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Abstract

This thesis examines two predictions of general relativity: weak lensing and gravita-

tional waves. The cosmic microwave background (CMB) is gravitationally lensed by

the large-scale structure between the observer and the last-scattering surface. This

weak lensing induces non-Gaussian correlations that can be used to construct estima-

tors for the deflection field. The error and bias of these estimators are derived and

used to analyze the viability of lensing reconstruction for future CMB experiments.

Weak lensing also affects the one-point probability distribution function of the

CMB. The skewness and kurtosis induced by lensing and the Sunayev-Zel’dovich (SZ)

effect are calculated as functions of the angular smoothing scale of the map. While

these functions offer the advantage of easy computability, only the skewness from

lensing-SZ correlations can potentially be detected, even in the limit of the largest

amplitude fluctuations allowed by observation.

Lensing estimators are also essential to constrain inflation, the favored explana-

tion for large-scale isotropy and the origin of primordial perturbations. B−mode

polarization is considered to be a “smoking-gun” signature of inflation, and lensing

estimators can be used to recover primordial B−modes from lensing-induced contam-

ination. The ability of future CMB experiments to constrain inflation is assessed as

functions of survey size and instrumental sensitivity.

A final application of lensing estimators is to constrain a possible cutoff in primor-

dial density perturbations on near-horizon scales. The paucity of independent modes

on such scales limits the statistical certainty of such a constraint. Measurements of

the deflection field can be used to constrain at the 3σ level the existence of a cutoff

large enough to account for current CMB observations.
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A final chapter of this thesis considers an independent topic: the gravitational-

wave (GW) signature of a binary inspiral into a horizonless object. If the supermassive

objects at galactic centers lack the horizons of traditional black holes, inspiraling

objects could emit GWs after passing within their surfaces. The GWs produced by

such an inspiral are calculated, revealing distinctive features potentially observable

by future GW observatories.
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Chapter 1

Introduction

Those who have taken upon them to lay down the law of nature as a thing already

searched out and understood ... have therein done philosophy and the sciences great

injury.

-Francis Bacon, Novum Organum (1620)

Science is a celebration of the unknown. As long as curiosity endures and the law

of nature remains even partially hidden, scientists will seek to advance the boundary

between what is known and what is unknown. Research takes place on this horizon,

but rarely are the horizons more explicit than in the research that comprises this

thesis. As indicated by the title, this thesis consists of research in two almost entirely

distinct areas: the weak lensing of the cosmic microwave background (CMB) and

the gravitational waves (GWs) produced during a binary inspiral into a horizonless

object. The first topic involves one of the few avenues we have to explore scales

at and beyond the particle horizon, the boundary separating us from portions of

the Universe from which we have been causally disconnected since the end of the

inflationary epoch (Liddle & Lyth, 2000). The primordial CMB consists of photons

that last scattered during recombination when protons and electrons first combined

to form neutral hydrogen. At a mean redshift of z ' 1, 100, the last-scattering surface

reaches 97% of the way to the particle horizon and the lowest multipole moments of
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the CMB are sensitive to fluctuautions on even larger scales. In fact, if inflation lasts

only several e-foldings longer than strictly necessary to solve the flatness and horizon

problems, the CMB dipole and quadrupole may offer clues to the preinflationary era

itself (Turner, 1991). This primordial CMB is gravitationally lensed by large-scale

structure (LSS) extending all the way back to the last-scattering surface, and thus,

the lowest multipole moments of the weak-lensing deflection field probe scales the size

of the particle horizon and larger, just like the primordial CMB. We thus see that

attempts to reconstruct the weak-lensing deflection field offer us the opportunity to

explore beyond a horizon in a way few other observables do.

The second area considered in this thesis – the GWs produced during a binary

inspiral into a horizonless object – provides us a chance to probe another horizon pre-

dicted by general relativity. The surfaces of black holes are event horizons, boundaries

of the causal past of future null infinity (Misner et al., 1973). No null geodesics exist

which cross this boundary, implying that not even photons can escape from the black

hole’s interior into the exterior, asymptotically flat spacetime. Substantial obser-

vational evidence suggests that supermassive compact objects exist at the centers of

most galaxies. These objects should accrete stars from the surrounding galactic cusps

that will spiral inwards as energy and angular momentum are lost to gravitational

radiation. If the objects truly are supermassive black holes (SMBHs), they should

possess event horizons as predicted by general relativity. No further gravitational ra-

diation should reach the outside world once the accreted star passes within the event

horizon and the black-hole perturbations are damped away. However, observation

certainly allows room for the object to be something significantly less compact than

a black hole, such as a supermassive boson star (SMBS). In this case, no horizon will

exist and one would generically expect to receive GWs long after the horizon would

have curtailed emission from a comparably massive black hole. By calculating the

GW signal as the inspiraling star plunges beyond the radius at which one would ex-

pect to encounter the event horizon, we hope to develop an important observational

test of the existence and nature of the boundary of this previously unexplored region.

Each of the following chapters of this thesis consists of a previously published
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paper in a peer-reviewed research journal, either Physical Review Letters or Physical

Review D. The texts of these articles have not been changed; only the typesetting and

bibliographies have been altered to conform with Caltech Ph.D. thesis regulations.

Each of the chapters has its own brief introduction motivating the problem at hand,

but I would like to take the remainder of this chapter to place the research in the

context of other recent research in the field. Although a comprehensive review of

all of the theoretical and experimental research on the CMB and GW-driven binary

inspirals is well beyond the scope of this thesis, I hope that a summary of the most

relevant research in each field will help to provide an appreciation for the significance

of my research and help to elucidate future avenues of investigation.

1.1 Weak Lensing of the CMB

1.1.1 Origins of the CMB

CMB physics became an experimental science in 1965, when Penzias & Wilson (1965)

concluded that the isotropic, unpolarized 3.5 K excess antenna temperature they

had observed was cosmological in origin. In a companion paper, Dicke et al. (1965)

analyzed the profound implications of this revolutionary discovery. The previously

observed Hubble expansion combined with the Friedmann equations of general rel-

ativity had already suggested that the Universe had been hotter and denser in the

past. The existence of a microwave background, however, would imply that this ex-

pansion could be traced all the way back to a time when pair creation and Thomson

scattering kept the photons and electrons in thermal equilibrium. If the observed 25%

relic abundance of helium had indeed been produced through big-bang nucleosynthe-

sis (BBN) as suggested by others (Alpher et al., 1948), then the baryon density at

the well-defined temperature where BBN occurs could be approximately calculated.

When combined with a measurement of the baryon density today and the well known

scaling of this density with the scale factor, ρ(t) ∝ a−3(t), an estimate for the tem-

perature of the CMB could be obtained. The actual measurement of the 3.5 ± 1 K
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microwave background by Penzias and Wilson provided cosmologists with a crucial

constraint on the expansion history of the universe, and even allowed them to con-

sider the possibility of a massless scalar field or other exotic dark component (Dicke

et al., 1965).

The detection of the isotropic CMB motivated a great deal of theoretical work

into the nature of possible CMB anisotropies. On the largest scales, Sachs & Wolfe

(1967) explored how linear perturbations in the gravitational potential might lead to

anisotropies in the CMB as photons propagated from the last-scattering surface to

the observer. Though their ignorance of cosmological parameters and the spectrum

of primordial perturbations caused them to set an erroneous lower bound of 1%

on the amplitude of CMB temperature fluctuations, the physics of their analysis

was sound and the integrated Sachs-Wolfe (ISW) effect is recognized today as the

dominant contribution to the CMB power spectrum on large scales. In Kesden et al.

(2003) – Chapter 4 of this thesis – I explore the ISW effect and its correlation with

weak lensing in the presence of a large-scale cutoff. On smaller scales, Silk (1968)

recognized that perturbations in the CMB below a certain critical size would be

damped by radiative diffusion before the epoch of galaxy formation. The existence

of galaxy clusters and structure on Mpc scales today thus implies fluctuations in the

CMB on scales of 10′′ and greater. Sunyaev & Zel’dovich (1970) recognized that

the connection between CMB fluctuations and adiabatic density perturbations after

recombination was not as simple as proposed by Silk. Silk assumed that if the density

fluctuations δρ/ρ ' 1 observed today grew linearly with the scale factor a = 1/(1+z)

as in an Einstein-de Sitter universe, then recombination at redshift z ' 1000 would

imply CMB temperature fluctuations of order δT/T ' 10−3. Sunyaev and Zel’dovich

showed that continuity in the velocity perturbations of the photon-baryon fluid during

recombination implied an amplitude jump of the adiabatic perturbations by a factor of

order 102. The observed CMB temperature fluctuations would be further suppressed

by this factor, leading to δT/T ' 10−5 in agreement with present-day observations.

Sunyaev & Zel’dovich (1970) also noted that the Jeans length was growing prior to

recombination, implying that perturbations on a given scale would transition from
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growing modes to standing waves as they slipped below the Jeans length. Conditions

for joining these solutions through the transition required that sound waves on all

scales began to oscillate with the same initial phase. However, the smaller-scale

perturbations would become standing waves sooner and thus, would have more time

to oscillate prior to recombination. This led to distinct peaks in the CMB power

spectrum for those scales on which perturbations underwent an integral number of

oscillations. This argument led Sunyaev and Zel’dovich to predict the acoustic-peak

structure of the CMB, decades before it was spectacularly confirmed by Boomerang,

Maxima, DASI, and other experiments (de Bernardis et al., 2000; Hanany et al., 2000;

Halverson et al., 2002). The prediction of acoustic peaks was further supported by

Peebles & Yu (1970), who conducted a direct numerical integration of the collision

equation for the photon distribution function through the era of recombination. This

analysis went beyond the treatment of photons and baryons as a viscous fluid, which

was strictly valid only at early times when the photon mean free path was much

shorter than the wavelength of the perturbations. Peebles & Yu (1970) again found

that the physics of recombination imposed two length scales into the CMB: the sound

horizon at recombination and the scale below which dissipation of the perturbations

through radiative diffusion became appreciable. Although the scales and amplitudes

of the CMB peaks would remain model-dependent quantities until their detection, the

physics behind their existence was firmly established by the research of this period.

Peebles & Yu (1970) remarked that while they had analyzed the evolution of

density perturbations through recombination, “It is well to bear in mind that in

this calculation the initial density fluctuations are invoked in an ad hoc manner

because we do not have a believable theory of how they may have originated.” Such

a theory would not be developed until 1981, when Guth (1981) proposed a period

of exponential inflation in the early Universe to solve two long-standing problems

of the standard hot big-bang cosmology. The horizon problem related to the lack

of a causal mechanism to account for the observed isotropy of the CMB on scales

larger than the particle horizon at recombination. Assuming that the dynamics of

the expanding Universe was dominated purely by its observed radiation and matter
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content, the present-day Universe consisted of 1083 causally disconnected regions,

back when the mean temperature was T0 = 1017 GeV. Immense fine-tuning would

be required to explain the homogeneity of these regions in the absence of a causal

process. The second problem is known as the flatness problem and arises from the

instability of the flat Ω = 1 cosmological solution. In order for the present-day density

to be in the range 0.01 < Ω < 10 – conservative even in 1981 – the mean density

must have differed from the critical density by less than a part in 1055 back when

T0 = 1017 GeV. Guth proposed to solve both of these problems by positing a period

of inflation during which the Universe was vacuum-energy dominated and the Hubble

constant did not vary with scale factor. During this time, the physical size of causally

connected regions, along with the radius of curvature, would increase by over 65 e-

foldings so that even today, such scales would be well beyond the Hubble radius. A

flat, homogenous Universe is thus seen to be an unavoidable consequence of inflation.

While the importance of resolving the flatness and horizon problems cannot be

overstated, inflation’s true predictive power came from its ability to generically pro-

duce the scale-invariant spectrum of initial density perturbations long sought by Pee-

bles and others. These perturbations arose from quantum fluctuations in the scalar

field driving inflation. Albrecht & Steinhardt (1982) and Linde (1982a) initially in-

troduced the scalar field as a modification to Guth’s inflationary scenario that could

provide a “graceful exit” from the inflationary phase to the usual radiation-dominated

Friedmann-Robertson-Walker Universe. Guth presumed that inflation occurred as

the Universe cooled in a metastable state below the temperature of a first-order

phase transition. Albecht, Steinhardt, and Linde proposed “new inflation”, in which

spontaneous symmetry breaking (SSB) introduces a nonzero global minimum in the

scalar-field potential below a given temperature. Inflation occurs as the scalar field

slowly rolls towards this new minimum, and naturally ends once the minimum is

reached. Rapid fluctuation of the scalar field near the minimum transfers the vacuum

energy to a thermal distribution of particles and radiation, allowing the hot big bang

to proceed as previously considered. A group of authors (Guth & Pi, 1982; Hawk-

ing, 1982; Linde, 1982b; Starobinsky, 1982; Bardeen et al., 1983) recognized that the
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existence of an event horizon during inflation naturally implied spatially varying zero-

point fluctuations in the scalar field. Fluctuations with a given comving wavenumber

k are produced when that scale exits the horizon during inflation, and only reenter

the observable Universe long after inflation has ceased. The near scale-invariance of

these perturbations follows from the approximate time-translation symmetry of the

Universe during inflation, and the inability of causal processes to operate once the

modes have left the horizon. The incorporation of inflation into the hot big-bang

scenario finally led to a “standard model” of cosmology with definite predictions ripe

for testing in the crucible of experiment.

The first positive detection of the CMB anisotropies occurred in 1991, when the

Cosmic Background Explorer (COBE) observed a 30± 5 µK rms sky variation when

smoothed with a 10◦ Gaussian beam (Smoot et al., 1992). This discovery led to a

flurry of observational effort to characterize the CMB anisotropies on all scales, cul-

minating with the all-sky temperature map currently being produced by the WMAP

collaboration (Bennett et al., 2003). These maps have been combined with other

observations of large-scale structure to estimate the cosmological parameters with

unprecedented precision (Balbi et al., 2000; Lange et al., 2001; Spergel et al., 2003).

Measurement of the CMB temperature and polarization fields with ever increasing

resolution has become a thriving industry, with a bevy of ground-based, balloon, and

satellite experiments in all stages of development. On the theoretical front, charac-

terizing the subtly different implications of various flavors of inflation has become a

cottage industry in some quarters. Kamionkowski & Kosowsky (1999) is an excel-

lent review of the implications of inflation and other recent developments in particle

physics for CMB observables. Other efforts have focused on accurately predicting the

secondary anisotropies imposed on the CMB since recombination, and developing new

data analysis techniques for handling the extremely large data sets being produced by

current and future CMB experiments. Hu & Dodelson (2002) provided an excellent

recent review of progress in these areas. The next subsection will consider the weak

gravitational lensing of the CMB by large-scale structure, the secondary anisotropy

most relevant to the research presented in this thesis.
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1.1.2 Lensing by Large-Scale Structure

Gravitational lensing – the deflection of photon trajectories by density perturbations

– has been a fundamental prediction of general relativity since it was first developed

by Einstein in 1915. The measurement of the weak-lensing deflection of starlight by

A. S. Eddington during his famous 1919 expedition to observe a solar eclipse in West

Africa was instrumental in convincing the scientific community of the validity of rela-

tivity theory. Weak lensing of background galaxies by foreground large-scale structure

(LSS) has been considered theoretically since the 1960’s. Sachs (1961) proved several

important theorems concerning the propagation of photons along the null geodesics

of a vacuum spacetime. Kristian & Sachs (1966) recognized that these theorems im-

plied a new “distortion effect”, namely that “in any anisotropic model, all distant

objects in a particular direction on the celestial sphere may appear distorted, with a

definite preferential direction for their longest dimension.” Gunn (1967) studied this

distortion effect – now called weak lensing – in a variety of inhomogenous cosmologies

and calculated the correlation function for the shear field responsible for the lensing.

Weak lensing by LSS remained theoretical until Lynds & Petrosian (1989) con-

vincingly showed that the luminous arcs they had observed behind a foreground

cluster were in fact, lensed galaxies. This initiated an outpouring of further observa-

tional and theoretical work. Using the net tangential alignment of 22-26 B mag blue

galaxies, Tyson et al. (1990) actually reconstructed the lens structure of the cluster

A1689. Miralda-Escudé (1991) constructed a formalism for calculating the observ-

able galaxy ellipticity correlation functions for arbitrary distortion correlations and

intrinsic ellipticities. He then applied this formalism to calculate these correlations for

Poisson-distributed lenses and distributions given by an Einstein-de Sitter cold dark

matter model. Kaiser (1992) conducted a similar analysis of the relation between

correlations of the lensing shear field and observed ellipticities, but he emphasized

the advantages of performing this analysis in Fourier space. The deflection field δθi

of a source at comving distance w is a weighted integral along the line-of-sight of the
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tangential gradient of the Newtonian potential φ(w, η),

δθi =
−2

w

∫ w

0

dw′(w − w′)φ,i(w
′, 1 − w′) . (1.1)

This implies that Fourier modes of the projected density field will induce deflections

parallel to their wave number. Kaiser recognized that appropriately weighted Fourier

modes of the observed galaxy ellipticities could serve as estimators for the same

Fourier modes of the projected density field. This is very similar to the argument

used in Kesden et al. (2003), Chaper 2 of this thesis, to conclude that appropriately

weighted Fourier modes of quadratic combinations of CMB observables could serve

as estimators for Fourier modes of the deflection field. Kaiser then combined estima-

tors for individual Fourier modes to produce estimators for the dark matter power

spectrum, and he even addressed issues of bias like those considered in Kesden et al.

(2003). In many ways, Kaiser (1992) provided the theoretical underpinning for much

of the later work in CMB-based lensing reconstruction.

Even before the first observation of the large-scale CMB anisotropies by COBE

in 1991, it was realized that the CMB would be gravitationally lensed by foreground

LSS in much the same way high-redshift galaxies were. Blanchard & Schneider (1987)

recognized that at each position x on the sky, gravitational bending will result in

an apparent displacement field λ(x). This displacement field will remap the CMB

so that the apparent temperature one observes in a direction x is what one would

have observed in a direction x + λ(x) in the absence of lensing. Lensing conserves

specific intensity, and hot and cold patches of the CMB are equally likely to be lensed,

provided the displacement field λ(x) is uncorrelated with the primordial anisotropies

at the last-scattering surface. In this case, Blanchard and Schneider arrived at the

important conclusion that “the variance of the fluctuating part of the background is

conserved by any arbitrary physical deviation field.” Kesden et al. (2002a), included

as Chapter 3 of this thesis, is devoted to an analysis of the one-point probability

distribution function (PDF) in the presence of lensing and shows that not just the

variance, but all higher moments of the distribution are unchanged by weak lensing.
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The form of the CMB power spectrum was largely unconstrained before COBE, and

Blanchard & Schneider (1987) chose to model it as a simple Gaussian,

P (k) =

∣∣∣∣
δT̂

T
(k)

∣∣∣∣
2

∝ exp(−θ2
0k

2/2) . (1.2)

While this form failed to capture the rich structure of the acoustic peaks, it allowed

Blanchard and Schneider to qualitatively predict the shifting of power from large to

small scales calculated in more accurate modern analyses.

This prediction of enhanced CMB power on small scales was not shared by other

contemporary authors who believed that lensing would lead to an overall reduction

in CMB power below scales of several arcminutes. Kashlinsky (1988) considered the

possibility of multiple gravitational lensing by compact objects like discrete galaxies.

At the time, optimistic assumptions like primordial isocurvature perturbations, an

Einstein-de Sitter (Ω = 1) universe, and completed structure formation before red-

shift zi & 5 made the possibility of a large optical depth to multiple lensing more

viable than it is today. Such a scenario would supposedly lead to the phase mix-

ing of photons from different primordial patches and a corresponding decrease in the

amplitude of observed fluctuations. Linder (1988) also claimed that the effective ob-

served temperature in a direction φ would be a weighted average of the primordial

temperatures in directions φ+ θ,

Teff(φ) =

∫
d2θ p(θ)T (φ+ θ) , (1.3)

where p(θ) was the probability that the lensing deflection field assumed a value of θ in

direction φ. While such an ensemble average would indeed provide a mechanism for

isotropization of anisotropies as claimed by Linder, the Universe consists of a single

realization of the deflection field and therefore, no such average should be reflected

in observed quantities.

A consensus of the effects of lensing on the CMB was finally reached during the

renewed theoretical investigations in the aftermath of COBE. Seljak (1996) gave a
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definitive treatment of the effect of lensing on the CMB temperature power spectrum.

Using Limber’s equation in Fourier space to relate three-dimensional density perturba-

tions to projected quantities, Seljak derived an expression σ(θ) for the lensing-induced

dispersion in the angular separartion of photons separated by an angle θ. He then

showed that the observed power spectrum C̃l could be expressed as a convolution of

the primordial power spectrum Cl,

C̃l =

∫ ∞

0

Cl′
dl′√
2πεl′

e−(l−l′)2/2(εl′)2 , (1.4)

where ε ≡ σ(θ)/θ. This lensed power spectrum was evaluated numerically for both

Einstein-de Sitter and ΛCDM cosmologies, and found to have little effect on scales

above a degree. The above convolution did, however, lead to broadening of the

acoustic peaks for l & 1000. Seljak suggested that this effect might need to be

taken into account in future high-precision efforts at parameter estimation. Although

Seljak (1996) showed that the effect of lensing on the CMB power spectrum was not as

important as suggested by previous authors, lensing does have significant implications

for higher-order correlation functions as discussed in the next subsection.

1.1.3 Non-Gaussianity

An essential model-independent prediction of single-field inflation is that primordial

perturbations should be described by Gaussian statistics (Bardeen et al., 1983). The

perturbations remain small and evolve linearly from the end of inflation through

the recombination era, implying that this Gaussianity should be preserved in the

primordial CMB. The statistics of Gaussian fields are determined entirely by their

power spectrum; all higher-order correlations can be expressed in terms of the power

spectrum. However, it has long been understood that the dynamics of gravitational

instability are nonlinear, and that once the dispersion σ ≡< δ2 >1/2 of density per-

turbations δ exceeds unity, the results of linear perturbation theory are no longer

valid. Juszkiewicz et al. (1995) studied the evolution of the perturbations in the

weakly nonlinear regime in the context of structure formation, and derived a consis-
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tent power series expansion in σ for the one-point PDF of δ. The coefficients in this

expansion are polynomials of cumulants, those portions of the central moments that

vanish for a Gaussian distribution. Although the equations governing the growth of

structure differ from those pertaining to weak lensing, the mathematical form of the

expansion in the weakly non-Gaussian regime is the same and proves essential to my

treatment of the one-point PDF of the lensed CMB in Chapter 3. Explicit estimators

ξ̄N for the cumulants of a PDF are defined for a finite number of samples NT in Hui

& Gaztanaga (1999). Traditionally, such estimators are constructed from nonlinear

combinations of estimators for the central moments of a distribution. This introduces

what Hui and Gaztanaga refer to as “nonlinear estimation bias”, even if the initial

estimators are themselves unbiased. This issue is fundamental to the bias associated

with power-spectrum estimators derived from estimators for individual modes as dis-

cussed in Chapter 2. It is also responsible for the confusion pertaining to the variance

associated with different estimators for the skewness and kurtosis as described in the

final section of Chapter 3.

Nonlinearity occurs not just in the growth of large-scale structure, but also in

the remapping of the observed CMB anisotropies brought about by weak lensing.

Bernardeau (1997) realized that the weak-lensing deflection field would induce non-

Gaussian correlations in the observed CMB map, and that these correlations would

lead to a nonvanishing connected part of the four-point correlation function. In the

flat-sky limit, i.e., on scales for which Fourier transforms can be used in place of

decomposition into spherical harmonics, Bernardeau derived expressions for the real-

space four-point function in terms of the primordial CMB power spectrum and the

perturbation power spectrum P (k) that gives rise to weak lensing. He then considered

the dependence of the four-point function on the geometry of the configuration, and

calculated the amplitude of the correlation in a flat Ωm = 0.3, ΩΛ = 0.7 cosmology. He

concluded that this lensing-induced non-Gaussianity should be observable in full-sky

CMB maps, but that further theoretical work was needed to determine the optimal

means of searching for this non-Gaussianity. Bernardeau (1998) proposed one such
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means of searching for non-Gaussianity: the statistics of the local curvature matrix

cij ≡
d2δT
dxidxj

(1.5)

of temperature fluctuations δT . Defining an ellipticity e from this curvature matrix,

Bernardeau examined how lensing affected the probability distribution function of

e for different values of the smoothing scale and power spectrum normalization σ8.

He found that lensing could be more readily detected in simulated maps using the

local ellipticity than the simple collapsed four-point function, where much of the

effect cancels due to averaging over the different configurations. This cancellation is

central to the conclusions of Chapter 3, where I examine whether smoothing on an

appropriate scale could interfere with the cancellation enough to make the collapsed

four-point function detectable.

Analysis of higher-order correlations in harmonic space began with Spergel &

Goldberg (1999), where the bispectrum

〈al1m1
al2m2

al3m3
〉 ≡


 l1 l2 l3

m1 m2 m3


Bl1l2l3 (1.6)

was considered in a cosmological context and an estimator for this quantity was con-

structed from all-sky maps. As described previously, the growth of LSS is nonlinear,

and the resulting non-Gaussianity leaves an imprint in the CMB through the Rees-

Sciama effect. The contribution of this effect to the bispectrum was determined to be

undetectable in a ΛCDM universe, even by an experiment limited only by cosmic vari-

ance. In a companion paper (Goldberg & Spergel, 1999), cross-correlations between

the weak-lensing field and the integrated Sachs-Wolfe or Sunyaev-Zel’dovich (SZ) ef-

fects were found to induce similar contributions to the bispectrum. For most choices

of cosmological parameters, the lensing-SZ correlations were found to dominate, and

in Chapter 3 we show that this effect could even lead to observable non-Gaussianity

in the one-point function for high values of σ8. A definitive treatment of the CMB

bispectrum was provided by Hu (2000a), who performed a detailed calculation of the
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CMB power spectra and bispectra for both temperature and polarization. The flat-

sky approximation in which the maps are decomposed into Fourier modes instead of

spherical harmonics was found to introduce a 10% error into the calculation. Surpris-

ingly, this error was not limited to the largest scales where one would naturally expect

the flat-sky approximation to break down, but rather extended to l ' 1000. Hu at-

tributed this peculiar result to the mode-coupling nature of weak lensing, whereby

poorly approximated large-scale modes of the lensing field provide the dominant con-

tribution to small-scale CMB power through remapping.

This shifting of power from large to small scales was explored in a more general

context by Zaldarriaga (2000). If the primordial CMB was described by a uniform

gradient on a sufficiently small scale, possibly due to the effects of Silk damping,

Fourier modes of the observed temperature map below this scale would be directly

proportional to the corresponding modes in the deflection field δθ,

T (l) = T̃xδθx(l) + T̃yδθy(l) , (1.7)

where T̃x and T̃y are partial derivatives of the temperature map in the x and y

directions, respectively. Zaldarriaga proposed to test this hypothesis by searching

for a correlation between small-scale power and the large-scale gradients that source

this power as described by Eq. (1.7). The statistics of temperature gradients in

the observed map was also considered by Villumsen (2001) in the hope that non-

Gaussianity might be detectable in the one-point PDF. Villumsen found that the

kurtosis of the temperature gradient was linearly proportional to the variance of the

convergence κ, defined as

κ ≡ −1/2O · δθ (1.8)

and further claimed that this kurtosis was a maximum-likelihood estimator for σ2
κ.

Increasing knowledge of the detailed effect of lensing on the CMB motivated authors

to consider not just a statistical detection of lensing, but a complete reconstruction

of the lensing field – a topic addressed in the following subsection.
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1.1.4 Lensing Reconstruction

A method for reconstructing the weak-lensing field from CMB observables was first

introduced in a Letter (Seljak & Zaldarriaga, 1999a), with details of the derivation and

performance of this method included in the companion paper (Zaldarriaga & Seljak,

1999). Seljak and Zaldarriaga defined three quadratic combinations of derivatives

Ti ≡ ∂T/∂xi of the CMB temperature field, and then to linear order, expressed

these combinations in terms of the unlensed quantities and symmetric shear tensor

Φab ≡ ∂δθa/∂θb,

S ≡ T 2
x + T 2

y

= (1 + Φxx + Φyy)S̃ + (Φxx − Φyy)Q̃ + 2ΦxyŨ

Q ≡ T 2
x − T 2

y

= (1 + Φxx + Φyy)Q̃ + (Φxx − Φyy)S̃

U ≡ 2TxTy

= (1 + Φxx + Φyy)Ũ + 2ΦxyS̃ .

(1.9)

The isotropy of the primordial CMB implies that, averaged over different Gaussian

realizations,

〈S̃〉CMB = σS

〈Q̃〉CMB = 0

〈Ũ〉CMB = 0 .

(1.10)
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Defining the convergence κ and shear fields γ1 and γ2 from the shear tensor,

κ ≡ −1/2(Φxx + Φyy)

γ1 ≡ −1/2(Φxx − Φyy)

γ2 ≡ −Φxy ,

(1.11)

Seljak and Zaldarriaga determined that

〈S̃〉CMB = (1 − 2κ)σS

〈Q̃〉CMB = −2γ1σS

〈Ũ〉CMB = −2γ2σS .

(1.12)

Because the shear tensor is derived from a scalar deflection potential, κ, γ1, and γ2

are not independent quantities, but obey the Fourier-space relations

γ1(l) = κ(l) cos(2φl)

γ2(l) = κ(l) sin(2φl) .

(1.13)

This implies that both S and an appropriate combination of Q and U can serve as es-

timators for the convergence field κ. Seljak and Zaldarriaga calculated the covariance

matrix for these estimators on scales both above and below the correlation length

ξ, below which power in the primordial CMB is largely suppressed by Silk damping.

On scales larger than ξ, cosmic variance in the primordial CMB contributes to the

variance of the estimator in addition to instrumental noise. In the small-scale limit, it

should be possible in principle to express temperature fluctuations in terms of prod-

ucts of the large-scale gradients and the deflection field as in Eq. (1.7). There should,

accordingly, be no cosmic-variance contribution to the reconstruction; a perfect recon-
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struction would be possible for a no-noise experiment. Seljak and Zaldarriaga tested

the performance of their estimators by attempting to reconstruct the deflection field

of a simulated galaxy cluster, then discussed the more realistic case of power-spectrum

estimation for all-sky experiments like WMAP and Planck. Power-spectrum estima-

tors consist of products of estimators for the individual modes, which are themselves

quadratic in the CMB temperature field. Seljak and Zaldarriaga recognized that

the noise properties of these estimators would therefore depend on the fourth-order

statistics of the CMB, yet they assumed that for this purpose, the CMB could be

considered to be Gaussian. This is inconsistent with the very premise of exploiting

non-Gaussianity to reconstruct the weak-lensing field. An accurate calculation of the

noise associated with power spectrum estimation that properly accounts for all non-

Gaussianity to a consistent order in the weak-lensing field is provided in Chapter 2 of

this thesis. Despite this approximation, Seljak and Zaldarriaga estimate the WMAP

will detect lensing with a signal-to-noise ratio of 3, while for Planck, the figure will be

between 15-25. This optimistic appraisal of lensing reconstruction motivated other

authors to try to refine the technique further.

Significant advances were made in a series of papers by Wayne Hu. A new

quadratic estimator for lensing reconstruction was introduced in Hu (2001a), with

extensive derivations of its validity given in the companion paper (Hu, 2001b). Hu

approached lensing reconstruction from the perspective of maximizing the information

contained in the non-Gaussianity of the CMB. Hu conducted a thorough analysis of

the lensing trispectrum in the all-sky limit, as he recognized that the power spectrum

of a quadratic estimator was just a partially collapsed measure of the more general

four-point function:

〈Θl1m1
. . .Θl4m4

〉 =
∑

LM


 l1 l2 L

m1 m2 −M




 l3 l4 L

m3 m4 M


 (−1)MQl1l2

l3l4
(L) , (1.14)

where Θlm are the harmonic coefficients of the temperature field and Ql1l2
l3l4

(L) can be

decomposed into an unconnected Gaussian component and the trispectrum T l1l2
l3l4

(L).
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The symmetry of the trispectrum implied that it could be expressed as a sum of a

fundamental pairing P l1l2
l3l4

(L) and summations over different configurations of that

pairing:

T l1l2
l3l4

(L) = P l1l2
l3l4

(L) + (2L+ 1)
∑

L′

[
(−1)l2+l3




l1 l2 L

l4 l3 L′



P l1l3

l2l4
(L′)

+(−1)L+L′




l1 l2 L

l3 l4 L′



P l1l4

l3l2
(L′)

]
.

(1.15)

Hu defined a fully general quadratic estimator in harmonic space:

xab
LM ≡ (−1)M

∑

l1m1

∑

l2m2

xab
l1l2(L)Θl1m1

Θl2m2

√
2L+ 1

4π


 l1 l2 L

m1 m2 −M


 (1.16)

where xab
l1l2

(L) is an arbitrary filtering function, and showed that with appropriate

normalization, this statistic could serve as an estimator for the lensing potential. He

then chose the weights xab
l1l2

(L) to maximize the signal-to-noise (S/N) of this estimator

in the limit – valid for L . several hundred – that the first term of Eq. (1.15)

dominated the remaining terms. In Chapter 2, I consider these neglected terms and

how they might affect the choice of filtering function. Hu found that his choice of

weights boosted the total signal-to-noise ratio for lending detection for Planck to

(S/N)2 ≈ 4050, compared to (S/N)2 ≈ 135 for the gradient-gradient statistic studied

by Zaldarriaga & Seljak (1999).

This improvement in signal-to-noise ratio becomes even more pronounced when

CMB polarization observables are used to construct additional estimators. The most

general polarization field can be described by the Stokes’ parametersQ, U , and V (Ry-

bicki & Lightman, 1979), but as the CMB is not expected to be circularly polarized,

only Q and U are nonvanishing. Seljak & Zaldarriaga (1997) and Kamionkowski et al.

(1997a) independently recognized that the polarization field could be decomposed in

a coordinate-independent way into E− and B−modes that could be expressed in
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Fourier space as linear combinations of these Stokes’ parameters:

E(l) = Q(l) cos(2φl) + U(l) sin(2φl)

B(l) = −Q(l) sin(2φl) + U(l) cos(2φl) .

(1.17)

Along with the temperature field itself, there are N = 3 different CMB observables,

and thus, N(N + 1)/2 = 6 possible quadratic estimators. Hu & Okamoto (2002)

showed that all six of these quadratic statistics are valid estimators for the weak-

lensing deflection field, and calculated their covariance matrix in the flat-sky limit.

This analysis is extended to all-sky harmonic-space estimators by Okamoto & Hu

(2003). Hu and Okamoto found that the polarization-based estimators surpassed

the performance of their quadratic temperature statistic for experiments with better

than 26µK-arcmin noise and 4′ resolution. For cosmic-variance-limited experiments,

the minimum variance combination of the six estimators provided over an order-

of-magnitude improvement over the signal-to-noise ratio possible with temperature

alone. They also considered possible applications of lensing reconstruction, including

the subtraction of lensing-induced B−modes to set constraints on the primordial

B−modes produced by inflationary gravitational waves. I examine the details of this

subtraction at length in Chapter 4.

The quadratic estimators devised by Wayne Hu show great theoretical promise,

and recent efforts have sought to verify this promise by testing their effectiveness on

simulated data from experiments faced with astrophysical foregrounds, limited sky

coverage, and other practical considerations. Amblard et al. (2004) examined the

performance of quadratic estimators by creating different Monte-Carlo realizations

of the primordial CMB and deflection field, and then determining the lensed map

explicitly. They then reconstructed the convergence power spectrum from the lensed

map and compared it to the input power spectrum. For a no-noise experiment, the

reconstructed power spectrum was biased upwards by ∼ 70% after subtracting of

the Gaussian noise determind by Hu. This bias was reduced to ∼ 25% once the
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second-order noise calculated by Cooray & Kesden (2003) and Kesden et al. (2003)

was taken into account, implying that future low-noise, high-resolution experiments

will need to consider these terms in their analyses. Other complications discussed

by Amblard et al. (2004) include a non-Gaussian deflection field and contamination

from the kinetic Sunyaev-Zel’dovich (kSZ) effect. Nonlinear structure formation at

low redshifts leads to non-Gaussianity in the deflection field, so Amblard et al. (2004)

replaced their Gaussian samples of structure at redshifts less than z = 2 with the

output of numerical simulations. The resulting non-Gaussian deflection field leads

to an ∼ 50% bias in the estimated convergence power spectrum, and an ∼ 10%

shift of power from small to large scales. The kSZ effect is a thermal distortion

in the CMB induced by the bulk motion of clusters. Unlike the thermal SZ effect,

these distortions have a Planck spectrum and therefore, cannot be removed even in

principle by a multi-frequency survey. Amblard et al. (2004) took advantage of the

fact that the same portions of the sky should be contaminated by both the kinetic

and thermal SZ effects, and therefore, a mask determined by the distinguishable

thermal SZ effect would eliminate the kinetic effect as well. By masking only 1.4%

of the pixels, Amblard et al. (2004) were able to reduce the kSZ-induced bias from

over a factor of 2 to ∼ 70%. After studying the performance of quadratic estimators

for arbitrary noise and resolution, Amblard et al. (2004) applied these results to

forecast how well upcoming CMB experiments such as APEX/SZ, ACT, SPT, and

Planck could actually reconstruct the convergence power spectrum. SPT was found

to be the most effective experiment at lensing reconstruction, owing to its superior

combination of low noise, high resolution, and large survey area.

A greater understanding of the difficulties associated with quadratic-based lensing

reconstruction is valuable, but a practical approach for moving past these difficulties

is even more so. Hirata and Seljak developed maximum-likelihood estimators (MLEs)

for the lensing potential using both CMB temperature (Hirata & Seljak, 2003a) and

polarization (Hirata & Seljak, 2003b). For measured CMB temperature fluctuations

Θ̂(ni) at N points {n1, . . . ,nN}, these estimators select the lensing potential field Φ

that maximizes the probability density P (Θ̂|Φ). This approach is guaranteed to be
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asymptotically efficient in the limit of large data sets, and retains its validity when

second-order contributions in Φ become significant. Unfortunately, it also requires

one to solve N coupled nonlinear equations which rapidly become computationally

untractable, particularly for polarization. Hirata and Seljak resorted to a series of

approximations to make the computational problem more manageable, and arrived

at an iterative lensing reconstruction estimator that appeared well-behaved as higher-

order terms were taken into account. While this estimator yielded only a 10 − 20%

improvement in the RMS error for temperature alone, for high-resolution polariza-

tion experiments, they claimed over an order-of-magnitude improvement in the mean

squared error compared to quadratic techniques. Some form of approximate maxi-

mum likelihood technique will therefore likely be employed for lensing-reconstruction

efforts with future high-sensitivity polarization experiments. Having given a review

of the theory behind lensing reconstruction, I will discuss two possible applications

of this technique in the following subsections.

1.1.5 Detecting Tensor Perturbations

As discussed in subsection 1.1.1, inflation has become an important addition to the

standard big-bang paradigm because of its ability both to solve the flatness and

horizon problems and to generically predict a scale-invariant spectrum of primordial

perturbations. Quantum fluctuations in the scalar field responsible for inflation served

as the seeds of structure formation in the early Universe, but it had long been realized

that quantum fluctuations in the spacetime metric were “frozen in” during inflation

as well. These primordial gravitational waves decayed in amplitude with the scale

factor once they re-entered the horizon, but they may have left a detectable signature

in the CMB through the Sachs-Wolfe effect. Abbott & Wise (1984) calculated the

power spectrum of CMB temperature perturbations generated in this process and

showed that it scaled as the fourth power of the energy scale of inflation. Starobinskii

(1985) compared the relative contributions of adiabatic density (scalar) perturbations

and gravitational wave (tensor) perturbations to primordial CMB anisotropies. He
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found that the tensor-to-scalar ratio,

δ ≡



〈(

∆T
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)2
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〉
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/
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)2
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〉

ad




1/2

, (1.18)

scaled as n1/2 for inflationary potentials V (Φ) ∝ Φn, with δ ≈ 0.5 in an n = 4 model.

The contributions of both scalar and tensor modes to CMB polarization was con-

sidered by Crittenden et al. (1993), where for a tensor-to-scalar ratio of unity, the

tensor contribution was shown to dominate for l . 40. Crittenden et al. (1993) are

not optimistic about the prospects of detecting CMB polarization, as they predicted

that even on large angular scales (& 1◦), the net polarization would be less than

1% of ∆T/T . Early reionization could boost the net polarized signal to as much as

9%, but in this case the tensor contribution becomes subdominant and could only be

distinguished with sensitivities better than 1%. It appeared that even indirect detec-

tion of primordial gravitational waves might present an insurmountable observational

challenge.

Seljak & Zaldarriaga (1997) and Kamionkowski et al. (1997a) gave renewed hope

to efforts aimed at detecting primordial tensor modes by noting that the CMB polar-

ization could be uniquely decomposed into E− and B−modes as in Eq. (1.17). Only

tensor perturbations source B-mode polarization, so in principle, a nonzero detection

of this polarization would be an unambiguous signature of primordial gravitational

waves in the early Universe. An explicit calculation of the power spectra and real-

space correlation functions of the CMB polarization in the small-scale limit was given

by Seljak (1997), along with an analysis of the instrumental sensitivity, resolution,

and sky coverage necessary to reconstruct these power spectra in an Einstein-de Sit-

ter CDM Universe. The formalism underlying studies of CMB polarization in the

all-sky limit was presented by Kamionkowski et al. (1997b), including an explicit

construction of estimators for the power spectra and a calculation of the covariance

matrix of these estimators for Gaussian pixel noise. The connection between CMB

polarization and inflationary observables was explored more fully in Kamionkowski
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& Kosowsky (1998). Explicit relations were derived between the inflaton potential

V (φ), its derivative V ′ ≡ ∂V/∂φ, and the amplitudes and spectral indices of scalar

and tensor perturbations,

S ≡ 6CTT,scalar
2 = 33.2

[
V 3

(V ′)2

]

T ≡ 6CTT,scalar
2 = 9.2V

1 − ns =
1

8π

(
V ′

V

)2

− 1

4π

(
V ′

V

)′

nt = − 1

8π

(
V ′

V

)2

.

(1.19)

These relations imply a critical consistency test, T /S ' −7nt, which could in principle

be tested by observations of the CMB temperature and polarization. Kamionkowski

& Kosowsky (1998) examined the predicted tensor amplitude T for various models

of V (φ), and found that while some models led to unobservably small tensor per-

turbations, others generated perturbations that could be detected for experimental

sensitivities of a few µK
√

sec. Once the tensor perturbations have been detected,

their spectral index nt could be measured from the B-polarization power spectrum

and the consistency test could definitively exclude a wide class of inflationary mod-

els. Jaffe et al. (2000) extended this analysis to experiments with arbitrary sensitivity,

resolution, and sky coverage and found somewhat surprisingly that for a fixed-time

experiment, tighter constraints could be placed on T by sacrificing sky coverage to

integrate more deeply on a 2 − 5◦ patch. Ground-based efforts to detect CMB po-

larization in surveys of limited size are currently underway, and E-mode polarization

has already been observed in this way by the Degree Angular Scale Interferometer

(DASI) (Kovac et al., 2002). Improving detector technology will continue to lower

the upper bounds on B-mode polarization, and a true detection may occur in the

near future if the energy scale of inflation is associated with grand unification ∼ 1016

GeV.

Unfortunately, real experiments are faced with a variety of astrophysical fore-
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grounds in addition to instrumental noise and limited sky coverage. Tucci et al. (2004)

found that Galactic foregrounds (synchrotron emission for ν . 70 GHz, dust emission

at higher frequencies) dominate primordial B-mode polarization at all frequencies for

even the most optimistic assumptions about the tensor-to-scalar ratio. However, with

a template for foreground emission Ĩνt(n̂) at a frequency νt and a position-dependent

spectral index β̃(n̂), Tucci et al. (2004) claimed that linear subtraction could reduce

these foregrounds by almost two orders-of-magnitude. More troubling is the residual

polarization produced by extragalactic radio sources, which then become dominant on

subdegree scales (l & 100). Subtraction of these point sources involves a fundamental

tradeoff; an increasingly larger fraction of the total pixels must be masked to remove

sources of lower flux. Removing sources with S > 150 mJy led to a lower bound of

∼ 10−4 on the detectable value of the tensor-to-scalar ratio. Yet another astrophysi-

cal foreground to consider is the B-mode polarization induced by weak gravitational

lensing. Zaldarriaga & Seljak (1998) first studied the effect of lensing on CMB po-

larization on small scales, and discovered that lensing converts a fraction of E-mode

polarization to B-modes and vice versa. They expressed the observed polarization

power spectra in terms of the unlensed quantities

CEl = CẼl +
1

2
[W l′

1l + W l′

2l]CẼl′ +
1

2
[W l′

1l −W l′

2l]CB̃l′

CBl = CB̃l +
1

2
[W l′

1l −W l′

2l]CẼl′ +
1

2
[W l′

1l + W l′

2l]CB̃l′

(1.20)

and the window functions W l′

1l and W l′

2l which are linear in the power spectrum of the

lensing potential. This fractional conversion could cause the primordial E-modes to

masquerade as a signal of tensor perturbations if not properly subtracted. The in-

complete subtraction of lensing-induced B-modes using quadratic lensing estimators

is the subject of Kesden et al. (2002b), Chapter 4 of this thesis. A similar calculation

with similar results was performed independently by Knox & Song (2002). Contin-

ued improvements in lensing reconstruction should lead to improved subtraction of

lensing-induced B-modes, and ultimately tighter constraints on inflation.
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1.1.6 Low CMB Quadrupole

Lensing reconstruction has a variety of potential applications to cosmology beyond its

use in probing primordial B-mode polarization. One question on which information

from lensing reconstruction could possibly be decisive is the existence of a cutoff

in the primordial density perturbation power spectrum on horizon scales. The CMB

temperature quadrupole first measured by COBE (Hinshaw et al., 1995) was found to

be unusually low for a model with a scale-invariant power spectrum, and subsequent

WMAP observations showed that the l = 3 and l = 4 moments were below predictions

as well (Bennett et al., 2003). The statistical significance of this discovery is a matter

of considerable debate. The WMAP collaboration concluded in Spergel et al. (2003)

that only 0.7% of realizations of a scale-invariant power spectrum yielded smaller

values of the large-angle statistic

S ≡
∫ 1/2

−1

[C(θ)]2d(cos θ) , (1.21)

where C(θ) is the real-space correlation function. Tegmark et al. (2003) re-analyzed

the CMB foregrounds observed by WMAP, resulting in a different Galactic cut and

somewhat larger low l multipoles than determined by the WMAP collaboration. Gaz-

tanaga et al. (2003) also re-examined the WMAP analysis of large-scale anisotropies,

and found that real-space statistics like the correlations function and its moments

were more informative than spherical harmonics for probing the largest scales. They

found that WMAP observations were fully consistent with a scale-invariant power

spectrum, as fully 32% of realizations yielded fits with higher χ2. This result was

highly sensitive to the choice of Galactic cut, in keeping with the discrepancies be-

tween Spergel et al. (2003) and Tegmark et al. (2003). One way of interpreting the low

CMB multipoles is as a large-scale cutoff kc in the density perturbation power spec-

trum P (k). Several authors (Bridle et al., 2003; Contaldi et al., 2003; Cline et al.,

2003) studied the WMAP and 2 Degree Field Galaxy Redshift Survey (2DFGRS)

data and found that models with cutoffs of kc ' 3− 5 Mpc−1 were preferred, though

the absence of a cutoff was allowed at the 2σ level. Cline et al. (2003) found that no
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values of kc fit the data particularly well, as I also concluded in Kesden et al. (2003),

Chapter 5 of this thesis. Cutoffs in P (k) large enough to account for the WMAP

results tend to bleed into higher multipole moments producing excessive suppression

above l = 4. Efstathiou (2003a) compared the frequentist and Bayesian approaches

employed by different authors in their statistical analyses, and found that estimates

like those of Spergel et al. (2003) were gross overestimations. He suggested that 1 in

10 or 1 in 20 was a more reasonable estimate of the unlikeliness of the WMAP results.

If the low CMB multipoles observed by WMAP are truly significant, what kinds of

new physics might they imply? One curiosity first noted by Tegmark et al. (2003) was

that the planes of the CMB quadrupole and octupole appear to be aligned. Schwarz

et al. (2004) further asserted that several of these planes were aligned at greater than

99% confidence levels with the ecliptic, the equinoxes, and the supergalactic plane.

This would imply that the CMB quadrupole and octupole are not cosmological in

origin, but instead, result from some local source or unanticipated systematic error.

The statistical significance of these results has not been confirmed by other authors,

but unknown systematics should always be considered, particularly in light of the pre-

viously determined sensitivity to the choice of Galactic cut. Other explanations for

the unusually low CMB multipoles tend to invoke new physics on cosmological scales.

DeDeo et al. (2003) proposed that the low CMB multipoles result from a suppres-

sion of the late-time integrated Sachs-Wolfe (ISW) effect expected in scale-invariant

ΛCDM models. Gravitational potential wells will evolve with redshift for Ωm 6= 1,

implying that the depths of these wells will change between the times that CMB

photons enter and exit them. This will impart a gravitational redshift to these pho-

tons and corresponding perturbation power to the CMB. In the ΛCDM concordance

model, the cosmological constant becomes dominant at late times, driving Ωm < 1

and causing large-scale potential fluctuations to decay away. This induces enhanced

power in the CMB quadrupole and octupole through the ISW effect. However, if the

late-time acceleration is driven not by a cosmological constant, but some form of dark

energy with sound speed cs < 1, this dark energy will cluster and inhibit the decay

of large-scale potential wells. The late-time ISW effect and CMB multipoles will be
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accordingly suppressed. Other proposals to reduce the low-l CMB multipoles require

a suppression of large-scale power in the early Universe. As noted earlier in this In-

troduction, Turner (1991) calculated the minimum number of e-foldings of inflation

necessary to solve the flatness and horizon problems. If inflation lasted only ∼ 10

e-foldings longer than strictly necessary, the CMB quadrupole and octupole could be

sensitive to density perturbations in the pre-inflationary Universe. In this scenario,

the low CMB multipoles would be indicative of an extremely homogeneous Universe

prior to inflation. Primordial perturbations could also be suppressed during inflation

itself, either by modifying the inflaton potential (Contaldi et al., 2003) or introducing

a second scalar field (Cline et al., 2003; Feng & Zhang, 2003). Both of these theories

introduce a characteristic cutoff scale kc that violates the scale-invariance predicted

by a single, slowly rolling field. Efstathiou (2003b) associated this scale with the

curvature scale, and showed that the CMB power spectrum could be made consistent

with nonzero curvature by fixing the physical baryon and cold dark matter densities

ωb ≡ Ωbh
2, ωc ≡ Ωch

2 and allowing the Hubble constant h to vary. The low CMB

multipoles were suppressed while preserving the locations and heights of the acoustic

peaks. Clearly, there is no shortage of theoretical explanations for the small CMB

quadrupole and octupole.

How might one distinguish between these explanantions? One hope is that these

theories might have other observable consequences besides the suppression of large-

scale power. DeDeo et al. (2003) claimed that a variable sound speed for the dark en-

ergy would lead to possibly observable oscillations in the perturbation power spectrum

on smaller scales as well (k > 10−2hMpc−1). Gurzadyan et al. (2005) argued that

spatial curvature could account for both the low CMB multipoles and the degree-scale

ellipticity of anisotropies observed in BOOMERanG CMB maps. However, many the-

ories do not provide readily testable supplemental predictions. On the largest scales,

the measured error in the CMB power spectrum Cl is already dominated by cosmic

variance. There are only 2l+1 spherical harmonic coefficients alm at each l, implying
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that the estimator

Ĉl ≡
1

2l + 1

l∑

m=−l

|alm|2 (1.22)

will have a variance 2Cl/(2l+1) even in the absence of foregrounds and instrumental

noise. Only by somehow gaining access to additional coefficients alm on large scales

can the noise be driven below the limit imposed by cosmic variance. Kamionkowski

& Loeb (1997) proposed one method to do this: by examining the CMB polarization

induced by the thermal SZ effect. The magnitude and orientation of this polarization

is directly sensitive to the CMB temperature quadrupole seen by the clusters respon-

sible for the SZ effect. For clusters at significant redshift, this quadrupole will be

appreciably different from that observed on Earth, providing access to perturbations

not visible in the primordial CMB. Kesden et al. (2003), Chapter 5 of this thesis, pro-

poses a new way of observing power on large scales. The lowest multipole moments

of the lensing potential – reconstructed via quadratic estimators as described above –

can provide a partially independent probe of the same large-scale modes responsible

for the low CMB quadrupole. By examining the cross-correlation of the lensing po-

tential with CMB temperature perturbations, I show that lensing reconstruction can

distinguish a kc ' 5.0 × 10−4 Mpc−1 cutoff from a scale-invariant spectrum at > 3σ.

This approach offers one of the only ways of laying to rest the controversy over the

CMB quadrupole.

1.2 Binary Inspirals into Horizonless Objects

In the remainder of this Introduction, I provide an overview of previous work relating

to the gravitational-wave (GW) signature of nonstandard binary inspirals, the subject

of Kesden et al. (2005), Chapter 6 of this thesis.

1.2.1 Black-Hole Inspirals

Interest in the gravitational radiation produced by accelerating point particles dates

back to Einstein (1918), where it was proven in linearized theory that the GWs pro-
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duced by weakly gravitating, nonrelativistic systems was quadrupolar to lowest order.

For a very long time thereafter, there was a lack of consensus in the scientific commu-

nity as to whether gravitational radiation was a real physical phenomenon or simply

an artifact of the theory. It was not immediately apparent how to construct a stress-

energy tensor for the gravitational field, and different authors obtained qualitatively

different results depending on their choice of coordinate system. Peters & Mathews

(1963) finally determined the power radiated in GWs by two point masses moving

in an elliptical Keplerian orbit. In the weak-field limit, the spacetime metric can be

linearized about the Lorentz metric δµν ,

gµν = δµν + κhµν (|κhµν | � 1) , (1.23)

where κ2 ≡ 32πG. The Einstein equation for this metric implies that the trace-

reversed metric perturbation

h̄µν ≡ hµν − 1/2δµνhλλ (1.24)

obeys the wave equation

�h̄µν = −1/2κTµν , (1.25)

where Tµν is the stress-energy tensor of the GW source. Peters & Mathews (1963) then

expanded both h̄µν and Tµν into multipoles and kept only the dominant “magnetic

quadrupole” type of radiation. Defining the mass quadrupole tensor of the system as

Qij ≡
∑

α

mαxαixαj , (1.26)

where the sum α is taken over all particles, the total power radiated is

P =
G

5c5

(
d3Qij

dt3
d3Qij

dt3
− 1

3

d3Qii

dt3
d3Qjj

dt3

)
. (1.27)
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This formalism was used to determine the average power emitted over an orbital

period by point masses m1 and m2 in a Keplerian orbit with semi-major axis a and

ellipticity e,

〈P 〉 =
32

5

G4

c5
m2

1m
2
2(m1 +m2)

a5(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
, (1.28)

and to calculate the power radiated into each harmonic of the fundamental frequency

ω0 = [G(m1 + m2)/a
3]1/2. This analysis is essentially the same approach I use in

Chapter 6 to calculate the energy and angular momentum losses, although I gener-

alize to non-Keplerian orbits in the strong-field limit. Peters (1964) generalized his

previous results for arbitrary metric perturbations h̄µν, and determined the angular

momentum loss as well. A definitive treatment of the multipole expansion of the

gravitational field was given by Thorne (1980), where the energy, angular momen-

tum, and linear momentum fluxes were expanded in terms of the time derivatives of

the source multipole moments.

The multipole expansions described above are valid in the limit of linearized grav-

ity as in Eq. (1.23), but a proper treatment in the strong-field limit must include

perturbations about a background black-hole spacetime. These perturbations were

first investigated by Regge & Wheeler (1957), where arbitrary perturbations of the

Schwarzschild spacetime were decomposed into tensor spherical harmonics. Only

perturbations that maintain the vacuum were allowed, leading to the second-order

differential equation

δRµν = −δΓβ
µν;β + δΓβ

µβ;ν , (1.29)

where the perturbed Christoffel symbol is

δΓα
βγ =

1

2
gαν(hβν;γ + hγν;β − hβγ;ν) . (1.30)

The eigenmodes of this differential equation with imaginary frequencies are forbidden

by the boundary conditions at infinity and the black-hole horizon, implying that the

Schwarzschild black hole is stable against arbitrary small perturbations. Zerilli (1970)

considered how these perturbations might be sourced by a point mass traveling on a
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geodesic of the background Schwarzschild spacetime, and obtained radial differential

equations for the amplitudes of the outgoing GWs. Teukolsky (1973) generalized this

program to the spacetimes of rotating black holes discovered by Kerr (1963). To do

so, he made use of the Newman-Penrose formalism developed by Newman & Penrose

(1962), in which all tensor quantities are projected along a tetrad of null vectors lµ,

mµ, m̄µ, and nµ. This projection reduces various identities involving the Riemann

tensor to a large number of scalar equations, many of which vanish for background

metrics of Petrov Type D which include both Schwarzschild and Kerr. Teukolsky

(1973) derived a single master equation involving Newman-Penrose quantities whose

solutions provided a complete orthogonal basis for arbitrary black hole perturbations.

Techniques for solving this equation were discussed in Teukolsky & Press (1974),

along with its application to the scattering of GWs incident on a black hole. A class

of transformations derived by Sasaki & Nakamura (1982) reformulated the Teukolsky

equation with short-range potential and source function, making its solution more

numerically feasible. Although this Teukolsky-Sasaki-Nakamura (TSN) formalism is

the rigorously correct way to calculate GWs in a strong-field spacetime, Babak et al.

(2005) showed empirically that the more simple, multipole-moment expansion was

sufficiently accurate for qualitative studies of binary inspirals, and I will use this

approach in Chapter 6.

The approval of the Laser Interferometer Gravitational-wave Observatory (LIGO)

in the early 1990’s motivated extensive theoretical effort to calculate accurate gravi-

tational waveforms. These waveforms could be used as templates with which detector

output could be cross-correlated in a matched-filtering scheme. This approach was

outlined in Poisson (1993), where an attempt was made to calculate such waveforms

using the TSN formalism described above. Restricting his attention to circular in-

spirals in the extreme mass-ratio limit µ � M , Poisson determined corrections to

the quadrupole-approximation energy flux and waveform to order (v/c)3. He also

recognized that throughout the binary inspiral – even including the last few orbits

prior to the plunge into the event horizon – the radius of the inspiraling particle is

decaying adiabatically. This is equivalent to the statement that the orbital time scale
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is always much shorter than the inspiral time scale. In the approximation that the ra-

tio of these two time scales is infinitely small, the inspiraling particle can be assumed

to travel along a geodesic and the waveforms calculated by Poisson can be stitched

together over the entire duration of the inspiral. By comparing detector output to

pre-determined templates over the entire course of the inspiral, enough signal-to-noise

can be accumulated to accurately estimate all relevant source parameters such as the

particle masses, orbital eccentricity and inclination, etc. This program for calculat-

ing waveform templates was pursued by many authors following Poisson (1993), with

an important generalization to the orbits of Kerr black holes being investigated by

Hughes (2000). The geodesics of Kerr black holes with spin a are most generally de-

scribed by three constants of the motion: the energy E, z-component of the angular

momentm Lz, and Carter constant

Q = p2
θ + cos2 θ[a2(1 − E2) + L2

z csc2 θ] . (1.31)

Unlike changes in the energy and angular momentum, the change in an inspiraling

particle’s Carter constant cannot be determined from the losses to gravitational ra-

diation, even in the adiabatic limit. The Carter constant is defined from a Killing

tensor of the Kerr spacetime, Q ≡ Qµνp
µpν. The quadratic dependence of the Carter

constant on the inspiraling particle’s four-momentum implies that its rate of change

is determined by the detailed time dependence of the true radiation-reaction force

f ν
RR over each orbital period,

Q̇ = 2Qµνp
µf ν

RR . (1.32)

Hughes (2000) showed that since circular orbits remain circular as GWs are emitted,

the flux in Carter constant could be expressed in terms of the energy and angular mo-

mentum fluxes, Q̇ = Q̇(Ė, L̇z). This constraint allowed Hughes to determine how the

constants {E,Lz, Q} evolve during a binary inspiral from the emitted GWs calculated

in the TSN formalism. In Hughes (2001), the final few years of the binary inspirals

of particles on inclined, circular orbits are investigated using this formalism, and the

waveforms and evolution of radius and inclination angle are determined. The alter-
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native generalization – to orbits in the equatorial plane of a Kerr black hole, but with

nonzero eccentricity – was considered by Glampedakis & Kennefick (2002). In this

case, the Carter constant identically vanishes, so the time evolution of the semilatus

recturm p and eccentricity e can again be determined from the energy and angular

momentum flux in the adiabatic limit. Glampedakis & Kennefick (2002) found that

contrary to earlier expectations, inspiraling test particles can maintain appreciable

eccentricity all the way down to the plunge into the event horizon, and that on the

final orbits, the eccentricity will actually increase prior to plunge. Calculating the

binary inspiral in the most general eccentric, inclined case is still an open research

question. Such a calculation will most likely require an accurate determination of the

true radiation-reaction force, which can in principle be derived from the nonsingular

component of the local gravitational field at the position of the inspiraling particle.

Poisson (2004) provides a current review of efforts to calculate the radiation reaction

in the self-force formalism.

1.2.2 Alternative Compact Objects

Although substantial progress has been made in understanding binary inspirals into

black holes, much less attention has been given to the more general case of inspirals

into some arbitrary compact object. Current observations are fully consistent with

objects much less compact than black holes residing at galactic centers. Such objects

are generically known as boson stars if they are composed of fundamental particles

with integer spins (bosons). Typical boson stars consist of scalar particles supported

against gravity by a variety of model-dependent mechanisms. Extremely light boson

stars can be supported against collapse purely by the Heisenberg uncertainty principle,

while more massive boson stars rely on net rotation or a repulsive self-interaction.

Although no massive scalar fields have yet been discovered, they are an essential

ingredient of the Standard Model of particle physics and its most popular extensions

(Torres et al., 2000). Within the Standard Model, the Higgs boson plays a vital

role in generating masses for the Z0 and W± gauge vector bosons. All particle
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masses implicitly depend on the Higgs mass through loop corrections; in particular,

the observed top quark mass mt = 173.8 ± 5 GeV places an indirect limit on the

Higgs mass of mh = 104+93
−49 GeV (Djouadi et al., 1998). Extensions of the Standard

Model naturally introduce additional massive scalar fields. Supersymmetry, designed

to solve the hierarchy problem of particle masses, posits the existence of a bosonic

partner for each fermion in the Standard Model. Should one of these many bosons be

stable, its expected mass would lie near the supersymmetry-breaking scale msusy ∼ 1

TeV. Massive scalars also arise in string effective supergravity, where the dilaton mass

is expected to be mϕ ' 10−3 (msusy/ TeV)2 eV. Yet another massive scalar found in

particle theory is the axion, the Goldstone boson of Peccei-Quinn symmetry breaking

in QCD. Though nonrelativistic because of its nonthermal production, the axion is

anticipated to be extremely light, mσ & 10−11 eV (Torres et al., 2000). Clearly, an

abundance of boson candidates are suggested by high-energy physics, providing ample

motivation to consider the possibility of a boson star in an astrophysical context.

Despite the twenty-three orders of magnitude spanned by the masses of the bosons

proposed above, different self-interactions can lead to boson stars of (∼ 106M�) for

all these candidates. Torres et al. (2000) classified all models as either mini-boson

stars, boson stars, or soliton stars, depending upon their means of support against

gravitational collapse. The simplest case is that of mini-boson stars, where the mas-

sive scalar field is free and thus, the size is determined by the Compton wavelength

(Friedberg et al., 1987a). Mini-boson stars can attain masses up to those at which

the Compton wavelength equals the Schwarzschild radius. This relation sets an upper

bound on the mini-boson star mass of M ∼ m2
Pl/m. A boson mass as small as 10−16

eV can lead to a mini-boson star of 106M�. The mini-boson star scenario thus allows

extremely light boson masses such as that of the axion to produce compact objects

with masses of astrophysical interest. Scalar fields for more generic boson stars are

not free; a repulsive interaction potential supplements the Heisenberg uncertainty

principle to support the boson star against gravitational collapse. The simple inter-

action potential U(φ) = 1/4λ|φ|4 leads to an increase in the boson star radius by a

factor Λ1/2 ≡ λ1/2mPl/m over that of the mini-boson star (Colpi et al., 1986). The
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Schwarzschild radius of a compact boson star can increase by a similar factor, im-

plying for the dimensionless coupling λ ∼ 1 an upper bound M ∼ m3
Pl/m

2 on the

boson star mass. Boson stars with masses comparable to Sgr A∗ would be produced

by intermediate mass bosons m ' 1 MeV. The soliton star – the third and final

type of boson star – is characterized by a restricted class of interaction potentials

for which bound, stable solutions exist even in the absense of gravity (Lee & Pang,

1992). Without gravity, the potential must have an attractive component for a bound

solution to be energetically favored over free particles. Yet the potential must be re-

pulsive at large field values for the vacuum to be stable. The simplest potential that

satisfies these criteria is an even sixth-order polynomial with a negative fourth-order

term (Friedberg et al., 1987b). Compact soliton stars in this model have masses less

than M ∼ m4
Pl/m

3. This limit is enhanced by a factor mPl/m over that for a λ|φ|4

potential, requiring a yet more massive boson (m ' 10TeV) to produce a 106M�

compact object. As this boson mass is closest to that of the Higgs and the supersym-

metry scale, I used this particular model for quantitative comparisons in Chapter 6.

This restriction is not constraining, since all boson stars of a given mass should have

similar astrophysical properties.

1.2.3 Signatures of New Geometry

How might one distinguish the GWs produced during inspirals into black holes and bo-

son stars? This project was first seriously considered by Ryan (1995), who restricted

his attention to the vacuum spacetime outside axisymmetric bodies with reflection

symmetry about the equatorial plane. In this case, the spacetime can be fully spec-

ified by two infinite series of multipole moments. The use of multipole moments to

characterize vacuum metrics was first proposed by Geroch (1970), who proved that

an arbitrary static, asymptotically flat, vacuum spacetime could be described by a

series of symmetric, trace-free tensors P, Pa, Pab, . . . at spatial infinity. This approach

had the advantages that it was coordinate-independent and offered a ready classical

analogy with Newtonian gravitational fields with the same multipole moments. It
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also appeared to be physically meaningful in that the Schwarzschild solution corre-

sponded to the spacetime with vanishing multipole moments beyond the monopole.

Hansen (1974) extended this approach to stationary spacetimes, for which two sets

of multipole moments, the mass and angular momentum moments, were required for

full generality. He then showed that axisymmetry constrained the tensor structure of

these multipole moments, so that all the information could be contained in two series

of scalar multipole moments. Reflection symmetry about the equatorial plane then

required that the odd mass and even angular momentum multipoles must vanish.

Hansen calculated the multipole moments of the Kerr spacetime as a concrete exam-

ple of this formalism. Ryan (1995) applied these results to the calculation of the GW

spectrum produced by the binary inspiral of a test particle along a circular, equatorial

orbit of such an axisymmetric vacuum spacetime. He derived a power-series expan-

sion in the post-Newtonian parameter v/c = (πGMf/c3)1/3 for ∆E(f), the energy E

emitted per logarithmic interval of the frequency f . The coefficients of this expansion

are the multipole moments of the spacetime of the central object, so in principle, if the

GW spectrum was observed, one could simply read off the multipole moments. The

“no hair” theorem implies that all black holes are described by the Kerr geometry,

a two-parameter family characterized by the mass and spin. The first two nonvan-

ishing multipole moments uniquely constrain these quantities, so the measurement of

higher multipole moments should be able to definitively determine whether the cen-

tral object is indeed a black hole. Ryan (1997a) applied this formalism to a rapidly

spinning boson star with a quartic interaction potential U(φ) = 1/4λ|φ|4 as described

by Colpi et al. (1986). The rotation induced a mass quadrupole moment M2 in the

spinning boson star much larger than that of a Kerr black hole of equivalent mass

M and spin S1. The particular boson star studied by Ryan had −M2M/S2
1 ' 24,

in stark contrast to the corresponding value −M2M/S2
1 = 1 for a Kerr black hole.

Such a difference would be manifestly apparent to a GW experiment with sufficient

signal-to-noise. The issue of how well a real experiment such as LIGO or the Laser

Interferometer Space Antenna (LISA) could actually measure the mulitpole moments

was addressed in Ryan (1997b). He found that LIGO would be largely unable to mea-
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sure the higher multipole moments because of the relatively small number (∼ 11, 000)

of cycles between when the inspiral enters the LIGO band and the final plunge. In

contrast, LISA would observe ∼ 4.2 × 105 cycles over a two-year period and could

thus constrain S1 and M2 to .13% and 1.5%, respectively for inspirals with S/N = 10.

Recent work has focused on the practical difficulties in implementing Ryan’s pro-

gram for determining multipole-moment structure, and on other complementary sig-

nals of departures from general relativity. One such difficulty is the lack of model-

independent alternatives to black holes with which one might compare the standard

black-hole results. Collins & Hughes (2004) developed a formalism for determining

the spacetimes of bumpy black holes: objects with atypical multipole-moment struc-

tures that will reduce to Kerr black holes in a natural limit. This is in contrast to

the specific boson-star models employed by Ryan (1997a) and myself in Chapter 6

that are fundamentally distinct objects that cannot be continuously perturbed into

black holes. The bumpy black holes proposed by Collins and Hughes are well defined

in the strong-field region, making them suitable for calculating the GWs produced

during the final orbits before plunge. Another new development is the investigation

by Dreyer et al. (2004) of the quasi-normal modes (QNMs) associated with the ring-

down of a Kerr black hole immediately following a merger event. The frequency and

damping time of each mode constrain the mass and spin of the black hole, so mea-

surements of a spectrum of different modes from a single merger would overdetermine

these parameters. This amounts to a consistency test of the “no hair” theorem, vio-

lations of which would indicate deviations from general relativity or that the object

was not a true black hole. Dreyer et al. (2004) found that the ringdowns of massive

black-hole mergers expected to be observed by LISA should have enough signal-to-

noise to provide such a test. Fang & Lovelace (2005) proposed a second effect that

might differentiate true black holes from other massive compact objects. The tidal

field Eij of the inspiraling test particle should induce a time-varying mass quadrupole

moment

Iij =
32

45
M6Ėij (1.33)
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in the central black hole, which should both emit GWs itself and also exert a force

on the inspiraling particle, altering its trajectory. Such effects could, in principle,

be identified in sufficiently accurate measurements of the GW spectrum. Alternative

compact objects like boson stars should have very different induced mass quadrupole

moments, providing a handle by which they could be distinguished from black holes.

In Kesden et al. (2005), Chapter 6 of this thesis, I examine yet another such handle:

the lack of an event horizon for compact objects like boson stars. An inspiraling test

particle interacting purely gravitationally with the compact objects could continue

to emit GWs even after falling within the innermost stable orbit. I calculate the

waveform produced immediately after the fall, and discuss how it is qualitatively

different from any conceivable black-hole waveform. These new tests of black-hole

spacetimes, when brought to bear on the signals that will hopefully be detected by

LIGO, LISA, and other GW observatories in the near future, offer the hope of greatly

advancing our knowledge of general relativity and new physics.



39

Chapter 2

Lensing Reconstruction with CMB

Temperature and Polarization

Reprinted with permission from M. Kesden, A. Cooray, and M. Kamionkowski Phys.

Rev. D 67, 123507 (2003).

Weak gravitational lensing by intervening large-scale structure induces a distinct

signature in the cosmic microwave background (CMB) that can be used to reconstruct

the weak-lensing displacement map. Estimators for individual Fourier modes of this

map can be combined to produce an estimator for the lensing-potenial power spec-

trum. The naive estimator for this quantity will be biased upwards by the uncertainty

associated with reconstructing individual modes; we present an iterative scheme for

removing this bias. The variance and covariance of the lensing-potenial power spec-

trum estimator are calculated and evaluated numerically in a ΛCDM universe for

Planck and future polarization-sensitive CMB experiments.

2.1 Introduction

The primordial cosmic microwave background (CMB) was generated when photons

first decoupled from the baryonic fluid when the universe was only 400,000 years

old. The vast majority of these photons travel unperturbed to the present day, and

features of their angular power spectrum such as acoustic peaks and the damping

tail (Peebles & Yu, 1970; Sunyaev & Zel’dovich, 1970; Silk, 1968; Hu & Dodelson,

2002) record valuable information about cosmological parameters (Jungman et al.,
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1996; Bond et al., 1997; Zaldarriaga et al., 1997; Eisenstein et al., 1999). Baryons

and dark matter evolve from small inhomogeneities at decoupling into increasingly

complicated large-scale structure which can subtly perturb the observed pattern of

CMB anisotropies. Assuming that the primordial CMB is Gaussian, non-Gaussian

correlations in the observed map can be used to reconstruct the intervening large-

scale structure (Seljak & Zaldarriaga, 1999a; Zaldarriaga & Seljak, 1998). In addition

to the importance of learning about the large-scale structure itself, reconstruction of

the weak-lensing potential generated by structure is essential to constraining tensor

perturbations. Weak lensing converts a fraction of the E-mode polarization generated

by scalar perturbations at the last-scattering surface into B-mode polarization in the

observed map. Only by subtracting this B-mode polarization can one conclusively

detect the primordial B-modes which serve as a model-independent signal of tensor

perturbations (Kesden et al., 2002b; Knox & Song, 2002).

Understanding lensing reconstruction requires a more detailed discussion of how

weak lensing affects the CMB. Weak gravitational lensing deflects the paths of CMB

photons as they travel from the last-scattering surface to the observer. This deflection

is accomplished by a projected lensing potential which is a weighted line-of-sight

integral of the gravitational potential between the observer and the surface of last-

scattering. At each point on the sky, lensing remaps the temperature and polarization

to that of a nearby point at the last-scattering surface, the deflection angle being

the gradient of the aforementioned projected lensing potential. Assuming that this

deflection angle is small, the temperature at any point can be expanded in a Taylor

series in the gradient of the lensing potential. In Fourier space, this expansion appears

as a series of convolutions of individual temperature and projected potential modes.

The observed temperature-squared map in Fourier space also appears as a convolution

of individual Fourier modes. Subject to an overall normalization dependent on the

scale of the Fourier mode, these convolutions cancel in such a manner that each

Fourier mode of the temperature-squared map acts as an estimator for the same

Fourier mode of the projected lensing potential.

Lensing reconstruction as outlined above has been considered previously (Hu,
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2001a; Hu & Okamoto, 2002). In these works, two sources of noise were identified,

and a filter of the temperature-squared map in Fourier space was chosen to minimize

the variance associated with lensing reconstruction subject to these noise sources.

The first source is intrinsic signal variance; the observed large-scale structure is one

arbitrary member of an ensemble of realizations allowed by theory. The second source

of noise, endemic to this method of lensing reconstruction, is a consequence of the

nature of the primordial CMB. Like the large-scale structure itself, the pattern of

CMB anisotropies at the last-scattering surface is only one of many possible realiza-

tions allowed by theory. We do not know a priori which of these realizations nature

has provided us, and this uncertainty hinders our ability to deconvolve the effects of

lensing from true anisotropies at the last-scattering surface. Even if the true pattern

of anisotropies at the last-scattering surface was known, the finite amount of power

in the CMB at small scales would still constrain lensing reconstruction. Silk damp-

ing at the last-scattering surface suppresses CMB power at small scales, while the

finite resolution of any real experiment would limit the detection of any signal that

is present at small scales. Lensing reconstruction fails below scales at which there is

sufficient power, for the same reason that any remapping is indistinguishable, given

a uniform background.

Here, we consider a third source of noise neglected in previous studies. The filtered

temperature-squared map is an unbiased estimator for the lensing potential in the ap-

proximation that a correlation between two given temperature modes is induced only

by the single lensing mode whose wavevector is the sum of that of the two temperature

modes. In actuality, any combination of two or more lensing modes whose wavevec-

tors sum to this total induce correlations between the two temperature modes. There

are many such combinations, but since these correlations add incoherently, we do not

expect a systematic bias. Nonetheless, for estimators of each individual lensing mode,

we must use our knowledge of other lensing modes to subtract off this unwanted bias.

This is an iterative process, and since our knowledge of the lensing map is imperfect,

it induces noise in lensing reconstruction. We calculate this additional variance for

various estimators constructed from CMB temperature and polarization maps, and
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show how it compares to the dominant noise sources for an all-sky CMB experiment

with a noise-equivalent temperature of 1 µK
√

sec. Since the lensing-potential power

spectrum is a measure of the theoretical uncertainty with which we can predict the

value of a given lensing mode, this noise associated with lensing reconstruction causes

a systematic overestimation of the lensing-potential power spectrum. This system-

atic bias must be accounted for in order to compare observations with theoretical

predictions.

This paper is organized as follows. In § 2.2, we define the formalism we will

use to explore the effects of weak lensing on the CMB. The Taylor expansion of

the lensed CMB map in gradients of the lensing potential is given in both real and

Fourier space, and the power spectra and trispectra of various components of the

CMB temperature map are listed for later use. In § 2.3, we show that the Fourier

modes of the temperature-squared map, when properly filtered, can serve as esti-

mators for the Fourier modes of the displacement map with the same wave vector.

Using the power spectrum and trispectrum given in the preceding Section, we calcu-

late the variance associated with this estimator including a new component neglected

in previous studies. This variance is evaluated numerically using the currently fa-

vored ΛCDM cosmological model with baryon density Ωb = 0.05, cold dark matter

density Ωcdm = 0.30, cosmological constant density ΩΛ = 0.65, Hubble parameter

h=0.65, and power-spectrum amplitude σ8 = 0.9. We then use the displacement

estimator for individual Fourier modes to construct an unbiased estimator for the

lensing-potential power spectrum in § 2.4, and calculate the variance and covariance

associated with this estimator. A few concluding remarks about the implications of

our work for future studies are given in § 2.5. The Appendix contains useful formulae

related to additional estimators of lensing based on polarization and a combination

of temperature and polarization.



43

2.2 Weak Lensing of the CMB

We consider weak lensing under the flat-sky approximation following Bernardeau

(1997); Zaldarriaga (2000); Hu (2000a). As discussed before (Hu, 2000a; Spergel &

Goldberg, 1999; Goldberg & Spergel, 1999; Cooray & Hu, 2000; Zaldarriaga & Seljak,

1999; Peiris & Spergel, 2000), weak lensing deflects the path of CMB photons resulting

in a remapping of the observed temperature pattern on the sky

Θ̃(n̂) = Θ[n̂ + ∇φ(n̂)]

≈ Θ(n̂) + ∇iφ(n̂)∇iΘ(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ(n̂) + . . . (2.1)

where Θ(n̂) is the unlensed primary component of the CMB in a direction n̂ at the

last scattering surface. The observed, gravitationally-lensed temperature map Θ̃(n̂)

in direction n̂ is that of the unlensed map in direction n̂ + ∇φ(n̂) where ∇φ(n̂)

represents the lensing deflection angle or displacement map. Although a real CMB

map will include secondary contributions such as the SZ effect (Sunyaev & Zel’dovich,

1980), we assume that such effects can be distinguished by their frequency dependence

(Cooray et al., 2000). They will not be further considered in this paper. A noise

component denoted by Θn(n̂) due to finite experimental sensitivity must be included

as well. Thus, the total observed CMB anisotropy will be Θt(n̂) = Θ̃(n̂) + Θn(n̂).

Taking the Fourier transform of the lensed map Θ̃(n̂) under the flat-sky approxi-

mation, we write

Θ̃(l) =

∫
dn̂ Θ̃(n̂)e−il·n̂

= Θ(l) −
∫

d2l′

(2π)2
Θ(l′)L(l, l′) , (2.2)

where

L(l, l′) ≡ φ(l − l′) [(l − l′) · l′] +
1

2

∫
d2l′′

(2π)2
φ(l′′) (2.3)

×φ(l − l′ − l′′) (l′′ · l′) [(l′′ + l′ − l) · l′] + . . .
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CMB correlations in Fourier space can be described in terms of a power spectrum

and trispectrum as defined in the usual manner

〈
Θi(l1)Θ

i(l2)
〉

≡ (2π)2δD(l1 + l2)C
i
l ,

〈
Θi(l1) . . .Θ

i(l4)
〉

c
≡ (2π)2δD(l1 + l2 + l3 + l4)T

i(l1, l2, l3, l4) ,

(2.4)

where the angle brackets denote ensemble averages over possible realizations of the

primordial CMB, large-scale structure between the observer and the surface of last-

scattering, and instrumental noise. The subscript c denotes the connected part of

the four-point function, and the superscript i denotes the temperature map being

considered (Θt, Θ̃, or Θn). The lensing-potential power spectrum can be defined

analogously as

〈φ(l)φ(l′)〉LSS = (2π)2δD(l + l′)Cφφ
l , (2.5)

where the angle brackets denote an average over all realizations of the large-scale

structure. We make the assumption that primordial fluctuations at the last-scattering

surface are Gaussian. Gaussian statistics are fully described by a power spectrum; the

Gaussian four-point correlator, 〈Θ(l1) . . .Θ(l4)〉c is zero. The instrumental noise Θn

is also assumed to be Gaussian, as is the lensing potential φ. This second assumption

is justified because the dominant contributions to the lensing potential come from

intermediate redshifts 1 . z . 3 at which linear theory holds.

Using these definitions, we can calculate the anticipated power spectrum and

trispectrum of the observed CMB map. Because the instrumental noise is uncorre-

lated with the signal, the power spectrum of the observed map is the sum of signal

and noise power spectra,

CΘΘt
l = C̃ΘΘ

l + CΘΘn
l . (2.6)

The power spectrum of the noise component is given by:

CΘΘn
l = fskyw

−1el2σ2
b , (2.7)
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where fsky is the fraction of the sky surveyed, w−1 is the variance per unit area on

the sky, and σb = θ/
√

8 ln 2 is the effective beamwidth of the instrument expressed in

terms of its full-width half-maximum resolution θ. A CMB experiment that spends

a time tpix examining each of Npix pixels with detectors of sensitivity s will have

a variance per unit area w−1 = 4π(s/TCMB)2/(tpixNpix) (Knox, 1995). The power

spectrum of the lensed CMB can be determined by inserting Eq. (2.2) into Eq. (2.4)

as discussed in Hu (2000a)

C̃ΘΘ
l =

[
1 −

∫
d2l1

(2π)2
Cφφ

l1
(l1 · l)2

]
CΘΘ

l +

∫
d2l1

(2π)2
CΘΘ

|l−l1|C
φφ
l1

[(l − l1) · l1]2 .(2.8)

This result is given to linear order in the lensing-potential power spectrum Cφφ
l .

Lensing neither creates nor destroys power in the CMB, but merely shifts the scales

on which it occurs as seen by the fact that

σ̃2 =

∫
d2l

(2π)2
C̃ΘΘ

l =

∫
d2l

(2π)2
CΘΘ

l = σ2 . (2.9)

The observed CMB trispectrum can be calculated in a similar manner; under our as-

sumptions of Gaussian instrumental noise and no secondary anisotropies, the trispec-

trum of the lensed component Θ̃ is the sole contribution to the total observed trispec-

trum

T t(l1, l2, l3, l4) = T̃Θ(l1, l2, l3, l4)

= −CΘΘ
l3 CΘΘ

l4

[
Cφφ

|l1+l3|
[(l1 + l3) · l3][(l1 + l3) · l4]

+Cφφ
|l2+l3|

[(l2 + l3) · l3][(l2 + l3) · l4]
]

+ Perm. . (2.10)

The term shown above is manifestly symmetric under the interchange l1 ↔ l2, while

the “+ Perm.” represents five additional terms identical in form, but with the re-

placement of (l1, l2) and (l3, l4) with the other five combinations of pairs. The total

trispectrum is symmetric under the interchange of any given pair as one would ex-

pect. Having established a formalism within which to analyze weak lensing, we now
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consider the problem of reconstructing the lensing potential from an observed CMB

temperature map.

2.3 Lensing-Potential Estimators

In this Section, we examine lensing reconstruction following the approach of Hu &

Okamoto (2002), largely adopting their notation as well. The only important differ-

ence in notation is that we use Θ̃ to denote the lensed temperature field and Θ for the

unlensed field following Hu (2000a) and most recent papers. Hu & Okamoto (2002)

used the opposite convention. For l 6= −l′ and to linear order in φ,

〈Θt(l)Θt(l′)〉CMB = fΘΘ(l, l′)φ(L) , (2.11)

where

fΘΘ(l, l′) ≡ CΘΘ
l (L · l) + CΘΘ

l′ (L · l′) , (2.12)

and L = l+ l′. Note that 〈 〉CMB differs from the unmarked 〈 〉 that first appeared

in Eq. (2.4) in that it denotes an ensemble average only over different Gaussian re-

alizations of the primordial CMB and instrument noise; a fixed realization of the

large-scale structure is assumed. For the purposes of estimating the large-scale struc-

ture actually realized in our observable universe, this is the appropriate average to

take to ensure that our estimators are truly unbiased for a typical realization of the

primordial CMB. When calculating the noise associated with lensing-potential es-

timators and again for power spectrum estimation in § 2.4, we will return to the

full unmarked ensemble average. Eq. (2.11), an immediate consquence of Eq. (2.2),

suggests that a temperature-squared map appropriately filtered in Fourier space can

serve as an estimator for the deflection field d(L) ≡ iLφ(L). Hu and Okamoto define

five different estimators for the deflection field constructed from various combinations

of the temperature and polarization; we discuss the temperature-squared estimator

in this Section and relegate the analogous formulae for polarization estimators to the

Appendix. The minimum-variance temperature-squared estimator derived in Hu &
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Okamoto (2002) is

dΘΘ(L) ≡ iLAΘΘ(L)

L2

∫
d2l1

(2π)2
Θt(l1)Θ

t(l2)FΘΘ(l1, l2) , (2.13)

where

FΘΘ(l1, l2) ≡
fΘΘ(l1, l2)

2CΘΘt
l1

CΘΘt
l2

, (2.14)

AΘΘ(L) ≡ L2

[∫
d2l1

(2π)2
fΘΘ(l1, l2)FΘΘ(l1, l2)

]−1

, (2.15)

and l2 = L− l1. Substitution of Eqs. (2.11), (2.12), (2.14), and (2.15) into Eq. (2.13)

shows the desired result,

〈dΘΘ(L)〉CMB = d(L) , (2.16)

namely that dΘΘ(L) is indeed an unbiased estimator for the deflection field in Fourier

space. We now proceed to calculate the variance of this estimator. At first, we assume

a complete knowledge of all lensing modes not examined by this estimator. In that

case, we find

〈d∗
ΘΘ(L) · dΘΘ(L′)〉CMB − 〈d∗

ΘΘ(L)〉CMB · 〈dΘΘ(L′)〉CMB =

(L · L′)
AΘΘ(L)

L2

AΘΘ(L′)

L′2

×
∫

d2l1

(2π)2

∫
d2l′1
(2π)2

〈Θt(−l1)Θ
t(−l2)Θ

t(l1
′)Θt(l2

′)〉CMBFΘΘ(l1, l2)FΘΘ(l1
′, l2

′)

−d∗(L) · d(L′) ,

(2.17)
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where l2
′ = L′ − l1

′. Evaluating the four-point function in the integrand of Eq. (2.17)

to second order in the lensing field, we obtain

〈Θt(−l1)Θ
t(−l2)Θ

t(l1
′)Θt(l2

′)〉CMB =

[(
CΘΘ

l1 + CΘΘn
l1

)
(2π)2δD(L)

+φ(−L)fΘΘ(l1, l2)

−
∫

d2l′

(2π)2
CΘΘ

l′ φ(−l1 − l′)φ(−l2 + l′)
[
l′ · (l1 + l′)

][
l′ · (l2 − l′)

]

−1

2

∫
d2l′

(2π)2
φ(l′)φ(−L − l′)

{
CΘΘ

l1 (l1 · l′)
[
l1 · (L + l′)

]
+ CΘΘ

l2 (l2 · l′)
[
l2 · (L + l′)

]}]

×
[(
CΘΘ

l′
1

+ CΘΘn
l′
1

)
(2π)2δD(L′) + φ(L′)fΘΘ(l1

′, l2
′)

−
∫

d2l′

(2π)2
CΘΘ

l′ φ(l1
′ − l′)φ(l2

′ + l′)
[
l′ · (l1′ − l′)

][
l′ · (l2′ + l′)

]

+
1

2

∫
d2l′

(2π)2
φ(l′)φ(L′ − l′)

{
CΘΘ

l′
1

(l1
′ · l′)

[
l1

′ · (l′ − L′)
]
+ CΘΘ

l′
2

(l2
′ · l′)

[
l2

′ · (l′ − L′)
]}]

+Perm. (2.18)

The terms given explicitly in Eq. (2.18) correspond to the correlations between

Θt(−l1) and Θt(−l2) and those between Θt(l1
′) and Θt(l2

′). The “+ Perm.” stands for

two additional terms, identical in form, arising from the pairings 〈Θt(−l1)Θ
t(l1

′)〉CMB

〈Θt(−l2)Θ
t(l2

′)〉CMB and 〈Θt(−l1)Θ
t(l2

′)〉CMB 〈Θt(−l2)Θ
t(l1

′)〉CMB. This expression

indicates how uncertainty in the CMB at the last-scattering surface propagates into

uncertainty in lensing reconstruction for a particular realization φ(L) of the large-

scale structure. To linear order in Eq. (2.18), correlations between the modes Θt(−l1),

Θt(−l2), Θt(l1
′), and Θt(l2

′) are induced by those lensing modes whose wavevectors

are the sums of any pair of wavevectors of these four modes. These lensing modes

are precisely those forming the diagonals of the quadrilaterals depicted in Fig. 2.1. In

practice, we do not know the large-scale structure between us and the last-scattering

surface, so we assume a variance given by Eq. (2.5) with a model-dependent power

spectrum Cφφ
L . We must average Eq. (2.17) over different realizations of the large-scale
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Figure 2.1: The two quadrilaterals consistent with the constraint L − L′ = l1 +
l2 − l1

′ − l2
′ = 0 for the variance of the estimator dΘΘ(L). The lensing modes

φ(L), φ(l1 − l1
′), and φ(l1 − l2

′) – depicted as diagonals in the above quadrilaterals –
induce non-Gaussian couplings between the modes of the observed temperature map
represented as sides of these quadrilaterals. They lead to the three groups of linear
terms appearing in Eq. (2.18).

structure (denoted by 〈 〉LSS) to obtain the total expected variance of our estimator,

〈
〈d∗

ΘΘ(L) · dΘΘ(L′)〉CMB − 〈d∗
ΘΘ(L)〉CMB · 〈dΘΘ(L′)〉CMB

〉
LSS

=

(L · L′)
AΘΘ(L)

L2

AΘΘ(L′)

L′2

×
∫

d2l1

(2π)2

∫
d2l′1
(2π)2

〈Θt(−l1)Θ
t(−l2)Θ

t(l1
′)Θt(l2

′)〉FΘΘ(l1, l2)FΘΘ(l1
′, l2

′)

−(2π)2δD(L − L′)Cdd
L ,

(2.19)

where

〈d∗(L) · d(L′)〉 = (2π)2δD(L − L′)Cdd
L = (2π)2δD(L − L′)L2Cφφ

L . (2.20)

The assumption that the lensing potential is Gaussian imposes the constraint L−L′ =

l1 + l2 − l1
′ − l2

′ = 0 which closes the quadrilaterals of Fig. 2.1. The average of the

four-point correlation function in Eq. (2.19) can be calculated by further averaging



50

Eq. (2.18) over the large-scale structure. Terms linear in the lensing field vanish when

averaged over different realizations of the large-scale structure. Quadratic terms in

the lensing field arise as products either of two linear terms or of a zeroth and second-

order term. Averages over the product of two linear terms produce the connected

part of the four-point correlation function, the trispectrum defined in Eq. (2.4). Av-

erages over the product of a zeroth and second-order term have no connected portion,

but instead, furnish an implicit dependence on Cφφ
L in the total observed power spec-

trum of Eq. (2.6). The final result of averaging over the large-scale structure can be

expressed in terms of the observed power spectrum and trispectrum,

〈Θt(−l1)Θ
t(−l2)Θ

t(l1
′)Θt(l2

′)〉 = (2π)4
[
CΘΘt

l1 CΘΘt
l′
1

δD(L)δD(L′)

+CΘΘt
l1

CΘΘt
l2

{
δD(l1

′ − l1)δD(l2
′ − l2)

+δD(l2
′ − l1)δD(l1

′ − l2)
}

+(2π)−2T t(−l1,−l2, l1
′, l2

′)δD(L − L′)
]
,

(2.21)

where the trispectrum can written in terms of fΘΘ(l1, l2) as

T t(l1, l2, l3, l4) = Cφφ
|l1+l2|

fΘΘ(l1, l2)fΘΘ(l3, l4) + Cφφ
|l1+l3|

fΘΘ(l1, l3)fΘΘ(l2, l4)

+Cφφ
|l1+l4|

fΘΘ(l1, l4)fΘΘ(l2, l3) . (2.22)

This form of the trispectrum is consistent with that of Eq. (2.10) given directly in

terms of power spectra. Since L 6= 0, δD(L) = 0 and the first term of Eq. (2.21)

vanishes. The remaining two terms containing pairs of delta functions, inserted into

Eq. (2.19), yield the dominant contribution to the variance

〈
〈d∗

ΘΘ(L) · dΘΘ(L′)〉CMB − 〈d∗
ΘΘ(L)〉CMB · 〈dΘΘ(L′)〉CMB

〉
LSS

=

(2π)2δD(L − L′)[N
(0)
ΘΘ,ΘΘ(L) + . . . ] , (2.23)
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where N
(0)
ΘΘ,ΘΘ(L) = AΘΘ(L). Notice that N

(0)
ΘΘ,ΘΘ(L) is zeroth order in the lensing

potential φ; it depends on the lensing potential power spectrum Cφφ
l only implicitly

through the total observed power spectrum CΘΘt
l . The ellipsis represents terms of

higher order in Cφφ
l that we now proceed to calculate. These terms arise from the

trispectrum term of Eq. (2.21) after 〈〈d∗
ΘΘ(L)〉CMB ·〈dΘΘ(L′)〉CMB〉LSS = (2π)2 δD(L−

L′) Cdd
L is removed. Substituting these results into Eq. (2.19), we find that to first

order in Cφφ
l

〈
〈d∗

ΘΘ(L) · dΘΘ(L′)〉CMB − 〈d∗
ΘΘ(L)〉CMB · 〈dΘΘ(L′)〉CMB

〉
LSS

=

(2π)2δD(L − L′)[N
(0)
ΘΘ,ΘΘ(L) +N

(1)
ΘΘ,ΘΘ(L)] , (2.24)

where N
(1)
ΘΘ,ΘΘ(L) is given by

N
(1)
ΘΘ,ΘΘ(L) =

A2
ΘΘ(L)

L2

∫
d2l1

(2π)2

∫
d2l′1
(2π)2

FΘΘ(l1, l2)FΘΘ(l1
′, l2

′)

×
{
Cφφ

|l1−l1
′|
fΘΘ(−l1, l1

′)fΘΘ(−l2, l2
′) + Cφφ

|l1−l2
′|
fΘΘ(−l1, l2

′)fΘΘ(−l2, l1
′)
}
.

(2.25)

The first-order contribution to the noise N
(1)
ΘΘ,ΘΘ(L) involves integrals over the lensing-

potential power spectrum, and thus, probes lensing modes with wave vectors different

from that of the estimator dΘΘ(L). It can be interpreted physically as interference

from these other modes in the determination of the mode d(L) being estimated. The

filter FΘΘ(l1, l2) was chosen to optimize the signal-to-noise ratio in the absence of the

first-order contributionN
(1)
ΘΘ,ΘΘ(L); it is no longer an optimal filter once this additional

noise is taken into account. As long as N
(1)
ΘΘ,ΘΘ(L) � N

(0)
ΘΘ,ΘΘ(L), the noise reduction

that can be attained by re-optimizing our filter will not be significant. Formulas

analagous to those presented here relevant to the construction of estimators using

polarization data are given in the Appendix.

The significance ofN
(1)
ΘΘ,ΘΘ(L) for two different experiments is shown in Fig. 2.2 us-

ing the currently favored ΛCDM cosmological model with baryon density Ωb = 0.05,

cold dark matter density Ωcdm = 0.30, cosmological constant density ΩΛ = 0.65,
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Figure 2.2: Variances with which individual modes d(L) of the deflection field can
be reconstructed by the Planck and reference experiments described in the text. The
solid curves are the power spectra Cdd

L anticipated for our ΛCDM cosmological model.
The upper and lower dashed curves are the zeroth and first-order noise power spec-
tra N

(0)
ΘΘ,ΘΘ(L) and N

(1)
ΘΘ,ΘΘ(L), respectively, for the temperature-based estimator,

dΘΘ(L), while the dotted curves are the corresponding noise variances for dEB(L).
A mode d(L) cannot be reconstructed with signal-to-noise greater than unity when

Cdd
L 6 N

(0)
ΘΘ,ΘΘ(L) +N

(1)
ΘΘ,ΘΘ(L).

Hubble parameter h=0.65, and power-spectrum amplitude σ8 = 0.9. The Planck

experiment is equivalent to a one-year, full-sky survey with temperature and polar-

ization sensitivities of 12.42 and 26.02 µK
√

sec, respectively and resolution θ = 7.0

arcminutes as described in § 2.2. The reference experiment has the same resolution,

but superior sensitivities of 0.46 and 0.65 µK
√

sec for temperature and polarization.

These estimates of experimental parameters are identical to those given for the Planck

and reference experiments of Hu & Okamoto (2002). The ΘE and EE estimators have

noise power spectra intermediate to those of the ΘΘ and EB estimators, while the

ΘB estimator has substantially higher noise because the primordial CMB lacks true
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B-modes in the absence of inflationary gravitational waves. We see that for Planck,

with its comparatively inferior polarization sensitivity, the ΘΘ estimator will be best,

although it will be unable to detect individual Fourier modes of the deflection field

at the 1σ level. The reference experiment, and further experiments with similar sen-

sitivity and even higher resolution, should be able to push 1σ detection of individual

d(L) modes to L ' 1000 by primarily relying on the EB estimator. In these cases,

the secondary noise N
(1)
EB,EB(L) is only smaller than the dominant noise N

(0)
EB,EB(L)

by a factor of a few, whereas for higher sensitivity (noisier) experiments like Planck,

it is smaller by at least an order-of-magnitude. This illustrates an interesting point,

apparent from Fig. 2.2, that the zeroth-order noise N
(0)
ΘΘ,ΘΘ(L) declines dramatically

with decreasing sensitivity until it becomes dominated by cosmic variance while the

N
(1)
ΘΘ,ΘΘ(L) is largely unaffected by instrument sensitivity. The reasons for this trend

are that instrument noise appears in N
(0)
ΘΘ,ΘΘ(L) = AΘΘ(L) through its contribution

to the denominator of FΘΘ(l1, l2) as shown by Eqs. (2.14) and (2.15). Decreasing

instrument noise raises the value of FΘΘ(l1, l2), thereby lowering N
(0)
ΘΘ,ΘΘ(L). By con-

trast, instrument noise is reflected in N
(1)
ΘΘ,ΘΘ(L) through its effects on both AΘΘ(L)

and FΘΘ(l1, l2), as shown in Eq. (2.25). Smaller instrument noise raises FΘΘ(l1, l2)

as before – driving N
(1)
ΘΘ,ΘΘ(L) up in this case – but this is compensated by a de-

crease in AΘΘ(L) which appears as a pre-factor outside the integrals. These two

effects largely cancel each other out, rendering N
(1)
ΘΘ,ΘΘ(L) remarkably insensitive to

instrument noise.

2.4 Power Spectrum Estimation

Although complete reconstruction of the deflection field d(L) is essential for purposes

such as B-mode subtraction (Kesden et al., 2002b; Knox & Song, 2002), sometimes

estimates of the lensing-potential power spectrum Cφφ
L are sufficient. This power

spectrum is a model-dependent prediction of theories of large-scale structure forma-

tion, and therefore, estimates of the power spectrum from real data could be used to

test these theories, as well as the consistency of other determinations of cosmological
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parameters. Furthermore, since estimates of all the modes d(L) with |L| = L can

be combined to estimate Cφφ
L , 1σ detection of the power spectrum can be pushed

to much higher L than can that of individual modes. The deflection-field estimator

dΘΘ(L) derived in the preceding Section can be used to construct an estimator for

Cφφ
L . Our first guess for an appropriate lensing-potential power spectrum estimator

is

DL ≡ (2π)2

AL2

1

2πL∆L

∫

aL

d2l

(2π)2
dΘΘ(l) · dΘΘ(−l) , (2.26)

where A is the area of the sky surveyed and aL is an annulus of radius L and width

∆L. We ensemble average our estimator over different realizations of the CMB and

large-scale structure using Eq. (2.24) by bringing 〈〈d∗
ΘΘ(L)〉CMB · 〈dΘΘ(L′)〉CMB〉LSS

from the left to the right-hand side. This yields

〈DL〉 =
(2π)2

AL2

1

2πL∆L
δD(0)

∫

aL

d2l
[
l2Cφφ

l +N
(0)
ΘΘ,ΘΘ(l) +N

(1)
ΘΘ,ΘΘ(l)

]
. (2.27)

The definition of the Dirac delta function,

(2π)2δD(l) ≡
∫

A

dn̂ eil·n̂ , (2.28)

implies that δD(0) = A/(2π)2. Furthermore, in the limit that ∆L is small compared

to the scales on which l2Cφφ
l +N

(0)
ΘΘ,ΘΘ(l) +N

(1)
ΘΘ,ΘΘ(l) is varying, we can evaluate the

integrand of Eq. (2.27) at its central value l = L and extract it from the integral. The

integral over the annulus aL cancels the factor 2πL∆L in the denominator, reducing

Eq. (2.27) to

〈DL〉 = Cφφ
L + L−2

[
N

(0)
ΘΘ,ΘΘ(L) +N

(1)
ΘΘ,ΘΘ(L)

]
. (2.29)

DL is indeed an estimator for the lensing-potential power spectrum Cφφ
L , albeit a

biased one. Note that the bias in the power-spectrum estimator DL is precisely the

same as the variance shown in Eq. (2.24) with which we were able to determine

each individual lensing mode. This is no coincidence; it reflects the fact that there

are no grounds a priori on which to differentiate the variance with which we can
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reconstruct individual modes d(L) from the intrinsic variance Cdd
L of the underlying

distribution from which they are drawn. To obtain an unbiased estimator to compare

with theoretical predictions, we subtract off this unwanted reconstruction variance

Ĉφφ
L ≡ DL − L−2

[
N

(0)
ΘΘ,ΘΘ(L) +N

(1)
ΘΘ,ΘΘ(L)

]
. (2.30)

Since N
(1)
ΘΘ,ΘΘ(L) as defined in Eq. (2.25) itself depends on Cφφ

L , this subtraction and

evaluation must be performed iteratively until a self-consistent solution is obtained.

The variance of our estimator Ĉφφ
L can be calculated in the usual manner

σ2
�

Cφφ
L

≡ 〈(Ĉφφ
L )2〉 − 〈Ĉφφ

L 〉2 = 〈(DL)2〉 − 〈DL〉2 . (2.31)

Evaluating this expression requires us to calculate

〈(DL)2〉 =
(2π)4

A2L4

1

(2πL∆L)2
×

∫

aL

d2l1
′

(2π)2

∫

aL

d2l2
′

(2π)2
〈[dΘΘ(l1

′) · dΘΘ(−l1
′)] [dΘΘ(l2

′) · dΘΘ(−l2
′)]〉 . (2.32)

Since dΘΘ(L) is a quadratic estimator in the temperature map, Eq. (2.32) includes

the following integral over the eight-point correlation function in Fourier space

〈[dΘΘ(l1
′) · dΘΘ(−l1

′)] [dΘΘ(l2
′) · dΘΘ(−l2

′)]〉 =
A2

ΘΘ(l′1)A
2
ΘΘ(l′2)

(l′1)
2(l′2)

2

×
∫

d2k1

(2π)2

∫
d2k3

(2π)2

∫
d2k5

(2π)2

∫
d2k7

(2π)2

{
FΘΘ(k1,k2)FΘΘ(k3,k4)FΘΘ(k5,k6)

×FΘΘ(k7,k8)〈Θt(k1)Θ
t(k2)Θ

t(k3)Θ
t(k4)Θ

t(k5)Θ
t(k6)Θ

t(k7)Θ
t(k8)〉

}
,

(2.33)

where k2 = l1
′−k1, k4 = −l1

′−k3, k6 = l2
′−k5, and k8 = −l2

′−k7. A fully general

eight-point correlation function consists of a connected part, as well as terms pro-

portional to the product of lower-order correlation functions. Under the assumption

that both the primordial CMB and the lensing potential are governed by Gaussian

statistics, all correlation functions higher than the four-point have connected parts
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that are suppressed to high order in the lensing potential (Kesden et al., 2002a).

The temperature eight-point correlation function will therefore be composed of three

groups of terms, with membership in a group being determined by whether the term

contains zero, one, or two factors of the trispectrum. Since the trispectrum given in

Eq. (2.10) is first order in the lensing-potential power spectrum Cφφ
L , terms of these

three groups are zeroth, first, and second order, respectively, in Cφφ
L . Combinatorics

determines the number of terms in each group. There are: 1
4!

(
8

2

)(
6

2

)(
4

2

)(
2

2

)
= 105

different ways of dividing (k1, . . . ,k8) into four pairs, and hence, there will be 105

terms in the group containing no trispectra. Similar calculations reveal that there are

1
2!

(
8

4

)(
4

2

)(
2

2

)
= 210 terms in the second group and 1

2!

(
8

4

)(
4

4

)
= 35 terms in the

third group. Many terms in all three groups will vanish for the same reason that the

first term vanished in the four-point correlation function of Eq. (2.21); these terms

are proportional to a Dirac delta function evaluated at nonzero argument. Consider

now the first group of terms, those that are zeroth order in Cφφ
L . The 60 nonvanish-

ing terms in this group each contain four Dirac delta functions; they can be further

segregated into the 12 terms that allow two of the integrals over ki appearing in

Eq. (2.33) to be immediately evaluated via Dirac delta functions, and the 48 terms

that allow evaluation of three ki integrals. The first 12 terms, inserted into Eq. (2.33)

and appropriately evaluated using the normalization of Eq. (2.15), yield

〈(DL)2〉 =

(
N

(0)
ΘΘ,ΘΘ(L)

L2

)2 [
1 + 2

(2π)2

A

1

2πL∆L

]
+ . . . , (2.34)

while the remaining 48 terms give the final result to zeroth order in Cφφ
L ,

〈(DL)2〉 =

(
N

(0)
ΘΘ,ΘΘ(L)

L2

)2 [
1 + 2

(2π)2

A

1

2πL∆L

]
+

(2π)2

AL4

2

(2πL∆L)2

∫

aL

d2l1
′

(2π)2

∫

aL

d2l2
′

(2π)2

A2
ΘΘ(l′1)A

2
ΘΘ(l′2)

(l′1)
2(l′2)

2

∫
d2k1

(2π)2
fΘΘ(k1,k2)P (k1,k2, l1

′, l2
′) ,

(2.35)
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where

P (k1,k2, l1
′, l2

′) =

fΘΘ(−l2
′ − k1, l2

′ − k2)FΘΘ(−k1, l2
′ + k1)FΘΘ(−k2,−l2

′ + k2)

+fΘΘ(l2
′ − k1,−l2

′ − k2)FΘΘ(−k1,−l2
′ + k1)FΘΘ(−k2, l2

′ + k2)

+fΘΘ(−l2
′ − k1, l1

′ − k2)FΘΘ(−k1, l2
′ + k1)FΘΘ(−k2,−l1

′ + k2)

+fΘΘ(l1
′ − k1,−l2

′ − k2)FΘΘ(−k1,−l1
′ + k1)FΘΘ(−k2, l2

′ + k2)

+fΘΘ(l1
′ − k1, l2

′ − k2)FΘΘ(−k1,−l1
′ + k1)FΘΘ(−k2,−l2

′ + k2)

+fΘΘ(l2
′ − k1, l1

′ − k2)FΘΘ(−k1,−l2
′ + k1)FΘΘ(−k2,−l1

′ + k2) .

(2.36)

When 〈DL〉2 is subtracted from 〈(DL)2〉 in Eq. (2.31), the first term in the square

brackets of Eq. (2.35) will be eliminated. Minimizing the variance associated with this

estimator then consists of making an optimal choice of ∆L(L). The first noise term

is proportional to (2π)2/A
2πL∆L

. For a survey of area A, (2π)2/A is the specific area of an

individual mode in L space and 2πL∆L is the area in L space over which the power-

spectrum estimator takes an average. This ratio is therefore the inverse of the number

of individual dΘΘ(L) modes whose inverse variances are added to determine the in-

verse variance of Ĉφφ
L . It is obviously minimized by choosing (2π)2/A� 2πL∆L(L).

The second term – that involving P (k1,k2, l1
′, l2

′) – differs from the first noise term

in that a Dirac delta function has been used to evaluate an additional ki integral

rather than an annulus integral. Since the integrands are of the same order, we

expect the second noise term to be suppressed relative to the first by a factor of

2πL∆L(L)/πl2max where lmax ' π/θ is set by the resolution θ of the survey. Under

the conservative assumption L∆L(L) � 1/θ2, namely, that we are probing scales

well above our resolution, this term is assured to be small. We neglect such terms for

the remainder of this paper. If we insert the portions of the eight-point correlation

function that are first and second order in Cφφ
L into Eq. (2.33) and evaluate using
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Eq. (2.25), we find

〈(DL)2〉 = L−4
(
Cdd

L +N
(0)
ΘΘ,ΘΘ(L) +N

(1)
ΘΘ,ΘΘ(L)

)2
[
1 + 2

(2π)2

A

1

2πL∆L

]
, (2.37)

and

σ2
�

Cφφ
L

= 2
(2π)2

A

1

2πL∆L
L−4

(
Cdd

L +N
(0)
ΘΘ,ΘΘ(L) +N

(1)
ΘΘ,ΘΘ(L)

)2

. (2.38)

This result agrees with that given in Ref. Hu & Okamoto (2002) after subtracting our

newly derived term, N
(1)
ΘΘ,ΘΘ(L).

The term N
(1)
ΘΘ,ΘΘ(L) and corresponding terms for polarization-based estimators

have two principal effects on power spectrum estimation. As shown in Eq. (2.38),

they provide a fractional contribution to the variance of roughly 2N
(1)
ΘΘ,ΘΘ(L)/Cdd

L

when Cdd
L dominates the variance as in the reference experiment in the right-hand

panel of Fig. 2.2. For the ΛCDM cosmological model considered here, this represents

an increase of 5−15% in the variance of the EB estimator for L . 1000. More impor-

tantly, N
(1)
ΘΘ,ΘΘ(L) acts as a bias for the naive estimator DL as shown by Eq. (2.29). If

this bias is not calculated and subtracted iteratively to form the unbiased estimator

Ĉφφ
L as in Eq. (2.30), Cdd

L will be systematically overestimated by 5 − 10% at low L

and by increasingly larger amounts at L & 100 as the signal L(L + 1)Cdd
L /2π begins

to plummet while N
(1)
ΘΘ,ΘΘ(L) remains comparatively flat.

Having evaluated the variance of our estimator Ĉφφ
L , we consider whether this

estimator has a substantial covariance

σ �

Cφφ
L

�

Cφφ

L′
≡ 〈(Ĉφφ

L − Cφφ
L )(Ĉφφ

L′ − Cφφ
L′ )〉 = 〈DLDL′〉 − 〈DL〉〈DL′〉 . (2.39)

The estimator DL as defined in Eq. (2.26) implies that:

〈DLDL′〉 =

(
2π

ALL′

)2
1

L∆LL′∆L′

×
∫

aL

d2l1
′

(2π)2

∫

aL′

d2l2
′

(2π)2
〈[dΘΘ(l1

′) · dΘΘ(−l1
′)] [dΘΘ(l2

′) · dΘΘ(−l2
′)]〉 ,(2.40)
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which can be evaluated using the same integral over the eight-point correlation func-

tion described in Eq. (2.33). Whereas 60 of the 105 zeroth-order terms in Cφφ
L coming

from this equation were nonvanishing for the variance, for the covariance, only 52

terms are nonzero provided that the widths ∆L and ∆L′ are chosen so that the

annuli aL and aL′ do not overlap. This leads to a result analogous to Eq. (2.35),

〈DLDL′〉 =
N

(0)
ΘΘ,ΘΘ(L)

L2

N
(0)
ΘΘ,ΘΘ(L′)

L′2
+

2

AL3∆LL′3∆L′

×
∫

aL

d2l1
′

(2π)2

∫

aL′

d2l2
′

(2π)2

A2
ΘΘ(l′1)A

2
ΘΘ(l′2)

(l′1)
2(l′2)

2

∫
d2k1

(2π)2
fΘΘ(k1,k2)P (k1,k2, l1

′, l2
′) .

(2.41)

Note that the eight terms missing from the covariance when compared to the variance

have altered the first term of Eq. (2.41), and that it was precisely these terms that

provided the dominant contribution to the variance of Eq. (2.38) when ∆L(L) was

chosen appropriately. We therefore find that to zeroth order in Cφφ
L , the covariance

is given by

σ �

Cφφ
L

�

Cφφ

L′
=

2

AL∆LL′∆L′

(
N

(0)
ΘΘ,ΘΘ(L)

L2

N
(0)
ΘΘ,ΘΘ(L′)

L′2

)2

×
∫

aL

d2l1
′

(2π)2

∫

aL′

d2l2
′

(2π)2

∫
d2k1

(2π)2
fΘΘ(k1,k2)P (k1,k2, l1

′, l2
′) , (2.42)

where we have extracted the AΘΘ(l′i) from the annular integrals since they are slowly

varying over the widths ∆L and ∆L′. For the same reasons that terms of this form

were a subdominant contribution to the variance as discussed previously, we expect

the covariance to be suppressed as well. If we define the ratio

RLL′ ≡
σ �

Cφφ
L

�

Cφφ

L′√
σ2

�

Cφφ
L

σ2
�

Cφφ

L′

, (2.43)

we can quantify this suppression. The triple integral of Eq. (2.42), appearing in

the numerator of RLL′ , involves integration over annuli with radii L and L′ and one
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Figure 2.3: The ratioRLL′ for Planck as a function of L for fixed values of L′. The solid
curves correspond to L′ = 3, 30, 300 ascending from bottom to top, while the long-
dashed and short-dashed curves correspond to L′ = 7, 70, 700 and L′ = 10, 100, 1000
respectively, again with curves in each sequence appearing from bottom to top in the
figure.

integration over all Fourier space. The triple integrals in the variances σ2
�

Cφφ
L

and σ2
�

Cφφ

L′

appearing in the denominator of RLL′ each consist of a single integration over an

annulus of radius L and L′, respectively, and two integrations over all Fourier space.

If we make the crude assumption that the integrand is constant, the ratio RLL′ will

simply be the ratio of these areas,

RLL′ '
√

(2πL∆L)(2πL′∆L′)/πl2max. (2.44)

The ratio RLL′ is evaluated numerically for Planck in Fig. 2.3 as a function of L

for various fixed values of L′. The estimators Ĉφφ
L and Ĉφφ

L′ were chosen such that

∆L = ∆L′ = 1, while integrals over Fourier space were cut off at lmax = 5000.
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Substituting these values into Eq. (2.44), we expect RLL′ ' 8.0 × 10−8
√
LL′. This

crude estimate is surprisingly close to the numerically obtained results of Fig. 2.3; in

particular, the slope of the curves is approximately 1/2 on this log-log plot. Even at

L ' 1000, RLL′ . 4.0×10−4 suggesting that covariance in power-spectrum estimation

can safely be neglected for Planck. The estimate of Eq. (2.44) implicitly depends on

the experimental resolution θ because the integrand appearing in expressions for the

variance and covariance decreases rapidly for L & lmax ' π/θ. For future experiments

with better resolution than Planck, lmax will be higher, implying by Eq. (2.44) that

covariance will be even more negligible.

2.5 Discussion

Weak gravitational lensing induces non-Gaussian correlations between modes of the

observed CMB temperature map as shown in Eq. (2.11). These correlations, and

assumptions about the Gaussian nature of the primordial CMB, can be used to con-

struct several temperature and polarization-based estimators of the Fourier modes

d(L) of the deflection field. This procedure was outlined in Hu & Okamoto (2002),

however in calculating the noise associated with this reconstruction, an assumption

was made that the observed temperature map was Gaussian. In the presence of lens-

ing, this assumption is invalid; when calculating the variance of quadratic estimators

all permutations of the observed trispectrum must be taken into account. One such

permutation reflects the desired correlation making our estimator sensitive to d(L),

but the remaining two permutations induce additional variance proportional to the

lensing-potential power spectrum Cφφ
L . While subdominant, this variance will be-

come increasingly significant for future experiments as shown in the right-hand panel

of Fig. 2.2. Since the power spectrum Cφφ
L is itself a measure of uncertainty in the

deflection field, this additional variance in lensing reconstruction acts as a bias during

power-spectrum estimation because there is no a priori way to distinguish it from the

intrinsic variance of the underlying distribution. Our calculation of the dependence

of this variance on Cφφ
L allows it, in principle, to be subtracted iteratively, which will
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prevent a systematic 5 − 10% overestimate of Cφφ
L at low L.

We close by considering several possible observational obstacles to the scheme

for lensing reconstruction and power-spectrum estimation presented above. One hin-

drance is secondary contributions to the CMB such as the SZ and ISW effects. These

effects increase the total temperature power spectrum appearing in the denominator

of the optimum filter FΘΘ(l1, l2) of Eq. (2.14) as would additional instrumental noise.

They also correlate with the large-scale structure at low redshifts inducing further

non-Gaussian couplings and additional variance to lensing reconstruction. Fortu-

nately for our purposes, the frequency dependence of the thermal SZ effect differs

from that of a blackbody. It can therefore be separated in principle from the lensed

primordial CMB by an experiment with several frequency channels (Cooray et al.,

2000). The ISW effect cannot be removed in this manner, but is too small to signif-

icantly inhibit lensing reconstruction. Polarization-dependent secondary effects are

expected to appear at higher orders in the density contrast (Hu, 2000b), and we there-

fore anticipate that they will not make a contribution at the levels considered here. A

potentially more serious problem is that of galactic foregrounds which, though uncor-

related with the lensing signal, may be substantial at certain frequencies. Significant

polarization has also been observed in some of these sources (Giardino et al., 2002;

Bouchet et al., 1999; Prunet et al., 2000). We hope to understand and minimize the

effects of galactic foregrounds in future work, and to pursue further refinements of

lensing reconstruction.

We thank Wayne Hu for useful discussions. This work was supported in part

by NASA NAG5-11985 and DoE DE-FG03-92-ER40701. Kesden acknowledges the

support of an NSF Graduate Fellowship and AC acknowledges support from the

Sherman Fairchild Foundation.

2.6 Polarization-based Estimators

Here we provide the appropriate formulas for deriving the variance associated with

polarization-based estimators of the deflection field d(L). The CMB polarization can
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be decomposed into E and B-modes (Kamionkowski et al., 1997a; Seljak & Zaldar-

riaga, 1997). These modes are mixed by weak lensing such that to linear order in

φ(L),

Ẽ(l) = E(l)

−
∫

d2l1

(2π)2
[E(l1) cos 2(ϕl1

− ϕl) − B(l1) sin 2(ϕl1
− ϕl)]φ(l − l1) [(l − l1) · l1] ,

B̃(l) = B(l)

−
∫

d2l1

(2π)2
[E(l1) sin 2(ϕl1

− ϕl) +B(l1) cos 2(ϕl1
− ϕl)]

×φ(l − l1) [(l − l1) · l1] . (2.45)

We can exploit the sensitivity of the polarization modes to the lensing potential to

construct lensing estimators from quadratic combinations of polarization modes. We

generalize Eq. (2.11) to arbitrary combinations {X,X ′} of Θ, E, and B-modes as first

derived in Hu & Okamoto (2002)

〈Xt(l)X ′t(l′)〉CMB = fXX′(l, l′)φ(L) , (2.46)

where

fΘE(l, l′) = CΘE
l cos 2(ϕl − ϕl′)(L · l) + CΘE

l′ (L · l′) = fEΘ(l′, l) ,

fΘB(l, l′) = CΘE
l sin 2(ϕl − ϕl′)(L · l) = fBΘ(l′, l) ,

fEE(l, l′) =
[
CEE

l (L · l) + CEE
l′ (L · l′)

]
cos 2(ϕl − ϕl′) ,

fEB(l, l′) =
[
CEE

l (L · l) + CBB
l′ (L · l′)

]
sin 2(ϕl − ϕl′) = fBE(l′, l) ,

fBB(l, l′) =
[
CBB

l (L · l) + CBB
l′ (L · l′)

]
cos 2(ϕl − ϕl′) .

(2.47)

In deriving these results, we used parity considerations to demand CΘB
l = CEB

l = 0.

Using these relations, we follow the approach of Ref. Hu & Okamoto (2002) to derive
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symmetric lensing estimators

dXX(L) ≡ iLAXX(L)

L2

∫
d2l1

(2π)2
Xt(l1)X

t(l2)FXX(l1, l2) , (2.48)

and

dXX′(L) ≡ iLAXX′(L)

L2

∫
d2l1

(2π)2

1

2

[
Xt(l1)X

′t(l2) +X ′t(l1)X
t(l2)

]
FXX′(l1, l2) .

(2.49)

We have explicitly symmetrized our estimators for X 6= X ′ to simplify the form of

the optimal filter. The normalization bias of the estimators is removed by choosing

AXX(L) ≡ L2

[∫
d2l1

(2π)2
fXX(l1, l2)FXX(l1, l2)

]−1

, (2.50)

and

AXX′(L) ≡ L2

[∫
d2l1

(2π)2

1

2
[fXX′(l1, l2) + fXX′(l2, l1)]FXX′(l1, l2)

]−1

. (2.51)

The minimum-variance filters FXX′(l1, l2) for the various cases {X,X ′} are given by

FΘE(l1, l2) =
fΘE(l1, l2) + fΘE(l2, l1)

CΘΘt
l1

CEEt
l2

+ 2CΘEt
l1

CΘEt
l2

+ CEEt
l1

CΘΘt
l2

,

FΘB(l1, l2) =
fΘB(l1, l2) + fΘB(l2, l1)

CΘΘt
l1

CEEt
l2

+ CEEt
l1

CΘΘt
l2

,

FEE(l1, l2) =
fEE(l1, l2)

2CEEt
l1

CEEt
l2

,

FEB(l1, l2) =
fEB(l1, l2) + fEB(l2, l1)

CEEt
l1

CBBt
l2

+ CBBt
l1

CEEt
l2

,

FBB(l1, l2) =
fBB(l1, l2)

2CBBt
l1

CBBt
l2

.

(2.52)

Using these optimal filters for the estimators defined in Eqs. (2.48) and (2.49), we

can calculate the variances for these estimators in a fashion entirely analogous to
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Eq. (2.19),

〈
〈d∗

XX(L) · dXX(L′)〉CMB − 〈d∗
XX(L)〉CMB · 〈dXX(L′)〉CMB

〉
LSS

=

AXX(L)

L

AXX(L′)

L′

∫
d2l1

(2π)2

∫
d2l′1
(2π)2

〈Xt(−l1)X
t(−l2)X

t(l1
′)Xt(l2

′)〉

×FXX(l1, l2)FXX(l1
′, l2

′) − (2π)2δD(L − L′)Cdd
L ,

(2.53)

〈
〈d∗

XX′(L) · dXX′(L′)〉CMB − 〈d∗
XX′(L)〉CMB · 〈dXX′(L′)〉CMB

〉
LSS

=

AXX′(L)

L

AXX′(L′)

L′

∫
d2l1

(2π)2

∫
d2l′1
(2π)2

1

4
〈
[
Xt(−l1)X

′t(−l2) +X ′t(−l1)X
t(−l2)

]

×
[
Xt(l1

′)X ′t(l2
′) +X ′t(l1

′)Xt(l2
′)
]
〉FXX′(l1, l2)FXX′(l1

′, l2
′)

−(2π)2δD(L − L′)Cdd
L .

(2.54)

As for that of the temperature estimator, these variances will consist of zeroth-order

terms in Cφφ
L , N

(0)
XX,XX(L) = AXX(L) and N

(0)
XX′,XX′(L) = AXX′(L), and first-order

terms,

N
(1)
XX,XX(L) =

A2
XX(L)

L2

∫
d2l1

(2π)2

∫
d2l′1
(2π)2

FXX(l1, l2)FXX(l1
′, l2

′)

×
{
Cφφ

|l1−l1
′|
fXX(−l1, l1

′)fXX(−l2, l2
′) + Cφφ

|l1−l2
′|
fXX(−l1, l2

′)fXX(−l2, l1
′)
}
,

(2.55)
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N
(1)
XX′,XX′(L) =

A2
XX′(L)

L2

∫
d2l1

(2π)2

∫
d2l′1
(2π)2

FXX′(l1, l2)FXX′(l1
′, l2

′)

×1

4

{
Cφφ

|l1−l1
′|

[
fXX(−l1, l1

′)fX′X′(−l2, l2
′) + fXX′(−l1, l1

′)fX′X(−l2, l2
′)

+fX′X(−l1, l1
′)fXX′(−l2, l2

′) + fX′X′(−l1, l1
′)fXX(−l2, l2

′)
]

+Cφφ
|l1−l2

′|

[
fXX′(−l1, l2

′)fX′X(−l2, l1
′) + fXX(−l1, l2

′)fX′X′(−l2, l1
′)

+fX′X′(−l1, l2
′)fXX(−l2, l1

′) + fX′X(−l1, l2
′)fXX′(−l2, l1

′)
]}
,

(2.56)

The filters given in Eq. (2.52) are no longer optimal in the presence of this additional

noise, but the difference between these filters and the optimal filters should be neg-

ligible, provided that N
(1)
XX,XX(L) � N

(0)
XX,XX(L), N

(1)
XX′,XX′(L) � N

(0)
XX′,XX′(L). For

the purposes of power-spectrum estimation, the terms N
(1)
XX,XX(L) and N

(1)
XX′,XX′(L)

are not only an additional contribution to the variance, but are also a systematic bias

if not subtracted iteratively, following Eq. (2.29).

A final point to consider is that the six different estimators dXX′(L) defined in

this paper are not independent, as they are constructed from only three distinct

maps. The covariance matrix for the six estimators will therefore not be diagonal,

and this needs to be taken into account if the estimators are to be linearly combined

to produce a single minimum-variance estimator. The off-diagonal elements of the

covariance matrix can be evaluated in a straightforward manner involving pairs of

double integrals similar to those of Eqs. (2.53) and (2.54).
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Chapter 3

Cumulants of the Probability

Distribution Function

Reprinted with permission from M. Kesden, A. Cooray, and M. Kamionkowski Phys.

Rev. D 66, 083007 (2002).

We discuss the real-space moments of temperature anisotropies in the cosmic mi-

crowave background (CMB) due to weak gravitational lensing by intervening large-

scale structure. We show that if the probability distribution function of primordial

temperature anisotropies is Gaussian, then it remains unchanged after gravitational

lensing. With finite resolution, however, non-zero higher-order cumulants are gener-

ated both by lensing auto-correlations and by cross-correlations between the lensing

potential and secondary anisotropies in the CMB, such as the Sunayev-Zel’dovich (SZ)

effect. Skewness is produced by these lensing-SZ correlations, while kurtosis receives

contributions from both lensing alone and lensing-SZ correlations. We show that if

the projected lensing potential is Gaussian, all cumulants of higher-order than the

kurtosis vanish. While recent results raise the possibility of detection of the skewness

in upcoming data, the kurtosis will likely remain undetected.

3.1 Introduction

Weak gravitational lensing deflects the paths of cosmic microwave background (CMB)

photons propagating from the surface of last scattering. One result of this lensing is

the transfer of power from large angular scales associated with acoustic-peak struc-
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tures to small angular scales in the damping tail of the anisotropy power spectrum

(Blanchard & Schneider, 1987; Kashlinsky, 1988; Linder, 1988; Cayon et al., 1993; Sel-

jak, 1996; Hu, 2000a). This transfer only results in a few-percent modification of the

power associated with the acoustic-peak structure, and the increase in power along

the damping tail is significantly smaller than that generated by secondary anisotropies

due to reionization (Cooray, 2001b). To indentify the effect of gravitational lensing

on CMB data, it is necessary to consider signatures beyond that in the angular power

spectrum of temperature fluctuations. The existence of non-vanishing higher order

cumulants is one such non-Gaussian signature lensing can generate.

Since gravitational lensing conserves surface brightness, CMB fluctuations from

lensing are at the second order in temperature fluctuations and result in non-Gaussian

behavior through non-linear mode coupling. Though lensing alone does not lead to a

three-point correlation function, the correlation between lensing and other secondary

anisotropies can lead to such a contribution. This three-point correlation has been

widely discussed in the literature in terms of its Fourier-space analogue, the bispec-

trum (Goldberg & Spergel, 1999; Zaldarriaga & Seljak, 1999; Peiris & Spergel, 2000;

Cooray & Hu, 2000). Weak lensing of the primary anisotropies can produce a four-

point correlation due to its non-linear mode-coupling nature (Bernardeau, 1997; Zal-

darriaga, 2000; Hu, 2001b; Cooray, 2002), as can correlations between lensing and sec-

ondary effects (Cooray, 2002). When probed appropriately through quadratic statis-

tics such as the power spectrum of the squared-temperature map, the trispectrum

due to lensing alone can be used for a model-independent recovery of the projected

mass distribution out to the last scattering surface (Hu, 2001a; Hu & Okamoto, 2002;

Benabed et al., 2001; Cooray & Kesden, 2003). Though these statistics have been

shown to be interesting and potentially detectable, measurement of these Fourier-

based statistics is challenging and techniques are still underdeveloped for this pur-

pose.

Here, we discuss real-space moments of the lensed CMB temperature anisotropies.

Real-space statistics are easily measurable from data. The only drawbacks are that

they are unlikely to be optimal and only provide limited knowledge of the full non-
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Gaussian aspect of the temperature distribution. The first attempts to measure

non-Gaussianity in the COBE data relied on real-space cumulants (Hinshaw et al.,

1995; Seljak & Zaldarriaga, 1999a), as will attempts using data from its successor

experiments such as MAP and Planck. This motivates our emphasis here on the

real-space cumulants such as the skewness and kurtosis; we make several remarks on

higher-order cumulants as well.

As part of this calculation, we extend a previous discussion of the kurtosis due

to lensing in Bernardeau (1997), and also consider effects related to correlations be-

tween lensing and secondary effects such as the Sunyaev-Zel’dovich effect (Sunyaev

& Zel’dovich, 1980).

Real-space moments can be derived from the one-point probability distribution

function (PDF) of temperature fluctuations, and can conversely be used to constrain

the form of this function. In the case of infinite angular resolution, we conclude that

lensing does not modify the PDF of temperature anisotropies produced at the last

scattering surface, which is a reflection on the fact that lensing does not create new

power, but rather, transfers power from large to small angular scales. The higher-

order moments are only generated in a temperature map by finite-resolution effects

such as beam smoothing introduced either experimentally or artificially by explicit

filtering.

The paper is organized as follows. In § 3.2, we introduce formalism concerning the

weak-lensing approximation and define the bispectrum, trispectrum, and correspond-

ing higher-order quantities. The bispectrum and trispetrum induced in the CMB by

lensing and secondary anisotropies are derived in § 3.3, and some remarks are made

concerning higher-order cumulants as well. The nonzero bispectrum and trispectrum

yield a skewness and kurtosis, respectively, in the one-point distribution function of

the CMB as shown in § 3.4. We refer the reader to Ref. Cooray & Kesden (2003) for

additional details related to the effect of lensing on CMB anisotropies. Though we

present a general discussion, we illustrate our results in § 3.5 using the currently fa-

vored ΛCDM cosmological model with Ωb = 0.05, Ωm = 0.35, ΩΛ = 0.65, h=0.65, and

σ8 = 0.9. Results for a model with σ8 = 1.2 as suggested by CBI are also considered.
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3.2 Lensing Contribution to CMB Fluctuations

In order to derive the effects of weak lensing on the CMB, we follow Hu (2000a) and

Zaldarriaga (2000) and adopt a flat-sky approximation. As discussed in prior papers

(Hu, 2000a; Goldberg & Spergel, 1999), weak lensing remaps temperature through

angular deflections along the photon path:

Θ̃(n̂) = Θ(n̂ + ∇φ)

= Θ(n̂) + ∇iφ(n̂)∇iΘ(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ(n̂) + . . . . (3.1)

Here, Θ(n̂) is the unlensed primary component of the CMB in direction n̂ at the

last-scattering surface, Θ̃(n̂) is the lensed map, φ(n̂) is the projected gravitational

potential, and ∇φ is the lensing deflection angle. It should be understood that in the

presence of low-redshift contributions to CMB fluctuations resulting from large-scale

structure, the total map includes secondary contributions which we denote by Θs(n̂).

Since the weak-lensing deflection angles ∇φ also trace the large-scale structure at

low redshifts, secondary effects which are first order in density fluctuations correlate

with the lensing deflection angles. These secondary effects include the integrated

Sachs-Wolfe (ISW; (Sachs & Wolfe, 1967)) and the SZ (Sunyaev & Zel’dovich, 1980)

effects (Goldberg & Spergel, 1999). In all real cases, a noise component denoted by

Θn(n̂) due to finite experimental sensitivity must be included as well. Thus, the total

observed CMB anisotropy will be Θt(n̂) = Θ̃(n̂) + Θs(n̂) + Θn(n̂). In the following

discussion, secondary anisotropies Θs(n̂) will be neglected until subsection 3.3.2, while

the effects of instrumental noise Θn(n̂) on the PDF are discussed in § 3.4.

Taking the Fourier transform, as appropriate for a flat sky, we write

Θ̃(l) =

∫
dn̂ Θ̃(n̂)e−il·n̂

= Θ(l) −
∫

d2l′

(2π)2
Θ(l′)L(l, l′) , (3.2)
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where

L(l, l′) = φ(l − l′) [(l − l′) · l′] +
1

2

∫
d2l′′

(2π)2
φ(l′′) (3.3)

×φ∗(l′′ + l′ − l) (l′′ · l′) [(l′′ + l′ − l) · l′] + . . . .

We define the power spectrum, bispectrum, trispectrum and the n-point correlator

in Fourier space in the usual way:

〈
Θ̃(l1)Θ̃(l2)

〉
= (2π)2δD(l12)C̃

Θ
l1
,

〈
Θ̃(l1) . . . Θ̃(l3)

〉
c

= (2π)2δD(l123)B̃
Θ(l1, l2, l3) ,

〈
Θ̃(l1) . . . Θ̃(l4)

〉
c

= (2π)2δD(l1234)T̃
Θ(l1, l2, l3, l4) ,

〈
Θ̃(l1) . . . Θ̃(ln)

〉
c

= (2π)2δD(l1...n)T̃Θ
n (l1, . . . , ln) .

(3.4)

where l1...n ≡ l1 + . . . + ln, and the subscript c denotes the connected portion of the

correlation function. We make the assumption that primary anisotropies at the last

scattering surface are Gaussian, implying that all cumulants higher than the power

spectrum vanish: 〈Θ(l1) . . .Θ(ln)〉c = 0, when n > 2.

The power spectra for lensing correlations and lensing-secondary cross-correlations

are defined analogously:

〈φ(l1)φ(l2)〉 = (2π)2δD(l12)C
φφ
l1
,

〈φ(l1)Θ
s(l2)〉 = (2π)2δD(l12)C

φs
l1
.

(3.5)

Primary CMB anisotropies Θ(n̂) are generated at the surface of last scatter at z '
1, 100, while the lensing potential φ(n̂) and secondary contributions Θs(n̂) arise from

large-scale structure at much lower redshifts (z ' 3). As such, correlations between

these quantities vanish: 〈Θ(l1)φ(l2)〉 = 〈Θ(l1)Θ
s(l2)〉 = 0.
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The nth cumulant of the temperature anisotropies is defined in the usual manner,

Cn(θ) =

∫
d2l1

(2π)2
. . .

d2ln

(2π)2

〈
Θt(l1) . . .Θ

t(ln)
〉

c
W (l1θ) . . .W (lnθ), (3.6)

where θ is the smoothing scale of the map from which the cumulants are determined,

and W (lθ) is the smoothing window function. We will use Gaussian window func-

tions throughout this paper. In general, the finite resolution of real CMB anisotropy

experiments induces Gaussian smoothing at the angular scale of the experimental

beam size. For infinite resolution, we take θ → 0 such that W (lθ) → 1. The variance,

skewness, and kurtosis defined later in this paper can all be expressed in terms of

cumulants:

σ2(θ) = C2(θ) , S(θ) =
C3(θ)

[C2(θ)]3/2
, K(θ) =

C4(θ)

[C2(θ)]2
. (3.7)

3.3 Power spectrum, Bispectrum and Trispectrum

Using the formalism introduced in the previous Section, we can calculate the moments

of the CMB fluctuations generated by lensing assuming Gaussian fluctuations at the

surface of last scatter. Because φ is a small parameter, terms beyond linear order

in Cφφ
l are neglected in these calculations. The power spectrum for the lensed map

is (Blanchard & Schneider, 1987; Kashlinsky, 1988; Linder, 1988; Cayon et al., 1993;

Seljak, 1996; Hu, 2000a)

C̃Θ
l =

[
1 −

∫
d2l1

(2π)2
Cφφ

l1
(l1 · l)2

]
CΘ

l +

∫
d2l1

(2π)2
CΘ

|l−l1|
Cφφ

l1
[(l − l1) · l1]2 . (3.8)

The variance, or the second moment of the temperature, can be obtained following

Eq. (3.6)

σ2(θ) =

∫
d2l

(2π)2
C̃Θ

l W
2(lθ) . (3.9)

Substituting Eq. (3.8) in here, we find that in the case of infinite resolution (W (lθ) =

1), the variance of the lensed temperature map coincides with that of the unlensed
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map. Thus, as expected, lensing conserves the total power associated with the tem-

perature fluctuations. This is consistent with our basic expectation that lensing only

results in a transfer of power from large angular scales to small angular scales. With

finite resolution at levels considered here, the variance of the lensed temperature field

differs from that of the unlensed field by a few percent at most.

We will now discuss higher-order correlations of temperature due to gravitational

lensing. We consider first contributions due to lensing alone, and then discuss addi-

tional contributions created by lensing-secondary correlations.

3.3.1 Lensing Correlations

We will first discuss the temperature bispectrum and show that it is zero in the

absence of secondary anisotropies. To understand why there is no contribution to

the bispectrum, consider the moments involving three temperature terms in Fourier

space:

〈
Θ̃(l1)Θ̃(l2)Θ̃(l3)

〉
c

=

=
〈(

Θ(l1) −
∫

d2l′1
(2π)2

Θ(l1
′)L(l1, l1

′)

)

×
(

Θ(l2) −
∫

d2l′2
(2π)2

Θ(l2
′)L(l2, l2

′)

)

×
(

Θ(l3) −
∫

d2l′3
(2π)2

Θ(l3
′)L(l3, l3

′)

)〉

=
〈
Θ(l1)Θ(l2)Θ(l3)

〉

−
〈
Θ(l1)Θ(l2)

(∫
d2l′3
(2π)2

Θ(l3
′)L(l3, l3

′)

)〉
+ Perm.

+
〈
Θ(l1)

(∫
d2l′2
(2π)2

Θ(l2
′)L(l2, l2

′)

)

×
(∫

d2l′3
(2π)2

Θ(l3
′)L(l3, l3

′)

)〉
+ Perm.

−
〈(∫ d2l′1

(2π)2
Θ(l1

′)L(l1, l1
′)

)(∫
d2l′2
(2π)2

Θ(l2
′)L(l2, l2

′)

)

×
(∫

d2l′3
(2π)2

Θ(l3
′)L(l3, l3

′)

)〉
. (3.10)
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All these terms, and the necessary permutations, involve an expectation value of

three primary temperature anisotropies. Under our assumption of Gaussian primary

temperature fluctuations, such expectation values vanish and thus, there is no con-

tribution to the bispectrum or the skewness.

The trispectrum due to lensing alone can be calculated in a similar fashion. In-

troducing the power spectrum of lensing potentials, following Zaldarriaga (2000) and

Cooray & Kesden (2003), we obtain the CMB trispectrum due to gravitational lensing

as:

T̃Θ(l1, l2, l3, l4) = −CΘ
l3
CΘ

l4

{
Cφφ

|l1+l3|
[(l1 + l3) · l3] [(l1 + l3) · l4]

+Cφφ
|l2+l3|

[(l2 + l3) · l3] [(l2 + l3) · l4]
}

+ Perm. , (3.11)

where the permutations now contain five additional terms with the replacement of

(l3, l4) by any other pair.

We can generalize our discussion of the power spectrum, bispectrum, and trispec-

trum to that of the n-point correlation function in Fourier space. In the absence of

secondary anisotropies that correlate directly with the lensing potential, the n-point

correlation function will vanish for odd n for the same reason that lensing alone did

not generate a bispectrum. All such terms would involve the expectation value of

an odd number of temperature fluctuations, and under the assumption of Gaussian

primary anisotropies, such expectation values must vanish. This statement applies in

particular to the case when measurements of non-Gaussianity are made using CMB

maps which have been cleaned a priori of secondary fluctuations using information

such as the nonthermal frequency dependence of these fluctuations. We will discuss

the case of secondary anisotropies in the next subsection.

The lowest even nth correlator after the trispectrum is the six-point correlation

function in Fourier space. We can write the portion of the connected part of this
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correlation function containing the lowest-order contribution in φ as

〈
Θ̃(l1) . . . Θ̃(l6)

〉
c

=
〈(

Θ(l1) −
∫

d2l′1
(2π)2

Θ(l1
′)L(l1, l1

′)

)
. . .

×
(

Θ(l3) −
∫

d2l′3
(2π)2

Θ(l3
′)L(l3, l3

′)

)

×Θ(l4)Θ(l5)Θ(l6)
〉

+ Perm.

= −
〈∫ d2l′1

(2π)2
Θ(l1

′)L(l1, l1
′) . . .

×
∫

d2l′3
(2π)2

Θ(l3
′)L(l3, l3

′)Θ(l4)Θ(l5)Θ(l6)
〉

+ Perm.

(3.12)

Simplifying further, we see that the lowest order contribution in φ thus involves

〈
Θ̃(l1) . . . Θ̃(l6)

〉
c

= CΘ
l4
CΘ

l5
CΘ

l6

〈
φ(l1 + l4)φ(l2 + l5)φ(l3 + l6)

〉

× [(l1 + l4) · l4] [(l2 + l5) · l5] [(l3 + l6) · l6]

+ Perm. (3.13)

The connected part of the six-point correlation function in Fourier space is thus

proportional to the bispectrum of lensing potentials. We can write

T̃Θ
6 (l1, l2, l3, l4, l5, l6) = CΘ

l4C
Θ
l5C

Θ
l6

[
Bφ(l1 + l4, l2 + l5, l3 + l6)

× [(l1 + l4) · l4] [(l2 + l5) · l5] [(l3 + l6) · l6]
]

+ Perm. (3.14)

There are in total 120 such terms appearing in the six-point correlator when we

include all permutations, coming from the 20 different triplets (li, lj, lk) and the six

permutations of each triplet.

We can generalize these derivations to the n-point temperature correlation in

Fourier space under gravitational lensing. In the following, note that contributions
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to n-point temperature correlations in Fourier space come from (n/2)-point correla-

tions in the lensing potential. We can thus write the connected part of the n-point

temperature correlator, when n > 2, as

T̃Θ
n (l1, . . . , ln) = CΘ

ln/2+1
. . . CΘ

ln

[
T φ

n/2(l1 + l(n/2)+1, . . . , ln/2 + ln)

× (l1 + l(n/2)+1) · l(n/2)+1 . . . (ln/2 + ln) · ln
]

+ Perm. , (3.15)

where T φ
n (l1, . . . , ln) is the n-point correlator of the lensing potential in Fourier space.

The permutations here now involve n!/(n/2)! terms corresponding to the replacement

of (l(n/2)+1, ..., ln) with one of the other n!/[(n/2)!(n/2)!] combinations and the (n/2)!

permutations of each combination. As we have discussed, note that T̃Θ
n (l1, . . . , ln) = 0

when n is odd.

In the limit that the lensing potentials are Gaussian distributed, T φ
n (l1, . . . , ln) = 0

when n > 2. Thus, lensing of CMB anisotropies can only generate a trispectrum and,

with smoothing, a kurtosis. The non-Gaussianity associated with the large-scale

structure, however, will induce non-Gaussian contributions to the distribution of pro-

jected potentials such that T φ
n (l1, . . . , ln) 6= 0 for some n. Since large-scale structure

most efficiently lenses the CMB at redshifts close to 3, where the non-Gaussianity is

mild, we ignore the higher-order correlations of lensing potentials and only consider

the dominant power spectrum, Cφφ
l , which contributes to the trispectrum only.

Although theoretical predictions are made in terms of ensemble-averaged corre-

lation functions, observationally we have access to only one realization of the CMB

and one realization of the large-scale structure. The arbitrariness of the observed re-

alization of the large-scale structure induces additional cosmic variance beyond that

normally associated with the surface of last-scatter. One consequence is that when

measured on a small patch of the sky, the observed two-point correlation function of

the lensed map is more anisotropic than that of the unlensed map, though isotropy

holds when a sufficiently large region of the sky is considered. The excess anisotropy

is induced by cosmic shear, and allows us to reconstruct the lensing deflection angle
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from quadratic maps involving the CMB temperature and polarization (Cooray &

Kesden, 2003). While we emphasize one-point statistics in this paper, a more de-

tailed account of how higher-order statistics probe the local anisotropy induced by

lensing may prove fruitful in the future.

3.3.2 Lensing-Secondary Correlations

The above discussion applies to the case where other secondary fluctuations do not

contribute to temperature anisotropies. In practice, such a situation can be achieved

when thermal CMB fluctuations are separated from dominant secondary effects like

the SZ contribution. In experiments where this is not possible, say due to a lack of

multifrequency data, additional non-Gaussianities will be present in the CMB map

due to correlations between lensing potentials and the secondary anisotropies. The

most significant of these contributions is to the three-point correlation function. We

can calculate this by replacing the Θ̃(l) terms in Eq. (3.10) with Θt(l). By assumption,

Gaussian instrumental noise cannot generate a bispectrum, and as shown above,

neither does lensing alone. The total observed bispectrum is therefore that due to

lensing-secondary correlations (Goldberg & Spergel, 1999; Zaldarriaga, 2000)

BΘt(l1, l2, l3) = −Cφs
l1

[
CΘ

l2
(l2 · l1) + CΘ

l3
(l3 · l1)

]
+ Perm. , (3.16)

where permutations involve two additional terms with the replacement of l1 with l2

and l3. Here, Cφs
l1

is the power spectrum describing correlations between secondary

anisotropies and the lensing potential generated by large-scale structure. These cor-

relations were discussed in detail in Goldberg & Spergel (1999) where it was found

that the most significant correlation is the one between lensing potentials and the SZ

effect. We will use this correlation in illustrating our results.

The presence of secondary effects also modifies the trispectrum and generates an

additional contribution beyond the one discussed in Eq. (3.11). Following Cooray &
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Kesden (2003), we can write this contribution as

TΘs(l1, l2, l3, l4) = Cφs
l3
Cφs

l4

{
CΘ

l1
(l3 · l1)(l4 · l1) + CΘ

l2
(l3 · l2)(l4 · l2)

+ [l3 · (l1 + l3)] [l4 · (l2 + l4)]C
Θ
|l1+l3|

+ [l4 · (l1 + l4)] [l3 · (l2 + l3)]C
Θ
|l1+l4|

}
+ Perm. (3.17)

where permutations involve five additional terms involving the pairings of (l3, l4).

Due to an increase in terms as one goes to higher order, we failed to obtain a gen-

eral expression for the n-point correlator of temperature fluctuations in Fourier space

due to lensing-secondary correlations. As we will soon discuss, cumulants beyond the

skewness are unlikely to be important as we find kurtosis to be undetectable even for

a perfect experiment with no noise and all-sky observations. We expect this to hold

true even when considering higher-order moments beyond the kurtosis.

3.4 Skewness and Kurtosis

A simple way to identify the non-Gaussianity induced in the CMB by gravitational

lensing is to measure the higher-order cumulants of its one-point probability distri-

bution function Pobs(Θ
t; θ) smoothed with beamwidth θ. This observed one-point

probability distribution function (PDF) is actually a convolution of the signal PDF

Psig(Θ
sig; θ) with the noise PDF Pnoise(Θ

n; θ) as described below, where Θsig = Θ̃+Θs

is the total of both lensed primary and secondary contributions to the signal. The

signal PDF can be expressed in terms of its cumulants, which we now proceed to

calculate. The third and fourth cumulants are proportional to the dimensionless

quantities known as the skewness, S, and the kurtosis, K, respectively:

S(θ) ≡ [σ(θ)]−3

∫
(Θsig)3Psig(Θ

sig; θ) dΘsig ,

K(θ) ≡ [σ(θ)]−4

∫
(Θsig)4Psig(Θ

sig; θ) dΘsig − 3 .

(3.18)
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They can be expressed as integrals over the bispectrum and trispectrum derived in

the preceding Section according to Eq. (3.6):

S(θ) = [σ(θ)]−3

∫
d2l1

(2π)2

d2l2

(2π)2

d2l3

(2π)2
(2π)2δD(l123)B

t(l1, l2, l3)

×W (l1θ)W (l2θ)W (l3θ) ,

K(θ) = [σ(θ)]−4

∫
d2l1

(2π)2

d2l2

(2π)2

d2l3

(2π)2

d2l4

(2π)2
(2π)2δD(l1234)T

t(l1, l2, l3, l4)

×W (l1θ)W (l2θ)W (l3θ)W (l4θ) . (3.19)

Inserting Eqs. (3.16), (3.11), and (3.17) into the above expressions, and adopting a

Gaussian window function W (lθ) = e−(lσb)
2/2 with σb = θ/

√
8 ln 2, we obtain:

S(θ) =
6

(2π)2[σ(θ)]3

∫
l21 dl1 l

2
2 dl2 C

Θ
l1C

φs
l2
I1(σ

2
b l1l2) e

−σ2
b (l21+l22) ,

Kφφ(θ) =
12

(2π)3[σ(θ)]4

∫
dl1 l

3
1 C

φφ
l1
e−σ2

b l2
1

[∫
dl2 l

2
2 C

Θ
l2
I1(σ

2
b l1l2) e

−σ2
b l2

2

]2

,

Kφs(θ) =
12

(2π)3[σ(θ)]4

∫
dl1 l

3
1 C

Θ
l1
e−σ2

b l2
1

{[∫
dl2 l

2
2 C

φs
l2
I1(σ

2
b l1l2) e

−σ2
b l2

2

]2

− 1

2π

∫
l22 dl2 l

2
3 dl3 dϕC

φs
l2
Cφs

l3
I1

(
σ2

b l2

√
l21 + l23 + 2l1l3 cosϕ

)

× e−σ2
b (l22+l23+l1l3 cos ϕ) l1 cosϕ+ l3 cos2 ϕ√

l21 + l23 + 2l1l3 cosϕ

}
.

(3.20)

Here I1(x) is a modified Bessel function of the first kind.

In the presence of instrumental noise, the observed one-point probability dis-

tribution function (PDF) will be a convolution of the signal PDF characterized

by the skewness and kurtosis given above, and a Gaussian noise PDF: Pobs(Θ
t) =

∫
dτ Psig(τ)Pnoise(Θ

t − τ). In order to perform this convolution, we must first deter-

mine the explicit form of the signal PDF that will have nonzero skewness or kurtosis,

but vanishing higher cumulants. To do this, we follow the formalism discussed in

Juszkiewicz et al. (1995) and references therein. The PDF of a random variable δ

with zero mean and variance σ2 can be expressed as a Gram-Charlier series in the
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normalized variable ν ≡ δ/σ:

p(ν) = c0φ(ν) +
c1
1!
φ(1)(ν) +

c2
2!
φ(2)(ν) + . . . , (3.21)

where φ(ν) ≡ (2π)−1/2e−ν2/2 is a Gaussian distribution. The φ(l)(ν) are derivatives of

the Gaussian distribution with respect to ν:

φ(l)(ν) ≡ dlφ

dνl
= (−1)lHl(ν)φ(ν), (3.22)

and the Hl(ν) are Hermite polynomials with the unconventional normalization,

∫ ∞

−∞

Hl(ν)Hm(ν)φ(ν)dν = l! δlm . (3.23)

The central moments of the PDF are defined as

µl ≡ σl

∫ ∞

−∞

p(ν)ν l dν , (3.24)

while the cumulants or “connected” portions of these moments can be derived from

the relation

Ml ≡
dl ln〈etδ〉
dtl

. (3.25)

Using the expansion (3.21) and the orthogonality relation (3.23), the coefficients of the

Gram-Charlier series can be expressed in terms of the central moments. By inverting

Eq. (3.25), the central moments can then be re-expressed in terms of cumulants.

As discussed in the previous Section, the assumption that the lensing potential is

Gaussian implies that all cumulants of higher order than the kurtosis must vanish.

Using this result, we can rewrite the Gram-Charlier expansion as a power series in
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the skewness S or kurtosis K, which in the case of lensing will be small quantities.

p(ν) =

[
1 +

1

3!
SH3(ν) +

10

6!
S2H6(ν) + . . .

]
φ(ν) ,

p(ν) =

[
1 +

1

4!
KH4(ν) +

35

8!
K2H8(ν) + . . .

]
φ(ν) .

(3.26)

These power series can be convolved with a Gaussian noise PDF of variance σ2
noise(θ)

to obtain the observed PDF Pobs(Θ
t). To linear order in the true skewness and

kurtosis, we find:

Sobs(θ) = S(θ)

{
σ2(θ)

σ2(θ) + σ2
noise(θ)

}3/2

,

Kobs(θ) =
K(θ)

8

{
5σ4(θ) − 3σ4

noise(θ) − 6σ2(θ)σ2
noise(θ)

[σ2(θ) + σ2
noise(θ)]

2 + 3

}
.

(3.27)

As expected, the observed skewness and kurtosis converge to the signal values in the

absence of noise and to zero in the case when the Gaussian noise is dominant. To

actually observe skewness or kurtosis in an experimental sky map, we must construct

estimators for these quantities using our data points, the N = 4πfsky/π(θ/2)2 pixels

in the map. We can write estimators for the skewness and kurtosis as

Ŝσ3 ≡ 1

N

N∑

i=1

(xi − x̄)3 ,

K̂σ4 ≡ 1

N

N∑

i=1

(xi − x̄)4 − 3

[
1

N

N∑

i=1

(xi − x̄)2

]2

,

(3.28)

where x̄ = 1
N

∑N
i=1 xi is the traditional estimator for the mean of a distribution. For

a distribution like that of the CMB anisotropies which is a priori defined to have a



82

zero mean, we find:

〈Ŝσ3〉 = (1 − 3

N
+

2

N2
)Sσ3 ,

〈K̂σ4〉 = (1 − 7

N
+

12

N2
− 6

N3
)Kσ4 − 6

N
(1 − 1

N
)σ4 .

(3.29)

These are biased estimators, as has been noted elsewhere under a different context

(Hui & Gaztanaga, 1999), but in the large-N limit, they converge to the desired

quantities. Assuming that the underlying PDF is Gaussian, the variance of these

estimators to lowest order in 1/N is given by:

σ2�

Sσ3
≡ 〈(Ŝσ3)2〉 − 〈Ŝσ3〉2 =

3!

N
σ3 ,

σ2�

Kσ4
≡ 〈(K̂σ4)2〉 − 〈K̂σ4〉2 =

4!

N
σ4 .

(3.30)

An alternate derivation of these variances can be obtained from the explicit form

of the PDFs following Eq. (3.26). If N pixels or data points are collected and binned

such that pi is the probability that a data point will fall within bin i and σi is

the standard deviation of that probability, then the best variance of a parameter ε

characterizing the PDF is given by the Cramér-Rao bound (Kendall & Stuart, 1969),

1

σ2
ε

=
∑

i

(
∂pi

∂ε

)2
1

σ2
i

. (3.31)

If the error on each bin is assumed to be Poisson, then σ2
i = pi/N . In the limit of a

continuous PDF, pi → p(ν) dν and the discrete sum (3.31) becomes an integral:

1

σ2
ε

= N

∫ (
∂p

∂ε

)2

p−1 dν . (3.32)

Inserting Eq. (3.26) into Eq. (3.32) under the Gaussian null hypothesis S = K = 0,

we find lowest attainable errors as σ2
ε = 3!/N, 4!/N for ε = S,K in agreement with
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Figure 3.1: Left: The skewness due to lensing-SZ correlations for a perfect (no-noise)
experiment (solid line), Planck (dashed line), and MAP (dotted line) for σ8 = 0.9.
The CBI 1σ upper bound of σ8 6 1.2 leads to a higher value for the skewness as
indicated by the dot-dashed line. Right: The signal-to-noise ratio for the detection
of skewness in CMB data with curves labeled as in the left figure. We assume full
sky-coverage; for partial sky coverage, the signal-to-noise ratio scales as

√
fsky, where

fsky is the fraction of sky covered.

the explicit calculation of the variance of our estimators noted in Eq. (3.30). Further

discussion of the variance associated with different estimators for the skewness and

kurtosis is included in the Appendix.

3.5 Results & Discussion

3.5.1 Skewness

We illustrate in Fig. (3.1) our results for skewness due to the correlation between

lensing and the SZ effect. We calculate this correlation following Cooray (2001a) using

the halo approach to large-scale structure (Cooray & Sheth, 2002). The skewness

approaches zero at small values of the smoothing scale, consistent with our conclusion

that no non-Gaussian signatures exist in the PDF in the limit of infinite resolution.

As shown, skewness due to the lensing-SZ correlation peaks at an angular scale of tens
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of arcminutes, which is in the range of interest to upcoming experiments such as MAP

and Planck. When calculating expected signal-to-noise ratios for these experiments,

we use detector sensitivities and resolutions tabulated in Cooray et al. (2000). For

simplicity, we combine information from individual frequency channels to form one

estimate of temperature with an overall noise given by inversely weighting individual

noise contributions.

The skewness as shown has signal-to-noise ratios slightly less than unity suggesting

that its detection may be hard and potentially affected by noise. However, recent

small-scale excess-power detections by experiments such as CBI (Mason et al., 2003)

raise the possibility that we may have underestimated the lensing-SZ correlation and

thus, the skewness. The lensing-SZ power spectrum Cφs
l is roughly proportional to

the fifth power of σ8, the standard deviation of linear mass fluctuations within an

8h−1 Mpc sphere. If we adopt the CBI 1σ upper bound of σ8 6 1.2 (Mason et al.,

2003) as opposed to the value σ8 = 0.9 suggested by previous studies, our signal

increases by a factor of 4.21. In this case, Planck could conceivably detect skewness

with a signal-to-noise of 2.5. The potential for detection of the temperature skewness

is consistent with previous expectations that the temperature anisotropy bispectrum

due to lensing-SZ correlation can be detected in future data (Goldberg & Spergel,

1999). The cumulative signal-to-noise for skewness, however, is significantly smaller

than that for the full bispectrum because the skewness is a single number while the

bispectrum contains all information related to non-Gaussianities at the three-point

level. As described below, we find a similar reduction in signal-to noise for kurtosis

when compared to the full trispectrum.

The frequency dependence of the SZ effect allows us to construct an SZ map of

the sky as well as a temperature map with the SZ effect removed. This provides

us a unique opportunity to test our understanding of non-Gaussianity at the three-

point level. If skewness is purely a consequence of lensing-SZ correlations as posited

in this paper, then the skewness obtained by combining one measurement of the

SZ map with two measurements of the SZ-cleaned temperature map at the same

location using the estimator in Eq. (3.28) should be precisely one third that produced
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Figure 3.2: Left: The kurtosis Kφφ due to lensing auto-correlations and Kφs due
to lensing-SZ cross-correlations for a perfect (no-noise) experiment (solid line) and
Planck (dashed line). The kurtosis due to lensing-SZ correlations is negative at
smoothing scales below the kink at ∼ 8 arcminutes and positive thereafter; its abso-
lute value is shown here. Right: The signal-to-noise ratio for the detection of kurtosis
in CMB data with curves labeled as in the left figure. We assume full sky-coverage;
for partial sky coverage, the signal-to-noise ratio scales as

√
fsky, where fsky is the

fraction of sky covered.

by three measurements of the total anisotropy map. This corresponds to the fact

that the composite map will sample only one of the three permutations appearing in

Eq. (3.16).

3.5.2 Kurtosis

Both lensing kurtosis Kφφ and the kurtosis Kφs due to lensing-SZ correlations are

undetectable even for a perfect no-noise experiment as illustrated in Fig. (3.2). Since

the cumulative signal-to-noise ratio for Kφs is well below one, we expect it to remain

undetectable despite any uncertainty in our calculation of the SZ effect. Note our

prediction of the lensing kurtosis Kφφ is likely to be more certain since it only depends

on the matter power spectrum, with contributions coming mainly from the linear

regime. Thus, uncertainties in non-linear aspects of clustering are unlikely to affect

our conclusion.
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The signal-to-noise value for Kφφ can be compared to the cumulative signal-to-

noise ratio for the direct detection of the full trispectrum due to lensing which, in

the case of Planck, can be as high as ∼ 55 (Zaldarriaga, 2000). Consequently, al-

though the lensing kurtosis cannot be detected directly from the data, lensing effects

associated with this kurtosis can be used to reconstruct the lensing deflection angle

as described in Hu (2001a) and Cooray & Kesden (2003), again, with cumulative

signal-to-noise ratios significantly greater than that for the kurtosis itself. The higher

signal-to-noise ratio in lensing reconstruction is possible for two reasons. Unlike the

kurtosis, which averages indiscriminately over all configurations of the trispectrum

as shown in Eq. (3.19), lensing reconstruction is sensitive to certain configurations

of the trispectrum – mainly those that contribute to the power spectrum of squared

temperature. This avoids severe positive-negative cancellations that significantly re-

duce the signature of non-Gaussianity. Secondly, the noise contribution associated

with lensing reconstruction is also reduced a priori through a filter which is designed

to optimally extract information on the lensing potentials.

The low signal-to-noise associated with the kurtosis is also consistent with the

fact that real-space moments, in general, suffer from excess noise. Though such

statistics are easily measurable in data, they do not provide the most optimal meth-

ods to search for the existence of non-Gaussian signatures. While we recommend

construction of cumulants such as skewness and kurtosis as a first step in under-

standing non-Gaussianity from effects such as lensing, we suggest that full measures

of quantities such as bispectrum and trispectrum will be necessary to fully under-

stand the non-Gaussian behavior of lensing. If measurement of such statistics are

still cumbersome, we suggest the use of quadratic statistics in real space, such as

the squared-temperature–temperature (Cooray, 2002) and the squared-temperature–

squared-temperature (Cooray & Kesden, 2003) power spectra which probe certain

configurations of the bispectrum and trispectrum.

This work was supported in part by NSF AST-0096023, NASA NAG5-8506, and

DoE DE-FG03-92-ER40701. Kesden acknowledges the support of an NSF Graduate

Fellowship, and AC acknowledges support from the Sherman Fairchild Foundation.
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3.6 Variance of Skewness and Kurtosis Estimators

A question arose during the composition of this paper as to the appropriate variance

for estimates of the skewness and kurtosis of a Gaussian distribution. The true

skewness and kurtosis of a Gaussian distribution are necessarily zero, but given N

data points xi drawn from this distribution, even unbiased estimators will yield results

distributed about zero with some variance. Some sources (e.g., Press et al. (1992))

indicate variances of 15/N and 96/N , respectively, for the skewness and kurtosis

estimators defined in Eq. (3.28) as opposed to our values of 6/N and 24/N . This

discrepancy prompted us to investigate further. The estimators of Eq. (3.28) differ

from those given in Press et al. (1992) in that they are estimators for the third and

fourth cumulants rather than the dimensionless skewness and kurtosis to which they

are proportional. Assuming an underlying Gaussian distribution with a variance of

unity, standard propagation of errors reveals that the two pairs of estimators have

the same variances to lowest order in 1/N . However, the näıve estimators

Ŝσ3
′

≡ 1

N

N∑

i=1

x3
i and

K̂σ4
′

≡ 1

N

N∑

i=1

x4
i − 3

[
1

N

N∑

i=1

x2
i

]2

(3.33)

do indeed have variances of 15/N and 96/N for skewness and kurtosis respectively.

We show this explicitly for the näıve skewness estimator Ŝσ3
′
. The ensemble average

of this estimator is simply Sσ3, so it is truly an unbiased estimator for the skewness.

However, taking the ensemble average of (Ŝσ3
′
)2 we find

〈(Ŝσ3
′
)2〉 =

1

N

[
µ6 + (N − 1)S2σ6

]
, (3.34)
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leading to a variance

σ2�

Sσ3
′ ≡ 〈(Ŝσ3

′
)2〉 − 〈Ŝσ3

′
〉2 =

1

N
(µ6 − S2σ6) . (3.35)

For a Gaussian distribution, µ6 = 15σ6 and S = 0, implying that this estimator

measures skewness with a variance of 15/N and is therefore less sensitive than Ŝσ3

defined in Eq. (3.28) which was shown to have a variance of 6/N . An entirely analo-

gous calculation shows that the näıve kurtosis estimator in Eq. (3.33) has a variance

of 96/N , not 24/N .

Why do the estimators of Eq. (3.28) outperform those of Eq. (3.33)? Although

the true mean of the underlying Gaussian distribution has been chosen to be zero,

the estimated mean x̄ = 1
N

∑N
i=1 xi of N data points will not necessarily vanish. The

more sophisticated estimators of Eq. (3.28) take this into account by subtracting

the estimated mean from each data point, and are therefore able to provide lower-

variance estimates of the skewness and kurtosis. These lower values for the variances

are adopted for all results concerning signal-to-noise mentioned in this paper.



89

Chapter 4

Separation of Gravitational-Wave

and Cosmic-Shear Contributions to

CMB Polarization

Reprinted with permission from M. Kesden, A. Cooray, and M. Kamionkowski Phys.

Rev. Lett. 89, 011304 (2002).

Inflationary gravitational waves generate a distinct signature in the cosmic mi-

crowave background (CMB) through a contribution to the curl, or magnetic-like,

component in the polarization pattern. Though there is no direct contribution to

these curl modes from scalar (density) perturbations, cosmic shear – gravitational

lensing of the CMB by large-scale structure along the line of sight – converts a fraction

of the polarization in the dominant gradient, or electric-like, component to the curl

component. Measurements of higher-order correlations in the CMB temperature and

polarization can be used to map the cosmic shear as a function of position on the sky,

and with this cosmic-shear map, the lensing contribution to the curl can, in principle,

be subtracted. We study how well this cosmic-shear subtraction can be accomplished.

We find that CMB information down to arcminute resolution will be required to pur-

sue gravitational-wave amplitudes significantly smaller than those accessible with the

Planck satellite. The existence of a finite cutoff in the CMB power spectrum at small

scales leads to a minimum detectable gravitational-wave-background amplitude that

corresponds to an inflationary energy scale near 1015 GeV.

Observation of acoustic oscillations in the temperature anisotropies of the cos-
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mic microwave background (Miller et al., 1999; de Bernardis et al., 2000; Hanany

et al., 2000; Halverson et al., 2002) strongly suggests an inflationary origin for pri-

mordial perturbations (Guth, 1981; Linde, 1982a; Albrecht & Steinhardt, 1982). It

has been argued that a new smoking-gun signature for inflation would be detection

of stochastic background of inflationary gravitational waves (IGWs) (Kamionkowski

& Kosowsky, 1999). These IGWs produce a distinct signature in the CMB in the

form of a contribution to the curl, or magnetic-like, component of the polarization

(Kamionkowski et al., 1997a; Seljak & Zaldarriaga, 1997). Since there is no scalar, or

density-perturbation, contribution to these curl modes, curl polarization was consid-

ered to be a direct probe of IGWs.

There is, however, another source of a curl component. Cosmic shear (CS) – weak

gravitational lensing of the CMB due to large-scale structure along the line of sight

– results in a fractional conversion of the gradient mode from density perturbations

to the curl component (Zaldarriaga & Seljak, 1998). The amplitude of the IGW

background varies quadratically with the energy scale Einfl of inflation, and so the

prospects for detection also depend on this energy scale. In the absence of CS, the

smallest detectable IGW background scales simply with the sensitivity of the CMB

experiment; as the instrumental sensitivity is improved, smaller values of Einfl become

accessible (Kamionkowski & Kosowsky, 1999; Jaffe et al., 2000). More realistically,

however, the CS-induced curl introduces a noise from which IGWs must be distin-

guished. If the IGW amplitude (or Einfl) is sufficiently large, the CS-induced curl will

be no problem. However, as Einfl is reduced, the IGW signal becomes smaller and

will get lost in the CS-induced noise. This confusion leads to a minimum detectable

IGW amplitude (Lewis et al., 2002).

In addition to producing a curl component, CS also introduces distinct higher-

order correlations in the CMB temperature pattern. Roughly speaking, lensing can

stretch the image of the CMB on a small patch of sky and thus, lead to something

akin to anisotropic correlations on that patch of sky, even though the CMB pattern

at the surface of last scatter had isotropic correlations. By mapping these effects, the

CS can be mapped as a function of position on the sky (Seljak & Zaldarriaga, 1999a).
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The observed CMB polarization can then be corrected for these lensing deflections to

reconstruct the intrinsic CMB polarization at the surface of last scatter (in which the

only curl component would be that due to IGWs). In this Letter, we evaluate how well

this subtraction can be accomplished and study the impact of CS on experimental

strategies for detection of IGWs.

To begin, we review the determination of the smallest detectable IGW amplitude

in the absence of CS. Following Jaffe et al. (2000), we consider a CMB-polarization

experiment of some given instrumental sensitivity quantified by the noise-equivalent

temperature (NET) s, angular resolution θFWHM, duration tyr in years, and fraction

of sky covered fsky. We then make the null hypothesis of no IGWs and determine the

largest IGW amplitude T , defined as T = 9.2V/m4
Pl, where V = E4

infl is the inflaton-

potential height, that would be consistent at the 1σ level with the null detection. We

then obtain the smallest detectable IGW amplitude σT from

σ−2
T =

∑

l>180/θ

(
∂CBB,GW

l /∂T
)2

(σBB
l )−2, (4.1)

where CBB,GW
l is the IGW contribution to the curl power spectrum, and

σBB
l =

√
2

fsky(2l + 1)

(
CBB

l + fskyw
−1el2σ2

b

)
, (4.2)

is the standard error with which each multipole moment CBB
l can be determined.

Here, w−1 = 4π(s/TCMB)2/(tpixNpix) (Knox, 1995) is the variance per unit area on

the sky for polarization observations when tpix is the time spent on each of Npix pixels

with detectors of NET s, and θ ' 203 f
1/2
sky is roughly the width (in degrees) of the

survey. In restricting the sum to l > 180/θ, we have assumed that no information from

modes with wavelengths larger than the survey size can be obtained; in fact, some

information can be obtained, and our results should thus be viewed as conservative

(Lewis et al., 2002).

The second term in Eq. (4.2) is due to instrumental noise, and the first is due to

cosmic variance. In the absence of CS, and for the null hypothesis of no IGWs, we
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set CBB
l = 0, and the results for the smallest detectable IGW amplitude are shown as

the solid curves in Fig. 4.1 for an experiment with detectors of comparable sensitivity

to Planck’s (left) and a hypothetical experiment (right) with better sensitivity. The

smallest detectable IGW amplitude T scales as s2t−1
yr . For large survey widths, it

scales as θ, but at survey widths smaller than ∼ 5◦, it increases because information

from the larger-angle modes in the IGW-induced curl power spectrum is lost (cf. the

IGW power spectrum in Fig. 4.2).

It is now easy to see how inclusion of CS affects these results. As discussed

above, lensing of the gradient polarization at the surface of last scatter due to density

perturbations leads to a CMB curl component with a power spectrum

C̃BB
l =

1

2

∫
d2l1

(2π)2
[l2 · l1]2 (1 − cos 4φl1)C

φφ
l2
CEE

l1
, (4.3)

where l2 = l − l1. Here and throughout, CEE
l is the power spectrum of the gradient

component of polarization and Cφφ
l is the power spectrum of the projected lensing

potential (Hu, 2000a). The latter is defined in terms of the potential fluctuations Φ

along the line of sight such that

φ(n̂) = −2

∫ r0

0

dr
dA(r0 − r)

dA(r)dA(r0)
Φ(r, n̂r) , (4.4)

where r is the comoving radial distance, or conformal look-back time, with r0 at the

last scattering surface, and dA(r) is the comoving angular diameter distance. The

CS-induced curl power spectrum is shown as the dashed curve in Fig. 4.2.

By the time these measurements are made, the cosmological parameters that

determine this lensed curl power spectrum should be sufficiently well determined such

that this power spectrum can be predicted with some confidence. In that case, the

CS-induced curl component can be treated simply as a well-understood noise for the

IGW background. The smallest detectable IGW amplitude can then be calculated as

above, by inserting the lensed power spectrum, Eq. (4.3), in Eq. (4.2) for CBB
l . The

results are shown as the short-dash curves in Fig. 4.1. When lensing is included, the



93

results no longer scale simply with fsky, s, or tyr, as there is now a trade-off between

the instrumental-noise and CS-noise terms in Eq. (4.2). The left panel shows that

the IGW sensitivity for an experiment with NET similar to Planck’s should not be

affected by CS. This is because the IGW amplitudes that could be detectable by such

experiments are still relatively large compared with the expected CS signal, especially

at the larger angles that will be best accessed by Planck. However, CS will affect the

ability of experiments more sensitive than Planck to detect unambiguously IGWs, as

shown in the right panel. CS also shifts the preferred survey region to larger areas,

as the IGW power spectrum peaks at larger angles than the CS power spectrum (cf.

Fig. 4.2). Finally, note that if the CS curl is treated as an unsubtracted noise, it

leads, assuming a no-noise polarization map, to a smallest detectable IGW amplitude,

corresponding to an inflaton-potential height, V 1/4 ∼ 4 × 1015 GeV.

Now we arrive at the main point of this Letter; i.e., how well can the CS-induced

curl be subtracted by mapping the CS as a function of position on the sky? One

possibility is that the primordial polarization pattern might be reconstructed from

that observed by using CS maps obtained with correlations of galaxy ellipticities

(Miralda-Escudé, 1991; Blandford et al., 1991; Kaiser, 1992; Bartelmann & Schneider,

1992). However, the source galaxies for these CS surveys are at redshifts z ∼ 1, while

only a small fraction of the CS-induced curl comes from these redshifts, as indicated

in Fig. 4.2. An alternative possibility is to use higher-order correlations in the CMB

(Seljak & Zaldarriaga, 1999a) to map the CS-induced curl all the way back to the

surface of last scatter.

CS modifies the temperature and polarization pattern, giving rise to anisotropic

correlations on small scales where the image of the CMB surface of last scatter is

sheared by weak lensing. According to Hu (2001b) and Hu (2001a), the quantity, ∇ ·
[T (n̂)∇T (n̂)], provides the best indicator, given a temperature map, of the deflection

angle at position ∇ on the sky. In Fourier space, we can write this quadratic estimator

for the deflection angle as

α̂(l) =
Nl

l

∫
d2l1

(2π)2

(
l · l1CCMB

l1 + l · l2CCMB
l2

) T (l1)T (l2)

2Ctot
l1
Ctot

l2

, (4.5)
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where CCMB
l is the unlensed CMB power spectrum and

Ctot
l = C lensed−CMB

l + fskyw
−1el2σ2

b (4.6)

includes all contributions to the CMB temperature power spectrum. The ensemble

average over CMB realizations, 〈α̂(l)CMB〉, is equal to the deflection angle, lφ(l), when

N−1
l =

1

l2

∫
d2l1

(2π)2

(
l · l1CCMB

l1
+ l · l2CCMB

l2

)2

2Ctot
l1
Ctot

l2

. (4.7)

It can also be shown (Hu, 2001b,a) that Nl is the noise power spectrum associated

with the reconstructed deflection angle power spectrum

〈α̂(l)α̂(l′)〉 = (2π)2δD(l + l′)
(
l2Cφφ

l +Nl

)
. (4.8)

Here, the ensemble average is taken independently over realizations of both the CMB

and the intervening large-scale structure. In addition to these temperature estimators

for the deflection angle, we also use analogous ones constructed from the polarization,

as discussed in Hu & Okamoto (2002), although we do not reproduce those formulas

here. The total noise in the estimator for the deflection angle can then be constructed

by summing the inverses of the individual noise contributions. We thus determine

the variance with which each Fourier mode of φ can be reconstructed.

With the deflection angle obtained this way as a function of position on the sky,

the polarization at the CMB surface of last scatter can be reconstructed (details to

be presented elsewhere (Kesden et al., 2003)). In the ideal case, there would be

no error in the CS reconstruction leading to no residual lensing-induced curl com-

ponent. Realistically, however, there will be some error in the CS reconstruction,

from measurement error and also from cosmic variance. The exponential reduction

of CMB power on small scales from Silk damping means that there will be a finite

number of small-scale coherence patches in CMB with which to reconstruct the CS.

There will therefore be some residual curl component in the CMB with a noise power

spectrum, Cφφ,noise
l = Nl/l

2. The lensing reconstruction from CMB data only allows
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the extraction of Cφφ
l to a multipole of . 1000 (Hu & Okamoto, 2002), but there is

substantial contribution to the CS-induced curl component from lensing at smaller

angular scales. We thus replace Nl/l
2 by Cφφ

l when the former exceeds the latter at

large l. This provides an estimate to the noise expected in the reconstructed curl

component that follows from implementing a filtering scheme where high-frequency

noise in the CS reconstruction is removed to the level of the expected CS signal.

The dot-dash curve in Fig. 4.2 shows the residual CS-induced curl component that

remains after subtraction.

We can now anticipate the smallest IGW amplitude detectable by a CS-corrected

polarization map by simply using this residual noise power spectrum in Eq. (4.3).

Results are shown as dotted curves in Fig. 4.1. The left panel shows results as

a function of survey size for an experiment with NET similar to Planck, while the

right-hand panel shows results for experiments with better sensitivity and resolution.

Since the dotted curves are just below the dashed curve in the left-hand panel of Fig.

4.1, we learn that Planck’s sensitivity will not be sufficient to warrant an effort to

reconstruct the primordial curl and we would do just as well to simply treat the CS-

induced curl as a noise component of known amplitude. We can expect to improve the

discovery reach for IGWs by increasing the sensitivity and resolution. The right-hand

panel of Fig. 4.1 shows results for a hypothetical experiment with s = 1µK
√

sec

and angular resolutions of 5′, 2′ and 1′. We now see there is a significant difference

between the dashed curve and the dotted lines suggesting the increasing improvement

with increasing resolution.

Finally, to indicate the ultimate limits of this class of experiments, the long-dash

curve in Fig. 4.1 shows the results assuming perfect detectors (i.e., s = 0). If

there were no CS-induced curl, then we would have sensitivity to an arbitrarily small

IGW amplitude, but the existence of a CS-induced curl provides an ultimate limit of

V 1/4 ' 4 × 1015 GeV, as discussed above. Correction for the effects of CS with the

CS map inferred from higher-order correlations would allow us to access lower IGW

amplitudes, but eventually, such a correction is ultimately limited by the existence

of only a finite number of small-scale coherence patches with which to reconstruct
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the CS. If there is no instrumental-noise limitation, the sensitivity to an IGW signal

is maximized by covering as much sky as possible, and the lowest accessible inflaton

potential, ∼ 1015 GeV, is obtained with a nearly all-sky experiment.

To conclude, we have studied the IGW amplitudes accessible by mapping the

curl component of the CMB polarization, taking into account the effects of a CS-

induced curl that is either modeled as an unsubtracted noise or subtracted with a

CS map obtained with higher-order correlations. We find that the CS reconstruction

is unlikely to improve the IGW discovery reach of Planck. To go beyond Planck,

however, a CS map will need to be constructed with temperature and polarization

maps of higher sensitivity and resolution than Planck. An ultimate limit of roughly

V 1/4 ∼ 1015 GeV to the detectable IGW amplitude using the techniques considered

here comes from the existence of finite CMB power on small scales. There are several

possible ways this lower limit may be improved upon. First of all, we have used only

the lowest-order temperature-polarization correlations to reconstruct the CS. The

inclusion of the complete temperature-polarization four-point correlation functions

and higher-order correlations may possibly improve the CS reconstruction. We have

neglected reionization in our analysis. Reionization will boost the large-angle CMB

polarization (Zaldarriaga, 1997), thus improving the detectability of IGWs. Another

improvement in this limit may be achieved by relaxing our assumption that power in

the CMB drops exponentially at small scales. If the excess small-scale power recently

detected by CBI (Sievers et al., 2001) comes from high redshifts, then there will be

more small-scale coherence patches with which to reconstruct the CS. In this case, it

is imaginable that a far more precise CS map can be reconstructed, but this might

require even better angular resolution and sensitivity.

During the preparation of the paper, we learned of other very recently completed

work by Knox and Song (Knox & Song, 2002) that performs a very similar calculation

and reaches similar conclusions. This work was supported in part by NSF AST-

0096023, NASA NAG5-8506, and DoE DE-FG03-92-ER40701. Kesden acknowledges

the support of an NSF Graduate Fellowship and AC acknowledges support from the

Sherman Fairchild Foundation.
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Figure 4.1: Minimum inflation potential observable at 1σ as a function of survey
width for a one-year experiment. The left panel shows an experiment with NET
s = 25µK

√
sec. The solid curve shows results assuming no CS, while the dashed

curve shows results including the effects of an unsubtracted CS; we take θFWHM = 5′

in these two cases. The dotted curves assume the CS is subtracted with θFWHM = 10′

(upper curve) and 5′ (lower curve). Since the dotted curves are close to the dashed
curve, it shows that these higher-order correlations will not be significantly useful in
reconstructing the primordial curl for an experiment similar to Planck’s sensitivity
and resolution. The right panel shows results for hypothetical improved experiments.
The dotted curves show results with CS subtracted and assuming s = 1µK

√
sec,

θFWHM = 5′, 2′, and 1′ (from top to bottom). The solid curve assumes θFWHM = 1′ and
s = 1µK

√
sec, and no CS, while the dashed curve treats CS as an additional noise.

The long-dash curve assumes CS subtraction with no instrumental noise (s = 0).
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Figure 4.2: Contributions to the CMB polarization power spectra. The long-dashed
curve shows the dominant polarization signal in the gradient component due to scalar
perturbations. The solid line shows the maximum allowed curl polarization signal
from the gravitational-wave background, which will be smaller if the inflationary
energy scale is smaller than the maximum value allowed by COBE of 3.47×1016 GeV.
The dashed curve shows the power spectrum of the curl component of the polarization
due to CS. The dotted curve is the CS contribution to the curl component that comes
from structures out to a redshift of 1; this is the level at which low-redshift lensing
surveys can be used to separate the CS-induced polarization from the IGW signal.
The dot-dashed line is the residual when lensing contribution is separated with a
no-noise experiment and 80% sky coverage.
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Chapter 5

Can Cosmic Shear Shed Light on

Low Cosmic Microwave

Background Multipoles?

Reprinted with permission from M. Kesden, M. Kamionkowski, and A. Cooray, Phys.

Rev. Lett. 91, 221302 (2003).

The lowest multipole moments of the cosmic microwave background (CMB) are

smaller than expected for a scale-invariant power spectrum. One possible explanation

is a cutoff in the primordial power spectrum below a comoving scale of kc ' 5.0×10−4

Mpc−1. This would affect not only the CMB, but also the cosmic-shear (CS) distortion

of the CMB. Such a cutoff increases significantly the cross-correlation between the

large-angle CMB and cosmic-shear patterns. The cross-correlation may be detectable

at > 2σ which, when combined with the low CMB moments, may tilt the balance

between a 2σ result and a firm detection of a large-scale power-spectrum cutoff. As an

aside, we also note that the cutoff increases the large-angle cross-correlation between

the CMB and low-redshift tracers of the mass distribution.

One of the more intriguing results of Wilkinson Microwave Anisotropy Probe

(WMAP) (Bennett et al., 2003; Spergel et al., 2003) is confirmation of the absence

of large-scale temperature correlations in the cosmic microwave background (CMB),

or equivalently, a suppression of power in the quadrupole and octupole moments,

found earlier by the Cosmic Background Explorer (Bennett et al., 1996). A variety

of measures of the power spectrum – from the l = 4 moment of the CMB power
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spectrum, which probes wavelengths ∼ 104 Mpc, to galaxy surveys and the Lyman-

alpha forest, which probe down to 1–10 Mpc – show consistency with a scale-invariant

spectrum of primordial perturbations. Thus, the suppression of the l = 2 and l = 3

moments of the CMB power spectrum come as a bit of a surprise.

Is this simply a statistical fluke? Or is something novel occurring just beyond our

observable cosmological horizon? Possibilities include remnants of a pre-inflationary

Universe, a curvature scale just larger than the horizon, and/or exotic inflation (Efs-

tathiou, 2003b; Blanchard et al., 2003; Feng & Zhang, 2003; Kawasaki & Takahashi,

2003; DeDeo et al., 2003; Contaldi et al., 2003; Gaztanaga et al., 2003; Efstathiou,

2003a; Cline et al., 2003). If there is indeed a suppression of large-scale power, it

occurs at distance scales ∼ 104 Mpc (Contaldi et al., 2003; Gaztanaga et al., 2003;

Efstathiou, 2003a; Cline et al., 2003), larger than those typically probed by galaxy

surveys. Future experiments to determine the lowest moments of the CMB power

spectrum are also of limited value because current measurements are already domi-

nated by cosmic variance rather than instrumental noise. Thus, although the current

evidence for new super-horizon physics is tantalizing, the prospects for further testing

it are limited.

In this paper, we point out that there exists another probe of the mass distribu-

tion on these largest distance scales. Cosmic shear (CS) – weak gravitational lensing

by density perturbations along the line of sight – will produce identifiable distortions

in the temperature-polarization pattern of the CMB. When observed, these distor-

tions map the gravitational potential projected along a given line of sight. Here we

show that a power-spectrum cutoff enhances significantly (roughly a factor of four)

the cross-correlation between the CMB and CS distortion of the CMB on the largest

scales. This cross-correlation may be detectable at the > 2σ level and may thus pro-

vide a valuable cross-check to the current ∼ 2σ evidence for a dearth of large-scale

CMB power. As an aside, we also show that the large-angle cross-correlation between

the CMB and low-redshift tracers of large-scale structure (Crittenden & Turok, 1996;

Kamionkowski, 1996; Boughn et al., 1998; Kinkhabwala & Kamionkowski, 1999; Sel-

jak & Zaldarriaga, 1999b) is roughly doubled if the large-scale cutoff is real. Although
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recent detections (Boughn & Crittenden, 2003; Nolta et al., 2004; Multamaki et al.,

2004; Fosalba & Gaztanaga, 2004; Scranton et al., 2003; Afshordi et al., 2004) of this

effect are at smaller scales than would be affected by a large-scale cutoff, correlations

on larger scales might be probed by future experiments.

Below, we first discuss the large-scale CS power spectra, as well as the cross-

correlation of the CS pattern with the CMB temperature pattern. We then construct

an estimator for the cross-correlation, and show that it can distinguish the cross-

correlation with and without a cutoff at roughly the 2σ level. When combined with

the already suspiciously low l = 2 and l = 3 moments of the CMB power spectrum,

this finding may tilt the balance between a 2σ result and a 3σ discrepancy with scale

invariance.

Perturbations in the matter density induce perturbations to the gravitational po-

tential Φ(r, z) which then induce temperature perturbations in the CMB through the

Sachs-Wolfe effect

Θ(n̂) =
1

3
Φ(r0, z0) − 2

∫ r0

0

dΦ

dr
(r, z(r)) dr , (5.1)

where r and z are the physical comoving distance and redshift, respectively, and the

subscript 0 denotes these quantities at the last-scattering surface. The position vector

r points in the direction n̂ on the sky. The potential at redshift z can be related to

its present-day value with the linear-theory growth factor G(z) (normalized to unity

today) through Φ(r, z) = (1 + z)G(z)Φ(r, 0). The first term in Eq. (5.1) comes

from density perturbations at the surface of last scatter, while the second term (the

integrated Sachs-Wolfe effect; ISW) comes from density perturbations along the line

of sight.

Relating the potential to the matter perturbation through the Poisson equation,

if the three-dimensional matter power spectrum is P (k) as a function of wavenumber

k, then the angular power spectrum for temperature fluctuations is

CΘΘ
l ∝

∫
dk k−2P (k)[Θ̃l(k)]

2, (5.2)
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Figure 5.1: The CMB temperature power spectrum. The solid curve is the power
spectrum of Eq. (5.2) for the ISW effect without a cutoff. The dashed curve has a
cutoff in P (k) below kc = 5.0 × 10−4 Mpc−1. The binned error bars represent actual
WMAP data.

as a function of multipole moment l, where

Θ̃l(k) =
1

3
(1 + z0)G(z0)jl(kr0)

− 2

∫ z0

0

dz [(1 + z)G(z)]′ jl (kr(z)) , (5.3)

and the prime denotes derivative with respect to redshift z. The main contributions

to the integral in Eq. (5.2) come from wavenumbers k near 10−4 Mpc−1 (see, e.g.,

Fig. 7 in Kamionkowski & Spergel (1994)).

If scale invariance holds out to super-horizon scales (as predicted by the generic

inflationary model), then the power spectrum P (k) at distance scales relevant for

l . 10 is simply P (k) ∝ kn, with n near unity. This is certainly what the CMB

data show at multipole moments l > 4 and it is consistent with determinations of
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the power spectrum from the CMB and large-scale structure out to scales as small as

∼few Mpc. Thus, the observed suppression of CΘΘ
2 and CΘΘ

3 shown in Fig. 5.1 is a

bit of a surprise.

The same potential perturbations Φ(r, z) that contribute to the Sachs-Wolfe effect

also give rise to weak gravitational lensing described by the projected potential,

φ(n̂) = −2

∫ r0

0

dr
r0 − r

r0r
Φ(r, z(r)) . (5.4)

The angular power spectrum of the lensing potential is then

Cφφ
l ∝

∫
dk k−2P (k)[φ̃l(k)]

2 . (5.5)

In fact, the only difference between this expression and its SW counterpart is the

replacement of Θ̃l(k) by

φ̃l(k) = −2

∫ z0

0

c dz

H(z)

r0 − r(z)

r0r(z)
(1 + z)G(z)jl(kr(z)). (5.6)

The projected potential receives contributions from a wide variety of distances, peaked

at roughly half the comoving distance to the surface of last scatter. The lowest

multipole moments of the CS power spectrum come from wavenumbers k near 10−4

Mpc−1. Since the small-k Fourier modes of the potential that give rise to low-l CS

moments are the same as those that give rise to the low-l CMB moments, we anticipate

that the CS power spectrum should also reflect the suppression of large-scale power.

Evaluating these expressions numerically, however, we find that the cutoff suppresses

Cφφ
2 by no more than ∼ 10%, too small to be detected.

However, the CMB and CS multipole moments are generated by the same under-

lying potential fluctuations, and so there should be some cross-correlation between

the two. And as we show, this cross-correlation turns out to be increased significantly

if there is a cutoff. The cross-correlation power spectrum CΘφ
l is

CΘφ
l ∝

∫
dk k−2P (k)Θ̃l(k)φ̃l(k) . (5.7)
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We can define a dimensionless cross-correlation coefficient, rl ≡ (CΘφ
l )2/CΘΘ

l Cφφ
l . If

Θ̃l(k) and φ̃l(k) had precisely the same k dependence, then the CMB maps would be

maximally correlated (rl = 1). In this case, we would be able to predict precisely that

the CS spherical-harmonic coefficients should be φlm = (CΘφ
l /CΘΘ

l )Θlm in terms of

the measured temperature coefficients Θlm. Moreover, if rl were equal to unity, then

a CS map might be used to confirm the CMB measurements, but it would add no

additional statistically-independent information on the large-scale power spectrum.

If, on the other hand, there was no overlap between Θ̃l(k) and φ̃l(k) whatsoever,

then there would be no cross-correlation, rl = 0. In this case, the CS pattern could

not confirm the CMB measurement, but it would provide a statistically independent

probe of the large-scale power spectrum.

Most generally, 0 < rl < 1, and the lensing spherical-harmonic coefficients will be

φlm = (CΘφ
l /CΘΘ

l )Θlm +
[
Cφφ

l − (CΘφ
l )2/CΘΘ

l )
]1/2

ζ , (5.8)

where ζ is a Gaussian random variable with zero mean and unit variance; i.e., there

is a correlated part determined by the CMB pattern and an uncorrelated part.

Fig. 5.2 shows our central result: the cross-correlation coefficient for a scale-

invariant spectrum and one in which P (k) = 0 for k < kc = 5 × 10−4 Mpc−1. The

dramatic increase in the cross-correlation for the lowest l in the presence of a cutoff

can be understood by examining the two terms of Eq. (5.1). The first of these terms,

generated at the last-scattering surface, is uncorrelated with the lensing potential;

the second term is a line-of-sight integral like the projected potential of Eq. (5.4).

Since the contribution of the first term comes from a larger distance from the ob-

server than that of the second term, correspondingly larger structures with lower

wavenumber k will be projected onto the angular scale set by the multipole moment

l. The lowest multipole moments will correspond to structures at the last-scattering

surface with k < kc, implying that in the presence of a cutoff, only the second term of

Eq. (5.1) will be nonvanishing for the lowest multipole moments. Since it is only this

term that is correlated to the lensing potential, the dimensionless cross-correlation
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Figure 5.2: The dimensionless correlation (CΘφ
l )2/CΘΘ

l Cφφ
l between maps of the CMB

temperature and lensing potential. The solid curve shows this correlation in the
absence of a cutoff, while the dashed curve is for a cutoff kc = 5.0×10−4 Mpc−1. The
upper, darker curves correspond to the lensing potential seen by sources at the CMB
last-scattering surface, while the lower, lighter curves correspond to lensing sources
at redshift z = 1.0.

will be significantly higher in the presence of a cutoff. It is important to note that

this increase in the dimensionless cross-correlation in the presence of a cutoff is an

independent prediction and not merely a consequence of the observed suppression of

CΘΘ
l for low l. If the CMB and CS multipole moments Θlm and φlm were multiplied

by an l-dependent normalization to suppress power on large scales, rl itself would

remain unaffected because it is dimensionless. The independence of this prediction

allows estimates of rl from CMB and CS maps to constrain kc with greater statistical

significance than measurements of CΘΘ
l alone.

We now determine how well measurements of rl can discriminate between a model

with a scale-invariant power spectrum and one with a cutoff (i.e., P (k) = 0 for
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k < kc = 5.0× 10−4 Mpc−1). Higher-order correlations in a high-resolution low-noise

CMB temperature-polarization map, can be used to construct estimators for the

projected potential (Seljak & Zaldarriaga, 1999a; Hu, 2001b,a; Hu & Okamoto, 2002;

Kesden et al., 2002b; Knox & Song, 2002; Kesden et al., 2003; Hirata & Seljak, 2003b)

and thus, estimators ĈΘφ
l and Ĉφφ

l , in addition to those ĈΘΘ
l for the temperature

already obtained by WMAP. An estimator r̂l ≡ (ĈΘφ
l )2/ĈΘΘ

l Ĉφφ
l for rl can then be

formed. Although it is not an unbiased estimator, it is sensitive to rl and converges to

rl for l � 1. For a given realization of the CMB and CS patterns, rl can be estimated

independently for each value of l. We have calculated the probability distributions

for r̂l for each l from many different Monte Carlo realizations of the two models for

rl described above. The CMB coefficients Θlm are set to the values consistent with

the WMAP power spectrum shown in Fig. 5.1, while the uncorrelated part of φlm is

determined for each realization of the two models in accordance with Eq. (5.8). We

assume the CS projected potential is reconstructed from a full-sky CMB temperature-

polarization map with 7′ angular resolution and noise-equivalent temperature of 0.46

µK
√

sec. The different predictions for r̂3 for the two models are shown in Fig. 5.3;

the predictions for r̂2 and r̂4 are qualitatively similar, while for r̂5, the two probability

distributions begin to merge, and for r̂6, they are almost indistinguishable.

Assuming that the first model (no cutoff) is correct, we calculated the fraction

of realizations in which the measured values of r̂l would lead us to conclude that

they were more likely drawn from the probability distributions of the second model.

This occurs only 0.7% of the time, implying that only 0.7% of the time would cosmic

variance mislead us into thinking that a cutoff as large as kc = 5.0× 10−4 Mpc−1 was

favored over the no-cutoff model. Since the CMB coefficients Θlm are constrained to

a single realization consistent with WMAP in both models, this measurement would

be statistically independent of the low observed CMB multipole moments themselves

for the purpose of distinguishing the two models. It could thus increase the ∼ 2σ

discrepancy of that measurement into a > 3σ detection of a large-scale cutoff in the

power spectrum.

Finally, we consider the cross-correlation between the CMB and low-redshift
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Figure 5.3: Probability distributions for r̂l for l = 3 for the two models described in
the text; the solid curve corresponds to the model without a cutoff in P (k) while the
dashed curve has a cutoff kc = 5.0 × 10−4 Mpc−1.

(z . 1) tracers of large-scale structure (Crittenden & Turok, 1996; Kamionkowski,

1996; Boughn et al., 1998; Kinkhabwala & Kamionkowski, 1999; Seljak & Zaldarriaga,

1999b) that several groups have already claimed to detect (Boughn & Crittenden,

2003; Nolta et al., 2004; Multamaki et al., 2004; Fosalba & Gaztanaga, 2004; Scran-

ton et al., 2003; Afshordi et al., 2004). To estimate the effect of a cutoff, we have

calculated the cross-correlation between the CMB and CS of a hypothetical popula-

tion of sources at redshift z = 1 for models with and without a cutoff. As indicated

by the lighter curves in Fig. 5.2, a cutoff boosts the cross-correlation coefficient for

these low-redshift sources by roughly a factor of two. Similar results are obtained

for cross-correlation with the galaxy distribution. Although recent detections of the

cross-correlation occur at smaller scales (l ' 30) than those affected by the cutoff,

future large-scale surveys could be sensitive to a cutoff-induced enhancement.



108

The WMAP observations clearly support the ΛCDM concordance model, but they

do present a few tantalizing discrepancies. Perhaps the most intriguing is the sharp

decrease in observed power at the lowest multipole moments shown in Fig. 5.1. A

variety of fundamental causes for this large-scale suppression can be modeled em-

pirically by an effective cutoff kc in the primordial power spectrum P (k). Though

the WMAP team found that only 0.15% of simulated CMB maps had less power

on large scales (Bennett et al., 2003; Spergel et al., 2003), it would be highly desir-

able to find corroborating evidence to confirm that this observation is not merely a

statistical anomaly. One possibility is measurements of the polarization signal from

nearby galaxy clusters, which are proportional to their local CMB quadrupole mo-

ment (Cooray & Baumann, 2003; Kamionkowski & Loeb, 1997). We have proposed

here that the cross-correlation CΘφ
l could provide additional evidence. Although the

experimental requirements for measurements of the CS distortions to the CMB are

ambitious, they are closely aligned with those for the CMBPOL experiment that ap-

pears in NASA’s roadmap. Thus, this measurement, like the effect it seeks to study,

is on the horizon.

This work was supported in part by NASA NAG5-11985 and DoE DE-FG03-92-

ER40701. Kesden acknowledges the support of an NSF Graduate Fellowship.
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Chapter 6

Gravitational-Wave Signature of an

Inspiral into a Supermassive

Horizonless Object

Reprinted with permission from M. Kesden, J. Gair, and M. Kamionkowski, Phys.

Rev. D 71, 044015 (2005).

Event horizons are among the most intriguing of general relativity’s predictions.

Although on firm theoretical footing, direct indications of their existence have yet to

be observed. With this motivation in mind, we explore here the possibility of finding

a signature for event horizons in the gravitational waves (GWs) produced during

the inspiral of stellar-mass compact objects (COs) into the supermassive (∼ 106M�)

objects that lie at the center of most galaxies. Such inspirals will be a major source

for LISA, the future space-based GW observatory. We contrast supermassive black

holes with models in which the central object is a supermassive boson star (SMBS).

Provided the COs interact only gravitationally with the SMBS, stable orbits exist

not just outside the Schwarzschild radius, but also inside the surface of the SMBS as

well. The absence of an event horizon allows GWs from these orbits to be observed.

Here, we solve for the metric in the interior of a fairly generic class of SMBS and

evolve the trajectory of an inspiraling CO from the Schwarzschild exterior through

the plunge into the exotic SMBS interior. We calculate the approximate waveforms for

GWs emitted during this inspiral. Geodesics within the SMBS surface will exhibit

extreme pericenter precession and other features making the emitted GWs readily
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distinguishable from those emitted during an inspiral into a black hole.

6.1 Introduction

The black-hole event horizon – a surface from beyond which no information can be

received – is one of the most intriguing predictions of general relativity. From the

theoretical point of view, the prediction is on a fairly firm footing. However, event

horizons have become so central to physics and astrophysics that efforts to obtain

direct empirical evidence for their existence are certainly warranted. In other words,

is there any observation or measurement that we can make that would allow us to

“see” the event horizon?

This question has motivated a small body of work in which the phenomenology

of accretion onto alternatives to stellar-mass or supermassive black holes (SMBHs)

has been worked out (Torres et al., 2000; Yuan et al., 2004). X-ray spectroscopy

or µ-arcsec imaging might distinguish the accretion disks of black holes from those

surrounding more exotic alternatives (Schunck & Liddle, 1997). A second approach

involves the “shadow” cast on background sources by the black hole when acting as

a strong gravitational lens (Falcke et al., 2000). Current observations are within a

factor of two of being able to resolve the shadow of Sgr A∗ using very long baseline

interferometry (VLBI) in the submillimeter. Although these calculations may not be

applicable if the predictions of general relativity hold true on astrophysical scales, such

work can be interesting in its own right and sometimes illuminates certain aspects of

the phenomenology of the standard black-hole spacetime.

With these motivations in mind, we study here a third possibility, namely whether

gravitational-wave (GW) signals from the inspiral of stellar-mass compact objects

(COs) into the supermassive objects at galactic centers may ultimately be used to

ascertain the existence of event horizons. There are in fact good prospects of detect-

ing GWs from such extreme-mass-ratio inspirals (EMRIs). Measurements of stellar

velocities within galactic cusps imply that the dynamics within a few parsecs of the

center are dominated by a supermassive object (Richstone et al., 1998; Kormendy &
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Gebhardt, 2002). Stellar clusters sufficiently dense to enclose enough mass within the

observationally determined volume would have lifetimes much less than the age of the

Galaxy (Maoz, 1995), leading most to believe that the object must be compact (i.e., a

SMBH). Still, stellar-dynamical measurements probe distances much larger than the

Schwarzschild radius, and thus, cannot distinguish SMBHs from sufficiently compact

alternatives. Although future stellar-dynamical observations will probe smaller radii,

they will never probe the spacetime structure anywhere even close to the horizon

(Weinberg et al., 2004).

These supermassive compact objects are expected to capture stars from the sur-

rounding galactic cusps (Sigurdsson & Rees, 1997; Sigurdsson, 1997). Main-sequence

stars will generally be disrupted at a tidal radius rt ≈ 2(M/m∗)
1/3r∗, where m∗ and

r∗ are the stellar mass and radius and M the mass of the supermassive central object.

For stars with a solar mass and radius, this implies rt ≈ 50RsM
−2/3
6 with M6 the mass

of the central object in 106M�. Thus, main-sequence stars are tidally disrupted long

before they reach the Schwarzschild radius, Rs = 2GM/c2. However an evolved stellar

population will also contain a fraction of white dwarfs, neutron stars, and stellar-mass

black holes that, owing to their smaller radii, can maintain their integrity down to

the innermost stable orbit (ISO) and beyond. Under the extreme–mass-ratio approx-

imation – well justified for the case η ≡ m∗/M . 10−6 – these COs will travel along

geodesics of the central object. However, the galactic cusp is a very crowded environ-

ment, and two-body scattering will change the orbital parameters of the COs over a

relaxation time tr. Dynamical friction will cause heavy objects such as neutron stars

and stellar-mass black holes to sink to the center of the cusp. Eventually, the COs

will enter the critical region of phase space known as the loss cone in which the time-

scale for the loss of energy due to gravitational radiation is less than the time-scale

for two-body scattering out of the loss cone. After this point, the evolution of the

orbit should be entirely determined by the loss of energy and angular momentum in

GWs, ultimately leading to capture by the central object. The expected rate of such

captures is highly model-dependent, subject to uncertainties in the galaxy luminosity

function, the mass function of central objects, and the initial stellar-mass function
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(IMF) among other variables. Conservatively, event rates of order 10−8 per galaxy per

year are anticipated, implying 0.1 captures per year out to 1 Gpc (Sigurdsson & Rees,

1997). This result could be enhanced by an order of magnitude by a top-heavy IMF,

either due to low metallicity in the early universe or starbursts in the high-density

environment of the galactic cusp itself (Sigurdsson, 1997). EMRIs about a 106M�

central object would produce GWs in the frequency band 10−4 to 10−2 Hz probed by

LISA, making them an interesting subject for theoretical investigation.

To perform this investigation, we need to contrast a Schwarzschild black hole

with a specific candidate whose spacetime is identical to Schwarzschild at large dis-

tances, but merges smoothly onto a horizonless solution in an interior region. For

this purpose, we adopt as a “straw man” the spacetime of a supermassive boson

star (SMBS) whose radius is only a few times the Schwarzschild radius. Such a star

consists of a coherent scalar-field configuration supported against gravity by its own

self-interaction. Although no fundamental scalar fields have yet been discovered, the

fertile imaginations of particle theorists have provided no shortage of candidates (e.g.,

the standard-model Higgs field, the squark, slepton, and sneutrino fields in supersym-

metric models, the axion field, and the dilaton in supergravity models). We restrict

our attention to nontopological soliton stars, which are characterized by interaction

potentials for which bound, stable solutions exist even in the absence of gravity (Lee

& Pang, 1992). This model allows us to choose parameters for the scalar-field La-

grangian so that a ∼ 106M� SMBS emerges for massive parameters of order 100 GeV.

This is not to suggest, however, that such a SMBS is necessarily likely to arise within

the standard model or its most natural extensions. SMBSs with similar structure can

just as easily arise with vastly different mass scales in other models, including “mini-

boson stars” (Friedberg et al., 1987a), nonspherical but axially symmetric scalar-field

configurations partially supported against gravitational collapse by angular momen-

tum (Ryan, 1997a), and non-solitonic boson stars in which a massive scalar field is

held up against gravitational collapse by a quartic self-interaction (Colpi et al., 1986).

How might the EMRI into such a SMBS differ from that into a SMBH? The famous

“no hair” theorem states that the properties of an uncharged black hole are uniquely



113

determined by the hole’s mass M and spin a. Any stationary, axisymmetric metric

can be expanded in terms of mass and current multipole moments Ml and Sl (Hansen,

1974). For the Kerr metric, the “no hair” theorem implies that all multipole moments

can be expressed in terms of the mass and spin, Ml + iSl = M(ia)l. By contrast, no

such strict relation need exist between the multipole moments of a generic boson-star

metric. For example, Ryan (Ryan, 1995) showed that all the multipole moments of

the central object can be extracted from the gravitational waveform produced during

an EMRI, even in the restricted case of circular orbits in the equatorial plane. As

the orbital frequency Ω increases during inspiral, the number of radians of orbital

motion per logarithmic frequency interval dΦ/d(ln Ω) can be calculated in a power

series in Ω. The coefficients of this power series are simple polynomial functions of the

multipole moments. Ryan applied this formalism to spinning boson stars whose mass

quadrupole moment |M2| greatly exceeded Ma2, the value expected for a black hole

of comparable mass and spin (Ryan, 1997a). The spherical boson stars we consider

here have perfectly Schwarzschild spacetimes outside of their surfaces, making them

indistinguishable from black holes during the early stages of an EMRI. We rely instead

on the GWs produced following the final plunge from the ISO into the central object

itself. For a black hole, the presence of an event horizon precludes all observations of

the inspiraling CO subsequent to the final plunge. After a brief “ringdown” period, the

black hole ceases to be a significant source of gravitational radiation. For boson-star

inspirals however, many orbits within the boson-star interior are expected, provided

that the CO interacts only gravitationally with the scalar field. For compact boson

stars with surfaces interior to the ISO, circular orbits can develop an extremely large

post-plunge eccentricity, leading to a sudden excitation of higher-order harmonics

of the fundamental frequency f ≡ Ω/π. As the CO spirals deeper into the boson-

star potential well, we expect the fundamental frequency to decrease as less mass is

enclosed by smaller orbits. By explicitly comparing the waveforms produced during

black-hole and boson-star inspirals, we hope to determine how effectively they can be

differentiated.

A final caveat to consider is whether the accumulation of a large mass at the center
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of the boson star either through inspirals or accretion will cause it to collapse into a

black hole. While we expect such a collapse to occur beyond a certain mass limit, the

calculation of this collapse is highly model-dependent and beyond the scope of this

paper. Such collapses may affect the event rates of boson-star inspirals, but will not

alter either the dymanics or waveforms which are the subject of this paper.

The paper is organized as follows. In §6.2, we describe the particular boson-star

model examined in this paper as originally formulated by Friedberg et al. (1987b).

Spherically symmetric solutions for the metric and scalar field are obtained from

the Euler-Lagrange and Einstein equations. In §6.3, we determine the geodesics of

the boson-star metric, and consider qualitatively the possible allowed trajectories for

the CO during inspiral. We then quantify this approach in §6.4 by presenting a

model for the loss of energy and angular momentum to gravitational radiation. The

CO’s orbital parameters are then evolved in light of these radiative losses in §6.5.

Calculated trajectories and waveforms for several initial conditions are displayed in

§6.6, and some final remarks on the limitations of our approach and open questions

that need to be addressed are given in §6.7. A brief appendix examines the accuracy

of the quadrupole approximation near the ISO.

6.2 Boson Star Model

Two requirements must be satisfied for a scalar field to have nontopological-soliton

solutions (Lee & Pang, 1992). The first of these requirements is the existence of

an additive conservation law, which by Noether’s theorem, can be guaranteed by a

symmetry of the Lagrangian. In the model of Friedberg, Lee, and Pang Friedberg

et al. (1987b) adopted in this paper, the Lagangian density L is invariant under a

global phase transformation φ→ eiθφ of the complex scalar field φ,

L = −φ†µφµ − U(φ†φ) , (6.1)
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where a dagger denotes Hermitian conjugation and φµ ≡ ∂φ/∂xµ. Such a Lagrangian

will possess a conserved Noether current

jµ ≡ −i(φ†φµ − φ†µφ) , (6.2)

and a corresponding conserved global charge or particle number

N ≡
∫

j0|g|1/2dx1dx2dx3 , (6.3)

where |g| is the absolute value of the determinant of the metric gµν. A nonzero charge

N implies a time-varying scalar field by the definition of the current in Eq. (6.2); this

time dependence is given by

φ(r, t) =
1√
2
σ(r)e−iωt , (6.4)

where the frequency ω is independent of position but varies with particle number N .

The second requirement for the existence of soliton solutions is a constraint on the

interaction potential U(σ2). For some forms of this potential, free particles or a black

hole will be energetically favored over a boson star for all values of N . However, if

U(σ2) − 1/2m2σ2 is negative for some range of σ, then stable boson-star solutions

are guaranteed to exist for some values of N . The simplest polynomial form of the

potential that satisfies this criterion is

U =
1

2
m2σ2

[
1 −

(
σ

σ0

)2
]2

, (6.5)

which allows for a false vacuum within the boson star for σ = σ0.

Having specified the form of the Lagrangian density L, we can now determine

the allowed boson-star solutions (Friedberg et al., 1987b). In the case of spherical

symmetry, the spacetime metric of the boson star can be given in full generality by

ds2 = −e2u(r)dt2 + e2v̄(r)dr2 + r2(dθ2 + sin2 θdφ2) . (6.6)
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The two metric functions u(r) and v̄(r), along with the scalar-field configuration

σ(r) fully specify a particular boson-star solution. They are chosen to satisfy three

independent, ordinary differential equations: the Euler-Lagrange equation for the

scalar field, and the tt and rr components of the Einstein equation. In general these

equations are stiff; the scalar field drops from σ ' σ0 to zero across a surface layer

of thickness m−1, while the metric functions vary over the much longer length scale

R ' GM . If λ ≡ σ0/mPl � 1, the scalar field can be described by a step function

σ = σ0 r 6 R

= 0 r > R . (6.7)

The system of equations then reduces to two coupled, first-order equations for the

metric functions interior to the boson-star surface at r = R. With the definitions

r̄ ≡ λ2mr and e−ū ≡ ω

λm
e−u , (6.8)

these two equations are

2r̄
dv̄

dr̄
=

(
1

2
e−2ūr̄2 − 1

)
e2v̄ + 1 ,

2r̄
dū

dr̄
=

(
1

2
e−2ūr̄2 + 1

)
e2v̄ − 1 . (6.9)

Physical boundary conditions imply that v̄(0) = 0, while ū(0) and R are chosen

self-consistently to ensure that the metric function u(r) smoothly matches onto the

Schwarzschild solution e2u → (1 − 2GM/r) for r > R. In this choice of coordinates,

v̄(r) need not be continuous at r = R. The metric functions e2u(r) and e2v̄(r) are

depicted in Fig. 6.1.

The final result of this analysis is that for fixed values of m and σ0, the boson-star

solutions constitute a one-parameter family corresponding to different values of the

particle number N . The boson-star mass M increases monotonically with N , and the

boson star becomes increasingly compact. Eventually a critical limit of compactness
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Figure 6.1: The metric functions e2u(r) and e2v̄(r) as functions of radius. The solid
curves correspond to a boson star with R = 2.869M , while the the dashed curves are
for a black hole of the same mass. Outside the boson-star surface, the two curves
are identical, while for r < R, the solid curves are a numerical solution to Eq. (6.9)
and the dashed curves are the Schwarzschild metric functions e2u(r) = (1 − 2GM/r),
e2v̄(r) = (1 − 2GM/r)−1.

R = 2.869GM is reached beyond which the boson star collapses into a black hole. We

choose to investigate EMRIs into this critically compact boson star. We set m = σ0

to the value that yields the desired SMBS mass M . For the nontopological soliton

considered here, M ∼ m4
Pl/m

3, implying that a boson of mass m ∼ 10 TeV will lead

to a SMBS of M ∼ 106M�. The SMBS mass scales differently with m for other types

of boson stars.
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6.3 Geodesics of the Boson-Star Metric

In the extreme–mass-ratio limit η ≡ µ/M � 1, where µ and M are the mass of the

CO and boson star respectively, the CO will travel along geodesics of the boson-star

metric. During the course of the EMRI, energy and angular momentum are radiated

away on time-scales much longer than an orbital period. We can therefore make

the adiabatic approximation that the CO will migrate smoothly between geodesics

characterized by decreasing energy and angular momentum. A thorough description

of the possible geodesics of the boson-star metric is thus essential to understanding

the evolution of the CO’s trajectory. This description can be simplified by noting that

the metric of Eq. (6.6) is independent of t and φ, implying the existence of time-like

and azimuthal Killing fields ξµ and ψµ. For a CO travelling along a geodesic with

four-velocity uν = (dt/dτ, dr/dτ, dθ/dτ, dφ/dτ), the inner product of uν with a Killing

field is conserved (Wald, 1984). This allows a formal definition of the conserved energy

and angular momentum per unit mass,

E ≡ −gµνξ
µuν = e2u dt

dτ
,

L ≡ gµνψ
µuν = r2dφ

dτ
. (6.10)

Note that we can restrict ourselves to orbits with θ = π/2 without loss of generality

because of spherical symmetry, in which case dθ/dτ = 0. The definitions of Eq. (6.10),

coupled with the norm of the four-velocity

gµνu
µuν = −e2u

(
dt

dτ

)2

+ e2v̄

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

= −1 , (6.11)

provide three coupled, first-order differential equations that can be solved for the

CO’s orbit {t(τ), r(τ), φ(τ)} as a function of proper time τ .

While this approach formally solves the problem of geodesic motion, further in-

sight can be gained by recasting Eq. (6.11) to make an analogy with one-dimensional



119

particle motion (Chandrasekhar, 1992),

E2 = e2u+2v̄

(
dr

dτ

)2

+ e2u

(
L2

r2
+ 1

)

= e2u+2v̄

(
dr

dτ

)2

+ V 2(r) . (6.12)

The first term on the right-hand side of Eq. (6.12) acts like a positive-definite kinetic

energy, while the second term is the potential well in which the one-dimensional par-

ticle motion occurs. This analogy is not as complete as in the case of a Schwarzschild

black hole, where the metric functions conspire to make the coefficient of the kinetic

term independent of position. For boson stars, the term e2u+2v̄ acts like a position-

dependent mass; while this will affect the particle motion quantitatively, it will not

preclude the existence of bound orbits in the boson-star interior.

Plots of the effective potential V (r) for different values of the angular momentum

L are given in Fig. 6.2. The effective potential per unit mass and ratio r/M are

dimensionless in units where G = c = 1. Outside of the boson-star surface at R =

2.869M , V (r) is identical to that of Schwarzschild black holes. For L2 > 12M2,

a local minimum exists at r1 > 6M . Test particles with E = V (r1) can follow

stable circular orbits at r1, while those with slightly larger energies experience radial

oscillations about this minimum corresponding to eccentric orbits. Particles with

E > 1 are unbound, and will either escape to infinity or – if they have energies

greater than the local maximum and dr/dt < 0 – penetrate to the boson-star interior.

It is here that the story changes dramatically from that of the black hole, where V (r)

plunges to negative infinity at the singularity. Particles that enter the black hole’s

event horizon are directed inexorably to the center, never to return. By contrast, the

potential well of the boson star has finite depth, implying that for L > 0, the effective

potential is repulsive at short distances. This creates a second minimum in the

effective potential at r2, at which stable circular orbits and associated eccentric orbits

can occur. Such orbits exist even for E > 1, though it is unclear in what astrophysical

context a CO might find itself on such a geodesic. For a typical EMRI, a CO will be
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Figure 6.2: The effective potential V (r) of the boson star for three different values
of the angular momentum. The solid, short-dashed, and long-dashed curves have
L2 = 24M2, 18M2, and 12M2, respectively. The large black dots on each curve show
the location of the outer minimum. For L2 = 12M2 – the lowest angular momentum
for which there are two minima – the black dot is located at the innermost stable
circular orbit r = 6M .

scattered onto an eccentric orbit and slowly circularize and wander inward as energy

and angular momentum are lost to gravitational radiation. Eventually, either before

or after circularization depending on the initial eccentricity and semi-major axis, the

CO will reach the ISO and plunge into the boson-star interior. At this point, the

trajectory and corresponding gravitational waveform will diverge radically from the

case of an EMRI into a black hole. Provided there is no non-gravitational interaction

between the CO and the scalar field, the inspiral will continue on a highly eccentric

geodesic about the inner minimum of the effective potential. Energy and angular

momentum will evolve continuously through the plunge, while both the apocenter

and pericenter will change on orbital time-scales as the center of radial oscillations
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changes from the outer minimum r1 to the inner minimum r2. High eccentricity

at the ISO leads to even more complicated inspirals as the plunge takes place in a

two-step process. The CO crosses over the local maximum of the effective potential

several orbits before settling into the inner local minimum. The pericenter penetrates

deep into the boson-star interior in the first stage of this two-step plunge, while in

the second stage, the apocenter shifts from outside to inside the local maximum.

This inspiral would undoubtably produce a very distinctive waveform, but only a

quantitative analysis can determine whether such scenarios are possible. To make

such a quantitative analysis, we must first develop a suitable approximation for the

calculation of the gravitational-wave emission.

6.4 Gravitational Radiation

Gravitational-wave emission by arbitrary sources is a challenging, unsolved problem.

In any asymptotically flat spacetime one can define the GW field,

h̄αβ ≡ −(−g)1/2gαβ + ηαβ , (6.13)

where gαβ is the metric, g is its determinant, and ηαβ is the flat-space Lorentz metric

(Thorne, 1980). Far from the source, this quantity reduces to the trace-reversed

metric perturbation h̄αβ = hαβ − 1/2ηαβh. The perturbation h̄αβ satisfies the de

Donder gauge condition

h̄αβ,β = 0 , (6.14)

and the exact Einstein field equations

�h̄αβ = −16πταβ . (6.15)
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We see that the GW field is sourced by an “effective stress-energy tensor” τ αβ of the

form (Thorne, 1980)

ταβ = (−g)(T αβ + tαβ
LL) + (16π)−1[h̄αµ,ν h̄

βν,µ −h̄αβ,µν h̄
µν ] , (6.16)

where T αβ is the true stress-energy tensor and tαβ
LL, the Landau-Lifschitz pseudotensor

given by Eq. (20.22) of Misner et al. (1973), is a highly nonlinear function of the full

metric. We thus see that for highly relativistic, strong-field sources, the GW field h̄αβ

will itself provide a non-negligible contribution to its source ταβ. In general Eq. (6.15)

will lead to a system of tightly coupled, nonlinear differential equations that can only

be integrated for brief periods numerically before becoming unstable. To make any

analytical progress, we must rely on a series of simplifying approximations of varying

degrees of validity.

The first approximation we make is that in the extreme-mass-ratio limit η ≡
µ/M � 1, the boson star is at rest at the origin of our coordinate system and

its metric is static. The inspiraling CO is thus the sole time-varying source that

contributes to GW emission. In reality, the CO should raise tides on the surface of

the boson star, which could then generate GWs themselves as well as back-react on the

CO, altering its trajectory. In an inspiral into a black hole, the energy loss due to the

tidal interaction is at greatest, only a few percent of the total flux, although this can

still lead to several hundred cycles of phase difference in the gravitational waveform

(Finn & Thorne, 2000). In the boson-star case, the nature of the tidal interaction will

be different and model-dependent, and provides another way to identify boson-star

inspirals. However, the tidal interaction should still be a lesser effect than the orbital

dynamics. The back-reaction on the orbit is suppressed by an additional factor of η,

implying that for EMRIs with η ' 10−6, it will introduce a very subdominant source

of error into our calculations. The second approximation we make is to ignore the

curvature induced by the boson star as it affects the propagation of GWs to infinity.

GWs propagating outwards from r . (λ2M)1/3, where λ is the GW wavelength,

will be distorted and backscattered by the background curvature of the boson star
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(Thorne, 1980). The importance of this effect will depend on the inner boundary

conditions, which should differ significantly from those of a black hole with an event

horizon. We ignore this complication entirely by assuming that backscattering does

not occur. A third approximation that we make is to compute waveforms using weak-

field formulae. We wish to apply these to orbits that come very close to the boson

star, a regime in which there is no natural flat-space coordinate system in which to

evaluate the weak-field expressions. Our approach is to identify the Schwarzschild

coordinates (t, r, θ, φ) of the inspiral trajectory with true flat-space spherical polar

coordinates. This identification is exact for orbits out in the weak-field. There is

no a priori reason why this identification is better than any other (e.g., identifying

isotropic coordinates with the flat-space spherical polar coordinates). In practice,

using different coordinate identifications gives different answers, but the differences

are only a few percent. Taken together, these three approximations are equivalent to

assuming the GWs from the EMRI will be the same as those that would be produced

were the CO a ”particle on a string”, artificially constrained to move on an orbit

{t(τ), r(τ), φ(τ)} in flat space. In the case of black-hole inspirals, waveforms computed

using this ”hybrid” approach (Glampedakis et al., 2002; Babak et al., 2005; Creighton

et al., 2005) have been found to compare quite well to waveforms computed using more

accurate perturbative techniques.

In the flat-space, weak-field limit implied by the above approximations, the trans-

verse traceless (TT) part of the GW field can be expanded in symmetric trace-free

(STF) tensors (Thorne, 1980)

hTT
jk =

[
∞∑

l=2

(
4

l!
r−1

)
(l)IjkAl−2

(t− r)NAl−2

+
∞∑

l=2

(
8l

(l + 1)!

)
r−1εpq(j

(l)Sk)pAl−2
(t− r)nqNAl−2

]TT

, (6.17)

where Al ≡ a1...al, IAl
, and SAl

are the rank-l mass and current multipole-moment

tensors, na is a unit radial vector, and NAl
≡ na1

...nal
. Parentheses on the indices

denote taking the symmetric part, and a superscript (l) in front of a tensor indi-
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cates taking the l-th time derivative. The energy and angular momentum loss to

gravitational radiation can also be expanded in multipole-moment tensors,

d(µE)

dt
=

∞∑

l=2

(l + 1)(l + 2)

(l − 1)l

1

l!(2l + 1)!!
〈(l+1)IAl

(l+1)IAl
〉

+

∞∑

l=2

4l(l + 2)

(l − 1)

1

(l + 1)!(2l + 1)!!
〈(l+1)SAl

(l+1)SAl
〉 , (6.18)

d(µLj)

dt
=

∞∑

l=2

(l + 1)(l + 2)

(l − 1)l!(2l + 1)!!
〈εjpq

(l)IpAl−1

(l+1)IqAl−1
〉

+
∞∑

l=2

4l2(l + 2)

(l − 1)(l + 1)!(2l + 1)!!
〈εjpq

(l)SpAl−1

(l+1)SqAl−1
〉 . (6.19)

Here, 〈 〉 denotes averaging over an entire orbital period. A µ appears on the left-

hand side of the equation in accordance with our definition of E and L as the energy

and angular momentum per unit mass. This multipole-moment expansion is valid

in principle for sources moving at arbitrarily relativistic velocities. We now further

approximate that the sources are Newtonian; the maximum velocity is only mildly rel-

ativistic, and the internal stresses are small compared to the energy density (Thorne,

1980). Although this approximation is violated during the EMRI in the vicinity of

the plunge, key features of the relativistic motion are preserved by constraining the

CO to travel along geodesics that are exact even in the relativistic regime. Empir-

ically, expansions in the post-Newtonian parameter (L/λ)2 ∼ v2 are found to give

physical results (no outspiral), even in regions where they do not converge (Barack &

Cutler, 2004). Assuming Newtonian sources, the mass and current multipole tensors

are given by (Thorne, 1980)

IAl
=

[∫
ρXAl

d3~x

]STF

, (6.20)

SAl
=

[∫
(εalpqxpρvq)XAl−1

d3~x

]STF

, (6.21)

where XAl
≡ xa1

...xal
, and ρ is the energy density. In keeping with our assumption

that the static boson-star metric does not contribute to the production of GWs, the
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energy density is simply that of the CO

ρ(~x) = µδ3(~x− ~xCO(t)) , (6.22)

where ~xCO(t) is the flat-space trajectory of the CO. The mass and current multipole

moments IAl
and SAl

contribute to the GW field hTT
jk at order (M/r)(L/λ)l and

(M/r)(L/λ)l+1, respectively, while the assumption of Newtonian sources induces er-

rors of order (L/λ)2 to each term (Thorne, 1980). It is therefore inconsistent to include

terms higher than the mass quadrupole, current quadrupole, and mass octupole under

this assumption. We consider only the mass quadrupole term, relegating an analytic

calculation of the error associated with this approximation to the Appendix. In this

case, Eqs. (6.17), (6.18), and (6.19) reduce to the familiar form of the “quadrupole

approximation”

hTT
jk =

2

r

d2Ijk

dt2
, (6.23)

d(µE)

dt
=

1

5

〈
d3Ijk

dt3
d3Ijk

dt3

〉
, (6.24)

d(µLj)

dt
=

2

5

〈
εjpq

d2Ipk

dt2
d3Iqk

dt3

〉
. (6.25)

How can the humble quadrupole approximation be justified for the eccentric, highly

relativistic final stages of an EMRI into a boson star? While the energy and an-

gular momentum fluxes are indeed only approximate, the derivatives relating these

fluxes to changes in the orbital parameters are exact, as are the equations of motion

used in performing the orbital averages of Eqs. (6.24) and (6.25). Unlike direct post-

Newtonian expansions for the time evolution of orbital elements, this “hybrid approx-

imation” incorporates the exact orbital dynamics of geodesic motion (Glampedakis

et al., 2002; Gair & Glampedakis, 2005). This approach is self-consistent in the

sense that the energy and angular momentum carried away by gravitational waves

(within our quadrupole approximation) is equal to the loss of angular momentum and

energy of the orbit. This approach can reproduce features missing from direct post-
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Newtonian expansions (which conserve energy and angular momentum only to O(v2))

such as the increase in orbital eccentricity just prior to plunge. Moreover, using exact

geodesics in the flat-space quadrupole formula ensures that the fundamental frequen-

cies of the orbit are reproduced in the gravitational waveforms. Although the distri-

bution of power between harmonics is not correct, these approximate waveforms do

encode the same orbital dynamics as the true waveform and therefore, the qualitative

features of inspiral waveforms should be well represented. At substantial computa-

tional expense, gravitational perturbation theory can calculate waveforms at infinity

using the Teukolsky-Sasaki-Nakamura (TSN) formalism (Teukolsky, 1973; Sasaki &

Nakamura, 1982). Such calculations for EMRIs in the Schwarzschild spacetime show

agreement with the hybrid approach to within 5 to 45% for the time derivatives of the

orbital semi-latus rectum and eccentricity even for moderate eccentricity (e ∼ 0.4) at

r ' 7M (Glampedakis et al., 2002; Babak et al., 2005). We hope that such accuracy

will be retained in the case of boson stars, sparing us for now the additional compu-

tational expense of a numerical TSN approach. The details of adapting this hybrid

approximation to boson-star EMRIs is the subject of the next Section.

6.5 Orbital Evolution

In a spherically symmetric spacetime, conservation of angular momentum implies

that geodesic motion will be confined to an orbital plane (Murray & McDermott,

1999). Without loss of generality, this plane can be chosen to be the equatorial plane

θ = π/2. In this case, the position of the CO is fully specified by a radius r and a true

longitude φ. A geodesic will be characterized by orbital elements like the semi-latus

rectum p and eccentricity e, in terms of which the radius is given by

r =
p

1 + e cosψ
. (6.26)

The true anomaly ψ can be specified independently of φ, since in general the pericenter

will precess. In the hybrid approximation, EMRI orbits and waveforms are calculated
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in a two-step process that hinges on the assumption of adiabaticity (i.e., orbital

elements like p and e vary on time-scales much longer than an orbital period over

which ψ and φ change (Glampedakis et al., 2002; Gair & Glampedakis, 2005)). This

allows the differential equations governing the evolution of p and e to be integrated

with a much longer timestep than is required for evolving ψ and φ. We will first

describe how the two stages of integration are accomplished with this assumption,

and then we will discuss the corrections necessary to patch together a physically

reasonable orbit through those regions where the assumption is violated.

In the first stage of our calculation, the EMRI’s trajectory through a phase space

of p and e is determined by relating these quantities to E and L, and then using

this relation and Eqs. (6.24) and (6.25) to obtain differential equations for p and

e. Particular values of p and e uniquely determine the pericenter rp = p/(1 + e)

and apocenter ra = p/(1 − e) from Eq. (6.26). At both pericenter and apocenter,

dr/dτ = 0 implying V (rp) = V (ra) = E by Eq. (6.12). This equation can be solved

to obtain the energy E and L as functions of p and e,

L(p, e) =

[
(
e2u(rp) − e2u(ra)

)(e2u(ra)

r2
a

− e2u(rp)

r2
p

)−1
]1/2

,

E(p, e) =

[
e2u(ra)

(
L2

r2
a

+ 1

)]1/2

. (6.27)

First-order differential equations for the time evolution of p and e can then be de-

rived from the exact derivatives of E(p, e) and L(p, e) along with the quadrupole

appoximations of Eqs. (6.24) and (6.25),

dp

dt
=

dL
dt

− ∂L/∂e
∂E/∂e

dE
dt

∂L
∂p

− ∂L/∂e
∂E/∂e

∂E
∂p

,

de

dt
=

dL
dt

− ∂L/∂p
∂E/∂p

dE
dt

∂L
∂e

− ∂L/∂p
∂E/∂p

∂E
∂e

. (6.28)

It is the combination of these exact derivatives with the quadrupole approximation

for the fluxes that accounts for the superior performance of this “hybrid” approxi-
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mation over the consistent (in that we include all terms up to a given order in v2)

post-Newtonian approach. The quadrupole fluxes themselves can be determined by

inserting Eq. (6.22) for the CO’s energy density into Eq. (6.20) for the Newtonian

quadrupole moments. Using an overdot to denote a derivative with respect to coor-

dinate time t, we find that the time derivatives of the quadrupole moment appearing

in Eqs. (6.24) and (6.25) take the form

...
I jk

...
I jk = 2η2[(1/3)(

...
r + 3r̈ṙ)2 + (6r̈φ̇r + 6ṙφ̈r + 6ṙ2φ̇− 4φ̇3r2 +

...
φr2)2

+ (
...
r r + 3r̈ṙ − 12ṙφ̇2r − 6φ̈φ̇r2)2] ,

εjpqÏpk

...
I qk = 2η2[(r̈r + ṙ2 − 2r2φ̇2)(6r̈φ̇r + 6ṙφ̈r + 6ṙ2φ̇− 4φ̇3r2 +

...
φr2)

−(4ṙrφ̇+ r2φ̈)(
...
r r + 3r̈ṙ − 12ṙφ̇2r − 6φ̈φ̇r2)] . (6.29)

The derivatives appearing in Eq. (6.29) can be evaluated analytically by solving

Eqs. (6.10) and (6.11) for the equations of motion

dt

dτ
= Ee−2u , (6.30)

dφ

dτ
=

L

r2
, (6.31)

dr

dτ
= ±e−v̄

[
E2e−2u −

(
L2

r2
+ 1

)]1/2

, (6.32)

dividing Eqs. (6.32) and (6.31) by Eq. (6.30), and then taking the appropriate deriva-

tives. We then perform the orbital average appearing in Eqs. (6.24) and (6.25),

〈f(r)〉 =

∫ ra

rp
f(r) dr

ṙ∫ ra

rp

dr
ṙ

. (6.33)

The products of these manipulations are first-order differential equations for ṗ and ė

that can be integrated forward in time for arbitrary initial p0 and e0. This tabulated

phase-space trajectory {p(t), e(t)} will then be used in the second stage to produce

the real-space trajectory {r(t), φ(t)}.
The second stage of calculating the EMRI real-space trajectory is essentially no
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more complicated than integrating the equations of motion Eqs. (6.30), (6.31), and

(6.32) with a timestep that is a sufficiently small fraction of the orbital period as to

obtain the desired accuracy. The phase-trajectory determined in the first stage can

be linearly interpolated to obtain p(t) and e(t), from which the energy and angular

momentum follow from the relations E(p, e) and L(p, e). These are then inserted

into the equations of motion along with r and φ at the beginning of the timestep. A

minor technical difficulty arises for circular orbits (e = 0) and at the turning points

of eccentric orbits (ψ = nπ) where the relation

dψ

dτ
=

1 + e cosψ

er sinψ

dr

dτ
(6.34)

becomes undefined. This problem can be solved by a judicious Taylor expansion of

Eq. (6.32) about the appropriate r values. Once the real-space trajectory {x(t), y(t),
z(t)} has been obtained, the quadrupole waveform of Eq. (6.23) can be calculated by

taking the appropriate numerical derivatives. This portion of the calculation does not

involve any special features of the boson-star spacetime, in keeping with the “particle

on a string” approximation. The GW field hTT
ij can then be decomposed into plus

and cross polarizations by defining unit vectors in the plane of the sky. With L̂ a unit

vector parallel to the CO’s angular momentum and n̂ a unit vector pointed from the

observer to the source, we define

p̂ ≡ (n̂× L̂)/|n̂× L̂| ,

q̂ ≡ n̂× p̂ . (6.35)

Note that the sign of q̂ differs from that of Ref. Barack & Cutler (2004), but in

other respects our conventions are equivalent. Our basis vectors p̂ and q̂ are constants

because L̂ does not precess in a spherically symmetric spacetime. The two polarization
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basis tensors can be defined as

H+
ij ≡ p̂ip̂j − p̂ip̂j ,

H×
ij ≡ p̂iq̂j + q̂ip̂j , (6.36)

allowing the GW field to be expressed as two amplitudes,

hTT
ij (t) = A+(t)H+

ij + A×(t)H×
ij . (6.37)

In the next Section, we will examine the trajectories {x(t), y(t), z(t)} and GW am-

plitudes {A+(t), A×(t)} for different EMRIs.

Before presenting these results, we must explain the kludges we have chosen where

the hybrid approximation described above is no longer valid. Our philosophy is to

adopt the simplest, least computationally intensive approach that yields physically

reasonable waveforms. The numerous approximations involved in the “particle on a

string” model introduce at least a 10% error into our trajectories and waveforms in

the highly eccentric, relativistic limit (Glampedakis et al., 2002; Babak et al., 2005);

to demand greater accuracy where the hybrid approximation is also violated would

be inconsistent. Special provisions beyond the hybrid approximation must be made

whenever p and e are changing on time-scales shorter than the orbital period. For

extremely eccentric orbits, gravitational radiation will tend to be emitted in bursts

near pericenter, while the CO will be found near apocenter for most of the orbital

period. This is particularly true of “zoom-whirl” orbits like those found around

rapidly spinning black holes, where the CO may whirl for many radians near pericenter

before zooming back out to apocenter (Glampedakis & Kennefick, 2002). In such

cases, the orbital averaging of Eq. (6.33) will lead to an artificially smooth phase-space

trajectory {p(t), e(t)}. For boson-star EMRIs, this adiabatic approximation is most

flagrantly violated during the plunge itself. Since the rapidly varying true anomaly

ψ(t) is only calculated in the second stage of our two-step approach, the CO could be

anywhere along its orbit at the time the plunge is calculated to occur in the first stage.
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This poses problems in both stages of the calculation. As described qualitatively in

§6.3, a CO initially oscillating about the outer minimum of the effective potential

V (r) can plunge into the boson star with L2 > 12M2, in which case, two minima

will still exist even after the plunge. For a time, the energy of the CO will exceed

Vmax(L), the local maximum of V (r), so that both of the local minima will lie between

the orbit’s pericenter and apocenter. Such a highly eccentric orbit will radiate energy

very efficiently, implying that the CO will quickly plunge into the inner minimum.

However, if the initial conditions were such that the CO began on a geodesic with

E was significantly above Vmax, there is no reason a priori why it could not first

fall into the outer minimum before eventually inspiraling into the boson-star interior.

Which minimum the CO ends up in depends on where the CO is in its orbit when E

drops below Vmax. But the true anomaly ψ(t) is not calculated in the first stage of

the hybrid approximation, so we have no way of accurately knowing which minimum

to choose. The semi-latus rectum p and eccentricity e change discontinuously when

the CO falls into one of the two minima, a sure sign that the adiabatic condition

no longer holds. We assume without rigorous proof that the CO always ends up in

the inner minimum in such a situation. This assumption comes back to haunt us in

the second stage, since the CO may well be near apocenter at the time determined

for the plunge in the first stage. In this case, no possible instantaneous change in ψ

would allow r to remain continuous. Instead, we fix p and e to their values at the

time of the plunge, and allow the CO to travel along a geodesic until it reaches the

local maximum at rmax. This then becomes the apocenter of the CO’s radial motion

about the inner minimum, and we resume linearly interpolating p and e from the

phase-space trajectory tabulated in the first stage. Having exhaustively described

our technique, we will now examine the fruits of our labor.

6.6 Results

First we consider the phase-space trajectories {p(t), e(t)} generated in the first part

of our calculation. We choose for our fiducial model a 3M� CO spiraling into a
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Figure 6.3: The phase-space trajectories {p(t), e(t)} for three different EMRIs into a
supermassive boson star. The solid, dashed, and dotted curves begin with eccentric-
ities e0 = 0.8, 0.4, and 0.0, respectively. The left panel shows the complete EMRI
from p0/M = 10.0, while the right panel is a close-up of the post-plunge phase of the
EMRI that appears in the upper-left corner of the top panel. In both panels, time
increases from right to left as p/M decreases monotonically.

3× 106M� boson star. Three different trajectories are depicted in Fig. 6.3, each with

p0 = 10M , but with differing initial eccentricities (e0 = 0.0, 0.4, 0.8). Several features

of the phase-space evolution are particularly striking. Outside the boson-star surface

at R = 2.869GM , the spacetime is identical to that of a Schwarzschild black hole

and the behavior of the EMRI is well known. Orbits far from the boson star rapidly

circularize, but those that retain an appreciable eccentricity exhibit an increase in the

eccentricity in the last few orbits before the ISO. This behavior reflects the increasing

shallowness of the outer minima as the ISO is approached, and is not captured by

post-Newtonian expansions that ignore geodesic motion (Glampedakis et al., 2002;

Glampedakis & Kennefick, 2002). The second important feature is the discontinuity

in each of the three trajectories as the plunge is reached. As described in the previous

Section, the actual position of the CO remains continuous; only the orbital elements

p and e change at the instant of the plunge. This is accomplished by an appropriate

instantaneous change in the true anomaly ψ. For the EMRIs with e0 = 0.8 and
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0.4, the orbit is actually divided into three distinct pieces, with the middle section

belonging to geodesics where both minima lie between pericenter and apocenter. This

portion cannot be seen in Fig. 6.3 because it only lasts for a few orbital periods,

which is short compared to the time scales on which p and e are changing. It is

interesting to note that the three curves have reversed their order in the plunge; the

more eccentric the EMRI prior to plunge, the lower its eccentricity afterwards. This

can be understood by realizing that orbits with higher residual eccentricity plunge into

the boson star with higher angular momentum L, implying that the inner minimum

will be much steeper as depicted in Fig. 6.2. The pericenter and apocenter will be

closer together in this narrow potential well, leading to a correspondingly smaller post-

plunge eccentricity. A final surprising feature of these EMRIs is the sharp increase

in eccentricity for the final stages of the EMRI deep within the interior of the boson

star. The energy and angular momentum are monotonically decreasing during this

stage of the EMRI in keeping with GW-induced losses; only the relations E(p, e)

and L(p, e) are unusual. As angular momentum is lost, the narrow inner minimum

rapidly broadens, leading to a greater separation between pericenter and apocenter.

The separation

ra − rp =
2pe

1 − e2
(6.38)

is a sharply increasing function of eccentricity, explaining why the broadening inner

minimum leads to rising eccentricity. For completeness, a plot of these same trajecto-

ries in the phase space of angular momentum and energy {L(t)/M,E(t)} is given in

Fig. 6.4. Note that E and L are continuous at the plunge as is required for physical

quantities.

We now consider the real-space trajectory {x(t), y(t), z(t)} itself. Choosing the

orbital and equatorial planes to coincide, z = 0. Several orbits of an initially circular

EMRI on both sides of the plunge are shown in Fig. 6.5. The trajectory remains

continuous during the plunge, and the pericenter precesses by an appreciable fraction

of a radian on each post-plunge orbit. Of more interest is the EMRI of Fig. 6.6 with

e0 = 0.4, p0 = 10.0M . We have omitted the EMRI with e0 = 0.8 because the two
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Figure 6.4: The phase-space trajectories {L(t), E(t)} for the three EMRIs depicted
in Fig. 6.3. As before, the solid, dashed, and dotted curves begin with eccentricities
e0 = 0.8, 0.4, and 0.0, respectively. The large black dots correspond to the points
at which the COs plunge into the boson star. Note that the curves cross each other,
implying that two different geodesics can be characterized by the same energy and
angular momentum. This feature, unique to the boson-star case, follows from the
existence of bound geodesics, both interior and exterior to the local maximum of the
effective potential for certain energy and angular momenta. No such crossing appear
in Fig. 6.3 as p and e do uniquely specify a given geodesic.

initially eccentric EMRIs appear qualitatively similar. Both the e0 = 0.4 and e0 = 0.8

EMRIs experience a two-step plunge as described qualitatively in §6.3. In the first

stage, the pericenter migrates deep into the interior of the boson star. Only several

orbits later does the apocenter finally move inward of the local maximum. While

two-step plunge may not be immediately apparent from the real-space trajectory, it

leaves a very distinctive signature in the gravitational waveform.

First we consider the waveform of the initially circular EMRI as shown in Fig. 6.7.

The system is viewed at an inclination angle of 45◦ at a distance of 10 Mpc. The two
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Figure 6.5: The real-space trajectory {x(t), y(t)} for an initially circular EMRI. For
purposes of clarity, only a period of approximately 150,000 s in the vicinity of the
plunge is depicted.

polarizations provide similar information because the given decomposition depends on

our arbitrary choice of basis tensors. Before the plunge, the waveform is identical to

that of a circular inspiral into a Schwarzschild black hole. The fundamental oscillation

has a period of about 500 s, one-half the azimuthal period over which φ changes by

2π radians. Since the orbit is circular, the amplitude only varies on the extremely

long timescale on which energy and angular momentum are lost. After the plunge,

the eccentricity increases sharply and we see an amplitude modulation with a period

of about 10,000 s. This corresponds to radial oscillations about the inner minimum

within the boson star. The amplitude creeps upwards as the CO approaches pericenter

with increasing acceleration. Note, however, the peculiar feature at pericenter itself,

where the amplitude should be greatest. Instead, the cycle at pericenter is suppressed

because once the CO crosses the boson-star surface, it is only accelerated by the mass
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Figure 6.6: The real-space trajectory {x(t), y(t)} for the EMRI with e0 = 0.4, p0/M =
10.0. The left panel shows 40,000 s including the first stage of the two-step plunge,
while the right panel shows about 50,000 s including the second stage.

interior to its position. We present a close-up of this distinctive feature in the bottom

panel of Fig. 6.7.

The waveform of the initially eccentric EMRI as shown in Fig. 6.8 is even more

unique. All three phases of the EMRI can be easily distinguished by the naked eye. In

the first phase, from the beginning of the waveform until the first-step of the plunge at

t = 1.4× 104 s, the CO moves on ordinary eccentric geodesics of Schwarzschild. Am-

plitude modulation corresponding to oscillations about the outer minimum are seen,

the crests near pericenter are smooth because there are as yet no close approaches

to the boson star. In the second phase, between the two steps of the plunge, the

CO moves on geodesics with both minima between pericenter and apocenter. These

geodesics are extremely eccentric, leading to longer radial oscillations and an approxi-

mate 50% increase in the period of the amplitude modulation. The apocenter remains

nearly constant during the plunge, marked by the continued preesnce of deep troughs

in the amplitude modulation. The pericenter however has migrated deep into the

interior of the boson star as evidenced by the spikes on each crest produced during

close approaches. The peculiar feature at pericenter itself is barely visible on this
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Figure 6.7: The GW amplitudes {A+(t), A×(t)} for the initially circular EMRI de-
picted in Fig. 6.5. The dimensionless amplitudes are given in units of 10−20, while the
time is in units of 104 s. The upper panel shows 60,000 s of the inspiral, including the
plunge at t = 0.12× 104 s. The lower panel zooms in on the portion of the waveform
produced in the interior of the boson star itself.

scale as a very narrow gap in these spikes. The second step of the plunge occurs at

t = 8.0× 104 s, when the CO crosses over the local maximum for the final time. The

second step is in some sense the opposite of the first, in that the pericenter remains

constant while the apocenter plunges inwards. We see that the spikes marking peri-

center remain unchanges between the second and third phases, but the deep troughs

in the amplitude modulation from distant apocenters have vanished. Close-ups of the

two steps of the plunge are shown in Fig. 6.9.

6.7 Discussion

Strong evidence supports the existence of supermassive compact objects at the cen-

ters of many, if not most, galaxies. Accretion onto these objects is presumed to power

active galactic nuclei, and direct observations of velocity dispersions within galactic

cusps reveal that a point-like mass dominates the dynamics within ∼ 1 pc from the

center. While all this evidence is consistent with these objects being black holes, the
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Figure 6.8: The GW amplitudes {A+(t), A×(t)} for the initially eccentric EMRI de-
picted in Fig. 6.6. As in Fig. 6.7, the dimensionless amplitudes are given in units of
10−20, while the time is in units of 104 s. All three portions of the inspiral are clearly
visible.

“smoking-gun” signature of an event horizon has yet to be observed. Until such a

definitive determination is made, other candidates such as boson stars should con-

tinue to be considered. Previous work has suggested that accretion-induced X-ray

bursts might be an optical signature of boson stars (Yuan et al., 2004). We rely

here on distinguishing boson stars from black holes through their gravitational ef-

fects. One possibility is their different properties as a strong gravitational lens; a

“shadow” induced by a black hole’s event horizon may soon be observed in Sag A∗ at

submillimeter wavelengths (Falcke et al., 2000). In this paper, we have investigated

the possibility that the inspiral of a several solar-mass CO into a boson star may

produce a distinctive spectrum of GWs. LISA is conservatively expected to observe

several such inspirals each year with appreciable signal-to-noise ratios (Sigurdsson,

1997; Sigurdsson & Rees, 1997).
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Figure 6.9: Close-ups of the waveform shown in Fig. 6.8 for the initially eccentric
EMRI. The top panel depicts the first step of the plunge; note that only the right-
most crest exhibits the peculiar feature produced in the boson-star interior. The
bottom panel shows the second step of the plunge; note how different the final dis-
tant apocenter at t = 7.5 × 104 s appears from the apocenter at t = 8.5 × 104 s.

Previous work has examined the possibility of measuring the central object’s multi-

pole moments, and testing whether or not they satisfy the predictions of the “no-hair”

theorem for black holes (Ryan, 1995). This formalism has been applied in particular

to boson stars with anomalously large mass-quadrupole moments, where an apprecia-

ble effect on the GW-induced loss of energy was discovered (Ryan, 1997a). Here we

have gone beyond such an analysis by calculating approximations to the waveforms

that might actually be observed by LISA. The spherically symmetric boson stars

we consider have Schwarzschild spacetimes outside their surfaces; a multipole anal-

ysis of GWs produced while the CO is still outside the boson star would not reveal

any violations of the “no-hair” theorem. Solving Einstein’s equations exactly for the

gravitational radiation produced would be prohibitively expensive computationally.

Instead, we rely on a series of analytic approximations: geodesic motion for the CO

in the extreme mass-ratio limit, GW propagation unaffected by the boson-star space-

time, and direct indentification of Schwarzschild coordinates with flat-space spherical
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coordinates. These approximations, the “particle on a string” approach, allow a di-

rect application of multipole-moment expansions for both the energy and angular

momentum losses and the waveform itself. We then drop all but the mass quadrupole

moment terms in these expansions. These approximations cannot be fully justified

theoretically in the highly relativistic, strong-field regime, but direct comparison with

rigorous TSN calculations in the black hole case shows much better agreement than

one might have expected (Glampedakis et al., 2002; Babak et al., 2005). We then as-

sume that the energy and angular momentum are changing adiabatically on timescales

much longer than an orbital period. This approximation – valid in the extreme mass-

ratio limit except during the plunge itself – allows us to apply a “hybrid” two-stage

approach. In the first stage, differential equations for orbital elements p and e are ob-

tained by relating these quantities to E and L with exact analytic derivatives. These

equations are then integrated on a radiation-reaction timescale, with a timestep that

is correspondingly long compared to an orbital period. In the second stage, the orbit

of the CO, r(t) and φ(t), is computed with small timesteps by solving the geodesic

equations and linearly interpolating the trajectories {p(t), e(t)} produced in the first

stage. The hybrid approach allows us to calculate real-space trajectories and wave-

forms much more quickly than would be possible using the same short timestep for

both stages.

As anticipated, the waveforms produced by this method exhibit distinctive fea-

tures that allow them to be readily distinguished from those produced during EMRIs

into black holes. In the model considered here, the boson-star inspiral is identical to

a black-hole inspiral until the CO falls over the angular-momentum barrier. If LISA

observed GWs from part of an inspiral including this plunge, the parameters of the

exterior black-hole spacetime could be determined very accurately using black-hole

EMRI templates from the part of the inspiral up until plunge. The “smoking gun” for

a boson-star inspiral would be that GWs from the inspiral persist after the plunge.

This persistence could be seen using, for instance, a time-frequency analysis of the

LISA data stream. GWs from an event like this could not be mistaken for an inspiral

into a black hole with different parameters, because the early stages of the inspiral
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are identical to the black-hole inspiral. If only the post-plunge stage of a boson-star

inspiral were seen, it is not clear whether this could be mistaken for a black-hole

EMRI without a proper Fisher-matrix analysis.

The waveforms produced in this paper are highly approximate, and far too crude

to use in any attempts at matched filtering for LISA. Nonetheless, they may serve

as substitutes for purposes of scoping out the data analysis and design specification

until better waveforms are available. Improved waveforms might result from refining

our method, for example, by incorporating higher-order multipole moments in our ex-

pansions. Press developed an improved formula for the GW field hTT
ij that accounts

for time delays in the source, as well as some of the relativistic effects provided by

the higher moments (Press, 1977). Efforts are underway to adapt this formula to the

“particle on a string” approach (Gair & Fang, 2004; Creighton et al., 2005). Analysis

of higher harmonics of the waveform might also prove to be a useful way of distin-

guishing EMRIs into black holes and boson stars. These higher harmonics become

comparable to the fundamental m = 2 mode at high eccentricities (Barack & Cutler,

2004). One might expect the sudden increase in eccentricity at plunge to manifest

itself in frequency space as a sharp rise in the higher harmonics. Only a rigorous

comparison of our waveforms with the LISA noise curve can truly determine whether

LISA can differentiate between black-hole and boson-star EMRIs. We hope to con-

duct such a comparison in the near future using Synthetic LISA, an actual simulation

of the LISA interferometer that models its response to incident gravitational waves

(Vallisneri, 2005).

Going beyond these approximations to produce waveforms suitable for matched-

filtering by LISA will involve the use of perturbation theory in the the TSN formalism.

The resulting partial differential equations for a generic boson star should be sepa-

rable in the spherical case, and we plan to consider this problem in the near future.

Hopefully, these improvements or others will provide the tools to calculate accurate

waveform templates in time for LISA’s great attempt at “holiodesy”, the mapping of

spacetimes about the compact objects in galactic centers. Including exotic waveforms

such as those produced by boson stars in our suite of templates will ensure that LISA



142

Table 6.1: Coefficients describing the contribution of higher-order multipole moments
to the energy flux of the inspiraling CO.

l Al Bl

2 6.400 1.067
3 6.458 4.571
2 14.966 1.250

will not miss the opportunity to discover something truly fundamental.
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6.8 Beyond the Quadrupole Approximation

A key approximation made in § 6.4 was to drop all but the mass quadrupole terms

from the multipole-moment expansions of the GW field, energy flux, and momentum

flux in Eqs. (6.17), (6.18), and (6.19). For circular orbits in the Schwarzschild metric,

these expansions can be expressed as power series in M/r with coefficients that can

be calculated analytically. To illustrate, the contribution of higher-order mass and

current multipole moments to the energy flux is given by

dE

d(t/M)
=




Alη(r/M)−(l+3), mass multipoles

Blη(r/M)−(l+4), current multipoles

(6.39)

where the dimensionless coefficients Al and Bl are listed in Table 6.1. Neglecting

the higher-order terms is clearly justified at large radii, but the expansion parameter

M/r = 1/6 is not particularly small at the ISO. It is still small enough, however, so

that the next largest terms which happen to be the l = 3 and l = 4 mass multipole

moments provide only 16.8% and 6.5% corrections, respectively. We continue to drop
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the higher-order terms as the CO plunges past the ISO into the interior of the boson

star. If the singular behavior of Eq. (6.39) held within the boson star, the expansion

would become formally divergent at r = M , but fortunately, this is not the case.

Outside the boson star, the angular frequency Ω is Keplerian, MΩ = (r/M)−3/2,

but in the interior Ω is a monotonically increasing function of r/M . As such, the

higher-order terms in the multipole-moment expansions which involve increasingly

more time derivatives become increasingly steep functions of r/M . The multipole-

moment expansion is therefore perfectly regular at the origin, and the quadrupole

approximation again becomes more accurate at small radii. The errors associated with

this approximation, while excessive for the purposes of data analysis, are acceptable

for an initial search for qualitative features of a boson-star EMRI.
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