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 The goal of electron diffraction is to obtain molecular structural information from 

a molecule’s two-dimensional scattering pattern. For UED, the goal is the same but the 

theoretical procedure must be adapted for the transient nature of the systems of interest. 

Indeed, Chapter 3 already discussed the equipment by which the detection of such signal 

is achieved, this chapter relates a detailed account of the steps required to determine 

transient molecular structure from UED data. 

 Data are recorded for the ground-state sample (laser off) as well as time-resolved 

diffraction with the laser on. Time-resolved data are taken at multiple time points before 

and after the arrival of the laser pulse at the interaction region. In addition, in every UED 

experiment, various items of data are required that do not directly provide structural 

information about the molecules of interest. Regardless, this data must be recorded in 

order to calibrate various instrument effects and experimental conditions. Images of just 
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the electron beam (no sample gas, no laser) are needed to calibrate the detector 

background. Carbon dioxide diffraction images are acquired to determine the camera 

length (see Section 3.2.7). In Section 3.1.4, the detection system was described to possess 

a neutral density filter coated on the reverse of the phosphor scintillator face plate to 

compensate for the exponential drop-off of scattering intensity. This filter introduces a 

function to the data that must be accounted for.  The atomic scattering of xenon is 

acquired for this purpose.  

 

4.1 Averaged patterns 

 In total, 100 diffraction patterns, each an exposure of the detector for four minutes 

(240,000 electron pulses), are acquired for each of: detector background, carbon dioxide, 

xenon, ground state sample, and each time point of the time-resolved diffraction. These 

images denoted are ),( yxF N
i  where N corresponds to B (detector background), CO2, Xe, 

GS, or t (for a time-resolved diffraction time point). The i in the subscript is the pattern 

frame number 1–100. Each pattern, F, denotes the experimental intensity at detector pixel 

),( yx . In order to maximize the signal to noise, the ),( yxF N
i  (i = 1–100) are averaged 

and bad pixels from each i pattern are removed. Bad data at individual pixel positions 

may be due to faulty pixels on the detector, cosmic rays, or other such ephemeral effects. 

Pixel rejection and pattern averaging is done as follows: 

A binary mask pattern, ),( yxM N
i , is created for each ),( yxF N

i . ),( yxM N
i  has a value of 

1 at pixel positions that contain acceptable data in ),( yxF N
i  and a value of 0 where 
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unacceptable. By multiplying ),( yxF N
i  by ),( yxM N

i  an image is obtained where only 

good pixels remain. The ),( yxM N
i  are created initially with a value of 1 at every (x, y). 

An averaged pattern, ),( yxF N , is produced by 
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is the standard deviation. If any pixel in any ),( yxF N
i  is saturated (>65000 ADU on the 

CCD) or if its value falls outside of ),(),( yxSyxF NN ⋅± μ , the value in both ),( yxF N
i  

and ),( yxM N
i  is set to zero. μ  is a user defined parameter chosen to eliminate only the 

most errant unsaturated pixels from a frame; a value of 2.3 is typically used. The pixel 

rejecting procedure is repeated twice and the final averaged ),( yxF N  result is obtained 

and will be used henceforth. The final standard deviation values for each pixel are 

discarded. The reject and average procedure is illustrated by example in Fig. 4-1. 
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4.2 Ratio images 

4.2.1 Background subtraction and removal of the filter function 

 As mentioned above, a spatial filter on the back side of the phosphor scintillator 

increases the dynamic range of detection by leveling the rapid drop-off of scattering 

intensity. The effect of the filter must be accounted for in order to obtain the molecular 

scattering function. The experimental raw averaged patterns, ),( yxF N , containing the 

filter effect, ),( yxη , can be expressed as 

),,(),(),( yxyxIyxF e
N

N η∗=      (4-3) 

where e
NI  denotes the experimental 2D intensity for each datum N without the filter 

function.  

,dlae
B

e
N IIIIIII +++=+=       (4-4) 

where I is the sum of all sample scattering signal, if any, e
BI  is the background scattering 

signal from all sources of background: electron scattering from the background gas ( aI ), 

stray light from the laser ( lI ), and the detector response ( dI ). The scattering of 

monatomic Xe, ),( yxF Xe , which is composed solely of atomic scattering (Section 2.2) 

and generates a smooth monotonic signal, is measured, as is the contribution of the 

detector’s noise, ),( yxF B , which is recorded in the absence of sample gas and laser. It is 

then straightforward to eliminate the filter function by defining the following ratio: 
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The process of obtaining the ratio patterns, ),( yxRN , is illustrated by example in  

Fig. 4-2. 

4.2.2 Second-round pixel rejection and normalization 

 Since the formation of the ratio patterns effectively levels the signal, another pass 

of pixel rejection is performed in order to eliminate data points that fall outside of 

acceptable values. 
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yields the average value over all pixels in the pattern ),( yxRN . Note that the sum over all 

pixels (npix = 512×512 with 2×2 binning) of the mask image in the denominator simply 

provides the total number of viable pixels in ),( yxRN . The standard deviation is given by 
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Pixels are removed from ),( yxRN  if they fall outside of NF
σ⋅8 . Such pixel rejection 

from the ratio pattern is repeated twice, and only very errant pixels are filtered out. 

 The frame-referencing (diffraction-difference) method, described below in 

Section 4.3.3, involves the subtraction of reference point data from the other time-

resolved diffraction data points in order to highlight the structural changes. Hence, it is 

necessary that systematic fluctuation of scattering intensity between time points is dealt 
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with. Patterns are normalized to the number of active pixels by 
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4.2.3 Locating the diffraction pattern center 

 Arguably one of the most critical steps in obtaining viable data from a diffraction 

pattern is the correct determination of the pattern’s center. A radial average of a pattern 

using an incorrect center is known to produce data that may appear normal but which, 

upon analysis, would yield a wrong structure – as described by Cardoza et al.1 Since this 

step is of such importance, it must be done carefully and the result confirmed by two 

independent methods. The first, more coarse method of center-finding is graphical (see 

Fig. 4-3). At the center position ),( cc yx  a radial average is performed to produce a one-

dimensional curve. 
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where the sum is over all pixels in ),( yxRN  at distance (in pixels from the center 

position) 22 )()( yyxxpix cc −+−= , pixN  is the number of pixels at pix, and x and y 

correspond to all pixels in the two-dimensional pattern, ),( yxRN . Using an arbitrary 

center position, a dummy curve, )( pixR N′ , is calculated and then used to back-construct 

a dummy two-dimensional pattern, ),( yxR N′ . The experimental ratio pattern, ),( yxRN  is 

then divided by this dummy pattern. At the correct choice of center position the two 

patterns will coincide and a flat image will be produced. Incorrect values of ),( cc yx  will 
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produce images with varying degrees of oscillation depending on how close the guess is 

to the correct position. Fig. 4-3 shows divided patterns stepped at 0.5 pixels from the 

correct position; the division corresponding to the correct choice of center position is 

located at the center of the matrix. 

 Fine center determination and independent confirmation of the graphical method 

described above is accomplished by comparing one-dimensional data from the left and 

right sides of the detector similar to the method employed by the authors in Ref. 1. Two-

dimensional ratio patterns ),( yxRN  are split in half such that each new pattern is either 

from the left or right side of the detector only. Then, following Eq. (4-9), each half is 

converted to its own one-dimensional curve, )( pixRN
left  and )( pixRN

right . If the center is 

correct then the difference between the left and right curves will be without oscillatory 

component (note that data intensity on the left and right portions of the detector is often 

different so some offset is expected). Fig. 4-4(a) shows the curve from a correctly 

determined center for CO2 data. Fig. 4-4(b) shows the resulting curve from a center offset 

from its correct position by 1 pixel. The center for time-resolved data is further checked 

by subtracting the )( pixRN
left  and )( pixRN

right  of a reference time point from those of 

another time point. If the difference data from the left, right, and full detectors match, 

then a satisfactory center position is confirmed. This method is adequate in locating the 

center to within 0.2 pixels. 
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4.3 One-dimensional intensity curves 

4.3.1 Radial average and final round pixel rejection 

 Once the center position is determined correctly, the radial average of ),( yxRN  is 

performed as in Eq. (4-9), to yield the one-dimensional data, )( pixRN , as a function of 

pixel from the pattern center. The radial average also permits a final round of errant pixel 

rejection. At each value of pix from the center ( 22 )()( yyxxpix cc −+−= ; 0 < pix < 

256 when binning is 2×2), an average intensity and a standard deviation are calculated, 

)( pixR
N

 and )( pixNR
σ , respectively. If any value of )( pixRN  falls outside of 

)(5)( pixpixR NR

N
σ⋅± it is removed from the data. Again, the parameter 5 is empirically 

selected to remove only the most excessive spikes. This is cycled three times removing 0 

to 5 pixels from each pix value per cycle. The result is the one-dimensional intensity ratio 

curve, )( pixRN . Furthermore, a curve of the standard deviations ( )( pixNR
σ , actually, 3σ) 

is produced and utilized in the structural refinement as discussed below in Section 4.4. 

)( pixNR
σ  is evaluated by “the standard deviation of the mean” as follows:2 
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where pixN  is the number of pixels in the 2D pattern at a given distance in pixels, pix, 

from the center [as seen in Eq. (4-9)]. The radial average and calculation of the standard 

deviations is illustrated in Fig. 4-5. 
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4.3.2 The experimental I(s) 

 Intensity ratio curves, )( pixRN , are converted to the reciprocal space used by 

diffractionists by the relation of the scattering angle (in this case, in terms of pix) to the 

momentum transfer parameter, s, as shown in Eq. (2-1). With consideration of Eqs. (4-4) 

and (4-5), it follows that 

),()()()()( sIsRsIsIsI T
Xe

Ne
B

e
N ⋅≅+=     (4-11) 

where )(sI e
B  is now the sum of background contributions from the background gas ( aI ) 

and the laser ( lI ) [recall that dI  was removed in Eq. (4-5)] . )(sI T
Xe  is the simulated 

atomic scattering of xenon. Several assumptions are made in Eq. (4-11). First, the 

background contribution to the data (which is recorded in two-dimensions, ),( yxI e
B ) can 

be can be approximated by )(sI e
B  in one dimension. Second is that any background 

contribution to ),( yxI e
Xe  in Eq. (4-5) is small enough compared to the xenon sample 

scattering itself that it can be effectively cancelled out of )(sRN  with multiplication by 

)(sI T
Xe  (which is further assumed to be a reasonable match to the experimental xenon 

scattering). )(sI e
N  are obtained for N = CO2, ground-state sample, and each time-resolved 

diffraction data point. 

4.3.3 The frame-referencing method and ΔI(s) 

 During time-resolved diffraction data acquisition, upon irradiation of the 

molecular beam by the excitation laser, a fraction of the molecules will absorb and 

undergo photophysical and/or photochemical processes, while most do not interact with 
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the photons and will remain in their initial state throughout the experiment. Molecules 

absorbing a photon will undergo an electronic transition and possibly structural changes. 

With this in mind, the scattering intensity, )(sI , at a given time point, t , can be 

expressed as a sum of scattering intensities for each of the possible configurations, α . 

   ∑∑ ==
α

αα
α

α )()();();( sItftsItsI ,    (4-12) 

where )(tfα  is the fractional contribution of )(sIα  at time t. This total intensity has a 

significant component of unreacted, unperturbed molecules in their initial states.  

The reacting molecules can be highlighted using the frame-referencing method. 

Diffraction data from before excitation (reference data) are subtracted from diffraction 

data at time t  (excitation occurs at t = 0). The frame-referenced data are without most of 

the unreacted species as well as all the atomic scattering and systematic background, 

thereby emphasizing the structural changes (and the temporal evolution of those changes) 

during the reaction. For example, if 0<reft , 
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where the r subscript refers to the reference. See Fig. 4-6 for a graphic demonstration. In 

this case, because the structure of the reference (ground state) has already been 
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determined, Eq. (4-12) provides the structures of the intermediates/products and their 

fractions. A positive time point could also be used as the reference frame in order to 

enhance the signal of a particular transient structure, as shown elsewhere.3 

 

4.4 Refining diffraction data 

4.4.1 The experimental sM(s) 

 The experimentally obtained scattering intensity, )(sI e
N , contains the molecular 

and atomic scatterings as well as any background, e
BI , that results from background gas 

(smoothly varying and as large as 30% of the signal) and laser scattering (minor), as 

shown above [Eq. (4-11)]. Accordingly, and using the independent atomic model (see 

Section 2.2), 

)()()()( sIsIsIsI e
B

e
A

e
M

e
N ++≅      (4-14) 

 for which the molecular scattering which contains the structural information may be 

isolated by 

),()()()( sIsIsIsI T
B
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A

e
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e
M −−⋅≅ λ      (4-15) 

where )(sI T
A  is the atomic scattering of molecule N calculated [Eq. (2-6)] using scattering 

factors available in the literature.4  λ  is the scale factor needed to match the amplitudes 

of theoretical and experimental curves. )(sI T
B  is a fifth-order polynomial of the form 
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where ic  are the coefficients for each polynomial term, the calculation of which will be 
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described below. )(sI T
B  accounts for the background contributions without adding 

significant oscillations to alter the sinusoidal components of the molecular scattering. 

 The experimental modified molecular scattering function, )(ssM e  or );( tssM eΔ  

as defined by Eq. (2-12) in Section 2.3, is actually dependent upon the theoretical model 

)(sI T
M  that is chosen. As shown in Eq. (4-15), )(sI e

M , and consequently )(ssM e , may 

only be defined once the coefficients of )(sI t
B , and the scale factor λ are assigned values. 

To obtain these values, a statistical measure of difference between experiment and theory, 

2χ , is required. 
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which, substituting Eqs. (4-10), (4-11), and (4-14), may be expanded to 
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where )(sNRσ  is the error calculated in the radial average [Eq. (4-10)], αN  is the total 

number of molecules in the model, the )(tfα  are the fractions of each molecule α at the 

time t, and  )(sI T
Mα

 is the theoretical molecular scattering intensity of molecule α (see 

Section 4.3.3). The parameters λ, ic , and αf  are linear in the first derivative of 2χ  and 

thus may be solved for exactly using the normal equations method5 by which )(sI e
M  is 

then determined. Utilizing Eq. (2-11), the experimental modified molecular scattering 
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function becomes 

   
JI

e
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ff
sIsssM )()( = ,      (4-19) 

while the theoretical modified molecular scattering function is defined as 
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);( tssM eΔ  and );( tssM eΔ  can be calculated in the same fashion. A graphical example of 

the steps leading from )( pixRN  to )(ssM e  is shown in Fig. 4-7 for the example of N = 

ground-state benzaldehyde. 

4.4.2 Statistical measures: 2χ  and R 

Structural refinement is carried out in the molecular scattering space by 

minimizing 2χ  as defined in Eq. (4-17). Since the conversion of )(sIM  to )(ssM  

involves only the multiplication of a constant, 2χ  remains the same regardless of whether 

)(sIM  or )(ssM  is used for refinement. 
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where 
JI

I
sM ff

s e

e

σ
σ = . Although 2χ  is primarily used to quantify the fit, although R , a 

standard goodness-of-fit parameter in electron diffraction, may also be checked 

throughout the refinement. 
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The difference between  2χ  [Eq. (4-21)] and R  [Eq. (4-22)] is in the division by the 

theoretical term of ( )∑
s

sM
T sssM e

2)()( σ  making R  a unitless quality-of-fit parameter. 

Typically in the analyses, 2χ  is minimized while R  is simultaneously monitored. The 

smaller the values of these statistical measures, the better is the agreement between 

theory and experiment. For ground-state structural analyses R  is typically < 0.1, similar 

to conventional GED, while for transient structures R  is usually between 0.3 and 0.8, a 

consequence of the much reduced signal to noise ratio in the difference data.  

4.4.3 Structural refinement and assessment of errors 

 Unlike the parameters mentioned above that can be solved for exactly by a system 

of normal equations linear with respect to the derivative of 2χ , the structural and 

vibrational parameters of a molecule have a non-linear relationship to the derivative of 

2χ  and must be fit in an iterative manner. Regardless, the derivative of 2χ  with respect 

to each parameter ϕ  is utilized to find a minimum position. 
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Section 2.3 showed how the non-linear (structural and vibrational) parameters are related 

to the molecular scattering function. The Levenberg-Marquardt algorithm is invoked for 

obtaining these parameters by locating the 2χ  minimum for the entire set of fitted 
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parameters, }{ iϕ . In the non-linear fitting procedure, minima on the 2χ  surface are 

approximated by parabolas. If the approximation holds well, given a position on the 

surface (the initial set of parameters), it is possible to calculate the parameter change 

needed to reach the minimum set of values. When the approximation is poor, and the step 

does not improve the fit, it is satisfactory simply to move down the gradient somewhat 

before attempting the move again (inverse-Hessian versus steepest-descent methods). The 

Levenberg-Marquardt algorithm permits switching between the two methods using the 

steepest descent when far from the minimum (and the parabolic approximation is poorest) 

and the inverse-Hessian step when the minimum is at hand. The details of the algorithm 

can be found in Ref. 5 and seen in the analysis code reproduced in Appendix VI.  

 Convergence is reached when the difference between 2χ  values of consecutive 

steps is less that 0.000001. The error bars associated with each parameter, ϕ , are 

computed as follows. The estimated covariance matrix of the standard errors in the fitted 

parameters becomes 
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from which the variance associated with the estimated parameter, iϕ , is calculated 

.)(2
iii C=ϕσ         (4-25)  

The error associated with the estimated parameter is 

   ,)()( 22
ii ϕσχϕδ νΔ=      (4-26) 

where 2
νχΔ  is a coefficient determined from the confidence level and the number of 
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degrees of freedom of the fit, ν .5 

Table 4-1. 2
νχΔ  as a Function of Confidence Level and Degrees of Freedom 

ν  Level 1 2 3 4 5 6 
68.3% 1.00 2.30 3.53 4.72 5.89 7.04 
90% 2.71 4.61 6.25 7.78 9.24 10.6 
95.4% 4.00 6.17 8.02 9.70 11.3 12.8 
99% 6.63 9.21 11.3 13.3 15.1 16.8 
99.73% 9.00 11.8 14.2 16.3 18.2 20.1 
99.99% 15.1 18.4 21.1 23.5 25.7 27.8 

 

In practice, UED structural refinement error bars are reported without the multiplication 

by 2
νχΔ  in Eq. (4-26) and, instead often multiplied by a weight factor, rangeΔ/2χ , 

where rangeΔ  is the number of pixels in the one-dimensional data )( pixRN  that are used 

in the structural refinement (e.g., if the range 34–210 pixels of )( pixRN  is used, then 

rangeΔ  = 176). This error weight is only used in the reported errors when refinement is 

conducted using the old UED refinement program “Uedana” (see below, Section 4.8). 

 

4.5 Structure and vibrations 

4.5.1 Quantum chemical calculations 

 Structural refinement in UED requires an initial-guess geometry in order to 

calculate the theoretical molecular scattering intensity, )(sI T
M . Although one could, in 

principle, use a chemically intuitive guess, UED data analysis is always begun with the 

structural results of ab initio or density functional theory (DFT) calculations. Ideally, 

regardless of the choice of initial guess, structural refinement should converge to one 
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single true structure. In practice, however, this is not always true, especially when there is 

a large number of structural parameters involved and the fitting surface contains many 

local minima. Therefore, it is good practice to have an initial guess as close to the true 

structure as possible. For this, a high-level theoretical calculation is desired, such as DFT, 

coupled cluster (CC), quadratic configuration interaction with single and double 

excitations (QCISD), or multi-configuration self-consistent field (MCSCF). In UED 

studies, all calculations have been carried out using either Gaussian986 or GAMESS7 

packages.  

 For the structures of molecules in the singlet (S0) or triplet (T1) ground state, 

highly accurate results are available at fairly low computational costs. The B3LYP level8 

with the 6-311G(d,p) basis set has been found useful in determining structure, energy, 

and vibrational frequencies.9 

 Several methods are available for calculating the properties of excited states. 

Among them, multi-configuration self-consistent field (MCSCF) uses a minimum set of 

orbitals (active space) for a configuration interaction (CI) calculation; just enough to 

determine the relevant excited-state characteristics.10 The CAS (complete active space 

method) of MCSCF allows the user to choose which molecular orbitals make up the set 

of active orbitals that best describe the electronic transition. For example, if one were 

interested in the first excited singlet state of ethylene (S1, a ππ* state), one would choose 

the occupied π orbital and the lowest unoccupied π* orbital as the active space and the 

two π electrons as the active electrons. The procedure is carried out graphically by 
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viewing the calculated molecular orbitals and choosing which ones closest resemble the 

orbitals needed to define the space. 

4.5.2 Temperature and mean amplitudes of vibration 

Structural refinement is conducted using internal coordinates of each molecule in 

the form of a geometrically consistent z-matrix. The z-matrix is converted into a set of 

Cartesian coordinates for each atom, which is then used to form the array of internuclear 

distances ( er ). er  are converted to ar  using the formula described in Section 2.3, which 

then serve as input for )(sI T
M  and )(ssM T  (see source code in Appendix IV). Mean 

amplitudes of vibration, lh values (or u values in some older sources), are calculated using 

empirical formulas fit to electron diffraction determined values for a set of molecules. For 

C–C distances 1.217 Å ≤ er  ≤ 5.618 Å,11 

.000147.0023398.0013837.0 2
eeh rrl −+=     (4-27) 

And for C–H distances 1.080 Å ≤ er  ≤ 4.677 Å,12  

.001805.0027368.0050134.0 2
eeh rrl −+=     (4-28) 

It was found that these formulae would also hold for C–X and H–X distances where X = 

N, O, Si, S, Cl, and Br.13 In UED Eq. (4-27) is used for all C–X distances and Eq. (4-28) 

is used to calculate the lh values for all H–X distances. However, since these formula are 

intended for molecules at approximately 298 K, and vibrational amplitudes are 

temperature dependent, and UED operating conditions (and product temperatures) are 

often well above room temperature, it is necessary to re-evaluate lh for the elevated 

temperatures needed. The following relation based on a harmonic system is needed.14 
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     (4-29) 

where h is Planck’s constant, k is the Boltzmann constant, μ is the reduced mass of the 

internuclear pair, ν is the harmonic vibrational frequency, and T is the temperature of the 

system. Eq. (4-29) is used to solve for ν at room temperature, then assuming that ν is 

independent of temperature the lh at the desired T can be trivially calculated. The solution 

for ν is contained in the source code in Appendix V. 

 In principle, it may be the case that each distance in a molecule (or at least 

distances contained within specific moieties) has its own temperature, however in UED it 

is assumed that all lh of a molecule are of the same T. As mentioned in Section 3.1.3, the 

temperatures of ground-state samples are taken to be the same as the temperature of the 

heated nozzle. However, temperatures of product species are much more ambiguous. In 

these cases an estimate is made using the available energy after excitation and a statistical 

distribution of that energy throughout the calculated vibrational normal modes. In a 

photochemical reaction the internal energy of the product, productEint  (not including zero-

point energy), is determined by 

,intint
product
zp

product
elec

parentparent
zp

parent
elec

product EEhEEEE −−+++= ν   (4-30) 

where the electronic and zero-point energies are provided by quantum chemical 

calculations and hν is the excitation photon energy. By neglecting translational and 

rotational energies ( intE = vibE ), the temperature may be solved for from the vibrational 

partition function. 
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where ν is the frequency of the ith normal mode given by quantum chemical calculations. 

The assumptions above regarding the translational and rotational energies make T 

extracted from Eq. (4-31) the upper bound of the statistical vibrational temperature. 

 The difference in appearance of )(ssM  and )(rf  data calculated considering a 

C–C distance at various temperatures is shown in Fig. 4-8. One obvious consequence is 

the large difference between cold and hot internuclear pairs. This manifests itself in 

diffraction difference (frame referenced, where the reference is the cold parent) data by 

dispersive elements illustrated especially clearly in the )(rfΔ  curve. 

4.6 Temporal evolution kinetics 

 UED time-resolved data show an exponential rise of a product structure with 

time. Using the fractions of component structures at each time point a single exponential 

rise is fit to the data. The fitting function is that derived for femtosecond transition-state 

spectroscopy of the population of a decaying state convoluted with a Gaussian probe 

pulse.15 
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where A  is the total product fraction before time-zero, B  is the total product fraction at 

the conclusion of the reaction, 0t  is the time when the excitation laser pulse crosses the 

sample, 1k is the rate of decay of the product structure, 2k  is the rate of formation of the 
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product structure, and 
)2ln(22 ⋅

==
wz iσ  where w  is the full width at half max 

(FWHM) of the normalized temporal Gaussian profile of the probe electron pulse 

described by 

2

2

2

2
1)( i

t

i
i etf σ

πσ

−

=      (4-33) 

and iσ  is the pulse temporal standard deviation. The error function is 

∫ ⋅= −
x

s dsexerf
0

22)(
π

    (4-34) 

In the usual case where the product structure shows no decay during the course of the 

reaction, 1k  is set to 0 and Eq. (4-32) reduces to 
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A , B , and 0t , although known from the refinement and the experimental conditions, are 

fit along with 2k  using Microcal Origin. Reaction time constants reported henceforth 

correspond to 2/1 k=τ  unless otherwise noted. 

It should be noted that although other structures (e.g., those of initially excited 

states) are, in principle, present and therefore contributing to the electron scattering 

signal, their similarity to the ground-state structure renders them essentially invisible. 

This represents a handicapping feature of diffraction in general where uniqueness of a 

state is not necessarily reflected in uniqueness of structure. The frame-referenced image 

is flat if the resulting state and the ground state possess the same structure. 
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4.7 The refinement procedure 

 The above sections provide the theoretical framework for how a molecular 

structure is extracted from a set of diffraction patterns and how the dynamics are 

evaluated. However, the actual practice of solving a time-resolved diffraction pattern 

performed by the UED diffractionist is yet to be described. Although it will be shown by 

example in the subsequent chapters dealing with specific molecular systems, a brief 

account will be given here. 

` First, using the structures obtained by quantum chemical calculations and the 

thermal temperature calculated using the excess energy, the theoretical )(ssM T  curves 

are constructed for the parent molecule and a variety of products. Using the )(ssM TΔ  

corresponding to a possible reaction channel, the )(ssM eΔ  is formed and the two are 

compared by finding the optimized fractional contributions and polynomial background 

(the scale factor is taken from the result of the ground state or by fitting the ground-state 

structure to the data at a negative time point). Typically, there will be many possible 

pathways corresponding to various literature-predicted products, relevant excited states, 

and hypothetical products that are unlikely but still lie within the range of available 

energy. From these possibilities, the pathways with the lowest R and χ2 values are 

selected for the structural refinement. Structural refinement is begun by fitting each 

structural parameter individually, then in further combinations, and so on until all 

parameters can be refined simultaneously. A stationary point in the refinement is reached 

when 1) two subsequent refinements of all structural parameters does not lower the χ2 or 

change the structure and 2) when the β  values [see Eq. (4-23)] are below a threshold 
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(about 0.001). Once the stationary point is reached, it is evaluated by the user’s chemical 

and physical intuition to determine its worth. Since diffraction patterns have multiple 

solutions it is possible to start with a wrong model and successfully refine it to a 

stationary position. It is likely though that the geometry of the stationary point is 

something that is not physically reasonable (e.g., a 0.8 Å C–C bond distance or an 80º 

bond angle). If this is the case, and it is reproducible, then that model is discarded and the 

procedure is repeated for another. Sometimes, though, all single product channels 

produce unphysical refined structures. When this is the case, it becomes necessary to test 

pathways using combinations of several products. Again each molecule in the 

combination is structurally refined and compared with the quantum chemically derived 

structure to determine its physical viability. In principle, the whole procedure is repeated 

with growing numbers of product combinations until something reasonable is reached.  

 

4.8 Note on data analysis programs 

  Two generations of data analysis programs have been used in the application of 

UED to the molecular systems described in the following chapters. The old program 

“Uedana,” and the new program “UED_2004” are both coded in-house and in most ways 

are largely the same. The account of data analysis given above is that used by 

UED_2004. Uedana treats a few items differently, the most notable being the treatment 

of component fractions, scale factor, and the polynomial background. In Uedana these 

parameters are refined using the same non-linear procedure utilized for refining the 

structure and camera distance. The architecture of this program also prevents the scale 
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factor and background from being refined simultaneous to other parameters or each other. 

The scale factor, in fact, is not used to scale the data as λ in Eq. (4-15), but instead scales 

)(sI T
M  in Eq. (4-17) as 1/λ. It should be recalled that those parameters are linear and 

solved for exactly with UED_2004 (though with the same end results). The error bars are 

also calculated differently with Uedana having an added weight factor (see Section 4.4.3) 

that reduces the reported error. The distinction between programs is made when 

necessary in the following chapters, but analysis should be regarded as having been 

conducted using UED_2004 unless otherwise noted. The Appendices contain source code 

of UED_2004 for the most critical aspects of the structural refinement process. 
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