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Chapter 1

Expression of Ephrin-B2 Identifies a Stable Genetic Difference Between Arterial
and Venous Vascular Smooth Muscle as Well as Endothelial Cells, and Marks

Subsets of Microvessels at Sites of Adult Neovascularization
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The transmembrane ligand ephrinB2 and its receptor tyrosine kinase EphB4 are molecular markers of embryonic arterial
and venous endothelial cells, respectively, and are essential for angiogenesis. Here we show that expression of ephrinB2
persists in adult arteries where it extends into some of the smallest diameter microvessels, challenging the classical view
that capillaries have neither arterial nor venous identity. EphrinB2 also identifies arterial microvessels in several settings
of adult neovascularization, including tumor angiogenesis, contravening the dogma that tumor vessels arise exclusively
from postcapillary venules. Unexpectedly, expression of ephrinB2 also defines a stable genetic difference between arterial
and venous vascular smooth muscle cells. These observations argue for revisions of classical concepts of capillary identity
and the topography of neovascularization. They also imply that ephrinB2 may be functionally important in neovascular-
ization and in arterial smooth muscle, as well as in embryonic angiogenesis. © 2001 Academic Press

INTRODUCTION

The vertebrate circulatory system comprises arteries
and veins, defined by the direction of blood flow. Re
cently, we discovered serendipitously that arterial and
venous endothelial cells (ECs) are genetically distinet,
from the earliest stages of angiogenesis (Wang et al.,
1998). EphrinB2, a transmembrane ligand (Bennett et al.,
1995: Bergemann et al., 1995), is expressed by arteries but
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not veins, whereas one of its receptors, the tyrosine
kinase EphB4. is more abundantly expressed by veins
than by arteries (Wang et al., 1998).

The genes ephrinB2 and EphB4 are also essential for
proper development of the cardiovascular system. Tar-
geted null mutations in these genes cause embryonic
lethality by E10.0, accompanied by defects in angiogenic
remodeling of the peripheral vasculature and defective
myocardial trabeculation in the heart (Adams et al., 1999;
Gerety et al., 1999; Wang et al., 1998). As EphB4 is
known to interact only with ephrinB2 among all ephrinB-
class ligands (Bergemann et al., 1998; Brambilla et al.,
1996; Brambilla et al., 1995; Sakano et al., 1996), the
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FIG. 1. Specific expression of ephrinB2 in arteries but not veins of adult organs. The tissues illustrated are kidney (A), heart (B), liver (C,
E). spleen (D), intestinal fat (F), leg muscle (G), and brain (H). (A-D), X-Gal and hematoxylin staining; (E-G), X-Gal and PECAM-1 antibody
staining; (H) X-Gal staining alone. Arrowheads indicate ephrinB2" arteries; arrows indicate ephrinB2™ veins.

symmetrical mutant phenotypes of this ligand-receptor
pair suggest that their interaction is essential for cardio-
vascular development. Furthermore, since ephrinB-class
transmembrane ligands are capable of signal transduction
upon engagement of EphB-class receptors (Bruckner et
al., 1997; Holland et al., 1996), these genetic data are
consistent with the idea that ephrinB2 and EphB4 medi-
ate bidirectional signaling (Mellitzer et al.. 1999; Xu et
al., 1999).

One outstanding question raised by our previous studies
is whether the arterial specific expression of ephrinB2 per-
sists into adulthood, in either stable and/or newly forming
blood vessels. This question is important for two reasons.
First, it was not clear whether the identity distinctions
between arteries and veins required to assemble the circu-
latory system necessarily need to be maintained once
development is complete. Second, the essential require-
ment of ephrinB2 for embryonic angiogenesis raised the
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FIG. 2. Comparison of ephrinB2 and Eph-B4 expression between dorsal aorta and vena cava of adults, EphrinB2 expression in dorsal aorta
(A, C) and vena cava (B, D) was detected by X-Gal staining for 3 h {A, B), and by double-label immunofluorescence confocal microscopy (C,
) with antibodies to PECAM-1 (green) and §-galactosidase (red). Arrows in (B, D) indicate longitudinal stripes of ephrinB2 expression in
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possibility that it might be functionally important in set
tings of adult neovascularization, like other signaling mol
ecules involved in angiogenesis (Lin et al., 1998). The data
presented here indeed suggest a role for ephrinB2 in neovas
cularization of arteries and uncover an unexpected poten-
tial role for the ligand in arterial smooth muscle cells as
well.

MATERIALS AND METHODS

Corneal Micropocket Assay, Bromodeoxyuridine
(Brdu) Labeling, and Wound Healing Model

Corneal pockets were made as described (Kenyon et al., 1996)
and implanted with pellets containing 200 ng of VEGF at 1.0 mm
from the corneal limbus. BrdU was delivered at a rate ol 26 pg per
hour for 7 days, by a subcutaneous osmotic pump (Alzet) implanted
immediately after corneal micropocket surgery. Full-thickness
skin wounds were made using a sterile, disposable 4-mm punch
biopsy (Baker Cummins Dermatological) and were examined 7 days
afterward.

Tumor Models

Lewis lung carcinomas or BI6F10 melanomas were grown in the
dorsal subcutaneous space of adult female ephrinB2*“*“* mice as
previously described (O'Reilly et al., 1997). Mice bearing 200-mm”
tumors were anesthetized and sacrificed, and tumors were embed
ded in OCT, sectioned at 20 pm, and double-stained with X-Gal
and anti-PECAM immunoperoxidase histochemistry, Procedural
details are available on request.

Histochemical and Immunocytochemical Analysis

Animals were anesthetized and perfused with 0.1 M Pipes (pH
7.0) followed by 2% paraformaldehyde (PFA)/0.1 M Pipes. Vessel
segments were excised and placed in 0.29% PFA/Pipes overnight at
4°C, rinsed, and stained for 3.5 h in X-Gal buffer. LacZ stained
vessels were embedded in OCT, sectioned at 10 pwm, air-dried, and
postfixed in 2% PFA/PBS. Organs were excised, embedded in OCT,
and sectioned at 20 pm. Sections were stained in X-Gal buffer for
6 h to overnight at 30°C and postfixed in 29 PFA/PBS for 5 min.
Antibody staining of cutaneous wound and corneal tissues was
performed as described (Gerety et al., 199%; Wang et al.. 1998), on
unstained or X-Gal-stained cryostat sections, using the following
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primary antibodies: anti-mouse PECAM-1 (clone MEC 13.3,
Pharmingen), anti-g gal (5-prime, 3-prime), anti-Brdu (Accurate),

and Cy3-conjugated anti-SMA (Sigma).

RESULTS

ephrinB2 Is Expressed in Adult Arteries,
Microvessels, and Capillaries

We examined the expression of ephrinB2 using a raul-
acZ reporter (Lundgren et al., 1995; Mombaerts et al.,
1996) targeted to the ephrinB2 locus (Wang et al., 1998),
which provides a histochemical indicator of ephrinB2
transcription. A comparison of ephrinB2** expression
with that of authentic ephrinB2 mRNA previously indi-
cated that the raulacZ reporter faithfully reproduces the
expression pattern of the endogenous gene in embryos
(Bergemann et al., 1995; Sakano et al., 1996;: Wang and
Anderson, 1997: Wang et al., 1998). Similar ephrinB2
reporter mice have been independently generated by
others and show essentially the same expression pattern
(Adams et al., 1999; see Gale et al., 2001). The viability
and fertility of adult ephrinB2“"“*“** heterozygous “indi
cator” mice allowed us to examine the expression of the
taulac/Z marker gene in the vasculature of adult animals.

Sections  through  wvarious  adult  organs  of
ephrinB2“***"* mice revealed expression in arteries of
varied diameters (Fig. 1, arrowheads), but not veins (Fig.
1. arrows). These tissues included the kidney (Fig. 1A),
heart (Fig. 1B), liver (Fig. 1C, E), spleen (Fig. 1D}, fat (Fig.
1F), muscle (Fig. 1G), and brain (Fig. 1H). In some
sections, there appeared to be a patchy, low-level expres
sion of the reporter in veins. To examine this more
clearly, we stained the dorsal aorta and vena cava of
indicator mice in whole mount and opened the vessels to
visualize the luminal surface en face (Fig. 2). With X-Gal
reaction times (3 h) that completely saturated the stain-
ing in the dorsal aorta (Fig. 2A), patchy staining was
visible in the vena cava (Fig. 2B). This staining had two
characteristic morphologies: narrow longitudinal stripes
(Fig. 2B, arrow), and smaller patches (Fig. 2B, arrowhead).
Double-label confocal immunofluorescence microscopy
with antibodies to B-galactosidase (Fig. 21D, red) and the
pan-endothelial marker PECAM-1 (Fig. 2D. green) re-

the vein; arrowheads indicate individual ephrinB2 " endothelial cells. Eph-B4 expression in dorsal aorta (E, G, I) and vena cava (F, H, ]} was
detected by X-Gal staining (E, F) for 3 h, by Nickel-DAB-enhanced immunoperoxidase staining with anti-g-galactosidase antibody (G, H)
and by confocal microscopy (I, ]} with anti-PECAM-1 (green) and g-gal (red) antibodies. All pictures were taken with a 40X objective.
Individual I",p}lli-'i' cells can be detected in the artery by X-Gal histochemical staining (E, arrow and arrowhead), but the level of expression
appears much lower than that in veins when detected by anti-Bgal antibody staining (G vs H), which is more proportional to protein levels
than is the histochemical reaction. Note the characteristic wavy deformation of the intimal surface of the artery (C, I) compared to the vein
(2, ), which may reflect differences in blood flow rates and/or shear forces. Most of the EphB4™ cells in the artery appear associated with
the narrow peaks of the waves (E, I, arrows) although a few are seen in the broader “troughs” (E, arrowhead). The levels of -gal expression

in (C) vs I} or (D) vs () are not directly comparable.
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vealed that the patches of weak B-galactosidase expres
sion occurred in endothelial cells (Fig. 21, arrowheads),
while the longitudinal stripes did not (Fig. 2D, arrows). It
is possible that these longitudinal stripes represent
smooth muscle cells (see below) in the vaso vasorum, the
small vessels of arterial origin that supply blood to the
walls of large veins, or neural structures surrounding the
vessel wall. Interestingly, the en face visualization re
vealed a characteristic wavy pattern of endothelial cells
in the aorta (Figs. 2C, I) that was not seen in the vena cava
(Figs. 213, ]). This difference in the distortion of the
intimal surface may reflect differences in the ambient
conditions of the two vessel types at the time of fixation,

The recent availability of EphB4“***" indicator mice
(Gerety et al., 1999) permitted us to determine whether the
preferential expression of EphB4 in veins persists into
adulthood as well. Expression of EphB4 was clearly detected
in adult veins such as the vena cava (Fig. 2F and data not
shown). However EphB4 expression in the vena cava was
not uniform, but rather distributed in islands of contiguous
endothelial cells (Figs. 2F, H, ]). revealing an apparent
cellular heterogeneity in the composition of the venous
endothelial wall. Individual EphB4™ cells could also be
detected in the dorsal aorta (Fig. 2E. arrow), as well as in
other arteries (data not shown). The level of EphB4 expres-
sion in these scattered arterial endothelial cells was clearly
lower than that in veins, however, when detected by
anti-B-galactosidase antibody staining (Fig. 2G vs Figs. 2H,
21 vs Fig. 2]).

Expression of ephrinB2 in the adult vasculature was
evident not only in major vessels, but persisted into the
smallest diameter microvessels and capillaries. Double
labeling with antibody to PECAM-1 revealed that ephrinB2
was expressed in a subset of these microvessels (Fig. 3). This
was evident in multiple tissues, including pancreas (Fig.
3A), muscle (Figs. 3B, J-L). intestinal fat (Fig. 3C), kidney
glomeruli (Figs. 3D-F) and brain, liver, adrenal cortex, and
adrenal medulla (data not shown). Similarly, expression of
EphB4“"** extended from larger diameter veins into a
subset of microvessels and capillaries in the glomerulus of
the kidney (Figs. 3G-1) and muscle (Figs. 3M-0).

ephrinB2 Is Expressed in Vascular Smooth Muscle
of Arteries but Not Veins

In the course of examining the expression of the
ephrinB2““*“ indicator gene in arteries we noted that
expression of the marker appeared to extend from the
endothelial into the smooth muscle layer (Figs. 4A-D).
Such smooth muscle expression of ephrinB2 was not de
tected in the veins examined in this study (Fig. 4D, VC).
Double-labeling with antibodies to p-galactosidase (Fig. 4F,
red) and alpha smooth muscle actin (SMA) (Fig. 4F, green)
confirmed that ephrinB2 is expressed in smooth muscle
cells in the arterial walls (Fig. 4F, yellow patches), although
not all of the smooth muscle cells were ephrinB2". Because
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of the close apposition of endothelial and smooth muscle
cells in these adult vessels and diffusion of the X-Gal
reaction product, it was difficult to determine whether
ephrinB2 expression was in fact maintained in arterial
endothelial cells (Figs. 4A-D, arrows). This was confirmed,
however, by double-label immunofluorescence with anti
bodies to B-galactosidase and PECAM-1 (Fig. 4E, yellow
staining).

The observation of ephrinB2 expression in adult arterial
smooth muscle cells was surprising, as initial studies of its
expression in embryonic arteries had failed to detect it in
the smooth muscle layer (Adams et al., 1999; Wang et al.,
1998). However, these studies were performed in very early
embryos (E9.5-E10.5), raising the possibility that ephrinB2
became expressed in arterial smooth muscle cells at later
stages of development not previously examined. In confir-
mation of this idea, double-label immunofluorescence
staining with antibodies to §-galactosidase and alpha SMA
revealed that ephrinB2 was not expressed in the smooth
muscle layer of the dorsal aorta even at E11.5 (Figs. 5A-C),
but first became detectable in this region at E12.5 (Figs.
513-F). 4 to 5 days after its expression in arterial endothelial
cells can first be detected (Wang et al., 1998; . Shin and
1. ]. Anderson, unpublished observations). Strikingly, the
initial expression of ephrinB2 in arterial smooth muscle
cells occurred in those alpha SMA" cells closest to the
endothelial layer (Fig. 5F, yellow staining). By E13.5, expres-
sion of ephrinB2 had extended more deeply into the smooth
muscle layer (Fig. 5G). At these embryonic stages, expres
sion of ephrinB2 in the endothelial layer was stronger than
in the smooth muscle layer. However in adults, the levels of
expression in the two layers were comparable (Fig. 5] and
Fig. 4E).

ephrinB2 Is Expressed in Subsets of Microvessels at
Sites of Adult Neovascularization

We next used ephrinB2™**“*" indicator mice to deter-
mine whether ephrinB2 is expressed in different settings
of adult neovascularization. One model system is the
corneal micropocket assay (Kenyon et al., 1996). Implan-
tation of a pellet of VEGF into a corneal micropocket
caused new ephrinB2" vessels to sprout from the limbus
artery towards the pellet (Figs. 6A-6C). Double-labeling
using X-Gal and anti-PECAM immunoperoxidase histo-
chemistry indicated that ephrinB2 expression was de
tected in a subset of the ingrowing vessels and extended
into the smallest diameter capillaries of the microvascu-
lature. (Figs. 6D, E). This was confirmed by double-label
immunofluorescence staining with antibodies to
B-galactosidase and PECAM-1 (Fig. 6H. arrowheads). To
verify that expression of ephrinB2 occurred in newly
formed rather than preexisting vessels, dividing endothe-
lial cells were labeled in vivo by an injection of BrdU and
the tissue was processed for double-label immunofluores-

cence staining  with  antibodies to BrdU and
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FIG. 5. Induction of ephrinB2 expression in the smooth muscle layer of embryonic trunk dorsal aorta follows that in the endothelial layer.
s were taken from embryos at E11.5 (A-C), E12.5 (D-F), E13.5 (G-}, and Adult {J-1). In all case, the sections are double-labeled with
1A to visualize smooth muscle cells (green), and anti-g-galactosidase (red) to visualize ephrinB2 expression. Note that ephrinB2 is
expressed only in endothelial cells and not in the smooth muscle layer at E11.5 (A-C), and is first detected in the smooth muscle layer at
E12.5 (F), in the layer immediately adjacent to the endothelial layer. Note also the heterogeneity of ephrinB2 expression in the smooth
muscle layer of the adult aorta (J-L). All confocal images were captured using 40X objective.

FIG, 3. EphrinB2 expression is detected in subsets of microvessels of adult tissues. (A C) Sections double-labeled by X-Gal histochemistry for
Bgalactosidase and anti-PECAM-1 immunoperoxidase histochemistry. (D-0) double-labeled confi microscopic images with anti-g-gal (red)
and PECAM-1 {green) antibodies, (D-F, J-1} From ephrinB2***#* mice, {G-1, M-O) are from EphB4““*“* mice. The tissues shown are pancreas
(A, leg muscle (B, ]-0), intestinal fat (C), and kidney glomeruli (D-1. All confocal images were captured using a 40X objective.

FIG. 4. EphrinB2 is expressed in smooth muscle cells as well as in endothelial cells of adult arteries. (A-D) X-Gal staining of abdominal
aorta (A), thoracic aorta (B), iliac aorta (C), dorsal aorta and vena cava (D). Arrows indicate endothelial cells in the aorta and arrowheads in
(D) indicate those in the vena cava. (E, F) Double-label immunohistochemistry of an artery in the kidney. (E) Anti-PECAM-1 (green) vs
anti-g-galact lase (red) demonstrates ephrinB2 expression in the endothelial layer [\-‘t‘l]nw). (F) Anti-SMA (green) and anti-g-galactosidase
{red) demonstrate ephrinB2 expression in the smooth muscle layer (yellow).
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pB-galactosidase. This experiment confirmed that eph
rinB2" vessels growing into the cornea indeed contained
BrdU" cells (Fig. 6K. arrowheads) and therefore repre-
sented neovascularization.

We also examined ephrinB2 expression in a more physi-
ological setting of neovascularization, wound healing.
Strong staining in what appeared to be blood vessels was
apparent in wounded tissue undergoing healing (Figs. TA,
B). This was confirmed by double-labeling with X-Gal
histochemistry and anti-PECAM-1 antibody staining (Figs.
7C. D). which also indicated that ephrinB2 was expressed
by a subset of the small vessels in the wounded region (Fig.
7C, 1D, arrowheads). Staining was also detected in a subset
of vessels in normal skin, albeit at apparently lower levels
(not shown).

Finally, we addressed the question of whether ephrinB2
is expressed during tumor angiogenesis by implanting
either Lewis Lung carcinoma or B16 Melanoma cells subcu-
taneously into ephrinB2*“" indicator mice. After several
weeks, the tumors were sectioned and double-labeled by
X-Gal immunohistochemistry and anti-PECAM  antibody
staining. In both cases, extensive expression of ephrinB2 was
observed within the tumor vasculature (Figs. 8A, B). Double
labeling confirmed that the ephrinB2” elements were indeed
PECAM-1" blood vessels (Figs. 8C, D, arrows), and indicated
that a subset of the PECAM-1" vessels were ephrinB2 - in both
tumor models (Figs. 8B-1, arrowheads).

DISCUSSION

EphrinB2 and its receptor EphB4 are expressed by devel
oping arteries and veins, respectively, and are essential for
embryonic heart development and angiogenesis (Adams et
al., 1999; Gerety et al., 1999; Wang et al., 1998). Here we
show that the specific expression of this ligand receptor
pair in arterial and venous endothelial cells, respectively.
persists into adulthood in most tissues we examined. Sur-
prisingly. ephrinB2 is also expressed in arterial smooth
muscle cells, but this expression is delayed by several days
relative to its onset in the endothelium. In addition to its
steady-state expression in mature vessels, ephrinB2 expres-
sion is also observed in newly forming blood vessels in
several settings of adult angiogenesis.

These findings are significant for several reasons. First,
they indicate that molecular distinctions between arteries
and veins are not simply a transient feature of the develop
ing circulatory system, but persist into adulthood as well.
Second, they identify a stable genetic difference between
the smooth muscle cells of arteries and veins. Third, they
challenge several traditional concepts about the identity of
vessels in capillary beds and the topography of neovascular-
ization. Finally, given the essential role of ephrinB2 and
EphB4 in embryonic angiogenesis, the data suggest that
these genes may play an important role in neovasculariza-
tion as well.
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Molecular Distinctions between Arteries and Veins
Persist into Adulthood

ephrinB2is the first gene to be described that is expressed
in an arterial-specific manner from early in embryogenesis
into adulthood. and which is functionally essential for
angiogenesis as well. Recently, the transmembrane receptor
protein tyrosine phosphatase (RPTP) p has been shown to
be expressed in adult arteries but not veins in a variety of
tissues (Bianchi et al., 1999). However in contrast to eph-
rinB2, RPTPu is expressed in an apparently pan-endothelial
manner in the embryo (Fuchs et al., 1998; Sommer et al.,
1996). Furthermore, no functional role for RPTPu in angio
genesis has yet been demonstrated. Recently, a novel Notch
ligand, DI14, was shown to be artery-specific in both
embryos and adults (Shutter et al., 2000). A functional
requirement for this gene in angiogenesis has not yet been
directly demonstrated (Krebs et al., 2000).

In addition to the aforementioned cell surface mol-
ecules, several transcription factors have been reported to
be specifically expressed in arterial endothelial cells.
Sox-13, an HMG box factor, is expressed in embryonic
arteries but not veins of midgestational embryos (Roose
et al., 1998). However, unlike ephrinB2 which is ex
pressed in developing blood vessels as early as E&-E8.5,
expression of Sox-13 is not detected until E13.5. It is not
vet clear whether the artery-specific expression of Sox-13
is maintained into adulthood. Arterial-specific expres
sion of EPAS-1. a close relative of the hypoxia-inducible
factor la transcription factor (Ema et al., 1997; Flamme
et al., 1997; Tian et al., 1997), has been detected as early
as E11.5 (Tian et al., 1998). Other studies, however, have
reported low-level expression of this gene in the cardinal
veins (Flamme et al., 1997). Whether vessel-specific ex-
pression of EPAS-1 persists into adulthood is not yet
known. Members of a novel family of Hairy-related
bHLH transcription factors, HRT1-3, have also been
shown recently to be expressed specifically in arterial
cells during embryonic development, but whether this
arterial specificity persists into adulthood is not yet clear
(Nakagawa et al., 1999). Interestingly. these genes appear
closely related to the zebrafish gene gridlock, which is
expressed early in arterial development and is required
for proper aorta assembly (Zhong et al., 2000).

It is particularly striking that expression of ephrinB2 and
EphB4 in the adult vasculature extends into the smallest
diameter microvessels and capillaries in a variety of tissues.
This observation suggests that capillaries, as well as larger
diameter vessels, can have arterial and venous identity.
Previous support for this idea derived from enzymatic
histochemical staining of the capillary beds: the arterial
side of the capillary bed expresses alkaline phosphatase,
while the venous side expresses dipeptidylpeptidase IV
(DPPIV) (Koyama er al., 1998; Lojda, 1979; Mrazkova et al.,
1986). Whether these enzymatic differences reflect differ-
ences in gene expression, or differences in activity due to
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posttranscriptional or posttranslational mechanisms, is not
clear. The nature of the transition between the arterial and
venous domains of the capillary bed also remains uncertain,
The above-mentioned histochemical staining technique
demonstrated a “transitional zone” in which both the
arterial and the venous activities overlap (Mrédzkova et al.,
1986), but whether this reflects coexpression of both activi-
ties in individual endothelial cells or a zone of intermixing
between cells expressing one or the other marker remains
to be determined. Double labeling for ephrinB2 and EphB4
may help toresolve this issue, once the appropriate reagents
are available.

ephrinB2 Is Expressed Preferentially in Arterial
Vascular Smooth Muscle

An unexpected finding was that ephrinB2 is expressed in
an artery-specific manner in smooth muscle as well as
endothelial cells. The only other documented examples of
such arterial-specific smooth muscle gene expression are
EVEC/DANCE, an EGF-like repeat-containing secreted
protein (Kowal et al., 1999; Nakamura et al., 1999), and the
“latent TGES-binding protein-2” (LTBP-2} (Fang er al.,
1997). Unlike ephrinB2, however, expression of EVEC/
DANCE is down-regulated after development and is virtu
ally undetectable in adult arterial smooth muscle, although
it can be reinduced upon injury (Kowal et al., 1999; Naka
mura et al., 1999). LTBP-2 expression has only been exam-
ined in mid- to late-gestational embryos (Fang et al., 1997),
so it is not clear whether its expression persists into
adulthood, and if so whether its artery specificity is main
tained. To our knowledge, therefore, ephrinB2 constitutes
the first example of a stable genetic difference between
arterial and venous smooth muscle cells. The existence of
persistent differences in gene expression between arterial
and venous smooth muscle cells may underlie the funda-
mental differences observed in the organizational architec-
ture of arteries and veins of comparable internal diameters.
Interestingly, the observation that promoter elements of
the smooth muscle-specific SM22 gene direct expression in
arterial but not venous smooth muscle cells in transgenic
mice (Li et al, 1996) suggests that even genes which are
expressed in all vascular smooth muscle cells may be
controlled by distinct transcriptional regulatory programs
in arteries and veins.

The expression of ephrinB2 in arterial vascular smooth
muscle was missed in initial studies of ephrinB2 expres-
sion in the cardiovascular system (Adams et al., 1999;
Wang et al., 1998), because the analysis was restricted to
embryonic stages before E10.5, and the gene is not
activated in smooth muscle until E12.5. This observation
suggests that distinct mechanisms may control the tim-
ing of onset of ephrinB2 expression in endothelial cells
and vascular smooth muscle cells. Interestingly, the first
detectable expression of ephrinB2 in VSMCs was in the
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layer immediately adjacent to the endothelium. This
suggests that an inductive signal from arterial ECs to
VSMCs may induce expression of ephrinB2 in the latter
cells. The confirmation of such an inductive process and
the identification of the relevant signal(s) will be inter-
esting topics for future study.

The fact that the onset of ephrinBZ expression in
vascular smooth muscle occurs at E12.5 precludes an
analysis of its functional requirement in this tissue in
ephrinB2~"~ embryos, which die by E10.5. The availabil-
ity of conditional knockouts in the ephrinB2 gene should,
in principle, permit a determination of whether its ex-
pression in arterial smooth muscle reflects an essential
function in these support cells as well as in endothelial
cells.

Expression of ephrinB2 in Adult
Neovascularization

ephrinB2 is expressed at sites of adult neovascularization
in at least three different settings: VEGF-induced angiogen
esis in the cornea, cutaneous wound healing, and tumor
angiogenesis. In each case, the marker is expressed in a
subset of newly forming vessels. This strongly suggests that
such vessels have arterial or venous identity, and that such
identity differences may therefore be important for the
formation of new vascular circuitry. These observations
also challenge prevailing concepts about the topology of
neovascularization. For example, in both corneal neovascu
larization and tumor angiogenesis, it had been thought that
pairs of new vessels sprout from the postcapillary venule to
form a “bucket-handle”-like structure that shunts blood
out of the venule into the adjacent tissue (Gimbrone et al.,
1974; Grunt et al, 1986). How such loops acquire an
afferent and efferent sidedness was not clear, however. Our
data in the cornea clearly reveal ephrinB2” vessels sprout-
ing toward the VEGF pellet implant (Fig. 6). The presence of
this arterial marker suggests that the traditional classifica
tion of all new vessel sprouts as being of venous origin,
based purely on morphological criteria, may have been
incorrect. Il a subset of neovessels sprouts from arteries and
connect with corresponding sprouts deriving from veins, it
could explain how the “bucket-handle” structure develops
with an intrinsic afferent-efferent polarity. A similar sce-
nario could occur during tumor angiogenesis. More detailed
studies of the topological origin of ephrinB2" vessels in
tumor angiogenesis and their relationship to neovessels
derived from the postcapillary venules should shed further
light on this issue.

The fact that ephrinB2 is expressed at sites of neovas-
cularization, taken together with its essential require
ment for angiogenesis in the embryo, suggests that this
ligand (and by extension, its receptor(s) (Gerety et al.,
1999)) may be functionally important for adult blood
vessel remodeling as well. In support of this idea, other
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FIG. 6. EphrinB2 is expressed during adult neovascularization in
the corneal micropocket assay. (A) Image of live cornea containing
implanted VEGF pellet, showing blood-filled vessels growing to-
ward the implant. (B, C) X-Gal staining of whole mounted cornea
demonstrates that newly established arterial blood vessels express
ephrinB2. (D, F} Double staining for X-Gal and anti-PECAM-1
demonstrates ephrinB2 expression in the region containing newly
formed blood vessels. (F-H) Double-label confocal immunofluores-
cence microscopy with antibodies to PECAM-1 (F, red) and
B-galactosidase (G, green) directly demonstrates that ephrinB2 is
expressed in a subset of blood vessels (H, arrowheads). (I-K)
Double-labeling with antibodies to BrdU (I, red) and g-galactosidase
{, green) demonstrates that the ephrinB2” blood vessels are newly
formed (K, arrowheads). The strong band of B-gal expression (E, H,
arrows) represents ephrinB2 expression in epithelial cells and was
not detected in wild-type animals (not shown).

ligand-receptor systems initially shown to be important
in embryonic angiogenesis have also proven essential for
adult neovascularization (reviewed in Yancopoulos et al.,
1998). It is currently not yet possible to examine this in
ephrinB2 knockout mice because of the embryonic le-
thality of the homozygous mutation. However, condi
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FIG. 7. Expression of ephrinB2 in a subset of vessels during

cutaneous wound healing. (A, B) X-Gal histochemistry and
hematoxylin staining of wounded cutaneous tissue at low
(A} and high (B) magnification shows ephrinB2* blood vessels in
healing tissue. Arrow in (A) indicates the wound canal.
(C, D} Double labeling with X-Gal histochemistry and anti-
PECAM antibody staining (brown) reveals apparent communi
cation between ephrinB2” (arrowheads) and ephrinB2™ (arrows)
vessels. (D) A higher magnification view of the field shown
in (C).

FIG. 8. Expression of ephrinB2 in a subset of tumor vessels.
Sections through tumors in ephrinB2°“**" mice implanted with
Lewis Lur oma (A, C) or B16 melanoma (B, D) cells were
double-labeled with X-Gal (blue) and anti-PECAM immunohis
tochemistry (brown). (C, D} Higher magnific s of the
fields shown in (A} and (B), respectively. Arrowheads indicate
PECAM®, an ephrinB2  wvessels and arrows indicate double
positive vessels.
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tional knockouts of the gene in the adult vasculature
should provide one approach to addressing this question.
If ephrinB2 and its receptor(s) prove to be important in
adult neovascularization, it would suggest that pharma
cologic manipulation of this ligand-receptor interaction
may provide an alternative route to pro- and anti
angiogenic therapies for heart disease and cancer, respec-
tively (Folkman, 1998a,b}, as has been demonstrated for
other signaling systems important in angiogenesis (Lin et
al., 1998).
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