ULTRAFAST ELECTRON DIFFRACTION:
DIRECT DETERMINATION OF
STRUCTURAL DYNAMICS OF
MOLECULAR EXCITED STATES

Thesis by
Jonathan S. Feenstra

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California
2006
(Defended: May 23, 2006)
Acknowledgements

Although this thesis is the direct product of the last five and a half years of my education, it is also the fruit of the many years that preceded my time at Caltech. It is therefore to all the people who guided and influenced me since the beginning that I owe thanks here. However, since there are so many, only a few can be given the individual mention that they all deserve.

It is thanks to my high school chemistry teacher, Dave Wilson, that I chose chemistry as my major when I applied to college. His teaching took my interest in chemistry (at the time, mostly in making things explode) and put it in pursuit of the science behind what just anyone can see. As an undergraduate at Rutgers University my organic chemistry professor, Pat O’Connor, was an unofficial advisor of sorts and I appreciate the time he took to socialize. As an honor’s program researcher, I am indebted to my advisor Professor Lionel Goodman for providing me with an appreciation of the fundamentals. Both theoretically and experimentally everything boils down to the isolated molecule.

And of course, I have my graduate advisor, Professor Ahmed Zewail, to thank above all other mentors for his guidance, occasional parenting, and making this all possible. Professor Zewail encouraged me to work hard and, as he often said, “push the frontiers of science.” But, what he required of me was to have passion for whatever I did – I can’t imagine leaving his group without taking away a more important lesson than that. His passion for science delivered through our many meetings and discussions was
inspirational and nothing short of awesome. It truly was an honor to work with him and I am sincerely grateful.

Down in the subbasement, I had the pleasure of diffracting electrons with a fantastic gang of scientists: Hyotcherl Ihee, Vladimir Lobastov, Boyd Goodson, Chong-Yu Ruan, Ramesh Srinivasan, Sang Tae Park, Shoujun Xu, Yonggang He, and Andreas Gahlmann. I don’t have enough space to say something nice about them all, so I’ll recognize in particular Ramesh and Sang Tae with whom I worked the closest and the longest. Both are excellent scientists, good friends, and from each I learned a great deal while working and having fun. Their imprint lies on everything reported in this thesis.

The Zewail group itself was the paradigm of camaraderie. I have everyone who shared the floor with me at some point to thank for the overall atmosphere. I’ll miss the multinational element and the constant schooling in foreign culture that I received. Particular mention should go to my long-time lab neighbor, Hern Paik. Hern and I must have put down 1000 liters of coffee together over the course of both our graduate tenures. Although group members years apart, Theis Solling and Marco Seidel shared with me a love for the outdoors. With each I had a number of adventures and I value their friendship greatly.

Additional thanks go to Dian, the chemistry department’s graduate secretary, for being patient, kind, and possessing a sense of humor similar to my own. Mike in the machine shop also deserves some space here for the countless times that he had to deal with me while I was stressing out over another problem with the equipment that had to be solved immediately. The Zewail group was privileged to have several fun and friendly
administrators and secretaries during my stay. De Ann, Maggie, Janet, Sylvie, and Mary always lightened the mood and were a great asset to the atmosphere of the group.

I’d also like to gratefully recognize the financial support of the Blanche Mowrer Fellowship during my first year at Caltech, and the National Science Foundation and Air Force Office of Scientific Research for funding the work that is reported on within this thesis.

Last, but certainly not least, I want to thank my parents, Stuart and Cathy Feenstra, who were always proud of me and did everything they could to help me learn and live. It is to them that I owe the most.
Abstract

Ultrafast electron diffraction (UED) has been applied to determine the structures of isolated molecules and the dynamics of their excited states. Preceding the experimental accounts is a detailed discussion of the theoretical methodology behind UED in the Caltech labs. The procedure is explained by which electron scattering signal is measured and processed to allow the direct determination of structural dynamics (the signature feature of this experiment). The apparatus itself is also broken down into its component parts and discussed.

UED has the capability of studying both ground and excited state systems, which will be demonstrated by example. A number of molecules were studied in their ground states (chlorobenzene, bromobenzene, iodobenzene, 2-fluoropyridine, acetylacetone, benzaldehyde, acetonaphone, and methylbenzoate). The structures were determined and compared with structures derived by theoretical calculations and with the results of previous gas electron diffraction inquiries. The molecular structures of 2-fluoropyridine, acetonaphone, and methylbenzoate had not been previously experimentally determined. The structure of ground-state acetylacetone is discussed in detail as it represents an old problem involving the influence of intramolecular hydrogen bonding.

Acetylacetone, benzaldehyde, and acetonaphone were also studied after excitation by a femtosecond laser pulse. Acetylacetone was observed to fragment – losing the hydroxyl radical. Calculations were performed to further explore the dynamics and mechanism. For excited benzaldehyde and acetonaphone, a bifurcation of pathways was structurally resolved. Both molecules have photophysical and photochemical channels from the excited state. The photophysical channels result in the formation of a structure possessing a quinoid ring. The photochemical channels differed – for benzaldehyde, molecular dissociation resulting in benzene and carbon monoxide, and for acetonaphone, homolytic bond cleavage resulting in methyl and benzoyl radicals. The structures of all species were determined as were the time scales involved. Calculations were used to assist in the determination of the excited state decay mechanisms.
Table of Contents

Acknowledgements..iii
Abstract...vi
Table of Contents...vii
List of Figures..xii
List of Tables..xvi

1. Introduction..1
 1.1 Historical perspective..2
 1.2 This thesis...4
 1.3 References..7

 2.1 Momentum transfer..9
 2.2 Atomic scattering...10
 2.3 Molecular scattering...12
 2.4 The radial distribution curve..14
 2.5 References..16
 Figures..17

3. UED Experimental Methodology..21
 3.1 The UED apparatus..21
 3.1.1 Femtosecond laser system..22
 3.1.2 Picosecond pulsed electron source...23
 3.1.3 Diffraction chamber and molecular beam..26
 3.1.4 Detector and data acquisition...27
 3.2 Calibrations..29
 3.2.1 Number of electrons per pulse...29
 3.2.2 Electron pulse spatial size..30
 3.2.3 Electron pulse temporal width...30
 3.2.4 Molecular beam size..32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5</td>
<td>Experimental time-zero</td>
<td>34</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Velocity mismatch and overall time resolution</td>
<td>35</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Camera length</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Figures</td>
<td>39</td>
</tr>
<tr>
<td>4.</td>
<td>UED theoretical methodology</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Averaged patterns</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Ratio patterns</td>
<td>56</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Background subtraction and removal of the filter function</td>
<td>56</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Second round pixel rejection and normalization</td>
<td>58</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Locating the diffraction pattern center</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>One-dimensional intensity curves</td>
<td>60</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Radial average and final round pixel rejection</td>
<td>60</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The experimental $I(s)$</td>
<td>61</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The frame referencing method and $\Delta I(s)$</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Refining diffraction data</td>
<td>64</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The experimental $sM(s)$</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Statistical measures: χ^2 and R</td>
<td>66</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Structural refinement and assessment of errors</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Structure and vibrations</td>
<td>69</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Quantum chemical calculations</td>
<td>69</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Temperature and mean amplitudes of vibration</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Temporal evolution kinetics</td>
<td>73</td>
</tr>
<tr>
<td>4.7</td>
<td>The refinement procedure</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>Note on the data analysis programs</td>
<td>76</td>
</tr>
<tr>
<td>4.9</td>
<td>References</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Figures</td>
<td>79</td>
</tr>
<tr>
<td>5.</td>
<td>Ground-state Molecular Structure</td>
<td>87</td>
</tr>
<tr>
<td>5.1</td>
<td>Chlorobenzene</td>
<td>87</td>
</tr>
</tbody>
</table>
Figures...223

8. Conclusions and Future Directions..249
 8.1 Summary of results..249
 8.2 Developments and future directions...252
 8.2.1 The sample..252
 8.2.2 The laser...254
 8.2.3 Electron generation...255
 8.3 References...257

Appendices..258

I. Estimation of the number of molecules and pressure of the molecular beam at the interaction region..258
II. The CUED_2004Doc class in the UED_2004 program:
 “UED_2004Doc.h”..260
III. The constants in the UED_2004 program: “define.h”..265
IV. The molecular model in the UED_2004 program, the CModel object..266
V. The calculation of the scattering curves in the UED_2004 program:
 “Calc.cpp”...290
VI. The fitting procedure in UED_2004: “LeastSquare.cpp”..302
List of Figures

Chapter 2
Fig. 2-1. The relativistic velocity and de Broglie wavelength...17
Fig. 2-2. The elastic scattering factors of carbon and hydrogen..18
Fig. 2-3. Atomic scattering of carbon and benzaldehyde..19
Fig. 2-4. The effect of phase factors on the $sM(s)$...20

Chapter 3
Fig. 3-1. The UED experimental setup..39
Fig. 3-2. The amplified femtosecond laser system..40
Fig. 3-3. The seeded femtosecond pulse amplifier..41
Fig. 3-4. The electron gun..42
Fig. 3-5. The functional units with the electron gun..43
Fig. 3-6. Cross-section of the electron gun and scattering chamber..................................44
Fig. 3-7. The electron detection system...45
Fig. 3-8. Phosphor conversion efficiency..46
Fig. 3-9. The effect of the filter on the scattering signal..47
Fig. 3-10. Detector response to a single electron and pulse stability.................................48
Fig. 3-11. The transverse spatial size of the electron pulse...49
Fig. 3-12. Pulse electron density vs. temporal pulsewidth...50
Fig. 3-13. Measurement of the molecular beam width..51
Fig. 3-14. Alignment and zero-of-time measurement...52
Fig. 3-15. Effects of beam conditions on temporal broadening..53

Chapter 4
Fig. 4-1. Averaging diffraction patterns..79
Fig. 4-2. Generation of ratio patterns...80
Fig. 4-3. Location the pattern’s center position (coarse)...81
Fig. 4-4. Location of the pattern’s center position (fine)...82
Fig. 4-5. The radial average: one-dimensional data...83
Fig. 4-6. The frame referencing method; generation of difference data............................84
Fig. 4-7. Decomposition of the \(sM(s) \) ..85
Fig. 4-8. Temperature dependence of a C–C single bond...86

Chapter 5
Fig. 5-1. The ratio patterns of chlorobenzene and bromobenzene...................................127
Fig. 5-2. Ground-state chlorobenzene: the data and refined theoretical curves...........128
Fig. 5-3. Ground-state bromobenzene: fit of the C–Br bond...129
Fig. 5-4. Ground-state bromobenzene: the data and final refined theoretical curves......130
Fig. 5-5. The ratio patterns of iodobenzene and 2-fluoropyridine....................................131
Fig. 5-6. Ground-state iodobenzene: fit of the C–I bond...132
Fig. 5-7. Ground-state iodobenzene: the data and final refined theoretical curves......133
Fig. 5-8. Ground-state 2-fluoropyridine: the data and final refined theoretical curves...134
Fig. 5-9. The ratio patterns of acetylacetone and benzaldehyde.....................................135
Fig. 5-10. Ground-state acetylacetone: the data and final refined theoretical curves......136
Fig. 5-11. Ground-state acetylacetone: \(C_{2v} \) vs. \(C_{s} \) test models..137
Fig. 5-12. Ground-state benzaldehyde: the data and final refined theoretical curves.....138
Fig. 5-13. The ratio patterns of acetophenone and methylbenzoate...............................139
Fig. 5-14. Ground-state acetophenone: the data and final refined theoretical curves......140
Fig. 5-15. Ground-state methylbenzoate: the data and final refined theoretical curves..141

Chapter 6
Fig. 6-1. Acetylacetone: difference patterns \((t_{ref} = –77 \text{ ps}) \)..161
Fig. 6-2. Acetylacetone: difference patterns \((t_{ref} = –77 \text{ ps}) \) contd................................162
Fig. 6-3. Data recorded with and without pump beam attenuation..................................163
Fig. 6-4. Possible isomers of enolic acetylacetone..164
Fig. 6-5. Possible reaction products of acetylacetone..165
Fig. 6-6. Fits of possible single-product isomerization channels..166
Fig. 6-7. Fits of possible single-product isomerization channels..167
Fig. 6-8. Fits of possible single-product channels...168
Fig. 6-9. Fits of possible single-product OH-loss isomer channels....................................169
Fig. 6-10. Difference data and final refined theory for the reaction of acetylacetone.............170
Fig. 6-11. Fits of the final product at each time point..171
Fig. 6-12. The time dependence of the product generation...172
Fig. 6-13. Schematic of positive reference point subtraction..173
Fig. 6-14. Calculated structures of some acetylacetone electronic states..........................174
Fig. 6-15. Fits of possible intermediate structures..175
Fig. 6-16. Schematic of the OH-loss mechanism in acetylacetone....................................176

Chapter 7
Fig. 7-1. Zero-of-time measurement for the acetophenone experiment..........................223
Fig. 7-2. The frame-referenced difference patterns of benzaldehyde...............................224
Fig. 7-3. The frame-referenced one-dimensional difference data of benzaldehyde..........225
Fig. 7-4. Structures of possible photophysical and photochemical channels......................226
Fig. 7-5. Fits of possible single-product channels..227
Fig. 7-6. Fits of possible single-product channels..228
Fig. 7-7. Fits of possible two-product channels...229
Fig. 7-8. Fits of possible two-product channels...230
Fig. 7-9. Fits of possible two-product channels...231
Fig. 7-10. Difference data and final refined theory for benzaldehyde...............................232
Fig. 7-11. Fits of the final products at each time point..233
Fig. 7-12. The time dependence of product formation and the kinetic model.....................234
Fig. 7-13. The frame-referenced difference patterns of acetophenone.............................235
Fig. 7-14. The frame-referenced one-dimensional difference data of acetophenone..........236
Fig. 7-15. Structures of possible photophysical and photochemical channels....................237
Fig. 7-16. Fits of possible single-product channels ... 238
Fig. 7-17. Fits of possible single-product channels ... 239
Fig. 7-18. Fits of possible two-product channels ... 240
Fig. 7-19. Fits of possible two-product channels ... 241
Fig. 7-20. Fits of possible two-product channels ... 242
Fig. 7-21. Difference data and final refined theory for acetophenone 243
Fig. 7-22. Aromatic carbonyl bifurcation processes ... 244
Fig. 7-23. Calculated structures of some transition states and intermediates 245
Fig. 7-24. Kinetic models with various pump laser pulsewidth 246
Fig. 7-25. Calculated reaction coordinates for aliphatic and aromatic carbonyls 247
Fig. 7-26. Schematic of photophysics and photochemistry of aromatic carbonyls 248
List of Tables

Chapter 4
Table 4-1. $\Delta \chi^2$ as a function of confidence level and degrees of freedom.............68

Chapter 5
Table 5-1. The refined structure of chlorobenzene...90
Table 5-2. The refined structure of bromobenzene...94
Table 5-3. The refined structure of iodobenzene...98
Table 5-4. The refined structure of 2-fluoropyridine...103
Table 5-5. The refined structure of enol acetylacetone..110
Table 5-6. The refined structure of keto acetylacetone...111
Table 5-7. The refined structure of benzaldehyde..115
Table 5-8. The refined structure of acetophenone..119
Table 5-9. The refined structure of methylbenzoate...123

Chapter 6
Table 6-1. Energies and T_B^{Max} of possible acetylacetone reaction products..............148
Table 6-2. Fraction fits of various possible channels...149
Table 6-3. The refined structure of the OH-loss products..153
Table 6-4. The fraction of the final product at each time point..155
Table 6-5. Tests of the possible intermediate structures..157

Chapter 7
Table 7-1. Energies of products of benzaldehyde and acetophenone excitation...............189
Table 7-2. Energies of benzaldehyde and acetophenone excited states............................191
Table 7-3. The fraction fits of various benzaldehyde product channels............................192
Table 7-4. The two-component fraction fits of some benzaldehyde product channels.......194
Table 7-5. The refined structures of the benzaldehyde photoproducts..................................198
Table 7-6. The fractions of the final benzaldehyde products at each time point.............199
Table 7-7. The fraction fits of various acetophenone product channels..........................201
Table 7-9. The two-component fraction fits of some acetophenone product channels...203
Table 7-10. The refined structures of the acetophenone photoproducts.........................208
Table 7-11. The fractions of the final acetophenone products at each time point...........209
Table 7-12. Statistical and mode-limited rate constants for benzaldehyde....................212