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Abstract

We investigate the phenomenon of large N duality in topological string theory from three
different perspectives: worldsheets, matrix models, and melting crystals.

In the first part, we utilize the technique of mirror symmetry to generalize the worldsheet
derivation of the duality, originally given by Ooguri and Vafa for the A-model on the conifold,
to the A-model on more general geometries. We also explain how the Landau-Ginzburg
models can be used to perform the worldsheet derivation of the B-model large N dualities.

In the second part, we consider a class of A-model large N dualities where the open string
theory reduces through the Chern-Simons theory on a lens space to a matrix model. We
compute and compare the matrix model spectral curve and the Calabi-Yau geometry mirror
to the closed string geometry, confirming the predictions of the duality.

Finally in the third part, we propose a crystal model that describes the A-model on
the resolved conifold. This is a generalization of the crystal for C3. We also consider a
novel unitary matrix model for the Chern-Simons theory on the three-sphere and show how
the crystal model for the resolved conifold is derived from the matrix model. Certain non-

compact D-branes are naturally incorporated into the crystal and the matrix model.
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Chapter 1

Introduction

Conventional quantum field theories such as QED or the Weinberg-Salem model are defined
by their Lagrangians and the perturbation theories follow from them. A Feynman diagram
consists of worldlines in spacetime of particles meeting at interaction points (Figure 1.1 (a)).
The amplitude of each diagram is computed according to definite rules. In contrast to these
field theories, the construction of any string theory begins by defining the S-matrix elements
perturbatively without specifying the Lagrangian. A Feynman diagram of string theory is a
surface swept by strings propagating in spacetime, i.e., the worldsheet of strings (Figure 1.1
(b)). Each diagram is assigned an amplitude from which the S-matrix element is constructed.
Each S-matrix element has a quantum loop expansion in the coupling g, where the larger
the genus (i.e., the number of handles of the surface) becomes, the higher the order of the
quantum correction is. The amplitude of a diagram is the integral, over the moduli space
of the surface, of a correlation function evaluated in a 2-dimensional conformal field theory

(CFT). (For superstrings, we also need to sum over the spin structures.)

In bosonic string theory, we use the non-supersymmetric CF'T based on maps from the
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Figure 1.1: (a) In a usual quantum field theory, a Feynman diagram consists of worldlines of
particles. (b) A string theory Feynman diagram is a worldsheet of strings moving around in
spacetime. (c¢) In topological string theory, we consider vacuum amplitudes without external
strings.

surface to spacetime. Quantum consistency requires that the dimension of spacetime is 26.

The models obtained in this way have unstable vacua and are unrealistic.

In superstring theory, the CFT is also based on maps from the surface to spacetime,
but we take the supersymmetric extension of the CFT. We find five types of consistent
superstring theories with stable vacua in a flat metric background. These are type ITA, type
IIB, type I, heterotic SO(32), and heterotic Eg x Eg string theories. All of them require 10
spacetime dimensions. In order to have a 4-dimensional physics out of string theory we need
to compactify the extra 6 dimensions. This is typically done by choosing the 6 dimensions of
spacetime to be a Calabi-Yau manifold. We say that the internal CFT is a non-linear sigma
model with a Calabi-Yau target space. Models based on the heterotic Eg x Fg theory comes
rather close to the standard model of particle physics and has been studied extensively since

the mid ’80s. However, type ITA /B string theories have also been widely investigated because
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of their rich physics and their applications to 4-dimensional supersymmetric gauge theories.
Over the last couple of years, phenomenological models based on the compactification of
type ITA /B string theories with various p-form fluxes or/and intersecting branes have been
enthusiastically discussed as a new way to connect string theory to the world in which we

actually live.

Topological string theory is a yet another kind of string theory, which has a close relation-
ship to type ITA /B string theories. As a CFT on the worldsheet, we choose a twisted version
of the non-linear sigma model with a Calabi-Yau target space. After twisting the theory
fermions on the worldsheet are no longer spinors, having acquired integer spins. There are
two ways to twist, and the resulting theories are called A-model and B-model. The string
theory based on a twisted non-linear sigma model is topological in the sense that there is no
degree of freedom propagating in spacetime. The natural objects to compute are therefore
vacuum amplitudes, i.e., diagrams without external strings attached (Figure 1.1 (c)). It
turns out that these amplitudes of topological string theory conveniently package important

terms in the effective action of type IIA /B theory compactified on the Calabi-Yau manifold.

The relevance to the 4-dimensional physics of type IIA/B string theories is the major
physical motivation for studying topological string theory. There are at least two other good
reasons to be interested in topological strings. Topological string theory provides simplified
models of string theory, quantum gravity, and gauge theory. We will see that old ideas about
quantum gravity, like quantum foam, are concretely realized in the context of topological

string theory. Topological string theory is also an extremely nice framework to investigate
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the structure of topology and geometry of spaces such as Calabi-Yau manifolds. There
are many issues, mirror symmetry and Gromov-Witten/Donaldson-Thomas correspondence
to name a few, that have attracted vast attention from mathematicians. Developments of

topological string theory owe much to interactions of physicists with mathematicians.

String theory can be regarded as a quantum field theory with an infinite number of fields
arising from excitation modes of a string. There have been various efforts made to write
down the Lagrangians for string theories, with varying degrees of success depending on the
model. This approach is called string field theory. In general, string field theory is more

successful for open strings than for closed strings.

String field theory is particularly tractable when applied to open topological string theory
due to the absence of propagating degrees of freedom. Chern-Simons gauge theory is an
example of string field theory for open topological strings, and will be discussed throughout

this thesis.

String field theory applied to closed topological strings is a topological model of quantum
gravity. In Chapter 4, we will discuss a recently proposed formulation of topological quantum

gravity.

The large N duality is an old concept in theoretical physics, proposed by 't Hooft in 1974
[1]. Let us consider a U(N) gauge theory whose fields are all matrices (M*;). Assume that

the Lagrangian is schematically of the form

1
Lo 3 (TeM? + TeMP 4+ TeM + ) (1.0.1)
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where numerical factors and spacetime integrals are suppressed. Let us pay a special atten-
tion to the contraction of indices. This is done by representing a propagator by a double

line (Figure 1.2 (a)), and an interaction vertex as in Figure 1.2 (b). A Feynman diagram

Figure 1.2: (a) A propagator is represented by a double line with orientation specified by
arrows. (b) An interaction vertex is drawn in a way that the index contraction is manifest.
(c) A typical Feynman diagram in the double line scheme.

looks like Figure 1.2 (¢). Any such double line diagram can be drawn on a compact oriented
surface of some topology. The genus of the surface is related to the number e of propagators,

the number v of vertices, and the number h of closed paths (index loops) in the diagram by

2—29g=v—e+h. (1.0.2)

Let us consider the dependence of a Feynman diagram on the coupling constant A\ and
N. From eq. (1.0.1), we see that a propagator contributes A while each interaction vertex

contributes A™'. The exponent in the power of N is the number h of index loops. Thus a



Feynman diagram is proportional to
ATV NP = \29th=2 R — \29-2¢h (1.0.3)

where t = AN is called the 't Hooft parameter. The vacuum amplitude is obtained by

summing all such diagrams, and therefore has the structure

[ <o ]

Frange(LN) = DN FppX9th2N”
g=0 h=1

[e o]

= Z \29—2 (i Fg,hth>
g=0 h=1

= ) MN9F,(1), (1.0.4)

g=0

where we have defined

F,(t) := i F,pt". (1.0.5)

Eq. (1.0.4) has the structure of an amplitude in a closed string theory. This argument was
originally made by 't Hooft to suggest that for large N, QCD may be approximated by a

closed string theory.

As a gauge theory, it is possible to take an open string field theory. Then the double line

Feynman diagrams are precisely the open string worldsheets.

Our argument suggests that an open string theory may be equivalent to some closed string
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theory. The important examples of this large N duality, or open/closed duality, include the
Matrix theory formulation of M-theory in the discrete lightcone quantization, AdS/CFT

correspondence, and double scaled matrix models for 2-dimensional string theories.

In this thesis, we investigate the large N dualities in topological string theory from three
different perspectives. In the following sections in this chapter we review the basics of
topological string theory and the prototype example of a topological string large N duality

proposed by Gopakumar and Vafa.

In chapter 2, we will study the dualities from the worldsheet point of view. The conformal
field theories on the worldsheet relevant for the topological large N duality can be realized
as the infrared limit of certain field theory models, the gauged linear sigma model, and the
Landau-Ginzburg model. Ooguri and Vafa showed how the duality of Gopakumar and Vafa
can be derived by a dynamical generation of boundaries on the closed string worldsheets.
We will be able to extend the worldsheet derivation of the large N duality to other A-models
in more general geometries by using mirror symmetry. We also extend the derivation to B-
model large N dualities. Along the way, we uncover how the intricate boundary conditions
like the Wilson line carried by a D-brane are manifested on the worldsheet theories of closed

strings.

In chapter 3, we will describe a test of a class of large N dualities. In this class of large NV
dualities, the open string theory reduces to the Chern-Simons gauge theory on a lens space
S3/Z,. The Chern-Simons theory further reduces to an integral of N x N matrices, whose

potential is Gaussian but whose measure is a non-compact modification of the unitary matrix
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measure. The dynamics of eigenvalues in a matrix model are in the large N limit captured
by a 2-dimensional surface called the spectral curve. Large N duality predicts a precise
relation between the spectral curve and the geometry in which closed strings propagate. We
will compute both the spectral curve of the matrix model and the geometry for closed string
propagation and confirm the prediction. This provides a quantitative test of this class of
large N dualities.

In a recent development, topological string theory has been reformulated in terms of
statistical models. In chapter 4, we will propose a new statistical model for the topological
A-model on the resolved conifold. We will also present a new unitary matrix formulation of
the Chern-Simons theory on S3. It will then be shown that the crystal model is naturally
derived from the unitary matrix model. We will see that non-compact D-branes associated
with certain knot invariants can be incorporated into the crystal and the matrix models.

This thesis is based on the author’s contribution to the subject, which appeared in papers

[2],[3], and [4].

1.1 Basics of topological string theory

The most important construction of topological string theory is based on an N' = (2,2)
non-linear sigma model whose target space is a complex 3-dimensional Calabi-Yau manifold

X. The non-linear sigma model has N' = (2, 2) superconformal symmetry with generators

(T,G*,J) and (T,G*,J). (1.1.1)
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Here T is the energy momentum tensor, G* are the supercurrents, and J is the U(1) R-
current in the holomorphic sector. The corresponding generators in the anti-holomorphic
sector are denoted with a bar.

We can make the non-linear sigma model into a topological field theory by twisting:
1 _ S
Ttwisted =T + éaja ﬂwisted =T + 58‘] (112)

These twisted energy-momentum tensors satisfy the ¢ = 0 Virasoro algebra. The two choices
of sign leads to distinct topological field theories. The theory with the — sign is called the
A-model, while the + sign leads to the so-called B-model.

Since we have the ¢ = 0 Virasoro algebra, we can define topological string theory by

analogy with bosonic string theory:

spin 1: G+, Gt & JBRST7 jBRST (113)
spin 2: G7,G* + b,b (1.1.4)
JFJ > Jghoss = — 1 bC 1, Jghost = — : b : (1.1.5)

The identification of the R-current with the ghost current in the last line is possible because
they are anomalous in the same way when the target space is a Calabi-Yau 3-fold.

The topological string amplitudes are defined as

F,(t) := /Mg <:j1;_[13/2G_‘Nk/EGi‘ﬂk> : (1.1.6)

twisted
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Here pg, k=1, ...,3g — 3 are the Beltrami differentials on the genus g Riemann surface, and
M, is the moduli space of genus g Riemann surfaces. (We restrict ourselves to g > 2.)

The basic properties of topological string amplitudes are their independence on half of
the moduli of the Calabi-Yau 3-fold. The A-model amplitudes depend only on the K&hler
moduli, while the B-model amplitudes depend only on the complex structure moduli.

So far we have been discussing closed topological string theory. Open topological string
theory is defined by introducing D-branes. D-branes in our context are submanifolds of the
Calabi-Yau on which open strings can end. The condition that the BRST symmetries above
be preserved requires that the submanifolds are Lagrangian in the A-model, and holomorphic
in the B-model, respectively. Open string amplitudes are defined in way similar to closed

strings:

69—3h—6
Fya(t) ::/ I /G-,uk , (1.1.7)
Mg.n k=1 > twisted

where M, j, is the moduli space of genus g Riemann surfaces with A holes.

1.2 Gopakumar-Vafa duality

Conifold is a local approximation to the most typical singularity of a Calabi-Yau manifold.
The conifold singularity can be smoothed in one of the two distinct ways. One is deformation
and the other is resolution. (See figure 1.3.)

In 1998, Gopakumar and Vafa proposed that open topological string theory on the re-
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N D-branes on S8
T (b)

----------

53

Figure 1.3: The singular conifold geometry (a) can be deformed to 7*S® (b). We wrap N
D-branes on S* C T*S3, obtaining a U(N) Chern-Simons theory on S3. The conifold can
also be resolved to O(—1) ® O(—1) — CP* (c). This is the geometry on which closed string
theory is defined.

solved conifold is dual to closed topological string theory on the deformed conifold [5]. More
precisely, one considers N coincident D-branes wrapping S® of the deformed conifold. The
open string theory living on these D-branes was shown to reduce to U(N) Chern-Simons
gauge theory on S? [6]. The dictionary is such that the 't Hooft parameter g, N is identified

with the complexified Kahler modulus ¢:

gsN =t. (1.2.1)

The partition function of the U(N) Chern-Simons theory at level k is given by

1 . TP
Zos(N,E,U(N)) = CEYILE [] 2sin N (1.2.2)

a>0
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Here 27i/(k + N) = g, is the string coupling constant, and the product is over the positive
roots of SU(N) C U(N), which are given by a;; = ¢; — e; € CV(~ Cartan subalgebra)
fori<j. p=(1/2)> 0= SV (XEL _)e; is the Weyl vector. Gopakumar and Vafa

2

showed that this can be rewritten as

e—nt

Z = M(q)e” == il (1.2.3)
Here M(q) = [132,(1 — ¢7)7 is known as the McMahon function, and [n] = ¢"/% — ¢ /?,¢q =
e 9. Eq. (1.2.3) is precisely the partition function of the resolved conifold.

There are generalizations of the topological string large N duality to A-models on other

geometries and also to B-models.
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Chapter 2

Worldsheet derivation

In the large N dualities in topological string theory, the string coupling constant g, is the
same for both open and closed string sides, and the 't Hooft couplings of the open string are
identified with geometric moduli of the closed string side. Thus, it should be possible to give
a microscopic explanation of the duality order-by-order in the string coupling expansion;
namely, from the point of view of the string worldsheet. (This should also be the case for the
AdS/CFT correspondence when the coupling constant does not run.) In [7], the worldsheet
derivation was given for the case when the open string side is defined on the cotangent space
of a three-sphere T*S3 with N D-branes wrapping the base S%. The closed string side is the
resolved conifold whose Kahler modulus ¢, which is the size of the blown up S?, is identified
with the 't Hooft coupling g, N of the open string side. The strategy was to start with the
closed string side and expand string amplitudes for small ¢. It has been noted in [8, 9] that
in the linear sigma model description the closed string worldsheet at ¢ = 0 develops a new
non-geometric phase—the C' phase—besides the geometric phase (Higgs phase), which flows

to the non-linear sigma model for the resolved conifold in the IR limit. In [7], it was shown
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that the C phase can contribute to closed string amplitudes only in the following two cases:
(1) Each domain in the C phase has the topology of a disk.
(2) The entire worldsheet is in the C phase.

Moreover it was found that each disk in the C phase contributes a factor of ¢t to the ampli-
tudes. By interpreting C' domains as holes on the worldsheet, the sum over disks in the C
phase reproduces the open string Feynman diagram expansion with ¢ being identified with
the ’t Hooft coupling. On the other hand, worldsheets that are entirely in the C' phase do
not correspond to any open string diagrams. It was shown that the sum of such worldsheets
to all orders in the string coupling constant expansion correctly captures the gauge group
volume vol U(N) for the open string, which indeed does not come from Feynman diagrams

but is needed to reproduce open string amplitudes.

Thus, this approach shows that the closed string theory on the resolved conifold has
the open string expansion with the Kahler modulus ¢ being equal to the 't Hooft coupling
on the open string side. One may be more ambitious and try to reproduce the D-brane
boundary condition. Some of the basic features of the boundary condition can been seen in
this approach: at the interface of the C' phase and the geometric phase, one finds that the
worldsheet is pulled toward the apex of the conifold where the S? shrinks to zero size at ¢t = 0
and the S% emerges after the conifold transition. However the precise boundary condition
for the D-branes wrapping the S3—for example, the Neumann boundary condition along
the branes—has not been reproduced in this approach since the linear sigma model does

not describe the geometry with S® of finite size. Although the size of S2, being a complex
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structure modulus, is not relevant in the A-model and can be infinitesimal, it is desirable
to understanding how D-brane boundary conditions are reproduced from the closed string

point of view.

In this part, we will clarify the relation between D-branes in open string and C' phases in
closed string by studying cases in which there are several D-branes on the open string side.
We will consider the open string on the Z, quotient of 7*S®, whose base is the lens space
S3/Z, [10]. Since the fundamental group of S*/Z, is Z,, there are p different types of D-
branes whose holonomies along the homotopy generator are given by e2™%/P (¢ = 0,1,...,p —
1). It turns out that the closed string dual has p different C' phases on the worldsheet, and
we show how each C phase is identified with the corresponding D-brane by studying the
behavior of linear sigma model variables at the interface of each C phase with the geometric
phase. We find it is useful to use the Landau-Ginzburg B-model that is 7-dual to the linear
sigma model [11] since much of the analysis in the B-model can be carried out at the classical

level. We will also discuss how this can be seen from the point of view of the mirror manifold.

It is straightforward to apply the worldsheet derivation in [7] and in this paper to other
toric Calabi-Yau manifolds that are known to have open string duals [12], for example the
one described by @; = (1,—1,0,1,—1) and @ = (0,0,1,—2,1). It would be interesting to
analyze closed string theories on more general toric manifolds and to discover new large N

dualities.

This chapter is organized as follows: In section 2, we will review the worldsheet derivation

of [7] in the conifold case. We will use the Landau-Ginzburg B-model to simplify some of
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the steps in the original derivation. We will then extend the analysis to the quotients of the
conifold and explain the correspondence between D-branes and C phases from the Landau-
Ginzburg description. In section 3, we will discuss the open/closed string duality as seen

from the point of view of the mirror manifolds.

2.1 D-branes and phases

2.1.1 Review of the conifold case

In [5], it was conjectured that the A-type topological closed string theory on the resolved
conifold with the Kéhler modulus ¢ is equivalent to the A-type topological open string theory
on the cotangent space T*S? (or equivalently on the deformed conifold) with N D-branes
wrapping the base S®. Here the Kiahler modulus ¢ of the closed string side is identified
with the 't Hooft coupling g,V of the open string side, with the string coupling constant g,
being the same on both sides. There have been several non-trivial checks of the conjecture
[13, 14, 15, 16]. Finally, a worldsheet derivation of the open/closed string duality was given
in [7]. In this subsection, we will review the derivation, using the mirror Landau-Ginzburg

model [11] to simplify some of the steps.

The strategy is to start with the closed string side, expand string amplitudes around
t = 0, and show that a sum over open string Feynman diagrams emerges in the t-expansion.
Since t = 0 is a singular limit of the target space, it is useful to describe the worldsheet by the

linear sigma model. The worldsheet theory consists of four chiral superfields ®, ®5, ®3, P4
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with charges given by

Q=(1,1,-1,-1), (2.1.1)

and a gauge multiplet coupled to ). Following [8], we rearrange the gauge multiplet into
a twisted chiral multiplet . When ¢ is non-zero, there is a potential for the scalar field o,
which is the lowest component of ¥ and the linear sigma model flows to the non-linear sigma
model with the resolved conifold as the target space. In this description, the singularity at
t = 0 is characterized by the fact that the potential for ¢ disappears in the limit and it can
become indefinitely large without costing the worldsheet action—a new non-compact and
non-geometric phase emerges on the worldsheet [8]. The idea of the derivation of the large
N duality, advocated in [5] and quantified in [7], is to regard domains in this new phase as

holes on the worldsheet, and phase boundaries as representing D-branes.

The derivation of [7] can be streamlined by using the mirror of the linear sigma model,
which is found by performing the T-dual transformation on phase rotations of ®;, keeping 3
as a spectator [11]. The T-dual of ®; are twisted chiral superfields Y; with periodicity Y; ~
Y; + 2mi. Combined with X, the mirror is a Landau-Ginzburg model with the superpotential

W given by

W=S(Y+Y,—Ys— Yy —t) - (2.1.2)

IIM%

Note that, since the original model is A-twisted, the mirror Landau-Ginzburg model is B-

twisted. It is easy to check that, when ¢ is not equal to zero, there is no flat direction for
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the superpotential. It is believed that the Landau-Ginzburg model in this case flows to the

mirror of the sigma model for the conifold. At ¢t = 0, the superpotential remains flat for

y1 =y = —logo + mi,

Y3 = ys = —logo, (2.1.3)

with o being arbitrary. Here y; is the lowest component scalar field in Y;. Following [7], we
call this flat direction the C phase.!
In [7], it was argued that the C' phase is described by a Landau-Ginzburg model for a

single variable X with an effective superpotential

Wesr = — (2.1.4)

t
X
It is straightforward to derive this from the B-model. When o is large, the potential for
Y; becomes steep and we can integrate them out using the Gaussian approximation. Since
the mirror Landau-Ginzburg model is B-twisted, it is sufficient to consider an integral over
constant maps,

L exp(t). (2.1.5)

/ledYQdY},dYL exp(—W) ~ S

The pre-factor 1/%? gives a non-canonical measure for 3. We can absorb it by changing the

variable ¥ — X = X7 This gives the effective superpotential (2.1.4) for the canonically

!This is called the C phase in order to distinguish it from the Coulomb phase of the model, which is
decoupled from the geometric phase in the IR limit. For a more detailed specification of the C phase, see

7).
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normalized variable X.

We found that there are two phases in the worldsheet theory: the geometric phase, which
flows in the IR to the non-linear sigma model on the conifold, and the C' phase, which is non-
geometric and is described by the effective Landau-Ginzburg model with the superpotential
Weps = —t/X. The functional integral then includes a sum over domains in the C' phase on

the worldsheet. Let us state the following two facts that were shown in [7]:

(1) A domain in the C phase contributes to a topological string amplitude only if (a) the

domain has the topology of a disk or (b) the entire worldsheet is in C' phase.

(2) Each C domain of the disk topology contributes to the amplitude by a factor of ¢. This
follows from the integral

f{ dXet'* = 2rit. (2.1.6)

Thus, if we regard each C' domain of the disk topology as a hole on the worldsheet, the
closed topological string amplitude is expressed as a sum of open topological amplitudes
with a boundary of each hole being weighted with a factor of £.

When the entire worldsheet is in the C' phase, the closed topological string amplitude
at genus g is given by x(M,)/t*~2, where x(M,) is the Euler characteristic of the moduli
space of genus g surfaces and is equal to By,/2¢g(2g —2). The negative power in ¢ (for g > 2)

reflects the singularity at ¢ — 0. Summing this up over all genera, one obtains [7]:

ZX(M-‘J) (&)29—2 _ Z 55055 _B229)N292 = logvol U(N), (2.1.7)
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where we used ¢t = g,/N. Thus, the sum over the worldsheet in the pure C' phase gives the

gauge volume factor vol U(N) for the gauge theory.

This establishes that the closed topological string theory on the resolved conifold is
equivalent to some open topological string theory, with gauge group U(N) and ’t Hooft
coupling t. We have not yet shown on which D-branes open strings are ending. According to
the conjecture in [5], the D-branes should be wrapping the base S® of the deformed conifold.
To see how the boundary condition emerges from the closed string dual, we first note that the
transition from the resolved conifold to the deformed conifold is a local operation near the
conifold singularity. Thus, away from the base S, we can approximate the deformed conifold
by the geometric phase (Higgs phase) of the linear sigma model for the resolved conifold.
Since A-model amplitudes are independent of the complex structure, we can make the size of
S? as small as we like, making the approximation increasingly accurate. In the C phase, all
the @ fields in the sigma model become massive. Thus, ® — 0 as we approach the “hole” on
the closed string worldsheet, and it is roughly where the base S? is located. Reproducing the
precise boundary condition for D-branes wrapping S3—for example, deriving the Neumann
boundary condition along S3-is difficult in this approach since the linear sigma model does

not describe the geometry of the deformed conifold with finite S3.

Although reproducing a precise boundary condition for each D-brane may be difficult, one
may ask if we can distinguish different types of D-branes in this approach. In the following

subsections, we will demonstrate that it is possible.
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2.1.2 Gauge theory on S3/Z,

As the first example in which there is more than one type of D-brane, we consider the Chern-
Simons gauge theory on the lens space S3/Z,. Classical solutions are flat connections,
which are labeled by holonomy matrices for the homotopy generator of the space. Since
the fundamental group is Zs in this case, the U(N) gauge theory can have a holonomy
matrix with N; eigenvalues being (41) and N, eigenvalues being (—1), where N = Nj + N,.
This breaks the gauge group into U(N;) x U(N3). This can be realized by considering the
topological string theory on T*S3/Z,, with N; D-branes wrapping the lens space with the

trivial bundle and No D-branes wrapping the same space with the bundle twisted by (—1).

According to the conjecture in [10], the target space of the closed string dual is the Z
quotient of the resolved conifold. This space has two K&hler moduli, which are naturally
identified with the two 't Hooft couplings g; N7 and g,V of the open string. This conjecture

has also been tested in non-trivial ways [10, 17, 3].

The closed string worldsheet is described by a linear sigma model with five chiral multi-

plets ®;,2 = 0, ...,4 with two sets of charges,

Ql = (_27 1; 17 07 0)7

Q2 = (_27())07171)7 (218)

and two gauge multiplets coupled to these charges. Since @1 — Q2 = (0,1,1,—1, —1), solving

the D term constraint and dividing by the U(1) gauge symmetry coupled to this combination



22

of charges reduces ¢, ..., ¢4 to the resolved conifold. In the cone r; < 0,77 — r2 < 0, since
oo # 0, we can use the remaining )1 gauge symmetry to fix the phase of ¢y. This leaves out

a residual Z, gauge symmetry acting as

(¢0a ¢la ¢2a ¢3a ¢4) — (¢0a _¢la _¢2a ¢3a ¢4) (219)

Thus we find the Zy quotient of the resolved conifold as the target space.

As in the previous subsection, we rearrange the gauge multiplets into twisted chiral su-
perfields, ¥; and X5, and perform the T-dual transformation along phase rotations of the five

chiral superfields to arrive at the B-twisted Landau-Ginzburg model with the superpotential

5
W=351(-2Yg+ Y1+ Ys—t1) + Da(-2Yp + Vs + Ya— 1) — Y ™™, (2.1.10)

1=0

where the two Kahler moduli, ¢; and ¢, are linearly coupled to the gauge multiplets.

Let us examine when this superpotential has flat directions. Solving OW/dy; = 0, we

find

yo = — log(201 + 205),
Y1 = Yo = —log(—o01),

ys = ya = — log(—02). (2.1.11)
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By substituting this into the remaining equations,

oW
doy,

=—2Yo+ Yo+ Yar1 —ta =0 (a=1,2), (2.1.12)

we find

2
el = 4(14—@) ,
01

e? = 4<1+—)2. (2.1.13)

Since both ¢; and t, depend only on the ratio oy /09, this is possible only if they satisfy the
relation

A=16(e™" —e )2 —8(e +e ) +1=0, (2.1.14)

which is obtained by eliminating o4 /05 from the two equations in (2.1.13). The subspace of
the Kahler moduli space where A = 0 is known as the singular locus.? If the Kihler moduli
satisfy A = 0, the superpotential has a flat direction corresponding to the scaling of oy and

0y while keeping their ratio fixed.

This model has two different C' phases. For a generic point on the singular locus, only

one of the two C' phases emerges. But there is a particular point where both coexist. Let us

2The singular locus can also be derived from the linear sigma model point of view [18]. In this case, we
have to take into account quantum corrections in the linear sigma model. This is in contrast to the mirror
Landau-Ginzburg description, where the singular locus (2.1.14) is derived from the classical analysis of the
superpotential (2.1.10).
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consider the limit?

t1,t0 = —00, t1 —12 — 0. (2115)

In this limit, the condition (2.1.14) for the singular locus gives
t1 —ty = +e/2 + O(eh). (2.1.16)
For such t;,t5, we can solve (2.1.13) as
oy = —01 £ %0, + O(eh). (2.1.17)
Substituting this into (2.1.11), we find two flat directions:

C, phase: 01 =—09=o0,
131
Yo =— —logo,
y1 = Yy2 = —logo,
Y3 = ya = —log o + mi. (2.1.18)
C_ phase : 01 = —09 = 0,
4
Yo = —51 — logo + i,
y1 = y2 = —logo,

Y3 = ya = —logo + . (2.1.19)

3This limit is motivated by the fact that the two C phases coexist as we will show below. A geometric
motivation for the limit will be made clear in section 3.
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Both are complex 1-dimensional in the 7-dimensional space of (0,y) and are parametrized
by o. Note that the two phases are distinguished by the value of y,. When et and e'? are
small but finite, either C'; or C_ solves dW = 0 depending on the sign (4) on the right-hand
side of (2.1.16). In the limit (2.1.15), both phases coexist.

In this model, the flat coordinates 7, ,f_ are non-linear functions of the parameters t1,t,
in the superpotential (2.1.10). They can be computed either by the integrals [ dodye " with
a different choice of contours, or by going to the mirror of the Z, quotient of the resolved
conifold and performing period integrals. From the latter point of view, £; and ¢, are periods
of two 3-cycles in the mirror manifold. We will discuss the latter point of view in more detail
in section 3. In terms of the flat coordinates, the condition A = 0 is equivalent to £, = 0 or
t_ = 0, where one of the two C phases emerges. The limit (2.1.15) corresponds to f, = 0
and {_ = 0 consistently with the fact that both C' phases are realized in the limit.

Let us examine the limit more closely. The flat coordinates are expressed in the limit as

1?_1_ = et1/2 +t1 - t2 + O(etl),

~

t_=—e"? 4 t; —ty + O(eN). (2.1.20)

Comparing this with (2.1.16), we find that the C, (C_) phase emerges at {, = 0 (at t_ = 0).
The two C' phases coexist when both flat coordinates vanish. The two flat coordinates are
exchanged as (t1,t2) — (t1 + 2mi, to + 27i) and at the same time the two C' phases are also
exchanged.

Thus, at £, = f_ = 0, both C phases as well as the geometric phase coexist on the
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worldsheet. We claim that the two C phases correspond to the two types of D-branes with
different holonomies around the homotopy generator v of S3/Z,. This can be shown in the

following three steps:

(1) We first note that C,. and C_ are distinguished by the values of y as in (2.1.18) and
(2.1.19), and that they are related to each other by a shift of yo by =i, one-half of the

periodicity of yp.

(2) Since a shift of y; in the imaginary direction is T-dual to a phase rotation of ¢; for each
1 =0,...,5, the C branches represent D-branes wrapping around the phase rotations of ¢’s.
Since C'; and C_ differ by the shift of one half of the period of yq, the corresponding two
types of D-branes in term of the dual ¢ variables are related to each other by a multiplication

of (—1) to the holonomy of the gauge field around a 27 phase rotation of ¢.

(3) What remains is to identify this (—1) as the relative holonomy around the homotopy
generator vy on the D-brane worldvolume S3/Z,. Since the fundamental groups of S3/Z,
and T*S%/Z, are isomorphic, and since the conifold transition is a local operation near the
singularity, we can lift v from the base and describe it in the linear sigma model variables.
To see that v is homotopic to the 27 phase rotation of ¢y, we just have to note that the

latter is gauge equivalent via the (); gauge transformation to the 7 rotation,

(¢07 ei6‘¢1, ei6‘¢2, ¢37 ¢4)7 0 S 6 S T, (2121)

and that this path is closed because of the Z; quotient described in the third paragraph of
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this subsection.

We have established that the two C phases emerge in the limit ¢, ,¢_ — 0. The boundary
conditions at the interface of the C' phases and the geometric phase are related to each other
by the shift of 77 of the value of yo. Via the T-duality, they are mapped to boundary
conditions on the linear sigma model variables related to each other by a multiplication
of (—1) to the holonomies around the homotopy generator of S3/Z,, i.e., the two types of
D-branes expected in the open string dual.*

For the same reason as in the case of the conifold discussed in [7] and reviewed in the
last subsection, C' domains contribute to topological string amplitudes only if they are of

the disk topology or if they cover the entire worldsheet.

The large N duality conjecture states that the ’t Hooft couplings for the two types of
D-branes are given by the flat coordinate ¢, on the closed string side. This can be shown
as follows: Each of the C branches is complex 1-dimensional parametrized by o in (2.1.18)
and (2.1.19). An integral in the direction transverse to ¢ imposes one linear constraint on
the five Y fields. For a large value of o, the remaining four Y fields can be integrated out in
the Gaussian approximation. As in the conifold case, this results in a superpotential linear
in ¥ with the non-canonical measure of 1/%%. Using the variable X = 1/%, one finds an
effective superpotential ~ 1/X with the canonical measure. To find the coefficient of the

1/X potential, we note the following two well-known facts:

4Since the open string is in the adjoint representation of the gauge group, only the relative holonomy of
the two types of D-branes has an invariant meaning. This is T-dual to the fact that only the relative value of
yo in the two C phases is relevant because of the translational invariance. In fact, gauge theory amplitudes
are invariant under exchange of N; and N,, the numbers of the two types of D-branes [10].
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(1) The genus-g closed string amplitude for the Landau-Ginzburg model with the superpo-

tential W = t/X is proportional to t*729 [19].

(2) The singular part of the genus-g closed string amplitude for small £.. is proportional to

£57% [20].

Note that both statements follow from studies on the closed string side and do not assume
the open/closed string duality. Comparing them, we find that the effective superpotential in
the C.. phase is given by #4 /X, respectively. The disk amplitude is then computed exactly
as in the conifold case, giving rise to the factor 4 for the C.. phase. This is what we wanted

to show.

2.1.3 Gauge theory on S3/Z,

It is straightforward to generalize the result in the previous subsection to the case of the
Z, quotient of the conifold for p > 2. In this case, the conjectured gauge theory dual is
on the lens space S3/Z, [10]. Since the fundamental group of the space is Z,, there are p
different types of D-branes whose holonomies around the homotopy generator are given by
e?mie/P (g = 0,1,...,p — 1). We would like to see how they are identified with p different C

phases in the closed string dual.

The worldsheet of the closed string on the Z, quotient of the resolved conifold can be

described by the linear sigma model with (p + 3) chiral fields ®q, @1, ..., ,2 coupled to p
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gauge fields with the following charge vectors [3]:

(I)Oa (I)la (I)Qa (I)37 (1)47 (1)57 ) (I)4+j7 Ty (I)p-l-Z
Q = 0, 1, 1, =1, =1, 0, ..., 0, ..., 0), (2122
Q] = ( _(.7 + ]-)a I Oa Oa Oa Oa ) 17 ) O)a
Qp—l = ( -p, D— 1; 1; 07 07 07 ) 07 ) O)a

where 7 = 1,--- ,p — 2. Let us show that that this indeed describes the Z, quotient of the

resolved conifold in the cone,

1
<0 (1<j<p-2) (2.1.23)

We write U(1), for the U(1) generated by @,, and the corresponding D term is D, :=
> Qailgil? —ra (a=1,...,p—1). If ry < 0, {Dg = 0}/U(1), describes the resolved conifold.
If rp-1 <0, Dp_y = 0 does not allow ¢y to vanish. Thus, we can use the U(1),-1 gauge
symmetry to fix the phase of ¢y. Since ¢ carries (—p) units of Q,_1, there is a Z, residual

gauge symmetry of U(1),_1 given by

(60, ¢1, P2, Cbsgigp—l) — (¢o, 6_%%, G%Cbm ¢3§i§p—1)' (2.1.24)
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Other gauge groups U(1)1<j<p—2 are completely fixed if —r; + j%lrp_l < 0 since 0 = D; —
j%le_l = (H’%l) 1% — j%l|¢2|2 + [payi? =1 + j%lrp_l requires ¢4, to be non-zero.
Thus, we obtain the Z, quotient of the resolved conifold as a space of solutions to the D
term constraints up to gauge transformations.

The mirror Landau-Ginzburg model has the superpotential

p—2
W o= S(Yi+Ya=Ys=Yi—to) + Y %i( = (+1)Yo+ Y1+ Yay; — 1))
j=1
p—1
+3, (= pYo+ (0 —1)Yi+ Yo —t, 1) =Y eV, (2.1.25)
=0

As in the previous subsection, we look for flat directions of the potential. Solving OW/dy; = 0

(1=0,...,p+ 2) gives

p—1
()

1

<

p—1
y1 = —log <—Uo - jUj) :
j=1
Y2 = —log(—09—o0p-1),
ys = —logoy,
Yya = — log 00,
Yari = — log(—ai), (’l = ]_, N 2) (2126)

Substituting them into 0W/do, =0 (a =0,...,p — 1) gives p relations of the form
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2

6t0 — 0-0
(00 + 0p-1)(00 + D2, joj)’
e (—>2;( +1)oy)*+

ox(oo + ;o)
b1 (=22, + o)
e = (oot o, 1)(o0+ O ) (2.1.27)

where k = 1,...,p—2. Note that the right-hand sides are functions of the ratios of os. Since
there are p relations for (p — 1) variables, there is no solution for generic values of ¢ and thus
no flat direction for W. The singular locus, where a flat direction emerges, is determined
by eliminating o1 /0y,...,0,-1/0¢ from these p equations. The analysis of each of C' phase
can be done as in the Z, case. For example, since each C' phase is complex 1-dimensional
parametrized by the scaling of os, the functional integral over ¢ in the transverse direction
imposes (p—1) linear constraints on (p+3) Y variables, leaving four linear combinations of Y’
free. The functional integrals of these four fields can be done in the Gaussian approximation,
giving rise to the effective Landau-Ginzburg model with the 1/X superpotential.

To understand how p different C' phases emerge, it is useful to make the following change

of variables,

t,_
Y(;:=Yo+p71, Yy = —pYo+ (p— 1)V + Yo —t, 1,

Yi=-YN-Ya+Ys+Yi+to,  Yiy=—-0+1DYo+5V1+ Yy —t;, (21.28)
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so that the superpotential takes the form

p_2 Ty
W =-5Y] + > 5,¥/, +5,1Yy — (€75 €% 4 et 4 VPVt
j=1
p—2 _
+ e_YS + e—Y4'—2Y2'—pY0+(p—2)Y1+Y3+t0 + Z e*Y4,+j+%tp—l*(j"‘l)yé‘h]'ylftj) . (2129)
j=1
In the limit
to — O,
tp_l — —0Q,
)+ 1
I —t; — —oo, (2.1.30)
the superpotential becomes
p—2
W= —5Y]+ ) Y, 45,y — (7 7 ipten
j=1

eV 4 e Yim WP (- 2N Y (2.1.31)
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Extremizing W leads to p different families of solutions

-
Cy phase : Yo = — log(—ayp) + ﬂk,
p

Y= — IOg(—O'()), Z/’z = 03
y3 = —log(og), ¥4 =0,
y£1+j:0, ;=0 (1<j<p-2),

(2.1.32)

where £k =0,1,...,p — 2. We found that p different C' phases coexist in the limit (2.1.30).

The p different C' phases are related to each other as Cy — Cj1 under the shift yj —

Yo + 2mi/p. In terms of the original y variables, the shift is expressed as

(Z/O, Y1,Y2,Y3, Y4, y4+j)

211 2t |
— <yo + T,yl,y2,y3,y4,y4+j + 7(] + 1)> : (2.1.33)

As explained in the second paragraph of this subsection, the homotopy generator of S3/Z,

is the path

(¢0,e—i0¢1,ei0¢2,¢3, )) 0 S 0 S ; (2134)

Note that a 27 rotation of ¢;, keeping other variables fixed, is contractible even if one is away
from the apex of the conifold, since ¢; can vanish while maintaining the D term constraints

. Thus, the (—27/p) rotation of ¢; in the above can be replaced by the 27(p — 1) /p rotation.
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Under the U(1),-1 gauge transformation with respect to the charge vector Q,_; in (2.1.22),
this is gauge equivalent to a 27 phase rotation of ¢y. Since the map from C} to Cyiq
(k=0,...,p—1) involves the 27i/p shift of yo, their holonomies under the 27 phase rotation
of ¢, differ by €>"/P. Namely, the relative holonomy of Cj and Cj; around the homotopy
generator of S3/Z, is equal to e?™/P_precisely reproducing the large N duality stated in the
first paragraph of this subsection.

In principle, we can carry out the analysis further in this approach and find the flat
coordinates explicitly in the Landau-Ginzburg description. However, it is more convenient
and geometrically more intuitive to use the mirror manifold, which can be obtained by
partially performing the functional integral of the Landau-Ginzburg model and making some

change of variables [11]. We will to discuss this in the next section.

2.2 B-model large N dualities

The large N duality from the point of view of the B-model has led to the discovery of the
relationship between the spectral density of matrix models and Calabi-Yau geometry. In this

section, we will give a worldsheet derivation of this and related dualities.

2.2.1 Mirror of the Z, quotient of the resolved conifold

In the last section, we considered the Z, quotient of the resolved conifold. Here we will study

the same problem, but from the point of view of its mirror manifold. The mirror Calabi-Yau
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manifold is given by the equation [3],

0 = G(z1,22,u,v)

p—2
S PR
22+ 224 (&7 — 1)(eP"H? — 1) + elo — 1 — elor/pruty _ N7 o tomi—ti b G ute,

=1

(2.2.1)

The non-linear sigma model on the above non-compact Calabi-Yau can be realized as the
IR limit of the Landau-Ginzburg model with chiral superfields A, X;, X5, U,V and the su-

perpotential

W = AG(Xy,X2,U,V), (2.2.2)

where the scalar components of U and V' are defined modulo 27:. Indeed, as long as the
geometry is smooth so that there is no solution to G = dG = 0, the only solutions to
dW = 0 are A = G = 0. Excitations transverse to A = G = 0 are massive. Hence in
the low-energy the theory flows to the non-linear sigma model on the geometry G = 0.
Such a Landau-Ginzburg model was considered in [9] in the case of the deformed conifold.
This Landau-Ginzburg model is related to the model used in subsection 2.1.3 by partially
carrying out the functional integral and by making a change of variables [11]. We will show
that the worldsheet phase structure found in subsection 2.1.3 can also be obtained from this

Landau-Ginzburg model.
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In the limit

to — O,
tp—l — —0Q,
)+ 1
j— p—1 — tj — —0Q, (223)
p
we have
G~ 3+ 25+ (e — 1) (e’ — 1) (2.2.4)

and the geometry G = 0 develops p conifold singularities at

271

(xla T2, U,’U) = (Oa 0’ 70', 0))

a=0,1,..,p— 1. (2.2.5)

The singularities of the geometry are reflected in the worldsheet theory as the appearance
of new non-compact directions in the space of zero-energy configurations. Namely, the
worldsheet theory develops p new flat directions where A, the lowest component of A, is

large while (z1,x2,u,v) are fixed to the locations of conifold singularities.

We see that A plays the same role as the ¥ field, and C' phases can be defined as flat
directions where A becomes large. Different C' phases are distinguished by the values of

u. In each C domain, since A is large, we can integrate out z;,z9,u and v by Gaussian
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approximation, which produces the measure d\/\2. Thus, the effective Landau-Ginzburg
model of each of the C' phases is again with the 1/X superpotential. The coefficient of the
superpotential is given by the flat coordinate £, (a = 0,...,p — 1), since each C' phase is

associated with shrinking of one of p 3-cycles.

In the language of the present subsection it is easy to generalize the analysis of the
singular locus and the periods. Let us introduce new parameters dy, d, ..., d,—1 as functions

of £y, ...,t,—1 so that G is expressed as

p—1
G=ai+a3+ (" —1)(e" = 1) +do+ »_dje/*™. (2.2.6)
j=1

The limit (2.2.3) is equivalent to d; — 0 for j = 0,1,...,p — 1. Let us evaluate A and the
periods £, in this limit. Suppose (u,v) are near (27ia/p,0) and write (u,v) = (2mia/p +
du, 0v). Assuming that du and év are of the order O(d), we can expand G to the quadratic

order in the variation and find

p—1 _
G ~ 2% + 23 + (pou + v)dv + do + Y _ dj(e » *Y (1 + jou + v). (2.2.7)

j=1

Completing the squares and evaluating the constant piece in the leading order puts G = 0

in the form

i+ z+as+2;—p=0, (2.2.8)
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27 ;

with p = Z‘;.’;é d;e’» “. Thus, we can choose the flat coordinate , as

fon > djes . (2.2.9)

=0

Repeating this for all a = 0,1, ...,p — 1, we find that the discriminant A to the leading order
in d is given by

p—1p—1 ]
e

A~ 501?1 s Ep,1 ~ H Zdje%aj = d;(it(d,,] mod p)- (2210)

a=0 j=0

2.2.2 22+zi+ i+ (xg)?+ f(zg) =0

Essentially the same analysis applies to the geometry
z3 + 23 + 25 + w'(z4)? + f(z4) = 0, (2.2.11)

which has been extensively studied in the context related to gauge theory/matrix model

correspondence [21]. Here w(z) = n%rlx"“ + ... and f are polynomials of degrees n + 1 and
n — 1, respectively. This means that w'(z)? + f,_i(z) = 2°™ + ... is an arbitrary polynomial
of degree 2n with a unit coefficient of z?". The non-linear sigma model on the geometry can

be realized as the IR limit of the Landau-Ginzburg model with superpotential
W= AX] + XZ + X2+ w'(X4)? + f(X4)). (2.2.12)

When all the coefficients in f become small, n conifold singularities appear and n new
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branches develop. The ith one is characterized by large values of A and xy = 25 = z3 =
0,24 = a; where w'(z) = [[}_,(z — a;). We define the ith Coulomb domain to be the
place where the scalar field A in the lowest component of A becomes large, and z4 is frozen
to a;. In this case, the ith Coulomb domain is described by the Landau-Ginzburg model
with W = s;/X, where s; = fAz’ Q= fAi dridredrzdry/dG is the flat coordinate. A; is
the S3 obtained by deforming the conifold singularity at x4 = a;. Applying the usual
arguments, we get the 't Hooft expansion for the B-model open string on the blow-up of
7?2 + 73 + 22 + w'(x4)? = 0. Hence this B-model open string is large N dual to the B-model
closed string on G = x2 + 22 + 22 + w'(x4)% + f(x4) = 0. This proves the large N duality of
the type used in [21].

We find it interesting to look at the deformed conifold case from this point of view. In

this case, w(z) = z%/2 and the Landau-Ginzburg superpotential is

W=AX:+X;+X3+X;—p). (2.2.13)

In the previous examples, the effective superpotential W;; ~ 1/X is given by applying the
Gaussian approximation to the chiral multiplet fields, which is valid when |A| > 1. In the case
of the deformed conifold, this approximation is exact for any A since W is already quadratic
in Xj,...,Xs. Thus, we obtain We;; = p/X without any approximation.® Therefore the
sigma model on the deformed conifold is equivalent to the Landau-Ginzburg model with the

1/X superpotential [19, 22].

5The point arose from discussions with Donal O’Connell.
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Since the 1/ X Landau-Ginzburg model—effective theory in the C phase—is equivalent to
the sigma model for the deformed conifold, full topological string amplitudes in this case are
computable with worldsheets in pure C phase alone. This means that, from the point of view
of the open string dual, perturbative open string Feynman diagrams should not contribute to
topological string amplitudes. Indeed, this is consistent with the fact that the corresponding
hermitian matrix model is Gaussian and there are no perturbative contributions [21]. This

is a nontrivial check of our worldsheet analysis.
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Chapter 3

Testing large N dualities with matrix
models

In this chapter, we consider a class of large IV dualities in topological string theory and test

the dualities by using the matrix model formulation of open string theory.

In chapter 2 we discussed the large N dualities that involve simple conifold transitions
as well as the Z, quotient of the geometries. While an explicit form of the partition function
for Chern-Simons theory on S%/Z, is known [23], this form includes the summation over
all vacua in the theory. For the purpose of checking large N dualities, we want only the
contribution from a single vacuum. For these reasons it has not been possible to exhibit
the large N duality of T*(S5%/Z,) at the level of partition function. In [24, 10] it was shown
that Chern-Simons theory on S/Z, has a matrix model description. In [10] it was also
shown that holomorphic Chern-Simons theory on CP's inside the mirror (call it X) of
T*(S%/Z,) has a matrix model description. Further, these matrix models are identical. For
the case p = 2 the partition function of this matrix model was calculated perturbatively and

was shown to agree with the holomorphic anomaly [25] predictions from the large N dual
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geometry, providing solid evidence for the proposed duality. For Chern-Simons theory on
S3 the matrix model was solved to all genera using orthogonal polynomials in [26] and the

orientifold of the conifold was studied in [27]. The manifold X is given by the blowup of

ry = Fy(e*, e”), (3.0.1)

where

Fy(e*,e’) = (e" — 1)(e" ™™ — 1), (3.0.2)

and by the general arguments by Dijkgraaf and Vafa [21, 28], the spectral curve of the
corresponding matrix model should be a complex structure deformation of F, = 0. In [17]
Halmagyi and Yasnov found an expression for the spectral curve of the matrix model for
Chern-Simons theory on S®/Z,. This involved first showing that the matrix model has
square root branch cuts, therefore its spectral curve has only two sheets. This led to an
explicit expression for the resolvent, depending on p — 1 parameters d;, which in principle
could be found perturbatively by performing the A-cycle integrals. The spectral curve can
be read off from the resolvent and the d; correspond to complex structure moduli. This will

be reviewed in section 3.1.

In section 3.2 we use toric geometry to construct a resolution of the Z,-quotient of the
resolved conifold. This is a particular A,_; fibration over CP'. Then using the Hori-Vafa

mirror map we can write down the mirror geometry and find that after a suitable coordinate



43

redefinition, the nontrivial Riemann surface inside this 3-fold is precisely the spectral curve
found in [17]. This explicitly identifies the large N dual of T*(S®/Z,) for all p > 1. The
matching of the geometries proves the equivalence of the leading order (in g;) free energy
between the matrix model and the A-model closed string on this particular fibration. This

is the first check of this large N duality for p > 2.

3.1 The matrix model spectral curve

The partition function of Chern-Simons theory on the lens space S®/Z, [10] can be written as
a matrix integral over p sets of eigenvalues, which we label by an index I € {0,..,p — 1}. The

Ith set contains N; eigenvalues. The measure is a product of two factors, a self interaction

term (A;) and a term containing the interaction between different sets of eigenvalues (Az):
= H H 2sinh  —
2

2
ul
) .11)
I i#j

H H <2 sinh (u — u2 hl d”)) , (3.1.2)

I<J i,

where d’7 = 27i(I — J)/p. The potential has an overall factor of p relative to the S3 case:

(3.1.3)

In the above notations the Chern-Simons partition function becomes

p—1 Np

/HH‘WA )As(u)exp <——V( )) (3.1.4)

I=0 =1
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We define individual resolvents for each set of the eigenvalues by

2) :gszi:coth (2_2”1) (3.1.5)

and the total resolvent, which we are most interested in, is

2) = zI:w, (z - 27;”) . (3.1.6)

Anticipating taking the large N limit we also introduce 't Hooft parameters S; = g;N; and

S = >;Sr. The equation of motion for each eigenvalue is

I uf —
puU; = gs Z coth 5

J7#i

gy (SFL)

J#I j

From the large N limit of this equation we can derive

30 -pY (= 2w (- 20) — ) (318)

where f(z) is a regular function,

: —ul —2mil S?
z)=p QSZZ(uf + 27il /p — z) coth <z i 5 ik /p> +5 (3.1.9)
T

Given the large N limit of the equations of motion it is possible to find the total resolvent

w(z). This method, which we will now review, has been developed and checked in [17].
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We assume that the eigenvalues spread only along the real line. This assumption leads to

the correct result for our case. Note that we do not make any assumption on the type of

cuts. In the total resolvent w(z), the individual resolvents come with relative shifts of the

argument by 27il /p. Therefore the cuts in the total resolvent are now separated by 27l /p.

For example, if wy(z) jumps at the point z, all other individual resolvents w;(z — 27il /p)

with I # 0 are regular at this point. This means that on the Ith cut the total resolvent

jumps only due to the resolvent w;(z). From this it follows that

2mil 2mil
(w+ (z-l— 7;2 )—i—w_ (z—l— 7; )) = pz, (Ith cut)

and so every cut is a square root.

DN | =

We label the contour around the Ith cut as A;. From (3.1.6) it is clear that

lim w(z) = S,

Z—00

(3.1.10)

(3.1.11)

(3.1.12)

where @(z) is the value of the resolvent on the second sheet. From (3.1.5) we also have that

1
—?{ w(z)dz = 2miSy.
2 Ja,

(3.1.13)

Since the integral over the A = )", A; cycle is fixed by (3.1.12), there are only p — 1
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independent periods. Now we construct a regular function,

9(Z) = e*/* + ZPe¥/?, (3.1.14)

which has the limiting behavior,

lim g(Z) = e 527, (3.1.15)
—00
lim ¢(7) = e 52, (3.1.16)
and is thus of the form
9(Z) = e (2P +dpy \ 2P 4+ di 7+ 1). (3.1.17)

The function g(Z) depends on p—1 moduli d,, which could be found by evaluating the
period integrals (3.1.13). Since we have already fixed the integral over the cycle A =), A;
by (3.1.16), there are only p—1 independent A-periods.

We can solve (3.1.14) for w(Z) to get

D) —1og (3 (s12) - vz - 177) ). 3119

the function under the square root is a polynomial of degree 2p, it has 2p distinct roots that
depend on only (p — 1) parameters. Thus the spectral curve consists of two cylinders glued

together along p cuts. Note that the center of the I'th cut is at the point z = 2wl /p. The
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cycles around each cut are A cycles. There is also a set of non-compact cycles, the B cycles.
Each By cycle starts at infinity on the physical sheet (the sheet where the resolvent is finite)

and goes through the Ith cut to a point at infinity on the other sheet.

From (3.1.18) we see that the spectral curve is given by

p—1
(€ —1) (™ —1)+eS—1+€" ) dne™ =0, (3.1.19)

n=1

which is a complex structure deformation of F, = 0 (from (3.0.1)). Here z = v and v =
(S —w)/2. It is worth mentioning that the functions d,(Sy) are available as a power series
in 't Hooft parameters Sys which is valid only in the region of small S;. We will see that

this region corresponds to negatively large values of Kahler parameters in the A-model.

3.2 The Z,-quotient of the resolved conifold

We will now construct the Z,-quotient of the resolved conifold (O(—1) ® O(-1) — CP')
using standard toric methods.! We will then apply the Hori-Vafa mirror map, from which

we can obtain the Riemann surface that is the nontrivial part of the mirror geometry.
The deformed conifold (T*S3) can be written as det A = u, where

21 23
A= : (3.2.1)

29 24

LA good reference for the basics of toric geometry is [29]
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We can orbifold this geometry by a Z, symmetry generated by

A A, (3.2.2)

where o = €?™/P, The S is given by |21|? + |23|?> = p (assuming p is real and positive) and
the Z, acts on this as (21, 23) — (@21, az3), which gives the lens space S%/Z, = L(p, 1), thus

the entire 3-fold is now T*(S%/Z,).

We now perform this orbifold action on the other side of the proposed large N duality.

The resolved conifold can be expressed as

A =0, (3.2.3)

where (A1 : \y) are the homogeneous coordinates on CP'. We simply extend the Z, action
given by (3.2.2) to the resolved conifold. Clearly this will act trivially on the base CP' but
nontrivially on the fiber coordinates since these are contained in the matrix A. Thus the
resulting orbifold is a particular fibration of an A, ;-singularity over CP'. We will show

that the large N dual of T*(S®/Z,) is the blowup of this space.

The procedure of blowing up can be conveniently described in the language of toric
geometry. First we need the fan for the singular manifold. The standard two coordinate
patches of CP' can be used to trivialize the O(—1) + O(—1) — CP' bundle. On the first

patch we have coordinates (u, z1, z2) = (A1/Ag, 21, 22) and on the second we have (v, y1,y2) =
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(A2/A1, —23,—24). On the overlap of the two patches these coordinates are related by v =
1/u,y1 = uxy,y2 = uxs. Z, acts on the fiber coordinates. For the quotient of the first patch,
therefore, we introduce invariant coordinates (&1, &2, &3) = (2, 28, x125) satisfying &€ = &.
Similarly we introduce (11,72, 73) satisfying mime = 1% for the second patch. These two sets

of coordinates are glued together by v = 1/u,m = uP&;, 9y = uP€, 3 = u?Es.

Toric geometry is designed to encode these transition functions (see the appendix for

notations). Namely, we get the relations

Uig + U1z = PUi4, Uz + Uz = PUag,
Ug1 = —U11, U2 = PU11 T+ Uiz, (3.2.4)

Ugz = puiy + U1z, Uzq = 2Up1 + Uy

for the lattice vectors in M. The first two relations imply that uq4 and ug4 are not vertices of
the dual cones ; and &5, respectively, where ¢, is spanned by w11, 412, 13, and &5 is spanned
by ua1, Ugg, uz3. We choose a basis such that uy; = (1,0,0),u12 = (0,1,0),u14 = (0,0,1), this

determines all remaining vectors u;;.

From this we find that the cone o, is generated by vy, vs, v3, and the cone o3 is generated
by v4, v, v3, where v; = (1,0,0),v = (0,p,1),v3 = (0,0,1),v4 = (—1,p,2). After a GL(3,Z)
transformation (z',v', 2') = (x +y, z, z + 2), they become v; = (v;,1), where v; = (1,1),15 =
(p,0),v3 = (0,0),v4 = (p—1,—1). The toric fan of A, ; — CP" consists of the cones o1, o

and their faces.

To obtain a smooth manifold, we subdivide the cones 01,05 by introducing v; = (v;,1)
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v4

L] 3 .

Figure 3.1: The fan for the resolution of the Z, orbifold of O(—1) @ O(—1) — CP".

where v; = (i —4,0) fori = 5,...,p+3. The fan A of the smooth toric manifold is the union
of [v1,vs, V5], [U1,Vpss, V2], [V1,Us, 6], [V1,06,V7], ... [V1,VUps2, Vpts] from oy and [vg,vs,vs],
[V4, Vpis, Val, [V, Vs, Ve, [Va, V6, 7], - . . [Va, Upy2, Upys] from o9 (see figure 3.1). Here [u, v, w] de-
notes the cone spanned by the vectors u, v, w. It is easily seen that each cone now has volume
equal to 1, where we normalize the volume of the cone generated by [1,0,0], [0, 1, 0], [0,0, 1]
to 1. The toric web diagrams for these fans are drawn for the cases p = 1,2, and 3 in
figure 3.2. This geometry and other A,_; fibrations over CP! were recently considered in
[30, 31] for the purposes of geometric engineering [32]. Setting m = 0 in [31] gives the above

geometry.

From the data of the fan A we can read off the charge vectors Q,,a = 0,1,--- ;p—1

of the corresponding linear sigma model. They are the generators of the lattice D = {Q €
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- (1.3)
a0 o -1.-2)
p:
(0.1)
(-1,1) (1,1)
(1.2)
(-1,1) (-1,-1)
(1-1)
(1.1)
(1-1)
(1,1) (1.2)
12y P=3
-1.-3)

Figure 3.2: The toric web diagrams of the large N dual of T*(S3/Z,) for some values of p.
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ZP3| 3. Qiv; = 0} [18]. After rearranging the columns, these are given by

QO = ( 07 17 1) _17 _17 07 ) 07 0) 07 0)7
(5+7)th
Q] = ( _(.7 + 1)7 75 07 07 07 07 y ) 17 ) ) 0)7 (325)
Qp—l = ( —-p, p— 17 1) 07 07 07 y 07 07 07 ) 0)7
where 1 < j < p—2. According to [11, 33|, the mirror geometry is given by zw = f;LOQ e v,

where the fields are related by >, Q.:y; = t, and one of the y; variables is to be set to zero.
Eliminating ya, ¥4, 94+ (1 < j < p — 2), and setting y; = 0, we get the Riemann surface

inside this 3-fold to be

p—2
O0=1+e ¥ fe¥ e lrtg P | glotr-1o7Pyotys 4 Z e tiem U+, (3.2.6)
j=1
Now after the coordinate transformation u = —yo —t,—1/p,v = y3 +to + mi, we can write

this as

p—2
(ev _ 1)(6PU+’U _ 1) _|_ 6t0 _ 1 _ e’U <etp_1/Peu + Ze—tj+(j+1)tp_1/pe(j+1)u) — 0, (327)
7=1

which is precisely (3.1.19).
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Chapter 4

Calabi-Yau crystals

Topological string theory [6, 25] is currently undergoing a drastic paradigm change. Reshetikhin,
Okounkov, and Vafa [34] realized that various amplitudes for the topological A-model on C?
can be expressed in terms of classical statistical models of a melting crystal. Igbal, Nekrasov,
and Vafa [35] proposed interpreting the crystals in terms of quantum foam or Kéahler gravity,
which is the target space theory of A-model closed string theory. Mathematically speaking,
this means that Gromov-Witten invariants are related to the so-called Donaldson-Thomas

invariants [36, 37].

Central to the dramatic paradigm shift in topological string theory is the interpretation
of the Calabi-Yau crystal as describing the violent fluctuations of topology and geometry at
microscopic scales. This is reminiscent of geometric transition, where open string theory and
closed string are related via a local change of topology and geometry. Or rather, when crystal
picture is combined with geometric transition, one naturally expects that the geometric
change is part of the gravitational fluctuations or quantum foam. In this chapter, we realize

this expectation and make it precise.
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We propose a crystal melting model that describes the A-model closed strings on the
resolved conifold O(—1) @ O(—1) — CP'. Our model is a simple modification of the
model for C3. The Kihler gravity interpretation leads one to view the gluing prescription
of the topological vertices as computing partition functions of crystal models for general
toric Calabi-Yau manifolds. Although the resolved conifold was discussed in that context
in [35], what we propose is different from the prescription described there. Indeed it was
emphasized in [38] that “the global rule of melting is absent for closed strings on toric Calabi-
Yau manifolds with more than one fixed point of the toric action.” One of the purposes of

the present paper is to amend this situation.

Our model is obtained from the large N dual Chern-Simons theory on S®. We show that
the Chern-Simons theory can be formulated as a simple unitary matrix model that involves
a theta function. This representation is then used to obtain a free field formula for the

Chern-Simons theory, which is interpreted in terms of a statistical model.

It is also possible to introduce non-compact D-branes to the crystal, enlarging the arena
of study to include open strings. It was shown in [38] for C3 that this corresponds to
having defects in the crystal. In Chern-Simons theory, the observables are the Wilson loops
that go around the circles in various knots and links in the 3-manifold. We show that the
computation of a Wilson loop along an unknot can be nicely done in the unitary matrix
model. This then translates to a natural crystal model with defects that represents some
number of non-compact D-branes intersecting the CP' in the resolved conifold. The fact

that these D-branes fit neatly into the crystal shows that our model of the Calabi-Yau crystal
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is a natural one.

The crystal melting model is also a useful computational tool. For one crystal model,
there are two ways to represent it in terms of free bosons and fermions. We use this freedom
to explicitly compute certain amplitudes in Chern-Simons theory. We find an interesting
phenomenon where the Kahler modulus of the resolved conifold is shifted by a multiple of
gs in the presence of non-compact D-branes. We also discuss the possible application of the
crystal representation to prove more general examples of topological string large N dualities
to all order in g;.

The plan of the paper is as follows: In section 4.1 we propose a crystal melting model
and demonstrate that it computes the partition function for the resolved conifold. In section
4.2 we explain how the crystal picture naturally arises from the dual open string theory. We
also discuss the non-perturbative mismatch. In section 4.3 we derive from Chern-Simons
theory the crystal models for non-compact D-branes, realizing them as defects in the crystal.
Section 4.4 discusses the possible application of the crystal computation as a way to prove

large N dualities to all order in g;.

4.1 Crystal melting model for the resolved conifold

Let us recall the crystal model for C® [34]. The zero-energy configuration is the positive
octant z,y,z > 0 in R3? filled with atoms. Here an atom at (zg,yo,20) is a filled box
{(z0 + Sz, Yo + Sy, 20 + 5,)|0 < 54, 8y, 5, < 1}. We consider removing atoms from the corner.

The allowed configurations are defined recursively as follows: The configuration where the
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whole octant is filled is allowed. If an allowed configuration has an atom at (xg, yo, 29) such
that there are no atoms in the region {(z,y, z)|z < zo,y < yo,2 < 20}, one can remove the
atom at (g, Yo, 20) to obtain another allowed configuration. The allowed configurations are
also called 3D Young diagrams, in analogy with the familiar counterpart in two dimensions.

The partition function is

Z=Y q", (4.1.1)

where the summation is over 3D Young diagrams 7, and ¢ = e %, |r| is the number of
atoms removed. This partition function agrees with the partition function of A-model closed
strings on C2. This fact can be proved by the use of free field techniques familiar in string

theory [34]. Below we generalize the technique to the situations of our interest.

The model we propose for the resolved conifold is the following: We add one more
condition that further restricts the allowed configurations: Atoms in the region x > N
cannot be removed. Here N is related to the Kéhler modulus ¢ as ¢ = g,/N. Note that this
condition introduces a “wall” that together with the original three walls constitutes the toric

diagram for the resolved conifold.

Now we demonstrate that this crystal melting program indeed reproduces the partition

function for the resolved conifold. For this purpose, we express the partition function in
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(a) (b)

Figure 4.1: (a) The crystal melting model for the resolved conifold O(—1) ® O(—

1) — CP.

The edges, drawn as solid lines, of the positive octant bounded by the wall at y = N form
the toric diagram of the resolved conifold. (b) Many atoms have been removed from the

crystal. Atoms cannot be removed from the region beyond the wall at y = N.

terms of free fermions and bosons:

Z r+1/27 ’l/) Z zr—|—1/2’

reZ+1/2
{¢r7¢s} = 0rt50,
¢(2) = zg — iy lo z+izﬂ
0 o0 log = Tl,Zn,

[ama an] = m6m+n,0-
These are related via

06(2) = Y(2) ;, P(2) = P 1 P(z) = €7

(4.1.2)
(4.1.3)
(4.1.4)

(4.1.5)

(4.1.6)
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Now we define

Z:I:n
Ii(z) =exp Z —Otn. (4.1.7)

n>0

It is well-known that neutral (zero momentum in the bosonic language) fermionic Fock states
are labeled by (2D) Young diagrams p, which we denote as p = (11 > pa... > pg > 0). More

explicitly, such Fock states are given by

1 = T[¥pml)
i=1

d
= [ ¥-ato-ul0), (4.1.8)
i=1
where |0)) is the state that is annihilated by all ¥,,r € Z + 1/2, and we have defined

p! is the transposed Young diagram. The Virasoro zero mode Ly counts the number |u| of

boxes in the Young diagram pu:

Lolp) = || )- (4.1.10)
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Two Young diagrams A and p are said to interlace (and we write A > p) if they satisfy

In other words, A and p interlace if and only if A contains p and p contains A with the first
row removed. The interlacing condition is equivalent to the local condition for two Young
diagrams one finds by slicing the allowed configuration of the crystal by the planes z = y+j

and z =y + j + 1 [34]. The operators I'1(z) are useful because of the properties

=> |,

A-p

=> " |w). (4.1.12)

pm=A

The partition function for the crystal can be written as

Zcrystal(Qvt = gsN) = <0| (H qL0F+(1)) qLO <H F—(l)qLo) |0>

m=1

o] N
= (O[] T+ ") T T=(g~*)0). (4.1.13)
m=1

This can be understood as slicing the crystal by planes z = y + 7,5 € Z. Note that we have
a finite product of vertex operators acting on |0). This restricts a 3D Young diagram to a
trivial 2D Young diagram on the slice x = y — N. The interlacing conditions then imply that
the 2D Young diagrams must have at most one row on the slice z = y — N + 1, two rows on

x =1y — N + 2, etc. Thus the free-field correlator represents a crystal model bounded by a
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(a)

Figure 4.2: (a) Closed string slicing: This slicing by planes z = y + j allows one to compute
the closed string amplitude as in eq. (4.1.14). (b) Open string slicing: Another slicing of the
crystal by planes z = z + j corresponds to the free-field representation eq. (4.2.1) obtained
from Chern-Simons theory.

wall at y = N. See figure 4.2(a).

Now we can explicitly compute the partition function:

1—qN

ZnyStal(Qa = gsN) = <0|67 2n>0 %ef 2in>0 “afa] @-n |0>

l—an

= ezn>0 n[n]

e—nt

= M(q)e =P, (4.1.14)

Here [n] = ¢/ — ¢ ™/2. Taking N — oo pushes the wall at y = N to infinity, and the
partition function reduces to the result for C3.

This crystal model and the resulting amplitude are different from those discussed in [35].
While our crystal has a fixed finite size in the y direction, in [35] the distance between

the two crystal corners are not fixed because two finite size 3D partitions are connected
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through a region of length ¢ = g,N. Consequently, instead of a single power of M(q) in
our model, the model in [35] gives the square of M(g). More generally, a closed string
partition function contains M (q)X(X)/2, where x(X) is the Euler characteristic of the target
space X. If the target space X is non-compact, the definition of the Euler characteristic
is ambiguous. In the context of the large N duality, it is known [5] that one should as-
sign the value 2 to the Euler characteristic of the resolved conifold as we just did. This
is natural in the sense that the target space admits one Kéahler deformation but no com-
plex structure deformation, and the general formula for a (compact) Calabi-Yau manifold is

X(X) = 2[(#Kahler deformations) — (#Complex structure deformations)].

4.2 Large N dual open string theory

In this section, we study the crystal melting problem from the point of view of the large N
duality.

The crystal model in the previous section can also be expressed as

Zcrystal(qat = gSN)

= (O[] T+(¢" ) 1aen H T (g™ 1/2)|0). (4.2.1)
n=1

Here 1,:<y is the operator that projects onto the subspace spanned by |u) such that the
Young diagram g has at most N columns. This free-field expression corresponds to slicing

the crystal by planes z — z = j,j € Z. See figure 4.2(b).
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We call this the “open string slicing” because, as we will see below, this representation

of the crystal naturally arises from Chern-Simons theory.

4.2.1 Unitary matrix model for Chern-Simons theory

The large N duality of Gopakumar and Vafa relates U(N) Chern-Simons theory on S? to
topological closed string on the resolved conifold O(—1) ® O(—1) — CP'. The dictionary
is that the Kdhler modulus ¢ of the closed string theory geometry is identified with the ’t
Hooft parameter g;N. Certain amplitudes on the resolved conifold, including the closed
string amplitudes, can be computed within the framework of Chern-Simons theory. We now
develop a unitary matrix model formulation of Chern-Simons theory, which will be used to

derive the crystal model for the resolved conifold later.

The partition function of the U(N) Chern-Simons theory on S® is given by [23]:

ep (4.2.2)

1 .
Zos(N,k,U(N)) = s [[2sin TN

s

Here 27i/(k + N) = g, is the string coupling constant, and the product is over the positive
roots of SU(N) C U(N), which are given by a;; = e; — e; € CV(~ Cartan subalgebra) for
i<j.op=(1/2)Y 00 = Zfil(% — i)e; is the Weyl vector. Now note the following

formula by Weyl for the denominator of the Lie algebra characters

H 2sinh(a - u) = Z e(w)e P, (4.2.3)

a>0 weW
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where W is the Weyl group isomorphic to the permutation group Sy and u is an arbitrary el-
ement of the Cartan subalgebra of U(N). We use this identity to rewrite Zcs(N, k, U(N)) =:

ch(gs, N) as

_NIN-1)7i
e 1 w(o).
weWw

s N/2 o mia2  N(N-1) ~
= (&) Ve Zoslg, V). (4.2.4)

Here we have factored out the non-trivial part of the partition function:

Zos(gs, N) =D e(w)g2 ) o7, (4.2.5)
weW

q is again e~ 9. In what follows, we “analytically continue” in g, and regard g, as a complex
parameter with a positive real part. We can introduce another sum over the Weyl group and

an integral over the maximal torus as follows:!

ZCS(gsv N)

_ 1 3 ew)e(w')gh OO
|W| w,w'eW

1 Ty (40, 1 iw(p)—w (9))-0

= T H 2—1900(6 tq) Z e(w)e(w')e"PITwRIT (4.2.6)

| | i=1 & w,w'eW
Here we use the identity ¢™ /2 = [ 929(e; q)e™. If we instead use
u2
g™? = = Qd;‘g e 29 e™¥, we get the matrix model with a non-compact integration region introduced

in [24, 10]. The matrix model there can be transformed to our unitary matrix model via u = (6 + 27n),
performing the sum over n € Z and a modular transformation. The author thanks Hirosi Ooguri for pointing
this out.
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Here

I CRTIE D (4.2.7)

is one of Jacobi’s theta functions. By making use of the Weyl denominator formula in eq.

(4.2.3) again, we get

1 N do 0\
5 i i6; Qe
ZCS = W (g %ﬂoo(e )) <H 2 Sin 9 > . (428)

The second factor now represents the Haar measure for U(N) pushed down to the maximal

torus. The partition function can be written in a very simple form,

ZCS = / dU det 1900(U; q), (429)
U(N)

where the measure is normalized so that the volume of U(N) is unity. This expression holds
for any gauge group of the Chern-Simons theory on S* when the corresponding Haar measure

is used.

4.2.2 Crystal from Chern-Simons theory
Now we use the product formula for the theta function

[e o]

doo(e”;q) = H(l — @)1+ PP (1+ e g
_ <H(1 - qf)> exp [Z(—m%] (4.2.10)
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to write

ZCS = <H 1—q > /dUexp Z(_l)nTI‘UnT;TnTI‘Un
= <H (1—-¢ ) /dUeXp ZﬂUnTjin?U_n (4.2.11)

To obtain the free-field expression for the partition function, we introduce the coherent

states:

1 n
|U) := exp [Z ETr Ula_,| |0). (4.2.12)
n>0
These states satisfy
a,|U)y = Tr UT|U), (4.2.13)
/ AN U] = Laen, (4.2.14)

where 1,<y is the projection to the subspace spanned by |u) such that the number of rows in
1 is less than or equal to N. This formalism was extensively used in the context of 2D Yang-
Mills theory, which has recently been attracting some attention. See [39] and the references

therein.

By making use of |U), we can write
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o N
ZCS = <H 1—q ) 0|6 n>0 nl] /dU|U><U|6 n>0 n[n |0>

’,:]8

N
— < 1—q) (0]Zn>0 w1 1 4 yeZn=0 wi |0). (4.2.15)
=1

Since a, — —ay, is equivalent to R — R (c.f. eq. (4.1.8)), we finally obtain

o N
Zos = <H(1—qj)> (Ofe™ Zm>0 il Ly ye™ Zm>0 7T |0)
j=1
= (@) Zerystar (gt = gsN). (4.2.16)

We have demonstrated that the open string slicing in eq. (4.2.1) naturally arises from
Chern-Simons theory. Note that there is a mismatch by the factor £(¢)~" between Zgg and
Zerystal, Where £(q) = 1/[[32,(1 - ¢’) is the “renormalization factor”, which was found in
[38] to be associated with a non-compact D-brane. As in [38], we use the modular property
of n(q) = ¢"/**¢(q)™", namely n(q) = \/27/g:n(§),§ = e *"/% to argue that it does not
contribute to the perturbative amplitudes at genus no less than 2 when comparing the open
and closed string sides. For lower genus amplitudes, the mismatch is absorbed into the usual

ambiguities.

4.3 Adding D-branes

We can add non-compact D-branes to the system. In the language of Chern-Simons gauge

theory, this corresponds to placing Wilson lines going through circles of links. In the case of
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an unknot, we will be able to see the connection to the description in [38].

On the open string side, we consider placing a stack of M non-compact D-branes in 7* 53
intersecting the S* along an unknot S! [13]. Since the new D-branes are non-compact, we
treat them as non-dynamical, acting as a source to the gauge fields on S2 via an interaction.
This interaction is obtained by integrating out the degrees freedom coming from the open
strings stretching between the compact D-branes wrapping the S? and the non-compact D-
branes. Let U € U(N) and V € U(M) be the holonomies along the unknot for the gauge
fields on the compact and the non-compact D-branes, respectively. Then the interaction can

be represented as
/DAB_SCS[AH'ZZO:l FTUPTV™ ZCS(Sg) <62;.’o:1 %TrU"TrV">. (4'3'1)

The expectation value can be expanded with the help of Frobenius’ formula:

oo

(eXmt %TrU"TrV"> — Z(Tr#U)Tr#V_ (4.3.2)

7

Here Tr, denotes the trace in the representation of U(N) or U(M) specified by the Young

diagram pu.

It is natural to expect that (Tr,U) in eq. (4.3.2) is computed by the unitary matrix model
in subsection 4.2.1 by inserting Tr,,UU. We now show that this is indeed correct; however, with
the subtlety that the Wilson line and hence the non-compact D-branes have non-canonical

framing.
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The object we would like to compute is
/ dU det 9oo(U: g) Tr, U, (4.3.3)

Going back to the eigenvalue integral, this is

i0;\N—i —ib; det [(e®)m N1
/ H—ﬂoo et [(e%) =] det ()] S (4.3.4)

where we have used the Jacobi-Trudy formula Tr,diag(z1, ..., zn) = su(z1, ..., TN)
= det a:g”“LN*i / det a:jv ~* for the Schur polynomial.? After canceling factors between the

numerator and the denominator and performing the integrals, the matrix integral reduces to

N
L Z sgno sgno’ H q%(”a(ﬁ—ﬂ(j)w’(j))z

N!
o,0'€SN j=1
N
= 3 suo [[ ghtes it
gESN 7j=1
= det [q%(“i_”j)z] : (4.3.5)

Up to p-independent factors, this equals

g B sl 2N geg [ =it (4.3.6)

The power of g can be written as ¢+ *NI1#)/2 where k, = 2 D Gqyen(i—70) = 22 pi(pi—2i+1).

2A good reference on symmetric functions and the group theory relevant to us is [40].
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This is the factor one obtains when the framing of the Wilson loop is shifted by one unit [23].
The determinant is of the form that appears in the numerator of the Jacobi-Trudy formula.

Hence we have shown that

[ dU det 9oo(U; ¢) Tr, , U

(rutN1eD/2 di - -fes o mLy 437
dedet’ﬁoo(U,q) q © lag(q 2 ’q 2 ) ,q 2 ) ( )

Relative to the result for the canonically framed unknot [13], we see that the matrix model
computes amplitudes in the framing shifted by one unit.

This vacuum expectation value of the Wilson loop can be represented as a crystal melting

model as follows:
/ dU det 9o (U; q) Tr,U = £(q) N (0]eZn>0 nla / dUTr, U|U YU |e=n>0 =it |0)

= £(q) 7N (0]e>n0 b / dUZ XM (E))Ha§j|U)(U|eZ">°:[;"TJL|O), (4.3.8)

=1

where x, is the S|, character of the representation specified by g, k= (k1, k2, ...) is an
infinite vector with non-negative integer components, and C (E) is the conjugacy class of S|

specified by k. Now the powers of a; can be moved to the left to act on (0|. This yields

/ dU det oo (U3 ) Tr, U = &(q) ™ (ule™r>0 7 / AU U e w5 |0)

= £(q) "V {ule>n> " Lggye> >0 |0)

X—n

— €)™ (e S0 H e o0 55 o)

= §(Q)_N<Mt|HF+( 1dt<NHF (g~ ™)]0)

— £(Q) quz l(z 1/2)”zZD branes

crystal )

(4.3.9)
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Figure 4.3: The initial configuration of the crystal with defects representing multiple non-
compact D-branes intersecting CP! in the resolved conifold. The defects introduce faces at
y:/,(/i :Nl —M+1,’U,3 :Nz—M+2,,,U,§W_1 :NM—l —1,/,145\/1 :NM

where we have defined

ZD branes  _ qm LSy, IHF+ )lat<n H I'_ (g™ 1)|0). (4.3.10)

This free-field correlator together with the power of ¢ represents, in the open string slicing,
the partition function of the crystal melting model whose initial configuration is shown in
figure 4.3. The power of ¢q ensures that the initial configuration has zero energy.

It is possible to express the multi-D-brane crystal in the closed string slicing, which is a

slight generalization of the free-field representation in [38].

Ny
2, s = 0|Hr 212 T] D (g 0 /)0 (g 172
m=1
Ny Ny o
> H T (m— 1/2))1—w+(q—(NM,1+1/2)) H F_(q—(m—1/2))r+(q—(NM,2+1/2))m
m= NM+2 m:NM_1+2
N+M
H T —(m 1/2))1-\ —(N1+1/2) H T (m— 1/2))|0> (4311)

m=Na+1 m=N1+2



71
Here pf = Ny—M+1,ub = No— M+2, ..., 4, 1 = Nyo1—1, b, = Nas. In the closed string

slicing, it is possible to explicitly evaluate the correlator to write it as a product. This also
provides us with an interpretation of IV; as positions of D-branes and exhibits an interesting

shift in the Kdhler modulus:

o0

zobaes (] 11 1
crystal - 1— qn+m—1

n=11<m<N+M,m#N;+1

M 1
<11 11 1= g

i=1 N;+2<m< N+M,m#N;+1

= @M ]J(—e¥)M(g)

1<j
M —nt o naz+e—n(t a;)
« He et n[n]2 He n=1 n[n] . (4312)
=1

Here we have defined a; := g,(N;+1/2), i =1,..., M and t := g,(N +M) = t+ g, M. Again,
&(g) can essentially be ignored in the perturbative computation due to the modular property
of n(q) = ¢"/**¢(q)~!. The factor (1 — e%~%) is the contribution of an annulus diagram
between the ith and jth D-branes.® This is the amplitude for M non-compact D-branes in

the resolved conifold, which can be defined as the Kdhler quotient

{(X1) € C* 1 | X1 2+ | Xa2 — | X3)? — | X4 = Re £}/U(1), (4.3.13)

3The author thanks Nick Halmagyi for pointing this out.
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with U(1) action by charges (1,1, —1,—1). The geometry of the D-branes is [41]

|X1> — Re(a;) = | Xa* — Re (t — a;) = | Xa|? = | X4|?, ZargXI = 0. (4.3.14)
I

One thing that is interesting in our computation is that the Kahler parameter is shifted from
t = gN tot =t+ g,M. It has been known (see, for example, [42]) that the presence of
D-branes can shift the effective size of the geometry by the string coupling times the number
of D-branes. Here we have found another such phenomenon. The genus zero part of eq.
(4.3.12) in the case of a single D-brane agrees with the results in [33].

The fact that the non-compact D-branes can be nicely incorporated to the crystal confirms

that our crystal model of the resolved conifold is a natural one.

4.4 More general large N dualities, instanton counting,

and geometric engineering

So far we have been discussing the Calabi-Yau crystal in the context of the Gopakumar-Vafa
duality (T*S°® & O(—1) @ O(—1) — CP?), the simplest example of a large N duality in
topological string theory. There is a family of generalizations of the large N duality which is
worth considering in relation to Calabi-Yau crystal. The example of Gopakumar and Vafa is
simple enough to prove the duality (at least at the level of free energies and some open string
amplitudes) by direct calculations. However, our derivation of the resolved conifold crystal

from Chern-Simons theory can be viewed as a complicated way of proving the duality. In
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this section we discuss the possible application of the ideas in the present paper to prove

more general large N dualities.

Aganagic, Klemm, Marino, and Vafa made a conjecture in [10] that the duality of Gopaku-
mar and Vafa still holds after taking a Z,, orbifold on the both sides of duality. On the closed
string side, this produces A-type topological closed string theory living on the particular fi-
bration of the A,_; ALE space over CP'. The geometry has p Kahler moduli, the sizes of
the base CP! and p additional CP! that blow up the A,_1 singularity. On the open string
side, we again get Chern-Simons theory, this time living on the lens space L(p,1) ~ S*/Z,.
Also after taking the orbifold, the relevant open string theory is a sector of Chern-Simons
theory that contains one classical solution. A classical solution can be specified by a holon-

N N N,
omy exp[27mi/N diag(m, 5,-/3,-5, ,m)] along the generator of the homotopy group.

The Kahler parameters are then to be identified with linear combinations of the 't Hooft

parameters g;N;, i =1, ...,p.

The p = 2 duality was tested via perturbative computations by the original authors who
proposed the duality [10]. For general p and a related duality, checks have been done by
showing that the matrix models describing the sector of Chern-Simons theory leads to the
spectral curves that are the nontrivial parts of the Calabi-Yau manifolds mirror to the A-
model closed string geometries [17, 3, 43]. The worldsheet derivation of the Gopakumar-Vafa

duality [7] has also been generalized for these large N dualities [4].

There are p + 1 choices (m = 0,1, ...,p in the notation of [31]) one can make when one

fibers the A,_; ALE space over CP'. The closed string geometry that is dual to the S3/ Z,
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Chern-Simons theory is precisely the fibration m = 0 [3] that was shown to correspond
to Nekrasov’s instanton counting [44, 45| for the 5D SU(p) gauge theory with a vanishing
Chern-Simons term [30, 35]. (For the correspondence with a non-zero Chern-Simons term,
see [46].) Nekrasov’s correspondence between topological closed strings and 5D gauge theory
has been discussed in [47, 48] by making use of the topological vertex [42]. As discussed in the
introduction, the computation via the topological vertex is closely related to the Calabi-Yau
crystal. In particular, the computation takes the form of an expansion in ¢ = e~ 9%.

As we saw in the previous section, the Chern-Simons theory also naturally leads to an
expansion in q. Hence, it is plausible that one will be able to prove the generalized large N
dualities to all order in g, by proving that the partition functions are the same on both sides
as functions of ¢ [49].

Let us also make an observation on the appearance of the unitary matrix model. In [50],
the question of finding matrix models that compute the Seiberg-Witten solutions of N' = 2
gauge theories was addressed. The matrix models in [10] can be regarded as computing
amplitudes in the 5D gauge theories with the same number of supercharges. By taking a
double scaling limit, which is the familiar field theory limit of geometric engineering [32], one
can compute amplitudes for 4D N = 2 gauge theories from these matrix models. By using
the technique in this paper, it is possible to rewrite the matrix models in [10] as unitary
matrix models. These are similar to, and can be regarded as generalizations of, the unitary
matrix model (Gross-Witten one-plaquette model [51]) that was considered in [50] for the

SU(2) gauge theory.
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Chapter 5

Conclusion

In this thesis, we studied large N dualities in topological string theory from three different

perspectives.

In Chapter 2 of this thesis, we reviewed and generalized the worldsheet derivation of
the Gopakumar-Vafa large N duality in topological string theory. In the A-model case, we
extended the proof of duality to geometries that involve replacing lens spaces S®/Z, by p
CP's. We saw from the behavior of the mirror Landau-Ginzburg model on the boundary
of the C-phase that it knows about the rather intricate boundary condition, namely, the
holonomy around the generator of m(S%/Z,). For the B-model, we considered the Calabi-
Yau geometries of the form 3 + 22 + 22+ w'(x)% + f(x4) = 0. The worldsheet derivation was
implemented by using the Landau-Ginzburg model with superpotential W = A(X? + X2 +
X2 +w'(X4)? + f(X4)). It would be extremely interesting to develop a similar worldsheet

derivation of the AdS/CFT correspondence.

In chapter 3 we presented a quantitative tree-level test of large N dualities that involved

trading D-branes wrapping a lens space S®/Z, with p CP's of finite size as discussed in
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chapter 2. For this purpose, we took the matrix model of [10] and studied its spectral
curve. We found that the spectral curve is precisely the Riemann surface that appears in
the geometry mirror to the A-model closed string geometry. Since the genus-zero free energy
is the prepotential of the Riemann surface, this provides a tree-level test of the large N

conjecture.

In chapter 4, we proposed a crystal model that describes the A-model on the resolved
conifold. The crystal is bounded by a wall at finite distance from the corner at which melting
starts. The distance corresponds to the Kahler modulus of the geometry. We also formulated
a unitary matrix model for Chern-Simons theory on S® and used it derive the Calabi-Yau
crystals. It would be interesting to see if this kind of model can be generalized to other

geometries, including those related to the Chern-Simons theory on S*Z,.

Topological string theory is a subject that has been developing continuously since it was
introduced. We now try to summarize the more recent developments in topological string

theory.

In [52], Witten proposed that the topological B-model whose target space is a Calabi-Yau
supermanifold CP3* is dual to the perturbative 4D N = 4 super Yang-Mills theory. This
is the first instance where the twistor formulation of the 4-dimensional field theory plays
an essential role in string theory, and it uncovered a rather unexpected connection between
string theory and perturbative gauge theory, triggering a surge of investigations. S-duality

in topological string theory [53, 54] was proposed partially inspired by Witten’s work.

A new connection was found between topological string theory and the physical string
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theory. According to the new proposal [55], a partition function of the BPS blackhole ob-

tained by wrapping D-branes on cycles in a Calabi-Yau manifold is the absolute value squared
of the topological string partition function. It is suggested that the blackhole formulation is
the non-perturbative formulation of the topological string theory.

Another new proposal [56] states that Hitchin’s functionals, which give rise to special
holonomy metrics as extrema, can be regarded as the action of topological field theories. In
particular, there are functionals that realize A-models and B-models, and another functional
unifies them by defining a gravity theory on a 7-dimensional G5 manifold. Pestun and Witten
[67] examined this proposal in the case of B-model and found that at the one-loop level the
naive quantization of the Hitchin functional fails. However, they found that there is an
extension of the Hitchin functional that allows for a one-loop quantization.

Chern-Simons theory is also attracting new attention. Gukov, Schwarz, and Vafa in [58]
studied the relation of the homological knot invariant of Khovanov and Rozansky to the BPS
spectrum of states in topological open string theory. In [59], Beasley and Witten revisited
the observation by Lawrence and Rozansky that the partition function of the Chern-Simons
theory on a Seifert manifold localizes to the flat connections that are the critical points of the
action. They were able to provide an explanation for this observation by using the technique
of non-Abelian localization.

We saw that topological string theory is a rapidly developing field. The author believes
that the progress reported in this thesis leads to deeper understandings of topological strings,

superstrings, and the quantum physics of gravity and gauge theory.
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Appendix A

Basics of toric geometry

A fan A in N = Z" is a collection of strongly convex rational polyhedral cones in Ng =
N ®z R, such that (i) a face of any cone in A is also a cone in A and (ii) the intersection of
two cones in A is a face of each cone.

The procedure to construct the charts and transition functions is the following [29]:

1. Let M be the dual lattice of N. For each cone o; € A of maximal dimension, define

the dual cone as ; := {u € Mg|(u,v) > 0,Vv € 0;}.

2. For each dual cone &;, choose lattice points u;; (j = 1,2,--- ,;) such that 5, N M =

Ziuig+ -+ Zyuiy, (Zr =1{0,1,2,--}).

3. For each dual cone ¢;, find a set of fundamental relations of w;1,--- , u;,, in the form

,,,,
Zj;lps,jui,j =0,s=1,---,R;.

4. For each cone o;, define the patch as U,, = {(zi1, -, 2in) € (3”|sz1’1 cee b =

T

1,Vs}.

5. For each pair of cones o;,0;, find a set of fundamental relations of w;1, ..., uir,, uj1,
) h )



79
. T ’I‘j / _
ooy Ujy, in the form D77 g iui+Y L, G jujp = 0.

!

7 L.
qi,5,1 Qi,5,r; 94,1 qw,rj -

6. Glue the two patches via z; 1" - z; 7" 2,7 -+ 25
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