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Abstract

Proteins are evolvable in the sense that they are readily able to acquire new or improved

functions through the process of mutation and selection. Here, I examine what properties

influence the ability of proteins to evolve new functions. I show that proteins with similar

biochemical properties can differ substantially in their capacities to withstand mutations

and evolve new functions. Specifically, more stable proteins are both more mutationally

robust and more evolvable, due to improved tolerance for mutations. This fact can be

exploited in protein engineering. I then show how evolutionary theory can be modified

to describe how a protein’s mutational robustness changes during the normal course of

neutral genetic drift. One of the main theoretical predictions is that proteins evolving in

larger populations will gain excess stability and mutational robustness, a prediction which I

confirm experimentally. Finally, I turn to the question of how neutral genetic drift can alter

“promiscuous” protein functions that are not under selection. I show that promiscuous

functions can change significantly during genetic drift, a phenomenon that may aid in

the evolution of beneficial new functions. Overall, this work establishes two mechanisms

whereby initially neutral mutations can influence the course of future evolution.
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Chapter 1

Introduction

Proteins are the molecular workhorses of biology, carrying out a tremendous range of essen-

tial biochemical functions. The existence of proteins that are exquisitely tuned to perform

such diverse tasks is a testament to the creative power of natural evolution. It is also a

source of admiration among bioengineers, who seek to mimic evolution by tailoring proteins

for a wide variety of medical and industrial applications. An understanding of the processes

by which proteins evolve to perform new functions is therefore of interest to both biologists

and engineers.

One of the most fascinating overarching questions about protein evolution was posed

over 40 years ago by the great chemist Linus Pauling and his postdoctoral fellow Emile

Zuckerkandl in research they performed at the California Institute of Technology. Work-

ing at the time when it was first becoming feasible to obtain the amino acid sequences of

proteins, Pauling and Zuckerkandl assembled the sequences of hemoglobin proteins from

a range of different species. They compared the protein sequences with an eye towards

determining the molecular changes that underpinned the evolutionary divergence of these

species. Their analysis showed that the hemoglobin sequences had accumulated many mu-

tations since each pair of species had diverged. But although it was already well known (in

part from Pauling’s earlier work on sickle-cell anemia [1, 2]) that even a single amino acid

mutation could dramatically alter a protein’s function, the number of accumulated muta-

tions in hemoglobin seemed more reflective of the amount of elapsed evolutionary time than

any measure of functional alteration. Summarizing their research, Pauling and Zuckerkandl

wrote [3],

Perhaps the most important consideration is the following. There is no
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reason to expect that the extent of functional change in a polypeptide chain is

proportional to the number of amino acid substitutions in the chain. Many such

substitutions may lead to relatively little functional change, whereas at other

times the replacement of one single amino acid residue by another may lead to

a radical functional change. Of course, the two aspects are not unrelated, since

the functional effect of a given single substitution will frequently depend on the

presence or absence of a number of other substitutions.

This last italicized sentence (emphasis added) highlights what is one of the most important

issues both for understanding the natural evolution of proteins and for modifying these

molecules in engineering applications. In the absence of a dependence of the effect of one

mutation on the presence of other mutations, then the evolution or engineering of a new

or improved protein property can be viewed as a simple hill-climbing exercise, with each

successive beneficial mutation moving a protein further up the path towards some desired

objective. But if the impact of a mutation depends upon whether other mutations are

present, then the situation becomes much more complicated. In the particular case em-

phasized by Pauling and Zuckerkandl, whether a mutation is beneficial depends on the

presence of other mutations that themselves have no substantial effect. This type of depen-

dence means that evolutionary optimization cannot occur by natural selection for beneficial

mutations alone, since selectively favored “uphill” steps may only be possible after several

“sideways” steps caused by the random occurrence and spread of mutations that are not

favored by selection. In the title of this thesis, selectively neutral mutations that can en-

able future beneficial mutations are described as causing changes in “hidden dimensions” in

protein evolution. This phrase is a reference to the fact that the effects of these mutations

are hidden to direct selection for protein function, but nonetheless have important effects

that are revealed by later beneficial mutations.

The goal of this thesis is to elucidate some of these “hidden dimensions” by identifying

properties which are affected by selectively neutral mutations in a way that enables later

beneficial mutations. Little effort is made to develop a detailed description of the biophysical

interactions within specific sets of such mutations, as would be done by a modern molecular

modeling force field. Instead, the focus is on changes in protein properties that tend to

broadly affect the impact of future mutations. Chapters 2 and 3 use a combination of
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modeling and experiments to show that one such property is protein stability. The basic idea

is that a protein’s stability is under selection only insofar as it must achieve some minimal

threshold in order to allow the protein to reliably fold and perform its biological function.

A protein has substantial latitude to further increase its stability above the threshold,

but provides no direct fitness benefit by doing so. However, if a protein does achieve

extra stability beyond the minimal required threshold, it can then tolerate a subsequent

destabilizing mutation without any adverse consequences. In these terms, the “interaction”

between several mutations can be highly generic, since it is simply due to their cumulative

effect on protein stability. The situation is analogous to hanging several small weights from

a thread. If the thread is strong enough to support one weight, but snaps under the force

of two, then in a sense the effect of one weight on the thread depends on its “interaction”

with the other weight. But if one recognizes that the thread is simply responding to the

cumulative downward force, then it is clear that the “interaction” between the weights can

be understood simply in terms of the sum of the downward forces they impose. Chapters

2 and 3 show that this is an apt analogy for describing the effects of mutations on two

different enzymes, TEM1 β-lactamase and cytochrome P450 BM3. In particular, they

demonstrate that mutations that make a protein more stable improve its tolerance for

subsequent mutations, in effect drawing a link between the biophysical property of protein

stability and the evolutionary property of mutational robustness.

Chapter 3 shows that high stability also increases a protein’s “evolvability,” which is

defined as the probability that a random mutation improves the protein’s performance in one

or more specified functions. Stability promotes evolvability by the same basic mechanism by

which it increases mutational robustness. Mutations that improve some desired aspect of a

protein’s biochemical function are usually detrimental to its stability. High stability allows

a protein to withstand the destabilizing effects of these functionally beneficial mutations

without any adverse consequences, thereby increasing its overall evolvability. In Chapter

3 I show how an understanding of this hidden dimension of stability can be exploited to

engineer cytochrome P450 proteins with new enzymatic activities.

Chapter 4 turns to the question of how protein stability will change during the normal

course of evolution, when proteins are bombarded with mostly deleterious or neutral mu-

tations. This chapter derives a number of mathematical results that augment the normal
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equations of population genetics with detailed information about the specific biophysical

constraints that govern protein evolution. Chapter 4 also predicts that the amount of sta-

bility and mutational robustness possessed by natural proteins should depend on the size

of the population in which they evolve (specifically, on whether this population is mostly

monomorphic or highly polymorphic). Chapter 5 confirms this prediction with a series of

epic laboratory evolution experiments on cytochrome P450 proteins. This chapter provides

the first experimental evidence of how a population’s mutational robustness can depend on

its size.

Finally, Chapter 6 turns to a slightly different mechanism by which selectively neutral

mutations can aid in the evolution of proteins. In this chapter, I describe measurements

performed on a set of proteins that have all evolved under the same constant selection

criterion. I show that while the function of these proteins that was under selection has

been preserved above the selection threshold, a number of other “promiscuous” functions

have changed substantially. This provides a second mechanism by which selectively neutral

mutations can aid in functional evolution: they can create diversity in properties that are

not currently under selection, poising the proteins to readily evolve new functions should

selection “ask new questions” at some point in the future.

Overall, this thesis establishes two important mechanisms by which selectively neutral

mutations can aid in future functional evolution. In the first mechanism, a neutral mutation

increases a protein’s stability, thereby improving its tolerance for subsequent mutations,

some of which may confer new or improved functions. In the second mechanism, neutral

mutations enhance a promiscuous protein function, allowing the protein to more easily

undergo adaptive evolution should a change in selection pressures make the promiscuous

function beneficial at some point in the future. Both of these mechanisms couple selectively

neutral and functionally important mutations, and so confirm Pauling and Zuckerkandl’s

contention that these two modes of sequence change are crucially linked during evolution.

Caveat about protein stability

The basic approach of viewing proteins as evolving under a stability constraint proves to

be highly successful in explaining experimental results presented in this thesis. This view
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is certainly a substantial improvement over any of the previous perspectives that have been

taken in quantitatively analyzing the molecular evolution of proteins. But it is important to

remember that this view is still a severe approximation of the many complex evolutionary

requirements faced by proteins. In an evolutionary sense, proteins can “break” for a variety

of reasons: they can lose the ability to remain stably folded, become stuck in kinetic folding

traps, aggregate, or undergo proteolysis. In fact, the experimental measurements on P450

proteins in Chapters 3 and 5 actually are of kinetic rather than thermodynamic stability

(since the denaturation is irreversible). The saving grace of the approach in this thesis is

that the propensities of proteins to meet a mutational doom from many different factors

are correlated to stability, since mutations that destabilize a protein also tend to decrease

its kinetic stability [4], increase its tendency to aggregate [5], and increase the likelihood

that it is proteolyzed [6]. Therefore, the term “protein stability” as it is used in the overall

view presented in this thesis is probably actually serving as a proxy for a number of other

properties. In an evolutionary analysis, where one is concerned with the average properties

of many mutations, such imprecision is acceptable (indeed, it is not clear how to build

a more precise picture). However, modern biophysics certainly allows for more detailed

characterization of proteins. In fact, I suggest that a major arena for further work is a more

exhaustive characterization of the specific biophysical problems that tend to be caused by

the types of random mutations that proteins experience during their evolution.
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Chapter 2

Thermodynamic Prediction of

Protein Neutrality

A version of this chapter has been published as [7].

2.1 Abstract

We present a simple theory that uses thermodynamic parameters to predict the probability

that a protein will retain function after one or more random amino acid substitutions. Our

theory predicts that for large numbers of substitutions, the probability that a protein retains

function will decline exponentially with the number of substitutions, with the severity of this

decline determined by the protein’s structure. Our theory also predicts that a protein can

gain extra robustness to the first few substitutions by increasing its thermodynamic stability.

We validate our theory with simulations on lattice protein models and by showing that it

quantitatively predicts previously published experimental measurements on subtilisin and

our own measurements on variants of TEM1 β-lactamase. Our work unifies observations

about the clustering of functional proteins in sequence space, and provides a basis for

interpreting the response of proteins to substitutions in protein engineering applications.

2.2 Introduction

The ability to predict a protein’s tolerance to amino acid substitutions is of fundamen-

tal importance in understanding natural protein evolution, developing protein engineering

strategies, and understanding the basis of genetic diseases. Computational and experimen-
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tal studies have identified a bewildering array of factors that affect a protein’s tolerance

to substitutions. Simulations have highlighted the contributions of both protein stabil-

ity and structure by showing that more stable proteins have a higher fraction of folded

mutants [8, 9, 10, 11], and that some structures are encoded by more sequences than oth-

ers [12, 13, 14]. Experiments have demonstrated that proteins can be extremely tolerant of

a single substitution; for example, 84% of single-residue mutants of T4 lysozyme [15] and

65% of single-residue mutants of lac repressor [16] mutants were scored as functional. For

multiple substitutions, the fraction of functional proteins decreases roughly exponentially

with the number of substitutions, although the severity of this decline varies among pro-

teins [17, 18, 19]. Protein mutagenesis experiments have also underscored the contribution

of protein stability to mutational tolerance by finding “global suppressor” substitutions that

buffer a protein against otherwise deleterious substitutions by increasing its stability [20, 21].

We unify these diverse experimental and computational results into a simple frame-

work for predicting a protein’s tolerance for substitutions. A fundamental measure of this

tolerance is the fraction of proteins retaining biochemical function after a single random sub-

stitution, often called the neutrality [22]. We extend this concept to multiple substitutions

by defining the m-neutrality as the fraction of functional proteins among all sequences that

differ from the wildtype sequence at m residues. We show that a protein’s m-neutrality can

be accurately predicted from measurable thermodynamic parameters, and that these pre-

dictions capture the contributions of both stability and structure to determining a protein’s

tolerance for substitutions.

2.3 Results

2.3.1 Thermodynamic Framework for Predicting Neutrality

A protein’s m-neutrality is defined with respect to the retention of biochemical function, and

so implicitly depends on the stringency of the particular process that selects for function.

Nonetheless, we can unambiguously define an upper limit on a protein’s m-neutrality as

the fraction of mutants that still fold to the wildtype structure because mutants that fail

to fold will generally also fail to function. For many proteins, this upper limit should

closely approximate the actual m-neutrality, since mutagenesis studies suggest that most
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functionally disruptive substitutions disrupt the structure rather than specifically affecting

functional residues [20, 23, 24].

The native structure is thermodynamically stable [25], with typical free energies of

folding (∆Gf ) between −5 and −15 kcal/mol [26]. A mutant sequence will still fold to the

wildtype structure so long as its stability in that structure meets some threshold. We call

the extra stability of the native structure beyond this minimal threshold ∆Gextra
f , and note

that functional proteins always have ∆Gextra
f ≤ 0. A protein’s m-neutrality is therefore the

fraction of sequences with m substitutions that still meet the stability threshold.

A substitution causes a stability change of

∆∆G = ∆Gmut
f −∆Gwt

f

where ∆Gwt
f and ∆Gmut

f are the wildtype and mutant protein stabilities. Substitutions

tend to be destabilizing: although there are no large collections of ∆∆G measurements for

truly random substitutions, in a likely biased collection of more than 2,000 measured ∆∆G

values for single-residue substitutions [27], the mean is 0.9 kcal/mol and the values at the

10th and 90th percentiles are −1.0 and 3.2.

The thermodynamic effects of most substitutions are independent and additive [28, 29],

meaning that if the stability changes due to two different single substitutions are ∆∆Ga

and ∆∆Gb, then the stability change due to both substitutions is ∆∆Ga + ∆∆Gb. With

this additivity assumption, if we know the probability distribution p1

(

∆∆G1
)

that a sin-

gle random substitution causes a stability change ∆∆G1, we can compute the probability

pm (∆∆Gm) that m substitutions will cause a stability change of ∆∆Gm.

Denote the m-neutrality as Pf (m). When we approximate Pf (m) as the fraction of

proteins that continue to meet the stability threshold after m substitutions, we have

Pf (m) =

−∆Gextra
f

∫

−∞

pm (∆∆Gm) d (∆∆Gm).

This formula predicts a protein’s m-neutrality from knowledge of its extra stability and the

distribution of ∆∆G values for all possible single substitutions.
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Figure 2.1: Lattice proteins with different structures but the same stability (∆Gf = −1.0)
converge to different exponential declines in m-neutrality. (a) The distributions of ∆∆G
for all 380 single amino acid substitutions to the inset lattice proteins. (b) The measured
(symbols) and predicted (lines) m-neutralities for the four proteins. A sequence is functional
if it folds to the original native structure with ∆Gf < 0.0.

2.3.2 Lattice Proteins Support Predictions

We used lattice protein simulations to test our m-neutrality predictions. Lattice proteins

are highly simplified models of proteins that provide a useful tool for studying protein

folding [30, 31, 32, 33] and evolution [34, 35] (some example lattice proteins are shown in

Figure 2.1). Like real proteins, our lattice proteins exist in a vast conformational space

(4.2 × 107 possible conformations), yet we can exactly compute ∆Gf in just fractions of

a second. We considered a mutant lattice protein to be functional if it still stably folded

to the wildtype structure, and so these simulations directly tested our theory under the

assumption that the retention of fold is equivalent to the retention of structure. We carried

out our simulations by evolving lattice proteins with various stabilities and structures,

and then computing their m-neutralities by sampling mutants with random amino acid

substitutions.

Our theory accurately predicted the m-neutralities of all of the lattice proteins we tested.

Lattice proteins with different structures have different m-neutralities, even when they have

the same ∆Gf (Figure 2.1). The 1-neutralities of proteins with different structures and the

same ∆Gf look similar, but for larger values of m some proteins clearly show higher m-

neutralities than others. For large m, the m-neutralities of all of the proteins converge to a
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simple exponential of the form

Pf (m) ∝ νm

where ν varies among proteins and gives the severity of the exponential decline of m-

neutrality with m. The underlying reason for this exponential decline is clear: after several

substitutions, the distribution of ∆Gf among the remaining functional sequences reaches

a steady state, and so each new substitution pushes the same fraction of proteins beyond

the stability threshold. Interestingly, although Pf (m = 1) is similar for all of the proteins

in Figure 2.1, the factors that give rise to the different ν parameters are present in the

distribution of single mutant ∆∆G values, since it is used to predict the m-neutralities for

all values of m.

Figure 2.2 shows the m-neutralities of proteins with the same structure but different

stabilities. After several substitutions, all of the proteins converge to the same value of ν,

suggesting that ν is a generic property of a protein’s structure and does not depend on its

particular sequence or stability. On the other hand, the response of a protein to the first few

substitutions depends strongly on its stability, with more stable proteins exhibiting higher

initial m-neutrality. The high initial m-neutrality of stable proteins is readily rationalized

in terms of the thermodynamic model: substitutions tend to disrupt a protein’s structure

by pushing its stability below the minimal threshold, but proteins with an extra stability

cushion are buffered against the first few substitutions. Proteins that sit on the very margin

of the minimal stability threshold exhibit lower 1-neutrality than is predicted by an expo-

nential decline because these proteins are less stable than the average functional protein,

and so surviving sequences will tend to be more stable than the wildtype sequence and so

exhibit a higher tolerance for the next substitution.

2.3.3 Real Proteins Support Predictions

Our theory makes two main predictions: first, that the decline in m-neutrality can be

predicted from the ∆∆G values for single amino acid substitutions, and second, that among

proteins with the same structure, more stable variants will have higher m-neutralities.

In order to test these predictions on real proteins, we needed a method for measuring

the fractions of functional proteins at various levels of amino acid substitutions. Actually
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Figure 2.2: Lattice proteins with the same structure but different stabilities have different
1-neutralities but converge to the same exponential decline in m-neutrality. (a) Predicted
(lines) and measured (symbols) m-neutralities for proteins with different stabilities and the
same structure (III in Figure 2.1). (b) Measured values of the 1-neutralities (squares) and
exponential m-neutrality decline parameter ν (circles) for proteins with different stabilities
but the same structures (the plots at left and right are for structures I and IV from Figure
2.1 respectively). The sequences of the proteins with different stabilities are highly diverged,
with average pairwise sequence identities of 15% and 41% for the structures at left and right
respectively.
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Figure 2.3: Theoretical predictions match measured neutralities in mutant libraries of sub-
tilisin (dashed lines) and TEM1 β-lactamase (solid lines) genes. Thick lines show predic-
tions made using the PoPMuSiC potential and thin lines show predictions made using the
FOLDEF potential. The measurements are from Table 2.2, normalized by the values from
the control unmutated library.

creating many sequences with specific numbers of amino acid substitutions is extremely

difficult, but it is relatively easy to use error-prone PCR to make libraries of mutant genes

with randomly distributed nucleotide mutations. The fraction of functional proteins F

encoded by the genes in a mutant gene library can easily be related to the distribution of

∆∆G values for single amino acid substitutions by

F =

∞
∑

mnt=0

f (mnt)× P̂f (mnt)

where f (mnt) is the fraction of genes with mnt nucleotide mutations in the mutant library

and P̂f (mnt) is the fraction of functional proteins encoded by genes with mnt nucleotide

mutations, computed as for Pf (m) except that we now use p̂1

(

∆∆G1
)

, the probability

that a single nucleotide mutation made according to the particular protocol used causes a

stability change of ∆∆G1.

We considered data from mutant gene libraries of subtilisin and variants of TEM1 β-

lactamase. Shafikhani and coworkers [17] created libraries of mutagenized subtilisin genes

using multiple rounds of error-prone PCR such that each round introduced the same av-

erage number of nucleotide mutations, and screened the resulting genes for their ability to

encode active secreted proteases in Bacillus subtilis. We used a similar procedure to create

mutant gene libraries of the wildtype and the thermostable M182T variant [36] of TEM1
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Base pairs sequenced 22,800

Total mutations 172

Mutation frequency (%) 0.75 ± 0.06

Mutations per gene 6.5 ± 0.5

Mutation types (%)
A →T, T →A 22
A →C, T →G 9
A →G, T →C 42
G →A, C →T 20
G →C, C →G 1
G →T, C →A 3
frameshift 3

Table 2.1: Mutation frequencies for TEM1 β-lactamase mutagenesis determined by se-
quencing 20 unselected clones each from the wildtype and M182T error-prone PCR round
5 libraries. Standard errors are calculated assuming Poisson counting statistics.

β-lactamase, and screened genes from these libraries in Escherichia coli for their ability to

confer resistance to the antibiotic ampicillin. Table 2.1 shows the frequency of nucleotide

mutations introduced by our mutagenesis protocol, while Table 2.2 shows how the fraction

of genes in the library that conferred ampicillin resistance decreased with increasing average

numbers of nucleotide mutations.

In order to test the ability of our theory to predict the fractions of functional proteins

in these libraries, we also needed a method for calculating the ∆∆G values for single amino

acid substitutions. We used two existing computational potentials, the database-derived

PoPMuSiC potential of Gilis and Rooman [37, 38] and the empirical FOLDEF potential of

Serrano and coworkers [39], and corrected for the fact that some amino acid substitutions are

more likely than others. The only remaining unknown parameter is the extra stability of the

protein, ∆Gextra
f , which cannot be directly measured because we do not know the minimal

stability required for the protein to function. However, ∆Gextra
f only influences the initial

behavior of the m-neutrality curve and does not affect the exponential decline parameter ν

(as shown in Figure 2.2), so we can fit ∆Gextra
f to the experimental measurements and still

test the ability of the theory to predict the severity of the decline in m-neutrality.

Figure 2.3 shows that the measured fractions functional for subtilisin and wildtype

TEM1 β-lactamase are in good agreement with the predictions made with the PoPMuSiC

and FOLDEF potentials. Subtilisin and TEM1 β-lactamase exhibit similar declines in

m-neutrality, which is expected because both have similar structures (the same CATH
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Figure 2.4: The more stable M182T variant of TEM1 β-lactamase (dashed lines) exhibits
enhanced neutrality relative to wildtype (solid lines) as predicted by the theory. Thick lines
show predictions made using the PoPMuSiC potential and thin lines show predictions made
using the FOLDEF potential. The measurements are from Table 2.2, normalized by the
values from the control unmutated library.

Round 〈mnt〉 WT M182T

0 0.0 ± 0.0 0.76 ± 0.03 0.74 ± 0.04
1 1.3 ± 0.2 0.59 ± 0.03 0.68 ± 0.03
2 2.6 ± 0.3 0.47 ± 0.03 0.54 ± 0.02
3 3.9 ± 0.4 0.28 ± 0.02 0.45 ± 0.04
4 5.2 ± 0.4 0.18 ± 0.01 0.28 ± 0.01
5 6.5 ± 0.5 0.13 ± 0.01 0.20 ± 0.02

Table 2.2: Probabilities that genes from mutant libraries of wildtype and the thermostable
M182T variant of TEM1β-lactamase encode functional proteins. The table shows the num-
ber of rounds of error-prone PCR, the average number of nucleotide mutations per gene,
and the fractions of mutated genes that confer ampicillin resistance on E. coli. Values are
shown ± their standard errors.
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classification as αβ 3-layer (αβα) sandwiches [40]), and our lattice protein simulations

suggest that proteins with the same structure should have the same exponential decline in m-

neutrality. Computations on proteins with markedly different structures predicted different

declines in m-neutralities (data not shown), but no experimental data is yet available for

these proteins.

The second major prediction of our theory is that among proteins with the same struc-

ture, more stable variants will exhibit higher initial m-neutralities, but converge to same

exponential decline parameter ν. Our measurements on wildtype and the M182T variant

of TEM1 β-lactamase allowed us to test this prediction, since the M182T variant is 2.7

kcal/mol more stable than wildtype [36], yet should have the same structure since it differs

by only a single amino acid substitution. Figure 2.4 shows the measured fractions func-

tional for wildtype and the M182T variant, as well as the theoretical predictions made using

both the PoPMuSiC and FOLDEF potentials. The M182T variant exhibits enhanced initial

m-neutrality as predicted by the theory, and once again the predictions made with both

potentials are in good agreement with the experimental measurements.

2.4 Discussion

We have presented a theory for calculating the probability that a protein will remain func-

tional after random amino acid substitutions, and have confirmed the main theoretical

predictions with simulations and experiments. Our theory naturally separates a protein’s

m-neutrality into components due to structure and stability. The eventual severity of the

exponential decline in m-neutrality with the number of substitutions is a property of a

protein’s structure. On the other hand, a protein can increase its tolerance for the first

few mutations by increasing it stability, in effect allowing it to “take a few hits” before it

is pushed into the inevitable structurally determined exponential decline in m-neutrality.

This increased tolerance to mutations due to extra stability is probably also the underlying

reason for the existence of global suppressor mutations [20, 21] that buffer proteins against

otherwise deleterious mutations by increasing their thermodynamic stability.

Two simplifying assumptions underlie our model. The first is that mutations are ad-

ditive, an assumption that is clearly not strictly true since protein residues do interact.
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Mutations are most likely to be non-additive if the mutated residues are in direct contact

in a protein’s structure [28, 29]. Since proteins are large, two randomly chosen residues

will only rarely contact each other, and so although the additivity assumption is violated

for some specific mutations, it is accurate when averaged over all possible mutations. The

second assumption is that mutations affect function only through their effects on stabil-

ity. This assumption ignores some effects of mutating residues that are directly involved

in a protein’s function. Therefore, for proteins with a high fraction of functional residues,

our theory only provides an upper bound on m-neutrality. However, our theory’s remark-

able success in describing the m-neutralities of both subtilisin and the TEM1 β-lactamase

variants suggests that this assumption is also accurate for most proteins.

Our theory provides a quantitative rationale for earlier work with lattice proteins on

the organization of functional proteins in sequence space. Bornberg-Bauer and Chan [9]

proposed that proteins are located in superfunnels in sequence space with the most stable

sequence having the most neutral neighbors; others have reported that folded proteins

surround highly stable prototype sequences in sequence space [41, 10, 11], and Shakhnovich

and coworkers [8] showed that proteins with a large energy gap between the lowest and

second lowest energy conformations are stabilized against mutations. We provide a clear

explanation: more stable proteins are able to tolerate more of the possible mutations before

unfolding, and so a higher fraction of their neighboring sequences fold.

In addition to these stability-based effects, different protein structures have different

inherent designabilities, with more sequences folding into some structures than others [12,

42, 43]. Proteins with more designable structures might be expected to show a milder

exponential decline in m-neutrality (a larger value of ν), since their structures occupy a

larger fraction of sequence space. The structural neutrality given by ν therefore provides

a quantitative measure of designability that can be estimated with current computational

techniques.

Our theory suggests a more nuanced approach to experimentally analyzing protein neu-

tralities than has been applied in the past. Loeb and coworkers [18] have performed a careful

and thorough analysis of the neutralities of several proteins or regions of proteins under the

assumption of a strict exponential decline in m-neutrality. However, our work suggests that

a protein’s m-neutrality can deviate from a strict exponential for the first few substitutions
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if the protein has a large amount of extra stability, as is seen for the M182T variant of

TEM1 β-lactamase. Therefore, it is important to examine whether natural proteins have

evolved stability above that required for function in their natural environments in order to

provide them with additional robustness [22] to the first few amino acid substitutions.

Our theory also has applications in protein engineering. Directed evolution involves

screening libraries of mutant proteins for new or improved functions [44]. Each round of

directed evolution typically introduces only one or two amino acid substitutions because

the rapid decline in m-neutrality means that larger numbers of substitutions will yield

libraries of mostly unfolded proteins. Our model suggests that using highly stable parents

for directed evolution should increase the fraction of folded mutants at a given level of

substitutions. It also provides a method for predicting which structures will respond better

to large numbers of substitutions.

2.5 Methods

2.5.1 Convolution of Mutational Effects

The distribution pm (x) was calculated as

pm (x) =
1

2π

∫ ∞

−∞
[F (k)]n exp (−ikx) dk

where

F (k) =

∫ ∞

−∞
p1 (y) exp (iky) dy

is the characteristic function of p1 (x). For the numerical calculations, p1 (x) was constructed

by binning all single mutant ∆∆G values with a bin size of 0.01 and representing it with a

list padded by a number of zeroes equal to m− 1 times the number of bins. Each element

of the fast-Fourier transform (FFT) of this list was raised to the m power, and pm was

recovered through an inverse FFT.

2.5.2 Lattice Proteins

We used a two-dimensional lattice protein model with proteins composed of N = 20

monomers of 20 types representing the natural amino acids, and allowed to occupy any
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of the 41,889,578 conformations corresponding to all length 20 self-avoiding walks [45]. The

sum over these conformations was tractable because they correspond to only 910,972 unique

contact sets. The energy E (C) of conformation C is

E (C) =

N
∑

i=1

i−2
∑

j=1

Cij (C)× ǫ (Ai,Aj) ,

where Cij (C) is one if residues i and j are nearest neighbors in conformation C and zero

otherwise, and ǫ (Ai,Aj) is the interaction energy between residue types Ai and Aj, given

by [46] (Table 5). The energies are in units of kBT where T = 1.0 for all simulations,

corresponding to room temperature.

The stability with which a protein folds to a target conformation Ct is

∆Gf (Ct) = E (Ct) + T ln {Q (T )− exp [−E (Ct) /T ]}

where Q (T ) is the partition sum

Q (T ) =
∑

{Ci}

exp [−E (Ci) /T ] .

We considered a mutant functional if ∆Gf (Ct) < 0.0, and nonfunctional otherwise.

To generate lattice proteins, Ct was randomly chosen from the subset of conformations

with unique contact sets. For each Ct, an adaptive walk was begun with a random starting

sequence, with each step of the walk choosing the first point mutant with a better ∆Gf (Ct).

The adaptive walk was terminated after a sequence was found with ∆Gf (Ct) ≤ −2.0, 500

steps were taken, or no improved mutants were found. If 200 random walks failed to generate

a sequence with ∆Gf (Ct) ≤ −2.0, a new Ct was chosen. A clonal population of the final

sequence from the random walk was then subjected to 2.5 × 105 generations of neutral

evolution with a population size of 100 and a per residue mutation rate of 5×10−5, with all

sequences having ∆Gf (Ct) ≤ −2.0 assigned a fitness of one and all other sequences a fitness

of zero. Clonal populations of the most abundant sequence from this evolution were used to

begin evolutionary runs to generate sequences with ∆Gf (Ct) equal to the values indicated

in Figure 2.2. Neutral evolution was performed for each target stability, now assigning a
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fitness of one to any sequence that met the target stability and a fitness of zero to any other

sequence. After the 2.5 × 105 generations, we selected the first sequence generated with a

stability within 0.025 of the target stability, and used this sequence for the m-neutrality

analysis. Lattice protein m-neutralities were computed by sampling all mutants for m ≤ 2

or 5 × 105 randomly generated mutants for m > 2. In Figure 2.2, ν was computed as
√

Pf (m = 6) /Pf (m = 4).

2.5.3 Measured Neutralities of Subtilisin and TEM1 β-lactamase

The measured neutralities for subtilisin were those from population 6B in Table 2 of [17],

normalized by the fraction of functional clones in the control library.

The 861 bp genes for wildtype and M182T TEM1 β-lactamase were a kind gift from

Brian Shoichet [36] and were subcloned into the pMON 1A2 plasmid [47] with SacI and

HindIII using PCR primers 5’-GCGGCGGAGCTC TGAGTATTCAACATTTCCGT

GTCGC-3’ and 5’-GCGGCGAAGCTTTTACCAATG

CTTAATCAGTGAGGCAC-3’ and sequenced. For the round zero library, unmutated gene was

cut directly from the plasmid. Each successive round of error-prone PCR used 3 ng of

SacI/HindIII digest of gene from the previous round in 100 µl reactions containing 0.5 µM

of each of the above primers, 7 mM MgCl2, 75 µM MnCl2, 200 µM of dATP and dGTP,

500 µM of dTTP and dGTP, 1X Applied Biosystems PCR buffer without MgCl2, and 5 U

of Applied Biosystem Taq DNA polymerase. The PCR conditions were 95oC for 5 minutes,

and then 14 cycles of 30 s each at 95oC, 50oC, and 72oC. The number of doublings per

round was determined to be approximately ten by quantifying the DNA versus a marker

on an agarose gel.

The SacI/HindIII digested genes were ligated into the pMON plasmid with T4 Quick

DNA Ligase in 20 µl reactions containing 50 ng each of gene and digested pMON plasmid,

and 10 µl of the ligation reactions were transformed into 100 µl of XL1Blue Supercompetent

celles from Stratagene. Transformed cells were plated on LB-agar plates containing 10 µg/ml

of kanamycin (selective only for plasmid) and on LB-agar plates containing 10 µg/ml of both

kanamycin and 20 µg/ml of ampicillin (selective for both plasmid and active β-lactamase

gene) at a density that gave 100-300 colonies per unselected plate. The fraction functional

was computed as the average of at least five pairs of selected/unselected plates.
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The mutation frequency in the round five library was determined by sequencing the

first 570 bp of twenty genes each from the unselected wildtype and M182T plates with

the sequencing primer 5’-GGTCGATGTTTGATGTTATGGAGC-3’. No biases in the locations of

mutations were observed. The wildtype and M182T genes were mutated under identical

conditions, and the sequencing found the same mutation frequency in the round five library

for both (0.77 ± 0.08% for wildtype and 0.74 ± 0.08% for M182T). For better statistics,

the sequencing results for both libraries were combined to give the data in Table 2.1. The

per round mutation frequency was calculated assuming that each round of error-prone

PCR introduced the same average number of mutations. This gives a per round mutation

frequency of 0.15 ± 0.03%. To confirm this assumption, we sequenced ten unselected clones

from both of the round one libraries, and found mutation frequencies of 0.16 ± 0.05% for

wildtype and 0.19 ± 0.06% for M182T. Standard errors were computed assuming Poisson

sampling statistics.

2.5.4 Neutrality predictions

The single residue mutant ∆∆G values were estimated with the web version of the PoPMu-

SiC program [38] available at http://babylone.ulb.ac.be/popmusic/ and the FOLDEF pro-

gram [39] available at http://fold-x.embl-heidelberg.de:1100/cgi-bin/main.cgi using PDB

structures 1IAV and 1BTL for subtilisin and TEM1 β-lactamase. The probabilities P (Y | X)

that a single nucleotide mutation to a gene would change base X to base Y were computed

from the nucleotide frequencies of the gene sequences and the probabilities P (X,Y ) that

a random mutation was from base X to base Y given for subtilisin in Table 1 of [17] and

for TEM1 β-lactamase in Table 2.1 of this work. We constructed the probability distri-

bution p̂1

(

∆∆G1
)

for the effects of single nucleotide mutations by constructing a list of

∆∆G values by including 1000× L×P (Y | X) entries for the ∆∆G value associated with

each mutation from X to Y , where L is the gene length, assigning synonymous mutations

∆∆G = 0 and nonesense and frameshift mutations ∆∆G = 25 kcal/mol, ignoring mutations

for which no ∆∆G value could be computed, and assigning any mutation with ∆∆G > 25 a

value of ∆∆G = 25. The values of P̂f (mnt) were computed by convolutions of p̂1

(

∆∆G1
)

as described above.

The probability f (mnt; r) of finding a sequence with mnt nucleotide mutations in a
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library with an average of 〈mnt〉 mutations created by r rounds of error-prone PCR is

f (mnt; r) = (1 + λ)−N
N
∑

k=0

(

N

k

)

λk (kx)mnt e−kx

mnt!

where ncycles is the number of PCR cycles per round, λ is the PCR efficiency, N = ncycles×r,

and x =
〈mnt〉(1+λ)

Nλ [48]. For subtilisin ncycles = 13 and λ = 0.77 and for the TEM1

ncycles = 14 and λ = 0.71. For these parameter values, f (mnt; r) is nearly Poisson.

The values of ∆Gextra
f for the predictions were computed by a least squares fitting to the

experimental measurements. The ∆Gextra
f values differed for the PoPMuSiC and FOLDEF

predictions because the ∆∆G values from these methods are scaled differently. For the

PoPMuSiC predictions, ∆Gextra
f was −2.5, −2.5, and −3.9 kcal/mol for subtilisin, wildtype

TEM1 β-lactamase, and M182T TEM1 β-lactamase. For the FOLDEF predictions, the

values were −7.3, −5.7, and −12.0.
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Chapter 3

Protein Stability Promotes

Evolvability

A version of this chapter has been published as [49].

3.1 Abstract

The biophysical properties that enable proteins to so readily evolve to perform diverse

biochemical tasks are largely unknown. Here we show that a protein’s capacity to evolve

is enhanced by the mutational robustness conferred by extra stability. We use simulations

with model lattice proteins to demonstrate how extra stability increases evolvability by

allowing a protein to accept a wider range of beneficial mutations while still folding to its

native structure. We confirm this view experimentally by mutating marginally stable and

thermostable variants of cytochrome P450 BM3. Mutants of the stabilized parent were more

likely to exhibit new or improved functions. Only the stabilized P450 parent could tolerate

the highly destabilizing mutations needed to confer novel activities such as hydroxylating

the anti-inflammatory drug naproxen. Our work establishes a crucial link between protein

stability and evolution. We show that we can exploit this link to discover new protein

functions, and we suggest how natural evolution might do the same.

3.2 Introduction

Biological systems are evolvable in the sense that mutation and selection are able to cre-

ate new or improved phenotypes. A major biological question is how a system’s physical
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properties influence its capacity to evolve [50, 51]. In recent years, understanding the de-

terminants of evolvability has also become an important practical concern, as researchers

increasingly use evolution to engineer everything from proteins [52] to designs for civil en-

gineering structures [53].

Proteins are one of the simplest and best examples of evolvable biological systems, since

they possess biochemical functions that can be altered with just a few mutations [54]. One

property that has been broadly hypothesized to contribute to evolvability is robustness to

mutations [55], and proteins are often quite mutationally robust, with over half of the single

mutants of many proteins retaining their native functions [15, 16, 18, 7]. Because proteins

usually must fold in order to function, and because mutated proteins generally adopt the

original native structure if they fold at all [56, 57], retention of the basic native structure

is a normally a prerequisite for the acquisition of new functions. Extra thermodynamic

stability makes a protein’s native structure and function more robust to random mutations

by increasing the fraction of mutants that continue to possess the minimal stability required

to fold [7, 58].

Here we investigate how stability affects a protein’s evolvability by using controlled ex-

periments to measure the fraction of a protein’s mutants that exhibit new or improved

function. We first use a simple computational model to establish a framework for under-

standing the relationships among protein stability, mutational robustness, and evolvability.

We then validate this framework with experiments on members of the biochemically im-

portant cytochrome P450 enzyme family, and describe specific examples that illustrate the

biophysical basis of the connection between protein stability and evolvability. Finally, we

discuss the implications of our work for understanding natural protein evolution and de-

signing better protein engineering strategies.

3.3 Results

3.3.1 Simulations with Model Lattice Proteins

We used a simple conceptual framework [7] for understanding the relationship between

protein stability and evolution. The premise is that evolution selects for a protein’s bio-

chemical function rather than its stability. However, since a protein’s function typically
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Figure 3.1: Increased stability enhances evolvability of a model lattice protein. (A) The
original model protein (right) that had been evolved to bind to a rigid ligand (left in bold).
(B) Mutants of a stabilized model protein were more likely than mutants of the original
model protein to show improved binding to the four new ligands shown below the bars. The
bars show the number of mutants out of 1500 screened that bound the new ligand with at
least twice the affinity of the parent. (C) The stabilized model protein was more evolvable
because more of its destabilized but improved mutants satisfied the minimal stability cutoff.
The bars show the distribution of stabilities among all mutants in the libraries, while the
circles show the stabilities of the improved mutants.

depends on its ability to fold to a thermodynamically stable native structure [25], stability

is still constrained during evolution. Specifically, we imagine that a protein must fold to

its native structure with some minimal stability in order to remain folded at physiological

conditions. If a protein fails to meet this minimal stability threshold, then it will neither

fold nor function. If a protein does fold with at least the minimal required stability, then

evolution selects for a protein’s function and is indifferent to the amount of extra stabil-

ity it possesses. Most proteins, however, will still be marginally stable since highly stable

sequences are rare [41].

This conceptual framework formed the basis for simulations with lattice proteins. Lattice

proteins are highly simplified protein models that are useful tools for studying protein folding

and evolution [34, 35]. Our lattice proteins were chains of 20 amino acids that fold on a two-

dimensional lattice, with the energy of each conformation equal to the sum of the pairwise

interactions between nonbonded amino acids [46]. Each lattice protein can occupy any

of 41,889,578 possible conformations, and by summing over all of these conformations we
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could exactly determine the partition function and free energy of folding (∆Gf ). We set a

minimal stability threshold for our lattice proteins by requiring them to fold to the original

native structure with a stability of ∆Gf ≤ 0 (in no case did we observe a protein that stably

folded to a new structure), which is equivalent to requiring the native structure to have a

lower free energy than the ensemble of all non-native conformations. For those proteins

that stably folded, we measured function as the binding energy of the folded protein to

a small rigid ligand [45], as shown in Figure 3.1A. Our model therefore recapitulated the

essential requirements imposed on real proteins of simultaneously folding and performing a

biochemical task.

We first evolved a model protein to stably fold and strongly bind a ligand (Figure 3.1A).

This evolved protein had a stability of ∆Gf = −0.5, meaning that it was only marginally

stable as is typical for real proteins [26]. We then simulated the process of directed evolution

with two rounds of random mutagenesis by error-prone PCR and screening to identify a

stabilized variant of our model protein (∆Gf = −1.5) that contained three amino acid

substitutions and exhibited the same ligand binding energy as the original protein. To

examine the evolvabilities of the original and stabilized model proteins, we computationally

simulated screening libraries of 1,500 randomly mutated sequences for mutants that bound

to new ligands with at least twice the affinity of the parent proteins. For all four new ligands

we examined, the parent proteins bound the new ligand with equal affinity, yet each time

the mutant library from the stabilized parent produced over twice as many unique improved

mutants (Figure 3.1B).

Figure 3.1C shows why the stabilized model protein was more evolvable. The mutants

in both libraries exhibited similar changes in stability (∆∆G values), but the extra stability

of the stabilized protein meant that a larger fraction of its mutants continued to fold (46%

versus 35% among all mutants with at least one mutation), confirming previous findings

that more stable lattice proteins are more robust to mutations [7, 9]. The improved mutants

tended to be destabilized, so were more frequent in the library from the stabilized parent.

Although the more stable parent had less than a 50% increase in the fraction of mutants

that folded, it had nearly four times more improved mutants (56 versus 15). The fact that

extra stability increases the number of improved mutants much more than it increases the

number of mutants that retain parental function indicates that improved mutants tended
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to be more destabilized than the typical folded mutant.

3.3.2 Experiments on Cytochrome P450 BM3 Variants

To experimentally test the effect of stability on the evolvability of real proteins, we ran-

domly mutated two variants of a cytochrome P450 BM3 (also known as CYP102A1) heme

domain peroxygenase [59] and screened for mutants with new or improved activity on five

substrates. The cytochrome P450 superfamily contains members involved in important

biochemical processes such as drug metabolism and steroid biosynthesis [60, 61]. P450

BM3 catalyzes sub-terminal hydroxylation of medium- and long-chain fatty acids [62]. The

21B3 variant is a laboratory-evolved version of the P450 BM3 heme domain that efficiently

hydroxylates 12-p-nitrophenoxycarboxylic acid (12-pNCA, structure shown in Figure 3.3),

utilizing hydrogen peroxide in place of the NADPH cofactor and oxygen [59]. The 5H6

variant was created by laboratory evolution of 21B3, selecting for mutants that were more

thermostable while retaining activity on 12-pNCA [63]. We quantified the stabilities of the

enzymes by the temperature (T50) at which half of the protein irreversibly denatured after

a 10 minute incubation. Because denaturation is irreversible, these T50 values are not equi-

librium thermodynamic measurements, and so cannot be directly related to ∆Gf . However,

the T50 values were highly correlated with the stability to irreversible denaturation by urea,

supporting the notion that they reflect universal aspects of protein stability rather than

unique characteristics of the process of irreversible thermal denaturation (Figure 3.12 and

related discussion in the Methods section). As measured by the T50 values, the 21B3 en-

zyme is only marginally stable (T50 = 47oC), while 5H6 is much more stable (T50 = 62oC)

(melting curves are shown in Figure 3.7). The 5H6 enzyme differs from 21B3 at eight

residues (out of 464 total). Both variants displayed nearly the same activity (measured as

total turnovers) on 12-pNCA and all other substrates examined in this work.

We created mutant libraries of both 21B3 and 5H6 using error-prone PCR. The libraries

were generated under identical conditions and had the same distributions of mutations

(Figure 3.2). The overall mutation rate was 4.5± 0.3 nucleotide mutations per gene (Table

3.1). We examined 522 mutants from each library for retention of folding, as assayed by the

characteristic Soret band at 450 nm in the carbon monoxide binding difference spectrum [66].

As expected, mutants of the stabilized 5H6 protein were more likely than those of the 21B3
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Base pairs sequenced 58,719

Total mutations 182

Mutation frequency (%) 0.31 ± 0.02

Avg. mutations per gene 4.5 ± 0.3

% synonymous mutations 28

% nonsynonymous mutations 63

% frameshift/nonsense mutations 9

Mutation types (%)
A →T, T →A 25
A →C, T →G 6
A →G, T →C 53
G →A, C →T 10
G →C, C →G 0
G →T, C →A 3
frameshift 3

Table 3.1: Mutation frequencies in error-prone PCR libraries. Statistics are for all 41 ran-
domly chosen mutants. Standard errors are calculated assuming Poisson counting statistics.
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Figure 3.2: Distribution of mutations in the two P450 error-prone PCR libraries. (A) The
distribution of mutations among 20 randomly chosen 21B3 mutants and 21 randomly chosen
5H6 mutants. The distributions are statistically indistinguishable (P = 0.84). (B) The
distribution of mutations among all 41 sequenced mutants is consistent with the theoretical
prediction for an error-prone PCR library (lines) [48, 64] (P = 0.11). (C) The mutations are
uniformly distributed along the gene (P = 0.66). The lines show the cumulative fraction
of mutations that occur at or before that position in the gene. All P -values are from
Kolmogorov-Smirnov tests [65], and represent the probability that the samples or theoretical
curves would differ by at least this much if they were generated by the same underlying
distribution.
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Threshold Pr (F | 21B3) Pr (F | 5H6) Pr (A | F; 21B3) Pr (A | F; 5H6)

0.10 0.44 0.69 0.98 0.96

0.25 0.39 0.66 0.98 0.96

0.50 0.33 0.61 0.96 0.94

0.75 0.29 0.57 0.92 0.93

0.90 0.24 0.51 0.93 0.90

Table 3.2: Retention of folding and function. The probabilities that 21B3 and 5H6 mutants
fold (F ), and that those folded mutants are active (A) on 12-pNCA at different thresholds
for folding and activity. The probabilities are determined from the six plates of each parent
shown in Figure 3.8. The folding and activity status of each mutant is determined relative to
the four parents on the plate. If the CO binding difference spectrum A447 - A490 is greater
than the threshold times the parental median, the mutant is considered folded. Folded
mutants are classified as active if the 12-pNCA A398 value is greater than the threshold
times the parental median.
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Figure 3.3: The substrates on which the P450 mutants were screened for activity.

protein to fold (61% of 5H6 mutants contained at least half the folded protein of the parent

versus 33% for 21B3, raw data are shown in Figure 3.8 and Table 3.2). Most of these

folded mutants retained at least half the parental activity on 12-pNCA (94% and 96% for

5H6 and 21B3), indicating that mutations that disrupted parental function generally did

so by preventing the formation of properly folded protein. This confirms the experimental

findings of [7] that more stable proteins are more robust to mutations.

We examined the evolvability of the 21B3 and 5H6 enzymes by screening for mutants

that hydroxylated any of five new substrates: the anti-inflammatory drug naproxen, 3-

phenoxytoluene, phenoxyacetic acid, the beta-adrenergic receptor blocking agent propra-

nolol, and 2-methylbenzofuran (structures shown in Figure 3.3). We screened for hydrox-
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Figure 3.4: Increased stability enhances evolvability of the P450 BM3 heme domain. (A)
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mutants out of the total number of mutants screened. (B) Some of the improved 5H6
mutants were greatly destabilized relative to the parent protein, while the stabilities of
the improved 21B3 mutants clustered around those of the parent protein (circles show T50

values for improved mutants).

ylation activity using the 4-aminoantipyrene (4-AAP) assay to measure the total amount

of product after completion of the reaction [67], and determined that neither 21B3 nor

5H6 had detectable activity on the first three substrates, both had equal weak activity

on propranolol, and 21B3 had trace activity on 2-methylbenzofuran(Table 3.3). We used

consistent quantitative criteria to identify mutants that had either acquired new activity or

improved by more than 50% over the parental level in the 4-AAP assay. We screened 8,160

mutant-substrate pairs for each parent. From these, we identified 13 improved mutants of

5H6 and 4 improved mutants of 21B3 (Figure 3.4A, Table 3.3). All the improved mutants

had unique protein sequences (given in Table 3.5). Thus, we found over three times more

improved mutants in the 5H6 library than in the 21B3 library.

To assess the importance of stability in conferring enhanced evolvability on the 5H6 pro-
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tein, we measured the stabilities of all improved mutants (melting curves are in Figure 3.7).

Figure 3.4B shows that none of the improved 21B3 mutants was destabilized by more than

3oC, but that the thermostable 5H6 parent produced improved mutants that were destabi-

lized by as much as 14oC. We identified specific beneficial but destabilizing substitutions

that could be made only in the stabilized parent. For example, neither 21B3 nor 5H6 exhib-

ited activity on naproxen, presumably because the negatively charged naproxen molecule

does not enter the hydrophobic P450 BM3 substrate binding pocket. Mutating leucine 75

in the substrate binding pocket to arginine allowed 5H6 to hydroxylate naproxen by pro-

viding a compensating positive charge for the naproxen molecule (Figure 3.5). However,

burial of this arginine residue in the hydrophobic binding pocket substantially destabilized

the 5H6 mutant (∆T50 = −8oC). When we made the same substitution to 21B3, we could

only recover inactive and improperly folded protein (as indicated by a carbon monoxide

difference spectrum peak at 420 nm [68] as shown in Figure 3.9). The F275S substitution

(located 12Å from the substrate [69]) is another example of a beneficial substitution which

could be made only in the stabilized parent. This substitution conferred 3-phenoxytoluene

activity on the 5H6 parent, but decreased the T50 by 7oC. When we made this substitution

in 21B3 we again could not recover any folded protein (Figure 3.10). In contrast, the F205L

substitution (located near the substrate binding pocket [69]) found in a 21B3 mutant with

improved activity on propranolol did not have a substantial effect on stability, and slightly

improved the activity of both 21B3 and 5H6 when introduced into those sequences (Figure

3.11).

3.4 Discussion

We have shown that more stable proteins are more evolvable because they are better able

to tolerate functionally beneficial but destabilizing mutations. Our work touches on the

relationship between protein stability and function, which has historically been a subject

of considerable confusion. Despite repeated speculation to the contrary [70, 71, 72], high

stability and function are not inherently incompatible, since a wealth of experiments have

demonstrated that proteins can be dramatically stabilized without sacrificing their biological

functions [73, 74, 75, 76]. But protein stability and function often appear to trade off at the
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Figure 3.5: The functionally innovative but destabilizing L75R mutation can only be tol-
erated by the stabilized parent. (A) Leucine 75 is positioned close to the substrate in the
hydrophobic P450 BM3 substrate binding pocket [69]. Mutating L75 to a positively charged
arginine conferred naproxen activity on the stabilized 5H6 parent but disrupted the proper
folding of the marginally stable 21B3 parent. (B) The anti-inflammatory drug naproxen,
which contains a negatively charged carboxylic acid group.
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level of individual mutations. This apparent tradeoff is at least partly due to the simple fact

that most randomly chosen mutations (functionally beneficial or not) are destabilizing [77,

78, 79, 27]. In addition, residues in a protein’s active site often must satisfy functional

constraints (such as maintaining buried charges or cavities in a protein’s interior) that make

them poorly optimized for stability [80, 81, 82]. Therefore, mutating active-site residues

often enhances stability at the cost of function [80, 81, 82], and likewise acquiring new

functions can require destabilizing mutations (as is the case for our L75R mutation in

P450, which confers activity on naproxen by burying a positive charge). However it remains

unclear whether active-site constraints intensify the tradeoff between stability and functional

evolution, since a seemingly opposite argument can be made that mutations to an active

site that is already poorly optimized for stability should be less destabilizing than typical

mutations (they could even enhance stability if, for example, they confer function on smaller

substrates by reducing the size of a cavity in a protein’s interior). If functionally innovative

mutations tend to be more destabilizing than random mutations, then extra protein stability

should enhance the rate of functional innovation more than it enhances the mutational

robustness of the native function. In our lattice protein simulations, extra stability increased

the rate of functional innovation by nearly 400% while it increased mutational robustness

by only 50%; however, we feel our lattice model is too crude to confidently extrapolate

conclusions involving residue-level properties to real proteins. In our P450 experiments,

extra stability also increased the number of functionally improved mutants (from 4 to 13)

more than it increased mutational robustness (by a factor of 1.8); however, here the statistics

are too poor to conclude that functional innovation is improved significantly more than

mutational robustness. Therefore, in our minds it remains unclear whether extra protein

stability promotes evolvability simply by improving the tolerance to all mutations (some of

which happen to be functionally beneficial), or whether the effect is further amplified by a

tendency for functionally innovative mutations to be especially destabilizing.

In either case, our work argues quite generally that extra stability will enhance evolv-

ability. Although it is clearly possible to stabilize proteins without interfering with their

functions [73, 74, 75, 76], proteins tend to be only marginally more stable than is required

by their environment [26]. This marginal stability is probably due to the fact that natural

selection does not directly favor extra stability in the face of predominantly destabilizing
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mutations, causing stability to drift towards the minimum evolutionary requirement [41, 83].

Naturally evolving proteins must therefore wait for functionally neutral mutations to stabi-

lize the structure in order to counterbalance the effects of other destabilizing but functionally

beneficial mutations [36]. In this sense, a protein’s stability represents a hidden dimension

in evolution: extra stability is neutral with respect to selection for protein function, but it

can be crucial in allowing a protein to tolerate mutations that confer beneficial phenotypes.

We have shown that protein engineering by directed evolution is more effective if direct

selection for extra stability is used to increase a protein’s evolvability. The extent to which

natural evolution might also select for evolvability has been the subject of much recent

theoretical speculation [51, 55, 84]. We suggest that one possible mechanism by which nat-

ural evolution could increase evolvability would be to stabilize proteins undergoing adaptive

evolution or provide systems to buffer the effects of destabilizing protein mutations.

3.5 Methods

3.5.1 Model lattice protein simulations

A model lattice protein was represented as a chain of N = 20 monomers of 20 types corre-

sponding to the natural amino acids. A model protein could occupy any of the 41,889,578

conformations (representing 910,972 unique contact sets) corresponding to all length 20

self-avoiding walks on a two-dimensional lattice. A conformation C had an energy of

E (C) =

N
∑

i=1

i−2
∑

j=1

Cij (C)× ǫ (Ai,Aj) ,

where Cij (C) is one if residues i and j are nearest neighbors in conformation C and zero

otherwise, and ǫ (Ai,Aj) is the interaction energy between residue types Ai and Aj, given

by Table 5 of reference [46]. Energies are in units of kBT , and T = 1.0 for all simulations.

A model protein folds to a target conformation Ct with stability

∆Gf (Ct) = E (Ct) + T ln {Q (T )− exp [−E (Ct) /T ]}
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where Q (T ) is the partition sum

Q (T ) =
∑

{Ci}

exp [−E (Ci) /T ] .

Protein were considered stably folded to Ct if and only if ∆Gf (Ct) ≤ 0.0.

A model protein’s activity was represented by binding to a small rigid ligand, much as

in [45]. If a model protein did not stably fold to a unique conformation, it was considered

inactive. If it did stably fold to a unique conformation, then we computed the binding

energy of the ligand as the sum of the pairwise interactions between the ligand and protein

residues, searching over all possible rotational and translational positions of the ligand. The

binding affinity of the ligand to the folded conformation is given by the association constant

Ka, calculated as the exponential of the negative binding energy.

To create the model protein shown in Figure 3.1A, we first chose the target conformation

of the protein, and then performed an adaptive walk from a random starting sequence

until we found a sequence that folded to the conformation. We evolved this sequence

for 10,000 generations with a population size of 10 and a mutation rate of 5 × 10−4 per

residue per generation, with the fitness of a model protein proportional to its binding

affinity to the ligand shown in Figure 3.1A. To create a stable variant of this model protein,

we simulated using error-prone PCR to make a library of 1,500 mutant sequences with

the mutations distributed according to the error-prone PCR distribution [48, 85] with an

average of 1.5 mutations per protein, 16 PCR cycles, and a PCR efficiency of 0.45. We

performed two rounds of this error-prone PCR, selecting the most stable sequence that still

bound to the ligand with the same binding energy as the original model protein at the

end of each round. This procedure yielded the stabilized model protein with the sequence

IFFMTKIKFHIGVMHMSMGL. We then simulated creating error-prone PCR libraries of

both the original and stabilized model proteins using the same procedure as above. We

screened each of the four new ligands shown in the legend of Figure 3.1B on one library

from each parent, and recorded the number of mutants that bound to the new ligand with

a binding affinity at least two-fold higher than that for the parent. These counts are the

data shown by the bars in Figure 3.1B.
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3.5.2 P450 mutant libraries.

We used error-prone PCR to create mutant libraries of the marginally stable 21B3 [59] and

the thermostable 5H6 [63] variants of the cytochrome P450 BM3 heme domain. The tem-

plate DNA was the appropriate gene cloned into the pCWori [86] plasmid as described in

references [59] and [63]. We confirmed the sequences of the 21B3 and 5H6 genes by sequenc-

ing them with the primers pCWori for (5’-GAAACAGGATCCATCGATGCTTAGGAGGTCAT-

3’, pCWori rev (5’-GCGTATCACGAGGCCCTTTCGTCTTCAAGC-3’), and pCWori mid rev (5’-

CCAGCTTGTGGCCAACCCGAC-3’). The sequences matched those that were reported [59, 63],

with 21B3 containing ten amino acid substitutions relative to the wildtype P450 BM3 heme

domain (I58V, F87A, H100R, F107L, A135S, M145V, N239H, S274T, K434E, and V446I in

the numbering scheme where residue one is the threonine after the cleaved N-terminal me-

thionine) and 5H6 containing eight amino acid substitutions relative to 21B3 (L52I, S106R,

V145M, A184V, L324I, V340M, I366V, and E442K) as well as the removal of one histidine

from the C-terminal His tag.

The error-prone PCR reactions for the two parents were carried out in parallel using iden-

tical conditions to ensure the same mutation rate for both. The reactions were 100 µl and

contained 13 ng of template plasmid (corresponding to 3 ng of gene), 0.5 µM of the oligonu-

cleotide primers (pCWori for and pCWori rev clone, 5’-GCTCATGTTTGACAGCTTATCATCG-

3’), 200 µM dATP and dGTP, 500 µM dTTP and dCTP, 7 mM MgCl2, 200 µM MnCl2, 1X

Applied Biosystems PCR Buffer, and 5 units of Taq. PCR conditions were 95oC for 5 min.

followed by 16 cycles of 30 s at 95oC, 30 s at 51oC, and 60 s at 72oC. Gel electrophoresis

versus a known standard indicated that this yielded PCR product at a concentration of ≈12

ng/µl, for a PCR efficiency of λ = 0.45. The PCR products were cloned into pCWori with

BamHI and EcoRI, electroporated into a catalase-free strain of E. coli [86], and plated on

LB plates containing 100 µg/ml ampicillin. Transformation of a control ligation with no

insert indicated that the background rate of plasmid self ligation was less than 1%.

To measure the mutation rates, we randomly selected twenty 21B3 clones and twenty-one

5H6 clones for sequencing with primers pCWori for and pCWori rev, allowing us to read

each gene from bp 18 to bp 1436. The 21B3 clones contained a total of 95 nucleotide muta-

tions in the 28,380 sequenced base pairs, with 28 synonymous mutations, 60 nonsynonymous

mutations, and 7 mutations leading to premature truncation of the gene (frameshift or non-
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sense mutations). The 5H6 clones contained a total of 87 mutations in the 29,799 sequenced

base pairs, with 23 synonymous mutations, 55 nonsynonymous mutations, and 9 mutations

leading to premature truncation of the gene. The distributions of mutations in the two

libraries were statistically indistinguishable (Figure 3.2A). After confirming that the muta-

tion rates in the two libraries were indistinguishable, we combined the sequencing results

for further analysis (Table 3.1). Figure 3.2B shows that the distribution of mutations is

consistent with the theoretical distribution for error-prone PCR [48, 64], which gives the

probability that a mutant in a library with an average of 〈mnt〉 mutations per gene has mnt

nucleotide mutations as

Pr (mnt) = (1 + λ)−n
n
∑

k=0

(

n

k

)

λk (kx)mnt e−kx

mnt!
, (3.1)

where n is the number of PCR cycles, λ is the PCR efficiency, and x =
〈mnt〉(1+λ)

nλ . We also

confirmed that the mutations were distributed uniformly along the gene sequence (Figure

3.2C). If each position in the gene is equally likely to be mutated, then among 41 sequenced

clones, 156.3 positions should be mutated once, 9.7 positions should be mutated twice, and

0.4 positions should be mutated three times. This in good agreement with the observed

values of 148, 13, and 1.

3.5.3 Screening for improved mutants

Single mutant colonies were picked from transformation plates with sterile toothpicks and

used to inoculate sterile 1 ml deep-well plates (Falcon) with each well containing 400 µl of

liquid LB with 100 µg/ml ampicillin. As controls, wells A1, A2, A3, and A4 were always

inoculated with the parent (21B3 or 5H6); wells A5, A6, A7, and A8 were always inoculated

with a negative control (the pCWori plasmid lacking a P450 gene); and well H12 was not

inoculated. Each of the remaining 87 wells contained a different mutant. These deep-well

plates were grown for 20-24 hours in a humidified shaker (Kuhner ISF-1-W) at 215 or 225

rpm, 30oC, and 80% relative humidity. To express the proteins, a pipetting robot (Beckman

Multimek 96) was used to transfer 100 µl per well from these LB deep well plates to 2 ml

deep-well plates (Falcon) containing 400 µl of terrific broth (TB) supplemented with 100

µg/ml ampicillin, 0.5 mM δ-aminolevulinic acid, and 0.2 mM IPTG. These TB deep-well
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plates were also grown for 20-24 hours in the humidified shaker at 215-225 rpm, 30oC, and

80% relative humidity. After this growth, the cells were harvested by centrifugation at 6,100

g for 10 min at 4oC, and stored at -20oC. The LB deep-well plates were stored at 4oC so

that improved mutants could be streaked from the plates.

To perform assays, the pelleted cells were resuspended in 600 µl of lysis buffer (100 mM

EPPS pH 8.2 with 0.5 mg/ml lysozyme and 2 U/ml deoxyribonuclease) per well with the

pipetting robot. The plates were incubated for one hour at 37oC, and then centrifuged at

6,100 g for 10 min at 4oC to pellet cell debris. The pipetting robot was used to add 80 µl per

well of this clarified lysate to 96-well microtiter plates. To assay for folded protein, high–

throughput carbon monoxide (CO) binding difference spectra were measured as described

in [66] with the modifications that 80 µl of clarified lysate in the EPPS buffer was used, and

that the heme was reduced by the addition of 20 µl of 0.1 M sodium hydrosulfite in 1.3 M

potassium phosphate, pH 8.0. Blank spectra were read prior to binding CO with a Spectra

Max Plus 384 plate reader (Molecular Devices) at every 10 nm from 400 to 500 nm, as well

as at the points 447 nm (the absorbance peak for both 21B3 and 5H6) and 490 nm. After

5-10 minutes of incubation with CO, the absorbance readings were read at these points.

Mutants were screened for the retention of activity on 12-p-nitrophenoxycarboxcylic

acid (12-pNCA, Figure 3.3) using a slightly modified version of the method described in

[59]. A 6X stock of 12-pNCA was prepared by combining 3.6 ml of 4.17 mM 12-pNCA in

DMSO with 6.4 ml of 100 mM EPPS (pH 8.2) immediately before use. Twenty µl of this

6X 12-pNCA stock was added to the 80 µl of clarified lysate in each well of the microtiter

plate, and the plate reader was used to mix the plate and blanked at 398 nm. To initiate

the reaction, 20 µl of a 6X stock of hydrogen peroxide (6X stock was 24 mM H2O2 in 100

mM EPPS pH 8.2, made immediately before use) was added to each well and mixed with

the plate reader. The amount of final product was quantified by reading the absorbance at

398 nm after 20-30 minutes.

Mutants were screened for the acquisition of new or improved activity using the 4-

aminoantipyrene (4-AAP) assay, which detects phenol-like compounds [67], produced by ei-

ther direct hydroxylation of an aromatic ring or as dealkylation products after hydroxylation

of a carbon that is ether bonded to an aromatic ring. This assay was used to screen for ac-

tivity on five substrates (Figure 3.3) at the following final concentrations: 3-phenoxytoluene
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(10 mM), naproxen (10 mM), phenoxyacetic acid (25 mM), 2-methylbenzofuran (5 mM),

and propranolol (5 mM). Stocks with 6X concentrations of these substrates were made im-

mediately before use by dissolving the substrate in equal volumes of DMSO and acetone

and then adding 100 mM EPPS (pH 8.2) so that the final concentrations of DMSO and

acetone in the 6X stocks were each 6%. Twenty µl of 6X substrate stock was added to the

80 µl of clarified lysate in each well of the microtiter plate, and 20 µl of the 6X hydrogen

peroxide stock was added to initiate the reaction. The microtiter plates were mixed with the

plate reader, and the reactions were allowed to run for 1.5 to 2 hours at room temperature

before being quenched by the addition of 120 µl of 4 M urea in 0.1 M sodium hydroxide.

A pipetting robot was used to add and mix 36 µl of 0.6% 4-AAP, and the plate reader

was zeroed at 500 nm. The robot was then used to add and mix 36 µl of 0.6% potassium

peroxodisulfate, and after 30 minutes the product was quantified by reading the absorbance

at 500 nm.

3.5.4 Stability and Verification Assays

Protein was expressed for stability and verification assays by growing the cells in flasks

with 200-300 ml of TB supplemented with 100 µg/ml of ampicillin at 30 oC and 215 rpm.

When the cells reached an optical density between 0.8 and 1.2 at 600 nm, they were induced

by adding IPTG to a final concentration of 0.4 mM, as well as δ-aminolevulinic acid to a

final concentration of 0.5 mM. The cells were then grown at 30 oC and 215 rpm for an

additional 20-24 hours. A few mutants did not express well in these conditions, and so

were grown at the milder conditions of 28oC and 180 rpm. The cells were harvested by

centrifugation at 6,000-8,000 g and 4 oC for 10 min, and the pellets stored at -20 oC. Prior

to use, pellets from 100 ml of culture were resuspended in 4 ml of 100 mM EPPS (pH

8.2) and lysed by sonication. Cell debris was pelleted by centrifugation at 6,000-8,000 g

and 4 oC for 10-15 min. The clarified lysates were passed through PD-10 desalting columns

(Amersham Biosciences) to remove small molecules that might appear as background in the

4-AAP assay. The P450 protein was quantified from the CO binding difference spectrum

(extinction coefficient of 91 mM−1 cm−1 for the A447 - A490) and the concentration of P450

was adjusted to 5µM by the addition of more 100 mM EPPS (pH 8.2).

For verification assays, the 5 µM clarified lysate was pipetted into 96-well microtiter
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21B3 5H6
substrate protein activity maa T50 protein activity maa T50

propranolol parent 0.07± 0.02 NA 47oC parent 0.08± 0.02 NA 62oC
(1,190 screened) 14C10 0.29± 0.05 3 44oC 27G8 0.15± 0.01 1 65oC

27B2 0.15± 0.03 3 49oC 27G12 0.25± 0.03 7 55oC
31B12 0.14± 0.02 2 48oC 30B10 0.19± 0.02 6 58oC

32F7 0.15± 0.02 4 55oC
36G11 0.22± 0.02 3 64oC
37F4 0.21± 0.02 2 63oC
38F11 0.16± 0.02 3 60oC

3-phenoxytoluene parent none NA 47oC parent none NA 62oC
(2,210 screened) 20D1 0.05± 0.02 1 60oC

23E4 0.30± 0.03 5 48oC
28B5 0.05± 0.03 3 60oC
29G8 0.05± 0.02 2 50oC

naproxen parent none NA 47oC parent none NA 62oC
(2,210 screened) 13C9 0.16± 0.02 1 54oC
phenoxyacetic acid parent none NA 47oC parent none NA 62oC
(1,785 screened) 38F7 0.30± 0.04 3 46oC
2-methylbenzofuran parent 0.07± 0.02 NA 47oC parent none NA 62oC
(765 screened) 32H1 0.11± 0.02 1 61oC

Table 3.3: Summary of improved P450 mutants. The leftmost column gives the total number
of mutants of each parent screened on that substrate. Subsequent columns give the activity,
number of amino acid substitutions (maa), and stabilities as measured by the T50 values.
Mutants are named according to the plate and well in which they were found, and sequences
are given in Table 3.5. Activities represent the median ± the standard deviation of the total
product formed per well of 80 µl of 5 µM protein, as measured by the A500 in the 4-AAP
assay (raw data is in Figure 3.6), and are indicated as “none” when indistinguishable from
the background. Using an extinction coefficient of 4,800 M−1cm−1 for the 4-AAP/phenol
complex [87], each unit of A500 corresponds to ≈80 nmol of product from the ≈0.4 nmol of
protein per well.
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plates (typically a full row of 12 wells for each mutant, although some samples had fewer

wells due to air bubbles or a limited protein supply) and 12-pNCA and 4-AAP assays were

performed as described above.

For stability assays, 150 µl of the 5µM clarified lysate was added to rows of 96-well PCR

plates (Bio-Rad). The PCR plates were heated to different temperatures using the gradient

method of a PCR cycler (MJ Research, PTC-200) for 10 minutes, then cooled to 4oC. The

PCR plates were centrifuged at 5,000-6,000 g for 5-10 minutes at 4oC to pellet denatured

debris, and 80 µl of the supernatant was used for CO binding difference spectrum assays.

The temperature at which half of the protein was denatured (T50) was determined by fitting

a sigmoidal curve to the percentage of remaining CO binding difference spectrum, as shown

in Figure 3.7.

3.5.5 Retention of Folding and Activity on 12-pNCA

Our high–throughput screening allowed us to determine whether mutants retained the CO

binding difference spectrum peak characteristic of folded P450 heme domains, and whether

they retained the high activity on 12-pNCA of both the 21B3 and 5H6 parents. We collected

CO binding difference spectra and 12-pNCA activity data for six plates each of 21B3 and

5H6 (522 mutants of each). The CO binding difference spectra and the 12-pNCA readings

for these plates are shown in Figure 3.8. Since there was often some variation between plates,

we classified the mutants as folded/unfolded and active/inactive relative to the parental

controls on the same plate. These binary classifications require defining a threshold for the

fraction of the parental reading the mutant must retain. Table 3.2 shows the fractions for

different thresholds.

3.5.6 Identification of Mutants with New Activity

We sought to measure the frequencies with which 21B3 and 5H6 mutants acquired activity

on 3-phenoxytoluene, naproxen, propranolol, 2-methylbenzofuran, and phenoxyacetic acid.

In order to compare the frequencies for the 21B3 and 5H6 libraries, we developed consistent

quantitative methods for identifying improved mutants to ensure that both libraries were

treated identically. We first performed high–throughput screening of the mutants for activ-

ity using the 4-AAP assay. Overall we screened 8,160 mutants each of 21B3 and 5H6 (Table
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A

B

Figure 3.8: Folding and retention of function. (A) Six 96-well plates of 21B3 mutants.
(B) Six 96-well plates of 5H6 mutants. Each graph corresponds to a single well, with the
lines showing the CO binding difference spectrum from 400 to 500 nm and bars showing
the activity on 12-pNCA (A398). For each plate, the first four wells in the top row are the
parent, the next four wells are cells containing a null vector, and the last well in the bottom
row contains no cells. Axes are scaled so that the A490 is at zero and the maximum value
is the highest reading for that plate.
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plates mutants mutants mutants mutants
substrate parent screened screened rescreened verified improved

21B3 26 2,210 16 0 0
3-phenoxytoluene

5H6 26 2,210 21 4 4

21B3 26 2,210 3 0 0
naproxen

5H6 26 2,210 8 1 1

21B3 14 1,190 9 3 3
propranolol

5H6 14 1,190 10 7 7

21B3 21 1,785 26 2 1
phenoxyacetic acid

5H6 21 1,785 24 1 0

21B3 9 765 4 0 0
2-methylbenzofuran

5H6 9 765 16 2 1

21B3 96 8,160 58 5 4
total

5H6 96 8,160 79 15 13

Table 3.4: Summary statistics for the screening of the 21B3 and 5H6 mutants for new activ-
ity. The table shows the numbers of mutants screened, the numbers selected for rescreening,
the numbers expressed for verification assays, and the numbers that were determined to ac-
tually be improved.

3.4). Because of the variation between plates, each mutant was evaluated relative to the

four parental and four null vector controls on its own plate. Because of problems with the

pipetting robot, two wells in the microtiter plates (A12 and D10) consistently contained air

bubbles, and so were disregarded, meaning that 85 mutants were screened for each plate.

We identified candidates for improved mutants, then rescreened these candidates to elim-

inate false positives, and finally performed carefully controlled assays to verify improved

mutants. The procedure for this process was as follows:

1. The A500 reading for each mutant was compared to the median parental reading and

the median null control reading. If it was both 1.5 times greater and 0.01 greater

than both medians, then the mutant was considered a candidate to be improved. In a

few cases, candidates identified by these criteria were disregarded because they were

obviously spurious (noticeable air bubble in the well, no folded protein as indicated by

the CO binding difference spectrum for the well, or parental medians were abnormally

low due to poor lysis in some wells). Candidates for improved mutants were streaked

for single colones on LB plates supplemented with 100 µg/ml ampicillin from the 1

ml deep-well plates that had been stored at 4oC.

2. All candidate improved mutants were rescreened by growing new plates using the same
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high–throughput screening procedure, but now growing an entire row (12 samples) in

the 96-well plate for each mutant. The median reading for the candidate mutant was

compared to the median readings for rows of parental and null vector samples. If

wells were obviously spurious (air bubbles or poor lysis as indicated by CO binding

difference spectrum), they were excluded from the calculations of the medians. If the

mutant reading was 0.01 greater than both the parental and null vector samples, and

if the difference between the mutant and null control reading was greater than 1.5

times the difference between the mutant and parental reading, then the mutant was

considered to have passed the rescreen, and was analyzed on a verification plate.

3. Verification plates were used to gather high quality data, since all protein samples in

these plates were adjusted to the same concentration (5 µM). If the parental reading

was significantly higher than the null control reading (indicating some parental activ-

ity), the median mutant reading minus the null vector reading was required to be 1.5

times greater than the median parent reading minus the null vector reading. If the

parental reading was roughly equal to the null control reading, the median reading

was required to be 1.5 times greater than both the parental and null control reading.

Figure 3.6 shows the activities for the parents and all improved mutants as measured

on the verification plates. Table 3.4 summarizes the statistics for the different steps of

this process. In the end, we identified 13 improved 5H6 mutants and 4 improved 21B3

mutants. These mutants were sequenced using the primers pCWori for, pCWori rev, and

pCWori rev clone to identify the mutations. These mutations are summarized in Table 3.5.

3.5.7 Creation and analysis of site–directed mutants

We examined the effects of parental stability on some of the amino acid substitutions ob-

served in our improved mutants by using site-directed mutagenesis to make these mutations

in both the 21B3 and 5H6 parents. We constructed the mutants by PCR overlap extension

mutagenesis [88] using the following primers (the induced amino acid substitutions are indi-

cated in the primer names): mutL75R for (5’-CTTAAGTCAAGCGCGTAAATTTGTACGTG-3’),

mutL75R rev (5’-CACGTACAAATTTACGCGCTTGACTTAAG-3’), mutF205L for (5’-CAAGCGC

CAGCTTCAAGAAGATATCAAGG-3’), mutF205L rev (5’-CCTTGATATCTTCTTGAAGCTGGCGC
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Mutant Substrate T50 (oC) Amino acid substitutions Synonymous
mutations

21B3-14C10 propranolol 44 F205L (T617C, b); H239R (A719G,
s); K306N (A921C, s)

T138C, C1255T

21B3-27B2 propranolol 49 S106R (A319C, b); F205S (T617C,
b); E434A (A1304C, s)

T700C

21B3-31B12 propranolol 48 A82T (G247A, b, 4Å); A295S
(G886T, s)

T243C

21B3-38F7 phenoxyacetic acid 46 N134D (A403G, s); F205L (T618A,
b); E267R (G802A & A803G, b, 7Å)

none

5H6-13C9 naproxen 54 L75R (T227G, b, 6Å) none

5H6-20D1 3-phenoxytoluene 60 A74E (C224A, b, 6Å) A573G,
A1305G

5H6-23E4 3-phenoxytoluene 48 V26A (T80C, b, 6Å); H92R
(A278G, s); D151G (A455G, b);
L188Q (T566A, b, 5Å); M237L
(A712C, b)

A981G,
A1014G

5H6-27G8 propranolol 65 F173L (T520C, b) A318G,
G1317A

5H6-27G12 propranolol 55 E35D (A108T, s); K98R (A296G,
b); F173V (T520G, b); L437P
(T1313C, b, 6Å); K451E (A1354G,
s); P461S (C1384T); H468R
(A1406G)

A1230G,
A1305G

5H6-28B5 3-phenoxytoluene 60 M118V (A355G, s); I357T (T1073C,
b, 10Å); F444L (T1333C, b)

T465G, T862C,
T955C, T1318C

5H6-29G8 3-phenoxytoluene 50 W90R (T271A, s); F275S (T827C,
b)

A1176G,
T1227C

5H6-30B10 propranolol 58 P172A (C517G, s); F173I (T520A,
b); D199G (A599G, s); D231E
(T696A, s); L273V (T820G, b);
T274S (A823T, b)

T259C, T399A

5H6-32F7 propranolol 55 S108G (A325G, s); D214Y (G643T,
s); V366A (T1100C, s); I433F
(A1300T, b)

A873G

5H6-32H1 2-methylbenzofuran 61 A61T (G184A, b) none

5H6-36G11 propranolol 64 K113E (A340G, s); F173L (T520C,
b); E430G (A1292T, s)

none

5H6-37F4 propranolol 63 F173L (T520C, b); D338N
(G1015A, s)

A912G

5H6-38F11 propranolol 60 F173L (T520C, b); D217G (A653G,
s); E430G (A1292G, s)

T445C, C501T,
A798T

Table 3.5: Summary of the improved mutants and the mutations relative to the parental
sequence. Substituted amino acids are labelled as surface (s) exposed (>20% exposed
surface area) or buried (b). The distance to the substrate in the 1JPZ crystal structure [69]
is indicated for all residues within 12Å of the substrate. Amino acid substitutions are
labeled using the standard P450 numbering scheme where one is assigned to the threonine
after the cleaved N-terminal methionine.
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TTG-3’), mutF275S for (5’-GCGGTCTTTTAACATCTGCGCTGTATTTCTTAG-3’), mutF275S rev

(5’-CTAAGAAATACAGCGCAGATGTTAAAAGACCGC-3’), pCWori for, and pCWori rev. All

mutants were sequenced to ensure the genes contained only the desired mutations. Pro-

tein was expressed in flasks as for the improved mutants, and clarified lysate was used for

functional and thermostability assays as before.

The L75R substitution conferred naproxen activity on the 5H6 parent (mutant 5H6-

13C9). This substitution is in the substrate binding pocket, and destabilized the mutant

by 8oC. When we made this substitution in the 21B3 parent, we were only able to recover

inactive protein with a CO binding difference spectrum peak at 420 nm (Figure 3.9). A CO

binding difference spectrum peak at 420 nm is a characteristic of an improperly folded P450

protein [68, 89], indicating that the L75R substitution is too destabilizing to be tolerated

by the 21B3 parent.

The F275S substitution was one of two substitutions found in a 5H6 mutant improved

on 3-phenoxytoluene (mutant 5H6-29G8). We made the F275S single mutants of both

5H6 and 21B3. The 5H6-F275S mutant is destabilized relative to the parent, but is active

on 3-phenoxytoluene (Figure 3.10). We were unable to recover any folded protein for the

21B3-F275S mutant, suggesting that the substitution is too destabilizing to be tolerated by

21B3.

The F205L substitution was found in conjunction with other substitutions in 21B3

mutant improved on propranolol (21B3-14C10). We made this substitution in both 5H6
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5H6. (A) The 21B3-F205L mutant has the same T50 as the 21B3 parent protein. (B) The
5H6-F205L mutant has a T50 that is only slightly decreased from that of the 5H6 parent.
(C) The F205L substitution slightly increases the propranolol activity of both 21B3 and
5H6 as measured in the 4-AAP assay.
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and 21B3. Both mutants folded, and neither was substantially destabilized. Both mutants

had slightly improved activity on propranolol, indicating that this beneficial substitution is

tolerated by both parents (Figure 3.11).

3.5.8 P450 stability: relationship of T50 values to protein stability

In this work, we have argued that more stable variants of a protein should be more tolerant to

mutations and therefore more evolvable. Our biophysical arguments and our lattice protein

simulations are both based on consideration of the equilibrium thermodynamic stability of

the native structure, ∆Gf . It is mutational changes to this true thermodynamic stability

(∆∆G values) that are expected to be largely additive [28], and so ∆Gf is the proper basis

for the formulation of our arguments. However, our experiments with the P450 variants

do not measure ∆Gf , but instead measure T50, defined as the temperature at which half

of the protein irreversibly denatures after at 10 minute incubation. If we were able to

measure true melting temperatures (Tm) for reversible thermal denaturation, then we could

compellingly argue these Tm values closely correspond with ∆Gf , since both experimental

and thermodynamic considerations [90] suggest that changes in Tm are linearly correlated

with changes in ∆Gf for proteins with the same structure and high sequence identity (as is

the case for all of our mutants). However, our T50 values measure the extent of irreversible

thermal denaturation, which can be affected by factors other than ∆Gf (such as the kinetics

of unfolding, aggregation, or chemical modification of side chains). In this section we discuss

why we used T50 values, and show that these T50 values are highly correlated with the

stability to irreversible chemical denaturation.

In order to measure ∆Gf , it is necessary to find a reversible method for denaturing the

protein. Thermal denaturation was irreversible for all of our P450 variants (at least in the

buffer conditions and at the level of protein purity of our assays), as can be seen from Figure

3.7, which shows that none of the mutants refolded when exposed to sufficiently high tem-

peratures. If chemical denaturation is reversible, ∆Gf scales linearly with the concentration

of chemical denaturant, and the slope (m value) is the same for proteins of the same struc-

ture and high sequence identity [91]. Therefore, for reversible chemical denaturation, ∆Gf

is linearly related to the concentration of denaturant at which half of the protein unfolds.

Other researchers have performed chemical denaturation studies on various cytochromes
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P450. They have generally found that denaturation by guanidinium chloride is irreversible

even at low concentrations [92, 93], but that urea denaturation is sometimes reversible at

low urea concentrations before becoming irreversible at higher concentrations [92, 94]. In

general, P450 denaturation appears to proceed through multiple intermediates and path-

ways [92, 93, 94], perhaps explaining why the reversibility of denaturation is so sensitive to

the particular conditions and P450 variants used.

We tested the stability of 12 of our P450 BM3 heme domain variants to urea denatu-

ration. We began by obtaining samples of the 12 variants as for the thermal denaturation

studies. We then adjusted these samples to roughly 5 µM in the buffer of 100 mM EPPS

(pH 8.2). Half of each sample was diluted to 1.8 µM with buffer, while the other half was

diluted in the same fashion with 8 M urea in 100 mM EPPS (pH 8.2), resulting in a final

urea concentration of 5.1 M. Both samples were incubated overnight at 13oC, and then CO

difference spectra were measured. Figure 3.12A shows that all 12 samples were completely

or nearly completely denatured by the urea treatment, as indicated by the disappearance

of the Soret peak at 450 nm. To see if the denaturation was reversible, we removed the

urea from six of the variants by dialysis against a 1000-fold excess of buffer. None of the

variants exhibited signficant refolding (Figure 3.12A), indicating that urea denaturation

was irreversible for our P450 variants and assay conditions.

To measure the stability of our variants to irreversible urea denaturation, we added 75

µl samples of the 5 µM P450 samples to rows of 96-well microtiter plates. We then used

the pipetting robot to add and mix 200 µl of solutions of various concentrations of urea in

our buffer so that the final urea concentrations were those shown on the x-axes of the plots

in Figure 3.12B. The microtiter plates were incubated overnight at 13 oC. We then added

25 µl of 0.1 M sodium hydrosulfite in 1.3 M potassium phosphate (pH 8.0) and read the

CO difference spectra. Figure 3.12B shows that the Soret peak diminished with increasing

urea concentrations. We fit sigmoidal curves to these denaturation plots, and quantified the

stability to irreversible urea denaturation as the concentration of urea at which half of the

protein had unfolded ([urea]50). We then compared the [urea]50 values for these 12 variants

to the T50 values measured in Figure 3.7. Figure 3.12 shows that the [urea]50 and T50 values

are linearly correlated. Therefore, although we are unable to measure ∆Gf , our measures

of stability to irreversible thermal and urea denaturation are nearly the same, supporting
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the view that the T50 values reflect universal aspects of protein stability rather than unique

characteristics of the process of irreversible thermal denaturation.
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Chapter 4

Thermodynamics of Neutral

Protein Evolution

A version of this chapter has been published as [95].

4.1 Abstract

Naturally evolving proteins gradually accumulate mutations while continuing to fold to

stable structures. This process of neutral evolution is an important mode of genetic change,

and forms the basis for the molecular clock. We present a mathematical theory that predicts

the number of accumulated mutations, the index of dispersion, and the distribution of

stabilities in an evolving protein population from knowledge of the stability effects (∆∆G

values) for single mutations. Our theory quantitatively describes how neutral evolution

leads to marginally stable proteins, and provides formulae for calculating how fluctuations

in stability can overdisperse the molecular clock. It also shows that the structural influences

on the rate of sequence evolution observed in earlier simulations can be calculated using

just the single-mutation ∆∆G values. We consider both the case when the product of

the population size and mutation rate is small and the case when this product is large,

and show that in the latter case the proteins evolve excess mutational robustness that

is manifested by extra stability and an increase in the rate of sequence evolution. All

our theoretical predictions are confirmed by simulations with lattice proteins. Our work

provides a mathematical foundation for understanding how protein biophysics shapes the

process of evolution.
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4.2 Introduction

Proteins evolve largely through the slow accumulation of amino acid substitutions. Over

evolutionary time, this process of sequence divergence creates homologous proteins that

differ at the majority of their residues, yet still fold to similar structures that often perform

conserved biochemical functions [56]. The maintenance of structure and function during

sequence divergence suggests that much of protein evolution is neutral in the sense that

observed sequence changes frequently do not alter a protein’s ability to fold and adequately

perform the biochemical function necessary to enable its host organism to survive. This com-

parative evidence for neutrality in protein evolution has been corroborated by experimental

studies showing that the mutations separating diverged sequences often have no effect other

than modest and additive changes to stability [76], and that a large fraction of random mu-

tations do not detectably alter a protein’s structure or function [20, 24, 23, 18, 7, 49]. In

this respect, it seems that protein evolution should be well described by Kimura’s neutral

theory of evolution, which holds that most genetic change is due to the stochastic fixation of

neutral mutations [96]. One of the key predictions of the neutral theory is that assuming a

constant mutation rate, the number of mutations separating two proteins should be propor-

tional to the time since their divergence [96]. Indeed, the observation by Zuckerkandl and

Pauling [3] that proteins are “molecular clocks” that accumulate mutations at a roughly

constant rate has long been taken as one of the strongest pieces of evidence supporting the

neutral theory [97].

However, mutations that are neutral with respect to a protein’s capacity to perform its

biological function often affect protein thermodynamics. The biological functions of most

proteins depend on their ability to fold to thermodynamically stable native structures [25].

Yet natural proteins are typically only marginally stable, with free energies of folding (∆Gf )

between -5 and -15 kcal/mol [26]. Most random mutations to proteins are destabilizing [77,

24, 79, 98], and their effects on stability (measured as ∆∆G, the ∆Gf of the mutant protein

minus the ∆Gf of the wildtype protein) are frequently of the same magnitude as a protein’s

net stability. The impact of a mutation on a protein’s function can therefore depend on the

protein’s stability: a moderately destabilizing mutation that is easily tolerated by a stable

parent protein may completely disrupt the folding of a less stable parent. This effect of



55

protein stability on mutational tolerance has been verified by experiments demonstrating

that more stable protein variants are markedly more robust to random mutations [7, 49].

The fact that mutations that are neutral with respect to direct selection for protein

function can affect a protein’s tolerance to subsequent mutations is not consistent with

the simplest formulation of the neutral theory of evolution, which tends to assume that

the fraction of mutations that is neutral remains constant in time. Kimura [99] himself

recognized the possibility that the neutrality might change, and Takahata [100] mathemat-

ically treated the consequences of a “fluctuating neutral space”. In particular, Takahata

showed that fluctuating neutrality could explain the observed overdispersion in the molec-

ular clock [101] (the tendency for the variance in the number of fixed mutations to exceed

the expectation for the Poisson process predicted by the neutral theory) long considered

troublesome for the neutral theory. However, further progress on this topic was stymied by

the lack of a specific model for how or why protein neutrality might fluctuate.

More recently, researchers have preferred to describe neutral evolution using the con-

cept of “neutral networks,” which are networks in the space of possible protein sequences

in which each functional protein is linked to all other functional proteins that differ by only

a single mutation [102, 103, 104, 105, 9, 106, 107]. A neutrally evolving protein population

is then envisioned as moving on the neutral network, and the neutrality of the population

may fluctuate if the nodes on the network differ in their connectivities. A general theoret-

ical treatment of evolution on neutral networks by van Nimwegen and coworkers [105] has

shown that if the product of the population size and mutation rate is small then members

of the population are equally likely to occupy any node, while if this product is large then

the population will preferentially occupy highly connected nodes (see also [9, 108, 11]).

Simulations with simplified lattice models of proteins have attempted to provide insight

into the specific features of protein neutral networks. These simulations have shown that

lattice protein neutral networks are centered around highly connected nodes occupied by

stable proteins [9, 11, 10, 8], a finding consistent with the experimental observation [7, 49]

that stable proteins are more mutationally robust. Lattice protein studies also suggest that

protein structures differ in their “designabilities” (defined as the total number of sequences

that fold into a structure), and that sequences that fold into more designable structures

will neutrally evolve at a faster rate due to the increased size and connectivity of their
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neutral networks [104, 12, 43, 34, 10]. Finally, simulations have demonstrated that fluctu-

ations in neutrality as a protein population moves along its neutral network can lead to an

overdispersion of the molecular clock [107], as originally suggested by Takahata. However,

an extension of these lattice protein simulations of evolution on neutral networks into a

quantitative theory has been difficult because protein neutral networks are far too large to

be computed for all but the simplest lattice models.

Here we present a mathematical treatment of neutral protein evolution that describes

the evolutionary dynamics in terms of the ∆∆G values for single mutations, which are ex-

perimentally measurable. Our treatment is based on the experimentally verified [7, 49] con-

nection between protein stability and mutational robustness, as well as a few biophysically

supported assumptions about ∆∆G values for random mutations. By linking a protein’s

tolerance to mutations with stability, we are able to quantitatively describe neutral evolu-

tion without a full description of the neutral network. We can then compute the average

number of accumulated mutations, the average fraction of neutral mutations, the index of

dispersion, and the distribution of stabilities in a neutrally evolving population solely from

knowledge of the ∆∆G values for single mutations. In addition, we follow the formalism

of van Nimwegen and coworkers [105] to calculate all four of these properties in the limit

when the product of the population size and mutation rate is much less than one and in the

limit when this product is much greater than one. In demonstrating that these properties

are different in these two limits, we show that the rate of fixation of neutral mutations can

vary with population size in violation of one of the standard predictions of Kimura’s neutral

theory [99]. Our work presents a unified view of neutral protein evolution that is grounded

in measureable thermodynamic quantities.

4.3 Results

4.3.1 Assumptions and Mathematical Background

In this section we describe the physical view of protein evolution that motivates our work.

We begin with the basic observations that evolution selects for protein function, and that

most proteins must stably fold in order to function [25], meaning that protein stability

is under evolutionary pressure only insofar as it must be sufficient to allow a protein to
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fold and function. In taking this view, we ignore those proteins (estimated at 10% of

prokaryotic and 30% of eukaryotic proteins) that are intrinsically disordered [109], as well

as those rare proteins that are only kinetically stable [110]. Natural selection for func-

tion requires a protein to fold with some minimal stability ∆Gmin
f , since proteins that

lack this minimal stability will be unable to reliably adopt their native structure and per-

form their biochemical task. A protein’s extra stability beyond this minimal threshold is

quantified as ∆Gextra
f = ∆Gf − ∆Gmin

f , meaning that all functional proteins must have

∆Gextra
f ≤ 0 (more negative values of ∆Gf indicate increased stability). We further as-

sume that as long as ∆Gextra
f ≤ 0, natural selection for protein function is indifferent to

the exact amount of extra stability a protein posesses. This assumption is at odds with

the persistent speculation that high stability inherently impairs protein function and so is

selected against by evolution [72, 70]. But the circular argument most commonly advanced

to support this speculation — that the observed marginal stability of natural proteins indi-

cates that higher stability is detrimental to protein function — has now been contradicted

both by experiments that have dramatically increased protein stability without sacrificing

function [76, 73, 74, 75] and by demonstrations that marginal stability is a simple conse-

quence of the fact that most mutations are destabilizing [41, 83, as well as the current work].

There is a possibility, however, that certain regulatory proteins must be marginally stable

to faciliate rapid degradation [111]. To summarize, current biochemical evidence supports

our assumption that (with certain well-defined exceptions) the only requirement imposed

on protein stability by natural selection for protein function is that stability must meet or

surpass some minimal threshold (a protein must have ∆Gextra
f ≤ 0).

A mutation to a protein changes its stability by an amount ∆∆G, and experimental

measurements of ∆∆G values have shown that most mutations are destabilizing (have

∆∆G > 0) [24, 77, 79, 98]. A mutation is neutral with respect to selection for stability if

∆∆G + ∆Gextra
f ≤ 0 since the mutant protein still satisfies the minimal stability threshold;

otherwise the mutant does not stably fold and is culled by natural selection. Of course,

mutations can also have specific effects on protein function (such as altering an enzyme’s

activity), but experiments have shown that such mutations are rare compared to the large

number of mutations that affect stability [20, 24, 23, 49]. Mutations can also have effects

unrelated to the functioning of the individual protein molecule: they can affect its propensity
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Figure 4.1: A thermodynamic view of protein evolution. A mutant protein stably folds if and
only if it possesses some minimal stability, ∆Gmin

f (in this case -5 kcal/mol). The stability

of the wildtype protein is ∆Gwt
f = −7.5 kcal/mol, meaning that it has ∆Gextra

f = −2.5
kcal/mol of extra stability. The bars show the distribution of ∆∆G values for mutations.
Those mutants with ∆Gextra

f + ∆∆G ≤ 0 still stably fold, while all other mutants do not
fold and so are culled by natural selection. The probability that a mutation will be neutral
with respect to stable folding is simply the fraction of the distribution that lies to the left
of the threshold. The data in this figure are hypothetical.

to aggregate [5], alter its codon usage [112], change its mRNA stability [113], affect the

efficiency or accuracy of translation [112, 114], or change the fraction of mistranslated

proteins that fold [85]. These higher-level effects are probably most apparent in the evolution

of highly expressed proteins [85, 115]. However, here we ignore such effects and assume

that the evolutionary impact of a mutation is mostly determined by its effect on protein

stability (an assumption in agreement with a recent bioinformatics analysis [116]). The

view we present therefore describes the impact of a mutation solely by its ∆∆G value and

the ∆Gextra
f of the wildtype protein, and is summarized graphically in Fig. 4.1 We have

previously used a similar view to successfully describe experimental protein mutagenesis

results [7, 49].

To use the view of Fig. 4.1 to construct a useful description of neutral protein evolution,

we make one major assumption: that the overall distribution of ∆∆G values for random

mutations stays roughly constant as the protein sequence evolves. Actually, this assumption

is stronger than is strictly needed for the mathematical theory presented below — the

theory can be developed simply by assuming that all proteins with the same ∆Gf have

the same distribution of ∆∆G values (in this case the matrix elements Wij introduced

below depend on j in addition to the difference i − j). However, we make the stronger

assumption that the ∆∆G distribution remains constant during sequence evolution, since
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we believe that this assumption is consistent with existing evidence. We emphasize that

this assumption does not imply that we are arguing that the ∆∆G distribution is identical

for every possible protein sequence. Clearly, for any given structure there is a most stable

sequence (with all ∆∆G values positive), a least stable sequence (with all ∆∆G values

negative), and a vast range of sequences in between. However, most of these sequences

fall within a stability range that is never populated by evolution, since simulations [41]

and experiments [117, 118] clearly show that the vast majority of protein sequences do

not stably fold into any structure (meaning the least stable folded protein is still far more

stable than the typical random sequence). Among the subset of sequences that do stably

fold, the simple statistical reality that marginally stable sequences are far more abundant

than highly stable sequences causes evolution to further confine itself mostly to sequences

with stabilities far less than that of the most stable sequence [41, 83, , as well as the

current work]. This fact is amply demonstrated by engineering experiments that have

greatly increased the stability of natural proteins without sacrificing any of their functional

properties [76, 73, 74, 75]. Therefore, although the distribution of ∆∆G values certainly

varies widely among all sequences, it is still reasonable to assume that it is relatively constant

among those sequences visited by natural evolution. This assumption of a constant ∆∆G

distribution among evolved sequences is explicitly supported by simulations [7, 49, 8, 119,

, as well as the current work], and is consistent with the observation that the number of

neighbors on a protein’s neutral network is approximately determined by its stability [9, 11].

Furthermore, protein mutagenesis experiments indicate that the ∆∆G values for random

mutations are usually additive [76, 28], meaning that any given mutation to a protein

of length L will alter only ≈ 1/L of the other ∆∆G values, leaving the ∆∆G distribution

mostly unchanged. Finally, the assumption of a constant ∆∆G distribution has been shown

to explain the experimentally observed exponential decline in the fraction of functional

proteins with increasing numbers of mutations [7]. However, we acknowledge that at present

the assumption of a roughly constant ∆∆G distribution among neutrally evolving proteins

can be verified only for lattice proteins — for real proteins the most we can say is that it is

consistent with existing experimental evidence.

We begin our mathematical treatment by conceptually dividing the continuous variable

of protein stability into small discrete bins of width b. This discretization of stability allows



60

us to treat mutations as moving a protein from one bin to another — the bins can be made

arbitrarily small to eliminate any numerical effects of the binning. The stability of each

folded protein in the evolving population (the folded proteins are all those with ∆Gextra
f ≤ 0)

can be described by specifying its stability bin. Specifically, a protein is in bin i if it has

∆Gextra
f between (1− i) b and −ib, where i = 1, 2, . . .. Let Wij be the probability that

a random mutation has a ∆∆G value such that it moves a protein’s stability from bin j

to bin i, where i and j both are in the range 1, 2, . . .. Then Wij is easily computed as

the fraction of ∆∆G values between b (j − i− 1) and b (j − i). Since Wij only describes

transitions between folded proteins, and since we have assumed that a protein’s mutational

tolerance is determined by its stability, then the fraction of folded mutants (neutrality) of

a protein in bin j is νj =
∑

i
Wij. Clearly, more stable proteins will have larger values of νj .

In the next two sections, we will use the matrix W with elements Wij to calculate

the distribution of stabilities in an evolving protein population of constant size N , the

mean number of mutations 〈m〉T after T generations, the corresponding index of dispersion

RT =
〈m2〉T −〈m〉T

2

〈m〉T
, and the average fraction of mutations 〈ν〉 that do not destabilize

the proteins past the minimal stability threshold. We assume that W is computed from

the distribution of ∆∆G values for all random single amino-acid mutations, although in

principle it could be for any type of mutation. We also assume that the per-protein-per-

generation mutation rate µ is small, so that at each generation a protein undergoes at most

one mutation. Our calculations at first follow, and then extend the theoretical treatment

by van Nimwegen and coworkers [105] of evolution on a neutral network. In particular,

we follow their lead in separately treating the two limiting cases where the product Nµ

of the population size and mutation rate is ≪ 1 and ≫ 1. We emphasize that all of the

equations derived in the next two sections depend only on the mutation rate µ, the number

of generations T , and the matrix W which can be computed from the single-mutant ∆∆G

values. The population size N determines the applicable limiting case, but otherwise drops

out of all final results.

4.3.2 Limit when Nµ≪ 1

When Nµ≪ 1, the evolving population is usually clonal, since each mutation is either lost

or goes to fixation before the next mutation occurs. If a mutation destabilizes a protein in
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the population beyond the stability cutoff, then it is immediately culled by natural selection.

If a mutation does not destabilize a protein beyond the stability cutoff, it will be lost to

genetic drift with probability N−1
N and go to fixation with probability 1/N [96]. Since

mutations occur rarely (Nµ ≪ 1), the loss or fixation of the mutant will occur before the

next mutant appears in the population. The entire population therefore moves as one entity

along its neutral network. The population can thus be described by the column vector p (t),

with element pi (t) giving the probability that the population is in stability bin i at time t.

If the population is initially in stability bin j, at each generation there is a probability

NµWij that a protein experiences a mutation that changes its stability to bin i, and if

such a mutation occurs, then there is a probability of 1/N that it is eventually fixed in the

population. Therefore, at each generation there is a probability µWij that the population

experiences a mutation that eventually causes it to move from stability bin j to bin i. If

we define the matrix V so that the diagonal elements are given by Vii = νi and all other

elements are zero, then p evolves according to

p (t + 1) = (I− µV + µW)p (t) (4.1)

where I is the identity matrix. Note that this equation treats lethal mutations (those that

destabilize a protein beyond the cutoff) as immediately being lost to natural selection and

so leaving the population in its original stability bin (hence the population accumulates a

mutation with probability µV rather than probability µ). Equation 4.1 describes a Markov

process with the non-negative, irreducible, and acyclic transition matrix A = I−µV+µW,

and so p approaches the unique stationary distribution po satisfying

0 = (V −W)po. (4.2)

This equation gives the expected distribution of protein stabilities solely in terms of the

single-mutant ∆∆G values.

We now calculate the average number of mutations 〈m〉T,o that accumulate in an equi-

librated population after T generations and the corresponding index of dispersion RT,o.

We emphasize that 〈m〉T,o represents the average number of accumulated mutations during

the course of the evolutionary process. When the number of accumulated mutations m is
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small compared to the length of the protein sequence L (m ≪ L), then m is just equal to

the number of residues differing from those in the parent protein sequence (the Hamming

distance). However, when m becomes substantial relative to L, m becomes larger than the

Hamming distance since some sites will undergo multiple mutations [120]. In this case it

is necessary to use a substitution model to infer m from the observed Hamming distance.

In the treatment that follows, we calculate the expected value of m; application of these

formulae to actual protein sequences requires use of one of the well-established statistical

techniques for inferring m from the Hamming distance [120, 121]. We begin the calculation

of 〈m〉T,o by defining p (m, t) to be the column vector with element i giving the probability

that at time t the population has accumulated m mutations and is in stability bin i. The

time evolution of p (m, t)is given by

p (m, t + 1) = (I− µV)p (m, t) + µWp (m− 1, t). (4.3)

The kth moment of the number of mutations at time t is

〈mk〉t = e
∑

m

mkp (m, t), (4.4)

where e = (1, . . . , 1) is the unit row vector. We can write a recursive equation for 〈m〉t in

the long-time limit (steady state) by multiplying both sides of Equation 4.3 by m, summing

over m, and left multiplying by e to obtain

〈m〉t+1 = e (I− µV)
∑

m

mp (m, t) + µeW
∑

m

mp (m− 1, t)

= eA
∑

m

mp (m, t) + µeWpo

= 〈m〉t + µ〈ν〉o, (4.5)

where we have used the property eA = e, noted that in the long-time limit
∑

m
p (m, t) = po

and
∑

m
mp (m− 1, t) =

∑

m
[(m− 1)p (m− 1, t) + p (m− 1, t)] =

∑

m
mp (m, t) + po, and

defined the average neutrality as 〈ν〉o = eWpo = eVpo. Summing the recursion yields the
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steady-state value for the number of accumulated mutations,

〈m〉T,o = Tµ〈ν〉o. (4.6)

To calculate the index of dispersion RT,o =
〈m2〉T,o−〈m〉T,o

2

〈m〉T,o
, we need to find the second

moment 〈m2〉T,o. In a fashion analogous to the construction of Equation 4.5, we can write

a recursive expression for the long-time limit of 〈m2〉T,o as

〈m2〉t+1 = e (I− µV)
∑

m

m2p (m, t) + µeW
∑

m

m2p (m− 1, t)

= eA
∑

m

m2p (m, t) + 2µeW
∑

m

mp (m, t) + µeWpo

= 〈m2〉t + 2µeW

[

A
∑

m

mp (m, t− 1) + µWpo

]

+ µ〈ν〉o

= 〈m2〉t + 2µ2eW
t−1
∑

τ=0

AτWpo + µ〈ν〉o (4.7)

where we have used the property (implicit in Equation 4.5) that in the long-time limit,
∑

m
mp (m, t) = A

∑

m
mp (m, t− 1) + µWpo. Summing the recursion yields the following

value for the long-time limit,

〈m2〉T,o = Tµ〈ν〉o + 2µ2eW

T−1
∑

t=0

t−1
∑

τ=0

AτWpo

= Tµ〈ν〉o + 2µ2eW

T
∑

t=1

(T − t)At−1Wpo

= Tµ〈ν〉o + T (T − 1) µ2〈ν〉o
2 + 2µ2eW

T
∑

t=1

(T − t)
(

At−1 −Q
)

Wpo, (4.8)

where we have made the substitution eWQWpo = 〈ν〉o
2 and noted that limt→∞ At = Q =

(po, . . . ,po) since A is an irreducible, aperiodic, stochastic matrix [122]. This yields a value

for the index of dispersion in the long-time limit of

RT,o = 1− µ〈ν〉o +
2µ

〈ν〉o
eW

T
∑

t=1

(

1−
t

T

)

(

At−1 −Q
)

Wpo. (4.9)

The above equation is consistent with the generic equation for the index of dispersion
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given by Cutler [123, 101], where we now give concrete expressions for the variables ρ

and h (t) in Cutler’s formula in terms of measureable quantitites, namely ρ = µ〈ν〉o and

h (t) = µ

〈ν〉o
eWAt−1Wpo.

We can further simplify Equation 4.9 by performing spectral decompositions of A and

Q. Let λ1, . . . , λK be the eigenvalues of V −W, and let r1, . . . , rK and l1, . . . , lK be

the corresponding right and left eigenvectors, normalized so that lirj = 1 if i = j and 0

otherwise. These eigenvectors are also eigenvectors of the irreducible, acyclic, stochastic A,

and the corresponding eigenvalues are 1−µλ1, . . . , 1−µλK , with Perron-Frobenius theorems

guaranteeing that one eigenvalue (chosen here to be 1− µλ1) is equal to one and all other

eigenvalues have absolute values less than one. Then r1 and l1 are right and left eigenvectors

of Q with eigenvalue 1 (i.e. r1 = po and l1 = e), and all other eigenvalues of Q are zero. The

spectral decompositions are therefore Q = r1l1 and A = r1l1 +
K
∑

i=2
(1− µλi) rili. Inserting

these spectral decompositions into Equation 4.9, we find for the index of dispersion a value

of

RT,o = 1− µ〈ν〉o +
2µ

〈ν〉o
eW

T
∑

t=1

(

1−
t

T

) K
∑

i=2

(1− µλi)
t−1 riliWpo, (4.10)

since At = r1l1 +
K
∑

i=2
(1− µλi)

t rili [122]. In the limit of large T and small µ, the value of

RT,o given by the above equation approaches the value

RT,o ≈ 1 +
2µ

〈ν〉o
eW

T
∑

t=1

K
∑

i=2

(1− µλi)
t−1 riliWpo

≈ 1 +
2

〈ν〉o
eW

K
∑

i=2

λ−1
i riliWpo, (4.11)

where the µ〈ν〉o term drops out because µ is small and the
T
∑

t=1

t
T (1− µλi)

t−1 term drops out

because T is large and |1− µλi| < 1. This equation shows that RT,o approaches a constant

value independent of T and µ. Although we could not prove that value of RT,o given by

Equation 4.11 is necessarily greater than one (since some of the eigenvalues λi could be

complex), in all of our simulations we observed RT,o > 1, suggesting that when Nµ ≪ 1,

fluctuations in protein stability tend to overdisperse the molecular clock.
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4.3.3 Limit when Nµ≫ 1

When Nµ≫ 1, the population is spread across many nodes of the neutral network rather

than converged on a single sequence [105]. In this limit, we treat the evolutionary dynamics

of the population deterministically (i.e., we assume an infinite population size), and describe

the distribution of stabilities in the population by the column vector x (t), with element

xi (t) giving the fraction of proteins in the population at time t that have stabilities in bin

i. At generation t, the fraction of mutated proteins that continue to fold is 〈ν〉t = eWx (t).

These folded proteins reproduce, and in order to maintain a constant population size, this

reproduction must balance the removal of proteins by death, meaning that each folded

sequence must produce an average of αt = [1− µ (1− 〈ν〉t)]
−1 offspring. The population

therefore evolves according to

x (t + 1) = αt [(1− µ) I + µW]x (t) . (4.12)

After the population has evolved for a sufficient period of time, x approaches an equilibrium

distribution of x∞. The corresponding equilibrium neutrality is 〈ν〉∞ = eWx∞, and the

equilibrium reproduction rate is α = [1− µ (1− 〈ν〉∞)]−1, so

x∞ = α [(1− µ) I + µW]x∞. (4.13)

This equation can be rewritten to show that x∞ is the principal eigenvector of W,

〈ν〉∞x∞ = Wx∞. (4.14)

We note that 〈ν〉∞ approximates the asymptotic neutrality for the decline in the fraction

of folded proteins upon random mutagenesis [7, 119].

We now determine the average number of accumulated mutations 〈m〉T,∞ and the cor-

responding index of dispersion RT,∞ by treating the forward evolutionary process. As

described in the text immediately prior to Equation 4.3, our calculations describe the ac-

tual number of mutations accumulated during the evolutionary process, which may differ

from the number of sequence differences relative to the ancestor if a single site undergoes

multiple mutations. When Nµ ≫ 1, it is not a priori obvious that the average number of
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mutations present in the population is equivalent to number of fixed substitutions along the

line of descent. Therefore, in the Appendix, we show that identical results are obtained by

tracing a randomly chosen protein backwards in time along its ancestor distribution, prov-

ing the treatment we give below is mathematically equivalent to treating the time-reversed

process. We define x (m, t) as the column vector with element i giving the fraction of the

population at time t that has accumulated m mutations and is in stability bin i. Once

the population has reached the equilibrium distribution of stabilities, the time evolution of

x (m, t) is

x (m, t + 1) = α (1− µ)x (m, t) + αµWx (m− 1, t). (4.15)

The recursion can be solved to obtain

x (m, t) = αt
t
∑

κ=0

(

t

κ

)

(1− µ)t−κ µκWκx (m− κ, 0) , (4.16)

as can be verified by direct substitution. Since we are assuming the population has equili-

brated at time 0 and no mutations have accumulated at that time, x (m, 0) is x∞ for m = 0

and 0 otherwise. Furthermore, x∞ satisfies Equation 4.14, so multiplying Equation 4.16 by

e yields

x (m, t) =

(

t

m

)

αt (1− µ)t−m (µ〈ν〉∞)m , (4.17)

where x (m, t) = ex (m, t) gives the fraction of the population that has accumulated m

mutations after t generations. The average number of accumulated mutations after T

generations is the mean of this binomial distribution,

〈m〉T,∞ =
Tµ〈ν〉∞

1− µ (1− 〈ν〉∞)
. (4.18)

Using the well known result for the variance of the binomial distribution, we find that the

index of dispersion is

RT,∞ = 1−
µ〈ν〉∞

1− µ (1− 〈ν〉∞)
. (4.19)

It is important to reiterate that the above equation was derived under the assumption that
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there is at most one mutation per sequence per generation. For realistic distributions of

mutations (i.e. Poisson), this means that µ≪ 1. In this regime, RT,∞ is close to one.

4.3.4 Lattice Protein Simulations

We tested our theory’s predictions on the evolutionary dynamics of lattice proteins. Lattice

proteins are simple protein models that are useful tools for studying protein folding and

evolution [34]. Our lattice proteins were chains of 20 amino acids that folded on a two-

dimensional lattice. The energy of a lattice protein conformation was equal to the sum

of the pairwise interactions between non-bonded amino acids [46]. Each lattice protein

has 41,889,578 possible conformations, and by summing over all of these conformations we

could exactly determine the partition sum and calculate ∆Gf . We set a minimal stability

threshold for the lattice proteins of ∆Gmin
f = 0, meaning that we considered all proteins

that folded to the target structure with ∆Gf ≤ 0 to be folded and functional, while all

proteins with ∆Gf > 0 were considered to be nonfunctional. We note that this stability

threshold is equivalent to requiring a lattice protein to spend at least half of its time in

the target native structure at equilibrium. We began by generating lattice proteins that

stably folded to each of the three different structures shown in Figure 4.2. For each of these

three proteins, we determined the distribution of ∆∆G values for all 380 single mutations

(these distributions are shown in Figure 4.2). These distributions were used to construct

the matrix W and to predict the equilibrium distribution of stabilities, the average number

of mutations, and the indices of dispersion for both the Nµ ≪ 1 and the Nµ ≫ 1 cases,

using the equations presented in the preceding sections.

To test the accuracy of these predictions, we then simulated evolving populations of

the lattice proteins with a standard evolutionary algorithm using Wright-Fisher sampling.

Briefly, the populations were held at a constant size of either N = 10 or N = 105. At each

generation, a new population was created by choosing parents with equal probability from

all folded proteins in the previous generation’s population, and copying these parents into

the new population with a mutation rate of 5× 10−4 mutations per residue per generation.

Since the proteins have a length of 20 amino acids, this mutation rate corresponds to a per-

protein-per-generation mutation rate of µ = 10−2. Therefore, the product Nµ is either 0.1

or 103, corresponding to Nµ ≪ 1 or Nµ ≫ 1, respectively. We emphasize that the lattice
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protein evolutionary algorithm is the same for both population sizes. When N = 10 the

population naturally follows dynamics approximating those presented for Nµ ≪ 1, while

when N = 105 it naturally follows dynamics approximating those presented for Nµ≫ 1 (as

evidenced by the excellent agreement of the predictions with the simulations). For N = 10,

we performed 1,000 replicates for each different structure. For N = 105, computational

constraints limited us to 10 replicates for each structure (however the evolutionary dynamics

are nearly deterministic in this case, so all replicates yielded similar results). We note that

during the simulations we recorded the number of mutations that actually accumulated

rather than simply computing the number of differences (Hamming distance) from the

original sequence.

Figure 4.2 shows the theoretical predictions and simulation results for each of the three

structures. The theoretical predictions are in good agreement with the simulation results.

Figure 4.2 clearly shows that when Nµ ≫ 1, the proteins tend to be more stable than

when Nµ ≪ 1. This extra stability is a biophysical manifestation of the neutrally evolved

mutational robustness predicted by van Nimwegen and coworkers [105]. This increase in

stability leads to a substantial increase number of accumulated mutations. In accordance

with the theoretical predictions, when Nµ ≪ 1 the index of dispersion is elevated above

one by fluctuations in protein stability. Another clear results from the simulations is that

proteins of different structure show markedly different distributions of stabilities and rates

of sequence evolution due to the differences in their ∆∆G distributions. Overall, the sim-

ulations offer strong support for the validity of the theoretical predictions in the preceding

sections.

4.4 Discussion

We have presented that a theory that offers quantitative predictions about the distribution

of stabilities, the average number of fixed mutations, and the index of dispersion for an

evolving protein population in terms of the ∆∆G values for individual mutations. We

have demonstrated that these predictions are accurate for simple lattice proteins, and have

used existing biophysical evidence to argue that the basic theoretical assumptions should

also be accurate for real proteins. In this section, we give qualitative interpretations of
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Figure 4.2: The theory gives accurate predictions for the evolution of model lattice proteins.
Each row of panels corresponds to a different lattice protein. The graphs at left show the
starting protein and the distribution of ∆∆G values for all point mutations. The graphs
in the middle and right show the predicted (lines) and measured (boxes) distributions
of stabilities among the evolved proteins. The tables embedded in the graphs show the
predicted and measured values for the average number of mutations (〈m〉T ) and the index
of dispersion (RT ) after 5,000 generations of neutral evolution. The center graphs are
for a population size of N = 10, and the graphs at the right are for N = 105. In both
cases, the per protein per generation mutation rate is µ = 0.01. As predicted, the evolving
population with Nµ ≫ 1 evolved mutational robustness that is manifested by increased
protein stability. This additional mutational robustness accelerated the rate of sequence
evolution.
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the mathematical results and discuss their implications for our understanding of protein

evolution.

One major result is to show that the effects of protein structure on the rate of sequence

evolution can be quantitatively cast in terms of the ∆∆G values for single mutations. Nu-

merous lattice protein simulations have shown that protein structure can dramatically affect

the rate of sequence evolution, since structures that are more “designable” (encoded by more

sequences) can evolve their sequences more rapidly (as can be seen in Fig. 4.2 of this work)

[104, 9, 106, 11, 12, 34, 10]. Unfortunately, these simulations typically measure structural

designability by enumerating a large number of lattice protein sequences, meaning that their

findings cannot be extended to real proteins for which such extensive enumeration is impos-

sible. However, recent theoretical work by England and Shakhnovich [43] has made progress

in connecting designability to observable structural properties, and a bioinformatics analysis

based on this theoretical measure of designability indicates that structure indeed influences

the evolutionary rate of real proteins [124]. Our work provides a way to quantitatively

relate the structural influences on protein evolution to experimentally measureable ∆∆G

values, opening the door to further connecting structural designability and sequence evolu-

tion to laboratory stability measurements. Although thousands of ∆∆G values have been

measured experimentally [98], at present there are no large sets of measurements for truly

random mutations to a single protein. When such sets of measurements become available,

it should be possible to use them in conjunction with the theory that we have presented to

predict the neutralities of real proteins with different structures.

A second important result is to show that protein evolutionary dynamics can depend

on the product of population size and mutation rate, Nµ. When Nµ ≫ 1, the evolving

protein population is polymorphic in stability and subject to frequent mutations, so the

more stable (and thus more mutationally tolerant) proteins produce more folded offspring.

In contrast, when Nµ ≪ 1, the population is usually monomorphic in stability and so

all members of the population are equally likely to produce folded offspring. The general

tendency for populations to neutrally evolve mutational robustness when Nµ ≫ 1 has

previously been treated mathematically by van Nimwegen and coworkers [105], and a variety

of lattice protein simulations have noted the tendency of evolving protein populations to

preferentially occupy highly connected neutral network nodes [9, 108, 11]. Our work shows
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that for proteins, in the limiting cases when Nµ≪ 1 or ≫ 1, this process can be rigorously

described by considering only protein stability, rather than requiring a full analysis of the

neutral network (provided, as we have argued is likely to be the case, that the assumption

of a roughly constant ∆∆G distribution holds for real proteins as well as it holds for our

lattice proteins). In addition, we prove that the number of accumulated mutations depends

on whether Nµ is ≪ 1 or ≫ 1. This finding is at odds with the standard prediction [99]

of Kimura’s neutral theory that the rate of evolution is independent of population size.

The reason for this discrepancy is that the standard neutral theory fails to account for the

possibility that increasing the population size so that Nµ ≫ 1 can systematically increase

the fraction of mutations that are neutral.

A third important contribution of our theory is to use the distribution of ∆∆G values

for single mutations to predict the distribution of protein stabilities in an evolving popula-

tion. Several researchers have pointed out that evolved proteins will be marginally stable

simply because most mutations are destabilizing [41, 83]; we have described this process

quantitatively. In addition, we have shown how the neutral evolution of mutational ro-

bustness when Nµ ≫ 1 will shift the proteins towards higher stabilities (as shown in Fig.

4.2), although this increase in stability is limited by the counterbalancing pressure of pre-

dominantly destabilizing mutations. The formulae we provide can in principle be combined

with experimentally measured ∆∆G values to predict the expected range of stabilities for

evolved proteins.

Our work also weds Takahata’s concept that fluctuating neutral spaces might overdis-

perse the molecular clock [100, 101, 107] to a concrete discription of how protein neutrality

fluctuates during evolution. When Nµ ≪ 1, fluctuations in protein stability can cause an

overdispersion in the number of accumulated substitutions that can be calculated from the

single-mutant ∆∆G distribution. Furthermore, given our assumption of a roughly constant

∆∆G distribution, we show that the index of dispersion will approach a constant value

that is independent of time or mutation rate, but will depend on whether Nµ≪ 1 or ≫ 1.

Previous simulations have indicated that overdispersion indeed depends on the population

size [107, 125] — we have explained this dependence by showing that stability-induced

overdispersion does not occur when Nµ ≫ 1 since the population’s distribution of stabil-

ities equilibrates as it spreads across many sequences. Mathematically, the difference in
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the cases Nµ≫ 1 and Nµ≪ 1 is that, assuming the ∆∆G distribution remains relatively

constant, when the population size is sufficiently large, the distribution of protein stabilities

no longer fluctuates in a manner that influences the probability of a substitution (Equation

4.3 contains µV in the first term on the right side, while Equation 4.15 does not).

In summary, we have presented a mathematical theory of how thermodynamics shape

neutral protein evolution. A major strength of our theory is that it makes quantitative

predictions using single-mutant ∆∆G values, which can be experimentally measured. Our

work also suggests how neutral and adaptive protein evolution may be coupled through

protein thermodynamics. Protein stability represents an important hidden dimension in

the evolution of new protein function, since extra stability that is itself neutral can allow

a protein to tolerate mutations that confer new or improved functions [49]. Our theory

describes the dynamics of protein stability during neutral evolution — adaptive protein

evolution is superimposed on these stability dynamics, with proteins most likely to acquire

beneficial mutations when they are most stable.

4.5 Materials and Methods

4.5.1 Lattice Protein Simulations

We performed simulations with lattice proteins of L = 20 monomers of 20 types corre-

sponding to the natural amino acids. The proteins could occupy any of the 41,889,578

possible compact or non-compact conformations on a two-dimensional lattice. The energy

of a conformation C is the sum of the nonbonded nearest-neighbor interactions, E (C) =
L
∑

i=1

i−2
∑

j=1
Cij (C) × ǫ (Ai,Aj), where Cij (C) is one if residues i and j are nearest neighbors in

conformation C and zero otherwise, and ǫ (Ai,Aj) is the interaction energy between residue

types Ai and Aj, given by Table 5 of [46]. We computed the stability of a conformation Ct as

∆Gf (Ct) = E (Ct) + T ln {Q (T )− exp [−E (Ct) /T ]} , where Q (T ) =
∑

{Ci}
exp [−E (Ci) /T ]

is the partition sum, made tractable by noting that there are only 910,972 unique contact

sets. All simulations were performed at a reduced temperature of T = 1.0

We used adaptive walks to find sequences that folded into each of the three arbitrarily

chosen conformations shown in Figure 4.2 with ∆Gf ≤ 0, and then neutrally evolved

these sequences for 104 generations with a population size of N = 100. Our evolutionary



73

algorithm was as follows: at each generation we randomly chose a protein that folded to

the parental structure with ∆Gf ≤ 0 from the population and mutated each residue to

some other randomly chosen residue with probability 5 × 10−4, and continued doing this

until we had filled the new population with proteins. At the end of this equilibration

evolution, we chose the most abundant sequence in the population as the starting point

for further analysis and for the computation of the distribution of ∆∆G values for all 380

point mutations (sequences shown in Figure 4.2). In principle, computing the distribution

of ∆∆G values over all sequences in the population rather than just the most abundant one

should give a more accurate representation of the true form of this distribution, and indeed

we found that doing this slightly increased the accuracy of the predictions shown in Figure

4.2. However, the resulting improvement in accuracy was small, since the approximate

constancy of the ∆∆G distribution during neutral evolution (discussed below) means that

the distribution computed over a single sequence is representative of that computed over

all sequences in the population. Therefore, we chose to compute the ∆∆G distribution

over just the most abundant sequence since this choice more closely tracks what would be

experimentally feasible with real proteins. (It is experimentally tractable to compute ∆∆G

values for a single protein, but would be unmanageable to do so for all proteins in a natural

population.)

To collect data for the case when the product Nµ of the population size N and the

per protein per generation mutation rate µ is ≪ 1, we first equilibrated 1,000 replicates

by evolving each of them with a population size of N = 10 and for 5,000 generations

starting with a clonal population of the initial sequence described above. The remainder of

the evolutionary algorithm was as described above: the mutation rate stayed at 5 × 10−4

per residue per generation (corresponding to a per protein per generation mutation rate of

µ = 10−2), and at each generation all proteins that folded to the target native structure with

∆Gf ≤ 0 reproduced with equal probability. We then evolved each of these equilibrated

populations for a further 5,000 generations to collect data. We combined the data for all the

folded proteins in the final populations of all the replicates to calculate the average number

of mutations 〈m〉T after T generations, the corresponding index of dispersion RT , and the

distribution of stabilities shown in Figure 4.2. If we instead simply randomly chose a single

folded protein from the final population of each replicate, we obtained results that were
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identical within the precision shown in Figure 4.2. We emphasize that 〈m〉T and RT were

computed by keeping track of the actual number of mutations that had occurred during

the evolutionary history of each protein, not simply by counting the number of amino acid

differences between the ancestral and final sequences (the two quantities may differ if a

single site undergoes multiple mutations, as discussed in more detail in later sections).

To generate the data for Nµ ≫ 1, we used the same procedure but with N = 105 and

only performed 10 replicates. We again computed the statistics shown in Figure 4.2 by

combining the data for all of the folded proteins in the final populations of all 10 replicates.

Similar results were obtained if we instead computed 〈m〉T and RT over all of the folded

proteins in the final population of a single replicate (average values of 〈m〉T were identical

while the RT values of 1.03, 0.95, and 0.94 were extremely similar to those shown from top

to bottom in Figure 4.2). This outcome is expected since the probability distributions for

Nµ≫ 1 evolve deterministically.

4.5.2 Lattice Protein Predictions

The numerical predictions for the lattice proteins given in Fig. 4.2 were computed by

constructing the matrix W described in the first section of Results with a bin size of

b = 0.005 and truncating the matrix by assuming that no proteins would have stabilities

less than -5.0. For the case when Nµ≪ 1, 〈m〉T was calculated using Equation 4.6 and RT

was calculated using Equation 4.11. For Nµ≫ 1, 〈m〉T was calculated using Equation 4.18

and RT was calculated using Equation 4.19.

4.6 Appendix

Here we calculate the properties of the evolving population when Nµ≫ 1 by analyzing the

time-reversed process to compute the mean and variation in the number of mutations in a

single randomly chosen protein over time. We show that the results so obtained are identical

to those found in the main text, where we analyzed the forward-time process to compute the

mean and variation in the number of mutations across the population of evolving proteins.

When Nµ≫ 1, the population is now never converged to a single sequence, so it is not a

priori obvious that the average number of mutations present in the population is equivalent
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to the expected number of fixed substitutions along the line of descent. In fact, in the limit of

very large population sizes there may not even be a common line of descent in relevant time

frames, since many new mutations will occur before any given mutation goes to fixation.

In the main text we calculated the average number of mutations 〈m〉T,∞ a sequence in the

population has accumulated over the last T generations by treating the forward evolution

of the population. Here we trace a randomly chosen protein in the population back in time,

and show that the average number of substitutions 〈s〉T that it has accumulated over the

last T generations is equal to 〈m〉T,∞. We also show that indices of dispersion of 〈m〉T,∞

and 〈s〉T have the same value of RT,∞.

To calculate 〈s〉T , we first define a vector a giving the ancestor distribution [126]: element

i of a (T − t) gives the probability that a randomly chosen sequence from the population at

time T had a predecessor with stability in bin i at time T − t. The transition probabilities

of a (T − t) when the population is in equilibrium are the discrete time analogue of those

computed by Hermisson and coworkers [126]. From Equation 4.15 of the main text, it

follows that the fraction of sequences in bin i at time t + 1 that had as their ancestor in the

previous generation a sequence in bin j is αt [(1− µ) δij + µWij ]xj (t). In order to obtain

the probability that a sequence in bin i at time t + 1 had an ancestor in bin j, we have

to divide this fraction by the total number of sequences in bin i at time t + 1. When the

population is at equilibrium, αt = α and xi (t + 1) = xi (t) = xi where xi is the element

from x∞. Hence, the probability that a sequence in bin i had an ancestor in bin j is

α [(1− µ) δij + µHji], where we have defined

Hji = Wijxj/xi, (4.20)

The time evolution of a is therefore

a (T − t) = α [(1− µ) I + µH]a (T − t + 1) , (4.21)

where the matrix H is defined by Equation 4.20. Equation 4.21 can be solved to show that

the equilibrium value of a is a∞ satisfying

〈ν〉∞a∞ = Ha∞. (4.22)
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If we define a (s, T − t) as the vector with element i giving the probability that a randomly

chosen sequence at time T had a predecessor at time T − t in stability bin i and with s

substitutions relative to the sequence at time T , then the time evolution for an equilibrated

population is

a (s, T − t− 1) = α (1− µ)a (s, T − t) + αµHa (s− 1, T − t) . (4.23)

We can solve Equations 4.23 and 4.22 in a manner analogous to the forward process to

obtain

a (s, T − t) =

(

t

s

)

αt (1− µ)t−s (µ〈ν〉∞)s a∞. (4.24)

Again defining a (s, T − t) = ea (s, T − t) as the probability of having accumulated s sub-

stitutions as one moves back t generations from time T , we obtain the binomial distribution

a (s, T − t) =

(

t

s

)

αt (1− µ)t−s (µ〈ν〉∞)s . (4.25)

Comparison of Equation 4.17 of the main text and Equation 4.25 shows that they are

identical. Therefore, all moments computed from the two distributions must be equal. In

particular, this proves that 〈m〉T,∞ = 〈s〉T , and that the corresponding indices of dispersion

have the same value of RT,∞ defined by Equation 4.19 of the main text. This shows that

when Nµ ≫ 1, we expect equivalent results regardless of whether we average over the

number of mutations in all sequences present in the population, or randomly choose a

single sequence and trace back along its ancestor distribution.
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Chapter 5

Evolution Favors Mutational

Robustness in Sufficiently Large

Populations

5.1 Abstract

An important question is whether evolution favors properties such as mutational robustness

or evolvability that do not directly benefit any individual, but can influence the course of

future evolution. Functionally similar proteins can differ substantially in their robustness to

mutations and capacity to evolve new functions, but it has remained unclear whether any

of these differences might be due to evolutionary selection for these properties. Here we use

laboratory experiments to demonstrate that evolution favors protein mutational robustness

if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 pro-

teins under identical selection pressures and mutation rates in populations of different sizes,

and show that proteins from the larger and thus more polymorphic population tend towards

higher mutational robustness. Proteins from the larger population also evolve greater sta-

bility, a biophysical property that is known to enhance both mutational robustness and

evolvability. The excess mutational robustness and stability is well described by existing

mathematical theories, and can be quantitatively related to the way that the proteins oc-

cupy their neutral network. Our work is the first experimental demonstration of the general

tendency of evolution to favor mutational robustness and protein stability in highly poly-

morphic populations. We suggest that this phenomenon may contribute to the mutational

robustness and evolvability of viruses and bacteria that exist in large populations.
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5.2 Background

Proteins are quite tolerant of mutations, allowing evolution to produce highly diverged se-

quences that fold to similar structures and perform conserved biochemical functions [3, 56].

However, proteins with nearly identical structures and functions may differ in their robust-

ness to mutation [7, 127, 49], as well as in their capacity to acquire new functions [49]. The

fact that mutational robustness and evolvability can vary among the functionally equivalent

proteins produced by natural sequence divergence makes these properties important hidden

dimensions in evolution — direct selection for protein function is blind to them, yet they

can play a crucial role in enabling future evolution. Whether the evolutionary process some-

how promotes the acquisition of mutational robustness and evolvability therefore remains

a major question [128, 129, 55].

Previous experiments have identified several specific evolutionary conditions that can

affect mutational robustness. For example, genetic complementation decreases the muta-

tional robustness of viruses [130], while high mutation rates favor mutational robustness in

simulated digital organisms [131]. However, theory [105] makes the much broader — and

heretofore experimentally untested — prediction that extra mutational robustness will arise

quite generally in sufficiently large populations. This prediction cannot be understood in

the standard framework of Kimura’s neutral theory [96], since one of the usual assumptions

of the neutral theory is that mutational robustness is constant. (Although Takahata [100]

treated the consequences of stochastically fluctuating neutrality on the molecular clock, he

did not describe how mutational robustness might change systematically during evolution.)

However, changes in mutational robustness can be described by envisioning evolution as oc-

curring on neutral networks, or sets of functionally equivalent proteins that are connected

by single mutational steps [102, 132, 103, 9]. In a seminal theoretical analysis of evolu-

tion on neutral networks, van Nimwegen and coworkers [105] predicted that the extent of

mutational robustness should depend on the degree of population polymorphism. Here we

briefly summarize their reasoning, since it motivates our experimental work. We also refer

the reader to chapter 16 of [55], which contains an excellent explanation of the densely

mathematical work of van Nimwegen and coworkers [105].

If an evolving population is mostly monomorphic, then each mutation is either lost or
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goes to fixation before another mutation occurs. The population is therefore usually clus-

tered at a single genotype and rarely experiences mutations, meaning that selection does not

distinguish between genotypes of different mutational robustness. All nodes of the neutral

network are thus equivalent and will be occupied by the population with equal probabil-

ity [105]. On the other hand, a highly polymorphic population is always spread across many

nodes of the neutral network. When mutations occur, the members of the population at

highly connected nodes have a better chance of surviving, causing them to be favored by

evolution and increasing the average mutational robustness [105, 9, 133, 108, 11]. Specifi-

cally, a highly polymorphic population occupies each node with a probability proportional

to its eigenvector centrality [105, 9], a measure of how connected it is to other connected

nodes (a variant of eigenvector centrality is used by Google’s PageRank algorithm to rank

a webpage’s importance in the network of internet links [134]). Figure 5.1A illustrates how

mostly monomorphic and highly polymorphic populations are predicted to occupy a neu-

tral network. For proteins, changes in neutral network occupancy should be manifested

by changes in thermodynamic stability [95], with proteins from highly polymorphic pop-

ulations predicted to be more stable than their counterparts from mostly monomorphic

populations (Figure 5.1B). Note that the extent of polymorphism depends on the product

of the mutation rate and population size, meaning that protein populations of different sizes

are predicted to evolve to different levels of mutational robustness and stability even if they

experience the same mutation rate.

5.3 Results and Discussion

5.3.1 Design of neutral evolution experiment

To test whether high population polymorphism drives an increase in mutational robust-

ness and protein stability, we performed laboratory evolution experiments on cytochrome

P450 proteins. The basic idea was to neutrally evolve P450s under a constant selection

pressure in populations that were either monomorphic or highly polymorphic, and observe

whether the proteins evolved to different levels of mutational robustness and stability. The

evolution experiments started with a P450 BM3 heme domain that had been engineered to

hydroxylate 12-p-nitrophenoxydodecanoic acid (12-pNCA) [59]. We imposed the selection
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Figure 5.1: Theoretical views of the evolution of protein mutational robustness. (A) The-
ory predicts that a mostly monomorphic population is equally likely to occupy any node
of its neutral network, while a highly polymorphic population will prefer more connected
nodes [105]. Node sizes are drawn proportional to the occupation probabilities. (B) Pro-
teins evolving in a highly polymorphic population are predicted to be more stable than
their counterparts in a mostly monomorphic population [95]. The histograms illustrate the
distributions of stabilities for the two cases. The increased stability is a biophysical mani-
festation of excess mutational robustness, since more stable proteins are more mutationally
robust [7, 127, 49].
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polymorphic monomorphic unselected

Figure 5.2: Outline of the neutral evolution experimental procedure. For the polymorphic
population, error-prone PCR was used to generate mutant P450 genes. These genes were
ligated into a plasmid and transformed into E. coli. Individual mutants (435) were picked,
expressed in E. coli, and assayed for enzymatic activity. All mutants that met the selection
criterion contributed an equal amount of plasmid DNA as template for the next generation
of error-prone PCR. The monomorphic populations were treated similarly, except only a
single mutant was assayed at each generation. If this mutant met the selection criterion then
it became the template for the next generation of error-prone PCR; otherwise at the next
generation another colony was picked from the same plate. In the unselected populations
a single mutant was picked and used as the template for the next generation of error-prone
PCR.

criterion that Escherichia coli cells expressing the P450 had to yield lysate with enough

active enzyme to hydroxylate a specified amount of 12-pNCA in 40 minutes. This criterion

roughly corresponds to the case in which an enzyme must catalyze a biochemically relevant

reaction at some minimal level in order for its host to survive. Note that other properties

such as stability and expression level can vary freely, provided that the criterion for total

activity is met.

The properties of a neutrally evolving protein eventually “equilibrate,” much as the

properties of an isolated physical system under some macroscopic constraint tend towards

the values that maximize the system’s internal entropy. For proteins, this usually means that

stability, expression, and activity drift towards their lowest tolerable values, since the vast

majority of random sequences do not encode stable, well-expressed enzymes (that is, natural

selection must work against sequence entropy to maintain a functional protein) [95, 41].

The initial P450 had been engineered for maximal activity [59], meaning that it was not

equilibrated to the more mild selection criterion of the experiments. We therefore neutrally

evolved this initial P450 for 16 generations, introducing random mutations with error-

prone PCR and retaining all mutants that met the selection criterion for total activity
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Total nucleotide mutations 67

% synonymous mutations 25

Mutation types (%)
A →T, T →A 19.4
A →C, T →G 1.5
A →G, T →C 64.2
G →A, C →T 4.5
G →C, C →G 0.0
G →T, C →A 1.5
frameshift 9.0

Table 5.1: Error-prone PCR nucleotide mutation spectrum. Spectrum of nucleotide mu-
tations introduced by the error-prone PCR procedure used in the neutral evolution ex-
periments. The spectrum was determined by sequencing the four final (generation 12)
sequences from the unselected population, since in these sequences the mutations accu-
mulate without constraint. As has been previously noted for error-prone PCR with Taq
polymerase [7, 49, 17], the nucleotide error spectrum is biased towards certain types of
mutations.

on 12-pNCA. The procedure used for this equilibration evolution was similar to that for

the polymorphic neutral evolution described below. As expected, expression, stability, and

activity all dropped during the equilibration evolution. At the end of the equilibration

evolution, we chose a single sequence as the parent for the neutral evolution experiments.

The gene encoding this parent sequence contained 29 nucleotide mutations and 13 amino

acid mutations relative to the initial P450 (a text file with the sequence of this gene is in

[135]).

We used this parent gene to begin three parallel sets of neutral evolution experiments,

which we named “monomorphic,” “polymorphic,” and “unselected” (Figure 5.2). The

monomorphic experiments capture the case where the population moves as a single en-

tity, the polymorphic experiment captures the case where the population spreads across

many sequences, and the unselected experiments show how the gene evolves in the absence

of selection for protein function. In all experiments, at each generation we used error-prone

PCR to introduce an average of 1.4 nucleotide mutations per P450 gene (Table 5.1). The

mutant genes were ligated into a plasmid and transformed into E. coli [86], and transfor-

mants were selected using the plasmid’s antibiotic resistance marker. For the unselected

case, we randomly picked one of the mutants, recovered the mutant gene with a plasmid

mini-prep, and used this mutant as the template for the next generation of error-prone
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PCR. We performed four independent replicates of unselected evolution, evolving each for

12 generations.

For the monomorphic and polymorphic populations, we imposed the selection criterion

that the P450s hydroxylate 12-pNCA with at least 75% of the total activity of the original

parent gene. We expressed the P450s in E. coli, and then assayed the cell lysates for

activity in a high-throughput 96-well plate format. The total amount of product produced

by 80 µl of clarified lysate in 40 minutes was compared to the median of four control

wells containing the original parent P450 to determine if the mutant met the selection

criterion. The only difference between the monomorphic and polymorphic experiments was

the size of the evolving populations. In the monomorphic limit, each mutation is either

lost or goes to fixation before the next occurs. We enforced this evolutionary dynamic

by holding the population size to a single protein sequence, similar to the “blind ant”

random walk of [105]. At each generation, we assayed a single mutant. If this mutant

met the selection criterion, then it was carried over to the next generation, corresponding

to a neutral mutation going to fixation. If the mutant failed the selection criterion, then

the population stayed at the previous sequence for the next generation, corresponding to a

mutation lost to selection. If all of the mutants assayed had zero or one mutations, then

this protocol would correspond exactly to the equations of [105, 95]. However, in order to

achieve appreciable sequence evolution on a laboratory time scale, we used a mutation rate

that sometimes produced multiple mutations in a generation. We mathematically describe

this situation in the Mathematical Appendix; here we simply note that it is possible to think

of each generation as introducing a single mutational event rather than a single mutation.

We performed 22 independent replicates of monomorphic evolution, evolving each for 25

generations.

In the polymorphic limit, the population spreads across many sequences. To implement

this experimentally, we assayed 435 mutants at each generation. The selection criterion

was used to classify each mutant as functional or nonfunctional. In neutral evolution, all

functional mutants reproduce with equal probability. We therefore pooled equal volumes

of stationary-phase cultures of each functional mutant and recovered the pooled genes with

a mini-prep. The polymorphic evolution experiment therefore approaches the equations of

[105, 95], again with the exception that a sequence may undergo multiple mutations at a
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single generation. We give the equations describing this situation in the Mathematical Ap-

pendix. Since the population evolves deterministically in the polymorphic limit [105, 95],

a single replicate was performed. Because mutations accumulate more rapidly in the poly-

morphic experiments than the monomorphic ones, we evolved the polymorphic population

for 15 generations rather than 25.

5.3.2 Mutations and mutational robustness

Figure 5.3 shows how mutations accumulated during the course of the neutral evolution

experiments (the full data can be found in text file format in [135]). Since the unselected

protein populations evolve without constraint, mutations accumulate at the same rate at

which they are introduced by error-prone PCR, 1.4 nucleotide mutations per generation.

Because selection eliminates mutations that disrupt P450 activity, mutations accumulate

more slowly in the monomorphic and polymorphic populations. Mutations accumulate

more rapidly in the polymorphic population than in the monomorphic populations. This

difference in rates is predicted by the equations in the Mathematical Appendix to be a

consequence of the fact that the polymorphic population is more mutationally robust, and

so can tolerate more of the possible mutations.

To test directly whether the polymorphic population evolves higher average mutational

robustness, we measured the fraction of 435 random mutants that met the selection crite-

rion. Figure 5.4 shows that the polymorphic population neutrally evolved to a markedly

higher mutational robustness than the monomorphic populations, with 50 ± 2% of the fi-

nal polymorphic population mutants continuing to function versus 39 ± 2% for the final

monomorphic populations (Chi-square P -value of 10−3 that these values are significantly

different). The only difference between the two types of populations was their size, so evo-

lution has clearly favored mutational robustness in the larger and thus more polymorphic

population. This finding represents the first experimental support for the prediction that

highly polymorphic populations evolve excess mutational robustness [105].

Theory predicts that the excess mutational robustness of a highly polymorphic protein

population comes from increased protein stability [95]. Because the P450 variants unfold ir-

reversibly, an equilibrium thermodynamic stability ∆Gf cannot be measured. We therefore

determined stability to irreversible thermal and chemical denaturation, two highly corre-
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Figure 5.3: Accumulation of nucleotide (〈mnt〉) and nonsynonymous (〈maa〉) mutations
in the experimentally evolved P450 populations. For the unselected and monomorphic
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Figure 5.4: The polymorphic population neutrally evolved a higher average mutational
robustness than the monomorphic populations. The fraction functional was determined
by assaying 435 mutants (average of 1.5 nucleotide mutations per gene). Error bars show
binomial standard error. For the monomorphic population, numbers are the average over
all replicates.
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Figure 5.5: The more mutationally robust proteins are more stable. The P450s from the
polymorphic population neutrally evolved higher stability and expression levels than their
counterparts from the monomorphic populations. The histograms show the distributions
for the final protein from all monomorphic replicates and for the same number of randomly
chosen proteins from the final polymorphic population. The plots show (left to right) the
temperature at which half the protein irreversibly denatured after 10 minutes (T50), the
urea concentration at which half the protein denatured after 4 hours ([urea]50), and the
expression level relative to that of the original parental P450. The means are significantly
different, with unequal variance t-test P -values of 0.02, 0.005, and 0.04, respectively.

lated measures of P450 stability that have previously been shown to contribute to mutational

robustness [49] (Figures 5.6, 5.7, and 5.8). Figure 5.5 shows that proteins from the poly-

morphic population were in fact more stable than their counterparts from the monomorphic

population. We also observed that proteins in the polymorphic population tended to accu-

mulate to higher levels in E. coli (Figure 5.5). Elevated expression could be a byproduct

of increased stability, or it could independently increase mutational robustness by allowing

the proteins to better tolerate mutations that decrease codon adaptation or reduce folding

efficiency. It is possible that additional unrecognized biophysical factors also contributed to

the excess mutational robustness of the polymorphic population, but no such factors were

immediately obvious.

5.3.3 Interpretation in terms of the P450 neutral network

The higher mutational robustness of the polymorphic population is due to the fact that

it occupies the P450 gene neutral network differently than the monomorphic populations.

Measurements from the evolution experiments can therefore be used to infer basic proper-

ties of the underlying neutral network of P450 genes, as originally noted by van Nimwegen

and coworkers [105]. In the Mathematical Appendix, we derive approximations for the

normalized principal eigenvalue 〈ν〉∞ and the normalized average connectivity 〈ν〉o of the
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neutral network, where in both cases the normalization is obtained by dividing by the net-

work coordination number. We obtain 〈ν〉∞ = 0.51 and 〈ν〉o = 0.35 for the P450 gene

neutral network. Our ability to consistently estimate these two parameters from four differ-

ent experimental measurements supports the idea that the theory that we elaborate in the

Mathematical Appendix appropriately describes the experiments. The difference between

〈ν〉∞ and 〈ν〉o is a measure of the extent to which some P450 neutral network nodes have

more connections than others. We note that 〈ν〉∞ is approximately equal to the exponential

decline parameter for the asymptotic decline in the fraction of functional mutants with in-

creasing numbers of random nucleotide mutations [7, 17, 18] (see Mathematical Appendix).

Previous studies looking at this exponential decline have reported 〈ν〉∞ = 0.7 for subtil-

isin [17], 〈ν〉∞ = 0.7 for 3-methyladenine DNA glycosylase [18], and 〈ν〉∞ = 0.7 - 0.8 for

TEM1 β-lactamase [7]. These comparisons suggest that P450 has a sparser neutral network

(smaller 〈ν〉∞) than these other proteins. We suspect, however, that these earlier studies

(one of which is our own) overestimate 〈ν〉∞ due to insufficient equilibration of the starting

sequence. We believe that the approach of the current work is more accurate for determin-

ing 〈ν〉∞ because the measurements are made after many mutations have equilibrated the

initial sequence. This approach could be used in future experiments to compare the neutral

network connectivities of proteins from different families.

5.4 Conclusions

We have demonstrated that neutral evolution favors more mutationally robust proteins when

the evolving population is highly polymorphic. Strikingly, the excess mutational robustness

is due only to population polymorphism, and so will arise in any population of sufficiently

large size. Our work is the first experimental demonstration of this phenomenon, which

is predicted to occur quite generally in neutrally evolving proteins and nucleic acids [105].

Furthermore, we were able to identify one of the biophysical factors underlying the increase

in mutational robustness by showing that proteins from the highly polymorphic population

are more stable. We recognize that evolution in a biological context will be more complex.

In our experiments, fitness was the P450’s ability to be expressed in active form by bacteria

grown to saturation in an environment with plentiful nutrients. Biological fitness, however,
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depends on numerous additional and subtle effects such as the metabolic costs of synthesis

or the burdens imposed by misfolded molecules. Some mutations that are neutral in the

experiments may therefore have deleterious effects in a biological setting [72]. The experi-

ments nonetheless capture the overriding constraint that proteins retain their biochemical

functions. Our success in quantitatively explaining the results supports the notion that im-

portant aspects of protein evolution can be described simply in terms of mutational effects

on stability [95, 72].

An obvious question is whether evolution in nature favors mutational robustness by the

process we have demonstrated. Whether natural populations will neutrally evolve muta-

tional robustness depends on whether they are sufficiently polymorphic, which will be the

case if the product of their effective population size N and per protein per generation mu-

tation rate µ is much greater than one [105, 96]. Accurately estimating Nµ, which is closely

related to the widely used parameter θ in population genetics, for natural populations is

difficult [136, 137] (note that since mutational robustness is a protein-wide property, the

relevant mutation rate is per protein, which is ≈ 102 to 103 larger than the per codon mu-

tation rate). For humans and other multicellular organisms, Nµ is probably too small [138]

for their proteins to neutrally evolve mutational robustness. But estimates [138, 139] place

Nµ ≈ 10 to 100 for typical-length proteins in bacteria, and it is probably much higher for

many viruses [140, 141]. It is therefore likely that many viral and some bacterial proteins

have neutrally evolved extra mutational robustness.

The neutral evolution of protein mutational robustness may also contribute to adaptive

evolution. Experiments have shown that extra stability increases a protein’s evolvability

by allowing it to tolerate a wider range of functionally beneficial but destabilizing muta-

tions [49]. A similar phenomenon seems to occur in natural evolution, where functionally

neutral but stabilizing mutations can play a key role in adaptive evolution by counterbal-

ancing the destabilizing effects of other functionally beneficial mutations [36]. Viruses and

perhaps bacteria may thus benefit from large population sizes and high mutation rates that

drive an increase in the mutational robustness and stability of their proteins, which in turn

enhances the capacity of these proteins to rapidly change their sequences and evolve new

functions.
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5.5 Methods

5.5.1 Equilibration evolution of the P450 protein

We began with a 21B3 P450 peroxygenase that had been engineered for highly efficient

hydroxylation of 12-pNCA [59]. This P450 was not well equilibrated to the constant selec-

tion criterion that we planned to impose, since it had substantially higher total activity.

We therefore neutrally evolved it for 16 generations in order to create P450s that were

better equilibrated to the selection criterion. We evolved two parallel populations, which

we named R1 and R2. The procedure was exactly identical to that described below for the

polymorphic evolution with the following exceptions:

• Starting sequence: the starting sequence for the equilibration evolution was the 21B3

sequence.

• Population size: each of the two equilibration evolution populations had a size of 174

sequences rather than the 435 used for the polymorphic evolution.

• Selection criterion: the sequences were required to have at least 75% of the total

activity of the 21B3 P450.

• Mutation rate: the mutation rate for the equilibration evolution was much higher than

for the polymorphic evolution. The error-prone PCR protocol used 200 µM manganese

chloride (MnCl2), rather than the 25 µM used for the polymorphic evolution. We

estimate that this error-prone PCR protocol introduced ≈ 4 nucleotide mutations per

P450 gene at each generation during the equilibration evolution.

We performed 16 generations of equilibration evolution, and then randomly selected 23

functional mutants from each of the R1 and R2 populations (text files with sequences can

be found in [135]). We picked one of these mutants, R1-11, for use as the parent for the

neutral evolution experiments.

5.5.2 Detailed protocol for evolution experiments

We began with the R1-11 P450 BM3 heme domain variant (sequence given in text format in

[135]) cloned into the pCWori [86] plasmid with a 5’ BamH1 and 3’ EcoR1 site as described
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in [49]. The cloning primers were pCWori for (5’-GAAACAGGATCCATCGATGCTTAGGAGGTCAT-

3’ and pCWori rev clone (5’-GCTCATGTTTGACAGCTTATCATCG-3’). We used error-prone

PCR to generate mutants, taking great care to make the error-prone PCR protocol repeat-

able by using a relatively small number of thermal cycles. This was both to control the

mutation rate by ensuring that the reaction did not saturate the reagents (which would

cause the number of doublings to become sensitive to the initial template concentration),

and to avoid the PCR-based recombination events which can occur during with the last

few thermal cycles of PCR reactions [142, 143]. The PCR reactions were 100 µl in volume,

and contained ≈ 13 ng of plasmid template (corresponding to ≈ 3 ng of template gene), 7

mM magnesium chloride MgCl2, 1 × Applied BioSystems PCR Buffer II without MgCl2,

25 µM MnCl2, 0.5 µM pCWori for primer, 0.5 µM pCWori rev primer, 200 µM of dATP

and dGTP, 500 µm of dTTP and dCTP, and 5 units of Applied Biosystems AmpliTaq poly-

merase. The reactions were run on the BLOCK setting of a MJ Research PCR machine

with a program of 95oC for 2 minutes, then 15 cycles of (95oC for 30 seconds, 57oC for 30

seconds, 72oC for 90 seconds), and then cooling to 4oC. This protocol yielded roughly 1-1.5

µg of product gene (as quantified by gel electrophoresis versus a known standard), for a

PCR efficiency of ≈ 0.5. Sequencing the unselected populations at the end of the experiment

indicated that this protocol introduced an average of 1.4 ± 0.2 nucleotide mutations, with

the nucleotide error-spectrum shown in Table 5.1. Because the number of PCR doublings is

large compared the average mutation rate, the distribution of mutations among sequences

should be well-described by the Poisson distribution [48, 64].

The mutant genes from the error-prone PCR were purified over a ZymoResearch DNA

clean and concentrator column, and digested at 37oC with EcoR1 and BamH1. The di-

gested genes were then purified from an agarose gel with ZymoResearch DNA gel extraction

columns, and ligated into pCWori plasmid that had been digested with BamH1 and EcoR1

and dephosphorylated. The ligations were transformed into electro-competent catalase-free

Escherichia coli [86] (the catalase is removed because it breaks down the hydrogen perox-

ide utilized by the P450 peroxygenase), plated on Luria Broth (LB) plates containing 100

µg/ml of ampicillin to select for the plasmid’s antibiotic resistance marker, and grown at

37oC. Transformation of a control ligation reaction without any digested gene yielded at

least 100-fold fewer colonies, indicating that the rate of plasmid self-ligation was less than
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T 〈mnt〉U 〈maa〉U 〈mnt〉P 〈maa〉P 〈mnt〉M 〈maa〉M 〈F〉P 〈F〉M

0 0 0 0 0 0 0 0.48 (210 / 435) 0.48 (210 / 435)
1 NA NA NA NA 0.1 (3 / 22) 0.3 (6 / 22) 0.48 (208 / 435) NA
2 NA NA NA NA 0.4 (9 / 22) 0.8 (17 / 22) 0.49 (215 / 435) NA
3 5.0 (20 / 4) 3.5 (14 / 4) 2.7 (27 / 10) 1.4 (14 / 10) 1.0 (23 / 22) 0.4 (9 / 22) 0.49 (215 / 435) NA
4 NA NA NA NA 1.5 (32 / 22) 0.7 (15 / 22) 0.48 (208 / 435) NA
5 NA NA NA NA 2.2 (48 / 22) 1.1 (25 / 22) 0.45 (197 / 435) 0.43 (185 / 435)
6 9.8 (39 / 4) 7.5 (30 / 4) 5.5 (55 / 10) 2.1 (21 / 10) 2.6 (58 / 22) 1.4 (31 / 22) 0.46 (198 / 435) NA
7 NA NA NA NA 3.1 (69 / 22) 1.8 (39 / 22) 0.52 (227 / 435) NA
8 NA NA NA NA 3.4 (74 / 22) 1.8 (40 / 22) 0.46 (200 / 435) NA
9 13.0 (52 / 4) 10.3 (41 / 4) 6.7 (61 / 9) 3.1 (28 / 9) 3.7 (82 / 22) 2.1 (46 / 22) 0.47 (203 / 435) NA
10 NA NA NA NA 4.2 (92 / 22) 2.4 (52 / 22) 0.46 (199 / 435) 0.40 (175 / 435)
11 NA NA NA NA 4.6 (102 / 22) 2.5 (56 / 22) 0.48 (207 / 435) NA
12 16.8 (67 / 4) 12.5 (50 / 4) 7.8 (70 / 9) 3.3 (30 / 9) 4.9 (107 / 22) 2.6 (58 / 22) 0.52 (228 / 435) NA
13 NA NA NA NA 5.0 (110 / 22) 2.7 (60 / 22) 0.52 (227 / 435) NA
14 NA NA NA NA 5.3 (116 / 22) 2.9 (64 / 22) 0.50 (216 / 435) NA
15 NA NA 10.3 (227 / 22) 3.8 (83 / 22) 5.6 (123 / 22) 3.0 (67 / 22) 0.50 (219 / 435) 0.39 (171 / 435)
16 NA NA NA NA 5.8 (127 / 22) 3.0 (67 / 22) NA NA
17 NA NA NA NA 6.0 (133 / 22) 3.1 (69 / 22) NA NA
18 NA NA NA NA 6.3 (137 / 22) 3.2 (71 / 22) NA NA
19 NA NA NA NA 6.3 (138 / 22) 3.3 (72 / 22) NA NA
20 NA NA NA NA 6.6 (145 / 22) 3.4 (75 / 22) NA 0.37 (160 / 435)
21 NA NA NA NA 6.9 (152 / 22) 3.6 (79 / 22) NA NA
22 NA NA NA NA 7.1 (156 / 22) 3.7 (81 / 22) NA NA
23 NA NA NA NA 7.2 (158 / 22) 3.7 (81 / 22) NA NA
24 NA NA NA NA 7.3 (161 / 22) 3.8 (83 / 22) NA NA
25 NA NA NA NA 7.7 (169 / 22) 4.0 (87 / 22) NA 0.39 (169 / 435)

Table 5.2: Neutral evolution robustness and mutation data. Each row is for a different gen-
eration, T . Entries of NA indicate that no measurement was made. The 〈mnt〉 and 〈maa〉
are the average number of nucleotide mutations and nonsynonymous mutations, respec-
tively. Numbers in parentheses are total counts over the total samples. Subscripts indicate
the population type: U for unselected, P for polymorphic, and M for monomorphic. For
the unselected and monomorphic populations, numbers represent averages of all replicates.
For the polymorphic population, numbers are for a random sample of functional mutants.
〈F〉P and 〈F〉M are the fraction of functional mutants out of 435 assayed.
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one percent.

Individual mutant colonies from the plates were picked into 96-well 2 ml deep-well plates

containing 400 µl of LB supplemented with 100 µg/ml ampicillin. Each plate contained four

parental control wells with cells carrying the parent R1-11 gene, four null control wells with

cells carrying the pCWori plasmid without a P450 gene, and a non-inoculated well to check

for contamination. For the polymorphic population, we picked five such plates with all 87

other wells containing different mutants for a total population size of 5×87 = 435 mutants.

For the 22 monomorphic populations (we began with 24 populations but two had to be

discarded due to contamination), we picked a single colony for growth and screening. For

the unselected populations we picked a single colony for growth without screening. The LB

deep-well plates were grown for 16-20 hours at 30oC, 210 revolutions per minute (rpm), and

80% relative humidity in a Kuhner humidified shaker. To express the P450 mutants, we

prepared 2 ml deep well plates containing 400 µl per well of terrific broth (TB) supplemented

with 200 µM isopropyl β-D-thiogalactoside (IPTG), 100 µg/ml ampicillin, and 500 µM of

δ-aminolevulinic acid. We used a pipetting robot inoculated these TB plates with 100 µl

from the LB plates. We stored the LB deep-well plates at 4oC, and grew the TB deep-well

plates in the humidified shaker at 30oC, 210 rpm, and 80% relative humidity for 22-24

hours. After this growth, the cells were harvested by centrifuging the TB deep-well plates

at 4000×g for 5 minutes and discarding the liquid. The cell pellets were flash-frozen in

liquid nitrogen to aid in cell lysis.

To lyse the cells for the assays, we resuspended the cell pellets in 300 µl of 100 mM [4-(2-

hydroxyethyl)-1-piperazinepropanesulfonic acid] (EPPS) (pH 8.2) with 0.5 mg/ml lysozyme

and 4 units/ml of deoxyribonuclease by pipetting 40 times with the pipetting robot. We

then incubated the plates at 37oC for 30 minutes, again resuspended with the pipetting

robot, and put back at 37oC for an addition 30 minutes. We then pelleted the cell debris by

centrifugation at 6000×g for 5 minutes at 4oC. The pipetting robot was used to dispense

80 µl of the clarified lysate into 96-well microtiter plates (Rainin). We prepared a 6×

stock of 1.5 mM 12-pNCA in 36% dimethyl sulfoxide (DMSO) and the EPPS buffer (the

12-pNCA was stored in the DMSO solution and combined with the buffer immediately

before use). We used a multichannel pipette to add 20 µl of this substrate stock to each

well of the microtiter plate. We briefly mixed the plates with “shake” setting of a 96-well
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plate spectrophotometer, and read an absorbance baseline at 398 nm. We then immediately

added 20 µl of a freshly prepared solution of 24 mM hydrogen peroxide in the EPPS buffer

to initiate the reaction, and mixed again. The final reaction conditions were therefore the

EPPS buffer with 6% DMSO, 4 mM hydrogen peroxide, and 250 µM 12-pNCA. After 40

minutes we quantified the amount of enzymatic product by the increase in absorbance at

398 nm. This absorbance increase is due to the 4-nitrophenolate molecule released after the

P450 hydroxylates the twelfth carbon of the 12-pNCA molecule [59]. To score the mutants

as functional or nonfunctional, we compared their gain in absorbance minus the median

null control reading to that of the median parental control reading minus the median null

control reading. All mutants that had at least 75% of the parental gain were scored as

functional, all other mutants were scored as nonfunctional.

We used the information from these assays to select the parents for the next generation.

For the unselected population we did not require the mutants to be functional, so the

selected mutant was used to start a 4 ml culture of LB with 100 µg/ml ampicillin, and

the plasmid DNA was harvested with a mini-prep. This plasmid DNA was used as the

template for the next round of error-prone PCR. Therefore, after the first generation the

four unselected replicates diverged into four separate error-prone PCR reactions. These

unselected replicates were evolved for a total of twelve generations, and were sequenced at

every third generation.

For the polymorphic population, all mutants that were functional contributed an equal

amount of plasmid DNA as template for the next generation. In order to do this, we

collected 50 µl of the culture from the LB deep-well plate for each mutant that was scored

as functional. All of these LB aliquots were pooled, and then the plasmid DNA was collected

with a mini-prep. The pool of plasmid DNA was used as template for the next generation’s

error-prone PCR reactions. We performed 15 generations of evolution for this polymorphic

population. Note that at each generation we are assaying 435 mutants as part of the

evolutionary procedure, so this provides information on mutational robustness. At every

third generation, we also selected a random sample of functional mutants for sequencing.

After 15 generations, we randomly selected 22 mutants for stability measurements and

sequencing analysis. The random selections were made from all functional mutants with

the Python computer language random number generator.
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For the monomorphic populations, at each generation we assayed just a single mutant.

If that mutant was nonfunctional, then at that generation the population stayed at its

original sequence. In that case, for the next generation we simply picked a new mutant

from the previous generation’s plate of transformed mutants. If the mutant we screened

was functional, then that mutant represented the new population. We therefore grew a 4 ml

LB culture with 100 µg/ml of ampicillin, and collected the plasmid DNA with a miniprep.

That plasmid DNA was then used as the template for the next generation’s error-prone

PCR reaction. We thus had 22 (actually 24 before 2 were contaminated) independent

monomorphic populations that were being evolved in parallel. Each was evolved for 25

generations, and at the end of these 25 generations we measured the stability of the final

sequence of each population. Each time an assayed mutant was functional, we sequenced the

new P450 gene. We also measured the average mutational robustness of the monomorphic

populations at every fifth generation. To do this, we did a pooled mini-prep of equal volumes

of LB cultures of all 22 replicates to obtain a equal mix of plasmid DNA. We then performed

error-prone PCR on this mix, and assayed 435 mutants to measure the fraction functional.

Full neutral evolution data are given in text file format in [135].

5.5.3 Test for recombination during error-prone PCR

During the polymorphic population evolution, we performed error-prone PCR on a mix of

different plasmids. It is common for PCR on mixed templates to lead to recombination

events during the reaction [142, 143]. We attempted to reduce this recombination by using

a small number of thermal cycles. However, in order to test for recombination, we analyzed

the sequences of the final 22 selected members of the polymorphic population. There are a

variety of statistical tests to detect recombination in a set of sequences. A comparison of

these tests by Posada [144] found that the Max-Chi2 method developed by John Maynard

Smith [145] performs well. A publicly available implementation of this method [146] is

at http://www.lifesci.sussex.ac.uk/CSE/test/maxchi.php. We used this implementation to

analyze the 22 final polymorphic sequences, and the resulting P -value was 0.29 after 100

random permutations, indicating that there is not significant recombination.
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5.5.4 Measurement of P450 stabilities

We measured the stabilities to both irreversible thermal and irreversible urea denaturation

of the final (generation 25) member of each monomorphic population, as well as of the 22

randomly selected members of the polymorphic population. As discussed in the Supplemen-

tary Information of [49], cytochrome P450 BM3 heme domains (and indeed most P450s)

denature irreversibly, forcing us to use resistance to irreversible denaturation to quantify

protein stability. The first stability measure is the T50, defined as the temperature at which

half of the protein is denatured after a 10 minute incubation. The second stability measure

is the [urea]50, defined as the urea concentration at which half of the protein denatures

after a 4 hour room-temperature incubation. Each set of measurements (those of T50 and

[urea]50) was performed on all of the mutants in the same day, and each mutant was treated

identically. Therefore, it is possible to make accurate comparisons of the relative values of

the measurements within the data set. However, the absolute values of the T50 and [urea]50

values may be less accurate. Therefore, care should be taken in comparing the absolute

value of these measurements to those of other studies (such as [49]).

Both the T50 and [urea]50 measurements were performed in clarified cell lysate. The

protein was expressed using catalase-free E. coli [86] containing the encoding gene on the

IPTG inducible pCWori [86] plasmid. We used freshly streaked cells to inoculate 2 ml

cultures of LB supplemented with 100 µg/ml of ampicillin, and grew these starter cultures

overnight with shaking at 37oC. We then used 0.5 ml from these starter cultures to inoculate

1 L flasks containing 200 ml of TB supplemented with 100 µg/ml of ampicillin. The TB

cultures were grown at 30oC and 210 rpm until they reached an optical density at 600 nm

of ≈0.9, at which point IPTG and δ-aminolevulinic acid were added to a final concentration

of 0.5 mM each. The cultures were grown for an additional 19 hours, then the cells were

harvested by pelletting 50 ml aliquots at 5,500 g and 4oC for 10 min, and stored at -20oC. To

obtain clarified lysate, each pellet was resuspended in 8 ml of 100 mM EPPS (pH 8.2) and

lysed by sonication, while being kept on ice. The cell debris was pelleted by centrifugation

at 8,000 g and 4oC for 10 minutes, and the clarified lysate was decanted and kept on ice.

For the T50 measurements, 125 µl of clarified lysate from a single mutant was added to

all 12 wells in a row of a 96-well hard-shell thin-wall microplate (MJ Research). The plate

was heated for 10 minutes using the gradient method of an Eppendorf Mastercycler gradient
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Figure 5.6: Thermostability measurements. The stability to irreversible thermal denat-
uration was quantified as T50, the temperature at which half of the protein irreversibly
denatured after a 10 minute incubation. Curves show the percent of the protein remaining
after incubation at the indicated temperatures. The T50 was determined by fitting the data

to a sigmoidal curve of the form f (t) = 100/
(

1 + ea(T−T50)
)

where T is the temperature

and f (T ) is the percent of protein remaining at temperature T .
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PCR machine, with the gradient set at either 33oC-45oC or 46oC-58oC (each mutant was

exposed to both of these gradients), the machine on the BLOCK setting, and the heated

lid set to 75oC with the lid WAIT option. The plate was then cooled to 4oC, removed from

the PCR machine, and centrifuged at 5,500 g and 4oC for 5 minutes to pellet any debris.

A pipetting robot was used to dispense 80 µl of the supernatent into a 96-well microtiter

plate (Rainin), and the amount of remaining properly folded P450 was quantified from the

carbon monoxide difference spectrum as described below. The T50 values were determined

by fitting sigmoidal curves the percent of remaining protein as shown in Figure 5.6. Our

ability to accurately compare T50 values within the data set requires that each well in a given

column of the gradient PCR machine be at the same temperature. We used a thermocouple

to measure the temperature of the wells with the machine lid open, and confirmed that the

wells were within a few tenths of a degree of the same temperature. Further evidence for

the consistency of our T50 values comes from the fact that two independent measurements

of the T50 for our R1-11 parent yielded values that differed by only 0.1oC. However, the ab-

solute values of the measured temperatures are less accurate. Thermocouple measurements

indicated that, with the machine lid open, the wells were ≈ 1oC cooler than the indicated

temperature. We were unable to ascertain the temperatures with the heated lid closed,

but based on comparisons water bath measurements, the temperatures with the lid closed

slightly exceeded the indicated temperatures.

For the [urea]50 measurements, 125 µl of the clarified lysate from a single mutant was

added to all 12 wells in a row of a 96-well microtiter plate. A pipetting robot was then

used to add and mix 125 µl of a 2X solution of urea in 100 mM EPPS (pH 8.2) so that

each subsequent column had a higher concentration of urea, and so that the final urea

concentrations were those shown in Figure 5.7. The plates were left on the bench at room

temperature for 4 hours, and the amount of remaining properly folded P450 was quantified

from the carbon monoxide difference spectrum as described below. The [urea]50 values were

determined by fitting sigmoidal curves to the percent of remaining protein. Evidence for

the consistency of the [urea]50 measurements comes from the fact that two independent

measurements of the [urea]50 for our R1-11 parent yielded values that differed by only 0.01

M. In addition, the [urea]50 and T50 values are highly correlated (Figure 5.8), indicating

that they provide consistent measures of stability.
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Figure 5.7: Urea stability measurements. The stability to irreversible urea denaturation was
quantified as the [urea]50, the urea concentration at which half of the protein irreversibly de-
natured after a 4 hour incubation at room temperature. Curves show the percent of the pro-
tein remaining after incubation at the indicated urea concentrations. The [urea]50 was deter-

mined by fitting the data to a sigmoidal curve of the form f (u) = 100/

(

1 + e
a

“

u−[urea]50
”)

where u is the urea concentration and f (u) is the percent of protein remaining at urea con-
centration u.
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Figure 5.8: Correlation of thermal and urea stabilities. The T50 and [urea]50 values are
highly correlated. The plot shows the Pearson correlation coefficient and associated P -
value.

For both the T50 and [urea]50 measurements, the folded P450 was quantified from the

carbon monoxide difference spectrum [66]. The microtiter plates containing the P450 sam-

ples were first used to read blank spectra at 450 and 490 nm using a Tecan Safire 2 plate

reader. The plates were then incubated for 10 minutes in an airtight oven with carbon

monoxide. The plates were removed form the oven and 10 µl of 0.1 M sodium hydrosulfite

in 1.3 M potassium phosphate (pH 8.0) was immediately added to each well. After 5-10

minutes, spectra were again read at 450 and 490 nm. The amount of P450 is proportional

to the increase in the signal at 450 nm after this procedure minus the change in the signal

at 490 nm.

5.6 Mathematical Appendix

5.6.1 Mathematical background

The first purpose of this appendix is to provide mathematical equations that describe the

experiments. The second is to show how four measurements from the experiments can

be used to calculate two quantities that describe the topology of the underlying protein

neutral network. We will derive two equations for both quantitites, each in terms of a

different measurement. The fact that the four equations will be seen to yield consistent

results provides evidence for the accuracy of the following calculations.

Our calculations are based on a view of neutral protein evolution as a process constrained
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by a stability threshold, a view that we originally introduced to explain experimental pro-

tein mutagenesis results [7]. The calculations closely parallel our earlier work [95], which is

in turn based on a general theoretical treatment of evolution on neutral networks by van

Nimwegen and coworkers [105]. These calculations will probably be most thoroughly under-

stood by first reading those works. The primary difference between the current calculations

and [95] is that previously we assumed that the per generation per protein mutation rate

µ was ≪ 1, so that at each generation a protein was either unmutated (with probability

1−µ) or experienced a single mutation (with probability µ). In contrast, here we allow the

mutation rate to be arbitrarily large, so that a protein may experience multiple mutations in

a single generation (in this sense the calculations resemble the generalization by Wilke [133]

of [105]). Specifically, let fm be the probability that a protein experiences m mutations in a

single generation. Here we derive results for arbitrary fm, and then approximations relevant

to the form of fm in the experiments. In the limiting case of small mutation rate (where

f0 = 1 − µ, f1 = µ, and fm = 0 for m > 1), the calculations here reduce to those in [95].

Proteins evolving in nature typically experience very low mutation rates, so [95] probably

offers the best description of natural protein evolution. The calculations presented here are

designed to specifically treat the evolutionary dynamics of the experiments.

A protein’s thermodynamic stability is described by its free energy of folding, ∆Gf ,

with more negative values indicating more stable proteins. As described in several previous

papers [7, 95, 49], we assume that selection requires a protein to fold with some minimal

stability ∆Gmin
f , so that a protein adequately folds if and only if ∆Gf ≤ ∆Gmin

f . The

amount of extra stability a protein possesses relative to the stability threshold is given

by ∆Gextra
f = ∆Gf − ∆Gmin

f ; note that all folded proteins will have ∆Gextra
f ≤ 0. We

further assume that as long as ∆Gextra
f ≤ 0, selection is indifferent to the exact amount of

extra stability that a protein possesses (see [95] for a discussion of the limitations of this

assumption). We conceptually divide the continuous variable of protein stability into small

discrete bins of width b. Specifically, a protein is in bin i if it has ∆Gextra
f between (1− i) b

and −ib, where i = 1, 2, . . .. Mutating a protein changes its stability by an amount ∆∆G

(defined as the stability of the mutant protein minus the stability of the initial protein),

and so may move it to a new stability bin. In [95], we defined a matrix W with elements

Wij giving the transition probabilities that a single mutation changes a protein’s stability
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from bin j to bin i. We noted that W could be computed from the distribution of ∆∆G

values for all single mutations, and argued that W remains fairly constant during neutral

evolution since the distribution of ∆∆G values remains relatively unchanged. However,

we emphasize that (as discussed in detail in [95]) the constancy of the ∆∆G distribution

remains an assumption, albeit one that has now been shown to be quite accurate for lattice

proteins [7, 95, 119] and provide a consistent theoretical explanation for a growing body of

experimental results (the current work as well as [7]).

Since we are allowing for larger mutation rates, and we must consider the possibility

that a protein’s stability might change due to multiple mutations at a single generation.

Therefore, we make a more general definition of Wij,m as the probability that m random

mutations to a protein in stability bin j change its stability to bin i, and let Wm be the

matrix with elements Wij,m. Note that Wm only describes mutations that cause transitions

from one folded protein to another, since the stability bins i = 1, 2, . . . all correspond to

folded proteins. As before [95], we assume that Wm is roughly constant during evolution,

meaning that the distribution of ∆∆G values for multiple mutations is roughly constant

during neutral evolution. Note that if m = 1, then Wm is just the matrix W that can be

computed from the distribution of single-mutant ∆∆G values [95]. We will now use the

matrices Wm to calculate the following characteristics of a population that has evolved to

equilibrium: the distribution of stabilities, the average number of mutations 〈m〉T accu-

mulated after T generations, and the average fraction 〈F〉 of stably folded proteins in the

population. We then introduce a few approximations (that should be quite accurate for the

experimental work in this paper) that greatly simplify these calculations. Finally, we relate

the calculations to properties of the underlying protein neutral network.

As described generally by van Nimwegen and coworkers [105], the evolutionary dynamics

depend on whether the evolving population tends to be monomorphic or highly polymorphic.

When the per sequence per generation mutation rate µ is ≪ 1, whether the population is

mostly monomorphic or highly polymorphic is determined by the product of the population

size N and µ: when Nµ≪ 1 the population is mostly monomorphic, and when Nµ≫ 1 the

population is highly polymorphic. However, with multiple mutations per generation, Nµ

is no longer an appropriate parameter to distinguish between mono- and polymorphism,

since if the population size is sufficiently small the population can still be monomorphic
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even if there are multiple mutations per generation. Specifically, in one set of experiments

we constrained the population to be monomorphic (by maintaining a population size of

one), but still allowed the single protein in this population to experience more than one

mutation at a generation. So we instead denote the populations as either monomorphic

or polymorphic. We indicate quantities calculated for the monomorphic population by

the subscript M (i.e. 〈F〉M ) and those calculated for the polymorphic population by the

subscript P (i.e. 〈F〉P ).

5.6.2 Monomorphic limit

In the limit of a completely monomorphic population, all of the proteins are in a single

stability bin. Let pi (t) be the probability that the population is in stability bin i at time

t, and let p (t) be the column vector with elements pi (t). At each generation there is a

probability f0 that there is no mutation that becomes fixed in the population, a probability

of
∞
∑

m=1
fm
∑

j
Wij,mpj that the population experiences a mutational event (which could be a

single mutation or several simultaneous mutations) that moves it into bin i, and a probability
∞
∑

m=1
fmpi

∑

j
Wji,m that the population is in bin i and experiences one or more mutations

that move it to another bin of stably folded proteins. Define νi,m =
∑

j
Wji,m to be the

fraction of m-mutants of a protein in bin i that still fold, and let Vm be the matrix with

diagonal elements given by Vii,m = νi,m and all other elements zero. The time evolution of

p is

p (t + 1) =

[

I +
∞
∑

m=1

fm (Wm −Vm)

]

p (t) (5.1)

where I is the identity matrix. Note that mutations that destabilize a protein beyond the

stability threshold are immediately lost to natural selection, and so leave the population in

its original stability bin. This describes the experiments for the monomorphic populations,

where we retain the parental sequence if the single mutant we generate is nonfunctional.

Equation 5.1 corresponds to Equation (1) of [95], and the blind ant random walk described

by van Nimwegen and coworkers [105].

Equation 5.1 describes a Markov process with a non-negative, irreducible, and acyclic

transition matrix, and so p approaches a unique stationary distribution (equilibrium value)
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of pM given by the eigenvector equation

pM =

[

I +

∞
∑

m=1

fm (Wm −Vm)

]

pM. (5.2)

Once p has reached equilibrium, the average fraction of proteins that still stably fold at

each generation is

〈F〉M = e

(

f0I +

∞
∑

m=1

fmWm

)

pM (5.3)

where e = (1, . . . , 1) is the unit row vector.

To calculate 〈m〉T,M , the average number of mutations accumulated after T generations

once the population has equilibrated, we note that at each generation there is a probability

of fmpj
∑

i
Wij,m that a randomly chosen protein is in bin j, experiences m mutations, and

still stably folds. The average number of mutations accumulated in a single generation is

simply the average of m weighted over this probability. So summing over all values of m

and j, we see that

〈m〉T,M = Te

∞
∑

m=0

mfmWmpM. (5.4)

This equation corresponds to Equation (6) of [95], which was derived using an embedded

Markov process formalism. Here we have foregone this formalism for the more intuitive

argument presented above, since we do not attempt to calculate higher moments of the

number of mutations.

5.6.3 Polymorphic limit

In the limit when the population is highly polymorphic, at each generation there are se-

quences in many different stability bins. In this case, we describe the distribution of stabili-

ties by the column vector x (t), with element xi (t) giving the fraction of proteins in stability

bin i at time t. At generation t, the fraction of mutants that continue to fold is

〈F〉t = e

(

f0I +
∞
∑

m=1

fmWm

)

x (t) . (5.5)

Therefore, in order to maintain a constant population size, each remaining protein must

produce an average of αt = 〈F〉t
−1 offspring. The population therefore evolves according
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to

x (t + 1) = αt

(

f0I +
∞
∑

m=1

fmWm

)

x (t) . (5.6)

After the population evolves for a sufficiently long period of time, x will approach an

equilibrium value of xP. At this equilibrium, the average fraction of mutants that fold at

each generation is

〈F〉P = e

(

f0I +

∞
∑

m=1

fmWm

)

xP, (5.7)

and the equilibrium reproduction rate is α = 〈F〉P
−1. Therefore,

xP = α

(

f0I +

∞
∑

m=1

fmWm

)

xP. (5.8)

Equations 5.7 and 5.8 can be combined to show that xP and 〈F〉P can be calculated from

the eigenvector equation

(〈F〉P − f0)xP =

∞
∑

m=1

fmWmxP, (5.9)

with (〈F〉P − f0) the principal eigenvalue of the nonnegative and irreducible matrix
∞
∑

m=1
fmWm.

Equation 5.9 corresponds to Equation (14) of [95], Equation (6) of the work by van Nimwe-

gen and coworkers [105], and Equation (13) of the work by Wilke [133].

We now calculate 〈m〉T,P , the average number of mutations accumulated in T gen-

erations after the population has equilibrated. At equilibrium, there is a probability of

fmxj
∑

i
Wij,m that a protein is in bin j, experiences m mutations, and still stably folds.

Subsequently, all of these folded proteins produce an average of α offspring. The average

number of mutations accumulated in a single generation is simply the average of m weighted

over this probability, and then multiplied by the average reproduction rate. So summing

over all values of m and j, we obtain

〈m〉T,P = αTe

∞
∑

m=0

mfmWmxP =
T

〈F〉P
e

∞
∑

m=0

mfmWmxP. (5.10)

This equation is the counterpart of Equation (18) of [95], where we have again foregone the

embedded Markov process formalism for a more intuitive derivation.
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5.6.4 Approximations for polymorphic limit

We can dramatically simplify the results from the previous sections with several reasonable

approximations. The first approximation is that the ∆∆G values for random mutations are

roughly additive, and is supported by a number of experimental studies of the thermody-

namic effects of mutations [28, 29, 76]. We have previously shown that this approximation

can be used to accurately describe experimental protein mutagenesis data with a simple

stability threshold model [7]. Under this approximation, the distribution of net ∆∆G val-

ues for multiple mutations can be computed from the distribution of ∆∆G values for single

mutations by performing convolutions of the single-mutation ∆∆G distribution [7], mean-

ing that Wm for arbitrary m can be computed solely from the distribution of ∆∆G values

for single mutations. However, to simplify the equations from previous sections, we need

to express Wm for arbitrary m only in terms of W (recall that W = W1). Since W

only contains information about stability transitions from folded proteins to other folded

proteins, if we make the second approximation that a protein that is destabilized beyond

the minimal stability threshold by one mutation is not re-stabilized to a folded protein by

a subsequent mutation, then Wm = Wm. This approximation that unfolded proteins are

not re-stabilized should be quite accurate since stabilizing mutations tend to be relatively

rare and small in magnitude [77, 78, 79, 27] (this is the underlying idea behind the Markov

chain approximation that was shown to be highly accurate for lattice proteins [119]). To

summarize, if ∆∆G values are roughly additive and stabilizing mutations are rare, we have

the approximation

Wm ≈Wm. (5.11)

Simplifying the equations of the previous sections also requires assigning a specific func-

tional form to fm, the probability that a sequence undergoes m mutations. Here we assume

that mutations are Poisson distributed among sequences, so that

fm =
e−µµm

m!
(5.12)

where µ =
∞
∑

m=0
mfm is the average number of mutations per protein per generation. When

the mutations are introduced by error-prone PCR, the Poisson distribution is an excel-
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lent approximation to the true theoretical distribution of mutations created by error-prone

PCR [48, 64] provided that µ is much less than the number of PCR doublings, as is the

case in all of the experiments in the current work.

We now use the approximations of Equations 5.11 and 5.12 to simplify the results given

above for the highly polymorphic limit. We begin by using these approximations to rewrite

Equation 5.9 as

(

〈F〉P − e−µ
)

xP = e−µ
∞
∑

m=1

µm

m!
WmxP. (5.13)

This equation makes clear that xP is the principal eigenvector of the matrix
∞
∑

m=1

µm

m! W
m,

therefore xP must also be the principal eigenvector of W. Now in our earlier work [95], we

defined the principal eigenvector of W as x∞, called the corresponding eigenvalue 〈ν〉∞,

and showed that this eigenvalue is shown the average fraction of single mutations that are

neutral in a population that is evolving with Nµ ≫ 1 and µ ≪ 1. Therefore, with the

approximation of Equation 5.11, xP and x∞ are equal, and are both defined by the same

eigenvector equation,

〈ν〉∞xP = WxP = Wx∞ = 〈ν〉∞x∞. (5.14)

Combining Equations 5.13 and 5.14 we have,

〈F〉P xP = e−µ
∞
∑

m=0

(µ〈ν〉∞)m

m!
xP

= e
−µ

“

1−〈ν〉∞
”

xP (5.15)

Equation 5.15 can be solved to yield

〈ν〉∞ = 1 +
ln 〈F〉P

µ
. (5.16)
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Similarly, we can simplify Equation 5.10,

〈m〉T,P =
T

〈F〉P
e

∞
∑

m=1

mfmWmxP

= Te
µ

“

1−〈ν〉∞
” ∞
∑

m=1

me−µ µm

m!
eWmxP

= Te−µ〈ν〉∞
∞
∑

m=1

m
(µ〈ν〉∞)m

m!

= Tµ〈ν〉∞e−µ〈ν〉∞
∞
∑

m=0

(µ〈ν〉∞)m

m!

= Tµ〈ν〉∞. (5.17)

Solving this equation for 〈ν〉∞ yields

〈ν〉∞ =
〈m〉T,P

Tµ
. (5.18)

5.6.5 Approximations for monomorphic limit

We now simplify the equations for the monomorphic limit. This requires several further

approximations. We begin by approximating that the stability probability distribution pM

given by Equation 5.2 by the distribution po defined in [95] as satisfying

0 = (W −V)po. (5.19)

The basic rationale behind approximating pM with po is that Equation 5.2 can be viewed as

a perturbation to Equation 5.19 [147]. Essentially, po is an eigenvector of the matrix W−V

while pM is the corresponding eigenvector of the matrix W −V +
∞
∑

m=2

µm−1

m! (Wm −Vm).

The latter matrix can be viewed as a perturbation to the first, since the sum
∞
∑

m=2

µm−1

m! (Wm −Vm)

is small. This smallness is due to the fact that Wm tends to zero with large m, causing Vm

to tend towards the identity matrix. In addition, the µm/m! terms tend to zero with large

m. Therefore, the terms in the summation are all simply either a perturbation to W −V

or involve subtracting terms that are fractions of the identity matrix. The perturbations

lead to bounded changes in the eigenvectors [147], while the identity matrix terms do not

change the eigenvectors. Below we give a more rigorous justification of the assumption that
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pM is approximately equal to po.

We need one additional approximation to make further progress. Both Equations 5.3 and

5.4 contain terms of the form Wmpo, and even if we use Equation 5.11 to rewrite these terms

as Wmpo, there are no further clear simplifications. However, any probability vector that

is multiplied repeatedly by W and normalized will eventually converge to x∞ = xP (since

this is the principal eigenvector of W). We make the approximation that this convergence is

sufficiently rapid to be essentially complete after a single multiplication. This approximation

is supported by both protein mutagenesis studies [7, 17, 18] that indicate that proteins

rapidly converge to an exponential decline in the fraction folded (indicating the stability

distribution has equilibrated, as discussed below, and by lattice protein studies showing the

same [7, 119]. Therefore, we make the approximation that eWmpo = 〈ν〉oeW
m−1x∞ =

〈ν〉o〈ν〉∞
m−1 where 〈ν〉o = eWpo has the same definition as in [95], where it was defined

as the average fraction of functional single mutants of a population evolving with µ ≪ 1

and Nµ≪ 1.

We use these approximations to simplify Equation 5.3 as

〈F〉M = e

(

f0I +

∞
∑

m=1

fmWm

)

pM

= e−µ

[

1 +
∞
∑

m=1

µm

m!
eWmpo

]

= e−µ

[

1 + µ〈ν〉o

∞
∑

m=1

(µ〈ν〉∞)m−1

m!

]

= e−µ

[

1 +
〈ν〉o
〈ν〉∞

(

−1 +
∞
∑

m=0

(µ〈ν〉∞)m

m!

)]

= e−µ

[

1 +
〈ν〉o
〈ν〉∞

(

eµ〈ν〉∞ − 1
)

]

. (5.20)

Solving this equation for 〈ν〉o, we find

〈ν〉o =
〈ν〉∞ (〈F〉Meµ − 1)

eµ〈ν〉∞ − 1
. (5.21)
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We now use the approximations to simplify Equation 5.4 as

〈m〉T,M = Te
∞
∑

m=0

mfmWmpM

= Te−µ
∞
∑

m=1

m
µm

m!
eWmpo

= Te−µ〈ν〉o

∞
∑

m=1

m
µm

m!
〈ν〉∞

m−1

= µTe−µ〈ν〉o

∞
∑

m=0

(µ〈ν〉∞)m

m!

= µT 〈ν〉oe
µ

“

〈ν〉∞−1
”

. (5.22)

Solving this equation for 〈ν〉o yields

〈ν〉o =
〈m〉T,Me

µ
“

1−〈ν〉∞
”

µT
. (5.23)

To recap, we now have equations to calculate 〈ν〉∞ and 〈ν〉o from experimentally mea-

surable quantities. Equations 5.16 and 5.18 allow us to calculate 〈ν〉∞ from 〈F〉P and

〈m〉T,P , respectively. Given this calculated value of 〈ν〉∞, Equations 5.21 and 5.23 then

allow us to calculate 〈ν〉o from 〈F〉M and 〈m〉T,M , respectively. The fact that we have two

equations each for 〈ν〉∞ and 〈ν〉o allows us to assess the self-consistency of the approach.

5.6.6 Interpretation in terms of neutral networks

Throughout the preceding calculations, we have referred to 〈ν〉∞ and 〈ν〉o as we defined them

in [95]: namely, as the average neutrality of protein populations evolving with µ≪ 1 and Nµ

either ≫ 1 or ≪ 1, respectively. However, van Nimwegen and coworkers [105] have shown

that they can also be interpreted in terms of the underlying neutral network. In the exper-

iments we make mutations at the nucleotide (rather than amino acid) level, so each point

in our sequence space corresponds to a different gene. Every gene that yields an amount

of protein sufficient to hydroxylate the twelfth carbon of 12-p-nitrophenoxydodecanoic acid

with at least 75% of the total activity conferred by the original R1-11 parent gene repre-

sents a node on this neutral network. We note that in the experiments (and also usually
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in natural evolution), the edges on the neutral network are not all completely equivalent or

fully undirected, since some mutations are more likely to occur than others (for example,

error-prone PCR with Taq polymerase is more likely to cause an A→G mutation than an

A→C mutation). In the analysis that follows, we ignore this complication and assume all

neutral network edges are equivalent.

In an extremely insightful analysis, van Nimwegen and coworkers [105] have shown that

important characteristics of a neutral network can be inferred from evolutionary quantities.

Specifically, they have shown that if a population is evolving with µ ≪ 1 and Nµ ≫ 1,

then the average neutrality (which we have denoted by 〈ν〉∞) is equal to the principal

eigenvalue of the adjacency matrix of the neutral network, normalized by the network

coordination number (number of possible connections per node). In addition, they pointed

out that a population evolving with µ ≪ 1 and Nµ ≪ 1 moves like a blind ant random

walk, meaning that the average neutrality (which we have denoted by 〈ν〉o) is equal to

the average connectivity of a neutral network node divided by the network coordination

number. In our P450 experiments, we have measured the values needed to estimate 〈ν〉∞

and 〈ν〉o using Equations 5.16, 5.18, 5.21, and 5.23. Using the final values listed in Table

5.2, 〈F〉P = 0.50 and 〈F〉M = 0.39. Taking the final nucleotide mutation values from Table

5.2, 〈m〉T,P /T = 0.69 and 〈m〉T,M/T = 0.31. The average mutation rate, computed from

the unselected population, is µ = 1.40. So using Equation 5.16, 〈ν〉∞ = 0.53, while using

Equation 5.18, 〈ν〉∞ = 0.49. The consistency of these two values supports the idea that the

calculations above accurately describe the evolutionary process. Taking the average value

of these two measurement as 〈ν〉∞ = 0.51, we can then use Equations 5.21 and 5.23 to

calculate 〈ν〉o. We calculate values of 0.28 and 0.43, respectively. These estimates differ

by more than those for 〈ν〉∞, perhaps because additional approximations have gone into

the derivation of the relevant equations (in addition, we have made no attempt to carry

out the rather complex propagation of the sampling errors of Table 5.2). However, the

values are still in a similar range. Taking the average of these two values, we estimate

that 〈ν〉o = 0.35. So overall, we predict that each functional P450 gene should have an

average fraction of 0.35 of its sequence nearest neighbors also encoding a functional gene,

for an average of about 1,500 neighbor genes. We predict that the principal eigenvalue

of the neutral network adjacency matrix is 0.51 ×3L. The fact that principal eigenvalue
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exceeds the average connectivity indicates that the neutral network is not a regular graph,

but instead has some nodes more highly connected than others.

The value for 〈ν〉∞ calculated above can also be related to measurements from protein

mutagenesis experiments. A number of studies [7, 17, 18] have observed that the probability

that a protein remains functional after m mutations falls off exponentially with the number

of mutations. In fact, the decline is not always exponential for the first few mutations if

the starting protein has especially high or low stability [7] or activity [148], but will still

converge to this exponential form after a few mutations [7, 119, 149]. The stability threshold

model can be used to relate this decline to 〈ν〉∞, as is done indirectly in the Markov chain

approximation of [119]. Here we make that connection explicit. The initial protein has a

stability that falls into some stability bin i. Therefore, its stability can be described by the

column vector y0, which has element i equal to one and all other elements equal to zero.

Now imagine constructing all single mutants of this protein. The fraction of these single

mutants that still fold is just eWy0, and the distribution of stabilities among the single

mutants is y1 = Wy0 (note that the elements of y1 no longer sum to one). Similarly,

after m mutations, the fraction of mutants that still fold is eWmy0, and the distribution of

stabilities among the m-mutants is ym = Wmy0. With the approximation of Equation 5.11,

ym = Wmy0. This makes it clear that ym will converge to a vector proportional to x∞, the

principal eigenvector of W. Once this convergence is complete, each new mutation simply

reduces the fraction of mutants that fold by a factor of 〈ν〉∞, the principal eigenvalue of W

(and the spectral radius of the neutral network normalized by the coordination number).

Therefore, what we have called 〈ν〉∞ in the present work and [95] is equal to what is called x

in [18], q in [17], and 〈ν〉 in [7]. The major difficulty that is faced in extracting 〈ν〉∞ by the

method of those three studies [7, 17, 18] is that it is not possible to directly assay mutants

with m mutations, but instead only possible to assay a set of mutants with a distribution of

m. All three studies use different (and valid) methods to account for this distribution, but

this accounting is still difficult because most of the functional mutants come from the low m

end of the distribution. This makes it hard to get accurate values for the fraction functional

after large numbers of mutations, since most of the functional mutants in the set come from

sequences with few mutations. For this reason, we believe the current method of measuring

〈ν〉∞ is more accurate. A second caution about comparing values of 〈ν〉∞ from different
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studies is that its value depends on the nucleotide error-spectrum of the experiment, since

different mutagenesis methods create different distributions of nucleotide and amino acid

mutation types.

We also briefly mention how we arrived at an estimate of 〈ν〉∞ for 3-methyladenine

DNA glycosylase from the data of [18]. This paper reports that a fraction x = 0.34 of

amino acid mutations inactivate the protein. We would like to determine the fraction

〈ν〉∞ of nucleotide mutations that do not inactivate the protein. Roughly 75% of random

mutations to a gene will be synonymous. Therefore, m amino acid mutations should cause

about 4m/3 nucleotide mutations. The study of [18] measures that after m mutations,

a fraction (1− x)m of the mutants are functional. That means that 〈ν〉∞
4m/3 fraction

should be functional. Equating these expressions yields 〈ν〉∞ = exp
(

3
4 log (1− x)

)

. So

using x = 0.34, we arrive at 〈ν〉∞ = 0.73.

5.6.7 Detailed justification for approximating pM by po

Here we provide a detailed justification for the approximation that pM is about equal to

po. In the monomorphic limit, the time evolution of p is given by Equation 5.1, and the

stationary distribution pM is given by Equation 5.2. We assume the approximations of

Equations 5.11 and 5.12 and show that we can approximate pM by po, where po is given

by Equation 5.19. To justify this approximation, we insert po into the right hand side of

Equation 5.1 and ask to what extent po is left unaltered by the dynamics. If po is found

to be stationary to good approximation then, by uniqueness of the stationary distribution

of an ergodic process, po would be a good approximation to pM.

We therefore suppose that at some time t the distribution is given by po and compute,

using Equation 5.1, the change in po after one generation. The new distribution at time

t + 1 is given by

p (t + 1) =

[

I +
∞
∑

m=1

fm (Wm −Vm)

]

po. (5.24)

Using (V −W)po = 0, and taking components of the above equation, we obtain

pi (t + 1) = p0i +

∞
∑

m=2

fm [(Wm −Vm)po]i . (5.25)
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Thus po would be an approximately stationary distribution of the dynamics if |
∞
∑

m=2
fm [(Wm −Vm)po]i| ≪

p0i. We now proceed to show that this will be the case in most situations of interest by

deriving upper and lower bounds on the second term of the right hand side of Equation

5.25.

Consider first the term (Wmpo)i, which can be written as

(Wmpo)i =
∑

k1,...,km

Wik1Wk1k2 · · ·Wkm−1km
p0km

=
∑

k1,...,km−1

Wik1Wk1k2 · · ·Wkm−2km−1νkm−1p0km−1 , (5.26)

where we have used Wpo = Vpo in the second equality. We now note that νk ≤ νmax for

all k, where νmax is the maximum neutrality, maximized over all bins. This leads to the

successive inequalities

(Wmpo)i ≤ νmax

∑

k1,...,km−1

Wik1Wk1k2 · · ·Wkm−2km−1p0km−1

= νmax

∑

k1,...,km−2

Wik1Wk1k2 · · ·Wkm−3km−2νkm−2p0km−2

≤ ν2
max

∑

k1,...,km−2

Wik1Wk1k2 · · ·Wkm−3km−2p0km−2

≤ νm−1
max

∑

k1

Wik1p0k1 , (5.27)

yielding the upper bound

(Wmpo)i ≤ νm−1
max νip0i. (5.28)

In an identical manner, we obtain the lower bound

(Wmpo)i ≥ νm−1
min νip0i, (5.29)

where νmin is the smallest neutrality, minimized over all bins. Note that both inequalities

above become exact equalities when all bins have the same neutrality ν, which could be

interpreted as either νmin or νmax.

Having obtained inequality constraints on (Wmpo)i, we now consider the term (Vmpo)i,
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which can be written as

(Vmpo)i = p0iνi,m

= p0i

∑

j

(Wm)ji

= p0i

∑

j,k1,...,km−1

Wjk1Wk1k2 · · ·Wkm−1i

= p0i

∑

k1,...,km−1

νk1Wk1k2 · · ·Wkm−1i

≤ p0iνmax

∑

k1,...,km−1

Wk1k2 · · ·Wkm−1i

≤ p0iν
m−1
max

∑

km−1

Wkm−1i, (5.30)

which yields an identical upper bound to that on (Wmpo)i, namely,

(Vmpo)i ≤ νm−1
max νip0i, (5.31)

and similarly

(Vmpo)i ≥ νm−1
min νip0i. (5.32)

It should again be noted that both the above inequalities become exact equalities when all

bins have a common neutrality ν.

We are now in a position to estimate bounds on the magnitude of the second term of

Equation 5.25. Using the four inequalities of Equations 5.28, 5.29, 5.31, and 5.32 above, we

have

−
(

νm−1
max − νm−1

min

)

νip0i ≤ [(Wm −Vm)po]i ≤
(

νm−1
max − νm−1

min

)

νip0i, (5.33)

or equivalently,

|[(Wm −Vm)po]i| ≤
(

νm−1
max − νm−1

min

)

νip0i, (5.34)

where the inequality above becomes an exact equality when all bins have the same neutrality.

However, in this limit, the right hand side of the above equation vanishes, and therefore

the second term of Equation 5.25 is identically zero in this case, giving the result that pM
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is exactly equal to po when all bins have the same neutrality, even if µ is arbitrarily large.

We now carry out the sum over m to obtain an upper bound on the second term of

Equation 5.25 in the more general and realistic case of unequal neutrality bins. Using

Equation 5.34 and the specific Poisson form of fm, we obtain an upper bound on the

fractional change in p0i in one generation:

∣

∣

∣

∣

pi(t + 1)− p0i

p0i

∣

∣

∣

∣

≤ νie
−µ

∞
∑

m=2

µm

m!

(

νm−1
max − νm−1

min

)

= νie
−µ

[

eµνmax − 1

νmax
−

eµνmin − 1

νmin

]

. (5.35)

The above bound vanishes for small µ, is an increasing function of νmax − νmin, and is

typically much smaller than 1. An extreme estimate of the size of the fractional change

can be made when νmax = 1 and νmin = 0. In this case, using µ = 1.4 (the value in our

experiments), the above inequality simplifies to

∣

∣

∣

∣

pi(t + 1)− p0i

p0i

∣

∣

∣

∣

≤ νi

(

1− e−µ − µe−µ
)

≃ 0.41νi. (5.36)

Noting that νi < 1, the fractional change in p0i is therefore reasonably controlled even in

the most extreme case. For realistic situations, the fractional change in p0i is expected to

be much lower, thus justifying the use of po as the stationary distribution of the dynamics

of Equation 5.1.
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Chapter 6

Neutral Genetic Drift Can Aid

Functional Protein Evolution

6.1 Abstract

Many of the mutations accumulated by naturally evolving proteins are neutral in the sense

that they do not significantly alter a protein’s ability to perform its primary biological func-

tion. However, new protein functions evolve when selection begins to favor other, “promis-

cuous” functions that are incidental to a protein’s original biological role. If mutations that

are neutral with respect to a protein’s primary biological function cause substantial changes

in promiscuous functions, these mutations could enable future functional evolution. Here

we investigate this possibility experimentally by examining how cytochrome P450 enzymes

that have evolved neutrally with respect to activity on a single substrate have changed

in their abilities to catalyze reactions on five other substrates. We find that the enzymes

have sometimes changed as much as four-fold in the promiscuous activities. The changes in

promiscuous activities tend to increase with the number of mutations, and can be largely

rationalized in terms of the chemical structures of the substrates. The activities on chem-

ically similar substrates tend to change in a coordinated fashion, potentially providing a

route for systematically predicting the change in one function based on the measurement of

several others. Our work suggests that initially neutral genetic drift can lead to substantial

changes in protein functions that are not currently under selection, in effect poising the

proteins to more readily undergo functional evolution should selection “ask new questions”

in the future.
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6.2 Background

Nature employs proteins for a vast range of tasks, and their capacity to evolve to per-

form diverse functions is one of the marvels of biology. Recently, it has become possible

to reconstruct convincing scenarios for how new protein functions evolve. One of the most

important conclusions of this work is that the initial steps may occur even before the new

functions come under selection [150, 54, 151, 152, 153, 154]. The reason is that in ad-

dition to their primary biological functions, most proteins are at least modestly effective

at performing a range of other “promiscuous” functions [150, 54, 155, 156, 157, 158]. In

laboratory experiments, selection can rapidly increase these promiscuous functions, often

without much immediate cost to a protein’s original function [54]. In a particularly com-

pelling set of experiments, Tawfik and coworkers have shown that selection for promiscuous

activity likely explains the origin and evolution of a bacterial enzyme that hydrolyzes a

synthetic compound only recently introduced into the environment [54, 159, 160]. Mount-

ing evidence therefore supports the idea that new protein functions evolve when selection

favors mutations that increase an existing weak promiscuous function.

But for as long as 50 years, since Linus Pauling and Emile Zuckerkandl published their

seminal analysis of molecular change in proteins [3], it has been clear that just a small

fraction of the mutations that accumulate in naturally evolving proteins are driven by

selection for a new function. Instead, most of the mutations responsible for natural sequence

divergence do not change a protein’s primary biological function, but rather are due to either

neutral genetic drift [96] or pressure for a subtle recalibration of protein properties unrelated

to the acquisition of an entirely new function [161]. However, even though most mutations

accumulate under the constraint that they not interfere with a protein’s primary function,

they could still substantially alter other, promiscuous functions. Such alterations could then

aid in the subsequent evolution of new functions.

Here we have experimentally investigated this possibility using a set of enzymes that

have undergone genetic drift that is neutral with respect to a well-defined laboratory se-

lection criterion for enzymatic activity on a single substrate [135]. We have examined how

these enzymes have changed in their promiscuous activities on five other substrates. As

described below, we find that the enzymes have often undergone substantial changes in
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their promiscuous activities, suggesting that neutral genetic drift could play an important

role in enabling future functional evolution.

6.3 Results and Discussion

6.3.1 A set of neutrally evolved cytochrome P450 enzymes

We focused our analysis on cytochrome P450 proteins. P450s are excellent examples of

enzymes that can evolve to catalyze new reactions, since they are involved in a wide range

of important functions such as drug metabolism and steroid biosynthesis [60, 61]. We worked

with P450 BM3, a cytosolic bacterial enzyme that catalyzes the subterminal hydroxylation

of medium- and long-chain fatty acids [62]. We have previously described a set of P450 BM3

heme domain variants that were created by laboratory neutral evolution from a common

parent sequence [135]. Here we briefly recap the procedure used to create these P450s in

order to explain their origin and why they can properly be viewed as the product of neutral

genetic drift.

The essential difference between neutral genetic drift and adaptive evolution is that in

the former case mutations that have no substantial effect on fitness spread stochastically in

a population, while in the latter case mutations spread because they are beneficial and so

favored by selection. Of course, it may be difficult to discern whether a specific mutation in a

natural population has spread neutrally or due to favorable selection. But in the laboratory

it is possible to define an arbitrary selection criterion to ensure that all mutations spread

due to neutral genetic drift. Specifically, we imposed the requirement that the P450s had to

hydroxylate the substrate 12-p-nitrophenoxydodecanoic acid (12-pNCA) with an activity

exceeding a specific threshold [135]. All mutant P450s were therefore straightforwardly

classified as either functional (if they exceeded the threshold) or nonfunctional (if they

did not). While this selection criterion is obviously a simplification of natural evolution,

we believe that for the current purpose it is a reasonable abstraction of the evolutionary

requirement that an enzyme’s primary activity exceed some critical level in order to allow

its host organism to robustly survive and reproduce. To implement laboratory neutral

evolution using this selection criterion, we began with a single parent P450 BM3 heme

domain variant (called R1-11) and used error-prone PCR to create random mutants of
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this parent [135]. Mutants that failed to yield sufficient active protein to hydroxylate at

least 75% of the 12-pNCA of the R1-11 parent when expressed in Escherichia coli were

immediately eliminated, while all other mutants were carried over to the next generation

with equal probability. Any mutations that spread among the offspring sequences were

therefore by definition due to neutral genetic drift, since there was no opportunity for any

functional mutant to be favored over any other. We emphasize that the fact that the

mutations spread due to neutral genetic drift does not mean that they have no effect on

the protein’s properties. Indeed, one of the growing realizations about protein evolution

is that mutations that spread by neutral genetic drift may still have an impact on future

evolution [72, 95]. One mechanism for this impact is that neutral genetic drift can change

a protein’s stability and so alter its tolerance to future mutations [7, 127, 49]. As will be

demonstrated below, another mechanism is that neutral genetic drift can alter a protein’s

promiscuous functions.

As described previously [135], the end result of the neutral evolution was 44 different

P450 variants, each of which satisfied the selection criterion for activity on 12-pNCA (these

are the combined final sequences from the monomorphic and polymorphic populations in

[135]). For the current study, we analyzed the promiscuous activities of 34 of these neutrally

evolved P450 variants. The sequence diversity of these P450s is shown in the phylogenetic

tree of Figure 6.1; they have accumulated an average of four nonsynonymous mutations

each.

6.3.2 Activities of the neutrally evolved P450 enzymes

All of the P450 variants had evolved under selection solely for their ability to hydroxy-

late 12-pNCA. We examined their promiscuous hydroxylation activities on the five other

substrates shown at the top of Figure 6.2. Two of these promiscuous substrates, pro-

pranolol and 2-amino-5-chlorobenzoxazole (also known as zoxazolamine), are drugs that

are metabolized by human P450s [162, 163]. The other three promiscuous substrates, 11-

phenoxyundecanoic acid, 2-phenoxyethanol, and 1,2-methylenedioxybenzene, are organic

compounds of increasing structural dissimilarity to 12-pNCA. The parent P450 possessed

at least some hydroxylation activity on all of these substrates (throughout the remainder

of this work, “activity” refers to total substrate turnovers per enzyme).
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Figure 6.1: Phylogenetic tree of the neutrally evolved P450s. The tree shows the relationship
among the 34 neutrally evolved P450 variants examined in this study. All of the P450s
neutrally evolved from the same R1-11 parent P450. The horizontal lengths of the branches
are proportional to the number of nonsynonymous mutations, as indicated by the scale bar.
The vertical arrangement of the branches is arbitrary.
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Figure 6.2: Activities of the neutrally evolved P450s on the six substrates. The heat map
shows the fold change in activity of all 34 neutrally evolved P450 variant on all six sub-
strates. Each row shows the data for a different P450 variant, while each column shows
the activity on a different substrate. The fold change in activity is the ratio of the vari-
ant’s activity to that of the neutral evolution parent. Both the substrates and the P450
variants are hierarchically clustered according to the activity profiles, as shown by the
dendrograms at top and left. Substrate abbreviations: PROP - propranolol, 2A5C - 2-
amino-5-chlorobenzoxazole, MDOB - 1,2-methylenedioxybenzene, 2PE - 2-phenoxyethanol,
11PA - 11-phenoxyundecanoic acid. The standard errors for the changes in activity dis-
played in the heat map tend to be much smaller than the changes themselves; these errors
are shown explicitly in Figure 6.3.
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We measured the activities of all 34 neutrally evolved P450s on the five promiscuous

substrates as well as 12-pNCA. Figure 6.2 shows the fold change in activity of each of the

variants relative to the parent P450 on all six substrates, and Figure 6.3 shows the same

data with standard errors. As is apparent from these figures, many of the neutrally evolved

P450s have undergone changes in their activities that substantially exceeded the standard

errors of the measurements. Even on 12-pNCA, some of the variants have undergone mod-

est increases or very mild decreases in activity . The modest increases in 12-pNCA activity

were unsurprising, since the parent P450 only hydroxylates 12-pNCA with about a quarter

of the activity reported for a P450 engineered for maximal 12-pNCA activity [59]. Likewise,

the mild decreases in 12-pNCA activity were due to the fact that during neutral evolution

the P450s were only required to maintain this activity above a minimal threshold (75%

of the total 12-pNCA conversion of the parent protein when expressed in E. coli [135]).

The changes in the promiscuous activities were often much larger than those on 12-pNCA.

For example, several of the neutrally evolved variants have undergone nearly four-fold in-

creases in activity on one or more of 2-phenoxyethanol, 2-amino-5-chlorobenzoxazole, and

1,2-methylenedioxybenzene. Other variants have experienced equally large decreases in one

or more of the promiscuous activities.

6.3.3 Broad patterns of change in activity can be rationalized in terms

of substrate properties

The data in Figures 6.2 and 6.3 clearly indicate that some of the P450s have undergone sub-

stantial changes in their activities. In an effort to understand the nature of these changes, we

sought to determine whether there were any clear patterns in the activities. In Figure 6.2,

the substrates have been hierarchically clustered so that each successive cluster contains sub-

strates on which the P450s have increasingly similar activities (the clustering is illustrated

by the tree-like dendrogram at the top of the figure, with similar substrates in adjacent

columns). The clustering of the substrates is readily rationalized in terms of their chemi-

cal structures. For example, 2-amino-5-chlorobenzoxazole and 1,2-methylenedioxybenzene

cluster, meaning that P450s with high activity on one of these substrates also tend to have

high activity on the other. Presumably, they cluster because the similarity of their struc-

tures (both are fusions of six and five membered rings) means that they have similar modes
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Figure 6.3: Fold changes in P450 activities with standard errors. The bar graphs show
the fold change in activity of all 34 neutrally evolved P450 variants on all six substrates.
This is the same data as in Figure 6.2, except these graphs also give error bars showing the
standard errors in two separate measurements of the activities. In most cases the standard
errors are much smaller than the activity changes themselves.
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12-pNCA 2PE PROP 11PA 2A5C MDOB

PC1 (explains 62% of variance) 0.25 0.61 0.05 0.29 0.47 0.51
PC2 (explains 20% of variance) -0.48 -0.39 0.14 -0.27 0.70 0.19

Table 6.1: Principal component analysis of activity profiles. The first two principal com-
ponents explain 82% of the variance in P450 activity profiles. The table shows the compo-
sition of these two components and the variance explained by each. The first component
contains positive contributions from all substrates and can be thought of as representing a
general high catalytic ability. The second component can be thought of as representing dis-
crimination between fused ring substrates (PROP, 2A5C, and MDOB) and phenolic either
substrates (12-pNCA, 11PA, 2PE). Substrate abbreviations are as defined in the legend to
Figure 6.2. The analysis was performed on the logarithms of the fold changes in activity.

of docking in the substrate binding pocket. Likewise, 12-pNCA and 11-phenoxyundecanoic

acid are phenoxycarboxylic acids of similar chain length, and are in the same cluster. To

a lesser extent, 2-phenoxyethanol resembles 12-pNCA and 11-phenoxyundecanoic acid in

its phenolic ether structure, and it falls into a higher level cluster with these two sub-

strates. Propranolol shares a fused ring structure with 2-amino-5-chlorobenzoxazole and

1,2-methylenedioxybenzene, and these three substrates share a common higher level clus-

ter. Overall, the hierarchical clustering indicates that substrates that appear similar to

the human eye are also “seen” this way by the P450s, since the P450s tend to increase or

decrease their activities on these substrates in a coordinated fashion.

Figure 6.2 also shows the P450 variants arranged in hierarchical clusters. A visual

inspection immediately indicates that there is an overall association among all of the ac-

tivities. Some of the P450 variants (redder rows) tend to show improved activity on most

substrates, while others (bluer rows) tend to show decreased activity on most substrates.

Taken together with the clustering of the similar substrates, this overall association suggests

that there are two main trends in the activity changes. First, the P450s appear to have

undergone general changes in their catalytic abilities that are manifested by broad increases

or decreases in activity on all substrates. Second, the P450s appear to have experienced

shifts in specificity to favor either the fused ring or the phenolic ether substrates.

To test whether these two apparent trends in activity changes are supported by a quan-

titative examination of the data, we performed principal component analysis. Principal

component analysis is a well-established mathematical technique for finding the dominant

components of variation in a data set, essentially by diagonalizing the covariance matrix.
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As suggested by the foregoing visual inspection, principal component analysis revealed that

two components explained most of the changes in P450 activity (Table 6.1). The first com-

ponent contained positive contributions from all six substrates, and so represents a general

improvement in catalytic ability. The second component contained positive contributions

from the fused ring substrates and negative contributions from the phenolic ether sub-

strates, and so represents an increased preference for the former class of substrates over the

latter. Together, these two components explain 82% of the variance in activities among the

34 P450 variants. The remaining 18% of the variance is explained by the four remaining

components, which represent more subtle shifts in activity that are less easily rationalized

with intuitive chemical arguments.

6.3.4 Overall distributions of change in the activities

The preceding sections have demonstrated that neutral genetic drift can lead to substantial

changes in P450 activities, and that many of these changes can be understood as resulting

from either fairly general increases/decreases in catalytic ability or shifts in preference for

different broad classes of substrate structures. In this section, we examine whether there

are any pervasive trends in the distributions of activity changes — for example, did most

of the promiscuous activities tend to increase or decrease? If a property is not under any

evolutionary constraint, then during neutral genetic drift its values might be expected to be

distributed in a roughly Gaussian fashion, as the neutrally evolving proteins freely sample

from the presumably normal underlying distribution. On the other hand, if a property is

constrained by selection to remain above a certain threshold, then during neutral genetic

drift its values should display a truncated distribution since selection culls proteins with

values that fall below the threshold (such a distribution has been predicted for protein

stability by simulations [41] and theory [95]).

Figure 6.4 shows the distribution of changes in activity for each of the six substrates.

The distribution for 12-pNCA appears to be truncated on the left, as expected since the

P450s neutrally evolved under a requirement to maintain the ability to hydroxylate 12-

pNCA. Some of the P450s have undergone a mild decrease in 12-pNCA activity, reflective

of the fact that the neutral evolution selection criterion provided a small amount of latitude

by allowing the total amount of hydroxylated 12-pNCA to drop to 75% of the parental
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Figure 6.4: Distributions of activity changes on each of the six substrates. The histograms
show the distributions of fold changes in activity for all 34 neutrally evolved P450 variants
on each of the six substrates, with a value of one indicating that the activity is the same as
the neutral evolution parent.

value [135]. A number of P450s have neutrally evolved 12-pNCA activity that modestly

exceeds that of the parent — again unsurprising, because the parental 12-pNCA activity

falls well below the maximal value achievable for this type of protein [59]. The distribution

for 11-phenoxyundecanoic acid resembles that for 12-pNCA, probably because activities

on these two chemically similar substrates are highly linked, as discussed in the previous

section.

The other four promiscuous activities are less linked to 12-pNCA activity, and their

distributions are much more symmetric. The symmetric shapes of these distributions

suggest that neutral genetic drift has sampled from a roughly Gaussian distribution for

these four promiscuous activities. For three of the substrates (propranolol, 2-amino-5-

chlorobenzoxazole, and 1,2-methylenedioxybenzene), the distributions of activities are ap-

proximately centered around the parental activity. This centering indicates that the promis-

cuous activities of the parent on these three substrates are typical of what would be expected

of a neutrally evolved P450. The distribution for 2-phenoxyethanol, on the other hand, is

shifted towards activities higher than that of the parent. This shift indicates that the parent

is less active on 2-phenoxyethanol than a typical neutrally evolved P450.

If the activity distributions of Figure 6.4 truly reflect what would be expected after a very

long period of neutral genetic drift (i.e., if they are “equilibrium” distributions), then each

variant represents a random sample from the underlying distribution of activities among
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12-pNCA 2PE PROP 11PA 2A5C MDOB ALL
0.32 (0.06) 0.27 (0.11) 0.06 (0.71) 0.12 (0.48) 0.20 (0.24) 0.36 (0.04) 0.22(10−3)

Table 6.2: Correlations between changes in activity and number of mutations. The extent
of change in activity is positively correlated with the number of nonsynonymous mutations
the P450 has undergone relative to the neutral evolution parent. Each column shows the
Pearson correlation between the number of nonsynonymous mutations and the absolute
value of the logarithm of the fold change in activity for a different substrate, computed
over all 34 P450 variants. The final column (ALL) is the correlation among the 6 × 34
pooled data points for all six substrates. The P -values are shown in parentheses; none of
the correlations for the individual substrates are significant at a 1% level (due to the small
number of data points), but the overall correlation for all substrates is highly significant.
Substrate abbreviations are as defined in the legend to Figure 6.2.

all P450s that can neutrally evolve under this selection criterion. In this case, there should

be no correlation between the extent of change in activity and the number of accumulated

mutations, since the P450s should have lost all “memory” of the parent’s activity. On

the other hand, if there has not been enough neutral genetic drift to completely eliminate

residual memory of the parent’s activity, then variants with fewer mutations should more

closely resemble the parent’s activity profile. To test whether the activity distributions of

the P450 variants had equilibrated, we computed the correlation between the magnitude of

each variant’s change in activity and the number of nonsynonymous mutations it possessed

relative to the parent. Table 6.2 shows that the magnitude of activity change is positively

correlated with the number of mutations for all six substrates. Although the correlations

for the individual substrates are mostly not statistically significant due to the small number

of samples, the overall correlation for all six substrates is highly significant (P = 10−3).

Therefore, the P450 activities are still in the process of diverging from the parental values

by neutral genetic drift. If the variants were to undergo further neutral genetic drift, we

would expect to see even larger changes in their promiscuous activities.

We also examined whether P450 variants with mutations near the substrate binding

pocket were more likely to have undergone large changes in their activities. Five of the

P450 variants had a mutation to a residue that was within 5 Å of the surrogate substrate

in the P450 BM3 crystal structure [69]: variant M2 had A74V, M8 had A330V, M13 had

M354I, M15 had A74P, and M24 had I263V [135]. Two of these mutated residues are of

clear importance, since mutating residue 74 has previously been shown to shift substrate

specificity [164, 165, 162] and residue 263 plays a role in the substrate-induced conforma-
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tional shift [166]. We compared the activity changes for the five variants with mutations

near the binding pocket to those for the 29 variants without any such mutations, com-

puting the magnitude of activity change as the absolute value of the logarithm (base two)

of the fold change in activity averaged over all six substrates. The average magnitude of

activity change for the five variants with mutations near the active site was 0.88, while

the average for the other 29 variants was 0.47. These averages are significantly different,

with an unequal variance T-test P -value of 10−2. Therefore, variants with mutations near

the substrate binding pocket are especially likely to have altered activities, although many

variants without mutations near the pocket also underwent substantial activity changes.

6.4 Conclusions

We have shown that neutral genetic drift can lead to changes of as much as four-fold in

the promiscuous activities of P450 proteins. The ubiquity of these changes is striking —

even though many of the neutrally evolved P450s had only a handful of mutations, most

of them had experienced at least some change in their promiscuous activities. P450s may

be especially prone to this type of change, since their catalytic mechanism involves large

substrate-induced conformational shifts [167] that can be modulated by mutations distant

from the active site [168, 169, 164]. In addition, P450s have a tendency to eventually un-

dergo irreversible inactivation that can be promoted by reduced coupling between substrate

binding and conformational shifts, as well as by other poorly understood determinants of

catalytic stability [62, 170, 171]. There are therefore ample opportunities for mutations that

spread by neutral genetic drift to cause subtle alterations in a P450’s promiscuous activi-

ties. But we believe that neutral genetic drift is also likely to cause substantial changes in

the promiscuous activities of enzymes with other catalytic mechanisms. In support of this

idea, a recent study by Tawfik and coworkers [172] indicates that mutations with little effect

on the native lactonase activity of serum paraoxonase can alter this enzyme’s promiscuous

activities. Taken together, this study and our work suggest that neutral genetic drift allows

for changes in promiscuous protein functions. These changes could in turn have important

implications for future functional evolution. For example, one can easily imagine a sce-

nario in which neutral genetic drift enhances a promiscuous protein function, and then a
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subsequent gene duplication allows natural selection to transform one of the genes into the

template for a protein with a full-fledged new functional role [150, 54, 151, 152, 153, 154].

One of the most attractive aspects of our study is the degree to which the changes

in P450 activities during neutral genetic drift could be understood in terms of the chemi-

cal structures of the substrates. Neutral genetic drift did not simply cause unpredictable

shifts in activities. Instead, most of the variation was explained by two eminently intu-

itive components: an overall increase or decrease in catalytic ability, and a preference for

either fused ring or phenolic ether substrates. We have suggested that neutral genetic drift

under a fixed selection criterion can be viewed as sampling underlying “equilibrium” dis-

tributions of activities. The distributions for different activities are linked, since we have

shown that P450s with good activity on one substrate will frequently also be highly ac-

tive on chemically similar substrates (similar linkages have been observed in P450s created

by recombination [173]). So while it may be impossible to know exactly how any specific

mutation will affect a given activity, measuring a handful of activities allows one to make

relatively accurate predictions about other closely linked activities. The prerequisite for

making such predictions is an understanding of the linkages among activities in the set of

sequences explored by neutral genetic drift (the neutral network). We have made the first

steps in elucidating these linkages for P450s that have neutrally evolved under one specific

selection regime. The linkages are very similar to those that would have been made by an

organic chemist grouping the substrates on the basis of their chemical structures. Knowl-

edge of these linkages is of use in understanding the origins of enzyme specificity [158, 174]

— if an enzyme displays high activity on one substrate but low activity on another, then

either these two activities are negatively linked during neutral genetic drift or selection has

explicitly disfavored one of them.

Our work also has implications for the general relationship between neutral genetic

drift and adaptive evolution. A number of studies focused on RNA [103, 175, 176] or

computational systems [177, 178] have suggested that genetic drift might aid in adaptive

evolution. Our study and that of Tawfik and coworkers [172] support this notion for the

evolution of new protein functions. However, the way that drift in promiscuous functions

promotes adaptive evolution is slightly different than the paradigm proposed for RNA [103,

175, 176] and computational systems [177, 178]. In those systems, neutral genetic drift
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is envisioned as allowing a sequence to move along its neutral network until it reaches a

position where it can jump to a new higher-fitness and non-overlapping neutral network. In

contrast, promiscuous protein functions change even as a protein drifts along a single neutral

network. The adaptive benefits of this drift come when new selective pressures suddenly

favor a previously irrelevant promiscuous function, in effect creating a new neutral network

that overlaps with parts of the old one.

Overall, experiments have now demonstrated two clear mechanisms by which neutral

genetic drift can aid in the evolution of protein functions. In the first mechanism, neutral

genetic drift fixes a mutation that increases a protein’s stability [76, 72, 95], thereby im-

proving the protein’s tolerance for subsequent mutations [7, 127, 49], some of which may

confer new or improved functions [49]. In the second mechanism, which was the focus of

this work and the recent study by Tawfik and coworkers [172], neutral genetic drift enhances

a promiscuous protein function. This enhancement poises the protein to undergo adaptive

evolution should a change in selection pressures make the promiscuous function beneficial

at some point in the future.

6.5 Methods

6.5.1 Determination of P450 activities

We attempted to determine the activities of all 44 neutrally evolved P450 variants described

in [135] (22 from the final monomorphic populations and 22 from the final polymorphic

population). Ten of these variants expressed relatively poorly in the procedure used here

(as described in more detail below), and so were eliminated from further analysis since their

low expression led to large errors in the activity measurements. That left activity data for

the 34 neutrally evolved P450 variants listed in Figures 6.2 and 6.3, as well as for the R1-11

neutral evolution parent. The activities for each of these P450 variants were measured on

all six substrates (12-pNCA, 2-phenoxyethanol, propranolol, 11-phenoxyundecanoic acid,

2-amino-5-chlorobenzoxazole, and 1,2-methylenedioxybenzene). In all cases, the activities

represent the total amount of product produced after two hours, and so are in units of

total turnovers per enzyme. P450 BM3 enzymes typically catalyze only a finite number of

reaction cycles before becoming irreversibly inactivated, and we believe that all reactions
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were essentially complete after two hours, so these activities should represent the total

turnovers of the enzymes during their catalytic lifetimes.

To obtain P450 protein for the activity measurements, we expressed the protein us-

ing catalase-free Escherichia coli [86] containing the encoding gene on the isopropyl β-D-

thiogalactoside (IPTG) inducible pCWori [86] plasmid (the catalase is removed since it

breaks down the hydrogen peroxide used by the P450). The sequences of the P450 variants

are detailed in [135]. We used freshly streaked cells to inoculate 2 ml cultures of Luria Broth

(LB) supplemented with 100 µg/ml of ampicillin, and grew these starter cultures overnight

with shaking at 37oC. We then used 0.5 ml from these starter cultures to inoculate 1 L

flasks containing 200 ml of terrific broth (TB) supplemented with 100 µg/ml of ampicillin.

The TB cultures were grown at 30oC and 210 rpm until they reached an optical density

at 600 nm of ≈0.9, at which point IPTG and δ-aminolevulinic acid were added to a final

concentration of 0.5 mM each. The cultures were grown for an additional 19 hours, then

the cells were harvested by pelletting 50 ml aliquots at 5,500 g and 4oC for 10 min, and

stored at -20oC. To obtain clarified lysate, each pellet was resuspended in 8 ml of 100 mM

[4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid] (EPPS), pH 8.2 and lysed by sonica-

tion, while being kept on ice. The cell debris was pelleted by centrifugation at 8,000 g and

4oC for 10 minutes, and the clarified lysate was decanted and kept on ice.

To perform the assays, various dilutions of the clarified lysate were used to construct a

standard curve. For each sample, we prepared dilutions of the clarified lysate in the 100 mM

EPPS (pH 8.2) buffer to create samples for the standard curves. The dilutions were 100%

clarified lysate (undiluted), 67% lysate, 40% lysate, 25% lysate, 17% lysate, 10% lysate,

6.7% lysate, and 4.0% lysate. Similar dilutions were also prepared of the clarified lysate

of E. coli cells carrying a null pCWori plasmid in order to assess the background readings

from lysate without any P450. A pipetting robot was then used to dispense 80 µl of this

series of clarified lysate dilutions into 96-well microtiter plates. Duplicate microtiter plates

were then assayed for P450 concentration and total enzymatic activity on each of the six

substrates. The R1-11 parent was assayed four times rather than in duplicate. To minimize

variation, all of these assays were performed in parallel, with the same stock solutions, and

on the same day.

The P450 concentration was determined using the carbon monoxide (CO) difference
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spectrum assay [66]. Immediately before use, we prepared a 5× stock solution of 50 mM

sodium hydrosulfite in 1.3 M potassium phosphate, pH 8.0. A multichannel pipette was

used to add 20 µl of this stock solution to each well of the microtiter plates (which contained

80 µl of a dilution of clarified lysate), so that the final sodium hydrosulfite concentration was

10 mM in each well. The plates were briefly mixed and the absorbances were read at 450

and 490 nm. The plates were then incubated in a CO binding oven [66] for 10 minutes to

bind CO to the iron. The absorbance was then again read at 450 and 490 nm. The amount

of P450 is proportional to the increase in the magnitude of the absorbance at 450 nm minus

the absorbance at 490 nm. At each dilution along the standard curve, the reading for the

null control (lysate dilutions without P450) was subtracted from the reading for each P450

variant to control for clarified lysate background. Ten P450 variants had standard curve

slopes less than or equal to 0.020, indicating a low P450 concentration. These were the ten

P450 variants that we discarded from further analysis, since the low P450 concentration

decreased the accuracy of the measurements.

To determine the activity on 12-pNCA, we monitored the formation of the yellow 4-

nitrophenolate compound that is released upon hydroxylation of the twelfth carbon in the

12-pNCA molecule [179, 59]. Immediately before use, we prepared a 6× stock solution of

12-pNCA by adding 3.6 parts of 4.17 mM 12-pNCA in DMSO to 6.4 parts 100 mM EPPS,

pH 8.2. A multichannel pipette was used to add 20 µl of this stock solution to each well

of the microtiter plates (which contained 80 µl of a dilution of clarified lysate). The plates

were briefly mixed, and the absorbance was read at 398 nm. To initiate the reactions, we

then prepared a 6× stock solution of 24 mM hydrogen peroxide in 100 mM EPPS, pH

8.2, and immediately added 20 µl of this solution to each well of the microtiter plate and

mixed. The final assay conditions were therefore 6% DMSO, 250 µM 12-pNCA, and 4 mM

hydrogen peroxide. The reactions were incubated on the benchtop for two hours, and the

total amount of enzymatic product was quantified by the gain in absorbance at 398 nm. At

each dilution along the standard curve, the corresponding null control lysate dilution was

subtracted from the reading to control for lysate background.

The activities on 2-phenoxyethanol, propranolol, 11-phenoxyundecanoic acid, 2-amino-

5-chlorobenzoxazole, and 1,2-methylenedioxybenzene were determined using the 4-aminoantipyrene

(4-AAP) assay [67, 87], which detects the formation of phenolic compounds. For each of
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these five substrates, immediately before use we prepared a 6× substrate stock solution.

These stock solutions were 6% DMSO and 6% acetone in 100 mM EPPS, pH 8.2, with an

amount of substrate added so that the substrate concentrations in the stock solutions were:

150 mM for 2-phenoxyethanol, 30 mM for propranolol, 5 mM for 11-phenoxyundecanoic

acid, 12 mM for 2-amino-5-chlorobenzoxazole, and 120 mM for 1,2-methylenedioxybenzene.

The stock solutions were prepared by first dissolving the substrate in the DMSO and ace-

tone, and then adding the EPPS buffer. In some cases, the stock solution became cloudy

upon addition of the buffer, but there was no immediate precipitation, so we could still

pipette the stock solution. A multichannel pipette was used to add 20 µl of the appropriate

substrate stock solution to each well of the microtiter plates (which contained 80 µl of a

dilution of clarified lysate). To initiate the reactions, we then added 20 µl of the freshly pre-

pared 6× hydrogen peroxide stock solution (24 mM hydrogen peroxide in 100 mM EPPS,

pH 8.2) and mixed. We incubated the plates on the benchtop for two hours. To detect

the formation of phenolic products, a pipetting robot was used to add and mix 120 µl of

quench buffer (4 M urea in 100 mM sodium hydroxide) to each well. We then used the robot

to add and mix 36 µl per well of 0.6% (w/v) of 4-aminoantipyrene in distilled water, and

immediately read the absorbance at 500 nm. To catalyze formation of the red compound

produced by coupling a phenolic compound to 4-aminoantipyrene [67, 87], we then used the

pipetting robot to add and mix 36 µl per well of 0.6% (w/v) of potassium peroxodisulfate in

distilled water. The plates were incubated on the benchtop for 30 minutes, and the amount

of product was quantified by the gain in absorbance at 500 nm. At each dilution along

the standard curve, the corresponding null control lysate dilution was subtracted from the

reading to control for lysate background.

In order to extract enzymatic activities from the standard curves, we fit lines to the data

points. For some of the substrates (most notably 12-pNCA and 2-phenoxyethanol), many

of the P450 variants were sufficiently active to either saturate the substrate or exceed the

linear range of absorbance readings. Therefore, we examined each standard curve by eye

to determine which points remained in the linear range. Lines were then fit to the points

in the linear range. These slopes are averaged for a best estimate of the slope, and the

standard error computed over these two measurements is also reported.

To compare the activities (total substrate turnovers per enzyme) among the different
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P450 variants, it is first necessary to normalize to the enzyme concentration. To do this,

we took the ratio of the slope for each substrate divided by the slope of the CO different

spectrum, propagating the errors. These normalized slopes are proportional to the activity

on each substrate. These normalized slopes allow for accurate comparisons among the P450

variants, and were used in the analyses in this paper. To convert these normalized slopes

into total substrate turnovers per enzyme, it is necessary to multiply them by the ratio of

extinction coefficients. The extinction coefficient for the CO difference spectrum reading

(the absorbance at 450 nm minus that at 490 nm) is 91 mM−1cm−1 [66], and we calculated

the extinction coefficient at 398 nm for the 4-nitrophenolate group in our buffer to be 12,000

M−1cm−1. Therefore, for 12-pNCA, the total number of substrate turnovers per P450 en-

zyme is 7.58 times the ratio of the 12-pNCA standard curve slope to the CO difference spec-

trum slope. This indicates that our parent protein had about 250 12-pNCA turnovers per

enzyme, compared to the 1,000 reported for a variant engineered for maximal 12-pNCA ac-

tivity [59]. For the other substrates assayed with the 4-AAP assay, the extinction coefficient

at 500 nm for the 4-AAP/phenol complex has been reported to be 4,800 [87]. However, we

believe that this extinction coefficient could be of dubious accuracy for our data. Depending

on the exact type of phenolic compound created by P450 hydroxylation, the extinction coef-

ficient for the 4-AAP/phenol complex may vary. Assuming the extinction coefficient of 4,800

M−1cm−1 is accurate, then the total number of substrate turnovers per P450 enzyme is 19.0

times the ratio of the substrate standard curve slope to the CO difference spectrum slope.

Using this coefficient, the parent P450 had roughly 1,000 turnovers on 2-phenoxyethanol,

30 turnovers on propranolol, 400 turnovers on 11-phenoxyundecanoic acid, 50 turnovers on

2-amino-5-chlorobenzoxazole, and 80 turnovers on 1,2-methylenedioxybenzene. The high

activities on 2-phenoxyethanol and 11-phenoxyundecanoic acid are presumably due to the

fact that lack of polar substituents on the aromatic ring allows these compounds to enter

the hydrophobic P450 BM3 binding pocket [69] more easily than 12-pNCA. However, we

emphasize that the exact numerical values for the turnovers for these five substrates are

questionable. Definitive determination of the extinction coefficients would require analyt-

ical analysis of the enzymatic products for each P450 variant on each substrate, which is

beyond the scope of this study.
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6.5.2 Analysis of activity data

To analyze and display the activity data, we computed the fold change in activity of each

variant relative to the R1-11 parent P450. The fold change is simply the variant activity

divided by the parent activity on each substrate, with the standard errors propagated to

give an error on the fold change. In Figures 6.2 and 6.3, these fold changes are displayed

on a logarithmic scale so that each unit corresponds to a two-fold increase or decrease in

activity. In Figure 6.2, the substrates and the P450 variants have both been clustered, as

shown by dendrograms on the side of the heat map. The clustering was performed using the

standard hierarchical clustering function of the R statistical package. This is complete link-

age hierarchical clustering, with the distances computed as the Euclidian distance between

the logarithms of the fold changes in activity. The standard errors on the fold changes in

activity are not incorporated into Figure 6.2 or any of the related analysis. However, these

standard errors are shown in Figure 6.3; it is apparent from this figure that the errors tend

to be much less than the fold changes in activity themselves.

In Figure 6.4, the histogram bins are logarithmically spaced so that each bin contains

a 20.5-fold range of activities. For example, the histogram bin centered at one contains all

variants with between 2−0.25 = 0.84 and 20.25 = 1.19 fold the parental activity, while the

bin centered at 1.5 contains all variants with between 20.25 = 1.19 and 20.75 = 1.68 fold the

parental activity.

The principal component analysis shown in Table 6.1 was performed using the R statis-

tical package, with inputs being the logarithms of the fold changes in activity. Since these

log fold changes in activity contained no arbitrary units (they were already normalized to

the parent), the data was neither scaled nor zeroed before performing the analysis. Table

6.1 shows the composition and the percent of variance explained (the eigenvalue for that

component divided by the sum of all eigenvalues) for the first two components. The re-

maining four components were relatively unimportant, explaining 7%, 5%, 4%, and 2% of

the total variance.

6.5.3 Phylogenetic tree

The phylogenetic tree shown in Figure 6.1 is based on the number of nonsynonymous mu-

tations the P450 variants have relative to the R-11 neutral evolution parent, as reported
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in [135]. Each of the P450s that evolved in a monomorphic population (prefix of M) are

known to have diverged independently, and so are drawn on their own branch regardless of

any sequence identity to other variants. The exact phylogenetic relationship of the P450s

that evolved in the polymorphic population (prefix of P) is not known, so they portion of

the tree for these mutants was reconstructed by maximum parsimony. The tree is based

only on the nonsynonymous mutations, and all mutations weighted equally. Full nucleotide

and amino acid sequences of the P450s can be found in [135].
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