On critical values of L-functions for holomorphic forms on

 $G S p(4) \times G L(2)$Thesis by
Abhishek Saha

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

2009
(Defended May 11, 2009)
(C) 2009

Abhishek Saha
All Rights Reserved

To my Parents

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Dinakar Ramakrishnan, for the opportunities he has given me. Without his enthusiastic support, helpful instructions and constant guidance, this work would not have been possible.

I am thankful to the Department of Mathematics at Caltech for providing an excellent work environment and the staff and faculty here for their helpfulness and professionalism.

I have made many wonderful friends at Caltech over the last five years and I will treasure the great times we spent together. I am grateful to them for their friendship, good cheer, encouragement and for contributing to my growth as an individual.

Finally, I would like to thank my parents, who have been a tireless source of love and support to me throughout. This thesis is dedicated to them.

Abstract

Let F be a genus two Siegel newform and g a classical newform, both of squarefree levels and of equal weight ℓ. We derive an explicit integral representation for the degree eight L function $L(s, F \times g)$. As an application, we prove a reciprocity law - predicted by Deligne's conjecture - for the critical special values $L(m, F \times g)$ where $m \in \mathbb{Z}, 2 \leq m \leq \frac{\ell}{2}-1$. The proof of our integral representation has two major components: the generalization of an earlier integral representation due to Furusawa and a "pullback formula" relating the complicated Eisenstein series of Furusawa with a simpler one on a higher rank group. The critical value result follows from our integral representation using rationality results of Garrett and Harris and the theory of nearly holomorphic forms due to Shimura.

Contents

Acknowledgements iv
Abstract v
1 Introduction 1
1.1 Overview and main results 1
1.2 Notation 6
2 Extending the Furusawa Integral Representation 10
2.1 Preliminaries 10
2.2 The Rankin-Selberg integral 14
2.3 Strategy for computing the p-adic integral 17
2.4 The evaluation of the local Bessel functions in the Steinberg case 39
2.5 The case unramified π_{p}, Steinberg σ_{p} 47
2.6 The case Steinberg π_{p}, Steinberg σ_{p} 54
2.7 The case Steinberg π_{p}, unramified σ_{p} 59
2.8 The global integral and some results 62
3 The Pullback Formula and the Second Integral Representation 79
3.1 Eisenstein series on $G U(3,3)$ 79
3.2 Statement of the pullback formula 83
3.3 The local integral and the unramified calculation 86
3.4 The local integral for the ramified and infinite places 99
3.5 Proof of the Pullback formula 116
3.6 The integral representation 121
4 Rationality of Eisenstein series and Deligne's conjecture on critical L-values124
4.1 Eisenstein series on Hermitian domains 124
4.2 The integral representation in classical terms 129
4.3 Nearly holomorphic Eisenstein series 131
4.4 Holomorphic projection 135
4.5 Deligne's conjecture 136
Bibliography 140

Chapter 1

Introduction

1.1 Overview and main results

If \mathcal{M} is an arithmetic or geometric object, then we can often associate a very interesting invariant to it. This invariant is a complex analytic function known as the L-function for \mathcal{M} and is denoted $L(s, \mathcal{M})$.

The simplest example of an L-function is the Riemann Zeta function defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

for $\operatorname{Re}(s)>1$ and by analytic continuation elsewhere. This function encodes rich number theoretic information about the distribution of primes. For instance, the fact that $\zeta(s)$ has no zeroes on the line $\operatorname{Re}(s)=1$ is equivalent to the prime number theorem.

One can also associate L-functions to Dirichlet characters, number fields, elliptic curves and modular forms. The case of modular forms is particularly interesting because they, in a sense, include all the other examples mentioned so far. The classical modular forms are holomorphic functions that live on the upper-half plane and satisfy certain symmetries. These functions and their generalizations arise naturally from fundamental investigations in several mathematical areas. Indeed, there is a quote attributed to Martin Eichler saying that there are five basic operations in arithmetic: addition, subtraction, multiplication, division and modular forms.

The theory of automorphic representations provides a natural setting in which to study modular forms and their generalizations. The fascinating work of Langlands associates L-functions to automorphic representations and use these to express deep relationships be-
tween number theory, geometry and representation theory. One of the tools that has been successfully used to study L-functions and their special values is the method of integral representations; this is sometimes called the Rankin-Selberg method after Rankin and Selberg's fundamental work in this direction. Often, sharper and more explicit results are obtained when one restricts attention to holomorphic forms. The papers [GH93], [GK92], [HK91] treating the triple-product L-function are good examples, and in fact, provided an inspiration for this thesis.

A conjecture of Deligne [Del73] predicts that certain special values of such families of L-functions are algebraic numbers up to multiplication by certain period integrals. Indeed, let $L(s, \mathcal{M})$ be an arithmetically defined (or motivic) L-function associated to an arithmetic object \mathcal{M}. Then Deligne's conjectures assert that for certain critical points m,
(a) $L(m, \mathcal{M})$ is the product of a suitable transcendental number Ω and an algebraic number $A(m, \mathcal{M})$,
(b) If σ is an automorphism of \mathbb{C}, then $A(m, \mathcal{M})^{\sigma}=A\left(m, \mathcal{M}^{\sigma}\right)$.

To give a simple example, Deligne's conjecture for the Riemann zeta function is just the fact that $\zeta(m) / \pi^{m}$ is a rational number for all positive even integers m.

In this thesis, we prove a key special case of Deligne's conjecture when \mathcal{M} corresponds to the product $F \times g$ where F is a Siegel modular form of genus two and g a classical modular form; see Theorem 3.6.1 below. As is often the case for such problems, the key ingredient in our proof is the interpretation of the transcendental factor as the period arising from a certain integral representation of Rankin Selberg type.

Fix odd, squarefree integers M, N. Let F be a genus two Siegel newform of level M and g an elliptic newform of level N; see $\S 2.8$ for the precise definitions of these terms. One can associate a degree eight L-function $L(s, F \times g)$ to the pair (F, g). We assume that F and g have the same even integral weight ℓ and have trivial central characters. We also make the following assumption about F :

Suppose

$$
F(Z)=\sum_{S>0} a(S) e(\operatorname{tr}(S Z))
$$

is the Fourier expansion; then we assume that

$$
a(T) \neq 0 \text { for some } T=\left(\begin{array}{cc}
a & \frac{b}{2} \tag{1.1.1}\\
\frac{b}{2} & c
\end{array}\right)
$$

such that $-d=b^{2}-4 a c$ is the discriminant of the imaginary quadratic field $L=\mathbb{Q}(\sqrt{-d})$, and all primes dividing $M N$ are inert in L.

Given a Hecke character Λ of L, we define in $\S 3.1$ a Siegel Eisenstein series $E_{\Upsilon \sharp}(g, s)$ on $G U(3,3 ; L)(\mathbb{A})$. Let R denote the subgroup of $G S p(4) \times G U(1,1 ; L)$ consisting of elements $h=\left(h_{1}, h_{2}\right)$ such that $h_{1} \in G S p(4), h_{2} \in G U(1,1 ; L)$ and h_{1}, h_{2} have the same multiplier. We define in $\S 3.2$ an embedding $\iota: R \hookrightarrow G U(3,3 ; L)$. Let Φ, Ψ denote the adelizations of F, g respectively. We can extend the definition of Ψ to $G U(1,1 ; L)(\mathbb{A})$ by defining $\Psi(a g)=\Psi(g)$ for all $a \in L^{\times}(\mathbb{A}), g \in G L(2)(\mathbb{A})$. Our integral representation is as follows.

Theorem 3.6.1. We have

$$
\int_{g \in Z(\mathbb{A}) R(\mathbb{Q}) \backslash R(\mathbb{A})} E_{\Upsilon_{\sharp}^{\sharp}}\left(\iota\left(g_{1}, g_{2}\right), s\right) \bar{\Phi}\left(g_{1}\right) \Psi\left(g_{2}\right) \Lambda^{-1}\left(\operatorname{det} g_{2}\right) d g=A(s) L\left(3 s+\frac{1}{2}, F \times g\right)
$$

where $g=\left(g_{1}, g_{2}\right), \Lambda$ is a suitable Hecke character of L and $A(s)$ is an explicit normalizing factor, defined in §3.6.

The first step towards proving Theorem 3.6.1 is achieved in $\S 2$ where we extend an integral representation due to Furusawa. Let π, σ be the automorphic representations corresponding to F, g respectively. Furusawa [Fur93] defined a certain integral of Rankin Selberg type and proved that it factorizes as a product of local zeta integrals $Z_{p}(s)$. He computed the local zeta integrals only in the case when the local representations π_{p}, σ_{p} are both unramified and showed that they equal the local L-functions up to a normalizing factor. Thus, he was able to find an integral representation for $L(s, F \times g)$ in the full level case, i.e., when $M=1, N=1$. In $\S 2$ we compute, under certain conditions, the local integrals $Z_{p}(s)$ when the local representations are either Steinberg or unramified. This allows us to generalize the Furusawa integral representation to our case; see Theorem 2.8.7 for the precise statement.

The generalization is not straightforward. The explicit evaluation of the local zeta integral involves several steps. First of all, we need to perform certain technical volume and double-coset computations. These computations - easy in the unramified case - are tedious and challenging for the remaining cases and are carried out in $\S 2.3$. Secondly, it is
necessary to suitably choose the sections of the Eisenstein series at the bad places to insure that the local zeta integrals do not vanish. Thirdly, and perhaps most crucially, the local computations require an explicit knowledge of the local Whittaker and Bessel functions. The formulae for the Whittaker model are well known in all cases; the same, however, is not true for the Bessel model. In fact, the only case where the local Bessel model for a finite place was computed before this work was when π_{p} is unramified [BFF97, Sug85]. However, that does not suffice for the cases when we have π_{p} Steinberg. As a preparation for the calculations in these cases, we find in $\S 2.4$, an explicit formula for the Bessel function for π_{p} when it is Steinberg. We believe this is of independent interest.

The second and final step towards proving Theorem 3.6.1 is achieved in $\S 3$. We prove a certain pullback formula (Theorem 3.2.1) that expresses our earlier Eisenstein series as the inner product of the cusp form and the pullback of the simpler higher-rank Siegel Eisenstein series $E_{\Upsilon \sharp}$. Formulas in this spirit were first proved in a classical setting by Shimura [Shi97]. Unfortunately, Shimura only considers certain special types of Eisenstein series in his work which does not include ours (except in the full level case $M=1, N=1$). Furthermore his methods are classical and cannot be easily modified to deal with our case. The complicated sections at the ramified places and the need for precise factors make the adelic language the right choice for our purposes. We provide a complete proof of the pullback formula for our Eisenstein series which explicitly gives the precise factors at the ramified places needed by us.

Combining the results of $\S 2$ and $\S 3$, we deduce Theorem 3.6.1. It seems appropriate to mention here that the referee of our paper [Sah09] has indicated that it was well-known to some experts that one could use such a pullback formula to rewrite the Furusawa integral representation.

From Theorem 3.6.1, we easily conclude that $L(s, F \times g)$ is a meromorphic function whose only possible pole on the right of the critical line $\operatorname{Re}(s)=\frac{1}{2}$ is simple and at $s=1$. Moreover, with the aid of basic techniques and results due to Garrett, Harris and Shimura, we prove the following Theorem.

Theorem 4.5.1. Suppose that the Fourier coefficients of F and g are totally real and
algebraic and that $\ell \geq 6$. For a positive integer $k, 1 \leq k \leq \frac{\ell}{2}-2$, define

$$
A(F, g ; k)=\frac{L\left(\frac{\ell}{2}-k, F \times g\right)}{\pi^{5 \ell-4 k-4}\langle F, F\rangle\langle g, g\rangle} .
$$

Then we have,
(a) $A(F, g ; k)$ is algebraic
(b) For an automorphism σ of $\mathbb{C}, A(F, g ; k)^{\sigma}=A\left(F^{\sigma}, g^{\sigma} ; k\right)$.

We remark here that the completely unramified case $M=1, N=1$ of the above theorem was already known by the works of Heim [Hei99] and Böcherer-Heim [BH06], who used a very different integral representation from the one in this thesis. Also, just the algebraicity part of the above Theorem (i.e., part (a)) has been proved for the right-most critical value (corresponding to $k=1$) in various settings earlier by Furusawa [Fur93], Pitale-Schmidt [PS09] and the author [Sah09].

To relate Theorem 4.5.1 to the conjecture of Deligne for motivic L-functions mentioned at the beginning of this introduction, we note that Yoshida [Yos01] has shown that the set of all critical points for $L(s, F \times g)$ is $\left\{m: 2-\frac{\ell}{2} \leq m \leq \frac{\ell}{2}-1, m \in \mathbb{Z}\right\}$. In particular, the critical points are always non-central (since the weight ℓ is even) and so the L-value is expected to be non-zero. Assuming the existence of a motive attached to F (this seems to be now known for our cases by the work of Weissauer [Wei05]) and the truth of Deligne's conjecture for the standard degree $5 L$-function of F, Yoshida also computes the corresponding motivic periods. According to his calculations, the relevant period for the point m is precisely the quantity $\pi^{4 m+3 \ell-4}\langle F, F\rangle\langle g, g\rangle$ that appears in our theorem above (once we substitute $m=\frac{\ell}{2}-k$). We note here that Yoshida only deals with the full level case; however, as the periods remain the same (up to a rational number) for higher level, his results remain applicable to our case.

Thus, Theorem 4.5.1 is compatible with (and implied by) Deligne's conjecture, and furthermore, it covers all the critical values to the right of $\operatorname{Re}(s)=\frac{1}{2}$ except for the L-value at the point 1. The proof for the critical values to the left of $\operatorname{Re}(s)=\frac{1}{2}$ would follow from the expected functional equation. Extending our result to $L(1, F \times g)$ is intimately connected to proving the analyticity of the L-function at that point (see Corollary 3.6.2).

These questions, related to analyticity and the functional equation are also of interest for other applications and will be considered in a future paper.

We also note that the integral representation (Theorem 3.6.1) is of interest for several other applications. For instance, we hope that this integral representation will pave the way to certain new results involving stability, hybrid subconvexity, and non-vanishing results for the L-function under consideration following the methods of [MR]. We are also hopeful that we can prove results related to non-negativity of the central value $L\left(\frac{1}{2}, F\right)$. These results appear to be new for holomorphic Siegel modular forms. For example, the nonnegativity result is known in the case of generic automorphic representations by Lapid and Rallis [LR02]; however, automorphic representations associated to Siegel modular forms are never generic. Another interesting application of the integral representation would be to the construction of p-adic L-functions. We intend to address these questions elsewhere.

We expect most of the results of this thesis to hold for arbitrary totally real base fields. It would be particularly interesting to work out the special value results when the HilbertSiegel modular forms have different weights for each Archimedean place. This case will be considered in a future work.

1.2 Notation

- The symbols $\mathbb{Z}, \mathbb{Z}_{\geq 0}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ and \mathbb{Q}_{p} have the usual meanings. \mathbb{A} denotes the ring of adeles of $\mathbb{Q}, \mathbb{A}_{f}$ the finite adeles. For a complex number $z, e(z)$ denotes $e^{2 \pi i z}$.
- For a matrix M we denote its transpose by M^{t}. Denote by J_{n} the $2 n$ by $2 n$ matrix given by

$$
J_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) .
$$

We use J to denote J_{2} and let s_{1} denote the matrix $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.

- For a positive integer n define the group $\operatorname{GSp}(2 n)$ by

$$
G S p(2 n, R)=\left\{g \in G L_{2 n}(R) \mid g^{t} J_{n} g=\mu_{n}(g) J_{n}, \mu_{n}(g) \in R^{\times}\right\}
$$

for any commutative ring R.
Define $S p(2 n)$ to be the subgroup of $G S p(2 n)$ consisting of elements $g_{1} \in G S p(2 n)$ with $\mu_{n}\left(g_{1}\right)=1$.

- For a quadratic extension L of \mathbb{Q} define

$$
G U(n, n)=G U(n, n ; L)
$$

by

$$
G U(n, n)(\mathbb{Q})=\left\{g \in G L_{2 n}(L) \mid(\bar{g})^{t} J_{n} g=\mu_{n}(g) J_{n}, \mu_{n}(g) \in \mathbb{Q}^{\times}\right\}
$$

where \bar{g} denotes the conjugate of g.

- Let $\widetilde{H}=G U(3,3), \widetilde{H}_{1}=U(3,3), H=G S p(6), H_{1}=\operatorname{Sp}(6), \widetilde{G}=G U(2,2), \widetilde{G}_{1}=$ $U(2,2), G=G S p(4), G_{1}=\operatorname{Sp}(4), \widetilde{F}=G U(1,1), \widetilde{F}_{1}=U(1,1)$.
- Define

$$
\begin{aligned}
& \widetilde{\mathbb{H}}_{n}=\left\{Z \in M_{n}(\mathbb{C}) \mid i(\bar{Z}-Z) \text { is positive definite }\right\} \\
& \mathbb{H}_{n}=\left\{Z \in M_{n}(\mathbb{C}) \mid Z=Z^{t}, i(\bar{Z}-Z) \text { is positive definite }\right\} .
\end{aligned}
$$

For $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in G U(n, n)(\mathbb{R}), Z \in \widetilde{\mathbb{H}}_{n}$ define

$$
J(g, Z)=C Z+D
$$

The same definition works for $g \in G \operatorname{Sp}(2 n)(\mathbb{R}), Z \in \mathbb{H}_{n}$.

- For a commutative ring R we denote by $I(2 n, R)$ the Borel subgroup of $\operatorname{GSp}(2 n, R)$ consisting of the set of matrices that look like $\left(\begin{array}{cc}A & B \\ 0 & \lambda\left(A^{t}\right)^{-1}\end{array}\right)$ where A is lowertriangular and $\lambda \in R^{\times}$.
- For a quadratic extension L of \mathbb{Q} and v be a finite place of \mathbb{Q}, define $L_{v}=L \mathbb{Q}_{\mathbb{Q}} \mathbb{Q}_{v}$. \mathbb{Z}_{L} denotes the ring of integers of L and $\mathbb{Z}_{L, v}$ its v-closure in L_{v}. For a prime p, let $\mathbb{Z}_{L, p}^{\times}$denote the group of units in $\mathbb{Z}_{L, p}$.

If p is inert in L, the elements of $\mathbb{Z}_{L, p}^{\times}$are of the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Z}_{p}$ and such that at least one of a and b is a unit. Let $\Gamma_{L, p}^{0}$ be the subgroup of $\mathbb{Z}_{L, p}^{\times}$consisting of the elements with $p \mid b$.

- For a positive integer N the subgroups $\Gamma_{0}(N)$ and $\Gamma^{0}(N)$ of $S L_{2}(\mathbb{Z})$ are defined by

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{A \in S L_{2}(\mathbb{Z}) \left\lvert\, A \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right.\right\}, \\
& \Gamma^{0}(N)=\left\{A \in S L_{2}(\mathbb{Z}) \left\lvert\, A \equiv\left(\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right) \quad(\bmod N)\right.\right\}
\end{aligned}
$$

For p a finite place of \mathbb{Q}, their local analogues $\Gamma_{0, p}\left(\right.$ resp. $\left.\Gamma_{p}^{0}\right)$ are defined by

$$
\begin{gathered}
\Gamma_{0, p}=\left\{A \in G L_{2}\left(\mathbb{Z}_{p}\right) \left\lvert\, A \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod p)\right.\right\}, \\
\Gamma_{p}^{0}=\left\{A \in G L_{2}\left(\mathbb{Z}_{p}\right) \left\lvert\, A \equiv\left(\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right) \quad(\bmod p)\right.\right\} .
\end{gathered}
$$

- The local Iwahori subgroup I_{p} is defined to be the subgroup of $K_{p}=G\left(\mathbb{Z}_{p}\right)$ consisting of those elements of K_{p} that when reduced mod p lie in the Borel subgroup of $G\left(\mathbb{F}_{p}\right)$. Precisely,

$$
I_{p}=\left\{A \in K_{p} \left\lvert\, A \equiv\left(\begin{array}{cccc}
* & 0 & * & * \\
* & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right) \quad(\bmod p)\right.\right\}
$$

- Let \widetilde{R} denote the subgroup of $\widetilde{G} \times \widetilde{F}$ consisting of elements $h=\left(h_{1}, h_{2}\right)$ such that $h_{1} \in \widetilde{G}, h_{2} \in \widetilde{F}$ and $\mu_{2}\left(h_{1}\right)=\mu_{1}\left(h_{2}\right)$. Let R denote the subgroup of \widetilde{R} consisting of those $\left(h_{1}, h_{2}\right)$ where $h_{1} \in G$.

For a fixed element $g \in \widetilde{G}(\mathbb{A})$, let $\widetilde{F}_{1}[g](\mathbb{A})$ denote the subset of $\widetilde{F}(\mathbb{A})$ consisting of all
elements h_{2} such that $\mu_{2}(g)=\mu_{1}\left(h_{2}\right)$.

Chapter 2

Extending the Furusawa Integral Representation

2.1 Preliminaries

Bessel models

We recall the definition of the Bessel model of Novodvorsky and Piatetski-Shapiro [NPS73] following the exposition of Furusawa [Fur93].

Let $S \in M_{2}(\mathbb{Q})$ be a symmetric matrix. We let $\operatorname{disc}(S)=-4 \operatorname{det}(S)$ and put $d=$ $-\operatorname{disc}(S)$. If $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ then we define the element $\xi=\xi_{S}=\left(\begin{array}{cc}b / 2 & c \\ -a & -b / 2\end{array}\right)$.

Let L denote the subfield $Q(\sqrt{-d})$ of \mathbb{C}.
We always identify $\mathbb{Q}(\xi)$ with L via

$$
\begin{equation*}
\mathbb{Q}(\xi) \ni x+y \xi \mapsto x+y \frac{\sqrt{(-d)}}{2} \in L, x, y \in \mathbb{Q} . \tag{2.1.1}
\end{equation*}
$$

We define a subgroup $T=T_{S}$ of $G L_{2}$ by

$$
\begin{equation*}
T(\mathbb{Q})=\left\{g \in G L_{2}(\mathbb{Q}) \mid g^{t} S g=\operatorname{det}(g) S\right\} . \tag{2.1.2}
\end{equation*}
$$

The center of T is denoted by Z_{T}. It is not hard to verify that $T(\mathbb{Q})=Q(\xi)^{\times}$and $Z_{T}(\mathbb{Q})=\mathbb{Q}^{\times}$. We identify $T(\mathbb{Q})$ with L^{\times}via (2.1.1)).

We can consider T as a subgroup of G via

$$
T \ni g \mapsto\left(\begin{array}{cc}
g & 0 \tag{2.1.3}\\
0 & \operatorname{det}(g) \cdot\left(g^{-1}\right)^{t}
\end{array}\right) \in G
$$

Let us denote by U the subgroup of G defined by

$$
U=\left\{\left.u(X)=\left(\begin{array}{cc}
1_{2} & X \\
0 & 1_{2}
\end{array}\right) \right\rvert\, X^{t}=X\right\}
$$

Let B be the subgroup of G defined by $R=T U$.

Let ψ be a non trivial character of \mathbb{A} / \mathbb{Q}. We define the character $\theta=\theta_{S}$ on $U(\mathbb{A})$ by $\theta(u(X))=\psi(\operatorname{tr}(S(X)))$. Let Λ be a character of $T(\mathbb{A}) / T(\mathbb{Q})$ such that $\Lambda \mid Z_{T}\left(\mathbb{A}^{\times}\right)=1$. Via (2.1.1) we can think of Λ as a character of $L^{\times}(\mathbb{A}) / L^{\times}$such that $\Lambda \mid \mathbb{A}^{\times}=1$. Denote by $\Lambda \otimes \theta$ the character of $B(\mathbb{A})$ defined by $(\Lambda \otimes \theta)(t u)=\Lambda(t) \theta(u)$ for $t \in T(\mathbb{A})$ and $u \in U(\mathbb{A})$.

Let π be an automorphic cuspidal representation of $G(\mathbb{A})$ with trivial central character and V_{π} be its space of automorphic forms.

Then for $\Phi \in V_{\pi}$, we define a function B_{Φ} on $G(\mathbb{A})$ by

$$
\begin{equation*}
B_{\Phi}(h)=\int_{B(\mathbb{A}) / B(\mathbb{Q}) Z_{G}(\mathbb{A})}(\Lambda \otimes \theta)(r)^{-1} \Phi(r h) d r . \tag{2.1.4}
\end{equation*}
$$

The \mathbb{C} - vector space of function on $\widetilde{G}(\mathbb{A})$ spanned by $\left\{B_{\Phi} \mid \Phi \in V_{\pi}\right\}$ is called the global Bessel space of type (S, Λ, ψ) for π. We say that π has a global Bessel model of type (S, Λ, ψ), if the global Bessel space has positive dimension, that is if there exists $\Phi \in V_{\pi}$ such that $B_{\Phi} \neq 0$. In $\S 2.1-\S 2.7$, we assume that:

There exists S, Λ, ψ such that π has a global Bessel model of type (S, Λ, ψ).

Eisenstein series

We briefly recall the definition of the Eisenstein series used by Furusawa in [Fur93]. Let P be the maximal parabolic subgroup of \widetilde{G} consisting of the elements in \widetilde{G} that look
like $\left(\begin{array}{llll}* & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & *\end{array}\right)$. We have the Levi decomposition $P=M N$ with $M=M^{(1)} M^{(2)}$ where the groups $M, N, M^{(1)}, M^{(2)}$ are as defined in [Fur93].

Precisely,

$$
\begin{gather*}
M^{(1)}(\mathbb{Q})=\left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & a^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a \in L^{\times}\right\} \simeq L^{\times} . \tag{2.1.6}\\
M^{(2)}(\mathbb{Q})=\left\{\left.\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \alpha & 0 & \beta \\
0 & 0 & \lambda & 0 \\
0 & \gamma & 0 & \delta
\end{array}\right) \right\rvert\,\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in G U(1,1)(\mathbb{Q}), \lambda=\mu_{1}\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\} \tag{2.1.7}\\
\simeq G U(1,1)(\mathbb{Q}) . \\
N(\mathbb{Q})=\left\{\left.\left(\begin{array}{llll}
1 & x & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\bar{x} & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & a & y \\
0 & 1 & \bar{y} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{Q}, x, y \in L\right\} \tag{2.1.8}
\end{gather*}
$$

We also write

$$
\begin{aligned}
m^{(1)}(a) & =\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \bar{a}^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
m^{(2)}\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \alpha & 0 & \beta \\
0 & 0 & \lambda & 0 \\
0 & \gamma & 0 & \delta
\end{array}\right) .
\end{aligned}
$$

Let σ be an irreducible automorphic cuspidal representation of $G L_{2}(\mathbb{A})$ with central char-
acter ω_{σ}. Let χ_{0} be a character of $L^{\times}(\mathbb{A}) / L^{\times}$such that $\chi_{0} \mid \mathbb{A}^{\times}=\omega_{\sigma}$.
Finally, let χ be a character of $L^{\times}(\mathbb{A}) / L^{\times}=M_{1}(\mathbb{A}) M_{1}(\mathbb{Q})$ defined by

$$
\begin{equation*}
\chi(a)=\Lambda(\bar{a})^{-1} \chi_{0}(\bar{a})^{-1} . \tag{2.1.9}
\end{equation*}
$$

Then defining

$$
\begin{equation*}
\Pi\left(m_{1} m_{2}\right)=\chi\left(m_{1}\right)\left(\chi_{0} \otimes \sigma\right)\left(m_{2}\right), m_{1} \in M_{1}(\mathbb{A}), m_{2} \in M_{2}(\mathbb{A}) \tag{2.1.10}
\end{equation*}
$$

we extend σ to an automorphic representation Π of $M(\mathbb{A})$. We regard Π as a representation of $P(\mathbb{A})$ by extending it trivially on $N(\mathbb{A})$. Let δ_{P} denote the modulus character of P. If $p=m_{1} m_{2} n \in P(\mathbb{A})$ with $m_{i} \in M_{i}(\mathbb{A})(i=1,2)$ and $n \in N(\mathbb{A})$,

$$
\begin{equation*}
\delta_{P}(p)=\left|N_{L / \mathbb{Q}}\left(m_{1}\right)\right|^{3} \cdot\left|\mu_{1}\left(m_{2}\right)\right|^{-3}, \tag{2.1.11}
\end{equation*}
$$

where $\|$ denoted the modulus function on \mathbb{A}.
Then for $s \in \mathbb{C}$, we form the family of induced automorphic representations of $\widetilde{G}(\mathbb{A})$

$$
\begin{equation*}
I(\Pi, s)=\operatorname{Ind}_{P(\mathbb{A})}^{\widetilde{G}(\mathbb{A})}\left(\Pi \otimes \delta_{P}^{s}\right) \tag{2.1.12}
\end{equation*}
$$

where the induction is normalized. Let $f(g, s)$ be an entire section in $I(\Pi, s)$ viewed concretely as a complex-valued function on $\widetilde{G}(\mathbb{A})$ which is left $N(\mathbb{A})$-invariant and such that for each fixed $g \in \widetilde{G}(\mathbb{A})$, the function $m \mapsto f(m g, s)$ is a cusp form on $M(\mathbb{A})$ for the automorphic representation $\Pi \otimes \delta_{P}^{s}$. Finally we form the Eisenstein series $E(g, s)=E(g, s ; f)$ by

$$
\begin{equation*}
E(g, s)=\sum_{\gamma \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})} f(\gamma g, s) \tag{2.1.13}
\end{equation*}
$$

for $g \in \widetilde{G}(\mathbb{A})$.
This series converges absolutely (and uniformly in compact subsets) for $\operatorname{Re}(s)>1 / 2$, has a meromorphic extension to the entire plane and satisfies a functional equation (see [Lan76, Fur93]).

2.2 The Rankin-Selberg integral

The global integral

The main object of study in this chapter is the following global integral of Rankin-Selberg type

$$
\begin{equation*}
Z(s)=Z(s, f, \Phi)=\int_{G(\mathbb{Q}) Z_{G}(\mathbb{A}) \backslash G(\mathbb{A})} E(g, s, f) \Phi(g) d g \tag{2.2.1}
\end{equation*}
$$

where $\Phi \in V_{\pi}$ and $f \in I(\Pi, s) . Z(s)$ converges absolutely away from the poles of the Eisenstein series.

Let $\Theta=\Theta_{S}$ be the following element of $\widetilde{G}(\mathbb{Q})$

$$
\Theta=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\alpha & 1 & 0 & 0 \\
0 & 0 & 1 & -\bar{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right) \text { where } \alpha=\frac{b+\sqrt{-d}}{2 c}
$$

The 'basic identity' proved by Furusawa in [Fur93] is that

$$
\begin{equation*}
Z(s)=\int_{B(\mathbb{A}) \backslash G(\mathbb{A})} W_{f}(\Theta h, s) B_{\Phi}(h) d h \tag{2.2.2}
\end{equation*}
$$

where for $g \in \widetilde{G}(\mathbb{A})$ we have

$$
W_{f}(g, s)=\int_{\mathbb{A} / \mathbb{Q}} f\left(\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{2.2.3}\\
0 & 1 & 0 & x \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) g, s\right) \psi(c x) d x
$$

and B_{Φ} is the Bessel model of type (S, Λ, ψ) defined in \S 2.1.

The local integral

In this section v refers to any place of \mathbb{Q}. Let $\pi=\otimes_{v} \pi_{v}$ and $\sigma=\otimes_{v} \sigma_{v}$. Now suppose that Φ and f are factorizable functions with $\Phi=\otimes_{v} \Phi_{v}$ and $f(\cdot, s)=\otimes_{v} f_{v}(\cdot, s)$.

By the uniqueness of the Whittaker and the Bessel models, we have

$$
\begin{gather*}
W_{f}(g, s)=\prod_{v} W_{f, v}\left(g_{v}, s\right) \tag{2.2.4}\\
B_{\Phi}(h)=\prod_{v} B_{\Phi, v}\left(h_{v}, s\right) \tag{2.2.5}
\end{gather*}
$$

for $g=\left(g_{v}\right) \in \widetilde{G}(\mathbb{A})$ and $h=\left(h_{v}\right) \in G(\mathbb{A})$ and local Whittaker and Bessel functions $W_{f, v}$, $B_{\Phi, v}$ respectively. Henceforth we write $W_{v}=W_{f, v}, B_{v}=B_{\Phi, v}$ when no confusion can arise.

Therefore our global integral breaks up as a product of local integrals

$$
\begin{equation*}
Z(s)=\prod_{v} Z_{v}(s) \tag{2.2.6}
\end{equation*}
$$

where

$$
Z_{v}(s)=Z_{v}\left(s, W_{v}, B_{v}\right)=\int_{B\left(\mathbb{Q}_{v}\right) \backslash G\left(\mathbb{Q}_{v}\right)} W_{v}(\Theta g, s) B_{v}(g) d g .
$$

The unramified case

The local integral is evaluated in [Fur93] in the unramified case. We recall the result here.
Suppose that the characters $\omega_{\pi}, \omega_{\sigma}, \chi_{0}$ are trivial. Now let q be a finite prime of \mathbb{Q} such that
(a) The local components π_{q}, σ_{q} and Λ_{q} are all unramified.
(b) The conductor of ψ_{q} is \mathbb{Z}_{q}.
(c) $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \in M_{2}\left(\mathbb{Z}_{q}\right)$ with $c \in \mathbb{Z}_{q}^{\times}$.
(d) $-d=b^{2}-4 a c$ generates the discriminant of L_{q} / \mathbb{Q}_{q}.

Since σ_{q} is spherical, it is the spherical principal series representation induced from unramified characters α_{q}, β_{q} of \mathbb{Q}_{q}^{\times}.

Suppose M_{0} is the maximal torus (the group of diagonal matrices) inside G and P_{0} the Borel subgroup containing M_{0} as Levi component. π_{q} is a spherical principal series representation, so there exists an unramified character γ_{q} of $M_{0}\left(\mathbb{Q}_{q}\right)$ such that $\pi_{q}=\operatorname{Ind} d_{P_{0}\left(\mathbb{Q}_{q}\right)}^{M_{0}\left(\mathbb{Q}_{q}\right)} \gamma_{q}$
, (where we extend γ_{q} to P_{0} trivially). We define characters $\gamma_{q}^{(i)}(i=1,2,3,4)$ of \mathbb{Q}_{q}^{\times}by

$$
\begin{array}{ll}
\gamma_{q}^{(1)}(x)=\gamma_{q}\left(\begin{array}{cccc}
x & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), & \gamma_{q}^{(2)}(x)=\gamma_{q}\left(\begin{array}{cccc}
x & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & x
\end{array}\right), \\
\gamma_{q}^{(3)}(x)=\gamma_{q}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & x
\end{array}\right), & \gamma_{q}^{(4)}(x)=\gamma_{q}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{array}
$$

Now let $f_{q}(, s)$ be the unique normalized $\widetilde{K_{q}}-$ spherical vector in $I_{q}\left(\Pi_{q}, s\right)$ and Φ_{q} be the unique normalized $K_{q}-$ spherical vector in π_{q}. Let W_{q}, B_{q} be the coresponding vectors in the local Whittaker and Bessel spaces. The following result is proved in [Fur93]

Theorem 2.2.1 (Furusawa). Let $\rho\left(\Lambda_{q}\right)$ denote the Weil representation of $G L_{2}\left(\mathbb{Q}_{q}\right)$ corresponding to Λ_{q}. Then we have

$$
Z_{q}\left(s, W_{q}, B_{q}\right)=\frac{L\left(3 s+\frac{1}{2}, \pi_{q} \times \sigma_{q}\right)}{L(6 s+1, \mathbf{1}) L\left(3 s+1, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right)}
$$

where,

$$
\begin{aligned}
L\left(s, \pi_{q} \times \sigma_{q}\right) & =\prod_{i=1}^{4}\left(\left(1-\gamma_{q}^{(i)} \alpha_{q}(q) q^{-s}\right)\left(1-\beta_{q}^{(i)} \alpha_{q}(q) q^{-s}\right)\right)^{-1} \\
L(s, \mathbf{1}) & =\left(1-q^{-s}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& L\left(s, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right) \\
& = \begin{cases}\left(1-\alpha_{q}^{2}(q) q^{-2 s}\right)^{-1}\left(1-\beta_{q}^{2}(q) q^{-2 s}\right)^{-1} & \text { if } q \text { is inert in } L, \\
\left(1-\alpha_{q}(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta_{q}(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1} & \text { if } q \text { is ramified in } L, \\
\\
\left(1-\alpha_{q}(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta_{q}(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1} \\
\cdot\left(1-\alpha_{q}(q) \Lambda_{q}^{-1}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta_{q}(q) \Lambda_{q}^{-1}\left(q_{1}\right) q^{-s}\right)^{-1} & \text { if } q \text { splits in } L,\end{cases}
\end{aligned}
$$

where $q_{1} \in \mathbb{Z}_{q} \otimes_{\mathbb{Q}} L$ is any element with $N_{L / \mathbb{Q}}\left(q_{1}\right) \in q \mathbb{Z}_{q}^{\times}$.

2.3 Strategy for computing the p-adic integral

Throughout this section we fix an odd prime p in \mathbb{Q} such that p is inert in L. Moreover, we assume that $S \in M_{2}\left(\mathbb{Z}_{p}\right)$.

The fact that p is inert in L implies that if w, z are elements of \mathbb{Z}_{p} then $w+z \xi \in$ $\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$ if and only if at least one of w, z is an unit.

Moreover the additional assumption $S \in M_{2}\left(\mathbb{Z}_{p}\right)$ forces that a, c are units in \mathbb{Z}_{p}.

An explicit set of coset representatives

Recall the Iwahori subgroup I_{p}. It will be useful to describe a set of coset representatives of K_{p} / I_{p}.

But first some definitions.
Let Y be the set $\{0,1, . ., p-1\}$. Let $V=Y \cup\{\infty\}$ where ∞ is just a convenient formal symbol.

For $x=(n, q, r) \in \mathbb{Z}_{p}^{3}$, let $U_{x} \in U\left(\mathbb{Q}_{p}\right)$ be the matrix $\left(\begin{array}{cccc}1 & 0 & n & q \\ 0 & 1 & q & r \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
For $y \in \mathbb{Z}_{p}$ define $Z_{y}=\left(\begin{array}{cccc}1 & y & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -y & 1\end{array}\right) \in K_{p}$.
Also define $Z_{\infty}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \in K_{p}$.
In particular, the definitions U_{x}, Z_{y} make sense for $x \in Y^{3}, y \in V$. Now we define the following three classes of matrices. We call them matrices of class A, class B and class D, respectively.
(a) For $x=(n, q, r) \in Y^{3}, y \in V$, let $A_{x}^{y}=U_{x} J Z_{y}$.
(b) For $x=(n, q, r) \in Y^{3}$ with $q^{2}-n r \equiv 0(\bmod p)$ and $y \in V$, let $B_{x}^{y}=J U_{x} J Z_{y}$.
(c) For $\lambda, y \in V$, let $D_{\lambda}^{y}= \begin{cases}\left(\begin{array}{cccc}-\lambda & 0 & 0 & 1 \\ 1 & 0 & 0 & \lambda^{-1} \\ 0 & 1 & \lambda^{-1} & 0 \\ 0 & \lambda & -1 & 0\end{array}\right) Z_{y} \quad \text { if } \lambda \neq 0, \infty, \\ \left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \\ \left(\begin{array}{llll}-1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right) & \text { if } \lambda=0, \\ Z_{y} & \text { if } \lambda=\infty .\end{cases}$

Let S be the set obtained obtained by taking the union of the class A, class B and class D matrices, precisely $S=\left\{A_{x}^{y}\right\}_{\substack{y \in V \\ x \in Y^{3}}} \bigcup\left\{B_{x}^{y}\right\}_{\substack{y \in V, x=(n, q, r) \in Y^{3} \\ q^{2}-n r \equiv 0(\bmod p)}} \bigcup\left\{D_{\lambda}^{y}\right\}_{\substack{\lambda \in V \\ y \in V}}$. Clearly S has cardinality $p^{3}(p+1)+p^{2}(p+1)+(p+1)^{2}=(p+1)^{2}\left(p^{2}+1\right)$.

Lemma 2.3.1. S is a complete set of coset representatives for K_{p} / I_{p}.
Proof. Let us first verify that S has the right cardinality. Clearly the cardinality of K_{p} / I_{p} is the same as the cardinality of $G\left(\mathbb{F}_{p}\right) / I\left(4, \mathbb{F}_{p}\right)$. By [Kim98, Theorem 3.2], $\left|G\left(\mathbb{F}_{p}\right)\right|=$ $p^{4}(p-1)^{3}(p+1)^{2}\left(p^{2}+1\right)$. On the other hand $I(4)$ has the Levi-decomposition

$$
I(4)=\left(\begin{array}{cc}
g & 0 \\
0 & v \cdot\left(g^{-1}\right)^{t}
\end{array}\right)\left(\begin{array}{cc}
1_{2} & X \\
0 & 1_{2}
\end{array}\right)
$$

with g upper-triangular, X symmetric and $v \in G L(1)$. So $\left|I\left(4, \mathbb{F}_{p}\right)\right|=p^{4}(p-1)^{3}$. Thus $\left|G\left(\mathbb{F}_{p}\right) / I\left(4, \mathbb{F}_{p}\right)\right|=(p+1)^{2}\left(p^{2}+1\right)$ which is the same as the cardinality of S.

So it is enough to show that no two matrices in S lie in the same coset.
For a 2×2 matrix H with coefficients in \mathbb{Z}_{p}, we may reduce $H \bmod p$ and consider the \mathbb{F}_{p}-rank of the resulting matrix; we denote this quantity by $r_{p}(H)$. It is easy to see that if the matrix $A=\left(\begin{array}{cc}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right)$ varies in a fixed coset of K_{p} / I_{p}, the pair $\left(r_{p}\left(A_{1}\right), r_{p}\left(A_{3}\right)\right)$ remains constant.

Observe now that if A is of class A, then $r_{p}\left(A_{3}\right)=2$; for A of class $\mathrm{B}, r_{p}\left(A_{3}\right)<2$ and $r_{p}\left(A_{1}\right)=2$; while for A of class D we have $r_{p}\left(A_{3}\right)<2, r_{p}\left(A_{1}\right)<2$. This proves that elements of S of different classes cannot lie in the same coset.

Now we consider distinct elements of S of the same class, and show that they too must lie in different cosets.

For $x_{1}=\left(n_{1}, q_{1}, r_{1}\right), x_{2}=\left(n_{2}, q_{2}, r_{2}\right) \in Y^{3}, y_{1}, y_{2} \in Y$, consider the elements $A_{x_{1}}^{y_{1}}, A_{x_{2}}^{y_{2}}$, $B_{x_{1}}^{y_{1}}, B_{x_{2}}^{y_{2}}$ of S. We have

$$
\left(A_{x_{1}}^{y_{1}}\right)^{-1} A_{x_{2}}^{y_{2}}=\left(B_{x_{1}}^{y_{1}}\right)^{-1} B_{x_{2}}^{y_{2}}=
$$

$$
\left(\begin{array}{cccc}
1 & y_{2}-y_{1} & 0 & 0 \\
0 & 1 & 0 & 0 \\
-n_{2}+n_{1} & -n_{2} y_{2}-q_{2}+n_{1} y_{2}+q_{1} & 1 & 0 \\
y_{1}\left(n_{1}-n_{2}\right)+q_{1}-q_{2} & y_{1} y_{2}\left(n_{1}-n_{2}\right)+\left(y_{1}+y_{2}\right)\left(q_{1}-q_{2}\right)-r_{2}+r_{1} & y_{1}-y_{2} & 1
\end{array}\right) .
$$

So if the above matrix belongs to I_{p}, we must have $y_{1}=y_{2}, n_{1}=n_{2}$. That leads to $q_{1}=q_{2}$, and finally by looking at the bottom row we conclude $r_{1}=r_{2}$.

This covers the case of class A and class B matrices in S whose y-component is not equal to ∞.

Now $\left(A_{x_{1}}^{y_{1}}\right)^{-1} A_{x_{2}}^{\infty}=\left(B_{x_{1}}^{y_{1}}\right)^{-1} B_{x_{2}}^{\infty}=$

$$
\left(\begin{array}{cccc}
-y_{1} & 1 & 0 & 0 \tag{2.3.1}\\
1 & 0 & 0 & 0 \\
q_{1}-q_{2} & n_{1}-n_{2} & 0 & 1 \\
q_{1} y_{1}+r_{1}-y_{1} q_{2}-r_{2} & n_{1} y_{1}+q_{1}-y_{1} n_{2}-q_{2} & 1 & y_{1}
\end{array}\right)
$$

which cannot belong to I_{p}.
Also $\left(A_{x_{1}}^{\infty}\right)^{-1} A_{x_{2}}^{\infty}=\left(B_{x_{1}}^{\infty}\right)^{-1} B_{x_{2}}^{\infty}=$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.3.2}\\
0 & 1 & 0 & 0 \\
-r_{2}+r_{1} & -q_{2}+q_{1} & 1 & 0 \\
-q_{2}+q_{1} & -n_{2}+n_{1} & 0 & 1
\end{array}\right)
$$

and if the above matrix lies in I_{p} we must have $x_{1}=x_{2}$.
Thus we have completed the proof for class A and class B matrices.
To complete the proof of the lemma we need to show that no two class D matrices are in the same coset. The calculations for that case are similar to those above and are therefore omitted.

Reducing the integral to a sum

By [Fur93, p. 201]) we have the following disjoint union

$$
\begin{equation*}
G\left(\mathbb{Q}_{p}\right)=\coprod_{\substack{l \in \mathbb{Z} \\ 0 \leq m \in \mathbb{Z}}} B\left(\mathbb{Q}_{p}\right) \cdot h(l, m) \cdot K_{p} \tag{2.3.3}
\end{equation*}
$$

where

$$
h(l, m)=\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & p^{m+l} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & p^{m}
\end{array}\right)
$$

We wish to compute

$$
\begin{equation*}
Z_{p}(s)=\int_{B\left(\mathbb{Q}_{p}\right) \backslash G\left(\mathbb{Q}_{p}\right)} W_{p}(\Theta h, s) B_{p}(h) d h . \tag{2.3.4}
\end{equation*}
$$

By (2.3.3) and (2.3.4) we have

$$
\begin{equation*}
Z_{p}(s)=\sum_{l \in \mathbb{Z}, m \geq 0} \int_{B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) K_{p}} W_{p}(\Theta h, s) B_{p}(h) d h . \tag{2.3.5}
\end{equation*}
$$

For $m \geq 0$ we define the subset T_{m} of S by
$T_{m}=\left\{B_{(1,0,0)}^{0}, B_{(1,0,0)}^{\infty}, B_{(0,0,1)}^{0}, B_{(0,0,1)}^{\infty}, B_{(0,0,0)}^{0}, B_{(0,0,0)}^{\infty}, A_{(0,0,0)}^{0}, A_{(0,0,0)}^{\infty}\right\}$
if $m>0$,

$$
T_{0}=\left\{B_{(1,0,0)}^{0}, B_{(1,0,0)}^{\infty}, B_{(0,0,0)}^{0}, A_{(0,0,0)}^{0}\right\} .
$$

Also, we use the notation $t_{1}=B_{(1,0,0)}^{0}, t_{2}=B_{(1,0,0)}^{\infty}, \ldots, t_{8}=A_{(0,0,0)}^{\infty}$. Thus $T_{m}=\left\{t_{i} \mid 1 \leq\right.$ $i \leq 8\}$ if $m>0$ and $T_{0}=\left\{t_{1}, t_{2}, t_{5}, t_{7}\right\}$.

Proposition 2.3.2. Let $l \in \mathbb{Z}, m \geq 0$. Then we have

$$
B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) K_{p}=\coprod_{t \in T_{m}} B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) t I_{p}
$$

Proof. Define two elements f and g in K_{p} to be (l, m)-equivalent if there exists $r \in B\left(\mathbb{Q}_{p}\right)$ and $k \in I_{p}$ such that $r h(l, m) f k=h(l, m) g$. Furthermore observe that if two elements of K_{p} are congruent mod p then they are in the same I_{p}-coset and therefore are trivially (l, m)-equivalent.

The proposition can be restated as saying that any $s \in S$ is (l, m)-equivalent to exactly one of the elements t with $t \in T_{m}$. This will follow from the following nine claims which we prove later below.

Claim 1. Any class A matrix in S by left-multiplying by an appropriate element of $U\left(\mathbb{Z}_{p}\right)$ can be made congruent mod p to $A_{(0,0,0)}^{y}$ for some $y \in V$.

Claim 2. If $m>0$ all the $A_{(0,0,0)}^{y}, y \in V \backslash\{0\}$ are (l, m)-equivalent. In the case $m=0$ all the $A_{(0,0,0)}^{y}, y \in V$ are $(l, 0)$-equivalent.

Claim 3. Any class B matrix in S by left-multiplying by an appropriate element of $U\left(\mathbb{Z}_{p}\right)$ can be made congruent mod p to one of the matrices

$$
B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}, B_{\left(1, \lambda, \lambda^{2}\right)}^{\infty} B_{(0,0,1)}^{y}, B_{(0,0,0)}^{y}
$$

where $\lambda \in Y, y \in V$.

Claim 4. The matrices $B_{\left(1, \lambda, \lambda^{2}\right)}^{y}, \lambda \in Y, y \in\{-\lambda, \infty\}$ are all (l, m)-equivalent to one of the matrices $B_{(1,0,0)}^{y}, y \in\{0, \infty\}$.

Claim 5. The matrices $B_{(0,0,1)}^{y}, y \in V$ by left-multiplying by an appropriate element of $U\left(\mathbb{Z}_{p}\right)$ can be made equal to one of the matrices $B_{(0,0,1)}^{y}$ with $y \in\{0, \infty\}$.

Claim 6. The matrices $B_{(0,0,0)}^{y}, y \in V$ are (l, m)-equivalent to one of the matrices $B_{(0,0,0)}^{y}$ with $y \in\{0, \infty\}$. In the case $m=0$ these two matrices are also equivalent.

Claim 7. The matrices $B_{(1,0,0)}^{0}, B_{(0,0,1)}^{\infty}$ are ($\left.l, 0\right)$-equivalent and the matrices $B_{(1,0,0)}^{\infty}, B_{(0,0,1)}^{0}$ are also (l,0)-equivalent.

Claim 8. Any class D matrix D_{λ}^{y} by left-multiplying by an appropriate element of $U\left(\mathbb{Z}_{p}\right)$ can be made equal to a class B matrix.

Claim 9. No two elements of T_{m} are (l, m)-equivalent for any $m \geq 0$.
Indeed claims 1,2 imply that any class A matrix is (l, m)-equivalent to one of t_{7}, t_{8} (and when $m=0, t_{7}$ alone suffices). On the other hand claims $3,4,5,6,7$ tell us that any class B matrix is (l, m)-equivalent to one of the $t_{i}, 1 \leq i \leq 6$ (and that just t_{1}, t_{2}, t_{5} suffice if $m=0$). Also claim 8 says that any class D matrix is also (l, m)-equivalent to one of the above. Since the class A, class B and class D matrix exhaust S, this shows that any element of S is (l, m)-equivalent to some element of T_{m}; in other words we do have the union stated in Proposition 2.3.2. Finally claim 9 completes the argument by implying that the union is indeed disjoint.

We now prove each of the above claims. The proofs are just computations, we simply multiply by suitable elements of R to get the results we desire.

Proof of claim 1. This follows from the fact that $U_{-x} A_{x}^{y} \equiv J Z_{y}(\bmod p)$ and $J Z_{y}=A_{(0,0,0)}^{y}$.

Proof of claim 2. We first deal with the case $m=0$. For $y \in V, y \neq 0$ let $j=\left(-\frac{a}{y}+\right.$ $\left.\frac{b}{2}\right)+\xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$ (here and elsewhere we interpret $1 / \infty=0$). Consider the element
$\left(A_{(0,0,0)}^{0}\right)^{-1} h(l, 0)^{-1} j h(l, 0) A_{(0,0,0)}^{y}$. By direct calculation this equals

$$
\left(\begin{array}{cccc}
-\frac{a}{y} & 0 & 0 & 0 \\
-c & \frac{-c y^{2}+a-y b}{y} & 0 & 0 \\
0 & 0 & -\frac{c y^{2}+a-y b}{y} & c \\
0 & 0 & 0 & -\frac{a}{y}
\end{array}\right)
$$

if $y \neq \infty$ and equals

$$
\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
b & -c & 0 & 0 \\
0 & 0 & c & b \\
0 & 0 & 0 & -a
\end{array}\right)
$$

if $y=\infty$. Both of these matrices lie in I_{p} and this proves the claim for $m=0$.
Now consider $m>0$. For $y \in V, y \neq 0, \infty$, let $j=c y+p^{m} \xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$. Consider the element $\left(A_{(0,0,0)}^{\infty}\right)^{-1} h(l, m)^{-1} j h(l, m) A_{(0,0,0)}^{y}$, which by direct calculation equals

$$
\left(\begin{array}{cccc}
-c & \frac{b p^{m}}{2} & 0 & 0 \\
c y-\frac{b p^{m}}{2} & c y^{2}-\frac{y p^{m} b}{2}+p^{2 m} a & 0 & 0 \\
0 & 0 & -p^{2 m} a-c y^{2}+\frac{y p^{m} b}{2} & c y-\frac{b p^{m}}{2} \\
0 & 0 & \frac{b p^{m}}{2} & c
\end{array}\right)
$$

and this lies in I_{p}. Thus $A_{0,0,0}^{y}$ is (l, m)-equivalent to $A_{0,0,0}^{\infty}$ and this completes the proof of the claim.

Proof of claim 3. Before proving this claim let us make a small remark. If $\lambda \in Y$ is such that λ^{2} does not belong to Y one may ask what we mean by the notation $B_{\left(1, \lambda, \lambda^{2}\right)}^{y} ;$ in such a case, we understand λ^{2} to refer to the unique element in Y that is congruent to $\lambda^{2} \bmod p$. This convention will govern any such situation.

We now begin proving the claim. Given a class B matrix $B_{(n, q, r)}^{y}$ with $n \neq 0$ we must have $q \equiv n \lambda, r \equiv n \lambda^{2}(\bmod p)$ for some appropriate $\lambda \in Y$.

First assume that $y \neq-\lambda$. If $y \neq \infty$ put $s=\frac{\lambda-y+n(\lambda+y)}{n(y+\lambda)}, t=-\frac{1}{n(y+\lambda)}, u=0$ and check
that $\left(B_{n, q, r}^{y}\right)^{-1} U_{s, t, u} B_{1, \lambda, \lambda^{2}}^{\infty}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
-\lambda-y & 0 & -\frac{1}{n(y+\lambda)} & \frac{\lambda+n(y+\lambda)}{n(y+\lambda)} \\
\frac{\lambda+n(y+\lambda)}{n(y+\lambda)} & \frac{1}{n(y+\lambda)} & 0 & -\frac{1}{n(y+\lambda)} \\
0 & 0 & -\frac{1}{y+\lambda} & \frac{\lambda+n(y+\lambda)}{y+\lambda} \\
0 & 0 & 0 & n(y+\lambda)
\end{array}\right)
$$

If $y=\infty$ put $s=\frac{n-1}{n}, t=0, u=0$ and check that $\left(B_{n, q, r}^{\infty}\right)^{-1} U_{s, t, u} B_{1, \lambda, \lambda^{2}}^{\infty}$ is congruent to

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{(n-1) \lambda}{n} & \frac{1}{n} & 0 & \frac{n-1}{n} \\
0 & 0 & 1 & (n-1) \lambda \\
0 & 0 & 0 & n
\end{array}\right) .
$$

Both of these matrices belong to I_{p}.
Now suppose that $y=-\lambda$. Put $s=\frac{n-1}{n}, t=0, u=0$ and observe that $\left(B_{(n, q, r)}^{-\lambda}\right)^{-1} U_{(s, t, u)} B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
\frac{1}{n} & 0 & \frac{n-1}{n} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & n & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which belongs to I_{p} also.
Finally assume that $n=0$. So $q=0$ as well. If $r=0$ there is nothing to prove. So suppose $r \neq 0$. If $y \neq \infty$ put $s=0, t=\frac{y(r-1)}{r}, u=\frac{r-1}{r}$ and observe that $\left(B_{(0,0, r)}^{y}\right)^{-1} U_{(s, t, u)} B_{(0,0,1)}^{y}$ equals

$$
\left(\begin{array}{cccc}
1 & 0 & -\frac{\left.(r-1) y^{2}\right)}{r} & 0 \\
0 & \frac{1}{r} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & r
\end{array}\right)
$$

which belongs to I_{p}. If $y=\infty$ put $s=0, t=0, u=\frac{r-1}{r}$ and observe that $\left(B_{(0,0, r)}^{y}\right)^{-1} U_{(s, t, u)} B_{(0,0,1)}^{y}$
equals

$$
\left(\begin{array}{cccc}
\frac{1}{r} & 0 & \frac{r-1}{r} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & r & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which belongs to I_{p}.
Thus the claim is proved.
Proof of claim 4. First suppose that $y=\infty$. If $m>0$, put $j=c / \lambda+p^{m} \xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap\right.$ $\left.K_{p}\right)$. By direct calculation we verify that $\left(B_{(1,0,0)}^{\infty}\right)^{-1} h(l, m)^{-1} j h(l, m) B_{\left(1, \lambda, \lambda^{2}\right)}^{\infty}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
\frac{c}{\lambda} & 0 & 0 & 0 \\
c & \frac{c}{\lambda} & 0 & 0 \\
0 & 0 & \frac{c}{\lambda} & -c \\
0 & 0 & 0 & \frac{c}{\lambda}
\end{array}\right)
$$

and this belongs to I_{p}.
If $m=0$, put $j=\frac{(2 c-b \lambda)}{2 \lambda}+\xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$ and check that if we let $n \in Y \backslash 0$ be the element congruent $\bmod p$ to $\frac{a \lambda^{2}-b \lambda+c}{c}$ and $y \in Y \backslash 0$ be the element congruent $\bmod p$ to $-\frac{c}{a \lambda}$ then $\left(B_{(n, 0,0)}^{y}\right)^{-1} h(l, 0)^{-1} j h(l, 0) B_{\left(1, \lambda, \lambda^{2}\right)}^{\infty}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
\frac{c\left(a \lambda^{2}-b \lambda+c\right)}{a \lambda^{2}} & 0 & 0 & 0 \\
\frac{c-b \lambda}{\lambda} & -a & 0 & 0 \\
0 & 0 & a & \frac{c-b \lambda}{\lambda} \\
0 & 0 & 0 & -\frac{c\left(a \lambda^{2}-b \lambda+c\right)}{a \lambda^{2}}
\end{array}\right)
$$

which lies in I_{p}. Hence $B_{\left(1, \lambda, \lambda^{2}\right)}^{\infty}$ is $(l, 0)$-equivalent to $B_{(n, 0,0)}^{y}$ and by the proof of Claim 3 it follows that it is $(l, 0)$-equivalent to $B_{(1,0,0)}^{\infty}$.

Now assume that $y=-\lambda$. If $\lambda=0$ there is nothing to prove so assume $\lambda \neq 0$. If $m>0$, put $j=c+p^{m} \lambda \xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$. By a direct calculation we see that $\left(B_{(1,0,0)}^{0}\right)^{-1} h(l, m)^{-1} j h(l, m) B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}$ is congruent to $c I_{4}(\bmod p)$ and thus $B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}$ is $(l, m)-$ equivalent to $B_{(1,0,0)}^{0}$. If $m=0$, put $j=\frac{(2 c-b \lambda)}{2 \lambda}+\xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$ and check that if we let $n \in Y \backslash 0$ be the element that is congruent $\bmod p$ to $\frac{a \lambda^{2}-b \lambda+c}{c}$ then,
$\left(B_{(n, 0,0)}^{0}\right)^{-1} h(l, 0)^{-1} j h(l, 0) B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
\frac{c}{\lambda} & 0 & 0 & 0 \\
-a & \frac{a \lambda^{2}-b \lambda+c}{\lambda} & 0 & 0 \\
0 & 0 & \frac{a \lambda^{2}-b \lambda+c}{\lambda} & a \\
0 & 0 & 0 & \frac{c}{\lambda}
\end{array}\right)
$$

which lies in I_{p}. Hence $B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}$ is $(l, 0)$-equivalent to $B_{(n, 0,0)}^{0}$ and by Claim 3 it follows that it is $(l, 0)$-equivalent to $B_{(1,0,0)}^{0}$.

Proof of claim 5. If $y=\infty$ there is nothing to prove. So assume $y \in Y$. Put $s=0, t=$ $-y, u=0$ and observe that $\left(B_{(0,0,1)}^{y}\right)^{-1} U_{(s, t, u)} B_{(0,0,1)}^{0}$ equals

$$
\left(\begin{array}{cccc}
1 & 0 & y^{2} & -y \\
0 & 1 & -y & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which is in I_{p}.
Proof of claim 6. First consider the case $m>0$. Take $y \in V \backslash\{0, \infty\}$ and let $j=c / y+p^{m} \xi \in$ $\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$. By direct calculation we verify that

$$
\left(B_{(0,0,0)}^{y}\right)^{-1} h(l, m)^{-1} j h(l, m) B_{(0,0,0)}^{0}
$$

is congruent $\bmod p$ to $\frac{c}{y} I_{4}$ and so $B_{(0,0,0)}^{y}$ is (l, m)-equivalent to $B_{(0,0,0)}^{0}$.
Now let $m=0$. Take $y \in V \backslash\{0, \infty\}$ and let $j=c / y+b / 2+\xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$. By direct calculation we verify that $\left(B_{(0,0,0)}^{y}\right)^{-1} h(l, 0)^{-1} j h(l, 0) B_{(0,0,0)}^{0}$ equals

$$
\left(\begin{array}{cccc}
\frac{a y^{2}+b y+c}{y} & 0 & 0 & 0 \\
-a & \frac{c}{y} & 0 & 0 \\
0 & 0 & \frac{c}{y} & a \\
0 & 0 & 0 & \frac{a y^{2}+b y+c}{y}
\end{array}\right)
$$

which lies in I_{p}.

Finally, if we take $j=b / 2+\xi \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right)$ we can verify that

$$
\begin{aligned}
& \left(B_{(0,0,0)}^{\infty}\right)^{-1} h(l, 0)^{-1} j h(l, 0) B_{(0,0,0)}^{0} \\
& =\left(\begin{array}{cccc}
-a & 0 & 0 & 0 \\
b & c & 0 & 0 \\
0 & 0 & -c & b \\
0 & 0 & 0 & a
\end{array}\right)
\end{aligned}
$$

which lies in I_{p}.
Proof of claim 7. Putting $j=\frac{b}{2}+\xi$ and $s=1-\frac{c}{a}, t=0, u=0$ we verify that

$$
\begin{aligned}
& \left(B_{(0,0,1)}^{\infty}\right)^{-1} h(l, 0)^{-1} j U_{(s, t, u)} h(l, 0) B_{(1,0,0)}^{0} \\
& =\left(\begin{array}{cccc}
-c & 0 & c-a & 0 \\
\frac{b c}{a} & c & \frac{b(a-c)}{a} & 0 \\
0 & 0 & -a & b \\
0 & 0 & 0 & a
\end{array}\right)
\end{aligned}
$$

which lies in I_{p}.
Putting $j=-\frac{b}{2}+\xi$ and $u=1-\frac{a}{c}, t=0, s=0$ we verify that

$$
\begin{aligned}
& \left(B_{(0,0,1)}^{\infty}\right)^{-1} h(l, 0)^{-1} j U_{(s, t, u)} h(l, 0) B_{(1,0,0)}^{0} \\
& \quad=\left(\begin{array}{cccc}
-a & -\frac{b a}{c} & 0 & \frac{b(a-c)}{c} \\
0 & a & 0 & c-a \\
0 & 0 & -c & 0 \\
0 & 0 & -b & c
\end{array}\right)
\end{aligned}
$$

which lies in I_{p}.
Proof of claim 8. Suppose $y \neq \infty, \lambda \neq 0, \infty$. Put $s=1-2 \lambda y, t=y, u=0$ and check that
$\left(D_{\lambda}^{y}\right)^{-1} U_{(s, t, u)} B_{\left(1, \lambda, \lambda^{2}\right)}^{\infty}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
-1 & 0 & \frac{y}{\lambda} & \frac{1-2 \lambda y}{2 \lambda} \\
\lambda & 1 & -\frac{1}{2 \lambda} & -\frac{1}{2} \\
0 & 0 & \frac{1}{2} & -\frac{1}{2 \lambda} \\
0 & 0 & 0 & -\frac{1}{2}
\end{array}\right) .
$$

Now suppose $y \neq \infty$ and put $s=1, t=-y, u=0$ and check that

$$
\begin{aligned}
& \left(D_{0}^{y}\right)^{-1} U_{(s, t, u)} B_{(1,0,0)}^{\infty} \\
= & \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

Next put $s=0, t=-y, u=1$ and check that $\left(D_{\infty}^{y}\right)^{-1} U_{(s, t, u)} B_{(0,0,1)}^{0}$ equals

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Now let $\lambda \neq 0, \infty$. Put $s=1, t=0, u=0$ and check that $\left(D_{\lambda}^{\infty}\right)^{-1} U_{(s, t, u)} B_{\left(1, \lambda, \lambda^{2}\right)}^{-\lambda}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & -\frac{1}{2 \lambda} \\
0 & -1 & \frac{1}{2 \lambda} & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right)
$$

Next put $s=1, t=0, u=0$ and check that $\left(D_{0}^{\infty}\right)^{-1} U_{(s, t, u)} B_{(1,0,0)}^{0}$ is congruent $\bmod p$
to

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Finally put $s=0, t=0, u=1$ and check that $\left(D_{\infty}^{\infty}\right)^{-1} U_{(s, t, u)} B_{(0,0,1)}^{\infty}$ is congruent mod p to

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Proof of claim 9. Suppose two elements f and g in T_{m} are (l, m)-equivalent. Then there exists $r \in B\left(\mathbb{Q}_{p}\right)$ and $k \in I_{p}$ such that $r h(l, m) f k=h(l, m) g$. Denote $r^{\prime}=h(l, m)^{-1} r h(l, m)$ so that $g=r^{\prime} f k$. Then r^{\prime} is upper-triangular and belongs to K_{p}. Writing f, g in block form $f=\left(\begin{array}{ll}f_{1} & f_{2} \\ f_{3} & f_{4}\end{array}\right), g=\left(\begin{array}{ll}g_{1} & g_{2} \\ g_{3} & g_{4}\end{array}\right)$ we conclude as in the proof of Lemma 2.3.1 that the \mathbb{F}_{p}-rank of f_{3} equals the \mathbb{F}_{p}-rank of g_{3}. For class A matrices the \mathbb{F}_{p}-rank of the corresponding 2×2 block is 2 and for class B matrices it is less than 2. So it is not possible that one of f, g is class A and the other class B.

Thus we can assume that f and g are in the same class.
We first deal with the case $m>0$.
Continuing with the generalities, let $r=t u$ with $T \in \mathbb{Q}_{p}, u \in U\left(\mathbb{Q}_{p}\right)$. Put

$$
t^{\prime}=h(l, m)^{-1} t h(l, m), u^{\prime}=h(l, m)^{-1} u h(l, m) .
$$

Thus $r^{\prime}=t^{\prime} u^{\prime}$ and this forces $t^{\prime} \in\left(T\left(\mathbb{Q}_{p}\right) \cap K_{p}\right), u^{\prime} \in U\left(\mathbb{Z}_{p}\right)$. We must then have $t=x+z p^{m} \xi$ with $x \in \mathbb{Z}_{p}^{\times}, z \in \mathbb{Z}_{p}$. Let $u^{\prime}=U_{(s, t, u)}$.

Let us first consider the class A case. We can check that $\left(A_{(0,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} A_{(0,0,0)}^{\infty}$ is con-
gruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
0 & x & 0 & 0 \\
x & -z c & 0 & 0 \\
-t x-z c u & -s x-z c t & z c & x \\
-u x & -t x & x & 0
\end{array}\right)
$$

and so can never belong to I_{p} because x is a unit.
We now consider the class B case. Suppose for $\left(n_{1}, q_{1}, r_{1}\right),\left(n_{2}, q_{2}, r_{2}\right)$ we compute

$$
\left(B_{\left(n_{1}, q_{1}, r_{1}\right)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{\left(n_{2}, q_{2}, r_{2}\right)}^{0}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

and prove that C is never congruent to $0(\bmod p)$. It will follow then that for any $y_{1}, y_{2} \in V$, $B_{\left(n_{1}, q_{1}, r_{1}\right)}^{y_{1}}$ and $B_{\left(n_{2}, q_{2}, r_{2}\right)}^{y_{2}}$ are not (l, m)-equivalent because the introduction of the new terms $Z_{y_{1}}, Z_{y_{2}}$ cannot affect C.
$\left(B_{(1,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,0)}^{0}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
x & z c & s x+z c t & t x+z c u \\
0 & x & t x & u x \\
x & z c & s x+x+z c t & t x+z c u \\
0 & 0 & -z c & x
\end{array}\right)
$$

$\left(B_{(1,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,1)}^{0}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
x & z c-t x-z c u & s x+z c t & t x+z c u \\
0 & x-u x & t x & u x \\
x & z c-t x-z c u & s x+x+z c t & t x+z c u \\
0 & -x & -z c & x
\end{array}\right)
$$

$\left(B_{(0,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,1)}^{0}$ is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
x & z c-t x-z c u & s x+z c t & t x+z c u \\
0 & x-u x & t x & u x \\
0 & 0 & x & 0 \\
0 & -x & -z c & x
\end{array}\right)
$$

Each of these three matrices have this property because x is a unit.
Now consider $\left(B_{(1,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(1,0,0)}^{\infty}$. This is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
z c & x-s x-z c t & t x+z c u & s x+z c t \\
x & -t x & u x & t x \\
z c & -s x-z c t & t x+z c u & s x+x+z c t \\
0 & z c & x & -z c
\end{array}\right)
$$

which cannot belong to I_{p} because x is a unit.
Next consider $\left(B_{(0,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,0)}^{\infty}$. This is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
z c & x & t x+z c u & s x+z c t \\
x & 0 & u x & t x \\
0 & 0 & 0 & x \\
0 & 0 & x & -z c
\end{array}\right)
$$

which cannot belong to I_{p} for the same reason.
Finally consider $\left(B_{(0,0,1)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,1)}^{\infty}$. This is congruent $\bmod p$ to

$$
\left(\begin{array}{cccc}
-t x+z c-z c u & x & t x+z c u & s x+z c t \\
x-u x & 0 & u x & t x \\
0 & 0 & 0 & x \\
-u x & 0 & u x+x & t x-z c
\end{array}\right)
$$

which can again not belong to I_{p}.
Thus we have completed the proof of the claim for $m>0$.
For $m=0$ we can only say that $t^{\prime}=x+z \xi$ with atleast one of x, z an unit.

$$
\begin{aligned}
& \left(B_{(1,0,0)}^{0}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,0)}^{0}= \\
& \left(\begin{array}{cccc}
x+\frac{1}{2} z b & z c & s x+\frac{1}{2} z b+z c t & t x+\frac{1}{2} z b+z c u \\
-z a & x-\frac{1}{2} z b & t x-\frac{1}{2} z b-z a s & u x-\frac{1}{2} z b-z a t \\
x+\frac{1}{2} z b & z c & s x+x-\frac{1}{2} z b+\frac{1}{2} s z b+z c t & t x+\frac{1}{2} z b+z c u+z a \\
0 & 0 & -z c & x+\frac{1}{2} z b
\end{array}\right)
\end{aligned}
$$

which if in I_{p} implies $p \mid z$ which in turn implies $p \mid x$, a contradiction.

$$
\begin{aligned}
& \left(B_{(1,0,0)}^{\infty}\right)^{-1} t^{\prime} u^{\prime} B_{(0,0,0)}^{0}= \\
& \\
& \left(\begin{array}{cccc}
-z a & x-\frac{1}{2} z b & -z a s+t x-\frac{1}{2} t z b & -z a t+u x-\frac{1}{2} u z b \\
x+\frac{1}{2} z b & z c & s x+\frac{1}{2} s z b+z c t & t x+\frac{1}{2} t z b+z c u \\
0 & 0 & -z c & x+\frac{1}{2} z b \\
x+\frac{1}{2} z b & z c & s x+x+z c t+\frac{1}{2} s z b-\frac{1}{2} z b & t x+\frac{1}{2} t z b+z c u+z a
\end{array}\right)
\end{aligned}
$$

which cannot belong to I_{p} for the same reason.

$$
\begin{aligned}
& \text { Put } G=z\left(c t+\frac{1}{2} s b-\frac{1}{2} b\right) \cdot\left(B_{(1,0,0)}^{\infty}\right)^{-1} t^{\prime} u^{\prime} B_{(1,0,0)}^{0}= \\
& \left.\qquad \begin{array}{cccc}
z a(s-1)-t x+\frac{1}{2} t z b & x-\frac{1}{2} z b & -z a s+t x-\frac{1}{2} t z b & -z a t+u x-\frac{1}{2} u z b \\
x(1-s)+G & z c & s x+\frac{1}{2} s z b+z c t & t x+\frac{1}{2} t z b+z c u \\
z c & 0 & -z c & x+\frac{1}{2} z b \\
\frac{1}{2} z b-G-s x & z c & x(s+1)+G & t x+\frac{1}{2} t z b+z c u+z a
\end{array}\right)
\end{aligned}
$$

which cannot belong to I_{p} for the same reason.
This completes the proof of the final claim.

In which we calculate a certain volume

For any $t \in K_{p}$ we define the volume $I_{t}^{l, m}$ as follows.

$$
\begin{equation*}
I_{t}^{l, m}=\operatorname{vol}\left(B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) t I_{p}\right) \tag{2.3.6}
\end{equation*}
$$

In this subsection we shall explicitly compute the volume $I_{t}^{l, m}$. By Proposition 2.3.2, it is enough to do this for $t \in T_{m}$. The next two propositions state the results and the rest of the section is devoted to proving them.

Proposition 2.3.3. Let $m>0$. Let $M_{l, m}$ denote $\frac{p^{3 l+4 m}}{(p+1)\left(p^{2}+1\right)}$. Then the quantities $I_{t_{i}}^{l, m}$ for
$1 \leq i \leq 8$ are as follows.

$$
\begin{array}{lr}
I_{t_{1}}^{l, m}=p M_{l, m} & I_{t_{5}}^{l, m}=M_{l, m} \\
I_{t_{2}}^{l, m}=p^{2} M_{l, m} & I_{t_{6}}^{l, m}=p M_{l, m} \\
I_{t_{3}}^{l, m}=p M_{l, m} & I_{t_{7}}^{l, m}=p^{2} M_{l, m} \\
I_{t_{4}}^{l, m}=M_{l, m} & I_{t_{8}}^{l, m}=p^{3} M_{l, m}
\end{array}
$$

Proposition 2.3.4. For $m=0$ the quantities $I_{t}^{l, m}$ are as follows.

$$
\begin{array}{rlr}
I_{t_{1}}^{l, m} & =\frac{p^{3 l+1}}{(p+1)\left(p^{2}+1\right)} & I_{t_{5}}^{l, m}=\frac{p^{3 l}}{(p+1)\left(p^{2}+1\right)} \\
I_{t_{2}}^{l, m} & =\frac{p^{3 l+2}}{(p+1)\left(p^{2}+1\right)} & I_{t_{7}}^{l, m}=\frac{p^{3 l+3}}{(p+1)\left(p^{2}+1\right)}
\end{array}
$$

Remark. That the volume $I_{t}^{l, m}$ is finite can be viewed either as a corollary of the above propositions, or as a consequence of the fact that $\operatorname{vol}\left(B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) K_{p}\right)$ is finite [Fur93, §3].

For each $t \in T_{m}$ define the subgroup G_{t} of K_{p} by

$$
G_{t}=t^{-1} U\left(\mathbb{Z}_{p}\right) G L_{2}\left(\mathbb{Z}_{p}\right) t \cap I_{p}
$$

where $U\left(\mathbb{Z}_{p}\right)$ is the subgroup of K_{p} consisting of matrices that look like $\left(\begin{array}{cc}1_{2} & M \\ 0 & 1_{2}\end{array}\right)$ with $M=M^{t} \in M_{2}\left(\mathbb{Z}_{p}\right)$, and $G L_{2}\left(\mathbb{Z}_{p}\right)$ (more generally $\left.G L_{2}\left(\mathbb{Q}_{p}\right)\right)$ is embedded in $G\left(\mathbb{Q}_{p}\right)$ via $g \mapsto\left(\begin{array}{cc}g & 0 \\ 0 & \operatorname{det}(g) \cdot\left(g^{-1}\right)^{t}\end{array}\right)$.

Also let $G_{t}^{1}=t G_{t} t^{-1}$ be the corresponding subgroup of $U\left(\mathbb{Z}_{p}\right) G L_{2}\left(\mathbb{Z}_{p}\right)$.
And finally, define

$$
\begin{equation*}
H_{t}=\left\{x \in G L_{2}\left(\mathbb{Z}_{p}\right) \mid \exists y \in U\left(\mathbb{Z}_{p}\right) \text { such that } y x \in G_{t}^{1}\right\} . \tag{2.3.7}
\end{equation*}
$$

It is easy to see that $H_{t}=U\left(\mathbb{Z}_{p}\right) G_{t}^{1} \cap G L_{2}\left(\mathbb{Z}_{p}\right)$, thus H_{t} is a subgroup of $G L_{2}\left(\mathbb{Z}_{p}\right)$.

Lemma 2.3.5. We have a disjoint union

$$
B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) t I_{p}=\coprod_{y \in G_{t} \backslash I_{p}} B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) G_{t}^{1} t y .
$$

Proof. Since $t I_{p}=\bigcup_{y \in G_{t} \backslash I_{p}} t G_{t} y=\bigcup_{y \in G_{t} \backslash I_{p}} G_{t}^{1} t y$, the only thing to prove is that the union in the statement of the lemma is indeed disjoint.

So suppose that y_{1}, y_{2} are two coset representatives of $G_{t} \backslash I_{p}$ and $r h(l, m) g_{1} t y_{1}=$ $h(l, m) g_{2} t y_{2}$ with $g_{1}, g_{2} \in G_{t}^{1}, r \in B\left(\mathbb{Q}_{p}\right)$.

This means $t y_{2} y_{1}^{-1} t^{-1}$ is an element of K_{p} that is of the form $\left(\begin{array}{cc}A & B \\ 0 & \operatorname{det}(A) \cdot\left(A^{-1}\right)^{t}\end{array}\right)$. Hence $t y_{2} y_{1}^{-1} t^{-1} \in U\left(\mathbb{Z}_{p}\right) G L_{2}\left(\mathbb{Z}_{p}\right)$. Thus $y_{2} y_{1}^{-1} \in t^{-1} U\left(\mathbb{Z}_{p}\right) G L_{2}\left(\mathbb{Z}_{p}\right) t \cap I_{p}=G_{t}$ which completes the proof.

By the above lemma it follows that

$$
\begin{align*}
I_{t}^{l, m} & =\int_{G_{t} \backslash I_{p}} d g \cdot \int_{B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(l, m) G_{t}^{1}} d t \tag{2.3.8}\\
& =p^{3(l+m)}\left[K_{p}: I_{p}\right]^{-1}\left[G L_{2}\left(\mathbb{Z}_{p}\right) U\left(\mathbb{Z}_{p}\right): G_{t}^{1}\right] \int_{B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(0, m) G_{t}^{1}} d t \tag{2.3.9}
\end{align*}
$$

where we have normalized $\int_{U\left(\mathbb{Z}_{p}\right) G L_{2}\left(\mathbb{Z}_{p}\right) \backslash K_{p}} d x=1$.
On the other hand,

$$
\begin{aligned}
B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(0, m) G_{t}^{1} & =B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(0, m) U\left(\mathbb{Z}_{p}\right) G_{t}^{1} \\
& =B\left(\mathbb{Q}_{p}\right) \backslash B\left(\mathbb{Q}_{p}\right) h(0, m)\left(U\left(\mathbb{Z}_{p}\right) G_{t}^{1} \cap G L_{2}\left(\mathbb{Z}_{p}\right)\right) \\
& =T\left(\mathbb{Q}_{p}\right) \backslash T\left(\mathbb{Q}_{p}\right) h(m) H_{t}
\end{aligned}
$$

where $h(m)=\left(\begin{array}{cc}p^{m} & 0 \\ 0 & 1\end{array}\right)$.
For each $t \in T_{m}$ let us define

$$
A_{t}=\left[G L_{2}\left(\mathbb{Z}_{p}\right) U\left(\mathbb{Z}_{p}\right): G_{t}^{1}\right]
$$

and

$$
V_{t, m}=\int_{T\left(\mathbb{Q}_{p}\right) \backslash T\left(\mathbb{Q}_{p}\right) h(m) H_{t}} d t
$$

We use the same normalization of Haar measures as in [Fur93], namely we have

$$
\int_{T\left(\mathbb{Q}_{p}\right) \backslash T\left(\mathbb{Q}_{p}\right) h(m) G L_{2}\left(\mathbb{Z}_{p}\right)} d t=1 .
$$

We summarize the computations above in the form of a lemma.
Lemma 2.3.6. Let $m \geq 0$. For each $t \in T_{m}$ we have

$$
I_{t}^{l, m}=\frac{p^{3(l+m)}}{(p+1)^{2}\left(p^{2}+1\right)} \cdot A_{t} \cdot V_{t, m} .
$$

Proof. This follows from equation (2.3.9).

By exactly the same arguments as in [Fur93, p. 202-203], we see that

$$
\begin{equation*}
V_{t, m}=\left[G L_{2}\left(\mathbb{Z}_{p}\right): H_{t}\right]^{-1}\left[T\left(\mathbb{Z}_{p}\right): O_{m}^{t}\right] \tag{2.3.10}
\end{equation*}
$$

where $O_{m}^{t}=T\left(\mathbb{Q}_{p}\right) \cap h(m) H_{t} h(m)^{-1}$.
Let Γ_{p}^{0} (resp. $\Gamma_{0, p}$) be the subgroup of $G L_{2}\left(\mathbb{Z}_{p}\right)$ consisting of matrices that become lower-triangular (resp. upper-triangular) when reduced $\bmod p$.

Lemma 2.3.7. (a) We have $H_{t_{i}}=\Gamma_{p}^{0}$ for $i=1,2,5,8$ and $H_{t_{i}}=\Gamma_{0, p}$ for $i=3,4,6,7$.
(b) The quantities $A_{t_{i}}=\left[U\left(\mathbb{Z}_{p}\right) G L_{2}\left(\mathbb{Z}_{p}\right): G_{t_{i}}^{1}\right]$ are as follows:

$$
\begin{array}{lr}
A_{t_{1}}=p(p+1) & A_{t_{5}}=p+1 \\
A_{t_{2}}=p^{2}(p+1) & A_{t_{6}}=p+1 \\
A_{t_{3}}=p^{2}(p+1) & A_{t_{7}}=p^{3}(p+1) \\
A_{t_{4}}=p(p+1) & A_{t_{8}}=p^{3}(p+1)
\end{array}
$$

Proof. We will prove this directly using (2.3.7) and the definition of $A_{t_{i}}$.
First observe that the cardinality of $U\left(\mathbb{F}_{p}\right) G L_{2}\left(\mathbb{F}_{p}\right)$ is $p^{3} \cdot\left(p^{2}-p\right)\left(p^{2}-1\right)=p^{4}(p-1)^{2}(p+$ 1). Recall also that the images of Γ_{p}^{0} and $\Gamma_{0, p}$ have cardinality $p(p-1)^{2}$ in $G L_{2}\left(\mathbb{F}_{p}\right)$.

Suppose

$$
U=\left(\begin{array}{cccc}
1 & 0 & n & q \\
0 & 1 & q & r \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), G=\left(\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & d & -c \\
0 & 0 & -b & a
\end{array}\right)
$$

We have

$$
t_{1}^{-1} U G t_{1}=\left(\begin{array}{cccc}
a-n d+q b & b & n d-q b & -n c+q a \\
c-q d+r b & d & q d-r b & -q c+r a \\
a-n d+q b-d & b & n d-q b+d & -n c+q a-c \\
b & 0 & -b & a
\end{array}\right)
$$

By inspection, this belongs to I_{p} if and only if $b \equiv 0(\bmod p), n \equiv \frac{a}{d}-1(\bmod p)$. So $H_{t_{1}}=\Gamma_{p}^{0}$ and $A_{t_{1}}=\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2} p^{2}}=p(p+1)$.

$$
t_{2}^{-1} U G t_{2}=\left(\begin{array}{cccc}
d & c-q d+r b & r a-q c & q d-r b \\
b & a-n d+q b & q a-n c & n d-q b \\
0 & b & a & -b \\
b & a-n d+q b-d & q a-c-n c & n d-q b+d
\end{array}\right) .
$$

By inspection, this belongs to I_{p} if and only if $b \equiv 0(\bmod p), n \equiv \frac{a}{d}-1(\bmod p), q \equiv \frac{c}{d}$. So $H_{t_{2}}=\Gamma_{p}^{0}$ and $A_{t_{2}}=\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2} p}=p^{2}(p+1)$.

$$
t_{3}^{-1} U G t_{3}=\left(\begin{array}{cccc}
a & b+n c-q a & n d-q b & -n c+q a \\
c & d+q c-r a & q d-r b & r a-q c \\
0 & c & d & -c \\
c & d+q c-r a-a & q d-r b-b & r a-q c+a
\end{array}\right)
$$

By inspection, this belongs to I_{p} if and only if $c \equiv 0(\bmod p), r \equiv \frac{d}{a}-1(\bmod p), q \equiv \frac{b}{a}$. So $H_{t_{3}}=\Gamma_{0, p}$ and $A_{t_{3}}=\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2} p}=p^{2}(p+1)$.

$$
t_{4}^{-1} U G t_{4}=\left(\begin{array}{cccc}
d+q c-r a & c & r a-q c & q d-r b \\
b+n c-q a & a & q a-n c & n d-q b \\
d+q c-r a-a & c & r a-q c+a & q d-r b-b \\
c & 0 & -c & d
\end{array}\right)
$$

By inspection, this belongs to I_{p} if and only if $c \equiv 0(\bmod p), r \equiv \frac{d}{a}-1(\bmod p)$. So $H_{t_{4}}=\Gamma_{0, p}$ and $A_{t_{4}}=\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2} p^{2}}=p(p+1)$.

$$
t_{5}^{-1} U G t_{5}=\left(\begin{array}{cccc}
a & b & n d-q b & -n c+q a \\
c & d & q d-r b & -q c+r a \\
0 & 0 & d & -c \\
0 & 0 & -b & a
\end{array}\right)
$$

By inspection, this belongs to I_{p} if and only if $b \equiv 0(\bmod p)$. So $H_{t_{5}}=\Gamma_{p}^{0}$ and $A_{t_{5}}=$ $\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2} p^{3}}=(p+1)$.

$$
t_{6}^{-1} U G t_{6}=\left(\begin{array}{cccc}
d & c & r a-q c & q d-r b \\
b & a & q a-n c & n d-q b \\
0 & 0 & a & -b \\
0 & 0 & -c & d
\end{array}\right) .
$$

By inspection, this belongs to I_{p} if and only if $c \equiv 0(\bmod p)$. So $H_{t_{6}}=\Gamma_{0, p}$ and $A_{t_{6}}=$ $\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2} p^{3}}=(p+1)$.

$$
t_{7}^{-1} U G t_{7}=\left(\begin{array}{cccc}
d & -c & 0 & 0 \\
-b & a & 0 & 0 \\
q b-n d & n c-q a & a & b \\
r b-q d & q c-r a & c & d
\end{array}\right) .
$$

By inspection, this belongs to I_{p} if and only if $c \equiv 0(\bmod p), n \equiv 0(\bmod p), q \equiv 0$ $(\bmod p), r \equiv 0(\bmod p)$. So $H_{t_{7}}=\Gamma_{0, p}$ and $A_{t_{7}}=\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2}}=p^{3}(p+1)$.

$$
t_{8}^{-1} U G t_{8}=\left(\begin{array}{cccc}
a & -b & 0 & 0 \\
-c & d & 0 & 0 \\
q c-r a & r b-q d & d & c \\
n c-q a & q b-n d & b & a
\end{array}\right) .
$$

By inspection, this belongs to I_{p} if and only if $b \equiv 0(\bmod p), n \equiv 0(\bmod p), q \equiv 0$ $(\bmod p), r \equiv 0(\bmod p)$. So $H_{t_{8}}=\Gamma_{p}^{0}$ and $A_{t_{8}}=\frac{p^{4}(p-1)^{2}(p+1)}{p(p-1)^{2}}=p^{3}(p+1)$.

Let t be such that $H_{t}=\Gamma_{p}^{0}$. Then by working through the definitions, we see that

$$
\begin{equation*}
O_{m}^{t}=x+p^{m+1} y \xi_{0}, x, y \in \mathbb{Z}_{p} \tag{2.3.11}
\end{equation*}
$$

On the other hand if t is such that $H_{t}=\Gamma_{0, p}$, then we see that

$$
\begin{equation*}
O_{m}^{t}=x+p^{m} y \xi_{0}, x, y \in \mathbb{Z}_{p} \tag{2.3.12}
\end{equation*}
$$

Lemma 2.3.8. Let $m>0$. Then we have $V_{t_{i}, m}=p^{m}$ for $i=1,2,5,8$ and $V_{t_{i}, m}=p^{m-1}$ for $i=3,4,6,7$.

Proof. This follows from (2.3.10), (2.3.11), (2.3.12), Lemma 2.3.7 and [Fur93, Lemma 3.5.3]

Proof of Proposition 2.3.3. The proof is a consequence of Lemma 2.3.6, Lemma 2.3.7 and Lemma 2.3.8.

Let us now look at the case $m=0$. In this case $T_{0}=\left\{t_{1}, t_{2}, t_{5}, t_{7}\right\}$.
The groups $H_{t_{i}}$ and the quantities $\left[G L_{2}\left(\mathbb{Z}_{p}\right): H_{t_{i}}\right]^{-1}$ have already been calculated. On the other hand we now have

$$
\begin{equation*}
O_{0}^{t_{i}}=x+p y \xi_{0}, x, y \in \mathbb{Z}_{p} \tag{2.3.13}
\end{equation*}
$$

for each $t_{i} \in T_{0}$.
Proof of Proposition 2.3.4. We have already calculated each $A_{t_{i}}$. Also by (2.3.10),(2.3.13) and Lemma 2.3.7 we conclude that each $V_{t_{i}, 0}=1$. Now the result follows as before, from Lemma 2.3.6.

Simplification of the local zeta integral

Recall the definition of the key local integral $Z_{p}(s)$ from $\S 2.2$. In (2.3.5) we reduced this integral to an useful sum. Now suppose that W_{p} and B_{p} are right I_{p}-invariant. Then

Proposition 2.3.2 allows us to further simplify that expression as follows.

$$
\begin{equation*}
Z_{p}(s)=\sum_{l \in \mathbb{Z}, m \geq 0} \sum_{t \in T_{m}} W_{p}(\Theta h(l, m) t, s) \cdot B_{p}(h(l, m) t) \cdot I_{t}^{l, m} \tag{2.3.14}
\end{equation*}
$$

Note that in the above formula we mildly abuse notation and use Θ to really mean its natural inclusion in $\widetilde{G}\left(\mathbb{Q}_{p}\right)$. We will continue to do this in the future for notational economy.

Remark. The importance of $\S 2.3$, where we calculated $I_{t}^{l, m}$ for each $t \in T_{m}$, is that we can now use the formula (2.3.14) to evaluate the local zeta integral whenever the local functions W_{p} and B_{p} can be explicitly determined.

2.4 The evaluation of the local Bessel functions in the Steinberg case

Background

Because automorphic representations of $G S p(4)$ are not necessarily generic, the Whittaker model is not always useful for studying L-functions. For many problems, the Bessel model is a good substitute. Explicit evaluation of local zeta integrals then often reduces to explicit evaluation of certain local Bessel functions. Formulas for the Bessel functions have been established in the following cases.
[Sug85] unramified representations of $G S p_{4}\left(\mathbb{Q}_{p}\right)$
[BFF97] unramified representations (the Casselman-Shalika like formula)
[Niw91] class-one representations on $S p_{4}(\mathbb{R})$
[Miy00] large discrete series and P_{J}-principal series of $S p_{4}(\mathbb{R})$
[Ish02] principal series of $S p_{4}(\mathbb{R})$

In this section we give an explicit formula for the Bessel function for an unramified quadratic twist of the Steinberg representation of $G \operatorname{SP}_{4}\left(\mathbb{Q}_{p}\right)$. By [Sch05] this is precisely the representation corresponding to a local newform for the Iwahori subgroup.

Throughout this section we let p be an odd prime that is inert in L. We suppose that the local component $\left(\omega_{\pi}\right)_{p}$ is trivial, the conductor of ψ_{p} is \mathbb{Z}_{p} and $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \in M_{2}\left(\mathbb{Z}_{p}\right)$.

Because p is inert, L_{p} is a quadratic extension of \mathbb{Q}_{p} and we may write elements of L_{p}
in the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{p}$; then $\mathbb{Z}_{L, p}=a+b \sqrt{-d}$ where $a, b \in \mathbb{Z}_{p}$. We identify L_{p} with $T\left(\mathbb{Q}_{p}\right)$ and ξ with $\sqrt{-d} / 2$. Then $T\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{L, p}^{\times}$consists of elements of the form $a+b \sqrt{-d}$ where a, b are elements of \mathbb{Z}_{p} not both divisible by p.

We assume that Λ_{p} is trivial on the elements of $T\left(\mathbb{Z}_{p}\right)$ of the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Z}_{p}, p \mid b, p \nmid a$. Further, we assume that Λ_{p} is not trivial on the full group $T\left(\mathbb{Z}_{p}\right)$, that is, it is not unramified.

Finally, assume that the local representation π_{p} is an unramified twist of the Steinberg representation. This is representation IVa in [Sch05, Table 1]. The space of π_{p} contains a unique normalized vector that is fixed by the Iwahori subgroup I_{p}. We can think of this vector as the normalized local newform for this representation.

Bessel functions

Let \mathfrak{B} be the space of locally constant functions φ on $G\left(\mathbb{Q}_{p}\right)$ satisfying

$$
\varphi(t u h)=\Lambda_{p}(t) \theta_{p}(u) \varphi(h), \text { for } t \in T\left(\mathbb{Q}_{p}\right), u \in U\left(\mathbb{Q}_{p}\right), h \in G\left(\mathbb{Q}_{p}\right) .
$$

Then by Novodvorsky and Piatetski-Shapiro [NPS73], there exists a unique subspace $\mathfrak{B}\left(\pi_{p}\right)$ of \mathfrak{B} such that the right regular representation of $G\left(\mathbb{Q}_{p}\right)$ on $\mathfrak{B}\left(\pi_{p}\right)$ is isomorphic to π_{p}. Let B_{p} be the unique I_{p}-fixed vector in $\mathfrak{B}\left(\pi_{p}\right)$ such that $B_{p}\left(1_{4}\right)=1$. Therefore

$$
\begin{equation*}
B_{p}(t u h k)=\Lambda_{p}(t) \theta_{p}(u) \varphi(h), \tag{2.4.1}
\end{equation*}
$$

where $t \in T\left(\mathbb{Q}_{p}\right), u \in U\left(\mathbb{Q}_{p}\right), h \in G\left(\mathbb{Q}_{p}\right), k \in K_{p}$.
Our goal is to explicitly compute B_{p}. By Proposition 2.3.2 and (2.4.1) it is enough to compute the values $B_{p}\left(h(l, m) t_{i}\right)$ for $l \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}, t_{i} \in T_{m}$.

Let us fix some notation. Recall the matrices t_{i} which were defined in §2.3. Also we will frequently use other notation from $\S 2.3$. We now define

$$
\begin{aligned}
a_{0}^{l, m} & =B_{p}\left(h(l, m) t_{7}\right), & a_{\infty}^{l, m} & =B_{p}\left(h(l, m) t_{8}\right), \\
b_{0}^{l, m} & =B_{p}\left(h(l, m) t_{2}\right), & { }^{1} b_{0}^{l, m} & =B_{p}\left(h(l, m) t_{1}\right), \\
b_{\infty}^{l, m} & =B_{p}\left(h(l, m) t_{3}\right), & { }^{1} b_{\infty}^{l, m} & =B_{p}\left(h(l, m) t_{4}\right), \\
c_{0}^{l, m} & =B_{p}\left(h(l, m) t_{5}\right), & c_{\infty}^{l, m} & =B_{p}\left(h(l, m) t_{6}\right)
\end{aligned}
$$

Lemma 2.4.1. Let $m \geq 0, y \in\{0, \infty\}$. The following equations hold:
(a) $a_{y}^{l, m}=0 \quad$ if $l<-1$.
(b) ${ }^{1} b_{0}^{l, m}=b_{0}^{l, m}={ }^{1} b_{\infty}^{l, 0}=b_{\infty}^{l, 0}=0 \quad$ if $l<0$.
(c) ${ }^{1} b_{\infty}^{l, m}=b_{\infty}^{l, m}=0 \quad$ if $l<-1$.
(d) $c_{y}^{l, m}=0 \quad$ if $l<0$.

Proof. First note that $U_{(0,0, p)} t_{i} \equiv t_{i}(\bmod p)$, hence they are in the same coset of K_{p} / I_{p}. Hence

$$
\begin{aligned}
B_{p}\left(h(l, m) t_{i}\right) & =B_{p}\left(h(l, m) U_{(0,0, p)} t_{i}\right) \\
& =B_{p}\left(U_{\left(0,0, p^{l+1}\right)} h(l, m) t_{i}\right) \\
& =\psi_{p}\left(p^{l+1} c\right) B_{p}\left(h(l, m) t_{i}\right) .
\end{aligned}
$$

Since the conductor of ψ_{p} is \mathbb{Z}_{p} and c is a unit, it follows that $B_{p}\left(h(l, m) t_{i}\right)=0$ for $l<-1$. This completes the proof of (a) and (c).

Next, observe that

$$
\begin{aligned}
c_{y}^{l, m} & =B_{p}\left(h(l, m) Z_{y}\right) \\
& =B_{p}\left(h(l, m) U_{(0,0,1)} Z_{y}\right) \\
& =B_{p}\left(U_{\left(0,0, p^{l}\right)} h(l, m) Z_{y}\right) \\
& =\psi_{p}\left(p^{l} c\right) B_{p}\left(h(l, m) Z_{y}\right) .
\end{aligned}
$$

It follows that $B_{p}\left(h(l, m) Z_{y}\right)=0$ for $l<0$. This completes the proof of (d).

Next, we have

$$
\begin{aligned}
B_{p}\left(h(l, m) J U_{(1,0,0)} J Z_{y}\right) & =B_{p}\left(h(l, m) J U_{(1,0,0)} J U_{0,0,1} Z_{y}\right) \\
& =B_{p}\left(h(l, m) U_{0,0,1} J U_{(1,0,0)} J Z_{y}\right) \\
& =\psi_{p}\left(p^{l} c\right) B_{p}\left(h(l, m) J U_{(1,0,0)} J Z_{y}\right)
\end{aligned}
$$

It follows that ${ }^{1} b_{0}^{l, m}=b_{0}^{l, m}=0$ for $l<0$.
Finally,

$$
\begin{aligned}
B_{p}\left(h(l, 0) J U_{(0,0,1)} J Z_{y}\right) & =B_{p}\left(h(l, 0) J U_{(0,0,1)} J U_{1,0,0} Z_{y}\right) \\
& =B_{p}\left(h(l, 0) U_{1,0,0} J U_{(0,0,1)} J Z_{y}\right) \\
& =\psi_{p}\left(p^{l} a\right) B_{p}\left(h(l, 0) J U_{(0,0,1)} J Z_{y}\right) .
\end{aligned}
$$

It follows that ${ }^{1} b_{\infty}^{l, 0}=b_{\infty}^{l, 0}=0$ for $l<0$. This completes the proof of (b).

By our normalization, we have $c_{0}^{0,0}=1$. From Proposition 2.3.2, proof of Claim 6, it follows that $c_{\infty}^{0,0}=\Lambda_{p}\left(\frac{b+\sqrt{-d}}{2}\right)$.

To get more information, we have to use the fact that the local Iwahori-Hecke algebra acts on B_{p} in a precise manner.

Hecke operators and the results

Henceforth we always assume that $l \geq-1, m \geq 0$. In particular, all equations that are stated without qualification will be understood to hold in the above range. We know that π_{p} is either $\mathrm{St}_{G S p(4)}$ or $\xi_{0} \mathrm{St}_{G S p(4)}$ where ξ_{0} is the non-trivial unramified quadratic character. Put $w_{p}=-1$ in the former case and $w_{p}=1$ in the latter. Put

$$
\eta_{p}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & p & 0 & 0 \\
p & 0 & 0 & 0
\end{array}\right)
$$

Also, for $y \in V$, define the matrices R_{y} as follows: If $y \in Y$,

$$
R_{y}=\left(U_{(y, 0,0)}\right)^{t},
$$

and

$$
R_{\infty}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Let $t \in G\left(\mathbb{Q}_{p}\right)$. By [Sch05], we know the following:

$$
\begin{gather*}
\sum_{y \in V} B_{p}\left(t Z_{y}\right)=0, \tag{2.4.2}\\
B_{p}\left(t \eta_{p}\right)=w_{p} B_{p}(t), \tag{2.4.3}\\
\sum_{y \in V} B_{p}\left(t R_{y}\right)=0 . \tag{2.4.4}
\end{gather*}
$$

(2.4.2) and Proposition 2.3.2 immediately imply

$$
\begin{array}{rrr}
a_{0}^{l, m}+p a_{\infty}^{l, m}=0, & \text { for } m>0 \\
p b_{y}^{l, m}+{ }^{1} b_{y}^{l, m}=0, & \text { for } y \in\{0, \infty\} \\
p c_{0}^{l, m}+c_{\infty}^{l, m} & =0, & \text { for } m>0 \tag{2.4.7}
\end{array}
$$

Next we act upon by η_{p}. Check that

$$
\left(h(l+1, m) B_{(0,0,0)}^{\infty}\right)^{-1} h(l, m) A_{(0,0,0)}^{0} \eta_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

So we have

$$
\begin{aligned}
a_{0}^{l, m} & =B_{p}\left(h(l, m) A_{(0,0,0)}^{0}\right) \\
& =w_{p} B_{p}\left(h(l, m) A_{(0,0,0)}^{0} \eta_{p}\right) \\
& =w_{p} B_{p}\left(h(l+1, m) B_{(0,0,0)}^{\infty}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
a_{0}^{l, m}=w_{p} c_{\infty}^{l+1, m} \tag{2.4.8}
\end{equation*}
$$

We also have

$$
\left(h(l+1, m) B_{(0,0,0)}^{0}\right)^{-1} h(l, m) A_{(0,0,0)}^{\infty} \eta_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

So similarly, we conclude

$$
\begin{equation*}
a_{\infty}^{l, m}=w_{p} c_{0}^{l+1, m} \tag{2.4.9}
\end{equation*}
$$

Next, check that

$$
\left(h(l, m) B_{(1,0,0)}^{1} \eta_{p}\right)^{-1} h(l-1, m+1) U_{(-1 / p, 0,0)} D_{\infty}^{1}=\left(Z^{1}\right)^{t} \in I_{p}
$$

Hence

$$
B_{p}\left(h(l, m) B_{(1,0,0)}^{1}\right)=w_{p} B_{p}\left(h(l-1, m+1) D_{\infty}^{1}\right)
$$

(Note that both sides are zero if $l=-1, m=0$).
By the proof of Proposition 2.3.2, $B_{p}\left(h(l, m) B_{(1,0,0)}^{1}\right)=b_{0}^{l, m}$ and $B_{p}\left(h(l-1, m+1) D_{\infty}^{1}\right)=$ $\psi_{p}\left(p^{l-1} c\right) b_{\infty}^{l-1, m+1}$.

Thus we have proved

$$
\begin{equation*}
b_{0}^{l, m}=w_{p} \psi_{p}\left(p^{l-1} c\right) b_{\infty}^{l-1, m+1} \tag{2.4.10}
\end{equation*}
$$

At this point we pause and note that on account of (2.4.5)-(2.4.10) it is enough to compute the quantities $b_{\infty}^{l, m}, a_{0}^{l, m}, l \geq-1, m \geq 0, l+m \neq-1$. Of course, we already know that $a_{0}^{-1,0}=w_{p} \Lambda_{p}\left(\frac{b+\sqrt{-d}}{2}\right)$.

Next, we use (2.4.4).
For each $x \in Y$, we can check that $A_{0,0,0}^{0} R_{x}=A_{-x, 0,0}^{0}$. Furthermore, $A_{0,0,0}^{0} R_{\infty}=D_{\infty}^{0}$. Assuming $l+m \geq 0$ we have $B_{p}\left(h(l, m) A_{-x, 0,0}^{0}\right)=a_{0}^{l, m}$ and $B_{p}\left(h(l, m) D_{\infty}^{0}=\psi_{p}\left(p^{l} c\right) b_{\infty}^{l, m}\right.$. So using (2.4.4) we conclude

$$
\begin{equation*}
p a_{0}^{l, m}=-\psi_{p}\left(p^{l} c\right) b_{\infty}^{l, m} \tag{2.4.11}
\end{equation*}
$$

for $l+m \geq 0$.
However we can do more. Check that for $x \in Y, A_{(0,0,0)}^{\infty} R_{x}=A_{(0,0,-x)}^{\infty}$ and $A_{(0,0,0)}^{\infty} R_{\infty} \equiv$ $D_{0}^{0}(\bmod p)$. If $l \geq 0$ we have $B_{p}\left(h(l, m) A_{(0,0,-x)}^{\infty}=a_{\infty}^{l, m}\right.$ and $B_{p}\left(h(l, m) D_{0}^{0}\right)=b_{0}^{l, m}$. So again using (2.4.4) we have

$$
\begin{equation*}
p a_{\infty}^{l, m}=-b_{0}^{l, m} \tag{2.4.12}
\end{equation*}
$$

for $l \geq 0$.
So (2.4.5), (2.4.10) and (2.4.12) imply that for $l \geq 0, m>0$

$$
\begin{equation*}
b_{\infty}^{l, m}=-p b_{0}^{l, m}=-p w_{p} \psi_{p}\left(p^{l-1} c\right) b_{\infty}^{l-1, m+1} . \tag{2.4.13}
\end{equation*}
$$

Now observe that $B_{0,0,0}^{0} R_{\infty} \equiv D_{0}^{\infty}(\bmod p)$ and for $x \in Y, B_{0,0,0}^{0} R_{x}=B_{-x, 0,0}^{0}$. Assuming $l+m \neq-1$ we have $B_{p}\left(h(l, m) D_{0}^{\infty}\right)={ }^{1} b_{0}^{l, m}$ and for $x \in y, x \neq 0, B_{p}\left(h(l, m) B_{-x, 0,0}^{0}\right)=$ ${ }^{1} b_{0}^{l, m}$. Hence using (2.4.4)

$$
\begin{equation*}
c_{0}^{l, m}=-p^{1} b_{0}^{l, m} \tag{2.4.14}
\end{equation*}
$$

So by equations (2.4.6) and (2.4.9) we have,

$$
\begin{equation*}
a_{\infty}^{l, m}=p^{2} \psi_{p}\left(p^{l} c\right) b_{\infty}^{l, m+1} \tag{2.4.15}
\end{equation*}
$$

The above equation, along with our normalization tells us that

$$
\begin{equation*}
b_{\infty}^{-1,1}=\frac{1}{p^{2}} \psi_{p}\left(-\frac{c}{p}\right) w_{p} \tag{2.4.16}
\end{equation*}
$$

Also, using (2.4.12),(2.4.13) and (2.4.15) we get

$$
\begin{equation*}
b_{\infty}^{l, m+1}=\frac{1}{p^{4}} b_{\infty}^{l, m} \tag{2.4.17}
\end{equation*}
$$

for $l \geq 0, m>0$.
(2.4.13), (2.4.17) and (2.4.16) imply :

$$
\begin{gather*}
b_{\infty}^{l, m}=-\frac{\left(-p w_{p}\right)^{l}}{p^{4 l+4 m+1}} \text { if } l \geq 0, m \geq 1 \tag{2.4.18}\\
b_{\infty}^{-1, m}=\frac{1}{p^{4 m-2}} \psi_{p}\left(-\frac{c}{p}\right) w_{p} \text { if } m \geq 1 . \tag{2.4.19}
\end{gather*}
$$

In the case $m=0$, Proposition 2.3.2, proof of Claim 7, tells us that ${ }^{1} b_{\infty}^{l, 0}=\Lambda_{p}\left(\frac{b+\sqrt{-d}}{2}\right)^{1} b_{0}^{l, 0}$ which implies

$$
\begin{equation*}
b_{\infty}^{l, 0}=\Lambda_{p}\left(\frac{b+\sqrt{-d}}{2}\right) b_{0}^{l, 0}=w_{p} \psi_{p}\left(p^{l-1} c\right) \Lambda_{p}\left(\frac{b+\sqrt{-d}}{2}\right) b_{\infty}^{l-1,1} \tag{2.4.20}
\end{equation*}
$$

EquationS (2.4.18)-(2.4.20), along with the earlier equations that specify the interdependence of various quantities, determine all the values $B_{p}\left(h(l, m) t_{i}\right)$. For convenience, we compactly state the facts proven above as two propositions. We only state it for $l \geq 0$ since that is the only case needed for our later applications. The values for $l=-1$ can be easily gleaned from these and the above equations.

Proposition 2.4.2. Let $l \geq 0, m>0$. Put $M=\left(-p w_{p}\right)^{l} p^{-4(l+m)}$. Then the following hold:
(a) $B_{p}\left(h(l, m) t_{1}\right)=M \cdot \frac{-1}{p}$,
(b) $B_{p}\left(h(l, m) t_{2}\right)=M \cdot \frac{1}{p^{2}}$,
(c) $B_{p}\left(h(l, m) t_{3}\right)=M \cdot \frac{-1}{p}$,
(d) $B_{p}\left(h(l, m) t_{4}\right)=M$
(e) $B_{p}\left(h(l, m) t_{5}\right)=M$
(f) $B_{p}\left(h(l, m) t_{6}\right)=M \cdot(-p)$,
(g) $B_{p}\left(h(l, m) t_{7}\right)=M \cdot \frac{1}{p^{2}}$,
(h) $B_{p}\left(h(l, m) t_{8}\right)=M \cdot \frac{-1}{p^{3}}$.

Proposition 2.4.3. Let $l \geq 0$. Put $M=\left(-p w_{p}\right)^{l} p^{-4 l}$. Then the following hold:
(a) $B_{p}\left(h(l, 0) t_{1}\right)=M \cdot \frac{-1}{p}$,
(b) $B_{p}\left(h(l, 0) t_{2}\right)=M \cdot \frac{1}{p^{2}}$,
(c) $B_{p}\left(h(l, 0) t_{5}\right)=M$,
(d) $B_{p}\left(h(l, m) t_{7}\right)=M \cdot \frac{-\Lambda_{p}\left(\frac{b+\sqrt{ }-d}{}\right)}{p^{3}}$.

2.5 The case unramified π_{p}, Steinberg σ_{p}

Assumptions

Suppose that the characters $\omega_{\pi}, \omega_{\sigma}, \chi_{0}$ are trivial. Let $p \neq 2$ be a finite prime of \mathbb{Q} such that
(a) p is inert in $L=\mathbb{Q}(\sqrt{-d})$.
(b) The local components Λ_{p} and π_{p} are unramified.
(c) σ_{p} is the Steinberg representation (or its twist by the unramified quadratic character).
(d) The conductor of ψ_{p} is \mathbb{Z}_{p}
(e) $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \in M_{2}\left(\mathbb{Z}_{p}\right)$.
(f) $-d=b^{2}-4 a c$ generates the discriminant of L_{p} / \mathbb{Q}_{p}.

Remark: σ_{p} is concretely realized as (possibly the unramified quadratic twist of) the special representation on the locally constant functions of $B_{p} \backslash G L_{2}\left(\mathbb{Q}_{p}\right)$ modulo the constant functions (where B_{p} is the standard Borel subgroup consisting of upper-triangular matrices).

It corresponds to the local newform for the Iwahori subgroup $\Gamma_{0}(p)$ of $G L_{2}\left(\mathbb{Q}_{p}\right)$.

Description of B_{p} and W_{p}

For any choice of local Whittaker and Bessel functions W_{p} and B_{p} we can define the local zeta integral $Z_{p}(s)$ by (2.2.6). We now fix such a choice.

As in the unramified case from $\S 2.1$, we let B_{p} be the unique normalized K_{p}-vector in the local Bessel space. Sugano[Sug85] has computed the function B_{p} explicitly.

We now define W_{p}. Let $\widetilde{U_{p}}$ be the subgroup of $\widetilde{K_{p}}$ defined by

$$
\widetilde{U_{p}}=\left\{z \in \widetilde{K_{p}} \left\lvert\, z \equiv\left(\begin{array}{cccc}
* & 0 & * & * \\
* & * & * & * \\
* & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right) \quad(\bmod p)\right.\right\}
$$

It is not hard to see that $I\left(\Pi_{p}, s\right)$ has $\widetilde{U_{p}}$-fixed vectors. Now let W_{p} be the unique $\widetilde{U_{p}}$-fixed vector in the local Whittaker space with the following properties:

- $W_{p}(e, s)=1$,
- $W_{p}(g, s)=0$ if g does not belong to $P\left(\mathbb{Q}_{p}\right) \widetilde{U_{p}}$

Concretely we have the following description of $W_{p}(s)$.
We know that $\sigma_{p}=\mathrm{Sp} \otimes \tau$ where $S p$ denotes the special (Steinberg) representation and τ is a (possibly trivial) unramified quadratic character. We put $a_{p}=\tau(p)$, thus $a_{p}= \pm 1$ is the eigenvalue of the local Hecke operator $T(p)$.

Let W_{p}^{\prime} be the unique function on $G L_{2}\left(\mathbb{Q}_{p}\right)$ such that

$$
\begin{gather*}
W_{p}^{\prime}(g k)=W_{p}^{\prime}(g), \text { for } g \in G L_{2}\left(\mathbb{Q}_{p}\right), k \in \Gamma_{0, p}, \tag{2.5.1}\\
W_{p}^{\prime}\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right)=\psi_{p}(-c x) W_{p}^{\prime}(g), \text { for } g \in G L_{2}\left(\mathbb{Q}_{p}\right), x \in \mathbb{Q}_{p}, \tag{2.5.2}\\
W_{p}^{\prime}\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)= \begin{cases}\tau(a)|a| & \text { if }|a|_{p} \leq 1, \\
0 & \text { otherwise. }\end{cases} \tag{2.5.3}\\
W_{p}^{\prime}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)= \begin{cases}-p^{-1} \tau(a)|a| & \text { if }|a|_{p} \leq p \\
0 & \text { otherwise }\end{cases} \tag{2.5.4}
\end{gather*}
$$

We extend W_{p}^{\prime} to a function on $G U(1,1)\left(\mathbb{Q}_{p}\right)$ by

$$
W_{p}^{\prime}(a g)=W_{p}^{\prime}(g), \text { for } a \in L_{p}^{\times}, g \in G L_{2}\left(\mathbb{Q}_{p}\right)
$$

Then, $W_{p}(s)$ is the unique function on $\widetilde{G}\left(\mathbb{Q}_{p}\right)$ such that

$$
\begin{gather*}
W_{p}(m n k, s)=W_{p}(m, s), \text { for } m \in M\left(\mathbb{Q}_{p}\right), n \in N\left(\mathbb{Q}_{P}\right), k \in \widetilde{U_{p}} \tag{2.5.5}\\
W_{p}(e)=1 \text { and } W_{p}(g, s)=0 \text { if } g \notin P\left(\mathbb{Q}_{p}\right) \widetilde{U_{p}} \tag{2.5.6}
\end{gather*}
$$

and

$$
\begin{gather*}
\left.W_{p}\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \bar{a}^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a_{1} & 0 & b_{1} \\
0 & 0 & c_{1} & 0 \\
0 & d_{1} & 0 & e_{1}
\end{array}\right), s\right) \tag{2.5.7}\\
=\left|N_{L / \mathbb{Q}}(a) \cdot c_{1}^{-1}\right|_{p}^{3(s+1 / 2)} \cdot W_{p}^{\prime}\left(\begin{array}{cc}
a_{1} & b_{1} \\
d_{1} & e_{1}
\end{array}\right)
\end{gather*}
$$

for $a \in \mathbb{Q}_{p}^{\times},\left(\begin{array}{ll}a_{1} & b_{1} \\ d_{1} & e_{1}\end{array}\right) \in G U(1,1)\left(\mathbb{Q}_{p}\right), c_{1}=\mu_{1}\left(\begin{array}{ll}a_{1} & b_{1} \\ d_{1} & e_{1}\end{array}\right)$.
Let us use the following notation: For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G U(1,1)$ we let

$$
m^{(2)}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a & 0 & b \\
0 & 0 & \beta & 0 \\
0 & c & 0 & d
\end{array}\right)
$$

where $\beta=\mu_{1}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$.

The results

For $i=1,2,3,4$, define the characters $\gamma_{p}^{(i)}$ of \mathbb{Q}_{p}^{\times}as in $\S 2.1$. We now state and prove the main theorem of this section.

Theorem 2.5.1. Let the functions B_{p}, W_{p} be as defined in $\S 2.5$. Then we have

$$
Z_{p}\left(s, W_{p}, B_{p}\right)=\frac{1}{p^{2}+1} \cdot \frac{L\left(3 s+\frac{1}{2}, \pi_{p} \times \sigma_{p}\right)}{L\left(3 s+1, \sigma_{p} \times \rho\left(\Lambda_{p}\right)\right)}
$$

where,

$$
L\left(s, \pi_{p} \times \sigma_{p}\right)=\prod_{i=1}^{4}\left(1-\gamma_{p}^{(i)}(p) a_{p} p^{-1 / 2} p^{-s}\right)^{-1},
$$

and

$$
L\left(s, \sigma_{p} \times \rho\left(\Lambda_{p}\right)\right)=\left(1-p^{-2 s-1}\right)^{-1} .
$$

Before we begin the proof, we need a lemma.
Lemma 2.5.2. We have the following formulae for $W_{p}\left(\Theta h(l, m) t_{i}, s\right)$ where $t_{i} \in T_{m}$.
(a) If $m>0$ then $W_{p}\left(\Theta h(l, m) t_{i}, s\right)= \begin{cases}p^{-6 m s-3 l s-3 m-5 l / 2} a_{p}^{l} & \text { if } i \in\{1,5\} \\ p^{-6 m s-3 l s-3 m-5 l / 2} a_{p}^{l} \cdot \frac{-1}{p} & \text { if } i \in\{3,7\} \\ 0 & \text { otherwise }\end{cases}$
(b) $W_{p}\left(\Theta h(l, 0) t_{i}, s\right)= \begin{cases}p^{-3 l s-5 l / 2} a_{p}^{l} & \text { if } i \in\{1,5\} \\ 0 & \text { if } i \in\{2,7\}\end{cases}$

Proof. We have

$$
\Theta h(l, m)=h(l, m)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.5.8}\\
p^{m} \alpha & 1 & 0 & 0 \\
0 & 0 & 1 & -p^{m} \bar{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

First consider the case $m>0$.
We claim that $\Theta h(l, m) t_{i} \notin P\left(\mathbb{Q}_{p}\right) \widetilde{U_{p}}$ if $i \in\{2,4,6,8\}$.
Put $\Theta_{m}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ p^{m} \alpha & 1 & 0 & 0 \\ 0 & 0 & 1 & -p^{m} \bar{\alpha} \\ 0 & 0 & 0 & 1\end{array}\right)$.
Using (2.6.8), it suffices to prove that $\Theta_{m} t_{i} \notin$
$P\left(\mathbb{Z}_{p}\right) \widetilde{U_{p}}$. So take a typical element element

$$
P=\left(\begin{array}{cccc}
a & a x & a t+a x \bar{y} & a y \tag{2.5.9}\\
0 & m & m \bar{y}-\beta \bar{x} & \beta \\
0 & 0 & \lambda / \bar{a} & 0 \\
0 & \gamma & \gamma \bar{y}-\delta \bar{x} & \delta
\end{array}\right) \in P\left(\mathbb{Z}_{p}\right)
$$

where all the variables lie in \mathbb{Z}_{L} and $\left(\begin{array}{cc}m & \beta \\ \gamma & \delta\end{array}\right) \in G U(1,1)\left(\mathbb{Z}_{p}\right)$ with $\lambda=\mu_{1}\left(\begin{array}{cc}m & \beta \\ \gamma & \delta\end{array}\right)$.
We have

$$
P \Theta_{m} t_{2}=\left(\begin{array}{cccc}
a x & a+a x p^{m} \alpha-a t-a x \bar{y} & -(a t+a x \bar{y}) \bar{\alpha} p^{m}+a y & a t+a x \bar{y} \\
m & m p^{m} \alpha-m \bar{y}+\beta \bar{x} & -(m \bar{y}-\beta \bar{x})(\alpha) p^{m}+\beta & m \bar{y}-\beta \bar{x} \\
0 & -\lambda(\bar{a})^{-1} & -\bar{\alpha} p^{m} \lambda(\bar{a})^{-1} & \lambda(\bar{a})^{-1} \\
\gamma & \gamma p^{m} \alpha-\gamma \bar{y}+\delta \bar{x} & -(\gamma \bar{y}-\delta \bar{x}) \bar{\alpha} p^{m}+\delta & \gamma \bar{y}-\delta \bar{x}
\end{array}\right)
$$

which, if it were an element of $\widetilde{U_{p}}$ would imply that $p \mid \lambda$, a contradiction.
We have

$$
P \Theta_{m} t_{4}=\left(\begin{array}{cccc}
a x+(a t+a x \bar{y}) \bar{\alpha} p^{m}-a y & a+a x p^{m} \alpha & -(a t+a x \bar{y}) \bar{\alpha} p^{m}+a y & a t+a x \bar{y} \\
m+(m \bar{y}-\beta \bar{x}) \bar{\alpha} p^{m}-\beta & m p^{m} \alpha & -(m \bar{y}-\beta \bar{x}) \bar{\alpha} p^{m}+\beta & m \bar{y}-\beta \bar{x} \\
\bar{\alpha} p^{m} \lambda(\bar{a})^{-1} & 0 & -\bar{\alpha} p^{m} \lambda(\bar{a})^{-1} & \lambda(\bar{a})^{-1} \\
\gamma+(\gamma \bar{y}-\delta \bar{x}) \bar{\alpha} p^{m}-\delta & \gamma p^{m} \alpha & -(\gamma \bar{y}-\delta \bar{x}) \bar{\alpha} p^{m}+\delta & \gamma \bar{y}-\delta \bar{x}
\end{array}\right)
$$

which, if it were an element of $\widetilde{U_{p}}$ would imply that $p \mid \lambda$, a contradiction.
We have

$$
P \Theta_{m} t_{6}=\left(\begin{array}{cccc}
a x & a+a x p^{m} \alpha & -(a t+a x \bar{y}) \bar{\alpha} p^{m}+a y & a t+a x \bar{y} \\
m & m p^{m} \alpha & -(m \bar{y}-\beta \bar{x}) \bar{\alpha} p^{m}+\beta & m \bar{y}-\beta \bar{x} \\
0 & 0 & -\bar{\alpha} p^{m} \lambda(\bar{a})^{-1} & \lambda(\bar{a})^{-1} \\
\gamma & \gamma p^{m} \alpha & -(\gamma \bar{y}-\delta \bar{x}) \bar{\alpha} p^{m}+\delta & \gamma \bar{y}-\delta \bar{x}
\end{array}\right)
$$

which, if it were an element of $\widetilde{U_{p}}$ would imply that $p|\gamma, p| \delta$, a contradiction.

Finally we have

$$
P \Theta_{m} t_{8}=\left(\begin{array}{cccc}
a t+a x \bar{y}) \bar{\alpha} p^{m}-a y & -a t-a x \bar{y} & a x & a+a x p^{m} \alpha \\
(m \bar{y}-\beta \bar{x}) \bar{\alpha} p^{m}-\beta & -m \bar{y}+\beta \bar{x} & m & m p^{m} \alpha \\
\lambda \bar{\alpha} p^{m}(\bar{a})^{-1} & -\lambda(\bar{a})^{-1} & 0 & 0 \\
(\gamma \bar{y}-\delta \bar{x}) \bar{\alpha} p^{m}-\delta & -\gamma \bar{y}+\delta \bar{x} & \gamma & \gamma p^{m} \alpha
\end{array}\right)
$$

which, if it were an element of $\widetilde{U_{p}}$ would imply that $p|\gamma, p| \delta$, a contradiction. This completes the proof of the claim.

For the remaining t_{i} (i.e., $i \in\{1,3,5,7\}$) we have the following decompositions: $\Theta h(l, m) t_{1}$

$$
=\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
0 & p^{m}
\end{array}\right)\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-p^{m} \alpha & -1 & 0 & 0 \\
1 & 0 & -1 & p^{m} \bar{\alpha} \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$\Theta h(l, m) t_{3}=$

$$
\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
-p^{m} & p^{m}
\end{array}\right)\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-p^{m} \alpha & -1 & 0 & 0 \\
0 & -p^{m} \bar{\alpha} & -1 & p^{m} \bar{\alpha} \\
-p^{m} \alpha & 0 & 0 & -1
\end{array}\right)
$$

$\Theta h(l, m) t_{5}$

$$
=\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
0 & p^{m}
\end{array}\right)\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
p^{m} \alpha & 1 & 0 & 0 \\
0 & 0 & 1 & p^{m} \bar{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\Theta h(l, m) t_{7}$

$$
=\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
0 & -p^{m+l} \\
-p^{m} & 0
\end{array}\right)\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & p^{m} \bar{\alpha} & 0 & 0 \\
0 & 0 & p^{m} \alpha & 1
\end{array}\right)
$$

Part (a) of the lemma now follows from the above decompositions and equations (2.5.1)(2.5.7).

Let us now look at $m=0$. Once again, let P be the matrix defined in (2.5.9). The same proof as above for t_{2} shows that $P \Theta_{m} t_{2} \notin \widetilde{U_{p}}$. As for t_{7},

$$
P \Theta_{m} t_{7}=\left(\begin{array}{cccc}
-a t-a x \bar{y} & (a t+a x \bar{y}) \bar{\alpha}-a y & a+a x \alpha & a x \\
-m \bar{y}+\beta \bar{x} & (m \bar{y}-\beta \bar{x}) \bar{\alpha}-\beta & m \alpha & m \\
-\lambda(\bar{a})^{-1} & \lambda \bar{\alpha}(\bar{a})^{-1} & 0 & 0 \\
-\gamma \bar{y}+\delta \bar{x} & (\gamma \bar{y}-\delta \bar{x}) \bar{\alpha}-\delta & \gamma \alpha & \gamma
\end{array}\right)
$$

If the above matrix lies in $\widetilde{U_{p}}$ then we have $p \mid \gamma \alpha$ which implies $p \mid \gamma$. But that immediately implies, by looking at the bottom left entry, that $p \mid \delta \bar{x}$, hence (by looking at the second entry of the bottom row) $p \mid \delta$. Thus $p|\gamma, p| \delta$, a contradiction.

Thus $\Theta h(l, 0) t_{i} \notin P\left(\mathbb{Q}_{p}\right) \widetilde{U_{p}}$ if $i \in\{2,7\}$. For t_{1} and t_{5} we have the above decompositions, from which part (b) follows via the equations (2.5.1)-(2.5.7).

Proof of Theorem 2.5.1. By (2.3.14) we have

$$
\begin{equation*}
Z_{p}\left(s, W_{p}, B_{p}\right)=\sum_{l \geq 0, m \geq 0} B_{p}(h(l, m)) \sum_{t_{i} \in T_{m}} W_{p}\left(\Theta h(l, m) t_{i}, s\right) \cdot I_{t_{i}}^{l, m} \tag{2.5.10}
\end{equation*}
$$

We first look at the terms corresponding to $m>0$. From Lemma 2.5.2 and Proposition 2.3.3 we have $\sum_{t_{i} \in T_{m}} W_{p}\left(\Theta h(l, m) t_{i}, s\right) \cdot I_{t_{i}}^{l, m}=0$. So only terms corresponding to $m=0$ contribute .

From Proposition 2.3.4 and Lemma 2.5.2 we have

$$
\sum_{t_{i} \in T_{0}} W_{p}\left(\Theta h(l, 0) t_{i}, s\right) \cdot I_{t_{i}}^{l, 0}=\frac{1}{p^{2}+1} \cdot p^{-3 l s+l / 2} a_{p}^{l}
$$

Hence (2.6.9) reduces to

$$
Z_{p}\left(s, W_{p}, B_{p}\right)=\frac{1}{p^{2}+1} \cdot \sum_{l \geq 0} B_{p}(h(l, 0)) p^{-3 l s+l / 2} a_{p}^{l} .
$$

Define $C(y)=\sum_{l \geq 0} B_{p}(h(l, 0)) y^{l}$. We are interested in the quantity

$$
\begin{equation*}
Z_{p}\left(s, W_{p}, B_{p}\right)=\frac{1}{p^{2}+1} C\left(a_{p} p^{-3 s+1 / 2}\right) . \tag{2.5.11}
\end{equation*}
$$

Sugano, in [Sug85, p. 544], has computed $C(y)$ explicitly. His results imply that

$$
C(y)=\frac{H(y)}{Q(y)}
$$

where $H(y)=1-\frac{y^{2}}{p^{4}}, Q(y)=\prod_{i=1}^{4}\left(1-\gamma_{p}^{(i)}(p) p^{-3 / 2} y\right)$.
Plugging in these values in (2.5.11) we get the desired result.

2.6 The case Steinberg π_{p}, Steinberg σ_{p}

Assumptions

Suppose that the characters $\omega_{\pi}, \omega_{\sigma}, \chi_{0}$ are trivial. Let $p \neq 2$ be a finite prime of \mathbb{Q} such that
(a) p is inert in $L=\mathbb{Q}(\sqrt{-d})$.
(b) Λ_{p} is not trivial on $T\left(\mathbb{Z}_{p}\right)$; however it is trivial on $T\left(\mathbb{Z}_{p}\right) \cap \Gamma_{p}^{0}$.
(c) π_{p} is the Steinberg representation (or its twist by the unique non-trivial unramified quadratic character).
(d) σ_{p} is the Steinberg representation (or its twist by the unique non-trivial unramified quadratic character).
(e) The conductor of ψ_{p} is \mathbb{Z}_{p}.
(f) $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \in M_{2}\left(\mathbb{Z}_{p}\right)$.
(g) $-d=b^{2}-4 a c$ generates the discriminant of L_{p} / \mathbb{Q}_{p}.

Remark. π_{p} corresponds to a local newform for the Iwahori subgroup I_{p} (see [Sch05]). Also, as in the previous section, σ_{p} corresponds to the local newform for the Iwahori subgroup $\Gamma_{0}(p)$ of $G L_{2}\left(\mathbb{Q}_{p}\right)$.

Description of B_{p} and W_{p}

Let Φ_{p} be the unique normalized local newform for the Iwahori subgroup I_{p}, as defined by Schmidt [Sch05]. Let w_{p} be the local Atkin-Lehner eigenvalue for π_{p}; this equals -1 when π_{p} is the Steinberg representation and equals 1 when π_{p} is the unramified quadratic twist of the Steinberg representation. We let B_{p} be the normalized vector that corresponds to Φ_{p} in the Bessel space. $\S 2.4$ was devoted to the computation of the values $B_{p}(h(l, m) t)$ for $l, m \in \mathbb{Z}, m \geq 0, t \in T_{m}$.

Because p is inert, L_{p} is a quadratic extension of \mathbb{Q}_{p} and we may write elements of L_{p} in the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{p}$; then $\mathbb{Z}_{L, p}=a+b \sqrt{-d}$ where $a, b \in \mathbb{Z}_{p}$. We also identify L_{p} with $T\left(\mathbb{Q}_{p}\right)$ and ξ with $\sqrt{-d} / 2$. We now define W_{p}. By Assumption (b) above, we have Λ_{p} is trivial on the elements of $T\left(\mathbb{Q}_{p}\right)$ of the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Z}_{p}, p \mid b, p \nmid a$. Take the canonical map $r: \widetilde{K}_{p} \rightarrow \widetilde{G}\left(\mathbb{F}_{p}\right)$ and define $I_{p}^{\prime}=r^{-1}\left(I\left(4, \mathbb{F}_{p}\right)\right)$.

Let s_{1} denote the matrix $\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.
Let $W_{p}(, s)$ be the unique vector in $I\left(\Pi_{p}, s\right)$ with the following properties:

- $W_{p}(1, s)=1$,
- $W_{p}\left(s_{1}, s\right)=1$,
- $W_{p}(g k, s)=W_{p}(g, s)$ is $k \in I_{p}^{\prime}$,
- $W_{p}(g, s)=0$ if g does not belong to $P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime} \sqcup P\left(\mathbb{Q}_{p}\right) s_{1} I_{p}^{\prime}$

Concretely we have the following description of $W_{p}(, s)$:

We know that $\sigma_{p}=S p \otimes \tau$ where $S p$ denotes the special (Steinberg) representation and τ is a (possibly trivial) unramified quadratic character. We put $a_{p}=\tau(p)$, thus $a_{p}= \pm 1$ is the eigenvalue of the local Hecke operator $T(p)$.

Let W_{p}^{\prime} be the unique function on $G L_{2}\left(\mathbb{Q}_{p}\right)$ such that

$$
\begin{gather*}
W_{p}^{\prime}(g k)=W_{p}^{\prime}(g), \text { for } g \in G L_{2}\left(\mathbb{Q}_{p}\right), k \in \Gamma_{0, p}, \tag{2.6.1}\\
W_{p}^{\prime}\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right)=\psi_{p}(-c x) W_{p}^{\prime}(g), \text { for } g \in G L_{2}\left(\mathbb{Q}_{p}\right), x \in \mathbb{Q}_{p}, \tag{2.6.2}\\
W_{p}^{\prime}\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)= \begin{cases}\tau(a)|a| & \text { if }|a|_{p} \leq 1, \\
0 & \text { otherwise }\end{cases} \tag{2.6.3}\\
W_{p}^{\prime}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)= \begin{cases}-p^{-1} \tau(a)|a| & \text { if }|a|_{p} \leq p, \\
0 & \text { otherwise }\end{cases} \tag{2.6.4}
\end{gather*}
$$

We extend W_{p}^{\prime} to a function on $G U(1,1)\left(\mathbb{Q}_{p}\right)$ by

$$
W_{p}^{\prime}(a g)=W_{p}^{\prime}(g), \text { for } a \in L_{p}^{\times}, g \in G L_{2}\left(\mathbb{Q}_{p}\right) .
$$

Then, $W_{p}(s)$ is the unique function on $\widetilde{G}\left(\mathbb{Q}_{p}\right)$ such that

$$
\begin{equation*}
W_{p}(m n u k, s)=W_{p}(m u, s), \text { for } m \in M\left(\mathbb{Q}_{p}\right), n \in N\left(\mathbb{Q}_{P}\right), u \in\left\{1, s_{1}\right\}, k \in I_{p}^{\prime} \tag{2.6.5}
\end{equation*}
$$

$$
\begin{gather*}
W_{p}(t)=0 \text { if } t \notin P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime} \sqcup P\left(\mathbb{Q}_{p}\right) s_{1} I_{p}^{\prime} \tag{2.6.6}\\
W_{p}\left(\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \bar{a}^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a_{1} & 0 & b_{1} \\
0 & 0 & c_{1} & 0 \\
0 & d_{1} & 0 & e_{1}
\end{array}\right) u, s\right) \tag{2.6.7}\\
=\left|N_{L / \mathbb{Q}}(a) \cdot c_{1}^{-1}\right|_{p}^{3(s+1 / 2)} \cdot \Lambda_{p}(a) W_{p}^{\prime}\left(\begin{array}{ll}
a_{1} & b_{1} \\
d_{1} & e_{1}
\end{array}\right),
\end{gather*}
$$

for $a \in \mathbb{Q}_{p}^{\times}, u \in\left\{1, s_{1}\right\},\left(\begin{array}{ll}a_{1} & b_{1} \\ d_{1} & e_{1}\end{array}\right) \in G U(1,1)\left(\mathbb{Q}_{p}\right), c_{1}=\mu_{1}\left(\begin{array}{ll}a_{1} & b_{1} \\ d_{1} & e_{1}\end{array}\right)$.

The results

We now state and prove the main theorem of this section.
Theorem 2.6.1. Let the functions B_{p}, W_{p} be as defined in subsection* 2.6. Then we have

$$
Z_{p}\left(s, W_{p}, B_{p}\right)=\frac{1-p}{p^{2}+1} \cdot \frac{p^{-6 s-3}}{1-a_{p} w_{p} p^{-3 s-3 / 2}} \cdot L\left(3 s+\frac{1}{2}, \pi_{p} \times \sigma_{p}\right)
$$

where $L\left(s, \pi_{p} \times \sigma_{p}\right)=\left(1+a_{p} w_{p} p^{-1} p^{-s}\right)^{-1}\left(1+a_{p} w_{p} p^{-2} p^{-s}\right)^{-1}$.
Before we begin the proof, we need a lemma.
Lemma 2.6.2. We have the following formulae for $W_{p}\left(\Theta h(l, m) t_{i}, s\right)$ where $t_{i} \in T_{m}$.

$$
W_{p}\left(\Theta h(l, m) t_{i}, s\right)=\left\{\begin{array}{lll}
p^{-6 m s-3 l s-3 m-5 l / 2} a_{p}^{l} \cdot \frac{-1}{p} & \text { if } i=3,4, & m>0 \\
p^{-6 m s-3 l s-3 m-5 l / 2} a_{p}^{l} & \text { if } i=5,6, & m>0 \\
0 & \text { otherwise. } &
\end{array}\right.
$$

Proof. We have

$$
\Theta h(l, m)=h(l, m)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.6.8}\\
p^{m} \alpha & 1 & 0 & 0 \\
0 & 0 & 1 & -p^{m} \bar{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Put $K_{p}^{\prime}=r^{-1}\left(G\left(F_{p}\right)\right)$. Thus $\Theta h(l, m) t_{i} \in P\left(\mathbb{Q}_{p}\right) K_{p}^{\prime}$ when $m>0$ and $\Theta h(l, m) t_{i} \in$ $P\left(\mathbb{Q}_{p}\right) \Theta K_{p}^{\prime}$ when $m=0$. A direct computation shows that $P\left(\mathbb{Q}_{p}\right) K_{p}^{\prime}$ and $P\left(\mathbb{Q}_{p}\right) \Theta K_{p}^{\prime}$ are disjoint; the fact that $P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime} \subset P\left(\mathbb{Q}_{p}\right) K_{p}^{\prime}$ then implies that $W_{p}\left(\Theta h(l, m) t_{i}, s\right)=0$ for $m=0$. From now on we assume $m>0$.

We can check that $\Theta h(l, m) t_{i} \notin P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime} \sqcup P\left(\mathbb{Q}_{p}\right) s_{1} I_{p}^{\prime}$ if $i \in\{1,2,7,8\}$.
For the remaining t_{i} (i.e. $i \in\{3,4,5,6\}$) we have the decompositions:
$\Theta h(l, m) t_{3}=$

$$
\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
-p^{m} & p^{m}
\end{array}\right)\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-p^{m} \alpha & -1 & 0 & 0 \\
0 & -p^{m} \bar{\alpha} & -1 & p^{m} \bar{\alpha} \\
-p^{m} \alpha & 0 & 0 & -1
\end{array}\right)
$$

$\Theta h(l, m) t_{4}=$

$$
\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
-p^{m} & p^{m}
\end{array}\right)\right) s_{1}\left(\begin{array}{cccc}
1 & p^{m} \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & p^{m} \alpha & 1 & 0 \\
p^{m} \bar{\alpha} & 0 & -p^{m} \bar{\alpha} & 1
\end{array}\right)
$$

$\Theta h(l, m) t_{5}$

$$
=\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
0 & p^{m}
\end{array}\right)\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
p^{m} \alpha & 1 & 0 & 0 \\
0 & 0 & 1 & p^{m} \bar{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\Theta h(l, m) t_{6}$

$$
=\left(\begin{array}{cccc}
p^{2 m+l} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p^{-2 m-l} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) m^{(2)}\left(\left(\begin{array}{cc}
p^{m+l} & 0 \\
0 & p^{m}
\end{array}\right)\right) s_{1}\left(\begin{array}{cccc}
1 & p^{m} \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -p^{m} \bar{\alpha} & 1
\end{array}\right)
$$

The lemma now follows from the above decompositions and equations (2.6.1)-(2.6.7).

Proof of Theorem 2.6.1. By (2.3.14) we have

$$
\begin{equation*}
Z_{p}\left(s, W_{p}, B_{p}\right)=\sum_{l \geq 0, m \geq 0} \sum_{t_{i} \in T_{m}} B_{p}\left(h(l, m) t_{i}\right) W_{p}\left(\Theta h(l, m) t_{i}, s\right) \cdot I_{t_{i}}^{l, m} \tag{2.6.9}
\end{equation*}
$$

From Proposition 2.3.3, Proposition 2.4.2 and Lemma 2.6.2 we have

$$
\sum_{i \in\{3,4,5,6\}} B_{p}\left(h(l, m) t_{i}\right) W_{p}\left(\Theta h(l, m) t_{i}, s\right) \cdot I_{t_{i}}^{l, m}=\frac{(1-p)\left(-a_{p} w_{p} p^{-3 s-5 / 2}\right)^{l}\left(p^{-6 s-3}\right)^{m}}{p^{2}+1}
$$

Hence (2.6.9) implies

$$
Z_{p}\left(s, W_{p}, B_{p}\right)=\frac{(1-p) p^{-6 s-3}}{p^{2}+1} \cdot \frac{1}{1+a_{p} w_{p} p^{-2} p^{-3 s-1 / 2}} \cdot \frac{1}{1-p^{-6 s-3}}
$$

This completes the proof.

2.7 The case Steinberg π_{p}, unramified σ_{p}

Assumptions

Suppose that the characters $\omega_{\pi}, \omega_{\sigma}, \chi_{0}$ are trivial. Let $p \neq 2$ be a finite prime of \mathbb{Q} such that
(a) p is inert in $L=\mathbb{Q}(\sqrt{-d})$.
(b) Λ_{p} is not trivial on $T\left(\mathbb{Z}_{p}\right)$; however it is trivial on $T\left(\mathbb{Z}_{p}\right) \cap \Gamma_{p}^{0}$.
(c) π_{p} is the Steinberg representation (or its twist by the unique non-trivial unramified quadratic character) while σ_{p} is unramified.
(d) The conductor of ψ_{p} is \mathbb{Z}_{p}.
(e) $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \in M_{2}\left(\mathbb{Z}_{p}\right)$.
(f) $-d=b^{2}-4 a c$ generates the discriminant of L_{p} / \mathbb{Q}_{p}.

Remark. π_{p} corresponds to a local newform for the Iwahori subgroup I_{p} (see [Sch05]).

Description of B_{p} and W_{p}

Let Φ_{p} be the unique normalized local newform for the Iwahori subgroup I_{p}, as defined by Schmidt [Sch05]. Let w_{p} be the local Atkin-Lehner eigenvalue for π_{p}; this equals -1 when
π_{p} is the Steinberg representation and equals 1 when π_{p} is the unramified quadratic twist of the Steinberg representation. We let B_{p} be the normalized vector that corresponds to Φ_{p} in the Bessel space. Section 2.4 was devoted to the computation of the values $B_{p}(h(l, m) t)$ for $l, m \in \mathbb{Z}, m \geq 0, t \in T_{m}$.

We now define W_{p}. Take the canonical map $r: \widetilde{K}_{p} \rightarrow \widetilde{G}\left(\mathbb{F}_{p}\right)$ and define $I_{p}^{\prime}=r^{-1}\left(I\left(4, \mathbb{F}_{p}\right)\right)$. Let $W_{p}(, s)$ be the unique vector in $I\left(\Pi_{p}, s\right)$ with the following properties:

- $W_{p}(\Theta, s)=1$,
- $W_{p}(1, s)=1$,
- $W_{p}(g k, s)=W_{p}(g, s)$ is $k \in I_{p}^{\prime}$,
- $W_{p}(g, s)=0$ if g does not belong to $P\left(\mathbb{Q}_{p}\right) \Theta I_{p}^{\prime} \sqcup P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime}$

Concretely we have the following description of $W_{p}(, s)$.
Suppose σ_{p} is the principal series representation induced from the unramified characters α, β of \mathbb{Q}_{p}^{\times}. Let W_{p}^{\prime} be the unique function on $G L_{2}\left(\mathbb{Q}_{p}\right)$ such that

$$
\begin{align*}
W_{p}^{\prime}(g k) & =W_{p}^{\prime}(g), \text { for } g \in G L_{2}\left(\mathbb{Q}_{p}\right), k \in G L_{2}\left(\mathbb{Z}_{p}\right), \tag{2.7.1}\\
W_{p}^{\prime}\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) & =\psi_{p}(-c x) W_{p}^{\prime}(g), \text { for } g \in G L_{2}\left(\mathbb{Q}_{p}\right), x \in \mathbb{Q}_{p}, \tag{2.7.2}\\
W_{p}^{\prime}\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) & = \begin{cases}\left|\frac{a}{b}\right|_{p}^{\frac{1}{2}} \cdot \frac{\alpha(a p) \beta(b)-\alpha(b) \beta(a p)}{\alpha(p)-\beta(p)} & \text { if }\left|\frac{a}{b}\right|_{p} \leq 1, \\
0 & \text { otherwise }\end{cases} \tag{2.7.3}
\end{align*}
$$

We extend W_{p}^{\prime} to a function on $G U(1,1)\left(\mathbb{Q}_{p}\right)$ by

$$
W_{p}^{\prime}(a g)=W_{p}^{\prime}(g), \text { for } a \in L_{p}^{\times}, g \in G L_{2}\left(\mathbb{Q}_{p}\right) .
$$

Then, $W_{p}(s)$ is the unique function on $\widetilde{G}\left(\mathbb{Q}_{p}\right)$ such that

$$
\begin{equation*}
W_{p}(m n u k, s)=W_{p}(m u, s), \text { for } m \in M\left(\mathbb{Q}_{p}\right), n \in N\left(\mathbb{Q}_{P}\right), u \in\{1, \Theta\}, k \in I_{p}^{\prime}, \tag{2.7.4}
\end{equation*}
$$

$$
\begin{gather*}
W_{p}(t)=0 \text { if } t \notin P\left(\mathbb{Q}_{p}\right) \Theta I_{p}^{\prime} \sqcup P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime} \tag{2.7.5}\\
W_{p}\left(\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \bar{a}^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a_{1} & 0 & b_{1} \\
0 & 0 & c_{1} & 0 \\
0 & d_{1} & 0 & e_{1}
\end{array}\right) u, s\right) \tag{2.7.6}\\
=\left|N_{L / \mathbb{Q}}(a) \cdot c_{1}^{-1}\right|_{p}^{3(s+1 / 2)} \cdot \Lambda_{p}\left(\bar{a}^{-1}\right) W_{p}^{\prime}\left(\begin{array}{ll}
a_{1} & b_{1} \\
d_{1} & e_{1}
\end{array}\right), \\
\text { for } a \in \mathbb{Q}_{p}^{\times}, u \in\{1, \Theta\},\left(\begin{array}{ll}
a_{1} & b_{1} \\
d_{1} & e_{1}
\end{array}\right) \in G U(1,1)\left(\mathbb{Q}_{p}\right), c_{1}=\mu_{1}\left(\begin{array}{ll}
a_{1} & b_{1} \\
d_{1} & e_{1}
\end{array}\right)
\end{gather*}
$$

The results

We now state and prove the main theorem of this section.
Theorem 2.7.1. Let the functions B_{p}, W_{p} be as defined in subsection* 2.7. Then we have

$$
Z_{p}\left(s, W_{p}, B_{p}\right)=\frac{1}{(p+1)\left(p^{2}+1\right)} \cdot L\left(3 s+\frac{1}{2}, \pi_{p} \times \sigma_{p}\right),
$$

$$
\text { where } L\left(s, \pi_{p} \times \sigma_{p}\right)=\left(1+w_{p} p^{-3 / 2} \alpha(p) p^{-s}\right)^{-1}\left(1+w_{p} p^{-3 / 2} \beta(p) p^{-s}\right)^{-1} \text {. }
$$

Before we begin the proof, we need a lemma.
Lemma 2.7.2. Let $t_{i} \in T_{m}, l \geq 0$. We have

$$
W_{p}\left(\Theta h(l, m) t_{i}, s\right)= \begin{cases}p^{-3 l s-2 l}\left(\frac{\alpha(p)^{l+1}-\beta(p)^{l+1}}{\alpha(p)-\beta(p)}\right) & \text { if } m=0, i=5 \\ p^{-6 m s-3 l s-3 m-5 l / 2\left(\frac{\alpha(p)^{l+1}-\beta(p)^{l+1}}{\alpha(p)-\beta(p)}\right)} & \text { if } m>0, i=3,5 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By the proof of Lemma 2.6.2 we have $\Theta h(l, m) t_{i} \notin P\left(\mathbb{Q}_{p}\right) \Theta I_{p}^{\prime}$ if $m>0$. As for the case $m=0$, we can check that $\Theta h(l, 0) t_{i} \notin P\left(\mathbb{Q}_{p}\right) \Theta I_{p}^{\prime}$ if $i \in\{1,2,7\}$. On the other hand, again by the proof of Lemma 2.6.2, we have $\Theta h(l, m) t_{i} \in P\left(\mathbb{Q}_{p}\right) I_{p}^{\prime}$ if and only if $m>0$ and $i \in\{3,5\}$. The lemma now follows immediately from (2.7.1) - (2.7.6).

Proof of Theorem 2.7.1. We have

$$
\begin{align*}
Z_{p}\left(s, W_{p}, B_{p}\right) & =\sum_{l \geq 0} W_{p}\left(\Theta h(l, 0) t_{5}, s\right) B_{p}\left(h(l, 0) t_{5}\right) \cdot I_{t_{5}}^{l, 0} \tag{2.7.7}\\
& +\sum_{l \geq 0, m>0} \sum_{i \in\{3,5\}} W_{p}\left(\Theta h(l, m) t_{i}, s\right) B_{p}\left(h(l, m) t_{i}\right) \cdot I_{t_{i}}^{l, m}
\end{align*}
$$

Using Proposition 2.4.3, Proposition 2.3.4 and Lemma 2.7.2 we have

$$
\sum_{i \in\{3,5\}} W_{p}\left(\Theta h(l, m) t_{i}, s\right) B_{p}\left(h(l, m) t_{i}\right) \cdot I_{t_{i}}^{l, m}=0
$$

and hence

$$
\begin{aligned}
Z_{p}\left(s, W_{p}, B_{p}\right) & =\sum_{l \geq 0} W_{p}\left(\Theta h(l, 0) t_{5}, s\right) B_{p}\left(h(l, 0) t_{5}\right) \cdot I_{t_{5}}^{l, 0} \\
& =\frac{1}{(p+1)\left(p^{2}+1\right)} \sum_{l \geq 0} p^{-3 l s-2 l}\left(\frac{\alpha(p)^{l+1}-\beta(p)^{l+1}}{\alpha(p)-\beta(p)}\right)\left(-p w_{p}\right)^{l} p^{-l} \\
& =\frac{1}{(p+1)\left(p^{2}+1\right)} L\left(3 s+\frac{1}{2}, \pi_{p} \times \sigma_{p}\right) .
\end{aligned}
$$

This completes the proof of the theorem.

Remark. We might equally well have chosen W_{p} to be the simpler vector supported only on Θ (rather than on Θ and 1). The only reason we include 1 in the support of the section is because this definition will be necessary for $\S 3$.

2.8 The global integral and some results

Classical Siegel modular forms and newforms for the minimal congruence subgroup

For M a positive integer define the following global parahoric subgroups.

$$
\begin{aligned}
& B(M):=S p(4, \mathbb{Z}) \cap\left(\begin{array}{cccc}
\mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z}
\end{array}\right), \\
& U_{1}(M):=S p(4, \mathbb{Z}) \cap\left(\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right), \\
& U_{2}(M):=S p(4, \mathbb{Z}) \cap\left(\begin{array}{cccc}
\mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z}
\end{array}\right), \\
& U_{0}(M):=S p(4, \mathbb{Q}) \cap\left(\begin{array}{cccc}
\mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & M^{-1} \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
M \mathbb{Z} & M \mathbb{Z} & M \mathbb{Z} & \mathbb{Z}
\end{array}\right) .
\end{aligned}
$$

When $M=1$ each of the above groups is simply $S p(4, \mathbb{Z})$. For $M>1$, the groups are all distinct. If Γ^{\prime} is equal to one of the above groups, or (more generally) is any congruence subgroup, we define $S_{k}\left(\Gamma^{\prime}\right)$ to be the space of Siegel cusp forms of degree 2 and weight k with respect to the group Γ^{\prime}.

More precisely, let $\mathbb{H}_{2}=\left\{Z \in M_{2}(\mathbb{C}) \mid Z=Z^{t}, i(\bar{Z}-Z)\right.$ is positive definite $\}$. For any $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in G$ let $J(g, Z)=C Z+D$. Then $f \in S_{k}\left(\Gamma^{\prime}\right)$ if it is a holomorphic function on \mathbb{H}_{2}, satisfies $f(\gamma Z)=\operatorname{det}(J(\gamma, Z))^{k} f(Z)$ for $\gamma \in \Gamma^{\prime}, Z \in \mathbb{H}_{2}$ and disappears at the cusps. We know that f has a Fourier expansion

$$
f(Z)=\sum_{S>0} a(S, F) e(\operatorname{tr}(S Z)),
$$

where $e(z)=\exp (2 \pi i z)$ and S runs through all symmetric semi-integral positive-definite matrices of size two.

Now let M be a square-free positive integer. For any decomposition $M=M_{1} M_{2}$ into coprime integers we define, following Schmidt [Sch05], the subspace of oldforms $S_{k}(B(M))^{\text {old }}$ to be the sum of the spaces

$$
S_{k}\left(B\left(M_{1}\right) \cap U_{0}\left(M_{2}\right)\right)+S_{k}\left(B\left(M_{1}\right) \cap U_{1}\left(M_{2}\right)\right)+S_{k}\left(B\left(M_{1}\right) \cap U_{2}\left(M_{2}\right)\right) .
$$

For each prime p not dividing M there is the local Hecke algebra \mathfrak{H}_{p} of operators on $S_{k}(B(M))$ and for each prime q dividing M we have the Atkin-Lehner involution η_{q} also acting on $S_{k}(B(M))$. For details, the reader may refer to [Sch05].

By a newform for the minimal congruence subgroup $B(M)$, we mean an element $f \in$ $S_{k}(B(M))$ with the following properties
(a) f lies in the orthogonal complement of the space $S_{k}(B(M))^{\text {old }}$.
(b) f is an eigenform for the local Hecke algebras \mathfrak{H}_{p} for all primes p not dividing M.
(c) f is an eigenform for the Atkin-Lehner involutions η_{q} for all primes q dividing M.

Remark. By [Sch05], if we assume the hypothesis that a nice L-function theory for $G S p(4)$ exists, (b) and (c) above follow from (a) and the assumption that f is an eigenform for the local Hecke algebras at almost all primes.

Description of our newforms

Let M be an odd square-free positive integer and

$$
F(Z)=\sum_{T>0} a(T) \mathrm{e}(\operatorname{tr}(T Z))
$$

be a Siegel newform for $B(M)$ of even weight l.
Let N be an odd square-free positive integer and g be a normalized newform of weight l for $\Gamma_{0}(N) . g$ has a Fourier expansion

$$
g(z)=\sum_{n=1}^{\infty} b(n) e(n z)
$$

with $b(1)=1$. It is then well known that the $b(n)$ are all totally real algebraic numbers.
We make the following assumption:

$$
a(T) \neq 0 \text { for some } T=\left(\begin{array}{ll}
a & \frac{b}{2} \tag{2.8.1}\\
\frac{b}{2} & c
\end{array}\right)
$$

such that $-d=b^{2}-4 a c$ is the discriminant of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$, and all primes dividing $M N$ are inert in $\mathbb{Q}(\sqrt{-d})$.

We define a function $\Phi=\Phi_{F}$ on $G(\mathbb{A})$ by

$$
\Phi\left(\gamma h_{\infty} k_{0}\right)=\mu_{2}\left(h_{\infty}\right)^{l} \operatorname{det}\left(J\left(h_{\infty}, i I_{2}\right)\right)^{-l} F\left(h_{\infty}(i)\right)
$$

where $\gamma \in G(\mathbb{Q}), h_{\infty} \in G(\mathbb{R})^{+}$and

$$
k_{0} \in\left(\prod_{p \nmid M} K_{p}\right) \cdot\left(\prod_{p \mid M} I_{p}\right) .
$$

Because we do not have strong multiplicity one for G we can only say that the representation of $G(\mathbb{A})$ generated by Φ is a multiple of an irreducible representation π. However that is enough for our purposes.

We know that $\pi=\otimes \pi_{v}$ where

$$
\pi_{v}= \begin{cases}\text { holomorphic discrete series } & \text { if } v=\infty, \\ \text { unramified spherical principal series } & \text { if } v \text { finite }, v \nmid M, \\ \xi_{v} \mathrm{St}_{G S p(4)} \text { where } \xi_{v} \text { unramified, } \xi_{v}^{2}=1 & \text { if } v \mid M .\end{cases}
$$

Next, we define a function Ψ on $G L_{2}(\mathbb{A})$ by

$$
\Psi\left(\gamma_{0} m k_{0}\right)=(\operatorname{det} m)^{\frac{l}{2}}(\gamma i+\delta)^{-l} g(m(i))
$$

where $\gamma_{0} \in G L_{2}(\mathbb{Q}), m=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G L_{2}^{+}(\mathbb{R})$, and

$$
k_{0} \in \prod_{p \nmid N} G L_{2}\left(\mathbb{Z}_{p}\right) \prod_{p \mid N} \Gamma_{0, p}
$$

Let σ be the automorphic representation of $G L_{2}(\mathbb{A})$ generated by Ψ.
We know that $\sigma=\otimes \sigma_{v}$ where

$$
\sigma_{v}= \begin{cases}\text { holomorphic discrete series } & \text { if } v=\infty, \\ \text { unramified spherical principal series } & \text { if } v \text { finite }, v \nmid N, \\ \xi \operatorname{St}_{G L(2)} \text { where } \xi_{v} \text { unramified, } \xi_{v}^{2}=1 & \text { if } v \mid N .\end{cases}
$$

Description of our Bessel model

In order to use our results from the previous sections, we need to associate a Bessel model to π (or more accurately, we associate it to $\widetilde{\pi}$). This involves making a choice of (S, Λ, ψ). This subsection is devoted to doing that.

Let $\psi=\prod_{v} \psi_{v}$ be a character of \mathbb{A} such that

- The conductor of ψ_{p} is \mathbb{Z}_{p} for all (finite) primes p,
- $\psi_{\infty}(x)=e(-x)$, for $x \in \mathbb{R}$,
- $\left.\psi\right|_{\mathbb{Q}}=1$.

Put $L=\mathbb{Q}(\sqrt{-d})$. where d is the integer defined in (2.8.1).
First we deal with the case $M=1$. In this case, our choice of S and Λ is identical to [Fur93]. To recall, put

$$
\begin{equation*}
T(\mathbb{A})=\coprod_{j=1}^{h(-d)} t_{j} T(\mathbb{Q}) T(\mathbb{R})\left(\Pi_{p<\infty} T\left(\mathbb{Z}_{p}\right)\right) \tag{2.8.2}
\end{equation*}
$$

where $t_{j} \in \prod_{p<\infty} T\left(\mathbb{Q}_{p}\right)$ and $h(-d)$ is the class number of L.
Write $t_{j}=\gamma_{j} m_{j} \kappa_{j}$, where $\gamma_{j} \in G L_{2}(\mathbb{Q}), m_{j} \in G L_{2}^{+}(\mathbb{R})$, and $\kappa_{j} \in\left(\left(\Pi_{p<\infty} G L_{2}\left(\mathbb{Z}_{p}\right)\right)\right.$.
Choose

$$
S=\left\{\begin{array}{cll}
\left(\begin{array}{cc}
d / 4 & 0 \\
0 & 1
\end{array}\right) & \text { if } d \equiv 0 & (\bmod 4) \\
\left(\begin{array}{cc}
(1+d) / 4 & 1 / 2 \\
1 / 2 & 1
\end{array}\right) & \text { if } d \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Let $S_{j}=\operatorname{det}\left(\gamma_{j}\right)^{-1} \gamma_{j}^{t} S \gamma_{j}$. Then, any primitive semi-integral two by two positive definite matrix with discriminant equal to $-d$ is $S L_{2}(\mathbb{Z})$-equivalent to some S_{j}. So, by our assumption, we can choose Λ a character of $T(\mathbb{A}) / T(\mathbb{Q}) T(\mathbb{R})\left(\left(\Pi_{p<\infty} T\left(\mathbb{Z}_{p}\right)\right)\right.$ such that

$$
\sum_{j=1}^{h(-d)} \Lambda\left(t_{j}\right) \overline{a\left(S_{j}\right)} \neq 0
$$

Thus, we have specified a choice of S and Λ for $M=1$.
In the rest of this subsection, unless otherwise mentioned, assume $M>1$.
Suppose p is a prime dividing M. We can identify L_{p} with elements $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{p}$. Let $\mathbb{Z}_{L, p}^{\times}$denote the units in the ring of integers of L_{p}. The elements of $\mathbb{Z}_{L, p}^{\times}$are of the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Z}_{p}$ and such that at least one of a and b is a unit. Let $\Gamma_{L, p}^{0}$ be the subgroup of $\mathbb{Z}_{L, p}^{\times}$consisting of the elements with $p \mid b$. The group $\mathbb{Z}_{L, p}^{\times} / \Gamma_{L, p}^{0}$ is clearly cyclic of order $p+1$. Moreover, the elements $\{(-b+\sqrt{-d}) / 2\}$ where b is a positive integer satisfying $\{1 \leq b \leq 2 p: b=d(\bmod 2)\}$ are distinct in $\mathbb{Z}_{L, p}^{\times} / \Gamma_{L, p}^{0}$. Note that $d=0$ or 3 $(\bmod 4)$ and hence $b=d(\bmod 2)$ implies that 4 divides $b^{2}+d$. So we have the lemma:

Lemma 2.8.1. There exists an integer b such that 4 divides $b^{2}+d$ and $(-b+\sqrt{-d}) / 2$ is a generator of the group $\mathbb{Z}_{L, p}^{\times} / \Gamma_{L, p}^{0}$ for each $p \mid M$.

Proof. By the comments above, we can choose, for each prime p_{i} dividing M, an integer b_{i} such that $b_{i} \equiv d(\bmod 2)$ and $\left(-b_{i}+\sqrt{-d}\right) / 2$ is a generator of the group $\mathbb{Z}_{L, p_{i}}^{\times} / \Gamma_{L, p_{i}}^{0}$. Now, using the Chinese Remainder theorem, choose b satisfying $b \equiv b_{i}\left(\bmod 2 p_{i}\right)$ for each i.

Now we define

$$
S=\left(\begin{array}{cc}
\frac{b^{2}+d}{4} & \frac{b}{2} \\
\frac{b}{2} & 1
\end{array}\right) .
$$

As in section 2.1 we define the matrix $\xi=\xi_{S}$ and the group $T=T_{S}$. We have $T(\mathbb{Q}) \simeq$ L^{\times}. We write $T\left(\mathbb{Z}_{p}\right)$ for $T\left(\mathbb{Q}_{p}\right) \cap G L_{2}\left(\mathbb{Z}_{p}\right)$.

Let

$$
\begin{equation*}
T(\mathbb{A})=\coprod_{j=1}^{h(-d)} t_{j} T(\mathbb{Q}) T(\mathbb{R})\left(\Pi_{p<\infty} T\left(\mathbb{Z}_{p}\right)\right. \tag{2.8.3}
\end{equation*}
$$

where $t_{j} \in \prod_{p<\infty} T\left(\mathbb{Q}_{P}\right)$ and $h(-d)$ is the class number of L. For each $p \mid M$ put $\Gamma_{L, p}^{0}=$ $T\left(\mathbb{Z}_{p}\right) \cap \Gamma_{p}^{0}$. Note that under the isomorphism $T\left(\mathbb{Z}_{p}\right) \simeq \mathbb{Z}_{L, p}^{\times}$sending $x+y \xi \mapsto x+y \frac{\sqrt{-d}}{2}$, our two definitions for $\Gamma_{L, p}^{0}$ agree, so there is no ambiguity.

Let $M=p_{1} p_{2} \ldots p_{r}$ be its decomposition into distinct primes. For each $1 \leq i \leq r$ we choose coset representatives $u_{k_{i}}^{\left(p_{i}\right)} \in T\left(\mathbb{Z}_{p_{i}}\right)$ such that

$$
T\left(\mathbb{Z}_{p_{i}}\right)=\coprod_{k_{i}=1}^{p_{i}+1} u_{k_{i}}^{\left(p_{i}\right)} \Gamma_{L, p_{i}}^{0} .
$$

We write an r-tuple $\left(k_{1}, . ., k_{r}\right)$ in short as \widetilde{k}. Let X denote the Cartesian product of the r sets $X_{i}=\left\{x: 1 \leq x \leq p_{i}\right\}$. For $\widetilde{k} \in X$, define

$$
u_{\widetilde{k}}=\prod_{i=1}^{r} u_{k_{i}}^{\left(p_{i}\right)}
$$

Then it is easy to see that as \widetilde{k} varies over X the elements $u_{\widetilde{k}}$ form a set of coset representatives of $\Pi_{p \mid M} T\left(\mathbb{Z}_{p}\right) / \Pi_{p \mid M} \Gamma_{L, p}^{0}$. Also note that $|X|=\left|S L_{2}(\mathbb{Z}) / \Gamma^{0}(M)\right|=\Pi_{p_{1} \mid M}\left(p_{i}+1\right)$. We denote the quantity $\Pi_{p_{1} \mid M}\left(p_{i}+1\right)$ by $g(M)$.

Let $T(\mathbb{Z})$ denote the (finite) group of units in the ring of integers \mathbb{Z}_{L} of L. Let $t(d)$ denote the cardinality of the group $T(\mathbb{Z}) /\{ \pm 1\}$. We know that,

$$
t(d)= \begin{cases}3 & \text { if } d=3 \\ 2 & \text { if } d=4 \\ 1 & \text { otherwise }\end{cases}
$$

Let T_{M}^{\times}be the image of $T(\mathbb{Z})$ in $\Pi_{p \mid M} T\left(\mathbb{Z}_{p}\right)$. Then $T_{M}^{\times} \cap \Pi_{p \mid M} \Gamma_{L, p}^{0}=\{ \pm 1\}$. Choose a set of elements $r_{1}, r_{2}, . . r_{t(d)}$ in $T(\mathbb{Z})$ such that they form distinct representatives in $T(\mathbb{Z}) /\{ \pm 1\}$. Let \bar{r}_{i} denote the image of r_{i} in T_{M}^{\times}. We have

$$
\begin{equation*}
T_{M}^{\times} \Pi_{p \mid M} \Gamma_{L, p}^{0}=\coprod_{i=1}^{t(d)} \bar{r}_{i}\left(\Pi_{p \mid M} \Gamma_{L, p}^{0}\right) . \tag{2.8.4}
\end{equation*}
$$

Finally, choose $x_{1}, x_{2}, \ldots, x_{g(M) / t(d)}$ in $\Pi_{p \mid M} T\left(\mathbb{Z}_{p}\right)$ such that we have the disjoint coset decomposition:

$$
\begin{equation*}
\Pi_{p \mid M} T\left(\mathbb{Z}_{p}\right)=\coprod_{i=1}^{g(M) / t(d)} x_{i} T_{M}^{\times} \Pi_{p \mid M} \Gamma_{L, p}^{0} \tag{2.8.5}
\end{equation*}
$$

This immediately gives us the fundamental coset decomposition:

$$
\begin{equation*}
T(\mathbb{A})=\coprod_{\substack{1 \leq j \leq h(-d) \\ 1 \leq k \leq g(M) / t(d)}} t_{j} x_{k} T(\mathbb{Q}) T(\mathbb{R})\left(\Pi_{p \nmid M} T\left(\mathbb{Z}_{p}\right)\right)\left(\Pi_{p_{i} \mid M} \Gamma_{L, p_{i}}^{0}\right) \tag{2.8.6}
\end{equation*}
$$

Also from (2.8.4) and (2.8.5) we immediately get another coset decomposition:

$$
\begin{equation*}
\Pi_{p \mid M} T\left(\mathbb{Z}_{p}\right)=\coprod_{\substack{1 \leq i \leq g(M) / t(d) \\ 1 \leq j \leq t(d)}} x_{i} \bar{r}_{j} \Pi_{p \mid M} \Gamma_{L, p}^{0} \tag{2.8.7}
\end{equation*}
$$

But we know that an alternate set of coset representatives in the above equation is given by the elements $u_{\tilde{k}}$. It follows that for any $1 \leq i \leq g(M) / t(d), 1 \leq j \leq t(d)$, there exists a unique $\widetilde{k} \in X$ such that $u_{\tilde{k}}^{-1} x_{i} \bar{r}_{j} \in \Pi_{p \mid M} \Gamma_{L, p}^{0}$. This correspondence is bijective.

Write $t_{j} x_{k}=\gamma_{j, k} m_{j, k} \kappa_{j, k}$, where $\gamma_{j, k} \in G L_{2}(\mathbb{Q}), m_{j, k} \in G L_{2}^{+}(\mathbb{R})$, and $\kappa_{j, k} \in\left(\Pi_{p<\infty, p \nmid M} G L_{2}\left(\mathbb{Z}_{p}\right)\right.$. $\Pi_{p \mid M} \Gamma_{p}^{0}$. Also, by $\left(\gamma_{j, k}\right)_{f}$ we denote the finite part of $\gamma_{j, k}$, that is, $\left(\gamma_{j, k}\right)_{f}=\gamma_{j, k} m_{j, k}$.

Lemma 2.8.2. For each j, the elements $\gamma_{j, 1}^{-1} r_{l} \gamma_{j, k}$ form a system of representatives of $S L_{2}(\mathbb{Z}) / \Gamma^{0}(M)$ as l, k vary over $1 \leq l \leq t(d), 1 \leq k \leq g(M) / t(d)$.

Proof. Fix j. Let $1 \leq l_{2} \leq t(d), 1 \leq k_{2} \leq g(M) / t(d)$. We have

$$
\gamma_{j, k_{2}}^{-1} r_{l_{2}}^{-1} r_{l} \gamma_{j, k}=m_{j, k_{2}} \kappa_{j, k_{2}} x_{k_{2}}^{-1} r_{l_{2}}^{-1} r_{l} x_{k}\left(m_{j, k} \kappa_{j, k}\right)^{-1}
$$

Therefore $\gamma_{j, k_{2}}^{-1} r_{l_{2}}^{-1} r_{l} \gamma_{j, k} \in\left(G L_{2}^{+}(\mathbb{R}) \Pi_{q<\infty} G L_{2}\left(\mathbb{Z}_{q}\right)\right) \cap G L_{2}(\mathbb{Q})=S L_{2}(\mathbb{Z})$. Moreover, if it belongs to $\Gamma^{0}(M)$ then we must have $x_{k_{2}}^{-1} \bar{r}_{l_{2}}^{-1} \bar{r}_{l} x_{k} \in \Pi_{p \mid M} \Gamma_{p}^{0}$ and by (2.8.7) this can happen only if $l=l_{2}, k=k_{2}$. Now the lemma follows because the size of the set $\gamma_{j, 1}^{-1} r_{l} \gamma_{j, k}$ equals the cardinality of $S L_{2}(Z) / \Gamma^{0}(M)$.

Let $S_{j, k}=\operatorname{det}\left(\gamma_{j, k}\right)^{-1} \gamma_{j, k}^{t} S \gamma_{j, k}$. So, looking at S and $S_{j, k}$ as elements of $G L_{2}(R)^{+}$we have $S_{j, k}=\operatorname{det}\left(m_{j, k}\right)\left(m_{j, k}^{-1}\right)^{t} S m_{j, k}^{-1}$.

Lemma 2.8.3. There exists $j, k, 1 \leq j \leq h(-d), 1 \leq k \leq g(M) / t(d)$ such that $a\left(S_{j, k}\right) \neq 0$.
Proof. By assumption (2.8.1), $a(T) \neq 0$ for some primitive semi-integral positive definite matrix T with discriminant equal to $-d$. By [Fur93, p.209] there exists j such that T is $S L_{2}(\mathbb{Z})$-equivalent to $S_{j, 1}$. This means there is $R \in S L_{2}(\mathbb{Z})$ such that $T=R^{t} S_{j, 1} R$. By

Lemma 2.8.2, we can find k, l such that $R=\gamma_{j, 1}^{-1} r_{l} \gamma_{j, k} g$ where $g \in \Gamma^{0}(M)$. This gives us

$$
\begin{aligned}
T & =g^{t} \gamma_{j, k}^{t} r_{l}^{t}\left(\gamma_{j, 1}^{-1}\right)^{t} S_{j, 1} \gamma_{j, 1}^{-1} r_{l} \gamma_{j, k} g \\
& =\operatorname{det}\left(\gamma_{j, k}\right)^{-1} g^{t} \gamma_{j, k}^{t} r_{l}^{t} S r_{l} \gamma_{j, k} g \\
& =\operatorname{det}\left(\gamma_{j, k}\right)^{-1} g^{t} \gamma_{j, k}^{t} S \gamma_{j, k} g \\
& =g^{t} S_{j, k} g
\end{aligned}
$$

Hence $0 \neq a(T)=a\left(g^{t} S_{j, k} g\right)=a\left(S_{j, k}\right)$, using the fact that the image of g^{t} in $S p_{4}(\mathbb{Z})$ falls in $B(M)$ and F is a modular form for $B(M)$.

Proposition 2.8.4. There exists a character Λ of $T(\mathbb{A}) /\left(T(\mathbb{Q}) T(\mathbb{R}) \Pi_{p<\infty, p \nmid M} T\left(\mathbb{Z}_{p}\right) \cdot \Pi_{p \mid M} \Gamma_{L, p}^{0}\right)$ such that

$$
\sum_{\substack{1 \leq j \leq h(-d) \\ 1 \leq k \leq g(M) / t(d)}} \Lambda\left(t_{j} x_{k}\right)^{-1} \overline{a\left(S_{j, k}\right)} \neq 0 .
$$

Moreover for any such Λ we have Λ_{p} non-trivial on $T\left(\mathbb{Z}_{p}\right)$ for each prime $p \mid M$.
Proof. By Lemma 2.8.3 we can find $S_{j, k}$ such that $a\left(S_{j, k}\right) \neq 0$. Hence using (2.8.6) we know that a character Λ satisfying the condition listed in the proposition exists.

Let Λ be such a character and p_{i} a fixed prime dividing M. We will show that $\Lambda_{p_{i}}$ is not the trivial character on $T\left(\mathbb{Z}_{p_{i}}\right)$.

For any $1 \leq j \leq h(-d)$ and $\widetilde{k} \in X$ we can write $t_{j} u_{\tilde{k}}=\gamma_{j, \widetilde{k}} m_{j, \widetilde{k}} \kappa_{j, \tilde{k}}$, where $\gamma_{j, \tilde{k}} \in$ $G L_{2}(\mathbb{Q}), m_{j, \tilde{k}} \in G L_{2}^{+}(\mathbb{R})$ and $\kappa_{j, k} \in\left(\Pi_{p<\infty, p \nmid M} G L_{2}\left(\mathbb{Z}_{p}\right) \cdot \Pi_{p \mid M} \Gamma_{p}^{0}\right.$.

We put $S_{j, \tilde{k}}=\operatorname{det}\left(\gamma_{j, \tilde{k}}\right)^{-1} \gamma_{j, \tilde{k}}^{t} S \gamma_{j, k}$
Suppose $\Lambda_{p_{i}}$ is trivial on $T\left(\mathbb{Z}_{p_{i}}\right)$. We claim that

$$
\begin{equation*}
\sum_{\substack{1 \leq j \leq h(-d) \\ \tilde{k} \in X}} \Lambda\left(t_{j} u_{\tilde{k}}\right)^{-1} \overline{a\left(S_{j, \tilde{k}}\right)}=0 . \tag{2.8.8}
\end{equation*}
$$

Suppose we fix $k_{1}, k_{2}, . ., k_{i-1}, k_{i+1}, . . k_{r}$. For $1 \leq y \leq p_{i}+1$, let $\widetilde{k}^{y} \in X$ be the r-tuple obtained by putting $k_{i}=y$. Then, by essentially the same argument as in Lemma 2.8.2 we see that $\gamma_{j, \bar{k}^{1}}^{-1} \gamma_{j, \tilde{k}^{y}}$ form a set of representatives of $\Gamma^{0}\left(M / p_{i}\right) / \Gamma^{0}(M)$. In particular, this implies, by [Sch05, 3.3.3], that $\sum_{y} a\left(S_{j, \tilde{k}^{y}}\right)=0$, and therefore, because $\Lambda_{p_{i}}$ is trivial on
$T\left(\mathbb{Z}_{p_{i}}\right)$, we must have $\sum_{y} \Lambda\left(t_{j} u_{\widetilde{k}^{y}}\right)^{-1} a\left(S_{j, \tilde{k}^{y}}\right)=0$. It follows, by breaking up

$$
\sum_{\substack{1 \leq j \leq h(-d) \\ \widetilde{k} \in X}} \Lambda\left(t_{j} u_{\widetilde{k}}\right)^{-1} \overline{a\left(S_{j, \tilde{k}}\right)}
$$

into quantities as above, (2.8.8) follows.
Given $1 \leq k \leq g(M) / t(d), 1 \leq l \leq t(d)$, let $\widetilde{k}(k, l)$ be the unique element in X such that

$$
\begin{equation*}
u_{\widetilde{k}(k, l)}^{-1} x_{k} \bar{r}_{l} \in \Pi_{p \mid M} \Gamma_{L, p}^{0} . \tag{2.8.9}
\end{equation*}
$$

Such an element exists by our comment after (2.8.7). Suppose we write $r_{l}=\bar{r}_{l} r_{l, f} r_{l, \infty}$ where $r_{l, f} \in \Pi_{p \nmid M} T\left(\mathbb{Z}_{p}\right)$ and $r_{l, \infty} \in T(\mathbb{R})$

Then, using (2.8.9) we have

$$
t_{j} u_{\widetilde{k}(k, l)}=r_{l} t_{j} x_{k} r_{l, \infty}^{-1} k
$$

with $k \in\left(\Pi_{p<\infty, p \nmid M} G L_{2}\left(\mathbb{Z}_{p}\right) \cdot \Pi_{p \mid M} \Gamma_{p}^{0}\right.$. In other words we can take $\gamma_{j, \tilde{k}(k, l)}=r_{l} \gamma_{j, k}$.
But then $a\left(S_{j, \widetilde{k}(k, l)}\right)=a\left(S_{j, k}\right)$. Also from (2.8.9) it is clear that $\Lambda^{-1}\left(t_{j} u_{\widetilde{k}(k, l)}\right)=$ $\Lambda^{-1}\left(t_{j} x_{k}\right)$. On the other hand if we let k, l vary over all elements in the range $1 \leq k \leq$ $g(M) / t(d), 1 \leq l \leq t(d)$, the corresponding $\widetilde{k}(k, l)$ vary over all $\widetilde{k} \in X$. As a result we conclude that

$$
\begin{equation*}
\sum_{\substack{1 \leq j \leq h(-d) \\ \tilde{k} \in X}} \Lambda\left(t_{j} u_{\widetilde{k}}\right)^{-1} \overline{a\left(S_{j, \tilde{k}}\right)}=t(d) \sum_{\substack{1 \leq j \leq h(-d) \\ 1 \leq k \leq g(M) / t(d)}} \Lambda\left(t_{j} x_{k}\right)^{-1} \overline{a\left(S_{j, k}\right)} . \tag{2.8.10}
\end{equation*}
$$

But we have already shown that if $\Lambda_{p_{i}}$ is trivial on $T\left(\mathbb{Z}_{p_{i}}\right)$ then

$$
\sum_{\substack{1 \leq j \leq h(-d) \\ \tilde{k} \in X}} \Lambda\left(t_{j} u_{\tilde{k}}\right)^{-1} \overline{a\left(S_{j, \tilde{k}}\right)}=0
$$

The proof follows.

Consider now the global Bessel space of type (S, Λ, ψ) for $\widetilde{\pi}$. We shall prove that this space is non zero.

For that, we consider

$$
\begin{equation*}
B_{\bar{\Phi}}(h)=\int_{Z_{G}(\mathbb{A}) B(\mathbb{Q}) \backslash B(\mathbb{A})}(\Lambda \otimes \theta)(r)^{-1} \bar{\Phi}(r h) d r \tag{2.8.11}
\end{equation*}
$$

where θ is defined as in Section 2.1 and $\bar{\Phi}(h)=\overline{\Phi(h)}$. We will show that this function is non-zero. In fact, we shall explicitly evaluate $B_{\bar{\Phi}}\left(g_{\infty}\right)$ for $g_{\infty} \in G(\mathbb{R})^{+}$.

Proposition 2.8.5. Let $g_{\infty} \in G(\mathbb{R})^{+}$and define $B_{\bar{\Phi}}\left(g_{\infty}\right)$ as in (2.8.11). The following hold:
(a) If $M=1$ we have

$$
B_{\bar{\Phi}}\left(g_{\infty}\right)=\overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(g_{\infty}\right)^{l} e\left(-\operatorname{tr}\left(S \cdot \overline{g_{\infty}(i)}\right) \sum_{1 \leq j \leq h(-d)} \Lambda\left(t_{j}\right)^{-1} \overline{a\left(S_{j}\right)}\right.
$$

(b) If $M>1$ we have

$$
B_{\bar{\Phi}}\left(g_{\infty}\right)=\frac{1}{g(M)} \overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(g_{\infty}\right)^{l} e\left(-\operatorname{tr}\left(S \cdot \overline{g_{\infty}(i)}\right) \sum_{\substack{1 \leq j \leq h(-d) \\ 1 \leq k \leq g(M) / t(d)}} \Lambda\left(t_{j} x_{k}\right)^{-1} \overline{a\left(S_{j, k}\right)}\right.
$$

Remark. This is a mild generalization of [Sug85, (1-26)]. We present a proof below.
But first, we need some preliminary results.
For any f a function on \mathbb{H}_{2} and $g_{\infty} \in G(\mathbb{R})^{+}$define

$$
\left(f \mid g_{\infty}\right)(Z)=f\left(g_{\infty}(Z)\right) \mu_{2}\left(g_{\infty}\right)^{l} \operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}
$$

Let $M_{2}^{S y m}$ denote the space of symmetric two by two matrices. We shall think of $M_{2}^{S y m}$ as a subgroup of G via $x \mapsto u(x)$.

Also, for any continuous function f on $G(\mathbb{Q}) \backslash G(\mathbb{A})$ define

$$
C_{f}(g)=\int_{M_{2}^{S y m}(\mathbb{Q}) \backslash M_{2}^{S y m}(\mathbb{A})} f(u(X) g) \psi(\operatorname{tr}(S X))^{-1} d X
$$

The following lemma is the content of [Sug85, (1-19)]. However it is not proved there, so for convenience we include a proof here.

Lemma 2.8.6. Let $g_{\infty} \in G(\mathbb{R})^{+}, g_{f} \in G L_{2}\left(\mathbb{A}_{f}\right)$. We consider g_{f} as an element of $G\left(\mathbb{A}_{f}\right)$

$$
\begin{aligned}
& \text { via } g \mapsto\left(\begin{array}{cc}
g & 0 \\
0 & \operatorname{det}(g) \cdot\left(g^{-1}\right)^{t}
\end{array}\right) \text {. Then } \\
& \quad C_{\bar{\Phi}\left(g_{\infty} g_{f}\right)}=\overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(g_{\infty}\right)^{l} a\left(g_{f}, S\right) e\left(-\operatorname{tr}\left(S \cdot \overline{g_{\infty}}(i)\right)\right)
\end{aligned}
$$

where $a\left(g_{f}, T\right)$ is the (T) 'th Fourier coefficient of $\overline{F \mid g_{\mathbb{R}}}$, i.e.,

$$
\overline{F \mid g_{\mathbb{R}}(Z)}=\sum_{T} a\left(g_{f}, T\right) e(-\operatorname{tr} T \bar{Z}),
$$

and $g_{\mathbb{R}}$ is defined by the equation $g_{f}=g_{\mathbb{Q}} g_{\mathbb{R}} g_{K}$ with $g_{\mathbb{Q}} \in G(\mathbb{Q}), g_{\mathbb{R}} \in G(\mathbb{R})^{+}, g_{K} \in$ $\prod_{p<\infty, p \nmid M} K_{p} \cdot \prod_{p \mid M} I_{p}$.

Proof. Put $U_{p}=\prod_{p<\infty, p \nmid M} K_{p} \cdot \prod_{p \mid M} I_{p} \subset G\left(\mathbb{A}_{f}\right)$. Define $\bar{\Phi}_{f}$ by $\bar{\Phi}_{f}(g)=\bar{\Phi}\left(g g_{f}\right)$. Then $\bar{\Phi}_{f}$ is left invariant by $G(\mathbb{Q})$ and right invariant by $g_{\mathbb{Q}} U_{p} g_{\mathbb{Q}}^{-1}$. From that it follows that $\bar{\Phi}_{f}\left(g g_{\infty}\right)=\bar{\Phi}_{f}\left(g_{\infty}\right)$ if $g \in g_{\mathbb{Q}}\left(\prod_{q<\infty} U\left(\mathbb{Z}_{q}\right)\right) g_{\mathbb{Q}}^{-1}$. Also note that $C_{\bar{\Phi}}\left(g_{\infty} g_{f}\right)=C_{\bar{\Phi}_{f}}\left(g_{\infty}\right)$ and

$$
\left.\bar{\Phi}_{f}\left(g_{\infty}\right)=\mu_{2}\left(g_{\infty}\right)^{l} \overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \overline{\left.F \mid g_{\mathbb{R}}\right)\left(g_{\infty}(i)\right.}\right) .
$$

Finally, by approximation, we have

$$
M_{2}^{S y m}(\mathbb{A})=M_{2}^{\text {Sym }}(\mathbb{Q})+\operatorname{det}\left(g_{\mathbb{Q}}\right)^{-1} g_{\mathbb{Q}}\left(M_{2}^{\text {Sym }}(\mathbb{R}) \prod_{q<\infty} M_{2}^{\text {Sym }}\left(\mathbb{Z}_{q}\right)\right) g_{\mathbb{Q}}^{t} .
$$

Therefore

$$
\begin{aligned}
C_{\Phi_{f}}\left(g_{\infty}\right) & =\int_{M_{2}^{S y m}(\mathbb{Q}) \backslash M_{2}^{S y m}(\mathbb{A})} \bar{\Phi}_{f}\left(u(X) g_{\infty}\right) \psi(\operatorname{tr}(S X))^{-1} d X \\
& =\int_{\operatorname{det}\left(g_{\mathbb{Q}}\right)^{-1} g_{\mathbb{Q}} M_{2}^{S y m}(\mathbb{Z}) g_{\mathbb{Q}}^{t} \backslash M_{2}^{S y m}(\mathbb{R})} \bar{\Phi}_{f}\left(u(X) g_{\infty}\right) e(\operatorname{tr}(S X)) d X \\
& =\mu_{2}\left(g_{\infty}\right)^{l} \overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \sum_{T} a\left(g_{f}, T\right) e\left(-\operatorname{tr}\left(T \cdot \overline{g_{\infty}(i)}\right)\right) \\
& \cdot\left(\int_{M_{2}^{S y m}(\mathbb{Z}) \backslash M_{2}^{S y m}(\mathbb{R})} e(\operatorname{tr}(T+S) \cdot X) d X\right) \\
& =\overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(g_{\infty}\right)^{l} a\left(g_{f}, S\right) e\left(-\operatorname{tr}\left(S \cdot \overline{g_{\infty}(i)}\right)\right)
\end{aligned}
$$

Proof of Proposition 2.8.5. The case $M=1$ is proved in [Sug85]. So we assume $M>1$. Note that

$$
B_{\bar{\Phi}}(g)=\int_{Z(\mathbb{A}) T(\mathbb{Q}) \backslash T(\mathbb{A})} C_{\bar{\Phi}}(t g) \Lambda^{-1}(t) d t
$$

Hence, using (2.8.6) and the fact that $C_{\bar{\Phi}}$ is right invariant by $\Pi_{p<\infty, p \nmid M} T\left(\mathbb{Z}_{p}\right) \cdot \Pi_{p \mid M} \Gamma_{L, p}^{0}$ we have

$$
\begin{equation*}
B_{\bar{\Phi}}\left(g_{\infty}\right)=\left[S L_{2}(\mathbb{Z}): \Gamma^{0}(M)\right]^{-1} \sum_{j, k} \Lambda^{-1}\left(t_{j} x_{k}\right) \int_{Z_{T}(\mathbb{R}) \backslash T(\mathbb{R})} C_{\bar{\Phi}}\left(t_{j} x_{k} t_{\infty} g_{\infty}\right) d t_{\infty} \tag{2.8.12}
\end{equation*}
$$

Our Haar measure is normalized so that the compact set $Z_{T}(\mathbb{R}) \backslash T(\mathbb{R})$ has volume 1. We henceforth write R^{*} instead of $Z_{T}(\mathbb{R})$ for simplicity. We have,

$$
\begin{align*}
\int_{R^{*} \backslash T(\mathbb{R})} & C_{\bar{\Phi}}\left(t_{j} x_{k} t_{\infty} g_{\infty}\right) d t_{\infty} \\
& =\int_{R^{*} \backslash T(\mathbb{R})} C_{\bar{\Phi}}\left(t_{\infty} g_{\infty} t_{j} x_{k}\right) d t_{\infty} \\
& =\int_{R^{*} \backslash T(\mathbb{R})} C_{\bar{\Phi}}\left(t_{\infty} g_{\infty}\left(\gamma_{j, k}\right)_{f}\right) d t_{\infty} \\
& =\int_{R^{*} \backslash T(\mathbb{R})} \overline{\operatorname{det}\left(J\left(t_{\infty} g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(t_{\infty} g_{\infty}\right)^{l} a\left(\left(\gamma_{j, k}\right)_{f}, S\right) e\left(-\operatorname{tr}\left(S \cdot t_{\infty} \overline{g_{\infty}}(i)\right)\right) d t_{\infty} \\
& =\overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(g_{\infty}\right)^{l} a\left(\left(\gamma_{j, k}\right)_{f}, S\right)\left(\int_{R^{*} \backslash T(\mathbb{R})} e\left(-\operatorname{tr}\left(S \cdot \overline{g_{\infty}}(i)\right)\right) d t_{\infty}\right) \\
& =\overline{\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-l}} \mu_{2}\left(g_{\infty}\right)^{l} a\left(\left(\gamma_{j, k}\right)_{f}, S\right) e\left(-\operatorname{tr}\left(S \cdot \overline{g_{\infty}(i)}\right)\right) \tag{2.8.13}
\end{align*}
$$

Let us compute $a\left(\left(\gamma_{j, k}\right)_{f}, S\right)$. We have

$$
\begin{aligned}
\overline{F \mid m_{j, k}(Z)} & =\sum_{T>0} \overline{a(T)} e\left(-\operatorname{tr} T \cdot\left(m_{j, k}(\bar{Z})\right)\right) \\
& =\sum_{T>0} \overline{a(T)} e\left(-\operatorname{tr} \operatorname{det}\left(m_{j, k}^{-1}\right) \cdot\left(\left(m_{j, k}\right)^{t} T m_{j, k}\right) \cdot \bar{Z}\right)
\end{aligned}
$$

So, the S^{\prime} th Fourier coefficient corresponds to $T=\operatorname{det}\left(m_{j, k}\right)\left(m_{j, k}^{-1}\right)^{t} S m_{j, k}^{-1}=S_{j, k}$. Thus

$$
\begin{equation*}
a\left(\left(\gamma_{j, k}\right)_{f}, S\right)=\overline{a\left(S_{j, k}\right)} \tag{2.8.14}
\end{equation*}
$$

Putting together $(2.8 .12),(2.8 .13)$ and $(2.8 .14)$, we have the proof of the proposition.

Description of the Eisenstein series

This section describes the Eisenstein series on $\widetilde{G}(\mathbb{A})$. For each finite place v, recall that $\widetilde{K_{v}}$ is the maximal compact subgroup of $\widetilde{G}\left(\mathbb{Q}_{v}\right)$ and is defined by

$$
\widetilde{K_{v}}=\widetilde{G}\left(\mathbb{Q}_{v}\right) \cap G L_{4}\left(\mathbb{Z}_{L, v}\right) .
$$

Let us now define

$$
\widetilde{K_{\infty}}=\left\{g \in \widetilde{G}(\mathbb{R}) \mid \mu_{2}(g)=1, g<i I_{2}>=i I_{2}\right\}
$$

Equivalently

$$
\widetilde{K_{\infty}}=U(2,2 ; \mathbb{R}) \cap U(4, \mathbb{R})
$$

We define

$$
\rho_{l}\left(k_{\infty}\right)=\operatorname{det}\left(k_{\infty}\right)^{l / 2} \operatorname{det}\left(J\left(k_{\infty}, i\right)\right)^{-l} .
$$

By [Ich07, p. 5], any matrix k_{∞} in $\widetilde{K_{\infty}}$ can be written in the form $k_{\infty}=\lambda\left(\begin{array}{cc}A & B \\ -B & A\end{array}\right)$ where $\lambda \in \mathbb{C},|\lambda|=1$, and $A+i B, A-i B \in U(2 ; \mathbb{R})$ with $\operatorname{det}(A+i B)=\overline{\operatorname{det}(A-i B)}$. Then,

$$
\begin{equation*}
\rho_{l}\left(k_{\infty}\right)=\operatorname{det}(A-i B)^{-l} \tag{2.8.15}
\end{equation*}
$$

Note that if k_{∞} has all real entries, i.e. $k_{\infty} \in \operatorname{Sp}(4, \mathbb{R}) \cap \mathrm{O}(4, \mathbb{R})$, then

$$
\rho_{l}\left(k_{\infty}\right)=\operatorname{det}\left(J\left(k_{\infty}, i\right)\right)^{-l} .
$$

Extend Ψ to $G U(1,1 ; L)(\mathbb{A})$ by

$$
\Psi(a g)=\Psi(g)
$$

for $a \in L^{\times}(\mathbb{A}), g \in G L_{2}(\mathbb{A})$. We define subsets S_{1}, S_{2}, S_{3} of the (finite) primes by

- S_{1} is the set of primes that divide M but not N
- S_{2} is the set of primes that divide $\operatorname{gcd}(M, N)$
- S_{3} is the set of primes that divide N but not M
and put $S=S_{1} \sqcup S_{2} \sqcup S_{3}$. Let $L=\mathbb{Q}(\sqrt{-d}), \Lambda$ be as in $\S 2.8$. Note that all primes in S are odd and inert in L.

Now define the compact open subgroup $U^{\widetilde{G}}$ of $\widetilde{G}\left(\mathbb{A}_{f}\right)$ by

$$
\begin{equation*}
U^{\widetilde{G}}=\prod_{p \notin S} K_{p}^{\widetilde{G}} \prod_{p \in S_{3}} U_{p}^{\widetilde{G}} \prod_{p \in S_{1} \cup S_{2}} I_{p}^{\prime} \tag{2.8.16}
\end{equation*}
$$

Define

$$
\begin{equation*}
f_{\Lambda}(g, s)=\delta_{P}^{s+\frac{1}{2}}\left(m_{1} m_{2}\right) \Lambda\left(\overline{m_{1}}\right)^{-1} \Psi\left(m_{2}\right) \rho_{l}\left(k_{\infty}\right) \quad \text { if } g=m_{1} m_{2} n \widetilde{k} k \in \widetilde{G}(\mathbb{A}) \tag{2.8.17}
\end{equation*}
$$

where $m_{i} \in M^{(i)}(\mathbb{A}) \quad(i=1,2), n \in N(\mathbb{A}), k=k_{\infty} k_{0}$ with $k_{\infty} \in K_{\infty}^{\widetilde{G}}, k_{0} \in U^{\widetilde{G}}$ and $\widetilde{k}=\prod_{p} k_{p} \in \prod_{p} K_{p}^{\widetilde{G}}$ is such that $k_{p}=1$ if $p \notin S_{1} \sqcup S_{2}, k_{p} \in\left\{1, s_{1}\right\}$ for $p \in S_{2}$ and $k_{p} \in\{1, \Theta\}$ for $p \in S_{1}$. Put

$$
f_{\Lambda}(g, s)=0
$$

if g is not of the form above.
We define the Eisenstein series $E_{\Psi, \Lambda}(g, s)$ on $\widetilde{G}(\mathbb{A})$ by

$$
\begin{equation*}
E_{\Psi, \Lambda}(g, s)=\sum_{\gamma \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})} f_{\Lambda}(\gamma g, s) . \tag{2.8.18}
\end{equation*}
$$

The global integral

The global integral for our consideration is

$$
Z(s)=\int_{Z_{G}(\mathbb{A}) G(\mathbb{Q}) \backslash G(\mathbb{A})} E_{\Psi, \Lambda}(g, s) \bar{\Phi}(g) d g
$$

Then, by (2.2.6), Theorem 2.2.1, Theorem 2.5.1, Theorem 2.6.1 and Theorem 2.7.1 we have

$$
\begin{equation*}
Z(s)=\frac{Q_{f} Z_{\infty}(s)}{g(M / f) P_{M N}} \cdot \prod_{p \mid f} \frac{p^{-6 s-3}}{1-a_{p} w_{p} p^{-3 s-3 / 2}} \cdot \frac{L\left(3 s+\frac{1}{2}, \pi \times \sigma\right)}{\zeta_{M N}(6 s+1) L(3 s+1, \sigma \times \rho(\Lambda))} \tag{2.8.19}
\end{equation*}
$$

where f denotes $\operatorname{gcd}(M, N)$ and

$$
\begin{gathered}
L(s, \pi \times \sigma)=\prod_{q<\infty} L\left(s, \pi_{q} \times \sigma_{q}\right) \\
L(s, \sigma \times \rho(\Lambda)))=\prod_{\substack{q<\infty, q \nmid M}} L\left(s, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right), \\
\zeta_{A}(s)=\prod_{\substack{p \nmid A \\
p \text { prime }}}\left(1-p^{-s}\right)^{-1}, \\
P_{A}=\prod_{\substack{| | A \\
r \text { prime }}}\left(r^{2}+1\right), \\
Q_{A}=\prod_{\substack{r \mid A \\
r \text { prime }}}(1-r),
\end{gathered}
$$

and

$$
\begin{equation*}
Z_{\infty}(s)=\int_{B(\mathbb{R}) \backslash G(\mathbb{R})} W_{f_{\Lambda}}(\Theta g, s) B_{\bar{\Phi}}(g) d g \tag{2.8.20}
\end{equation*}
$$

As for the explicit computation of Z_{∞}, Furusawa's calculation in [Fur93], mutatis mutandis, works for us. The only real point of difference is the choice of S. Furusawa chooses

$$
S=\left\{\begin{array}{ll}
\left(\begin{array}{cc}
\frac{d}{4} & 0 \\
0 & 1
\end{array}\right), & \text { if } d \equiv 0 \\
(\bmod 4) \\
\left(\begin{array}{cc}
\frac{1+d}{4} & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right), & \text { if } d \equiv 3
\end{array}(\bmod 4) . ~ \$\right.
$$

He computes $Z_{\infty}(s)$ for the case $d \equiv 0(\bmod 4)$ and uses it to deduce the other case via a simple change of variables, using

$$
\left(\begin{array}{cc}
\frac{1+d}{4} & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & 1
\end{array}\right)^{t}\left(\begin{array}{ll}
\frac{d}{4} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & 1
\end{array}\right) .
$$

In our case we have,

$$
S=\left(\begin{array}{cc}
\frac{b^{2}+d}{4} & \frac{b}{2} \\
\frac{b}{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\frac{b}{2} & 1
\end{array}\right)^{t}\left(\begin{array}{cc}
\frac{d}{4} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\frac{b}{2} & 1
\end{array}\right)
$$

and so a similar change of variables works.
Define $a(\Lambda)=a(F, \Lambda)$ by

$$
a(\Lambda)= \begin{cases}\sum_{1 \leq j \leq h(-d)} \Lambda\left(t_{j}\right) a\left(S_{j}\right) & \text { if } M=1 \\ \frac{1}{g(M)} \sum_{\substack{1 \leq j \leq h(-d) \\ 1 \leq k \leq g(M) / t(d)}} \Lambda\left(t_{j} x_{k}\right)^{-1} \overline{a\left(S_{j, k}\right)} & \text { if } M>1\end{cases}
$$

Then we have (cf. [Fur93, p. 214])

$$
Z_{\infty}(s)=\pi \overline{a(\Lambda)}(4 \pi)^{-3 s-\frac{3}{2} l+\frac{3}{2}} d^{-3 s-\frac{l}{2}} \cdot \frac{\Gamma\left(3 s+\frac{3}{2} l-\frac{3}{2}\right)}{6 s+l-1}
$$

Henceforth we simply write $L(s, F \times g)$ for $L(s, \pi \times \sigma)$. We can summarize our computations in the following theorem.

Theorem 2.8.7 (The integral representation). Let F and $E_{\Psi, \Lambda}$ be as defined previously. Then

$$
\int_{Z_{G}(\mathbb{A}) G(\mathbb{Q}) \backslash G(\mathbb{A})} E_{\Psi, \Lambda}(g, s) \bar{\Phi}(g) d g=C(s) \cdot L\left(3 s+\frac{1}{2}, F \times g\right)
$$

where $C(s)=$

$$
\frac{A(f) \pi \overline{a(\Lambda)}(4 \pi)^{-3 s-\frac{3}{2} l+\frac{3}{2}} d^{-3 s-\frac{l}{2}} \Gamma\left(3 s+\frac{3}{2} l-\frac{3}{2}\right)}{g(M / f) P_{M N}(6 s+l-1) \zeta_{M N}(6 s+1) L(3 s+1, \sigma \times \rho(\Lambda))} \prod_{p \mid f} \frac{p^{-6 s-3}}{1-a_{p} w_{p} p^{-3 s-3 / 2}}
$$

with $f=\operatorname{gcd}(M, N)$.
Remark. Note that

$$
C\left(\frac{l}{6}-\frac{1}{2}\right)=\frac{\pi^{4-2 l} \overline{a(F, \Lambda)}}{\zeta(l-2) L\left(\frac{l-1}{2}, \sigma \times \rho(\Lambda)\right)} \times(\text { an algebraic number }) .
$$

Chapter 3

The Pullback Formula and the Second Integral Representation

3.1 Eisenstein series on $G U(3,3)$

Let $P_{\widetilde{H}}=M_{\widetilde{H}} N_{\widetilde{H}}$ be the Siegel parabolic of \widetilde{H}, with

$$
\begin{gathered}
M_{\widetilde{H}}(\mathbb{Q}):=\left\{\left.m(A, v)=\left(\begin{array}{cc}
A & 0 \\
0 & v \cdot\left(\overline{A^{-1}}\right)^{t}
\end{array}\right) \right\rvert\, A \in G L_{3}(L), v \in \mathbb{Q}^{\times}\right\}, \\
N_{\widetilde{H}}(\mathbb{Q}):=\left\{\left.n(b)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in M_{3}(L), \bar{b}^{t}=b\right\} .
\end{gathered}
$$

For $s \in \mathbb{C}$, we form the induced representation

$$
I(\Lambda, s)=\otimes_{v} I_{v}\left(\Lambda_{v}, s\right)=\operatorname{Ind}_{P_{\tilde{H}}(\mathbb{A})}^{\tilde{H}(\mathbb{A})}\left(\Lambda\|\cdot\|^{3 s}\right)
$$

consisting of smooth functions Ξ on $\widetilde{H}(\mathbb{A})$ such that

$$
\begin{equation*}
\Xi(n m(A, v) g, s)=|v|^{-9\left(s+\frac{1}{2}\right)}\left|N_{L / \mathbb{Q}}(\operatorname{det} A)\right|^{3\left(s+\frac{1}{2}\right)} \Lambda(\operatorname{det} A) \Xi(g, s) \tag{3.1.1}
\end{equation*}
$$

for $n \in N_{\widetilde{H}}(\mathbb{A}), m(A, v) \in M_{\widetilde{H}}(\mathbb{A}), g \in \widetilde{H}(\mathbb{A})$.
Finally, given such a section Ξ, we form the Eisenstein series $E_{\Xi}(h, s)$ by

$$
\begin{equation*}
E_{\Xi}(h, s)=\sum_{\gamma \in P_{\tilde{H}}(\mathbb{Q}) \backslash \widetilde{H}(\mathbb{Q})} \Xi(\gamma h, s) \tag{3.1.2}
\end{equation*}
$$

for $\operatorname{Re}(s)$ large, and defined elsewhere by meromorphic continuation.

Some compact subgroups

For each finite place p of \mathbb{Q}, define the maximal compact subgroups $K_{p}^{\widetilde{H}}, K_{p}^{\widetilde{F}}, \widetilde{K_{p}}$ of (respectively) $\widetilde{H}\left(\mathbb{Q}_{p}\right), \widetilde{F}\left(\mathbb{Q}_{p}\right), \widetilde{G}\left(\mathbb{Q}_{p}\right)$ by

$$
\begin{aligned}
K_{p}^{\widetilde{H}} & =\widetilde{H}\left(\mathbb{Q}_{p}\right) \cap G L_{6}\left(\mathbb{Z}_{L, p}\right), \\
K_{p}^{\widetilde{F}} & =\widetilde{F}\left(\mathbb{Q}_{p}\right) \cap G L_{2}\left(\mathbb{Z}_{L, p}\right), \\
\widetilde{K_{p}} & =\widetilde{G}\left(\mathbb{Q}_{p}\right) \cap G L_{4}\left(\mathbb{Z}_{L, p}\right) .
\end{aligned}
$$

Let $U_{p}^{\widetilde{H}}$ be the subgroup of $K_{p}^{\widetilde{H}}$ defined by

$$
U_{p}^{\widetilde{H}}=\left\{z \in K_{p}^{\widetilde{H}} \left\lvert\, z \equiv\left(\begin{array}{cccccc}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right) \quad(\bmod p)\right.\right\} \text {. }
$$

Let $r: K_{p}^{\widetilde{H}} \rightarrow \widetilde{H}\left(\mathbb{F}_{p}\right)$ be the canonical map and define the subgroup

$$
I_{p}^{\prime \widetilde{H}}=r^{-1} I\left(6, \mathbb{F}_{p}\right)
$$

Also, put

$$
\begin{aligned}
K_{\infty}^{\widetilde{H}} & =\left\{g \in \widetilde{H}(\mathbb{R}) \mid \mu_{3}(g)=1, g<i I_{3}>=i I_{3}\right\}, \\
\widetilde{K_{\infty}} & =\left\{g \in \widetilde{G}(\mathbb{R}) \mid \mu_{2}(g)=1, g<i I_{2}>=i I_{2}\right\}
\end{aligned}
$$

and

$$
K_{\infty}^{\widetilde{F}}=\left\{g \in \widetilde{F}(\mathbb{R}) \mid \mu_{1}(g)=1, g<i>=i\right\} .
$$

By [Ich07, p.5], any matrix k_{∞} in $K_{\infty}^{\widetilde{H}}$ (resp. $K_{\infty}^{\widetilde{F}}$) can be written in the form $k_{\infty}=$ $\lambda\left(\begin{array}{cc}A & B \\ -B & A\end{array}\right)$ where $\lambda \in \mathbb{C},|\lambda|=1$, and $A+i B, A-i B$ lie in $U(3 ; \mathbb{R})($ resp. $U(1 ; \mathbb{R}))$ with
$\operatorname{det}(A+i B)=\overline{\operatorname{det}(A-i B)}$.
For a positive even integer ℓ, define

$$
\begin{equation*}
\rho_{\ell}\left(k_{\infty}\right)=\operatorname{det}(A-i B)^{-\ell} \tag{3.1.3}
\end{equation*}
$$

Note that an alternate definition for $\rho_{\ell}\left(k_{\infty}\right)$ is simply

$$
\rho_{\ell}\left(k_{\infty}\right)=\operatorname{det}\left(k_{\infty}\right)^{\ell / 2} \operatorname{det}\left(J\left(k_{\infty}, i\right)\right)^{-\ell}
$$

Also note that if k_{∞} has all real entries, then

$$
\rho_{\ell}\left(k_{\infty}\right)=\operatorname{det}\left(J\left(k_{\infty}, i\right)\right)^{-\ell}
$$

A particular choice of section

Fix an element $Q \in H_{1}(\mathbb{Z})$ and an element $\Omega \in \widetilde{H}_{1}(\mathbb{Z})$. For any place v let Q_{v} (resp. Ω_{v}) denote the natural inclusion of Q (resp. Ω) into $\widetilde{H}\left(\mathbb{Q}_{v}\right)$.

We impose the following condition on Ω for all primes $p \in S_{2}$:
If $n m(A, v) \in P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \cap \Omega_{p} I_{p}^{\widetilde{H}} \Omega_{p}^{-1}$, then $\operatorname{det}(A) \in \Gamma_{L, p}^{0}$.
We next define, for each place v, a particular section $\Upsilon_{v}(s) \in I_{v}\left(\Lambda_{v}, s\right)$.
Recall that $I_{v}\left(\Lambda_{v}, s\right)$ consists of smooth functions Ξ on $\widetilde{H}\left(\mathbb{Q}_{v}\right)$ such that

$$
\begin{equation*}
\Xi(n m(A, t) g, s)=|t|_{v}^{-9\left(s+\frac{1}{2}\right)}\left|N_{L / \mathbb{Q}}(\operatorname{det} A)\right|_{v}^{3\left(s+\frac{1}{2}\right)} \Lambda_{v}(\operatorname{det} A) \Xi(g, s) \tag{3.1.4}
\end{equation*}
$$

for $n \in N_{\widetilde{H}}\left(\mathbb{Q}_{v}\right), m(A, t) \in M_{\widetilde{H}}\left(\mathbb{Q}_{v}\right), g \in \widetilde{H}\left(\mathbb{Q}_{v}\right)$.

- Clearly $I_{p}\left(\Lambda_{p}, s\right)$ has a $K_{p}^{\widetilde{H}}$ fixed vector whenever Λ_{p} is unramified.

For all finite places $p \notin S$, choose Υ_{p} to be the unique $K_{p}^{\widetilde{H}}$ fixed vector with

$$
\begin{equation*}
\Upsilon_{p}(1, s)=1 \tag{3.1.5}
\end{equation*}
$$

- For all finite places $p \in S_{3}$, choose Υ_{p} to be the unique $U_{p}^{\widetilde{H}}$ fixed vector with

$$
\begin{equation*}
\Upsilon_{p}\left(Q_{p}, s\right)=1 \tag{3.1.6}
\end{equation*}
$$

and

$$
\Upsilon_{p}(t, s)=0
$$

if $t \notin P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q_{p} U_{p}^{\widetilde{H}}$.

- Suppose $p \in S_{2}$. Choose Υ_{p} to be the unique $I_{p}^{\prime \widetilde{H}}$ fixed vector with

$$
\begin{equation*}
\Upsilon_{p}\left(Q_{p}, s\right)=1 \tag{3.1.7}
\end{equation*}
$$

and

$$
\Upsilon_{p}(t, s)=0
$$

if $t \notin P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q_{p} I_{p}^{\widetilde{H}}$.

- Let $p \in S_{1}$.

Choose Υ_{p} to be the unique $I_{p}^{\tau \widetilde{H}}$ fixed vector with

$$
\begin{equation*}
\Upsilon_{p}(\Omega, s)=1, \quad \Upsilon_{p}\left(Q_{p}, s\right)=1 \tag{3.1.8}
\end{equation*}
$$

and

$$
\Upsilon_{p}(t, s)=0
$$

if $t \notin P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} \sqcup P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q_{p} I_{p}^{\prime \widetilde{H}}$. Note that such a vector exists by our assumption on Ω.

- Finally choose Υ_{∞} to be the unique vector in $I_{\infty}\left(\Lambda_{\infty}, s\right)$ such that

$$
\begin{equation*}
\Upsilon_{\infty}\left(k_{\infty}, s\right)=\rho_{\ell}\left(k_{\infty}\right) \tag{3.1.9}
\end{equation*}
$$

for $k_{\infty} \in K_{\infty}^{\widetilde{H}}$.

Let Υ be the factorizable section in $\operatorname{Ind}_{P_{\widetilde{H}}(\mathbb{A})}^{\tilde{H}(\mathbb{A})}\left(\Lambda\|\cdot\|^{3 s}\right)$. defined by

$$
\Upsilon(s)=\left(\otimes_{v} \Upsilon_{v}(s)\right) .
$$

As explained in (3.1.2), this gives rise to Eisenstein series $E_{\Upsilon}(g, s)$.

Also, for each place v, we define the local section Υ_{v}^{\sharp} by

$$
\Upsilon_{v}^{\sharp}(g, s)=\Upsilon_{v}\left(g Q_{v}, s\right) .
$$

Define $\Upsilon^{\sharp}(s)=\otimes_{v} \Upsilon_{v}^{\sharp}(s)$.
Note that Υ^{\sharp} is right invariant by $\prod_{p \in S_{1} \sqcup S_{2}} Q I_{p}^{\prime \widetilde{H}} Q^{-1} \prod_{p \in S_{3}} Q U_{p}^{\widetilde{H}} Q^{-1} \prod_{p \notin S} K_{p}^{\widetilde{H}}$.
So, by (3.1.2), we construct an Eisenstein series $E_{\Upsilon^{\sharp}}(g, s)$. Note that

$$
\begin{equation*}
E_{\Upsilon \sharp}(g, s)=E_{\Upsilon}(g Q, s) \tag{3.1.10}
\end{equation*}
$$

3.2 Statement of the pullback formula

We henceforth fix Q to equal the following matrix:

$$
Q=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

An important embedding

We now define an embedding $\iota: \widetilde{R} \hookrightarrow \widetilde{H}$. Let $\left(g_{1}, g_{2}\right) \in \widetilde{R}(\mathbb{A})$, and put $h=\left(\begin{array}{cc}g_{1} & 0 \\ 0 & g_{2}\end{array}\right)$. Then we define $\iota\left(g_{1}, g_{2}\right)$ to equal the element $p_{0}^{-1} h p_{0} \in \widetilde{H}(\mathbb{A})$ where $p_{0} \in G L_{6}(\mathbb{Q})$ is defined by

$$
p_{0}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \tag{3.2.1}\\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

An essential feature of this embedding is the following. Suppose

$$
\begin{gathered}
g_{1}=m_{1}(a) m_{2}(b) n \in P(\mathbb{A}), \\
g_{2}=b
\end{gathered}
$$

where

$$
\begin{gathered}
m_{1}(a)=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \bar{a}^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in M^{(1)}(\mathbb{A}), \\
n \in N(\mathbb{A}), b=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \widetilde{F}(\mathbb{A})
\end{gathered}
$$

and

$$
m_{2}(b)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \alpha & 0 & \beta \\
0 & 0 & \lambda & 0 \\
0 & \gamma & 0 & \delta
\end{array}\right) \in M^{(2)}(\mathbb{A})
$$

where $\lambda=\mu_{1}\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$. Then

$$
\begin{equation*}
\iota\left(g_{1}, g_{2}\right) \in P_{\widetilde{H}}(\mathbb{A}) \tag{3.2.2}
\end{equation*}
$$

It is this key fact that enables us to pass from Klingen Eisenstein series on $\widetilde{G}(\mathbb{A})$ to Siegel Eisenstein series on $\widetilde{H}(\mathbb{A})$.

Henceforth, we fix

$$
\Omega=\iota(\Theta, 1) Q
$$

The Pullback formula

For an element $g \in \widetilde{G}(\mathbb{A})$, let $\widetilde{F}_{1}[g](\mathbb{A})$ denote the subset of $\widetilde{F}(\mathbb{A})$ consisting of all elements h_{2} such that $\mu_{2}(g)=\mu_{1}\left(h_{2}\right)$.

We will compute the integral

$$
\begin{equation*}
\mathcal{E}(g, s)=\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} E_{\Upsilon^{\sharp}}(\iota(g, h), s) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h . \tag{3.2.3}
\end{equation*}
$$

Define

$$
\begin{gathered}
\zeta^{S}(s)=\prod_{p \notin S}\left(1-p^{-s}\right)^{-1}, \\
L^{S}\left(s, \chi_{-D}\right)=\prod_{\substack{p \notin S \\
\operatorname{gcd}(p, D)=1}}\left(1-\left(\chi_{-D}\right)_{p}(p) p^{-s}\right)^{-1}
\end{gathered}
$$

where χ_{-D} denotes the character of \mathbb{A}^{\times}associated to L. Also define

$$
P_{S}=\prod_{p \in S}\left(p^{2}+1\right)
$$

Also, let $\rho(\Lambda)$ denote the representation of $G L_{2}(\mathbb{A})$ obtained from Λ by automorphic induction. Hence, for a prime $q \notin S$, we have:

$$
\begin{aligned}
& L\left(s, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right) \\
&= \begin{cases}\left(1-\alpha^{2}(q) q^{-2 s}\right)^{-1}\left(1-\beta^{2}(q) q^{-2 s}\right)^{-1} & \text { if } q \text { is inert in } L, \\
\left(1-\alpha(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1} & \text { if } q \text { is ramified in } L, \\
\\
\left(1-\alpha(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1} \\
\cdot\left(1-\alpha(q) \Lambda_{q}^{-1}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta(q) \Lambda_{q}^{-1}\left(q_{1}\right) q^{-s}\right)^{-1} & \text { if } q \text { splits in } L,\end{cases} \\
& \text { where } q_{1} \in \mathbb{Z}_{q} \otimes_{\mathbb{Q}} L \text { is any element with } N_{L / \mathbb{Q}}\left(q_{1}\right) \in q \mathbb{Z}_{q}^{\times} .
\end{aligned}
$$

Also for a prime $p \in S_{3}$, put

$$
L\left(s, \sigma_{p} \times \rho\left(\Lambda_{p}\right)\right)=\left(1-p^{-2 s-1}\right)^{-1} .
$$

Put

$$
L(s, \sigma \times \rho(\Lambda))=\prod_{q \nmid M} L\left(s, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right) .
$$

Now define

$$
\begin{equation*}
B(s)=\frac{B_{\infty}(s) L(3 s+1, \sigma \times \rho(\Lambda))}{g(M)^{2} P_{S_{3}} L^{S}(6 s+2, \chi-D) \zeta^{S}(6 s+3)} \tag{3.2.4}
\end{equation*}
$$

where

$$
g(M)=\prod_{p \mid M}(p+1)
$$

and

$$
B_{\infty}(s)=\frac{(-1)^{\ell / 2} 2^{-6 s-1} \pi}{6 s+\ell-1}
$$

Then the pullback formula says:
Theorem 3.2.1 (Pullback formula). For $g \in \widetilde{G}(\mathbb{A})$ define $\mathcal{E}(g, s)$ as above and $E_{\Psi, \Lambda}(g, s)$ as in (2.8.18). Then we have

$$
\mathcal{E}(g, s)=B(s) E_{\Psi, \Lambda}(g, s)
$$

We will prove the Pullback formula in $\S 3.5$ using the machinery developed in the next two sections.

3.3 The local integral and the unramified calculation

Definitions

We retain the notations and definitions of the previous section. Furthermore, for any prime p, we define the following compact subgroups of $\widetilde{F}\left(\mathbb{Q}_{p}\right)$:

- $\Gamma_{0, p}^{\widetilde{F}}=\left\{A \in K_{p}^{\widetilde{F}} \left\lvert\, A \equiv\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)(\bmod p)\right.\right\}$
- Let $r_{p}: K_{p}^{\widetilde{F}} \rightarrow G U(1,1)\left(\mathbb{F}_{p}\right)$ be the canonical map and let $K_{p}^{\prime \widetilde{F}}=r_{p}^{-1}\left(G L_{2}\left(\mathbb{F}_{p}\right)\right)$. Define

$$
\Gamma_{0, p}^{\prime \widetilde{F}}=K_{p}^{\prime \widetilde{F}} \cap \Gamma_{0, p}^{\widetilde{F}}
$$

Some useful properties

First, we note some properties of the section Υ^{\sharp}. Fix $\left(g_{1}, g_{2}\right) \in \widetilde{R}(\mathbb{A})$.

- Let p be a prime not dividing $M N$ and $k_{1} \in \widetilde{K_{p}}, k_{2} \in K_{p}^{\widetilde{F}}$ with $\mu_{2}\left(k_{1}\right)=\mu_{1}\left(k_{2}\right)$. Then, note that

$$
Q^{-1} \iota\left(k_{1}, k_{2}\right) Q \in K_{p}^{\widetilde{H}}
$$

Because Υ_{p}^{\sharp} is $K_{p}^{\tilde{H}}$-fixed, it follows that

$$
\begin{equation*}
\Upsilon^{\sharp}\left(\iota\left(g_{1} k_{1}, g_{2} k_{2}\right), s\right)=\Upsilon^{\sharp}\left(\iota\left(g_{1}, g_{2}\right), s\right), \tag{3.3.1}
\end{equation*}
$$

- Let $p \mid N, p \nmid M$. If $k_{1} \in \widetilde{U_{p}}, k_{2} \in \Gamma_{0, p}^{\widetilde{F}}$ with $\mu_{2}\left(k_{1}\right)=\mu_{1}\left(k_{2}\right)$ then check that

$$
\begin{equation*}
Q^{-1} \iota\left(k_{1}, k_{2}\right) Q \in U_{p}^{\widetilde{H}} \tag{3.3.2}
\end{equation*}
$$

Because Υ_{p}^{\sharp} is $U_{p}^{\widetilde{H}}$-fixed, it follows that

$$
\begin{equation*}
\Upsilon^{\sharp}\left(\iota\left(g_{1} k_{1}, g_{2} k_{2}\right), s\right)=\Upsilon^{\sharp}\left(\iota\left(g_{1}, g_{2}\right), s\right), \tag{3.3.3}
\end{equation*}
$$

- Let p be a prime dividing M. If $k_{1} \in I_{p}^{\prime}, k_{2} \in \Gamma_{0, p}^{\Gamma \widetilde{F}}$ with $\mu_{2}\left(k_{1}\right)=\mu_{1}\left(k_{2}\right)$ then check that

$$
\begin{equation*}
Q^{-1} \iota\left(k_{1}, k_{2}\right) Q \in I_{p}^{\prime \widetilde{H}} \tag{3.3.4}
\end{equation*}
$$

Because Υ_{p}^{\sharp} is $I_{p}^{\prime \widetilde{H}}$-fixed, it follows that

$$
\begin{equation*}
\Upsilon^{\sharp}\left(\iota\left(g_{1} k_{1}, g_{2} k_{2}\right), s\right)=\Upsilon^{\sharp}\left(\iota\left(g_{1}, g_{2}\right), s\right), \tag{3.3.5}
\end{equation*}
$$

- Finally, let $k_{1} \in \widetilde{K_{\infty}}, k_{2} \in K_{\infty}^{\widetilde{F}}$ with $\mu_{2}\left(k_{1}\right)=\mu_{1}\left(k_{2}\right)$. Check that

$$
\begin{equation*}
Q^{-1} \iota\left(k_{1}, k_{2}\right) Q \in K_{\infty}^{\widetilde{H}} \tag{3.3.6}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\Upsilon^{\sharp}\left(g_{1} k_{1}, g_{2} k_{2}, s\right)=\rho_{\ell}\left(k_{1}\right) \rho_{\ell}\left(k_{2}\right)^{-1} \Upsilon^{\sharp}\left(g_{1}, g_{2}, s\right) . \tag{3.3.7}
\end{equation*}
$$

The key local zeta integral

Let $\psi=\prod_{v} \psi_{v}$ be a character of \mathbb{A} such that

- The conductor of ψ_{p} is \mathbb{Z}_{p} for all (finite) primes p,
- $\psi_{\infty}(x)=e(x)$, for $x \in \mathbb{R}$,
- $\left.\psi\right|_{\mathbb{Q}}=1$.

Let W_{Ψ} be the Whittaker model for Ψ. It is a function on $\widetilde{F}(\mathbb{A})$ defined by

$$
W_{\Psi}(g)=\int_{\mathbb{Q} \backslash \mathbb{A}} \Psi\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) \psi(-x) d x \text {. }
$$

We have the Fourier expansion

$$
\Psi(g)=\sum_{\lambda \in \mathbb{Q}^{\times}} W_{\Psi}\left(\left(\begin{array}{ll}
\lambda & 0 \tag{3.3.8}\\
0 & 1
\end{array}\right) g\right)
$$

By the uniqueness of Whittaker models, we have a factorization

$$
W_{\Psi}=\otimes_{v} W_{\Psi, v} .
$$

Now, for each place v, and elements $g_{v} \in \widetilde{F}\left(\mathbb{Q}_{v}\right), k_{v} \in \widetilde{K_{v}}$, define the local zeta integral

$$
\begin{equation*}
Z_{v}\left(g_{v}, k_{v}, s\right)=\int_{\widetilde{F}_{1}\left(\mathbb{Q}_{v}\right)} \Upsilon_{v}^{\sharp}\left(\iota\left(k_{v}, h_{v}\right), s\right) W_{\Psi, v}\left(g_{v} h_{v}\right) \Lambda_{v}^{-1}\left(\operatorname{det} h_{v}\right) d h_{v}, \tag{3.3.9}
\end{equation*}
$$

The evaluation of this local integral at each place v lies at the heart of our proof of the pullback formula.

First of all, by (3.2.2) and the properties proved earlier, observe that it is enough to evaluate the integral for k_{v} lying in a fixed set of representatives of $\left(P\left(\mathbb{Q}_{v}\right) \cap \widetilde{K_{v}}\right) \backslash \widetilde{K_{v}} / U_{v}$, where

$$
U_{v}= \begin{cases}\widetilde{K_{v}} & \text { if } v \notin S \\ \widetilde{U_{v}} & \text { if } v \in S_{3} \\ I_{v}^{\prime} & \text { if } v \in S_{1} \sqcup S_{2}\end{cases}
$$

For $1 \leq i \leq 5$, define the matrices $s_{i} \in G(\mathbb{Q})$ as follows:

$$
s_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad s_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \quad s_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right),
$$

$s_{4}=\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0\end{array}\right), \quad s_{5}=\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 0\end{array}\right)$.
Define the set $Y_{\infty}=\{1\}$ and for a (finite) prime p, define the set $Y_{p} \subset \widetilde{G}\left(\mathbb{Q}_{p}\right)$ as follows:

- $Y_{p}=\{1\}$ if $p \nmid M N$.
- $Y_{p}=\left\{1, s_{1}, s_{2}\right\}$ if $p \mid N, p \nmid M$.
- $Y_{p}=\left\{1, s_{1}, s_{2}, s_{3}, \Theta, \Theta s_{2}, \Theta s_{4}, \Theta s_{5}\right\}$ if $p \mid M$.

Remark. In the above definition, we consider the s_{i} and Θ as elements of $\widetilde{G}\left(\mathbb{Q}_{p}\right)$. This makes Y_{v} a subset of $\widetilde{G}\left(\mathbb{Z}_{v}\right)$ for all places v.

Lemma 3.3.1. Y_{v} is a set of representatives for $\left(P\left(\mathbb{Q}_{v}\right) \cap \widetilde{K_{v}}\right) \backslash \widetilde{K_{v}} / U_{v}$ at all places v.
Proof. For v infinite or v a prime not dividing $M N$, this is obvious. Now let p be a prime dividing N but not M. If W denotes the eight element Weyl group, then W is generated by s_{1} and s_{2}. W is a set of representatives for $\left(P\left(\mathbb{Q}_{p}\right) \cap \widetilde{K_{p}}\right) \backslash \widetilde{K_{p}} / I_{p}^{\widetilde{G}}$ where $I_{p}^{\widetilde{G}}$ denotes the Iwahori subgroup of $\widetilde{G}\left(\mathbb{Q}_{p}\right)$. Since $\widetilde{U_{p}}$ is larger than $I_{p}^{\widetilde{G}}$, there is some collapsing, as expected. By explicit computation we find that $\left\{1, s_{1}, s_{2}\right\}$ do form a set of distinct representatives. The case when $p \mid M$ is also proved similarly by explicit computation. For brevity, we do not include the details here.

The rest of this section and the next will be devoted to evaluating at each place v the integral $Z_{v}\left(g_{v}, k_{v}, s\right)$ for every $k_{v} \in Y_{v}, g_{v} \in \widetilde{F}\left(\mathbb{Q}_{v}\right)$.

The local integral at unramified places

In the rest of this section, q will denote a prime that does not divide $M N$. Hence, both Λ_{q} and σ_{q} are unramified.

In particular, σ_{q} is a spherical principal series representation induced from unramified characters α, β of \mathbb{Q}_{q}^{\times}.

By abuse of notation we use q to also denote its inclusion in \mathbb{Q}_{q}^{\times}. Thus q is an uniformizer in our local field.

Let $\rho(\Lambda)$ denote the representation of $G L_{2}(\mathbb{A})$ obtained from Λ by automorphic induction. Hence we have:
$\begin{aligned} & L\left(s, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right) \\ &= \begin{cases}\left(1-\alpha^{2}(q) q^{-2 s}\right)^{-1}\left(1-\beta^{2}(q) q^{-2 s}\right)^{-1} & \text { if } q \text { is inert in } L, \\ \left(1-\alpha(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1} & \text { if } q \text { is ramified in } L, \\ \\ \left(1-\alpha(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta(q) \Lambda_{q}\left(q_{1}\right) q^{-s}\right)^{-1} \\ \cdot\left(1-\alpha(q) \Lambda_{q}^{-1}\left(q_{1}\right) q^{-s}\right)^{-1}\left(1-\beta(q) \Lambda_{q}^{-1}\left(q_{1}\right) q^{-s}\right)^{-1} & \text { if } q \text { splits in } L, \\ & \text { where } q_{1} \in \mathbb{Z}_{q} \otimes \mathbb{Q} L \text { is any element with } N_{L / \mathbb{Q}}\left(q_{1}\right) \in q \mathbb{Z}_{q}^{\times} .\end{cases} \end{aligned}$ For a character χ of \mathbb{Q}_{q}^{\times}define $L(s, \chi)= \begin{cases}\left(1-\chi(q) q^{-s}\right) & \text { if } \chi \text { is unramified at } q, \\ 1 & \text { otherwise. }\end{cases}$

Proposition 3.3.2. Let q be a prime such that $q \nmid M N$. Let $\mathbf{1}$ denote the trivial character and χ_{-D} denote the Hecke character associated to the quadratic extension L / \mathbb{Q}. Then, we have

$$
Z_{q}\left(g_{q}, 1, s\right)=W_{\Psi, q}\left(g_{q}\right) \cdot \frac{L\left(3 s+1, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right)}{L\left(6 s+2,(\chi-D)_{q}\right) L(6 s+3, \mathbf{1})} .
$$

Proof. Let $K_{q}^{\widetilde{F}_{1}}$ denote the maximal compact subgroup of $\widetilde{F}_{1}\left(\mathbb{Q}_{q}\right)$ defined by

$$
K_{q}^{\widetilde{F}_{1}}=\widetilde{F}_{1}\left(\mathbb{Q}_{q}\right) \cap G L_{2}\left(\mathbb{Z}_{L, q}\right)
$$

Note that for $g \in \widetilde{F}_{1}\left(\mathbb{Q}_{q}\right), k_{1}, k_{2} \in K_{q}^{\widetilde{F_{1}}}$, we have using (3.1.1), (3.3.1)

$$
\begin{aligned}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, k_{1} g k_{2}\right), s\right) & =\Upsilon_{q}^{\sharp}\left(\iota\left(m_{2}\left(k_{1}\right) m_{2}\left(k_{1}\right)^{-1}, k_{1} g k_{2}\right), s\right) \\
& =\Upsilon_{q}^{\sharp}\left(\iota\left(m_{2}\left(k_{1}\right)^{-1}, g k_{2}\right), s\right) \\
& =\Upsilon_{q}^{\sharp}(\iota(1, g), s)
\end{aligned}
$$

In other words $\Upsilon_{q}^{\sharp}(\iota(1, g), s)$ only depends on the double coset $K_{q}^{\widetilde{F}_{1}} g K_{q}^{\widetilde{F}_{1}}$.
There are three distinct cases: q can be inert, split or ramified in L. We consider each of these cases separately.

Case 1. q is inert in L.

In this case, L_{q} is a quadratic extension of \mathbb{Q}_{q}. We may write elements of L_{q} in the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{q}$; then $\mathbb{Z}_{L, q}=a+b \sqrt{-d}$ where $a, b \in \mathbb{Z}_{q}$. Also note that Λ_{q} is trivial.

We know (Cartan decomposition) that

$$
\widetilde{F}_{1}\left(\mathbb{Q}_{q}\right)=\bigsqcup_{n \geq 0} K_{q}^{\widetilde{F}_{1}} A_{n} K_{q}^{\widetilde{F}_{1}}
$$

where $A_{n}=\left(\begin{array}{cc}q^{n} & 0 \\ 0 & q^{-n}\end{array}\right)$. So (3.3.9) gives us

$$
\begin{equation*}
Z_{q}\left(g_{q}, 1, s\right)=\sum_{n \geq 0} \Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right) \int_{K_{q}^{\tilde{F}_{1}}} A_{n} K_{q}^{\tilde{F}_{1}} W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q} . \tag{3.3.10}
\end{equation*}
$$

Given an element $k \in K_{q}^{\widetilde{F}_{1}}$ we can find $l \in \mathbb{Z}_{L, q}^{\times}$such that $k l \in G L_{2}\left(\mathbb{Z}_{q}\right)$. It follows that if

$$
G L_{2}\left(\mathbb{Z}_{q}\right) A_{n} G L_{2}\left(\mathbb{Z}_{q}\right)=\bigsqcup_{i} a_{i} G L_{2}\left(\mathbb{Z}_{q}\right)
$$

where $a_{i} \in S L_{2}\left(\mathbb{Z}_{q}\right)$ then

$$
K_{q}^{\widetilde{F}_{1}} A_{n} K_{q}^{\widetilde{F}_{1}}=\bigsqcup_{i} a_{i} K_{q}^{\widetilde{F}_{1}}
$$

The importance of this observation is that we can use the theory of Hecke operators for $G L_{2}$ to evaluate $\int_{K_{q}^{\tilde{F}_{1}}} A_{n} K_{q}^{\tilde{F}_{1}} W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q}$.

Recall that classically $T\left(q^{k}\right)$ denotes the Hecke operator corresponding to the set
$G L_{2}\left(\mathbb{Z}_{q}\right) S_{k} G L_{2}\left(\mathbb{Z}_{q}\right)$ where S_{k} comprises of the matrices of size 2 with entries in \mathbb{Z}_{q} whose determinant generates the ideal $\left(q^{k}\right)$. Also observe that

$$
\begin{aligned}
G L_{2}\left(\mathbb{Z}_{q}\right) S_{2 n} G L_{2}\left(\mathbb{Z}_{q}\right) & =\left(\begin{array}{cc}
q^{n} & 0 \\
0 & q^{n}
\end{array}\right) G L_{2}\left(\mathbb{Z}_{q}\right) A_{n} G L_{2}\left(\mathbb{Z}_{q}\right) \\
& \bigsqcup\left(\begin{array}{ll}
q & 0 \\
0 & q
\end{array}\right) G L_{2}\left(\mathbb{Z}_{q}\right) S_{2 n-2} G L_{2}\left(\mathbb{Z}_{q}\right) .
\end{aligned}
$$

So we have

$$
\begin{align*}
& \int_{K_{q}^{\tilde{F}_{1}}} A_{n} K_{q}^{\tilde{F}_{1}} \tag{3.3.11}\\
& W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q}=\sum_{i} W_{\Psi, q}\left(g_{q} a_{i}\right) \tag{3.3.12}\\
&=\left(\beta_{2 n}-\beta_{2 n-2}\right) W_{\Psi, q}\left(g_{q}\right)
\end{align*}
$$

where β_{k} is the eigenvalue corresponding to Ψ for the Hecke operator $T\left(q^{k}\right)$. We put $\beta_{k}=0$ if $k<0$.

Using [Bum97, Propostion 4.6.4] we have

$$
\begin{equation*}
\beta_{k}=\frac{q^{k / 2}\left(\alpha(q)^{k+1}-\beta(q)^{k+1}\right)}{\alpha(q)-\beta(q)} \tag{3.3.13}
\end{equation*}
$$

for $k \geq 0$.
On the other hand, using (3.2.1) we see that $\iota\left(1, A_{n}\right)$ is the matrix

$$
C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & q^{-n} & 0 & 0 & 0 \\
0 & 0 & q^{-n}-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1-q^{n} & 0 & 0 & 0 & 0 & q^{n}
\end{array}\right)
$$

We can write $C=P K$ where

$$
P=\left(\begin{array}{cccccc}
q^{n} & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & q^{-n} & 0 & 0 \\
0 & 0 & 0 & q^{-n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{q}\right)
$$

and

$$
K=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & -1 \tag{3.3.14}\\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1-q^{n} & q^{n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1-q^{n} & 0 & 0 & 0 & 0 & q^{n}
\end{array}\right) .
$$

So, by (3.1.1) we have

$$
\begin{equation*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right)=q^{-6 n(s+1 / 2)} \Upsilon_{q}^{\sharp}(K, s) \tag{3.3.15}
\end{equation*}
$$

Also $K \in K_{q}^{\widetilde{H}}$, hence $\Upsilon_{q}^{\sharp}(K, s)=1$.
So, by (3.3.10),(3.3.12),(3.3.13),(3.3.15), we have

$$
\begin{aligned}
Z_{q}\left(g_{q}, 1, s\right)= & W_{\Psi, q}\left(g_{q}\right)\left[\sum_{n \geq 0} q^{-6 n(s+1 / 2)} \frac{q^{n}\left(\alpha(q)^{2 n+1}-\beta(q)^{2 n+1}\right)}{\alpha(q)-\beta(q)}\right. \\
& \left.-\sum_{n \geq 1} q^{-6 n(s+1 / 2)} \frac{q^{n-1}\left(\alpha(q)^{2 n-1}-\beta(q)^{2 n-1}\right)}{\alpha(q)-\beta(q)}\right] \\
= & W_{\Psi, q}\left(g_{q}\right) \frac{\left(1-q^{-6 s-3}\right)\left(1+q^{-6 s-2}\right)}{\left(1-\alpha(q)^{2} q^{-6 s-2}\right)\left(1-\beta(q)^{2} q^{-6 s-2}\right)} \\
= & W_{\Psi, q}\left(g_{q}\right) \cdot \frac{L\left(3 s+1, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right)}{L(6 s+2, \chi-D) L(6 s+3, \mathbf{1})}
\end{aligned}
$$

Case 2. q is split in L.
We can identify L_{q} with $\mathbb{Q}_{q} \oplus \mathbb{Q}_{q}$ with \mathbb{Q}_{q} embedded diagonally as $t \mapsto(t, t)$.
For $g \in G L_{n}\left(\mathbb{Q}_{q}\right)$ denote $g^{*}=J_{n}^{-1}\left(g^{t}\right)^{-1} J_{n}$. Note that for $n=2, g^{*}=\frac{g}{\operatorname{det} g}$. Now there is a natural isomorphism of $G L_{n}\left(\mathbb{Q}_{q}\right)$ into $U(n, n)\left(\mathbb{Q}_{q}\right)$ given by $g \mapsto\left(g, g^{*}\right)$. Thus specializing to the $n=2$ case, $g \mapsto\left(g, \frac{g}{\operatorname{det} g}\right)$ takes $G L_{2}\left(\mathbb{Q}_{q}\right)$ isomorphically onto $\widetilde{F}_{1}\left(\mathbb{Q}_{q}\right)$.

Define $A_{m, k}$ to be the image of $\left(\begin{array}{cc}q^{m+k} & 0 \\ 0 & q^{m}\end{array}\right)$.
Thus $A_{m, k}=\left(\begin{array}{cc}\left(q^{m+k}, q^{-m}\right) & 0 \\ 0 & \left(q^{m}, q^{-m-k}\right)\end{array}\right)$.

The Cartan decomposition gives us

$$
\widetilde{F}_{1}\left(\mathbb{Q}_{q}\right)=\bigsqcup_{\substack{k \geq 0 \\ m \in \mathbb{Z}}} K_{q}^{\widetilde{F}_{1}} A_{m, k} K_{q}^{\widetilde{F}_{1}}
$$

Let q_{1} denote the element $(q, 1) \in L_{q}$. So $N_{L / \mathbb{Q}}\left(q_{1}\right)=q$. For brevity, let us denote $\Lambda_{q}\left(q_{1}\right)$ by λ. Note that for any integer m,

$$
\Lambda_{q}\left(q^{m}, q^{-m}\right)=\lambda^{2 m}
$$

Now, using (3.3.9), we have

$$
\begin{equation*}
Z_{q}\left(g_{q}, 1, s\right)=\sum_{\substack{k \geq 0 \\ m \in \mathbb{Z}}} \Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right) \lambda^{-4 m-2 k} \int_{K_{q}^{\tilde{F}_{1}} A_{m, k} K_{q}^{\tilde{F}_{1}}} W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q} . \tag{3.3.16}
\end{equation*}
$$

Using the above conventions, and the notation of the inert case, we have

$$
\begin{aligned}
G L_{2}\left(\mathbb{Z}_{q}\right) S_{k} G L_{2}\left(\mathbb{Z}_{q}\right) & =\left(\begin{array}{cc}
q^{-m} & 0 \\
0 & q^{-m}
\end{array}\right) G L_{2}\left(\mathbb{Z}_{q}\right) A_{m, k} G L_{2}\left(\mathbb{Z}_{q}\right) \\
& \bigsqcup\left(\begin{array}{ll}
q & 0 \\
0 & q
\end{array}\right) G L_{2}\left(\mathbb{Z}_{q}\right) S_{k-2} G L_{2}\left(\mathbb{Z}_{q}\right) .
\end{aligned}
$$

So, we have

$$
\begin{equation*}
\int_{K_{q}^{\tilde{F}_{1}}} A_{m, k} K_{q}^{\tilde{F}_{1}} W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q}=\left(\beta_{k}-\beta_{k-2}\right) W_{\Psi, q}\left(g_{q}\right) \tag{3.3.17}
\end{equation*}
$$

where we put $\beta_{k}=0$ if $k<0$. Now $\iota\left(1, A_{m, k}\right)$ is the matrix C where

$$
C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & q^{m} & 0 & 0 & 0 \\
0 & 0 & q^{m}-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1-q^{m+k} & 0 & 0 & 0 & 0 & q^{m+k}
\end{array}\right)
$$

[Note that by C we actually mean the pair $\left(C, C^{*}\right)$. This convention will be used throughout our treatment of the split case; thus the letters P, K etc. are really a shorthand for $\left(P, P^{*}\right),\left(K, K^{*}\right)$, etc.]

First we consider the case $m \geq 0$. We can write $C=P K$
where

$$
P=\left(\begin{array}{cccccc}
q^{m+k} & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & q^{m} & -q^{m} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
K=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & q^{m} & 1 & 0 & 0 \\
0 & 0 & q^{m}-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1-q^{m+k} & 0 & 0 & 0 & 0 & q^{m+k}
\end{array}\right) .
$$

Since $P \in P_{\widetilde{H}}\left(\mathbb{Q}_{q}\right)$ we have, using (3.1.1)

$$
\begin{equation*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right)=\lambda^{2 m+k} q^{-3(2 m+k)(s+1 / 2)} \Upsilon_{q}^{\sharp}(K, s) \tag{3.3.18}
\end{equation*}
$$

Since $K \in K_{q}^{\widetilde{H}}, \Upsilon_{q}^{\sharp}(K, s)=1$.
Thus when $m \geq 0$ we have

$$
\begin{equation*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right)=\lambda^{2 m+k} q^{-(6 m+3 k)(s+1 / 2)} . \tag{3.3.19}
\end{equation*}
$$

Now suppose $0 \geq m \geq-k$. For convenience we temporarily put $n=-m$. So $0 \leq n \leq k$.
We can write $C=P K$
where

$$
P=\left(\begin{array}{cccccc}
q^{k-n} & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & q^{-n} & 0 & 0 \\
0 & 0 & 0 & q^{-n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
K=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1-q^{n} & q^{n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1-q^{k-n} & 0 & 0 & 0 & 0 & q^{k-n}
\end{array}\right) .
$$

Since $P \in P_{\widetilde{H}}\left(\mathbb{Q}_{q}\right)$ we have, using (3.1.1)

$$
\begin{align*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right) & =\lambda^{-2 n+k} q^{-3 k(s+1 / 2)} \Upsilon_{q}^{\sharp}(K, s) \tag{3.3.20}\\
& =\lambda^{2 m+k} q^{-3 k(s+1 / 2)} \Upsilon_{q}^{\sharp}(K, s)
\end{align*}
$$

As before $\Upsilon_{q}^{\sharp}(K, s)=1$.
So, when $-k \leq m \leq 0$ we have

$$
\begin{equation*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right)=\lambda^{2 m+k} q^{-3 k(s+1 / 2)} . \tag{3.3.21}
\end{equation*}
$$

Finally, consider the case $m \leq-k$. For convenience we again put $n=-m$. So $0 \leq k \leq n$.
We can write $C=P K$
where

$$
P=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & q^{-n} & 0 & 0 \\
0 & 0 & 0 & q^{-n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & q^{k-n}
\end{array}\right)
$$

and

$$
K=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1-q^{n} & q^{n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
q^{n-k}-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since $P \in P_{\widetilde{H}}\left(\mathbb{Q}_{q}\right)$ we have, using (3.1.1)

$$
\begin{align*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right) & =\lambda^{-2 n+k} q^{-3(2 n-k)(s+1 / 2)} \Upsilon_{q}^{\sharp}(K, s) \tag{3.3.22}\\
& =\lambda^{2 m+k} q^{-3(-2 m-k)(s+1 / 2)} \Upsilon_{q}^{\sharp}(K, s)
\end{align*}
$$

So, when $m \leq-k$ we have

$$
\begin{equation*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{m, k}\right), s\right)=\lambda^{2 m+k} q^{(6 m+3 k)(s+1 / 2)} . \tag{3.3.23}
\end{equation*}
$$

Substituting (3.3.13),(3.3.17),(3.3.19),(3.3.21),(3.3.23) into (3.3.16) we obtain

$$
\begin{aligned}
& Z_{q}\left(g_{q}, 1, s\right) \\
& =W_{\Psi, q}\left(g_{q}\right) \sum_{k=0}^{\infty}\left(\beta_{k}-\beta_{k-2}\right)\left[\sum_{m=1}^{\infty} \lambda^{-2 m-k} q^{(-6 m-3 k)(s+1 / 2)}\right. \\
& \left.\quad+\sum_{m=-k}^{0} \lambda^{-2 m-k} q^{-3 k(s+1 / 2)}+\sum_{m=-\infty}^{-k-1} \lambda^{-2 m-k} q^{(6 m+3 k)(s+1 / 2)}\right] \\
& =\frac{W_{\Psi, q}\left(g_{q}\right)\left(1-q^{-6 s-3}\right)\left(1-q^{-6 s-2}\right)}{\left(1-\alpha(q) \lambda q^{-3 s-1}\right)\left(1-\beta(q) \lambda q^{-3 s-1}\right)\left(1-\alpha(q) \lambda^{-1} q^{-3 s-1}\right)\left(1-\beta(q) \lambda^{-1} q^{-3 s-1}\right)} \\
& =W_{\Psi, q}\left(g_{q}\right) \cdot \frac{L\left(3 s+1, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right)}{L(6 s+2, \chi-D) L(6 s+3, \mathbf{1})}
\end{aligned}
$$

Case 3. q is ramified in L.
We largely revert to the notation of the inert case. Write elements of L_{q} as $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{q} ;$ so $\mathbb{Z}_{L, q}=a+b \sqrt{-d}$ with $a, b \in \mathbb{Z}_{q}$. Also let $q_{1}=\sqrt{-d}$; thus $N_{L / \mathbb{Q}}\left(q_{1}\right) \in q \mathbb{Z}_{q}^{\times}$. Put $\lambda=\Lambda_{q}\left(q_{1}\right)$. We have $\lambda^{2}=1$.

The Cartan decomposition takes the form

$$
\widetilde{F}_{1}\left(\mathbb{Q}_{q}\right)=\bigsqcup_{n \geq 0} K_{q}^{\widetilde{F}_{1}} A_{n} K_{q}^{\widetilde{F}_{1}}
$$

where $A_{n}=\left(\begin{array}{cc}q_{1}^{n} & 0 \\ 0 & q_{1}^{-n}\end{array}\right)$. So (3.3.9) gives us

$$
\begin{equation*}
Z_{q}\left(g_{q}, 1, s\right)=\sum_{n \geq 0} \Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right) \int_{K_{q}^{\tilde{F}_{1}} A_{n} K_{q}^{\tilde{F}_{1}}} W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q} . \tag{3.3.24}
\end{equation*}
$$

Now,

$$
K_{q}^{\widetilde{F}_{1}} A_{n} K_{q}^{\widetilde{F}_{1}}=\left(\begin{array}{cc}
q_{1}^{-n} & 0 \\
0 & q_{1}^{-n}
\end{array}\right) K_{q}^{\widetilde{F}_{1}}\left(\begin{array}{cc}
q^{n} & 0 \\
0 & 1
\end{array}\right) K_{q}^{\widetilde{F}_{1}}
$$

So, by the same argument as in the inert case, we have,

$$
\begin{equation*}
\int_{K_{q}^{\tilde{F}_{1}} A_{n} K_{q}^{\tilde{F}_{1}}} W_{\Psi, q}\left(g_{q} h_{q}\right) d h_{q}=\left(\beta_{n}-\beta_{n-2}\right) W_{\Psi, q}\left(g_{q}\right) \tag{3.3.25}
\end{equation*}
$$

where, of course, we put $\beta_{n}=0$ for negative n.
Now $\iota\left(1, A_{n}\right)$ is the same matrix as in the inert case with q replaced by q_{1}. So the same choice of P and K work.

Thus, by (3.1.1) we have

$$
\begin{equation*}
\Upsilon_{q}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right)=\lambda^{n} q^{-3 n(s+1 / 2)} \tag{3.3.26}
\end{equation*}
$$

Substituting (3.3.13),(3.3.25), (3.3.26) in (3.3.24) we have

$$
\begin{aligned}
Z_{q}\left(g_{q}, 1, s\right)= & W_{\Psi, q}\left(g_{q}\right)\left[\sum_{n \geq 0} \lambda^{n} q^{-3 n(s+1 / 2)} \frac{q^{n / 2}\left(\alpha(q)^{n+1}-\beta(q)^{n+1}\right)}{\alpha(q)-\beta(q)}\right. \\
& \left.-\sum_{n \geq 2} \lambda^{n} q^{-3 n(s+1 / 2)} \frac{q^{n / 2-1}\left(\alpha(q)^{n-1}-\beta(q)^{n-1}\right)}{\alpha(q)-\beta(q)}\right] \\
= & W_{\Psi, q}\left(g_{q}\right) \frac{\left(1-q^{-6 s-3}\right)}{\left(1-\alpha(q) \lambda q^{-3 s-1}\right)\left(1-\beta(q)^{\lambda} q^{-3 s-1}\right)} \\
= & W_{\Psi, q}\left(g_{q}\right) \cdot \frac{L\left(3 s+1, \sigma_{q} \times \rho\left(\Lambda_{q}\right)\right)}{L(6 s+2, \chi-D) L(6 s+3, \mathbf{1})}
\end{aligned}
$$

(Note that $L\left(s, \chi_{-D}\right)=0$ in this case)
This completes the proof.

3.4 The local integral for the ramified and infinite places

The local integral for primes in S_{3}

Let r be a prime dividing N but not M. Note that r is inert by our assumptions. In this section we will prove the following proposition.

Proposition 3.4.1. We have
$Z_{r}\left(g_{r}, k_{r}, s\right)= \begin{cases}\frac{1}{r^{2}+1} W_{\Psi, r}\left(g_{r}\right) \cdot L\left(3 s+1, \sigma_{r} \times \rho\left(\Lambda_{r}\right)\right) & \text { if } k_{r}=1 \\ 0 & \text { if } k_{r}=s_{1} \text { or } s_{2} .\end{cases}$
where the local L-function $L\left(s, \sigma_{r} \times \rho\left(\Lambda_{r}\right)\right)$ is defined by

$$
L\left(s, \sigma_{r} \times \rho\left(\Lambda_{r}\right)\right)=\left(1-r^{-2 s-1}\right)^{-1} .
$$

Proof. Recall that σ is the irreducible automorphic representation of $G L_{2}(\mathbb{A})$ generated by $\widetilde{\Psi}$. Let σ_{r} be the local component of σ at the place r. We know that $\sigma_{r}=\mathrm{Sp} \otimes \tau$ where Sp denotes the special (Steinberg) representation and τ is a (possibly trivial) unramified quadratic character. We put $a_{r}=\tau(r)$, thus $a_{r}= \pm 1$ is the eigenvalue of the local Hecke operator $T(r)$.

We first deal with the case $k_{r}=1$. Let $\Gamma_{0, r}^{\widetilde{F}_{1}}$ denote the compact open subgroup of $\widetilde{F}_{1}\left(\mathbb{Q}_{r}\right)$ defined by

$$
\Gamma_{0, r}^{\widetilde{F}_{1}}=\Gamma_{0, r}^{\widetilde{F}} \cap \widetilde{F}_{1}\left(\mathbb{Q}_{r}\right)
$$

Note that for $g \in \widetilde{F}_{1}\left(\mathbb{Q}_{r}\right), k_{1}, k_{2} \in \Gamma_{0, r}^{\widetilde{F}_{1}}$, we have using (3.1.1), (3.3.3)

$$
\begin{align*}
\Upsilon_{r}^{\sharp}\left(\iota\left(1, k_{1} g k_{2}\right), s\right) & =\Upsilon_{r}^{\sharp}\left(\iota\left(m_{2}\left(k_{1}\right) m_{2}\left(k_{1}\right)^{-1}, k_{1} g k_{2}\right), s\right) \\
& =\Upsilon_{r}^{\sharp}\left(\iota\left(m_{2}\left(k_{1}\right)^{-1}, g k_{2}\right), s\right) \tag{3.4.1}\\
& =\Upsilon_{r}^{\sharp}(\iota(1, g), s)
\end{align*}
$$

In other words $\Upsilon_{r}^{\sharp}(\iota(1, g), s)$ only depends on the double coset $\Gamma_{0, r}^{\widetilde{F}_{1}} g \Gamma_{0, r}^{\widetilde{F}_{1}}$.
Because r is inert in L, L_{r} is a quadratic extension of \mathbb{Q}_{r}. We may write elements of L_{r}
in the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{r}$; then $\mathbb{Z}_{L, r}=a+b \sqrt{-d}$ where $a, b \in \mathbb{Z}_{r}$. Also note that Λ_{r} is trivial.

We know (Bruhat-Cartan decomposition) that

$$
\begin{align*}
\widetilde{F}_{1}\left(\mathbb{Q}_{r}\right)= & \Gamma_{0, r}^{\widetilde{F}_{1}} \cup \Gamma_{0, r}^{\widetilde{F}_{1}} w \Gamma_{0, r}^{\widetilde{F}_{1}} \\
& \cup \bigsqcup_{n>0} \Gamma_{0, r}^{\widetilde{F}_{1}} A_{n} \Gamma_{0, r}^{\widetilde{F}_{1}} \quad \cup \quad \bigsqcup_{n>0} \Gamma_{0, r}^{\widetilde{F}_{1}} A_{n} w \Gamma_{0, r}^{\widetilde{F}_{1}} \tag{3.4.2}\\
& \cup \bigsqcup_{n>0} \Gamma_{0, r}^{\widetilde{F}_{1}} w A_{n} \Gamma_{0, r}^{\widetilde{F}_{1}} \quad \cup \quad \bigsqcup_{n>0} \Gamma_{0, r}^{\widetilde{F}_{1}} w A_{n} w \Gamma_{0, r}^{\widetilde{F}_{1}} .
\end{align*}
$$

where $A_{n}=\left(\begin{array}{cc}r^{n} & 0 \\ 0 & r^{-n}\end{array}\right)$ and $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. So (3.3.9) gives us

$$
\begin{align*}
& Z_{r}\left(g_{r}, 1, s\right)=\Upsilon_{r}^{\sharp}(\iota(1,1), s) \int_{\Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} h_{r}\right) d h_{r} \\
& +\Upsilon_{r}^{\sharp}(\iota(1, w), s) \int_{\Gamma_{0, r}^{\tilde{F}_{1}} w \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} h_{r}\right) d h_{r} \\
& +\sum_{n>0} \Upsilon_{r}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right) \int_{\Gamma_{0, r}^{\tilde{F}_{1}} A_{n} \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} h_{r}\right) d h_{r} \\
& +\sum_{n>0} \Upsilon_{r}^{\sharp}\left(\iota\left(1, A_{n} w\right), s\right) \int_{\Gamma_{0, r}^{\tilde{F}_{1}} A_{n} w \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} h_{r}\right) d h_{r} \tag{3.4.3}\\
& +\sum_{n>0} \Upsilon_{r}^{\sharp}\left(\iota\left(1, w A_{n}\right), s\right) \int_{\Gamma_{0, r}^{\tilde{F}_{1}} w A_{n} \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} h_{r}\right) d h_{r} \\
& +\sum_{n>0} \Upsilon_{r}^{\sharp}\left(\iota\left(1, w A_{n} w\right), s\right) \int_{\Gamma_{0, r}^{\tilde{F}_{1}} w A_{n} w \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} h_{r}\right) d h_{r} .
\end{align*}
$$

Now $W_{\Psi, r}$ is an eigenvector for the Iwahori-Hecke algebra, hence each of the integrals in (3.4.3) evaluates to a constant multiple of $W_{\Psi, r}\left(g_{r}\right)$. Thus for some function $A(s)$ (not depending on g_{r}) we have

$$
Z_{r}\left(g_{r}, 1, s\right)=A(s) W_{\Psi, r}\left(g_{r}\right)
$$

Since $W_{\Psi, r}(1)=1$ it follows that

$$
\begin{equation*}
Z_{r}\left(g_{r}, 1, s\right)=Z_{r}(1,1, s) W_{\Psi, r}\left(g_{r}\right) \tag{3.4.4}
\end{equation*}
$$

Given an element $k \in \Gamma_{0, r}^{\widetilde{F}_{1}}$ we can find $l \in \mathbb{Z}_{L, q}^{\times}$such that $k l \in \Gamma_{0, r}$. It follows that if

$$
\Gamma_{0, r} A_{n} \Gamma_{0, r}=\bigsqcup_{i} a_{i} \Gamma_{0, r},
$$

where $a_{i} \in S L_{2}\left(\mathbb{Z}_{q}\right)$ then

$$
\Gamma_{0, r}^{\widetilde{F}_{1}} A_{n} \Gamma_{0, r}^{\widetilde{F}_{1}}=\bigsqcup_{i} a_{i} \Gamma_{0, r}^{\widetilde{F}_{1}} .
$$

From [Miy89, Lemma 4.5.6], we may choose $a_{i}=\left(\begin{array}{cc}r^{n} & m r^{-n} \\ 0 & r^{-n}\end{array}\right)$ where $0 \leq m<r^{2 n}$. Using the formula in [GK92, Lemma 2.1], we have $W_{\Psi, r}\left(a_{i}\right)=r^{-2 n}$ and hence

$$
\begin{equation*}
\sum_{a \in \Gamma_{0, r}^{\tilde{F}_{1}} A_{n} \Gamma_{0, r}^{\tilde{F}_{1}} / \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}(a)=1 \tag{3.4.5}
\end{equation*}
$$

Also, from [Miy89] we have

$$
\Gamma_{0, r}^{\widetilde{F}_{1}} w A_{n} w \Gamma_{0, r}^{\widetilde{F}_{1}}=\bigsqcup_{i} b_{i} \Gamma_{0, r}^{\widetilde{F}_{1}} .
$$

where $b_{i}=\left(\begin{array}{cc}r^{-n} & 0 \\ -m r^{1-n} & r^{n}\end{array}\right)$. Using the formula in [GK92, Lemma 2.1], and doing some simple manipulations, we have

$$
\begin{equation*}
\sum_{b \in \Gamma_{0, r}^{\tilde{F}_{1}} w A_{n} w \Gamma_{0, r}^{\tilde{F}_{1}} / / \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}(b)=1 \tag{3.4.6}
\end{equation*}
$$

Next, we check that the quantities $\Upsilon_{r}^{\sharp}\left(\iota\left(1, A_{n} w\right), s\right), \Upsilon_{r}^{\sharp}\left(\iota\left(1, w A_{n}\right), s\right)$, are both equal to 0 . Indeed $\Upsilon_{r}^{\sharp}(\iota(1, A), s)=0$ whenever $\iota(1, A)$ as an element of $\widetilde{H}\left(\mathbb{Q}_{r}\right)$ does not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{r}\right) Q U_{r}^{\widetilde{H}} Q^{-1}$. Let K be the matrix defined in (3.3.14) with q replaced by r. It suffices to prove that the quantities $K \iota(m(w), 1) Q, K \iota(1, w) \cdot Q$ do not belong to $\left(P_{\widetilde{H}}\left(\mathbb{Q}_{r}\right) \cap K_{r}^{\widetilde{H}}\right) Q U_{r}^{\widetilde{H}}$. We check this by taking a generic element P of $\left(P_{\widetilde{H}}\left(\mathbb{Q}_{r}\right) \cap K_{r}^{\widetilde{H}}\right)$ and showing that $Q^{-1} P K_{0} \notin$ $U_{r}^{\widetilde{H}}$ where K_{0} is one of the above quantities. That is a simple computation and is omitted.

On the other hand, putting

$$
P=\left(\begin{array}{cccccc}
r^{n} & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & r^{-n} & 0 & 0 \\
0 & 0 & 0 & r^{-n} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{r}\right)
$$

we can check that

$$
Q^{-1} P^{-1} \cdot\left(1, A_{n}\right) Q \in U_{r}^{\widetilde{H}}
$$

hence

$$
\begin{equation*}
\Upsilon_{r}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right)=r^{-6 n(s+1 / 2)} \tag{3.4.7}
\end{equation*}
$$

Also, putting

$$
P=\left(\begin{array}{cccccc}
0 & 0 & r^{n} & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & r^{-n} \\
0 & 0 & 0 & 0 & 0 & r^{-n} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{r}\right)
$$

we can check that

$$
Q^{-1} P^{-1} \cdot \iota\left(w, A_{n} w\right) Q \in U_{r}^{\widetilde{H}}
$$

hence

$$
\begin{equation*}
\Upsilon_{r}^{\sharp}\left(\iota\left(1, w A_{n} w\right), s\right)=\Upsilon_{r}^{\sharp}\left(\iota\left(w, A_{n} w\right), s\right)=r^{-6 n(s+1 / 2)} \tag{3.4.8}
\end{equation*}
$$

So, using (3.4.5), (3.4.6), (3.4.7) and (3.4.14),

$$
\begin{aligned}
Z_{r}(1,1, s) & =\Upsilon_{r}^{\sharp}(\iota(1,1), s) \int_{\Gamma_{0, r}^{\tilde{F}_{1}}} d h_{r}+\sum_{n>0} \Upsilon_{r}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right)\left[\int_{\Gamma_{0, r}^{\tilde{F}_{1}} A_{n} \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(h_{r}\right) d h_{r}\right. \\
& \left.+\int_{\Gamma_{0, r}^{\tilde{F}_{1}}} A_{n} \Gamma_{0, r}^{\tilde{F}_{1}} W_{\Psi, r}\left(h_{r}\right) d h_{r}\right] \\
& =\left[K_{r}^{\widetilde{F}}: \Gamma_{0, r}^{\widetilde{F}_{1}}\right]^{-1}\left(1+2 \sum_{n>0} \Upsilon_{r}^{\sharp}\left(\iota\left(1, A_{n}\right), s\right)\right) \\
& =\frac{1}{r+1}\left(1+2 \sum_{n>0} r^{-6 n(s+1 / 2)}\right) \\
& =\frac{1}{r+1} \frac{1+r^{-6 s-3}}{1-r^{-6 s-3}}
\end{aligned}
$$

whence (3.4.4) implies

$$
\begin{equation*}
Z_{r}\left(g_{r}, 1, s\right)=\frac{1}{r+1} W_{\Psi, r}\left(g_{r}\right) \cdot \frac{1+r^{-6 s-3}}{1-r^{-6 s-3}} \tag{3.4.9}
\end{equation*}
$$

Finally, we deal with the case when $k_{r}=s_{1}$ or s_{2}. The key observation is that if $k \in K_{r}^{\widetilde{F}_{1}}$ then for $i=1,2$,

$$
s_{i}^{-1} m_{2}(k) s_{i} \in \widetilde{U_{r}} .
$$

By the same argument as in (3.4.1), it follows that $\Upsilon_{r}^{\sharp}\left(s_{i}, g, s\right)$ only depends on the double $\operatorname{coset} K_{r}^{\widetilde{F}_{1}} g \Gamma_{0, r}^{\widetilde{F}_{1}}$. So, if we can show that for all $h \in \widetilde{F}_{1}\left(\mathbb{Q}_{r}\right)$ we have $\sum_{a \in K_{r}^{\tilde{F}_{1}}}^{\tilde{T}_{0, r}} \Gamma_{\Gamma_{0, r}}^{\widetilde{F}_{1}} / \Gamma_{0}^{\tilde{F}_{1}} W_{\Psi, r}\left(g_{r} a\right)=$ 0 , it would follow that $Z_{r}\left(g_{r}, s_{i}, s\right)=0$.

If we define

$$
W\left(g_{r}\right)=\sum_{a \in K_{r}^{\tilde{F}_{1}} h \Gamma_{0, r}^{\tilde{F}_{1}} / \Gamma_{0, r}^{\tilde{F}_{1}}} W_{\Psi, r}\left(g_{r} a\right)
$$

then $W\left(g_{r} k\right)=W\left(g_{r}\right)$ for all $k \in K_{r}^{\widetilde{F}_{1}}$; in other words W is a vector in the Whittaker space that is right $K_{r}^{\widetilde{F}_{1}}$ invariant. But the only such vector is the 0 vector and this completes the proof.

The local integral for primes in S_{2}
Proposition 3.4.2. Let p be a prime dividing $\operatorname{gcd}(M, N)$ and $k_{p} \in Y_{p}$. We have

$$
Z_{p}\left(g_{p}, k_{p}, s\right)= \begin{cases}\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}} & \text { if } k_{p}=1 \text { or } k_{p}=s_{1} \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Recall that σ is the irreducible automorphic representation of $G L_{2}(\mathbb{A})$ generated by Ψ. Let σ_{p} be the local component of σ at the place p. We know that $\sigma_{p}=\mathrm{Sp} \otimes \tau$ where Sp denotes the special (Steinberg) representation and τ is a (possibly trivial) unramified quadratic character. We put $a_{p}=\tau(p)$, thus $a_{p}= \pm 1$ is the eigenvalue of the local Hecke operator $T(p)$.

Let $\Gamma_{0, p}^{\prime \widetilde{F}_{1}}$ denote the compact open subgroup of $\widetilde{F}_{1}\left(\mathbb{Q}_{p}\right)$ defined by

$$
\Gamma_{0, p}^{\prime \widetilde{F}_{1}}=\Gamma_{0, p}^{\prime \widetilde{F}} \cap \widetilde{F}_{1}\left(\mathbb{Q}_{p}\right) .
$$

We first consider the case $k_{p}=1$. Note that for $g \in \widetilde{F}_{1}\left(\mathbb{Q}_{p}\right), k_{1} \in \Gamma_{0, p}^{/ \widetilde{F}_{1}}, k_{2} \in \Gamma_{0, p}^{\prime \widetilde{F_{1}}}$, we have using (3.1.1), (3.3.5),

$$
\begin{align*}
\Upsilon_{p}^{\sharp}\left(\iota\left(1, k_{1} g k_{2}\right), s\right) & =\Upsilon_{p}^{\sharp}\left(\iota\left(m_{2}\left(k_{1}\right) m_{2}\left(k_{1}\right)^{-1}, k_{1} g k_{2}\right), s\right) \\
& =\Upsilon_{p}^{\sharp}\left(\iota\left(m_{2}\left(k_{1}\right)^{-1}, g k_{2}\right), s\right) \tag{3.4.10}\\
& =\Upsilon_{p}^{\sharp}(\iota(1, g), s)
\end{align*}
$$

In other words $\Upsilon_{p}^{\sharp}(\iota(1, g), s)$ only depends on the double coset $\Gamma_{0, p}^{\prime \widetilde{F}_{1}} g \Gamma_{0, p}^{\prime \widetilde{F}_{1}}$.
Because p is inert in L, L_{p} is a quadratic extension of \mathbb{Q}_{p}. We may write elements of L_{p} in the form $a+b \sqrt{-d}$ with $a, b \in \mathbb{Q}_{p}$; then $\mathbb{Z}_{L, p}=a+b \sqrt{-d}$ where $a, b \in \mathbb{Z}_{p}$. Also note that Λ_{p} is not trivial.

Fix a set U of representatives of $\mathbb{Z}_{L, p}^{\times} / \Gamma_{L, p}^{0}$. For definiteness we may take

$$
U=\{1\} \cup\{b+\sqrt{-d}: b \in \mathbb{Z}, 0 \leq b<p\}
$$

For $l \in L_{p}^{\times}$put $\tilde{l}=\left(\begin{array}{cc}l & 0 \\ 0 & \bar{l}^{-1}\end{array}\right)$. We know that given $g \in \Gamma_{0, p}^{\widetilde{F}_{1}}$ there exists $l \in Z_{L, p}^{\times}$such that $g \widetilde{l} \in \Gamma_{0, p}^{\prime \tilde{F}_{1}}$. From this fact and the Bruhat-Cartan decomposition (3.4.2), it follows that

$$
\begin{align*}
& \widetilde{F}_{1}\left(\mathbb{Q}_{p}\right)=\bigsqcup_{l \in U} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} \widetilde{l}_{0, p}^{\prime \widetilde{F}_{1}} \quad \cup \bigsqcup_{l \in U} \Gamma_{0, p}^{\prime \widetilde{F_{1}}} w \widetilde{l} \widetilde{l}_{0, p}^{\prime \widetilde{F_{1}}} \\
& \cup \bigsqcup_{\substack{n>0 \\
l \in U}} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} A_{n} \widetilde{l}_{0, p}^{\prime \widetilde{F}_{1}} \cup \bigsqcup_{\substack{n>0 \\
l \in U}} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} A_{n} w \widetilde{l} \widetilde{l}_{0, p} /^{/ \widetilde{F}_{1}} \tag{3.4.11}\\
& \cup \bigsqcup_{\substack{n>0 \\
l \in U}} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} w A_{n} \widetilde{l}_{0, p}^{\prime \widetilde{F}_{1}} \quad \cup \bigsqcup_{\substack{n>0 \\
l \in U}} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} w A_{n} w \widetilde{l} \Gamma_{0, p}^{/ \widetilde{F}_{1}} .
\end{align*}
$$

where as before $A_{n}=\left(\begin{array}{cc}r^{n} & 0 \\ 0 & r^{-n}\end{array}\right)$ and $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
Now, in the proof of Proposition 3.4.1 we saw that the elements $\iota\left(1, A_{n} w\right), \iota\left(1, w A_{n}\right)$ of $\widetilde{H}\left(\mathbb{Q}_{p}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q U_{p}^{\widetilde{H}} Q^{-1}$. In particular therefore, the elements $\iota\left(1, A_{n} w \widetilde{l}\right)$, $\iota\left(1, w A_{n} \widetilde{l}\right)$ of $\widetilde{H}\left(\mathbb{Q}_{p}\right)$ cannot belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$.

So (3.3.9) gives us

$$
\begin{align*}
& Z_{p}\left(g_{p}, 1, s\right)=\sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}(\iota(1, \widetilde{l}), s) \int_{\widetilde{l}_{0, p}^{\prime \tilde{F}_{1}}} W_{\Psi, p}\left(g_{p} h_{p}\right) d h_{p} \\
&+\sum_{n>0} \sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(1, A_{n} \widetilde{l}\right), s\right) \int_{\Gamma_{0, p}^{\prime} \tilde{F}_{1}} A_{n} \widetilde{\Gamma}_{0, p}^{\prime \tilde{F}_{1}} \tag{3.4.12}\\
&\left.+\sum_{\Psi>0} \sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(1, w A_{n} w \widetilde{l}\right), s\right) \int_{\left.\Gamma_{0, p}^{\prime}\right)} \tilde{F}_{p}\right) d h_{p} \\
& \tilde{F}_{1} w A_{n} w \widetilde{l}_{0, p}^{\prime, \tilde{F}_{1}}
\end{align*} W_{\Psi, p}\left(g_{p} h_{p}\right) d h_{p} . \quad .
$$

If we choose a_{i}, b_{i} as in the proof of Proposition 3.4.1 then we have

$$
\begin{gathered}
\Gamma_{0, p}^{\prime \widetilde{F}_{1}} A_{n} \widetilde{\Gamma_{0, p}^{\prime}}{ }_{0, \widetilde{F}_{1}} \bigsqcup_{i} a_{i} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} \\
\Gamma_{0, p}^{\prime \widetilde{F}_{1}} w A_{n} w \widetilde{l} \Gamma_{0, p}^{\prime \widetilde{F}_{1}}=\bigsqcup_{i} b_{i} \Gamma_{0, p}^{\prime \widetilde{F}_{1}}
\end{gathered}
$$

Hence, by the same argument as in the proof of that proposition, we have

$$
\int_{\Gamma_{0, p}^{\prime, \tilde{F}_{1}} A_{n} \tilde{\Gamma}_{0, p}^{\prime \tilde{F}_{1}}} W_{\Psi, p}\left(g_{p} h_{p}\right) d h_{p}=\int_{\Gamma_{0, p}^{\prime} \tilde{F}_{1}} w A_{n} w \widetilde{\Gamma}_{0, p}^{\prime \tilde{F}_{1}}, W_{\Psi, p}\left(g_{p} h_{p}\right) d h_{p}=\left[K_{p}^{\widetilde{F}}: \Gamma_{0, p}^{\prime \widetilde{F}_{1}}\right]^{-1} .
$$

It is easy to check that the last quantity is equal to $\frac{1}{(p+1)^{2}}$.

So we have

$$
\begin{align*}
Z_{p}\left(g_{p}, 1, s\right) & =\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}\left(\sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}(\iota(1, \widetilde{l}), s)\right. \\
& \left.+\sum_{n>0} \sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(1, A_{n} \widetilde{l}\right), s\right)+\sum_{n>0} \sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(1, w A_{n} w \widetilde{l}\right), s\right)\right) . \tag{3.4.13}
\end{align*}
$$

We can check that for $n>0, \iota\left(1, A_{n} \widetilde{l}\right)$ does not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$, hence $\Upsilon_{p}^{\sharp}\left(\iota\left(1, A_{n} \widetilde{l}\right), s\right)=0$. We can also check that for $l \neq 1, l \in U,(1, \widetilde{l})$ does not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$, hence $\Upsilon_{p}^{\sharp}(\iota(1, \widetilde{l}), s)=0$.

Also, putting

$$
P=\left(\begin{array}{cccccc}
0 & 0 & p^{n} \bar{l}^{-1} & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & p^{-n} l \\
0 & 0 & 0 & 0 & 0 & p^{-n} l \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right)
$$

we can check that

$$
Q^{-1} P^{-1} \iota\left(w, A_{n} w \widetilde{l}\right) Q \in I_{p}^{\prime \widetilde{H}}
$$

hence

$$
\begin{equation*}
\Upsilon_{p}^{\sharp}\left(\iota\left(1, w A_{n} w \widetilde{l}\right), s\right)=\Lambda_{p}(l) p^{-6 n(s+1 / 2)} \tag{3.4.14}
\end{equation*}
$$

Thus we have $\Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(1, w A_{n} w \widetilde{l}\right), s\right)=\Lambda_{p}^{-1}(l) p^{-6 n(s+1 / 2)}$ and hence for all $n>0$ we have

$$
\sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(1, w A_{n} w \widetilde{l}\right), s\right)=0 .
$$

So we conclude that

$$
Z_{p}\left(g_{p}, 1, s\right)=\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}
$$

Next, we deal with the case $k_{p}=s_{1}$.
If $k \in \Gamma_{0, p}^{\prime \widetilde{F}_{1}}$ then $s_{1}^{-1} m_{2}(k) s_{1} \in I_{p}^{\prime}$. So, by the same argument as before, we know that $\Upsilon_{p}^{\sharp}\left(\iota\left(s_{1}, g\right), s\right)$ depends only on the double coset $\Gamma_{0, p}^{\prime \widetilde{F_{1}}} g \Gamma_{0, p}^{\prime \widetilde{F}}$.

Also, by explicit computation, we check that $\iota\left(s_{1}, A_{n} w \widetilde{l}\right), \iota\left(s_{1}, w A_{n} \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$ for any $n \geq 0$. Moreover, the quantity $\iota\left(s_{1}, A_{n} \widetilde{l}\right)$ belongs to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$
if and only if $n=0, l=1$. On the other hand, for $n>0$, the quantity $\iota\left(s_{1}, w A_{n} w \widetilde{l}\right)$ does belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$. These last two facts are reflected in the following equations.

$$
\begin{equation*}
\iota\left(s_{1}, 1\right)=P Q I Q^{-1} \tag{3.4.15}
\end{equation*}
$$

where

$$
P=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right)
$$

and

$$
\begin{align*}
& I=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in I_{p}^{\prime \widetilde{H}} \\
& \iota\left(s_{1}, w^{-1} A_{n} w \widetilde{l}\right)=P Q I Q^{-1} \tag{3.4.16}
\end{align*}
$$

where

$$
P=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -p^{n} \bar{l}^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -p^{n} l
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right)
$$

and

$$
I=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-p^{-n} l^{-1} & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -p^{n} \bar{l}^{-1} \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right) \in I_{p}^{\prime \widetilde{H}}
$$

So, we have

$$
\begin{equation*}
Z_{p}\left(g_{p}, s_{1}, s\right)=\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}\left(1+\sum_{n>0} \sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(s_{1}, w A_{n} w \widetilde{l}\right), s\right)\right) \tag{3.4.17}
\end{equation*}
$$

But from (3.4.16) we see that $\Upsilon_{p}^{\sharp}\left(\iota\left(s_{1}, w A_{n} w \widetilde{l}\right), s\right)=\Lambda_{p}(l) p^{-6 n(s+1 / 2)}$ and hence

$$
\sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(s_{1}, w A_{n} w \widetilde{l}\right), s\right)=0 .
$$

This completes the proof that

$$
Z_{p}\left(g_{p}, s_{1}, s\right)=\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}
$$

Next, we consider $k_{p}=s_{2}$. Let $\Gamma_{p}^{\prime 0, \widetilde{F}_{1}}=J_{1} \Gamma_{0, p}^{\prime \widetilde{F}_{1}} J_{1}$ where $J_{1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
If $k \in \Gamma_{p}^{\prime 0, \widetilde{F}_{1}}$ then $s_{2}^{-1} m_{2}(k) s_{2} \in I_{p}^{\prime}$. So, by the same argument as before, we know that $\Upsilon_{p}^{\sharp}\left(\iota\left(s_{2}, g\right), s\right)$ depends only on the double coset $\Gamma_{p}^{\prime \prime, \widetilde{F}_{1}} g \Gamma_{0, p}^{\prime \widetilde{F}_{1}}$.

Now, the Bruhat-Cartan decomposition (3.4.11) continues to hold when we replace the left $\Gamma_{0, p}^{\imath \widetilde{F}_{1}}$ in each term by $\Gamma_{p}^{\prime 0, \widetilde{F}_{1}}$. So, to prove that $Z_{p}\left(g_{p}, s_{2}, s\right)=0$ it is enough to prove that each of the elements $\iota\left(s_{2}, A_{n} \widetilde{l}\right), \iota\left(s_{2}, A_{n} w \widetilde{l}\right), \iota\left(s_{2}, w A_{n} \widetilde{l}\right), \iota\left(s_{2}, w A_{n} w \widetilde{l}\right)$ cannot belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\widetilde{H}} Q^{-1}$ for any $n \geq 0$. This we do by an explicit computation. The details are omitted.

Next, take $k_{p}=s_{3}$. Once again, we check that if $k \in \Gamma_{p}^{\prime 0, \widetilde{F}_{1}}$ then $s_{3}^{-1} m_{2}(k) s_{3} \in I_{p}^{\prime}$. On the other hand, an explicit computation again shows that the elements $\iota\left(s_{3}, A_{n} \widetilde{l}\right), \iota\left(s_{3}, A_{n} w \widetilde{l}\right)$, $\iota\left(s_{3}, w A_{n} \widetilde{l}\right), \iota\left(s_{3}, w A_{n} w \widetilde{l}\right)$ cannot belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$. So by exactly the same argument as the previous case, $Z_{p}\left(g_{p}, s_{3}, s\right)=0$.

Next consider the case $k_{p}=\Theta$. Define

$$
\Gamma_{1, p}^{\prime \widetilde{F}_{1}}=\left\{A \in \Gamma_{0, p}^{\prime \widetilde{F}_{1}} \left\lvert\, A \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod p)\right.\right\}
$$

We can check that if $k \in \Gamma_{1, p}^{\prime \widetilde{F}_{1}}$ then $\Theta^{-1} m_{2}(k) \Theta \in I_{p}^{\prime}$. We know that given $g \in \Gamma_{0, p}^{\widetilde{F}_{1}}$, there exists $l \in \mathbb{Z}_{L, p}^{\times}$such that $g \widetilde{l} \in \Gamma_{1, p}^{\prime \widetilde{F}_{1}}$. Thus, the Bruhat-Cartan decomposition (3.4.11) continues to hold when we replace the left $\Gamma_{0, p}^{\prime \widetilde{F}_{1}}$ in each term by $\Gamma_{1, p}^{\prime \widetilde{F}_{1}}$. An explicit computation again shows that the elements $\iota\left(\Theta, A_{n} \widetilde{l}\right), \iota\left(\Theta, A_{n} w \widetilde{l}\right), \iota\left(\Theta, w A_{n} \widetilde{l}\right)$ never belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$. On the other hand, if $n>0$, then $\iota\left(\Theta, w A_{n} w \widetilde{l}\right)$ does belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\iota \widetilde{H}} Q^{-1}$. Indeed,

$$
\begin{equation*}
\iota\left(\Theta, w^{-1} A_{n} w \widetilde{l}\right)=P Q I Q^{-1} \tag{3.4.18}
\end{equation*}
$$

where

$$
P=\left(\begin{array}{cccccc}
1 & \alpha & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -p^{n} \bar{l}^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -\bar{\alpha} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -p^{-n} l
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right)
$$

and

$$
I=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-\alpha p^{n} l^{-1} & -1-p^{n} l^{-1} & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -p^{n} \bar{l}^{-1} \bar{\alpha} \\
0 & 0 & 0 & 0 & 1 & -1+p^{n} \bar{l}^{-1} \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right) \in I_{p}^{\prime \widetilde{H}} .
$$

So, we have

$$
\begin{equation*}
Z_{p}\left(g_{p}, \Theta, s\right)=\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}\left(\sum_{n>0} \sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(\Theta, w A_{n} w \widetilde{l}\right), s\right)\right) . \tag{3.4.19}
\end{equation*}
$$

But from (3.4.18) we see that $\Upsilon_{p}^{\sharp}\left(\iota\left(\Theta, w A_{n} w \widetilde{l}\right), s\right)=\Lambda_{p}(l) p^{-6 n(s+1 / 2)}$ and hence

$$
\sum_{l \in U} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(\Theta, w A_{n} w \widetilde{l}\right), s\right)=0 .
$$

This completes the proof that

$$
Z_{p}\left(g_{p}, \Theta, s\right)=0
$$

Next consider the case $k_{p}=\Theta s_{2}$. Define the subgroup

$$
\Gamma_{p}^{\prime \widetilde{F}_{1}}=\left\{A \in \Gamma_{0, p}^{\prime \widetilde{F}_{1}} \left\lvert\, A \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod p)\right.\right\}
$$

We can check that if $k \in \Gamma_{p}^{\prime \widetilde{F}_{1}}$ then $\left(\Theta s_{2}\right)^{-1} m_{2}(k) \Theta s_{2} \in I_{p}^{\prime}$. We know that given $g \in \Gamma_{1, p}^{\prime \widetilde{F}_{1}}$, there exists $x \in \mathbb{Z} / p \mathbb{Z}$ such that $g u(x) \in \Gamma_{p}^{\check{F_{1}}}$, where $u(x)$ is the matrix $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$. So, to prove that $Z_{p}\left(g_{p}, \Theta s_{2}, s\right)=0$, it is enough to check that the elements $\iota\left(\Theta s_{2}, u(x) A_{n} \widetilde{l}\right), \iota\left(\Theta s_{2}, u(x) A_{n} w \widetilde{l}\right), \iota(\Theta$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$. This can be done by an explicit computation (omitted for brevity).

Next, consider the case $k_{p}=\Theta s_{4}$. As before, we can check that if $k \in \Gamma_{p}^{\widetilde{F_{1}}}$ then $\left(\Theta s_{4}\right)^{-1} m_{2}(k) \Theta s_{4} \in I_{p}^{\prime}$. To prove that $Z_{p}\left(g_{p}, \Theta s_{4}, s\right)=0$, it is enough to check that the elements $\iota\left(\Theta s_{4}, u(x) A_{n} \widetilde{l}\right), \iota\left(\Theta s_{4}, u(x) A_{n} w \widetilde{l}\right), \iota\left(\Theta s_{4}, u(x) w A_{n} \widetilde{l}\right), \iota\left(\Theta s_{4}, u(x) w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$. This is done by an explicit computation, which we omit.

Finally, we consider the case $k_{p}=\Theta s_{5}$. We can check that if $k \in \Gamma_{1, p}^{\prime \widetilde{F}}$ then $\left(\Theta s_{5}\right)^{-1} m_{2}(k) \Theta s_{5} \in$ I_{p}^{\prime}. To prove that $Z_{p}\left(g_{p}, \Theta s_{5}, s\right)=0$, it is enough to check that the elements $\iota\left(\Theta s_{5}, A_{n} \widetilde{l}\right)$, $\iota\left(\Theta s_{5}, A_{n} w \widetilde{l}\right), \iota\left(\Theta s_{5}, w A_{n} \widetilde{l}\right), \iota\left(\Theta s_{5}, w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) Q I_{p}^{\prime \widetilde{H}} Q^{-1}$. This is done by an explicit computation, which we omit.

This completes the proof of the theorem.

The local integral for primes in S_{1}

In this subsection, we prove the following proposition.
Proposition 3.4.3. Let p be a prime dividing M but not N and $k_{p} \in Y_{p}$. We have

$$
Z_{p}\left(g_{p}, k_{p}, s\right)= \begin{cases}\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}} & \text { if } k_{p}=1 \text { or } k_{p}=\Theta \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Recall that σ is the irreducible automorphic representation of $G L_{2}(\mathbb{A})$ generated by Ψ. Let σ_{p} be the local component of σ at the place p. We also let α, β be the unramified characters of \mathbb{Q}_{p}^{\times}from which σ_{p} is induced.

Let $\Gamma_{0, p}^{\prime \widetilde{F}_{1}}, \Gamma_{1, p}^{\prime \widetilde{F}_{1}}$ be as defined in the previous subsection.
We first consider the case $k_{p}=1$. As in the previous case, $\Upsilon_{p}^{\sharp}(\iota(1, g), s)$ only depends on the double coset $\Gamma_{0, p}^{\prime \widetilde{F}_{1}} g \Gamma_{0, p}^{\prime \tilde{F}_{1}}$.

By explicit computation we check that, $\iota\left(1, A_{n} \widetilde{l}\right), \iota\left(1, A_{n} w \widetilde{l}\right), \iota\left(1, w A_{n} \widetilde{l}\right), \iota\left(1, w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. So, by the results of the previous subsection, and by (3.4.11), we have $Z_{p}\left(g_{p}, 1, s\right)=0$.

Next, consider the case $k_{p}=s_{1}$. Again, by explicit computation, we check that for $n>0, \iota\left(1, A_{n} \widetilde{l}\right), \iota\left(1, A_{n} w \widetilde{l}\right), \iota\left(1, w A_{n} \widetilde{l}\right), \iota\left(1, w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\iota} \widetilde{H}^{-1}$. Furthermore $\iota(1, w \widetilde{l})$ does not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime /} Q^{-1}$ and $\iota(1, \widetilde{l})$ belongs only when $l \neq 1$. This last fact is reflected by the following equation: Let l satisfy the equation $l^{2}+b_{1} l+c_{1}=0$ and let $\alpha=(l-r) / 2$ for some $r \in \mathbb{Z}$. Then we have

$$
\begin{equation*}
\iota(1, \widetilde{l})=P \Omega I Q^{-1} \tag{3.4.20}
\end{equation*}
$$

where

$$
P=\left(\begin{array}{cccccc}
0 & -\frac{c}{2} & 0 & 0 & 0 & 0 \\
1 & \frac{c}{2 l} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{l}{c} & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{b}{c}-\frac{1}{l} & -\frac{2}{c} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & l
\end{array}\right) \in P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right)
$$

and

$$
I=\left(\begin{array}{cccccc}
-\frac{2}{c} & 0 & 0 & 0 & 0 & 0 \\
\frac{b+r}{c} & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{c}{2} & -\frac{b+r}{2} & \frac{b+r}{2} \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in I_{p}^{\prime \widetilde{H}} .
$$

Hence we have

$$
\begin{equation*}
Z_{p}\left(g_{p}, s_{1}, s\right)=\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}\left(\sum_{\substack{l \in U \\ l \neq 1}} \Lambda_{p}^{-2}(l) \Upsilon_{p}^{\sharp}\left(\iota\left(s_{1}, \widetilde{l}\right), s\right)+1\right) . \tag{3.4.21}
\end{equation*}
$$

where the 1 comes from the results of the previous subsection.
Noting that $\Upsilon_{p}^{\sharp}\left(\iota\left(s_{1}, \widetilde{l}\right), s\right)=\Lambda_{p}(l)$ and that $\sum_{\substack{l \in U \\ l \neq 1}} \Lambda_{p}^{-1}(l)=-1$, we get

$$
Z_{p}\left(g_{p}, s_{1}, s\right)=-\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}+\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}}=0
$$

Next, we consider $k_{p}=s_{2}$. Let $\Gamma_{p}^{\prime 0, \widetilde{F}_{1}}$ be as in the previous subsection.
By the argument there, we know that $\Upsilon_{p}^{\sharp}\left(\iota\left(s_{2}, g\right), s\right)$ depends only on the double coset $\Gamma_{p}^{\prime 0, \widetilde{F}_{1}} g \Gamma_{0, p}^{/ \widetilde{F}_{1}}$.

To prove that $Z_{p}\left(g_{p}, s_{2}, s\right)=0$ it is enough to prove that each of the elements $\iota\left(s_{2}, A_{n} \widetilde{l}\right)$, $\iota\left(s_{2}, A_{n} w \widetilde{l}\right), \iota\left(s_{2}, w A_{n} \widetilde{l}\right), \iota\left(s_{2}, w A_{n} w \widetilde{l}\right)$ cannot belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$ for any $n \geq 0$. This we do by an explicit computation. The details are omitted.

Next, take $k_{p}=s_{3}$. Once again, an explicit computation shows that the elements $\iota\left(s_{3}, A_{n} \widetilde{l}\right), \iota\left(s_{3}, A_{n} w \widetilde{l}\right), \iota\left(s_{3}, w A_{n} \widetilde{l}\right), \iota\left(s_{3}, w A_{n} w \widetilde{l}\right)$ cannot belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. So by exactly the same argument as the previous case, $Z_{p}\left(g_{p}, s_{3}, s\right)=0$.

Next, consider the case $k_{p}=\Theta$. By explicit calculation, we check that for $n>0$ the elements $\iota\left(\Theta, A_{n} w \widetilde{l}\right), \iota\left(\Theta, w A_{n} \widetilde{l}\right), \iota\left(\Theta, w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. Also check that $\iota(\Theta, w \widetilde{l}) \notin P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. Also, provided $l \neq 1$, we have $\iota(\Theta, w \widetilde{l}) \notin P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. Thus, the only term that contributes is $\iota(\Theta, 1)$.

So by the same argument as before, we have

$$
\begin{align*}
Z_{p}\left(g_{p}, \Theta, s\right) & =\Upsilon_{p}^{\sharp}(\iota(\Theta, 1), s) \int_{\Gamma_{0, p}^{\left(\tilde{F}_{1}\right.}} W_{\Psi, p}\left(g_{p} h_{p}\right) d h_{p} \\
& =\frac{W_{\Psi, p}\left(g_{p}\right)}{(p+1)^{2}} \tag{3.4.22}
\end{align*}
$$

Next consider the case $k_{p}=\Theta s_{2}$. For $x \in \mathbb{Z}$, let $u(x)$ be as in the previous subsection. As before, to prove that $Z_{p}\left(g_{p}, \Theta s_{2}, s\right)=0$, it is enough to check that the elements $\iota\left(\Theta s_{2}, u(x) A_{n} \widetilde{l}\right), \iota\left(\Theta s_{2}, u(x) A_{n} w \widetilde{l}\right), \iota\left(\Theta s_{2}, u(x) w A_{n} \widetilde{l}\right), \iota\left(\Theta, u(x) w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. This can be done by an explicit computation (omitted for brevity).

Next, consider the case $k_{p}=\Theta s_{4}$. To prove that $Z_{p}\left(g_{p}, \Theta s_{4}, s\right)=0$, it is enough to check that the elements $\iota\left(\Theta s_{4}, u(x) A_{n} \widetilde{l}\right), \iota\left(\Theta s_{4}, u(x) A_{n} w \widetilde{l}\right), \iota\left(\Theta s_{4}, u(x) w A_{n} \widetilde{l}\right), \iota\left(\Theta s_{4}, u(x) w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. This is done by an explicit computation, which we omit.

Finally, we consider the case $k_{p}=\Theta s_{5}$. To prove that $Z_{p}\left(g_{p}, \Theta s_{5}, s\right)=0$, it is enough to check that the elements $\iota\left(\Theta s_{5}, A_{n} \widetilde{l}\right), \iota\left(\Theta s_{5}, A_{n} w \widetilde{l}\right), \iota\left(\Theta s_{5}, w A_{n} \widetilde{l}\right), \iota\left(\Theta s_{5}, w A_{n} w \widetilde{l}\right)$ do not belong to $P_{\widetilde{H}}\left(\mathbb{Q}_{p}\right) \Omega I_{p}^{\prime \widetilde{H}} Q^{-1}$. This is done by an explicit computation, which we omit.

The local integral at infinity

Proposition 3.4.4. We have

$$
Z_{\infty}\left(g_{\infty}, 1, s\right)=B_{\infty}(s) W_{\Psi, \infty}\left(g_{\infty}\right),
$$

where $B_{\infty}(s)=\frac{(-1)^{\ell / 2} 2^{-6 s-1} \pi}{6 s+\ell-1}$.
Proof. Note that $K_{\infty}^{\widetilde{F}}$ is the maximal compact subgroup of $\widetilde{F}_{1}(\mathbb{R})$. Furthermore, note that any element h of $\widetilde{F}_{1}(\mathbb{R})$ can be written in the form

$$
h=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
b & 0 \\
0 & b^{-1}
\end{array}\right) k
$$

where $x \in \mathbb{R}, b \in \mathbb{R}^{+}, k \in K_{\infty}^{\widetilde{F}}$. Let us henceforth denote $u(x)=\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right), t(b)=\left(\begin{array}{cc}b & 0 \\ 0 & b^{-1}\end{array}\right)$. We normalize our Haar measures such that $K_{\infty}^{\widetilde{F}}$ has volume 1. Also, note that Λ_{∞} is trivial
and for $k \in K_{\infty}^{\widetilde{F}}, g, h \in \widetilde{F}_{1}(\mathbb{R})$ we have

$$
\Upsilon_{\infty}^{\sharp}(\iota(1, h k), s) W_{\Psi, \infty}(g h k)=\Upsilon_{\infty}^{\sharp}(\iota(1, h), s) W_{\Psi, \infty}(g h) .
$$

Hence we have

$$
\begin{equation*}
Z_{\infty}\left(g_{\infty}, 1, s\right)=\int_{0}^{\infty} \int_{-\infty}^{\infty} \Upsilon_{\infty}^{\sharp}(\iota(1, u(x) t(b)), s) W_{\Psi, \infty}\left(g_{\infty} u(x) t(b)\right) b^{-3} d x d b \tag{3.4.23}
\end{equation*}
$$

where $d x, d b$ are the usual Lebesgue measures.
Let $K_{\infty}^{H}=K_{\infty}^{\widetilde{H}} \cap H(\mathbb{R})$. To calculate $\Upsilon_{\infty}^{\sharp}(\iota(1, u(x) t(b)), s)$ we need to write the Iwasawa decomposition of $\iota(1, u(x) t(b))$. However, finding an explicit decomposition is not really necessary. Indeed, we know that there exists some decomposition

$$
\iota(1, u(x) t(b)) \cdot Q=\left(\begin{array}{cc}
A & X \\
1 & \left(A^{t}\right)^{-1}
\end{array}\right) K
$$

with $K \in K_{\infty}^{H}, A \in G L_{3}(\mathbb{R})$ and that

$$
\begin{equation*}
\Upsilon_{\infty}^{\sharp}(\iota(1, u(x) t(b)), s)=|\operatorname{det}(A)|^{6(s+1 / 2)} \operatorname{det}(J(K, i))^{-\ell} . \tag{3.4.24}
\end{equation*}
$$

Now, let $A_{x}^{b}=\iota(1, u(x) t(b)) \cdot Q$. By explicit computation, we see that

$$
A_{x}^{b}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{b} \\
0 & 0 & 0 & 0 & 1 & -\frac{1}{b} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & b & 0 & 0 & -\frac{x}{b}
\end{array}\right)
$$

By (3.4.24) we have

$$
\operatorname{det}\left(J\left(A_{x}^{b}, i\right)\right)=\operatorname{det}(A)^{-1} \operatorname{det}(J(K, i)) .
$$

Since $\operatorname{det}\left(J\left(A_{x}^{b}, i\right)\right)=\frac{x-i\left(b^{2}+1\right)}{b}$ we have

$$
\begin{equation*}
\Upsilon_{\infty}^{\sharp}(\iota(1, u(x) t(b)), s)=|\operatorname{det}(A)|^{6(s+1 / 2)} \operatorname{det}(A)^{-\ell} b^{\ell}\left(x-i\left(b^{2}+1\right)\right)^{-\ell} . \tag{3.4.25}
\end{equation*}
$$

On the other hand, we have

$$
\left(A_{x}^{b}\right)(i)=\left(A A^{t} i+X A^{t}\right) .
$$

By explicit computation, we see that

$$
\begin{aligned}
\left(A_{x}^{b}\right)(i)= & \frac{1}{b^{4}+2 b^{2}+x^{2}+1}\left[\left(\begin{array}{ccc}
b^{4}+b^{2}+x^{2} & 0 & -x \\
0 & b^{4}+2 b^{2}+x^{2}+1 & 0 \\
-x & 0 & b^{2}+1
\end{array}\right) i\right. \\
& \left.+\left(\begin{array}{ccc}
-x & 0 & b^{2}+1 \\
0 & 0 & 0 \\
b^{2}+1 & 0 & x
\end{array}\right)\right]
\end{aligned}
$$

From this we get $\operatorname{det}(A)=\frac{b}{\sqrt{b^{4}+1+2 b^{2}+x^{2}}}$.
Therefore, we have

$$
\begin{equation*}
\Upsilon_{\infty}^{\sharp}(\iota(1, u(x) t(b)), s)=b^{6 s+3}\left(b^{4}+1+2 b^{2}+x^{2}\right)^{-3(s+1 / 2)+\ell / 2}\left(x-i\left(b^{2}+1\right)\right)^{-\ell} . \tag{3.4.26}
\end{equation*}
$$

On the other hand, we know that

$$
W_{\Psi, \infty}(u(x) t(b))=e^{2 \pi i x} e^{-2 \pi b^{2}} b^{\ell}
$$

We will prove the proposition only for $g_{\infty}=1$, the calculations in the general case are similar.

We need to evaluate the integral

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-\infty}^{\infty} b^{6 s+\ell}\left(x-i\left(b^{2}+1\right)\right)^{-3(s+1 / 2)-\ell / 2}\left(x+i\left(b^{2}+1\right)\right)^{-3(s+1 / 2)+\ell / 2} e^{-2 \pi i x} e^{-2 \pi b^{2}} d x d b \tag{3.4.27}
\end{equation*}
$$

Putting $b^{2}=y$, the above integral becomes

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{\infty} \int_{-\infty}^{\infty} y^{3 s+\frac{\ell-1}{2}}(x-i(y+1))^{-3\left(s+\frac{1}{2}\right)-\frac{\ell}{2}}(x+i(y+1))^{-3\left(s+\frac{1}{2}\right)+\frac{\ell}{2}} e^{2 \pi i x} e^{-2 \pi y} d x d y \tag{3.4.28}
\end{equation*}
$$

Applying [GK92, (6.11)] to the inner integral, (3.4.28) becomes

$$
\frac{(-1)^{\ell / 2}(2 \pi)^{6 s+3}}{2 \Gamma\left(3 s+\frac{3}{2}+\frac{\ell}{2}\right) \Gamma\left(3 s+\frac{3}{2}-\frac{\ell}{2}\right)}
$$

times

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 \pi(1+2 t)}(t+1)^{3 s+\frac{1}{2}+\frac{\ell}{2}} t^{3 s+\frac{1}{2}-\frac{\ell}{2}}\left(\int_{0}^{\infty} y^{3 s+\frac{\ell-1}{2}} e^{-4 \pi y(1+t)} d y\right) d t \tag{3.4.29}
\end{equation*}
$$

Now, $\int_{0}^{\infty} y^{3 s+\frac{\ell-1}{2}} e^{-4 \pi y(1+t)} d y$ evaluates to

$$
2^{-6 s-\ell-1} \pi^{-3 s-\frac{\ell}{2}-\frac{1}{2}} \Gamma\left(3 s+\ell / 2+\frac{1}{2}\right)
$$

Using this, and the formula

$$
\int_{0}^{\infty} e^{-2 \pi(1+2 t)} t^{3 s+\frac{1}{2}-\frac{\ell}{2}}=2^{-6 s+\ell-3} e^{-2 \pi} \pi^{-3 s+\ell / 2-\frac{3}{2}} \Gamma\left(3 s+\frac{3}{2}-\frac{\ell}{2}\right)
$$

we see that (3.4.28) simplifies to

$$
\frac{(-1)^{l / 2} 2^{-6 s-1} \pi}{6 s+\ell-1} W_{\Psi, \infty}(1)
$$

3.5 Proof of the Pullback formula

In this section, we will prove Theorem 3.2.1.
Recall the definition of $\mathcal{E}(g, s)$ from $\S 3.2$. Our main step in computing $\mathcal{E}(g, s)$ will be the evaluation of the following integral:

$$
\begin{equation*}
\Upsilon_{\Psi}(g, s)=\int_{\widetilde{F}_{1}[g](\mathbb{A})} \Upsilon^{\sharp}(\iota(g, h), s) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h \tag{3.5.1}
\end{equation*}
$$

By [Shi97], we know that the integral above converges absolutely and uniformly on
compact sets for $\operatorname{Re}(s)$ large. We are going to evaluate the above integral for such s.
Note that $\widetilde{G}(\mathbb{A})=P(\mathbb{A}) \prod_{v} \widetilde{K_{v}}$. Moreover if $k \in \widetilde{K_{v}}$, we may write

$$
k=m_{2}\left(\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right)\right) k^{\prime}
$$

where $\lambda=\mu_{2}(k)$, so that $\mu_{2}\left(k^{\prime}\right)=1$.
For any $p \in S_{3}$ we have, by the Bruhat decomposition,

$$
\widetilde{K_{p}}=\left(P\left(\mathbb{Q}_{p}\right) \cap \widetilde{K_{p}}\right) \widetilde{U_{p}} \sqcup\left(P\left(\mathbb{Q}_{p}\right) \cap \widetilde{K_{p}}\right) s_{1} \widetilde{U_{p}} \sqcup\left(P\left(\mathbb{Q}_{p}\right) \cap \widetilde{K_{p}}\right) s_{2} \widetilde{U_{p}} .
$$

Also, for $p \mid M$, we have, by Lemma 3.3.1,

$$
\widetilde{K_{p}}=\coprod_{s \in Y_{p}}\left(P\left(\mathbb{Q}_{p}\right) \cap \widetilde{K_{p}}\right) s I_{p}^{\prime}
$$

Recall that we defined the compact subgroup $U^{\widetilde{G}}$ of $\widetilde{G}\left(\mathbb{A}_{f}\right)$ in (2.8.16).
So write $g=m_{1}(a) m_{2}(b) n k$ where $k \in \prod_{v} \widetilde{K_{v}}, \mu_{2}(k)=1$ and further write $k=$ $k_{\infty} k_{\text {ram }} k_{\text {ur }}$ where

$$
k_{\infty} \in \widetilde{K_{\infty}}, k_{\mathrm{ur}} \in U^{\widetilde{G}}
$$

and $k_{\mathrm{ram}}=\prod_{v}\left(k_{\mathrm{ram}}\right)_{v}$, with

$$
\left(k_{\mathrm{ram}}\right)_{v} \in \begin{cases}\{1\} & \text { if } v \notin S \\ \left\{1, s_{1}, s_{2}\right\} & \text { if } v \in S_{3} \\ \left\{1, s_{1}, s_{2}, s_{3}, \Theta, \Theta s_{2}, \Theta s_{4}, \Theta s_{5}\right\} & \text { if } v \in S_{1} \sqcup S_{2} .\end{cases}
$$

Therefore we have

$$
\begin{aligned}
& \Upsilon_{\Psi}(g, s)= \int_{\widetilde{F}_{1}\left[m_{2}(b)\right](\mathbb{A})} \Upsilon^{\sharp}\left(\iota\left(m_{1}(a) m_{2}(b) n k, b\left(b^{-1} h\right)\right), s\right) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h \\
&= \rho_{\ell}\left(k_{\infty}\right) \\
& \times \int_{\tilde{F}_{1}\left[m_{2}(b)\right](\mathbb{A})} \Upsilon^{\sharp}\left(\iota\left(m_{1}(a) m_{2}(b) n k_{\mathrm{ram}}, b\left(b^{-1} h\right)\right), s\right) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h \\
& \quad \quad(\text { using properties from } \S 3.3) \\
&= \Lambda(a) \|\left. N_{L / \mathbb{Q}}(a) \cdot \mu_{2}(b)^{-1}\right|^{3(s+1 / 2)} \rho_{\ell}\left(k_{\infty}\right) \\
& \times \int_{\widetilde{F}_{1}(\mathbb{A})} \Upsilon^{\sharp}\left(\iota\left(k_{\mathrm{ram}}, h\right), s\right) \Psi(b h) \Lambda^{-1}(\operatorname{det} h) d h \\
& \quad(\operatorname{using}(3.1 .1)) .
\end{aligned}
$$

We write

$$
U_{b}\left(k_{\mathrm{ram}}, s\right)=\int_{\widetilde{F}_{1}(\mathbb{A})} \Upsilon^{\sharp}\left(\iota\left(k_{\mathrm{ram}}, h\right), s\right) \Psi(b h) \Lambda^{-1}(\operatorname{det} h) d h .
$$

Thus we have

$$
\begin{equation*}
\Upsilon_{\Psi}(g, s)=\Lambda(a)\left|N_{L / \mathbb{Q}}(a) \cdot \mu_{2}(b)^{-1}\right|^{3(s+1 / 2)} \rho_{l}\left(k_{\infty}\right) \times U_{b}\left(k_{\mathrm{ram}}, s\right) \tag{3.5.2}
\end{equation*}
$$

Recall the Whittaker expansion

$$
\Psi(g)=\sum_{\lambda \in \mathbb{Q}^{\times}} W_{\Psi}\left(\left(\begin{array}{ll}
\lambda & 0 \tag{3.5.3}\\
0 & 1
\end{array}\right) g\right)
$$

Therefore

$$
U_{b}\left(k_{\mathrm{ram}}, s\right)=\sum_{\lambda \in \mathbb{Q}^{\times}} Z\left(\left(\begin{array}{ll}
\lambda & 0 \tag{3.5.4}\\
0 & 1
\end{array}\right) b, k_{\mathrm{ram}}, s\right)
$$

where for $g \in \widetilde{F}(\mathbb{A}), k \in \prod_{v} \widetilde{K}_{v}, \mu_{2}(k)=1$, we define

$$
Z(g, k, s)=\int_{\tilde{F}_{1}(\mathbb{A})} \Upsilon^{\sharp}(\iota(k, h), s) W_{\Psi}(g h) \Lambda^{-1}(\operatorname{det} h) d h .
$$

Note that the uniqueness of the Whittaker function implies

$$
Z(g, k, s)=\prod_{v} Z_{v}\left(g_{v}, k_{v}, s\right),
$$

where the local zeta integral $Z_{v}\left(g_{v}, k_{v}, s\right)$ is defined as in (3.3.9).
So, by the results of the previous two sections, we have

$$
Z\left(g, k_{\mathrm{ram}}, s\right)= \begin{cases}B(s) W_{\Psi}(g) & \text { if }\left(k_{\mathrm{ram}}\right)_{v} \in Y_{v}^{\prime} \text { for all places } v \tag{3.5.5}\\ 0 & \text { otherwise }\end{cases}
$$

where we define

$$
Y_{v}^{\prime}=\left\{\begin{array}{cl}
\{1\} & \text { if } v \notin S_{1} \sqcup S_{2} \\
\left\{1, s_{1}\right\} & \text { if } v \in S_{2} \\
\{1, \Theta\} & \text { if } v \in S_{1} \sqcup S_{2} .
\end{array}\right.
$$

From (3.5.2),(3.5.3),(3.5.4),(3.5.5) we conclude that

$$
\begin{equation*}
\Upsilon_{\Psi}(g, s)=B(s) f_{\Lambda}(g, s) \tag{3.5.6}
\end{equation*}
$$

where $f_{\Lambda}(g, s)$ is defined as in $\S 2.8$.
We are now in a position to prove the Pullback formula.
Proof of Theorem 3.2.1. Recall the definition of $B(s)$ from (3.2.4). Also recall that we defined

$$
\begin{equation*}
\mathcal{E}(g, s)=\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} E_{\Upsilon^{\sharp}}(\iota(g, h), s) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h . \tag{3.5.7}
\end{equation*}
$$

The pullback formula states that

$$
\mathcal{E}(g, s)=B(s) E_{\Psi, \Lambda}(g, s) .
$$

By abuse of notation, we use $\widetilde{R}(\mathbb{Q})$ to denote its image in $\widetilde{H}(\mathbb{Q})$. First, we recall from [Shi97] that $\left|P_{\widetilde{H}}(\mathbb{Q}) \backslash \widetilde{H}(\mathbb{Q}) / \widetilde{R}(\mathbb{Q})\right|=2$. We take the identity element as one of the double coset representatives, and denote the other one by τ. Thus

$$
\widetilde{H}(\mathbb{Q})=P_{\widetilde{H}}(\mathbb{Q}) \widetilde{R}(\mathbb{Q}) \sqcup P_{\widetilde{H}}(\mathbb{Q}) \tau \widetilde{R}(\mathbb{Q}) .
$$

Let us denote by R_{1}, R_{2} the corresponding sets of coset representatives, i.e. $R_{1} \subset$ $\widetilde{R}(\mathbb{Q}), R_{2} \subset \widetilde{R}(\mathbb{Q})$ and

$$
P_{\widetilde{H}}(\mathbb{Q}) \widetilde{R}(\mathbb{Q})=\bigsqcup_{s \in R_{1}} P_{\widetilde{H}}(\mathbb{Q}) s
$$

and

$$
P_{\widetilde{H}}(\mathbb{Q}) \tau \widetilde{R}(\mathbb{Q})=\bigsqcup_{s \in R_{2}} P_{\widetilde{H}}(\mathbb{Q}) s
$$

Recall that we defined

$$
E_{\Upsilon^{\sharp}}(h, s)=\sum_{\gamma \in P_{\tilde{H}}(\mathbb{Q}) \backslash \tilde{H}(\mathbb{Q})} \Upsilon^{\sharp}(\gamma h, s)
$$

for $\operatorname{Re}(s)$ large. We can write $E_{\Upsilon \sharp}(h, s)=E_{\Upsilon_{\sharp}^{\sharp}}^{1}(h, s)+E_{\Upsilon^{\sharp}}^{2}(h, s)$ where

$$
E_{\Upsilon \sharp}^{1}(h, s)=\sum_{\gamma \in R_{1}} \Upsilon^{\sharp}(\gamma h, s)
$$

and

$$
E_{\Upsilon_{\sharp}^{\sharp}}^{2}(h, s)=\sum_{\gamma \in R_{2}} \Upsilon^{\sharp}(\gamma h, s) .
$$

Now, by [Shi97, 22.9] the orbit of τ is 'negligible' for our integral, that is for all g,

$$
\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} E_{\Upsilon^{\sharp}}^{2}(\iota(g, h), s) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h=0 .
$$

It follows that

$$
\begin{equation*}
\mathcal{E}(g, s)=\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} E_{\Upsilon_{\sharp}^{\sharp}}^{1}(g, h, s) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h . \tag{3.5.8}
\end{equation*}
$$

On the other hand, by [Shi97, 2.7] we can take R_{1} to be the following set:

$$
\begin{equation*}
R_{1}=\left\{\iota\left(m_{2}(\xi) \beta, 1\right): \xi \in \widetilde{F}_{1}(\mathbb{Q}), \beta \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})\right\} \tag{3.5.9}
\end{equation*}
$$

For $\operatorname{Re}(s)$ large, we therefore have

$$
E_{\Upsilon^{\sharp}}^{1}(\iota(g, h), s)=\sum_{\substack{\xi \in \widetilde{F}_{1}(\mathbb{Q}) \\ \beta \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})}} \Upsilon^{\sharp}\left(\iota\left(\left(m_{2}(\xi) \beta g, h\right), s\right) .\right.
$$

Substituting in (3.5.8) we have

$$
\begin{aligned}
\mathcal{E}(g, s) & =\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} \sum_{\substack{\xi \in \widetilde{F}_{1}(\mathbb{Q}) \\
\beta \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})}} \Upsilon^{\sharp}\left(\iota\left(m_{2}(\xi) \beta g, h\right), s\right) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h \\
& =\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} \sum_{\substack{ \\
\beta \in P\left(\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})\right.}} \Upsilon^{\sharp}\left(\iota\left(\beta g, \xi^{-1} h\right), s\right) \Psi\left(\xi^{-1} h\right) \Lambda^{-1}\left(\operatorname{det} \xi^{-1} h\right) d h \\
& =\sum_{\beta \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})} \int_{\widetilde{F}_{1}[g](\mathbb{A})} \Upsilon^{\sharp}(\iota(\beta g, h), s) \Psi(h) \Lambda^{-1}(\operatorname{det} h) d h \\
& =\sum_{\beta \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})} \Upsilon_{\Psi}(\beta g, s) \\
& =B(s) \sum_{\beta \in P(\mathbb{Q}) \backslash \widetilde{G}(\mathbb{Q})} f_{\Lambda}(\beta g, s) \\
& =B(s) E_{\Psi, \Lambda}(g, s)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\int_{\widetilde{F}_{1}(\mathbb{Q}) \backslash \widetilde{F}_{1}[g](\mathbb{A})} E_{\Upsilon^{\sharp}}(g, h, s) \widetilde{\Psi}(h) \Lambda^{-1}(\operatorname{det} h) d h=B(s) E_{\Psi, \Lambda}(g, s) \tag{3.5.10}
\end{equation*}
$$

for $\operatorname{Re}(s)$ large (so that all sums and integrals converge nicely and our manipulations are valid).

However, $E_{\Upsilon \sharp}(g, h, s)$ is slowly increasing away from its poles, while $\Psi(h)$ is rapidly decreasing. Thus the left side above converges absolutely for $s \in \mathbb{C}$ away from the poles of the Eisenstein series. Hence (3.5.10) holds as an identity of meromorphic functions.

3.6 The integral representation

The following result was proved in the previous chapter:

$$
\int_{Z_{G}(\mathbb{A}) G(\mathbb{Q}) \backslash G(\mathbb{A})} E_{\Psi, \Lambda}(g, s) \bar{\Phi}(g) d g=C(s) \cdot L\left(3 s+\frac{1}{2}, F \times g\right)
$$

where $C(s)=$

$$
\frac{Q_{f} \pi \overline{a(\Lambda)}(4 \pi)^{-3 s-\frac{3}{2} \ell+\frac{3}{2}} d^{-3 s-\frac{\ell}{2}} \Gamma\left(3 s+\frac{3}{2} l-\frac{3}{2}\right)}{g(M / f) P_{M N}(6 s+\ell-1) \zeta^{M N}(6 s+1) L(3 s+1, \sigma \times \rho(\Lambda))} \prod_{p \mid f} \frac{p^{-6 s-3}}{1-a_{p} w_{p} p^{-3 s-3 / 2}}
$$

where

$$
\begin{gathered}
f=\operatorname{gcd}(M, N), \\
Q_{A}=\prod_{\substack{r \mid A \\
r \text { prime }}}(1-r),
\end{gathered}
$$

and $g(A), P_{A}, \zeta^{A}$ are as defined earlier.
Recall the definition of $B(s)$ from (3.2.4) and let

$$
A(s)=B(s) C(s) .
$$

Let R denote the subgroup of \widetilde{R} consisting of elements $h=\left(h_{1}, h_{2}\right)$ such that $h_{1} \in$ $G, h_{2} \in \widetilde{F}$ and $\mu_{2}\left(h_{1}\right)=\mu_{1}\left(h_{2}\right)$. The above Theorem, along with our pullback formula, implies the following result.

Theorem 3.6.1. We have

$$
\int_{g \in Z(\mathbb{A}) R(\mathbb{Q}) \backslash R(\mathbb{A})} E_{\Upsilon^{\sharp}}\left(\iota\left(g_{1}, g_{2}\right), s\right) \bar{\Phi}\left(g_{1}\right) \Psi\left(g_{2}\right) \Lambda^{-1}\left(\operatorname{det} g_{2}\right) d g=A(s) L\left(3 s+\frac{1}{2}, F \times g\right)
$$

where $g=\left(g_{1}, g_{2}\right)$.
This new integral representation has a great advantage over the previous one: the Eisenstein series $E_{\Upsilon^{\sharp}}(g, s)$ is much simpler than $E_{\Psi, \Lambda}(g, s)$ (even though it lives on a higher rank group). This is because it is because it is induced from a character of the Siegel parabolic. Thus, it is more suitable for applications, especially with regard to special value results.

Corollary 3.6.2. $L(s, F \times g)$ can be continued to a meromorphic function on the entire complex plane. It's only possible pole to the right of the critical line $\operatorname{Re}(s)=\frac{1}{2}$ is at $s=1$.

Proof. The integral representation of Theorem 3.6.1 immediately proves the meromorphic continuation. Furthermore by [Ich04], we know that the only possible poles of the Eisenstein
series $E_{\Upsilon^{\sharp}}(g, s)$ to the right of $s=0$ are at $s=\frac{1}{6}$ and $s=\frac{1}{2}$. However, as we remark in the proof of Proposition 4.1.3, the pole at $s=\frac{1}{2}$ is impossible. So the only possible pole of the Eisenstein series in that half plane is at $s=\frac{1}{6}$ which corresponds to a pole of the L-functions at $s=1$.

Chapter 4

Rationality of Eisenstein series and Deligne's conjecture on critical L-values

4.1 Eisenstein series on Hermitian domains

Let

$$
\widetilde{G}^{+}(\mathbb{R})=\left\{g \in \widetilde{G}(\mathbb{R}): \mu_{2}(g)>0\right\}
$$

Define the groups $G^{+}(\mathbb{R}), \widetilde{H}^{+}(\mathbb{R}), \widetilde{F}^{+}(\mathbb{R})$ similarly.
Also recall the definitions of the symmetric domains $\mathbb{H}_{n}, \widetilde{\mathbb{H}}_{n}$. We define the 'standard embedding' of $\widetilde{\mathbb{H}}_{2} \times \widetilde{\mathbb{H}}_{1}$ into $\widetilde{\mathbb{H}}_{3}$ by

$$
\left(Z_{1}, Z_{2}\right) \mapsto\left(\begin{array}{ll}
Z_{1} & \\
& Z_{2}
\end{array}\right)
$$

We use the same notation $\left(Z_{1}, Z_{2}\right)$ to denote an element of $\widetilde{H}_{2} \times \widetilde{\mathbb{H}}_{1}$ and its image in $\widetilde{\mathbb{H}}_{3}$ under the above embedding. Note that this embedding restricts to an embedding of $\mathbb{H}_{2} \times \mathbb{H}_{1}$ into \mathbb{H}_{3}.

We also define another embedding u of $\widetilde{\mathbb{H}}_{2} \times \widetilde{\mathbb{H}}_{1}$ into $\widetilde{\mathbb{H}}_{3}$ by

$$
u\left(Z_{1}, Z_{2}\right)=\left(Z_{1},-\overline{Z_{2}}\right) .
$$

Clearly this embedding also restricts to an embedding of $\mathbb{H}_{2} \times \mathbb{H}_{1}$ into \mathbb{H}_{3}.
Furthermore, the following is true, as can be verified by an easy calculation:

Let $g_{1} \in \widetilde{G}_{1}(\mathbb{R}), g_{2} \in \widetilde{F}_{1}(\mathbb{R})$, such that $g_{1}(i)=Z_{1}, g_{2}(i)=Z_{2}$. In the event that $\left(Z_{1}, Z_{2}\right) \in$ $\mathbb{H}_{2} \times \mathbb{H}_{1}$ we may even take $g_{1} \in G_{1}(\mathbb{R}), g_{2} \in S L_{2}(\mathbb{R})$.

Then

$$
u\left(Z_{1}, Z_{2}\right)=\left(Q^{-1} \iota\left(g_{1}, g_{2}\right) Q\right) i
$$

Now, let us interpret the Eisenstein series on $\operatorname{GU}(3,3)$ as a function on $\widetilde{\mathbb{H}}_{3}$. Recall the definitions of the sections $\Upsilon_{v}(s) \in \operatorname{Ind}_{P_{\tilde{H}}\left(\mathbb{Q}_{v}\right)}^{\tilde{H}\left(\mathbb{Q}_{v}\right)}\left(\Lambda_{v}\|\cdot\|_{v}^{3 s}\right)$. Also, for $Z \in \widetilde{\mathbb{H}}_{n}$, we set $\widehat{Z}=\frac{i}{2}\left(\bar{Z}^{t}-Z\right)$.

Lemma 4.1.1. Let $g_{\infty} \in \widetilde{H}^{+}(\mathbb{R})$. Then

$$
\Upsilon_{\infty}\left(g_{\infty}, s\right)=\operatorname{det}\left(g_{\infty}\right)^{\ell / 2} \operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{-\ell} \operatorname{det}\left(\widehat{g_{\infty}(i)}\right)^{3(s+1 / 2)-\ell / 2}
$$

Proof. Let us write $g_{\infty}=m(A, v) n k_{\infty}$ where $m(A, v) \in M(\mathbb{A}), n \in N(\mathbb{A})$ and $k \in K_{\infty}^{\widetilde{H}}$. Then, (3.1.1) and (3.1.9) tells us that

$$
\Upsilon_{\infty}\left(g_{\infty}, s\right)=v^{-9(s+1 / 2)}|\operatorname{det} A|^{6 s+3} \operatorname{det}\left(k_{\infty}\right)^{\ell / 2} \operatorname{det}\left(J\left(k_{\infty}, i\right)\right)^{-\ell} .
$$

On the other hand, we can verify that

$$
\widehat{g_{\infty}(i)}=v^{-1} A \bar{A}^{t}
$$

and therefore

$$
\operatorname{det}\left(\widehat{g_{\infty}(i)}\right)=v^{-3}|\operatorname{det} A|^{2} .
$$

Also we see that

$$
J\left(g_{\infty}, i\right)=v\left(\bar{A}^{t}\right)^{-1} J\left(k_{\infty}, i\right)
$$

which implies

$$
\operatorname{det}\left(J\left(g_{\infty}, i\right)\right)=v^{3} \operatorname{det}(\bar{A})^{-1} \operatorname{det}\left(J\left(k_{\infty}, i\right)\right) .
$$

Finally

$$
\operatorname{det}\left(g_{\infty}\right)=v^{3} \operatorname{det}\left(k_{\infty}\right) \operatorname{det}(A) \operatorname{det}(\bar{A})^{-1} .
$$

Putting the above equations together, we get the statement of the lemma.
Corollary 4.1.2. Let $s \in \mathbb{C}$, $u_{f} \in \widetilde{H}\left(\mathbb{A}_{f}\right)$ be fixed. Then the function Σ on $\widetilde{H}^{+}(\mathbb{R})$ defined
by

$$
\Sigma\left(g_{\infty}\right)=\operatorname{det}\left(g_{\infty}\right)^{-\ell / 2} \operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{\ell} E_{\Upsilon}\left(u_{f} g_{\infty}, \frac{s}{3}+\frac{\ell}{6}-1 / 2\right)
$$

depends only on $g_{\infty}(i)$.

Proof. We have

$$
E_{\Upsilon}\left(u_{f} g_{\infty}, s\right)=\sum_{\left.\gamma \in P_{\tilde{H}(\mathbb{Q})}\right) \widetilde{H}(\mathbb{Q})} \Upsilon_{\infty}\left(\gamma_{\infty} g_{\infty}, s\right) \Upsilon_{f}\left(\gamma_{f} u_{f}, s\right) .
$$

So, by the above lemma,

$$
\begin{equation*}
\Sigma\left(g_{\infty}\right)=\sum_{\gamma \in P_{\tilde{H}(\mathbb{Q})} \backslash \tilde{H}(\mathbb{Q})} \operatorname{det}(\gamma)^{\ell / 2} \operatorname{det}(J(\gamma, Z))^{-\ell} \operatorname{det}(\widehat{\gamma(Z)})^{s} \tag{4.1.1}
\end{equation*}
$$

where $Z=g_{\infty}(i)$.

Now, consider the coset decomposition

$$
\widetilde{F}(\mathbb{A})=\bigsqcup_{i=1}^{h} \widetilde{F}(\mathbb{Q}) \widetilde{F}^{+}(\mathbb{R})\left(\begin{array}{ll}
t_{i} & \tag{4.1.2}\\
& \\
& t_{i}^{*}
\end{array}\right) U^{\widetilde{F}}
$$

where $t_{i} \in \widetilde{F}\left(\mathbb{A}_{f}\right), t_{i}^{*}={\overline{t_{i}}}^{-1}$, and

$$
\begin{equation*}
U^{\widetilde{F}}=\prod_{p \notin S} K_{p}^{\widetilde{F}} \prod_{p \in S_{3}} \Gamma_{0, p}^{\widetilde{F}} \prod_{p \in S_{1} \sqcup S_{2}} \Gamma_{0, p}^{\Gamma^{\widetilde{F}}} . \tag{4.1.3}
\end{equation*}
$$

We note here that the constant h comes up because the class number of L may not be 1 and because the det map from $\Gamma_{0, p}^{/ \widetilde{F}}$ to $\mathbb{Z}_{L, p}^{\times}$is not surjective. In particular, note that if $M=1$, we have $h=h(-d)$, the class number of L.

Also, we note that by the Cebotarev density theorem, we may choose t_{i} such that $\left(N_{L / \mathbb{Q}} t_{i}\right)=q_{i}^{-1}$ where q_{i} corresponds to an ideal of \mathbb{Z} that splits in L. In particular $\operatorname{gcd}\left(q_{i}, M N\right)=1$.

Now, let

$$
\begin{aligned}
\Gamma_{i} & =S L_{2}(\mathbb{Z}) \cap\left(\begin{array}{ll}
t_{i} & \\
& t_{i}^{*}
\end{array}\right) K^{\widetilde{F}}\left(\begin{array}{cc}
t_{i}^{-1} & \\
& \left(t_{i}^{*}\right)^{-1}
\end{array}\right) \widetilde{F}(\mathbb{R}) \\
& =\Gamma_{0}(M) \cap \Gamma_{0}\left(N q_{i}\right)
\end{aligned}
$$

Also, we define the congruence subgroup $\Gamma_{M, N}$ of $S p_{4}(\mathbb{Z})$ by

$$
\Gamma_{M, N}=B(M) \cap U_{2}(N) .
$$

Recall the definition of $U^{\widetilde{G}}$ from (2.8.16). Let us define the compact open subgroup U^{G} of $G\left(\mathbb{A}_{f}\right)$ by

$$
\begin{equation*}
U^{G}=U^{\widetilde{G}} \cap G(\mathbb{A}) . \tag{4.1.4}
\end{equation*}
$$

Observe that

$$
\Gamma_{M, N}=U^{G} S p_{4}(\mathbb{R}) \cap S p_{4}(\mathbb{Q})
$$

Next, put

$$
s_{i}=\left(\begin{array}{cc}
t_{i} & \\
& t_{i}^{*}
\end{array}\right)
$$

and

$$
r_{i}=\iota\left(1, s_{i}\right) \in \widetilde{H}_{1}\left(\mathbb{A}_{f}\right)
$$

For $Z \in \widetilde{\mathbb{H}}_{3}$, define the Eisenstein series $E_{\Upsilon}^{i}(Z ; s)$ by

$$
\begin{equation*}
E_{\Upsilon}^{i}(Z ; s)=\operatorname{det}\left(g_{\infty}\right)^{-\ell / 2} \operatorname{det}\left(J\left(g_{\infty}, i\right)\right)^{\ell} E_{\Upsilon}\left(Q^{-1} r_{i} Q g_{\infty}, s / 3+\ell / 6-1 / 2\right), \tag{4.1.5}
\end{equation*}
$$

where $g_{\infty} \in \widetilde{H}^{+}(\mathbb{R})$ is such that $g_{\infty}(i)=Z$. We note that $E_{\Upsilon}^{i}(Z, s)$ is well defined by Corollary 4.1.2.

Now, consider the function $E_{\Upsilon}^{i}\left(Z_{1}, Z_{2} ; 0\right)$ for $Z_{1} \in \mathbb{H}_{2}, \mathbb{Z}_{2} \in \mathbb{H}_{1}$.
Proposition 4.1.3. Assume $\ell \geq 6$. Then $E_{\Upsilon}^{i}\left(Z_{1}, Z_{2} ; 0\right)$ is a modular form of weight ℓ for $\Gamma_{M, N} \times \Gamma_{i}$. Furthermore, for any s_{0}, the function $E_{\Upsilon}^{i}\left(Z_{1}, Z_{2} ; s_{0}\right)$ (which is not holomorphic in Z_{1}, Z_{2} unless $\left.s_{0}=0\right)$ transforms just like $E_{\Upsilon}^{i}\left(Z_{1}, Z_{2} ; 0\right)$ under the action of $\Gamma_{M, N} \times \Gamma_{i}$.

Proof. We know that $E_{\Upsilon}(g, s)$ converges absolutely and uniformly for $s>\frac{1}{2}$. So if $\ell>6$, it follows that $E_{\Upsilon}^{i}(Z ; 0)$ is holomorphic. Furthermore, the case $\ell=6$ corresponds to the point $s=\frac{1}{2}$ of $E_{\Upsilon}(g, s)$. From the general theory of Eisenstein series, we know that the residue of $E_{\Upsilon}(g, s)$ restricted to $K_{\infty}^{\widetilde{H}}$ at $s=\frac{1}{2}$ must be a constant function. However, because $E_{\Upsilon}(g, s)$ is an eigenfunction of $K_{\infty}^{\widetilde{H}}$ with non-trivial eigencharacter, this residue must be zero. Hence $E_{\Upsilon}^{i}(Z ; 0)$ is a holomorphic function of Z even for $\ell=6$.

Let $A \in \Gamma_{M, N}, B \in \Gamma_{i}$. It suffices to show that

$$
E_{\Upsilon}^{i}\left(A Z_{1}, B Z_{2} ; s_{0}\right)=\operatorname{det}\left(J\left(A, Z_{1}\right)\right)^{\ell} \operatorname{det}\left(J\left(B, Z_{2}\right)\right)^{\ell} E_{\Upsilon}^{i}\left(Z_{1}, Z_{2} ; s_{0}\right) .
$$

For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ denote $\widetilde{g}=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right)$. Let $g_{1} \in G_{1}(\mathbb{R}), g_{2} \in S L_{2}(\mathbb{R})$ such that $g_{1} i=$ $Z_{1}, g_{2} i=Z_{2}$. Put $s_{1}=s_{0} / 3+\ell / 6-1 / 2$. We have

$$
\begin{aligned}
E_{\Upsilon}^{i}\left(A Z_{1}, B Z_{2} ; s_{0}\right) & =E_{\Upsilon}^{i}\left(u\left(A Z_{1}, \overline{-B Z_{2}} ; s_{0}\right)\right. \\
& =E_{\Upsilon}^{i}\left(\left(Q^{-1} \iota\left(A g_{1}, \widetilde{B} \widetilde{g_{2}}\right) Q\right) i ; s_{0}\right) \\
& =\operatorname{det}\left(J\left(Q^{-1} \iota\left(A g_{1}, \widetilde{B} \widetilde{g_{2}}\right) Q, i\right)\right)^{\ell} E_{\Upsilon}\left(Q^{-1} r_{i} \iota\left(A g_{1}, \widetilde{B} \widetilde{g_{2}}\right) Q, s_{1}\right) \\
& =\operatorname{det}\left(J\left(Q^{-1} \iota\left(A g_{1}, \widetilde{B} \widetilde{g_{2}}\right) Q, i\right)\right)^{\ell} E_{\Upsilon \sharp}\left(\iota\left(A g_{1}, s_{i} \widetilde{B} \widetilde{g_{2}}\right), s_{1}\right)
\end{aligned}
$$

Now, because $s_{i}^{-1} \widetilde{B} s_{i} \in U^{\widetilde{F}}$ we have

$$
E_{\Upsilon^{\sharp}}\left(\iota\left(A g_{1}, s_{i} \widetilde{B} \widetilde{g_{2}}\right), s_{1}\right)=E_{\Upsilon^{\sharp}}\left(\left(g_{1}, s_{i} \widetilde{g_{2}}\right) ; s_{1}\right) .
$$

On the other hand, we can check that

$$
\operatorname{det}\left(J\left(Q^{-1}\left(A g_{1}, \widetilde{B} \widetilde{g_{2}}\right) Q, i\right)\right)^{\ell}=\operatorname{det}\left(J\left(A, Z_{1}\right)\right)^{\ell} \operatorname{det}\left(J\left(B, Z_{2}\right)\right)^{\ell} \operatorname{det}\left(J\left(g_{1}, i\right)\right)^{\ell} \operatorname{det}\left(J\left(g_{2}, i\right)\right)^{l}
$$

Putting everything together, we see that

$$
E_{\Upsilon}^{i}\left(A Z_{1}, B Z_{2} ; s_{0}\right)=\operatorname{det}\left(J\left(A, Z_{1}\right)\right)^{\ell} \operatorname{det}\left(J\left(B, Z_{2}\right)\right)^{\ell} E_{\Upsilon}^{i}\left(Z_{1}, Z_{2} ; s_{0}\right)
$$

as required.

4.2 The integral representation in classical terms

Henceforth, we assume $\ell \geq 6$. Recall the definitions of the compact open subgroups $U^{G}, U^{\widetilde{F}}$ from (4.1.4), (4.1.3) respectively. Let us define $U^{R} \subset R\left(\mathbb{A}_{f}\right)$ to be subgroup consisting of elements (g, h) with $g \in U^{G}, h \in U^{\widetilde{F}}$ and $\mu_{2}(g)=\mu_{1}(h)$. Also put $K_{\infty}^{R}=K_{\infty} \times K_{\infty}^{\widetilde{F}}$. Note that $K^{R} K_{\infty}^{R}$ is a compact subgroup of $R(\mathbb{A})$.

Also, define $V_{M, N}=\left[S p_{4}(\mathbb{Z}): \Gamma_{M, N}\right]\left[K^{\widetilde{F}}: U^{\widetilde{F}}\right]$, where $K^{\widetilde{F}}=\prod_{p<\infty} K_{p}^{\widetilde{F}}$. We now rephrase Theorem 3.6.1 in classical terms.

Theorem 4.2.1. For any k, we have

$$
\begin{aligned}
& \sum_{i} \Lambda^{-2}\left(t_{i}\right) \int_{\Gamma_{i} \backslash \mathbb{H}_{1}} \int_{\Gamma_{M, N} \backslash \mathbb{H}_{2}} E_{\Upsilon}^{i}\left(Z_{1},-\overline{Z_{2}} ; 1-k\right) \overline{F\left(Z_{1}\right)} g\left(q_{i} Z_{2}\right) \operatorname{det}\left(Y_{1}\right)^{\ell} \operatorname{det}\left(Y_{2}\right)^{\ell} d Z_{1} d Z_{2} \\
& =V_{M, N} A\left(\frac{\ell-1-2 k}{6}\right) L\left(\frac{\ell}{2}-k, F \times g\right)
\end{aligned}
$$

where for $i=1,2$, we define the invariant measure $d Z_{i}$ on \mathbb{H}_{3-i} by

$$
\left.d Z_{i}=\frac{1}{2}\left(\operatorname{det} Y_{i}\right)^{i-4}\right) d X_{i} d Y_{i}
$$

where $Z_{i}=X_{i}+i Y_{i}$.
Proof. By Theorem 3.6.1, it suffices to prove that for $g=\left(g_{1}, g_{2}\right)$,

$$
\begin{align*}
& V_{M, N} \int_{Z(\mathbb{A}) R(\mathbb{Q}) \backslash R(\mathbb{A})} E_{\Upsilon \sharp}\left(\iota\left(g_{1}, g_{2}\right), \frac{\ell-1-2 k}{6}\right) \bar{\Phi}\left(g_{1}\right) \Psi\left(g_{2}\right) \Lambda^{-1}\left(\operatorname{det} g_{2}\right) d g \tag{4.2.1}\\
& =\sum_{i} \Lambda^{-2}\left(t_{i}\right) \int_{\Gamma_{i} \backslash \mathbb{H}_{1}} \int_{\Gamma_{M, N} \backslash \mathbb{H}_{2}} E_{\Upsilon}^{i}\left(Z_{1},-\overline{Z_{2}} ; 1-k\right) \overline{F\left(Z_{1}\right)} g\left(q_{i} Z_{2}\right) \operatorname{det}\left(Y_{1}\right)^{\ell} \operatorname{det}\left(Y_{2}\right)^{\ell} d Z_{1} d Z_{2} \tag{4.2.2}
\end{align*}
$$

Now, the quantity inside the integral in (4.2.1) is right invariant by $U^{R} K_{\infty}^{R}$. Also, we note that the volume of $U^{R} K_{\infty}^{R}$ is equal to $\left(V_{M, N}\right)^{-1}$ (recall that we normalize the volume of the maximal compact subgroup to equal 1).

Hence we see that (4.2.1) equals

$$
\begin{equation*}
\int_{Z(\mathbb{A}) R(\mathbb{Q}) \backslash R(\mathbb{A}) / U^{R} K_{\infty}^{R}} E_{\Upsilon^{\sharp}}\left(\iota\left(g_{1}, g_{2}\right), \frac{\ell-1-2 k}{6}\right) \bar{\Phi}\left(g_{1}\right) \Psi\left(g_{2}\right) \Lambda^{-1}\left(\operatorname{det} g_{2}\right) d g \tag{4.2.3}
\end{equation*}
$$

Now, by strong approximation for $S p_{4}(\mathbb{A})$ and (4.1.2) we know that

$$
\begin{aligned}
& Z(\mathbb{A}) R(\mathbb{Q}) \backslash R(\mathbb{A}) / U^{R} K_{\infty}^{R} \\
& =\coprod_{i=1}^{h}\left(\Gamma_{M, N} \backslash S p_{4}(\mathbb{R}) / K_{\infty}\right) \times\left(\begin{array}{cc}
t_{i} & 0 \\
0 & t_{i}^{*}
\end{array}\right)\left(\Gamma_{i} \backslash S L_{2}(\mathbb{R}) / S O(2)\right) .
\end{aligned}
$$

Suppose $g \in S p_{4}(\mathbb{R}), h \in S L_{2}(\mathbb{R})$. Also, put $s_{i}=\left(\begin{array}{cc}t_{i} & \\ & t_{i}^{*}\end{array}\right), r_{i}=\iota\left(1, s_{i}\right), g(i)=$ $Z_{1}, h(i)=Z_{2}$.

We have

$$
\begin{aligned}
E_{\Upsilon^{\sharp}}\left(\iota\left(g, s_{i} h\right), \frac{\ell-1-2 k}{6}\right) & =E_{\Upsilon}\left(Q^{-1} r_{i} Q Q^{-1} \iota(g, h) Q, \frac{\ell-1-2 k}{6}\right) \\
& =\operatorname{det}\left(J\left(Q^{-1} \iota(g, h) Q, i\right)\right)^{-\ell} E_{\Upsilon}^{i}\left(Z_{1},-\overline{Z_{2}} ; 1-k\right)
\end{aligned}
$$

On the other hand $\bar{\Phi}(g)=\overline{F\left(Z_{1}\right)} \operatorname{det}(J(g, i))^{-\ell}$ and $\Psi\left(s_{i} h\right)=g\left(q_{i} Z_{2}\right) \operatorname{det}(J(h, i))^{-\ell}$.
The result now follows from the observations

$$
\begin{aligned}
& \operatorname{det}\left(J\left(Q^{-1} \iota(g, h) Q, i\right)\right)=\operatorname{det}(J(g, i)) \overline{\operatorname{det}(J(h, i))}, \\
& |\operatorname{det}(J(g, i))|^{2}=\operatorname{det}\left(Y_{1}\right),|\operatorname{det}(J(h, i))|^{2}=\operatorname{det}\left(Y_{2}\right) .
\end{aligned}
$$

and the fact that the Haar measure $d g$ equals $d Z_{1} d Z_{2}$ under the above equivalence.
Let us take a closer look at the quantity $A\left(\frac{\ell-1-2 k}{6}\right)$ that appears in the statement of the above theorem in the case when k is an integer, $1 \leq k \leq \frac{\ell}{2}-2$. Write $a \sim b$ if a / b is rational. From the definition of $A(s)$, it is clear that

$$
A\left(\frac{\ell-1-2 k}{6}\right) \sim \frac{\pi^{4+k-2 \ell} \overline{a(\Lambda)} \sqrt{d}}{L(\ell+1-2 k, \chi-d) \zeta(\ell-2 k) \zeta(\ell+2-2 k)} .
$$

But it is well known that $\frac{L(\ell+1-2 k, \chi-d)}{\pi^{\ell+1-2 k \sqrt{d}}}, \frac{\zeta(\ell-2 k)}{\pi^{\ell-2 k}}$ and $\frac{\zeta(\ell+2-2 k)}{\pi^{\ell+2-2 k}}$ are all rational numbers. It
follows that

$$
\begin{equation*}
A\left(\frac{\ell-1-2 k}{6}\right) \sim \pi^{7 k+1-5 \ell} \overline{a(\Lambda)} . \tag{4.2.4}
\end{equation*}
$$

Rationality of holomorphic Eisenstein series

Suppose f_{1}, f_{2} are modular forms of weight ℓ for some congruence subgroup Γ of $S p_{2 n}(\mathbb{Z})$ containing $\{ \pm 1\}$. We define the Petersson inner product

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{2} V(\Gamma)^{-1} \int_{\Gamma \backslash \mathbb{H}_{n}} f_{1}(Z) \overline{f_{2}(Z)}(\operatorname{det} Y)^{\ell-n-1} d X d Y
$$

where $V(\Gamma)=\left[S p_{2 n}(\mathbb{Z}): \Gamma\right]$.
Note that these definitions are independent of our choice for Γ.
We henceforth use $E_{\Lambda, \ell}^{i}$ for E_{Υ}^{i} in order to show the dependence on Λ, ℓ and $a(F, \Lambda)$ for $a(\Lambda)$ to show the dependence on F.

By a result of M. Harris [Har97, Lemma 3.3.5.3], we know how $\operatorname{Aut}(\mathbb{C})$ acts on the Fourier coefficients of $E_{\Lambda, \ell}^{i}(Z ; 0)$. In particular he proves the following result.

Proposition 4.2.2 (Harris). The Fourier coefficients of $E_{\Lambda, \ell}^{i}(Z ; 0)$ lie in $\mathbb{Q}^{a b}$. Furthermore, if $\sigma \in \operatorname{Gal}\left(\mathbb{Q}^{a b} / \mathbb{Q}\right)$, then

$$
E_{\Lambda, \ell}^{i}(Z ; 0)^{\sigma}=E_{\Lambda^{\sigma}, \ell}^{i}(Z ; 0)
$$

where $E_{\Lambda, \ell}^{i}(Z ; 0)^{\sigma}$ is obtained by letting σ act on the Fourier coefficients of $E_{\Lambda, \ell}^{i}(Z ; 0)$.

4.3 Nearly holomorphic Eisenstein series

Recall the definition of the Eisenstein series $E_{\Upsilon}^{i}(Z ; s)$ from (4.1.5). The section Υ defining this Eisenstein series depends on the Hecke character Λ as well as on the integer ℓ. Henceforth, to make this dependence explicit, we use $E_{\Lambda, \ell}^{i}(Z ; s)$ to denote $E_{\Upsilon}^{i}(Z ; s)$. Moreover, for any other positive even integer k, we use $E_{\Lambda, k}^{i}(Z ; s)$ to denote the Eisenstein series that is defined similarly except that the integer ℓ has been replaced by k everywhere. In particular, we know that $E_{\Lambda, k}^{i}(Z ; 0)$ is a holomorphic Eisenstein series (of weight k), whenever $k \geq 6$.

We can write any $Z \in \widetilde{\mathbb{H}}_{n}$ uniquely as $Z=X+i Y$ where X, Y are Hermitian and Y is positive definite. We can also write any $Z \in \mathbb{H}_{n}$ uniquely as $Z=X+i Y$ where X, Y are symmetric and Y is positive definite. These decompositions are compatible with each other in the obvious sense under the inclusion $\mathbb{H}_{n} \subset \widetilde{\mathbb{H}}_{n}$.

We briefly recall Shimura's theory of differential operators and nearly holomorphic functions. A thorough exposition of this material can be found in his book [Shi00].

Let \mathbb{H} temporarily stand for \mathbb{H}_{n} or $\widetilde{\mathbb{H}}_{n}$. For a non negative integer q, we let $\mathcal{N}^{q}(\mathbb{H})$ denote the space of all polynomials of degree $\leq q$ in the entries of Y^{-1} with holomorphic functions on \mathbb{H} as coefficients.

Suppose Γ is a congruence subgroup of $S p_{2 n}\left(\right.$ if $\left.\mathbb{H}=\mathbb{H}_{n}\right)$ or $U(n, n)\left(\right.$ if $\left.\mathbb{H}=\widetilde{\mathbb{H}}_{n}\right)$. For a positive integer k, we let $\mathcal{N}_{k}^{q}(\mathbb{H}, \Gamma)$ stand for the space of functions $f \in \mathcal{N}^{q}(\mathbb{H})$ satisfying

$$
f(\gamma Z)=\operatorname{det}(J(\gamma, Z))^{k} f(Z)
$$

for all $\gamma \in \Gamma, Z \in \mathbb{H}$, with the standard additional (holomorphy at cusps) condition on the Fourier expansion if $\mathbb{H}=\mathbb{H}_{1}=\widetilde{\mathbb{H}}_{1}$. It is well-known that $\mathcal{N}_{k}^{q}(\mathbb{H}, \Gamma)$ is finite dimensional. In particular, if $q=0$, then $\mathcal{N}_{k}^{q}(\mathbb{H}, \Gamma)$ is simply the corresponding space of weight k modular forms.

We let $N=n^{2}$ if $\mathbb{H}=\widetilde{\mathbb{H}}_{n}$ and $N=\left(n^{2}+n\right) / 2$ if $\mathbb{H}=\mathbb{H}_{n}$.
Whenever convergent, the Petersson inner product for nearly holomorphic forms is defined exactly as before.

Any $f \in \mathcal{N}_{q}^{t}(\mathbb{H}, \Gamma)$ has a Fourier expansion [Shi00, p. 117] as follows:

$$
f(Z)=\sum_{T \in \mathcal{L}} Q_{T}\left((2 \pi Y)^{-1}\right) e^{2 \pi i T r T Z}
$$

where \mathcal{L} is a suitable lattice and for each T, Q_{T} is a polynomial in N variables and of degree $\leq t$. For an automorphism σ of \mathbb{C} we define

$$
f^{\sigma}(Z)=\sum_{T \in \mathcal{L}} Q_{T}^{\sigma}\left(\left(2 \pi Y^{[\sigma]}\right)^{-1}\right) e^{2 \pi i T r T Z}
$$

where Q_{T}^{σ} is obtained by letting σ act on the coefficients of \mathbb{Q}_{T} and

$$
Y^{[\sigma]}= \begin{cases}Y^{t} & \text { if } \mathbb{H}=\widetilde{\mathbb{H}}_{n} \text { and } \sqrt{-d}^{\sigma}=-\sqrt{-d} \\ Y & \text { otherwise }\end{cases}
$$

We say that $f \in \mathcal{N}_{q}^{t}(\mathbb{H}, \Gamma ; \overline{\mathbb{Q}})$ if $f \in \mathcal{N}_{q}^{t}(\mathbb{H}, \Gamma)$ and $f^{\sigma}=f$ for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$. We will occasionally omit the weight q and the congruence subgroup Γ when we do not wish to
specify those. In particular, we write $\mathcal{N}_{q}^{t}(\mathbb{H} ; \overline{\mathbb{Q}})$ to denote $\bigcup_{\Gamma} \mathcal{N}_{q}^{t}(\mathbb{H}, \Gamma ; \overline{\mathbb{Q}})$ where the union is taken over all congruence subgroups Γ.

Now, from (4.1.1), it is easy to see that for a positive integer k (assume $k \leq \frac{\ell}{2}-2$ to ensure convergence) we have $E_{\Lambda, \ell}^{i}(Z ; 1-k) \in \mathcal{N}^{3(k-1)}\left(\widetilde{\mathbb{H}}_{3}\right)$. Then, exactly the same proof as Proposition 4.1.3 tells us that the restriction of this function to $\mathbb{H}_{2} \times \mathbb{H}_{1}$ is a nearly holomorphic modular form with respect to the appropriate subgroups. More precisely, we have

$$
\begin{equation*}
E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right) \in \mathcal{N}_{\ell}^{2(k-1)}\left(\mathbb{H}_{2}, \Gamma_{M, N}\right) \otimes \mathcal{N}_{\ell}^{(k-1)}\left(\mathbb{H}_{1}, \Gamma_{i}\right) . \tag{4.3.1}
\end{equation*}
$$

We remark here that for a general $f \in \mathcal{N}^{3(k-1)}\left(\widetilde{\mathbb{H}}_{3}\right)$ we can only say that $f\left(Z_{1}, Z_{2}\right) \in$ $\sum \mathcal{N}^{\lambda_{1}}\left(\mathbb{H}_{2}\right) \otimes \mathcal{N}^{\lambda_{2}}\left(\mathbb{H}_{1}\right)$ where the sum should be extended over all $\left(\lambda_{1}, \lambda_{2}\right)$ with $\lambda_{1}+\lambda_{2}=$ $3(k-1)$. However, in this case, we know by (4.1.1) the exact nature of the polynomial of degree $3(k-1)$; thus we can conclude that $\lambda_{1}=2(k-1), \lambda_{2}=k-1$.

To prove the desired algebraicity result for critical L-values, we will need to know arithmeticity properties for the nearly holomorphic modular forms in (4.3.1). That is the substance of the next proposition.

Proposition 4.3.1. Let $\ell \geq 6$ and let k be an integer satisfying $1 \leq k \leq \frac{\ell}{2}-2$. Then the function $E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right)$ on $\mathbb{H}_{2} \times \mathbb{H}_{1}$ belongs to

$$
\pi^{3(k-1)}\left(\mathcal{N}_{\ell}^{2(k-1)}\left(\mathbb{H}_{2}, \Gamma_{M, N} ; \overline{\mathbb{Q}}\right) \otimes \mathcal{N}_{\ell}^{(k-1)}\left(\mathbb{H}_{1}, \Gamma_{i} ; \overline{\mathbb{Q}}\right)\right)
$$

Furthermore, for an automorphism σ of \mathbb{C}, we have

$$
\left(\pi^{-3(k-1)} E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right)\right)^{\sigma}=\pi^{-3(k-1)} E_{\Lambda^{\sigma}, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right) .
$$

Proof. Since we already know (4.3.1) and since the Fourier coefficients of $E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right)$ are just sums of those of $E_{\Lambda, \ell}^{i}(Z ; 1-k)$, it is enough to prove that

$$
\begin{equation*}
\left(\pi^{-3(k-1)} E_{\Lambda, \ell}^{i}(Z ; 1-k)\right)^{\sigma}=\pi^{-3(k-1)} E_{\Lambda^{\sigma}, \ell}^{i}(Z ; 1-k) . \tag{4.3.2}
\end{equation*}
$$

For positive integers p, q, we have the (modified) Maass-Shimura differential operator Δ_{q}^{p} that acts on the space of nearly holomorphic forms of weight q on \widetilde{H}_{3}. This operator is
defined in [Shi00, p.146]. By [Shi00, Theorem 14.12], we know that

$$
\Delta_{q}^{p} \mathcal{N}_{q}^{t}\left(\widetilde{\mathbb{H}}_{3} ; \overline{\mathbb{Q}}\right) \subset \pi^{3 p} \mathcal{N}_{q+2 p}^{t+3 p}\left(\widetilde{\mathbb{H}}_{3} ; \overline{\mathbb{Q}}\right) .
$$

However, more is true; in fact

$$
\begin{equation*}
\left((\pi i)^{-3 p} \Delta_{q}^{p} f\right)^{\sigma}=(\pi i)^{-3 p} \Delta_{q}^{p}\left(f^{\sigma}\right) \tag{4.3.3}
\end{equation*}
$$

whenever $f \in \mathcal{N}_{q}^{t}\left(\widetilde{\mathbb{H}}_{3}\right)$. This easily follows from [Shi00, p. 118] since the Maass-Shimura operators are special cases of the operators considered there and the projection map is $\operatorname{Aut}(\mathbb{C})$-equivariant. An alternative way to directly see (4.3.3) is to observe that the action of the Maass-Shimura operator on the Fourier coefficients of a nearly holomorphic form can be explicitly computed and observed to satisfy the desired property. The details in the symplectic case was worked out by Panchishkin [Pan05, Theorem 3.7]; the calculations in the unitary case are very similar.

We know that $E_{\Lambda, \ell+2-2 k}^{i}(Z ; 0) \in \mathcal{N}_{\ell+2-2 k}^{0}\left(\widetilde{H}_{3} ; \overline{\mathbb{Q}}\right)$. So, we can apply (4.3.3) when $t=$ $0, p=k-1, q=\ell+2-2 k, f=E_{\Lambda, \ell+2-2 k}^{i}(Z ; 0)$.

Moreover, by the result of Harris stated above,

$$
E_{\Lambda, \ell+2-2 k}^{i}(Z ; 0)^{\sigma}=E_{\Lambda^{\sigma}, \ell+2-2 k}^{i}(Z ; 0) .
$$

So, (4.3.2) will follow if we know that

$$
\begin{equation*}
\Delta_{\ell-2(k-1)}^{k-1} E_{\Lambda, \ell+2-2 k}^{i}(Z ; 0)=c \cdot i^{3(k-1)} \cdot E_{\Lambda, \ell}^{i}(Z ; 1-k) \tag{4.3.4}
\end{equation*}
$$

for some rational number c (The superscript i should not be confused with the quantity $i=\sqrt{-1}$ that appears above!).

But (4.3.4) is precisely the content of Shimura's calculations in [Shi00, (17.27)]. We remark here that the Eisenstein series Shimura considers has different sections than ours at the finite places dividing $M N$; however that does not make a difference because the differential operator only depends on the archimedean section. In particular, we apply [Shi00, Theorem 12.13] to each term of the definition of our Eisenstein series using (4.1.1) and observe that (4.3.4) follows with $c=2^{-3(k-1)} c_{\ell-2(k-1)}^{k-1}\left(\frac{\ell}{2}-k+1\right)$ where $c_{q}^{p}(s)$ is defined as
in [Shi00, (17.20)].

4.4 Holomorphic projection

Shimura observed [Shi00, p. 123] that for $q>n+t$, there exists a holomorphic projection operator \mathfrak{A} on $\mathcal{N}_{q}^{t}\left(\mathbb{H}_{n}\right)$. For a nearly holomorphic form $f \in \mathcal{N}_{q}^{t}\left(\mathbb{H}_{n}\right), \mathfrak{A} f$ is a modular form of weight q (i.e. an element of $\mathcal{N}_{q}^{0}\left(\mathbb{H}_{n}\right)$). For any cusp form g of weight q on \mathbb{H}_{n},

$$
<f, g>=<\mathfrak{A} f, g>.
$$

More precisely, by the proof of [Shi00, Theorem 15.3], we can write

$$
f=\mathfrak{A} f+L_{q} f^{\prime}
$$

where L_{q} is a rational polynomial of certain differential operators and f^{\prime} is a certain nearly holomorphic form. The differential operators which are used to define L_{q} are $\operatorname{Aut}(\mathbb{C})$ equivariant by [Shi00, Theorem 14.12]. Thus, for an automorphism σ of \mathbb{C}, we have

$$
f^{\sigma}=(\mathfrak{A} f)^{\sigma}+L_{q}\left(f^{\prime \sigma}\right)
$$

So we can conclude that

$$
\mathfrak{A}\left(f^{\sigma}\right)=(\mathfrak{A} f)^{\sigma} .
$$

Furthermore because the space of modular forms is a direct sum of the space of Eisenstein series and the space of cusp forms, there exists an orthogonal projection from the space of modular forms on \mathbb{H}_{n} to the space of cusp forms on \mathbb{H}_{n}. Because the space of Eisenstein series is preserved under automorphisms of \mathbb{C}, this cuspidal projection is also $\operatorname{Aut}(\mathbb{C})$-equivariant.

From the above comments we conclude the existence of a projection map $\mathfrak{A}_{\text {cusp }}$ from $\mathcal{N}_{q}^{t_{1}}\left(\mathbb{H}_{2}, \Gamma_{2}\right) \otimes \mathcal{N}_{q}^{t_{2}}\left(\mathbb{H}_{1}, \Gamma_{1}\right)$ to $S_{q}\left(\mathbb{H}_{2}, \Gamma_{2}\right) \otimes S_{q}\left(\mathbb{H}_{1}, \Gamma_{1}\right)$ for $q>2+t_{i}$ and congruence subgroups $\Gamma_{2} \subset S p_{4}, \Gamma_{1} \subset S L_{2}$. This projection map satisfies, for any $\mathfrak{E}\left(Z_{1}, Z_{2}\right) \in \mathcal{N}_{q}^{t_{1}}\left(\mathbb{H}_{2}, \Gamma_{2}\right) \otimes$ $\mathcal{N}_{q}^{t_{2}}\left(\mathbb{H}_{1}, \Gamma_{1}\right), F^{(1)} \in S_{q}\left(\mathbb{H}_{2}, \Gamma_{2}\right), g^{(1)} \in S_{q}\left(\mathbb{H}_{1}, \Gamma_{1}\right)$, the following properties:
(a) $\left\langle\left\langle\mathfrak{A}_{\text {cusp }} \mathfrak{E}\left(Z_{1}, Z_{2}\right), F^{(1)}\left(Z_{1}\right)\right\rangle, g^{(1)}\left(Z_{2}\right)\right\rangle=\left\langle\left\langle\left(\mathfrak{E}\left(Z_{1}, Z_{2}\right), F^{(1)}\left(Z_{1}\right)\right\rangle, g^{(1)}\left(Z_{2}\right)\right\rangle\right.$,
(b) $\left(\mathfrak{A}_{\text {cusp }} \mathfrak{E}\right)^{\sigma}=\mathfrak{A}_{\text {cusp }}\left(\mathfrak{E}^{\sigma}\right)$.

In particular, everything above can be applied to the case when $\mathfrak{E}\left(Z_{1}, Z_{2}\right)=\pi^{-3(k-1)} E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-\right.$ $k)$.

We use $g_{i}(z)$ to denote the cusp form $g\left(q_{i} z\right)$ on $\Gamma_{0}\left(N q_{i}\right)$. We can rewrite Theorem 4.2.1 as follows.

$$
\begin{aligned}
& \sum_{i} \Lambda^{-2}\left(t_{i}\right)\left\langle\left\langle E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right), F\left(Z_{1}\right)\right\rangle, g_{i}\left(Z_{2}\right)\right\rangle \\
& =\frac{V_{M, N}}{V\left(\Gamma_{i}\right) V\left(\Gamma_{M, N}\right)} A\left(\frac{\ell-1-2 k}{6}\right) L\left(\frac{\ell}{2}-k, F \times g\right)
\end{aligned}
$$

Note that we have used the fact that g_{i} has real Fourier coefficients. Together with (4.2.4) the above equation implies that

$$
\begin{equation*}
\sum_{i} \Lambda^{-2}\left(t_{i}\right)\left\langle\left\langle E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right), F\left(Z_{1}\right)\right\rangle, g_{i}\left(Z_{2}\right)\right\rangle \sim \pi^{7 k+1-5 \ell} \overline{a(F, \Lambda)} L\left(\frac{\ell}{2}-k, F \times g\right) \tag{4.4.1}
\end{equation*}
$$

4.5 Deligne's conjecture

Motives and periods

Let $L(s, \mathcal{M})$ be the L-function associated to a motive \mathcal{M} over \mathbb{Q}. Suppose \mathcal{M} has coefficients in an algebraic number field E; then $L(s, \mathcal{M})$ takes values in $E \otimes_{\mathbb{Q}} \mathbb{C}$.

Note that E sits naturally inside $E \otimes_{\mathbb{Q}} \mathbb{C}$. Let d be the rank of \mathcal{M} and $d^{ \pm}$the dimensions of the \pm eigenspace of the Betti realization of \mathcal{M}. Deligne defined the motivic periods $c^{ \pm}(\mathcal{M})$ and conjectured that for all "critical points" m,

$$
\frac{L(m, \mathcal{M})}{(2 \pi i)^{m d^{\epsilon}} c^{\epsilon}(\mathcal{M})} \in E
$$

where $\epsilon=(-1)^{m}$.
Now, let F, g have algebraic Fourier coefficients. Assuming the existence of motives M_{F}, M_{g} attached to F, g respectively, Yoshida computed the critical points for $M_{F} \otimes M_{g}$. He also computed the motivic periods $c^{ \pm}\left(M_{F} \otimes M_{g}\right)$ under the assumption that Deligne's conjecture holds for the degree $5 L$-function for F. We note here that Yoshida only deals
with the full level case; however as the periods remain the same (up to a rational number) for higher level, his results remain applicable to our case.

Yoshida's computations [Yos01, Theorem 13] show that Deligne's conjecture implies the following reciprocity law:

$$
\begin{equation*}
\left(\frac{L(m, F \times g)}{\pi^{4 m+3 \ell-4}\langle F, F\rangle\langle g, g\rangle}\right)^{\alpha}=\frac{L\left(m, F^{\alpha} \times g^{\alpha}\right)}{\pi^{4 m+3 \ell-4}\left\langle F^{\alpha}, F^{\alpha}\right\rangle\left\langle g^{\alpha}, g^{\alpha}\right\rangle} \tag{4.5.1}
\end{equation*}
$$

for all $2-\frac{\ell}{2} \leq m \leq \frac{\ell}{2}-1, \alpha \in \operatorname{Aut}(\mathbb{C})$.
In the next subsection we prove the above statement for all the critical points m to the right of $\operatorname{Re}(s)=\frac{1}{2}$ except for the point 1 . The proof for the critical values to the left of $\operatorname{Re}(s)=\frac{1}{2}$ would follow from the expected functional equation. The proof that $L(1, F \times g)$ behaves nicely under the action of $\operatorname{Aut}(\mathbb{C})$ would probably require further work because we do not know that this quantity is even finite (see Corollary 3.6.2). Thus, the problem of extending our result to the remaining critical values is closely related to questions of analyticity and the functional equation for the L-function. These questions are also of interest for other applications, such as transfer to $G L(4)$ and will be considered in a future paper.

We also note that the integral representation (Theorem 3.6.1) is of interest for several other applications. Indeed, we hope that this integral representation will pave the way to stability, hybrid subconvexity, non-vanishing, non-negativity and p-adic results for the L-function under consideration. We intend to deal with these questions elsewhere.

The main result

Theorem 4.5.1. Let $\ell \geq 6$. Further, assume that F has totally real algebraic Fourier coefficients and define

$$
A(F, g ; k)=\frac{L\left(\frac{\ell}{2}-k, F \times g\right)}{\pi^{5 \ell-4 k-4}\langle F, F\rangle\langle g, g\rangle} .
$$

Then, we have:
(a) $A(F, g ; k) \in \overline{\mathbb{Q}}$,
(b) For all $\alpha \in \operatorname{Aut}(\mathbb{C}), A(F, g ; k)^{\alpha}=A\left(F^{\alpha}, g^{\alpha} ; k\right)$.

Proof. Let U be the least common multiple of M, N and all the q_{i}. Let Γ_{1} be the principal congruence subgroup of $S p_{4}(\mathbb{Z})$ of level U and Γ_{2} the principal congruence subgroup of
$S L_{2}(\mathbb{Z})$ of level U. For each i, we can write

$$
\begin{equation*}
\mathfrak{A}_{\mathrm{cusp}}\left(\pi^{-3(k-1)} E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right)\right)=\sum_{r} F_{1}^{r}\left(Z_{1}\right) f_{1}^{r}\left(Z_{2}\right) \tag{4.5.2}
\end{equation*}
$$

where F_{1}^{r} (resp. f_{1}^{r}) is a cusp form for $\Gamma_{1}\left(\right.$ resp. $\left.\Gamma_{2}\right)$; all of weight ℓ. Then

$$
\begin{equation*}
\sum_{r}\left\langle f_{1}^{r}, g_{i}\right\rangle\left\langle F_{1}^{r}, F\right\rangle=\pi^{-3(k-1)}\left\langle\left\langle E_{\Lambda, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right), F\left(Z_{1}\right)\right\rangle, g_{i}\left(Z_{2}\right)\right\rangle . \tag{4.5.3}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\sum_{r}\left\langle\left(f_{1}^{r}\right)^{\alpha}, g_{i}^{\alpha}\right\rangle\left\langle\left(F_{1}^{r}\right)^{\alpha}, F^{\alpha}\right\rangle=\pi^{-3(k-1)}\left\langle\left\langle E_{\Lambda^{\alpha}, \ell}^{i}\left(Z_{1}, Z_{2} ; 1-k\right), F^{\alpha}\left(Z_{1}\right), g_{i}^{\alpha}\left(Z_{2}\right)\right\rangle\right. \tag{4.5.4}
\end{equation*}
$$

using Proposition 4.3.1 and the properties of holomorphic projection stated above.
By (4.4.1) we know that

$$
\begin{equation*}
A(F, g ; k)=W \cdot(\overline{a(F, \Lambda)})^{-1} \cdot \sum_{i} \Lambda^{-2}\left(t_{i}\right) \frac{\sum_{r}\left\langle f_{1}^{r}, g_{i}\right\rangle\left\langle F_{1}^{r}, F\right\rangle}{\langle F, F\rangle\langle g, g\rangle} \tag{4.5.5}
\end{equation*}
$$

for some rational number W.
Making α act on both sides of the above equation we get

$$
\begin{equation*}
A(F, g ; k)^{\alpha}=W \cdot\left(\overline{a\left(F^{\alpha}, \Lambda^{\alpha}\right)}\right)^{-1} \cdot \sum_{i}\left(\Lambda^{\alpha}\right)^{-2}\left(t_{i}\right)\left(\frac{\sum_{r}\left\langle f_{1}^{r}, g_{i}\right\rangle\left\langle F_{1}^{r}, F\right\rangle}{\langle F, F\rangle\langle g, g\rangle}\right)^{\alpha} \tag{4.5.6}
\end{equation*}
$$

We also note that $\langle g, g\rangle=\left\langle g_{i}, g_{i}\right\rangle$.
Now by a result of Garrett [Gar92, p. 460], we know that for each r,

$$
\left(\frac{\left\langle f_{1}^{r}, g_{i}\right\rangle\left\langle F_{1}^{r}, F\right\rangle}{\langle F, F\rangle\langle g, g\rangle}\right)^{\alpha}=\left(\frac{\left\langle\left(f_{1}^{r}\right)^{\alpha}, g_{i}^{\alpha}\right\rangle\left\langle\left(F_{1}^{r}\right)^{\alpha}, F^{\alpha}\right\rangle}{\left\langle F^{\alpha}, F^{\alpha}\right\rangle\left\langle g^{\alpha}, g^{\alpha}\right\rangle}\right) .
$$

so we have

$$
\begin{equation*}
A(F, g ; k)^{\alpha}=W \cdot\left(\overline{a\left(F^{\alpha}, \Lambda^{\alpha} ; k\right)}\right)^{-1} \cdot \sum_{i}\left(\Lambda^{\alpha}\right)^{-2}\left(t_{i}\right)\left(\frac{\sum_{r}\left\langle\left(f_{1}^{r}\right)^{\alpha}, g_{i}^{\alpha}\right\rangle\left\langle\left(F_{1}^{r}\right)^{\alpha}, F^{\alpha}\right\rangle}{\left\langle F^{\alpha}, F^{\alpha}\right\rangle\left\langle g^{\alpha}, g^{\alpha}\right\rangle}\right) . \tag{4.5.7}
\end{equation*}
$$

Using (4.5.5) for $F^{\alpha}, g^{\alpha}, \Lambda^{\alpha}$, we conclude that

$$
A(F, g ; k)^{\alpha}=A\left(F^{\alpha}, g^{\alpha} ; k\right)
$$

Remark. The above result was already known in the completely unramified case ($M=$ $1, N=1)$ by the work of Böcherer and Heim [BH06] who used a different method.

Bibliography

[BFF97] Daniel Bump, Solomon Friedberg, and Masaaki Furusawa. Explicit formulas for the Waldspurger and Bessel models. Israel J. Math., 102:125-177, 1997.
[BH06] Siegfried Böcherer and Bernhard E. Heim. Critical values of L-functions on GSp $_{2} \times$ GL 2 . Math. Z., 254(3):485-503, 2006.
[Bum97] Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
[Del73] Pierre Deligne. Formes modulaires et représentations de GL(2). In Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 55-105. Lecture Notes in Math., Vol. 349. Springer, Berlin, 1973.
[Fur93] Masaaki Furusawa. On L-functions for $\operatorname{GSp}(4) \times \mathrm{GL}(2)$ and their special values. J. Reine Angew. Math., 438:187-218, 1993.
[Gar92] Paul B. Garrett. On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients. Invent. Math., 107(3):453-481, 1992.
[GH93] Paul B. Garrett and Michael Harris. Special values of triple product L-functions. Amer. J. Math., 115(1):161-240, 1993.
[GK92] Benedict H. Gross and Stephen S. Kudla. Heights and the central critical values of triple product L-functions. Compositio Math., 81(2):143-209, 1992.
[Har97] Michael Harris. L-functions and periods of polarized regular motives. J. Reine Angew. Math., 483:75-161, 1997.
[Hei99] Bernhard E. Heim. Pullbacks of Eisenstein series, Hecke-Jacobi theory and automorphic L-functions. In Automorphic forms, automorphic representations, and
arithmetic (Fort Worth, TX, 1996), volume 66 of Proc. Sympos. Pure Math., pages 201-238. Amer. Math. Soc., Providence, RI, 1999.
[HK91] Michael Harris and Stephen S. Kudla. The central critical value of a triple product L-function. Ann. of Math. (2), 133(3):605-672, 1991.
[Ich04] Atsushi Ichino. A regularized Siegel-Weil formula for unitary groups. Math. Z., 247(2):241-277, 2004.
[Ich07] Atsushi Ichino. On the Siegel-Weil formula for unitary groups. Math. Z., 255(4):721-729, 2007.
[Ish02] Taku Ishii. Siegel-Whittaker functions on $\operatorname{Sp}(2, \mathbf{R})$ for principal series representations. J. Math. Sci. Univ. Tokyo, 9(2):303-346, 2002.
[Kim98] Dae San Kim. Gauss sums for symplectic groups over a finite field. Monatsh. Math., 126(1):55-71, 1998.
[Lan76] Robert P. Langlands. On the functional equations satisfied by Eisenstein series. Lecture Notes in Mathematics, Vol. 544. Springer-Verlag, Berlin, 1976.
[LR02] Erez Lapid and Stephen Rallis. Positivity of $L\left(\frac{1}{2}, \pi\right)$ for symplectic representations. C. R. Math. Acad. Sci. Paris, 334(2):101-104, 2002.
[Miy89] Toshitsune Miyake. Modular forms. Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda.
[Miy00] Takuya Miyazaki. The generalized Whittaker functions for $\operatorname{Sp}(2, \mathbf{R})$ and the gamma factor of the Andrianov L-function. J. Math. Sci. Univ. Tokyo, 7(2):241295, 2000.
[MR] Philippe Michel and Dinakar Ramakrishnan. Consequences of the Gross/Zagier formulae: Stability of average L-values, subconvexity, and non-vanishing mod p. To appear in the Serge Lang memorial volume, Springer (2009).
[Niw91] S. Niwa. On generalized Whittaker functions on Siegel's upper half space of degree 2. Nagoya Math. J., 121:171-184, 1991.
[NPS73] Mark E. Novodvorski and Ilya I. Pyatetskii-Shapiro. Generalized Bessel models for the symplectic group of rank 2. Mat. Sb. (N.S.), 90(132):246-256, 326, 1973.
[Pan05] Alexey. A. Panchishkin. The Maass-Shimura differential operators and congruences between arithmetical Siegel modular forms. Mosc. Math. J., 5(4):883-918, 973-974, 2005.
[PS09] Ameya Pitale and Ralf Schmidt. Integral Representation for L-functions for $\mathrm{GSp}_{4} \times \mathrm{GL}_{2}$. J. Number Theory, 2009.
[Sah09] Abhishek Saha. L-functions for holomorphic forms on $\operatorname{GSp}(4) \times \operatorname{GL}(2)$ and their special values. Int. Math. Res. Notices, 2009. Advance Access published on February 13,2009 , doi:10.1093/imrn/rnp001.
[Sch05] Ralf Schmidt. Iwahori-spherical representations of GSp(4) and Siegel modular forms of degree 2 with square-free level. J. Math. Soc. Japan, 57(1):259-293, 2005.
[Shi97] Goro Shimura. Euler products and Eisenstein series, volume 93 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
[Shi00] Goro Shimura. Arithmeticity in the theory of automorphic forms, volume 82 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000.
[Sug85] Takashi Sugano. On holomorphic cusp forms on quaternion unitary groups of degree 2. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31(3):521-568, 1985.
[Wei05] Rainer Weissauer. Four dimensional Galois representations. Astérisque, (302):67150, 2005. Formes automorphes. II. Le cas du groupe GSp(4).
[Yos01] Hiroyuki Yoshida. Motives and Siegel modular forms. Amer. J. Math., 123(6):1171-1197, 2001.

