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Abstract

Let F be a genus two Siegel newform and g a classical newform, both of squarefree levels

and of equal weight `. We derive an explicit integral representation for the degree eight L-

function L(s, F×g). As an application, we prove a reciprocity law — predicted by Deligne’s

conjecture — for the critical special values L(m,F × g) where m ∈ Z, 2 ≤ m ≤ `
2 − 1.

The proof of our integral representation has two major components: the generalization

of an earlier integral representation due to Furusawa and a “pullback formula” relating

the complicated Eisenstein series of Furusawa with a simpler one on a higher rank group.

The critical value result follows from our integral representation using rationality results of

Garrett and Harris and the theory of nearly holomorphic forms due to Shimura.
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Chapter 1

Introduction

1.1 Overview and main results

If M is an arithmetic or geometric object, then we can often associate a very interesting

invariant to it. This invariant is a complex analytic function known as the L-function for

M and is denoted L(s,M).

The simplest example of an L-function is the Riemann Zeta function defined by

ζ(s) =
∞∑
n=1

1
ns

=
∏
p

(1− p−s)−1

for Re(s) > 1 and by analytic continuation elsewhere. This function encodes rich number

theoretic information about the distribution of primes. For instance, the fact that ζ(s) has

no zeroes on the line Re(s) = 1 is equivalent to the prime number theorem.

One can also associate L-functions to Dirichlet characters, number fields, elliptic curves

and modular forms. The case of modular forms is particularly interesting because they,

in a sense, include all the other examples mentioned so far. The classical modular forms

are holomorphic functions that live on the upper-half plane and satisfy certain symmetries.

These functions and their generalizations arise naturally from fundamental investigations

in several mathematical areas. Indeed, there is a quote attributed to Martin Eichler saying

that there are five basic operations in arithmetic: addition, subtraction, multiplication,

division and modular forms.

The theory of automorphic representations provides a natural setting in which to study

modular forms and their generalizations. The fascinating work of Langlands associates

L-functions to automorphic representations and use these to express deep relationships be-
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tween number theory, geometry and representation theory. One of the tools that has been

successfully used to study L-functions and their special values is the method of integral rep-

resentations; this is sometimes called the Rankin-Selberg method after Rankin and Selberg’s

fundamental work in this direction. Often, sharper and more explicit results are obtained

when one restricts attention to holomorphic forms. The papers [GH93], [GK92], [HK91]

treating the triple-product L-function are good examples, and in fact, provided an inspira-

tion for this thesis.

A conjecture of Deligne [Del73] predicts that certain special values of such families of

L-functions are algebraic numbers up to multiplication by certain period integrals. Indeed,

let L(s,M) be an arithmetically defined (or motivic) L-function associated to an arithmetic

object M. Then Deligne’s conjectures assert that for certain critical points m,

(a) L(m,M) is the product of a suitable transcendental number Ω and an algebraic

number A(m,M),

(b) If σ is an automorphism of C, then A(m,M)σ = A(m,Mσ).

To give a simple example, Deligne’s conjecture for the Riemann zeta function is just the

fact that ζ(m)/πm is a rational number for all positive even integers m.

In this thesis, we prove a key special case of Deligne’s conjecture whenM corresponds to

the product F × g where F is a Siegel modular form of genus two and g a classical modular

form; see Theorem 3.6.1 below. As is often the case for such problems, the key ingredient

in our proof is the interpretation of the transcendental factor as the period arising from a

certain integral representation of Rankin Selberg type.

Fix odd, squarefree integers M,N . Let F be a genus two Siegel newform of level M and

g an elliptic newform of level N ; see § 2.8 for the precise definitions of these terms. One can

associate a degree eight L-function L(s, F × g) to the pair (F, g). We assume that F and g

have the same even integral weight ` and have trivial central characters. We also make the

following assumption about F :

Suppose

F (Z) =
∑
S>0

a(S)e(tr(SZ))

is the Fourier expansion; then we assume that
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a(T ) 6= 0 for some T =

a b
2

b
2 c

 (1.1.1)

such that −d = b2 − 4ac is the discriminant of the imaginary quadratic field L = Q(
√
−d),

and all primes dividing MN are inert in L.

Given a Hecke character Λ of L, we define in §3.1 a Siegel Eisenstein series EΥ](g, s) on

GU(3, 3;L)(A). Let R denote the subgroup of GSp(4)×GU(1, 1;L) consisting of elements

h = (h1, h2) such that h1 ∈ GSp(4), h2 ∈ GU(1, 1;L) and h1, h2 have the same multiplier.

We define in §3.2 an embedding ι : R ↪→ GU(3, 3;L). Let Φ, Ψ denote the adelizations of F, g

respectively. We can extend the definition of Ψ to GU(1, 1;L)(A) by defining Ψ(ag) = Ψ(g)

for all a ∈ L×(A), g ∈ GL(2)(A). Our integral representation is as follows.

Theorem 3.6.1. We have

∫
g∈Z(A)R(Q)\R(A)

EΥ](ι(g1, g2), s)Φ(g1)Ψ(g2)Λ−1(det g2)dg = A(s)L(3s+
1
2
, F × g)

where g = (g1, g2), Λ is a suitable Hecke character of L and A(s) is an explicit normalizing

factor, defined in §3.6.

The first step towards proving Theorem 3.6.1 is achieved in §2 where we extend an in-

tegral representation due to Furusawa. Let π, σ be the automorphic representations corre-

sponding to F, g respectively. Furusawa [Fur93] defined a certain integral of Rankin Selberg

type and proved that it factorizes as a product of local zeta integrals Zp(s). He computed

the local zeta integrals only in the case when the local representations πp, σp are both un-

ramified and showed that they equal the local L-functions up to a normalizing factor. Thus,

he was able to find an integral representation for L(s, F ×g) in the full level case, i.e., when

M = 1, N = 1. In §2 we compute, under certain conditions, the local integrals Zp(s) when

the local representations are either Steinberg or unramified. This allows us to generalize the

Furusawa integral representation to our case; see Theorem 2.8.7 for the precise statement.

The generalization is not straightforward. The explicit evaluation of the local zeta

integral involves several steps. First of all, we need to perform certain technical volume

and double-coset computations. These computations — easy in the unramified case — are

tedious and challenging for the remaining cases and are carried out in §2.3. Secondly, it is
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necessary to suitably choose the sections of the Eisenstein series at the bad places to insure

that the local zeta integrals do not vanish. Thirdly, and perhaps most crucially, the local

computations require an explicit knowledge of the local Whittaker and Bessel functions.

The formulae for the Whittaker model are well known in all cases; the same, however, is

not true for the Bessel model. In fact, the only case where the local Bessel model for a finite

place was computed before this work was when πp is unramified [BFF97, Sug85]. However,

that does not suffice for the cases when we have πp Steinberg. As a preparation for the

calculations in these cases, we find in §2.4, an explicit formula for the Bessel function for

πp when it is Steinberg. We believe this is of independent interest.

The second and final step towards proving Theorem 3.6.1 is achieved in §3. We prove a

certain pullback formula (Theorem 3.2.1) that expresses our earlier Eisenstein series as the

inner product of the cusp form and the pullback of the simpler higher-rank Siegel Eisenstein

series EΥ] . Formulas in this spirit were first proved in a classical setting by Shimura [Shi97].

Unfortunately, Shimura only considers certain special types of Eisenstein series in his work

which does not include ours (except in the full level case M = 1, N = 1). Furthermore his

methods are classical and cannot be easily modified to deal with our case. The complicated

sections at the ramified places and the need for precise factors make the adelic language

the right choice for our purposes. We provide a complete proof of the pullback formula for

our Eisenstein series which explicitly gives the precise factors at the ramified places needed

by us.

Combining the results of §2 and §3, we deduce Theorem 3.6.1. It seems appropriate to

mention here that the referee of our paper [Sah09] has indicated that it was well-known to

some experts that one could use such a pullback formula to rewrite the Furusawa integral

representation.

From Theorem 3.6.1, we easily conclude that L(s, F × g) is a meromorphic function

whose only possible pole on the right of the critical line Re(s) = 1
2 is simple and at s = 1.

Moreover, with the aid of basic techniques and results due to Garrett, Harris and Shimura,

we prove the following Theorem.

Theorem 4.5.1. Suppose that the Fourier coefficients of F and g are totally real and
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algebraic and that ` ≥ 6. For a positive integer k, 1 ≤ k ≤ `
2 − 2, define

A(F, g; k) =
L( `2 − k, F × g)

π5`−4k−4〈F, F 〉〈g, g〉
.

Then we have,

(a) A(F, g; k) is algebraic

(b) For an automorphism σ of C, A(F, g; k)σ = A(F σ, gσ; k).

We remark here that the completely unramified case M = 1, N = 1 of the above

theorem was already known by the works of Heim [Hei99] and Böcherer–Heim [BH06], who

used a very different integral representation from the one in this thesis. Also, just the

algebraicity part of the above Theorem (i.e., part (a)) has been proved for the right-most

critical value (corresponding to k = 1) in various settings earlier by Furusawa [Fur93],

Pitale–Schmidt [PS09] and the author [Sah09].

To relate Theorem 4.5.1 to the conjecture of Deligne for motivic L-functions mentioned

at the beginning of this introduction, we note that Yoshida [Yos01] has shown that the set of

all critical points for L(s, F×g) is {m : 2− `
2 ≤ m ≤

`
2−1,m ∈ Z}. In particular, the critical

points are always non-central (since the weight ` is even) and so the L-value is expected to

be non-zero. Assuming the existence of a motive attached to F (this seems to be now known

for our cases by the work of Weissauer [Wei05]) and the truth of Deligne’s conjecture for

the standard degree 5 L-function of F , Yoshida also computes the corresponding motivic

periods. According to his calculations, the relevant period for the point m is precisely

the quantity π4m+3`−4〈F, F 〉〈g, g〉 that appears in our theorem above (once we substitute

m = `
2 − k). We note here that Yoshida only deals with the full level case; however, as

the periods remain the same (up to a rational number) for higher level, his results remain

applicable to our case.

Thus, Theorem 4.5.1 is compatible with (and implied by) Deligne’s conjecture, and

furthermore, it covers all the critical values to the right of Re(s) = 1
2 except for the L-value

at the point 1. The proof for the critical values to the left of Re(s) = 1
2 would follow

from the expected functional equation. Extending our result to L(1, F × g) is intimately

connected to proving the analyticity of the L-function at that point (see Corollary 3.6.2).
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These questions, related to analyticity and the functional equation are also of interest for

other applications and will be considered in a future paper.

We also note that the integral representation (Theorem 3.6.1) is of interest for several

other applications. For instance, we hope that this integral representation will pave the way

to certain new results involving stability, hybrid subconvexity, and non-vanishing results

for the L-function under consideration following the methods of [MR]. We are also hopeful

that we can prove results related to non-negativity of the central value L(1
2 , F ). These

results appear to be new for holomorphic Siegel modular forms. For example, the non-

negativity result is known in the case of generic automorphic representations by Lapid and

Rallis [LR02]; however, automorphic representations associated to Siegel modular forms are

never generic. Another interesting application of the integral representation would be to

the construction of p-adic L-functions. We intend to address these questions elsewhere.

We expect most of the results of this thesis to hold for arbitrary totally real base fields.

It would be particularly interesting to work out the special value results when the Hilbert-

Siegel modular forms have different weights for each Archimedean place. This case will be

considered in a future work.

1.2 Notation

• The symbols Z, Z≥0, Q, R, C, Zp and Qp have the usual meanings. A denotes the

ring of adeles of Q, Af the finite adeles. For a complex number z, e(z) denotes e2πiz.

• For a matrix M we denote its transpose by M t. Denote by Jn the 2n by 2n matrix

given by

Jn =

 0 In

−In 0

 .

We use J to denote J2 and let s1 denote the matrix


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .
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• For a positive integer n define the group GSp(2n) by

GSp(2n,R) = {g ∈ GL2n(R)|gtJng = µn(g)Jn, µn(g) ∈ R×}

for any commutative ring R.

Define Sp(2n) to be the subgroup of GSp(2n) consisting of elements g1 ∈ GSp(2n)

with µn(g1) = 1.

• For a quadratic extension L of Q define

GU(n, n) = GU(n, n;L)

by

GU(n, n)(Q) = {g ∈ GL2n(L)|(g)tJng = µn(g)Jn, µn(g) ∈ Q×}

where g denotes the conjugate of g.

• Let H̃ = GU(3, 3), H̃1 = U(3, 3), H = GSp(6), H1 = Sp(6), G̃ = GU(2, 2), G̃1 =

U(2, 2), G = GSp(4), G1 = Sp(4), F̃ = GU(1, 1), F̃1 = U(1, 1).

• Define

H̃n = {Z ∈Mn(C)|i(Z − Z) is positive definite},

Hn = {Z ∈Mn(C)|Z = Zt, i(Z − Z) is positive definite}.

For g =

A B

C D

 ∈ GU(n, n)(R), Z ∈ H̃n define

J(g, Z) = CZ +D.

The same definition works for g ∈ GSp(2n)(R), Z ∈ Hn.

• For a commutative ring R we denote by I(2n,R) the Borel subgroup of GSp(2n,R)

consisting of the set of matrices that look like

A B

0 λ(At)−1

 where A is lower-

triangular and λ ∈ R×.
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• For a quadratic extension L of Q and v be a finite place of Q, define Lv = L⊗Q Qv.

ZL denotes the ring of integers of L and ZL,v its v-closure in Lv.For a prime p, let

Z×L,p denote the group of units in ZL,p.

If p is inert in L, the elements of Z×L,p are of the form a + b
√
−d with a, b ∈ Zp and

such that at least one of a and b is a unit. Let Γ0
L,p be the subgroup of Z×L,p consisting

of the elements with p|b.

• For a positive integer N the subgroups Γ0(N) and Γ0(N) of SL2(Z) are defined by

Γ0(N) = {A ∈ SL2(Z) | A ≡

∗ ∗
0 ∗

 (mod N)},

Γ0(N) = {A ∈ SL2(Z) | A ≡

∗ 0

∗ ∗

 (mod N)}.

For p a finite place of Q, their local analogues Γ0,p (resp. Γ0
p) are defined by

Γ0,p = {A ∈ GL2(Zp) | A ≡

∗ ∗
0 ∗

 (mod p)},

Γ0
p = {A ∈ GL2(Zp) | A ≡

∗ 0

∗ ∗

 (mod p)}.

• The local Iwahori subgroup Ip is defined to be the subgroup of Kp = G(Zp) consisting

of those elements of Kp that when reduced mod p lie in the Borel subgroup of G(Fp).

Precisely,

Ip = {A ∈ Kp | A ≡


∗ 0 ∗ ∗

∗ ∗ ∗ ∗

0 0 ∗ ∗

0 0 0 ∗

 (mod p)}

• Let R̃ denote the subgroup of G̃ × F̃ consisting of elements h = (h1, h2) such that

h1 ∈ G̃, h2 ∈ F̃ and µ2(h1) = µ1(h2). Let R denote the subgroup of R̃ consisting of

those (h1, h2) where h1 ∈ G.

For a fixed element g ∈ G̃(A), let F̃1[g](A) denote the subset of F̃ (A) consisting of all
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elements h2 such that µ2(g) = µ1(h2).
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Chapter 2

Extending the Furusawa Integral
Representation

2.1 Preliminaries

Bessel models

We recall the definition of the Bessel model of Novodvorsky and Piatetski-Shapiro [NPS73]

following the exposition of Furusawa [Fur93].

Let S ∈ M2(Q) be a symmetric matrix. We let disc(S) = −4 det(S) and put d =

−disc(S). If S =

 a b/2

b/2 c

 then we define the element ξ = ξS =

b/2 c

−a −b/2

.

Let L denote the subfield Q(
√
−d) of C.

We always identify Q(ξ) with L via

Q(ξ) 3 x+ yξ 7→ x+ y

√
(− d)
2

∈ L, x, y ∈ Q. (2.1.1)

We define a subgroup T = TS of GL2 by

T (Q) = {g ∈ GL2(Q)|gtSg = det(g)S}. (2.1.2)

The center of T is denoted by ZT . It is not hard to verify that T (Q) = Q(ξ)× and

ZT (Q) = Q×. We identify T (Q) with L× via (2.1.1)).
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We can consider T as a subgroup of G via

T 3 g 7→

g 0

0 det(g).(g−1)t

 ∈ G. (2.1.3)

Let us denote by U the subgroup of G defined by

U = {u(X) =

12 X

0 12

 |Xt = X}.

Let B be the subgroup of G defined by R = TU .

Let ψ be a non trivial character of A/Q. We define the character θ = θS on U(A) by

θ(u(X)) = ψ(tr(S(X))). Let Λ be a character of T (A)/T (Q) such that Λ|ZT (A×) = 1.

Via (2.1.1) we can think of Λ as a character of L×(A)/L× such that Λ|A× = 1. Denote

by Λ⊗θ the character of B(A) defined by (Λ⊗θ)(tu) = Λ(t)θ(u) for t ∈ T (A) and u ∈ U(A).

Let π be an automorphic cuspidal representation of G(A) with trivial central character

and Vπ be its space of automorphic forms.

Then for Φ ∈ Vπ, we define a function BΦ on G(A) by

BΦ(h) =
∫
B(A)/B(Q)ZG(A)

(Λ⊗ θ)(r)−1Φ(rh)dr. (2.1.4)

The C - vector space of function on G̃(A) spanned by {BΦ|Φ ∈ Vπ} is called the global

Bessel space of type (S,Λ, ψ) for π. We say that π has a global Bessel model of type

(S,Λ, ψ), if the global Bessel space has positive dimension, that is if there exists Φ ∈ Vπ

such that BΦ 6= 0. In §2.1–§2.7 , we assume that:

There exists S,Λ, ψ such that π has a global Bessel model of type (S,Λ, ψ). (2.1.5)

Eisenstein series

We briefly recall the definition of the Eisenstein series used by Furusawa in [Fur93]. Let

P be the maximal parabolic subgroup of G̃ consisting of the elements in G̃ that look
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like


∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

. We have the Levi decomposition P = MN with M = M (1)M (2) where

the groups M,N,M (1),M (2) are as defined in [Fur93].

Precisely,

M (1)(Q) =




a 0 0 0

0 1 0 0

0 0 a−1 0

0 0 0 1

 | a ∈ L
×


' L×. (2.1.6)

M (2)(Q) =




1 0 0 0

0 α 0 β

0 0 λ 0

0 γ 0 δ

 |
α β

γ δ

 ∈ GU(1, 1)(Q), λ = µ1

α β

γ δ




' GU(1, 1)(Q).

(2.1.7)

N(Q) =




1 x 0 0

0 1 0 0

0 0 1 0

0 0 −x 1




1 0 a y

0 1 y 0

0 0 1 0

0 0 0 1

 | a ∈ Q, x, y ∈ L


. (2.1.8)

We also write

m(1)(a) =


a 0 0 0

0 1 0 0

0 0 a−1 0

0 0 0 1

 ,

m(2)

α β

γ δ

 =


1 0 0 0

0 α 0 β

0 0 λ 0

0 γ 0 δ

 .

Let σ be an irreducible automorphic cuspidal representation of GL2(A) with central char-
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acter ωσ. Let χ0 be a character of L×(A)/L× such that χ0 | A× = ωσ.

Finally, let χ be a character of L×(A)/L× = M1(A)M1(Q) defined by

χ(a) = Λ(a)−1χ0(a)−1. (2.1.9)

Then defining

Π(m1m2) = χ(m1)(χ0 ⊗ σ)(m2),m1 ∈M1(A),m2 ∈M2(A) (2.1.10)

we extend σ to an automorphic representation Π of M(A). We regard Π as a representation

of P (A) by extending it trivially on N(A). Let δP denote the modulus character of P . If

p = m1m2n ∈ P (A) with mi ∈Mi(A)(i = 1, 2) and n ∈ N(A),

δP (p) = |NL/Q(m1)|3 · |µ1(m2)|−3, (2.1.11)

where || denoted the modulus function on A.

Then for s ∈ C, we form the family of induced automorphic representations of G̃(A)

I(Π, s) = IndG̃(A)
P (A)(Π⊗ δ

s
P ) (2.1.12)

where the induction is normalized. Let f(g, s) be an entire section in I(Π, s) viewed con-

cretely as a complex-valued function on G̃(A) which is left N(A)-invariant and such that

for each fixed g ∈ G̃(A), the function m 7→ f(mg, s) is a cusp form on M(A) for the auto-

morphic representation Π ⊗ δsP . Finally we form the Eisenstein series E(g, s) = E(g, s; f)

by

E(g, s) =
∑

γ∈P (Q)\G̃(Q)

f(γg, s) (2.1.13)

for g ∈ G̃(A).

This series converges absolutely (and uniformly in compact subsets) for Re(s) > 1/2,

has a meromorphic extension to the entire plane and satisfies a functional equation (see

[Lan76, Fur93] ).
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2.2 The Rankin-Selberg integral

The global integral

The main object of study in this chapter is the following global integral of Rankin-Selberg

type

Z(s) = Z(s, f,Φ) =
∫
G(Q)ZG(A)\G(A)

E(g, s, f)Φ(g)dg, (2.2.1)

where Φ ∈ Vπ and f ∈ I(Π, s). Z(s) converges absolutely away from the poles of the Eisen-

stein series.

Let Θ = ΘS be the following element of G̃(Q)

Θ =


1 0 0 0

α 1 0 0

0 0 1 −α

0 0 0 1

 where α =
b+
√
−d

2c

The ‘basic identity’ proved by Furusawa in [Fur93] is that

Z(s) =
∫
B(A)\G(A)

Wf (Θh, s)BΦ(h)dh (2.2.2)

where for g ∈ G̃(A) we have

Wf (g, s) =
∫

A/Q
f




1 0 0 0

0 1 0 x

0 0 1 0

0 0 0 1

 g, s

ψ(cx)dx, (2.2.3)

and BΦ is the Bessel model of type (S,Λ, ψ) defined in § 2.1.

The local integral

In this section v refers to any place of Q. Let π = ⊗vπv and σ = ⊗vσv. Now suppose that

Φ and f are factorizable functions with Φ = ⊗vΦv and f(·, s) = ⊗vfv(·, s).
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By the uniqueness of the Whittaker and the Bessel models, we have

Wf (g, s) =
∏
v

Wf,v(gv, s) (2.2.4)

BΦ(h) =
∏
v

BΦ,v(hv, s) (2.2.5)

for g = (gv) ∈ G̃(A) and h = (hv) ∈ G(A) and local Whittaker and Bessel functions Wf,v ,

BΦ,v respectively. Henceforth we write Wv = Wf,v, Bv = BΦ,v when no confusion can arise.

Therefore our global integral breaks up as a product of local integrals

Z(s) =
∏
v

Zv(s) (2.2.6)

where

Zv(s) = Zv(s,Wv, Bv) =
∫
B(Qv)\G(Qv)

Wv(Θg, s)Bv(g)dg.

The unramified case

The local integral is evaluated in [Fur93] in the unramified case. We recall the result here.

Suppose that the characters ωπ, ωσ, χ0 are trivial. Now let q be a finite prime of Q such

that

(a) The local components πq, σq and Λq are all unramified.

(b) The conductor of ψq is Zq.

(c) S =

 a b/2

b/2 c

 ∈M2(Zq) with c ∈ Z×q .

(d) −d = b2 − 4ac generates the discriminant of Lq/Qq.

Since σq is spherical, it is the spherical principal series representation induced from

unramified characters αq, βq of Q×q .

Suppose M0 is the maximal torus (the group of diagonal matrices) inside G and P0 the

Borel subgroup containing M0 as Levi component. πq is a spherical principal series repre-

sentation, so there exists an unramified character γq of M0(Qq) such that πq = Ind
M0(Qq)
P0(Qq) γq
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, (where we extend γq to P0 trivially). We define characters γ(i)
q (i = 1, 2, 3, 4) of Q×q by

γ(1)
q (x) = γq


x 0 0 0

0 x 0 0

0 0 1 0

0 0 0 1

 , γ(2)
q (x) = γq


x 0 0 0

0 1 0 0

0 0 1 0

0 0 0 x

 ,

γ(3)
q (x) = γq


1 0 0 0

0 1 0 0

0 0 x 0

0 0 0 x

 , γ(4)
q (x) = γq


1 0 0 0

0 x 0 0

0 0 x 0

0 0 0 1

 .

Now let fq( , s) be the unique normalized K̃q− spherical vector in Iq(Πq, s) and Φq be

the unique normalized Kq− spherical vector in πq. Let Wq, Bq be the coresponding vectors

in the local Whittaker and Bessel spaces. The following result is proved in [Fur93]

Theorem 2.2.1 (Furusawa). Let ρ(Λq) denote the Weil representation of GL2(Qq) corre-

sponding to Λq. Then we have

Zq(s,Wq, Bq) =
L(3s+ 1

2 , πq × σq)
L(6s+ 1,1)L(3s+ 1, σq × ρ(Λq))

where,

L(s, πq × σq) =
4∏
i=1

(
(1− γ(i)

q αq(q)q−s)(1− β(i)
q αq(q)q−s)

)−1
,

L(s,1) = (1− q−s)−1,

L(s, σq × ρ(Λq))

=



(1− α2
q(q)q

−2s)−1(1− β2
q (q)q−2s)−1 if q is inert in L,

(1− αq(q)Λq(q1)q−s)−1(1− βq(q)Λq(q1)q−s)−1 if q is ramified in L,

(1− αq(q)Λq(q1)q−s)−1(1− βq(q)Λq(q1)q−s)−1

·(1− αq(q)Λ−1
q (q1)q−s)−1(1− βq(q)Λ−1

q (q1)q−s)−1 if q splits in L,
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where q1 ∈ Zq ⊗Q L is any element with NL/Q(q1) ∈ qZ×q .

2.3 Strategy for computing the p-adic integral

Throughout this section we fix an odd prime p in Q such that p is inert in L. Moreover,

we assume that S ∈M2(Zp).

The fact that p is inert in L implies that if w, z are elements of Zp then w + zξ ∈

(T (Qp) ∩Kp) if and only if at least one of w, z is an unit.

Moreover the additional assumption S ∈M2(Zp) forces that a, c are units in Zp.

An explicit set of coset representatives

Recall the Iwahori subgroup Ip. It will be useful to describe a set of coset representatives

of Kp/Ip.

But first some definitions.

Let Y be the set {0, 1, .., p− 1}. Let V = Y ∪ {∞} where ∞ is just a convenient formal

symbol.

For x = (n, q, r) ∈ Z3
p, let Ux ∈ U(Qp) be the matrix


1 0 n q

0 1 q r

0 0 1 0

0 0 0 1

.

For y ∈ Zp define Zy =


1 y 0 0

0 1 0 0

0 0 1 0

0 0 −y 1

 ∈ Kp.

Also define Z∞ =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ∈ Kp.

In particular, the definitions Ux, Zy make sense for x ∈ Y 3, y ∈ V . Now we define the

following three classes of matrices. We call them matrices of class A, class B and class D,

respectively.
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(a) For x = (n, q, r) ∈ Y 3, y ∈ V , let Ayx = UxJZy.

(b) For x = (n, q, r) ∈ Y 3 with q2 − nr ≡ 0 (mod p) and y ∈ V , let By
x = JUxJZy.

(c) For λ, y ∈ V , let Dy
λ =





−λ 0 0 1

1 0 0 λ−1

0 1 λ−1 0

0 λ −1 0


Zy if λ 6= 0,∞,



0 0 0 1

−1 0 0 0

0 1 0 0

0 0 1 0


Zy if λ = 0,



−1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


Zy if λ =∞.

Let S be the set obtained obtained by taking the union of the class A, class B and class

D matrices, precisely S = {Ayx} y∈V
x∈Y 3

⋃
{By

x}y∈V,x=(n,q,r)∈Y 3

q2−nr≡0 (mod p)

⋃
{Dy

λ}λ∈V
y∈V

. Clearly S has

cardinality p3(p+ 1) + p2(p+ 1) + (p+ 1)2 = (p+ 1)2(p2 + 1).

Lemma 2.3.1. S is a complete set of coset representatives for Kp/Ip.

Proof. Let us first verify that S has the right cardinality. Clearly the cardinality of Kp/Ip

is the same as the cardinality of G(Fp)/I(4,Fp). By [Kim98, Theorem 3.2], |G(Fp)| =

p4(p− 1)3(p+ 1)2(p2 + 1). On the other hand I(4) has the Levi-decomposition

I(4) =

g 0

0 v.(g−1)t

12 X

0 12


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with g upper-triangular, X symmetric and v ∈ GL(1). So |I(4,Fp)| = p4(p − 1)3. Thus

|G(Fp)/I(4,Fp)| = (p+ 1)2(p2 + 1) which is the same as the cardinality of S.

So it is enough to show that no two matrices in S lie in the same coset.

For a 2× 2 matrix H with coefficients in Zp, we may reduce H mod p and consider the

Fp-rank of the resulting matrix; we denote this quantity by rp(H). It is easy to see that

if the matrix A =

A1 A2

A3 A4

 varies in a fixed coset of Kp/Ip, the pair (rp(A1), rp(A3))

remains constant.

Observe now that if A is of class A, then rp(A3) = 2; for A of class B, rp(A3) < 2

and rp(A1) = 2; while for A of class D we have rp(A3) < 2, rp(A1) < 2. This proves that

elements of S of different classes cannot lie in the same coset.

Now we consider distinct elements of S of the same class, and show that they too must

lie in different cosets.

For x1 = (n1, q1, r1), x2 = (n2, q2, r2) ∈ Y 3, y1, y2 ∈ Y , consider the elements Ay1
x1 , A

y2
x2 ,

By1
x1 , B

y2
x2 of S. We have

(Ay1
x1)−1Ay2

x2 = (By1
x1)−1By2

x2 =


1 y2 − y1 0 0

0 1 0 0

−n2 + n1 −n2y2 − q2 + n1y2 + q1 1 0

y1(n1 − n2) + q1 − q2 y1y2(n1 − n2) + (y1 + y2)(q1 − q2)− r2 + r1 y1 − y2 1

 .

So if the above matrix belongs to Ip, we must have y1 = y2, n1 = n2. That leads to

q1 = q2, and finally by looking at the bottom row we conclude r1 = r2.

This covers the case of class A and class B matrices in S whose y-component is not

equal to ∞.

Now (Ay1
x1)−1A∞x2

= (By1
x1)−1B∞x2

=


−y1 1 0 0

1 0 0 0

q1 − q2 n1 − n2 0 1

q1y1 + r1 − y1q2 − r2 n1y1 + q1 − y1n2 − q2 1 y1

 (2.3.1)
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which cannot belong to Ip.

Also (A∞x1
)−1A∞x2

= (B∞x1
)−1B∞x2

=


1 0 0 0

0 1 0 0

−r2 + r1 −q2 + q1 1 0

−q2 + q1 −n2 + n1 0 1

 (2.3.2)

and if the above matrix lies in Ip we must have x1 = x2.

Thus we have completed the proof for class A and class B matrices.

To complete the proof of the lemma we need to show that no two class D matrices are in

the same coset. The calculations for that case are similar to those above and are therefore

omitted.

Reducing the integral to a sum

By [Fur93, p. 201]) we have the following disjoint union

G(Qp) =
∐
l∈Z

0≤m∈Z

B(Qp) · h(l,m) ·Kp (2.3.3)

where

h(l,m) =


p2m+l 0 0 0

0 pm+l 0 0

0 0 1 0

0 0 0 pm

 .

We wish to compute

Zp(s) =
∫
B(Qp)\G(Qp)

Wp(Θh, s)Bp(h)dh. (2.3.4)

By (2.3.3) and (2.3.4) we have

Zp(s) =
∑

l∈Z,m≥0

∫
B(Qp)\B(Qp)h(l,m)Kp

Wp(Θh, s)Bp(h)dh. (2.3.5)
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For m ≥ 0 we define the subset Tm of S by

Tm = {B0
(1,0,0), B

∞
(1,0,0), B

0
(0,0,1), B

∞
(0,0,1), B

0
(0,0,0), B

∞
(0,0,0), A

0
(0,0,0), A

∞
(0,0,0)}

if m > 0,

T0 = {B0
(1,0,0), B

∞
(1,0,0), B

0
(0,0,0), A

0
(0,0,0)}.

Also, we use the notation t1 = B0
(1,0,0), t2 = B∞(1,0,0), ..., t8 = A∞(0,0,0). Thus Tm = {ti|1 ≤

i ≤ 8} if m > 0 and T0 = {t1, t2, t5, t7}.

Proposition 2.3.2. Let l ∈ Z,m ≥ 0. Then we have

B(Qp)\B(Qp)h(l,m)Kp =
∐
t∈Tm

B(Qp)\B(Qp)h(l,m)tIp.

Proof. Define two elements f and g in Kp to be (l,m)-equivalent if there exists r ∈ B(Qp)

and k ∈ Ip such that rh(l,m)fk = h(l,m)g. Furthermore observe that if two elements

of Kp are congruent mod p then they are in the same Ip-coset and therefore are trivially

(l,m)-equivalent.

The proposition can be restated as saying that any s ∈ S is (l,m)-equivalent to exactly

one of the elements t with t ∈ Tm. This will follow from the following nine claims which we

prove later below.

Claim 1. Any class A matrix in S by left-multiplying by an appropriate element of U(Zp)

can be made congruent mod p to Ay(0,0,0) for some y ∈ V .

Claim 2. If m > 0 all the Ay(0,0,0), y ∈ V \ {0} are (l,m)-equivalent. In the case m = 0 all

the Ay(0,0,0), y ∈ V are (l, 0)-equivalent.

Claim 3. Any class B matrix in S by left-multiplying by an appropriate element of U(Zp)

can be made congruent mod p to one of the matrices

B−λ
(1,λ,λ2)

, B∞(1,λ,λ2)B
y
(0,0,1), B

y
(0,0,0),

where λ ∈ Y, y ∈ V .



22

Claim 4. The matrices By
(1,λ,λ2)

, λ ∈ Y, y ∈ {−λ,∞} are all (l,m)-equivalent to one of the

matrices By
(1,0,0), y ∈ {0,∞}.

Claim 5. The matrices By
(0,0,1), y ∈ V by left-multiplying by an appropriate element of

U(Zp) can be made equal to one of the matrices By
(0,0,1) with y ∈ {0,∞}.

Claim 6. The matrices By
(0,0,0), y ∈ V are (l,m)-equivalent to one of the matrices By

(0,0,0)

with y ∈ {0,∞}. In the case m = 0 these two matrices are also equivalent.

Claim 7. The matrices B0
(1,0,0), B

∞
(0,0,1) are (l, 0)-equivalent and the matrices

B∞(1,0,0), B
0
(0,0,1) are also (l, 0)-equivalent.

Claim 8. Any class D matrix Dy
λ by left-multiplying by an appropriate element of U(Zp)

can be made equal to a class B matrix.

Claim 9. No two elements of Tm are (l,m)-equivalent for any m ≥ 0.

Indeed claims 1, 2 imply that any class A matrix is (l,m)-equivalent to one of t7, t8 (and

when m = 0, t7 alone suffices). On the other hand claims 3, 4, 5, 6, 7 tell us that any class

B matrix is (l,m)-equivalent to one of the ti, 1 ≤ i ≤ 6 (and that just t1, t2, t5 suffice if

m = 0). Also claim 8 says that any class D matrix is also (l,m)-equivalent to one of the

above. Since the class A, class B and class D matrix exhaust S, this shows that any element

of S is (l,m)-equivalent to some element of Tm; in other words we do have the union stated

in Proposition 2.3.2. Finally claim 9 completes the argument by implying that the union is

indeed disjoint.

We now prove each of the above claims. The proofs are just computations, we simply

multiply by suitable elements of R to get the results we desire.

Proof of claim 1. This follows from the fact that U−xA
y
x ≡ JZy (mod p) and JZy = Ay(0,0,0).

Proof of claim 2. We first deal with the case m = 0. For y ∈ V, y 6= 0 let j = (−a
y +

b
2) + ξ ∈ (T (Qp) ∩Kp) (here and elsewhere we interpret 1/∞ = 0). Consider the element
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(A0
(0,0,0))

−1h(l, 0)−1jh(l, 0)Ay(0,0,0). By direct calculation this equals


−a
y 0 0 0

−c −cy2+a−yb
y 0 0

0 0 − cy2+a−yb
y c

0 0 0 −a
y


if y 6=∞ and equals 

a 0 0 0

b −c 0 0

0 0 c b

0 0 0 −a


if y =∞. Both of these matrices lie in Ip and this proves the claim for m = 0.

Now consider m > 0. For y ∈ V, y 6= 0,∞, let j = cy + pmξ ∈ (T (Qp) ∩Kp). Consider

the element (A∞(0,0,0))
−1 h(l,m)−1j h(l,m)Ay(0,0,0), which by direct calculation equals


−c bpm

2 0 0

cy − bpm

2 cy2 − ypmb
2 + p2ma 0 0

0 0 −p2ma− cy2 + ypmb
2 cy − bpm

2

0 0 bpm

2 c


and this lies in Ip. Thus Ay0,0,0 is (l,m)-equivalent to A∞0,0,0 and this completes the proof of

the claim.

Proof of claim 3. Before proving this claim let us make a small remark. If λ ∈ Y is such

that λ2 does not belong to Y one may ask what we mean by the notation By
(1,λ,λ2)

; in such a

case, we understand λ2 to refer to the unique element in Y that is congruent to λ2 mod p.

This convention will govern any such situation.

We now begin proving the claim. Given a class B matrix By
(n,q,r) with n 6= 0 we must

have q ≡ nλ, r ≡ nλ2 (mod p) for some appropriate λ ∈ Y .

First assume that y 6= −λ. If y 6=∞ put s = λ−y+n(λ+y)
n(y+λ) , t = − 1

n(y+λ) , u = 0 and check
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that (By
n,q,r)−1Us,t,uB

∞
1,λ,λ2 is congruent mod p to


−λ− y 0 − 1

n(y+λ)
λ+n(y+λ)
n(y+λ)

λ+n(y+λ)
n(y+λ)

1
n(y+λ) 0 − 1

n(y+λ)

0 0 − 1
y+λ

λ+n(y+λ)
y+λ

0 0 0 n(y + λ)

 .

If y =∞ put s = n−1
n , t = 0, u = 0 and check that (B∞n,q,r)

−1Us,t,uB
∞
1,λ,λ2 is congruent to


1 0 0 0

− (n−1)λ
n

1
n 0 n−1

n

0 0 1 (n− 1)λ

0 0 0 n

 .

Both of these matrices belong to Ip.

Now suppose that y = −λ. Put s = n−1
n , t = 0, u = 0 and observe that (B−λ(n,q,r))

−1U(s,t,u)B
−λ
(1,λ,λ2)

is congruent mod p to 
1
n 0 n−1

n 0

0 1 0 0

0 0 n 0

0 0 0 1


which belongs to Ip also.

Finally assume that n = 0. So q = 0 as well. If r = 0 there is nothing to prove. So sup-

pose r 6= 0. If y 6=∞ put s = 0, t = y(r−1)
r , u = r−1

r and observe that (By
(0,0,r))

−1U(s,t,u)B
y
(0,0,1)

equals 
1 0 − (r−1)y2)

r 0

0 1
r 0 0

0 0 1 0

0 0 0 r


which belongs to Ip. If y =∞ put s = 0, t = 0, u = r−1

r and observe that (By
(0,0,r))

−1U(s,t,u)B
y
(0,0,1)
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equals 
1
r 0 r−1

r 0

0 1 0 0

0 0 r 0

0 0 0 1


which belongs to Ip.

Thus the claim is proved.

Proof of claim 4. First suppose that y = ∞. If m > 0, put j = c/λ + pmξ ∈ (T (Qp) ∩

Kp). By direct calculation we verify that (B∞(1,0,0))
−1h(l,m)−1jh(l,m)B∞(1,λ,λ2) is congruent

mod p to 
c
λ 0 0 0

c c
λ 0 0

0 0 c
λ −c

0 0 0 c
λ


and this belongs to Ip.

If m = 0, put j = (2c−bλ)
2λ + ξ ∈ (T (Qp) ∩Kp) and check that if we let n ∈ Y \ 0 be the

element congruent mod p to aλ2−bλ+c
c and y ∈ Y \ 0 be the element congruent mod p to

− c
aλ then (By

(n,0,0))
−1h(l, 0)−1jh(l, 0)B∞(1,λ,λ2) is congruent mod p to



c(aλ2−bλ+c)
aλ2 0 0 0
c−bλ
λ −a 0 0

0 0 a c−bλ
λ

0 0 0 − c(aλ2−bλ+c)
aλ2


which lies in Ip. Hence B∞(1,λ,λ2) is (l, 0)-equivalent to By

(n,0,0) and by the proof of Claim 3

it follows that it is (l, 0)-equivalent to B∞(1,0,0).

Now assume that y = −λ. If λ = 0 there is nothing to prove so assume λ 6= 0.

If m > 0, put j = c + pmλξ ∈ (T (Qp) ∩ Kp). By a direct calculation we see that

(B0
(1,0,0))

−1h(l,m)−1jh(l,m)B−λ
(1,λ,λ2)

is congruent to cI4 (mod p) and thus B−λ
(1,λ,λ2)

is (l,m)-

equivalent to B0
(1,0,0). If m = 0, put j = (2c−bλ)

2λ + ξ ∈ (T (Qp)∩Kp) and check that if we let

n ∈ Y \ 0 be the element that is congruent mod p to aλ2−bλ+c
c then,
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(B0
(n,0,0))

−1h(l, 0)−1jh(l, 0)B−λ
(1,λ,λ2)

is congruent mod p to


c
λ 0 0 0

−a aλ2−bλ+c
λ 0 0

0 0 aλ2−bλ+c
λ a

0 0 0 c
λ


which lies in Ip. Hence B−λ

(1,λ,λ2)
is (l, 0)-equivalent to B0

(n,0,0) and by Claim 3 it follows that

it is (l, 0)-equivalent to B0
(1,0,0).

Proof of claim 5. If y = ∞ there is nothing to prove. So assume y ∈ Y . Put s = 0, t =

−y, u = 0 and observe that (By
(0,0,1))

−1U(s,t,u)B
0
(0,0,1) equals


1 0 y2 −y

0 1 −y 0

0 0 1 0

0 0 0 1


which is in Ip.

Proof of claim 6. First consider the case m > 0. Take y ∈ V \{0,∞} and let j = c/y+pmξ ∈

(T (Qp) ∩Kp). By direct calculation we verify that

(By
(0,0,0))

−1h(l,m)−1jh(l,m)B0
(0,0,0)

is congruent mod p to c
y I4 and so By

(0,0,0) is (l,m)-equivalent to B0
(0,0,0).

Now let m = 0. Take y ∈ V \ {0,∞} and let j = c/y + b/2 + ξ ∈ (T (Qp) ∩ Kp). By

direct calculation we verify that (By
(0,0,0))

−1h(l, 0)−1jh(l, 0)B0
(0,0,0) equals



ay2+by+c
y 0 0 0

−a c
y 0 0

0 0 c
y a

0 0 0 ay2+by+c
y


which lies in Ip.
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Finally, if we take j = b/2 + ξ ∈ (T (Qp) ∩Kp) we can verify that

(B∞(0,0,0))
−1h(l, 0)−1jh(l, 0)B0

(0,0,0)

=


−a 0 0 0

b c 0 0

0 0 −c b

0 0 0 a


which lies in Ip.

Proof of claim 7. Putting j = b
2 + ξ and s = 1− c

a , t = 0, u = 0 we verify that

(B∞(0,0,1))
−1h(l, 0)−1jU(s,t,u)h(l, 0)B0

(1,0,0)

=


−c 0 c− a 0
bc
a c b(a−c)

a 0

0 0 −a b

0 0 0 a


which lies in Ip.

Putting j = − b
2 + ξ and u = 1− a

c , t = 0, s = 0 we verify that

(B∞(0,0,1))
−1h(l, 0)−1jU(s,t,u)h(l, 0)B0

(1,0,0)

=


−a − ba

c 0 b(a−c)
c

0 a 0 c− a

0 0 −c 0

0 0 −b c


which lies in Ip.

Proof of claim 8. Suppose y 6= ∞, λ 6= 0,∞. Put s = 1 − 2λy, t = y, u = 0 and check that
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(Dy
λ)−1U(s,t,u)B

∞
(1,λ,λ2) is congruent mod p to


−1 0 y

λ
1−2λy

2λ

λ 1 − 1
2λ −1

2

0 0 1
2 − 1

2λ

0 0 0 −1
2

 .

Now suppose y 6=∞ and put s = 1, t = −y, u = 0 and check that

(Dy
0)−1U(s,t,u)B

∞
(1,0,0)

=


1 0 0 0

0 1 0 −1

0 0 −1 0

0 0 0 −1

 .

Next put s = 0, t = −y, u = 1 and check that (Dy
∞)−1U(s,t,u)B

0
(0,0,1) equals


1 0 0 0

0 1 0 −1

0 0 −1 0

0 0 0 −1

 .

Now let λ 6= 0,∞. Put s = 1, t = 0, u = 0 and check that (D∞λ )−1U(s,t,u)B
−λ
(1,λ,λ2)

is

congruent mod p to 
1 0 −1 − 1

2λ

0 −1 1
2λ 0

0 0 −1
2 0

0 0 0 1
2

 .

Next put s = 1, t = 0, u = 0 and check that (D∞0 )−1U(s,t,u)B
0
(1,0,0) is congruent mod p
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to 
1 0 −1 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

Finally put s = 0, t = 0, u = 1 and check that (D∞∞)−1U(s,t,u)B
∞
(0,0,1) is congruent mod p

to 
1 0 −1 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

Proof of claim 9. Suppose two elements f and g in Tm are (l,m)-equivalent. Then there

exists r ∈ B(Qp) and k ∈ Ip such that rh(l,m)fk = h(l,m)g. Denote r′ = h(l,m)−1rh(l,m)

so that g = r′fk. Then r′ is upper-triangular and belongs to Kp. Writing f, g in block form

f =

f1 f2

f3 f4

, g =

g1 g2

g3 g4

 we conclude as in the proof of Lemma 2.3.1 that the Fp-rank

of f3 equals the Fp-rank of g3. For class A matrices the Fp-rank of the corresponding 2× 2

block is 2 and for class B matrices it is less than 2. So it is not possible that one of f, g is

class A and the other class B.

Thus we can assume that f and g are in the same class.

We first deal with the case m > 0.

Continuing with the generalities, let r = tu with T ∈ Qp, u ∈ U(Qp). Put

t′ = h(l,m)−1th(l,m), u′ = h(l,m)−1uh(l,m).

Thus r′ = t′u′ and this forces t′ ∈ (T (Qp)∩Kp), u′ ∈ U(Zp). We must then have t = x+zpmξ

with x ∈ Z×p , z ∈ Zp. Let u′ = U(s,t,u).

Let us first consider the class A case. We can check that (A0
(0,0,0))

−1t′u′A∞(0,0,0) is con-
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gruent mod p to 
0 x 0 0

x −zc 0 0

−tx− zcu −sx− zct zc x

−ux −tx x 0


and so can never belong to Ip because x is a unit.

We now consider the class B case. Suppose for (n1, q1, r1), (n2, q2, r2) we compute

(B0
(n1,q1,r1))

−1t′u′B0
(n2,q2,r2) =

A B

C D


and prove that C is never congruent to 0 (mod p). It will follow then that for any y1, y2 ∈ V ,

By1

(n1,q1,r1) and By2

(n2,q2,r2) are not (l,m)-equivalent because the introduction of the new terms

Zy1 , Zy2 cannot affect C.

(B0
(1,0,0))

−1t′u′B0
(0,0,0) is congruent mod p to


x zc sx+ zct tx+ zcu

0 x tx ux

x zc sx+ x+ zct tx+ zcu

0 0 −zc x

 .

(B0
(1,0,0))

−1t′u′B0
(0,0,1) is congruent mod p to


x zc− tx− zcu sx+ zct tx+ zcu

0 x− ux tx ux

x zc− tx− zcu sx+ x+ zct tx+ zcu

0 −x −zc x

 .

(B0
(0,0,0))

−1t′u′B0
(0,0,1) is congruent mod p to


x zc− tx− zcu sx+ zct tx+ zcu

0 x− ux tx ux

0 0 x 0

0 −x −zc x

 .
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Each of these three matrices have this property because x is a unit.

Now consider (B0
(1,0,0))

−1t′u′B∞(1,0,0). This is congruent mod p to


zc x− sx− zct tx+ zcu sx+ zct

x −tx ux tx

zc −sx− zct tx+ zcu sx+ x+ zct

0 zc x −zc


which cannot belong to Ip because x is a unit.

Next consider (B0
(0,0,0))

−1t′u′B∞(0,0,0). This is congruent mod p to


zc x tx+ zcu sx+ zct

x 0 ux tx

0 0 0 x

0 0 x −zc


which cannot belong to Ip for the same reason.

Finally consider (B0
(0,0,1))

−1t′u′B∞(0,0,1). This is congruent mod p to


−tx+ zc− zcu x tx+ zcu sx+ zct

x− ux 0 ux tx

0 0 0 x

−ux 0 ux+ x tx− zc


which can again not belong to Ip.

Thus we have completed the proof of the claim for m > 0.

For m = 0 we can only say that t′ = x+ zξ with atleast one of x, z an unit.

(B0
(1,0,0))

−1t′u′B0
(0,0,0) =


x+ 1

2zb zc sx+ 1
2zb+ zct tx+ 1

2zb+ zcu

−za x− 1
2zb tx− 1

2zb− zas ux− 1
2zb− zat

x+ 1
2zb zc sx+ x− 1

2zb+ 1
2szb+ zct tx+ 1

2zb+ zcu+ za

0 0 −zc x+ 1
2zb


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which if in Ip implies p|z which in turn implies p|x, a contradiction.

(B∞(1,0,0))
−1t′u′B0

(0,0,0) =


−za x− 1

2zb −zas+ tx− 1
2 tzb −zat+ ux− 1

2uzb

x+ 1
2zb zc sx+ 1

2szb+ zct tx+ 1
2 tzb+ zcu

0 0 −zc x+ 1
2zb

x+ 1
2zb zc sx+ x+ zct+ 1

2szb−
1
2zb tx+ 1

2 tzb+ zcu+ za


which cannot belong to Ip for the same reason.

Put G = z(ct+ 1
2sb−

1
2b). (B∞(1,0,0))

−1t′u′B0
(1,0,0) =


za(s− 1)− tx+ 1

2 tzb x− 1
2zb −zas+ tx− 1

2 tzb −zat+ ux− 1
2uzb

x(1− s) +G zc sx+ 1
2szb+ zct tx+ 1

2 tzb+ zcu

zc 0 −zc x+ 1
2zb

1
2zb−G− sx zc x(s+ 1) +G tx+ 1

2 tzb+ zcu+ za


which cannot belong to Ip for the same reason.

This completes the proof of the final claim.

In which we calculate a certain volume

For any t ∈ Kp we define the volume I l,mt as follows.

I l,mt = vol(B(Qp)\B(Qp)h(l,m)tIp). (2.3.6)

In this subsection we shall explicitly compute the volume I l,mt . By Proposition 2.3.2, it

is enough to do this for t ∈ Tm. The next two propositions state the results and the rest of

the section is devoted to proving them.

Proposition 2.3.3. Let m > 0. Let Ml,m denote p3l+4m

(p+1)(p2+1)
. Then the quantities I l,mti for
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1 ≤ i ≤ 8 are as follows.

I l,mt1 = pMl,m I l,mt5 = Ml,m

I l,mt2 = p2Ml,m I l,mt6 = pMl,m

I l,mt3 = pMl,m I l,mt7 = p2Ml,m

I l,mt4 = Ml,m I l,mt8 = p3Ml,m

Proposition 2.3.4. For m = 0 the quantities I l,mt are as follows.

I l,mt1 =
p3l+1

(p+ 1)(p2 + 1)
I l,mt5 =

p3l

(p+ 1)(p2 + 1)

I l,mt2 =
p3l+2

(p+ 1)(p2 + 1)
I l,mt7 =

p3l+3

(p+ 1)(p2 + 1)

Remark. That the volume I l,mt is finite can be viewed either as a corollary of the

above propositions, or as a consequence of the fact that vol(B(Qp)\B(Qp)h(l,m)Kp) is fi-

nite [Fur93, §3].

For each t ∈ Tm define the subgroup Gt of Kp by

Gt = t−1U(Zp)GL2(Zp)t ∩ Ip

where U(Zp) is the subgroup of Kp consisting of matrices that look like

12 M

0 12

 with

M = M t ∈ M2(Zp), and GL2(Zp) (more generally GL2(Qp)) is embedded in G(Qp) via

g 7→

g 0

0 det(g) · (g−1)t

.

Also let G1
t = tGtt

−1 be the corresponding subgroup of U(Zp)GL2(Zp).

And finally, define

Ht = {x ∈ GL2(Zp) | ∃y ∈ U(Zp) such that yx ∈ G1
t }. (2.3.7)

It is easy to see that Ht = U(Zp)G1
t ∩GL2(Zp), thus Ht is a subgroup of GL2(Zp).
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Lemma 2.3.5. We have a disjoint union

B(Qp)\B(Qp)h(l,m)tIp =
∐

y∈Gt\Ip

B(Qp)\B(Qp)h(l,m)G1
t ty.

Proof. Since tIp =
⋃
y∈Gt\Ip tGty =

⋃
y∈Gt\Ip G

1
t ty, the only thing to prove is that the union

in the statement of the lemma is indeed disjoint.

So suppose that y1, y2 are two coset representatives of Gt\Ip and rh(l,m)g1ty1 =

h(l,m)g2ty2 with g1, g2 ∈ G1
t , r ∈ B(Qp).

This means ty2y
−1
1 t−1 is an element of Kp that is of the form

A B

0 det(A) · (A−1)t

.

Hence ty2y
−1
1 t−1 ∈ U(Zp)GL2(Zp). Thus y2y

−1
1 ∈ t−1U(Zp)GL2(Zp)t ∩ Ip = Gt which

completes the proof.

By the above lemma it follows that

I l,mt =
∫
Gt\Ip

dg ·
∫
B(Qp)\B(Qp)h(l,m)G1

t

dt (2.3.8)

= p3(l+m)[Kp : Ip]−1[GL2(Zp)U(Zp) : G1
t ]
∫
B(Qp)\B(Qp)h(0,m)G1

t

dt (2.3.9)

where we have normalized
∫
U(Zp)GL2(Zp)\Kp dx = 1.

On the other hand,

B(Qp)\B(Qp)h(0,m)G1
t = B(Qp)\B(Qp)h(0,m)U(Zp)G1

t

= B(Qp)\B(Qp)h(0,m)(U(Zp)G1
t ∩GL2(Zp))

= T (Qp)\T (Qp)h(m)Ht

where h(m) =

pm 0

0 1

.

For each t ∈ Tm let us define

At = [GL2(Zp)U(Zp) : G1
t ]
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and

Vt,m =
∫
T (Qp)\T (Qp)h(m)Ht

dt.

We use the same normalization of Haar measures as in [Fur93], namely we have

∫
T (Qp)\T (Qp)h(m)GL2(Zp)

dt = 1.

We summarize the computations above in the form of a lemma.

Lemma 2.3.6. Let m ≥ 0. For each t ∈ Tm we have

I l,mt =
p3(l+m)

(p+ 1)2(p2 + 1)
·At · Vt,m.

Proof. This follows from equation (2.3.9).

By exactly the same arguments as in [Fur93, p. 202-203], we see that

Vt,m = [GL2(Zp) : Ht]−1[T (Zp) : Otm] (2.3.10)

where Otm = T (Qp) ∩ h(m)Hth(m)−1.

Let Γ0
p (resp. Γ0,p) be the subgroup of GL2(Zp) consisting of matrices that become

lower-triangular (resp. upper-triangular) when reduced mod p.

Lemma 2.3.7. (a) We have Hti = Γ0
p for i = 1, 2, 5, 8 and Hti = Γ0,p for i = 3, 4, 6, 7.

(b) The quantities Ati = [U(Zp)GL2(Zp) : G1
ti ] are as follows:

At1 = p(p+ 1) At5 = p+ 1

At2 = p2(p+ 1) At6 = p+ 1

At3 = p2(p+ 1) At7 = p3(p+ 1)

At4 = p(p+ 1) At8 = p3(p+ 1)

Proof. We will prove this directly using (2.3.7) and the definition of Ati .

First observe that the cardinality of U(Fp)GL2(Fp) is p3 ·(p2−p)(p2−1) = p4(p−1)2(p+

1). Recall also that the images of Γ0
p and Γ0,p have cardinality p(p− 1)2 in GL2(Fp).
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Suppose

U =


1 0 n q

0 1 q r

0 0 1 0

0 0 0 1

 , G =


a b 0 0

c d 0 0

0 0 d −c

0 0 −b a

 .

We have

t−1
1 UGt1 =


a− nd+ qb b nd− qb −nc+ qa

c− qd+ rb d qd− rb −qc+ ra

a− nd+ qb− d b nd− qb+ d −nc+ qa− c

b 0 −b a

 .

By inspection, this belongs to Ip if and only if b ≡ 0 (mod p), n ≡ a
d − 1 (mod p). So

Ht1 = Γ0
p and At1 = p4(p−1)2(p+1)

p(p−1)2p2 = p(p+ 1).

t−1
2 UGt2 =


d c− qd+ rb ra− qc qd− rb

b a− nd+ qb qa− nc nd− qb

0 b a −b

b a− nd+ qb− d qa− c− nc nd− qb+ d

 .

By inspection, this belongs to Ip if and only if b ≡ 0 (mod p), n ≡ a
d − 1 (mod p), q ≡ c

d .

So Ht2 = Γ0
p and At2 = p4(p−1)2(p+1)

p(p−1)2p
= p2(p+ 1).

t−1
3 UGt3 =


a b+ nc− qa nd− qb −nc+ qa

c d+ qc− ra qd− rb ra− qc

0 c d −c

c d+ qc− ra− a qd− rb− b ra− qc+ a

 .

By inspection, this belongs to Ip if and only if c ≡ 0 (mod p), r ≡ d
a − 1 (mod p), q ≡ b

a . So

Ht3 = Γ0,p and At3 = p4(p−1)2(p+1)
p(p−1)2p

= p2(p+ 1).

t−1
4 UGt4 =


d+ qc− ra c ra− qc qd− rb

b+ nc− qa a qa− nc nd− qb

d+ qc− ra− a c ra− qc+ a qd− rb− b

c 0 −c d

 .
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By inspection, this belongs to Ip if and only if c ≡ 0 (mod p), r ≡ d
a − 1 (mod p). So

Ht4 = Γ0,p and At4 = p4(p−1)2(p+1)
p(p−1)2p2 = p(p+ 1).

t−1
5 UGt5 =


a b nd− qb −nc+ qa

c d qd− rb −qc+ ra

0 0 d −c

0 0 −b a

 .

By inspection, this belongs to Ip if and only if b ≡ 0 (mod p). So Ht5 = Γ0
p and At5 =

p4(p−1)2(p+1)
p(p−1)2p3 = (p+ 1).

t−1
6 UGt6 =


d c ra− qc qd− rb

b a qa− nc nd− qb

0 0 a −b

0 0 −c d

 .

By inspection, this belongs to Ip if and only if c ≡ 0 (mod p). So Ht6 = Γ0,p and At6 =
p4(p−1)2(p+1)
p(p−1)2p3 = (p+ 1).

t−1
7 UGt7 =


d −c 0 0

−b a 0 0

qb− nd nc− qa a b

rb− qd qc− ra c d

 .

By inspection, this belongs to Ip if and only if c ≡ 0 (mod p), n ≡ 0 (mod p), q ≡ 0

(mod p), r ≡ 0 (mod p). So Ht7 = Γ0,p and At7 = p4(p−1)2(p+1)
p(p−1)2 = p3(p+ 1).

t−1
8 UGt8 =


a −b 0 0

−c d 0 0

qc− ra rb− qd d c

nc− qa qb− nd b a

 .

By inspection, this belongs to Ip if and only if b ≡ 0 (mod p), n ≡ 0 (mod p), q ≡ 0

(mod p), r ≡ 0 (mod p). So Ht8 = Γ0
p and At8 = p4(p−1)2(p+1)

p(p−1)2 = p3(p+ 1).
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Let t be such that Ht = Γ0
p. Then by working through the definitions, we see that

Otm = x+ pm+1yξ0, x, y ∈ Zp. (2.3.11)

On the other hand if t is such that Ht = Γ0,p, then we see that

Otm = x+ pmyξ0, x, y ∈ Zp. (2.3.12)

Lemma 2.3.8. Let m > 0. Then we have Vti,m = pm for i = 1, 2, 5, 8 and Vti,m = pm−1 for

i = 3, 4, 6, 7.

Proof. This follows from (2.3.10), (2.3.11), (2.3.12), Lemma 2.3.7 and [Fur93, Lemma 3.5.3]

Proof of Proposition 2.3.3. The proof is a consequence of Lemma 2.3.6, Lemma 2.3.7 and

Lemma 2.3.8.

Let us now look at the case m = 0. In this case T0 = {t1, t2, t5, t7}.

The groups Hti and the quantities [GL2(Zp) : Hti ]
−1 have already been calculated. On

the other hand we now have

Oti0 = x+ pyξ0, x, y ∈ Zp. (2.3.13)

for each ti ∈ T0.

Proof of Proposition 2.3.4. We have already calculated each Ati . Also by (2.3.10),(2.3.13)

and Lemma 2.3.7 we conclude that each Vti,0 = 1. Now the result follows as before, from

Lemma 2.3.6.

Simplification of the local zeta integral

Recall the definition of the key local integral Zp(s) from §2.2. In (2.3.5) we reduced this

integral to an useful sum. Now suppose that Wp and Bp are right Ip-invariant. Then
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Proposition 2.3.2 allows us to further simplify that expression as follows.

Zp(s) =
∑

l∈Z,m≥0

∑
t∈Tm

Wp(Θh(l,m)t, s) ·Bp(h(l,m)t) · I l,mt (2.3.14)

Note that in the above formula we mildly abuse notation and use Θ to really mean its

natural inclusion in G̃(Qp). We will continue to do this in the future for notational economy.

Remark. The importance of §2.3, where we calculated I l,mt for each t ∈ Tm, is that

we can now use the formula (2.3.14) to evaluate the local zeta integral whenever the local

functions Wp and Bp can be explicitly determined.

2.4 The evaluation of the local Bessel functions in the Stein-

berg case

Background

Because automorphic representations of GSp(4) are not necessarily generic, the Whittaker

model is not always useful for studying L-functions. For many problems, the Bessel model

is a good substitute. Explicit evaluation of local zeta integrals then often reduces to explicit

evaluation of certain local Bessel functions. Formulas for the Bessel functions have been

established in the following cases.

[Sug85] unramified representations of GSp4(Qp)

[BFF97] unramified representations (the Casselman-Shalika like formula)

[Niw91] class-one representations on Sp4(R)

[Miy00] large discrete series and PJ -principal series of Sp4(R)

[Ish02] principal series of Sp4(R)

In this section we give an explicit formula for the Bessel function for an unramified

quadratic twist of the Steinberg representation of GSp4(Qp). By [Sch05] this is precisely

the representation corresponding to a local newform for the Iwahori subgroup.

Throughout this section we let p be an odd prime that is inert in L. We suppose that the

local component (ωπ)p is trivial, the conductor of ψp is Zp and S =

 a b/2

b/2 c

 ∈M2(Zp).

Because p is inert, Lp is a quadratic extension of Qp and we may write elements of Lp
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in the form a + b
√
−d with a, b ∈ Qp; then ZL,p = a + b

√
−d where a, b ∈ Zp. We identify

Lp with T (Qp) and ξ with
√
−d/2. Then T (Zp) = Z×L,p consists of elements of the form

a+ b
√
−d where a, b are elements of Zp not both divisible by p.

We assume that Λp is trivial on the elements of T (Zp) of the form a + b
√
−d with

a, b ∈ Zp, p | b, p - a. Further, we assume that Λp is not trivial on the full group T (Zp), that

is, it is not unramified.

Finally, assume that the local representation πp is an unramified twist of the Steinberg

representation. This is representation IVa in [Sch05, Table 1]. The space of πp contains a

unique normalized vector that is fixed by the Iwahori subgroup Ip. We can think of this

vector as the normalized local newform for this representation.

Bessel functions

Let B be the space of locally constant functions ϕ on G(Qp) satisfying

ϕ(tuh) = Λp(t)θp(u)ϕ(h), for t ∈ T (Qp), u ∈ U(Qp), h ∈ G(Qp).

Then by Novodvorsky and Piatetski-Shapiro [NPS73], there exists a unique subspace B(πp)

of B such that the right regular representation of G(Qp) on B(πp) is isomorphic to πp. Let

Bp be the unique Ip-fixed vector in B(πp) such that Bp(14) = 1. Therefore

Bp(tuhk) = Λp(t)θp(u)ϕ(h), (2.4.1)

where t ∈ T (Qp), u ∈ U(Qp), h ∈ G(Qp), k ∈ Kp.

Our goal is to explicitly compute Bp. By Proposition 2.3.2 and (2.4.1) it is enough to

compute the values Bp(h(l,m)ti) for l ∈ Z,m ∈ Z≥0, ti ∈ Tm.

Let us fix some notation. Recall the matrices ti which were defined in §2.3. Also we will

frequently use other notation from §2.3. We now define
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al,m0 = Bp(h(l,m)t7), al,m∞ = Bp(h(l,m)t8),

bl,m0 = Bp(h(l,m)t2), 1bl,m0 = Bp(h(l,m)t1),

bl,m∞ = Bp(h(l,m)t3), 1bl,m∞ = Bp(h(l,m)t4),

cl,m0 = Bp(h(l,m)t5), cl,m∞ = Bp(h(l,m)t6).

Lemma 2.4.1. Let m ≥ 0, y ∈ {0,∞}. The following equations hold:

(a) al,my = 0 if l < −1.

(b) 1bl,m0 = bl,m0 = 1bl,0∞ = bl,0∞ = 0 if l < 0.

(c) 1bl,m∞ = bl,m∞ = 0 if l < −1.

(d) cl,my = 0 if l < 0.

Proof. First note that U(0,0,p)ti ≡ ti (mod p), hence they are in the same coset of Kp/Ip.

Hence

Bp(h(l,m)ti) = Bp(h(l,m)U(0,0,p)ti)

= Bp(U(0,0,pl+1)h(l,m)ti)

= ψp(pl+1c)Bp(h(l,m)ti).

Since the conductor of ψp is Zp and c is a unit, it follows that Bp(h(l,m)ti) = 0 for l < −1.

This completes the proof of (a) and (c).

Next, observe that

cl,my = Bp(h(l,m)Zy)

= Bp(h(l,m)U(0,0,1)Zy)

= Bp(U(0,0,pl)h(l,m)Zy)

= ψp(plc)Bp(h(l,m)Zy).

It follows that Bp(h(l,m)Zy) = 0 for l < 0. This completes the proof of (d).
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Next, we have

Bp(h(l,m)JU(1,0,0)JZy) = Bp(h(l,m)JU(1,0,0)JU0,0,1Zy)

= Bp(h(l,m)U0,0,1JU(1,0,0)JZy)

= ψp(plc)Bp(h(l,m)JU(1,0,0)JZy).

It follows that 1bl,m0 = bl,m0 = 0 for l < 0.

Finally,

Bp(h(l, 0)JU(0,0,1)JZy) = Bp(h(l, 0)JU(0,0,1)JU1,0,0Zy)

= Bp(h(l, 0)U1,0,0JU(0,0,1)JZy)

= ψp(pla)Bp(h(l, 0)JU(0,0,1)JZy).

It follows that 1bl,0∞ = bl,0∞ = 0 for l < 0. This completes the proof of (b).

By our normalization, we have c0,0
0 = 1. From Proposition 2.3.2, proof of Claim 6, it

follows that c0,0
∞ = Λp( b+

√
−d

2 ).

To get more information, we have to use the fact that the local Iwahori-Hecke algebra

acts on Bp in a precise manner.

Hecke operators and the results

Henceforth we always assume that l ≥ −1,m ≥ 0. In particular, all equations that are

stated without qualification will be understood to hold in the above range. We know that

πp is either StGSp(4) or ξ0StGSp(4) where ξ0 is the non-trivial unramified quadratic character.

Put wp = −1 in the former case and wp = 1 in the latter. Put

ηp =


0 0 0 1

0 0 1 0

0 p 0 0

p 0 0 0

 .
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Also, for y ∈ V , define the matrices Ry as follows: If y ∈ Y ,

Ry = (U(y,0,0))
t,

and

R∞ =


0 0 −1 0

0 −1 0 0

−1 0 0 0

0 0 0 1

 .

Let t ∈ G(Qp). By [Sch05], we know the following:

∑
y∈V

Bp(tZy) = 0, (2.4.2)

Bp(tηp) = wpBp(t), (2.4.3)∑
y∈V

Bp(tRy) = 0. (2.4.4)

(2.4.2) and Proposition 2.3.2 immediately imply

al,m0 + pal,m∞ = 0, for m > 0 (2.4.5)

pbl,my + 1bl,my = 0, for y ∈ {0,∞} (2.4.6)

pcl,m0 + cl,m∞ = 0, for m > 0 (2.4.7)

Next we act upon by ηp. Check that

(h(l + 1,m)B∞(0,0,0))
−1h(l,m)A0

(0,0,0)ηp =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .
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So we have

al,m0 = Bp(h(l,m)A0
(0,0,0))

= wpBp(h(l,m)A0
(0,0,0)ηp)

= wpBp(h(l + 1,m)B∞(0,0,0)).

Thus

al,m0 = wpc
l+1,m
∞ . (2.4.8)

We also have

(h(l + 1,m)B0
(0,0,0))

−1h(l,m)A∞(0,0,0)ηp =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

So similarly, we conclude

al,m∞ = wpc
l+1,m
0 . (2.4.9)

Next, check that

(h(l,m)B1
(1,0,0)ηp)

−1h(l − 1,m+ 1)U(−1/p,0,0)D
1
∞ = (Z1)t ∈ Ip.

Hence

Bp(h(l,m)B1
(1,0,0)) = wpBp(h(l − 1,m+ 1)D1

∞).

(Note that both sides are zero if l = −1,m = 0).

By the proof of Proposition 2.3.2, Bp(h(l,m)B1
(1,0,0)) = bl,m0 and Bp(h(l−1,m+1)D1

∞) =

ψp(pl−1c)bl−1,m+1
∞ .

Thus we have proved

bl,m0 = wpψp(pl−1c)bl−1,m+1
∞ . (2.4.10)

At this point we pause and note that on account of (2.4.5)–(2.4.10) it is enough to

compute the quantities bl,m∞ , al,m0 , l ≥ −1,m ≥ 0, l + m 6= −1. Of course, we already know

that a−1,0
0 = wpΛp( b+

√
−d

2 ).



45

Next, we use (2.4.4).

For each x ∈ Y , we can check that A0
0,0,0Rx = A0

−x,0,0. Furthermore, A0
0,0,0R∞ = D0

∞.

Assuming l + m ≥ 0 we have Bp(h(l,m)A0
−x,0,0) = al,m0 and Bp(h(l,m)D0

∞ = ψp(plc)b
l,m
∞ .

So using (2.4.4) we conclude

pal,m0 = −ψp(plc)bl,m∞ , (2.4.11)

for l +m ≥ 0.

However we can do more. Check that for x ∈ Y , A∞(0,0,0)Rx = A∞(0,0,−x) and A∞(0,0,0)R∞ ≡

D0
0 (mod p). If l ≥ 0 we have Bp(h(l,m)A∞(0,0,−x) = al,m∞ and Bp(h(l,m)D0

0) = bl,m0 . So

again using (2.4.4) we have

pal,m∞ = −bl,m0 , (2.4.12)

for l ≥ 0.

So (2.4.5), (2.4.10) and (2.4.12) imply that for l ≥ 0, m > 0

bl,m∞ = −pbl,m0 = −pwpψp(pl−1c)bl−1,m+1
∞ . (2.4.13)

Now observe thatB0
0,0,0R∞ ≡ D∞0 (mod p) and for x ∈ Y , B0

0,0,0Rx = B0
−x,0,0. Assuming

l + m 6= −1 we have Bp(h(l,m)D∞0 ) = 1bl,m0 and for x ∈ y, x 6= 0, Bp(h(l,m)B0
−x,0,0) =

1bl,m0 . Hence using (2.4.4)

cl,m0 = −p 1bl,m0 (2.4.14)

So by equations (2.4.6) and (2.4.9) we have,

al,m∞ = p2ψp(plc)bl,m+1
∞ (2.4.15)

The above equation, along with our normalization tells us that

b−1,1
∞ =

1
p2
ψp(−

c

p
)wp. (2.4.16)

Also, using (2.4.12),(2.4.13) and (2.4.15) we get

bl,m+1
∞ =

1
p4
bl,m∞ (2.4.17)

for l ≥ 0,m > 0.
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(2.4.13), (2.4.17) and (2.4.16) imply :

bl,m∞ = − (−pwp)l

p4l+4m+1
if l ≥ 0,m ≥ 1 (2.4.18)

b−1,m
∞ =

1
p4m−2

ψp(−
c

p
)wp if m ≥ 1. (2.4.19)

In the casem = 0, Proposition 2.3.2, proof of Claim 7, tells us that 1bl,0∞ = Λp( b+
√
−d

2 ) 1bl,00

which implies

bl,0∞ = Λp(
b+
√
−d

2
)bl,00 = wpψp(pl−1c)Λp(

b+
√
−d

2
)bl−1,1
∞ (2.4.20)

EquationS (2.4.18)–(2.4.20), along with the earlier equations that specify the interde-

pendence of various quantities, determine all the values Bp(h(l,m)ti). For convenience, we

compactly state the facts proven above as two propositions. We only state it for l ≥ 0 since

that is the only case needed for our later applications. The values for l = −1 can be easily

gleaned from these and the above equations.

Proposition 2.4.2. Let l ≥ 0,m > 0. Put M = (−pwp)lp−4(l+m). Then the following hold:

(a) Bp(h(l,m)t1) = M · −1
p ,

(b) Bp(h(l,m)t2) = M · 1
p2 ,

(c) Bp(h(l,m)t3) = M · −1
p ,

(d) Bp(h(l,m)t4) = M

(e) Bp(h(l,m)t5) = M

(f) Bp(h(l,m)t6) = M · (−p),

(g) Bp(h(l,m)t7) = M · 1
p2 ,

(h) Bp(h(l,m)t8) = M · −1
p3 .

Proposition 2.4.3. Let l ≥ 0. Put M = (−pwp)lp−4l. Then the following hold:

(a) Bp(h(l, 0)t1) = M · −1
p ,

(b) Bp(h(l, 0)t2) = M · 1
p2 ,
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(c) Bp(h(l, 0)t5) = M,

(d) Bp(h(l,m)t7) = M · −Λp( b+
√
−d

2
)

p3 .

2.5 The case unramified πp, Steinberg σp

Assumptions

Suppose that the characters ωπ, ωσ, χ0 are trivial. Let p 6= 2 be a finite prime of Q such

that

(a) p is inert in L = Q(
√
−d).

(b) The local components Λp and πp are unramified.

(c) σp is the Steinberg representation (or its twist by the unramified quadratic character).

(d) The conductor of ψp is Zp

(e) S =

 a b/2

b/2 c

 ∈M2(Zp).

(f) −d = b2 − 4ac generates the discriminant of Lp/Qp.

Remark: σp is concretely realized as (possibly the unramified quadratic twist of) the

special representation on the locally constant functions of Bp\GL2(Qp) modulo the constant

functions (where Bp is the standard Borel subgroup consisting of upper-triangular matrices).

It corresponds to the local newform for the Iwahori subgroup Γ0(p) of GL2(Qp).

Description of Bp and Wp

For any choice of local Whittaker and Bessel functions Wp and Bp we can define the local

zeta integral Zp(s) by (2.2.6). We now fix such a choice.

As in the unramified case from §2.1, we let Bp be the unique normalized Kp-vector in

the local Bessel space. Sugano[Sug85] has computed the function Bp explicitly.
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We now define Wp. Let Ũp be the subgroup of K̃p defined by

Ũp =
{
z ∈ K̃p | z ≡


∗ 0 ∗ ∗

∗ ∗ ∗ ∗

∗ 0 ∗ ∗

0 0 0 ∗

 (mod p)
}
.

It is not hard to see that I(Πp, s) has Ũp-fixed vectors. Now let Wp be the unique Ũp-fixed

vector in the local Whittaker space with the following properties:

• Wp(e, s) = 1,

• Wp(g, s) = 0 if g does not belong to P (Qp)Ũp

Concretely we have the following description of Wp( s).

We know that σp = Sp⊗ τ where Sp denotes the special (Steinberg) representation and

τ is a (possibly trivial) unramified quadratic character. We put ap = τ(p), thus ap = ±1 is

the eigenvalue of the local Hecke operator T (p).

Let W ′p be the unique function on GL2(Qp) such that

W ′p(gk) = W ′p(g), for g ∈ GL2(Qp), k ∈ Γ0,p, (2.5.1)

W ′p(

1 x

0 1

 g) = ψp(−cx)W ′p(g), for g ∈ GL2(Qp), x ∈ Qp, (2.5.2)

W ′p

a 0

0 1

 =


τ(a)|a| if |a|p ≤ 1,

0 otherwise.
(2.5.3)

W ′p

a 0

0 1

 0 1

−1 0

 =


−p−1τ(a)|a| if |a|p ≤ p,

0 otherwise.
(2.5.4)

We extend W ′p to a function on GU(1, 1)(Qp) by

W ′p(ag) = W ′p(g), for a ∈ L×p , g ∈ GL2(Qp).
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Then, Wp( s) is the unique function on G̃(Qp) such that

Wp(mnk, s) = Wp(m, s), for m ∈M(Qp), n ∈ N(QP ), k ∈ Ũp, (2.5.5)

Wp(e) = 1 and Wp(g, s) = 0 if g /∈ P (Qp)Ũp, (2.5.6)

and

Wp




a 0 0 0

0 1 0 0

0 0 a−1 0

0 0 0 1




1 0 0 0

0 a1 0 b1

0 0 c1 0

0 d1 0 e1

 , s


=
∣∣NL/Q(a) · c−1

1

∣∣3(s+1/2)

p
·W ′p

a1 b1

d1 e1


(2.5.7)

for a ∈ Q×p ,

a1 b1

d1 e1

 ∈ GU(1, 1)(Qp), c1 = µ1

a1 b1

d1 e1

.

Let us use the following notation: For

a b

c d

 ∈ GU(1, 1) we let

m(2)(

a b

c d

) =


1 0 0 0

0 a 0 b

0 0 β 0

0 c 0 d



where β = µ1(

a b

c d

).

The results

For i = 1, 2, 3, 4, define the characters γ(i)
p of Q×p as in §2.1. We now state and prove the

main theorem of this section.
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Theorem 2.5.1. Let the functions Bp,Wp be as defined in §2.5. Then we have

Zp(s,Wp, Bp) =
1

p2 + 1
·
L(3s+ 1

2 , πp × σp)
L(3s+ 1, σp × ρ(Λp))

where,

L(s, πp × σp) =
4∏
i=1

(1− γ(i)
p (p)app−1/2p−s)−1,

and

L(s, σp × ρ(Λp)) = (1− p−2s−1)−1.

Before we begin the proof, we need a lemma.

Lemma 2.5.2. We have the following formulae for Wp(Θh(l,m)ti, s) where ti ∈ Tm.

(a) If m > 0 then Wp(Θh(l,m)ti, s) =


p−6ms−3ls−3m−5l/2alp if i ∈ {1, 5}

p−6ms−3ls−3m−5l/2alp · −1
p if i ∈ {3, 7}

0 otherwise

(b) Wp(Θh(l, 0)ti, s) =


p−3ls−5l/2alp if i ∈ {1, 5}

0 if i ∈ {2, 7}

Proof. We have

Θh(l,m) = h(l,m)


1 0 0 0

pmα 1 0 0

0 0 1 −pmα

0 0 0 1

 (2.5.8)

First consider the case m > 0.

We claim that Θh(l,m)ti /∈ P (Qp)Ũp if i ∈ {2, 4, 6, 8}.

Put Θm =


1 0 0 0

pmα 1 0 0

0 0 1 −pmα

0 0 0 1

 . Using (2.6.8), it suffices to prove that Θmti /∈
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P (Zp)Ũp. So take a typical element element

P =


a ax at+ axy ay

0 m my − βx β

0 0 λ/a 0

0 γ γy − δx δ

 ∈ P (Zp) (2.5.9)

where all the variables lie in ZL and

m β

γ δ

 ∈ GU(1, 1)(Zp) with λ = µ1

m β

γ δ

.

We have

PΘmt2 =


ax a+ axpmα− at− axy −(at+ axy)αpm + ay at+ axy

m mpmα−my + βx −(my − βx)(α)pm + β my − βx

0 −λ(a)−1 −αpmλ(a)−1 λ(a)−1

γ γpmα− γy + δx −(γy − δx)αpm + δ γy − δx


which, if it were an element of Ũp would imply that p | λ, a contradiction.

We have

PΘmt4 =


ax+ (at+ axy)αpm − ay a+ axpmα −(at+ axy)αpm + ay at+ axy

m+ (my − βx)αpm − β mpmα −(my − βx)αpm + β my − βx

αpmλ(a)−1 0 −αpmλ(a)−1 λ(a)−1

γ + (γy − δx)αpm − δ γpmα −(γy − δx)αpm + δ γy − δx


which, if it were an element of Ũp would imply that p | λ, a contradiction.

We have

PΘmt6 =


ax a+ axpmα −(at+ axy)αpm + ay at+ axy

m mpmα −(my − βx)αpm + β my − βx

0 0 −αpmλ(a)−1 λ(a)−1

γ γpmα −(γy − δx)αpm + δ γy − δx


which, if it were an element of Ũp would imply that p | γ, p | δ, a contradiction.
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Finally we have

PΘmt8 =


at+ axy)αpm − ay −at− axy ax a+ axpmα

(my − βx)αpm − β −my + βx m mpmα

λαpm(a)−1 −λ(a)−1 0 0

(γy − δx)αpm − δ −γy + δx γ γpmα


which, if it were an element of Ũp would imply that p | γ, p | δ, a contradiction. This

completes the proof of the claim.

For the remaining ti (i.e., i ∈ {1, 3, 5, 7}) we have the following decompositions:

Θh(l,m)t1

=


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

0 pm

)


−1 0 0 0

−pmα −1 0 0

1 0 −1 pmα

0 0 0 −1


Θh(l,m)t3 =


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

−pm pm

)


−1 0 0 0

−pmα −1 0 0

0 −pmα −1 pmα

−pmα 0 0 −1


Θh(l,m)t5

=


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

0 pm

)


1 0 0 0

pmα 1 0 0

0 0 1 pmα

0 0 0 1


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Θh(l,m)t7

=


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

 0 −pm+l

−pm 0

)


0 0 1 0

0 1 0 0

−1 pmα 0 0

0 0 pmα 1


Part (a) of the lemma now follows from the above decompositions and equations (2.5.1)-

(2.5.7).

Let us now look at m = 0. Once again, let P be the matrix defined in (2.5.9). The same

proof as above for t2 shows that PΘmt2 /∈ Ũp. As for t7,

PΘmt7 =


−at− axy (at+ axy)α− ay a+ axα ax

−my + βx (my − βx)α− β mα m

−λ(a)−1 λα(a)−1 0 0

−γy + δx (γy − δx)α− δ γα γ

 .

If the above matrix lies in Ũp then we have p | γα which implies p | γ. But that immediately

implies, by looking at the bottom left entry, that p | δx, hence (by looking at the second

entry of the bottom row) p | δ. Thus p | γ, p | δ, a contradiction.

Thus Θh(l, 0)ti /∈ P (Qp)Ũp if i ∈ {2, 7}. For t1 and t5 we have the above decompositions,

from which part (b) follows via the equations (2.5.1)-(2.5.7).

Proof of Theorem 2.5.1. By (2.3.14) we have

Zp(s,Wp, Bp) =
∑

l≥0,m≥0

Bp(h(l,m))
∑
ti∈Tm

Wp(Θh(l,m)ti, s) · I l,mti (2.5.10)

We first look at the terms corresponding to m > 0. From Lemma 2.5.2 and Proposi-

tion 2.3.3 we have
∑

ti∈TmWp(Θh(l,m)ti, s) · I l,mti = 0. So only terms corresponding to

m = 0 contribute.

From Proposition 2.3.4 and Lemma 2.5.2 we have

∑
ti∈T0

Wp(Θh(l, 0)ti, s) · I l,0ti =
1

p2 + 1
· p−3ls+l/2alp.
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Hence (2.6.9) reduces to

Zp(s,Wp, Bp) =
1

p2 + 1
·
∑
l≥0

Bp(h(l, 0))p−3ls+l/2alp.

Define C(y) =
∑

l≥0Bp(h(l, 0))yl. We are interested in the quantity

Zp(s,Wp, Bp) =
1

p2 + 1
C(app−3s+1/2). (2.5.11)

Sugano, in [Sug85, p. 544], has computed C(y) explicitly. His results imply that

C(y) =
H(y)
Q(y)

where H(y) = 1− y2

p4 , Q(y) =
∏4
i=1(1− γ(i)

p (p)p−3/2y).

Plugging in these values in (2.5.11) we get the desired result.

2.6 The case Steinberg πp, Steinberg σp

Assumptions

Suppose that the characters ωπ, ωσ, χ0 are trivial. Let p 6= 2 be a finite prime of Q such

that

(a) p is inert in L = Q(
√
−d).

(b) Λp is not trivial on T (Zp); however it is trivial on T (Zp) ∩ Γ0
p.

(c) πp is the Steinberg representation (or its twist by the unique non-trivial unramified

quadratic character).

(d) σp is the Steinberg representation (or its twist by the unique non-trivial unramified

quadratic character).

(e) The conductor of ψp is Zp.

(f) S =

 a b/2

b/2 c

 ∈M2(Zp).
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(g) −d = b2 − 4ac generates the discriminant of Lp/Qp.

Remark. πp corresponds to a local newform for the Iwahori subgroup Ip (see [Sch05]).

Also, as in the previous section, σp corresponds to the local newform for the Iwahori sub-

group Γ0(p) of GL2(Qp).

Description of Bp and Wp

Let Φp be the unique normalized local newform for the Iwahori subgroup Ip, as defined by

Schmidt [Sch05]. Let wp be the local Atkin-Lehner eigenvalue for πp; this equals −1 when

πp is the Steinberg representation and equals 1 when πp is the unramified quadratic twist

of the Steinberg representation. We let Bp be the normalized vector that corresponds to

Φp in the Bessel space. §2.4 was devoted to the computation of the values Bp(h(l,m)t) for

l,m ∈ Z,m ≥ 0, t ∈ Tm.

Because p is inert, Lp is a quadratic extension of Qp and we may write elements of Lp in

the form a+ b
√
−d with a, b ∈ Qp; then ZL,p = a+ b

√
−d where a, b ∈ Zp. We also identify

Lp with T (Qp) and ξ with
√
−d/2. We now define Wp. By Assumption (b) above, we have

Λp is trivial on the elements of T (Qp) of the form a+ b
√
−d with a, b ∈ Zp, p | b, p - a. Take

the canonical map r : K̃p → G̃(Fp) and define I ′p = r−1(I(4,Fp)).

Let s1 denote the matrix


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Let Wp( , s) be the unique vector in I(Πp, s) with the following properties:

• Wp(1, s) = 1,

• Wp(s1, s) = 1,

• Wp(gk, s) = Wp(g, s) is k ∈ I ′p,

• Wp(g, s) = 0 if g does not belong to P (Qp)I ′p t P (Qp)s1I
′
p

Concretely we have the following description of Wp( , s) :
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We know that σp = Sp⊗ τ where Sp denotes the special (Steinberg) representation and

τ is a (possibly trivial) unramified quadratic character. We put ap = τ(p), thus ap = ±1 is

the eigenvalue of the local Hecke operator T (p).

Let W ′p be the unique function on GL2(Qp) such that

W ′p(gk) = W ′p(g), for g ∈ GL2(Qp), k ∈ Γ0,p, (2.6.1)

W ′p(

1 x

0 1

 g) = ψp(−cx)W ′p(g), for g ∈ GL2(Qp), x ∈ Qp, (2.6.2)

W ′p

a 0

0 1

 =


τ(a)|a| if |a|p ≤ 1,

0 otherwise
(2.6.3)

W ′p

a 0

0 1

 0 1

−1 0

 =


−p−1τ(a)|a| if |a|p ≤ p,

0 otherwise
(2.6.4)

We extend W ′p to a function on GU(1, 1)(Qp) by

W ′p(ag) = W ′p(g), for a ∈ L×p , g ∈ GL2(Qp).

Then, Wp( s) is the unique function on G̃(Qp) such that

Wp(mnuk, s) = Wp(mu, s), for m ∈M(Qp), n ∈ N(QP ), u ∈ {1, s1}, k ∈ I ′p, (2.6.5)

Wp(t) = 0 if t /∈ P (Qp)I ′p t P (Qp)s1I
′
p (2.6.6)

Wp




a 0 0 0

0 1 0 0

0 0 a−1 0

0 0 0 1




1 0 0 0

0 a1 0 b1

0 0 c1 0

0 d1 0 e1

u, s


=
∣∣NL/Q(a) · c−1

1

∣∣3(s+1/2)

p
· Λp(a)W ′p

a1 b1

d1 e1

 ,

(2.6.7)
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for a ∈ Q×p , u ∈ {1, s1},

a1 b1

d1 e1

 ∈ GU(1, 1)(Qp), c1 = µ1

a1 b1

d1 e1

.

The results

We now state and prove the main theorem of this section.

Theorem 2.6.1. Let the functions Bp,Wp be as defined in subsection* 2.6. Then we have

Zp(s,Wp, Bp) =
1− p
p2 + 1

· p−6s−3

1− apwpp−3s−3/2
· L(3s+

1
2
, πp × σp)

where L(s, πp × σp) = (1 + apwpp
−1p−s)−1(1 + apwpp

−2p−s)−1.

Before we begin the proof, we need a lemma.

Lemma 2.6.2. We have the following formulae for Wp(Θh(l,m)ti, s) where ti ∈ Tm.

Wp(Θh(l,m)ti, s) =


p−6ms−3ls−3m−5l/2alp · −1

p if i = 3, 4, m > 0

p−6ms−3ls−3m−5l/2alp if i = 5, 6, m > 0

0 otherwise.

Proof. We have

Θh(l,m) = h(l,m)


1 0 0 0

pmα 1 0 0

0 0 1 −pmα

0 0 0 1

 (2.6.8)

Put K ′p = r−1(G(Fp)). Thus Θh(l,m)ti ∈ P (Qp)K ′p when m > 0 and Θh(l,m)ti ∈

P (Qp)ΘK ′p when m = 0. A direct computation shows that P (Qp)K ′p and P (Qp)ΘK ′p

are disjoint; the fact that P (Qp)I ′p ⊂ P (Qp)K ′p then implies that Wp(Θh(l,m)ti, s) = 0 for

m = 0 . From now on we assume m > 0.

We can check that Θh(l,m)ti /∈ P (Qp)I ′p t P (Qp)s1I
′
p if i ∈ {1, 2, 7, 8}.

For the remaining ti (i.e. i ∈ {3, 4, 5, 6}) we have the decompositions:
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Θh(l,m)t3 =


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

−pm pm

)


−1 0 0 0

−pmα −1 0 0

0 −pmα −1 pmα

−pmα 0 0 −1


Θh(l,m)t4 =


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

−pm pm

)s1


1 pmα 0 0

0 1 0 0

0 pmα 1 0

pmα 0 −pmα 1


Θh(l,m)t5

=


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

0 pm

)


1 0 0 0

pmα 1 0 0

0 0 1 pmα

0 0 0 1


Θh(l,m)t6

=


p2m+l 0 0 0

0 1 0 0

0 0 p−2m−l 0

0 0 0 1

m(2)(

pm+l 0

0 pm

)s1


1 pmα 0 0

0 1 0 0

0 0 1 0

0 0 −pmα 1


The lemma now follows from the above decompositions and equations (2.6.1)-(2.6.7).

Proof of Theorem 2.6.1. By (2.3.14) we have

Zp(s,Wp, Bp) =
∑

l≥0,m≥0

∑
ti∈Tm

Bp(h(l,m)ti)Wp(Θh(l,m)ti, s) · I l,mti (2.6.9)
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From Proposition 2.3.3, Proposition 2.4.2 and Lemma 2.6.2 we have

∑
i∈{3,4,5,6}

Bp(h(l,m)ti)Wp(Θh(l,m)ti, s) · I l,mti =
(1− p)(−apwpp−3s−5/2)l(p−6s−3)m

p2 + 1
.

Hence (2.6.9) implies

Zp(s,Wp, Bp) =
(1− p)p−6s−3

p2 + 1
· 1

1 + apwpp−2p−3s−1/2
· 1

1− p−6s−3

This completes the proof.

2.7 The case Steinberg πp, unramified σp

Assumptions

Suppose that the characters ωπ, ωσ, χ0 are trivial. Let p 6= 2 be a finite prime of Q such

that

(a) p is inert in L = Q(
√
−d).

(b) Λp is not trivial on T (Zp); however it is trivial on T (Zp) ∩ Γ0
p.

(c) πp is the Steinberg representation (or its twist by the unique non-trivial unramified

quadratic character) while σp is unramified.

(d) The conductor of ψp is Zp.

(e) S =

 a b/2

b/2 c

 ∈M2(Zp).

(f) −d = b2 − 4ac generates the discriminant of Lp/Qp.

Remark. πp corresponds to a local newform for the Iwahori subgroup Ip (see [Sch05]).

Description of Bp and Wp

Let Φp be the unique normalized local newform for the Iwahori subgroup Ip, as defined by

Schmidt [Sch05]. Let wp be the local Atkin-Lehner eigenvalue for πp; this equals −1 when
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πp is the Steinberg representation and equals 1 when πp is the unramified quadratic twist

of the Steinberg representation. We let Bp be the normalized vector that corresponds to Φp

in the Bessel space. Section 2.4 was devoted to the computation of the values Bp(h(l,m)t)

for l,m ∈ Z,m ≥ 0, t ∈ Tm.

We now defineWp. Take the canonical map r : K̃p → G̃(Fp) and define I ′p = r−1(I(4,Fp)).

Let Wp( , s) be the unique vector in I(Πp, s) with the following properties:

• Wp(Θ, s) = 1,

• Wp(1, s) = 1,

• Wp(gk, s) = Wp(g, s) is k ∈ I ′p,

• Wp(g, s) = 0 if g does not belong to P (Qp)ΘI ′p t P (Qp)I ′p

Concretely we have the following description of Wp( , s).

Suppose σp is the principal series representation induced from the unramified characters

α, β of Q×p . Let W ′p be the unique function on GL2(Qp) such that

W ′p(gk) = W ′p(g), for g ∈ GL2(Qp), k ∈ GL2(Zp), (2.7.1)

W ′p(

1 x

0 1

 g) = ψp(−cx)W ′p(g), for g ∈ GL2(Qp), x ∈ Qp, (2.7.2)

W ′p

a 0

0 b

 =


∣∣a
b

∣∣ 1
2
p
· α(ap)β(b)−α(b)β(ap)

α(p)−β(p) if
∣∣a
b

∣∣
p
≤ 1,

0 otherwise
(2.7.3)

We extend W ′p to a function on GU(1, 1)(Qp) by

W ′p(ag) = W ′p(g), for a ∈ L×p , g ∈ GL2(Qp).

Then, Wp( s) is the unique function on G̃(Qp) such that

Wp(mnuk, s) = Wp(mu, s), for m ∈M(Qp), n ∈ N(QP ), u ∈ {1,Θ}, k ∈ I ′p, (2.7.4)
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Wp(t) = 0 if t /∈ P (Qp)ΘI ′p t P (Qp)I ′p (2.7.5)

Wp




a 0 0 0

0 1 0 0

0 0 a−1 0

0 0 0 1




1 0 0 0

0 a1 0 b1

0 0 c1 0

0 d1 0 e1

u, s


=
∣∣NL/Q(a) · c−1

1

∣∣3(s+1/2)

p
· Λp(a−1)W ′p

a1 b1

d1 e1

 ,

(2.7.6)

for a ∈ Q×p , u ∈ {1,Θ},

a1 b1

d1 e1

 ∈ GU(1, 1)(Qp), c1 = µ1

a1 b1

d1 e1

.

The results

We now state and prove the main theorem of this section.

Theorem 2.7.1. Let the functions Bp,Wp be as defined in subsection* 2.7. Then we have

Zp(s,Wp, Bp) =
1

(p+ 1)(p2 + 1)
· L(3s+

1
2
, πp × σp),

where L(s, πp × σp) = (1 + wpp
−3/2α(p)p−s)−1(1 + wpp

−3/2β(p)p−s)−1.

Before we begin the proof, we need a lemma.

Lemma 2.7.2. Let ti ∈ Tm, l ≥ 0. We have

Wp(Θh(l,m)ti, s) =


p−3ls−2l

(
α(p)l+1−β(p)l+1

α(p)−β(p)

)
if m = 0, i = 5

p−6ms−3ls−3m−5l/2
(
α(p)l+1−β(p)l+1

α(p)−β(p)

)
if m > 0, i = 3, 5

0 otherwise

Proof. By the proof of Lemma 2.6.2 we have Θh(l,m)ti /∈ P (Qp)ΘI ′p if m > 0. As for the

case m = 0, we can check that Θh(l, 0)ti /∈ P (Qp)ΘI ′p if i ∈ {1, 2, 7}. On the other hand,

again by the proof of Lemma 2.6.2, we have Θh(l,m)ti ∈ P (Qp)I ′p if and only if m > 0 and

i ∈ {3, 5}. The lemma now follows immediately from (2.7.1) - (2.7.6).
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Proof of Theorem 2.7.1. We have

Zp(s,Wp, Bp) =
∑
l≥0

Wp(Θh(l, 0)t5, s)Bp(h(l, 0)t5) · I l,0t5

+
∑

l≥0,m>0

∑
i∈{3,5}

Wp(Θh(l,m)ti, s)Bp(h(l,m)ti) · I l,mti
(2.7.7)

Using Proposition 2.4.3 , Proposition 2.3.4 and Lemma 2.7.2 we have

∑
i∈{3,5}

Wp(Θh(l,m)ti, s)Bp(h(l,m)ti) · I l,mti = 0

and hence

Zp(s,Wp, Bp) =
∑
l≥0

Wp(Θh(l, 0)t5, s)Bp(h(l, 0)t5) · I l,0t5

=
1

(p+ 1)(p2 + 1)

∑
l≥0

p−3ls−2l

(
α(p)l+1 − β(p)l+1

α(p)− β(p)

)
(−pwp)lp−l

=
1

(p+ 1)(p2 + 1)
L(3s+

1
2
, πp × σp).

This completes the proof of the theorem.

Remark. We might equally well have chosen Wp to be the simpler vector supported

only on Θ (rather than on Θ and 1). The only reason we include 1 in the support of the

section is because this definition will be necessary for §3.

2.8 The global integral and some results

Classical Siegel modular forms and newforms for the minimal congruence

subgroup

For M a positive integer define the following global parahoric subgroups.
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B(M) := Sp(4,Z) ∩


Z MZ Z Z

Z Z Z Z

MZ MZ Z Z

MZ MZ MZ Z

 ,

U1(M) := Sp(4,Z) ∩


Z Z Z Z

Z Z Z Z

MZ MZ Z Z

MZ MZ Z Z

 ,

U2(M) := Sp(4,Z) ∩


Z MZ Z Z

Z Z Z Z

Z MZ Z Z

MZ MZ MZ Z

 ,

U0(M) := Sp(4,Q) ∩


Z MZ Z Z

Z Z Z M−1Z

MZ MZ Z Z

MZ MZ MZ Z

 .

When M = 1 each of the above groups is simply Sp(4,Z). For M > 1, the groups are

all distinct. If Γ′ is equal to one of the above groups, or (more generally) is any congruence

subgroup, we define Sk(Γ′) to be the space of Siegel cusp forms of degree 2 and weight k

with respect to the group Γ′.

More precisely, let H2 = {Z ∈ M2(C)|Z = Zt, i(Z − Z) is positive definite}. For any

g =

A B

C D

 ∈ G let J(g, Z) = CZ +D. Then f ∈ Sk(Γ′) if it is a holomorphic function

on H2, satisfies f(γZ) = det(J(γ, Z))kf(Z) for γ ∈ Γ′, Z ∈ H2 and disappears at the cusps.

We know that f has a Fourier expansion

f(Z) =
∑
S>0

a(S, F )e(tr(SZ)),
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where e(z) = exp(2πiz) and S runs through all symmetric semi-integral positive-definite

matrices of size two.

Now let M be a square-free positive integer. For any decomposition M = M1M2 into

coprime integers we define, following Schmidt [Sch05], the subspace of oldforms Sk(B(M))old

to be the sum of the spaces

Sk(B(M1) ∩ U0(M2)) + Sk(B(M1) ∩ U1(M2)) + Sk(B(M1) ∩ U2(M2)).

For each prime p not dividing M there is the local Hecke algebra Hp of operators on

Sk(B(M)) and for each prime q dividing M we have the Atkin-Lehner involution ηq also

acting on Sk(B(M)). For details, the reader may refer to [Sch05].

By a newform for the minimal congruence subgroup B(M), we mean an element f ∈

Sk(B(M)) with the following properties

(a) f lies in the orthogonal complement of the space Sk(B(M))old.

(b) f is an eigenform for the local Hecke algebras Hp for all primes p not dividing M .

(c) f is an eigenform for the Atkin-Lehner involutions ηq for all primes q dividing M .

Remark. By [Sch05], if we assume the hypothesis that a nice L-function theory for

GSp(4) exists, (b) and (c) above follow from (a) and the assumption that f is an eigenform

for the local Hecke algebras at almost all primes.

Description of our newforms

Let M be an odd square-free positive integer and

F (Z) =
∑
T>0

a(T )e(tr(TZ))

be a Siegel newform for B(M) of even weight l.

Let N be an odd square-free positive integer and g be a normalized newform of weight

l for Γ0(N). g has a Fourier expansion

g(z) =
∞∑
n=1

b(n)e(nz)
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with b(1) = 1. It is then well known that the b(n) are all totally real algebraic numbers.

We make the following assumption:

a(T ) 6= 0 for some T =

a b
2

b
2 c

 (2.8.1)

such that −d = b2 − 4ac is the discriminant of the imaginary quadratic field Q(
√
−d), and

all primes dividing MN are inert in Q(
√
−d).

We define a function Φ = ΦF on G(A) by

Φ(γh∞k0) = µ2(h∞)l det(J(h∞, iI2))−lF (h∞(i))

where γ ∈ G(Q), h∞ ∈ G(R)+ and

k0 ∈ (
∏
p-M

Kp) · (
∏
p|M

Ip).

Because we do not have strong multiplicity one for G we can only say that the repre-

sentation of G(A) generated by Φ is a multiple of an irreducible representation π. However

that is enough for our purposes.

We know that π = ⊗πv where

πv =


holomorphic discrete series if v =∞,

unramified spherical principal series if v finite , v - M,

ξvStGSp(4)where ξv unramified, ξ2
v = 1 if v |M.

Next, we define a function Ψ on GL2(A) by

Ψ(γ0mk0) = (det m)
l
2 (γi+ δ)−lg(m(i))

where γ0 ∈ GL2(Q), m =

α β

γ δ

 ∈ GL+
2 (R), and

k0 ∈
∏
p-N

GL2(Zp)
∏
p|N

Γ0,p
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Let σ be the automorphic representation of GL2(A) generated by Ψ.

We know that σ = ⊗σv where

σv =


holomorphic discrete series if v =∞,

unramified spherical principal series if v finite , v - N,

ξStGL(2)where ξv unramified, ξ2
v = 1 if v | N.

Description of our Bessel model

In order to use our results from the previous sections, we need to associate a Bessel model

to π (or more accurately, we associate it to π̃). This involves making a choice of (S,Λ, ψ).

This subsection is devoted to doing that.

Let ψ =
∏
v ψv be a character of A such that

• The conductor of ψp is Zp for all (finite) primes p,

• ψ∞(x) = e(−x), for x ∈ R,

• ψ|Q = 1.

Put L = Q(
√
−d). where d is the integer defined in (2.8.1).

First we deal with the case M = 1. In this case, our choice of S and Λ is identical to

[Fur93]. To recall, put

T (A) =
h(−d)∐
j=1

tjT (Q)T (R)(Πp<∞T (Zp)) (2.8.2)

where tj ∈
∏
p<∞ T (Qp) and h(−d) is the class number of L.

Write tj = γjmjκj , where γj ∈ GL2(Q),mj ∈ GL+
2 (R), and κj ∈ ((Πp<∞GL2(Zp)).

Choose

S =



d/4 0

0 1

 if d ≡ 0 (mod 4)

(1 + d)/4 1/2

1/2 1

 if d ≡ 3 (mod 4)
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Let Sj = det(γj)−1γtjSγj . Then, any primitive semi-integral two by two positive def-

inite matrix with discriminant equal to −d is SL2(Z)-equivalent to some Sj . So, by our

assumption, we can choose Λ a character of T (A)/T (Q)T (R)((Πp<∞T (Zp)) such that

h(−d)∑
j=1

Λ(tj)a(Sj) 6= 0.

Thus, we have specified a choice of S and Λ for M = 1.

In the rest of this subsection, unless otherwise mentioned, assume M > 1.

Suppose p is a prime dividing M . We can identify Lp with elements a + b
√
−d with

a, b ∈ Qp. Let Z×L,p denote the units in the ring of integers of Lp. The elements of Z×L,p are

of the form a+ b
√
−d with a, b ∈ Zp and such that at least one of a and b is a unit. Let Γ0

L,p

be the subgroup of Z×L,p consisting of the elements with p|b. The group Z×L,p/Γ
0
L,p is clearly

cyclic of order p+ 1. Moreover, the elements {(−b+
√
−d)/2} where b is a positive integer

satisfying {1 ≤ b ≤ 2p : b = d (mod 2)} are distinct in Z×L,p/Γ
0
L,p. Note that d = 0 or 3

(mod 4) and hence b = d (mod 2) implies that 4 divides b2 + d. So we have the lemma:

Lemma 2.8.1. There exists an integer b such that 4 divides b2 + d and (−b +
√
−d)/2 is

a generator of the group Z×L,p/Γ
0
L,p for each p|M .

Proof. By the comments above, we can choose, for each prime pi dividing M , an integer bi

such that bi ≡ d (mod 2) and (−bi +
√
−d)/2 is a generator of the group Z×L,pi/Γ

0
L,pi

. Now,

using the Chinese Remainder theorem, choose b satisfying b ≡ bi (mod 2pi) for each i .

Now we define

S =

 b2+d
4

b
2

b
2 1

 .

As in section 2.1 we define the matrix ξ = ξS and the group T = TS . We have T (Q) '

L×. We write T (Zp) for T (Qp) ∩GL2(Zp).

Let

T (A) =
h(−d)∐
j=1

tjT (Q)T (R)(Πp<∞T (Zp) (2.8.3)

where tj ∈
∏
p<∞ T (QP ) and h(−d) is the class number of L. For each p|M put Γ0

L,p =

T (Zp) ∩ Γ0
p. Note that under the isomorphism T (Zp) ' Z×L,p sending x + yξ 7→ x + y

√
−d
2 ,

our two definitions for Γ0
L,p agree, so there is no ambiguity.
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Let M = p1p2...pr be its decomposition into distinct primes. For each 1 ≤ i ≤ r we

choose coset representatives u(pi)
ki
∈ T (Zpi) such that

T (Zpi) =
pi+1∐
ki=1

u
(pi)
ki

Γ0
L,pi .

We write an r-tuple (k1, .., kr) in short as k̃. Let X denote the Cartesian product of the

r sets Xi = {x : 1 ≤ x ≤ pi}. For k̃ ∈ X, define

u
k̃

=
r∏
i=1

u
(pi)
ki

.

Then it is easy to see that as k̃ varies over X the elements u
k̃

form a set of coset repre-

sentatives of Πp|MT (Zp)/Πp|MΓ0
L,p. Also note that |X| = |SL2(Z)/Γ0(M)| = Πp1|M (pi + 1).

We denote the quantity Πp1|M (pi + 1) by g(M).

Let T (Z) denote the (finite) group of units in the ring of integers ZL of L. Let t(d)

denote the cardinality of the group T (Z)/{±1}. We know that,

t(d) =


3 if d = 3

2 if d = 4

1 otherwise.

Let T×M be the image of T (Z) in Πp|MT (Zp). Then T×M ∩Πp|MΓ0
L,p = {±1}. Choose a set of

elements r1, r2, ..rt(d) in T (Z) such that they form distinct representatives in T (Z)/{±1}.

Let ri denote the image of ri in T×M . We have

T×MΠp|MΓ0
L,p =

t(d)∐
i=1

ri(Πp|MΓ0
L,p). (2.8.4)

Finally, choose x1, x2, ..., xg(M)/t(d) in Πp|MT (Zp) such that we have the disjoint coset

decomposition:

Πp|MT (Zp) =
g(M)/t(d)∐

i=1

xiT
×
MΠp|MΓ0

L,p (2.8.5)
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This immediately gives us the fundamental coset decomposition:

T (A) =
∐

1≤j≤h(−d)
1≤k≤g(M)/t(d)

tjxkT (Q)T (R)(Πp-MT (Zp))(Πpi|MΓ0
L,pi) (2.8.6)

Also from (2.8.4) and (2.8.5) we immediately get another coset decomposition:

Πp|MT (Zp) =
∐

1≤i≤g(M)/t(d)
1≤j≤t(d)

xirjΠp|MΓ0
L,p (2.8.7)

But we know that an alternate set of coset representatives in the above equation is given

by the elements u
k̃
. It follows that for any 1 ≤ i ≤ g(M)/t(d), 1 ≤ j ≤ t(d), there exists a

unique k̃ ∈ X such that u−1

k̃
xirj ∈ Πp|MΓ0

L,p. This correspondence is bijective.

Write tjxk = γj,kmj,kκj,k, where γj,k ∈ GL2(Q),mj,k ∈ GL+
2 (R), and κj,k ∈ (Πp<∞,p-MGL2(Zp)·

Πp|MΓ0
p. Also, by (γj,k)f we denote the finite part of γj,k, that is, (γj,k)f = γj,kmj,k.

Lemma 2.8.2. For each j, the elements γ−1
j,1 rlγj,k form a system of representatives of

SL2(Z)/Γ0(M) as l, k vary over 1 ≤ l ≤ t(d), 1 ≤ k ≤ g(M)/t(d).

Proof. Fix j. Let 1 ≤ l2 ≤ t(d), 1 ≤ k2 ≤ g(M)/t(d). We have

γ−1
j,k2

r−1
l2
rlγj,k = mj,k2κj,k2x

−1
k2
r−1
l2
rlxk(mj,kκj,k)−1.

Therefore γ−1
j,k2

r−1
l2
rlγj,k ∈

(
GL+

2 (R)Πq<∞GL2(Zq)
)
∩ GL2(Q) = SL2(Z). Moreover, if it

belongs to Γ0(M) then we must have x−1
k2
r−1
l2
rlxk ∈ Πp|MΓ0

p and by (2.8.7) this can happen

only if l = l2, k = k2. Now the lemma follows because the size of the set γ−1
j,1 rlγj,k equals

the cardinality of SL2(Z)/Γ0(M).

Let Sj,k = det(γj,k)−1γtj,kSγj,k. So, looking at S and Sj,k as elements of GL2(R)+ we

have Sj,k = det(mj,k) (m−1
j,k)tSm−1

j,k .

Lemma 2.8.3. There exists j, k, 1 ≤ j ≤ h(−d), 1 ≤ k ≤ g(M)/t(d) such that a(Sj,k) 6= 0.

Proof. By assumption (2.8.1), a(T ) 6= 0 for some primitive semi-integral positive definite

matrix T with discriminant equal to −d. By [Fur93, p.209] there exists j such that T is

SL2(Z)-equivalent to Sj,1. This means there is R ∈ SL2(Z) such that T = RtSj,1R. By
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Lemma 2.8.2, we can find k, l such that R = γ−1
j,1 rlγj,kg where g ∈ Γ0(M). This gives us

T = gtγtj,kr
t
l (γ
−1
j,1 )tSj,1γ−1

j,1 rlγj,kg

= det(γj,k)−1gtγtj,kr
t
lSrlγj,kg

= det(γj,k)−1gtγtj,kSγj,kg

= gtSj,kg

Hence 0 6= a(T ) = a(gtSj,kg) = a(Sj,k), using the fact that the image of gt in Sp4(Z) falls

in B(M) and F is a modular form for B(M).

Proposition 2.8.4. There exists a character Λ of T (A)/(T (Q)T (R)Πp<∞,p-MT (Zp)·Πp|MΓ0
L,p)

such that ∑
1≤j≤h(−d)

1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k) 6= 0.

Moreover for any such Λ we have Λp non-trivial on T (Zp) for each prime p|M .

Proof. By Lemma 2.8.3 we can find Sj,k such that a(Sj,k) 6= 0. Hence using (2.8.6) we know

that a character Λ satisfying the condition listed in the proposition exists.

Let Λ be such a character and pi a fixed prime dividing M . We will show that Λpi is

not the trivial character on T (Zpi).

For any 1 ≤ j ≤ h(−d) and k̃ ∈ X we can write tjuk̃ = γ
j,k̃
m
j,k̃
κ
j,k̃

, where γ
j,k̃
∈

GL2(Q),m
j,k̃
∈ GL+

2 (R) and κj,k ∈ (Πp<∞,p-MGL2(Zp) ·Πp|MΓ0
p.

We put S
j,k̃

= det(γ
j,k̃

)−1γt
j,k̃
Sγj,k

Suppose Λpi is trivial on T (Zpi). We claim that

∑
1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)
−1a(S

j,k̃
) = 0. (2.8.8)

Suppose we fix k1, k2, .., ki−1, ki+1, ..kr. For 1 ≤ y ≤ pi + 1, let k̃y ∈ X be the r-tuple

obtained by putting ki = y. Then, by essentially the same argument as in Lemma 2.8.2

we see that γ−1

j,k̃1
γ
j,k̃y

form a set of representatives of Γ0(M/pi)/Γ0(M). In particular, this

implies, by [Sch05, 3.3.3], that
∑

y a(S
j,k̃y

) = 0, and therefore, because Λpi is trivial on
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T (Zpi), we must have
∑

y Λ(tjuk̃y)
−1a(S

j,k̃y
) = 0. It follows, by breaking up

∑
1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)
−1a(S

j,k̃
)

into quantities as above, (2.8.8) follows.

Given 1 ≤ k ≤ g(M)/t(d), 1 ≤ l ≤ t(d), let k̃(k, l) be the unique element in X such that

u−1

k̃(k,l)
xkrl ∈ Πp|MΓ0

L,p. (2.8.9)

Such an element exists by our comment after (2.8.7). Suppose we write rl = rlrl,frl,∞ where

rl,f ∈ Πp-MT (Zp) and rl,∞ ∈ T (R)

Then, using (2.8.9) we have

tjuk̃(k,l)
= rltjxkr

−1
l,∞k

with k ∈ (Πp<∞,p-MGL2(Zp) ·Πp|MΓ0
p. In other words we can take γ

j,k̃(k,l)
= rlγj,k.

But then a(S
j,k̃(k,l)

) = a(Sj,k). Also from (2.8.9) it is clear that Λ−1(tjuk̃(k,l)
) =

Λ−1(tjxk). On the other hand if we let k, l vary over all elements in the range 1 ≤ k ≤

g(M)/t(d), 1 ≤ l ≤ t(d), the corresponding k̃(k, l) vary over all k̃ ∈ X. As a result we

conclude that

∑
1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)
−1a(S

j,k̃
) = t(d)

∑
1≤j≤h(−d)

1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k). (2.8.10)

But we have already shown that if Λpi is trivial on T (Zpi) then

∑
1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)
−1a(S

j,k̃
) = 0.

The proof follows.

Consider now the global Bessel space of type (S,Λ, ψ) for π̃. We shall prove that this

space is non zero.
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For that, we consider

BΦ(h) =
∫
ZG(A)B(Q)\B(A)

(Λ⊗ θ)(r)−1Φ(rh)dr (2.8.11)

where θ is defined as in Section 2.1 and Φ(h) = Φ(h). We will show that this function is

non-zero. In fact, we shall explicitly evaluate BΦ(g∞) for g∞ ∈ G(R)+.

Proposition 2.8.5. Let g∞ ∈ G(R)+ and define BΦ(g∞) as in (2.8.11). The following

hold:

(a) If M = 1 we have

BΦ(g∞) = det(J(g∞, i))−lµ2(g∞)le(−tr(S · g∞(i))
∑

1≤j≤h(−d)

Λ(tj)−1a(Sj)

(b) If M > 1 we have

BΦ(g∞) =
1

g(M)
det(J(g∞, i))−lµ2(g∞)le(−tr(S ·g∞(i))

∑
1≤j≤h(−d)

1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k)

Remark. This is a mild generalization of [Sug85, (1-26)]. We present a proof below.

But first, we need some preliminary results.

For any f a function on H2 and g∞ ∈ G(R)+ define

(f |g∞)(Z) = f(g∞(Z))µ2(g∞)l det(J(g∞, i))−l.

Let MSym
2 denote the space of symmetric two by two matrices. We shall think of MSym

2 as

a subgroup of G via x 7→ u(x).

Also, for any continuous function f on G(Q)\G(A) define

Cf (g) =
∫
MSym

2 (Q)\MSym
2 (A)

f(u(X)g)ψ(tr(SX))−1dX.

The following lemma is the content of [Sug85, (1-19)]. However it is not proved there, so

for convenience we include a proof here.

Lemma 2.8.6. Let g∞ ∈ G(R)+, gf ∈ GL2(Af ). We consider gf as an element of G(Af )
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via g 7→

g 0

0 det(g) · (g−1)t

. Then

CΦ(g∞gf ) = det(J(g∞, i))−lµ2(g∞)la(gf , S)e(−tr(S · g∞(i)))

where a(gf , T ) is the (T )’th Fourier coefficient of F |gR, i.e.,

F |gR(Z) =
∑
T

a(gf , T )e(−tr TZ),

and gR is defined by the equation gf = gQgRgK with gQ ∈ G(Q), gR ∈ G(R)+, gK ∈∏
p<∞,p-M Kp ·

∏
p|M Ip.

Proof. Put Up =
∏
p<∞,p-M Kp ·

∏
p|M Ip ⊂ G(Af ). Define Φf by Φf (g) = Φ(ggf ). Then

Φf is left invariant by G(Q) and right invariant by gQUpg
−1
Q . From that it follows that

Φf (gg∞) = Φf (g∞) if g ∈ gQ(
∏
q<∞ U(Zq))g−1

Q . Also note that CΦ(g∞gf ) = CΦf
(g∞) and

Φf (g∞) = µ2(g∞)ldet(J(g∞, i))−l(F |gR)(g∞(i)).

Finally, by approximation, we have

MSym
2 (A) = MSym

2 (Q) + det(gQ)−1gQ

(
MSym

2 (R)
∏
q<∞

MSym
2 (Zq)

)
gtQ.

Therefore

CΦf
(g∞) =

∫
MSym

2 (Q)\MSym
2 (A)

Φf (u(X)g∞)ψ(tr(SX))−1dX

=
∫

det(gQ)−1gQM
Sym
2 (Z)gtQ\M

Sym
2 (R)

Φf (u(X)g∞)e(tr(SX))dX

= µ2(g∞)ldet(J(g∞, i))−l
∑
T

a(gf , T )e(-tr(T · g∞(i)))

·

(∫
MSym

2 (Z)\MSym
2 (R)

e(tr(T + S) ·X)dX

)
= det(J(g∞, i))−lµ2(g∞)la(gf , S)e(−tr(S · g∞(i)))
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Proof of Proposition 2.8.5. The case M = 1 is proved in [Sug85]. So we assume M > 1.

Note that

BΦ(g) =
∫
Z(A)T (Q)\T (A)

CΦ(tg)Λ−1(t)dt.

Hence, using (2.8.6) and the fact that CΦ is right invariant by Πp<∞,p-MT (Zp) · Πp|MΓ0
L,p

we have

BΦ(g∞) = [SL2(Z) : Γ0(M)]−1
∑
j,k

Λ−1(tjxk)
∫
ZT (R)\T (R)

CΦ(tjxkt∞g∞)dt∞. (2.8.12)

Our Haar measure is normalized so that the compact set ZT (R)\T (R) has volume 1.

We henceforth write R∗ instead of ZT (R) for simplicity. We have,∫
R∗\T (R)

CΦ(tjxkt∞g∞)dt∞

=
∫
R∗\T (R)

CΦ(t∞g∞tjxk)dt∞

=
∫
R∗\T (R)

CΦ(t∞g∞(γj,k)f )dt∞

=
∫
R∗\T (R)

det(J(t∞g∞, i))−lµ2(t∞g∞)la((γj,k)f , S)e(−tr(S · t∞g∞(i)))dt∞

= det(J(g∞, i))−lµ2(g∞)la((γj,k)f , S)(
∫
R∗\T (R)

e(−tr(S · g∞(i)))dt∞)

= det(J(g∞, i))−lµ2(g∞)la((γj,k)f , S)e(−tr(S · g∞(i)))

(2.8.13)

Let us compute a((γj,k)f , S). We have

F |mj,k(Z) =
∑
T>0

a(T )e(−tr T · (mj,k(Z)))

=
∑
T>0

a(T )e(−tr det(m−1
j,k) · ((mj,k)tTmj,k) · Z).

So, the S’th Fourier coefficient corresponds to T = det(mj,k) (m−1
j,k)tSm−1

j,k = Sj,k. Thus

a((γj,k)f , S) = a(Sj,k). (2.8.14)

Putting together (2.8.12),(2.8.13) and (2.8.14), we have the proof of the proposition.
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Description of the Eisenstein series

This section describes the Eisenstein series on G̃(A). For each finite place v, recall that K̃v

is the maximal compact subgroup of G̃(Qv) and is defined by

K̃v = G̃(Qv) ∩GL4(ZL,v).

Let us now define

K̃∞ = {g ∈ G̃(R)|µ2(g) = 1, g < iI2 >= iI2}.

Equivalently

K̃∞ = U(2, 2; R) ∩ U(4,R).

We define

ρl(k∞) = det(k∞)l/2 det(J(k∞, i))−l.

By [Ich07, p. 5], any matrix k∞ in K̃∞ can be written in the form k∞ = λ

 A B

−B A


where λ ∈ C, |λ| = 1, and A+ iB,A− iB ∈ U(2; R) with det(A+ iB) = det(A− iB). Then,

ρl(k∞) = det(A− iB)−l (2.8.15)

Note that if k∞ has all real entries, i.e. k∞ ∈ Sp(4,R) ∩O(4,R), then

ρl(k∞) = det(J(k∞, i))−l.

Extend Ψ to GU(1, 1;L)(A) by

Ψ(ag) = Ψ(g)

for a ∈ L×(A), g ∈ GL2(A). We define subsets S1, S2, S3 of the (finite) primes by

• S1 is the set of primes that divide M but not N
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• S2 is the set of primes that divide gcd(M,N)

• S3 is the set of primes that divide N but not M

and put S = S1 t S2 t S3. Let L = Q(
√
−d),Λ be as in §2.8. Note that all primes in S

are odd and inert in L.

Now define the compact open subgroup U G̃ of G̃(Af ) by

U G̃ =
∏
p/∈S

KG̃
p

∏
p∈S3

U G̃p
∏

p∈S1∪S2

I ′p (2.8.16)

Define

fΛ(g, s) = δ
s+ 1

2
P (m1m2)Λ(m1)−1Ψ(m2)ρl(k∞) if g = m1m2nk̃k ∈ G̃(A) (2.8.17)

where mi ∈ M (i)(A) (i = 1, 2), n ∈ N(A), k = k∞k0 with k∞ ∈ KG̃
∞, k0 ∈ U G̃ and

k̃ =
∏
p kp ∈

∏
pK

G̃
p is such that kp = 1 if p /∈ S1 t S2, kp ∈ {1, s1} for p ∈ S2 and

kp ∈ {1,Θ} for p ∈ S1. Put

fΛ(g, s) = 0

if g is not of the form above.

We define the Eisenstein series EΨ,Λ(g, s) on G̃(A) by

EΨ,Λ(g, s) =
∑

γ∈P (Q)\G̃(Q)

fΛ(γg, s). (2.8.18)

The global integral

The global integral for our consideration is

Z(s) =
∫
ZG(A)G(Q)\G(A)

EΨ,Λ(g, s)Φ(g)dg.

Then, by (2.2.6), Theorem 2.2.1, Theorem 2.5.1, Theorem 2.6.1 and Theorem 2.7.1 we have

Z(s) =
QfZ∞(s)

g(M/f)PMN
·
∏
p|f

p−6s−3

1− apwpp−3s−3/2
·

L(3s+ 1
2 , π × σ)

ζMN (6s+ 1)L(3s+ 1, σ × ρ(Λ))
(2.8.19)
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where f denotes gcd(M,N) and

L(s, π × σ) =
∏
q<∞

L(s, πq × σq)

L(s, σ × ρ(Λ))) =
∏

q<∞,q-M

L(s, σq × ρ(Λq)),

ζA(s) =
∏
p-A

p prime

(1− p−s)−1,

PA =
∏
r|A

r prime

(r2 + 1),

,

QA =
∏
r|A

r prime

(1− r),

and

Z∞(s) =
∫
B(R)\G(R)

WfΛ
(Θg, s)BΦ(g)dg (2.8.20)

As for the explicit computation of Z∞, Furusawa’s calculation in [Fur93], mutatis mu-

tandis, works for us. The only real point of difference is the choice of S. Furusawa chooses

S =



d
4 0

0 1

 , if d ≡ 0 (mod 4),

1+d
4

1
2

1
2 1

 , if d ≡ 3 (mod 4).

He computes Z∞(s) for the case d ≡ 0 (mod 4) and uses it to deduce the other case via a

simple change of variables, using

1+d
4

1
2

1
2 1

 =

 1 0

−1
2 1

td
4 0

0 1

 1 0

−1
2 1

 .
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In our case we have,

S =

 b2+d
4

b
2

b
2 1

 =

1 0
b
2 1

td
4 0

0 1

1 0
b
2 1


and so a similar change of variables works.

Define a(Λ) = a(F,Λ) by

a(Λ) =


∑

1≤j≤h(−d) Λ(tj)a(Sj) if M = 1

1
g(M)

∑
1≤j≤h(−d)

1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k) if M > 1.

Then we have (cf. [Fur93, p. 214])

Z∞(s) = πa(Λ)(4π)−3s− 3
2
l+ 3

2d−3s− l
2 ·

Γ(3s+ 3
2 l −

3
2)

6s+ l − 1
.

Henceforth we simply write L(s, F × g) for L(s, π × σ). We can summarize our compu-

tations in the following theorem.

Theorem 2.8.7 (The integral representation). Let F and EΨ,Λ be as defined previously.

Then

∫
ZG(A)G(Q)\G(A)

EΨ,Λ(g, s)Φ(g)dg = C(s) · L(3s+
1
2
, F × g)

where C(s) =

A(f)πa(Λ)(4π)−3s− 3
2
l+ 3

2d−3s− l
2 Γ(3s+ 3

2 l −
3
2)

g(M/f)PMN (6s+ l − 1)ζMN (6s+ 1)L(3s+ 1, σ × ρ(Λ))

∏
p|f

p−6s−3

1− apwpp−3s−3/2

with f = gcd(M,N).

Remark. Note that

C(
l

6
− 1

2
) =

π4−2l a(F,Λ)
ζ(l − 2)L( l−1

2 , σ × ρ(Λ))
× (an algebraic number).
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Chapter 3

The Pullback Formula and the
Second Integral Representation

3.1 Eisenstein series on GU(3, 3)

Let P
H̃

= M
H̃
N
H̃

be the Siegel parabolic of H̃, with

M
H̃

(Q) :=

m(A, v) =

A 0

0 v · (A−1)t

 |A ∈ GL3(L), v ∈ Q×
 ,

N
H̃

(Q) :=

n(b) =

1 b

0 1

 |b ∈M3(L), bt = b

 .

For s ∈ C, we form the induced representation

I(Λ, s) = ⊗vIv(Λv, s) = IndH̃(A)
P
H̃

(A)(Λ‖ · ‖
3s)

consisting of smooth functions Ξ on H̃(A) such that

Ξ(nm(A, v)g, s) = |v|−9(s+ 1
2

)|NL/Q(detA)|3(s+ 1
2

)Λ(detA)Ξ(g, s) (3.1.1)

for n ∈ N
H̃

(A), m(A, v) ∈M
H̃

(A), g ∈ H̃(A).

Finally, given such a section Ξ, we form the Eisenstein series EΞ(h, s) by

EΞ(h, s) =
∑

γ∈P
H̃

(Q)\H̃(Q)

Ξ(γh, s) (3.1.2)



80

for Re(s) large, and defined elsewhere by meromorphic continuation.

Some compact subgroups

For each finite place p of Q, define the maximal compact subgroups KH̃
p ,K

F̃
p , K̃p of (respec-

tively) H̃(Qp), F̃ (Qp), G̃(Qp) by

KH̃
p = H̃(Qp) ∩GL6(ZL,p),

KF̃
p = F̃ (Qp) ∩GL2(ZL,p),

K̃p = G̃(Qp) ∩GL4(ZL,p).

Let U H̃p be the subgroup of KH̃
p defined by

U H̃p =
{
z ∈ KH̃

p | z ≡



∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗


(mod p)

}
.

Let r : KH̃
p → H̃(Fp) be the canonical map and define the subgroup

I ′H̃p = r−1I(6,Fp).

Also, put

KH̃
∞ = {g ∈ H̃(R)|µ3(g) = 1, g < iI3 >= iI3},

K̃∞ = {g ∈ G̃(R)|µ2(g) = 1, g < iI2 >= iI2}

and

KF̃
∞ = {g ∈ F̃ (R)|µ1(g) = 1, g < i >= i}.

By [Ich07, p.5], any matrix k∞ in KH̃
∞ (resp. KF̃

∞) can be written in the form k∞ =

λ

 A B

−B A

 where λ ∈ C, |λ| = 1, and A+ iB,A− iB lie in U(3; R) (resp. U(1; R)) with



81

det(A+ iB) = det(A− iB).

For a positive even integer `, define

ρ`(k∞) = det(A− iB)−`. (3.1.3)

Note that an alternate definition for ρ`(k∞) is simply

ρ`(k∞) = det(k∞)`/2 det(J(k∞, i))−`.

Also note that if k∞ has all real entries, then

ρ`(k∞) = det(J(k∞, i))−`.

A particular choice of section

Fix an element Q ∈ H1(Z) and an element Ω ∈ H̃1(Z). For any place v let Qv (resp. Ωv)

denote the natural inclusion of Q (resp. Ω) into H̃(Qv).

We impose the following condition on Ω for all primes p ∈ S2:

If nm(A, v) ∈ P
H̃

(Qp) ∩ ΩpI
′H̃
p Ω−1

p , then det(A) ∈ Γ0
L,p.

We next define, for each place v, a particular section Υv(s) ∈ Iv(Λv, s).

Recall that Iv(Λv, s) consists of smooth functions Ξ on H̃(Qv) such that

Ξ(nm(A, t)g, s) = |t|−9(s+ 1
2

)
v |NL/Q(detA)|3(s+ 1

2
)

v Λv(detA)Ξ(g, s) (3.1.4)

for n ∈ N
H̃

(Qv), m(A, t) ∈M
H̃

(Qv), g ∈ H̃(Qv).

• Clearly Ip(Λp, s) has a KH̃
p fixed vector whenever Λp is unramified.

For all finite places p /∈ S, choose Υp to be the unique KH̃
p fixed vector with

Υp(1, s) = 1. (3.1.5)

• For all finite places p ∈ S3, choose Υp to be the unique U H̃p fixed vector with

Υp(Qp, s) = 1 (3.1.6)
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and

Υp(t, s) = 0

if t /∈ P
H̃

(Qp)QpU H̃p .

• Suppose p ∈ S2. Choose Υp to be the unique I ′H̃p fixed vector with

Υp(Qp, s) = 1 (3.1.7)

and

Υp(t, s) = 0

if t /∈ P
H̃

(Qp)QpI ′H̃p .

• Let p ∈ S1.

Choose Υp to be the unique I ′H̃p fixed vector with

Υp(Ω, s) = 1, Υp(Qp, s) = 1 (3.1.8)

and

Υp(t, s) = 0

if t /∈ P
H̃

(Qp)ΩI ′H̃p tPH̃(Qp)QpI ′H̃p . Note that such a vector exists by our assumption

on Ω.

• Finally choose Υ∞ to be the unique vector in I∞(Λ∞, s) such that

Υ∞(k∞, s) = ρ`(k∞) (3.1.9)

for k∞ ∈ KH̃
∞.

Let Υ be the factorizable section in IndH̃(A)
P
H̃

(A)(Λ‖ · ‖
3s). defined by

Υ(s) = (⊗vΥv(s)).

As explained in (3.1.2), this gives rise to Eisenstein series EΥ(g, s).
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Also, for each place v, we define the local section Υ]
v by

Υ]
v(g, s) = Υv(gQv, s).

Define Υ](s) = ⊗vΥ]
v(s).

Note that Υ] is right invariant by
∏
p∈S1tS2

QI ′H̃p Q−1
∏
p∈S3

QU H̃p Q
−1
∏

p/∈S
p<∞

KH̃
p .

So, by (3.1.2), we construct an Eisenstein series EΥ](g, s). Note that

EΥ](g, s) = EΥ(gQ, s) (3.1.10)

3.2 Statement of the pullback formula

We henceforth fix Q to equal the following matrix:

Q =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 −1

0 0 0 1 0 0

0 1 1 0 0 0


.

An important embedding

We now define an embedding ι : R̃ ↪→ H̃. Let (g1, g2) ∈ R̃(A), and put h =

g1 0

0 g2

.

Then we define ι(g1, g2) to equal the element p−1
0 hp0 ∈ H̃(A) where p0 ∈ GL6(Q) is defined

by

p0 =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 −1 1 0 0

−1 0 0 0 0 1

0 0 1 0 0 0


. (3.2.1)
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An essential feature of this embedding is the following. Suppose

g1 = m1(a)m2(b)n ∈ P (A),

g2 = b

where

m1(a) =


a 0 0 0

0 1 0 0

0 0 a−1 0

0 0 0 1

 ∈M
(1)(A),

n ∈ N(A), b =

α β

γ δ

 ∈ F̃ (A),

and

m2(b) =


1 0 0 0

0 α 0 β

0 0 λ 0

0 γ 0 δ

 ∈M
(2)(A),

where λ = µ1

α β

γ δ

. Then

ι(g1, g2) ∈ P
H̃

(A). (3.2.2)

It is this key fact that enables us to pass from Klingen Eisenstein series on G̃(A) to Siegel

Eisenstein series on H̃(A).

Henceforth, we fix

Ω = ι(Θ, 1)Q.

The Pullback formula

For an element g ∈ G̃(A), let F̃1[g](A) denote the subset of F̃ (A) consisting of all elements

h2 such that µ2(g) = µ1(h2).
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We will compute the integral

E(g, s) =
∫
F̃1(Q)\F̃1[g](A)

EΥ](ι(g, h), s)Ψ(h)Λ−1(deth)dh. (3.2.3)

Define

ζS(s) =
∏
p/∈S

(1− p−s)−1,

LS(s, χ−D) =
∏
p/∈S

gcd(p,D)=1

(1− (χ−D)p(p)p−s)−1

where χ−D denotes the character of A× associated to L. Also define

PS =
∏
p∈S

(p2 + 1).

Also, let ρ(Λ) denote the representation of GL2(A) obtained from Λ by automorphic

induction. Hence, for a prime q /∈ S, we have:

L(s, σq × ρ(Λq))

=



(1− α2(q)q−2s)−1(1− β2(q)q−2s)−1 if q is inert in L,

(1− α(q)Λq(q1)q−s)−1(1− β(q)Λq(q1)q−s)−1 if q is ramified in L,

(1− α(q)Λq(q1)q−s)−1(1− β(q)Λq(q1)q−s)−1

·(1− α(q)Λ−1
q (q1)q−s)−1(1− β(q)Λ−1

q (q1)q−s)−1 if q splits in L,

where q1 ∈ Zq ⊗Q L is any element with NL/Q(q1) ∈ qZ×q .

Also for a prime p ∈ S3, put

L(s, σp × ρ(Λp)) = (1− p−2s−1)−1.

Put

L(s, σ × ρ(Λ)) =
∏
q-M

L(s, σq × ρ(Λq)).

Now define

B(s) =
B∞(s)L(3s+ 1, σ × ρ(Λ))

g(M)2PS3L
S(6s+ 2, χ−D)ζS(6s+ 3)

(3.2.4)



86

where

g(M) =
∏
p|M

(p+ 1)

and

B∞(s) =
(−1)`/22−6s−1π

6s+ `− 1
.

Then the pullback formula says:

Theorem 3.2.1 (Pullback formula). For g ∈ G̃(A) define E(g, s) as above and EΨ,Λ(g, s)

as in (2.8.18). Then we have

E(g, s) = B(s)EΨ,Λ(g, s).

We will prove the Pullback formula in §3.5 using the machinery developed in the next

two sections.

3.3 The local integral and the unramified calculation

Definitions

We retain the notations and definitions of the previous section. Furthermore, for any prime

p, we define the following compact subgroups of F̃ (Qp):

• ΓF̃0,p = {A ∈ KF̃
p | A ≡

∗ ∗
0 ∗

 (mod p)}

• Let rp : KF̃
p → GU(1, 1)(Fp) be the canonical map and let K ′F̃p = r−1

p (GL2(Fp)).

Define

Γ′F̃0,p = K ′F̃p ∩ ΓF̃0,p.

Some useful properties

First, we note some properties of the section Υ]. Fix (g1, g2) ∈ R̃(A).

• Let p be a prime not dividing MN and k1 ∈ K̃p, k2 ∈ KF̃
p with µ2(k1) = µ1(k2).

Then, note that

Q−1ι(k1, k2)Q ∈ KH̃
p .
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Because Υ]
p is KH̃

p -fixed, it follows that

Υ](ι(g1k1, g2k2), s) = Υ](ι(g1, g2), s), (3.3.1)

• Let p|N, p - M . If k1 ∈ Ũp, k2 ∈ ΓF̃0,p with µ2(k1) = µ1(k2) then check that

Q−1ι(k1, k2)Q ∈ U H̃p . (3.3.2)

Because Υ]
p is U H̃p -fixed, it follows that

Υ](ι(g1k1, g2k2), s) = Υ](ι(g1, g2), s), (3.3.3)

• Let p be a prime dividing M . If k1 ∈ I ′p, k2 ∈ Γ′F̃0,p with µ2(k1) = µ1(k2) then check

that

Q−1ι(k1, k2)Q ∈ I ′H̃p . (3.3.4)

Because Υ]
p is I ′H̃p -fixed, it follows that

Υ](ι(g1k1, g2k2), s) = Υ](ι(g1, g2), s), (3.3.5)

• Finally, let k1 ∈ K̃∞, k2 ∈ KF̃
∞ with µ2(k1) = µ1(k2). Check that

Q−1ι(k1, k2)Q ∈ KH̃
∞. (3.3.6)

Hence we have

Υ](g1k1, g2k2, s) = ρ`(k1)ρ`(k2)−1Υ](g1, g2, s). (3.3.7)

The key local zeta integral

Let ψ =
∏
v ψv be a character of A such that

• The conductor of ψp is Zp for all (finite) primes p,

• ψ∞(x) = e(x), for x ∈ R,

• ψ|Q = 1.
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Let WΨ be the Whittaker model for Ψ. It is a function on F̃ (A) defined by

WΨ(g) =
∫

Q\A
Ψ

1 x

0 1

 g

ψ(−x)dx.

We have the Fourier expansion

Ψ(g) =
∑
λ∈Q×

WΨ

λ 0

0 1

 g

 (3.3.8)

By the uniqueness of Whittaker models, we have a factorization

WΨ = ⊗vWΨ,v.

Now, for each place v, and elements gv ∈ F̃ (Qv), kv ∈ K̃v, define the local zeta integral

Zv(gv, kv, s) =
∫
F̃1(Qv)

Υ]
v(ι(kv, hv), s)WΨ,v(gvhv)Λ−1

v (dethv)dhv, (3.3.9)

The evaluation of this local integral at each place v lies at the heart of our proof of the

pullback formula.

First of all, by (3.2.2) and the properties proved earlier, observe that it is enough to

evaluate the integral for kv lying in a fixed set of representatives of (P (Qv) ∩ K̃v)\K̃v/Uv,

where

Uv =


K̃v if v /∈ S

Ũv if v ∈ S3

I ′v if v ∈ S1 t S2

For 1 ≤ i ≤ 5, define the matrices si ∈ G(Q) as follows:

s1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , s2 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , s3 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 ,
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s4 =


0 −1 0 0

−1 0 0 0

0 0 0 −1

1 0 −1 0

 , s5 =


0 −1 0 0

−1 0 0 0

0 1 0 −1

0 0 −1 0

 .

Define the set Y∞ = {1} and for a (finite) prime p, define the set Yp ⊂ G̃(Qp) as follows:

• Yp = {1} if p - MN .

• Yp = {1, s1, s2} if p|N, p - M .

• Yp = {1, s1, s2, s3,Θ,Θs2,Θs4,Θs5} if p|M .

Remark. In the above definition, we consider the si and Θ as elements of G̃(Qp). This

makes Yv a subset of G̃(Zv) for all places v.

Lemma 3.3.1. Yv is a set of representatives for (P (Qv) ∩ K̃v)\K̃v/Uv at all places v.

Proof. For v infinite or v a prime not dividing MN , this is obvious. Now let p be a prime

dividing N but not M . If W denotes the eight element Weyl group, then W is generated

by s1 and s2. W is a set of representatives for (P (Qp) ∩ K̃p)\K̃p/I
G̃
p where IG̃p denotes the

Iwahori subgroup of G̃(Qp). Since Ũp is larger than IG̃p , there is some collapsing, as expected.

By explicit computation we find that {1, s1, s2} do form a set of distinct representatives.

The case when p|M is also proved similarly by explicit computation. For brevity, we do not

include the details here.

The rest of this section and the next will be devoted to evaluating at each place v the

integral Zv(gv, kv, s) for every kv ∈ Yv, gv ∈ F̃ (Qv).

The local integral at unramified places

In the rest of this section, q will denote a prime that does not divide MN . Hence, both Λq

and σq are unramified.

In particular, σq is a spherical principal series representation induced from unramified

characters α, β of Q×q .

By abuse of notation we use q to also denote its inclusion in Q×q . Thus q is an uniformizer

in our local field.
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Let ρ(Λ) denote the representation of GL2(A) obtained from Λ by automorphic induc-

tion. Hence we have:

L(s, σq × ρ(Λq))

=



(1− α2(q)q−2s)−1(1− β2(q)q−2s)−1 if q is inert in L,

(1− α(q)Λq(q1)q−s)−1(1− β(q)Λq(q1)q−s)−1 if q is ramified in L,

(1− α(q)Λq(q1)q−s)−1(1− β(q)Λq(q1)q−s)−1

·(1− α(q)Λ−1
q (q1)q−s)−1(1− β(q)Λ−1

q (q1)q−s)−1 if q splits in L,

where q1 ∈ Zq ⊗Q L is any element with NL/Q(q1) ∈ qZ×q .

For a character χ of Q×q define L(s, χ) =


(1− χ(q)q−s) if χ is unramified at q,

1 otherwise.

Proposition 3.3.2. Let q be a prime such that q - MN . Let 1 denote the trivial character

and χ−D denote the Hecke character associated to the quadratic extension L/Q. Then, we

have

Zq(gq, 1, s) = WΨ,q(gq) ·
L(3s+ 1, σq × ρ(Λq))

L(6s+ 2, (χ−D)q)L(6s+ 3,1)
.

Proof. Let KF̃1
q denote the maximal compact subgroup of F̃1(Qq) defined by

KF̃1
q = F̃1(Qq) ∩GL2(ZL,q).

Note that for g ∈ F̃1(Qq), k1, k2 ∈ KF̃1
q , we have using (3.1.1), (3.3.1)

Υ]
q(ι(1, k1gk2), s) = Υ]

q(ι(m2(k1)m2(k1)−1, k1gk2), s)

= Υ]
q(ι(m2(k1)−1, gk2), s)

= Υ]
q(ι(1, g), s)

In other words Υ]
q(ι(1, g), s) only depends on the double coset KF̃1

q gKF̃1
q .

There are three distinct cases: q can be inert, split or ramified in L. We consider each

of these cases separately.

Case 1. q is inert in L.
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In this case, Lq is a quadratic extension of Qq. We may write elements of Lq in the

form a+ b
√
−d with a, b ∈ Qq; then ZL,q = a+ b

√
−d where a, b ∈ Zq. Also note that Λq is

trivial.

We know (Cartan decomposition) that

F̃1(Qq) =
⊔
n≥0

KF̃1
q AnK

F̃1
q

where An =

qn 0

0 q−n

 . So (3.3.9) gives us

Zq(gq, 1, s) =
∑
n≥0

Υ]
q(ι(1, An), s)

∫
K
F̃1
q AnK

F̃1
q

WΨ,q(gqhq)dhq. (3.3.10)

Given an element k ∈ KF̃1
q we can find l ∈ Z×L,q such that kl ∈ GL2(Zq). It follows that

if

GL2(Zq)AnGL2(Zq) =
⊔
i

aiGL2(Zq),

where ai ∈ SL2(Zq) then

KF̃1
q AnK

F̃1
q =

⊔
i

aiK
F̃1
q .

The importance of this observation is that we can use the theory of Hecke operators for

GL2 to evaluate
∫
K
F̃1
q AnK

F̃1
q

WΨ,q(gqhq)dhq.

Recall that classically T (qk) denotes the Hecke operator corresponding to the set

GL2(Zq)SkGL2(Zq) where Sk comprises of the matrices of size 2 with entries in Zq whose

determinant generates the ideal (qk). Also observe that

GL2(Zq)S2nGL2(Zq) =

qn 0

0 qn

GL2(Zq)AnGL2(Zq)

⊔q 0

0 q

GL2(Zq)S2n−2GL2(Zq).
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So we have

∫
K
F̃1
q AnK

F̃1
q

WΨ,q(gqhq)dhq =
∑
i

WΨ,q(gqai) (3.3.11)

= (β2n − β2n−2)WΨ,q(gq) (3.3.12)

where βk is the eigenvalue corresponding to Ψ for the Hecke operator T (qk). We put βk = 0

if k < 0.

Using [Bum97, Propostion 4.6.4] we have

βk =
qk/2(α(q)k+1 − β(q)k+1)

α(q)− β(q)
(3.3.13)

for k ≥ 0.

On the other hand, using (3.2.1) we see that ι(1, An) is the matrix

C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 q−n 0 0 0

0 0 q−n − 1 1 0 0

0 0 0 0 1 0

1− qn 0 0 0 0 qn


We can write C = PK where

P =



qn 0 0 0 0 1

0 1 0 0 0 0

0 0 1 q−n 0 0

0 0 0 q−n 0 0

0 0 0 0 1 0

0 0 0 0 0 1


∈ P

H̃
(Qq)
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and

K =



1 0 0 0 0 −1

0 1 0 0 0 0

0 0 1 −1 0 0

0 0 1− qn qn 0 0

0 0 0 0 1 0

1− qn 0 0 0 0 qn


. (3.3.14)

So, by (3.1.1) we have

Υ]
q(ι(1, An), s) = q−6n(s+1/2)Υ]

q(K, s) (3.3.15)

Also K ∈ KH̃
q , hence Υ]

q(K, s) = 1.

So, by (3.3.10),(3.3.12),(3.3.13),(3.3.15), we have

Zq(gq, 1, s) = WΨ,q(gq)
[∑
n≥0

q−6n(s+1/2) q
n(α(q)2n+1 − β(q)2n+1)

α(q)− β(q)

−
∑
n≥1

q−6n(s+1/2) q
n−1(α(q)2n−1 − β(q)2n−1)

α(q)− β(q)

]

= WΨ,q(gq)
(1− q−6s−3)(1 + q−6s−2)

(1− α(q)2q−6s−2)(1− β(q)2q−6s−2)

= WΨ,q(gq) ·
L(3s+ 1, σq × ρ(Λq))

L(6s+ 2, χ−D)L(6s+ 3,1)

Case 2. q is split in L.

We can identify Lq with Qq ⊕Qq with Qq embedded diagonally as t 7→ (t, t).

For g ∈ GLn(Qq) denote g∗ = J−1
n (gt)−1Jn. Note that for n = 2, g∗ = g

det g . Now

there is a natural isomorphism of GLn(Qq) into U(n, n)(Qq) given by g 7→ (g, g∗). Thus

specializing to the n = 2 case, g 7→ (g, g
det g ) takes GL2(Qq) isomorphically onto F̃1(Qq).

Define Am,k to be the image of

qm+k 0

0 qm

 .

Thus Am,k =

(qm+k, q−m) 0

0 (qm, q−m−k)

 .



94

The Cartan decomposition gives us

F̃1(Qq) =
⊔
k≥0
m∈Z

KF̃1
q Am,kK

F̃1
q .

Let q1 denote the element (q, 1) ∈ Lq. So NL/Q(q1) = q. For brevity, let us denote Λq(q1)

by λ. Note that for any integer m,

Λq(qm, q−m) = λ2m.

Now, using (3.3.9), we have

Zq(gq, 1, s) =
∑
k≥0
m∈Z

Υ]
q(ι(1, Am,k), s)λ

−4m−2k

∫
K
F̃1
q Am,kK

F̃1
q

WΨ,q(gqhq)dhq. (3.3.16)

Using the above conventions, and the notation of the inert case, we have

GL2(Zq)SkGL2(Zq) =

q−m 0

0 q−m

GL2(Zq)Am,kGL2(Zq)

⊔q 0

0 q

GL2(Zq)Sk−2GL2(Zq).

So, we have

∫
K
F̃1
q Am,kK

F̃1
q

WΨ,q(gqhq)dhq = (βk − βk−2)WΨ,q(gq) (3.3.17)

where we put βk = 0 if k < 0. Now ι(1, Am,k) is the matrix C where

C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 qm 0 0 0

0 0 qm − 1 1 0 0

0 0 0 0 1 0

1− qm+k 0 0 0 0 qm+k


.
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[Note that by C we actually mean the pair (C,C∗). This convention will be used

throughout our treatment of the split case; thus the letters P,K etc. are really a shorthand

for (P, P ∗), (K,K∗), etc.]

First we consider the case m ≥ 0. We can write C = PK

where

P =



qm+k 0 0 0 0 1

0 1 0 0 0 0

0 0 qm −qm 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and

K =



1 0 0 0 0 −1

0 1 0 0 0 0

0 0 qm 1 0 0

0 0 qm − 1 1 0 0

0 0 0 0 1 0

1− qm+k 0 0 0 0 qm+k


.

Since P ∈ P
H̃

(Qq) we have, using (3.1.1)

Υ]
q(ι(1, Am,k), s) = λ2m+kq−3(2m+k)(s+1/2)Υ]

q(K, s) (3.3.18)

Since K ∈ KH̃
q , Υ]

q(K, s) = 1.

Thus when m ≥ 0 we have

Υ]
q(ι(1, Am,k), s) = λ2m+kq−(6m+3k)(s+1/2). (3.3.19)

Now suppose 0 ≥ m ≥ −k. For convenience we temporarily put n = −m. So 0 ≤ n ≤ k.

We can write C = PK
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where

P =



qk−n 0 0 0 0 1

0 1 0 0 0 0

0 0 1 q−n 0 0

0 0 0 q−n 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and

K =



1 0 0 0 0 −1

0 1 0 0 0 0

0 0 1 −1 0 0

0 0 1− qn qn 0 0

0 0 0 0 1 0

1− qk−n 0 0 0 0 qk−n


.

Since P ∈ P
H̃

(Qq) we have, using (3.1.1)

Υ]
q(ι(1, Am,k), s) = λ−2n+kq−3k(s+1/2)Υ]

q(K, s)

= λ2m+kq−3k(s+1/2)Υ]
q(K, s)

(3.3.20)

As before Υ]
q(K, s) = 1.

So, when −k ≤ m ≤ 0 we have

Υ]
q(ι(1, Am,k), s) = λ2m+kq−3k(s+1/2). (3.3.21)

Finally, consider the case m ≤ −k. For convenience we again put n = −m. So 0 ≤ k ≤ n.

We can write C = PK

where

P =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 q−n 0 0

0 0 0 q−n 0 0

0 0 0 0 1 0

0 0 0 0 0 qk−n


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and

K =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 −1 0 0

0 0 1− qn qn 0 0

0 0 0 0 1 0

qn−k − 1 0 0 0 0 1


Since P ∈ P

H̃
(Qq) we have, using (3.1.1)

Υ]
q(ι(1, Am,k), s) = λ−2n+kq−3(2n−k)(s+1/2)Υ]

q(K, s)

= λ2m+kq−3(−2m−k)(s+1/2)Υ]
q(K, s)

(3.3.22)

So, when m ≤ −k we have

Υ]
q(ι(1, Am,k), s) = λ2m+kq(6m+3k)(s+1/2). (3.3.23)

Substituting (3.3.13),(3.3.17),(3.3.19),(3.3.21),(3.3.23) into (3.3.16) we obtain

Zq(gq, 1, s)

= WΨ,q(gq)
∞∑
k=0

(βk − βk−2)
[ ∞∑
m=1

λ−2m−kq(−6m−3k)(s+1/2)

+
0∑

m=−k
λ−2m−kq−3k(s+1/2) +

−k−1∑
m=−∞

λ−2m−kq(6m+3k)(s+1/2)

]

=
WΨ,q(gq)(1− q−6s−3)(1− q−6s−2)

(1− α(q)λq−3s−1)(1− β(q)λq−3s−1)(1− α(q)λ−1q−3s−1)(1− β(q)λ−1q−3s−1)

= WΨ,q(gq) ·
L(3s+ 1, σq × ρ(Λq))

L(6s+ 2, χ−D)L(6s+ 3,1)

Case 3. q is ramified in L.

We largely revert to the notation of the inert case. Write elements of Lq as a + b
√
−d

with a, b ∈ Qq; so ZL,q = a+b
√
−d with a, b ∈ Zq. Also let q1 =

√
−d; thus NL/Q(q1) ∈ qZ×q .

Put λ = Λq(q1). We have λ2 = 1.
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The Cartan decomposition takes the form

F̃1(Qq) =
⊔
n≥0

KF̃1
q AnK

F̃1
q

where An =

qn1 0

0 q−n1

 . So (3.3.9) gives us

Zq(gq, 1, s) =
∑
n≥0

Υ]
q(ι(1, An), s)

∫
K
F̃1
q AnK

F̃1
q

WΨ,q(gqhq)dhq. (3.3.24)

Now,

KF̃1
q AnK

F̃1
q =

q−n1 0

0 q−n1

KF̃1
q

qn 0

0 1

KF̃1
q

.

So, by the same argument as in the inert case, we have,

∫
K
F̃1
q AnK

F̃1
q

WΨ,q(gqhq)dhq = (βn − βn−2)WΨ,q(gq) (3.3.25)

where, of course, we put βn = 0 for negative n.

Now ι(1, An) is the same matrix as in the inert case with q replaced by q1. So the same

choice of P and K work.

Thus, by (3.1.1) we have

Υ]
q(ι(1, An), s) = λnq−3n(s+1/2) (3.3.26)

Substituting (3.3.13),(3.3.25), (3.3.26) in (3.3.24) we have

Zq(gq, 1, s) = WΨ,q(gq)
[∑
n≥0

λnq−3n(s+1/2) q
n/2(α(q)n+1 − β(q)n+1)

α(q)− β(q)

−
∑
n≥2

λnq−3n(s+1/2) q
n/2−1(α(q)n−1 − β(q)n−1)

α(q)− β(q)

]

= WΨ,q(gq)
(1− q−6s−3)

(1− α(q)λq−3s−1)(1− β(q)λq−3s−1)

= WΨ,q(gq) ·
L(3s+ 1, σq × ρ(Λq))

L(6s+ 2, χ−D)L(6s+ 3,1)
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(Note that L(s, χ−D) = 0 in this case)

This completes the proof.

3.4 The local integral for the ramified and infinite places

The local integral for primes in S3

Let r be a prime dividing N but not M . Note that r is inert by our assumptions. In this

section we will prove the following proposition.

Proposition 3.4.1. We have

Zr(gr, kr, s) =


1

r2+1
WΨ,r(gr) · L

(
3s+ 1, σr × ρ(Λr)

)
if kr = 1

0 if kr = s1 or s2.

where the local L-function L(s, σr × ρ(Λr)) is defined by

L(s, σr × ρ(Λr)) = (1− r−2s−1)−1.

Proof. Recall that σ is the irreducible automorphic representation of GL2(A) generated by

Ψ̃. Let σr be the local component of σ at the place r. We know that σr = Sp ⊗ τ where

Sp denotes the special (Steinberg) representation and τ is a (possibly trivial) unramified

quadratic character. We put ar = τ(r), thus ar = ±1 is the eigenvalue of the local Hecke

operator T (r).

We first deal with the case kr = 1. Let ΓF̃1
0,r denote the compact open subgroup of

F̃1(Qr) defined by

ΓF̃1
0,r = ΓF̃0,r ∩ F̃1(Qr).

Note that for g ∈ F̃1(Qr), k1, k2 ∈ ΓF̃1
0,r, we have using (3.1.1), (3.3.3)

Υ]
r(ι(1, k1gk2), s) = Υ]

r(ι(m2(k1)m2(k1)−1, k1gk2), s)

= Υ]
r(ι(m2(k1)−1, gk2), s)

= Υ]
r(ι(1, g), s)

(3.4.1)

In other words Υ]
r(ι(1, g), s) only depends on the double coset ΓF̃1

0,rgΓF̃1
0,r.

Because r is inert in L, Lr is a quadratic extension of Qr. We may write elements of Lr
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in the form a+ b
√
−d with a, b ∈ Qr; then ZL,r = a+ b

√
−d where a, b ∈ Zr. Also note that

Λr is trivial.

We know (Bruhat-Cartan decomposition) that

F̃1(Qr) = ΓF̃1
0,r ∪ ΓF̃1

0,rwΓF̃1
0,r

∪
⊔
n>0

ΓF̃1
0,rAnΓF̃1

0,r ∪
⊔
n>0

ΓF̃1
0,rAnwΓF̃1

0,r

∪
⊔
n>0

ΓF̃1
0,rwAnΓF̃1

0,r ∪
⊔
n>0

ΓF̃1
0,rwAnwΓF̃1

0,r.

(3.4.2)

where An =

rn 0

0 r−n

 and w =

 0 1

−1 0

. So (3.3.9) gives us

Zr(gr, 1, s) = Υ]
r(ι(1, 1), s)

∫
Γ
F̃1
0,r

WΨ,r(grhr)dhr

+ Υ]
r(ι(1, w), s)

∫
Γ
F̃1
0,rwΓ

F̃1
0,r

WΨ,r(grhr)dhr

+
∑
n>0

Υ]
r(ι(1, An), s)

∫
Γ
F̃1
0,rAnΓ

F̃1
0,r

WΨ,r(grhr)dhr

+
∑
n>0

Υ]
r(ι(1, Anw), s)

∫
Γ
F̃1
0,rAnwΓ

F̃1
0,r

WΨ,r(grhr)dhr

+
∑
n>0

Υ]
r(ι(1, wAn), s)

∫
Γ
F̃1
0,rwAnΓ

F̃1
0,r

WΨ,r(grhr)dhr

+
∑
n>0

Υ]
r(ι(1, wAnw), s)

∫
Γ
F̃1
0,rwAnwΓ

F̃1
0,r

WΨ,r(grhr)dhr.

(3.4.3)

Now WΨ,r is an eigenvector for the Iwahori-Hecke algebra, hence each of the integrals

in (3.4.3) evaluates to a constant multiple of WΨ,r(gr). Thus for some function A(s) (not

depending on gr) we have

Zr(gr, 1, s) = A(s)WΨ,r(gr).

Since WΨ,r(1) = 1 it follows that

Zr(gr, 1, s) = Zr(1, 1, s)WΨ,r(gr) (3.4.4)
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Given an element k ∈ ΓF̃1
0,r we can find l ∈ Z×L,q such that kl ∈ Γ0,r. It follows that if

Γ0,rAnΓ0,r =
⊔
i

aiΓ0,r,

where ai ∈ SL2(Zq) then

ΓF̃1
0,rAnΓF̃1

0,r =
⊔
i

aiΓF̃1
0,r.

From [Miy89, Lemma 4.5.6], we may choose ai =

rn mr−n

0 r−n

 where 0 ≤ m < r2n. Using

the formula in [GK92, Lemma 2.1], we have WΨ,r(ai) = r−2n and hence

∑
a∈Γ

F̃1
0,rAnΓ

F̃1
0,r/Γ

F̃1
0,r

WΨ,r(a) = 1 (3.4.5)

Also, from [Miy89] we have

ΓF̃1
0,rwAnwΓF̃1

0,r =
⊔
i

biΓF̃1
0,r.

where bi =

 r−n 0

−mr1−n rn

. Using the formula in [GK92, Lemma 2.1], and doing some

simple manipulations, we have

∑
b∈Γ

F̃1
0,rwAnwΓ

F̃1
0,r/Γ

F̃1
0,r

WΨ,r(b) = 1 (3.4.6)

Next, we check that the quantities Υ]
r(ι(1, Anw), s), Υ]

r(ι(1, wAn), s), are both equal to

0. Indeed Υ]
r(ι(1, A), s) = 0 whenever ι(1, A) as an element of H̃(Qr) does not belong to

P
H̃

(Qr)QU H̃r Q
−1. Let K be the matrix defined in (3.3.14) with q replaced by r. It suffices to

prove that the quantities Kι(m(w), 1)Q,Kι(1, w) ·Q do not belong to (P
H̃

(Qr)∩KH̃
r )QU H̃r .

We check this by taking a generic element P of (P
H̃

(Qr)∩KH̃
r ) and showing that Q−1PK0 /∈

U H̃r where K0 is one of the above quantities. That is a simple computation and is omitted.
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On the other hand, putting

P =



rn 0 0 0 0 1

0 1 0 0 0 0

0 0 1 r−n 0 0

0 0 0 r−n 0 0

0 0 0 0 1 0

0 0 0 0 0 1


∈ P

H̃
(Qr)

we can check that

Q−1P−1 · (1, An)Q ∈ U H̃r ,

hence

Υ]
r(ι(1, An), s) = r−6n(s+1/2) (3.4.7)

Also, putting

P =



0 0 rn 1 0 0

0 1 0 0 0 0

1 0 0 0 0 r−n

0 0 0 0 0 r−n

0 0 0 0 1 0

0 0 0 1 0 0


∈ P

H̃
(Qr)

we can check that

Q−1P−1 · ι(w,Anw)Q ∈ U H̃r ,

hence

Υ]
r(ι(1, wAnw), s) = Υ]

r(ι(w,Anw), s) = r−6n(s+1/2) (3.4.8)
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So, using (3.4.5), (3.4.6), (3.4.7) and (3.4.14),

Zr(1, 1, s) = Υ]
r(ι(1, 1), s)

∫
Γ
F̃1
0,r

dhr +
∑
n>0

Υ]
r(ι(1, An), s)

[ ∫
Γ
F̃1
0,rAnΓ

F̃1
0,r

WΨ,r(hr)dhr

+
∫

Γ
F̃1
0,rAnΓ

F̃1
0,r

WΨ,r(hr)dhr

]
= [KF̃

r : ΓF̃1
0,r]
−1
(
1 + 2

∑
n>0

Υ]
r(ι(1, An), s)

)
=

1
r + 1

(1 + 2
∑
n>0

r−6n(s+1/2))

=
1

r + 1
1 + r−6s−3

1− r−6s−3

whence (3.4.4) implies

Zr(gr, 1, s) =
1

r + 1
WΨ,r(gr) ·

1 + r−6s−3

1− r−6s−3
. (3.4.9)

Finally, we deal with the case when kr = s1 or s2. The key observation is that if k ∈ KF̃1
r

then for i = 1, 2,

s−1
i m2(k)si ∈ Ũr.

By the same argument as in (3.4.1), it follows that Υ]
r(si, g, s) only depends on the double

cosetKF̃1
r gΓF̃1

0,r. So, if we can show that for all h ∈ F̃1(Qr) we have
∑

a∈KF̃1
r hΓ

F̃1
0,r/Γ

F̃1
0,r

WΨ,r(gra) =

0, it would follow that Zr(gr, si, s) = 0.

If we define

W (gr) =
∑

a∈KF̃1
r hΓ

F̃1
0,r/Γ

F̃1
0,r

WΨ,r(gra)

then W (grk) = W (gr) for all k ∈ KF̃1
r ; in other words W is a vector in the Whittaker space

that is right KF̃1
r invariant. But the only such vector is the 0 vector and this completes the

proof.

The local integral for primes in S2

Proposition 3.4.2. Let p be a prime dividing gcd(M,N) and kp ∈ Yp. We have
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Zp(gp, kp, s) =


WΨ,p(gp)
(p+1)2 if kp = 1 or kp = s1

0 otherwise .

Proof. Recall that σ is the irreducible automorphic representation of GL2(A) generated by

Ψ. Let σp be the local component of σ at the place p. We know that σp = Sp ⊗ τ where

Sp denotes the special (Steinberg) representation and τ is a (possibly trivial) unramified

quadratic character. We put ap = τ(p), thus ap = ±1 is the eigenvalue of the local Hecke

operator T (p).

Let Γ′F̃1
0,p denote the compact open subgroup of F̃1(Qp) defined by

Γ′F̃1
0,p = Γ′F̃0,p ∩ F̃1(Qp).

We first consider the case kp = 1. Note that for g ∈ F̃1(Qp), k1 ∈ Γ′F̃1
0,p , k2 ∈ Γ′F̃1

0,p , we

have using (3.1.1), (3.3.5),

Υ]
p(ι(1, k1gk2), s) = Υ]

p(ι(m2(k1)m2(k1)−1, k1gk2), s)

= Υ]
p(ι(m2(k1)−1, gk2), s)

= Υ]
p(ι(1, g), s)

(3.4.10)

In other words Υ]
p(ι(1, g), s) only depends on the double coset Γ′F̃1

0,pgΓ′F̃1
0,p .

Because p is inert in L, Lp is a quadratic extension of Qp. We may write elements of

Lp in the form a+ b
√
−d with a, b ∈ Qp; then ZL,p = a+ b

√
−d where a, b ∈ Zp. Also note

that Λp is not trivial.

Fix a set U of representatives of Z×L,p/Γ
0
L,p. For definiteness we may take

U = {1} ∪ {b+
√
−d : b ∈ Z, 0 ≤ b < p}

For l ∈ L×p put l̃ =

 l 0

0 l
−1

 . We know that given g ∈ ΓF̃1
0,p there exists l ∈ Z×L,p such that

gl̃ ∈ Γ′F̃1
0,p . From this fact and the Bruhat-Cartan decomposition (3.4.2), it follows that
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F̃1(Qp) =
⊔
l∈U

Γ′F̃1
0,p l̃Γ

′F̃1
0,p ∪

⊔
l∈U

Γ′F̃1
0,pwl̃Γ

′F̃1
0,p

∪
⊔
n>0
l∈U

Γ′F̃1
0,pAn l̃Γ

′F̃1
0,p ∪

⊔
n>0
l∈U

Γ′F̃1
0,pAnwl̃Γ

′F̃1
0,p

∪
⊔
n>0
l∈U

Γ′F̃1
0,pwAn l̃Γ

′F̃1
0,p ∪

⊔
n>0
l∈U

Γ′F̃1
0,pwAnwl̃Γ

′F̃1
0,p .

(3.4.11)

where as before An =

rn 0

0 r−n

 and w =

 0 1

−1 0

.

Now, in the proof of Proposition 3.4.1 we saw that the elements ι(1, Anw), ι(1, wAn) of

H̃(Qp) do not belong to P
H̃

(Qp)QU H̃p Q
−1. In particular therefore, the elements ι(1, Anwl̃),

ι(1, wAn l̃) of H̃(Qp) cannot belong to P
H̃

(Qp)QI ′H̃p Q−1.

So (3.3.9) gives us

Zp(gp, 1, s) =
∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, l̃), s)
∫
l̃Γ
′F̃1
0,p

WΨ,p(gphp)dhp

+
∑
n>0

∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, An l̃), s)
∫

Γ
′F̃1
0,pAn l̃Γ

′F̃1
0,p

WΨ,p(gphp)dhp

+
∑
n>0

∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, wAnwl̃), s)
∫

Γ
′F̃1
0,pwAnwl̃Γ

′F̃1
0,p

WΨ,p(gphp)dhp.

(3.4.12)

If we choose ai, bi as in the proof of Proposition 3.4.1 then we have

Γ′F̃1
0,pAn l̃Γ

′F̃1
0,p =

⊔
i

aiΓ′F̃1
0,p ,

Γ′F̃1
0,pwAnwl̃Γ

′F̃1
0,p =

⊔
i

biΓ′F̃1
0,p .

Hence, by the same argument as in the proof of that proposition, we have

∫
Γ
′F̃1
0,pAn l̃Γ

′F̃1
0,p

WΨ,p(gphp)dhp =
∫

Γ
′F̃1
0,pwAnwl̃Γ

′F̃1
0,p

WΨ,p(gphp)dhp = [KF̃
p : Γ′F̃1

0,p ]−1.

It is easy to check that the last quantity is equal to 1
(p+1)2 .
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So we have

Zp(gp, 1, s) =
WΨ,p(gp)
(p+ 1)2

(∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, l̃), s)

+
∑
n>0

∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, An l̃), s) +
∑
n>0

∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, wAnwl̃), s)
)
.

(3.4.13)

We can check that for n > 0, ι(1, An l̃) does not belong to P
H̃

(Qp)QI ′H̃p Q−1, hence

Υ]
p(ι(1, An l̃), s) = 0. We can also check that for l 6= 1, l ∈ U, (1, l̃) does not belong to

P
H̃

(Qp)QI ′H̃p Q−1, hence Υ]
p(ι(1, l̃), s) = 0.

Also, putting

P =



0 0 pnl
−1 1 0 0

0 1 0 0 0 0

1 0 0 0 0 p−nl

0 0 0 0 0 p−nl

0 0 0 0 1 0

0 0 0 1 0 0


∈ P

H̃
(Qp)

we can check that

Q−1P−1ι(w,Anwl̃)Q ∈ I ′H̃p ,

hence

Υ]
p(ι(1, wAnwl̃), s) = Λp(l)p−6n(s+1/2) (3.4.14)

Thus we have Λ−2
p (l)Υ]

p(ι(1, wAnwl̃), s) = Λ−1
p (l)p−6n(s+1/2) and hence for all n > 0 we

have ∑
l∈U

Λ−2
p (l)Υ]

p(ι(1, wAnwl̃), s) = 0.

So we conclude that

Zp(gp, 1, s) =
WΨ,p(gp)
(p+ 1)2

.

Next, we deal with the case kp = s1.

If k ∈ Γ′F̃1
0,p then s−1

1 m2(k)s1 ∈ I ′p. So, by the same argument as before, we know that

Υ]
p(ι(s1, g), s) depends only on the double coset Γ′F̃1

0,pgΓ′F̃1
0,p .

Also, by explicit computation, we check that ι(s1, Anwl̃), ι(s1, wAn l̃) do not belong to

P
H̃

(Qp)QI ′H̃p Q−1 for any n ≥ 0. Moreover, the quantity ι(s1, An l̃) belongs to P
H̃

(Qp)QI ′H̃p Q−1
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if and only if n = 0, l = 1. On the other hand, for n > 0, the quantity ι(s1, wAnwl̃) does

belong to P
H̃

(Qp)QI ′H̃p Q−1. These last two facts are reflected in the following equations.

ι(s1, 1) = PQIQ−1, (3.4.15)

where

P =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


∈ P

H̃
(Qp),

and

I =



1 0 0 0 0 0

0 1 0 0 0 0

1 −1 1 0 0 0

0 0 0 1 0 −1

0 0 0 0 1 1

0 0 0 0 0 1


∈ I ′H̃p .

ι(s1, w
−1Anwl̃) = PQIQ−1 (3.4.16)

where

P =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 −pnl−1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 −pnl


∈ P

H̃
(Qp),
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and

I =



1 0 0 0 0 0

0 1 0 0 0 0

−p−nl−1 −1 −1 0 0 0

0 0 0 1 0 −pnl−1

0 0 0 0 1 −1

0 0 0 0 0 −1


∈ I ′H̃p .

So, we have

Zp(gp, s1, s) =
WΨ,p(gp)
(p+ 1)2

(
1 +

∑
n>0

∑
l∈U

Λ−2
p (l)Υ]

p(ι(s1, wAnwl̃), s)
)
. (3.4.17)

But from (3.4.16) we see that Υ]
p(ι(s1, wAnwl̃), s) = Λp(l)p−6n(s+1/2) and hence

∑
l∈U

Λ−2
p (l)Υ]

p(ι(s1, wAnwl̃), s) = 0.

This completes the proof that

Zp(gp, s1, s) =
WΨ,p(gp)
(p+ 1)2

.

Next, we consider kp = s2. Let Γ′0,F̃1
p = J1Γ′F̃1

0,pJ1 where J1 =

 0 1

−1 0

 .

If k ∈ Γ′0,F̃1
p then s−1

2 m2(k)s2 ∈ I ′p. So, by the same argument as before, we know that

Υ]
p(ι(s2, g), s) depends only on the double coset Γ′0,F̃1

p gΓ′F̃1
0,p .

Now, the Bruhat-Cartan decomposition (3.4.11) continues to hold when we replace the

left Γ′F̃1
0,p in each term by Γ′0,F̃1

p . So, to prove that Zp(gp, s2, s) = 0 it is enough to prove

that each of the elements ι(s2, An l̃), ι(s2, Anwl̃), ι(s2, wAn l̃), ι(s2, wAnwl̃) cannot belong to

P
H̃

(Qp)QI ′H̃p Q−1 for any n ≥ 0. This we do by an explicit computation. The details are

omitted.

Next, take kp = s3. Once again, we check that if k ∈ Γ′0,F̃1
p then s−1

3 m2(k)s3 ∈ I ′p. On the

other hand, an explicit computation again shows that the elements ι(s3, An l̃), ι(s3, Anwl̃),

ι(s3, wAn l̃), ι(s3, wAnwl̃) cannot belong to P
H̃

(Qp)QI ′H̃p Q−1. So by exactly the same argu-

ment as the previous case, Zp(gp, s3, s) = 0.
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Next consider the case kp = Θ. Define

Γ′F̃1
1,p = {A ∈ Γ′F̃1

0,p | A ≡

1 ∗

0 1

 (mod p)}.

We can check that if k ∈ Γ′F̃1
1,p then Θ−1m2(k)Θ ∈ I ′p. We know that given g ∈ ΓF̃1

0,p, there ex-

ists l ∈ Z×L,p such that gl̃ ∈ Γ′F̃1
1,p . Thus, the Bruhat-Cartan decomposition (3.4.11) continues

to hold when we replace the left Γ′F̃1
0,p in each term by Γ′F̃1

1,p . An explicit computation again

shows that the elements ι(Θ, An l̃), ι(Θ, Anwl̃), ι(Θ, wAn l̃) never belong to P
H̃

(Qp)QI ′H̃p Q−1.

On the other hand, if n > 0, then ι(Θ, wAnwl̃) does belong to P
H̃

(Qp)QI ′H̃p Q−1. Indeed,

ι(Θ, w−1Anwl̃) = PQIQ−1 (3.4.18)

where

P =



1 α 0 0 0 0

0 1 0 0 0 0

0 0 −pnl−1 0 0 0

0 0 0 1 0 0

0 0 0 −α 1 0

0 0 0 0 0 −p−nl


∈ P

H̃
(Qp),

and

I =



1 0 0 0 0 0

0 1 0 0 0 0

−αpnl−1 −1− pnl−1 −1 0 0 0

0 0 0 1 0 −pnl−1
α

0 0 0 0 1 −1 + pnl
−1

0 0 0 0 0 −1


∈ I ′H̃p .

So, we have

Zp(gp,Θ, s) =
WΨ,p(gp)
(p+ 1)2

(∑
n>0

∑
l∈U

Λ−2
p (l)Υ]

p(ι(Θ, wAnwl̃), s)
)
. (3.4.19)



110

But from (3.4.18) we see that Υ]
p(ι(Θ, wAnwl̃), s) = Λp(l)p−6n(s+1/2) and hence

∑
l∈U

Λ−2
p (l)Υ]

p(ι(Θ, wAnwl̃), s) = 0.

This completes the proof that

Zp(gp,Θ, s) = 0.

Next consider the case kp = Θs2. Define the subgroup

Γ′F̃1
p = {A ∈ Γ′F̃1

0,p | A ≡

1 0

0 1

 (mod p)}.

We can check that if k ∈ Γ′F̃1
p then (Θs2)−1m2(k)Θs2 ∈ I ′p. We know that given g ∈ Γ′F̃1

1,p ,

there exists x ∈ Z/pZ such that gu(x) ∈ Γ′F̃1
p , where u(x) is the matrix

1 x

0 1

. So, to

prove that Zp(gp,Θs2, s) = 0, it is enough to check that the elements ι(Θs2, u(x)An l̃), ι(Θs2, u(x)Anwl̃), ι(Θs2, u(x)wAn l̃), ι(Θ, u(x)wAnwl̃)

do not belong to P
H̃

(Qp)QI ′H̃p Q−1. This can be done by an explicit computation (omitted

for brevity).

Next, consider the case kp = Θs4. As before, we can check that if k ∈ Γ′F̃1
p then

(Θs4)−1m2(k)Θs4 ∈ I ′p. To prove that Zp(gp,Θs4, s) = 0, it is enough to check that the

elements ι(Θs4, u(x)An l̃), ι(Θs4, u(x)Anwl̃), ι(Θs4, u(x)wAn l̃), ι(Θs4, u(x)wAnwl̃) do not

belong to P
H̃

(Qp)QI ′H̃p Q−1. This is done by an explicit computation, which we omit.

Finally, we consider the case kp = Θs5. We can check that if k ∈ Γ′F̃1
1,p then (Θs5)−1m2(k)Θs5 ∈

I ′p. To prove that Zp(gp,Θs5, s) = 0, it is enough to check that the elements ι(Θs5, An l̃),

ι(Θs5, Anwl̃), ι(Θs5, wAn l̃), ι(Θs5, wAnwl̃) do not belong to P
H̃

(Qp)QI ′H̃p Q−1. This is done

by an explicit computation, which we omit.

This completes the proof of the theorem.

The local integral for primes in S1

In this subsection, we prove the following proposition.

Proposition 3.4.3. Let p be a prime dividing M but not N and kp ∈ Yp. We have
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Zp(gp, kp, s) =


WΨ,p(gp)
(p+1)2 if kp = 1 or kp = Θ

0 otherwise .

Proof. Recall that σ is the irreducible automorphic representation of GL2(A) generated by

Ψ. Let σp be the local component of σ at the place p. We also let α, β be the unramified

characters of Q×p from which σp is induced.

Let Γ′F̃1
0,p ,Γ

′F̃1
1,p be as defined in the previous subsection.

We first consider the case kp = 1. As in the previous case, Υ]
p(ι(1, g), s) only depends

on the double coset Γ′F̃1
0,pgΓ′F̃1

0,p .

By explicit computation we check that, ι(1, An l̃), ι(1, Anwl̃), ι(1, wAn l̃), ι(1, wAnwl̃)

do not belong to P
H̃

(Qp)ΩI ′H̃p Q−1. So, by the results of the previous subsection, and

by (3.4.11), we have Zp(gp, 1, s) = 0.

Next, consider the case kp = s1. Again, by explicit computation, we check that for

n > 0, ι(1, An l̃), ι(1, Anwl̃), ι(1, wAn l̃), ι(1, wAnwl̃) do not belong to P
H̃

(Qp)ΩI ′H̃p Q−1.

Furthermore ι(1, wl̃) does not belong to P
H̃

(Qp)ΩI ′H̃p Q−1 and ι(1, l̃) belongs only when

l 6= 1. This last fact is reflected by the following equation: Let l satisfy the equation

l2 + b1l + c1 = 0 and let α = (l − r)/2 for some r ∈ Z. Then we have

ι(1, l̃) = PΩIQ−1 (3.4.20)

where

P =



0 − c
2 0 0 0 0

1 c
2l 0 0 0 0

0 0 l
c 0 0 0

0 0 0 − b
c −

1
l −

2
c 0

0 0 0 1 0 0

0 0 0 0 0 l


∈ P

H̃
(Qp),
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and

I =



−2
c 0 0 0 0 0

b+r
c 1 0 0 0 0

0 −1 1 0 0 0

0 0 0 − c
2 − b+r

2
b+r

2

0 0 0 0 1 1

0 0 0 0 0 1


∈ I ′H̃p .

Hence we have

Zp(gp, s1, s) =
WΨ,p(gp)
(p+ 1)2

∑
l∈U
l 6=1

Λ−2
p (l)Υ]

p(ι(s1, l̃), s) + 1

 . (3.4.21)

where the 1 comes from the results of the previous subsection.

Noting that Υ]
p(ι(s1, l̃), s) = Λp(l) and that

∑
l∈U
l 6=1

Λ−1
p (l) = −1,

we get

Zp(gp, s1, s) = −
WΨ,p(gp)
(p+ 1)2

+
WΨ,p(gp)
(p+ 1)2

= 0.

Next, we consider kp = s2. Let Γ′0,F̃1
p be as in the previous subsection.

By the argument there, we know that Υ]
p(ι(s2, g), s) depends only on the double coset

Γ′0,F̃1
p gΓ′F̃1

0,p .

To prove that Zp(gp, s2, s) = 0 it is enough to prove that each of the elements ι(s2, An l̃),

ι(s2, Anwl̃), ι(s2, wAn l̃), ι(s2, wAnwl̃) cannot belong to P
H̃

(Qp)ΩI ′H̃p Q−1 for any n ≥ 0.

This we do by an explicit computation. The details are omitted.

Next, take kp = s3. Once again, an explicit computation shows that the elements

ι(s3, An l̃), ι(s3, Anwl̃), ι(s3, wAn l̃), ι(s3, wAnwl̃) cannot belong to P
H̃

(Qp)ΩI ′H̃p Q−1. So by

exactly the same argument as the previous case, Zp(gp, s3, s) = 0.

Next, consider the case kp = Θ. By explicit calculation, we check that for n > 0 the

elements ι(Θ, Anwl̃), ι(Θ, wAn l̃), ι(Θ, wAnwl̃) do not belong to P
H̃

(Qp)ΩI ′H̃p Q−1.Also check

that ι(Θ, wl̃) /∈ P
H̃

(Qp)ΩI ′H̃p Q−1. Also, provided l 6= 1, we have ι(Θ, wl̃) /∈ P
H̃

(Qp)ΩI ′H̃p Q−1.

Thus, the only term that contributes is ι(Θ, 1).
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So by the same argument as before, we have

Zp(gp,Θ, s) = Υ]
p(ι(Θ, 1), s)

∫
Γ
′F̃1
0,p

WΨ,p(gphp)dhp

=
WΨ,p(gp)
(p+ 1)2

(3.4.22)

Next consider the case kp = Θs2. For x ∈ Z, let u(x) be as in the previous sub-

section. As before, to prove that Zp(gp,Θs2, s) = 0, it is enough to check that the ele-

ments ι(Θs2, u(x)An l̃), ι(Θs2, u(x)Anwl̃), ι(Θs2, u(x)wAn l̃), ι(Θ, u(x)wAnwl̃) do not belong

to P
H̃

(Qp)ΩI ′H̃p Q−1. This can be done by an explicit computation (omitted for brevity).

Next, consider the case kp = Θs4. To prove that Zp(gp,Θs4, s) = 0, it is enough to check

that the elements ι(Θs4, u(x)An l̃), ι(Θs4, u(x)Anwl̃), ι(Θs4, u(x)wAn l̃), ι(Θs4, u(x)wAnwl̃)

do not belong to P
H̃

(Qp)ΩI ′H̃p Q−1. This is done by an explicit computation, which we omit.

Finally, we consider the case kp = Θs5. To prove that Zp(gp,Θs5, s) = 0, it is enough

to check that the elements ι(Θs5, An l̃),ι(Θs5, Anwl̃), ι(Θs5, wAn l̃), ι(Θs5, wAnwl̃) do not

belong to P
H̃

(Qp)ΩI ′H̃p Q−1. This is done by an explicit computation, which we omit.

The local integral at infinity

Proposition 3.4.4. We have

Z∞(g∞, 1, s) = B∞(s)WΨ,∞(g∞),

where B∞(s) = (−1)`/22−6s−1π
6s+`−1 .

Proof. Note that KF̃
∞ is the maximal compact subgroup of F̃1(R). Furthermore, note that

any element h of F̃1(R) can be written in the form

h =

1 x

0 1

b 0

0 b−1

 k

where x ∈ R, b ∈ R+, k ∈ KF̃
∞. Let us henceforth denote u(x) =

1 x

0 1

, t(b) =

b 0

0 b−1

.

We normalize our Haar measures such that KF̃
∞ has volume 1. Also, note that Λ∞ is trivial
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and for k ∈ KF̃
∞, g, h ∈ F̃1(R) we have

Υ]
∞(ι(1, hk), s)WΨ,∞(ghk) = Υ]

∞(ι(1, h), s)WΨ,∞(gh).

Hence we have

Z∞(g∞, 1, s) =
∫ ∞

0

∫ ∞
−∞

Υ]
∞(ι(1, u(x)t(b)), s)WΨ,∞(g∞u(x)t(b))b−3dxdb (3.4.23)

where dx, db are the usual Lebesgue measures.

Let KH
∞ = KH̃

∞ ∩H(R). To calculate Υ]
∞(ι(1, u(x)t(b)), s) we need to write the Iwasawa

decomposition of ι(1, u(x)t(b)). However, finding an explicit decomposition is not really

necessary. Indeed, we know that there exists some decomposition

ι(1, u(x)t(b)).Q =

A X

1 (At)−1

K

with K ∈ KH
∞, A ∈ GL3(R) and that

Υ]
∞(ι(1, u(x)t(b)), s) = |det(A)|6(s+1/2) det(J(K, i))−`. (3.4.24)

Now, let Abx = ι(1, u(x)t(b)).Q. By explicit computation, we see that

Abx =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1
b

0 0 0 0 1 −1
b

0 0 0 1 0 0

0 1 b 0 0 −x
b


By (3.4.24) we have

det(J(Abx, i)) = det(A)−1 det(J(K, i)).
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Since det(J(Abx, i)) = x−i(b2+1)
b we have

Υ]
∞(ι(1, u(x)t(b)), s) = |det(A)|6(s+1/2) det(A)−`b`(x− i(b2 + 1))−`. (3.4.25)

On the other hand, we have

(Abx)(i) = (AAti+XAt).

By explicit computation, we see that

(Abx)(i) =
1

b4 + 2b2 + x2 + 1

[
b4 + b2 + x2 0 −x

0 b4 + 2b2 + x2 + 1 0

−x 0 b2 + 1

 i

+


−x 0 b2 + 1

0 0 0

b2 + 1 0 x


]

From this we get det(A) = b√
b4+1+2b2+x2

.

Therefore, we have

Υ]
∞(ι(1, u(x)t(b)), s) = b6s+3(b4 + 1 + 2b2 + x2)−3(s+1/2)+`/2(x− i(b2 + 1))−`. (3.4.26)

On the other hand, we know that

WΨ,∞(u(x)t(b)) = e2πixe−2πb2b`

We will prove the proposition only for g∞ = 1, the calculations in the general case are

similar.

We need to evaluate the integral

∫ ∞
0

∫ ∞
−∞

b6s+`(x− i(b2 + 1))−3(s+1/2)−`/2(x+ i(b2 + 1))−3(s+1/2)+`/2e−2πixe−2πb2dxdb

(3.4.27)
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Putting b2 = y , the above integral becomes

1
2

∫ ∞
0

∫ ∞
−∞

y3s+ `−1
2 (x− i(y + 1))−3(s+ 1

2
)− `

2 (x+ i(y + 1))−3(s+ 1
2

)+ `
2 e2πixe−2πydxdy (3.4.28)

Applying [GK92, (6.11)] to the inner integral, (3.4.28) becomes

(−1)`/2(2π)6s+3

2Γ(3s+ 3
2 + `

2)Γ(3s+ 3
2 −

`
2)

times

∫ ∞
0

e−2π(1+2t)(t+ 1)3s+ 1
2

+ `
2 t3s+

1
2
− `

2

(∫ ∞
0

y3s+ `−1
2 e−4πy(1+t)dy

)
dt. (3.4.29)

Now,
∫∞

0 y3s+ `−1
2 e−4πy(1+t)dy evaluates to

2−6s−`−1π−3s− `
2
− 1

2 Γ(3s+ `/2 +
1
2

).

Using this, and the formula

∫ ∞
0

e−2π(1+2t)t3s+
1
2
− `

2 = 2−6s+`−3e−2ππ−3s+`/2− 3
2 Γ(3s+

3
2
− `

2
)

we see that (3.4.28) simplifies to

(−1)l/22−6s−1π

6s+ `− 1
WΨ,∞(1).

3.5 Proof of the Pullback formula

In this section, we will prove Theorem 3.2.1.

Recall the definition of E(g, s) from §3.2. Our main step in computing E(g, s) will be

the evaluation of the following integral:

ΥΨ(g, s) =
∫
F̃1[g](A)

Υ](ι(g, h), s)Ψ(h)Λ−1(deth)dh (3.5.1)

By [Shi97], we know that the integral above converges absolutely and uniformly on
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compact sets for Re(s) large. We are going to evaluate the above integral for such s.

Note that G̃(A) = P (A)
∏
v K̃v. Moreover if k ∈ K̃v, we may write

k = m2

λ 0

0 1

 k′

where λ = µ2(k), so that µ2(k′) = 1.

For any p ∈ S3 we have, by the Bruhat decomposition,

K̃p = (P (Qp) ∩ K̃p)Ũp t (P (Qp) ∩ K̃p)s1Ũp t (P (Qp) ∩ K̃p)s2Ũp.

Also, for p|M , we have, by Lemma 3.3.1,

K̃p =
∐
s∈Yp

(P (Qp) ∩ K̃p)sI ′p.

Recall that we defined the compact subgroup U G̃ of G̃(Af ) in (2.8.16).

So write g = m1(a)m2(b)nk where k ∈
∏
v K̃v, µ2(k) = 1 and further write k =

k∞kramkur where

k∞ ∈ K̃∞, kur ∈ U G̃

and kram =
∏
v(kram)v, with

(kram)v ∈


{1} if v /∈ S

{1, s1, s2} if v ∈ S3

{1, s1, s2, s3,Θ,Θs2,Θs4,Θs5} if v ∈ S1 t S2.
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Therefore we have

ΥΨ(g, s) =
∫
F̃1[m2(b)](A)

Υ](ι(m1(a)m2(b)nk, b(b−1h)), s)Ψ(h)Λ−1(deth)dh

= ρ`(k∞)

×
∫
F̃1[m2(b)](A)

Υ](ι(m1(a)m2(b)nkram, b(b−1h)), s)Ψ(h)Λ−1(deth)dh

(using properties from §3.3)

= Λ(a)‖NL/Q(a) · µ2(b)−1|3(s+1/2)ρ`(k∞)

×
∫
F̃1(A)

Υ](ι(kram, h), s)Ψ(bh)Λ−1(deth)dh

(using (3.1.1)).

We write

Ub(kram, s) =
∫
F̃1(A)

Υ](ι(kram, h), s)Ψ(bh)Λ−1(deth)dh.

Thus we have

ΥΨ(g, s) = Λ(a)|NL/Q(a) · µ2(b)−1|3(s+1/2)ρl(k∞)× Ub(kram, s) (3.5.2)

Recall the Whittaker expansion

Ψ(g) =
∑
λ∈Q×

WΨ

λ 0

0 1

 g

 (3.5.3)

Therefore

Ub(kram, s) =
∑
λ∈Q×

Z

λ 0

0 1

 b, kram, s

 (3.5.4)

where for g ∈ F̃ (A), k ∈
∏
v K̃v, µ2(k) = 1, we define

Z(g, k, s) =
∫
F̃1(A)

Υ](ι(k, h), s)WΨ(gh)Λ−1(deth)dh.

Note that the uniqueness of the Whittaker function implies

Z(g, k, s) =
∏
v

Zv(gv, kv, s),
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where the local zeta integral Zv(gv, kv, s) is defined as in (3.3.9).

So, by the results of the previous two sections, we have

Z(g, kram, s) =


B(s)WΨ(g) if (kram)v ∈ Y ′v for all places v

0 otherwise
(3.5.5)

where we define

Y ′v =


{1} if v /∈ S1 t S2

{1, s1} if v ∈ S2

{1,Θ} if v ∈ S1 t S2.

From (3.5.2),(3.5.3),(3.5.4),(3.5.5) we conclude that

ΥΨ(g, s) = B(s)fΛ(g, s) (3.5.6)

where fΛ(g, s) is defined as in §2.8.

We are now in a position to prove the Pullback formula.

Proof of Theorem 3.2.1. Recall the definition of B(s) from (3.2.4). Also recall that we

defined

E(g, s) =
∫
F̃1(Q)\F̃1[g](A)

EΥ](ι(g, h), s)Ψ(h)Λ−1(deth)dh. (3.5.7)

The pullback formula states that

E(g, s) = B(s)EΨ,Λ(g, s).

By abuse of notation, we use R̃(Q) to denote its image in H̃(Q). First, we recall

from [Shi97] that |P
H̃

(Q)\H̃(Q)/R̃(Q)|=2. We take the identity element as one of the

double coset representatives, and denote the other one by τ . Thus

H̃(Q) = P
H̃

(Q)R̃(Q) t P
H̃

(Q)τR̃(Q).

Let us denote by R1, R2 the corresponding sets of coset representatives, i.e. R1 ⊂

R̃(Q), R2 ⊂ R̃(Q) and
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P
H̃

(Q)R̃(Q) =
⊔
s∈R1

P
H̃

(Q)s

and

P
H̃

(Q)τR̃(Q) =
⊔
s∈R2

P
H̃

(Q)s.

Recall that we defined

EΥ](h, s) =
∑

γ∈P
H̃

(Q)\H̃(Q)

Υ](γh, s)

for Re(s) large. We can write EΥ](h, s) = E1
Υ]

(h, s) + E2
Υ]

(h, s) where

E1
Υ](h, s) =

∑
γ∈R1

Υ](γh, s)

and

E2
Υ](h, s) =

∑
γ∈R2

Υ](γh, s).

Now, by [Shi97, 22.9] the orbit of τ is ’negligible’ for our integral, that is for all g,

∫
F̃1(Q)\F̃1[g](A)

E2
Υ](ι(g, h), s)Ψ(h)Λ−1(deth)dh = 0.

It follows that

E(g, s) =
∫
F̃1(Q)\F̃1[g](A)

E1
Υ](g, h, s)Ψ(h)Λ−1(deth)dh. (3.5.8)

On the other hand, by [Shi97, 2.7] we can take R1 to be the following set:

R1 = {ι(m2(ξ)β, 1) : ξ ∈ F̃1(Q), β ∈ P (Q)\G̃(Q)} (3.5.9)

For Re(s) large, we therefore have

E1
Υ](ι(g, h), s) =

∑
ξ∈F̃1(Q)

β∈P (Q)\G̃(Q)

Υ](ι((m2(ξ)βg, h), s).
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Substituting in (3.5.8) we have

E(g, s) =
∫
F̃1(Q)\F̃1[g](A)

∑
ξ∈F̃1(Q)

β∈P (Q)\G̃(Q)

Υ](ι(m2(ξ)βg, h), s)Ψ(h)Λ−1(deth)dh

=
∫
F̃1(Q)\F̃1[g](A)

∑
ξ∈F̃1(Q)

β∈P (Q)\G̃(Q)

Υ](ι(βg, ξ−1h), s)Ψ(ξ−1h)Λ−1(det ξ−1h)dh

=
∑

β∈P (Q)\G̃(Q)

∫
F̃1[g](A)

Υ](ι(βg, h), s)Ψ(h)Λ−1(deth)dh

=
∑

β∈P (Q)\G̃(Q)

ΥΨ(βg, s)

= B(s)
∑

β∈P (Q)\G̃(Q)

fΛ(βg, s)

= B(s)EΨ,Λ(g, s)

Thus

∫
F̃1(Q)\F̃1[g](A)

EΥ](g, h, s)Ψ̃(h)Λ−1(deth)dh = B(s)EΨ,Λ(g, s) (3.5.10)

for Re(s) large (so that all sums and integrals converge nicely and our manipulations are

valid).

However, EΥ](g, h, s) is slowly increasing away from its poles, while Ψ(h) is rapidly

decreasing. Thus the left side above converges absolutely for s ∈ C away from the poles of

the Eisenstein series. Hence (3.5.10) holds as an identity of meromorphic functions.

3.6 The integral representation

The following result was proved in the previous chapter:

∫
ZG(A)G(Q)\G(A)

EΨ,Λ(g, s)Φ(g)dg = C(s) · L(3s+
1
2
, F × g)
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where C(s) =

Qfπa(Λ)(4π)−3s− 3
2
`+ 3

2d−3s− `
2 Γ(3s+ 3

2 l −
3
2)

g(M/f)PMN (6s+ `− 1)ζMN (6s+ 1)L(3s+ 1, σ × ρ(Λ))

∏
p|f

p−6s−3

1− apwpp−3s−3/2

where

f = gcd(M,N),

QA =
∏
r|A

r prime

(1− r),

and g(A), PA, ζA are as defined earlier.

Recall the definition of B(s) from (3.2.4) and let

A(s) = B(s)C(s).

Let R denote the subgroup of R̃ consisting of elements h = (h1, h2) such that h1 ∈

G, h2 ∈ F̃ and µ2(h1) = µ1(h2). The above Theorem, along with our pullback formula,

implies the following result.

Theorem 3.6.1. We have

∫
g∈Z(A)R(Q)\R(A)

EΥ](ι(g1, g2), s)Φ(g1)Ψ(g2)Λ−1(det g2)dg = A(s)L(3s+
1
2
, F × g)

where g = (g1, g2).

This new integral representation has a great advantage over the previous one: the Eisen-

stein series EΥ](g, s) is much simpler than EΨ,Λ(g, s) (even though it lives on a higher rank

group). This is because it is because it is induced from a character of the Siegel parabolic.

Thus, it is more suitable for applications, especially with regard to special value results.

Corollary 3.6.2. L(s, F × g) can be continued to a meromorphic function on the entire

complex plane. It’s only possible pole to the right of the critical line Re(s)= 1
2 is at s = 1.

Proof. The integral representation of Theorem 3.6.1 immediately proves the meromorphic

continuation. Furthermore by [Ich04], we know that the only possible poles of the Eisenstein
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series EΥ](g, s) to the right of s = 0 are at s = 1
6 and s = 1

2 . However, as we remark in

the proof of Proposition 4.1.3, the pole at s = 1
2 is impossible. So the only possible pole

of the Eisenstein series in that half plane is at s = 1
6 which corresponds to a pole of the

L-functions at s = 1.



124

Chapter 4

Rationality of Eisenstein series and
Deligne’s conjecture on critical
L-values

4.1 Eisenstein series on Hermitian domains

Let

G̃+(R) = {g ∈ G̃(R) : µ2(g) > 0}.

Define the groups G+(R), H̃+(R), F̃+(R) similarly.

Also recall the definitions of the symmetric domains Hn, H̃n. We define the ‘standard

embedding’ of H̃2 × H̃1 into H̃3 by

(Z1, Z2) 7→

Z1

Z2

 .

We use the same notation (Z1, Z2) to denote an element of H̃2 × H̃1 and its image in H̃3

under the above embedding. Note that this embedding restricts to an embedding of H2×H1

into H3.

We also define another embedding u of H̃2 × H̃1 into H̃3 by

u(Z1, Z2) = (Z1,−Z2).

Clearly this embedding also restricts to an embedding of H2 ×H1 into H3.

Furthermore, the following is true, as can be verified by an easy calculation:
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Let g1 ∈ G̃1(R), g2 ∈ F̃1(R), such that g1(i) = Z1, g2(i) = Z2. In the event that (Z1, Z2) ∈

H2 ×H1 we may even take g1 ∈ G1(R), g2 ∈ SL2(R).

Then

u(Z1, Z2) = (Q−1ι(g1, g2)Q)i.

Now, let us interpret the Eisenstein series on GU(3, 3) as a function on H̃3. Recall

the definitions of the sections Υv(s) ∈ IndH̃(Qv)
P
H̃

(Qv)(Λv‖ · ‖
3s
v ). Also, for Z ∈ H̃n, we set

Ẑ = i
2(Zt − Z).

Lemma 4.1.1. Let g∞ ∈ H̃+(R). Then

Υ∞(g∞, s) = det(g∞)`/2 det(J(g∞, i))−` det(ĝ∞(i))3(s+1/2)−`/2

Proof. Let us write g∞ = m(A, v)nk∞ where m(A, v) ∈ M(A), n ∈ N(A) and k ∈ KH̃
∞.

Then, (3.1.1) and (3.1.9) tells us that

Υ∞(g∞, s) = v−9(s+1/2)| detA|6s+3 det(k∞)`/2 det(J(k∞, i))−`.

On the other hand, we can verify that

ĝ∞(i) = v−1AA
t

and therefore

det(ĝ∞(i)) = v−3|detA|2.

Also we see that

J(g∞, i) = v(At)−1J(k∞, i)

which implies

det(J(g∞, i)) = v3 det(A)−1 det(J(k∞, i)).

Finally

det(g∞) = v3 det(k∞) det(A) det(A)−1.

Putting the above equations together, we get the statement of the lemma.

Corollary 4.1.2. Let s ∈ C, uf ∈ H̃(Af ) be fixed. Then the function Σ on H̃+(R) defined
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by

Σ(g∞) = det(g∞)−`/2 det(J(g∞, i))`EΥ(ufg∞,
s

3
+
`

6
− 1/2)

depends only on g∞(i).

Proof. We have

EΥ(ufg∞, s) =
∑

γ∈P
H̃(Q)

\H̃(Q)

Υ∞(γ∞g∞, s)Υf (γfuf , s).

So, by the above lemma,

Σ(g∞) =
∑

γ∈P
H̃(Q)

\H̃(Q)

det(γ)`/2 det(J(γ, Z))−` det(γ̂(Z))s (4.1.1)

where Z = g∞(i).

Now,consider the coset decomposition

F̃ (A) =
h⊔
i=1

F̃ (Q)F̃+(R)

ti
t∗i

U F̃ (4.1.2)

where ti ∈ F̃ (Af ), t∗i = ti
−1, and

U F̃ =
∏
p/∈S

KF̃
p

∏
p∈S3

ΓF̃0,p
∏

p∈S1tS2

Γ′F̃0,p. (4.1.3)

We note here that the constant h comes up because the class number of L may not be

1 and because the det map from Γ′F̃0,p to Z×L,p is not surjective. In particular, note that if

M = 1, we have h = h(−d), the class number of L.

Also, we note that by the Cebotarev density theorem, we may choose ti such that

(NL/Qti) = q−1
i where qi corresponds to an ideal of Z that splits in L. In particular

gcd(qi,MN) = 1.
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Now, let

Γi = SL2(Z) ∩

ti
t∗i

KF̃

t−1
i

(t∗i )
−1

 F̃ (R)

= Γ0(M) ∩ Γ0(Nqi)

.

Also, we define the congruence subgroup ΓM,N of Sp4(Z) by

ΓM,N = B(M) ∩ U2(N).

Recall the definition of U G̃ from (2.8.16). Let us define the compact open subgroup UG

of G(Af ) by

UG = U G̃ ∩G(A). (4.1.4)

Observe that

ΓM,N = UGSp4(R) ∩ Sp4(Q).

Next, put

si =

ti
t∗i


and

ri = ι(1, si) ∈ H̃1(Af ).

For Z ∈ H̃3, define the Eisenstein series EiΥ(Z; s) by

EiΥ(Z; s) = det(g∞)−`/2 det(J(g∞, i))`EΥ(Q−1riQg∞, s/3 + `/6− 1/2), (4.1.5)

where g∞ ∈ H̃+(R) is such that g∞(i) = Z. We note that EiΥ(Z, s) is well defined by

Corollary 4.1.2.

Now, consider the function EiΥ(Z1, Z2; 0) for Z1 ∈ H2,Z2 ∈ H1.

Proposition 4.1.3. Assume ` ≥ 6. Then EiΥ(Z1, Z2; 0) is a modular form of weight ` for

ΓM,N ×Γi. Furthermore, for any s0, the function EiΥ(Z1, Z2; s0) (which is not holomorphic

in Z1, Z2 unless s0 = 0) transforms just like EiΥ(Z1, Z2; 0) under the action of ΓM,N × Γi.
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Proof. We know that EΥ(g, s) converges absolutely and uniformly for s > 1
2 . So if ` > 6, it

follows that EiΥ(Z; 0) is holomorphic. Furthermore, the case ` = 6 corresponds to the point

s = 1
2 of EΥ(g, s). From the general theory of Eisenstein series, we know that the residue of

EΥ(g, s) restricted to KH̃
∞ at s = 1

2 must be a constant function. However, because EΥ(g, s)

is an eigenfunction of KH̃
∞ with non-trivial eigencharacter, this residue must be zero. Hence

EiΥ(Z; 0) is a holomorphic function of Z even for ` = 6.

Let A ∈ ΓM,N , B ∈ Γi. It suffices to show that

EiΥ(AZ1, BZ2; s0) = det(J(A,Z1))` det(J(B,Z2))`EiΥ(Z1, Z2; s0).

For g =

a b

c d

 denote g̃ =

 a −b

−c d

 . Let g1 ∈ G1(R), g2 ∈ SL2(R) such that g1i =

Z1, g2i = Z2. Put s1 = s0/3 + `/6− 1/2. We have

EiΥ(AZ1, BZ2; s0) = EiΥ(u(AZ1,−BZ2; s0)

= EiΥ((Q−1ι(Ag1, B̃g̃2)Q)i; s0)

= det(J(Q−1ι(Ag1, B̃g̃2)Q, i))`EΥ(Q−1riι(Ag1, B̃g̃2)Q, s1)

= det(J(Q−1ι(Ag1, B̃g̃2)Q, i))`EΥ](ι(Ag1, siB̃g̃2), s1)

Now, because s−1
i B̃si ∈ U F̃ we have

EΥ](ι(Ag1, siB̃g̃2), s1) = EΥ]((g1, sig̃2); s1).

On the other hand, we can check that

det(J(Q−1(Ag1, B̃g̃2)Q, i))` = det(J(A,Z1))` det(J(B,Z2))` det(J(g1, i))` det(J(g2, i))l.

Putting everything together, we see that

EiΥ(AZ1, BZ2; s0) = det(J(A,Z1))` det(J(B,Z2))`EiΥ(Z1, Z2; s0)

as required.
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4.2 The integral representation in classical terms

Henceforth, we assume ` ≥ 6. Recall the definitions of the compact open subgroups UG, U F̃

from (4.1.4), (4.1.3) respectively. Let us define UR ⊂ R(Af ) to be subgroup consisting of

elements (g, h) with g ∈ UG, h ∈ U F̃ and µ2(g) = µ1(h). Also put KR
∞ = K∞ ×KF̃

∞. Note

that KRKR
∞ is a compact subgroup of R(A).

Also, define VM,N = [Sp4(Z) : ΓM,N ][KF̃ : U F̃ ], where KF̃ =
∏
p<∞K

F̃
p . We now

rephrase Theorem 3.6.1 in classical terms.

Theorem 4.2.1. For any k, we have

∑
i

Λ−2(ti)
∫

Γi\H1

∫
ΓM,N\H2

EiΥ(Z1,−Z2; 1− k)F (Z1)g(qiZ2) det(Y1)` det(Y2)`dZ1dZ2

= VM,NA(
`− 1− 2k

6
)L(

`

2
− k, F × g)

where for i = 1, 2, we define the invariant measure dZi on H3−i by

dZi =
1
2

(detYi)i−4)dXidYi

where Zi = Xi + iYi.

Proof. By Theorem 3.6.1, it suffices to prove that for g = (g1, g2),

VM,N

∫
Z(A)R(Q)\R(A)

EΥ](ι(g1, g2),
`− 1− 2k

6
)Φ(g1)Ψ(g2)Λ−1(det g2)dg (4.2.1)

=
∑
i

Λ−2(ti)
∫

Γi\H1

∫
ΓM,N\H2

EiΥ(Z1,−Z2; 1− k)F (Z1)g(qiZ2) det(Y1)` det(Y2)`dZ1dZ2

(4.2.2)

Now, the quantity inside the integral in (4.2.1) is right invariant by URKR
∞. Also, we

note that the volume of URKR
∞ is equal to (VM,N )−1 (recall that we normalize the volume

of the maximal compact subgroup to equal 1).

Hence we see that (4.2.1) equals



130

∫
Z(A)R(Q)\R(A)/URKR

∞

EΥ](ι(g1, g2),
`− 1− 2k

6
)Φ(g1)Ψ(g2)Λ−1(det g2)dg (4.2.3)

Now, by strong approximation for Sp4(A) and (4.1.2) we know that

Z(A)R(Q)\R(A)/URKR
∞

=
h∐
i=1

(ΓM,N\Sp4(R)/K∞)×

ti 0

0 t∗i

 (Γi\SL2(R)/SO(2)) .

Suppose g ∈ Sp4(R), h ∈ SL2(R). Also, put si =

ti
t∗i

, ri = ι(1, si), g(i) =

Z1, h(i) = Z2.

We have

EΥ](ι(g, sih),
`− 1− 2k

6
) = EΥ(Q−1riQQ

−1ι(g, h)Q,
`− 1− 2k

6
)

= det(J(Q−1ι(g, h)Q, i))−`EiΥ(Z1,−Z2; 1− k)

On the other hand Φ(g) = F (Z1)det(J(g, i))−` and Ψ(sih) = g(qiZ2) det(J(h, i))−`.

The result now follows from the observations

det(J(Q−1ι(g, h)Q, i)) = det(J(g, i))det(J(h, i)),

| det(J(g, i))|2 = det(Y1), |det(J(h, i))|2 = det(Y2).

and the fact that the Haar measure dg equals dZ1dZ2 under the above equivalence.

Let us take a closer look at the quantity A( `−1−2k
6 ) that appears in the statement of

the above theorem in the case when k is an integer, 1 ≤ k ≤ `
2 − 2. Write a ∼ b if a/b is

rational. From the definition of A(s), it is clear that

A(
`− 1− 2k

6
) ∼ π4+k−2`a(Λ)

√
d

L(`+ 1− 2k, χ−d)ζ(`− 2k)ζ(`+ 2− 2k)
.

But it is well known that L(`+1−2k,χ−d)

π`+1−2k
√
d

, ζ(`−2k)
π`−2k and ζ(`+2−2k)

π`+2−2k are all rational numbers. It
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follows that

A(
`− 1− 2k

6
) ∼ π7k+1−5`a(Λ). (4.2.4)

Rationality of holomorphic Eisenstein series

Suppose f1, f2 are modular forms of weight ` for some congruence subgroup Γ of Sp2n(Z)

containing {±1}. We define the Petersson inner product

〈f1, f2〉 =
1
2
V (Γ)−1

∫
Γ\Hn

f1(Z)f2(Z)(detY )`−n−1dXdY

where V (Γ) = [Sp2n(Z) : Γ].

Note that these definitions are independent of our choice for Γ.

We henceforth use EiΛ,` for EiΥ in order to show the dependence on Λ, ` and a(F,Λ) for

a(Λ) to show the dependence on F .

By a result of M. Harris [Har97, Lemma 3.3.5.3], we know how Aut(C) acts on the

Fourier coefficients of EiΛ,`(Z; 0). In particular he proves the following result.

Proposition 4.2.2 (Harris). The Fourier coefficients of EiΛ,`(Z; 0) lie in Qab. Furthermore,

if σ ∈ Gal(Qab/Q), then

EiΛ,`(Z; 0)σ = EiΛσ ,`(Z; 0)

where EiΛ,`(Z; 0)σ is obtained by letting σ act on the Fourier coefficients of EiΛ,`(Z; 0).

4.3 Nearly holomorphic Eisenstein series

Recall the definition of the Eisenstein series EiΥ(Z; s) from (4.1.5). The section Υ defining

this Eisenstein series depends on the Hecke character Λ as well as on the integer `. Hence-

forth, to make this dependence explicit, we use EiΛ,`(Z; s) to denote EiΥ(Z; s). Moreover, for

any other positive even integer k, we use EiΛ,k(Z; s) to denote the Eisenstein series that is

defined similarly except that the integer ` has been replaced by k everywhere. In particular,

we know that EiΛ,k(Z; 0) is a holomorphic Eisenstein series (of weight k), whenever k ≥ 6.

We can write any Z ∈ H̃n uniquely as Z = X + iY where X,Y are Hermitian and Y is

positive definite. We can also write any Z ∈ Hn uniquely as Z = X + iY where X,Y are

symmetric and Y is positive definite. These decompositions are compatible with each other

in the obvious sense under the inclusion Hn ⊂ H̃n.
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We briefly recall Shimura’s theory of differential operators and nearly holomorphic func-

tions. A thorough exposition of this material can be found in his book [Shi00].

Let H temporarily stand for Hn or H̃n. For a non negative integer q, we let N q(H)

denote the space of all polynomials of degree ≤ q in the entries of Y −1 with holomorphic

functions on H as coefficients.

Suppose Γ is a congruence subgroup of Sp2n (if H = Hn) or U(n, n) (if H = H̃n). For a

positive integer k, we let N q
k (H,Γ) stand for the space of functions f ∈ N q(H) satisfying

f(γZ) = det(J(γ, Z))kf(Z)

for all γ ∈ Γ, Z ∈ H, with the standard additional (holomorphy at cusps) condition on the

Fourier expansion if H = H1 = H̃1. It is well-known that N q
k (H,Γ) is finite dimensional. In

particular, if q = 0, then N q
k (H,Γ) is simply the corresponding space of weight k modular

forms.

We let N = n2 if H = H̃n and N = (n2 + n)/2 if H = Hn.

Whenever convergent, the Petersson inner product for nearly holomorphic forms is de-

fined exactly as before.

Any f ∈ N t
q (H,Γ) has a Fourier expansion [Shi00, p. 117] as follows:

f(Z) =
∑
T∈L

QT ((2πY )−1)e2πiTrTZ

where L is a suitable lattice and for each T , QT is a polynomial in N variables and of degree

≤ t. For an automorphism σ of C we define

fσ(Z) =
∑
T∈L

QσT ((2πY [σ])−1)e2πiTrTZ

where QσT is obtained by letting σ act on the coefficients of QT and

Y [σ] =


Y t if H = H̃n and

√
−dσ = −

√
−d

Y otherwise

We say that f ∈ N t
q (H,Γ; Q) if f ∈ N t

q (H,Γ) and fσ = f for all σ ∈ Aut(C/Q). We

will occasionally omit the weight q and the congruence subgroup Γ when we do not wish to
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specify those. In particular, we write N t
q (H; Q) to denote

⋃
ΓN t

q (H,Γ; Q) where the union

is taken over all congruence subgroups Γ.

Now, from (4.1.1), it is easy to see that for a positive integer k (assume k ≤ `
2 − 2 to

ensure convergence) we have EiΛ,`(Z; 1 − k) ∈ N 3(k−1)(H̃3). Then, exactly the same proof

as Proposition 4.1.3 tells us that the restriction of this function to H2 × H1 is a nearly

holomorphic modular form with respect to the appropriate subgroups. More precisely, we

have

EiΛ,`(Z1, Z2; 1− k) ∈ N 2(k−1)
` (H2,ΓM,N )⊗N (k−1)

` (H1,Γi). (4.3.1)

We remark here that for a general f ∈ N 3(k−1)(H̃3) we can only say that f(Z1, Z2) ∈∑
N λ1(H2)⊗N λ2(H1) where the sum should be extended over all (λ1, λ2) with λ1 + λ2 =

3(k − 1). However, in this case, we know by (4.1.1) the exact nature of the polynomial of

degree 3(k − 1); thus we can conclude that λ1 = 2(k − 1), λ2 = k − 1.

To prove the desired algebraicity result for critical L-values, we will need to know arith-

meticity properties for the nearly holomorphic modular forms in (4.3.1). That is the sub-

stance of the next proposition.

Proposition 4.3.1. Let ` ≥ 6 and let k be an integer satisfying 1 ≤ k ≤ `
2 − 2. Then the

function EiΛ,`(Z1, Z2; 1− k) on H2 ×H1 belongs to

π3(k−1)
(
N 2(k−1)
` (H2,ΓM,N ; Q)⊗N (k−1)

` (H1,Γi; Q)
)
.

Furthermore, for an automorphism σ of C, we have

(π−3(k−1)EiΛ,`(Z1, Z2; 1− k))σ = π−3(k−1)EiΛσ ,`(Z1, Z2; 1− k).

Proof. Since we already know (4.3.1) and since the Fourier coefficients of EiΛ,`(Z1, Z2; 1−k)

are just sums of those of EiΛ,`(Z; 1− k), it is enough to prove that

(π−3(k−1)EiΛ,`(Z; 1− k))σ = π−3(k−1)EiΛσ ,`(Z; 1− k). (4.3.2)

For positive integers p, q, we have the (modified) Maass-Shimura differential operator ∆p
q

that acts on the space of nearly holomorphic forms of weight q on H̃3. This operator is
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defined in [Shi00, p.146]. By [Shi00, Theorem 14.12], we know that

∆p
qN t

q (H̃3; Q) ⊂ π3pN t+3p
q+2p(H̃3; Q).

However, more is true; in fact

((πi)−3p∆p
qf)σ = (πi)−3p∆p

q(f
σ) (4.3.3)

whenever f ∈ N t
q (H̃3). This easily follows from [Shi00, p. 118] since the Maass-Shimura

operators are special cases of the operators considered there and the projection map is

Aut(C)-equivariant. An alternative way to directly see (4.3.3) is to observe that the action

of the Maass-Shimura operator on the Fourier coefficients of a nearly holomorphic form can

be explicitly computed and observed to satisfy the desired property. The details in the

symplectic case was worked out by Panchishkin [Pan05, Theorem 3.7]; the calculations in

the unitary case are very similar.

We know that EiΛ,`+2−2k(Z; 0) ∈ N 0
`+2−2k(H̃3; Q). So, we can apply (4.3.3) when t =

0, p = k − 1, q = `+ 2− 2k, f = EiΛ,`+2−2k(Z; 0).

Moreover, by the result of Harris stated above,

EiΛ,`+2−2k(Z; 0)σ = EiΛσ ,`+2−2k(Z; 0).

So, (4.3.2) will follow if we know that

∆k−1
`−2(k−1)E

i
Λ,`+2−2k(Z; 0) = c · i3(k−1) · EiΛ,`(Z; 1− k) (4.3.4)

for some rational number c (The superscript i should not be confused with the quantity

i =
√
−1 that appears above!).

But (4.3.4) is precisely the content of Shimura’s calculations in [Shi00, (17.27)]. We

remark here that the Eisenstein series Shimura considers has different sections than ours at

the finite places dividing MN ; however that does not make a difference because the differ-

ential operator only depends on the archimedean section. In particular, we apply [Shi00,

Theorem 12.13] to each term of the definition of our Eisenstein series using (4.1.1) and

observe that (4.3.4) follows with c = 2−3(k−1)ck−1
`−2(k−1)(

`
2 − k + 1) where cpq(s) is defined as
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in [Shi00, (17.20)].

4.4 Holomorphic projection

Shimura observed [Shi00, p. 123] that for q > n+ t, there exists a holomorphic projection

operator A on N t
q (Hn). For a nearly holomorphic form f ∈ N t

q (Hn), Af is a modular form

of weight q (i.e. an element of N 0
q (Hn)). For any cusp form g of weight q on Hn,

< f, g >=< Af, g > .

More precisely, by the proof of [Shi00, Theorem 15.3], we can write

f = Af + Lqf
′

where Lq is a rational polynomial of certain differential operators and f ′ is a certain nearly

holomorphic form. The differential operators which are used to define Lq are Aut(C)-

equivariant by [Shi00, Theorem 14.12]. Thus, for an automorphism σ of C, we have

fσ = (Af)σ + Lq(f ′σ).

So we can conclude that

A(fσ) = (Af)σ.

Furthermore because the space of modular forms is a direct sum of the space of Eisenstein

series and the space of cusp forms, there exists an orthogonal projection from the space of

modular forms on Hn to the space of cusp forms on Hn. Because the space of Eisenstein series

is preserved under automorphisms of C, this cuspidal projection is also Aut(C)-equivariant.

From the above comments we conclude the existence of a projection map Acusp from

N t1
q (H2,Γ2)⊗N t2

q (H1,Γ1) to Sq(H2,Γ2)⊗Sq(H1,Γ1) for q > 2+ti and congruence subgroups

Γ2 ⊂ Sp4,Γ1 ⊂ SL2. This projection map satisfies, for any E(Z1, Z2) ∈ N t1
q (H2,Γ2) ⊗

N t2
q (H1,Γ1), F (1) ∈ Sq(H2,Γ2), g(1) ∈ Sq(H1,Γ1), the following properties:

(a) 〈〈AcuspE(Z1, Z2), F (1)(Z1)〉, g(1)(Z2)〉 = 〈〈(E(Z1, Z2), F (1)(Z1)〉, g(1)(Z2)〉,
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(b) (AcuspE)σ = Acusp(Eσ).

In particular, everything above can be applied to the case when E(Z1, Z2) = π−3(k−1)EiΛ,`(Z1, Z2; 1−

k).

We use gi(z) to denote the cusp form g(qiz) on Γ0(Nqi). We can rewrite Theorem 4.2.1

as follows.

∑
i

Λ−2(ti)〈〈EiΛ,`(Z1, Z2; 1− k), F (Z1)〉, gi(Z2)〉

=
VM,N

V (Γi)V (ΓM,N )
A(
`− 1− 2k

6
)L(

`

2
− k, F × g)

Note that we have used the fact that gi has real Fourier coefficients. Together with (4.2.4)

the above equation implies that

∑
i

Λ−2(ti)〈〈EiΛ,`(Z1, Z2; 1− k), F (Z1)〉, gi(Z2)〉 ∼ π7k+1−5`a(F,Λ)L(
`

2
− k, F × g). (4.4.1)

4.5 Deligne’s conjecture

Motives and periods

Let L(s,M) be the L-function associated to a motiveM over Q. SupposeM has coefficients

in an algebraic number field E; then L(s,M) takes values in E ⊗Q C.

Note that E sits naturally inside E⊗Q C. Let d be the rank ofM and d± the dimensions

of the± eigenspace of the Betti realization ofM. Deligne defined the motivic periods c±(M)

and conjectured that for all “critical points” m,

L(m,M)
(2πi)mdεcε(M)

∈ E

where ε = (−1)m.

Now, let F , g have algebraic Fourier coefficients. Assuming the existence of motives

MF ,Mg attached to F, g respectively, Yoshida computed the critical points for MF ⊗Mg.

He also computed the motivic periods c±(MF ⊗Mg) under the assumption that Deligne’s

conjecture holds for the degree 5 L-function for F . We note here that Yoshida only deals



137

with the full level case; however as the periods remain the same (up to a rational number)

for higher level, his results remain applicable to our case.

Yoshida’s computations [Yos01, Theorem 13] show that Deligne’s conjecture implies the

following reciprocity law:

(
L(m,F × g)

π4m+3`−4〈F, F 〉〈g, g〉

)α
=

L(m,Fα × gα)
π4m+3`−4〈Fα, Fα〉〈gα, gα〉

(4.5.1)

for all 2− `
2 ≤ m ≤

`
2 − 1, α ∈ Aut(C).

In the next subsection we prove the above statement for all the critical points m to the

right of Re(s) = 1
2 except for the point 1. The proof for the critical values to the left of

Re(s) = 1
2 would follow from the expected functional equation. The proof that L(1, F × g)

behaves nicely under the action of Aut(C) would probably require further work because

we do not know that this quantity is even finite (see Corollary 3.6.2). Thus, the problem

of extending our result to the remaining critical values is closely related to questions of

analyticity and the functional equation for the L-function. These questions are also of

interest for other applications, such as transfer to GL(4) and will be considered in a future

paper.

We also note that the integral representation (Theorem 3.6.1) is of interest for several

other applications. Indeed, we hope that this integral representation will pave the way

to stability, hybrid subconvexity, non-vanishing, non-negativity and p-adic results for the

L-function under consideration. We intend to deal with these questions elsewhere.

The main result

Theorem 4.5.1. Let ` ≥ 6. Further, assume that F has totally real algebraic Fourier

coefficients and define

A(F, g; k) =
L( `2 − k, F × g)

π5`−4k−4〈F, F 〉〈g, g〉
.

Then, we have:

(a) A(F, g; k) ∈ Q,

(b) For all α ∈ Aut(C), A(F, g; k)α = A(Fα, gα; k).

Proof. Let U be the least common multiple of M,N and all the qi. Let Γ1 be the principal

congruence subgroup of Sp4(Z) of level U and Γ2 the principal congruence subgroup of
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SL2(Z) of level U . For each i, we can write

Acusp(π−3(k−1)EiΛ,`(Z1, Z2; 1− k)) =
∑
r

F r1 (Z1)f r1 (Z2) (4.5.2)

where F r1 (resp. f r1 ) is a cusp form for Γ1 (resp. Γ2); all of weight `. Then

∑
r

〈f r1 , gi〉〈F r1 , F 〉 = π−3(k−1)〈〈EiΛ,`(Z1, Z2; 1− k), F (Z1)〉, gi(Z2)〉. (4.5.3)

We also have

∑
r

〈(f r1 )α, gαi 〉〈(F r1 )α, Fα〉 = π−3(k−1)〈〈EiΛα,`(Z1, Z2; 1− k), Fα(Z1), gαi (Z2)〉 (4.5.4)

using Proposition 4.3.1 and the properties of holomorphic projection stated above.

By (4.4.1) we know that

A(F, g; k) = W · (a(F,Λ))−1 ·
∑
i

Λ−2(ti)
∑

r〈f r1 , gi〉〈F r1 , F 〉
〈F, F 〉〈g, g〉

(4.5.5)

for some rational number W .

Making α act on both sides of the above equation we get

A(F, g; k)α = W · (a(Fα,Λα))−1 ·
∑
i

(Λα)−2(ti)
(∑

r〈f r1 , gi〉〈F r1 , F 〉
〈F, F 〉〈g, g〉

)α
. (4.5.6)

We also note that 〈g, g〉 = 〈gi, gi〉.

Now by a result of Garrett [Gar92, p. 460], we know that for each r,

(
〈f r1 , gi〉〈F r1 , F 〉
〈F, F 〉〈g, g〉

)α
=
(
〈(f r1 )α, gαi 〉〈(F r1 )α, Fα〉
〈Fα, Fα〉〈gα, gα〉

)
.

so we have

A(F, g; k)α = W · (a(Fα,Λα; k))−1 ·
∑
i

(Λα)−2(ti)
(∑

r〈(f r1 )α, gαi 〉〈(F r1 )α, Fα〉
〈Fα, Fα〉〈gα, gα〉

)
. (4.5.7)

Using (4.5.5) for Fα, gα,Λα, we conclude that

A(F, g; k)α = A(Fα, gα; k).
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Remark. The above result was already known in the completely unramified case (M =

1, N = 1) by the work of Böcherer and Heim [BH06] who used a different method.



140

Bibliography

[BFF97] Daniel Bump, Solomon Friedberg, and Masaaki Furusawa. Explicit formulas for

the Waldspurger and Bessel models. Israel J. Math., 102:125–177, 1997.
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