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Abstract

In this thesis, I present bounds on the performance of a variety of network source codes.
These rate loss bounds compare the rates achievable by each network code to the rate-
distortion bound R(D) at the corresponding distortions. The result is a collection of optimal

performance bounds that are easy to calculate.

I first present new bounds for the rate loss of multi-resolution source codes (MRSCs).
Considering an M-resolution code with M > 2, the rate loss at the ith resolution with
distortion D; is defined as L; = R; — R(D;), where R; is the rate achievable by the MRSC
at stage i. For 2-resolution codes, there are three scenarios of particular interest: (i) when
both resolutions are equally important; (ii) when the rate loss at the first resolution is 0
(L1 = 0); (iii) when the rate loss at the second resolution is 0 (L = 0). The work of Lastras
and Berger gives constant upper bounds for the rate loss in scenarios (i) and (ii) and an
asymptotic bound for scenario (iii). In this thesis, I show a constant bound for scenario (iii),
tighten the bounds for scenario (i) and (ii), and generalize the bound for scenario (ii) to

M-resolution greedy codes.

I also present upper bounds for the rate losses of additive MRSCs (AMRSCs), a special
MRSC. I obtain two bounds on the rate loss of AMRSCs: one primarily good for low rate
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vii
coding and another which depends on the source entropy.

I then generalize the rate loss definition and present upper bounds for the rate losses of
multiple description source codes. I divide the distortion region into three sub-regions and
bound the rate losses by small constants in two sub-regions and by the joint rate losses of a
normal source with the same variance in the other sub-region.

Finally, I present bounds for the rate loss of multiple access source codes (MASCs). I

show that lossy MASCs can be almost as good as codes based on joint source encoding.
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Chapter 1

Introduction

1.1 Source Coding for One-to-One Communication

Shannon first stated the source coding theorem in his original paper [6], which considers
the question of how short a description is possible if we want to represent information
perfectly. This is usually referred as lossless data compression. In the same paper, he also
introduced the idea of rate distortion, which deals with using the shortest possible description
to represent information with some maximal allowed distortion. The rate distortion problem
is also called lossy data compression, which is a superset of the lossless data compression.
Shannon treated the lossy data compression question more exhaustively in [7], which proved
the first rate distortion theorem. Since then, extensive theoretical and practical work has
been done on source coding for one-to-one communication systems (e.g., [8], [9], [10],
[11]). In one-to-one communication systems, only one sender and one receiver are allowed.
The sender uses a single packet with rate R to describe the source without knowing other

information, and the decoder decodes the single packet with distortion D without access to
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any other information, as shown in Figure 1.1.

Figure 1.1: A one-to-one communication system.

1.2 Source Coding for Network Communication

Recently, network systems and applications are becoming increasingly prevalent. The ma-
jor services they provide are expanding from basic service to more versatile wide-band ser-
vices. Unfortunately, further development of advanced network technologies is limited by the
amount of information that can be sent through the corresponding networks. Therefore, it is
imperative to use efficient data representations for optimizing network system performance.

A network is defined as any collection of nodes joined by communication links. Every
node has a collection of sources to be encoded for transmission and a collection of sources
for which it receives descriptions and builds reproductions.

At first look, it may be convenient to use one-to-one communication technique or inde-
pendent coding for any two nodes with communication link. However, this is not an efficient
way. In reality, a lot of information communicated in a network may be correlated or even
identical. It does not make much sense to send the same message or very similar messages
again and again. In other words, it might be much more efficient to remove the redundancy

among sources sent or received by the same node, which is called network source coding
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or source coding for network communication. A more comprehensive treatment of network
source coding can be found in [12].

Though network source coding generally improves the overall network performance, it
comes at a price. First, joint encoding and joint decoding can increase both the design and
the run-time complexity of practical coding algorithms. Second, the optimal performance
limits of network codes are often more difficult to analyze than those of one-to-one systems.

In this thesis, I bound the optimal performance of a variety of lossy network source codes
by bounding their rate loss. The following discussion introduces the notion of rate loss by
considering the rate lossless for Wyner-Ziv Codes (WZSC), Multi-Resolution Source Codes
(MRSCs), Multiple Description Source Codes (MDSCs), Multiple Access Source Codes
(MASCs), and Additive MRSCs (AMRSCs). These results also appear in [13], [14], [15],

[16], and [17].

1.3 Wyner-Ziv Source Codes

The concept of rate loss was first introduced by Zamir for WZSCs in [18]. A WZSC is a source
code designed for one-to-one communication systems in which side information is available
to the decoder but not available to the encoder, as shown in Figure 1.2. The theoretical
performance of WZSCs, which is usually very difficult to analyze, has been determined by
Wyner and Ziv in [19] and [20].

In [18], Zamir bounds the performance of WZSCs by finding an upper bound on the rate
loss of a WZSC relative to a code with side information available to both the encoder and

the decoder. More precisely, Zamir defines the rate loss of a WZSC as the maximal difference



4 CHAPTER 1. INTRODUCTION

Node 1 Node 2
P T T T T T Th T T T T T T
| | | |
X —:» Encoder : :: Decoder :—> X
| | | |
Lmm oo J L___4A___J
Y

Figure 1.2: A WZSC. Node 1 describes source X to node 2, which uses side information Y

to decode that description and build the reproduction X.

between the rate of an optimal WZSC and the rate of the conditional rate-distortion function
Rx|y(D) at the same distortion. By finding a source-independent bound of 0.5 bits per
symbol (bps) for this difference in the squared-error distortion case, Zamir bounds the rate-
distortion function of a WZSC as a function of the conditional rate-distortion function, which

is generally much simpler to analyze.

1.4 Multi-Resolution Source Codes

Chapter 3 treats an extension of Zamir’s rate loss to MRSCs. An MRSC is a source code
in which simple, low-rate source descriptions are embedded in more complex, high-rate de-
scriptions. Because of their ability to satisfy varying bandwidth constraints, computational
capabilities, and performance requirements with a single code, MRSCs are playing an in-
creasingly important role in research and in practice (e.g., [21], [22], [23], [24], [25], [26]).

While MRSCs yield greater flexibility than traditional, single-resolution codes (1RSCs), that



1.4. MULTI-RESOLUTION SOURCE CODES 5

flexibility comes at a price in rate-distortion performance. In particular, for any Ry > R; > 0
and any D; > Dy > 0, we call the vector (Ry, Rs, D1, Ds) achievable by multi-resolution cod-
ing on source X if there exists an MRSC that uses R; bps to describe X with distortion D,
and then uses an additional Ry — R; bps to refine the description to distortion D, as shown
in Figure 1.3. The rate loss (Li, L2) of the given two-resolution code (2RSC) is defined as
L; = R, — R(D;) (i=1,2), where R(D) is the rate-distortion function for source X. The rate
loss describes the performance degradation associated with using a 2RSC rather than the

best 1IRSC with the same distortion.

A source is called successively refinable if the optimal MRSC for any distortions (D, D5)
achieves the rate-distortion bound at both stages, i.e., L; = 0 for i=1,2 [27]. Necessary and
sufficient conditions for a source to be successively refinable appear in [28]. Examples of
sources that are not successively refinable are shown for discrete-alphabet and continuous-
alphabet sources in [28] and [29] respectively. The MRSC achievable rate-distortion region

for non-successively refinable sources appears in [30] and [31].

In [32], Lastras and Berger consider the question of whether there exists a source in
which the MRSC rate loss can be made arbitrarily large. Following the approach developed
by Zamir for Wyner-Ziv codes in [18], they demonstrate that for any memoryless source and
the mean squared error (mse) distortion measure, there exists an achievable vector such that
L; < 1/2, for i € {1,2}. Moreover, they show that an achievable vector can be found with

L, =0 and Ly < 1. They also show that as Dy — 0, L; < 0.5 and Ly = 0 is achievable.
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Rl Rzl' Rl Rs - Rz R4I' Rs

original

Figure 1.3: A 4RSC. Decoding the first R; bps of the binary description yields a reproduction
with distortion D;. Decoding an additional R, — R; bps, for a total rate of R, bps, yields a

reproduction of distortion Dy < D;, and so on.

1.5 Multiple Description Source Codes

Chapter 4 treats the rate loss of MDSCs. In using packet-based communication systems for
delay-sensitive data types, it may be necessary for the receiver to build a data reconstruction
based on an incomplete data description. An MDSC is a code designed to give good rate-

distortion performance under a variety of packet-loss scenarios. Figure 1.4 shows a 2-packet

MDSC (2DSC). We measure 2DSC performance as (Ry, Ry, Do, D1, D3), where (R;, D;) i €
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{1, 2} are the expected rate and distortion for packet ¢ and Dy is the expected distortion in

jointly decoding the two packets.

Reproduced I mages Original Image
Packet 1 only ’
Packet 1 | Rate R,
Rate R,
Packets 1, 2
T Rate R+R,
Packet 2 |
Rate R, Packet 2 only
Rate R,

Figure 1.4: A 2DSC for image coding. Decoding the first binary description with R; bps
yields a reproduction with distortion D;, decoding another description with R, bps yields
a reproduction of distortion Ds, and decoding both of them jointly yields a reproduction of

distortion Dy < min{D;, Dy}.

The rate loss of an MDSC describes the performance penalties of MDSCs relative to
1RSCs. I measure this penalty by the rate loss vector L = (Lg, L1, Ls) of an MDSC. Given
rate-distortion function R(D), the rate loss of a 2DSC is L; = R; — R(D;) (i = 0,1, 2) (here

RO - R]_ + Rz)
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1.6 Multiple Access Source Codes

In Chapter 5, I consider the problem of distributed data compression. In some situations,
several senders may send information to a common receiver simultaneously. If communication
among the senders is not allowed, then we call the system a multiple access system. Examples
of multiple access systems include satellite systems where many independent satellites wish
to communicate with a common ground receiver, and sensor array systems, where all the
sensors in the system are sending information to a central processing unit which processes
the data collected by all of the sensors. In such systems, the senders may transmit correlated
information to the receiver, but cooperation among the senders is not possible or prohibitively
expensive since the senders are remotely located. MASCs are source codes designed for
multiple access systems. Figure 1.5 shows a 2-sender MASC (2ASC). We measure 2ASC
performance as (Ry, Rs, D1, Ds), where (Ry,D;) and (Rs, Ds) are the expected rates and

distortions for source X and Y respectively.

In 1973, Slepian and Wolf showed the surprising result that independent encoders in a
lossless 2ASC can essentially achieve the same performance as a single encoder (or a pair of
cooperating encoders) jointly encoding the pair of sources [33]. Tung and Berger investigate
the lossy source coding problem for this system and give one inner bound and one outer
bound on the achievable rate-distortion region in [34]. The inner bound is not tight in
general, and the relationship between the inner bound and the achievable region for joint
encoding is difficult to understand. Zamir and Berger show that the performance penalty
associated with using a 2ASC rather than a joint encoder vanishes in the limit of high

resolution [35]; however, this performance penalty is not zero in general (see, [20] and [18]).
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Given joint rate-distortion function Ry y(Di, D;) and conditional rate-distortion func-
tions Rx|y(D;) and Ry|x(D2), the rate losses of a 2ASC are L; = R; — Rxy(D1), L2 =

R2 — Ry|X(D2), and Lg = R1 + R2 — RX’Y(Dl,D2).

__ Node2
i |
| |
X : Encoder I
| |
Lo J

__ Nodel

i |

|

: Decoder : XY

|

Lo J
__ Node3
i |
| |
Y : Encoder |
| |
Lo 2

Figure 1.5: A 2ASC. Two senders at nodes 2 and 3 are independently sending messages X
and Y to the receiver at node 1, which jointly decodes all the information he receives to

construct the reproductions X and Y.

1.7 Additive Multi-Resolution Source Codes

In Chapter 6, I derive two bounds on the rate losses of a special type of MRSCs called
Additive Multi-Resolution Source Codes (AMRSCs). An AMRSC is an MDSC used as

MRSC, which is also known as additive successive refinement codes. In particular, the kth-
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resolution reproduction of an AMRSC equals the sum of the independent reconstructions
from the MRSC'’s first k packets [36]. A 2-stage AMRSC (A2RSC) encodes source X using
two packets with expected rates R; and AR = Ry — R;, respectively. The reproduction from
packet 1 has expected distortion D; and the sum of the reproductions from both packets
yields expected distortion Dy < D;. The definition for the rate loss of an AMRSC is identical
to the corresponding definition for an MRSC. AMRSCs are of potential interest since their

codebook storage requirements are lower than those of other MRSCs.

1.8 Thesis Outline

This thesis focuses on finding source-independent upper bounds for the rate loss of MRSCs,
MDSCs, MASCs, and AMRSCs. Rate loss bounds are useful for several reasons. (1) They
describe the performance degradation associated with using the given code rather than the
best single-resolution code with the same distortion(s). For example, small constant upper
bounds on the rate loss of MRSCs (e.g., [32], [13], [15]) put to rest any fears that there might
exist some source on which the cost of multi-resolution coding can be made arbitrarily large.
(2) They give elegant and often tight inner bounds on the region of achievable rates and
distortions. These bounds are much simpler to analyze than existing alternatives (e.g., [37]
and [38]). (3) Since the exact rate-distortion regions for MDSCs, MASCs, and AMRSCs are
not known in general, the rate loss also gives a good bound on the distance between the

best existing inner and outer bounds. (The rate-distortion function provides a natural outer
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bound for general sources. For example, both

Ry > R(Dy),
Ry > R(D»),

(which has an additional implicit bound: R; + Ry > R(D;) + R(D;)) and

p

Ry > R(Dy),

Ry > R(Dy),

R, + Ry > R(Dy),
are natural outer bounds for the achievable rate-distortion (RD) region for MDSCs. It can

also be shown that

R, > Rxy(Dy),
Ry > Ryx(Dy),

Ri+ Ry > Rxy(D1,Ds),

is an outer bound on the achievable RD region for MASCs [35])

The remainder of this thesis is organized in such a way that different chapters can be
read independently, except Chapter 2, which contains material needed for all of the other
chapters.

Chapter 2 introduces mathematical background material, notations, and definitions.

Chapter 3 lists my main results for MRSCs. I first present a non-asymptotic bound for
L; when Ly = 0. Second, I tighten an existing bound for L, with L; = 0 from Ly < 1 to
Ly < 0.7250. Third, I tighten an existing bound for L; = L, from 0.5 to 0.3802. Finally, I
generalize the result for Ly when L; = 0 from 2-resolution to M-resolution source codes for

any M > 2.
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Chapter 4 gives my results for MDSCs. I divide the whole distortion region into three
sub-regions and upper-bound the rate loss for each sub-region separately. For the lowest and
highest values of Dy, I bound rate losses by small constants. For intermediate values of Dy,
I bound the rate loss as a function of the rate loss of a Gaussian random variable, which can
be arbitrarily large.

Chapter 5 describes my result for MASCs. I show that though there is a performance
penalty to pay for using lossy MASCs, the performance penalty is bounded by a small
constant. In other words, independent encoding can be almost as good as joint encoding in
lossy coding.

I then turn to AMRSCs briefly. In Chapter 6, I introduce the two upper bounds I have
obtained on the rate loss of AMRSCs: one primarily good for low rate coding and another
which depends on the source entropy.

All theorems are proved after they are presented. All lemmas are proved in the Appendix.



Chapter 2

Background

Let {X;}°, be a real-valued independent and identically distributed (iid) source with proba-
bility density function (pdf) fx(z). Let d be a real-valued non-negative difference distortion
measure, d(z,y) = p(z —y) for any z,y € R and some function p : R — [0, 00). Assume that
p is continuous and that there exists a reference letter y* € R such that E,d(z,y*) < oo.
For any z™,y" € R", define d,(z",y") = (1/n) X7, d(zs, y;)-

Consider two random variables X and Y with a joint pdf fxy(z,y) and marginal pdfs

fx(z) and fy(y). The mutual information I(X;Y) is defined as:

fxy(z,y)

Fx(@) e () =Y

I(X;Y) = )fX,Y('Ta y) log

(=y

The rate-distortion function for source {X;}°; and distortion measure d is

R(D) = inf I(X;Y),
1@le):f,, ) Fwle)fx (@)d(ey)dedy<D

which characterizes the minimum rate required to describe source X with distortion not
exceeding D. In the arguments that follow, I frequently assume that there exists a conditional

13
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pdf f(y|z) that achieves R(D). This assumption simplifies the exposition considerably but
is not a necessary condition for any of my results.

Following Zamir’s approach from [18], [32] bounds the rate loss for MRSCs. This thesis
relies on the same tool.

In this thesis, I assume an arbitrary iid real-alphabet source X with variance o? and
focus on the mse distortion measure, i.e., d(z,y) = (z —y)?. I use h(X) and R(D) to denote
the differential entropy and the rate-distortion function of source X, respectively. I assume

h(X) and o? are finite.



Chapter 3

Multi-Resolution Source Codes

3.1 Preliminaries
An (n, My, M;) 2RSC consists of two encoder/decoder pairs: a coarse pair (!, g{1))
fOR™ - {1,...,M;} and ¢0:{1,...,M} - R"
with rate (1/n)log M; and resulting distortion Ed, (X", ¢ (f(1)(X™))) and a refinement pair
(fP,9)
fOR" - {1,...,M,} and ¢@ :{1,...,M} x{1,..., My} - R"

with total rate (1/n)log(M;Ms) and distortion Ed,(X™, g® (M (X™), f@(X™))).
We say that the rate-distortion vector (Ry, Ry, D1, D5) is 2RSC-achievable if for any € > 0

and for sufficiently large n, there exists an (n, M;, M3) 2RSC such that
LogMy < Rite,  Bdy(X",g®(fD(X™) < Dy +6,
7 log(MyMy) < By + €, Edn (X", g (f((X"), £P(X™)) < Dy +e.

15
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The achievable region for 2RSCs is defined as the set of all achievable rate-distortion vectors,
which is described in the following theorem. The result for finite alphabets comes from [30].

A generalization to any Polish alphabet with an escape symbol appears in [31].

Theorem 1 [30, Theorem 1],[31, Corollary 9] For any id source {X;}2, with density fx(z)
and distortion measure d, the vector (Ry, Ry, D1, D) is 2RSC achievable if there exists a

conditional probability Qy, v, x such that

Ry > I(X;Y1), Ed(X,Y1) < D,
Ry > I(X;Y3,Y1), Ed(X,Y2) < Ds.
The result generalizes to M-RSC with M > 2 [30], [31].
For any MRSC with M > 2 resolutions, if the rate-distortion vector (R, Ra, ..., Ry, D1,
D, ...,Dyy) is achievable for 0 < Dy < ... < D; < 0?2, the rate loss at the ith resolution

(t€{l,...,M}) is defined as: L; = R; — R(D;) bps.

3.2 Major results

3.2.1 Achieving the Rate-Distortion Bound in Resolution 2

Theorem 2 bounds the first-resolution rate loss of a 2RSC achieving Ry = R(D5). Roughly
the proof involves finding a Gaussian approximation of the optimizing reproduction distri-
bution and bounding the optimal rate loss by the rate loss of the Gaussian. Use of several
Gaussian approximations leads to both increasing and decreasing rate loss bounds, and the
intersection of these bounds yields the desired constant bound on the rate loss. Figure 3.1

shows the graphical interpretation of this theorem. Achieving performance on the rate-
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distortion curve in resolution 2 requires a rate penalty in resolution 1 that never exceeds

%log 5.

R(D)

i| 1.1610

Figure 3.1: Graphical interpretation of Theorem 2.

Theorem 2 For any iid source {X;}2, with an mse distortion measure, there ezists a

2RSC-achievable rate-distortion vector (Ry, Ry, D1, Dy) with Ly = 0 and Ly < %log 5 bps.

3.2.2 Achieving the Rate-Distortion Bound in Resolution 1

By applying the same basic strategy used in the proof of Theorem 2, I improve the bound

given by [32, Theorem 5] from L; = 0 and Ly < 1 to L; = 0 and Ly < %log(\/g-i- 1).
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Figure 3.2 shows the graphical interpretation of this result.

R(D)

] 0.7250

Figure 3.2: Graphical interpretation of Theorem 3.

Theorem 3 For any (Dy,D3) with Dy < D, there ezists an achievable rate-distortion

vector (Ry, Ry, D1, D) with Ly =0 and Ly < %log(\/g +1).
I next refine the shape of this bound using a technique employed in [32, Theorem 6.

Theorem 4 For any (D,,D3) with Dy < D, there ezists an achievable rate-distortion

202—-D; T 202

vector (Ry, Ry, Dy, D) with Ly =0 and Ly < %log [( 60°-5Dy | 1) ( &)]
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The bound described in Theorem 4 is tight when D; = o2, where L, = 0. This bound

can also be written as:

40’2 D]_
Ly <0.51 - +1 1—-—
2_050g[( g 2(72—D1+ )( 202>]7

which is a decreasing function of D; for a fixed value of 2. This bound achieves its maximum
Ly < 0.5log(v/3+1) < 0.7250 when D; = 0, which is consistent with Theorem 3. The bound
from Theorem 4 is less than the bound from Theorem 3 when D; # 0. Figure 3.3 shows the
bound from Theorem 4. The shaded region shows the possible values of Ly as a function of

D1/0'2.

3.2.3 Identical Rate Losses in Both Resolutions

Lemma 1 shows the convexity of the rate loss. This result proves useful in Theorem 5, where

I address the case where the rate losses at both resolutions are equal.

Lemma 1 For any (D;, Dy) with Dy < Dy, if two rate-distortion vectors (Ryg, Rao, D1, D3)
and (Ry1, Ra1, Dy, Ds) are 2RSC-achievable on source X, then for any 0 < a < 1, there ezists
an achievable rate-distortion vector (R1q, Roa, D1, D2) for the same source with L1, = aLq;+
(1 —a)Lyg and Lag = aLs; + (1 — a)Leg. Here Lig = Rig— R(D1) and Log = Rag — R(D>),

for all B € {0,a,1}.

Using the convexity of the rate loss proved in Lemma 1 with the bounds on L; and L, from
Theorem 2 and 3 gives new bounds for the case where L; = L,. In particular, since for
any Dy < D, the rate losses L1y < .5logh and Lsy = 0 and the rate losses L;; = 0 and

Ly <5 log(\/§ +1) are both achievable by multi-resolution coding with distortions (D, Dj),
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0.8

| —— Upper bound for L2

0.7

Upper bound for Ly

Figure 3.3: Possible values of Ly in Theorem 4.

the rate losses Ly, = (1 — a)L1g and Ls, = aLs; are also achievable at these distortions.

Setting
o — Ly
Ly + Loy’
proves the achievability of
LyL 1 1
Lo =Lya = 7> < < 0.4463

T Lo+ Ly 1/Lig+1/Ly ~ 1/(.51log5) + 1/(.51log(+/3 + 1))

with distortions (D, Dy). This result slightly tightens the bound of [32, Theorem 3|, which

proves the achievability of L; < 1/2 and Ly < 1/2 for distortions (D;, D3).
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Theorem 5 improves the bound further. The graphical interpretation is shown in Fig-

ure 3.4.

R(D)

:I 0.3802

D2 Dl

Figure 3.4: Graphical interpretation of Theorem 5.

Theorem 5 For any Dy < D, the rate losses Ly = Ly < 0.3802 are achievable.

3.2.4 Tree-Structured Vector Quantization

For any M > 2 and 0 < Dps < ... < Dy < Dy, [32, Corollary 1] shows that there exists an
achievable rate-distortion vector (Ry,... R, D1,...,Dy) with L; < 1/2, ¢ € {1,..., M}.

This solution suggests approximately identical priorities at all resolutions. I next consider
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the case where we minimize the rate loss at the first resolution, then minimize the rate loss
at the second resolution subject to the first rate loss and so on. This greedy approach, used
in the design of tree-structured vector quantizers (TSVQs) [39], apparently maximizes the
rate loss at the last resolution. The next theorem provides an upper bound for this scenario.

This result can also be regarded as a generalization of Theorem 3.

Theorem 6 For any Dy < ... < Dy < D;, there exists an achievable rate-distortion
vector (R1, Ra, ..., Ry, D1,Ds,...,Dy) with Ly =0, L; = I(X; Uy, U3, U3, ..., U!) — R(D;)
for all1 < i < M, and Ly < M/2, where Uy is a random wvariable achieving R(D;),
Uy, Us, ..., Uy are successively defined as argming.gax,vy<p; I1(X;U,Uy,Us, Us, ..., Ui ),

NMJ-L(X, Ul,Ué,. ",U],W)7 and NM NN(O,DM)

Theorem 6 gives a bound which increases as the number of resolutions increases. This is
consistent with our intuition that the more resolutions compete for the resource, the higher
the potential penalty in the rate loss for the last resolution. This bound suggests that
the performance penalty associated with using greedily grown TSVQs [39] rather than the
jointly optimized multi-resolution vector quantizers ([25], [26]) may be very large. Proving
such a result would require a tight bound on the rate losses studied in Theorem 6. In
addition, the proof of this theorem implies that Lj; < %log (1 + %) + % I redefine
Yy as (1 — )X + aUy, ; + Njy, where @ = Dy /Dyr 1, Njy ~ N(0,Dpyy — @?Dyy 1), and

NIIWL(Xv Uy, Uéa ) UJIM) Since h(YM|Xv Ullwfl) = h(YM|X7 Ull\lflv U]IWfZa EER) Uév U1)7
Ly = I(X;YMa Ull\l—la LR UéaUl) - R(DM)
= I(X;Ym|Up 1.+, U3, U1) + L1 + [R(Dum-1) — R(D)]

< I(X;Ym|Upy 1) + Ly a



3.3. PROOFS OF THEOREMS 23

1. Dy

< =1 L 3.1
< 208 Dut + L1 (3.1)
1 D1 M—1

—1

5% p, T

IA

then
M — 1 V541 M
Ly < —1 — —.1528.
M S 9 +2og< 2 ) 528
I also find that
1 D,
Ly < Zlog —
M S OgDM

from (3.1).

3.3 Proofs of Theorems

I first introduce a new property of rate-distortion functions, which is used in the proof of

Theorem 2.

Lemma 2 Suppose R(D) is the rate-distortion function of an arbitrary iid source {X;}°,

with an mse distortion measure d(z,y) = (z — y)? and 0 < Dy < D, then

D,

R(Dy) ~ R(Dy) <, log B
Theorem 2 For any iid source {X;}2, with an mse distortion measure, there ezists a
2RSC-achievable rate-distortion vector (Ry, Ry, D1, Ds) with Ly = 0 and L; < %log 5 bps.

Proof: Let Uy and U, be the random variables that achieve R(D;) and R(D,), respectively.
Next, let NV; be a Gaussian random variable with mean 0 and variance D; — Dy and N, be

another Gaussian random variable with mean 0 and variance D, (written Ny ~ N (0, D;—Ds)

and Ny ~ N(0, Ds)). Set (N1, Ns) to be independent of (X, Uy, Us) and N; to be independent
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of N, (written (Ny, Np)L(X, U, Us) and N;-LNy). I define

Y1:U2+N1 and Yv2:U2

Here Y; and Y, satisfy the distortion constraints Ed(X,Y;) < Dy and Ed(X,Y;) < D;.
By Theorem 1, the vector (I(X;Y1),1(X;Ys,Y1),D;,D,) is achievable. The rate loss at
the second stage is Ly = I(X;Y2,Y1) — R(Dy) = I(X;U,, Uy + Np) — I(X;U,) = 0 since

X — Uy — Uy + N; forms a Markov chain. The rate loss at the first stage is

L, = I(X;Yh) - I(X;U,) = I(X; Uy + Ny) — I(X; Uy)

Let Lq4 denote the first difference on the right hand side of (3.2); then

Lig = I(X;Us+ Ny) — I(X; X + Na + V)

< I(X;Us + Ny) — I(X;Us) + I(X; X + Ny) — I(X; X + Ny + Ny) (3.3)
— I(X;Uy+ Ny) — I(X; Uy, Uy + Ny)

+I(X;X 4+ Nay X + Ny + Np) — I(X;X + No + Ny) (3.4)
= I(X;X + No|X + Na + N1) — I(X;Us|Us + Ny)
= I(Ny+ Ni; N1|X + Ny + Ny) — I(Us + Ny — X; N1|Us + Ny) (3.5)
= I(Ny; Ny + Ny, X + Ny + Np) — I(N1; X + Ny + Nq)

—I(Us + Ny — X; N1|Uz + N1)
= I(Ny;Na+ Npy) — I(Ny; X + No+ Ny) — I(Uy + Ny — X; N1 |Us + Ny)  (3.6)
— I(Ni;Ny+ Ny) — I(Ni; X + Ny + Ny)

+I(N1,U2+N1) —I(Nl,U2+N1 —X) —I(Nl,U2 +N1|U2+N1 —X),
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where (3.3) follows since Ed(X, X + N3) = D, implies that I(X;U,) = R(D2) < I(X; X +

Ns), (3.4) follows since Ny L (X, Us, N;) implies X — Uy — Us + N; and X — X + Ny —

X + N3+ N; form Markov chains, (3.5) follows since h(A|B) = h(A— B|B), and (3.6) follows

since (N1, No) L X implies Ny — Ny + Ny — X + N, + N; forms a Markov chain.

Let J = I(Ny; Uz + Mi|Us + Ny — X) = I(U — X; X|Uz + Ny — X) and K = I(Ny; Uz +

Nl)—I(Nl,X+N2+N1)—J, then LlASI(Nl,N2+N1)—I(Nl,U2+N1—X)+K, and

by the chain rule,

VAN

I(Ny;Uy + N¢|X + Ny + Np) — I(N1; X + Ny + N1|Us + Ny) — J
I(Ny;Us + Ni|X + No + Ny) — J

I(X + No; X — Uy + No|X + No + Ny) — J

I(X + Noy; X — Uy + Np) — J (3.7)
I(Ng, X + No; X — Uy + No) — J

I(Ng; X — Uy + Np) + I(X — Uy + No; X + No|Ny) — J

I(Ny; X — Uy + Np) + I({Uy — X; X|Ny) — I(Uy — X; X|Uy — X + Ny)
I(No; X — Uy + No) + I(Uz — X; X) — I(Uy — X; X|Uy — X + Np) (3.8)
I(Ny; X — Uy + Ny) + I({Uy — X;Uy — X + Np)

—I(Uy — X;U; — X + N1|X) (3.9)

I(No; X — Uy + No) + I(Uy — X;Uy — X + Ny),

where (3.7) follows since N;-IL(X, Uy, N,) implies that X —Us+ Ny — X + Ny — X+ Ny+ Ny

forms a Markov chain, (3.8) follows since No-L(X,U,), and (3.9) follows by the chain rule
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since
U - X;X, U =X +DN) = I(Uy—X;X)+1(U; — X;U; — X + M| X)
= I(U;— X Uy — X + Np) + I(Us — X; X|Us — X + Ny).
Thus,

Lia < [W(Nz+ Ny) — h(Ny)] — [A(Uz + Ny — X) — h(U — X)]
(X = Uy + N3) — h(X — Us)] + [h(Us — X + N1) — h(Ny)]

log Dy
2meDy(D, — Dy)
D,
2meDy(D, — Dy)
2D,

—l—h(X —U2+N2)

IA

1
~lo
2
1 1

5 log + 5 log(4meDy) (3.10)
1 1
—lo
2% D, — D’

where (3.10) follows since E(X — Uy + Ny)? < 2D,, so

(X — Uy + N3) < h(N(0,2D,)) = %log(47reD2).

I denote the second difference on the right hand side of (3.2) by L;p, which is bounded
by 0.5. The proof parallels that of [32, Theorem 3]. In particular,
Lig = I(X;X+ Ny+ Ny) —I(X;Uq)
= I(X;X + Ny + N1|Uy) — I(X;Uh| X + Na + Ny)
< I(X;X + Ny + N1|U1)

= I(X—Ul;X—U1+N2+N1|U1)

IA

I(X—Ul,X—U1+N2+N1)

VAN

0.5.
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Thus, I can bound L; as

1. 2D, 1 1 D
Li=Liga+Lip<-log—t  +-=1+_log— 1.
1=ttt s S 58, T, T T T 2% D T h,

On the other hand, the rate loss at the first stage can also be bounded as:
1 D,
L =I(X;Y1) — R(D1) < I(X;Y3, Y1) — R(Dy) < ElogD—’

2

by Lemma 1 since zero rate loss at the second stage implies I(X;Y5,Y;) = R(D>).

Putting these bounds for L; together gives
(1 D, 1 D, }
L < —log—,14+ —log———¢.
1 _mm{2 ogD2, + 9 ong_D2
The shaded region of Figure 3.5 shows the possible values of L; as a function of Dy/D;. The
maximal value occurs when D; = 5D, giving L; < %10g5 < 1.1610. O
Theorem 3 For any (D1, Dy) with Dy < D, there ezists an achievable rate-distortion vector

(Ri1, Ry, Dy, D,) with Ly = 0 and Ly < 1log(v/3 +1).

Proof: [32, Theorem 5] actually shows that

D\ 1
Ly < —log (14 22) + =.
25 Og(+D1>+2

I here derive a second bound that decreases in Dy/D;. Together, the two bounds give the
desired result. Setting U; and U, to be the random variables that achieve R(D;) and R(D,),
respectively, @ = Dy/D;, and Ny ~ N(0, Dy — o D), with N, 1L (X, Uy, Us) as in Lemma 2

and defining Y5 = (1 — @)X + aU; + N, and Y; = U, gives L; = 0 and
L, = I(X;Y2, Y1) — R(Ds) = I(X;Y3,U1) — R(D)

< = log D (3.12)
2



28 CHAPTER 3. MULTI-RESOLUTION SOURCE CODES

——  0.5log(D1/D2) ’
S 1-0.5log(1-D2/D1) /

N
T

L—

(0.2,1.1610)

Upper bounds for L,
[y
(63}
T

0.5

Figure 3.5: Possible values of L; in Theorem 2.

Here (3.11) follows since I(X;U;) = R(D;), Dy < D; and the rate-distortion function R(D)
is a non-increasing function of D, and (3.12) follows from steps (8.2)-(8.5) of the proof of
Lemma 2.

Thus for any Dy/D; < 1, I have two upper bounds for Ly:

llog(1+22) +1
L, < 2 ( D1) 2
1 D
31og 5}
The first bound dominates when D;/Dy > v/3 + 1 while the second dominates when 1 <

D;/Dy < v/3+4 1 (See Figure 3.6). Together these bounds give Ly < (1/2)log(v/3 + 1) <
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0.7250. O

3~

! ——  0.5+0.5log(1+D2/D1)
\ - -~ 0.5log(D1/D2)

N
T

Upper bounds for Lo
H
(6)]
T

(0.3660,0.7250)
0.5

Figure 3.6: Possible values of L, in Theorem 3.

Theorem 4 For any (D1, Dy) with Dy < D, there ezists an achievable rate-distortion vector

(R1, Ry, D1, Dy) with Ly = 0 and Ly < %]og [( % + 1) ( _ 29712)}

Proof: From Theorem 3,

1 D,
Ly < —log —.
255 0og D,
For any fixed 0 < D, < o2, this bound is a decreasing function of D, € (0, D;). I next derive

another bound which is an increasing function of D,. Let Uy - X — Uy, 8y =1 — D,/ o?,

N} ~ N(0,8.D,), and NI 1 (X,U;,Us,). Then, setting Y, = U, and Y; = U; and using an
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approach from the proof of [32, Theorem 5| gives

L, = I(X;U1|Uy)
< I(X;U, 1 X + N{|Us)

= I(X;6:X + Ny|Us) + I(X; U |Us, 51 X + Ny)

1 D2 D2 1 Dl
—1 1+ ——-— —1 2——1.
20g<+D1 02>+20g< 02>

IA

2 _ _ 2 _
The second bound dominates when D, € (0, Dio ”;Zaz 5DD; \/I;lz DV 207 Dl], while the first
o2—D, o2 —D

bound dominates for the remainder of the (0, D;) region. The maximal value of the combined

. . D1024/602—5D;—D10%4/26>— Dy . . .
bound is achieved at Dy = =2 Y7 22129 V29 "2 oiving the desired result. O
2(02—D1)4/20%—D;

Theorem 5 For any Dy < D,, the rate losses Ly = Ly < 0.3802 are achievable.

Proof: As shown in Theorem 2, the rate losses Lo and Loy are achievable, where

A]_:].-l-%].OgDD:D, 1fD125D2
L20:O and LIOS ' ?

A2 = %log g—;, if Dy < 5Ds.

From Theorem 3, the rate losses L;; and Lq5 are achievable, where

By =1}log(1+ 5) +3, if D1 > (v3+1)D,
L11 =0 and L21 S
B, = }log Zt, if D; < (v/3+1)Ds.

Thus, from Lemma 1, I can draw the conclusion that the rate losses L1, = (1 — a)Ljo and

Lo, = aLy; are achievable. Setting a = Lyg/(Lyo + La1) gives

1 .
A By it 0?2 Dy 25D,
L1a=L2aS m’ if (\/§+1)D2 SDI <5D2

\ Umti/By i D2 < D1 < (vV3+1)Ds.

Figure 3.7 shows this bound for L, = Ls,. The maximum occurs when D,/ D; = 0.2, giving
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0.45

(0.2,0.4090) ——  Lla=L2a

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Figure 3.7: Upper bound I for L;, = Ly, in Theorem 5.

1
(%10g5) + 1/(%log(1 +0.2) + %)

Lo = Loy < < .4091.
1 2_1/

Finally, I use the results of Theorems 2 and 3 in a different way to get the desired result.
By Theorem 2, Ly < R(D3) — R(D,) and Lsg = 0 are achievable. By Theorem 3, L;; = 0

and Ly < %log g—; + R(D;) — R(D,) are achievable. Thus by convexity, I can achieve

LygLoy < [R(D2) — R(D,)] [% log B—; + R(D,) — R(D2)}
Lo+ L — 3log Bt
([R(Dz) — R(D,)] + [% log J* + R(Dy) — R(D2)D2 1. D

= —log —.
= 4x llog & 8 % D,

Lla = L2a =
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Figure 3.8 combines this new bound with the bound of Figure 3.7. The new maximum is
achieved when Ds/D; = 0.1215 and gives L1, = Loy < 0.3802, thus L, = Ls, < 0.3802 is

achievable. O

0.45

E— Previous bound for L1=L2
0.125log(D1/D2)

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Figure 3.8: Upper bound II for L;, = Ly, in Theorem 5.

I first introduce Lemma 3, which is useful for proving this theorem.

Lemma 3 For any Dy < ... < D3 < Dy < Dy,

I(X; Uy, U, US, .. Ubgl X + Ny ) < M2,

where Uy, U3, Uj, ..., Uy, are defined in Theorem 6.
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Theorem 6 For any Dy < ... < Dy < D, there exists an achievable rate-distortion
vector (Ry, Ra, ..., Ry, D1,Da,...,Dy) with Ly =0, L; = I(X; Uy, U3, Us, ..., U!) — R(D;)
foralll < i < M, and Ly, < M/2, where Uy is a random variable achieving R(D;),
Uy, Us, ..., Uy are successively defined as argming.gax,vy<p; 1(X;U, Uy, Uy, Us, ..., U ),
Nyl (X, Uy, U, ..., Uly), and Nar ~ N (0, Dyy).
Proof: Let U; be the random variable that achieves R(D;) for any i € {1,2,..., M}, Npy 1 ~
N(0,Dpr_1), and Ny 1(X,U1,U3, Us, ..., Usp 1, Unr). Further I define the joint distribu-
tion of (X,Uy,U3,Us,...,Up_1,Un) as fxQuyuyus,...vn,_ | xQuy x, therefore, (U1, U3, U3,
..., Upyr 1) = X — Uy forms a Markov chain.

I define Y1 = Uy, Yy = Uy, and Y; = U/ for any ¢ € {2,3,..., M — 1}. Then the rate

loss of this code at resolution M is
Ly = I(X;Yy,...,Ys, Y1) — I(X;Uy)
= I(X;Un,Ups 1y, Uy, Uy) — I(X;Unp)
= I(X;Up_q,---,Us, Ur|Unr)
< I(X;Up_1y---,Up, Uy, X + Npp1|Unp)

= I(X; X + Naa[Un) + I(X; Uy, ., Up, Uil Ust, X + Nara). (313)

Here,

1 D 1
I(X; X 4+ Nya|Un) < Slog [14+ -2 ) < = (3.14)
2 Dy 1) =2

where the first inequality follows the approach of steps (8.2)-(8.5) from the Appendix, and

the second inequality follows since Djys < Djps_;. Further,

I(X;Ujl\lfl: .- 'aUéaU1|UMaX +NM71)
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= WUy 4., UL Ui|Us, X + Nyy_1)
—h(Uly_y, ... Uk Us|Unt, X + Nag_1, X)
< WUYy_y,..., UL ULIX + Nago1) — MUy, ..., Ub, Ur|Unr, X + Nag_q, X) (3.15)
= WUYy_y,...,ULULIX + Nago1) — AUy 4, U Ul X + Nag1, X) (3.16)

= I(X;Ull\lflv v -vUévU1|X + NM—l)

IA

(M —1)/2, (3.17)

where (3.15) follows since conditioning reduces entropy, (3.16) follows since given (X, X +
Ny 1), Uy and (Uy,U,,Us, ..., Uy, ) are independent, and (3.17) follows from Lemma 3.

Combining (3.13), (3.14) and (3.17) proves the theorem. O



Chapter 4

Multiple Description Source Codes

4.1 Preliminaries

An (n, My, M5) 2DSC consists of two individual encoder/decoder pairs and a joint decoder.

For packet 1, the encoder/decoder pair (f{1, g{!)) are mappings
fOR™ - {1,...,M;} and ¢V :{1,...,M;} - R"

with rate (1/n)log M, and distortion Ed,(X™,g"(f(V)(X™))). For packet 2, the encoder

and decoder (f(?, g(?)) are mappings
f@ R~ {1,...,Ms} and ¢@:{1,..., My} - R"

with rate (1/n)log M, and distortion Ed,(X™,g® (£ (X™))). The joint decoder g is a
mapping

g©:{1,..., My} x {1,..., My} - R"
with total rate (1/n)log(M;Ms) and distortion Ed,,(X™, g® (f)(X™), f®(X™))).

35
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We say that the rate-distortion vector (Ry, Ra, Do, D1, D) is 2DSC-achievable if for any

€ > 0 and for sufficiently large n, there exists an (n, My, Ms) 2DSC such that

nlog My < Ri+e, Edn(X™, g{)(f{V(X™)) < D1+,
,I—LIOg M2 S R2 + €, Edn(Xnag'Slz)(fy(f)(Xn))) S -D2 + €,

Ed, (X", g@(f0(X™), fO(X™))) < Do + €.

A set of 2DSC-achievable rate-distortion vectors is described in the following theorem. The
result for finite alphabets comes from [37]. A generalization to well-behaved continuous
sources appears in [40]. The result is not tight in general [41]. A more general (but not

single-letter) form for stationary sources appears in [38].

Theorem 7 [37, Theorem 1] [0, Theorem 1] For any #id source {X;}2, with density
fx(z) and distortion measure d, (Ry, R, Dy, D1, Ds) is 2DSC-achievable if there exists a

conditional probability Qy, v, v, x such that

Ry > I(X; Y1), Ed(X,Y;) < Dy,
Ry > I(X;Ya), Ed(X,Y,) < Dy,

R+ By > I(X; Yo, Y1, Ya) + I(Y1; Ya), Ed(X,Yo) < Ds.

For any 2DSC, if the rate-distortion vector (Rj, Rs, Do, D1, Ds) is achievable, the in-
dividual rate loss of description ¢ (i € {1,2}) is defined as L, = R; — R(D;) bps. The
joint rate loss is measured in two different ways by Ly = R; + Ry — R(D,) bps and
Liy = Ry + Ry — [R(D1) + R(Dy)] = Ly + Ly bps. I denote the normalized distortions
as dy = Dy/o? dy = Dy/0?, and dy = Dy/o® 1 assume 0 < Dy < Dq,Dy < 02, i,

0<d0<d1,d2§1.
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4.2 Major results

4.2.1 Partition of the distortion region

For each (Dg, D1, D), define
R(DO, Dl, D2) = {(Rl, R2) . (Rl, Rz, DO, Dl, D2) is 2DSC-achievable}.
The following lemma is useful in partitioning the achievable region.

Lemma 4 If0 < Dy, D, < 02, then

I partition the space of possible distortion vectors (Dg, D1, Dy) into 3 regions:

Dy = {(Do,D1,D,):0< Dy < Dy + Dy — 0%}
D2 = {(DO,Dl,D2)ID1+D2—O'2<D0<(1/D1+1/D2-1/0’2)71}

D3 = {(Do,D1,D;):Dy > (1/Dy+1/Dy —1/5*) '}

Thus D;, Ds, and D3 correspond to the low-Dy, medium-Dy, and high-D, regions, respec-
tively.
In [42], Ozarow shows that Theorem 7 is tight for any Gaussian source. From [17], the

achievable region for a Gaussian source is

2

R, > R(Dy)

Ry > R(D,) (4.1)

Ri + Ry > R(Dy)
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for Dy;
R, > R(D,)
Ry > R(D»)
| Bi+ Ry > R(Dy) + Lo
for Ds; and
R, > R(Dy)
(4.2)
Ry > R(D»)
for D3, where
1 o?
D)= -log —
R(D) = ; log

and Lgo denotes the joint rate loss (L) of a Gaussian source with (Dg, D1, Dy) € Dy. By
[37],

(1 —dy)?
(1= do)? = (y/(1 = d1)(1 — dy) = /(dh — do) (2 — do))?

The following results give bounds on the values of R(Dg, Dy, D,) for the three regions. By

1
Lgo = 2 log

symmetry, each statement about rate loss L; can also be made to apply to rate loss L.

4.2.2 The Low-D; Region

I define a function

11 1}_1 o?

1
Luin(d1,d2) = min{ ~log —, -log — ¢ = ~log ———————. 4.3
( ! 2) mln{z 8 dl 2 8 d2 2 8 max{Dl,Dz} ( )

Theorem 8 For any (Dy, D1, Ds) € D1 UD,, there exists an (Ry, R2) € R(Do, D1, D) with

L, =Ry — R(D;) <0.5log(2 —d;) <0.5 and

Ly = R;+ Ry — R(Dy)



4.2. MAJOR RESULTS 39
< 0.5log(2 — do) + min{ Lyin(d1, d2), R(max{ Dy, Ds}) + 0.5log(2 — max{d;, ds})

< min{Lmin(dl, dz) + 0.5, R(max{Dl, DZ}) + 1}

I apply this theorem to obtain more specific results for regions D; and D, separately, which

are listed in the following corollaries.

Corollary 1 For any (Dg, Dy, Ds) € Dy, there ezxists an (Ry, Ry) € R(Dy, Dy, D) with

L; <0.5log(2 —d;) <0.5 and Ly < 0.510g[2(2 — dy) /(1 + dp)] < 1.

The bound for Ly, which depends only on dy, is tight when Dy = o2. Figure 4.1 plots this
bound for Lj.

If X is Gaussian, then (4.1) describes R(Dy, Dy, Ds) for any (Do, D1,D2) € D; [37].
Corollary 1 gives universal meaning to the definition of D; for all iid sources: if D;+Dy— Dy >

0?2, then

2

Ry > R(D1)+ 05

Ry > R(D,) 4+ 0.5 (4.4)

\ Ry + Ry > R(Dy) +1

is an inner bound on R(Dy, D;, D,), i.e., the rates can be “close” to their rate-distortion
bounds in D;.! Figure 4.2 illustrates this property. The dashed lines trace the outer bound
from (4.1); any rate pair below this bound is not MDSC-achievable. The shaded region
surrounded by solid lines is the inner bound described in (4.4); any rate pair inside this
region is MDSC-achievable. For any (Rl, éz) on the outer bound characterized by (4.1), the

rate pair (R; + 0.5, Ry + 0.5) is achievable.

Tn [43], Ahlswede shows that El Gamal and Cover’s inner bound (see Theorem 7) is tight in the case of

no excess rate at Dy, i.e., Ry + Ry = R(Dg). However, this region may be difficult to evaluate in general.
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—_— Bound for LO

09

0.8

0.7

0.6

Upper bounds for L

0.3

0.2

0.1

Figure 4.1: Bound for Ly in Corollary 1.

In the special case where Dy = o2, I can tighten this result to Ly = L; < 0.3802, or

Ly =0 and L; < 1.1610, or Ly < 0.7250 and L; = 0, as shown in [15].

4.2.3 The Medium-D; Region

Theorem 8 also leads to a new inner bound on the achievable region in D,.

Corollary 2 For any (Do, D1,D;) € D, there exists an (Ry, Ry) € R(Do, D1, D) with

L1 S 0.5 and LO S LGO + 1.5.

I can get a tighter bound in part of D, immediately from Theorem 8.
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R,

0.5 bit
R(D,) R

RD)

R(D,) R(bo) R,

Figure 4.2: Outer and inner bounds on R(Dy, D1, D) for (Dg, D1, Dy) € D;.

Corollary 3 For any (Dy, D1, Dy) € Dy withd; > 0.5 ords > 0.5, there exists an (Ry, Ry) €

R(DO,Dl,Dz) with Ll S 0.5 and LO S 1.

In D,, the joint rate loss of the Gaussian source is nonzero, but in some sub-regions, e.g.,
max(dy, ds) > 0.5, it is still small (e.g., see Corollary 5 in Section 4.3). The above corollary
generalizes this property to all iid sources.

In fact, I can also compare Ry + Ry to R(D;) + R(D;) instead of R(Dy), though both of
them are natural outer bounds. I define a new joint rate loss as L1 = R; + Rs — [R(D;) +

R(D)]. The relation between Ly and Ly, is

Lo + R(Dg) = L1y + R(Dy) + R(D,), (4.5)
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Corollary 4 For any (Dg, D1, Ds) € Ds, there ezxists an (Ry,Ry) € R(Dy, Dy, D;y) with

Ll S 0.5 and L12 S 0.5 log[min{Dl,D2}/D0] + 1.

To prove the preceding results, I use reconstructions Yy, Y3, and Y for which X — Yy, —
(Y1,Y5). I then turn to a different approach, which is similar to that used in [44]; using
reconstructions that satisfy X — (Y3,Y2) — Yj, leads to a tighter bound in terms of Lg;s

for Lis in Dy, where Lg;s is defined in [44] as

1 1—dy)%d,d
Lgia = - log ( 0) chac

27 (1 — do)2drdy — (doy/(1 — di)(1 — d) — \/(d1 — do)(dz — do))?

Lemma 5 describes the relation between Lgi2 and Lgg, which also implies that Lgi2 equals

Ly, for the Gaussian source.

Lemma 5 In Dy, Lg12 = 0.51og(d1ds) — 0.5log(dg) + Lgo-

Theorem 9 For any (Dy, D1, Ds) € Dy, there exists an (Ry1,Ry) € R(Dy, Dy, Dy) with

L; <0.5 and L1y < Lgip + 1.

From the definition of Lg12 and the proof of Corollary 2, I can see that Theorem 9 is tighter

than both Corollary 4 and another bound

1. didy 1 1
Ly <14 ~log 2%, 1 .
125 L e Tt s did,

(4.6)

Corollary 4 and the bound in (4.6) are easier to analyze. The difference between Theorem 9

and Corollary 4 or (4.6) is less than 1 bit.

4.2.4 The High-D;, Region

Finally, I turn to Ds.
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Theorem 10 For any (Dg, D1, Ds) € Dj, there exists an (Ry, Ry) € R(Dy, D1, Dy) with

We know that if we force the side rates to be low, i.e., Ry = R(D;) and Ry = R(D,),? we can
certainly get a reproduction at the joint decoder with distortion Dy = min{D;, D>}. Intu-
itively, we should be able to do better than that and achieve distortion Dy < min{D;, Dy}.
This theorem justifies this intuition in some sense, telling us that for any source and any fixed
D; and Ds, there always exists a multiple description code with R; =~ R(D,), Ry = R(D>),
and Dy no more than (1/D; + 1/Dy — 1/0?)7'. Figure 4.3 illustrates R(Dy, Dy, D;) for
(Do, D1,D5) € D3. The dashed lines depict the outer bound characterized by (4.2); the
shaded region surrounded by solid lines is the inner bound given by R; > R(D;) + 0.5 and

Ry > R(D,) + 0.5.

4.2.5 Tightness of the Bounds for the Medium-D, Region

In D, and Ds, I give constant upper bounds on the rate loss. In D5, such constant upper
bounds do not exist in general (e.g., the rate loss of a Gaussian source can be arbitrarily
large). I therefore rely on the lower bounds which can be derived from [44]. In the following
theorems, I bound the distance between the upper bounds and lower bounds on the rate
loss. I focus on region D, with max{D;, D;} < 0?/2, since this is the only region where I

have not found a constant bound.

Theorem 11 For any (Dy, D1, Dy) € Dy with max{D;, Dy} < 0*/2, there ezists a rate pair

(R1,Ry) € R(Dg, D1, Ds) with Ly < 0.5log(2 — dy) < 0.5, and the distance between the

2This is also known as the no excess marginal rate case. Inner and outer bounds, which may be hard to

compute in general, can be found in [45].



44 CHAPTER 4. MULTIPLE DESCRIPTION SOURCE CODES

0.5 bit
Yo Uit

RD)

R(bl) R,

Figure 4.3: Outer and inner bounds on R(Dg, D1, D5) for (Dy, D1, D3) € Ds.

upper bound and the lower bound for Ly is less than or equal to min{[log(2mec?) — 2h(X)] +

1,0.5log(2meo?) — h(X) + 1.5}.

This bound is relatively tight for sources whose differential entropy is close to that of Gaussian
source with the same variance.
Constant bounds are possible in some special case. For example, if the Shannon lower

bound (SLB) is tight at distortion D; and D,, i.e.,

R(Dy) = h(X)—%log(QweDl),

R(Dy) = h(X)—%log(27reD2),

then I can show the following theorem.
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Theorem 12 For any (Dg, Dy, Dy) € Dy with max{D;, D,} < 0?/2, if the SLB is tight at
distortion Dy and Ds, then there exists an (R1, Rs) € R(Do, D1, D) with L; < 0.5log(2 —
dy) < 0.5, and the distance between the upper bound and the lower bound for L is less than

or equal to 2.

It can be shown that for smooth sources, if the SLB is not tight for R(D) at any distortion
D > 0, it is asymptotically tight as D — 0. So Theorem 12 generally works for the high-
resolution scenario, i.e., D1,Dy — 0 and D;/Dg and Ds/Dg are held fixed. However, for
this specific scenario, a better result has been shown in [44]: if the source is smooth and
Dy,Dy — 0 and D;/Dy and Dy/Dy are held fixed, then the upper bound and the lower
bound for Lj coincide asymptotically, i.e., the distance between the upper and lower bounds

approaches 0 in the high-resolution limit.

4.2.6 Properties of the Rate-Distortion Function

The above results yield as a by-product some interesting inequalities about the rate-distortion

function of an arbitrary iid source:

R(D1) + R(D2) < R(Do) +1, if (Do, D1, D2) € Dy; (4.7)
R(Do) — Lgiz — 1 < R(D1) + R(D2) < R(Do) + Lgo + 1.5, if (Do, D1, D2) € Dy;  (4.8)
R(D;) + R(D;) < R(Dy) + 1, if (Dy, Dy, Dy) € Dy and max{Dy, Dy} > 02/2; (4.9)

R(Dy) + R(Ds) > R(Dy) — 1, if (Dy, D1, D) € D3. (4.10)

Here (4.7) comes from Theorem 8; (4.8) comes from Corollary 2 and Theorem 9; (4.9) comes

from Corollary 3; and (4.10) comes from Theorem 10. In fact, tighter versions of (4.7) and
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(4.9) can be drawn immediately from the properties of the rate-distortion function (e.g.,

convexity), as shown in Lemmas 6 and 7. The other inequalities are less obvious.

Lemma 6 Suppose R(D) is the rate-distortion function of an arbitrary iid source and 0 <

DO < Dl,Dz < 0'2, then
R(D;) + R(Ds) < R(Dy), if Dy + Dy — Dy > o°.

Lemma 7 Suppose R(D) is the rate-distortion function of an arbitrary iid source and 0 <
DO < Dl,Dz < 0'2, then

R(D,) + R(D3) < R(Dy) + 0.5,

’LfDl + Dy — o? < Dy < (1/D1 + ]./Dz — 1/0’2)_1 and ma,x{Dl,Dz} > 0'2/2.

4.3 Proofs of Theorems

Generally speaking, the proofs again involve finding a Gaussian approximation of the opti-
mizing reproduction distribution and bounding the optimal rate loss by the rate loss of the
Gaussian.

I define 3; =1—d; fori = 0,1, 2.

I define 0? = 1Dy — 32Dy/Bo, 03 = 2Dy — B2Dy/Bo, and T' = —(3,6:Dy/By. The
following Lemma is useful in the proof of Theorem 8.

Lemma 8 For any (Dy, Dy, D;) € D1 UD,, T? < o202.

Theorem 8 For any (Do, D1, Dy) € D1U7Ds, there exists an (Ry, R2) € R(Do, D1, Dy) with

L, =Ry — R(D;) <0.5log(2 —d;) <0.5 and

Ly = R;+ Ry — R(Dy)
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< 0.5log(2 — dp) + min{ Lyyin(dy, d2), R(max{ Dy, Ds}) + 0.5log(2 — max{d;, ds})

S min{Lmin(dl, dz) + 05, R(ma,x{Dl, Dz}) + 1}
Proof: 1 make the following assumptions:

1. Uy, U; and U, are the random variables that achieve R(Dy), R(D;), and R(D,), re-

spectively, i.e., Ed(X,U;) < D;, and I(X;U;) = R(D;) for i = 0,1, 2.

2. Ny, Ny, and N, are Gaussian random variables with zero means and variances o2 =

BoDy, 02, and o2, respectively.
3. (No, Nl, N2)J-|—(X, UO, Ul, U2) Further, NOJJ—(Nl, N2) and E(NlNz) = F

First, I verify that these assumptions are reasonable by showing that o?,02 > 0 and
[E(N1N2)]2 < 0202, i.e., Cauchy’s inequality holds for N; and N,. The latter is true from

Lemma 8. To prove the former, I have

B

B1D1 — BiDo/Bo = E(ﬂolh — Do)
_ /81 DO Dl
- & ((0-5) o= (1-5) 2o)
- %(Dl D) >0,

or equivalently, o2 > 0. Similarly, o2 > 0.

Second, I define

YE] = /80X+N07

i = &%+N1=,31X+éNo+N1,

Bo Bo
B B B

Yo = Yo+ No= (X + Ny + Na.
Bo Bo
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It can be shown that Ed(X,Y;) < D;, i = 0,1,2. Therefore, according to Theorem 7, the rate
pair (Ry, Ry) is achievable if Ry > I(X;Y7), Ry > I(X;Ys), and Ry + Rs > I(X; Yy, Y1, Y2) +

I(Y1;Y3). Following the proof of [32, Theorem 6], the rate loss at decoder 1 is

L, = I(X;Yh) - I(X;U,)

= I(X;V4|Uy) — I(X; U |Yh) (4.11)
< I(X;Ya|lh)
=1 <X,,81X+ &No-i-Nl Ul)
Bo
= 1 <X — Ul;ﬂl(X — Ul) + %Ng + N1 U1> (412)
0
S I <X - Ul;ﬂl(X - Ul) + %Ng + N1> (413)
0
= h (ﬁl(X —-U)+ éNo + N1> —h <éN0 + N1>
Bo Bo
< 0.5log(2 —dy) (4.14)
< 0.5,

where (4.11) follows by applying the chain rule twice to I(X;Y3,U;) to obtain
I(X;Y1,U1) = I(X;Y) + I(X; U1 %)
= I(X;Uh) + I(X; YalUh);
(4.12) follows since h(A|B) = h(A— B|B) and h(A|B,C) = h(A—aB|B, C) for any constant
a, (4.13) follows since (Ny, N1)-L(X, U;) implies that Uy — X —U; — B1(X —Uy)+B1No/Bo+
N; forms a Markov chain, and (4.14) follows since the Gaussian distribution maximizes the

differential entropy under the constraint that Ed(X,U;) < Ds.

Similarly, the rate loss at decoder 2 is bounded as

Ly = I(X;Ys) — R(Ds) < 0.5log(2 — ds) < 0.5. (4.15)
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Finally, the total rate at the joint decoder of the optimal code is

= I(X;Yo) +1(Yy;Y2) (4.16)
because X — Yy — (Y1,Y5) form a Markov chain. Thus, the rate loss at the joint decoder is
Ly = R+ R, — I(X;Up)
< H(X5Y0) — I(X;Uo)] + I(Ya; Ya)
< 0.5log(2 — dy) + I(Y3;Y2), (4.17)

where the derivation of (4.17) parallels that of (4.14).

Since B1No/Bo + N1 and B2Ny/Bo + No are Gaussian random variables and

{(ﬂlNOJer) <ﬂ2No+N2>} ﬂlﬂzﬂDo-l—E(NlNz) 0,
Bo Bo

then these two random variables are independent. From the definitions of Y; and Y5, we can

see that ¥; — X — Y5 forms a Markov chain. Therefore, I bound I(Y3;Y3) as

I(Y;Y2) < I(X;Y)) (4.18)

= I <X;/32X+ ?

N0+N2>
= <ﬂ2X+'62N0+N2> —h<§2No+N2>
0

B
1 /8302 + 62D,
2
1 2
2

IA

B2 Do
g

log — 4.1
o8 - (4.19)

On the other hand, by the symmetry of (4.19), I have

2

o
I(Y1;Ys) < _IOgD_
1
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Thus, in summary, I have
I(Y1;Y2) < Liin(d1, d2). (4.20)

As a consequence,

1
LO S 5 10g(2 — do) + Lmin(dla dz)

I can also compare I(Y3;Y2) to R(D;) or R(D,), i.e., by combining (4.17), (4.18), and

(4.15), I can show that

1 1 D,
Lo <  log(2 — do) + R(D3) +  log (2 - §> ,

which is a decreasing function of D, for fixed Dy and o?.

By symmetry,

! 1 D, D
Lo < 5 log(2 — do) + R(max{Dy, Ds}) + ; log (2 - M) .
o

This concludes the proof. O
Corollary 1 For any (Dgy,Dq,Ds) € D, there exists an (R, Rs) € R(Dy, D1, D;) with

Proof: From Theorem 8, I know that for any (D, Dy, D;) € Dy,

p

L, <0.5l0g(2 — dy),

Ly < 0.5log(2 — dy), (4.21)

{ LO S 0.5 ].0g(2 — do) -+ Lmin(dh d2)
is achievable.

From the definition of Dy, Dy + Dy > Dgy + 02, thus,

D1+D2 > D0+0'2

ma,X{Dl, D2} 2 2 = 2




4.3. PROOFS OF THEOREMS 51

Then from (4.3),

1 o? 1 2
Loin(dy,dg) = ~log ——2 < “log ——
( ! 2) 2 8 max{Dl, D2} 2 8 1+ dO

which proves this corollary. O

The two following inequalities are useful in proving Corollary 2.
Lemma 9 In D,, 0 < Lgo < Luin(d1,ds) < Lgo + 1.
Corollary 5 follows immediately from this lemma.
Corollary 5 For any (Do, D1,D3) € Ds, if dy < 0.5 or dy < 0.5, then 0 < Lgg < 0.5 .

Corollary 2 For any (Do, D,,D;) € Dy there exists an (Ri,Rs) € R(Do, D1, Ds) with
L; <0.5 and Ly < Lgg + 1.5.

Proof: This corollary is an immediate result of Lemma 9 and Theorem 8. O
Corollary 4 For any (Dg, D1, D;) € Dy, there exists an (Ry,Ry) € R(Dy, Dy, D;) with
L, <0.5 and Ly < 0.5log|min{D;, Dy} /Dy + 1.

Proof: From Theorem 8, there exists an achievable rate pair (R;, Re) with L; < 0.5 and
Ly < min{R(D,), R(D3)} + 1. From (4.5),

1 in{D¢, D
1@g1+mm3w@—MDmew=M%HS1+§%Eﬂ%#4i
0

where the last inequality comes from Lemma 2 in Section 3.3. O

I define these quantities

Iﬂ:ﬂ@m—W@wrvmm—%)

Bo
a Bo(B1D; —T7)
B1(B2D1 + 1Dy — 2I)’
a Bo(B2D1 — T)

B2(B2D1 + 1Dy — 21)
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Lemmas 10 and 11, which describe the properties of oy, as, and I, are useful in the proof

of Theorem 9.
Lemma 10 In Dz, —\//81182D1D2 <I"<0.
Lemma 11 In Dz, a%ﬁlDl + a§ﬂ2D2 + 20[10[2].—" = /BoDo.

Theorem 9 For any (Do, D1, Ds) € D,, there ezists an (Ry, R2) € R(Dy, D1, Ds) with
L; <0.5 and L1y < Lgia + 1.

Proof: In this proof, I define

le = /81X+N{:

Y-2 = /82X+Né:

where N} ~ N(0,3;D;) and N}1L(X,Uy, Uy,Us) for i = 1,2, and E(N;N;) = I''. From
Lemma 10, these definitions are reasonable and oy, as > 0.

Next, I define Yy = oyY1 + a2Y2. Since a1 + aofe = o, Yo = (oX + Nj, where
N§ = a;N{ +a,yNj. Notice that N} L(X, Uy, Uy, Us), and from Lemma 11, Nj ~ N (0, D).
Therefore, it can be shown that Ed(X,Y;) < D;, i =0,1,2.

Again, the rate pair (Ry, Ry) is achievable if Ry > I(X;Y7), Ry > I(X;Y3), and R+ Ry >

I(X;Yo,Y3,Ya) + I(Y3; Ya), and

Ly =I(X;Y1) — I(X;U1) < 0.5log(2—dy) <0.5,

Ly=I(X;Y,) — I(X;U;) < 0.5log(2—dp) < 0.5.

In addition, since Yj is a function of Y; and Y5, I(X;Y,Y1,Ys) = I(X;Y1,Y3), thus

Ly, < I(X;Y1,Y2) + I(Y1;Y2) — R(D1) — R(D>)
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= I(X;Yy) + I(X;YalY1) + I(Y;; Ya) — R(Ds) — R(Dy)
— I(X;Yi)+I(X,Ys;Ys) — R(Ds) — R(Dy)
= [I(X;¥) — R(Dy)] + [[(X; Ya) — R(Dy)] + I(Yi; Y2l X)
= [I(X;Y2) — R(Dy)] + [I(X; Y2) — R(Da)] + I(Nj; Ny)
< 0.5log(2—dy) + 0.5log(2 — dp) + I(IN}; N})

< 1+I(N};NY)

1 I 2
R <\/ﬁ_1D1\/ﬁ_zDz> ]

_ 1 llog -1 _ (ﬂlﬂﬂ)o - \/ﬂlﬁz(Dl — Dg) (D, — DO)) :

2 Bov/B1B2D1 D,
L L (BB = = do)(d = o))
-T2 Gov/dnds
- 1+ %log (1 — do)*d1d,

(1— do)?drdz — (doy/(1 — d1)(1 — da) — 1/(dh — do)(dz — do))?
= 1+ Lga.

This proves the theorem.

I introduce three new quantities:

1 1 1 1

A = DyD{Dy | — + — — — — —
BoB1B2Do D1 2<D1+D2 Do 02)

= [of1P2(DoD2 + DyDy — DDy — dyD1Ds),

. BoBiD2+ VA
~ Bi(B2D1 + BiD,)’
. BoBeDi— VA
B B2(B2D1 + 51D2)’

where A > 0 in D3. The following lemma is useful in proving Theorem 10.

Lemma 12 In D3, o281 D; + a2 82D5 = By Dy.

53
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Theorem 10 For any (Dy, Dy,D3) € D3, there exists an (Ry, Rs) € R(Dy, D1, Dy) with

Proof: Let

Y1 = ﬂ1X+N{
Y, = ﬂ2X+N£

YE) = allyi+al2Y27

where N} ~ N(0,8;D;) and N!1(X,U,, Uy, U,) for i = 1,2, and N{L N} (note that N] and
N} were not independent in the previous proof). It can be verified that Yy = o}Y; + abYs =
BoX + Ny, where Ny = oy N|+ahNy ~ N (0, BoDy) (from Lemma 12) and Ny (X, Uy, Uy, Us).
Thus, it can be shown that Y7, Y3, and Yj satisfy the distortion requirements. From Theorem
7, the rate pair (R;, Ry) is achievable if Ry > I(X;Y;), Ry > I(X;Y3), and Ry + Ry >
I(X;Y, Y1, Y2) + I(Y1;Y2) = I(X; 1, V) + I(Y1; Ya) = I(X; V) + I(X;Yz) + I(Yh; Yol X).

Again, L; < 0.5log(2 —d;) < 0.5 and Ly < 0.5log(2 — d3) < 0.5. Bounding Ly, gives us

L12 - Rl —|— R2 — R(Dl) - R(D2)

< I(X;Y3) + I(X;Y3) + I(Ys; Ys|X) — R(Dy) — R(Ds)

< 0.5log(2 —dy) + 0.5log(2 — do) + I(Ny; N,)

= 0.5log(2 —d1) + 0.51og(2 — dy) (4.22)
< 1

where (4.22) comes from the fact that N and N} are independent, therefore, I(N7; N3) = 0.

Here, the bound for L;5 is redundant from the bounds on L; and L. O
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Before proving Theorem 11, I first define the entropy power of X as:
Py = 22MX) /(2re).

and define LG (4o, 01, d2) as

1 (&)
H 0t = o8 o — (J— a1 —8a) — Y6~ 30)(Ea —30))”

Notice that Px < 02 and Lgo = LG(Dy/0?, D;/0?, Dy/0?). 1 also need the following lemma

in the proof of Theorem 11.

Lemma 13 If0 < §g < 61 < 05 < 0.5, then

b
465(1 — 62)

LG(do,01,02) > %log
Theorem 11 For any (Dy, D1, D;) € Dy with max{D;, Dy} < 0?/2, there exists a rate pair
(R1,Ry) € R(Do, D1,Ds) with Ly < 0.5log(2 — d;) < 0.5, and the distance between the
upper bound and the lower bound for Lg is less than or equal to min{[log(2mes?) — 2h(X)] +
1,0.5log(2meo?) — h(X) + 1.5}.
Proof: Here, I want to compare the lower bound and upper bound for Ly and bound from
above the distance between them. I use K to denote this distance. Without loss of generality,
I assume that D; < D,. We are only interested in region D, with D, < 02/2, i.e., Dy < 02/2
and D; + Dy —0? <0< Dy < (1/Dy+1/Dy —1/0?)7L.
From Lemma 9, LG(dp,d;,ds) > 0 in region Dy. From the proof of Theorem 8 (i.e.,

(4.14), (4.15), (4.16), and (4.19)), there exists an (R1, R2) € R(Dy, D1, D3) with

Ly < 05log(2—dy) <0.5,

0_2

1
Ly < I(X;Ys)+>log2— — R(Dy), (4.23)
2 D,
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where Yj is defined as Yy = 3y X + Ny, Ng ~ N(0, BoDy) and Ny-LX. Thus

0.2

1
I(X;Y) < —log —. 4.24
(X;¥) < 5 log 7 (424

I first consider the case where Dy < Px /2. In this configuration, D; + Dy — Px < 0 < Dj.

I also have

1 1 1 1 1
<

< .
Dl .D2 DO 0'2 _PX
In [44], it is shown that if 0 < Dy < Dl,Dz < Px and D;+ Dy — Px < Dy < (1/D1+1/D2—

1/Px)™!, then the region described by

R,

v

R(D,)

R,

v

R(D,)

1. P
R+ Ry > ;log D—X + LG(Dy/Px, D1/ Px, D3/ Px)
0

is an outer bound for the achievable region, which also implies that
LO Z 0.5 ].Og(Px/DO) + LG(D()/P)(, Dl/Px, .D2/PX) - R(DO) (425)

By combining (4.23), (4.24), and (4.25), I get the following bound on the distance Ky

between the upper and lower bounds for L

1 o2 1 o2 1 Px
Ky < -log— + —log— — —log— — LG(Dy/Px,D,/Px, D5/ P:
0 = 508 Do + 5 108 D, 2 0g Do (Do/Px,D1/Px,Dy/Px),

= Log Mo T LG(Do/Px, Dy Py, Da/Px)
—208PX 208D2 o/fx,1/Ix, U2/ x)-

From Lemma 13,

1 P
LG(Dy/Px,D1/Px,Dy/Px) > -1 > '
(Do/Px, D1/ Px, D2/ Px) 2 Og4D2(PX_D2)
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As a result,

2 °Px 2 P2
< 11 02+11 402
= 9% p, T3 % p.
2
g
= log — +1
ogPX-I-

If Dy > Px/2, then I use 0 as the lower bound for Ly and use the SLB

1 Py
Dy) > —log —.
R(Do) > 2 og D,
From (4.23) and (4.24),
Ky < Lo
1 L | 2
< log 2+ -log — — R(Dy)

28D, 2% D,
1 o? 1 o? 1 Px
Clog Ll 4 Zlog L — Zlog X
28D, 278D, 28D,
11 02+11 o2
2% p, T 278 D,
< 11 02+11 202
= 9% p T % p.
2
g
— log 2 405.
ogPX+

IN

Thus, in both cases, Ky < log(c?/Px) + 1 = 2[0.5log(2meo?) — h(X)] + 1.

In fact, I can show a better outer bound for the achievable region. It has been shown
that (e.g., [42] and [44]), the inequality R; + Ry > SR(eg,e€1, €2, R1 + Ry) is equivalent to
the inequality R; + Ry > —0.51logeg + LG(eg,e1,€2) if 0 < eg < ej,ea < land eg+e3—1<

eo < (1/e1 + 1/ea — 1), where SR(eg, e1,e2, Ry + Rz) is a function defined as:

1 1 1 2
SR(eO, €1, €2, Rl +R2) = 5 IOg e— - 5 ].Og (1 — <\/(1 — 61)(1 — 62) — \/6162 — 2_2(R1+R2)> ) .
0
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From [44],

R, > R(D)
Ry, > R(D,)
Ri+ Ry > SR(dj,D1/Px,Ds/Px,R1 + Rs)
is also an outer bound for the achievable region if 0 < Dy < D;, Dy < Px and D,+D;—Px <
Pxd; < (1/Dy+1/Dy —1/Px)~!, where d is the “effective distortion” at the joint decoder

defined as

dy = 272BDo),
Note that since R(Dg) = 0.51og(1/d§), this outer bound is equivalent to

Ry

v

R(Dy)

R,

Y,

R(D,)
1, 1 X
R1+R2 2 ilogE+LG(d0,Dl/PXaD2/PX)
0

= R(Do) + LG(dg, D1/Px, D2/ Px). (4.26)

I will bound the distance between the inner bound and this new outer bound. Again, I
assume D; < D, and I first verify that (4.26) is an outer bound in region D,. In region Dy,

1 1

Dy < <
> 1/Dy+1/Dy—1/0% =~ 1/D; +1/Dy — 1/Px

because Px < o2. Since
1
R(Dg) > h(X) — 3 log(2meDy),

I have

1
1/Dy +1/Dy — 1/Px’

PX2_2R(D°) < Dy <
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Thus, if Dy < Px/2, I have Dy + Dy — Px < 0 < Dy, and from Lemma 13,

Ly > LG(dy, D1/Px,D,/Px)

1 P2

> ] .
= 284D, (Px — D,)

From Theorem 8, there exists (R, Ry) with L; < 0.5log(2—d;) < 0.5, Ly < 0.5log(2—dp) <

0.5 and
1 1 o? «
Ko < 42105 - 1G(d, Dy/Px, Dy/Px)

2 2 D,
1 1. 40*(Px—D

< 1l o¥( X 2)
2 2 P

< 1 + 11 407
_ — log —.

- 2 2 gPX

Thus, Ky < 0.5log(2mec?) — h(X) + 1.5. Similarly, if Dy > Px/2,

1 2
Ko < Lo < 0.5+ ; log g— < 0.5log(2mec?) — h(X) + 1.
2

In summary, in this region, Kj is always bounded by K, < 0.5log(2mes?) — h(X) + 1.5,
which is better than the previous bound if h(X) is much less than 0.5 log(2mea?). O
Theorem 12 For any (Dy, Dy, D;) € Dy with max{D;, Dy} < 02/2, if the SLB is tight at
distortion Dy and D,, then there ezxists an (R1, Ry) € R(Dy, Dy, D) with L; < 0.5log(2 —
d1) < 0.5, and the distance between the upper bound and the lower bound for Ly is less than
or equal to 2.

Proof: Since the SLB is tight at distortion Dy,

Dy = —~ 9MX)-ROW] _ p gt
2me

where di = 272B(D1) ig the “effective distortion” at decoder 1. Similarly, D, = Pxd}, where

dy = 2728(D2) Then, from (4.26),

Ry + Ry > R(Do) + LG(dZ, D1/ Px, D3/ Px) = R(Do) + LG(dZ, d2, d3).
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Again, I assume that D; < D, without loss of generality. Because the rate-distortion function
R(D) is a non-increasing function of D, so 0 < d§ < dj < d5. Thus, if d} < 0.5, then from

Lemma 13,

Liog s biog 1
2°°dy 27 °4(1—d)
1
4(1—d3)

LG(dy, dy, dy) >

1

Y,

R(D2) — 1.

From Theorem 8, R; + Ry = R(Dy) + R(D3) + 1 is achievable; thus, the difference between

the upper bound and this new lower bound for Ly is

If d5 > 0.5, then R(D;) < 0.5 according to the definition of dj. Thus, R; + Ry = R(Dy) +

R(Ds) +1 < R(Dg) + 1.5 is achievable, which implies that

Ko<Ly<Ri+ Ry — R(Do) < 1.5.

In either case, the distance between the upper and lower bound is no larger than 2. O



Chapter 5

Multiple Access Source Codes

5.1 Preliminaries

Let {X;,Y;}$2, be a real-valued iid vector source with joint pdf fxy(z,y).

Define the joint rate-distortion function for this vector source as:
Rxy(Dy,Dy) =inf I(X,Y;X,Y),
where the infimum is over all random vectors (X,Y") satisfying
Ed(X,X) < Dy, Ed(Y,Y) < D,.

This joint rate-distortion function is the minimum total rate for jointly describing source
{X;,Y;}°, with distortions no greater than D; for X and D, for Y ([46], [47], [48]).
Define
Rxy(D;) = inf I(X; X|Y)
as the conditional rate-distortion function, where the infimum is over all random variables
X such that Ed(X,X) < D;.

61



62 CHAPTER 5. MULTIPLE ACCESS SOURCE CODES

An (n, My, M;) 2ASC consists of two encoders:

fOR » {1,..., M}

f,,gz) :R" — {1,...,M2}
with rates (1/n)log M; and (1/n)log M, respectively; and one decoder:
gn : {1,...,M1} X {1,...,M2}—)Rn x R"

with distortions Ed,(X™, g (M (X™), f@(Y™))) and Ed, (Y™, ¢ (fH(X™), B (Y™))) for
X" and Y™ respectively, where g{!) stands for the first output of function g, and g{» stands
for the second output.
We say that the rate-distortion vector (Ry, Ry, D1, D) is 2ASC-achievable if for any € > 0
and for sufficiently large n, there exists an (n, My, Ms) 2ASC such that
nlog My < Ri+e, Edny(X™, gV (fN(X™), fP(Y™)) < D1 +e,

LlogM; < Ry +€, Ed,(Y™, g (fN(X™), fO(Y™)) < D2 +e.

The achievable region for 2ASCs is defined as the set of all achievable rate-distortion vectors.
The achievable rate region for lossless coding with an MASC (D; = D, = 0) is charac-
terized by
R2 Z H (Y|X )a
Ri+Ry, > H(X,Y),
which is shown by Slepian and Wolf in [33].

In contrast, if the two senders can jointly encode X and Y, then the achievable region is

R, + R, > H(X,Y).
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Thus, independent coding can achieve a total rate of H(X,Y'), which is as good as the total
rate for joint coding. Figure 5.1 compares the rate region of Slepian-Wolf encoding to that
of joint encoding.

A

R,

HY|X) [---- Pmmm -

H(X|Y) H(X) H(X)Y) R,

Figure 5.1: The achievable region for a lossless MASC compared to that for joint encoding.
The solid lines shows the MASC-achievable region (also known as the Slepian-Wolf region),

while the dotted line shows that for joint encoding.

For lossy coding scenarios, i.e., if D; and D, may be nonzero, then the achievable region
of joint encoders is

Ry + Ry > Rxy(Dy, D»).

For lossy MASCs, we do not know the exact achievable rate-distortion region. The

following theorem gives an inner bound on the achievable region, which is not tight in
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general. The result for finite alphabets comes from [49] (see also [34]). It can be generalized
to real-valued sources with an escape symbol following the method of [50] and [19] (see

also [51], [52], [35]).

Theorem 13 [49, Theorem 6.1],/34, Theorem 4.1]
For any iid vector source {X;,Y;}2, with density fx y(z,y) and distortion measure d, the
vector (Ry, Ry, D1, Dy) is 2ASC achievable if there ezists a conditional probability Q XPIXY

such that

Xo5X->5Y > Y,
R, > I(X,Y; X|Y), Ed(X,X) < Dy,
Ry > I(X,Y;Y|X), Ed(Y,Y)
Ri+ R, > I(X,Y;X,Y).
For any 2ASC, if the rate-distortion vector (Rj, Ry, D1, D5) is achievable, the individual
rate losses of encoder of X and Y are defined as L1 = R; —RX|Y(D1) and Ly = R2—Ry|X(D2)
bps. The joint rate loss is measured by Ly = Ry + Ry — Rx,y (D1, D3) bps. I further assume

0 < D; < 0% and 0 < D, < 02, where 0% and 0% are the variances of X and Y, respectively.

5.2 Major results

Theorem 14 compares lossy MASCs to the corresponding joint encoding. The statement

about rate loss L; can also be made to apply to Ls.

Theorem 14 For any distortions (Dy, Ds), there ezists a 2ASC-achievable rate-distortion

vector (Rl, R2,D1,D2) with L1 S nyy(Dl,Dz) — Ry(Dz) — Rx|y(.D1) + ]., and LO S 1.
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R,

Rxy(D1, Ds)

Ry (Ds)

Y

Rxy (D1, D,) R,

Figure 5.2: The inner bound on achievable region of lossy 2ASCs compared to the achievable
region of joint encoding. The solid lines shows the inner bound, while the dotted line shows

the achievable region. The difference between the sum of rates is bounded by 1.

Figure 5.2 shows this bound graphically.

The achievable region for lossy joint encoding is
Ry + R; > Rx,y(D1, D).

Theorem 14 gives a new inner bound on the achievable region for lossy 2ASCs: any rate-

distortion vector (Rjy, R, D1, Ds) satisfying

Ry > Rxy(D1,D;) — Ry(D5)+ 1,

R, > Rxy(D1,D;) — Rx(D,)+1,
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Ri+ Ry > Rxy(Di1,D;)+1,

is achievable. The two corners of this inner bound are (Rx(D1), Rx,y (D1, D2) —Rx(D1)+1)
and (Rx,y(D1,D2) — Ry(D3) + 1, Ry(D3)). In the region between these two corners, the
difference between the total rate of MASCs and that of joint encoding is bounded by 1,
which implies that separate encoding is almost as good as joint encoding in the lossy sense.

A trivial case occurs when
Rxy(D1,D;) — Rx(D1) + 1+ Rx,y(D1,D2) — Ry(D2) +1 > Rxy(D1,Dy) + 1.

In this case, the inequality Ry + Ry > Rxy (D1, D) + 1 is redundant. However, the above

condition is equivalent to
Rx(Dl) + Ry(Dz) < RX’y(Dl, Dz) + ].,

which implies that independent codes for X and Y (at rates Rx(D;) and Ry (D;), respec-
tively) give total rate Rx(D1)+ Ry(D2) < Rx,y(D1,D3)+ 1, again giving a rate loss Ly < 1
bps. In this case, X and Y are nearly independent, therefore, joint decoding does not help
much.

Theorem 15 bounds the rate loss as a function of Dy, D,, 0%, and o%.

Theorem 15 For any distortions (Dy, D), there exists a 2ASC-achievable rate-distortion

vector (Rl, Rz, Dl, D2) wzth Ll S RX,y(Dl, D2) —Ry(D2) —Rx|y(D1) —|—05 10g(2— Dl/O'g() +
0.5log(2 — Dy/0%), and Ly < 0.5log(2 — Dy /0%) + 0.51log(2 — Dy/0%).

Theorem 14 is consistent with Theorem 15 when D; = D, = 0, however, the latter

2

is always tighter than the former when D;,D, > 0; in particular, when D; = D, = ¢%,

Theorem 15 is tight.
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5.3 Proofs of Theorems

In this section, I will use the methods used throughout this thesis to prove the results for
MASC:s.

Theorem 14 For any distortions (D1, Dy), there exists a 2ASC-achievable rate-distortion
vector (Ry, Ry, Dy, Dy) with Ly < Rxy(D1,D2) — Ry(D2) — Rxjy(D:1) +1, and Lo < 1.
Proof: Suppose U; and U, are two random variables such that Ed(X,U;) < D, Ed(Y,Us) <
D; and Ry y(D1,D2) = I(X,Y; Uy, Us).

Define

X = X+Ny,

Y = Y+ N,

where Ny ~ (0, D1), Ny ~ (0, D3), (N1, N2) (X, Y, U1, Us) and Ny 1LN;.
It can be shown that Ed(X,X) < Dy, Ed(Y,Y) < Dy, and X - X — Y — Y. Thus,

by Theorem 13, any (R, R») satisfying

R1"|’R2 Z I(vaaX’Y)’

is achievable. For this choice of (X' , f’),

Ly = Ri+ Ry — Rxy(D1,D»)
— I(X,Y;X+N,Y +N,) — I(X,Y;Us, Us)

= I(X,Y,.X +N1,Y+N2|U1,U2) —I(X,Y,Ul,U2|X+N1,Y+N2)
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< I(X,Y;X 4+ N1, Y + N |Uy, Us)
= I(X—Ul,Y—Uz;X—Ul+N1,Y—U2+N2|U1,U2)

S I(X—Ul,Y—Uz;X—U1+N1,Y—U2+N2)

IA
—

Therefore,

Rxy(D1,D;) < I(X,Y;X,Y) < Rxy(Dy,D;) + 1.

We also know that

~

Rx(D;) < I(X;X) < Rx(D;) + 0.5,
Ry (Ds) < I(Y;Y) < Ry(Ds) + 0.5.
Since
I(X,Y;X)Y) = I(X,Y;Y)+I(X,Y; X|Y)
= I(Y;Y)+I(X,Y; X|Y),
where the last equality comes from the fact that X — Y — Y. Therefore,
Rxy(D1,D;y) — Ry(D;) — 0.5 < I(X,Y; X|Y) < Rxy (D1, D) — Ry(D;) + 1.
Similarly,
Rxy(Dy,Dy) — Rx(Dy) — 0.5 < I(X,Y;Y|X) < Rxy(D1, Ds) — Rx(D;) + 1,

which provides the desired bounds on L; and L. O
Theorem 15 For any distortions (Dy, Ds), there exists a 2ASC-achievable rate-distortion
vector (Rl, R2, Dl, D2) with L1 S RX7y(D1, D2) —Ry(.Dz) —Rx|y(D1) +0.5 10g(2— Dl/O'A%() +

0.5log(2 — Dy/0%), and Ly < 0.5log(2 — Dy /0%) + 0.51log(2 — Dy/0%).
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Proof: 1 define X and Y as:

X = BX+N,

Y = BY + N,

where 81 =1— Dy /0%, B2 = 1—Dy/o3, N} ~ N(0, 3;D;) for i=1, 2. Further, I assume that

NiLN; and (N1, N3)AL(X, Y, Uy, Un).

Repeating the steps in the previous proof gives us the desired results. O



Chapter 6

Additive Multi-Resolution Source

Codes

Finally, we turn our attention briefly to A2RSCs.

6.1 Preliminaries

The definition of an (n, My, M>) A2RSC is similar to that of an (n, M;, Ms) 2RSC, except
that the refinement decoder is defined as g/® : {1,..., M,} — R™ and the corresponding

n

distortion is

Edy (X", g (fi0(X™) + gD (f2(X™))).

The following theorem from [36] describes an achievable region for AMRSCs. This region
is not tight. The AMRSC theorem from [36] is for discrete memoryless sources with finite

alphabets. The result extends to continuous memoryless sources with an escape symbol [53].

Theorem 16 [36, Theorem 1] For any iid source {X;}°; with density fx(x) and distortion

70



6.2. MAJOR RESULTS 71

measure d, (Ry, Ra, D1, Ds) is A2RSC-achievable if there exists a conditional probability
Qvi,v2)x Such that

Ry > I(X; 1), Ed(X,Y1) < Dy

AR > I(X;AY), Ed(X,Y;) < D,

Ry > I(X; Y1, AY) + I(¥:; AY),
where AR = Ry — R, and Y7 + AY =Y.
For any AMRSC with M > 2 resolutions, if the rate-distortion vector (Ry, Ry, ..., Ry, D1,
D,,...,Dyy) is achievable for 0 < Dy < ... < D; < o?, the rate loss at the ith resolution

(¢ €{1,...,M}) is defined as: L; = R; — R(D;) bps.

6.2 Major results

Theorem 17 For any Ds < Dy, there exists an A2RSC-achievable vector (Ry, Ry, D1, D5)

with L; < 0.5 and

1 D 1 1 0'2—D1 D]_ D]_—D2
Ly < mi —1 -1 1 1 —1 —(1-———7—]¢.
2—mm{2 OgD 2+2°g< D, ) + OgD2< o? )

I can combine the first two bounds (0.5 + 0.5log(D;/D,) and 0.5 + 0.5log(1 + (02 —
D,)/D,)) for fixed Dy. The first one dominates when D; < (02 + Dy)/2, while the second
one dominates when D; > (0% + D;)/2. The maximal value of the combined bound is
achieved at D; = (02 + D,)/2, giving L, < 0.51log(1 + 02/ D5).

These bounds are good for the low rate region, especially for large D,. For example, if
either Dy > D;/2 or Dy > 02/3, 1 have L; < 0.5 and L, < 1.

Based on the proof of Theorem 17, I next obtain a new bound that depends on h(X),

the differential entropy of the source. This bound is tight if X is Gaussian.
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Theorem 18 For any Dy < Dy, there exists an A2RSC-achievable vector (Ry, Ry, D1, D5)

with Ly < min{0.5,0.5log 2mes? — h(X)}, and Ly < 0.51log2mec? — h(X).

6.3 Proofs of Theorems

Lemma 6 from Chapter 4 is useful in bounding the rate losses.
Theorem 17 For any Dy, < D,, there exists an A2RSC-achievable vector (Ry, Ry, D1, D5)

with Ly < 0.5 and

. 1 1 Dl 1 1 0'2—.D1 1 Dl Dl—D2>
Ly < — 4+ —-log —, -+ =1 1 1+-log—(1———)5%.
2—mm{frz°g1)2’2+2°g< T, ) +20gD2< o?

Proof: Let Uy, Uy and Uy be the random variables that achieve R(D;), R(Dz), and R(o? —
D + Dy), respectively. Set §; = 1 — D;/0? i € {1,2}, N1 ~ N(0,6.D:1 — B{D2/Ba),
Ny ~ N(0,8:D;), and Ny-LN}. Further, let (Ny, Ny)LL(X, Uy, Uy, Us).

I define Y5 = o X+ Nj and Yy = £1Ys/B2+ N1 = 51X + B1 Ny /B2 + N1. Then by Theorem
16, (I(X;Y1),max{I(X; Y1) + I(X;AY),I(X;Y1,AY) + I(Y1; AY)}, D1, D,) is achievable,
Where, AY = 1/2 - 1/1 = (/82 - IB]_)X + (/82 - /Bl)Né//BZ - N]_. Since

(XY, AY) + I(¥i; AY) — I(X;Y)) = I(X;AY[Y) + I(Yi; AY)
— I(AY;X,Y)) > I(X;AY),
then (I(X;Y1),I(X;Y1,AY) + I(Y1; AY), Dy, Ds) is achievable. Using the argument from
steps (8.1)-(8.5),
L =I(X;Y;) — I(X;U;) < 0.5log(2— D,/0?) <0.5, (6.1)
I(X;Ys) — I(X;U) < 0.5log(2 — Dy/0?) < 0.5,

I(X;AY) — I(X;U) < 0.5. (6.2)
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The rate loss at the second stage is

Ly = I(X;Y;,AY)+ I(Yy; AY) — R(D,)

= I(X;Y) + I[(X;AY) + I(Y1; AY | X) — I(X;Us), (6.3)
where
B Bo— B1 1 D1( DI_D2>
I(Yi;AY|X)=I(—N,+N;;— N, —N;|==-1log — [1— ——F—2].
(Yr; | X) (ﬂz 2 T V1 5 2 1 2 0g D, o2

Thus Ly can be bounded as:

Ly = [I(X;Y1) - I(X;00)] + I(X; AY) + I(Y;; AY|X)

< [I(X;Y1) — I(X;U)] + I(X;5 (B2 — B1) X + (B2 — B1) Ny /B2 — N1)
+I(Yi; AY|X)
11 1 1. D D1—D2>
< T4 Slog 2t (11T
= 2+20g1—(D1—D2)/02+20gD2< p
1 1 D,
— C+-log 2, _
2+20gD2 (6.4)

On the other hand,

L, = I(X;)+ [I(X;AY) - I(X;U,)] + I(Y1; AY | X)

< I(XGAX + BNyBa+ M) +1/2+ I(V; AY |X) (6.5)
1 0'2 1 1 D]_ D]_—D2 1 1 0'2—D1

< Zlog—+4-+-log—(1-=2-"2) ==+ Zlog (1

< 20gD1+2+20gD2< 2 ) 2-|-2og + D, , (6.6)

where (6.5) comes from the fact that I(X;U}) = R(¢? — Dy + D,) < R(D,) = I(X;Us,) and
(6.2).

Combining Lemma 6, (6.1), (6.2) and (6.3) gives the last bound immediately. O
Theorem 18 For any D, < D, there exists an A2RSC-achievable vector (Ry, Ry, D1, D5)

with L; < min{0.5,0.5log 2mec? — h(X)}, and Ly < 0.5log 2meo? — h(X).
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Proof: From the SLB, I(X;U,;) = R(D2) > h(X) — 0.5log2meD;. From (6.3), there exists

an A2RSC-achievable vector (Ry, Ry, D1, Dy) with L; < 0.5 and

L, = I(X;7h) +I(X;AY) + I(Y; AY|X) — I(X;Us)

1 O'2 1 0'2 1 .D1 Dl—D2 1
< Zlogl 4 ilog—— T 4 Tlog 2t (1- TET ) L p(X) + - log2meD
= 2OgD1+20ga2—D1+D2+2OgD2( o2 ) (X) 3 log 2meDs
= 0.5log2meo? — h(X).
Similarly, L; is bounded by I(X;Y;) — I(X;U;) < 0.5log 2mec? — h(X). O

An outer bound on the achievable region for A2RSC also appears in [36]. It is easy to
show the existence of a constant bound on the rate loss if the outer bound is tight. Set
Yo = X + Ny, Y7 = X + Ny + Ny, where (N1, No)LX, Ny LN, Ny ~ N(0,D,), and
Ny ~ N(0,D; — D,). Then, AY = —N;. Therefore, L, = I(X;Y;) — R(D;) < 0.5. Since

I(X;AY) =0, Ly = I(X; Y1, AY) — R(Ds) = I(X;Y3) — R(Ds) < 0.5.



Chapter 7

Summary and Topics for Future

Studies

In this thesis, I improve the existing rate loss bounds for 2RSCs and derive rate loss bounds
for TSVQs, 2DSCs, 2ASCs, and A2RSCs for general iid sources and the mse distortion
measure. The results include both constant bounds and bounds that depend on either the
differential entropy of the source or the rate loss of a Gaussian source of the same variance.

The rate loss bounds are useful both because they characterize the potential penalties
associated with using these network source codes and because they provide new inner bounds
on the MRSC-, MDSC-, MASC-, and AMRSC-achievable rate-distortion regions. In the
MDSC, MASC, and AMRSC cases, the achievable regions are not yet fully known. In all
cases, these new inner bounds can be easily analyzed for any source for which we can find
the rate-distortion bound. The results are quite tight in some cases.

While most cases lead to small, constant bounds, I believe that these bounds are not
tight in general. For example, in the proof of Theorem 2, I show that for 2RSC, the rate loss

75
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L, is bounded by two functions of D;/Dj, which results in a constant bound. However, the
minimum of these two bounds is 1 bps at Dy/D; = 0. But the asymptotic bound obtained by
Lastras and Berger is only 0.5 bps as D, — 0. Similarly, as stated at the end of Chapter 3,
Theorem 6 suggests that the performance degradation associated with using greedily grown
TSVQs rather than the jointly optimized multi-resolution vector quantizers may be very
large. Proving or disproving this intuition would require a tight bound. So, one immediate

future direction is to find tighter bounds in all of the scenarios.

For MDSC, it is also important to find a better outer bound for the MDSC-achievable
rate-distortion region in region D, so that we can have a more accurate estimate on the the
rate loss. My conjecture is that the inner bounds found in this thesis, for example,

p

Ry < R(Dn),

Ry < R(D»),

| Bi+ By < R(Do) + min{Leo + 1.5, R(D1) + 1, R(Ds) + 1}

or
p

Ry < R(Dn),

Ry < R(D»),

Ry + Ry < R(Dy) + R(Ds) + Lgiz + 1,

are very tight in the sense that they may be within a few bps of the exact achievable region.
Therefore, it is very possible that there exists a better outer bound which is very close to
the inner bounds in this thesis.

Similarly, for MASC, though I prove that lossy MASCs can do almost as well as joint

encoding, it would be nice to give a better estimate on the achievable region. It can be
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shown that

R, > Rxy(Dy),
Ry > Ryx(Dy),

Ri+ Ry > Rxy(D1,Ds),

is an outer bound on the achievable region (e.g., [35]). The total rate (R; + R) of the inner
bound obtained in this thesis is very close to the outer bound (within 1 bps). In contrast,
the distance between the individual rate (R; or R;) and the above outer bound (Rxy(D1)

or Ry x(D;)) may be large since Gray shows that
Rxy(D1,D;) > Rxy(D:) + Ry (D>)

in [48]. My conjecture is that the inner bound is quite tight in the sense that the distances
between that inner bound and the individual rates at an optimal (R;, R;) may be bounded
by small constants. It is likely that we can show a better outer bound such that the distance
between the inner and outer bounds is always bounded by a small constant, e.g., 1 bps.

I believe that the most interesting direction for future work is to generalize the concept
of rate loss to more network source codes such as broadcast system source codes (BSSCs).
Figure 7.1 shows a two-receiver BSSC (2BSSC). In these systems, the sender (node 1) trans-
mits messages to two receivers (nodes 2 and 3). The transmitter at node 1 sends “private”
information X and Y to receivers at nodes 2 and 3 respectively and “common” information
Z to both receivers. Let X and Y be the reproductions of X and Y at nodes 2 and 3
respectively, Zo and 23 be the reproductions of Z at nodes 2 and 3 respectively. Gray and

Wyner derive the achievable region for this code in [54]. It will be interesting to compare the
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rates for X, Y, and Z to the corresponding rate-distortion functions at the same distortions.
The resulting rate loss for BSSCs would measure the performance degradation of this code.

I believe the concept of rate loss is of great potential interest.

Decoder -——> X, Z,

X,Y,Z ——>{ Encoder

Decoder -—> Y, Z;

Figure 7.1: A 2BSSC.



Chapter 8

Appendix

Lemma 1 For any (D1, D) with Dy < D, if two rate-distortion vectors (Rig, R, D1, D3)
and (Ry1, Ra1, Dy, D3) are 2RSC-achievable on source X, then for any 0 < a < 1, there ezists
an achievable rate-distortion vector (R1q, Roa, D1, D2) for the same source with L1, = aLq;+
(1 —a)Lq and Lag = aLay + (1 — a)Lyy. Here Lig = Rig— R(D1) and Log = Rog — R(Ds),
for all B € {0,,1}.

Proof: Following [31, Lemma 2], if (Ry9, Ra0, D1, D) and (Ri1, Ro1, D1, Ds) are achievable,
then (R4, Raq, D1, D>) is achievable because of the convexity of the achievable rate-distortion
region of the multi-resolution codes, where Ry, = aRj; + (1 — a)Ryo and Rsy = aRy +
(1 — a)Ry. (While the proof in [31, Lemma 2] uses incremental rates, the result generalizes
immediately to total rates. In particular, if the vectors (Ry9, ARy = R29 — Ri9, D1, D5) and
(R11, ARy = Ry — Ry1, D1, Ds) of incremental rates and total distortions are achievable, then
(Ria, AR, = aAR;+(1—a)ARy, D1, Ds) is achievable by [31, Lemma 2]. The corresponding
total rate is Rio+ AR, = aR11+(1—a)Ryp+aAR;+(1—a)ARy = aRs + (1—a) Ry = Raa,
which gives the convexity result used above. )
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The corresponding rate losses are

Lis = Ria— R(D1) =aRy+ (1 —0a)Ry— R(D1) = aly; + (1 —a)Ly

Ly = Rayq— R(D2) = aRy + (1 — a)Ry — R(D2) = aLy + (1 — a)La,

giving the desired result. o

Lemma 4 If 0 < Dy, D, < 02, then

1 1 1y
Dy+ Dy — 2<<_ __—> .
1t %20 s{p, T, 2

Proof: 1 show the lemma by the following inequalities:

1 1 dy +dy — dids

di+dy—1)|—+—-1) = (di+dy—1
(1 +dz )<d1+d2 ) (ditdy =)= &

_ (di+dp)? — (di+ dg)(1 + dady) + dady

B dyds

_ (1 +dy)(1 —di)(1 — ds) + dudy

d1ds
< 1,
where the last inequality comes from the fact that 0 < d;,ds < 1. O

Lemma 5 In Ds, Lgi2 = 0.5log(d1ds) — 0.51og(dg) + Lgo-

Proof: first, I can show that

l(1 — dy)?dvds — (do\/(l —d1)(1— dg) — 1/(dr — do)(dz — d0)>2

_ ldo(l —do)? — do <\/(1 —d)(1—ds) — \/(d1 —dp)(da — do)ﬂ
(1 —do)?drdy — d5(1 — dy)(1 — dy) — (di — do)(da — do) — do(1 — dy)?
+do(1 — d1)(1 — dy) + do(dy — do)(da — dp)

(1 — do)?dyds + do(1 — do)(1 — d1)(1 — dg) — do(1 — do)® — (1 — do)(dy — do)(da — dy)
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= (1—do)[(1 — do)dyda + do(1 — di)(1 — da) — do(1 — do) — (d1 — do)(ds — do)]

= 0’
where the last equation comes from the fact that

(1= do)dyds — do(1 — do) + do(1 — di)(1 — ds) = dyds + d2 — dody — doda = (dy — do)(da — do).

Therefore,
1 1 —dy)%d,d
Lgiz = 2 log ( o) didy
(1— do)?dady — (doy/(1 — d1)(1 — da) — 1/(dr — do)(dz — dp))?
1 (1 — do)2dy1dy
= —log
277 do(1— do)? — do((/(1 — d1)(1 — d) — \/(da — do) (dz — o) ?
1 did 1 1 —dp)?
= 510g—61i2-i-§10g ( o)
0 (1—do)* - (\/(1 —di)(1—dp) - \/(dl —do)(d2 — do))?
1, did
- 21 g dO + LGO’
and the lemma is proved. O

Lemma 6 Suppose R(D) is the rate-distortion function of an arbitrary iid source and 0 <

Dy < Dl,D2 < 0'2, then
R(D;) + R(Dy) < R(Dy), if Dy + Dy — Dy > o*.

Proof: Since

2_p 2_p
D, =7 D1D0+<1—0 1)02,

02— D, 02 — D,

from the convexity of the rate-distortion function,

0'2—D1
0'2—D0

R(Do) + (1 - Zz = g;) R(0*) = 75— B, B(Do)

R(D,) <

By symmetry,

0'2—D2

D,) <
R( 2)_0'2—D0
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Thus,
o? - D, 0?2 — D,
R(D,) + R(D;) — R(Dy) < 2~ D, R(Dy) 52~ D, R(Dy) — R(Dy)
- 74 o g; P r(Dy),
which is non-positive if Dy + Dy — Dy > o2. |

Lemma 7 Suppose R(D) is the rate-distortion function of an arbitrary iid source and 0 <
DO < DI;DZ < 0'2, then

R(D1) + R(D2) < R(Dq) + 0.5,

'lfDl + Dy — o? < Dy < (1/D1 + 1/D2 — 1/0’2)71 and max{Dl,D2} > 0'2/2.
Proof: Without loss of generality, I assume D; > 02/2. From the Shannon’s upper bound
for the rate-distortion function,

(o) 9.
1 =9 ng =

Since R(D) is a non-increasing function of D and Dy > Dy, R(D3) < R(Dy). Thus, R(D;)+
Lemma 2 Suppose R(D) is the rate-distortion function of an arbitrary iid source {X;}2,

with an mse distortion measure d(z,y) = (z — y)? and 0 < Dy < Dy, then

1 D,
Do) — R(D;) < —log —.
R(D3) — R( 1)_208D

2

Proof: Let U; be the random variable that achieves R(D;), and let Ny ~ N(0, Dy — o?Dy),

with NolL(X,U;) and a = D,/ D;. Note that for any Dy > 0,

Dy\?2 D,
D, —a’D; =D —(—) D,==%(D,—D
2 —a" 2 D, 1 D1(1 2)>0,
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implies that I have a legitimate distribution. Next, let Y5 = (1 — @)X + aU; + N,. Notice

that

Ed(X,Y;) = E(a(X —Uy) — Ny)? = &®E(X —U,)*+ Dy — o*D; < a®Dy + Dy — o*D;y = Ds.

Thus, R(D,) < I(X;Y2), which implies

R(D;) — R(D1) < I(X;Ys) — I(X;0h)
— (X Ya|UL) — I(X; U Ya) (8.1)
< I(X;Y[Uy)

= I(X;(1—a)X + aU; + Na|Uy)

< I(X -Ui(1-a)(X —U) +N2) (8.3)
< supI(W;(1—a)W + N,) (8.4)
< %log g—:, (8.5)

where (8.1) follows by applying the chain rule twice to I(X;Ys,U;), (8.2) follows since

h(A|B) = h(A — B|B), and (8.3) follows since Uy — X —U; — (1 — a)(X — U;) + N,

forms a Markov chain by the independence assumptions. In (8.4), I take the supremum

over all random variables WLN, such that E(W2) < Dy; the supremum is achieved by

W ~ N(0, D,), giving the desired result. O
This bound is tight. The Gaussian source achieves this bound.

Lemma 3 For any Dy < ... < D3 < Dy < D7,

I(X; Uy, UL UL, ..., Ub| X + Nay) < M2,
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where Uy, Uy, Uj, ..., Uy, are defined in Theorem 6.
Proof: 1 first prove that this Lemma is true for M = 1. By applying the chain rule twice to

I(X;Uy, X + Ny), I obtain
I(X; X +N|U) —I(X; Uh| X +Ny) = I(X; X+ Ny —I(X;Uy) = I(X; X+ Ny)— R(Dy) > 0.

Thus, I(X;U1|X + N1) < I(X; X + Nq1|U1) < 1/2 by the argument from steps (8.2)-(8.5).

Now suppose that this Lemma holds for M =k > 1, i.e.,
I(X;U,Uy,..., UpX + Ny) < /2, (8.6)

where Ny, ~ N (0, Dy) and N (X, Uy, Us, ..., Uj).
Then for M = k + 1, let Ny 1 ~ N(0,Dg11), Nj, ~ N(0,Dy, — Dy1), NjLNy, ;1 and
(Ng, Ni1) (X, Uh, U3, . .. ,Uy,4). By the chain rule,
I(X§ Uy, Ué: ceey Ullc+1|X + Nk+1)

= I(X; U, Uéa SRR UIIc|X + Nk+1) + I(X; Ullc+1|U1v Uéa SRR Ullw X + Nk+1)' (87)
I bound the first term on the right hand side of (8.7) as:

I(X;U, UL, ..., ULX + Nist)
= R(ULUS,...,U\|X 4 Niy1) — R(UL, UL, ..., UL|X, X + Nii1)
= Rh(Uy,Us,...,Ub|X 4+ Ngyp1, X + Niya + Ni) — h(Uy, U, ..., UL X) (8.8)
< h(Uy,Us,...,Uf|X 4 Ngy1 + N) — (U1, Uy, ..., U X) (8.9)
= R(ULUS,...,U|X 4+ Npp1 + N.) — R(U, US, ..., U|X, X + Nyt + N1) (8.10)
= I(X;Uy,U,...,UlX + Niis + N

— I(XULU..., UIX + )
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< k/2, (8.11)

where (8.8) and (8.10) follow since (U, U3, ..., U;) - X — X + Ngi1 — X + N + N,
forms a Markov chain, (8.9) follows since conditioning reduces differential entropy, and (8.11)
follows from the previous assumption (8.6).

The second term on the right hand side of (8.7) can be bounded as follows:

I(X;UL 4 |UL UL, . UL X + Nita)
< I(X;X + Nea|[U, Usy .. UL Uby) (8.12)
= (X —Ugp;; X — Uy + Nea|U, U, .. Uy, Uy y)
< I(X - Ullc+13X - Ulle+1 + Ni+1) (8.13)

< 1/2, (8.14)

where (8.12) follows by applying the chain rule twice to I(X; U, Us, ..., Uy, Ug 1, X 4+ Niy1)

to get

I(X7X + Nk+1|U1’U£: . "UIIc:Uli:Jrl) - I(X7 UI::+1|U1:Uéa L) UI::’X + Nk+1)
= I(XaUlaUéaaUllc:X +Nk+1) - I(X;UlaUéa"'aUl::’Ullc—i»l)

> 0,

(8.13) follows since (U1, Us, ..., Uy, Up,y) = X —Upyy = X — Upy + Niy1 forms a Markov
chain, and (8.14) parallels the chain of inequalities in steps (8.4)-(8.5).

Combining (8.7), (8.11) and (8.14) proves this lemma for M = k+1. Finally, by induction,
this lemma holds for any M > 1. O

Lemma 8 For any (Dy, D1, Ds) € D;UDs, I'? < 0203.
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Proof: In Dy and Ds,

BoD2Dy — 81D Dy — 32D;1 Dy

D>DD D>DD D>DD
= DyD, — 27 ; ¢ DDy + 52 ; ¢ DDy + 52 ; 0
g g g
DD D
= DyDy— DoDo— DiDo + = 3=
1 1 1 1
= DyD\Dy|—+ = — — — —
2 10@%+a2 D, D)

> 0.

As a consequence,

B3
232 )2
< PG B b, Dy — 6,0,y — 6D D)
Ba Bo
2D 2D
= (ﬁlDl—ﬂlﬁ()“) (mm—%ﬂ")
= olo2.
This proves the lemma. u
Lemma 9 In Dz, 0< Lgo < Lmin(dl,d2) < Lgo + 1.
Proof: From the definition of D,
1 - 1 n 1 1
do dy dy

and 0 < dy < dy,ds < 1 (otherwise, for example, if d; = 1, then d; +ds — 1 = dy > dy, which

contradicts the definition of D), which implies
d3(1 — dy)(1 — dy) < dydy — dody — dydy + d2, (8.15)

ie.,

doy/(1—di)(1 —da) < /(dr — do)(ds — do),
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or equivalently, /(1 —di)(1—dy) —/(di — do)(de — do) < (1 —do)y/(1—di)(1— dy).

On the other hand, /(1 — d1)(1 — dp) — \/(d1 — do)(d2 — do) > 0 since 1+ do > dy + d for

any (Dg, D1, D) € Ds. Therefore,

1 < (1~ do)’
(1—do)* - (\/(1 —di)(1—dp) - \/(dl — do)(d2 — do))?
(1 —dy)?
S 0 do)? (1 do)(1— di)(1 - do)
1

T 1-(1-d)(1—dy)
B 1

dy + dy — dids

1
max{d;,ds}’

where the last inequality is from the fact that 0 < dy,ds < 1. Thus, 0 < Lgo < Lmin(d1, d2)-

To prove the other inequality, I first assume ds < d; without loss of generality. Note

that for fixed dy, ds, \/ (1—dy)(1—do)— \/ (d1 — do)(da — dp) is a positive and monotonically

decreasing function of dy in D,, therefore

Lgy > =log (1~ do)*
2 T (1-do)?— (\/(1 —di)(1—dv) - \/(dl — do)(dr — dp))?
1 (1 — do)?
T 2% do)?— (1+do— 2d,)
— 11 (1 — d0)2
T 2 %41 d)(d —do)’

thus,

11 1 (1 do)”
Lmind?d —L S 51 P
(di,d») GO 20gd1 20g4(1—d1)(d1—d0)
1. (1—dy)(dy—d
— l_log(l—d0)+§10g( 1)d( 1 0)
1

1 d
= 1—log(1—dg)+§log [1+d0— <d1+d—0>]
1
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1
< 1-log(1—do) + ; log(1 +do — 2/do) (8.16)
= 1—log(1l—dy) + log(l — \/dio)

< 1,

where (8.16) follows from the arithmetic/geometric mean inequality a + b > 2v/ab for any
non-negative a and b, and the last inequality comes from the fact that 0 < dy < 1 thus
dy < +/dp. O
Lemma 10 In Dy, —/(13:D1D, < T" < 0.

Proof: From (8.15), we can see that

d2B1Bs < (dy — do)(da — dy)-

Therefore, I < 0. On the other hand, since 0 < dy < dy,ds < 1 in D,

2,/B1adrdy > 0> di(dy — 1) + dy(dy — 1) = 2dydy — dy — ds,
= 2do(1 — do)\/B1Badrdy > 2drdady — 2dydad — dido + dyd} — dydo + dad,
= (1—do)2drds + (1 — d)(1 — do)d2 + 2do(1 — do)\/BuBadrds > (dy — do)(dz — do),
= (1 —dp)*dydy + 2do(1 — do)y/B1B2drds + BrBeds > (dy — do)(da — do) > 0,

= (1 —do)y/didz + doy/ 12 > \/(dl — do)(d2 — do)-

As a consequence,

Do — D:i—Do)(Ds— Do) BTG,
F,:ﬂlﬁz 0 \/5152(%1 0)(D2 0) S g;ﬂ2[—(1—do)\/ﬁ]:_\/m’

which concludes the proof. O

Lemma 11 In Dz, a%ﬁlDl + a§ﬂ2D2 + 20[1&2].—‘1 = IBQDQ.
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P’I’OOf.’ I define DIO = D]_ - Do, D20 = D2 - Do, and A = \/51D20 + \/ﬂleg, then the

numerator of a; is:

Bof1Da — BoI" = BorD2 — B1B82Do + 4/ f1faD10D2o = B1Dag + 1/ B1B82D10D20 = A4/ B1Dao.

By symmetry, ,60,621)1 — /Borl = A\/ ,62D10. Further ,62.D1 —+ /61D2 —2I" = AZ/IBO. Th'lIS,

Since

I have

Bo(B1Dy —I') _ Bov/B1Dso

a1 = = ,

B1(B2D1 + 1Dy — 2I) B
e = Bo(BeD:1 —T")  _ Bov/BaDio
? B2(B2D1 + By Dy — 2T7) BeA

_ B1BeDo — VP12 D1oDro _ /512

: Bo Bo

[DO\/ BBz — \/ DloDzo] ;

o261 D1 + 03B Dy + 20 05"

B3 D1D2g + B¢ Dy D1g + 268+/B1B2D10Daol” / (5132)
A2

= % [,BODID20 + /80D2D10 + 2D, /61/82D10D20 B 2D10D20:|

= % [ﬂlDoDzo + B2DoD1g + 2Doy/ ﬂlﬂleoDzo] (8.17)

= /80D07

where (8.17) comes from the fact that

/BoDl — D10 = (1 — D0/0'2)D1 — (Dl — Do) = Do(]. — D1/0'2) = /BlDo,

and the last equation follows from the fact that /81DOD20 —+ /82DOD10 + 2D0\/,61,62D10D20 =

Do(v/B1Dag + +/B2D19)? = DoA>. 0

Lemma 12 In D3, o/23,D1 + a2 B2D3 = By Dy.
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Proof:

04112ﬁ1D1 + Ot'22ﬁ2D2

BobiDs + VA |’ Bof2D1 — VA 1
[ﬂl(ﬁle + ﬂlDz)] bt [ﬂz(ﬁle + ﬁlDz)] P2
[ 883D3 + 26051 DaVA + A] D+ [ﬂo 3DF — 260,01 vV/A + A] .
B1(B2eD1 + B1D2)? ' B2(B2D1 + B1D2)? ?
B3 D1D5(B81D2 + B2D1) + A(By D2 + B2D1) /5152
(B2D1 + B1D3)?
B3 D1D5 + Bo(DoD2 + DoDy — Dy Dy — dog D1 Ds)
Ba D1 + 1D,
DyD; + DoD, — 2dyD1 D,
B2 D1 + 1 Do
Dy + Dy — 2D, D3 /0?
B2D1 + 1 Do

= Bo

= [oDy

= IBO‘DO’

where the last equation comes from the fact that Dy — Dy D5/ 0% = Dy — d1Dy = 51D, and
D]_—D]_D2/0'2 :,BzD]_. O

Lemma 13 If 0 < §p < 6; < 02 < 0.5, then

1

1
LG(do, 61, 62) > log m

Proof: First, since 0.5 < 1 -6, < 1—6 < land 0 < ds —dg < §; — dp < 0.5, I have

\/(1 —0)(1—-42) — \/(61 — 80)(62 — &o) > 0. Thus LG(dy, 1, 92) is a decreasing function of

6 for fixed ¢ and d5. Since §; < 9o,

1 (- &)"
LG(bo,01,82) = 7 log (1 —60)2 — (y/(1 — 1) (L — 82) — /(61 — b0)(J2 — 60))?
1 ( 60)2
> —lo
-2 g(1—50)2_(\/(1_52( —82) — \/ — 90)(82 — d0))?
1 (1—do)?

= 2B 66— )



Taking a partial derivative of the argument inside the logarithm gives

0 < (1—dp)? ) (1 —60)(1+ 6o — 202)
4(

800 \4(1 = 8:)(6—d0)) ~ 4(1—8)(6— 60)*

Since dg < 0y < 1/2 and 1+ §g > 20, this derivative is always positive. Therefore,

1 (1—50)2
LG(bo,01,02) > lo
(00, 61, 02) 2 g4(1—52)(52—50) §0=0
_ Lt
) g4(1—52)52’

which gives us the desired result.
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