu(O) of O with OE Wt and dim Wt = i. 

Then there exist coordinates (p1 , ... , Pn, q1 , ... , qn) on U such that in these 

coordinates 

i) w = L dpJ\dq; (or w = J: =[-~ ~ l where I is the nxn identity matrix), 

ii) Wt= {(pl, ... ,Pn, ql, ... , qn) E U: P1 = ... = Pn = ql = ... = qn-i = 0} 

Definition 3.2: If there exists IC{l, ... ,n} such that 

{ W/ : i E I} , {Wt: i E I} are the stable and unstable filtrations of O these 

coordinates are called adapted coordinates. 

Proof: We adapt the proof of Darboux' theorem given in Arnol'd's book 

[An] on Classical Mechanics. 
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Denote by M; a 2i-dimensional submanifold of U such that 

Let p 1: U-+ 1R be such that Pil w• = 0 , Pil M = 0 and the Hamiltonian vector field 
n-1 

P 1 ( defined by dp1 = w( P 1 , ·)) is transversal to a hypersurface Nn containing Wri' 

and Mn-i · If Pf denotes the Hamiltonian flow generated by P1 then 

('v'zE u) (3! yENn, q1(z)EIR): z=P[1(z)(y). 

Thus we have q1 : U-+IR with q11Nn = 0 and since dp1 and dq1 are independent, 

because the Poisson bracket { q1, p1} = dq1 ( P 1 ) = 1, we find that 

Since { q1 , p 1} = 1 this completes the proof in case n = 1. 

We now proceed inductively: 

Denote by Q1 the Hamiltonian vector field associated with q1 and by Qf the 

associated Hamiltonian flow. 

Claim: wlM is nondegenerate. 
n-1 

This claim implies that (Mn-i, w1M ) is symplectic and hence, by 
n-1 

induction hypothesis, has adapted coordinates {P;, q;}?= 2 • We thus get 

coordinates on U: 

('v'zE u) (3! yEMn-i, s, tEIR): z=P1
8 (Q/(y)). 

Define P;(z):=p;(Y), Q;(z):=q;(Y), i=2, ... ,n. 

Proof of claim: For xE Mn-i, v E T,,Mn-l we have w(P1 , v) = dp1( v) = 0 and 

If w E T,,Mn-l is such that ( 'v' v E T,,Mn_ 1 ) w( v, w) = 0 then, 

smce 

we have ('v'vE T,,U) w(v, w)=O, whence w=O since w is nondegenerate. ✓ 
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We now have to show that the coordinates {p;, Q;}?=i are adapted. 

ii) and iii) are satisfied by construction, so we conclude the proof by showing 

that the coordinates are symplectic. It suffices to show that {P;, pi} = { Q;, q) = O 

and {q;,Pj} = 8;j. 

Case 1: i = j = 1 : Already known. 

Case 1_: i = 1 or j = 1: Follows from invariance of qk and Pk under Qi and Pf for 

k>2. 

Case J: i,j?. 2: Q; and Pj are invariant under Qf and Pi, hence the corresponding 

Hamiltonian flows commute and thus Q; and Pi are invariant under Qi and Pf. 

Since Qi and Pf are symplectic the Poisson brackets { Q;, Pj} = w( Q;, Pi) are 

invariant under Qi and Pi and it suffices to evaluate them at points of Mn-i· 

Since q1 and p 1 are integrals of the flows Q! and P1, Q; and Pi are tangent to 

vector fields for Q;IMn-l and PilMn-l and the desired Poisson brackets are those 

obtained in the coordinates of Mn-i, which are, by induction hypothesis, as 

desired. D 

We will from now on assume that we are using adapted coordinates. 

Now we wish to pass from these adapted coordinates to special adapted 

coordinates that satisfy one further requirement. While the use of adapted 

coordinates needs little motivation, it will not be clear at this point why we need 

special adapted coordinates. This will only become clear when they are actually 

put to use. The idea, however, is, essentially, to isolate "slow" directions in some 

sense. 

Recall the setting of the previous proposition. We define integers k, land 
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m by taking n - k to be the maximal dimension of elements of the stable 

filtration, m the minimal such dimension and k + l + m = n. We may of course 

have l = 0. Considering points in the fast stable leaf 

{ (P1 , • • • , Pn , Q1 , • • · , Qn) E U: P1 = • • • = Pn = Q1 = • • • = Qn- m = 0 } 
( m being the lowest dimension of any element of the stable filtration) we can 

write the differential DF of the diffeomorphism Fas 

DFI -[Ao] (O,. · .,O,qn-m+l'' · .,qn) - B C 

with C lower block triangular. This is because the stable filtration at p 1s an 

invariant subfiltration of 

Wt= { (P1 , ... , Pn, Q1 , ... , Qn) E u: P1 = ... = Pn = Q1 = ... = qn-i = 0}, 

whence the tangent spaces are subspaces of the form {(0, ... ,0,xn-j+i,-·-,xn)}, 

Invariance of these forces the above form for DFlco, .. . ,o,qn-m+F .. ,qn)· The block 

sizes correspond to the increments in dimension when passing to higher

dimensional elements of the filtration. Here we shall only use that the blocks can 

be taken of sizes k, land m, i.e., we think of C as 

[

C•low O O l k 

C= * cmid O 1 

* * c,a.t m 

k m 

Furthermore A= ct-l since Fis symplectic, i.e., 

l=[ 0 I ]=[At B:][ 0 I][ A O ]=[ AtB-:tA 
-I O O C -I O B C -C A ] 

This evidently implies that A is upper block triangular and the diagonal 

blocks are obtained from those of C by taking transposes of inverses. 

We want to change our coordinate system in such a way as to have the 
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upper left hand k-block of the matrix B identically zero at points 

(O, ... ,qn-m+i,···,q"). Recall that k here denotes the codimension in W'(O) of the 

highest-dimensional element of the filtration at 0. Simultaneously we want to 

maintain of course the conditions obtained in the previous proposition. vVe first 

have to do a little linear algebra in 

Lemma3.3: For SEgl,(k,IR):={SEgl(k,IR):St=S} and AEGL(k,IR) with 

IIA- 1 /1 < 1 the equation E-At EA= S has a unique solution EE gl,(k, IR). 

Proof: gl,(k,IR)--+gl,(k,IR), E-E-AtEA is linear. We need to show 

injectivity. 

Suppose E- At EA= O, z.e., E= At EA. It suffices to show ( v, Ev)= O for all 

vE sk-1: = {vE IRk: llvll = 1}. 

Let v0 ESk-l be such that l(v0 ,Ev0 )l=K:= max l(v,Ev)j. Since IIA- 111<1 there 
v E 5k-l 

exist q > 1, v1 E 5k-l such that qv0 = A v1 whence 

But if (J'
2 K::; K while (J'

2 > 1 and K ~ o then K = o. D 

Definition --3.4: Let Uc IR 2
" and F: U--+IR2

" be an Anosov diffeomorphism 

onto its image, which fixes a point p E U and preserves a symplectic form 

< •, w • >. Then coordinates (p1 , ... ,Pn, q1 , ... , qn) on U are called special adapted 

coordinates if in these coordinates 

i) the stable filtration at p is a subfiltration of 

{ (P1, · · ·, Pn, ql, · · ·, qn) E U: P1 = · · · = Pn = ql = · · · = qn-i = 0} i = 1, 

ii) the unstable filtration at p is a subfiltration of 

{(pl , • • •, Pn, ql, • · ·, qn) E U: ql = · · • = qn =Pi=···= Pn-i = 0} i = 1 , 

iii) w = L dpJ,dq; (or w = J: =[-~~],where I is the nxn identity matrix), 
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iv) The upper left hand kx k block of the matrix B defined by 

DFlco, ... ,O,qn-m+l'""'qn)=[;gJ is zero for all qn-m+1,-·-,qn. Here n-k is the 

dimension of the highest-dimensional element of the stable filtration at p 

properly contained in the stable manifold and m is the lowest dimension of 

elements of the stable filtration. 

Proposition 3.5: Let Uc IR 2
n and F: U-IR 2

n be an Anosov 

diffeomorphism onto its image, which fixes a point p E U and preserves a 

symplectic form < • , w • > . Then there are special adapted coordinates for F. 

Proof: Choose adapted coordinates and denote them by (s, t, u, v, w, z) with 

V = ( ql, ... , q,.) E IRk, W = ( qk+l, ... , qn-m) E IR1, Z = ( qn-m+l, ... , qn) E !Rm. 

Then, suppressing the argument (0, ... , 0, z), DFlco, ... ,o,z) = [; g] with C lower 

block triangular, as remarked above. The block sizes are k, l and m, where the 

block of size l may consist of smaller blocks or be absent if l = 0. Note that 

A= ct- 1 
and At Bis symmetric since Fis symplectic, i.e., 

l=[ 0 I ]=[At B:][ 0 I][ A O ]=[ AtB-:tA 
-I O O C -I O B C -C A ] 

Denote the upper left k-blocks of A, B, and C by a, b, and c respectively. Then 

atb is symmetric and thus atb- e + a tea= 0 has a unique symmetric solution 

e(z) E gl(k, IR) by the above lemma. Note that e(0) = 0 since b(O) = 0. 

Let G(s, t, u, v, w, z): = (s, t, u - !Dz ( s e(z) s), v + e(z) s, w, z), 

where Dz denotes the differential with respect to z, or equivalently the matrix ( or 

vector) of partial derivatives with respect to z. Then 
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I 0 0 0 0 0 

0 I 0 0 0 0 

- Dze(z)s 0 I 0 
DG= 

0 - ~DzD,se(z)s 

e(z) 0 0 I 0 Dze(z)s 

0 0 0 0 I 0 

0 0 0 0 0 I 

Thus G is symplectic: 

DG'J DG=[ 
since Ft E= Et F= 0, and ff 1 F= F and Dt E= E are symmetric. This proves iii). 

G also preserves the stable filtration since if s = 0 we have DG = [ ~ ; J 
Likewise the unstable filtration is preserved since for z = O DG=[: D:-,] and D 

is lower triangular. Thus i) and ii) are proved. 

Finally, to prove iv), we consider points (0, ... ,0,z) and observe that the 

representation of DF in the new coordinates is given by 

DG· DF· DG- 1 =[ A 
EA+B-CE 

0 

C ]-
Since EA+ B - CE= B - A t-l E + EA and A is upper block triangular ( with 

blocks of size k, l and m) the upper left k-block of this expression is the product 

of the upper left k-blocks: 

But since At is nonsingular and atb- e + a tea= 0 we conclude that 

as required. □ 
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This chapter contains the central idea of this project. It is shown here 

that excessive regularity of the Anosov splitting forces a degeneracy that cannot 

be typical. The approach amounts to isolating the worst case that could occur in 

the estimates used in the proof of regularity from the bunching condition. 

We consider a (transversally) symplectic Anosov flow <p 1 on a compact 

Riemannian manifold. 

Definition 4.1: A flow ip 1 on a compact Riemannian manifold is said to 

be transversally symplectic if there is an antisymmetric 2-form w such that w 1s 

nondegenerate on hypersurfaces transversal to the flow. 

For a periodic point p EM we can choose a small hypersurface ':f P 

containing p and transversal to the flow. 

Definition 4.2: For a periodic point p EM of ip 1 denote by ':f P a small 

hypersurface transversal to the flow. We define the induced map or return map 

<l>p as follows: <l>p is the restriction of the Poincare return map of ':f to an open 

convex subset of GJ" containing p such that the return time is smooth. We now 

denote this set by ':f or ':f P • 

For purposes of illustration we can think of ':I'" P as coordinatized by 

3:[-E,E]2n---+':l'"p, Clearly <l>=<l>p is well-defined and smooth on a neighborhood of p 

in ':I'" P· Therefore we can consider its differential Del> near p. <I> is symplectic with 

respect to the symplectic form w on ':f P· Counting with multiplicities D<I>IP has 2n 

eigenvalues, all off the unit circle since <p 1 is an Anosov flow, and the set of 

eigenvalues is closed under the operation of taking reciprocals. 
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Definition 4.3: A periodic orbit p is said to be a-spread if the differential 

D<l>p at p of the induced map <I> for the transversal ~ P has eigenvalues ..\1 and ..\2 

of modulus greater than one such that 1 < l..\2 12 < l..\1' 0
• We will assume l..\ 11 and 

l..\ 2 1 are the minimal and maximal moduli for eigenvalues outside the unit circle. 

Proposition 4.4: Let o: E(O, 2]. Assume t.pt has an a-spread periodic orbit 

with l..\ 11 # l..\2 12 and the unstable distribution is Holder continuous with Holder 

exponent o:. 

Then the unstable directions satisfy a geometric horizontality condition of 

positive codimension. 

Remark 4.5: Here the case o: > 1 implies a C 1
H -assumption. The 

expansion rates at the periodic point are 11 1 = l..\ 11 and 11 2 = l..\ 2 1. 

Proof: We choose special adapted coordinates on ~ P as obtained 

previously. From now on our discussion will take place in these coordinates. 

By taking intersections of weak unstable leaves of the flow with ~ P and 

passing to tangent directions again, we obtain a distribution on ~ P, which we 

also refer to as the unstable distribution. Near O ( i.e., near p) these directions are 

almost horizontal and thus we can represent these two-dimensional affine 

subspaces as the graphs of affine maps. Dropping the constant part, we retain the 

linear part DE Mn,n. The unstable direction is thus represented as the graph of 

the linear map Dor, equivalently, as the image of the linear map 

[ ~ ]=Rn~Rnx{(O,O)}-R2n. 

We will be particularly interested in points q = (0, ... , 0, z) on the fast stable leaf 

through O ( i.e., p ). At these points the differential of <I> takes a special form. 
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Indeed when we obtained special adapted coordinates we saw that 

D~I -[A O] (0, .. . ,O,z) - B C 

with Clower block triangular and K 1 = ct. 

The action of D~ on [ £] gives 

To bring this into the form [ ~'] again we multiply from the right with A- 1 = ct 

and obtain 

[ ~,] = ~·[ £] =[ B+ACD ]A-1 =[(B+ bD)K 1] =~B+ ~D) c~· 

Now recall that the unstable distribution is flow invariant. Therefore D' = Do~ 

and we just showed that 

D(~(0, ... ,0, z)) = D' = (B + CD) ct= (B + C D(0, ... ,0, z)) ct. 

Denote the upper left k-blocks of A, B, and C by a, b, and c respectively. Now, 

recalling that b(O, ... , 0, z) = 0 and that C is lower block triangular, we compute 

the upper left k-block of this matrix equation. We get 
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or d( <I>(0, ... , 0, z)) = c(0, ... , 0, z) · d(0, ... , 0, z) · c \O, ... , 0, z). 

If we let Zn:= <I>n(o, 0, 0, z) we see that 

[
n-1 ] [n-1 ] 

d(zn) = ;u c(zn+i) · d(z0 ) • ;u c\z;) . 

Observe that what we have accomplished here is to isolate the slowest 

contraction by virtue of our special adapted coordinates. 

Case 1: Suppose that a E (0, 1] and that d( •) is Holder continuous at 0 

with Holder exponent a. For 8 > 0 such that (11 2 + 8) 2 < 11f we choose a norm on 

IRk with respect to which llc-1(0)11 $ 112 + 8. Since c is Lipschitz continuous 

llc-1(z)II $ (112 + 8) · (1 + C1llzll). 

Note also that llznll $ c211t and lld(zn)II $ C3 llznlla. But then 

Here we used that 

and 

Thus 

n-1 
$ C4(ll2 + 8)2n11i"n II (1 + C5111i) 

i=O 

-o. 

n-1 n-1 II (1 + C5111i) = exp L log(l + C5111;) 
i=O i=O 

n-1 
$ exp L C5111i 

i=O 

00 

$ exp L C5 111i $ oo 
i=O 

d(z) = 0. 
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Case 1_: a> 1 and v1 < v~. Differentiating the recursion relation 

d( <I> ( 0, ... , 0, z)) = c( 0, ... , 0, z) · d( 0, ... , 0, z) · ct ( 0, ... , 0, z) 

at 0 with respect to z gives Dzdl0 D,<I>lo = c(0) Dzdl0 c\O), 

smce d(O, ... , 0) = 0. 

Thus IID,dloll ~ IID,dloll llc(O)llllct(O)IIIID,<I>l~1 II ~ IID,dloll vi+ 
6 

z 
(vz - 6) 

by choosing a norm on IRk similarly to the choice made in case 1. 

But since v~ < 1 we have for sufficiently small 6 that (vi+ 6) 2 < 1 and thus 
Vz Vz - 6 

IIDzdloll = 0 • 
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This, however, implies that if Dd has Holder exponent a - 1 then by the mean 

value theorem lld(zn)II ~ Cllznlla. By the estimates in case 1 this again forces 

d( z) = 0. □ 

Remark 4.6: We know for dynamical reasons that the unstable 

directions are Lagrangian subspaces: Take two vectors x, y m an unstable 

the other hand this property has nothing to do with the condition obtained here. 

Ind~ed, since the pullback of w to the subspace parametrized by [ £] is given by 

[ £] • [-~ ~ ] • [ £] = D - D t, D represents a Lagrangian subspace iff D is 

symmetric. In other words the condition obtained here is not an obvious identity 

arising from the symplectic structure. Of course in the next chapter we will show 

that indeed this condition can be violated by (symplectic) perturbations. 

The condition d(z) = 0 (H) 

can be thought of as a kind of horizontality condition on unstable directions. It 

says that along the fast stable leaf of p some part of D (having to do with slow 

contraction) is horizontal in our coordinates. 
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In this chapter we first prove a dynamical lemma that will help in 

designing the "right" perturbations for our purposes. We can then complete the 

proof of the main theorem. 

Definition 5.1: Let ,pt be a flow on a topological space M. A point xE M 

is called negatively nonrecurrent if there exists an open neighborhood U of x in M 

such that to:=max{t<O: 1.ptx~ U}>-oo and Un LJ ,ptx=0. 
t<t 0 

Proposition 5.2: Let M be a Riemannian manifold and ,pt an Anosov 

flow with a periodic point p E M. Then the fast stable leaf of p contains a 

negatively nonrecurrent point. 

Remark 5.3: The fast stable leaf of p is the submanifold of the stable 

manifold of p that consists of points whose orbits approach p with maximal 

speed. The proof only uses that it is a submanifold of the stable leaf of p. 

Proof: There exist C, x>O such that IID,ptlE,11 ~ C· e-xt for t>O. 

Denote by <J a hypersurface through p transversal to the flow direction and by 

w1'(p) the fast stable leaf of p for the return map~-

where 

Let q E w1'(p) and B1 = Bf'i( q) where f > 0 is such that 

T: = inf {t> to: t.p-t Bf'i( q) n Bf'i( q) # 0} > ¼ · log5C, 

to:= inf {t>O:t.p-tBf'i(q) n Bf'i(q) =0}; 

i.e., Ce - X T < ! . Here BE ( q) denotes the E-ball around q in M. 

From now on denote by w1"(p) the connected component containing p of 

the intersection of B1 and the fast stable leaf of p and by W'(x) the connected 

component containing x of the intersection of B1 and the stable leaf of x for 
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x E B1 • For c sufficiently small B2 : = B1 n GJ' has local product structure. (That is, 

local stable and unstable leaves intersect in exactly one point, so that we can 

introduce coordinates as follows: Coordinatize W'(p) and W"(p) and then for 

x E B 2 define the coordinates of x as 

and let 

( coordinates of W"(x) n W'(p), coordinates of W'(x) n W"(p)).) 

Let D be an c-ball in the intersection of GJ' and the weak unstable leaf of q 

U1 := LJ BJ(x) 
xED 

W1 := LJ Bj/x) 
xED 

where - denotes closure and BJ(x) denotes the c-ball m W'(x), xE B1• 

For xE B1 let 

Sx:= Vx\Ux. 

Note that the Sx are spherical shells in W'(x). 

It suffices to find a point in U: = Uq n w1'(p) that does not return to U1 in 

negative time. 

Define 

t:B2 -+IR+U{oo}, xi--->t(x):=inf{t>O:<p-txE Ui} 

and take x0 E U2 : = V such that 

t(x0 ) = min t(x) > T. 
x0 E U2 
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There is a smooth function r: W 2 : = W <p-t(xo)xo ----> R+ such that 

1/! 1(x):=<pr(x)xE~ for xE W2 

d 
-t(x0 ) 

an r( <p x0 ) = t( x0 ). 

Thus 1j!1 : W2 -~ is a diffeomorphism onto its image and 

The intersection Un S1 of the spherical shell 

S1 = ¢1(S<p-t(xo)xo) C W'(p) 

with U consists of points not returning to U1 for time t with 

-T1:=- max t(x)~t<O, 
xE V2 
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Claim: UnS1 has a connected component U~ such that (¢ 1(W2)\S1)U U~ 

1s connected. (That is, U q n w1 '(p) traverses the spherical shell S1 from the 

inside to the outside.) 

Proof: For c small enough U is connected and has diameter at least c. By 

the choice of T the diameter of S1 is at most g • c. Thus U contains points on the 

outside of the shell. 

Since x0 E U2 is on the inside of the shell there are points of U on the 

inside of the shell and the claim follows. (We showed that U contains points of 

both components of 1/!( W2)\S1.) ✓ 

Take U3 c U~ closed and connected such that ( 1/! 1 ( W2 ) \S1) u U3 is 

connected. Note that 1/!~ 1
( U3 ) connects the complement of S <p-t(xo)xo in W2 and is 

itself connected. In particular diam( ¢11( U3 )) ~ c. 

Define 
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and take 

such that 

There is a smooth function r: W3 : = W -t(x ) -+IR+ such that 
'{) 1. x1 

-ip 2 (x):='{)r(x)xE'r for xE W3 

and 

Thus -ip 2 : W3 -+'r is a diffeomorphism onto its image and -ip(W3 )C W'(x1 ). 

The spherical shell 

consists of points not returning to U1 for time t with 

where 
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Claim: -ip~
1

( U3 ) n S2 has a connected component U~ such that 

Proof: As before. We use that -ip~ 1
( U3 ) is connected and diam(-ip./( U3 ))?_f.✓ 

Note that U4 : = -ip 1( U~) c U3 consists of points not returning to U1 for time 

t with 

and that T;>T. 

Iterating this argument gives a decreasing sequence { U;}~3 of compact sets 

where U; has return times beyond ( i - 2) • T. The intersection is then nonempty 

and contained in U and consists of negatively nonrecurrent points. □ 

After these preliminaries we proceed to the proof of the main theorem. 
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Theorem 5.4: Let o: E(0,2). Denote by 6a the set of (transversally) 

symplectic Anosov flows that possess an a-spread periodic orbit p. (With the C 00
-

topology as on page 22.) 

Then flows in 6a generically do not have unstable distributions with Holder 

exponent a. 

Remark 5.5: By the next Lemma we first reduce the proof of the main 

theorem to showing that the condition (H) obtained in the previous chapter is 

generically violated. 

Definition 5.6: A periodic orbit is said to have a 2-1-resonance if the 

maximal modulus of an eigenvalue of the return map to a transversal is the 

square of the minimal modulus of an eigenvalue of absolute value larger than 

one. 

Remark 5. 7: This is not the common usage of the term resonance. 

Lemma 5.8: Flows in 6a generically have an a-spread periodic orbit 

without a 2-1-resonance. 

Proof: It clearly suffices to exhibit perturbations destroying the 

resonance. 

Consider a periodic point p with a 2-1-resonance and introduce adapted 

coordinates on a small transversal hypersurface as in the previous chapter. Let BE 

be an E-ball about O in these coordinates and coordinatize the flow box 
E 

B:=LJcprBE as [O,c]xBc so that the flow cpr is represented by (s,x)-(s+r,x), i.e., 
r=O 

the identity flow. 
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Sublemma: For Os; rs; fk+l there exist symplectic maps Gr: Bc--+Bf such 

that 

We first show how this completes the proof of the Lemma. 

Let TJ E C 00
( IR, IR+) be such that 

ry(x)=0 

,,., is Ck - small 

(x< 0) 

(x>0) 

and on B = [O, f ]x Bf redefine the flow ipr:::::: (s, x)-( s + r, x) so that 

<pT (0, X) = ( T, G'l(Ti X) ). 

This flow <pr is a symplectic Ck- small perturbation of the original flow. It is easy 

to see that it has no 2-1-resonance: Near the origin we have 

I 0 

DGr= 

0 I 

Thus the differential of the return map for the flow <pr does not have the 

resonance, since its maximal and minimal eigenvalues outside the unit circle are 

multiplied by ef
2

k+
2 and e-f

2
k+2, respectively, so their ratio is changed by a 

factor of e2f
2

k+
2

• 
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Proof of sublemma: We use a method devised by Moser that is 

exhibited in the proof of Darboux' theorem in [AM]. 

(This method is also the hat from which we pulled special adapted coordinates.) 

Define 'r(s, t, u, v, w, z) = < s, v> - < u, z> and I= P"'i where p E C 00(Bf, IR) is 

such that p is ck - small, 

on Bf2 and 

p=O 

and < . , . > denotes the standard inner products in IRk and IRm. 

Define a vector field X by w( X, • ) = d1 . 

Since Xis smooth with compact support it generates a complete flow GT. 

Claim: The flow GT is symplectic. 

Proof of claim: Gtw=w and fr(G+w)=G+(£xw)=G+d(w(X,·))=G+d2,=0, 

where £ denotes the Lie derivative. 

Finally, in order to study the maps GT near the origin we integrate the 

vector field X given by w(X, •) = d'y, which coincides with /+1 
X near 0. We find 

that X(s,t,u,v,w,z)=(s,0,-u,-v,O,z)t and thus evidently GT is as desired. D 

Proof of Theorem 5.4: It suffices to prove that the horizontality 

condition (H) of the previous chapter is generically violated. 

Density: 

We first prove density, i.e., we want to show that if the condition (H) of 

the previous chapter is satisfied then there are arbitrarily small perturbations of 

the flow for which this condition is violated. 



5: Low regularity 62 

We pick a negatively nonrecurrent point q m the fast stable leaf of the 

periodic point p. We can in fact choose it such that it lies inside the 

neighborhood of p on which we have special adapted coordinates. Translate the 

coordinates so that q is the origin. We now construct a perturbation in a way 

similar to that used in the proof of Lemma 5.8. 

Define 7(s,t,u,v,w,z)=~<s,s>=~llsll 2 and ,=p"';' where pEC00 (Bc,IR) 1s 

such that 

k+l 
p=c 

p=O 

and < • , • > denotes the standard inner product in Rk. 

Define a vector field X by w( X, • ) = d1 . 

Since Xis smooth with compact support it generates a complete flow GT, 

Claim: The flow GT is symplectic. 

Proof of claim: Gtw=w and d~(G+w)=G+(£xw)=G+d(w(X,·))=G+d2,=0, 

where £ denotes the Lie derivative. 

Finally, in order to study the maps GT near the origin we integrate the 

vector field X given by w(X, •) = d7, which coincides with l+1 X near 0. We find 

that X(s,t,u,v,w,z)=(O,O,O,s,O,O/ and thus the induced flow GT is given by 

GT(s, t, u, v, w, z) = (s, t, u, v + rs, w, z). Consequently 

I 

0 

0 

I 

0 

0 

0 

0 

0 

0 

0 

I 
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Let T/ E C 00
( IR, IR+) be such that 

r,(x)=O (x<O) 

(x>O) 

and on B=[O,t]xBt redefine the flow <pT:::(s,x)-(s+r,x) so that 
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This flow rpT is a symplectic ck - small perturbation of the original flow. It is easy 

to see that it causes the condition (H) to be violated: Applying DGT as above to 

[£]gives 

and this means that the condition (H) is now violated because if D satisfies it, 

E+ D does not. Note, however, that we still have to show the 

Claim: E + D is the unstable direction at q for the flow rpT. 

Proof: Here the choice of q as a nonrecurrent point is important. 

The unstable direction at cp-'q can be computed as follows: 

Take any distribution ~ along { <pt( q) }t<O, which is close to Eu. Then 

Since q is nonrecurrent this limit is not affected by the perturbation. Thus 

Eu( <p-, q) and E'-'( <p-, q) coincide. By invariance of E'-' under rpt the claim follows. 
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Openness: 

We complete the proof by showing that the condition (H) is violated on 

an open set of flows in 6a. We need to prove that if the condition (H) is violated 

for a flow r.pt then it is violated for all sufficiently close flows. 

Let r.pt E 6a be such that the condition (H) is violated. Consider a small 

perturbation 'ipt E 6a. Recall first of all that on page 22 the C 00-topology on 6a 

was defined as follows: 

We say that r.pn--+ r.p E 6a if ( \I l > 0, k E N) ( 3 NE N) (\In~ N) 

llr.pn - r.pllck < f and llwn -wllc1 < {, 

where wn and w denote invariant transversal symplectic forms for r.pn and r.p 

respectively. 

Since the invariant symplectic forms are not unique ( one can, e.g., rescale 

them) the closeness condition for them is intended to say that wn and w can be 

chosen so as to be close. 

In order to show openness we observe that the condition (H) is an open 

condition in a fixed system of special adapted coordinates. Thus we are done 

once we show: 

Lemma 5.9: If r.pn is Ck-close to r.p then special adapted coordinates at p' 

are C 1-close to those at p. 
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Remark 5.10: Here p' denotes the periodic orbit of t.pn near p. 

Proof: It suffices to show that adapted coordinates are close since the 

coordinate change to special adapted coordinates depends smoothly on the 

representation of the return map in adapted coordinates. 

In order to show closeness of adapted coordinates it suffices to show that 

the filtrations at p' are C 1-close to those at p, since the construction of adapted 

coordinates depends continuously on the filtration and symplectic form. 

But this in turn follows from standard contraction arguments, z.e., the 

arguments used to construct stable leaves of periodic points. In this case the 

statement can be extracted from the arguments in [Al], Lemmata 9.2 and 9.3. 

The argument is as follows: 

In a local calculation the local unstable filtrations are obtained by a 

Hadamard-argument using invariant cones. The data at our disposal here are, via 

local coordinates, <jJ and <Pn two Ck-close diffeomorphisms of IR 2
n with O as a 

' 
hyperbolic fixed point and <Pn Ck-close to </J. Since the root spaces of </Jn are close 

to those of <jJ ( after possibly consolidating several into one), the corresponding 

elements of the filtration for <jJ and <Pn are tangent to each other. But since the 

Hadamard-argument gives uniform estimates on the derivatives this forces 

corresponding elements to be C 1-close. □ 
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This chapter describes work that is complete except for explicitly 

performing some geometric calculations that are not points of mathematical 

difficulty but technical work. 

Geodesic flows are an obvious target for application of this theory. In fact 

they were among the motivations for this study. The main difference is that in 

this case we want to make statements about perturbations of metrics. As far as 

the phase space picture is concerned, local perturbations of a Riemannian metric 

on N are in the phase space M = SN much less localized than the perturbations 

considered here. An equivalent way of seeing the difficulty is the following: When 

constructing the perturbation in proving density of flows with Anosov splitting of 

low regularity we needed to produce some nonrecurrence. In the setting of a 

geodesic flow the appropriate concept of nonrecurrence is that of a geodesic that 

does not return to a certain neighborhood in the configuration space N. In 

general it is not clear whether such a geodesic can be found. 

Note however that in our proof of existence of a negatively nonrecurrent 

point the only ingredient that is not available in the configuration space setting 

is the fact that one can make return times to a neighborhood large by shrinking 

the neighborhood. Recall that the proof there began as follows: 
· -xt 

There exist C, x > 0 such that IID<f'tl E"II ~ C· e fort> 0. 

Let qE w1"(p) and B1 = Bf<(q) where t>O is such that 

T: = inf { t >to: <p-t Bf<( q) n Bf<( q) =/= 0} > ¼ · log5C, 

where to:= inf { t > 0: <p-t Bf<( q) n Bf<( q) = 0}; 

i.e., Ce-xT <!· Here Bt(q) denotes the f-hall around qin M. 

In the case of a geodesic flow where we want to avoid returns to a 
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neighborhood in the configuration space, this is not obviously so. There may be 

geodesics that are closed piecewise smooth loops, i.e., geodesics returning to the 

initial point but with a different direction. In other words, sufficiently long 

return times to the patch where the Riemannian metric is perturbed cannot be 

expected. Before describing one setting where this problem can be avoided and 

that yields some interesting insights, let us point out that the argument given 

here for existence of perturbations is not the only one possible. Another method, 

(which yields perturbation results in a less fine topology than the C 00 -topology) 

only requires the existence of an orbit that has long return times in a somewhat 

average sense. (It involves controlling errors accumulating in encounters with the 

perturbed neighborhood.) It may be possible to find a geodesic with such 

properties in the configuration space. (Using that same argument one might also, 

by the way, attempt to design the perturbation of the metric in such a way that 

the errors introduced when the geodesic does return are only "large" if the 

geodesic crosses the perturbed patch in a direction almost parallel to the geodesic 
0 

corresponding to LJ 'Pt q. This could conceivably make the issue of return time 
t=-£ 

obsolete.) 

Nice targets for application to geodesic flows are symmetric spaces of 

nonconstant negative curvature. (For example, the complex hyperbolic space.) 

These are symmetric spaces of negative curvature with minimal curvature -4 

and maximal curvature -1. At every periodic geodesic the return map has 

expansion rates e and e2
• So while the system has smooth Anosov splitting due to 

its algebraic nature, its dynamical parameters are at the threshold for breakdown 

of differentiability of the Anosov splitting: they are !-bunched, but no more. The 

primary reason this case is tractable with our methods is the following: A paper 
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by Borel [B] has the following consequence: 

Proposition 6.1 [B]: A compact locally symmetric space S of negative 

sectional curvature has finite covers with arbitrarily large injectivity radius. 

(I am much indebted to Masahiko Kanai for pointing out this fact to me.) 

Thus we can consider a compact quotient of S and pass to a finite cover 

with injectivity radius larger than the return times required in the nonrecurrence 

argument. In other words, we take the fairly crude approach of using the 

injectivity radius as a bound for return times. By transitivity of the isometry 

group every periodic orbit has expansion rates e and e2
• We can thus perturb the 

metric so as to obtain a 2-spread periodic orbit. (The proof of the corresponding 

statement in the category of Anosov flows is given above, when we "destroy a 

2-1-resonance.") Due to the large return times guaranteed by the large 

injectivity radius, we can find a negatively nonrecurrent geodesic as we did 

before in the flow category. A local perturbation of the metric that produces the 

"twist" causing the condition (H) to be violated then completes the proof of 

Theorem 6.2: Any compact locally symmetric space S of nonconstant 

negative sectional curvature has a finite cover admitting perturbations of the 

metric whose geodesic flows have horospheric foliations with modulus of 

continuity 1-f for some c 

Perturbations here are in the C 00 -topology. Note that the proof given here 

is complete except that the local perturbations of the metric have not been given 

explicitly. 
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There are more reasons why it is worthwhile to study symmetric spaces. 

Aside from being very intriguing examples in which to observe breakdown of 

smoothness, the fact that fast stable directions are defined everywhere ( and also 

for small perturbations) might yield some insights into the currently poorly 

understood nature of the geometric condition (H) obtained earlier. The rather 

homogeneous structure of symmetric spaces and the universal presence of fast 

stable leaves ( even for perturbations) may be useful in trying to develop a global 

picture of this condition. 

There is the possibility that there are no nontrivial perturbations of 

symmetric spaces of nonconstant curvature, ( e.g., the complex hyperbolic space) 

which still have C 1 Anosov splitting. Thus we have here some motivation to ask: 

Question 6.3: Are symmetric spaces of nonconstant negative sectional 

curvature rigid in the category of manifolds with C 1 Anosov splitting? 

Note however that this would imply by the regularity theory developed in 

earlier chapters, that no perturbation of the symmetric spaces considered is 

strongly 1-bunched. This is a priori not a very natural supposition. 

The techniques developed here can also be applied to manifolds of 

constant negative curvature. In this case one perturbs to get a (2 - c )-spread 

periodic geodesic and applies the machinery to show 

Theorem 6.4: Any compact manifold S of constant negative sectional 

curvature has a finite cover admitting perturbations of the metric whose geodesic 

flows have horospheric foliations of regularity below c 2
-< for some c > 0. 
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In this chapter we show that the Margulis measure for Anosov flows arises 

from a Hausdorff measure for a natural distance on unstable leaves. This chapter 

generalizes and simplifies work of Hamenstadt [Hs] that was done in the setting 

of geodesic flows and used for her rigidity theory. 

The Margulis measure is a measure maximizing entropy. Entropy is a 

word for two invariants of dynamical systems measuring their complexity or 

disorder. For a thorough introduction we recommend the book by Walters [W]. 

Measure theoretic or metric entropy is a notion in measurable dynamics 

and information theory developed by Kolmogorov. (One explanation for the 

term "metric" could be that it is shorter than and contained in measure 

.theor.etic.) It measures how rapidly sets become independent under the 

dynamics or growth of information under iteration. 

Topological entropy, invented by Adler, Konheim and McAndrew, is 

an imitation of metric entropy in topological terms, using open sets rather than 

measurable ones. It can be thought of as measuring how many distinguishable 

orbits there are when one performs observations of limited accuracy over a finite 

stretch of time. 

There is an interesting connection between these two concepts of entropy: 

topological entropy is never smaller than measure theoretic entropy ( for any 

invariant probability measure). In fact, topological entropy is the supremum of 

all measure theoretic entropies taken over all invariant probability measures. In 

the case of Anosov systems, topological entropy is the maximum of measure 

theoretic entropies and there is a unique measure of maximal entropy. Let us 
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emphasize this statement again: 

Variational Principle: Topological entropy is the supremum of measure 

theoretic entropies. For Anosov systems, there is a unique measure of maximal 

entropy. 

Definition: The unique measure of maximal entropy is called the Bowen

Margulis measure. 

This measure was obtained independently in two very different ways by 

Bowen and Margulis. While Bowen [Bwl] constructed this measure as a 

measure for which periodic orbits are equidistributed and showed that it 

maximizes measure theoretic entropy, Margulis [M] constructed a measure with 

the property that its conditionals on unstable and stable leaves dilate uniformly 

in time. To be more precise, he obtained measures on unstable and stable 

manifolds and built from them a global measure in a local weighted product 

construction. Let us paraphrase the procedure to give a clearer idea. 

Let ipt: M-+M be an Anosov flow, which has an invariant probability 

measure with a smooth density with respect to Lebesgue measure. Using the 

Riemannian structure one can define conditional measures on all unstable and 

stable manifolds. For the sake of this argument let us assume that we start with 

(Riemannian) Lebesgue measures on the leaves, i.e., measures given by the 

volume form of the Riemannian metric on each leaf. 

Denote this measure on W"'(z) by Az. Pick zo EM and So E W"'(zo) open 

with compact closure. For zE M, Sc W"'(z) measurable define 
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. >..i.pr(z/i.pr(S)) 
µ,(S):=T~~).. ( T(So))" 

<p T ( Zo) <p 

An important part of Margulis' paper is to show that this limit exists. 

If we now define 

then 

=f(t) · µz(S). 

In particular for z = zo, S = So this implies 

f(t+s) = µ t+s (i.pt+s(S0 )) = 
<p ( Zo) 

= µ i.p\ i.ps(zo)) ( i.pt(i.ps(So))) = 

=f(t)•µ s( )(i.p8 (So))= 
<p Zo 

=f(t) • f(s). 

Thus we jump to the conclusion that f(t) = edt_ Sinai [S] showed that 

d = h = topological entropy. Therefore 
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This essentially characterizes the Margulis measure, as we shall refer to it, 

since we only use and redescribe the construction of Margulis. 

Let M be a compact Riemannian manifold and 1.pt: M-M a C 2 Anosov 

flow. On W"'(z) we define a distance TJz and a spherical measure u, = u, which 

expand uniformly under the flow. u is equivalent to the conditional Margulis 

measure [Hs, M, SJ and for a Lyapunov metric u equals the conditional Margulis 

measure on every leaf W"'(z). 

In order to have consistent notation for this chapter we recall the 

Definition 7.1 [A]: A flow 1.p 1 : M->M is called an Anosov flow if ,;, t,O 

and the tangent bundle is a Whitney sum TM= E"' © E" © E"', where E"' = <,;, > 

is generated by ,;, and there are a> 0, b ~ 1 so that 

IID1.ptuJI ~ b · llull · eat for t ~ 0, u EE"' } 
IID1.ptvll ~ b· llvll · e-at for t~O, vE E" 

(A) 

Remark 7.2: Recall also that the distributions E"', E", Eu:= Ern©E"' 

and E": = E" © E"' are tangent to the foliations W"', W .. , Wu and w• 

respectively, which are continuous in the C 1-topology. We will use here that 

being a smooth injectively immersed submanifold, every unstable leaf W"'( z) has 

a distance dz ( and thus notions of openness and compactness) induced by 

Riemannian lengths of curves in wrn(z). 

There is a natural correspondence between points on two nearby unstable 

leaves: 
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Definition 7.3 [M]: Sc W"'( z) and S1 c W"'( z') are called t:-equivalent 

if there is a continuous ¢: Sx[0,1)---.M so that: 

¢( · ,0) = id, 

t/J: = </J( • ,1): S---.S1 is a homeomorphism, 

</J(x,[0,1)) c W(x) and is of length less than f for all xE S. 

Remark 7 .4: This is related to the local product structure briefly 

described in an earlier chapter (page 56). t/J is sometimes called the holonomy 

map. It is as regular as the foliation W. In the introduction we pointed out that 

the regularity of t/J can be used to define the regularity of W. 

Lemma 7.5 [A]: After possibly changing a there exists a Riemannian 

metric on M, equivalent to the given metric and called a Lyapunov adapted 

metric, such that (A) holds with b = 1. 

Definition 7.6 [Hs]: Fix RE IR. For x, y E W"'( z) let 
-sup {tE IR: d t( //(x),,/(y)) ~ R} 

17(x,y):=17 R(x,y):=e 'P z z, 

Remark 7. 7: Several properties of 1J are evident: 

11 ocpt =et. 1J since we change the time parameter, 

1J z',R = 1J z,R for z' E W"'( z) since the same is true for dz, and finally 

112'.:0, 17(x,y)=17(y,x) and 17(x,y)=0 iffx=y. 

Thus it looks as if 1J is a distance. 

Lemma 7.8: For x1 , x2 , yE W"'(z) and a, bas in (A) we have 

Remark 7.9: Thus 17a is a distance if Mis given a Lyapunov metric. 
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Proof: Let t = - logTJ(x1 ,x2 ) and ri = d t ( 'Ptxi,'PtY) for i = 1, 2. 
<p ( z) 

If any r; > Rb then TJ 0 (xi, y) > TJ 0 (x1, x2 ) > gTJ 0 (x1 , x2 ) and we are done. 

Thus assume that both ri < Rb for i = 1, 2. 

Proof of claim: It suffices to show that 

since in that case 

But if I c W"'( 'Pt+r z) is a curve joining 'Pt+rx, and 1Pt+ry and 

l( 1 ) = d t+r ( 1Pt+rx,,'Pt+ry), 
<p ( z) 

then by (A) r,'.'.5:l('P-ro,)'.'.5:b•e-ar.[(,)=b•e-ar.d/+r(z/'Pt+rx,,'Pt+ry) 

and thus d (u,t+Tx. ,,.,t+ry) > ~eaT >~Rb= R as claimed. ✓ <pt+r(z) r ,,r - b b ri 

But using the claim now we obtain 

Lemma 7.10: Omitting z in the subscript, we have 

1 

TJR'.'.S:TJr'.S[~b]a•TJR for O<r:'.5:R. 

Proof: Clearly 77 R ::s; 11r· 

On the other hand d t ( 'Ptx,'P 1Y) = r for t = - log17r(x,y). 
cp (z) . 

· a( ) -at since TJ x1, x2 = e 

Thus for r > ~ - log~b >Owe get d t+r ('Pt+rx, 'Pt+ry) > R as above and hence 
cp (z) 1 

TJ R( x,y) ~ e-t-T = 11r( x,y) e-T > 11r( x,y) [;br • D 
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Definition 7.11 [Hs]: For Sc wrn(z) let 

o-c(S):=inf{ f>:1: Sc_LJ B 11 /xi,€i) with xiE W..,(z) and €i~€} 
J=l J=l 

and o-(S):=o-z(S) :=supo-c(S). 
<>0 

Here his topological entropy and B 11 (xi,€i) are €i-balls with respect to TJ around 

Remark 7.12: o- is the h/a-dimensional spherical measure [Fd] on 

wrn(z) arising from TJa. (j t ocpt = eht. O"z and (j is Borel regular, i.e., 
'-P ( z) 

o-(S) = sup {o-( C): Cc S compact} (see [Fdl). 

Lemma 7.13: If o- is constructed from a Lyapunov metric then for b > O 

there is an € > 0 so that if SC wrn( z) and S' c wrn( z') are €-equivalent then 

(1 - b) · o-(S) < 0-(S1
) < (1 + b) · o-(S). 

Proof: We will use that if {x} and {x'} are €-equivalent and 

{x"}: = W'(x') n W"(x) then x'' = cpTx' for some TE IR, so there is a CE IR such that 

cptx and cptx' are C-€-equivalent for t>O. 

Proof: If y ES n B11z(x,b) then d'-P-logo(z)( cp-logox,cp- 10 goy) < R. 

By uniform continuity of Eau this implies 

d 1/1( '-P-logo(z)/ t/;( cp-logo x),1/;( cp-logo y)) < R + 0( C€) 

withlim 0(€) = 0. But then we conclude by Lemma 7.10 that 
c-+0 

where 

Therefore t/;(Sn B 11 z(xj,bj)) C S1 n B11 1/i(z)(t/;(xi),t(€)bi) and the claim follows. ✓ 

Thus o-(S') ~ t(€l · o-(S). The other inequality follows similarly. D 
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Lemma 7.14 [M,S]: For a transitive C 2 Anosov flow ipt we can 

construct the Margulis measure µ. 

Its restriction µ~ to wrn(z) has the following properties: 

I) 

II) 

µ~ is positive on open and finite on compact sets. 

III) for c5 > O there exists f > O such that if Sc wrn(z) and S' c W"'(z') are 

(-equivalent then 

(1 - c5) • µrn(S) < µrn(S') < (1 + c5) • µ"'(S) 

IV) µ•'-' is Borel regular 

V) the µrn are defined up to a global constant (not just up to a constant on 

each leaf). 

Remark 7.15: III) is related to what is called "holonomy invariance" -

which characterizes the Margulis measure by [BM]. We do not use this fact. 

Lemma 7.16: There exist O < o 1 < a 2 < oo such that 

for all x EM. 

Proof: Suppose µrn(B,,(x;,1))----0 for some {x;}~1 c M. By compactness of 

M we may assume that x;--x. For i large S= B,,(x,D is f-equivalent to some 

S1 c B,,(x;,l) and 

µrn(B,,(x;,l)) ~ µrn(S') ~ ~ • µrn(S) > 0 

by Lemma 7.14, a contradiction. So O < a 1 < µ•'-'(B,,(x,l)). 

µrn(B,,(x,l)) < o2 < oo is shown similarly. 

The claim now follows, since 

µrn( B 11 ( x,f)) = µrn( iplog£( B,,( i.p -log£ x,l))) = fh • µ"'( B 11 ( i.p -log< x,l) ). 0 
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Lemma 7.17: 

Proof: 1) Let Sc W"'(z). By definition of u, there is a covering by balls 

00 

S cJJ
1 
Br,(xi,f ), 

oo h 
u,(S) + 8 ~ I> i' 

J=l 
such that 

u,(S) + 8 ~ f: f1 ~ a 21 
· f: µ"'(B,,(xj,f i)) ~ a 21 

• µ"'(S). 
;=1 J=l 

But then 

The left inequality follows when we let 8-+0 and f-+0. 

2) By Borel-regularity of u and µ"' we can assume that Sc W"'( z) is compact. 

Let f > 0 and 

Suppose {xi}i=l c Sis a maximal subset so that the B,,(xj,f/(2b}11a) are pairwise 
m 

disjoint. Since Sc U B,,(xi,f) by Lemma 7.8, we have 
i=l 

m h h/a m [ f ]h 
u,(S) ~ fuf = (2b) fu a( 2b)1/a 

~ (2b)h/a · ai1 
• 'E µ"'(B 11 (xi,f/(2b) 11a)) 
;=1 

by Lemma 7 .16 

Letting f-+0 gives u(S) ~ (2b)h/a • ai1 
• µ"'(S) which is the second inequality. D 

Theorem 7.18: Let M be a compact C2 -manifold and ipt a transitive 

Anosov flow. Equip M with a Lyapunov metric. Then after normalization the 

measures u of Definition 7.11 agree with the conditionals of the Margulis measure 

on every leaf. 



7: Margulis measure 

Proof: <1' has measurable densities fz= W"'(z)--IR with respect to µrn. 

f: M-IR, z>-+J,(z) is measurable by Lemmata 7.13 and 7.14. 

Since µ is ergodic f = const. µ-a. e. 

79 

By Lemmata 7.13 and 7.14, we can normalize f so that fz=l µrn-a.e. on each leaf 

W"'(z). □ 

Remark 7.19: 1) If M carries an arbitrary Riemannian metric then after 

normalization the measure <1' agrees with the conditionals of the Margulis 

measure on µ-almost every leaf. The reason 1s that the above proof still goes 

through because J 1s measurable smce 

semicontinuous. 

(x,y,z,R)>-+TJ R(x,y) 
z, 

1s lower 

2) The above results are also true for the h-dimensional Hausdorff 

measure [Fd]. 

3) These results apply directly to geodesic flows smce by [HIH] the 

standard metric on SM is a Lyapunov metric. 

4) It is interesting to compare this construction with the one in [Bw2]. 
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