

Fig. 5-1. The ratio patterns from diffraction by (a) chlorobenzene and (b) bromobenzene.

Fig. 5-2. The final refined theory (line) with experimental data (filled squares) for chlorobenzene in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^2 = 233.021$ and R = 0.110. The vertical bars at each peak position have a height proportional to nZ_iZ_j/r .

Fig. 5-3. sM(s) curves for bromobenzene showing theory (line) with experimental data (filled squares). The theoretical curve in (a) corresponds to that derived from the DFT structure ($^2 = 1137.568$; R = 0.241) and that in (b) is the DFT structure with a refined C–Br bond distance ($^2 = 201.465$; R = 0.104).

Fig. 5-4. The final refined theory (line) with experimental data (filled squares) for bromobenzene in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^2 = 70.166$ and R = 0.061. The vertical bars at each peak position have a height proportional to nZ_iZ_j/r .

Fig. 5-5. The ratio patterns from diffraction by (a) iodobenzene and (b) 2-fluoropyridine.

Fig. 5-6. sM(s) curves for iodobenzene showing theory (line) with experimental data (filled squares). The theoretical curve in (a) corresponds to that derived from the DFT structure ($^2 = 259.793$; R = 0.173) and that in (b) is the DFT structure with a refined C-I bond distance ($^2 = 88.392$; R = 0.102).

Fig. 5-7. The final refined theory (line) with experimental data (filled squares) for iodobenzene in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^2 = 69.192$ and R = 0.089. The vertical bars at each peak position have a height proportional to nZ_iZ_j/r .

Fig. 5-8. The final refined theory (line) with experimental data (filled squares) for 2-fluoropyridine in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^{2} = 89.686$ and R = 0.035.

Fig. 5-9. The ratio patterns from diffraction by (a) acetylacetone and (b) benzaldehyde.

Fig. 5-10. The final refined theory (line) with experimental data (filled squares) for acetylacetone in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^2 = 41.676$ and R = 0.030. The f(r) is broken up to show individual contribution from both enol (dashed) and keto (dotted) tautomers.

Fig. 5-11. *sM*(*s*) curves for various models with refined component fractional contributions. (a) 86% DFT C_s enol + 14% DFT keto tautomer; $^2 = 198.320$; R = 0.066. (b) 67% DFT C_{2v} enol + 33% DFT keto tautomer; $^2 = 1423.836$; R = 0174. (c) 78% refined C_s enol + 22% refined keto tautomer; $^2 = 41.676$; R = 0.030. The solid line below each plot is the residual (theory – experiment).

Fig. 5-12. The final refined theory (line) with experimental data (filled squares) for benzaldehyde in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^{2} = 67.127$ and R = 0.043.

Fig. 5-13. The ratio patterns from diffraction by (a) acetophenone and (b) methylbenzoate.

Fig. 5-14. The final refined theory (line) with experimental data (filled squares) for acetophenone in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^{2} = 39.069$ and R = 0.028.

Fig. 5-15. The final refined theory (line) with experimental data (filled squares) for methylbenzoate in (a) sM(s) and (b) f(r) representations. The fitted theory is quantified with $^{2} = 224.746$ and an R = 0.056.