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Abstract. 

Weather and climate models are required to calculate radiative fluxes and shortwave 

heating and longwave cooling rate profiles on a large scale.  Heating and cooling rates describe 

the effect that different configurations of temperature, radiatively active gases, and clouds have 

on the rates of interlayer energy exchange and affect circulation patterns.  Meanwhile, a suite of 

satellite-based instruments from the NASA Earth Observing System’s A-Train provide an 

unprecedented set of measurements that can be used to produce quantities that can also yield 

radiative fluxes and heating and cooling rates.  This work explores the extent to which passive-

infrared hyperspectral measurements such as those made by the Atmospheric Infrared Sounder 

impart information towards infrared cooling rates.  Several novel methods are explored for 

interpreting and retrieving cooling rates using spectral measurements.  

For scenes with optically thick clouds, however, passive visible and infrared 

measurements will have limited power in describing heating and cooling rates.  Vertical cloud 

information can be obtained from several A-Train instruments: the Microwave Limb Sounder Ice 

Water Content product provides data on the profiles of ice clouds in the upper troposphere and 

this work explores how this data can be used to describe the cloud radiative effect.  Recently, 

active-sounding measurements from CloudSat have offered an unrivalled description of cloud 

profiles which can be used to compute fluxes and heating rates.  Preliminary CloudSat products 

are evaluated and a case study of heating rate analysis is presented in which CloudSat products 

are used to determine Tropical Tropopause Layer radiation balance.   

The radiative processes that affect the far-infrared (wavelengths of 15–100 μm) are 

described in a limited fashion by the current suite of A-Train measurements, and yet these 

spectral regions have a large impact on cooling rates in the troposphere.  The extra information 
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gained by the introduction of a set of spectrally resolved far-infrared measurements is discussed 

for clear and cloudy scenes. 

Finally, this work discusses future directions for analyzing heating rates derived from 

remote sensing measurements, and challenges and opportunities for future research. 



 - vi - 

Table of Contents. 

Acknowledgements. ............................................................................................................... iii 
Abstract. ................................................................................................................................... iv 
List of Figures and Tables. .................................................................................................. viii 
Abbreviations. ....................................................................................................................... xii 
Summary. .................................................................................................................................. 1 
Chapter One.  Introduction. ..................................................................................................... 3 

1.1  Overview ................................................................................................................... 3 
1.2  Climate Model Discrepancies .................................................................................. 4 
1.3  Current and Future State of NASA Observing Systems ........................................ 6 
1.4  Importance of Fluxes and Heating Rates................................................................. 8 

Chapter Two. Radiative Transfer. ........................................................................................ 21 
2.1  Abstract ................................................................................................................... 21 
2.2  Introduction ............................................................................................................ 21 
2.3  LW Radiative Transfer Basics .............................................................................. 27 
2.4  SW Radiative Transfer Basics .............................................................................. 30 
2.5  Microwave Radiative Transfer Basics .................................................................. 30 
2.6  Flux and Heating Rate Calculations ..................................................................... 31 
2.7  Description of Inverse Theory .............................................................................. 36 

Chapter Three.  Cooling Rate Retrievals: A Case Study. ................................................... 46 
3.1  Abstract ................................................................................................................... 46 
3.2  Introduction ........................................................................................................... 46 
3.3  Theoretical Basis .................................................................................................... 48 
3.4  Methodology .......................................................................................................... 51 
3.5  Cross Comparison .................................................................................................. 52 
3.6  Discussion .............................................................................................................. 54 

Chapter Four.  Heating Rate Error Analysis: Clear Sky. .................................................... 56 
4.1  Abstract ................................................................................................................... 56 
4.2  Introduction ........................................................................................................... 57 
4.3  Sample Case and Sources of Uncertainty ............................................................ 60 
4.4  Error Propagation and Covariance Matrices ...................................................... 63 
4.5  Spectrometer Information Content Comparison ................................................ 75 
4.6  Discussion .............................................................................................................. 81 

Chapter Five.  Retrieval of Heating and Cooling Rates. .................................................... 84 
5.1  Abstract ................................................................................................................... 84 
5.2  Introduction ........................................................................................................... 84 
5.3  Heating and Cooling Rate Estimation from Measurements ............................... 87 
5.4  Treatment of Clear Spectra ................................................................................... 93 
5.5  Treatment of Cloudy Spectra .............................................................................. 101 
5.6  Computational Cost Considerations ................................................................... 106 
5.7  Discussion ............................................................................................................ 107 

Chapter Six.  Cloud Radiative Effect from MLS Products. ............................................. 109 
6.1  Abstract ................................................................................................................. 109 
6.2  Introduction ......................................................................................................... 109 
6.3  MLS Data Overview ............................................................................................ 114 
6.4  CERES Data Overview ......................................................................................... 119 
6.5  UTC Radiative Effect ............................................................................................ 121 



 - vii - 

6.6  Discussion ............................................................................................................ 129 
Chapter Seven.  Heating and Cooling Rates from CloudSat. ........................................... 131 

7.1  Abstract ................................................................................................................. 131 
7.2  Introduction ......................................................................................................... 132 
7.3  CloudSat Heating Rates ....................................................................................... 135 
7.4  Determination of Zero Net Heating ................................................................... 142 
7.5  Use of Passive Sounders ...................................................................................... 149 
7.6  Orbital Simulations .............................................................................................. 150 
7.7  CloudSat Zero Net Heating Distribution ........................................................... 152 
7.8  Conclusion ............................................................................................................ 156 
Chapter Eight.  Far-Infrared Measurements. ............................................................... 158 
8.1  Abstract ................................................................................................................. 158 
8.2  Introduction ......................................................................................................... 159 
8.3  FIRST Instrument Description ............................................................................. 163 
8.4  Clear-Sky Retrieval Comparison ........................................................................ 164 
8.5  Mid- and Far-Infrared Cloud Analysis .............................................................. 171 
8.6  Test Flight Results ................................................................................................. 181 
8.7  Discussion ............................................................................................................ 185 

Chapter Nine.  Implications and Challenges. .................................................................... 187 
9.1  Introduction ......................................................................................................... 187 
9.2  Frontier of Remote Sensing of Heating and Cooling Rates ............................... 187 
9.3  Problems Amenable to Heating Rate Analysis ................................................... 189 
9.4  Comparison of Heating Rates in Models and Measurements .......................... 190 
9.5  Challenges for Future Analysis and Observing Systems .................................. 196 

Appendix A. Cooling Rate Retrieval Derivation. ............................................................. 198 
References. .......................................................................................................................... 203 
Index. ................................................................................................................................... 230 
About the Author. ................................................................................................................ 232 

 

 

 

 



 - viii - 

List of Figures and Tables. 

Chapter 1 

Figure 1.1 – AR4 prediction of global average surface temperature rise for CO2 emissions  4 

Figure 1.2 – Artist’s rendition of the Earth Observing System A-Train flotilla   6 

Figure 1.3 – Cartoon of Earth’s radiative solar and thermal energy balance distribution  8 

Figure 1.4 – Box diagram of atmospheric circulation model implementation    11 

Figure 1.5 – Spectral cooling rate profile color contour plot, linear in pressure coordinates  12 

Figure 1.6 – Spectral cooling rate profile color contour plot, log in pressure coordinates  13 

Figure 1.7 – Spectrally-integrated heating/cooling rate profiles     14 

Figure 1.8 – Influence of several cloud types on cooling rate profiles   15 

Figure 1.9 – Initial change in cooling rates resulting from an RTM upgrade to CCM3  16 

Figure 1.10 – Change in cooling rates from an RTM upgrade to CCM3 after 5 years  17 

Figure 1.11 – Change in temperature profiles from an RTM upgrade to CCM3 after 5 years 17 

Figure 1.12 – Change in water vapor profiles from an RTM upgrade to CCM3 after 5 years 18 

Figure 1.13 – Comparison of weather model forecast errors from an RTM modification 19 

 
Chapter 2 

Figure 2.1 – Normalized Planck and molecular transmission spectra at several altitudes 23 

Figure 2.2 – Diagram of scattering regimes as a function of wavelength and scatterer size 26 

Figure 2.3 – High-resolution radiance and brightness temperature mid- and far-IR spectra 27 

Figure 2.4 – Heating/cooling rate profile calculation schematic    35 

Figure 2.5 – Example temperature retrieval weighting function profiles   37 

Figure 2.6 – Example temperature retrieval averaging kernel profiles   41 

Figure 2.7 – Flow-chart of synthetic retrieval sensitivity test    42 

Figure 2.8 – Diagram comparing heating/cooling rate profile covariance determination  44 



 - ix - 

 
Chapter 3 

Figure 3.1 – Spectral cumulative cooling rate contribution function color contour plot  49 

Figure 3.2 – Normalized cooling rate weighting function color contour plot   52  

Figure 3.3 – Cooling rate retrieval results from AVE and MPACE missions   53 

 
Chapter 4 

Figure 4.1 – Total and band-averaged IR cooling rate profiles    61 

Figure 4.2 – ECMWF clear-sky total IR cooling rate profile zonal mean and variability 62 

Figure 4.3 – Response of total IR cooling rate profile to T, H2O, and O3 perturbations  64 

Figure 4.4 – Cooling rate profile error estimation with various methods    69 

Figure 4.5 – Estimated a priori and a posteriori cooling rate profile covariance matrices 70 

Figure 4.6 – Linearity of cooling rate Jacobian matrix for T, H2O, and O3 perturbations 72 

Figure 4.7 – PDF of T, H2O, O3, and cooling rate profiles from ECMWF ERA-40  74 

Figure 4.8 – Different estimations of ECMWF cooling rate covariance matrices  74 

Table 4.1 – Spectrometer comparison of cooling rate profile information content  80 

 
Chapter 5 

Figure 5.1 – Synthetic T, H2O, and O3 results for clear-sky conditions with AIRS  95 

Figure 5.2 – Spectral residual associated with the synthetic AIRS retrieval   95 

Figure 5.3 – Heating and cooling rate profile results from the synthetic clear-sky retrieval 96 

Figure 5.4 – A posteriori T, H2O, and O3 covariance matrices for a synthetic AIRS retrieval 97 

Figure 5.5 – A posteriori heating /cooling rate covariance matrices using AIRS data  98 

Figure 5.6 – Comparison of different cooling rate profile retrieval methods   99 

Figure 5.7 – Spectral residual associated with retrieval containing cooling rate constraints 99 

Figure 5.8 – Cooling rate uncertainty comparison for different retrieval techniques  100 

Figure 5.9 – CloudSat/CALIPSO cloud profiles for a sample scene near Manus Island 102 



 - x - 

Figure 5.10 –AIRS L1B and cloud-cleared spectra for a sample scene near Manus Island 103 

Figure 5.11 – Constraint imposed by passive IR and microwave spectra on cooling rates 105 

 
Chapter 6 

Figure 6.1 – Cloud radiative effect derived from CERES measurements for Jan. 2005  111 

Figure 6.2 – Ambiguity of OLR with respect to intra-atmospheric fluxes and cooling rates 112 

Figure 6.3 – Spectral signature of ice clouds and ambiguity therein    113 

Figure 6.4 – Diagram of MLS measurements in different bands    115 

Figure 6.5 – Schematic of MLS remote sensing of cloud ice water content profiles  116 

Figure 6.6 – Relationship between cloud-induced radiance and cloud IWC value  117 

Figure 6.7 – Monthly-mean gridded IWC values retrieved from MLS retrievals  117 

Figure 6.8 – Cartoon detailing difficulty in estimating TOA flux from a satellite platform 119 

Figure 6.9 – CERES monthly-averaged shortwave and longwave flux for Jan. 2005  121 

Figure 6.10 – Linearity of cloud radiative effect for overlapping liquid and ice clouds  123 

Figure 6.11 – Histogram of retrieved 83 to 215 hPa IWP values from MLS for Jan. 2005 124 

Figure 6.12 – Sensitivity test for net CRE for IWC retrieval product perturbations  126 

Figure 6.13 – Comparison of ECMWF and MLS IWC values for Jan. 2005   127 

Figure 6.14 – Comparison of ECMWF and MLS LW CRE for Jan. 2005   128 

 
Chapter 7 

Figure 7.1 – Sample cloudy and clear CloudSat heating/cooling rate profiles with error bars  140 

Figure 7.2 – Net heating rate profile PDF from TOA and ground-based measurements    141 

Figure 7.3 – Analysis of a scene with MODIS, CloudSat, and CALIPSO measurements  145 

Figure 7.4 – Net heating rate profiles in the TTL and the influence on Q0
NET    147 

Figure 7.5 – Influence of CWC retrieval uncertainty on Q0
NET-level determination   148 

Figure 7.6 – Q0
NET-level uncertainty estimation from passive measurements    150 

Figure 7.7 – Orbital simulation and CloudSat sampling pattern representativeness   151 



 - xi - 

Figure 7.8 – Q0
NET level PDF in the vicinity of Manus Island     153 

Figure 7.9 – Q0
NET level PDF across the Pacific Ocean      153 

Figure 7.10 – Q0
NET level maps derived from CloudSat and CALIPSO measurements   155 

 
Chapter 8 

Figure 8.1 – Collocated AIRS and FIRST brightness temperature spectra from June 5, 2005 164 

Figure 8.2 – Synthetic profile retrieval results comparison for AIRS and FIRST instruments 167 

Figure 8.3 – Synthetic residual retrieval results comparison for AIRS and FIRST instruments 168 

Figure 8.4 – Normalized T and H2O averaging kernels for AIRS and FIRST instruments 169 

Figure 8.5 – A posteriori cooling rate uncertainty for AIRS and FIRST instruments  171 

Figure 8.6 – Mid- and far-IR spectral signature of a 1 km liquid cloud at 5 km for TRP 174 

Figure 8.7 – Mid- and far-IR spectral signature of a 2 km ice cloud at 10 km for TRP   176 

Figure 8.8 – Parameterizability of extrapolation methods for mid-IR to far-IR spectra  177 

Figure 8.9 – Mid- and far-IR spectral signature of a 2 km ice cloud at 10 km for SAW 178 

Figure 8.10 – Mid- and far-IR spectral signature of overlapping clouds for TRP  179 

Figure 8.11 – MODIS, AIRS, and FIRST collocated data for Sept. 16, 2006, test flight 182 

Figure 8.12 – CloudSat and CALIPSO profiles for Sept. 16, 2006, test flight   184 

 
Chapter 9 

Figure 9.1 – Cartoon of Earth’s radiative energy balance distribution derived from CloudSat 190 

Figure 9.2 – Monthly-averaged OLR maps from models, direct, and indirect measurements 191 

Figure 9.3 – Monthly-averaged OLR map from indirect measurements without thin cirrus 193 

Figure 9.4 – Comparison of measurement-derived zonally-averaged cooling rate profiles 194 

Figure 9.5 – Comparison of model-derived zonally-averaged cooling rate profiles  195 



 - xii - 

Abbreviations. 

AER:  Atmospheric Environmental Research, Inc. 

AIRS:  Atmospheric Infrared Sounder 

AMSR:  Advanced Microwave Scanning Radiometer 

AMSU:  Advanced Microwave Sounding Unit 

ARM:  Atmospheric Radiation Measurement program 

AR4:  Fourth Assessment Report 

AVE:  Aura Validation Experiment 

CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CAM:  Community Atmosphere Model 

CCM3:  Community Climate Model, Version 3 

CER:  Cloud Effective Radius 

CERES: Clouds and the Earth’s Radiant Energy System 

CHARTS: Code for Highly-Accelerated Radiative Transfer with Scattering 

CLARREO: CLimate Absolute Radiance and Refractivity Observatory 

CO2:  Carbon Dioxide 

CRE:  Cloud Radiative Effect 

CWC:  Cloud Water Content 

CWP:  Cloud Water Path 

DISORT: Discrete Ordinate Radiative Transfer 

ECMWF: European Centre for Medium-Range Weather Forecasting 

EOS:  Earth Observing System 

ERA:  ECMWF Re-Analysis 

ERBE:  Earth Radiation Budget Experiment 



 - xiii - 

FAT:  Fixed-Anvil Temperature 

FIR:  Far-Infrared 

FIRS:  Far-Infrared Spectrometer 

FIRST:  Far-Infrared Spectroscopy of the Troposphere 

GCM:  Global Circulation Model 

H2O:   Water vapor 

HITRAN: HIgh resolution TRANsmission molecular absorption database 

hPa:  Hectopascals (100 Pascals) 

IPCC:  Intergovernmental Panel on Climate Change 

IRIS-D:  Infrared Interferometer Spectrometer, Version D  

ISCCP:  International Satellite Cloud Climatology Program 

IWC:  Ice Water Content 

LBLRTM: Line-by-Line Radiative Transfer Model 

LHS:  Left-Hand Side 

LW:  Longwave 

LWC:  Liquid Water Content 

MCMC: Markov Chain Monte Carlo 

MIR:  Mid-Infrared 

MLS:  Microwave Limb Sounder 

MODIS: MODerate resolution Imaging Spectrometer 

MODTRAN: MODerate resolution TRANsmittance code 

MPACE: Mixed-Phase Arctic Climate Experiment 

MW:  Microwave 

NASA:  National Aeronautics and Space Administration 

NCAR:  National Center for Atmospheric Research 

NEDT:  Noise-Effective Delta Temperature 



 - xiv - 

NER:  Noise-Effective Radiance 

NRC:  National Research Council 

NWP:  Numerical Weather Prediction 

O3:  Ozone 

PDF:  Probability Distribution Function 

PPMV:  Parts Per Million by Volume 

RGB:  Red-Green-Blue 

RHS:  Right-Hand Side 

RRTM:  Rapid Radiative Transfer Model 

RTM:  Radiative Transfer Model 

SAFIRE-A: Spectroscopy of the Atmosphere Using Far-Infrared Emission/Airborne 

SAW:  Sub-Arctic Winter conditions 

SGP:  Southern Great Plains 

SRF:  Spectral Response Function 

SSB:  Space Studies Board 

SW:  Shortwave 

T:  Temperature 

Tcir:  Cloud-Induced Radiance 

TES:  Tropospheric Emission Spectrometer 

TRMM: Tropical Rainfall Measuring Mission 

TTL:  Tropical Tropopause Layer 

TRP:  Tropical conditions 

UARS:  Upper Atmosphere Research Satellite 

UTC:  Upper Tropospheric Clouds 

VMR:  Volume Mixing Ratio 

 



 - 1 - 

Summary. 

 This dissertation covers several different topics related to using remote sensing data to 

infer information about radiative fluxes and heating rates.  It is organized in nine chapters that 

address several aspects of this topic, though not from a monolithic perspective.   

 The first chapter presents a broad introduction and a motivation for the subsequent 

research in the context of current- and future-satellite-borne instrumentation.  This research is 

being performed in order to be supportive of climate models in the context of a large number of 

available satellite-based measurements  

 The second chapter provides a short overview of radiative transfer which is of direct 

relevance to the determination of radiative fluxes and heating rates.  This chapter contains a 

description of some of the theoretical and practical aspects of this topic but is by no means 

exhaustive.  The reader is encouraged to review standard radiative transfer textbooks and the 

references cited in this chapter for a more complete treatment of this field.  For those readers 

seeking a rigorous foundation to the theory of radiative transfer, the paper by Mishchenko et al. 

[2006] is recommended because it links fundamental concepts of radiative transfer to Maxwell’s 

equations.  The end of this chapter broaches the topic of retrieval theory as it pertains to using 

satellite instrument measurements to derive products that are scientifically meaningful.   

 The third chapter introduces the topic of cooling rate retrievals, which has received 

limited treatment in the published literature despite its relevance to circulation models.  This 

chapter explores this novel retrieval approach in a limited framework that indicates that this 

retrieval approach is numerically stable and feasible. 

 Several practical questions are raised in the third chapter regarding the assessment of 

heating and cooling rate profile knowledge, and so the fourth chapter develops a methodology for 

comparing different observing systems in terms of their abilities to constrain cooling rate profiles 
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under clear conditions.  This methodology allows for scientific analysis to be performed in terms 

of heating and cooling rates.  Heating and cooling rate analysis has direct relevance to climate 

models, but it is simplified as compared to analysis according to the larger number of atmospheric 

state parameters required to calculate the heating and cooling rates. 

 The fifth chapter builds upon the results of the previous work and explores using passive 

spectroscopy to perform a direct cooling rate retrieval and the extent to which this method can be 

applied in the presence of clouds. 

 Subsequent chapters explore practical aspects of inferring fluxes and heating rates from a 

variety of measurements.  Chapter 6 analyzes the Ice Water Content profile product of the Earth 

Observing System’s Aura-based Microwave Limb Sounder and how that product can be used to 

describe the top-of-atmosphere cloud radiative effect. 

 Chapter 7 provides an overview of CloudSat-derived heating and cooling rate products 

and how to assess their quality.  This chapter focuses on determining the level of zero clear-sky 

radiative heating in the Tropical Tropopause Layer because this level is relevant to stratospheric 

water vapor transport and is a case where heating and cooling rates dominate vertical transport.   

 In the course of this research, the absence of spectral measurements at wavelengths 

longer than 15 μm became increasingly conspicuous, even though this spectral region is quite 

important to determining tropospheric cooling rates.  Therefore, Chapter 8 addresses some 

aspects of far-infrared measurements, and analyzes spectra from a prototyped balloon-borne 

instrument in the context of the currently orbiting satellite instruments. 

 The final chapter provides thoughts on directions for the future of this research and 

addresses some of the new frontiers towards which future efforts may reasonably be expended. 
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Chapter One.  Introduction. 

1.1 Overview 

Now that global warming has captured the world’s attention, it is incumbent on the 

scientific community to present a clear, concise, and consistent prediction of the likely 

consequences of climate change for the general public.  Atmospheric science is of increasing 

interest to general audiences due to rising popular concern about the societal risks associated with 

climate change.  Several assessment reports from the Intergovernmental Panel on Climate Change 

(IPCC) have provided estimates of the many dimensions of anthropogenically induced climate 

change, and science, with its predictive models, has played an important role in driving policy 

debates about what types of societal change may be required to mitigate greenhouse warming.  

Therefore, confidence in model predictions is of the highest importance to a society concerned 

about global warming, and one essential route for establishing trust in the current generation of 

climate models is to require that they agree substantially with the set of measurements that 

currently exist.  

The research presented in this thesis focuses on one method for analyzing measurements 

in the context of model calculations by utilizing remote sensing measurements to understand the 

radiative energy exchange between different levels of the atmosphere between the surface and an 

altitude of approximately 50 km.  We focus on this region because the atmosphere above 50 km 

contributes very little to processes relevant to climate change.  In numerical weather prediction 

and climate modeling, estimating radiative energy exchange over these 50 km is required, and 

these computer codes have to perform thousands of calculations to this effect at every time-step 

of integration.  Because these instruments fly aboard satellite platforms several hundred 

kilometers above the Earth’s surface, care must be taken to understand how different types of 

measurements impart information towards this interlayer radiative energy exchange, a quantity 

that is conventionally referred to as the calculation of heating and cooling rate profiles.  
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This chapter will provide some context for the subsequent research by offering a very 

brief overview of climate model discrepancies, a description of some of the currently-operational 

earth observing measurements, and why the scientific community is interested in understanding 

heating and cooling rates. 

 

1.2 Climate Model Discrepancies  

Several different institutions have engaged in the massive effort required to produce and 

run a global circulation model that can predict climate change.  These models project future 

climate patterns that the Earth will experience over the next approximately 100 years under a 

broad range of natural and anthropogenic scenarios.   

 

 
Figure 1.1: From the IPCC Fourth Assessment Report.  Model-predicted surface warming relative 
to the period from 1980-1999 for several IPCC emission scenarios (A2, A1B, and B1) for a 
simulation of 21st century climate with stabilization being implemented in 2100.  Shading denotes 
the ±1 σ range for individual model annual means.   
 

They also present one method for testing and analyzing how different processes interact and 

allow the public and policy-makers to formulate decisions regarding the expected changes in the 

earth-atmosphere system that will likely be associated with increased carbon dioxide levels.   
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These scenarios range from business-as-usual (A2) carbon dioxide emission to some 

emission reduction (A1B) to drastic emission cuts (B1).  Shading in the figure describes the 

standard deviation of the 18 different model runs about the solid line of the mean.  The standard 

deviation is often taken to be representative of the uncertainty in the trajectory of the global 

average surface temperature rise associated with anthropogenic carbon emission.  Besides global 

average surface temperature, there are a large number of features of the climate system that can 

be analyzed from a general circulation model (GCM) run, including precipitation and cloud 

cover.  Even more drastic differences between models can be seen when comparing other fields 

[IPCC, 2007].  Additionally, discrepancies between different climate model results are difficult to 

rectify because their sources are often very obscure.   

The differences in climate model results have received serious scientific scrutiny but the 

discrepancies persist.  Moreover, these differences have been used to delay pro-active changes in 

anthropogenic emissions policies.  This is understandable because many climate processes are 

subtle but ultimately are important for determining the response of the earth system to natural and 

anthropogenic forcings.  Disentangling the sources of these discrepancies and discriminating 

between climate model results are non-trivial tasks, but they must be addressed by the scientific 

community. 

However, uncertainty in model performance and therefore in climate change predictions 

can be reduced dramatically by the presence of a far-reaching set of reliable measurements.  

Circulation models can and do benefit from a comprehensive suite of measurement data so that 

they can be trained properly on observations.  Numerical weather prediction, for example, 

routinely ingests many disparate datasets including balloon observations, surface station 

measurements, and satellite radiance data [i.e., Lorenc, 1986; Andersson et al., 1994; Courtier et 

al., 1994; Courtier et al., 1998].  Climate models are typically trained on a set of measurements 

and run in a constrained way before running unconstrained over long time-scales to predict future 

scenarios.  While the set of measurements used to refine models is hardly comprehensive or 
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contiguous, recent advances in instrumentation have allowed atmospheric scientists to analyze 

processes from a global perspective with data that are of a caliber allowing for tenable 

comparisons between measurements and climate models.  Still, modeling atmospheric and 

oceanic circulation for hundreds to thousands of years requires massive computational power and 

a host of parameterizations, and there are many sources of significant uncertainty that arise in this 

effort. 

 

1.3 Current and Future State of NASA Observing Systems 

 

Figure 1.2: An artist’s rendition of the several satellite platforms that comprise the Earth 
Observing System (EOS) A-Train with their separations indicated in terms of local equator-
crossing time lag.  From http://www-airs.jpl.nasa.gov/Technology/HistoricalContext/  
 

Over the last two decades, NASA has designed, built, launched, and maintained the Earth 

Observing System [Asrar and Dozier, 1994].  This program consists of a satellite constellation 

flying in polar sun-synchronous orbit that has provided an absolutely unprecedented set of 

measurements of the atmospheric system.  The constellation has been dubbed the A-Train and 

operates on an inclination angle of 98°, with most of the platforms having a local equator crossing 

between 1:00 pm and 2:00 pm solar time.  The flotilla includes, among others, the Aqua platform 
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which went online in August 2002, the Aura platform which began collecting data in September 

2004, and the CloudSat and CALIPSO platforms that commenced measurements in June 2006.  

A great diversity of instruments exists on board these formation-flying platforms, 

including active and passive sounders.  These instruments utilize many different spectral regions, 

including visible, near-infrared, infrared, and microwave wavelengths.  They produce global 

coverage maps of a wide variety of quantities ranging from surface properties, to trace gas 

composition, to cloud coverage, to aerosol distribution, to surface and top-of-atmosphere energy 

balance.  These datasets represent a comprehensive effort to provide information to the scientific 

community that specifies aspects of the earth-atmosphere system in a stable, well-calibrated 

fashion.  They have enabled increased scientific understanding of a wide variety of processes, and 

the comprehensive picture that these instruments offer about the planet allows the community to 

address profound scientific questions that were totally inaccessible given the previous generation 

of satellite instruments.  At the same time, due to the tens of megabytes of data that are produced 

every second from the various satellite instruments aboard the A-Train, it has been difficult to 

address the wealth of data with full scientific scrutiny.   

The Data Age of earth observing from satellites has arrived but significant uncertainties 

remain in many earth-atmosphere processes.  This is partly due to the continued difficulty 

associated with the integration of model results with the voluminous datasets.  Despite the large 

number of measurements, models require a still larger specification of fields because these 

models utilize fine spatial gridding, narrow time-step incrementing, and complete vertical 

distribution of radiatively and dynamically active quantities.  Moreover, many of the satellite 

instruments provide an incomplete picture of the fields that are required to run a model and the 

picture provided by the remote sensing data is often subject to systematic biases because certain 

classes of scenes observed by these instruments are difficult to interpret.  Moreover, different 

mission requirements for these satellite instruments have led to widely varying viewing 

geometries, even for equipment aboard the same platform. 
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There have been numerous measurement-model comparisons published as a result of A-

Train measurements, but one model-measurement comparison that has received limited attention 

concerns the radiative energy exchange between different levels of the atmosphere.  While 

circulation models are required to calculate these values and satellite instruments provide a partial 

description of inputs necessary to make these calculations, only a very limited amount of research 

has been focused on the reconciliation of heating and cooling rates produced by models and those 

that may be described by measurements. 

 

1.4 Importance of Fluxes and Heating Rates 

At the top of the atmosphere, the Earth is approximately in radiative equilibrium in that 

there is no net gain or loss of radiative energy on time-scales relevant to weather prediction and 

climate change.  However, the distribution of fluxes is governed by a wide variety of processes, 

as shown in the figure below.  

 

 
Figure 1.3:  One-dimensional cartoon of the earth’s radiation budget depicting energy fluxes in 
the atmosphere in W/m2 from Liou [2002]. 

 

While a significant amount of shortwave radiation is reflected back to space, some is also 

absorbed between the top-of-atmosphere and the surface which leads to a decrease in surface 
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insolation of between 72 and 78 W/m2.  Meanwhile, the absorption and emission of the 

atmosphere at longer wavelengths decreases the longwave radiation that is emitted at the top-of-

atmosphere by approximately 151 W/m2.  Clearly, the atmosphere is an active player in the 

earth’s energy balance, which is manifested through heating and cooling rates. 

Weather and climate models are required to calculate heating rates because these models 

seek to represent circulation through numerical integration of the primitive equations (e.g., 

Trenberth [1992]).  This set of differential equations represents a form of several conservation 

equations on a spherical shell under the assumption that vertical velocities are much smaller than 

horizontal velocities.  The primitive equations can be represented in several different forms, one 

of which describes these relationships in pressure coordinates in the vertical and Cartesian 

coordinates in the horizontal.  Accordingly, the geostrophic momentum equations are given by: 
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and 
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     (1.1b) 

 
where D  represents the total derivative, t  represents time, f  is the Coriolis force, v  is the 

meridional velocity, u  is the zonal velocity, φ  is the geopotential, fF  is a description of 

frictional losses, x  is the zonal coordinate, and  y  is the meridional coordinate.  The hydrostatic 

equation can be represented as: 
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     (1.2) 

 
where p  is the pressure coordinate, R  is the gas constant, and T  is the temperature.  The 

continuity equation can be displayed as: 
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where ω  is the vertical velocity.  Finally, the thermodynamic equation, which represents 

conservation of energy, is denoted as: 
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where J  is the heat flow per mass and pC  is the specific heat at constant pressure.  Eq. (1.4) 

describes the change in temperature with time arising from the net balance of incoming and 

outgoing solar and infrared radiation, and represents a substantial fraction of the computational 

cost associated with implementing circulation model calculations [Dongarra et al., 2006].  The 

decomposition of the RHS of Eq. (1.4a) into solar and infrared terms yields heating rate and 

cooling rates respectively such that: 

 

'θ=
pC

J
     (1.4b) 

 
Heating and cooling rates represent the radiative drivers of circulation and are calculated on a 

large scale by the supercomputers that execute numerical weather prediction and predict near- 

and long-term climate change.  Figure 1.4 indicates a schematic representation of how radiation is 

implemented in a circulation model.   

Heating and cooling rates refer specifically to the instantaneous rate of change of 

temperature that arises from the divergence of radiative energy.  For the lowest 50 km of the 

terrestrial atmosphere, this radiative divergence is significant over length scales of hundreds of 

meters in the vertical coordinate but insignificant on horizontal length scales of tens of 

kilometers, except in the case of extremely heterogeneous clouds.   
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Figure 1.4: Diagram of procedures employed in an atmospheric circulation model.  From Chapter 
10 in Trenberth [1992]. 
 

Therefore, the vertical profile of heating and cooling rates is of interest to the modeling 

community and calculations to this end are performed in large quantities.  Given that radiative 

flux is defined as the power per unit surface area, the heating rate profile ( )zθ ′  is given by: 

 

( ) ( )
( )

dz
zdF

zC
z

pρ
θ 1

=′      (1.5) 

 
where pC  is the constant-pressure heat capacity, ( )zρ  is the atmospheric density profile, and 

( )zF  is the net radiative flux for a certain layer over a certain spectral interval.  Several different 

atmospheric constituents are responsible for the heating and cooling rate vertical structure on 

Earth.  Because radiative flux divergence requires the significant absorption or emission in a 

layer, only constituents with significant absorption features in spectral regions that are important 

for the earth’s radiative energy balance (in the vicinity of the solar or terrestrial Planck function 

maximum) contribute to heating and cooling rates.   
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 `  

 
Figure 1.5:  Spectral cooling rate profile as depicted in Clough et al. [1995] for H2O, CO2 (at a 
constant volume mixing ratio (VMR) of 355 ppmv), and O3 as a function of pressure for the Mid-
Latitude Summer atmosphere [Anderson et al., 1986].  Data are smoothed over a 25 cm-1 
bandpass and color-scale indicated values of mK/day. 
 

For gases: water vapor (H2O), carbon dioxide (CO2), and ozone (O3) dominate the heating and 

cooling rate profile budgets and small contributions are made by methane and nitrous oxide.  

Figure 1.5 indicates the spectral distribution of cooling rate profiles and gives an indication of 

which spectral regions contribute to infrared heating and cooling in the troposphere.  Also, the 

same figure can be replotted in log-pressure coordinates to describe infrared cooling in the 

stratosphere.  The H2O rotational bands between 100 and 650 cm-1 lead to strong upper-

tropospheric cooling and a small amount of stratospheric cooling. The CO2 ν2 band between 650 

and 700 cm-1 leads to very strong stratospheric cooling and a small amount of tropopausal 

heating.  The O3 ν3 band leads to strong tropopausal infrared heating and stratospheric cooling.  

H2O continuum absorption leads to cooling across altitudes and spectral regions, but is most 

significant in its contribution to cooling in the boundary layer by affecting the spectral region 

from 800 to 1200 cm-1 (excepting the O3 band coverage). 
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Figure 1.6: Spectral cooling rate profile as depicted in Clough et al. [1995] for H2O, CO2 (at a 
constant VMR of 355 ppmv), and O3 as a logarithmic function of pressure for the Mid-Latitude 
Summer atmosphere [Anderson et al., 1986].  Data are smoothed over a 25 cm-1 bandpass and 
color-scale indicated values of mK/day. 
 

Shortwave clear-sky heating rates are dominated by a small number of atmospheric constituents, 

though all species contribute to heating and none to cooling at wavelengths shorter than 3 μm.  In 

the upper stratosphere, electronic transitions of oxygen are the primary source of solar heating.  In 

the middle and lower stratosphere, ozone contributes substantially to stratospheric heating 

through the Hartley and Huggins bands, and it contributes to tropospheric heating through the 

much weaker Chappuis band.  Also, several different CO2 and H2O bands in the near-infrared 

portion of the spectrum contribute to tropospheric solar heating.  Figure 1.7 depicts longwave 

cooling, shortwave heating, and net heating rate profiles for the Mid-Latitude Summer 

atmosphere [Anderson et al., 1986].  The broadband integrated shortwave and longwave heating 

rates indicate that heating and cooling are on the order of 1–3 K/day in the troposphere, achieving 

a minimum in both heating and cooling near the tropopause.  Both heating and cooling rates 

increase drastically in the mid- and upper-stratosphere, attaining a maximum in the stratopause 

region. 
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Figure 1.7:  Calculated shortwave and longwave heating rates for the Mid-Latitude Summer 
atmosphere [Anderson et al., 1986]. 
 

In non clear-sky scenes, clouds can dramatically affect heating and cooling rate profiles.  

Aerosols can also affect shortwave heating rate profiles, but they generally have a more limited 

impact on longwave cooling rates because infrared aerosol optical depth is generally small 

compared to its clear-sky counterpart.   Radiative fluxes can exhibit sharp changes near cloud 

boundaries, leading to shortwave cloud-top heating, longwave cloud-top cooling, and longwave 

cloud-base heating.  Heating rates can be over 100 °K/day for certain cloud types, and such large 

values immediately impact circulation at cloud boundaries.  Figure 1.8 shows examples of 

heating rates in the presence of three cloud types, indicating the importance of clouds for heating 

and cooling rate calculations.  These profiles exhibit characteristic IR heating at the base of the 

cloud, wild fluctuations from heating to cooling within the cloud, and strong IR cooling at the top 

of the cloud.   

 The qualitative behavior of the heating and cooling rate profiles is quite different from 

clear-sky conditions both for those layers adjacent to clouds and for layers several kilometers 

away.   



 - 15 - 

 
Figure 1.8:  Infrared heating rates calculated for a Mid-Latitude Summer Atmosphere [Anderson 
et al., 1986] plotted in the presence of (a) a low-level liquid cloud, (b) a mid-level liquid cloud, 
and (c) a high-level cirrus cloud.  From Fu [1997]. 
 

The extremely large values of radiative heating and cooling rates associated with clouds have 

immediate implications for the evolution of convection and upward mass transport in certain 

regimes [Ackerman et al., 1988], but given the difficulty associated with describing cloud vertical 

distribution from remote sensing, many details remain uncertain. 

Another reason that it is important to have a thorough understanding of heating and 

cooling rates is that this knowledge is crucial for deriving improved understanding of the net-

surface radiation budget from satellite-based measurements (i.e., Liou [2002], Section 7.4.6).  The 

surface radiation budget is strongly related to many processes that have immediate societal 

relevance such as precipitation [Kiehl and Trenberth, 1997] and the melting of ice [Kay et al., 

2008].  Whereas the top-of-atmosphere net radiation budget can be determined through a variety 

of methods, and extensive satellite campaigns have been devoted towards long-term, accurate 

measurements of net shortwave and longwave radiation (see Chapter 6’s discussion of the earth 

radiation budget measurements), the determination of the net surface energy budget is much less 

certain [Cess et al., 1991; Darnell et al., 1983; Gupta et al., 1999].  However, since heating and 

cooling rate profiles are directly related to net flux divergence, any retrieval of net surface flux 

requires some knowledge of the heating and cooling rates.   
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To illustrate the importance of accuracy in heating rate calculations, it is instructive to 

refer to the results of Iacono et al. [2000].  In this work, the authors compared the performance of 

the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 3 

(CCM3) in two instances: one with an older radiative transfer model and the other with a revised 

and updated radiative transfer scheme (the Rapid Radiative Transfer Model-Global RRTMG) that 

boasted several improvements over the previous version.  RRTMG was developed utilizing a 

large number of datasets based on measurements from the Atmospheric Radiation Measurement 

program with the specific intent of addressing some of the outstanding issues related to flux 

biases in the radiative transfer in GCMs.  In particular, the new code computed stratospheric 

energy balance with greater accuracy, provided a more reasonable treatment of cloud cover, and 

addressed the water vapor continuum (see Chapter 2) more realistically.  The subsequent figures 

dramatically illustrate the importance of heating and cooling rates, both for climate models and 

numerical weather prediction.  First, Figure 1.9 shows the change in the initial zonally-averaged 

cooling rates arising from the radiative transfer model update.   

 

 
Figure 1.9: Zonal average, initial cooling rate difference between the updated radiative transfer 
scheme (RRTMG) and the original scheme (CCM3) as shown in Iacono et al., [2000]. 
 

The distribution of radiative cooling is altered dramatically by the new radiation scheme: cooling 

in the lower troposphere is decreased by about 0.4–0.6 K/day (25–50%).  Cooling near the 
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surface in polar regions decreases by around 80%, whereas cooling in the tropical upper 

troposphere increases by about 0.4 K/day, which represents nearly a 100% increase. 

 

 
Figure 1.10: Zonal average, annual mean, cooling rate difference between the updated radiative 
transfer scheme (RRTMG) and the original scheme (CCM3) with two 5-year CCM3 simulations 
as shown in Iacono et al. [2000]. 
 

After a 5-year climate model simulation, the difference in cooling rates between the two model 

runs changes as shown in the Figure 1.10:  RRTMG shows decreased cooling now in the middle 

troposphere with a small amount of increased cooling in the tropics near the surface and in the 

upper troposphere.   

 

 
Figure 1.11:  Annual mean, zonal average temperature difference as a result of using RRTMG vs. 
CCM3 longwave radiation models with a 5-year CCM3 simulation as shown in Iacono et al. 
[2000]. 
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In response to the modified radiation scheme, the temperature and water vapor fields are also 

significantly affected.  The stratospheric temperature is also quite sensitive to cooling rate 

calculations, and the upper tropospheric temperatures at lower latitudes, along with lower 

tropospheric polar temperatures, are affected due to an improved water vapor continuum model.   

 

 
Figure 1.12:  Annual mean, zonal average specific humidity difference as a result of using 
RRTMG vs. CCM3 longwave radiation models with a 5-year CCM3 simulation as shown in 
Iacono et al. [2000]. 
 

Lower- to middle-tropospheric water vapor at low latitudes decreases by around 20–30%, 

whereas polar tropospheric water vapor increases by 10–30% as the result of the change in 

radiation scheme.  These changes largely arise because the modification in radiative cooling alters 

the distribution between latent, radiative, and sensible heating, which leads to constituent 

changes. 

Finally, weather forecast models are also dependent upon accurate radiative transfer 

modeling.  Figure 1.13 demonstrates that, with the exception of the 500 mbar level, forecast 

prediction improves as a result of the more advanced treatment of longwave cooling rates. 

Unfortunately, some variables in the primitive equations are more amenable to validation 

than others, and radiative heating and cooling rate profiles have been particularly difficult to 
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measure in situ directly.  The reasons for the difficulty with experimental validation are several:  

First, heating and cooling rate profiles can exhibit dramatic temporal variability, especially in the 

presence of clouds, and validation measurement campaigns are therefore not likely to provide 

insight regarding discrepancies between model-produced heating rates (which are only 

descriptive in a statistical sense) and those derived from the measurements.   

 

 
Figure 1.13: Ten-day temperature forecast errors for the Northern Hemisphere average over 12 
months as computed by the ECMWF weather forecast model using the ECMWF operational LW 
model (EC_LW) and the RRTMG model.  Errors are displayed for 50, 200, 500, and 850 mbar as 
shown in Iacono et al. [2000]. 
 

Second, determining heating and cooling rates requires the determination of net solar and infrared 

flux values; from a measurement perspective, it must be recognized that the signal being derived 

is a small signal that results from the difference of two much larger signals. Therefore, extremely 

stringent requirements must be imposed upon any flux/heating rate measurement campaign in 

order to produce results that are reasonable [Taylor 2000].  Several authors (i.e., Valero et al. 

[1982]; Mlynczak et al. [2006a]) have explored the implementation of net flux measurements on 

aerial vehicles in support of radiative heating and cooling rate determination, but there have only 
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been limited radiative flux measurements and no comprehensive validation campaigns for 

verifying atmospheric net flux values have been undertaken.  Finally, while extensive research 

has been focused on measurement-model intercomparisons for many of the standard model 

outputs, there has been only limited research into methods for the comparison of measured 

heating rates with those derived from models (which usually are not standard outputs). 

Because of the importance of heating and cooling rate profiles, this thesis explores 

several topics related to heating and cooling rate calculations and the utilization of remote sensing 

data for such calculations.  This work has been inspired by a paper by Liou and Xue [1988] which 

began the discussion of using remote sensing measurements to retrieve cooling rate profiles (see 

Appendix A for details).  This thesis explores some aspects of the efforts to marry model 

calculations with measurements within the heating and cooling rate context.  Several chapters of 

this work are moderately theoretical in that they develop heating and cooling rate retrieval 

concepts for notional instruments.  Later chapters, however, rely entirely upon the constraints 

imposed by existing instrumentation and explore how these measurements can be employed for 

the analysis of heating and cooling rates. The final chapter discusses future prospects for this 

relatively unexplored topic and offers some limited recommendations for measurement and 

model comparisons.  Ultimately, as such comparisons become more sophisticated, researchers 

may be able to undertake the analysis of heating and cooling rates from measurements and 

models as an important diagnostic tool for exploring whether processes that affect the 

atmospheric energy balance are being described properly. 
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Chapter Two. Radiative Transfer. 

2.1 Abstract 

Most earth-observing satellite instruments measure photons, though the set of 

wavelengths utilized varies widely.  Interpretation of these measurements to confirm agreement 

and to reduce differences between measurements and models is difficult without first 

understanding how those photons propagate through the atmosphere.   The theory of radiative 

transfer provides a robust foundation for deriving information about these constituents from 

electromagnetic remote sensing.  It rests on the notion of establishing a model that correctly 

describes the physics and accurately simulates the range of measurements that a satellite will 

record during its mission lifetime.  By taking actual satellite measurements and ancillary 

knowledge of the system, one can, after establishing appropriate mathematical stability, derive 

scientifically meaningful information about the surface and atmosphere. 

 

2.2 Introduction 

Many remote sensing instruments collect and measure photons and thus are sensitive to 

the fundamental quantity of radiative transfer: radiance.  It can be shown that the radiant energy 

incident upon a satellite is a function of wavelength, time of exposure, and the instrumental 

footprint relative to the area subtended by its field-of-view.  Radiance therefore is defined as the 

specific intensity of radiant energy in terms of wavelength-specific energy per time per area and 

per solid angle.  The Fundamental Equation of Radiative Transfer is a differential equation that 

describes how monochromatic electromagnetic radiance interacts with matter in local 

thermodynamic equilibrium in a plane-parallel atmosphere: 
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where μ  is the cosine of the viewing angle, ),,( φμτννI  is the monochromatic radiance at 

wavenumber ν , φ  is the azimuth viewing angle, ( )φμτνν ,,J  is the source function, and ντ  is 

the monochromatic optical depth coordinate.  The optical depth is related to the fractional 

attenuation of the incident radiance and is given by the following equation: 
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where νσ  is the absorption cross section per molecule, n is the molecular number density, and z 

is the vertical coordinate.  Transmission refers to the ratio of the number of photons at a specific 

wavelength that propagate through the medium of interest to the total number of incident photons.  

Transmission between two layers in the atmosphere is of critical importance to future discussion 

in this paper and is a direct function of optical path, which is the difference in optical depth 

between two layers of the atmosphere: 
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The Fundamental Equation of Radiative Transfer is deceptively simple in that it seems to suggest 

that solving this equation in order to analyze satellite-instrument measurements can be achieved 

with elementary integration techniques.  However, there are many factors that complicate formal 

solution techniques which require numerical solutions in all but the most elementary (and 

generally idealized) cases.  

First, Eq. (2.2) requires a moderately thorough understanding of molecular absorption.  

This phenomenon is only achieved where the photons incident to the layer of interest have 

energies (i.e., wavelengths) that correspond to allowed energy transition values for the molecules.  
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Isolated molecules have quantized electronic, vibrational, and rotational transitions.  Information 

about the location and strength of lines is contained in line-list databases which catalog millions 

of different transitions for about 30 species that may reasonably produce a spectral signature.  

One such line-list is the HIgh Resolution Transmission (HITRAN) molecular absorption database 

[Rothman et al., 2005].  In such a list, the location of lines and their temperature-dependent 

strengths are tabulated en masse.  However, spectral observations show lines with broad 

absorption characteristics that are not consistent with the millions of very narrow absorptions that 

would be observed according to the line placements listed in HITRAN.  This discrepancy arises 

due to well-known Doppler and pressure line broadening phenomena which arise because 

systems of molecules exhibit absorption behavior in the vicinity of the quantized absorption lines.  

Figure 2.1 shows that shortwave (SW) radiation of wavelengths between 0.1 and 4 μm is derived 

almost exclusively from the sun, whereas longwave (LW) radiation of wavelengths between 4 

and 100 μm arises from terrestrial emission, implying that the two wavelengths regimes can be 

treated independently.   

 

 
Figure 2.1: Upper panel shows emission-peak normalized solar and terrestrial blackbody spectra 
as a function of wavelength.  Lower panel shows relatively broadband transmission from the top-
of-atmosphere to 11 km and from the top-of-atmosphere to the ground level. 
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Also, this figure  shows that several trace gases such as O2, O3, H2O, CO2, and CH4 strongly 

absorb radiation at wavelengths throughout the shortwave and longwave. 

The fundamental equation of radiative transfer becomes considerably more complicated 

where the source function term is non-negligible.  In these cases, emission and scattering imply 

that propagation of light through the medium of interest at the viewing angle of interest may be a 

function of more than just the absorbing properties of that medium.  For wavelengths of light 

between 3 and 100 μm, Planck emission of the molecules in the layer of interest will contribute to 

measured radiance as follows: 
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where ( )ντθ   is the temperature corresponding to the layer of the atmosphere at z , h  is Planck’s 

constant, c  is the speed of light, and k  is Boltzmann’s constant. Scattering involves the angular 

rearrangement of photons from the direction of initial propagation to other directions sometimes 

with accompanying absorption.  For the purposes of this work, changes in wavelength as a result 

of scattering processes (Raman scattering) will not be considered, as their contribution to 

radiative energy exchange is negligible.  Another aspect of scattering that tends to increase the 

complexity of radiative transfer solutions is the vectorized nature of radiation.  That is, the 

incident photons have an electric vector of a specific orientation relative to the direction of 

propagation which is not necessarily conserved during scattering processes.  Stokes parameters 

describe the polarization of an electromagnetic vector in several components, and a phase matrix 

(analogous to the phase function) must be included to describe how incident radiance of a certain 

intensity and polarization will change both intensity and polarization as a result of the scattering 

event.  For the purposes of this research, polarization is only indirectly relevant insofar as satellite 
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instrument measurements must either be corrected to consider polarization or polarized radiation 

measurements can be useful in discerning various atmospheric state properties. 

In the presence of scattering, the source function adds significant complexity to the 

solution of this Eq. (2.1) and is often described as follows: 
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where oω  is the single-scattering albedo, which refers to the ratio of scattering to extinction, 

( )( )',',,, φμφμτνν zP  is the phase function for a given incident zenith and azimuth angles ( φμ, ) 

at zenith and azimuth scattering angles ( ',' φμ ) which functionally describes how incident 

radiance is rearranged angularly, and )( νν τB  is the blackbody emission from Eq. (2.4).  The last 

two terms in Eq. (2.5) describe the contribution of solar radiation and the contribution of radiance 

reflected from the surface and incident upon the layer.  A description of the phase function 

depends on the composition of the scattering medium (either molecules or larger particles such as 

aerosols or hydrometeors).  It also strongly depends on the ratio of the size of the scatterers to the 

wavelength of incident radiation which is known as the size parameter.  Where the wavelength of 

incident photons is much smaller than the particle size, simple ray-tracing can be utilized to 

describe the phase function.  Where the wavelength of the photons is of comparable size to the 

scattering medium, treatment of the phase function is considerably more complex and requires a 

detailed understanding of particle geometry and composition.  For spherical particles, Mie 

scattering [Mie, 1908] calculations produce phase functions in a computationally efficient and 

accurate manner, though scattering is much more complicated when particles are non-spherical.  

Where the wavelength of the incident radiation is much larger than the scattering media, Rayleigh 

scattering [Strutt, 1899] provides an accurate description of the phase function and is 

computationally efficient.  Figure 2.2 shows a diagram that depicts the relationship between the 
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size of the scattering medium and the wavelength of incident photons as described above with 

several examples of scattering media included. 

 

 
Figure 2.2: Diagram depicting scattering regimes as a function of scattering medium radius (x-
axis) and incident particle wavelength (y-axis) as adapted from Wallace and Hobbs [1977].   
 

Solutions to the equation of radiative transfer depend strongly on the problem being addressed 

and the wavelengths being measured.  Several sections of this chapter will discuss solution 

techniques for radiative transfer at different sets of wavelengths. 

Ultimately, the interpretation of measured spectra requires accurate and computationally 

efficient methods for solving the radiative transfer equation so that spectra, such as those shown 

in the figure below, can be scientifically meaningful.  The figure on the left shows a large number 

of spectral lines arising from different molecular absorption/emission lines which change the 

Planck function emitted by the surface.  The same information can be transformed by inverting 

Planck function of the radiance for the temperature. The new brightness temperature ordinate 

indicates the temperature of the layer of the atmosphere to which the channel’s radiance value is 

most sensitive.  The current generation of satellite instruments can record tens to hundreds of 

high-spectral resolution spectra each second, and all of this voluminous data can be scientifically 

meaningful given appropriate interpretation.   
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Figure 2.3: High-resolution clear-sky spectra calculated from the Line-by-Line Radiative Transfer 
Model (see Clough et al. [2005] for details) using the 1976 US Standard Atmosphere [Anderson et 
al., 1986].  The left panel indicates the spectra in radiance units and the right panel indicates the 
same spectrum in brightness temperature units. 
 

Therefore, analytic and numerical solutions to the radiative transfer equation are exceedingly 

useful, though the exact means of the solution depends on the wavelengths under consideration. 

 

2.3 LW Radiative Transfer Basics 

In the absence of scattering and where the source function is the Planck function, Eq. 

(2.1) is a linear, first-order differential equation that is azimuthally independent and can be solved 

by means of an integrating factor to yield the following expression for upwelling radiance, which 

is valid under clear-sky conditions in the longwave: 
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where surf,νε  is the monochromatic surface emissivity.  Eq. (2.6) allows for the calculation of 

top-of-atmosphere (TOA) radiance at a given wavelength when the temperature profile and 

transmission profile at the wavelength of interest is known.  The latter quantity requires 

knowledge of the concentration of the species that contribute to absorption at the wavelength of 
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interest in order to produce absorption coefficients for Eq. (2.2).  For downwelling radiance, the 

following expression replaces Eq. (2.6): 
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where sunHν  represents the top-of-atmosphere downwelling thermal radiation from the sun.   

 When clouds are present, LW radiative transfer can be more complicated and is usually 

described by including a cloud in an atmospheric layer and modeling its transmission and 

reflection properties.  The following expression, after Kulawik et al. [2006] describes how 

radiance (which here is implicitly wavelength- and zenith angle-dependent) can be calculated: 
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where TOAI is the TOA radiance, ↑

1I  is the upwelling radiance incident on the bottom of the cloud 

deck, 3T  is the clear-sky transmittance between the cloud-deck and the detector, cB  is the Planck 

emission at the temperature of the cloud deck, ↑
3I  is the emission of the atmosphere above the 

cloud-deck that reaches the detector, and 'cT  is the effective cloud transmittance given by: 
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where cT is the transmission through the cloud, cR  is the cloud reflectance, and ↓

3I  is the 

downward emission from above the cloud deck that reaches the cloud’s upper boundary.  

Calculating the cloud transmission and reflection functions is not a trivial task but has been 

addressed in detail in the literature.  Particularly, the Discrete Ordinate Radiative Transfer 

(DISORT) method [Stamnes et al., 1988] and the doubling-adding method [Twomey, 1966; 

Hansen, 1971] are efficient techniques to produce accurate solutions to the radiative transfer 

equation where scattering is non-negligible.   
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Unfortunately, the efforts to describe cloud properties as they relate to longwave radiative 

transfer is not as easily amenable to parameterization as it is for clear-sky conditions (see 

L’Ecuyer et al. [2006] and Cooper et al. [2006] for a more detailed discussion on this matter).  

Often, however, one-dimensional radiative transfer can be reasonably achieved by describing 

clouds in terms of a cloud water content profile, a cloud phase profile (either liquid or ice), and a 

cloud effective radius profile.  The latter term provides a simple though effective 

parameterization of cloud optical properties, including single-scattering albedo and a description 

of the angular asymmetry in the phase function in terms of the geometric mean of the size 

distribution of hydrometeors at a specific level [Hu and Stamnes, 1993; Fu et al., 1997].   

 Longwave radiative transfer is generally straightforward from a computational 

perspective because the source function is dominated by Planck emission.  Several vibrational-

rotational bands of H2O, CO2, O3, and CH4 produce the dominant spectral features observed in 

TOA spectra.  Many radiative transfer computer codes have been written independently and most 

tend to agree [Kratz et al., 2005], though one of the principal sources of discrepancy between 

different radiative transfer codes is the model for the water vapor continuum.  Continuum 

absorption, which accounts for effects at wavelengths far from a line center in the presence of 

multiple absorption lines, has been especially difficult to implement in radiative transfer models.  

Theoretical models [Tipping and Ma, 1995] provide a robust foundation but have not been as 

accurate as semi-empirical models [Tobin, 1996; Clough et al., 2005].  In fact, it is extremely 

challenging to account for the subtle interactions which must be described in order to model 

absorptions at wavelengths that are very far (25 cm-1 or more) from the line center.  A change in 

the continua models may result in outgoing longwave radiation (OLR) changes of 10–30 W/m2. 
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2.4 SW Radiative Transfer Basics 

For wavelengths of light between 0.1 and 4 μm, radiative transfer can be considerably 

complicated and computationally expensive.  Under all but the most trivial cases, the source 

function must be considered explicitly and surface reflection must be modeled explicitly.  Finally, 

Planck emission is negligible.  The source function for shortwave radiation can be modeled as 

following: 
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where ⊕F  is the solar function.  For SW radiative transfer, the solar source function is scattered 

in the forward direction allowing for the phase function to be described using the δ-Eddington 

approximation, which models the function as a Dirac-δ function followed by terms describing the 

phase-function side-lobes.  Integrating the radiative transfer equation requires explicit treatment 

of the phase function, and reasonable and computationally efficient methods for doing this 

strongly depend on the specifics of the radiative transfer problem being addressed.  Books by 

Chandrasekhar [1950], Goody and Yung [1989], Thomas and Stamnes [1998], and Liou [2002] 

provide extensive discussions of solution methods to the radiative transfer equation which may be 

necessary for the proper interpretation of shortwave radiance measurements. 

 

2.5 Microwave Radiative Transfer Basics 

Microwave radiative transfer can be understood as a direct extension of some of the 

principles of longwave radiative transfer.  Wavelengths in this spectral region range from 

millimeters to centimeters and are considerably longer than those which are important for the 
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earth’s energy balance.  There are relatively few absorption lines to be measured, especially when 

compared to the number of lines that are sampled by shortwave and longwave spectrometers.  

Additionally, treatment of scattering in non-precipitating scenes is simplified by the fact that size 

parameter is much smaller in the microwave than at infrared or visible wavelengths, and so 

Rayleigh scattering is a valid assumption for particle sizes up to 100 μm.   

Otherwise, microwave radiative transfer is similar to infrared radiative transfer (e.g., 

Read et al., 2006]), but these longer wavelengths can be very useful for atmospheric 

characterization.  Cloud optical depths can be much lower in the microwave relative to visible 

optical depths, allowing for the characterization of water vapor and cloud properties for most 

cloudy scenes.  At the same time, microwave detection by itself can be insufficient for detecting 

optically thin clouds and achieving high vertical resolution in the description of gaseous profiles.  

These tasks are generally achievable using visible and infrared wavelengths. 

 

2.6 Flux and Heating Rate Calculations 

One-dimensional radiative heating/cooling rate profiles are a function of pressure for 

each spectral interval.  For circulation model calculations, the ultimate quantities of interest are 

the total shortwave heating rate profile and the total longwave cooling rate profile which 

represent the integration of spectral heating/cooling rate profile information generally over the 

3000–50000  cm-1 and 100–3000 cm-1 bands, respectively.  The value of the radiative 

heating/cooling rate for a given pressure layer is directly proportional to the radiative flux 

divergence for that layer: 
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where ( )zνθ ′  is the spectral heating/cooling rate of the layer, ( )z ρ  is the density of the layer, 

pC  is the heat capacity, and ( )zF net
ν  is the net (upward-downward) flux for the layer over the 

spectral interval denoted ν .  For the longwave, the heating rate profile is generally negative, so the 

convention is to reverse the sign and use the term “cooling rate profile” instead.   

The calculation of heating/cooling rate profiles is ubiquitous, so a large amount of research 

has been devoted to addressing the accuracy and computational efficiency of these values.  For the 

clear sky in local thermodynamic equilibrium, the derivation of the net flux divergence follows 

from a solution to the Fundamental Equation of Radiative Transfer because the source function is 

the Planck function as described in Section 2.3.  For the calculation of heating/cooling rates, 

radiance calculations must be converted into flux: 

 
( ) ( ) μμμνν dzIzF   , 

1

0∫
↓↑↓↑ =     (2.12) 

 
where the ↓↑  superscript refers to separate upwelling and downwelling components for radiance 

and flux.  As an analog to spectral transmittance, the concept of flux transmittance allows for the 

representation of flux in similar terms as the solution to the radiative transfer equation in terms of 

radiance without having constantly to declare the angular integration: 
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0 ∫=     (2.13). 

 
The preceding equation allows for the expression of upwelling and downwelling flux in a form 

that is similar to the radiative transfer equation solution for upwelling and downwelling radiance: 
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Consequently, the net flux divergence is the derivative of the net flux (upwelling minus 

downwelling) and is given by: 
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In practice, cooling rate profile calculation is performed with an emphasis on 

computational efficiency.  With a given atmospheric state (temperature, H2O, CO2, O3, CH4, N2O, 

and cloud optical depth profiles), band-model programs are utilized to estimate interlayer 

transmittance.  In particular, the correlated-k method [Lacis and Oinas, 1991] has proven to be 

computationally efficient and reasonably accurate with respect to the much more computationally 

intensive line-by-line integration in producing interlayer band-average transmittance.  The 

resulting transmittance values are then used to solve for band-averaged radiance.  Radiance-to-

flux conversion requires integrating radiance over zenith angle and is achieved formally and 

exactly through exponential integrals [Goody and Yung, 1988].  However, the computational 

expense of exponential integrals motivates the usage of limited-point quadrature instead.  Gauss-

Jacobi quadrature [Abramowitz and Stegun, 1964] is an optimal means for the calculation of flux 

transmittance, and the utilization of three-point quadrature produces little discrepancy as 

compared to complete angular integration.  Many fast radiative transfer models even use the 

diffusivity approximation (1-point quadrature) to calculate flux transmittance.  Quadrature 

methods tend to produce some error in the layer exchange terms only with low optical depth 

bands.  The discretized calculation of upwelling and downwelling fluxes at layer boundaries 

(levels) is given by: 
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Finite-difference derivatives of net flux produce flux divergence, which is scaled to produce the 

cooling rate profile.  Evaluation of analytic derivatives with respect to altitude for cooling rate 

profile calculation is generally avoided due to the inconsistency between the vertical coordinate 

scheme needed for accurate radiative transfer calculations and the Lipschitz condition [Jeffreys, 

1988] which is necessary for derivative stability. 

The band models are typically evaluated over the fewest bands while minimizing the 

variation of the Planck function across the band and minimizing overlap between absorptions 

from different species.  For the longwave, 10–15 bands are generally sufficient for accuracy of 1 

W/m2 for fluxes at all levels, 0.1 K/day for tropospheric cooling rates, and 0.3 K/day for lower-

stratospheric cooling rates relative to line-by-line calculations [Clough et al., 2005].  Shortwave 

heating rates are calculated in a similar fashion to cooling rates except that solutions to the 

radiative transfer equation are achieved through the inclusion of scattering of the solar source 

function.  The δ-Eddington approximation is utilized to characterize a strongly forward-peaked 

phase function.  Accurate, though computationally expensive radiative transfer in the presence of 

scattering is achieved through the use of DISORT which allows for the integration of radiance at 

several viewing angles (streams).  The two-stream approximation [Schuster, 1905] eases some of 

the computational expense with slightly inferior accuracy [Liou, 1974].  Currently, the multiple-

stream heating rate calculations are radiometrically accurate to approximately 2 W/m2, while the 

two-stream approach is only accurate to 3 W/m2 relative to line-by-line models.  In terms of 

heating rates, the two-stream approximation has an accuracy of 0.1 K/day in the troposphere and 

0.3 K/day in the stratosphere [Clough et al., 2005]. 
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Figure 2.4: Flow-chart detailing the computational processes involved in producing heating/cooling 
rate profiles with a correlated-k method from standard atmospheric state inputs including 
temperature, water vapor, ozone, and cloud optical depth profiles. 
 

 For several decades, atmospheric modelers have calculated radiative heating and cooling 

rates but have had much more limited computational resources as compared to the present.  

Consequently, approximate methods have been widely utilized.  One such approach, Newtonian 

cooling, allows for the estimation of cooling rates near the surface and in the stratosphere by 

multiplying the Planck radiation of a layer times a parameterized change in flux transmittance 

over that layer.  This approach is reasonably accurate (around 90%) where its application is 

warranted and has the benefit of being analytical.  Unfortunately, it is also inapplicable for 

cooling rate calculations spanning the free troposphere and lower stratosphere and will not suffice 

where clouds are present.  In light of the availability of computational resources that can be used 

to achieve accurate heating and cooling rate calculations, these approximations will not be 

utilized in this research. 
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2.7 Description of Inverse Theory 

Inverse theory provides a complement to forward model calculations and facilitates the 

interpretation of data in terms of the quantities of interest that underlie the measurement.  Inverse 

theory is applied to a wide variety of scientific and engineering disciplines ranging from medicine 

to seismology, and it is a central aspect of remote sensing because of the ambiguity sometimes 

associated with the measurements.  Satellite instrument measurements are derived from the 

convolution of the quantity of interest with a function that describes how that signal propagates 

through the atmosphere to the detector several hundred kilometers above the earth’s surface.  

From a satellite platform, it is generally non-trivial to interpret the measurements in terms of the 

quantities of interest. 

A general representation of the inverse problem starts with defining y , the measurement, 

as a function of a forward model F  acting upon the atmospheric state x  as shown by the 

following: 

 
)(xFy =      (2.19) 

 
where F  contains a description of the physics that map the quantities of interest from state space 

to measurement space.   In general, )(xF  is a nonlinear function of x , but can be linearized in 

the vicinity of a state ox  and expressed in a discrete form: 

 
y − yo =K x − xo( )+ ε      (2.20) 

 
where y  is the discrete measurement vector as determined by the remote sensing instrument, oy  

is the measurement vector as computed by the forward model F  using a pre-supposed state 

vector ox , x  is the true state vector, ε  represents the total error in the equation (as discussed 

below), and  K is the Jacobian with elements defined by the following: 
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K jk =
∂Fj (x)
∂xk

    . (2.21) 

 
Here, K  represents the linearization of the discretized forward model.  For historical reasons, it 

is also called the weighting function matrix.  The weighting function matrix rows are of particular 

importance to profile retrieval methods using wavelengths for which the transmittance between 

the surface and the satellite is very low.  Under these circumstances, the altitude of the peak of the 

weighting function row for a certain channel corresponds to that layer which contributes most 

significantly to the channel radiance measured at the top of the atmosphere.  The following figure 

provides a representation of a few representative rows of a weighting function matrix with 

arbitrary abscissa units.  Each row indicates a spectral channel’s vertical sensitivity to 

temperature profile perturbations. 

 

 
Figure 2.5: A set of synthetic temperature weighting functions representing a typical nadir 
sounder measuring thermal emission.  From Rodgers [2000]. 
 

Because these weighting functions exhibit relatively narrow peaks, the satellite measurements are 

almost entirely determined by the contribution from the composition of a region in the 

atmosphere within a fraction of a scale height.  

Solving for x  in terms of y and K  has been the focus of much discussion in the field of 
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remote sensing [Twomey, 1977; Milman, 1999; Rodgers, 2000].  In general, Eq. (2.20) is ill-posed 

and such a problem involves either implicit or explicit regularization which can be done in a 

variety of different ways (e.g., Hansen [1994]; Tarantola [2005]).  Additionally, the appropriate 

criteria for a successful retrieval are not always clear.  Twomey [1963] proposed that realistic state 

vector profiles should be smooth, which can be defined in a number of different ways.  The 

retrieval algorithm can also be formulated to minimize the expected error in the calculated state, 

or it can produce a result that is the most likely given the measurement and the a priori 

information on the state [Rodgers, 2000].  This latter method offers several benefits: it presents a 

balance between the a priori and measurement information while making solutions to the 

problem numerically well conditioned.  Finally, estimation of a posteriori statistics is generally 

straightforward using the techniques prescribed by Rodgers [2000]. 

A brief overview is presented here.  Starting with Bayes’ theorem [Bayes, 1763], which 

relates the conditional and a priori probabilities of random variables, the probabilistic 

relationship between the retrieval, the measurement, and the a priori information can be 

described by: 

 

( ) ( ) ( )
( )y

xxy
yx

P
PP

P =      (2.22) 

 
where ( )yxP  is the conditional probability of the atmospheric state x  given the measurement 

y , ( )xyP  is the conditional probability of the measurement y  given atmospheric state x , ( )xP  

is the a priori probability associated with the atmospheric state, and ( )yP  is the a priori 

probability associated with the measurement.  Assuming Gaussian statistics, it can be shown (e.g., 

Rodgers [2000]) that the following relationship exists: 
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where εS  is the covariance matrix associated with experimental error, and aS  is a priori 

covariance matrix of the state vector.  The concept of the covariance matrix is very useful for 

retrieving quantities based on remote sensing measurements.  A covariance matrix both describes 

the spread of individual variables about their mean values and the relationship between sets of 

variables as they vary about their mean values.  The covariance matrix ( )YXS ,  is given by the 

following: 

 
( ) ( )( )( )νYμXYXS −−= E,     (2.24) 

 
where E  is the expectation operator, X  and Y  are sets of random variables, ( ) μX =E  and 

( ) νY =E .  This quantity is frequently carried through the analysis of remote sensing data 

because a large number of random variables contribute to the retrieved quantities.  It is therefore 

important to estimate how these quantities are related both from a physical perspective and from 

the perspective that several variables may produce indiscernible measurement differences and 

will thus be correlated mathematically as the result of the retrieval.  

In many cases, it is desired to have an estimate of the retrieval state in lieu of a 

distribution, and this estimate is some function of ( )yxP .  For example, the following is called 

the maximum a posteriori method and produces vector estimate according to the posterior 

distribution [DeGroot, 1970]: 

 
( )∫= xxyxx dP   ˆ     (2.25) 

 
where x̂  is the estimate of the atmospheric state retrieval.  By equating terms, it is also possible 

to show that the covariance matrix associated with this estimate Ŝ  is given by the following: 

 

( ) 111ˆ −−− += a
T SKSKS ε    . (2.26) 
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The previous discussion was predicated on the assumption that the forward model was 

moderately non-linear.  This assumption is appropriate where the weighting function matrix is 

valid to within the range of atmospheric states spanned by the a priori estimate and the retrieval 

estimate.  Where the linearity assumption does not hold, more complicated retrieval techniques 

are warranted, adding considerable difficulty to retrieval efforts. 

A discussion of inverse theory requires a discussion of the sources of possible errors that 

may arise.  In the case of satellite instrument measurements, the large quantities of measurement 

data must be treated carefully and error budgets tabulated in order to avoid improper 

interpretation.  Errors in the retrieval algorithm can be broadly divided into four categories: 

smoothing error arising from improper representation of the quantities targeted for retrieval 

relative to their underlying state, forward model parameter errors arising from the retrieval’s 

incomplete representation of the atmospheric state by not including quantities that have bearing 

on the measurement, systematic forward model error due to improper physics, and retrieval error 

arising from an improper conversion from the measurement to the retrieval.  These sources of 

error are represented in Eq. (2.27):   

 
( )( ) ( ) ( ) eGbbxfGbbKGxxIAxx yybyan +Δ+−+−−=− ˆ,,ˆˆ  (2.27)  

 
where ˆ x  is the retrieved state vector, x  is the true state vector,  and A  is the averaging kernel 

matrix which denotes the ability of the retrieval to resolve perturbations in the true state and is 

given by: 

 

x
xA
ˆ 

∂
∂

=      . (2.28) 

 
An example of the averaging kernel matrix is shown in the following figure which indicates that 

for a thermal sounder, perturbations in x  are well-resolved in the middle of the troposphere but 

poorly resolved near the surface and in the upper stratosphere.   
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Figure 2.6: Averaging kernels for a standard nadir temperature retrieval (in solid) and the total 
area denoting the vertical sensitivity of the entire retrieval.  From Rodgers [2000]. 
 

From Eq. (2.27), nI  is the identify matrix of size n and yG  is the gain matrix which describes 

how measurement uncertainties propagate into the retrieval: 

 

y
xG
 
ˆ 

∂
∂

=y      . (2.29) 

 
bK   is the weighting function matrix for non-retrieved forward model parameters, b  is the set of 

non-retrieved forward model parameters, b̂  is an estimate of forward model parameters that are 

most appropriate for the retrieval, ( )bbxf ˆ,,Δ  is the difference between the calculated and the 

true forward model calculation, and e  describes the remaining sources of error including 

measurement error and retrieval error.  The first, second, and fourth terms on the RHS of Eq. 

(2.27) can be reasonably estimated in the course of the retrieval algorithm, while the third term 

describing forward model errors is difficult to address except through extensive model 

improvement efforts.   

 In order to test the feasibility of using a set of measurements to reduce uncertainty in a set 

of atmospheric state parameters, a retrieval sensitivity test can be used.  This approach involves 

establishing a retrieval environment which simulates measurements and tests whether these 
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measurements can be used to interpret the retrieval quantities properly.  The sensitivity test 

begins with an atmospheric state that is specified by a model atmosphere (i.e., Anderson et al. 

[1986]) and calculates a synthetic measurement using that model atmosphere as a set of inputs to 

the forward model.   Noise is then added to the synthetic measurement that is consistent with the 

instrument being used in the retrieval.  The model atmosphere is then perturbed in a manner that 

is consistent with the a priori covariance of the atmospheric state to produce a conception of the a 

priori state.  The difference between the synthetic measurement with noise and the spectrum 

associated with the a priori state forms the input to the retrieval algorithm.  The retrieval 

algorithm then attempts to reproduce the original model atmosphere and the retrieval results are 

compared in state and measurement space.  The resulting comparison indicates numerical 

stability and the sensitivity that the retrieval will exhibit to aspects of the atmospheric state.  The 

following flow-chart indicates the steps associated with this retrieval sensitivity test. 

 

 
Figure 2.7: Flowchart for a synthetic retrieval sensitivity test in order to test the numerical 
stability of the retrieval algorithm and its dependence on a priori knowledge. 
 

 Another concept that is central to remote sensing data handling is information content 

analysis.  This will be discussed in more detail in later chapters, but this concept refers 

qualitatively to the factor by which the understanding of a set of quantities as a result of making a 

measurement changes.  Shannon [1948] quantified this concept by introducing the notion of the 
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entropy of a probability distribution function.  This describes the number of distinct internal states 

of a system (conventionally in thermodynamic terms) and can be evaluated by the following 

expression: 

 
( ) ( )∑−=

i
ii xPxPkS ln      (2.30) 

 
where S  is the entropy of the system, k  is a numerical scaling factor that depends on the 

information content units, and ( )ixP  refers to the probability density of the system being in state 

ix .  The information content refers to the change in entropy and is given by  

 
12 SSh −=      (2.31) 

 
where h  is the information content associated with the measurement and 2S  and  1S  refer to the 

entropy of the states before and after the measurement respectively.  Where a state can be 

described by a multivariate Gaussian distribution with m elements, the entropy can be expressed 

as the following: 

 

( )( ) ( ) xSx ln
2
12ln += emPS π    (2.32) 

 
where x  is the vector describing the quantity of interest in a retrieval, m is the length of the 

vector, and xS  is the covariance associated with the vector.  Therefore, the information content in 

nats becomes: 

 
1

12ln
2
1 −= SSh      (2.33) 

 
which can be evaluated during the course of a retrieval algorithm with minimal computational 

cost. 

In subsequent chapters, this work will explore the analysis of remote sensing data to 

provide estimates of radiative fluxes, heating, and cooling rates.  Briefly, this topic can be 
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understood in terms of deriving the best estimate of a function of the state vector, which in this 

case refers to the temperature, water vapor, ozone, and cloud profiles.  While some higher-order 

retrieval products are derived from non-linear operators, most retrieval schemes that derive 

products that are functions of the state vector do so only by passing the retrieved state vector 

through a linear operator (e.g., column-integrated water-vapor concentration, average retrieval 

value).  The case of the heating/cooling rate calculation as part of a retrieval cannot, in general, be 

considered to be a case where a linear operator acts on the retrieved state vector because the 

radiative transfer model cannot be regarded as a linear operator for all atmospheric states.  

However, assuming the operator acting upon the state vector is linear within the expected 

uncertainty in the retrieved state vector, it is reasonable to design the retrieval in terms of the 

following 

 
( ) ( ) ( ) xxzyxxz    ˆ dP∫=     (2.34) 

 
where ẑ  is the estimate of the function of the atmospheric state (i.e., the heating/cooling rate 

profile), and ( )xz  represents the radiative transfer model evaluated at state x .  Ultimately, this 

approach allows for an alternative consideration of the measurements with a greater emphasis 

placed on heating and cooling rate profiles.  As shown in Figure 2.8 different approaches to 

deriving heating/cooling rate profiles are possible. 

   

 

Figure 2.8: Diagram depicting routes for analysis of measurement data in order to derive heating 
and cooling rate profile data. 



 - 45 - 

These approaches may lead to different covariance matrices with respect to the 

heating/cooling rate profile.  The diagram in Figure 2.8  outlines two different approaches for 

understanding heating and cooling rates from measurements.  Subsequent chapters will explore 

the estimation of these quantities in greater detail.  Moreover, given that the retrieval of 

information from a remote sensing measurement is generally ill-posed, external information is 

often required to interpret the data properly.  Different constraints, regularization, and retrieval 

techniques may allow for improved heating/cooling rate characterization.  Subsequent chapters 

will explore some aspects of how remote sensing measurements can be used to describe heating 

and cooling rate profiles.  
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Chapter Three.  Cooling Rate Retrievals: A Case Study. 

3.1 Abstract 

We expand upon methods for retrieving thermal infrared cooling rate profiles, originally 

developed by Liou and Xue [1988] through application to the inversion of the stratospheric 

cooling rate produced by carbon dioxide (CO2) and a formal description of the associated error 

budget.  Specifically, we infer lower- and mid-stratospheric cooling rates from the CO2 ν2 band 

on the basis of selected spectral channels and available data from the Atmospheric Infrared 

Sounder (AIRS).  In order to establish the validity of our results, we compare our retrievals to 

those calculated from a forward radiative transfer program using retrieved temperature data from 

spectra taken by the Scanning High-Resolution Interferometer Sounder (S-HIS) on two aircraft 

campaigns: the Mixed-Phase Arctic Cloud Experiment (MPACE) and the Aura Validation 

Experiment (AVE), both in fall 2004.  Reasonable and consistent comparisons are illustrated, 

revealing that spectral radiance data taken by high-resolution infrared sounders can be used to 

determine the vertical distribution of radiative cooling due to CO2. 

 

3.2 Introduction  

Conventional clear-sky infrared cooling rates are calculated ubiquitously, and the accuracy 

of these calculations has been shown to affect forecast and general circulation model (GCM) 

performance [Iacono et al., 2000].  Numerical weather prediction models calculate radiative heating 

and cooling efficiently but are burdened by the computational requirement of estimating the 

atmospheric state from a suite of different instruments.  In this light, novel approaches for the 

treatment of heating and cooling may be warranted.  The largest infrared cooling takes place in the 

stratosphere, and this atmospheric region is strongly influenced by radiative interactions.  The 
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interaction between solar heating and infrared cooling has been analyzed with satellite instrument 

measurements [Mlynczak et al., 1999].  However, since the infrared cooling rate profile is 

dependent upon both individual layer atmospheric state vector values and their relationship to the 

broad structure of the atmospheric state, we seek to understand whether high-resolution infrared 

spectra can offer a better description of the infrared cooling rate profile beyond the atmospheric 

state standard products.  The retrieval of infrared cooling rates from top-of-atmosphere (TOA) 

radiance data is a novel concept, and it may improve upon the understanding of the vertical 

distribution of infrared radiative cooling if successfully implemented.  The approach of this retrieval 

will differ from atmospheric state retrievals in that we retrieve in the context of a spectral interval’s 

description of the radiative cooling of an absorption band at a certain level, as opposed to a 

channel’s description of an atmospheric state quantity at that level. 

We chose to demonstrate the feasibility of a cooling rate profile retrieval with the CO2 ν2 

band, as measured by the AIRS instrument [Aumann et al., 2003], for several reasons.  First, this 

band is a major contributor to clear-sky cooling in the stratosphere and mesosphere [Kiehl and 

Solomon, 1986].  Second, CO2 is well mixed and the cooling rate profile varies minimally over an 

observation granule.  Third, AIRS is a proven instrument with extensive spatial coverage, excellent 

signal-to-noise ratio, and well-quantified stability [Aumann et al., 2005].  Finally, clouds, which 

greatly affect cooling rate profile values, are a minimal presence in the stratosphere, so the retrieval 

of CO2 cooling rates can be greatly simplified. 

Calculations of the radiative cooling of CO2 in the stratosphere are straightforward with 

known atmospheric state quantities, but uncertainties in some of these quantities, most notably 

the temperature structure, propagate into cooling rate errors in ways that have not been fully 

explored.  A formal understanding of the cooling rate error budget through observation is 

therefore warranted in order to determine to what extent our method can improve cooling rate 

profile determination. 
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3.3 Theoretical Basis 

The derivation of the cooling rate profile from observed radiance data was first developed 

theoretically by Liou and Xue [1988] in order to measure the strong tropospheric cooling produced 

by the rotational band of water vapor in the far infrared.  The spectral cooling rate profile is defined 

by: 
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where ( )z, νθ ′  is the cooling rate, ( )z ρ  is the atmospheric density profile, pC  is the heat capacity 

of air at constant pressure, and ( )zF net ,ν  is the net flux at height z  for wavenumber ν .  

Conventionally, the cooling rate profile is calculated for the entire infrared (0–3000 cm-1) by 

integrating Eq. (3.1) with respect to wavenumber.  The contribution to the total infrared cooling 

rate of a spectral region at a particular level is given by the cumulative spectral cooling rate 

function which is defined as:  
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As shown in Figure 3.1, a change in color at a certain level on the horizontal axis implies 

appreciable spectral contribution to the total cooling rate value at that level. 

A formal relationship between the infrared cooling rate profile and measured radiance 

values for a spectral band was established in Liou and Xue [1988]  and is given by: 
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where ( ) ( )zTzCzK p ,,    ),,( μνρμν =  forms the weighting function matrix, ( )zT ,, μν  is the 

transmittance function, ( )μν ,I  is the TOA radiance, the coefficients ( ) , μνα  and ( )μνβ ,  can 
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be determined numerically, and ( )μI  is the mean spectral radiance as measured at a zenith angle, 

μ ,  computed from the mean value theorem (see Liou and Xue [1988] for derivation). 

 

 
Figure 3.1: Spectral cumulative cooling rate contribution function for mid-latitude summer 
conditions.  As opposed to the standard spectral cooling rate plot, this plot is useful for discerning 
the differential contribution of certain spectral regions to the total IR cooling rate. 
 

In this chapter, the values of ( ) , μνα  and ( )μνβ ,  are computed numerically from two 

executions of our radiative transfer model at slightly different atmospheric states.  These terms 

relate radiances to spectrally integrated and spectrally independent TOA fluxes.  Equation (3.3) 

demonstrates that the cooling rate profile cannot be measured in a forward sense with a remote 

spectrometer, but it is possible to derive information about cooling from TOA radiance 

measurements using inverse theory based on the Fredholm equation of the first kind denoted in Eq. 

(3.3).   

Assuming that the functional relationship between the measurements and the retrieval is 

well behaved in the solution region, Eq. (3.3) can be analyzed using a linear Bayesian estimation 

technique to retrieve the cooling rate profile. With Gaussian statistics for the measurement and a 

priori error, the retrieved state can be expressed as a balance between the expected amount of 

information about the retrieval quantity as given by the measurement metric ( )μν , y  with the 
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knowledge that constrains the retrieval to a certain solution space.  The a priori covariance matrix 

of the cooling rate profile, which is utilized to constrain the retrieval, is calculated empirically, 

given expected state vector change uncertainties.  For the cooling rate profile a priori constraint, the 

long range covariances between cooling rate profile components are smoothed according to a scale-

height correlation that is derived from near off-diagonal components of the empirical covariance 

matrix.  The error covariance matrix, which describes expected errors in the measurement metric, is 

assumed to be diagonal with diagonal elements derived from the expected deviation in 

measurements derived from Eq. (3.3).  For this type of retrieval error analysis, it can be shown 

(Rodgers [2000]) that the a posteriori covariance for the cooling rate profile can be determined 

from the combination of the measurement error projected onto the data space and the prior error. 

In terms of computing the net flux divergence at several atmospheric levels, radiance 

measurements at different viewing angles provide improved information over a single spectra, but 

the degree and manner in which angular information can be utilized needs further exploration.  

We have generalized the retrieval method of Liou and Xue [1988] for more complicated scenarios 

with cross-track spatial variability where the viewing geometry does not easily lend itself to 

meaningful spatial resolution.  Various measurements may be utilized according to the viewing 

geometry of the instrument being considered, but for scanning instruments, radiance values taken 

at different viewing angles describe unique atmospheric states, thereby requiring knowledge of 

the atmospheric state spatial covariance.  The utilization of angular radiance values represents a 

balance between the information that can be derived from the radiance at a single viewing angle 

and the lack of correlation between different atmospheric states from different viewing angles. 

The measurement metric through which the cooling rate profile is retrieved, y ,  must be 

modified to include an optimal amount of the cross-track angular scan, as determined by error 

budget considerations described above.  As such, y , vectorized according to wavenumber, is 

defined as: 
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where ( )zi , μT  is the transmittance as a function of viewing angle and height vectorized by 

wavenumber, and the i  subscript refers to a discrete viewing angle in a cross-track scan.  The 

metric y  must be defined in such a way as to maximize the information content that can be 

derived about the integrand.  We utilize new angular weighting terms ( )i μγ to relate cross-track 

radiances to the left-hand side of Eq. (3.3).  The formal measurement error covariance matrix then 

becomes the sum of two terms: The first is derived from the radiometric uncertainty multiplied by 

the angular weighting terms, and the second term arises from an understanding of the a priori 

covariance of the cooling rate profile at the viewing angle i μ  with respect to the cooling rate 

profile of the footprint of interest at viewing angle oμ . 

 

3.4 Methodology 

For radiance and transmittance calculations, we use Modtran™ 5, Version 2, Release 1 

[Berk et al., 1989], which is a pre-release product offering spectral resolution as high as 0.1 cm-1.  

The results of this program are routinely verified using the Line-by-Line Radiative Transfer Model 

version 9.3 (LBLRTM) and RADSUM 2.4 calculations [Clough and Iacono, 1995; Clough et al., 

2005] and generally agree to within 0.05 K/day between 800 and 5 mbar.   

Forward model radiances are convolved with the pre-launch AIRS Spectral Response 

Function (SRF) information [Strow et al., 2003] to simulate AIRS channel measurements.  For 

Noise-effective Radiance (NeR), we use values derived from in-orbit calibration algorithms as 

included in the Level 1B data set [Pagano et al., 2003].  We have calculated the cooling rate 

weighting functions for the AIRS instrument and found significant lower- and middle-stratospheric 
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coverage from the 649 to 800 cm-1 region, as shown in Figure 3.2.  In this figure, the normalized 

cooling rate weighting functions for 453 AIRS channels with about 1  cm-1 FWHM per channel 

cover a large portion of the CO2 ν2 band spectral interval, and their cooling rate weighting functions 

cover from the surface to 1 mbar. 

 
Figure 3.2: Normalized cooling rate weighting functions for mid-latitude summer (MLS) conditions 
for AIRS instrument from 649 to 800 cm-1. 

 

3.5 Cross Comparison 

Direct validation of cooling rate profile retrievals requires data from in situ vertically 

ascending or descending hemispheric radiometers that span the spectral region of interest and that 

have the same overpass time as the remote sounder.  In the absence of such a dedicated mission, 

only a cross comparison between data sets is possible.  We do this by analyzing other sets of 

coincidental spectra and deriving atmospheric state information, and then inputting that data into the 

forward model to calculate the cooling rate profile.   

We utilize data from Scanning High-Resolution Interferometer Sounder (S-HIS) taken 

during AVE over the Gulf of Mexico and the southeastern United States during October 2004 

[AVE, 2005; Revercomb, 1998].  These data include zenith and nadir soundings at altitudes from 

10–20 km aboard a NASA WB-57 aircraft coincidental with Aqua and Aura overpasses.  The 
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instrument model for S-HIS is given by a sinc function with an FWHM of 0.96 cm-1.  S-HIS 

measurement noise is calculated using spectra of the instrument’s calibration black-body.   

We have calculated the cooling rate profile in the 649 to 800 cm-1 region by using the 

forward model with a retrieved temperature and CO2 profile from the S-HIS zenith and nadir 

spectra.  The retrieved atmospheric state is calculated using a linear Bayesian update.  The a priori 

cooling rate profile is calculated from AIRS L2 standard retrieval product data with an assumed 

uniform CO2 profile of 379 ppmv.  Uncertainties in the a priori and measured profiles were derived 

empirically from L2 estimated errors in state vector components.  The calculation of the uncertainty 

in the retrieved cooling rate profile is described above.  The error covariance matrix is calculated 

according to radiometric error estimation and cross-track temperature changes in the L2 granule 

data. A comparison of the measured, a priori, and retrieved profiles is shown in Figure 3.3a and 

suggests that our methods may be utilized for a more extensive analysis of the CO2 cooling rate 

profile.   

 

(a) (b) 
Figure 3.3: Deviation from a priori cooling rate profile from 649–800 cm-1 for AIRS retrieved and 
S-HIS calculated cooling rate profiles.  Black solid line: a priori cooling rate profile (lower axis); 
black dashed line: zero line for difference from a priori; blue solid and dashed lines: cooling rate 
profile and deviation respectively from a priori calculated from S-HIS zenith and nadir 
measurements; red solid and dashed lines: cooling rate profile and deviation respectively from a 
priori retrieved with AIRS L1B spectra from coincidental footprint and at 45° in the cross-track 
scan. (a): AVE Flight: 10/31/2004, 24.8 N, 271.8 E. (b): MPACE flight: 10/10/2004, 62.7 N, 214.4 
E. 
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Because there is greater uncertainty in stratospheric cooling processes in polar regions, we 

also performed a cross-comparison test using data from the MPACE mission near Fairbanks, 

Alaska, aboard a Proteus aircraft flying at 11 km [Verlinde et al., 2007].  As shown in Figure 3.3b, 

the agreement between retrieved and measured cooling rate profiles is insufficient in the free 

troposphere, largely due to the difficulties associated with temperature retrievals at high latitudes 

and large discrepancies between skin temperature and emissivity values.  In this case, the lack of 

appropriate a priori information seems to be quite serious. 

 

3.6 Discussion 

The concept of a direct retrieval of radiative cooling profiles in the infrared is relatively 

uncharted territory and this research presents several exciting opportunities for future work.  We 

have expanded on Liou and Xue [1988] so that real data are used, and two cross-comparison 

experiments lend confidence to the methods that we utilize.  Stratospheric cooling rates caused by 

CO2 are assumed to be known currently to within a few tenths of a K/day, but the uncertainty has 

yet to be formally quantified in light of temperature uncertainties.  Our retrievals are generally 

precise to within 0.1 K/day in the lower and middle-stratosphere. Unfortunately, the AIRS 

instrument does not cover the entire CO2 ν2 band, and scaling between partial band and total band 

cooling needs to be explored further.   

The stratospheric temperature decrease in winter and springtime polar regions is of great 

scientific interest because of the interaction between radiative and dynamic effects in this region.   

The total stratospheric cooling rate profile meridional variation near the polar region has been 

explored briefly [Hicke et al., 1999] using a cross comparison with in situ data.  The results of 

this work indicate that changes in the cooling rate profile of the lower stratosphere in polar 

regions will be detectable if the retrieval can be precise to around 0.1 K/day.  
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A thorough analysis of stratospheric radiative cooling rates to measure the trends in 

radiative cooling due to changing stratospheric climate and CO2 concentrations will require a robust 

input data set that resolves temperature profiles from the tropopause to the middle stratosphere.  It 

will also require the development of computationally efficient methods for calculating the angular 

weighting terms ( )i μγ  and a thorough understanding of the effects of errors in these values on 

retrieved cooling rate profiles.  Ultimately, an operational algorithm for the ingestion of radiance 

information into cooling rate calculations for GCMs is a monumental task, and we have explored 

some theoretical and practical aspects for employing direct retrieval methods to this end. 
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Chapter Four.  Heating Rate Error Analysis: Clear Sky. 

4.1 Abstract 

This work investigates how remote sensing of the quantities required to calculate clear-

sky cooling rate profiles propagates into cooling rate profile knowledge.  The formulation of a 

cooling rate profile error budget is presented for clear-sky scenes given temperature, water vapor, 

and ozone profile uncertainty.  Using linear propagation of error analysis, an expression for the 

cooling rate profile covariance matrix is given.  Some of the features of the cooling rate 

covariance matrix are discussed, and it is found that non-zero error correlations in the 

temperature, water vapor, and ozone retrieval profiles must be considered to produce an unbiased 

estimate of cooling rate profile variance and the covariance structure.  Hence, the exclusion of the 

details of this error correlation leads to an underestimation of the cooling rate profile uncertainty.  

This work then examines the assumptions made in the course of deriving the expression for the 

cooling rate covariance matrix by using ERA-40 Reanalysis data.  It is established that the 

assumptions of linear error propagation and Gaussian statistics are generally tenable.  Next, the 

information content of thermal infrared spectra with respect to clear-sky cooling rate profiles is 

investigated.  Several formerly and currently operational spectrometers are compared with 

different spectral coverage, resolution, and signal-to-noise ratio.  Among operational 

spectrometers, IASI is found to have the ability to provide the greatest amount of information on 

the cooling rate profile.  Also, it may be scientifically useful to develop far-infrared missions in 

terms of cooling rate profile analysis. 
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4.2 Introduction 

Heating and cooling rate profiles are influenced by absorption, emission, and scattering 

by atmospheric state constituents such as water vapor (H2O), carbon dioxide (CO2), ozone (O3), 

oxygen (O2), methane (CH4), nitrous oxide (N2O), and liquid and ice clouds.  Aerosols have a 

strong influence on radiative heating in the visible and near infrared portions of the spectrum but 

only have a small impact on the infrared cooling rates where aerosol optical depth is high.  

Heating and cooling rate profile calculations are ubiquitous in the course of general circulation 

model (GCM) runs which utilize correlated-k (or other band-model) methods.  These algorithms 

provide computational efficiency and achieve reasonable accuracy with respect to line-by-line 

calculations for the same inputs of temperature, water vapor, ozone, and cloud optical depth 

profiles. An in-depth discussion of heating rate profile calculation, both from a theoretical and 

practical standpoint, can be found in texts such Goody and Yung [1989] and Liou [2002].   

Radiometric accuracy with respect to line-by-line models is crucial to many aspects of 

model performance because diabatic heating affects circulation.  Morcrette, [1990] found that an 

improved radiative transfer algorithm resulted in substantial changes to the distribution of 

radiative energy in the ECMWF forecast model, while Iacono et al. [2000] explored how the 

introduction of an improved correlated-k algorithm to the CCM3 model changed the resulting 

cooling rates and fluxes, partially ameliorating the model’s cold bias at high latitudes.  In general, 

line-by-line codes are in good agreement with each other [Kratz et al., 2005], though comparisons 

of GCM heating rate calculations still exhibit discrepancies related to band-model 

parameterizations [Ellingson and Fouquart, 1991; Baer et al., 1996; Collins et al., 2006].    

Meanwhile, large-scale retrieval efforts from satellite-borne instruments produce the 

inputs necessary to calculate fluxes and heating rate profiles.  These products include 

temperature, water vapor, ozone profiles, and other trace gas descriptions, along with some 
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description of cloud cover (e.g., Qu et al. [2001]; Susskind et al. [2003]; Barnet et al. [2003]; Li 

et al. [2005]).  Several authors have explored the determination of fluxes such as OLR and total 

surface downwelling flux (more easily measurable quantities) from remote sensing products (e.g., 

Zhang et al. [1995]; Zhang et al. [2004]).  Nevertheless, there have been only a few papers 

focused on how well suited these products are for determining heating and cooling rates.  

Mlynczak et al. [1999] provided a comprehensive assessment of stratospheric radiative balance by 

using remote sensing data.  Efforts to utilize International Satellite Cloud Climatology Program 

data to calculate monthly radiative fluxes and heating rates and the associated sensitivity of such 

calculations were explored by Bergman and Hendon [1998].  More recently, there has been 

renewed focus on assessing heating rates using data from ground validation sites [Fueglistaler 

and Fu, 2006; McFarlane et al., 2007].  Also, heating rates derived from operational analysis 

temperature, water vapor, and ozone data, in combination with cloud profiling radar data, are 

currently being released as a standard product associated with the CloudSat mission [L’Ecuyer, 

2007].  If properly implemented, the patterns of heating rates derived from remote sensing data 

can be compared with those calculated by models in a state space that summarizes the interlayer 

radiative energy exchange as it pertains to the primitive equations.  In principle, if all of the 

inputs to the heating rate calculation are known with certainty, the radiometric accuracy of the 

band-model with respect to line-by-line calculations is the only appreciable source of error.  

However, remote sensing retrievals produce an imperfect estimation of the true quantity being 

retrieved, and it is important to assess how these imperfections relate to heating and cooling rate 

knowledge.   

In order to bridge the gap between satellite-based remote-sensing measurements and the 

heating and cooling rates on which circulations models rely, preliminary efforts to address the 

correspondence between radiances and cooling rates have been made [Liou and Xue, 1988; 

Feldman et al., 2006], though formal error analyses have been undertaken sparingly.  Those 

papers discuss methods for retrieving cooling rates from radiance data, and the latter paper 
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utilizes several AIRS spectra [Aumann et al., 2003] to demonstrate feasibility.  Given the 

existence of several different instruments for atmospheric sounding, it is reasonable to explore 

metrics for understanding which instruments best constrain heating/cooling rates.  To this end, it 

is necessary to produce a formal error budget and discuss the hyperspectral instrument parameters 

that most effectively reduce uncertainty in heating/cooling rate knowledge.  Therefore, this 

chapter focuses on establishing straightforward, computationally efficient methods for making 

appropriate estimation of the cooling rate covariance matrix so that the skill of standard retrieval 

products and methods can be evaluated in the context of cooling rates.  While shortwave heating 

rates are also important to circulation models, this chapter will generally focus on tropical 

longwave cooling rates associated with different temperature, water vapor, and ozone profiles due 

to timely scientific interest (i.e., Hartmann et al. [2001]; Sherwood et al. [2001]; Gettelman et al. 

[2004]).  

The concept of information content is broadly applied throughout this chapter.  Formally 

originating with Fisher [1925] and elaborated substantially by Shannon [1948], information 

content is a useful concept for describing the change in knowledge as the result of a measurement 

of a set of quantities that may or may not be independent.  The information content of a set of 

measurements is equivalent to the same number of measurements of independent equal 

probability binary events.  Another interpretation of information content is that it describes the 

number of different states that can be distinguished by a measurement.  When used properly, 

information content is an absolute currency for the evaluation of retrieval system design that 

produces a reliable metric with which optimization can occur on many fronts simultaneously.   

This chapter is organized as follows. In Section 4.2, we discuss the basic molecular bands 

and their cooling rates using the template of the Tropical Model Atmosphere [Anderson et al., 

1986].  Next, we move on to describe sources of uncertainty in determining cooling rate profiles 

and cooling rate variability in the tropics.  In Section 4.3, formal error propagation analysis is 

applied to the study of cooling rates given expected a priori and a posteriori uncertainties in the 
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clear-sky inputs.  This propagation of error analysis is then applied to reanalysis data to 

demonstrate the efficacy of this approach in determining cooling rate covariance matrices.  

Finally, Section 4.4 provides context for the treatment of the intersection between cooling rate 

profiles and remote sensing measurements by presenting a comparison of the cooling rate 

information content associated with several past and current spectrometers. 

 

4.3 Sample Case and Sources of Uncertainty 

This chapter utilizes radiative transfer codes from the AER suite (http://rtweb.aer.com): 

for line-by-line radiative transfer calculations to produce radiance, the Line-by-Line Radiative 

Transfer Model, LBLRTM [Clough et al., 1992; 1995; 2005] version 9.3 is used; for line-by-line 

flux and heating-rate calculations, RADSUM version 2.4 is used; and for correlated-k 

calculations, the Rapid Radiative Transfer Model (RRTM) including longwave (version 3.01) and 

shortwave (version 2.5) modules are  used [Iacono et al., 2000; Mlawer et al., 1997].  For heating 

rate profile calculations, RRTM is accurate to within 0.1 K/day in the troposphere and to within 

0.3 K/day in the stratosphere relative to line-by-line calculations (see Mlawer et al., [1997] for 

details). 

A sample cooling rate profile calculated with RRTM is shown in Figure 4.1.  Here, nine 

spectral bands are presented along with the total IR cooling rate profile given the Tropical Model 

Atmosphere.  The three far-infrared bands covering 10–630 cm-1 show significant upper 

tropospheric cooling which arises from the rotational band of water vapor.  In fact, these far-

infrared bands, for which no global satellite-based direct measurements currently exist, account 

for upwards of 90% of cooling in the upper troposphere in the tropics.  The two bands from 630-

820 cm-1 are dominated by the ν2 band of CO2 which contributes significantly to stratospheric 

cooling rates.   
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Figure 4.1: Total and band-averaged IR cooling rate profiles for the Tropical Atmosphere on a 
log-pressure scale. 

 

The two spectral bands from 820–980 cm-1 and 1080–1180 cm-1 show cooling in the window 

bands which is strongly influenced by water vapor continuum absorption.  The 985–1085 cm-1 

spectral region is affected by the ν3 band of O3 and the 1070–1180 cm-1 region is influenced by 

the ν1 band of O3 [Clough and Kneizys, 1966].  Both of these bands produce IR heating in the 

lower stratosphere which arises from a rapid vertical change in O3 concentration and a 

corresponding drop in interlayer transmittance.  These bands also lead to IR cooling in the mid- 

and upper-stratosphere with radiation to space. 

 A demonstration of the zonal, meridional, and temporal variability in total IR cooling rate 

profiles due to the corresponding variability in the temperature, water vapor, and ozone fields 

gives an indication of the appropriate scale for a priori values and constraints for cooling rate 

profile analysis.  For this purpose, data from the year 2000 of the European Centre for Medium 

Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40) [Uppala et al., 2005] have 

been utilized as inputs to RRTM, which happens to be essentially the same radiative transfer code 

that the ERA-40 program utilizes internally.  The reanalysis reports temperature, water vapor, and 

ozone at 23 sigma levels ranging from the surface to around 1 mbar at six-hour intervals.  As seen 



 - 62 - 

in Figure 4.2a, the total IR cooling rate profile at low latitudes is several K/day in the troposphere, 

decreases to much less than 1 K/day in the tropopause region, and rises rapidly in the stratosphere 

to around 10 K/day near the stratopause.  For higher latitudes, cooling rates are more uniform 

from the free troposphere to the lower stratosphere and rise rapidly in the mid- and upper-

stratosphere.  Figure 4.2b shows the temporal standard deviation of the cooling rate profile across 

a zonal band located at the equator over using re-analysis data from January 2000 with 

tropospheric variability ranging from several tenths of a K/day in the troposphere to around 0.1 

K/day at the tropopause and to around 0.5 K/day in the middle stratosphere.   

 
Figure 4.2: (a) Contours of clear-sky total IR cooling rate profile values from monthly-averaged 
ERA-40 re-analysis data for Jan. 2000.  (b) Meridional cross section of temporal variability in 
clear-sky total IR cooling rate at the equator using 6-hour ERA-40 re-analysis data for Jan. 2000.  
(c)  Same as (b) but displaying a zonal cross-section of temporal variability. 
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Figure 4.2c displays a meridional cross-section of the temporal variability in the cooling rate 

profile and shows comparable magnitude to Figure 4.2b.   

A cooling rate profile calculation requires knowledge of the inter-layer transmission 

profile in the band of interest along with the temperature profile.  For clear-sky calculations, 

uncertainty arises from the lack of knowledge of the temperature profile, from the vertical 

distribution of absorbing/emitting species, and from spectroscopic uncertainty which is largely 

limited to continua models.  The water vapor continuum has been shown to be very significant for 

the determination of cooling rate profiles at many different altitudes [Iacono et al., 2000].  

However, the incorporation of a state-of-the-art, semi-empirical model [Mlawer et al., 2003] into 

many modern cooling rate calculations largely removes this as a source of systematic error. 

 

4.4 Error Propagation and Covariance Matrices 

Operational heating and cooling rate calculation algorithms generally do not include 

formal error estimates as a result of the uncertainty in input parameters such as the temperature, 

water vapor, ozone, and cloud profiles.  Finite-difference uncertainty estimation is sometimes 

employed for gross error statistics [Mlynczak et al., 1999].  However, formal error estimates can 

establish how uncertainties in atmospheric state descriptors such as temperature, water vapor, 

ozone, and cloud profiles propagate into uncertainties both in spectral and broadband cooling rate 

profiles.  This calculation will involve the mapping of the atmospheric state covariance matrix 

onto the cooling rate covariance matrix.  For this mapping, we recognize that a deviation in an 

atmospheric state value in one layer will tend to impact the cooling rate profile at that layer and at 

neighboring layers also.  Figure 4.3 shows the result of a perturbation in a single atmospheric 

layer of the temperature value or the water vapor or ozone concentration.   
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Figure 4.3:  Change in Tropical Model Atmosphere total IR cooling rate profile arising from 
separate perturbations in the layer from 132 to 182 mbar of +1 K in temperature and +5% in H2O 
and O3 volume mixing ratio.  Gray shading indicates the perturbation layer. 
 

Here, the results of three separate perturbations to the atmospheric state for the layer from 14 to 

16 km (182–132 mbar) are shown: the temperature is increased by 1 K, the water vapor value is 

increased by 5%, and the ozone value is increased by 5%.  Note that as a result of a positive 

perturbation in the temperature and water vapor in a certain layer, the cooling rate in that layer 

increases, and the cooling rate in adjacent layers will generally decrease as a result of increased 

emission from the perturbation layer.  Also, for increases in water vapor, the optical path of the 

perturbed layer increases, thereby decreasing the cooling to space of the layers below the 

perturbed layer.  A positive perturbation in ozone in the troposphere will lead to different results: 

this perturbation will lead to increased IR heating in that layer, and it will decrease IR heating in 

the upper troposphere/lower stratosphere (UTLS), even if the perturbation layer is not-necessarily 

near the UTLS. This behavior arises because ozone IR heating in the UTLS results from the rapid 

increase of O3 with height.  In a spectral region that is otherwise free of significant absorptions 

between the surface and the UTLS, a typical O3 profile leads to a change of inter-layer 
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transmittance from the O3 ν3 and ν1 bands.  Any positive increase in the O3 concentration will 

lead to increased IR heating in the perturbation layer.  However, the response of the total IR 

cooling rate profile to similar perturbations at other layers will lead to qualitatively and 

quantitatively different results depending on which bands contribute to the cooling and whether 

cooling-to-space dominates. 

Clearly the propagation of uncertainties in conventional atmospheric state parameters 

such as the T, H2O, and O3 profiles as they pertain to the cooling rate covariance structure is non-

trivial. We seek to characterize the cooling rate covariance matrix because it is a useful concept 

as applied to the retrieval of profile quantities from remote sensing data: it describes how errors 

are correlated between different entries of the profile.  In order to account for the extent to which 

uncertainties in atmospheric state parameters at all layers impact knowledge of the cooling rate at 

the layer of interest, we start with linear error propagation for a function of several normally 

distributed random variables: 
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where cov refers to the covariance function to describe the error correlations in a quantity f  that 

is a function of several variables for which there is non-zero covariance among input variables 

( )nxx ,...1  [Taylor et al., 1994]. 

To calculate the diagonal of the cooling rate profile covariance matrix, we apply Eq. (4.1) 

to the cooling rate value in each layer: 
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where ( )nxx ,...1  represent all of the atmospheric state inputs that are relevant to cooling rate 

profile calculations at each layer, and ( )zθ ′  refers to either the spectral or broadband cooling rate 
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at height .z   In order to calculate the off-diagonal elements of the cooling rate profile covariance 

matrix, we note the following relationship between the variance of a sum of two quantities: 

 
( ) ( ) ( ) ( )yxyxyx ,cov2varvarvar ++=+    (4.3) 

 
from which we find: 
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where the first term on the RHS of the above equation is given by: 
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and the other terms on the RHS of Eq. (4.4) were derived from Eq. (4.2).  In this formulation, it 

should be noted that ( )izθ ′  and ( )jzθ ′  can refer to cooling rates associated with different layers 

and different spectral regions.  With Eqs. (4.2) and (4.4), we can populate a covariance matrix 

with respect to the cooling rate profile given the covariance matrix of the atmospheric state 

parameters.  In order to implement Eq. (4.2) numerically, finite difference perturbations are 

applied to the T, H2O, and O3 profiles separately to produce cooling rate profile difference values 

(Jacobians).  The implementation of the derivative terms in Eq. (4.5) simply requires summing 

the finite-difference values calculated for Eq. (4.2).   

An application of this formal error budget analysis to cooling rate profile calculations is 

demonstrated with the RRTM calculation of band cooling rate profile errors for the Tropical 

Model Atmosphere [Anderson et al., 1986].  Here, the standard deviation in the temperature 

profile is 3 K in each layer (spaced approximately 1 km apart), and that of the water vapor and 

ozone profiles is 20% of their respective values in each layer.  The purpose of this exercise is to 

characterize cooling rate variability from T, H2O, and O3 variability and set reasonable a priori 

constraints on the cooling rate from an assumed climatology for subsequent analysis.  The a 
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priori covariance of the temperature, water vapor, and ozone profiles is assumed to be based on a 

first-order autoregressive process such that adjacent layer errors are correlated [Rodgers, 2000].  

Consequently, each element of this covariance matrix is given by:  
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where ix  and jx  refer to different layer quantities, ( )ixσ  refers to the standard deviation in ix , 

iz  and jz  refer to the altitude of each layer, and H  is the atmospheric pressure scale height.  

The true covariance matrix of H2O and O3 will undoubtedly be of a quantitatively different nature 

because such profile quantities as T and H2O are undoubtedly correlated to some extent.  For the 

purposes of illustrating the mapping of T, H2O, and O3 covariance matrices to the cooling rate 

covariance matrix, however, we assume in the a priori sense that the T-H2O, T-O3, and H2O-O3 

covariances are exactly zero.  From Figure 4.4a, it can be seen that this propagation of uncertainty 

analysis leads to some predictable and some surprising results. 

From a qualitative point of view, we find that uncertainty in the distribution of water 

vapor contributes most substantially to the total cooling rate profile uncertainty in the troposphere 

as shown with the contributions from the far-infrared.  In the stratosphere, uncertainty in the total 

IR cooling rate profile arises from uncertainty in the O3 v3 and ν1 bands and the CO2 v2 band 

cooling; the former term is determined by O3 and T profile uncertainty while the latter term is 

determined only by T profile uncertainty.  In the tropopause region, the total IR cooling rate 

uncertainty is largely comprised of the O3 ν3 and ν1 bands and the CO2 ν2 band cooling 

uncertainty, and water vapor uncertainty (from the rotational band and the v3 band) is not the 

dominant contributor.   

Another very important consideration from this analysis is to note the results shown in 

Figures 4.4a–d with respect to uncertainty estimation.  All figures show the estimation of total IR 
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and also band-averaged cooling rate profile uncertainty.  First, Figure 4.4a shows error estimation 

derived from Eq. (4.2) and (4.4), with off-diagonal covariance matrix components determined 

from Eq. (4.6).  Figure 4.4b shows this estimation derived from formal uncertainty propagation as 

described above with no off-diagonal covariance matrix components (zero covariance between 

layers for T, H2O, and O3).  Figure 4.4c shows the estimation of variability using 1000 Monte 

Carlo perturbations of the T, H2O, and O3 profiles assuming that the probability distribution 

functions (PDFs) of all variables are Gaussian.  In these Monte Carlo simulations, the layer of the 

perturbation of the T, H2O, and O3 values is chosen from a uniformly distributed random number 

and the magnitude and sign of the perturbation are determined by a normally distributed random 

variable scaled by the estimated error in the perturbation layer.  The correlation matrix derived 

from the covariance matrix is used to scale a profile of non-zero perturbations of the T, H2O, and 

O3 profiles so the simulation is authentic to the assumed covariance structure.    

 From Figures 4.4a and 4.4b, it can be seen that the off-diagonal components of the T, 

H2O, and O3 covariance matrices tend to increase the derived variability in the cooling rate profile 

which implies that, for remote sensing to be useful for cooling rate constraint, it is important to 

retain the details of the retrieval product error correlation structure.  Also, the latter two panels 

show that the cooling rate error budget can be estimated through Monte Carlo simulations, though 

in practice fewer than 1000 simulations are required to describe the cooling rate profile 

uncertainties.  That is, Figure 4.4d shows the variability estimation using 40 Monte Carlo 

simulations which is qualitatively similar to the estimation shown in Figure 4.4c.  It should be 

noted that the uncertainty shown in these four panels is much greater than the typical error that 

would be expected in the reanalysis results.  Nevertheless, the purpose of these figures is to 

demonstrate different methods for estimating cooling rate uncertainty given T, H2O, and O3 

uncertainty and the associated covariance matrix.   Also relevant to this discussion is the 

sensitivity of the derived cooling uncertainty to the covariance terms of the T, H2O, and O3 

covariance matrices.   
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Figure 4.4:  (a) Error estimation for the total and band-averaged IR cooling rate profile using 
formal error propagation as described in Eq. (4.2) and (4.4) with T uncertainty at 3K/km and H2O 
and O3 uncertainty at 20% vmr/km where T, H2O, and O3 errors co-vary according to Eq. (4.6).  
(b) Same as (a) but T, H2O, and O3 errors are uncorrelated.  (c)  Error bars estimated from 1000 
Monte Carlo perturbations to the T, H2O, and O3 profiles. (d) Same as (c) but using 40 Monte 
Carlo perturbations. 
 

Particularly, we examined the sensitivity of the results shown in Figure 4.4a to the parameter H in 

Eq. (4.6).  We found, for example, that a decrease in H by a factor of two, leads to an increase in 

the resulting cooling rate uncertainty at all levels by approximately 10 percent. 

It should also be noted that this formal error propagation analysis for quantities that are 

derived directly from retrieval results can be applied to many other aspects of satellite instrument 

data analysis, especially with respect to higher-level retrievals using Bayesian geophysical 

inversions which directly apply to circulation models.  Specifically, this analysis is also 
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applicable to the understanding of cooling rate profiles under cloudy conditions with respect to 

the knowledge of cloud optical depth profiles. 

Whereas Figures 4.4a–d show cooling rate profile standard deviations, the cooling rate 

covariance matrix in Figure 4.5a illustrates the propagation of temperature, water vapor, and 

ozone profile covariance into the covariance for the total IR cooling rate profile.  The figure 

shows that the off-diagonal covariance matrix components generally decrease exponentially with 

vertical separation, and that the long-range, weak covariance between cooling rates at different 

layers in the troposphere arises from the assumed long-range, weak covariance in the water vapor 

profile.  Cooling rate profile variance in the stratosphere is much greater than in the troposphere 

due to stratospheric temperature and ozone uncertainty.  The small off-diagonal covariance 

matrix elements of the cooling rate profile in the stratosphere are caused by the larger altitude 

spacing between layers in the stratosphere which also leads to small off-diagonal covariance 

matrix components for stratospheric T and O3 profiles. 

 

 
Figure 4.5: Total IR cooling rate covariance matrices with the Tropical Model Atmosphere for (a) 
a priori uncertainty of T at 3K/km, and H2O and O3 uncertainty at 20% vmr/km, where T, H2O, 
and O3 errors co-vary according to Eq. (4.6).  (b) A posteriori uncertainty with a standard 
retrieval of T, H2O, and O3 profiles using the AIRS instrument model.  
 

Figure 4.5b shows that the introduction of thermal sounder retrieval information produces 

an a posteriori covariance matrix that is qualitatively and quantitatively different from the a 
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priori covariance matrix because the sounder measurement significantly improves understanding 

of those quantities required for the cooling rate profile calculation.  First, the variance at all layers 

is significantly reduced after the measurement.  This is to be expected since the T, H2O, and O3 

profiles are better constrained after the measurement.  Second, the limited number of degrees of 

freedom of the signal with respect to the temperature, water vapor, and ozone profiles is also 

evidenced in the a posteriori cooling rate covariance.  That is, the retrieval has limited vertical 

resolution and thus imparts a set of independent pieces of information that is generally smaller 

than the number of retrieval quantities.  The result is that the retrieved profile quantities tend to 

oscillate about the true profile quantities, and the cooling rate covariance matrix associated with 

such T, H2O, and O3 profile retrievals has negative covariance values in the near-range off-

diagonal components.  This negative covariance tends to reduce the effective vertical resolution 

of cooling rates that are derived from the spectrometer retrievals.  If, for example, one is 

interested in the vertical structure of the cooling rate in the boundary layer, the vertical width of 

the T, H2O, and O3 retrieval averaging kernels will frustrate efforts for meaningful cooling rate 

analysis.  Depending on the way in which cooling rates are utilized, vertical resolution may or 

may not be necessary.  The comparison of vertically integrated tropospheric cooling resulting 

from different water vapor distributions may allow for degraded vertical resolution which can be 

accomplished by passing the high-resolution covariance matrix through a vertically averaging 

operator.  On the other hand, circulation models generally require high vertical resolution for 

heating/cooling rates, so analysis of cooling rates from sounder retrievals as compared to 

circulation model cooling rates should be undertaken at high resolution. 

The formulation of the cooling rate covariance matrix herein rests on several assumptions 

which need to be addressed.  First, because significant cooling arises from the layer at which the 

atmosphere transitions between optical thickness and transparency in a certain band, the nonlinear 

nature of the radiative transfer equation may render the linear error analysis less meaningful.  The 

issue here is whether this error propagation is valid for small changes in the clear-sky cooling rate 
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inputs, and what magnitude of T, H2O, and O3 profile uncertainty invalidates this linearity 

assumption.  To estimate this, we investigate the behavior of the derivative terms in Eq. (4.2) by 

examining the change in a finite-difference derivative approximation with increasing differential 

step size.   

 

 
Figure 4.6: Finite-difference Jacobian of cooling rate profile change with respect to changes in T 
(left panel), H2O (center panel), and O3 (right panel) over the layer from 132–182 mbar.  The 
linearity of the Jacobian is tested through different percentage change step sizes.  These different 
step sizes are distinguished through the linestyles indicated by the legend in the right panel.  The 
shaded gray indicates the layer being perturbed. 
  

The three panels of Figure 4.6 show the change in cooling rate for different perturbations in the 

temperature, water vapor, and ozone at 150 mbar normalized by the perturbation step size.  It can 

be seen from this figure that even for fairly large perturbations, the normalized response of the 

clear-sky cooling rate profile does not change significantly (though RRTM has difficulty 

resolving the effects of small perturbations on stratospheric cooling rates).  Even the nonlinearity 

shown in the T perturbation panel only becomes evident for changes on the order of 10% which 
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represents a perturbation of over 20 K.  Perturbations in other layers in the atmosphere are similar 

to the results in Figure 4.6 in that the finite-difference Jacobians are nearly independent of step-

size.   

The other important assumption in the derivation of a cooling rate covariance matrix is 

whether Gaussian statistics can be utilized.  Since many of the physical quantities relevant to 

cooling rate profiles can be reasonably represented with Gaussian statistics, and because error 

propagation in these instances can be described analytically, it is convenient to make an 

assumption that the probability distribution functions (PDFs) of all variables associated with the 

calculation of the cooling rate profile are normal.  This may be reasonable given the low number 

of parameters required to constrain a Gaussian PDF, but this assumption can also be tested.  If the 

PDFs of the input variables are non-Gaussian, covariance matrix estimation from the approach 

described above may be difficult.  The lack of an analytic expression (e.g., Eq. (4.1)) for 

meaningful error bars of functions with non-Gaussian inputs has led to diverse approaches, some 

of which focus on Monte Carlo distribution sampling (e.g., Palacios and Steel [2006]; Posselt et 

al. [2006]).  Indeed, the error estimation in Figure 4.4a was qualitatively accomplished with a 

limited number of Monte Carlo samples as shown in Figure 4.4d. 

Testing the assumptions made in the course of the cooling rate covariance matrix 

formulation using real data or a realistic data set is important to establishing the utility of error 

propagation as it applies to cooling rate profiles.  The ERA-40 reanalysis data fields provide a 

convenient, straightforward, and realistic set to calculate sample covariance matrices of T, H2O, 

and O3 profiles and also to sample cooling rate covariance matrices.  The PDFs of temperature 

exhibit qualitatively Gaussian behavior, though water vapor and ozone exhibit much different 

distributions that can be better characterized as lognormal. The resulting PDFs of cooling rates at 

various layers are also qualitatively Gaussian with some positive skewness.  An example of the 

PDFs of temperature, water vapor, ozone, and cooling rate at 150 mbar is shown in Figure 4.7.   
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Figure 4.7: Sample probability distribution functions of the temperature (upper left panel), water 
vapor (upper right panel), ozone (lower left panel), and cooling rate (lower right panel) at 150 
mbar from the ERA-40 data set for January 2000 for the region bounded by (20S , 20N) and 
(150E, 210E). 
 

In order to estimate the cooling rate covariance matrix, it is more appropriate to utilize the 

covariance of the logarithm of H2O and O3 and the change in cooling rate profile with respect to 

changes in the logarithm of H2O and O3.   

 

 
Figure 4.8: Clear-sky total IR cooling rate covariance matrix from ERA-40 reanalysis for the 
region bounded by (20S , 20N) and (150E, 210E) for January 2000 calculated from (a) ensemble 
cooling rate calculations and (b) error propagation analysis using calculated variability in T, H2O, 
and O3 fields. 
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In Figure 4.8a, a cooling rate profile covariance matrix is calculated from an ensemble of 

clear-sky cooling rate profiles from all time steps of the ERA-40 in January 2000 from 20S to 

20N and 150E to 210E.  Figure 4.8b shows the cooling rate covariance matrix derived with Eqs. 

(4.2–5) using calculated T, log(H2O), and log(O3) covariance matrices.  That is, we are 

calculating the covariance matrix of T, log(H2O), and log(O3) from a large set of reanalysis 

profiles using error propagation as discussed above to produce a cooling rate covariance matrix.  

The results are compared to the covariance matrix derived empirically from the cooling rate 

profile calculations performed with the same set of T, H2O, and O3 profiles.  The two covariance 

matrices describe variability and are qualitatively similar, though the latter (empirically derived) 

has substantially more structure.  The discrepancy arises primarily due to the non-Gaussian PDFs 

of the input quantities.  Clearly, the series of assumptions necessary to create the cooling rate 

covariance matrix from Eq. (4.2) and Eq. (4.4), including Gaussian statistics and the validity of 

the linear error estimation for slightly or moderately non-linear regimes, must be utilized with 

some caution. 

 

4.5 Spectrometer Information Content Comparison 

Given a proper formulation for the cooling rate profile covariance matrix as a function of 

the atmospheric state covariance matrix, an information content analysis can be performed to 

assess the relative merits of traditional retrieval techniques using data from past, current, and 

future observing systems.  Also, information content analysis facilitates discussion of the value of 

the traditional treatment of cooling rates and other approaches to the analysis of spectra.  In the 

previous section, we developed methods for calculating the error budget for the cooling rate 

profile both from prior knowledge and from knowledge gained by data from remote-sensing 
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instruments.  It is sensible to use a measure such as information content to compare these two 

states of knowledge. 

According to Shannon [1948], the information content can also be described by the 

entropy of the probability distribution functions associated with the a priori and a posteriori 

states.  Given an assumption of Gaussian statistics for the quantity of interest, the entropy, and 

thus the information content can be directly related to the covariance matrix of the suite of 

physical variables estimated in the retrieval (e.g., T, H2O, O3 profiles): 
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where aP  is the prior state and aS  is its associated covariance matrix.  The information content 

h, in bits, is given by the difference in entropy from the prior to the posterior state: 
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where Ŝ  is the posterior covariance matrix.   

We estimate the information content for the cooling rate profile derived from current 

thermal sounder measurements according to instrumental spectral coverage, noise, and resolution.  

The purpose of this analysis is to understand and compare how different instrument 

characteristics are able to impart knowledge towards the determination of the cooling rate profile.  

First, this analysis compares the cooling rate profile information, in bits, derived from standard 

optimal-estimation atmospheric state retrievals [Rodgers, 2000] for the temperature, H2O, and O3 

profiles.   While it is recognized that most operational retrieval techniques employ more advanced 

approaches to the inversion, a linear error analysis is chosen for simplicity.  Additionally, the a 

posteriori covariance matrix estimation for non-linear retrieval is similar to the linear case. 

For these cases, the suite of physical quantities retrieved consists of a vector of the 

concatenated profiles of the temperature and the logarithm of the H2O, and O3 profiles.  We 
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assume that the a priori covariance matrix for the gaseous profiles is given as a modification of 

Eq. (4.6), noting that a Taylor expansion approximation of the variance of a function is: 
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which implies that for the transformation: 
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where ix  and jx  refer to gaseous profile concentration at different layers, that: 
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which leads to the following result for the H2O and O3 elements of the a priori covariance matrix: 
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The a priori covariance matrix is generally block-diagonal with respect to the different 

gaseous species in the absence of compelling a priori knowledge of the covariance between 

different profile quantities.  That is, the retrieval of physical quantities can be implemented 

without constraining the covariance between different species, though the covariance matrix of 

the suite of physical values retrieved from the measurement will not, in general, be block-

diagonal.  For information content analyses, the role of the a priori constraint is central towards 

determining how the measurement translates to total knowledge about the quantity of interest.  

Since the a priori was not specified rigorously here, it should be noted that for higher assumed 
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values of prior uncertainty in T, H2O, O3 and correlations in those uncertainties, the information 

content associated with that measurement will also increase. 

The thermal infrared sounders herein compared include the IRIS-D instrument aboard the 

Nimbus 4 platform [Hanel et al., 1971], the AIRS instrument aboard the Aqua platform [Aumann 

et al., 2003], the TES instrument aboard the Aura platform [Beer et al., 2001], the IASI  

instrument aboard the MetOp platform [Chalon et al., 2001], and the FIRST instrument — a 

newly-developed instrument that has been tested from a balloon platform [Mlynczak et al., 

2006b].  All instruments are infrared spectrometers: AIRS, TES, and IASI measure most of the 

mid-infrared out to approximately 650 cm-1, while IRIS-D covers a portion of the far-infrared 

with measurements out to 400 cm-1 and FIRST measures nearly the entire far-infrared out to 50 

cm-1.  Each information content calculation requires the utilization of an instrument line shape 

(ILS).  All but one of the instruments herein considered are Fourier Transform Spectrometers  

(FTS) and the ILS for the FTS instruments is specified as an upapodized sinc-function 

parameterized by the maximum optical path length of each scan and the integrated field of view.  

The specification of the ILS for the AIRS instrument, the only grating instrument included in the 

comparison, is defined by the post-launch characterization of channel centroids and spectral 

response characteristics [Gaiser et al., 2003].  The approximate noise characteristics of the 

instruments listed in Table 4.1 show the range of the Noise-Effective Delta Temperature (NEDT) 

for each instrument. 

A posteriori covariance of T, H2O, and O3 profiles is estimated according to a linear 

Bayesian atmospheric state retrieval approach detailed by Rodgers [2000] and is given by the 

following: 
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where εS  is the measurement covariance matrix, T and -1 denote the matrix transpose and 

inverse respectively, and K  is the weighting function matrix with components given by: 
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where iR  refers to the radiance in the ith channel, and xj is an input to the line-by-line radiative 

transfer model.  The measurement covariance matrix is derived from an estimation of 

measurement error, which is generally acquired through a detailed calibration procedure.  For this 

demonstration, static measurement error models were used which assume that the noise is limited 

to a non-spectrally correlated detector signal. That is, the off-diagonal elements of the 

measurement covariance matrix are set to zero.  While not all spectral errors are uncorrelated, it is 

reasonable to assume that in the course of the processing of raw detector data to geolocated, 

calibrated radiance data that a significant part of the calibration fluctuations and other spectrally 

correlated errors can be corrected.  The a posteriori covariance matrix from Eq. (4.12) is then re-

entered into the cooling rate covariance matrix formulation calculated with Eqs. (4.2) and (4.4) 

and from this, the cooling rate information content is calculated.   

Table 4.1 shows the information content of several clear-sky sounders for three model 

atmospheres [Anderson et al., 1986] where hTRP denotes information content for the Tropical 

Model Atmosphere, hMLS denotes information content for the Mid-Latitude Summer Model 

Atmosphere, and hSAW denotes information content for the Sub-Arctic Winter Model Atmosphere.  

These results indicate some optimal qualities for remote sensing data for cooling rate profile 

determination.  First, it is expected that older instruments such as IRIS-D, with relatively low 

spectral resolution and high instrument noise, will contain some information regarding the 

cooling rate profile, but that newer instruments will have improved performance.  Second, the 

amount of information that a thermal sounder can derive about the cooling rate profile is also 

proportional to the thermal contrast between the surface and the atmosphere.  Therefore, cooling 
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rate profiles can be determined better when viewing tropical atmospheres as opposed to 

wintertime polar ones.  Third, the balance between signal-to-noise ratio and spectral resolution 

tends to favor the AIRS instrument (which has a superior signal-to-noise ratio).  Fourth, IASI, 

with comparable channel coverage and noise, yet increased spectral resolution, should provide 

more information regarding the cooling rate profile as compared to AIRS.   

 

Table 4.1. 

Instrument Temporal 

Span 

Spectral 

Coverage 

(cm-1) 

NEDT 

(K) 

Spectral 

Resolution 

(cm-1) 

hTRP 

(bits) 

hMLS 

(bits) 

hSAW 

(bits) 

IRIS-D 

(Nimbus 4) 

1970–71 400–1600 2–4 2.8 9.8 8.4 6.4 

AIRS 

(Aqua) 

2002–

Present 

650–1400,  

1900–2700 

0.1–0.6 1–2 17.1 11.5 12.6 

TES (Aura) 2004–

Present 

650–1325, 

1900–2250 

1–4  0.12 13.2 10.5 8.0 

IASI 2006–

Present 

650–2700 0.3–0.5 0.5 21.8 19.9 18.3 

FIRST Prototype 50–2000 1.1 0.6 17.5 18.3 11.4 

 

Finally, the descriptive ability of upper tropospheric water vapor bands that the FIRST instrument 

exhibits strongly suggests that far-infrared measurements do not represent a completely redundant 

description as compared to what is derived from the 6.3 μm H2O band.  In fact, if only the mid-

infrared portion of the FIRST instrument is used for the analysis listed in Table 1, hTRP is 16.2 

bits, hMLS is 16.9 bits, and hSAW is 10.3 bits.  Moreover, it is expected that errors in the 
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spectroscopic databases in the far-infrared will contribute to mid-tropospheric cooling rate profile 

biases, and large-scale measurements in this spectral region should reveal discrepancies. 

 

4.6 Discussion 

In this chapter, we have addressed the formulation of a cooling rate profile error budget 

for clear-sky scenes.  This is particularly important for cooling rate analysis from remote sensing 

data so that the errors associated with the retrieval of standard physical quantities are retained.  

We start with formal linear propagation of error analysis to derive an expression for the diagonal 

and off-diagonal components of the cooling rate profile covariance matrix.  From this, we find 

that knowledge of the structure of error correlations in the T, H2O, and O3 profiles is important to 

the estimation of the cooling rate profile error budget in that higher error correlation tends to 

increase cooling rate uncertainty.  While this knowledge may not always be available, it is 

necessary for the proper assessment of the cooling rate error budget. 

Next, we explore the assumptions made in the course of deriving an expression for the 

cooling rate covariance matrix, which are borne out by using a large set of T, H2O, and O3 

profiles from the ERA-40 reanalysis data set.  Namely, we test the extent to which linear error 

propagation can be assumed, and Gaussian PDFs for radiative transfer model input variables can 

be utilized.  There is qualitative agreement between the cooling rate profile covariance matrix 

derived from an ensemble of radiative transfer calculations and that derived from the covariance 

matrices of temperature, water vapor, and ozone profiles, though some ad hoc second-order 

corrections may be required. 

Subsequently, we address how the formal retrieval of temperature, water vapor, and 

ozone profiles using thermal infrared spectra impart information towards understanding the clear-

sky cooling rate profiles.  Several spectrometers were compared with different spectral coverage, 
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resolution, and signal-to-noise ratio.  Among operational spectrometers, IASI was found to have 

the ability to provide the greatest amount of information to the cooling rate profile; also, it was 

found that it may be scientifically useful to develop far-infrared missions in terms of cooling rate 

profile analysis.  In the absence of operational far-infrared satellite-borne spectrometer, the 

implicit information contained in mid-infrared spectra about long-wavelength processes will have 

to suffice.   

This chapter has not directly discussed the characterization of cooling rate errors and 

their correlations in GCMs and reanalysis data.  However, with the uncertainties in T, H2O, and 

O3 profiles, the cooling rate error propagation described herein can be applied.  Straightforward 

statistical tests can be employed to test the significance of discrepancies between cooling rates 

derived from satellite-based products and those calculated in circulation models. 

One major frontier in the characterization of the cooling rate profile error budget is how 

uncertainties in cloud cover and overlap impact the error budget formulation in this chapter.  

Thermal IR spectra may be able to provide partial information regarding cloud-covered scenes, 

but most of that information will be imparted towards cooling rate profiles above the cloud decks.  

The cooling rate profiles arising from the new generation of active remote sensing instruments in 

the A-Train including CloudSat [Stephens et al., 2002] and CALIPSO [Winker et al., 2003] 

should be able to provide large amounts of information on the cooling rate profile.  Since 

different cloud vertical distributions produce differential changes in H2O rotational band cooling 

and in O3 v3 and v1 IR heating (e.g., Hartmann et al. [2001]) which may affect such processes as 

stratosphere-troposphere exchange [Gettelman et al., 2004; Fueglistaler and Fu, 2006], cloud 

water content and optical depth profiles will impart unprecedented information on 

heating/cooling rate profiles at high vertical resolution.  The work of L’Ecuyer [2001] may prove 

to be very useful for addressing the cooling rate error budget in the presence of clouds, and the 

advent of the 2B-FLXHR product associated with CloudSat [L’Ecuyer, 2008] presents a 

comprehensive assessment of cloud radiative impacts throughout the atmospheric column.  
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Significant IR radiative heating generally occurs at cloud bases and cooling occurs at cloud tops 

with rates as high as 100 K/day for sharp cloud boundaries.  Therefore, it is expected that error 

budget determination for cooling rates in all-sky scenes will require that more attention be 

focused on the linearity and Gaussian PDF assumptions utilized here. 

Finally, methods for determining shortwave heating rate profiles have not been discussed, 

though they are of course necessary to the determination of the layer-by-layer radiative energetic 

budget.  The formal error propagation discussion herein is directly relevant to clear-sky heating 

rate error budget analyses. 
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Chapter Five.  Retrieval of Heating and Cooling Rates. 

5.1 Abstract 

The utilization of passive remote sensing data to retrieve radiative heating and cooling 

rates is revisited in detail and explored in terms of extracting the maximum information contained 

in the measurement related to the heating/cooling rate profile.  This chapter first presents a formal 

discussion of heating and cooling rate estimation even in the presence of non-linearities.  Next, it 

addresses methods for configuring a retrieval technique so that the algorithm better constrains 

heating and cooling rates.  A clear-sky retrieval example is presented and the resulting heating 

and cooling rate profiles are discussed.  This chapter then examines the extent to which 

hyperspectral infrared data may be useful for describing heating and cooling rates where clouds 

are present.  It is found that data such as that provided by the AIRS instrument are strongly 

influenced by clouds, but the measurements provide a minimal constraint on heating and cooling 

rate profiles.  Collocated microwave measurements from AMSR-E may offer an additional weak 

constraint on heating/cooling rates, though cloud vertical profiles from active sounding 

measurements provide much stronger heating/cooling rate profile constraints.  Finally, we discuss 

computational cost considerations with respect to heating/cooling rate analysis. 

 

5.2 Introduction 

Many products are derived from hyperspectral infrared satellite instrument measurements 

that are of scientific importance.  The immense number of spectra recorded by space-based 

instruments such as those in the Earth Observing System (EOS) A-Train [Asrar and Dozier, 

1994] contains both clear-sky signals related to such quantities as the temperature, water vapor, 

ozone profiles, and partial descriptions of cloud cover.  The spectra form an integral part of 
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standard product retrievals and have proven to be incredibly useful for assessing Earth system 

processes.  Additionally, these spectra contain subtle signals related to quantities that can be 

derived from the retrieval products; in particular, they describe such quantities as radiative 

heating and cooling rate profiles.  Conventionally, spectra are analyzed over the course of the 

generation of standard products which are related to heating and cooling rate profiles.  In 

particular, the temperature, water vapor, and ozone profiles are routinely retrieved from TOA 

spectra, and these quantities are sufficient for calculating clear-sky heating and cooling rate 

profiles with a broadband radiative transfer model (RTM).  Additionally, these instruments 

provide a limited but potentially useful description of cloud cover which is also necessary for 

RTM calculations.  However, the information content of the spectra with respect to the heating or 

cooling rate profile from different instruments given standard atmospheric state retrieval methods 

is not necessarily the maximum amount of information that can be derived regarding these 

quantities of interest.  From a qualitative perspective, it is apparent that certain standard retrieval 

products are more important than others in terms of describing heating/cooling rate profile details.  

For instance, the joint influence of surface temperature and the tropopausal ozone strongly impact 

the infrared heating that occurs in the vicinity of the tropopause, yet this relationship is not 

considered whatsoever in standard retrieval techniques.   

Therefore, instead of retrieving standard atmospheric state quantities, several authors 

(Liou and Xue [1988]; Feldman et al. [2006]) have proposed a direct retrieval technique in which 

measurements are analyzed in terms of their descriptive power with respect to spectral and band 

cooling rate profile knowledge.  These previous efforts to retrieve cooling rate profiles directly 

from radiance data are discussed in Appendix A and Chapter 3 and have relied on a series of 

approximations that show numerical stability.  Unfortunately, the technique proposed in 

Appendix A requires the observation of a scene at several different viewing angles with a spectral 

resolution of better than 5 cm-1 for wavelengths from 5 to 100 μm.  These specifications are not 

achieved by the current generation of satellite instruments, and it will be difficult to motivate such 
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instrument development prior to a comprehensive demonstration of the widespread scientific 

utility of a novel viewing geometry and spectral coverage.  Therefore, other methods must be 

explored that formally process the information contained in the spectra regarding the IR cooling 

rate profile.  Given the cooling rate covariance formulation and associated information content 

studies described in Chapter 4 [Feldman et al., 2008], it is possible to address cooling rate profile 

information systematically.  As cloud coverage on the Earth is very extensive, a discussion of 

cooling rates requires an examination of the impact of clouds on spectra and cooling rates.  The 

presence of clouds erodes some of the information contained in visible and infrared spectra, 

especially at significant cloud optical depth.  Heating and cooling rate behavior in the troposphere 

and lower stratosphere in the presence of clouds can be substantially different from clear-sky 

heating and cooling, so the assumptions which allow for estimation of clear-sky heating and 

cooling rates from remote sensing spectra must be re-examined. 

 This chapter explores several aspects of the formal utilization of remote sensing 

measurements to understand heating and cooling rate profiles.  First, we expand upon several of 

the issues raised by Feldman et al. [2008] regarding the estimation of heating and cooling rates.  

This includes addressing heating and cooling rate covariance even where clouds are present and 

the non-linearities associated with the radiative transfer model are severe.  Second, the retrieval of 

heating and cooling rate profiles is discussed and compared with standard retrieval techniques.  

Armed with these new methods for relating remote sensing measurements to heating and cooling 

rate profiles, we develop an example using a synthetic retrieval in clear-sky conditions and 

demonstrate how existing measurements may be used to describe clear-sky heating and cooling 

rate profiles.  Finally, we discuss how it may be possible to utilize these methods in order to 

characterize these quantities for scenes where clouds are present. 
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5.3 Heating and Cooling Rate Estimation from Measurements 

The heating/cooling rate profile is a strong function of some of the quantities that are 

retrieved from hyperspectral measurements.  Consequently, the analysis of heating rates from 

remote sensing measurements begins with the recognition that the heating rate profile can be a 

product derived from standard atmospheric state retrievals.  This is useful because it allows for 

the modification of the retrieval algorithm so that it is oriented towards heating and cooling rates 

rather than towards standard atmospheric state variables.   

Standard retrieval algorithms utilize the difference between the synthetic measurement 

and the spectrum associated with the a priori atmospheric state in conjunction with the a priori 

state covariance matrix to produce an atmosphere that is more consistent with the synthetic 

measurement.  One straightforward and commonly utilized approach is the maximum a posteriori 

retrieval technique that is described in detail by Rodgers [2000].  According to this technique, the 

estimate of the atmospheric state is given by: 

 

( ) ySKSKSKx dd T
a

T 1111ˆ −−−− += εε     (5.1) 
 
where x̂d  is the a posteriori estimate of the difference between the actual atmospheric state and 

its a priori conception ax , K  is the Jacobian of the measurement with respect to the 

atmospheric state,  εS  is the measurement covariance matrix, aS  is the a priori covariance 

matrix of atmospheric state, yd  is the difference between the measurement, and ay   is the 

conception of the measurement produced by using the forward model with the a priori 

atmospheric state.  T and -1 refer to the transpose and inverse operators, respectively.  The 

estimate of the a posteriori covariance matrix is given by: 
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( ) 111ˆ −−− += a
T SKSKS ε     . (5.2) 

 
The maximum a posteriori form for a product derived from a retrieval wherein the state and 

measurement variables exhibit Gaussian statistics is given by: 

 
( ) ( ) xyxxθθ   ˆ dP∫ ′=′      (5.3) 

 
where θ′ˆ  is the estimate of the heating/cooling rate profile, ( )xθ′  is the heating/cooling rate 

produced by the broadband radiative transfer model (RTM) for the atmospheric state x , and 

( )yxP  is the posterior probability distribution function of x  given the measurement y .  This 

clarifies the proper approach for estimating the heating/cooling rate profile given a set of 

measurements describing the atmospheric state parameters that are relevant to heating/cooling 

rate profile calculation.  If the heating/cooling rate profile is a linear function of x  throughout the 

state space in which x  is presumed to occur, the expected value of θ′  is given by the 

heating/cooling rate calculated from the maximum a posteriori estimate of x .  That is, the 

following expression provides an estimate of the heating rate given an estimate of the underlying 

atmospheric state parameters:  

 
( )xθθ )′=′linear

ˆ      (5.4) 
 
where linearθ′ˆ  is the estimate of the heating/cooling rate profile assuming linearity and ( )xθ )′  is the 

heating/cooling rate profile calculated from the maximum a posteriori retrieval of x .  

Furthermore, the covariance associated the estimate of θ′  using the assumption that 

heating/cooling rate calculations are strictly linear in this case is given by  

 
        ( ) ( ) θθ JxSJθS ′′=′ ˆˆ T     (5.5) 
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where ( )θS ′ˆ  is the covariance of the heating/cooling rate profile, ( )xŜ  is the a posteriori 

covariance of x , and θJ ′  is the Jacobian of θ′  with respect to .x   This Jacobian is given by the 

following expression: 

 

x
θJθ  
 
∂
′∂

=′      . (5.6) 

 
Additionally, the cooling rate averaging kernel matrix, which describes the ability of a retrieval to 

resolve the vertical structure of heating and cooling rate profiles, is given by the following 

expression: 

 
T
θxθθ JAJA ′′′ =     . (5.7) 

 
where xA  is given by the expression in Eq. (2.28).  

Under certain circumstances, the approach taken in Eq. (5.4) may be reasonable, 

especially for clear-sky cases where a large number of measurements, y , constrain x  sufficiently 

such that the moderate nonlinearity associated with the heating/cooling rate calculations is small 

compared to the prior estimation of the uncertainty in the heating/cooling rate profile.   

However, for cases where the measurement y  has limited descriptive power over x , 

(e.g., cloudy scenes), the estimation of the heating/cooling rate profile requires the application of 

Eq. (5.3).  In these cases, optimal estimation theory can be used to analyze the remote sensing 

spectra in terms of atmospheric state parameters but may result in large a posteriori uncertainty in 

these parameters.  TOA hyperspectral measurements are generally not sensitive to cloud vertical 

structure, even though this structure is central to the determination of the heating/cooling rate 

profiles of the scene being sensed. 

The practical implementation of Eq. (5.3) to estimate heating and cooling rates is non-

trivial because integration over the space spanned by x  may potentially involve a very large 

number of calls to the broadband radiative transfer model.  Several different techniques are 
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available for sampling a space with many dimensions, including the Markov chain Monte Carlo 

(MCMC) sampling technique (e.g., [Berg, 2004]) and the Gibbs sampler [Geman and Geman, 

1984], which is a special case of the MCMC approach.  These techniques are able to sample the 

state space efficiently and allow for the evaluation of the integral in Eq. (5.2).   

Unlike numerical integration based on Monte Carlo methods, numerical integration based 

on the Gibbs sampler generally avoids calculations where ( )yxP  is very low and thus is more 

numerically efficient.  Briefly, the Gibbs Sampler works as follows: It starts with a description of 

the probability of the underlying atmospheric state given the measurement that results from the 

assumption that the measurement and atmospheric state statistics can be described as Gaussian: 

 

( )
( )

( ) ( )[ ]⎟
⎠
⎞

⎜
⎝
⎛ −−−= − xxSxx

S
yx ˆˆˆ

2
1exp

ˆ2

1 1
2/12/

T

n
P

π
   (5.8) 

 
where T  and -1 denote the matrix transpose and inverse operators respectively, x̂  is the retrieved 

atmospheric state, and Ŝ  is the estimate of the a posteriori covariance matrix.  Next, the 

atmospheric state is initialized to the a posteriori state and a random integer j is chosen between 0 

and L, where L is the length of x .  Element j of x  is sampled and updated from a conditional 

distribution given fixed values for the other elements.  To achieve this, a matrix of conditional 

coefficients must first be defined:  

 

( )[ ] 111 ˆˆ −−−−= SSIC diag     (5.9a) 
 
where I  is the identity matrix, and diag  refers to an operator that sets all of the off-diagonal 

elements of a matrix to zero.  The conditional coefficients are utilized in the following expression 

for a conditional distribution based on a multivariate normal: 

 

    ( ) ( ) ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≠∀ ∑

≠

−−

ij
iijjijiji xxCxNijxx

11ˆ,~ S    (5.9b) 
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where ijC  represents the elements of the matrix in Eq. (5.9a) and N denotes a normal distribution 

(see Gelman et al. [2004] and Appendix A for a derivation).  Another random integer is then 

chosen from x  and the process is repeated several times.  A cartoon of the process is shown 

below, where the Gibbs Sampler navigates two dimensions in order to sample two correlated 

quantities efficiently.  After each set of sampling, the atmospheric state is entered into a 

broadband radiative transfer model in order to calculate heating and cooling rate profiles.  To 

produce a diverse sampling of the atmospheric state, the Gibbs Sampler algorithm individually 

samples the conditional distribution for each element of x  given fixed quantities for the other 

elements after which time a call is made to the radiative transfer algorithm.  This sampling 

process then produces a set of calculated heating and cooling rate profiles which can be analyzed 

in terms of mean values, covariance matrices, or other statistics.  In this way, the statistics 

associated with heating and cooling rate profiles can be estimated quickly even with uncertain 

cloud conditions that may lead to strongly non-linear dependencies between atmospheric state 

components and the heating/cooling rate calculation. 

Nevertheless, even with the ability to estimate the heating or cooling rate profile from the 

retrieved atmospheric state and its associated covariance matrix, the imposition of additional 

constraints in the retrieval technique should be considered.  The utilization of standard 

atmospheric state retrieval methods for the calculation of heating and cooling rate profile results 

may present errors as a result of not considering how various distributions of temperature, water 

vapor, and ozone lead to large fluctuations in the heating and cooling rate profiles.   

There are several methods for imposing this constraint, but one of the most 

straightforward is to formulate a maximum a posteriori retrieval in a reduced state space that 

retains the relationship between the atmospheric state and heating/cooling rates (see Rodgers 

[2000], Section 10.3 for a detailed derivation).  Accordingly,  
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xJθ θ   dd ′=′      (5.10). 
 
The heating/cooling rate Jacobian matrix θJ ′  can have a pseudo-inverse that assumes a large 

number of possible forms.  If we take the form of this pseudo-inverse *
θJ ′ , which minimizes 

xSx   1dd a
T − subject to θJx θ ′= ′   * dd , the result is: 

 

     ( ) 1* −
′′′′ =

T
a

T
a θθθθ JSJJSJ    . (5.11) 

 
The quantity described in Eq. (5.11) should estimate the sensitivity of the atmospheric state 

retrieval to the underlying heating/cooling rate profile and is non-trivial because the mapping 

from heating/cooling rates to atmospheric state quantities is not unique.  Once a proper 

description of *
θJ ′  is established, the retrieval can be formulated in heating/cooling rate space as 

follows: 

 

      ( )[ ] yGySKJKJSKJJSJθ θθθθθ ddd TTTTT
a  MAP

1*
1

*1*1ˆ =+=′ −
′

−

′
−

′
−

′′ εε   . (5.12) 
 
where  MAPG  is the heating/cooling rate gain matrix.  Also, the retrieval can be represented in full 

state space as follows: 

 

( )[ ] ySKJKJSKJJSJJx θθθθθθ dd TTTTT
a

1*
1

*1*1* −
′

−

′
−

′
−

′′′ += εε
)    . (5.13) 

 
This retrieval approach produces results that are better constrained than a standard retrieval that 

does not consider how results will impact heating/cooling rate profiles.  The retrieval covariance 

matrix for this approach is given by the following: 

 

( ) ( )[ ] TTTT
a θθθθθθθ JJGSGJIKGJSIKGJJS ′′′′′′′ +−−=   *

 MAP MAP
*

 MAP
*

 MAP
*

ε

)
  (5.14) 

 
Eqs. (5.12–5.14) are suitable for use within standard retrieval algorithms and produce retrieval 

quantities that consider how the vertical distribution of atmospheric constituents affects heating 
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and cooling rate profiles.  Still, the techniques described in this section require demonstration and 

can be understood in greater detail through the development of several example cases. 

 

5.4 Treatment of Clear Spectra 

In this and the subsequent section, we elaborate upon examples utilizing methods 

described above.  In support of these efforts, we utilize several radiative transfer models 

developed by AER, Inc. [Clough et al., 2005].  Line-by-line radiative transfer is calculated using 

the Line-by-Line Radiative Transfer Model (LBLRTM), version 11.1; fast broadband calculations 

are achieved with the Rapid Radiative Transfer Model (RRTM), longwave version 3.01 and 

shortwave version 2.5; line-by-line scattering calculations are performed with the Code for 

Highly-Accelerated Radiative Transfer with Scattering (CHARTS), version 2.0 [Moncet et al., 

1997].   

The following example illustrates the benefits and shortcomings of using traditional 

retrieval approaches with infrared spectra to understand heating and cooling rate profiles.  

Starting with a clear-sky US Standard Atmosphere [Anderson et al., 1986], we perform a 

synthetic retrieval of the surface temperature and the temperature, water vapor, and ozone profiles 

that indicates the extent to which the residual spectra can be processed properly to produce 

reasonable results.  Accordingly, we start with the surface temperature and the temperature, water 

vapor, and ozone profiles from the model atmosphere, which we assign as the a priori 

atmospheric state.  These values form the inputs to the line-by-line radiative transfer model which 

produces the spectrum associated with the a priori.  We assume that the a priori standard 

deviation of each temperature value of the atmospheric state is 3 K and the a priori standard 

deviation of each water vapor and ozone value of the atmospheric state is 20% of its a priori 

value.  The a priori covariance matrix of the temperature profile is assumed to be described by a 

first-order Markov process such that: 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

H
zz

S ji
jiij expσσ     (5.15) 

 
where ijS  is the covariance between elements i and j, iσ  is the standard deviation associated 

with element i, iz  is the altitude associated with element i, and H is the atmospheric scale height.  

The a priori covariance matrix is also assumed to be block-diagonal such that the temperature 

values with water vapor and ozone values are uncorrelated.  The true underlying state is created 

by modifying the atmospheric state with perturbations that are consistent with the a priori 

covariance matrix.  The synthetic measurement is created by calculating the spectrum associated 

with the true underlying state and adding noise consistent with the instrument being used.  

Finally, we attempt to retrieve the true underlying state given the a priori statistics, weighting 

functions, and the difference between the synthetic measurement and the radiative transfer model 

results arising from the a priori state. 

With this approach, we can test how accurate the results of this synthetic test are in terms 

of surface temperature and the profiles of temperature, water vapor, and ozone as well as cooling 

rates.  The following figure shows the outcome of a synthetic retrieval using the AIRS instrument 

[Aumann et al., 2003] model as displayed in atmospheric state space.  Note that the retrieval 

using the AIRS instrument has very limited sensitivity to water vapor above 15 km, and the 

resulting water vapor values above this level are determined almost exclusively by the a priori 

values.  Also, the retrieval has limited sensitivity to tropospheric ozone. 

One criterion for a successful retrieval is the ability to derive an atmospheric state that, 

through the forward model, produces a spectrum that agrees well with the measurement.  The 

following figure shows the results of this synthetic retrieval experiment in measurement space. 

Clearly, the retrieval is able to incorporate the information contained in the spectra in order to 

update the atmospheric state so that it is more consistent with the observed spectra.   
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Figure 5.1: The top-left panel indicates the temperature profile of the US Standard Atmosphere.  
The top-middle panel shows the water vapor profile.  The top-right panel displays the ozone 
profile.  The bottom-left panel indicates the difference between a priori and retrieved temperature 
profiles relative to the true profile.  The bottom-middle panel shows the profile differences for 
water vapor and the bottom-left panel exhibits the differences for ozone. 
 
 

 
Figure 5.2: The top panel shows the AIRS spectrum calculated by LBLRTM [Clough et al., 2005] 
for a US Standard Atmosphere [Anderson et al., 1986].  The bottom panel shows a typical prior 
spectral residual (red) and the spectral residual associated with the retrieval (blue). 
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Nevertheless, while the result of the retrieval is a much-improved spectral residual, the resulting 

profiles of temperature, water vapor, and ozone oscillate about the true underlying state, which 

has implications for heating and, particularly, cooling rate calculations.   

 

 
Figure 5.3: The leftmost panel shows the total infrared (10–3250 cm-1) clear-sky cooling rate 
profile associated with the US Standard Atmosphere.  The panel second to left shows the 
difference in cooling rate profiles associated with the synthetic retrieval. The panel second to 
right shows the clear-sky shortwave heating rate profile for a solar zenith angle of 30° from nadir.  
The right-most panel shows the difference in heating rate profiles associated with the synthetic 
retrieval. 
 

The two panels of Figure 5.3 show that while a standard retrieval approach is able to produce 

accurate temperature, water vapor, and ozone profiles which lead to calculated spectra that are 

consistent with observations, the retrieval results do not necessarily yield an appreciably 

improved cooling rate profile.  The primary reason for this is that the oscillations in the profile 

quantities are reasonable from the perspective of retrieving temperature, water vapor, and ozone 

profiles, but they lead to more significant deviations in heating and cooling rate profiles. 
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Figure 5.4: The upper-left panel indicates the temperature profile a posteriori covariance matrix 
with the example given in Section 5.2.  The upper-right panel indicates the water vapor profile a 
posteriori covariance matrix, and the lower panel indicates the ozone profile a posteriori 
covariance matrix.   
 

The a posteriori covariance matrices of the temperature, water vapor, and ozone profiles 

from this retrieval are shown in Figure 5.4 and indicate non-negligible off-diagonal components 

which lead to the cooling rate profile oscillations.  According to Feldman et al. [2008], the 

covariance matrix of the cooling rate profile can be determined by calculating the Jacobian of the 

cooling rate profile with respect to the surface temperature and the temperature, water vapor, and 

the ozone profile. 
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Figure 5.5: The left panel indicates the a posteriori cooling rate profile covariance matrix and the 
right panel indicates the heating rate profile covariance matrix, both calculated according to the 
description in Feldman et al. [2008]. 
 
 

The retrieval approach described in Eqs. (5.10–5.11) of Section 5.2 leads to heating and 

cooling profiles that differ from the standard retrieval approach shown in Figure 5.3.  Figure 5.6 

shows the differences between the standard retrieval approach and that retrieval configured with 

respect to the cooling rate profile.  The retrieval that was reformulated to consider cooling rate 

profiles performs significantly better than the standard retrieval near the surface because it 

constrains the contrast between the surface temperature and the temperature at the lowest level 

which is much higher for the standard retrieval.  Still, the reformulated retrieval does not perform 

as well as the standard retrieval near 10 kilometers and this largely arises from the ill-

conditioning associated with the creation of the *
θJ ′  matrix.  Nevertheless, the spectral residual 

associated with the retrieval as described in Eqs. (5.10–5.11) is qualitatively similar to that from 

the standard retrieval case. 
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Figure 5.6: Comparison of cooling rate profiles derived for the clear-sky USSTD Atmosphere 
synthetic retrieval.  The red line shows the difference between the total IR cooling rate profile 
associated with the a priori surface temperature, and temperature, water vapor, and ozone 
profiles.  The blue line shows the cooling rate profile resulting from a maximum a posteriori 
estimate of the atmospheric state, while the black line shows the cooling rate profile associated 
with the cooling rate retrieval. 
 

 
Figure 5.7: The residual spectrum associated with a priori state for the synthetic retrieval with the 
US Standard Atmosphere in red.  The blue line indicates the residual associated with the retrieval 
using the cooling rate retrieval formulation. 
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Moreover, the estimation of the cooling rate uncertainty for the retrieval that is reformulated to 

consider cooling rates is qualitatively different from the covariance matrix arising from the 

standard retrieval formulation. 

 

 
Figure 5.8: Cooling rate uncertainty (root of covariance matrix diagonal) comparison for clear-
sky case for prior uncertainty and posterior uncertainty, according to a standard and direct 
retrieval approach. 
 

Figures 5.6 and 5.8 show several different features that are interesting to note.  First, the standard 

retrieval technique overestimates its retrieval ability with respect to boundary-layer cooling.  

Second, the direct retrieval technique performs comparably to the standard retrieval techniques in 

the free troposphere and tends to outperform the standard approach in the stratosphere.  Third, the 

oscillations present in the estimation of the cooling rate uncertainty according to the direct 

retrieval technique suggest that the formulation of Eq. (5.11) requires further refinement.  All of 

these details strongly suggest that the utilization of the standard retrieval approach to produce 

cooling rate profiles does not make use of all of the information contained in the spectra with 

respect to cooling rate profiles. 
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5.5 Treatment of Cloudy Spectra 

The analysis of remote sensing spectra with respect to heating and cooling rate profiles in 

cloudy conditions is of scientific interest and warrants scientific scrutiny.  As mentioned earlier, 

passive spectra only contain a partial description of the vertical distribution of cloud cover, yet 

this vertical distribution of clouds impacts heating and cooling rate profiles (i.e., Chen, et al. 

[2000]).  Several authors [Huffman et al., 1998; Mather et al., 2007; L’Ecuyer et al., 2008] have 

explored the ability of the active sounding instruments to provide additional information 

regarding heating/cooling rate profiles because radar and lidar have the ability to describe cloud 

vertical distribution under diverse conditions.  Nevertheless, there are considerably more passive 

spectra available for the heating/cooling rate analysis as compared to active measurements 

because passive spectrometers such as AIRS provide comprehensive spatial coverage and have 

been operational since 2002. 

The following figures show active and passive measurement characterization of a scene 

using CloudSat [Stephens et al., 2002], CALIPSO [Winker et al., 2003], and AIRS.  Figure 5.9 

depicts cloud profiles measured from CloudSat and CALIPSO at nadir for a tropical scene near 

Manus Island (147E, 2S) on January 5, 2007.  The scenes depict various types of cloud cover 

including deep convective clouds (latitudes 0–4N), thin cirrus (latitudes 4–6N), and relatively 

clear conditions (latitudes 6–8N).  At the same time, we can look at the near-collocation of AIRS 

infrared hyperspectral measurements to explore the passive spectral signature associated with the 

diverse cloud coverage of this scene.  Clearly, most of the description of clouds in the IR passive 

spectra is contained in the brightness temperature values in the window channels (850–1210     

cm-1 and 2450–2650 cm-1) and the differential sensitivity of this band allows for some 

discrimination between different cloud types.   
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Figure 5.9: Top panel shows CloudSat Radar Reflectivity (2B-GEOPROF) product for a sample 
scene from January 5, 2007.  Bottom panel depicts the same scene but shows the CALIPSO Total 
Attenuated Backscatter at 532 nm. 
 

Also, the difference between cloud-cleared brightness temperature (derived from the cloud-

clearing procedure described by Susskind et al. [2003]) and measured brightness temperature is 

the extent of the signal that the AIRS instrument measures with respect to clouds.  Clearly, there 

are some deficiencies in describing diverse cloud cover using such passive spectra, not the least 

of which is the inability of the cloud-clearing algorithm to provide retrieval spectra for scenes 

with extensive cloud cover.  Still, the brightness temperature spectral signatures associated with 

the diverse set of cloud coverage in this example show that cloud coverage information is 

contained within the spectra, though it may be difficult to retrieve. 
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(a) 

(b) 
Figure 5.10: (a) Brightness temperature hyperspectral curtain of AIRS measurements for the 
nadir-viewing track of the scene described by the CloudSat and CALIPSO figures above.  White 
spaces indicate no spectral measurements.  (b) Same as (a) but the difference between cloud-
cleared brightness temperature [Susskind et al., 2003] and measured brightness temperature is 
displayed.  Additional vertical white space indicates failure of cloud-clearing algorithm to 
produce spectra. 
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Given that AIRS passive infrared spectra are difficult to interpret in the presence of 

clouds, it may be useful to include coincidental measurements in other spectral regions.  In 

particular, the Advanced Microwave Scanning Radiometer (AMSR-E) [Kawanishi et al., 2003] 

provides an estimate of vertically integrated cloud water path that is nearly collocated with AIRS 

measurements over ocean scenes.  Mid-IR spectra provide a fairly reliable estimate of cloud top 

height (i.e., [Weisz et al., 2007]) and can characterize the distribution of gases above the cloud 

top.  An additional constraint can be imposed on the determination heating and cooling rates 

where clouds are present, given the determination of cloud water path from AMSR-E.  The 

constraints imposed by passive measurements on heating and cooling rates can be explored again 

through Gibbs sampling.   

In the following figure, we explore varying the ice cloud vertical distribution subject to 

the constraint that the IR spectral residual associated with the change is less than 1 K across all 

channels.  The purpose of this exercise is to test the ambiguity of cloudy-sky measurements with 

respect to clouds that occur below the cloud top but that may affect heating/cooling rates 

nonetheless.  Therefore, with a Tropical Model Atmosphere, we test different values for cloud-top 

height and cloud-water content to determine the range of cooling rates that may be expected from 

AIRS measurements.  Figure 5.11 indicates approximately the best possible description of the 

cooling rate profile from IR spectral measurements, though it does not contain estimates of the 

contribution of T, H2O, and O3 profile uncertainty on the cooling rate uncertainty.   

 From the figure, the cooling rate descriptive power of the passive spectra in cloudy 

conditions is reasonable where ice cloud cover is light to moderate.  Where optically thick cloud 

cover is present (i.e., cloud water content greater than 0.01 g/m3), AIRS passive spectra are 

unable to constrain cooling rates at the cloud top and for several kilometers below the cloud top.  

Furthermore, spectra that describe scenes with high, thick clouds will provide very little 

constraint on cooling rates at any level below the cloud top.   
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(a) 

(b) 
Figure 5.11: (a) Cooling rate profile uncertainty from clouds associated with AIRS spectra as a 
function of cloud-top height and cloud-water content for a 2-km thick ice cloud with De = 41.5 
µm. (b) Same as (a) but with an additional cloud-water path constraint provided by AMSR-E 
measurements.  
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However, while these passive spectra are mostly insensitive to the atmospheric state below an 

optically-thick cloud, this figure demonstrates that the measurements do provide some constraint 

on allowable cloud configurations.  According to this figure, the addition of a total cloud-water 

path constraint from AMSR (to within 40 g/m2) does not provide a strong constraint on cooling 

rates beyond what is seen with the AIRS instrument.  However, it may be fruitful to utilize Gibbs 

sampling to provide more formal estimates of passive measurement constraint on cooling rates. 

Radar and lidar measurements from CloudSat and CALIPSO, respectively, provide a 

better constraint on cloud profile information, though these datasets are limited due to their lack 

of cross-track scanning capability.  The value of these datasets should not be underestimated in 

terms of establishing retrieval techniques for cooling rates using passive spectra.  Chapter 7 will 

discuss CloudSat and CALIPSO and selected mission products in greater detail. 

 

5.6 Computational Cost Considerations 

Because of the computational expense associated with radiative transfer calculations in 

models, we must look into computational considerations associated with a direct heating/cooling 

rate retrieval approach.  First, a reasonable computational cost budget must be tabulated to 

compare the direct heating/cooling rate retrieval approach with the typical atmospheric state 

retrieval approach.  This is accomplished by assessing the computational cost budget and 

estimating the cost that would reasonably be incurred in an operational algorithm for deriving 

heating/cooling rates from remote sensing data. 

For the typical atmospheric state retrieval, significant computational cost is incurred in 

estimating the Jacobian matrix.  For limited validation-type cases, full, physical radiative transfer 

models are utilized, but for most retrieval algorithms with missions utilizing hyperspectral 

instruments, the data-rate far exceeds the allotted computational resources if line-by-line codes 
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are to be used.  Therefore, regression-based and lookup-table-based approaches are utilized.  

Accordingly, significant up-front computational cost is incurred in creating a table of radiance 

and Jacobian calculations that densely and completely sample the observation space that is 

expected for the retrieval product [Beer et al., 2004]. 

Marginal computational expense is incurred as a result of the retrieval approach described 

in Eq. (5.13), in that the heating/cooling rate Jacobian matrix must be calculated in addition to the 

atmospheric state Jacobian.  For an N-layer atmosphere, this Jacobian would require on order of 

5*N calls to the broadband RTM in order to test heating/cooling rate sensitivity to T, H2O, and 

O3, profiles in addition to cloud water and effective radius sensitivity.  However, the estimation of 

heating/cooling rate errors requires the calculation of this Jacobian, implying that the 

computational cost of heating/cooling rate retrieval is only marginally more expensive than 

standard retrieval techniques that do not produce heating/cooling rate error estimations.  Even so, 

it is important to explore how amenable the heating/cooling rate Jacobian is to parameterization.  

This can be accomplished by examining heating/cooling rate Jacobians over a variety of different 

atmospheric states and analyzing the percentage of variance captured by the first few principal 

components. 

For cloudy scenes, it would be scientifically fruitful to explore the computational costs of 

using passive spectra to retrieve atmospheric state properties and cloud properties.  Again, it is 

expected that the heating/cooling rate Jacobian for these cases will incur a marginal 

computational cost over the standard retrieval approaches. 

 

5.7 Discussion 

This chapter explores some of the details that must be considered when analyzing passive 

remote sensing measurements to provide better understanding of heating and cooling rate profiles 

with the goal of developing direct retrieval details.  First, we present a method for formally 



 - 108 - 

utilizing a posteriori atmospheric state retrieval statistics to estimate statistics associated with 

heating and cooling rate profiles for clear and cloudy scenes.  Next, we broach the idea that 

additional constraints can be imposed on the retrieval process in order to provide improved 

estimates of clear-sky heating and cooling rates.  Furthermore, we find that a combination of 

infrared and microwave measurements allows for a better description of heating and cooling rates 

in the presence of clouds. 

Finally, we present a preliminary discussion of some computational issues associated 

with formulating remote sensing retrievals in favor of heating/cooling rate profiles.   A small 

amount of additional computational cost is incurred in order to formulate heating/cooling rate 

constraints, but this cost is derived entirely from the heating/cooling rate Jacobian calculation 

which is necessary for the estimation of the heating/cooling rate error budget. 

Significant additional work is warranted to explore the implementation of heating and 

cooling rate constraints into retrieval algorithms.  However, results in the form of retrieved 

heating/cooling rate values will be very scientifically useful in that they can be readily compared 

with heating and cooling rates that are calculated by weather and climate models. 
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Chapter Six.  Cloud Radiative Effect from MLS Products. 

6.1 Abstract 

The Ice Water Content (IWC) product from the Microwave Limb Sounder (MLS) 

measurements provides a novel view of the vertical distribution cloud water ice over the earth 

that has been largely inaccessible from previous satellite instrument datasets.  This chapter 

provides an overview of the retrieval of IWC using MLS channels and shows how retrieval 

patterns compare with other descriptors of upper-tropospheric cloud ice, including ECMWF 

analysis.  Because of the interest associated with the radiative effect of cirrus clouds, this chapter 

also explores the extent to which the IWC product can be utilized to examine the cloud radiative 

effect associated with cirrus clouds.  Monthly-averaged data from the CERES instrument is then 

utilized to assess the contribution of cloud ice to the total cloud radiative effect (CRE).  The CRE 

values from the analysis of MLS and CERES data are compared with what is derived from 

ECMWF analysis fields.  It is found that the ECMWF IWC product is consistently lower than the 

MLS retrieved values from 100 to 200 mbar.  However, the CRE derived from upper-

tropospheric (UT) IWC is generally larger than the observed CRE from CERES.  Even though it 

may be more difficult to analyze the radiative effect of the IWC product in isolation from 

underlying clouds, ice water information can be analyzed in conjunction with other existing 

products in order to uncover model problems that may be obscured by the apparent agreement in 

OLR products. 

 

6.2 Introduction 

The presence of clouds dramatically alters longwave and shortwave radiation budgets 

throughout the atmospheric column.  In order to address this issue, the concept of cloud radiative 
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effect (CRE), also called cloud radiative forcing and initially described by Ellis and Haar [1976], 

gained popularity within the scientific community.  Later, Harrison et al. [1990] utilized the 

Earth Radiation Budget Experiment measurement set [Barkstrom, 1984] to derive the cloud 

radiative effect from which they characterized the influence of clouds on the Earth-atmosphere 

system.  From these and other works, an appropriate definition of radiative effect emerged as the 

difference between the TOA and /or surface broadband shortwave and longwave net flux over a 

model grid point or a measurement footprint for clear and cloudy conditions.  Consequently, the 

LW CRE is given by: 

 
cloud

LW
clear

LWLW FFCRE −=     (6.1) 
 
where clear

LWF  is the clear-sky net flux and cloud
LWF  is the all-sky net flux.  Similarly, the SW CRE is 

given by: 

 
cloud

SW
clear

SWSW FFCRE −=    . (6.2) 
 
The net CRE is given by: 

 

    SWLWNET CRECRECRE +=     (6.3) 
 
with positive CRE indicating warming.   Clouds tend to heat tropical and mid-latitude 

atmospheres by absorbing IR surface flux and reemitting at colder temperatures while clouds also 

reflect incoming solar radiation back to space.  Generally, the net radiative effect of clouds is 

small despite large changes in shortwave and longwave budgets.  Especially in the tropics, 

observations and model results confirm the parity in longwave and shortwave effects, but since 

the LW CRE is positive and the SW CRE is negative, the total CRE is the difference of two large 

terms.  The following figures are derived from the CERES instrument [Wielicki et al., 1996] and 

illustrate SW, LW, and net CRE.  Cess et al. [2001] found that the ratio of shortwave to longwave 

CRE varied from 1 to 1.1 in the tropics with significant interannual variability probably resulting 
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from variations in tropical circulation patterns as evidence by changes in CRE patterns associated 

with El Niño Southern Oscillation events [Allan et al., 2002].   

 

(a) (b) 
 

(c) 
Figure 6.1: Monthly-averaged CRE derived from CERES instrument data in a manner that is 
consistent with the ERBE mission (ES-4 algorithm) for (a) LW measurements, (b) SW 
measurements, and (c) net LW + SW measurements. 
 

 Mace [2007] found that the utilization of various datasets from several instruments over 

an extended time period can reveal significant information about CRE details.  That work utilized 

radar and lidar measurements at the Atmospheric Radiation Measurement program’s Southern 

Great Plains site (ARM SGP) to determine how clouds contribute to net CRE.  They found that 

the effects due to lower and upper clouds produce a small average net CRE with a vertical 

displacement between net heating and cooling regions.  This displacement has a strong seasonal 

dependency but is not revealed solely in TOA flux measurements. 
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 However, there are several potential feedbacks that are not revealed by studies that solely 

concern TOA net CRE.  Depending on their vertical distribution, clouds heat and cool different 

layers of the atmosphere.  For example, high clouds tend to warm the atmospheric column in the 

tropics relative to clear-sky conditions, while low clouds tend to enhance column cooling, 

especially at high latitudes.  The following figure illustrates that despite the necessity of using 

measurements to estimate TOA energy balance and CRE, very different cloud configurations can 

produce similar TOA fluxes. 

 

 
Figure 6.2:  Different possible cloud profiles (shaded gray) and heating rates (black lines) 
associated for scenes with nearly the same TOA LW flux.  The net column flux divergence is 
denoted in the figure as ΔF.  Adapted from GCM simulations described in Slingo and Slingo 
[1988] and shown in Stephens [2002]. 
 

 Given the ambiguity associated with the CERES measurements in terms of constraining 

the heating and cooling of the atmospheric column by clouds, the introduction of extra 

measurements regarding the vertical distribution of clouds can be very valuable to the 

interpretation of TOA flux data.  Visible and IR measurements are sensitive to cloud-top heights 

but are generally unable to resolve cloud structure below the cloud-top.  The following figure 

presents a simulation of the IR spectral signature associated with different cloud configurations 

given the same cloud-top.  It indicates that, similar to CERES instrument measurements, nadir-
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viewing passive measurements cannot unambiguously describe how different cloud 

configurations contribute to the measured cloud spectral signatures. 

 

 
Figure 6.3: Top panel: Clear-sky spectrum associated with a Tropical Model Atmosphere 
[Anderson et al., 1986].  Middle panel: spectral signature (residual) associated with a cirrus cloud 
from 10–15 km with an integrated IWP of 90 g/m2, De = 22.5 μm.  Difference in residual 
associated with a cirrus cloud from 12–15 km with an integrated IWP of 90 g/m2, De = 22.5 μm. 
 

This figure shows that passive infrared hyperspectral measurements such as those from the 

Atmospheric Infrared Sounder (AIRS) [Aumann et al., 2003] are exquisitely sensitive to the 

presence of cirrus clouds.  Nevertheless, it is much more difficult to discern different types of 

cirrus clouds.  The spectral signatures from a 5-km-thick cirrus cloud and from a 3-km-thick 

cirrus cloud of similar values for the Integrated Ice Water Path are nearly identical. 

 On the other hand, limb-sounding measurements in microwave spectral regions with low 

cloud optical depth can potentially characterize the vertical distribution of upper-tropospheric 

clouds.  The Upper Atmosphere Research Satellite (UARS), operating from 1991–2005, 

contained an earlier-generation Microwave Limb Sounder instrument [Barath, 1993] which 
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operated through mid-1994.  This instrument measured in three bands: 63, 183, and 205 GHz and 

was sensitive to temperature and various gaseous species relevant to stratospheric ozone.  More 

recently, the Microwave Limb Sounder (MLS) aboard the Aura platform became operational.  

Aura MLS is a more-advanced instrument that utilizes passive microwave spectroscopic 

measurements [Waters et al., 2006] and has sensitivity to the vertical distribution of ice clouds 

because it contains measurements that provide differential sensitivity both to scenes with low 

cloud optical depth and to scenes with high cloud optical depth.  If utilized properly, these 

measurements, coupled with broadband flux data, may offer insight into the relative contribution 

of high clouds and low clouds to the observed CRE from CERES. 

 This chapter will begin with an overview of the MLS measurement approach and 

continue with a brief discussion of the retrieval of upper-tropospheric ice water content from 

radiance data.  Next, we will describe the CERES data and how CRE is determined from such 

measurements.  Subsequently, this chapter will analyze the contribution to the CRE from upper-

tropospheric ice clouds and will compare those results with similar fields derived from forecast 

analysis models. 

 

6.3 MLS Data Overview 

The MLS instrument has been taking data from orbit aboard the Aura platform since July 

2004 and measures radiances centered around 5 spectral bands in the vicinity of 118, 190, 240, 

640, and 2520 GHz.  Several channels per spectral band at approximately 5 GHz spacing record 

data with a limb-scan oriented along-track.  Data are recorded above 215 hPa with a vertical 

resolution of better than 3 km.  Along-track resolution is approximately 500 km with a cross-track 

footprint of 5 km.  More advanced product versions claim a spatial resolution footprint of 3 km X 

300 km X 7 km.  Measurements at 118 and 2520 GHz are polarization sensitive, while the 
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radiometers for the other bands are double-sideband receivers, meaning they are insensitive to the 

polarization of the signal.  These measurements lead to about two dozen standard products over 

the course of normal operations, including radical species.  These products have led to a greatly 

increased understanding of upper-tropospheric and lower-stratospheric processes.  The below 

figure depicts high-resolution radiances over the MLS spectral bands along with the instrument’s 

channel coverage: 

 

 
Figure 6.4:  Depiction of folded-sideband high-resolution radiances at several tangent heights in 
the 5 spectral bands over which the MLS instrument measures.  Diagram from 
http://mls.jpl.nasa.gov/images/folded-big.png  

 

While the MLS instrument was primarily designed to characterize gaseous stratospheric 

constituents, one of the most scientifically interesting results generated from the instrument’s 
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measurements is the Ice Water Content (IWC) product.  As described by Wu et al. [2006], this 

product is derived from a combination of radiance data from the MLS spectral bands with most of 

the information coming from the window channels in the 240 GHz band.  Some extra information 

is derived from the 118 GHz and the 2.5 THz because they are sensitive to the polarization signal 

from clouds.  The figure below provides a cartoon of the MLS data measurement technique for 

the IWC product. 

 

 
Figure 6.5: Schematic of cloud IWC observations derived from limb-viewing geometry from Wu 
et al. [2006].  At pressures above 215 mbar, IWC observations are derived from single-channel 
radiances in window channels. 
 

The IWC product is derived by first retrieving the temperature and gaseous quantities from the 

measurements and then utilizing the discrepancies in window-channel radiance between the clear-

sky forward model calculations [Read et al., 2006] and the measured radiance data to produce 

cloud-induced radiance values (Tcir).  The Tcir values are then used with the cloudy-sky forward 

model to estimate cloud IWC predicated on several assumptions that are discussed below.  Figure 

6.6 indicates that between 5 and 30 mg/m3, the relationship between IWC and Tcir is very robust 

and that IWC values of up to 50 mg/m3 can be retrieved through this technique.  The resulting 

IWC product is reported at 215, 178, 147, 121, 100, 83, and 68 hPa.  The data can be gridded on 

monthly timescales with at 4° latitude by 8° longitude resolution to produce maps of vertically 

resolved cloud ice-water content.   
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Figure 6.6: Solid line denotes sensitivity of MLS window channel brightness temperatures to 
cloud IWC.  Dashed line indicates the fit line utilized in the retrievals.  From Wu et al. [2006]. 
 

The following figure realizes the IWC vertical structure in a way that has not been achieved from 

previous remote sensing measurements. 

 

 

Figure 6.7: Monthly-mean IWC values at 4x5° resolution at several pressure levels for December 
2004 retrieved from MLS, version 1.0.  From http://mls.jpl.nasa.gov/products/iwc_product.php  

 

Several features are indicated in this figure.  First, the areas of the planet with strong convection 

tend to produce high IWC values up to 147 hPa.  Second, cloud ice extent outside of regions of 



 - 118 - 

strong convection is sparse above 215 hPa.  Furthermore, this figure gives an indication of the 

extent of cloud ice in the tropics and extra-tropics. 

There are many sources of uncertainty in the derivation of the MLS IWC product, and 

several of the most significant sources arise from assumptions made in the retrieval process.  

First, there are radiance and forward model uncertainties.  While the former is almost entirely 

random, the latter depends on the clear-sky gas retrievals, inducing a Tcir uncertainty of 2K at 

100 hPa and 10K at 300 hPa which translates to 10–50% IWC product uncertainty.  More 

systematic uncertainties are present in the assumptions utilized in the translation from Tcir to 

IWC.  In particular, the ice particle size distribution and shape are mostly unconstrained by the 

retrieval, and variations in the IWC product may lead to uncertainties as large as a factor of 2.  

Finally, due to its viewing geometry, this IWC product covers an enormously large horizontal 

footprint, thereby thwarting standard validation efforts. 

 However, efforts by Wu et al. [2008] have explored how MLS data compare with 

estimates of cloud ice from other A-Train measurements, including MODIS [Justice et al., 1998] 

and CloudSat [Stephens et al., 2002].  These authors found that the MLS product is consistent to 

within 50% of results from other datasets, and assumptions regarding the particle size distribution 

within ice clouds contribute substantially to these discrepancies.  Even with 50% nominal 

uncertainty in cloud ice, scientifically meaningful results can still be derived from the MLS IWC 

product.  For example, Li et al. [2007] found that significant differences existed between the 

distribution of cloud ice fields from the ECMWF analysis product and the IWC distributions 

derived from the MLS measurements.  The spatial patterns of this disagreement between the two 

characterizations of UT IWC suggested that the modeling of deep convection over equatorial land 

masses was deficient in the analysis calculations.  Therefore, while caution must be exercised in 

the use of the MLS IWC product, it presents an unprecedented and scientifically valuable record 

of UT cloud layering. 
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6.4 CERES Data Overview 

The Clouds and the Earth’s Radiant Energy System (CERES) instrument [Wielicki et al., 

1996] is designed to measure the TOA energy balance through shortwave and longwave 

measurements.  Several nearly identical instruments have been designed and flown on different 

platforms including the Tropical Rainfall Measuring Mission, TRMM, (1998–present), Terra 

(2000–present), and Aqua (2002–present).  This system produces broadband radiance 

measurements and has a programmatic heritage from the Earth Radiation Budget Experiment 

(ERBE) suite of instruments [Barkstrom et al., 1984] that dates back to 1984.   

The Aqua platform, on which the newest CERES instrument operates, flies only a few 

minutes behind the Aura platform containing MLS, providing nearly temporally coincident 

measurements.  The data processing algorithms for CERES [Wielicki et al., 1998; Young et al., 

1998; Loeb et al., 2003] derive several other higher-level products, including monthly-averaged 

TOA fluxes.  As with many satellite instrument datasets, the details of the measurement are 

crucial to a proper interpretation.  

 

 
Figure 6.8: Cartoon detailing the mismatch between TOA flux and instrumental radiance 
measurements.   
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First, the conversion from the radiance values, which the instrument measures, to fluxes, 

which are desired for model-measurement comparison, is non-trivial.  The cartoon in Figure 6.8 

illustrates the nature of the complexity.  Data processing algorithms are required to estimate TOA 

flux and necessitate the calculation of the angular distribution of TOA radiance for each footprint 

with a limited number of actual radiance measurements.  Moreover, several of the CERES 

instruments support standard cross-track scanning along with rotating azimuthal plane scanning, 

and the latter method allows for more advanced estimation of the anisotropic nature of the TOA 

radiance [Parkinson, 2003].  Radiance anisotropy is conventionally parameterized and subjected 

to a scene-classification algorithm in order to derive top-of-atmosphere fluxes.  The error 

associated with this conversion process is estimated to be approximately 5% globally, though it 

can be higher for certain types of cloud cover [Loeb et al., 2004].  Another source of error in the 

CERES data processing algorithm arises because the temporal and spatial averaging of fluxes 

from the measurements requires careful consideration of the data sources.  The radiance 

measurements view footprints in a sun-synchronous orbit and therefore have difficulty capturing 

the diurnal cycle of longwave and shortwave flux.  Moreover, monthly-averaged fluxes are a 

product that is routinely produced by the CERES mission, and errors associated with this 

averaging process are approximately 6% in the SW and 0.5% in the LW [Young et al., 1998].  

Our analysis will primarily focus on the utilization of the ES-4 data product, a monthly-averaged 

SW and LW flux product that mimics the data produced by the ERBE instrument.  The figures 

below illustrate the fluxes estimated for a typical month using the Aqua CERES instrument.  In 

order to estimate the CRE from CERES data, we take the difference between all-sky fluxes and 

those derived from clear-sky conditions which are temporally averaged to yield monthly-

averaged CRE values. 
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Figure 6.9: Longwave (top panel) and shortwave (top panel) monthly-averaged TOA flux derived 
from the Aqua CERES instrument in cross-track scanning mode. 

 

6.5 UTC Radiative Effect 

The purpose of this section is to provide an estimate of the contribution of upper 

tropospheric clouds to the cloud radiative effect observed by CERES.  Because the MLS 

instrument data has sensitivity to UT clouds, it is reasonable to explore whether the IWC product 

provides insight into the CERES CRE product.  Due to the limitations of the IWC retrieval, only 
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the radiative effect of clouds from 83 hPa to 215 hPa is considered.  These clouds correspond to 

cirrus, cirrostratus, and deep convective clouds in the International Satellite Cloud Climatology 

Program (ISCCP) [Rossow and Schiffer, 1991] classification scheme.  The radiative transfer 

model we use is RRTM [Mlawer et al., 1997] which is a correlated-k distribution model [Lacis 

and Oinas, 1991] covering 16 contiguous bands in the longwave and 14 bands in the shortwave.  

The spectral extinction coefficient, the single-scattering albedo, and the asymmetry factor are 

parameterized in terms of the IWC and the effective ice crystal size (De).  For De, we adopt the 

empirical formula for ice particle size distribution developed by McFarquhar and Heymsfield 

[1997] which is used in the MLS IWC forward model.  Accordingly, De is computed as a function 

of MLS measured IWC and temperature. This treatment of ice particle size is consistent with the 

MLS IWC retrieval, but we recognize that the description of cloud microphysical properties is 

essential to the assessment of cloud radiative effect [Stephens et al., 1990].  Several authors have 

noted that quantifying the radiative effects of clouds with horizontal spatial resolution that is 

much larger than the scale of the clouds requires the implementation of a cloud-overlap 

approximation to estimate the radiative effect of partial cloud coverage within the grid cell (e.g., 

[Collins, 2001]).  Also, given the large horizontal footprint over which MLS makes 

measurements, it is reasonable to use a random overlap approximation in which the overlap of 

clouds between different vertical layers is randomly assigned.  

Here we consider UT layer clouds and assume no clouds underneath (the “single-layer” 

case).  This treatment has been a common practice to isolate the radiative effect of a certain type 

of clouds (e.g., [Fu and Liou, 1993; Hartmann et al., 2001; Fu et al., 2002]).  However, the 

linearity of the contributions of liquid and ice clouds to the total cloud radiative effect must be 

considered.  That is, we seek to address whether the presence of an underlying liquid cloud 

substantially mitigates the cloud radiative effect associated with an ice cloud.  If it does not, then 

it is more straightforward to interpret the differences between CRE products derived from 
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CERES measurements and CRE calculations from MLS data alone.  Figure 6.10 shows the 

variation in CRE with UT IWP for several different cloud scenarios. 

 

 
Figure 6.10: CRE vs. IWP (integrated from 68 to 215 hPa) for a uniformly distributed ice cloud  
(De = 30 μm) with varying liquid water path from 600 and 700 mbar (De = 6 μm). 
 

This figure shows that the effect of different underlying liquid clouds is most significant at low 

IWP values, and for IWP values of greater than 4 g/m2, the presence of liquid clouds below an ice 

cloud layer has very little impact on the CRE.  The occurrence frequency of the MLS-retrieved 

non-zero IWP for the month of January 2005 is depicted in Figure 6.11 and shows that 

approximately 92% of the observations contained values with less than 4 g/m2.  From the results 

in this histogram and from Figure 6.10, it can be concluded that the nonlinearity in the 

contribution to CRE of liquid and ice clouds needs to be considered.  
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Figure 6.11: Histogram of IWP values (215 to 83 mbar) derived from MLS L2 v2 IWC products 
from January, 2005. 
 

Consequently, it is first necessary to compute radiative fluxes using instantaneous UTC profiles 

along orbit tracks, rather than using averaged profiles over a certain area or period. The monthly 

mean CRE is then constructed by averaging all individual CREs for a certain 4x5° grid-point.  

We consider that each measurement footprint has fractional cloud coverage η  which is 

determined by averaging the cloud fraction product of the AIRS instrument (spatial resolution ~ 

45 km) concurrent with the MLS observation.  Since the MLS measurement represents averaged 

IWC over the MLS FOV, the actual overcast IWC value is estimated as IWC/η.  Thus, the 

radiative effect for each MLS measurement location is the following: 

 

    ( )SWLW
MLS
NET CRECRECRE +=η   . (6.4) 

 
 It is important to explore the impact of uncertainty in the MLS product and its large 

footprint on subsequent CRE calculations.  In a sensitivity run, we add a correction factor of 0.2 

to all CFR measurements to account for the effect of less opaque clouds being reported at a 

smaller fraction than derived from more sensitive instruments [Kahn, personal communication].  
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The “+0.2 CFR run” provides a rough estimate of the difference in cloud fraction from the AIRS 

effective cloud fraction to the true cloud fraction. The precise quantification of this error is under-

way.  We also test an extreme case by assuming that the UTC coverage for each MLS IWC FOV 

is 100% and that the AIRS CFR equals the cloud emissivity (the “overcast run”).  These three 

sensitivity runs give a range of uncertainties in the UTC CRE values due to the estimate of cloud 

fractional coverage η.  Using January 2005 as an example, we find the net UTC CRE is about 2.7 

W/m2 (warming) in the tropical average, with LW CRE being 4.7 W/m2 and SW CRE being −2.0 

W/m2 in the “single-layer” case where η = AIRS CFR. Increasing η by 0.2 would increase the 

LW and SW CREs by 0.3 and 0.03 W/m2, respectively, resulting in a stronger warming of 3.0 

W/m2 in the tropical average. The “overcast” run yields a significantly larger LW warming effect. 

The tropical-averaged net CRE becomes 17.6 W/m2, with 21.4 W/m2 LW CRE and −3.8 W/m2 

SW CRE. These estimates of net UTC CRE are approximately in the range of high cloud 

radiative effect calculated from models or obtained from observations.   

Since UT IWC tends to increase along with the increase of SST, we conduct a set of 

sensitivity runs to investigate the change of CRE due to changes of IWC. We successively 

increase IWC values at each level equally over the tropics by 25% to 250%, while keeping CFR 

unchanged. For simplicity, the “single-layer” approach is used. Based on the previous 

calculations, the results obtained from the “single-layer” case is applicable to the “multi-layer” 

case, at least the sign and rough magnitude of UT CRE.  Figure 6.13 shows that the tropical-mean 

net warming reaches its maximum when IWC is increased by 25%–50% from the current value.  

When IWP is increased by 50%, the net warming is 0.05 W/m2 more than the standard run, with 

LW and SW effects both increasing by 0.7 W/m2.   
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Figure 6.12: The difference of tropical-mean (a) net, (b) LW, and SW CRE (in W/m2) between 
the runs with increased IWP and the standard run. All results are based on the January 2005 UT 
cloud profiles, assuming no low and middle clouds underneath. 
 

Supposing that the rate of IWC increase with SST is 20% K−1, the change of net CRE is about 

0.02 W m−1 K−1, while the separate changes of LW and SW CRE are larger. When IWC is 

increased more than 50%, the increase in SW cooling outweighs LW warming, causing the net 

CRE to decrease from its maximum value. When IWC is increased by 75%, the net CRE returns 

to approximately the same value as the standard run, although the changes in the LW and SW 

effects are both about 1.0 W/m2 in the tropical average.  A further increase of IWC yields net 

warming smaller than the standard run.  However, it is unlikely the polarity of the net CRE would 

reverse sign given reasonable IWC changes for hypothetical SST changes within 5 K 

(corresponding to roughly doubled IWC change). 

 Figure 6.13 shows the monthly-averaged IWC product from MLS and ECMWF analysis.  

While the UT IWC fields from these two sources are not on the same vertical coordinate system, 

it is clear that the retrieved IWC values from MLS are larger than the ECMWF IWC values.  This 

result is consistent with other findings [Li et al., 2007] and suggests that there may be 

compensating factors within the forecast model in order to produce realistic OLR values.  The 

resulting CRE from the two different IWC products can also be compared to determine the 

impact of this discrepancy in IWC on the contribution to the CRE. 
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(a) 

(b) 
Figure 6.13: (a) Average IWC retrieved from MLS for Jan. 2005. (b) Average IWC from 
ECMWF analysis for January 2005. 
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(a) 

(b) 
Figure 6.14: (a) Average CRE calculated from MLS IWC product for Jan. 2005. (b) Average 
CRE calculated from the ECMWF IWC product for Jan. 2005. 
 

It is interesting to note that the LW CRE derived from the MLS and ECMWF IWC products is 

actually significantly larger than the LW CRE derived from CERES measurements.  The 

principal reason for this is that the impact of underlying liquid clouds, which are not considered 

in the LW CRE calculations from MLS and ECMWF, will mitigate the LW CRE caused by ice 

clouds.  However, the SW CRE is not influenced in the same manner as the LW CRE because the 

latter’s sensitivity to low clouds arises from the large temperature contrast between ice clouds and 
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surface emission, while shortwave radiative attenuation by ice clouds is not a strong function of 

underlying liquid clouds.  From these results, it is clear that deriving information about the CRE 

from MLS IWC data is a difficult task without underlying liquid cloud information.  Moreover, 

efforts to use CERES measurements to provide validation for the MLS IWC product are non-

trivial as well. 

 Nevertheless, it may be possible to utilize integrated cloud-water path measurements 

from the AMSR-E instrument [Kawanishi et al., 2003] to characterize the amount of ice-water 

clouds relative to liquid clouds over ocean surfaces.  However, this technique will require a 

circumspect treatment of the two datasets. 

 

6.6 Discussion 

 This chapter has explored the IWC product from the MLS instrument and how it may be 

used in a research capacity.  The IWC product offers an unprecedented view of cloud ice profiles 

that can be compared to other conceptions of cloud ice, including that of the ECMWF analysis 

product.  The ECMWF IWC product is consistently lower at all levels as compared with the MLS 

retrieved values of cloud ice.  Corresponding to this discrepancy, there is a significant difference 

between the calculated CRE for the two IWC datasets.  However, calculations of the CRE from 

the MLS IWC product should be approached cautiously, because it is difficult to account for 

underlying liquid clouds, especially for determining longwave CRE. 

 The advent of CloudSat [Stephens et al., 2002] and CALIPSO [Winker et al., 2003], will 

actively sense for hydrometeors and offer nadir observations of along-track cloud liquid and ice 

water content profiles.  CloudSat in particular may lead to a much better picture, not only of 

cloud vertical distribution, but also of the contribution to the cloud radiative effect from various 

cloud types.  Significant validation work is required for these active sounders and MLS retrievals 
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of cloud ice may assist in this endeavor.  In the meantime, the MLS IWC product provides a 

novel view of cloud ice even though the radiative effects of these clouds require information from 

other A-Train datasets. 
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Chapter Seven.  Heating and Cooling Rates from CloudSat. 

7.1 Abstract 

Determining the level of zero net radiative heating (Q0
net) is critical to understanding 

parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration 

processes.  Previous studies of the TTL radiative balance have focused on using radiosonde data, 

but remote sensing measurements from polar-orbiting satellites may provide the relevant 

horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, 

especially across the Pacific Ocean.  CloudSat provides considerable vertical information about 

the distribution of cloud properties relevant to heating rate analysis.  The ability of CloudSat 

measurements and ancillary information to constrain Q0
net is explored.  We employ formal error 

propagation analysis for derived heating rate uncertainty given the CloudSat cloud property 

retrieval algorithms.  Estimation of Q0
net to within approximately 0.5 to 1 km is achievable with 

CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus.  This can 

be remedied with the proper utilization of CALIPSO lidar backscatter information.  Next, we 

explore the representativeness of non cross-track scanning active sounders in terms of capturing 

underlying Q0
net distribution utilizing an orbital simulation with the GISS modelE dataset.  In 

order to supplement CloudSat, we explore the ability of AIRS and AMSR-E to constrain Q0
net and 

find that these passive sounders are useful where the cloud top height does not exceed 7 km.  The 

spatial and temporal distribution of Q0
net derived from CloudSat measurements is presented 

which, indicate the spatial distribution of this quantity with results that are generally in agreement 

with previous works. 
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7.2 Introduction 

Stratospheric water vapor has been and continues to be the subject of scientific study due 

to its strong influence on the earth’s radiation budget and its impact on catalytic ozone 

destruction.  The observed values of stratospheric water vapor in the vicinity of the tropical 

tropopause (e.g., [Webster et al., 1994; Weinstock et al., 1994; May, 1998; Paul et al., 2001; Baer 

et al., 2002; Vömel et al., 2007]) are significantly lower than would be expected from the 

Clausius-Clapeyron constraint imposed by the mean cold-point tropopause temperature 

[Michelsen et al., 2000].  Discerning the relative roles of convection and radiation in the 

determination of the transport of water vapor from the troposphere to the stratosphere and 

observed trends therein remains an area of active scientific discussion.  The tropical tropopause 

layer (TTL) is of particular importance to this discussion because it is thought to contribute 

substantially to stratospheric water vapor transport.  Because there is very little latent heating 

above 12 km in the tropics, parcel vertical velocity and radiative heating are closely coupled in 

the TTL.  In this region, net radiative heating is negative at lower altitudes due primarily to water 

vapor cooling, but is positive at higher altitudes due primarily to ozone heating.  In between, there 

is a level (or levels) of zero net heating (denoted here and by others as Q0
NET) which is the 

separation level that determines whether uplifted parcels ascend or descend.  Determining the 

altitude of this level and characterizing its spatial and temporal variability are crucial to 

elucidating the relative strength of the mechanisms that control stratospheric H2O transport. 

The importance of the TTL has been recognized for some time as a mechanism for 

stratospheric control [Holton et al., 1995] and was described in detail by Highwood and Hoskins, 

[1998] which qualitatively discussed the roles of convection and diabatic heating in determining 

stratosphere/troposphere transport.  Subsequent work has focused on providing a detailed 

quantitative description of these and other possible processes.  Holton and Gettelman, [2001] 

proposed that horizontal transport in the TTL, facilitated by long particle residence times, is 
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responsible for the observed excessive dehydration, and that the tropical Western Pacific Ocean 

exerts a disproportionate impact on this dehydration.  However, Sherwood and Dessler [2001] 

presented a model that favored convection as a description of TTL H2O transport.  Later, 

Sherwood et al. [2003] found that active convection is a very significant process for governing 

parcel dehydration and the altitude and temperature of the tropical cold point tropopause. 

Given the importance of radiative heating rates towards ultimately determining whether a 

parcel ascends or descends, several authors have analyzed heating rates from several different 

perspectives.  The importance of radiative heating in the TTL and the differential heating 

associated with varying cloud configurations were described by Hartmann et al. [2001].  This 

work found that the vertical distribution of clouds may be key to the explanation of the observed 

stratospheric dehydration because the radiative influence of a cirrus cloud layer is dependent 

upon the convective cloud top height.  The actual determination of Q0
NET is a non-trivial process 

that has only recently been explored from a process perspective.  Gettelman et al. [2004] 

broached the importance of a detailed evaluation of radiation balance in the TTL and used 

temperature and water vapor profiles from radiosondes to do so.  This work found that Q0
NET 

varied by about 500 meters from measurement to measurement.  Additionally, Corti et al. [2005] 

determined vertical mass flux in the tropics from radiative heating rate calculations and found that 

it is a strong function of cloud cover.  This paper, however, found that the transition from 

radiative cooling to heating occurs at lower altitudes where clouds are present, as compared to 

clear-sky cases, thereby contradicting the results of previous studies.  Further work by Gettelman 

and Birner [2007] began the process of comparing TTL climatology and variability as determined 

through radiosonde observations with circulation model representation of TTL processes.  They 

found that the large-scale mean state and variability of the TTL are well represented by the 

models despite heavily-parameterized cloud processes.   

Heating rate profiles have also been determined at the Atmospheric Radiation 

Measurement (ARM) program’s Tropical Western Pacific sites [Stokes and Schwartz, 1994] 
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using a combination of radiosonde and millimeter-wavelength cloud radar data [McFarlane et al., 

2007; Mather et al., 2007].  The results were compared with those produced by the Community 

Atmosphere Model (CAM) model and it was found that CAM models capture some, but not all, 

of the heating rate variability.  Also, Fueglistaler and Fu [2006] used European Centre for 

Medium-Range Weather Forecasting 40-year reanalysis (ECMWF ERA-40) trajectory analysis to 

understand the processes that control stratospheric water vapor variability and found reasonable 

agreement with assessments from satellite-based measurements.  Norton [2001] analyzed 

longwave heating in the tropical lower stratosphere using ECMWF analyses.  This work found 

that ozone IR heating displayed a high degree of variability and was anti-correlated with 

tropospheric cooling rates, suggesting the importance of upper-tropospheric clouds in governing 

heating rates near the TTL. 

Most of the previous heating rate analyses have focused on utilizing radiosonde data or 

other limited spatial scale data to determine TTL properties, but satellite-based remote sensing 

measurements, if properly utilized, can introduce a much more-detailed spatial analysis of those 

quantities which are ultimately necessary for characterization of the Q0
NET level.  The availability 

of a new and unprecedented set of measurements from the NASA Earth Observing System A-

Train Constellation [Asrar and Dozier, 1994], including AIRS [Aumann et al., 2003] and 

CloudSat [Stephens et al., 2002] may be able to reduce uncertainties in the determination of this 

level and provide a more spatially detailed analysis of TTL radiation balance.  However, this 

approach will only be successful if the remote sensing measurements are evaluated within a 

retrieval framework that captures the true horizontal, vertical, and temporal variability in the TTL 

radiative balance. 

In order to address the feasibility of applying remote sensing measurements to analyze 

the TTL radiation balance, we first present a description of several CloudSat products and discuss 

the estimation of their uncertainties.  Next, determination of Q0
NET from CloudSat and CALIPSO 

products is discussed, and the spatio-temporal distribution of Q0
NET values derived from data 
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covering July 2006 to July 2007 is presented.  Subsequently, the ability of passive sounding data 

to constrain Q0
NET is explored.  Finally, orbital simulation experiments are performed to test the 

representativeness of simulated along-track Q0
NET sampling from CloudSat. 

 

7.3 CloudSat Heating Rates 

As part of the NASA Earth Observing System A-Train, the CloudSat satellite is a polar-

orbiting, sun-synchronous platform on which the CloudSat Profiling Radar measures along-track 

radar reflectivity at 94 GHz with a minimum sensitivity of -31 dBz (see [Meneghini and Kozu, 

1990] for an introductory discussion of space-borne cloud radar).  Partial attenuation by 

hydrometeors at this frequency allows for the characterization of cloud vertical distribution over a 

broad range of observed cloud systems.  Several mission products are derived from the radar 

reflectivity at 240 meter vertical resolution and are directly relevant to a TTL radiative 

heating/cooling analysis.  The 2B-CWC-RO product, for example, contains cloud water content 

profiles, and the 2B-FLXHR product provides radiative fluxes and heating rates consistent with 

these water contents.  However, due to potential uncertainties in these products, their nature must 

be explored in the context of their ability to constrain radiative heating rates in the TTL. 

The algorithms for generating 2B-CWC ice and liquid cloud products from radar 

reflectivity measurements are described by Austin [2007] and are based on the works of Benedetti 

et al. [2003] and Austin et al. [2001], respectively.  Here, we make use of Release 04 of the radar-

only retrievals which only utilize radar reflectivity measurements and a priori data (refer to 

http://www.cloudsat.cira.colostate.edu for details).  The retrieval algorithm assumes that cloud 

droplet distributions can be reasonably parameterized with a lognormal size distribution so that 

droplet number count, effective radius, and geometric standard deviation are the 3 retrieval 

targets.  The retrieval also assumes that cloud droplets are sufficiently small so that they can be 
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effectively treated as Rayleigh scatterers, though this assumption is valid only for non-

precipitating scenes.  The cloud phase is determined by using ECMWF analysis information 

[Rabier et al., 1998] for the observed scene, including temperature, water vapor, and ozone 

profiles.  For those vertical bins when the temperature is less than -20 °C, ice cloud properties are 

retrieved, whereas for temperatures exceeding 0 °C, liquid cloud properties are retrieved.  In 

between, both liquid and ice cloud properties are retrieved separately with scaling factors for the 

two phases which are a linear function of the temperature such that vertical bins at the upper 

altitudes of the transition zone are mostly ice and those at the lower altitudes are mostly liquid. 

Optimal estimation theory [Rodgers, 2000] is employed to balance a priori knowledge of 

droplet number and effective radius profiles with that partially described by the measurements 

through a forward model.  Empirical relationships between cloud water content, cloud effective 

radius, and geometric standard deviation as a function of temperature and pressure from aircraft 

campaigns are used as a priori constraints (e.g.,  [McFarquhar and Heymsfield, 1997]).  

The current algorithm for generating fluxes and heating rates at 240 meter vertical 

resolution from CloudSat measurements and other ancillary products is described by L’Ecuyer et 

al. [2008].  Briefly: temperature, water vapor, ozone, cloud water content, and cloud effective 

radius profiles form the inputs to a broadband, two-stream, plane-parallel, doubling-adding 

radiative transfer model.  Six shortwave and 12 longwave bands are utilized to produce net 

shortwave (0.2 to 4 μm) and longwave (4.55 to ∞ μm) fluxes and heating rates using a δ-

Eddington and constant hemispheric approximation respectively.  The subsequent analysis also 

makes use of an experimental fluxes and heating rate product derived from the combination of 

CloudSat and CALIPSO measurements.  This new algorithm, that will likely form the basis of a 

new CloudSat 2B-FLXHR-LIDAR product in the near future, operates identically to the 2B-

FLXHR approach, but the revised product also makes use of the CALIPSO vertical feature mask 

through CloudSat's GEOPROF-LIDAR product [Mace, 2007; Marchand et al., 2007] to fill in 

thin high clouds and low clouds missed by CloudSat.  The GEOPROF-LIDAR product is used to 
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define scenes where CloudSat misses high clouds.  The raw CALIPSO backscatter observations 

are then used to determine the integrated optical depth of these clouds and their extinction using 

the molecular scattering above and below the cloud.  This should fall off exponentially with 

height in the absence of a cloud.  The extinction associated with the high clouds that CloudSat 

does not detect is generally independent of height, latitude, and season, and a representative 

effective radius (30 μm) and the mean ice water path (0.004 g/m3) are assumed based on 

extinction observations from lidar data collected from the Canadian Network for the Detection of 

Atmospheric Change ( http://www.candac.ca ).  While this approach is clearly approximate in 

nature, heating rate calculations derived in this manner should statistically capture the impact of 

these thin clouds quite well to first order (see [Kay et al., 2008] for more details). 

Parcels in the TTL experience a range of shortwave heating throughout the day which is a 

strong function of the incident solar zenith angle.  Therefore, it is important to correct the 

shortwave heating rates produced by the CloudSat 2B-FLXHR and 2B-FLXHR-LIDAR products.  

For ascending track (daytime) measurements, the shortwave heating rates are calculated at 

approximately 1:30 pm local solar time.  To account for diurnal variations, including no night-

time heating, shortwave heating rates at all levels are multiplied by a correction factor of 0.39, 

which we determined yield diurnally averaged heating rates to within 5%. 

It should be noted that some of the heating rate analysis and associated sensitivity tests 

presented in this paper do not directly utilize the radiative transfer code used to calculate the 2B-

FLXHR.  Rather, we use a slightly more-refined broadband radiative transfer model: RRTM 

[Mlawer et al., 1997; Clough et al., 2005].  The differences between the two codes are noticeable 

in some vertical regions.  The codes utilize different water vapor continua models, which affect 

boundary layer longwave cooling: the 2B-FLXHR algorithm used CKD 2.1 [Clough et al., 1989] 

whereas RRTM uses MT_CKD 1.0 [Clough et al., 2005].  Also, different treatment of 

intermediate strength bands and overlap lead to discrepancies in heating and cooling rates in the 

middle stratosphere.  In the mid-troposphere and upper troposphere lower stratosphere (UTLS) 
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regions, differences generally arise from the 2B-FLXHR treatment of cloud optical properties as 

grey.  This stands in contrast to the treatment in RRTM which employs a wavelength-dependent 

parameterization for liquid clouds described by Hu and Stamnes [1993] and for ice clouds by Fu 

et al. [1997].  Potential differences in cloud overlap treatment do not have to be considered here 

because the CloudSat field-of-view is small enough that the overcast approximation is sufficient.  

Given the wide range of scenes examined here, differences in radiative transfer implementation 

are not expected to significantly alter the general conclusions reported below. 

The current algorithm used to create CloudSat 2B-FLXHR products does not include 

error estimates on fluxes and heating rate products, though this can be accomplished through 

formal error propagation analysis [Taylor et al., 1994; Feldman et al., 2008].  Assuming that the 

variables relevant to heating rate calculations can be modeled as Gaussian, the uncertainty in the 

cooling rate profile is given by the following: 
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where ( )nji xxxx ,,,,...1 KK  represent all of the atmospheric state inputs that are relevant to 

cooling rate profile calculations at each level, ( )zθ ′  refers to the broadband cooling rate at height 

z , and cov refers to the covariance function.  The relevant atmospheric state inputs include the 

T, H2O, and O3 profiles and the cloud water content and effective radius profiles.  The T, H2O, 

and O3 profiles from the ECMWF analysis data are used in the 2B-FLXHR without error 

estimates, but it can be reasonably assumed that these data products will have difficulty 

estimating temperature to better than 1 K and water vapor and ozone to better than 10% vmr at 

each vertical bin.  No information is provided to constrain the covariance of the T, H2O, and O3 

profiles so that, especially under clear conditions, it may be necessary to calculate error bars 

assuming strong positive, zero, and strong negative covariance between different values of T, 

H2O, and O3 at different altitudes.  Where clouds are present, heating rates are significantly 
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affected in those parts of the profile covered by clouds.  Consequently, the uncertainties in cloud 

water content and cloud effective radius profiles retrieved from CloudSat generally dominate the 

error budget. 

Shortwave and longwave heating rate uncertainties are estimated separately, and the net 

heating rate uncertainty is derived by combining the two uncertainty calculations using the 

following formula: 

 

( ) ( )( ) ( )( )22 zzz LWSWNET θθθ ′Δ+′Δ=′Δ    (7.2) 

 
where ( )zSWθ′Δ is the uncertainty in shortwave heating, ( )zLWθ ′Δ  is the uncertainty in longwave 

cooling, and ( )zNETθ ′Δ  is the uncertainty in the net heating.  Given that the 2B-CWC-RO 

products regularly report uncertainties of 50% for cloud water content and cloud effective radius, 

the error estimate of in-cloud heating rates will be on the order of 50% of the calculated heating 

rate.  In-cloud flux measurements in the course of validation experiments may be useful to govern 

the development of future CloudSat processing algorithms of 2B-FLXHR products.  Figure 7.1a 

shows sample longwave cooling, shortwave heating, and net heating rate profiles produced by 

CloudSat through the 2B-FLXHR product, along with estimates of the uncertainty associated 

with these products based on temperature uncertainty of 1 K at each level and water vapor and 

ozone uncertainty of 10% of the volume mixing ratio at each level under clear-sky conditions.  

Figure 7.1b shows the same heating and cooling rate profiles where clouds are present and the 

estimated uncertainty is strongly affected by the reported CWC uncertainty at each level. 

 In order to provide a first-order check on the CloudSat 2B-FLXHR products, we perform 

a comparison between net heating rates produced from remote sensing analysis and those derived 

from comprehensive ground-based data at the Manus Island Tropical Western Pacific ARM site.   
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(a) 

(b) 
Figure 7.1:(a) Clear-sky longwave, shortwave, and net radiative heating rate profiles from the 2B-
FLXHR product for the sample granule on Oct. 17, 2006 at 0116Z at 0N and 173W.  Shaded gray 
indicates uncertainty estimate based on approximate ECMWF uncertainty estimates in T, H2O, 
and O3 profiles.  (b) Same as (a) but for profile at 2N and 174W with a cirrus layer of cloud water 
path ≈ 15 g/m2 at 14–16 km with cloud water content uncertainty from 2B-CWC-RO data. 
 

Mcfarlane et al. [2007] present a comprehensive description of observed heating rates at the 

Manus Island site (147.4 E, 2.0 S).  Figure 7.2a shows the occurrence frequency of net heating 

rate profiles in the vicinity of Manus Island from the CloudSat 2B-FLXHR product for July 2006 

to July 2007.  The color indicates occurrence frequency and the dashed black line shows the mean 

net radiative heating rate profile.  In the lower and middle troposphere, net heating rates are 
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strongly affected by the presence of clouds, and the probability distribution function (PDF) of net 

heating departs substantially from Gaussian.  In fact, Figure 7.2a does not plot the net heating 

values that occur less than 1% of the time at a given altitude, yet these values clearly affect mean 

net heating between 6 and 13 km.  In the upper troposphere, net heating rates are less affected by 

clouds and exhibit behavior that is qualitatively Gaussian.   

 

(a)

(b) 
Figure 7.2: (a) Net heating rate profile frequency distribution derived from ascending (daytime) 
granules of CloudSat 2B-FLXHR data in the vicinity of Manus Island (the geographic region 
from 3S to 0N and 145E to 147 E ) for July 2006 to July 2007 from 84 overpasses.  Net heating 
rate values that occur with less than 1% frequency are excluded from the plot.  Dashed black line 
indicates mean heating rate profile.   
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Figure 7.2b shows the same net heating rate distribution plot as determined by the methods 

described in McFarlane et al. [2007] from ground-based observations at the Manus Island site of 

the ARM program [Stokes et al., 1994] for several months in 2000.  This comparison is 

approximate and there are many caveats to the determination of heating rates from millimeter-

wavelength radar returns, which are outlined in Mather et al. [2007].  Also, the comparison of 

ground- and satellite-based cloud radar measurements must be approached carefully.  

Nevertheless, the figure serves to show that particularly in the upper troposphere, the patterns of 

net heating rates derived from two disparate datasets show agreement. 

 

7.4 Determination of Zero Net Heating 

In the TTL, there is a transition from net radiative cooling to net radiative heating with 

increasing altitude, and Q0
NET is located at a height of approximately 15 km.  Because convective 

clouds rarely ascend into the TTL, heating rates generally change slowly with altitude at a rate of 

0.1 K/day/km from around -0.5 K/day at the lower level of the TTL to around 0.2 K/day at the 

cold-point tropopause, which is approx. 2.5 km above the Q0
NET level.  

There are several atmospheric state quantities that contribute to the location of the Q0
NET 

level.  First, although water vapor dominates radiative cooling in the upper troposphere, H2O 

emission efficiency decreases substantially above 13 km.  Water vapor contributes to essentially 

all of the IR cooling in the TTL (CO2 and O3 produce IR heating), though water vapor variability 

contributes to only about 50% of net IR TTL heating variability.  Second, the vertical temperature 

structure affects cooling from the CO2 ν2 band, while the O3 profile details are important both for 

solar heating and IR cooling.  Third, solar heating of CO2, O3, and H2O is largely a function of 

zenith angle with higher zenith angles (maximum daily insolation) leading to lower Q0
NET levels.  

Fourth, the presence of underlying clouds can impact Q0
NET in many different ways, primarily by 
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modulating the CO2 and O3 infrared heating, and secondarily by affecting H2O rotational band 

emission.  Q0
NET is affected by changes in shortwave heating arising from reflection from 

underlying cloud layers, but this effect is a second-order correction.  Finally, where present, a 

cirrus layer in the TTL with underlying convective cloud-top height below 12 km will lead to net 

radiative heating while the same cirrus layer with a higher convective cloud-top height will have 

a net radiative cooling. 

A typical clear-sky net radiative heating rate profile has radiative cooling due to water 

vapor in the lower and middle troposphere which transitions in the upper troposphere and 

stratosphere to radiative heating due to ozone.  The transition region is often marked by a large 

number of oscillations in net heating about the zero line due to gravity waves.  Meanwhile a 

typical cloudy-sky net radiative heating rate profile differs from the clear-sky case in that there is 

large radiative heating at the base and within clouds and strong cooling at the cloud top.  

Moreover, the presence of an underlying cloud slightly decreases the efficacy of cooling by water 

vapor in the upper troposphere and significantly decreases IR heating by ozone in the tropopause 

and lower stratosphere.  Due to the latter effect, the Q0
NET level is raised by a few kilometers by 

the presence of a cloud.  The determination of the Q0
NET level can be ambiguous given the 

number of oscillations in net heating near the zero-heating level.  Nevertheless, the presence of 

clouds unambiguously diminishes the infrared heating from O3, thereby leading to increased 

cooling at all layers between the cloud top and the level middle stratosphere. 

The determination of the Q0
NET level first requires a net heating rate profile.  With this, 

we determine the Q0
NET level as follows: beginning at 25 km, we test lower-altitude layers to find 

a layer where net radiative heating begins to increase.  If the net heating associated with this layer 

is positive, then this layer is taken to represent the top of a heating rate oscillation.  If the net 

heating associated with the layer is negative, the layer is selected as the bottom layer for Q0
NET 

determination.  A linear interpolation is performed to find the zero net heating level between the 

upper and lower levels of the net heating oscillation.  Uncertainty in Q0
NET determination for an 
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individual profile is assessed by adding one standard deviation to the net heating rate profile and 

recalculating Q0
NET, and then doing the same after subtracting one standard deviation from the net 

heating rate profile.  This process tends to overestimate the uncertainty in the Q0
NET level but is 

practical and computationally-efficient. 

 

(a) 

(b) 
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(c) 
Figure 7.3: (a) MODIS Cloud Top Temperature granule for Jan. 12, 2007, at 0304Z from 0 to 
10N and 145 to 165E with black line denoting ground footprint of the CloudSat and CALIPSO 
instruments.  (b) Top-panel: CloudSat 2B-GEOPROF radar reflectivity for the curtain 
corresponding to the scene shown in (a). Bottom panel: diurnally-averaged net radiative heating 
rate profile curtains derived from the CloudSat 2B-FLXHR product.  The overlaid black line 
indicates the estimation of the Q0

NET level.  (c) Top-panel: CALIPSO 532 nm total attenuated 
backscatter curtains corresponding to the scene shown in (a).  Bottom panel: estimated diurnally-
averaged net radiative heating rate profile curtains from the CloudSat 2B-FLXHR-LIDAR 
product. The overlaid black line indicates the estimation of the Q0

NET level. 
 

Figure 7.3a–c illustrates the along-track variability in Q0
NET as determined by CloudSat.  

For reference purposes, Figure 7.3a shows the Cloud Top Height product from MODIS [Platnick 

et al., 2003] with an overlay of the CloudSat and CALIPSO field-of-view.  Figure 7.3b contains 

two panels: the top panel shows the CloudSat Radar Reflectivity for a sample granule from Jan. 

12, 2007, at 0304Z.  The bottom panel in Figure 7.3b shows the 2B-FLXHR net heating rate 

profiles for the granule.   

There are a few missing profiles because the processing algorithm currently does not 

produce heating rate profiles where the CWC product contains null retrieval values.  

Nevertheless, where there are data, it can be seen that clouds affect net heating rate profiles: at the 



 - 146 - 

base of a cloud deck, net radiative heating occurs, while significant net cooling occurs at cloud 

tops.  Also, the panel shows the estimated location of Q0
NET, which exhibits small variations from 

T, H2O, and O3 along-track variability but is dramatically elevated by the presence of clouds.  

Since CloudSat is unable to detect thin cirrus clouds, it is likely that measurements from this 

instrument will underestimate the Q0
NET level.  Merged CloudSat and CALIPSO cloud water 

content products will allow for TTL heating rate analysis with less systematic bias.  Figure 7.3c 

shows similar curtains as Figure 7.3b but utilizes extra information provided by the CALIPSO 

instrument.  The top panel shows CALIPSO’s 532-nm total attenuated backscatter of the scene 

described in Figure 7.3b.  Whereas the lidar measurements are sensitive to thin clouds, the 

measurements are unable to describe cloud vertical profiles for thick clouds.  The bottom panel 

displays the 2B-FLXHR-LIDAR product for the scene.  The ability to detect thin cirrus clouds 

clearly leads to increased upper-tropospheric heating and a higher Q0
NET level. 

Both Figures 7.3b and 7.3c depict the estimated altitude of the Q0
NET level with a black 

line in the lower panel.  For those scenes where CloudSat detects clouds, the two estimates of the 

Q0
NET level are similar, but they differ substantially where CloudSat determines a clear-sky scene 

while CALIPSO detects overlying thin cirrus clouds. 

It is necessary to address how well CloudSat observations and ancillary data constrain 

understanding of the Q0
NET level.  Figure 7.1a shows that given assumptions about the uncertainty 

in ECMWF analysis products, we find that clear-sky net heating can be known to within 0.1 

K/day.  Figure 7.4a shows the same plot as Figure 7.1a, focusing on the TTL and indicates that, 

for clear-sky conditions, the estimated uncertainty in the auxiliary ECMWF analysis fields 

produces a Q0
NET level uncertainty of approximately ±0.3 km.  The presence of a cloud, as seen in 

Figure 7.4b, significantly raises the Q0
NET level to approximately 17.5 km.  The cloud has also 

expanded the uncertainty in the Q0
NET level to approximately ±0.5 km. 
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(a) 

(b) 
Figure 7.4: (a) Clear-sky longwave, shortwave, and net radiative heating rate profiles from the 
2B-FLXHR product for the sample granule on Oct. 17, 2006, at 0116Z at 0N and 173W.  Shaded 
gray indicates uncertainty estimate based on approximate ECMWF uncertainty estimates in T, 
H2O, and O3 profiles, and the Q0

NET level is 14.5±0.3 km.  (b) Same as (a) but for profile at 2N 
and 174W with a cirrus layer of cloud water path ≈ 15 g/m2 at 14–16 km with cloud water content 
uncertainty from 2B-CWC-RO data.  The Q0

NET level is 17.5±0.5 km. 
 

There is significant uncertainty associated with the retrieval of CWC profiles and 

consequently of net heating rate profiles in the vicinity of clouds.  We seek to address the 

importance of CWC profile uncertainties in the determination of the Q0
NET level.  We assume that 
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the uncertainty in CWC is a constant percentage of the total CWC retrieval value for each layer.  

Then, we vary the CWC value and determine the corresponding variance in the Q0
NET level.   

 

 
Figure 7.5: Standard deviation of Q0

NET level as a function of cloud water content uncertainty for 
scenarios with an ice cloud from 10–12 km with Re = 41.5 μm and IWC = 4.8 mg/m3, a liquid 
cloud 4–5 km with Re = 6.2 μm and LWC=280 mg/m3, and a scenario with both such liquid and 
ice clouds overlapping. 
 

Figure 7.5 shows the uncertainty in the Q0
NET level as a function of the uncertainty in 

CWC profiles for three different scenarios with an underlying Tropical Model Atmosphere: a 1-

km-thick liquid cloud spanning 4-5 km, a 2 km thick ice cloud spanning 10-12 km, and a 1-km-

thick liquid cloud spanning 4–5 km underlying a 2-km-thick ice cloud spanning 10–12 km.  Even 

with significant uncertainty in the liquid and ice water content values retrieved from CloudSat 

measurements, the CWC approximation only contributes to an uncertainty in the Q0
NET level of 

approximately 0.5 km.  Therefore, it is reasonable to conclude that the specification of cloud 

profile information from CloudSat, even with large CWC retrieval uncertainty, is useful for 

determining the Q0
NET level. 
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7.5 Use of Passive Sounders 

Given the wealth of instrumentation in the A-Train, it may be possible to supplement 

along-track information pertaining to Q0
NET distribution from active sounders with cross-track 

information from passive sounders.  For example, AIRS is a hyperspectral thermal IR sounder 

and AMSR-E [Kawanishi et al., 2003] is a 6-channel passive microwave sounder.  Both 

instruments reside aboard the polar-orbiting Aqua platform, which flies in close formation with 

the CloudSat platform.  These instruments have nearly collocated ground footprints that have 

recorded measurements since mid-2002 with a retrieved-product spatial resolution of 45 km.  

Retrieval products from AIRS include T, H2O, and O3 profiles in addition to information on cloud 

top height (CTH).  AMSR-E data processing algorithms generate a cloud water path (CWP) 

product over ocean scenes (i.e., Huang et al. [2006]).  These standard L2 and L3 products may be 

utilized to derive information about the heating/cooling rate profile in most scenes.  Although 

CloudSat and CALIPSO provide much greater vertical information, they are limited to nadir 

sounding with very limited pointing capability. 

The issue of whether Q0
NET can be determined adequately despite a posteriori 

uncertainties in T, H2O, and O3 profiles and, more importantly, the conspicuous lack of vertical 

cloud information needs to be addressed.  The upper-bound on the contribution of clouds to Q0
NET 

uncertainty can be determined by varying cloud water content distribution according to CTH and 

CWP constraints, while T,H2O and O3 errors can be incorporated according to section (2).  For 

different CTH and CWP values, which can be well constrained by AIRS/AMSR-E jointly, we test 

to see the range in possible Q0
NET associated with different cloud height distributions through 

Monte Carlo sampling using a Tropical Model Atmosphere.  As seen in Figure 7.6, where CTH is 

less than 7 km, the specification of CWP and CTH is sufficient to constrain Q0
NET to within 
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several hundred meters.  Where CTH is greater than 7 km, further knowledge about the cloud 

vertical distribution is necessary, except for cases with cloud water path is less than 0.2 kg/m2.   

 

 
Figure 7.6: Uncertainty in Q0

NET level where CWP and CTH are constrained by AIRS/AMSR-E 
measurements but vertical details of cloud water content distribution are allowed to vary below 
the cloud top. 
 

Since there is significant cloud occurrence frequency above 7 km and the variations in 

Q0
NET are strongly affected by deep convective clouds, the current suite of passive sounders in the 

A-Train are not likely to impart useful information towards understanding the spatial and 

temporal distribution of Q0
NET.  Moreover, the CWP constraint by AMSR-E measurements is not 

viable over land scenes, and this precludes comprehensive Q0
NET spatial analysis. 

 

7.6 Orbital Simulations 

CloudSat provides a large amount of information content about heating rate profiles, 

though only along its nadir ground track.  The ability of CloudSat products to describe the true 

two-dimensional distribution of Q0
NET can be explored through orbital simulations.  Here, 
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synthetic data are produced by using GISS modelE fields [Schmidt et al., 2006].  The complete 

provision of fields necessary to synthesize Q0
NET maps allows one to test the question of whether 

the limited spatial coverage attendant to CloudSat observations is sufficient to reproduce the 

original spatial PDF of Q0
NET that can be ascertained from the full dataset.   

 

(a) 

(b) 
Figure 7.7: (a) Zonal variation in occurrence frequency of Q0

NET level values derived from 
present-day atmospheric simulations using GISS ModelE data for a climatological January.  (b) 
Same as (a) but data is derived by sub-sampling GISS ModelE fields per the CloudSat sampling 
pattern. 
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In order to accomplish the simulation, one month’s worth of CloudSat footprints are 

interpolated to a 2.5 x 2.5 latitude/longitude grid.  The data from the model fields corresponding 

to the nearest satellite footprint are input into a RRTM calculation from which Q0
NET is estimated.   

The data subset is used to create maps of zonal occurrence frequency distribution of Q0
NET.  The 

distribution derived from the orbital coverage (assuming CloudSat is able to determine Q0
NET 

perfectly) is compared to the underlying mean and standard deviation in Figure 7.5.  These 

results, as seen in Figure 7.7, demonstrate that, on a monthly time-scale, CloudSat measurements 

are not quite sufficient for representing the underlying distribution of Q0
NET and its variability, 

and the effects of under-sampling are apparent in the comparison.  However, using 2–3 month 

datasets does allow for sufficient comparison, which implies that the effective temporal resolution 

of CloudSat data with respect to this analysis is 2–3 months. 

 

7.7 CloudSat Zero Net Heating Distribution  

Given the long residence times of parcels in the TTL (e.g., Hartmann et al. [2001]), it is 

important to characterize the spatial distribution of Q0
NET values, because this distribution may 

describe which regions are having the most influence on stratospheric hydration.  Although 

CloudSat 2B-FLXHR data has been released covering only 1.5 years, preliminary maps of the 

zonal Q0
NET occurrence frequency can be produced.   

A sample occurrence frequency for a geographic box surrounding Manus Island is shown 

in Figure 7.8 and indicates that Q0
NET is most likely to be around 16 km.  Strong convective 

events can push the level higher, though it is unlikely to be above 18 km.  Figure 7.9 shows the 

zonal variation in Q0
NET occurrence frequency in an equatorial band with several salient features.  

First, Q0
NET values are generally higher for this period in the tropical western Pacific Ocean 
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(TWP), as compared to the tropical eastern Pacific Ocean (TEP), and this result is consistent with 

findings of others regarding this level.   

 

 
Figure 7.8: Histogram of Q0

NET level values derived from CloudSat 2B-FLXHR products for July 
2006 to July 2007 using daytime data in the vicinity of Manus Island (the geographic region from 
3S to 0N and 145E to 147 E ).  The mean Q0

NET value is 16.8 km. 
 

 
Figure 7.9: Zonal variation in occurrence frequency of Q0

NET level values derived from CloudSat 
2B-FLXHR data from July 2006 to July 2007 for 2.5S to 2.5N. 
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Second, there is a secondary maximum at 18 km specifically in the TWP associated with deep 

convection which can also be seen in Figure 7.2a.  Finally, the distribution of Q0
NET values is 

slightly broader in the TWP than in the TEP suggesting that strong convective processes are 

differentially affecting TWP and TEP TTL radiation balance. 

Mean and standard deviation Q0
NET maps can also be useful for determining the zonal and 

meridional variation in this quantity.  Figures 7.10a and 7.10b show the spatial distribution of 

mean Q0
NET values and their standard deviations for December 2006 to February 2007 (DJF), 

respectively, and the associated variation of these values.  Figure 7.10a shows the equivalent 

results derived from the 2B-FLXHR product, while Figure 7.10b displays the results from the 2B-

FLXHR-LIDAR product.  At a resolution of 2.5 degrees, the seasonal mean TTL radiation 

balance derived from the two different datasets are generally in good agreement, although some 

minor differences are evident, particularly in regions of deep convection where the 2B-FLXHR 

product tends to underestimate the Q0
NET level.  More significantly, differences exist in the 

estimated standard deviation in Q0
NET, where the 2B-FLXHR-LIDAR data indicate much larger 

variations throughout the tropics indicative of the greater variability introduced by thin cirrus that 

are not resolved by CloudSat. 

Only some of the spatial and temporal Q0
NET details derived from CloudSat data are 

described by the radiosonde dataset.  Satellite-based remote sensing of TTL radiation balance has 

significant descriptive power over the equatorial Atlantic Ocean, the Indian Ocean, and the TEP.  

Still, where collocation occurs, Q0
NET maps derived from CloudSat data agree with those derived 

from radiosonde observations (i.e., Gettelman and Forster [2002]).  Ultimately, it is important to 

incorporate the remote sensing data on heating rates into a model of stratosphere-troposphere 

exchange to understand how data-driven knowledge of the level of zero radiative heating impacts 

understanding of the relative importance of different mechanisms for controlling stratosphere-

troposphere exchange of water vapor. 
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(a) 
 

(b) 
Figure 7.10: Monthly-mean and standard deviation Q0

NET maps at 2.5 x 2.5° resolution derived 
from CloudSat 2B-FLXHR product results for (a) December 2006 to February 2007. (b) Same 
plot derived from 2B-FLXHR-LIDAR product results. 
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7.8 Conclusion 

Active sounding of the vertical distribution of clouds from CloudSat introduces 

significant information for understanding vertical net heating rate profiles.  Given ancillary 

information including temperature, water vapor, and ozone profiles from other instruments or 

forecast analyses, the spatial distribution of net heating rates can be described to within 0.1 K/day 

for clear-sky scenes.  With CloudSat’s retrieval of cloud properties, cloud heating rates are known 

to within several K/day, though the large uncertainties in the retrieval of cloud water content and 

effective radius currently renders instantaneous estimates of in-cloud heating rates difficult to 

resolve.   

The longwave and shortwave fluxes and heating rate products have broad application to 

model-measurement comparisons and can be used directly to analyze the level of zero net 

radiative heating in the Tropical Tropopause Layer.  This Q0
NET level is a dividing line that 

determines parcel ascent or descent and should be well characterized in the course of discussions 

of the relative roles of different processes in hydrating the stratosphere.  Given that passive 

remote sensing information can generally constrain the level of zero net heating where the cloud 

top height is less than 7 km, the introduction of active sounding information is very valuable 

towards Q0
NET level analysis.  We have analyzed one year’s worth of CloudSat 2B-FLXHR 

products and derived information about the spatial and temporal distribution of the Q0
NET level.  

The Q0
NET differences between the 2B-FLXHR product and the 2B-FLXHR-LIDAR product for 

December 2006 through February 2007 are minor, and suggest that the usage of the CALIPSO 

lidar data is most important for the determination of the variability in the Q0
NET level.  The results 

also suggest that the effect of deep convective clouds on the radiative balance of the TTL is 

significant throughout the tropics.  Further analysis will require integration of data-driven heating 

rate information into TTL models.  The continued refinement of the 2B-FLXHR product 
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(including formal integration of the CALIPSO measurements), along with the increasing data 

volume will allow for a more thorough characterization of the Q0
NET level. 

The CloudSat 2B-FLXHR product contains data-driven heating rates and fluxes which 

will be scientifically meaningful to the extent that they can be validated.  Using surface and top-

of-atmosphere broadband flux measurements from CERES [Wielicki et al., 1996] provides a first-

order test of validity [L’Ecuyer et al., 2008].  However, it would be useful first to analyze the 

CloudSat validation experiments (e.g., the CloudSat/CALIPSO Validation Experiment: see 

http://angler.larc.nasa.gov/ccvex/ for details) in terms of heating rates and fluxes, and second to 

consider the inclusion of in situ flux measurements (e.g., Asano and Yoshida [2004], Mlynczak et 

al. [2006a]) in such campaigns.  Such data would allow for further CloudSat algorithm 

development, especially to address in-cloud heating rates, which are presently difficult to 

characterize with remote sensing measurements. 
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Chapter Eight.  Far-Infrared Measurements. 

8.1 Abstract 

The far-infrared (15–100 µm) is extremely relevant to Earth’s climate and new 

developments in observing technology hold promise that it will be measured directly and 

comprehensively from space in the near future.  Recently, the Far Infrared Spectroscopy of the 

Troposphere (FIRST) instrument [Mlynczak et al., 2006b] has been built as a prototype FTS 

recording spectra from 5 to 200 µm.  This provides a test-bed for the development of space-based 

far-infrared measurements in support of climate change monitoring, which is one of the goals of 

the planned CLimate Absolute Radiance and Refractivity Observatory (CLARREO) mission.  We 

present a comparison of the retrieval capabilities of a notional space-based instrument of 

comparable performance to FIRST and the currently operational mid-infrared instrument AIRS 

under clear conditions.  Synthetic temperature and water vapor profile retrievals are compared for 

tropical conditions, along with the relative ability of the retrievals from these two instruments to 

describe clear-sky cooling rate profiles.  The information contained in clear-sky mid-IR spectra is 

found to be slightly less than that of far-IR spectra.  Next, we explore the ability of mid-IR 

measurements to describe far-IR measurements in the presence of clouds.  In general, mid-IR 

measurements can be used to extrapolate to the far-IR, though an error of several degrees Kelvin 

may be incurred for scenes where only thin cirrus are present in channels with weighting 

functions peaking at about two kilometers below the cloud base.  Finally, a comparison of 

collocated spectra from FIRST test flights and several A-Train measurements is presented in the 

context of future climate monitoring objectives.  This comparison indicates that far-infrared 

measurements are complementary to the other sets of A-Train instrumentation, but the dearth of 

space-like long-wavelength spectra suggests that more campaigns are warranted for 

understanding the additional information provided by the spectral region from 15–100 µm. 
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8.2 Introduction 

A very substantial amount of the atmospheric greenhouse effect is accomplished through 

water vapor absorption in the far-infrared, and liquid and ice clouds significantly impact fluxes 

and heating rates throughout the atmospheric column.  For most scenes, over 50% of outgoing 

longwave radiation is contained in far-infrared wavelengths.  In spite of this, there are few global-

scale hyperspectral measurements of this spectral region with the exception of data from the 

short-lived IRIS-D instrument [Hanel et al., 1971] that measured from 4 to 25 μm.  There are 

several datasets in the EOS A-Train [Asrar and Dozier, 1994] that may contain the information to 

infer processes relevant to far-IR radiative transfer, including high spatial-resolution passive 

radiometer data from MODIS [Justice et al., 1998], visible/near-IR lidar measurements from 

CALIPSO [Winker et al., 2003], mid-infrared passive spectra from AIRS [Aumann et al., 2003], 

microwave passive measurements from AMSR-E  [Kawanishi et al., 2003] and MLS [Waters et 

al., 2006], and active microwave sounding from CloudSat [Stephens et al., 2002].  Meanwhile, 

the National Research Council Decadal Survey has recently recommended that NASA develop an 

absolute, spectrally resolved interferometer in support of the CLimate Absolute Radiance and 

Refractivity Observatory (CLARREO) mission [Committee on Earth Science and Applications 

from Space: A Community Assessment and Strategy for the Future, 2007].  Such an instrument 

has several requirements, including the measurement of mid-infrared spectra in addition to the 

measurement of a significant portion of the far-infrared spectrum (wavelengths between 15.4 and 

50 μm) at high spectral resolution.  Both broad coverage and high-spectral resolution have been 

deemed necessary mission specifications so that CLARREO can provide a calibration standard 

for climate change monitoring [Anderson et al., 2004].   

In support of future missions, research has been conducted regarding spectroscopic 

measurements in the far-infrared which will ultimately provide scientific justification for the 
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CLARREO mission.  This research has touched on radiative transfer fundamentals, using FIR 

measurements to retrieve standard atmospheric state parameters, FIR analysis in the context of 

energy balance and middle-atmosphere heating rates, and finally instrumentation considerations 

at long wavelengths. 

Far-IR radiative transfer calculations are pertinent to the CLARREO mission but have 

received less attention than other spectral regions that are currently measured by satellite 

instruments. Still, Kratz et al. [2005] reviewed the performance of several radiative transfer codes 

in benchmark cases and found radiometric agreement between codes with the same input values.  

Still, the results depend on line parameters and on which particular water vapor continuum model 

is used.  Since many current radiative transfer codes utilize the MT-CKD model [Clough et al., 

2005], there is general agreement for clear-sky radiative transfer calculations.  In terms of cloudy-

sky radiative transfer, scattering properties of liquid clouds can be adequately described with Mie 

theory and are parameterized by Hu and Stamnes [1993].  Yang et al. [2005] published a detailed 

description of scattering and extinction coefficients and asymmetry parameters for various ice 

crystal habit distributions using the T-Matrix Method [Mishchenko and Travis, 1998].  This 

produces results with reasonable radiometric accuracy in the mid- and far-infrared. 

Standard atmospheric state retrievals have conventionally utilized other spectral regions 

besides the FIR. However, the FIR may be useful because it contains a description of water vapor 

and clouds as they relate to fluxes and cooling rates.  Mertens [2002] investigated the feasibility 

of retrieving water vapor profiles using far-infrared spectral measurements, and found that typical 

nadir sounding can have improved vertical resolution and performance using mid- and far-

infrared measurements as compared to using mid-infrared measurements alone.  For cloudy 

scenes, Yang et al. [2003] explored the spectral signature of cirrus clouds in the far-infrared and 

found that certain far-infrared channels are differentially sensitive to cloud effective radius and 

optical depth with a potential for improved performance over the usage of window-band (8–12 

µm) channels for cloud characterization.  In terms of addressing the error in trace gas retrievals 
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arising from cloud contamination, Kulawik et al. [2006] investigated how well standard retrieval 

products such as H2O, O3, and CO can be retrieved from the TES instrument in the presence of 

various types of clouds, finding that trace gas retrievals can be stable and well characterized for 

various types of cloudy scenes. 

From a climate perspective, the water vapor feedback effect is dominated by rotational 

absorption lines in the far infrared, and the extent to which different cloud types modulate this 

feedback is one of the primary motivations for proposing widespread spectroscopic 

measurements covering the FIR.  For clear-sky conditions, Sinha and Harries [1995; 1997] 

explored the importance of the far-infrared in determining the earth’s longwave radiation budget 

and found that spectroscopic measurements of this spectral region were crucial to interpreting 

causes of clear-sky OLR variability.  However, Huang et al. [2006] and Huang et al. [2007] 

found that AIRS mid-IR spectra can be used to diagnose sources of clear-sky OLR variability and 

differentiate model and measurement output.   Also, Mlynczak et al. [2002] discussed the 

importance of far-infrared spectral measurements in the determination of water vapor and cirrus 

cloud radiative effects, though the extent to which FIR measurements are necessary to determine 

cloud radiative effect accurately has not been explored formally. 

From an instrumentation perspective, far-infrared spectrometers have been developed on 

several platforms, though not all have been designed in the context of a climate-monitoring 

satellite mission.  Carli et al. [1999] developed and successfully tested the Spectroscopy of the 

Atmosphere Using Far-Infrared Emission/Airborne (SAFIRE-A) instrument with coverage from 

40–1000 μm.  Also, Johnson et al. [1995] built FIRS-2, a limb-viewing, high-resolution far-

infrared spectrometer for detecting minor stratospheric constituents.  Recently, the Far-Infrared 

Spectroscopy of the Troposphere (FIRST) instrument [Mlynczak et al., 2002; 2006b] has been 

developed as a prototype with favorable results from two separate balloon-borne test flights.  

Lessons learned from the FIRST instrument are directly relevant to the CLARREO mission, and 

this prototype offers an engineering and science test-bed for future mission development.  From 



 - 162 - 

an engineering perspective, the development of a prototype that compares favorably to other well 

calibrated mid-IR spectra lends confidence to the potential quality of far-IR data from space-

based platforms.  From a science perspective, the prototype can be flown so that its measurements 

can coincide with other satellite-based remote sensing data, and the spectral signature of clouds 

and water vapor in the far-IR can be compared with that in the mid-IR.  This allows for a heuristic 

approach to determining the specific science (and therefore engineering) goals of a far-IR 

measurement campaign. 

This chapter explores potential uses for the FIRST instrument and investigates multi-

instrument far-IR analysis in the context of suite of A-Train measurements.  First, we will explore 

the capabilities of a notional satellite-borne instrument that has comparable performance to 

FIRST in terms of spectral coverage, resolving power, and measurement error as they relate to the 

AIRS instrument.  Temperature and water vapor synthetic retrievals are compared, and 

implications for cooling rates and OLR are presented.  Next, the ability of the instruments to 

describe cloudy scenes is explored, followed by a discussion of the implications for 

understanding cloud radiative effect.  Finally, results from the second test flight of the FIRST 

instrument are presented within a multi-instrument context, and some implications for 

CLARREO mission specification are considered. 

For this chapter, we utilize several radiative transfer codes developed by AER, Inc. most 

of which are described by Clough et al. [2005].  These codes include the Line-by-Line Radiative 

Transfer Model (LBLRTM), version 11.1, for clear-sky radiance spectra, the Rapid Radiative 

Transfer Model (RRTM), version 3.01, for broadband flux and heating rate calculations, and the 

Code for Highly-Accelerated Radiative Transfer with Scattering (CHARTS) [Moncet and 

Clough, 1997], version 2.0, for calculating spectra with clouds.  The instrument line shape (ILS) 

associated with the FIRST instrument is given by a sinc-function with a Hamming window, 

whereas the AIRS ILS is derived from after-launch instrument spectral response function 

characterization [Gaiser et al., 2003]. 
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8.3 FIRST Instrument Description 

As part of the NASA Instrument Incubator Program, a passive high-spectral-resolution 

fariinfrared interferometer has been built, and lessons learned from this instrument will be 

directly applicable to CLARREO development.  The FIRST instrument is a Fourier Transform 

Spectrometer that achieves spectral coverage ranging from 50 to 2000 cm-1 (wavelengths from 

200 to 5 μm, respectively) with a nominal unapodized resolution of 0.643 cm−1.  Instrument 

noise, which is generally ≤ 1 K noise-equivalent brightness temperature and can be as low as 

0.2K, is estimated through a two-point calibration with an ambient black-body and space view 

[Mlynczak et al., 2006b].  The instrument contains 10 equivalent detectors for imaging capability, 

each having a 7.1 mrad IFOV with a full FOV of 37.7 x 37.7 mrad.  The instrument scan-time is 

1.4–8.5 seconds and the current instrument configuration does not provide for cross-track 

scanning or motion correction.  FIRST has been the subject of two separate balloon-borne test 

flights from Ft. Sumner, New Mexico (34.5 N, 104 W), and several thousand spectra have been 

recorded from each flight.  Recently, a second calibration blackbody has been added and the 

instrument has been configured for extensive ground-based operations. 

As seen in Figure 8.1, actual FIRST and AIRS spectra show a large amount of 

commonality in the mid-infrared, where both record high-resolution, low signal-to-noise ratio 

measurements.  However, the FIRST instrument records an additional set of measurements 

covering the water-vapor rotational lines.  These may allow for improved characterizations of, in 

particular, the amount of upper-tropospheric water vapor, and the effects of clouds on water vapor 

emission lines and how they interact to affect OLR and heating rates.   
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Figure 8.1:  Brightness temperature spectra from collocated AIRS and FIRST (version 1.0 
calibration) measurements during the test flight on June 7, 2005, at Ft. Sumner, New Mexico 
(34.5 N, 104.3 W). 
 

From a remote-sensing platform, far-infrared measurements are generally difficult to achieve, but 

the absence of far-infrared measurements in a comprehensive terrestrial measurement program 

such as the A-Train is conspicuous.  In fact, it warrants formal analysis in terms of the error 

incurred by the effects of retrieved products on the far-infrared, where they are essential for 

atmospheric energetic analysis.   Therefore, it is important to compare the capabilities of the 

current generation of mid-IR spectrometers with the proposed new generation of far-IR 

spectrometers. 

 

8.4 Clear-Sky Retrieval Comparison 

For this section, we evaluate the ability of a notional instrument that is comparable to 

FIRST in terms of spectral coverage, resolving power, and measurement error to retrieve 

temperature and water vapor profiles (hereafter called “notional FIRST”) in light of the 
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performance of existing mid-infrared satellite-borne spectrometers such as AIRS.  This 

comparison is achieved through the use of synthetic retrievals in which we contrast the T and 

H2O profile retrievals derived from synthetic measurements with noise to the actual T and H2O 

profiles that underlie the measurements.  Also, since the synthetic retrieval starts with a T and 

H2O profile that is erroneous, this approach tests the sensitivity of the retrieval to incorrect a 

priori assumptions.  Many of the aspects of this approach to retrieval system design are described 

by Rodgers, [2000]. 

While many advanced retrieval algorithms exist for processing radiance measurements 

into T and H2O profiles, we analyze the relative ability of AIRS and notional FIRST using a 

linear Bayesian update that allows for straightforward characterization of posterior retrieval 

statistics and retrieval vertical resolution.  Accordingly, the atmospheric state that is retrieved is a 

balance of a priori constraints with a state suggested by the difference between the measurement 

and the synthetic measurement corresponding to the a priori state.  The relative weights given to 

the two factors controlling the retrieval output is determined by the estimated uncertainty in the a 

priori state and the measurement.  Accordingly, it can be shown [Rodgers, 2000] that the 

retrieved atmospheric state update is given by: 
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where x̂  is the retrieved atmospheric state (in this case a concatenation of the T and H2O 

profiles), ax  is the a priori state,  εS  is the measurement covariance matrix, y  is the radiance 

measurement vector, ay  is the radiance determined by inputting the a priori atmospheric state 

into a radiative transfer model,  -1  and T refer to the inverse and transpose operators respectively, 

and K  is the weighting function matrix given by: 
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According to this formulation, the a posteriori covariance matrix is given by the following: 

 

      ( ) 111ˆ −−− += a
T SKSKS ε    . (8.3) 

 
The averaging kernel matrix denotes the sensitivity of the retrieval to narrow vertical 

perturbations and is closely related to retrieval vertical resolution and is given by: 

 

( ) KSSKSKA εε
1111 −−−− += a

T    .  (8.4) 
 
For the synthetic retrieval test, the a priori covariance of the temperature, water vapor, and ozone 

profiles is assumed to be based on a first-order autoregressive process such that adjacent level 

errors are correlated [Rodgers, 2000].  Off-diagonal components are given by: 
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The synthetic retrieval is implemented by first starting at the “true” atmospheric state (in 

this case the Tropical Model Atmosphere [Anderson et al., 1986]) and using the forward model to 

produce a corresponding radiance spectrum.  The synthetic measurement is then produced by 

perturbing the elements of the radiance measurement by normally distributed values 

corresponding to the measurement covariance matrix.  The a priori state is derived by randomly 

perturbing elements of the T and H2O profiles while still respecting the presumed covariance 

between the atmospheric state parameters at different levels.  The a priori radiance is calculated 

by inputting the a priori atmospheric state into the forward model.  The results of a synthetic 

notional FIRST and AIRS T and H2O profile retrieval comparison are shown in Figure 8.2.  It is 

expected that the notional FIRST instrument will be more sensitive to upper-tropospheric water 

vapor given its spectral coverage, and the retrieval results in Figure 8.2 bear this out.   
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Figure 8.2:  Top two panels denote the T and H2O profiles for the Tropical Model Atmosphere   
Bottom three panels depict synthetic retrieval difference between true and a priori (dotted), and 
true and retrieved profiles of T and H2O for the AIRS (dashed) and notional FIRST (solid) 
instruments. 
 

The radiance residual spectra also are instructive in terms of understanding the results of 

the retrieval in measurement space, and we present the synthetic residuals in Figure 8.3.  For 

clarity, the residuals are translated about the zero line with a dashed black line indicating zero 

difference between model and synthetic measurement.  Major differences between the prior and 

posterior residuals indicate in general the stability of the retrieval method.  The posterior residual 

shows little structure and is centered about the zero-residual line.  Subtle differences between the 

residual of the notional FIRST spectrum derived from the retrieval using the AIRS measurement 

(FIRST post w/AIRS) and the residual associated with a retrieval using the notional FIRST 

spectrum (FIRST post) can be seen near 100 cm-1 and are revealed in terms of the retrieval power 

of upper-tropospheric water vapor.   
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Figure 8.3:  Upper panel shows synthetic brightness temperature spectra for a Tropical Model 
Atmosphere for the AIRS (black) and notional FIRST instruments (red).  Lower panel: prior and 
posterior residuals (measured-model) for a synthetic simultaneous retrieval of T, H2O, and O3 
profiles, translated on the y-axis by amounts indicated at right.  The zero residual lines are 
indicated in dashed black. 
 

The difference between the two notional FIRST residual lines is useful in that it reveals the extent 

to which extra information in the far-IR measurements relates to the quantities of interest such as 

T and H2O profiles. 

Averaging kernel matrices are presented in Figure 8.4 in a manner that emphasizes where 

the retrievals perform well and, conversely, where the a priori information must be utilized.  We 

show the individual level T and H2O normalized averaging kernels which, for a perfect retrieval, 

would be δ-functions centered on the one-to-one line.  The spread (red or blue colors) about this 

line along the y-axis is clearly shown in the figure, implying that the retrieval has limited 

sensitivity in that region.  Given the broad response of weighting functions to atmospheric 

perturbations, the retrieval has difficulty resolving profile perturbations fully, though thermal 

sounder retrievals generally operate well in the free troposphere where thermal contrast is large.  
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The performance of temperature retrievals using the notional FIRST and AIRS instruments are 

similar, while those with respect to upper-tropospheric and lower-stratospheric water vapor differ 

sharply.   

 

 
Figure 8.4:  Level-normalized T and H2O averaging kernels for AIRS and notional FIRST when 
observing the Tropical Model Atmosphere. The x-axis denotes the perturbation level and the y-
axis denotes the response of the retrieval to the perturbation.   
 

Another central question is to what extent remote-sensing measurements may be able to 

constrain thermal infrared cooling rates and outgoing longwave radiation.  Cooling rates represent 

the influence that the distribution of absorbing species such as CO2, H2O, and O3 have on the 

radiative energy exchange between layers of the atmosphere.  They are ubiquitously calculated in 

the course of climate and weather model calculations, and can have a strong direct impact on 

upper-troposphere and stratosphere circulations.  What is generally not presented is the variability 

in the cooling rate profile as determined by the propagation of uncertainty in the temperature, 

water vapor, and ozone profiles onto broadband cooling rates (CO2 variability is very small and 
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has a negligible impact on CO2 cooling rate variability).  Formal error propagation analysis 

[Taylor, 1994; Feldman et al., 2008] allows for the estimation of uncertainty in broadband 

cooling rate profiles which is straightforward for clear-sky scenes.  Cooling rate uncertainty is 

given by the following formula: 
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where ( )nji xxxx ,,,,...1 KK  represent all of the atmospheric state inputs that are relevant to 

cooling rate profile calculations at each level, ( )zθ&  refers to the broadband cooling rate at height 

z , and cov refers to the covariance function.  The atmospheric state inputs are assumed to have 

Gaussian distributions.  The a priori covariance of the T, H2O, and O3 profiles is assumed to be 

based on Eq. (8.5) and is also assumed to be block-diagonal.  The a posteriori cooling rate profile 

uncertainty is derived from the a posteriori T, H2O, and O3 covariance matrices from the AIRS or 

notional FIRST instrument models.   

Figure 8.5 shows that the introduction of a measurement only slightly reduces the 

uncertainty in cooling in the ν2 band of CO2 and the ν3 band of O3, due to broad stratospheric 

weighting functions in those bands.  Though not appreciably different from the AIRS instrument, 

the notional FIRST instrument significantly reduces uncertainties in the cooling rates at most 

atmospheric levels as compared with a priori, with particularly notable performance in terms of 

constraining water vapor rotational band cooling.   

 The total IR cooling rate uncertainty after a measurement is approximately 0.1 K/day in 

the troposphere and 0.2 K/day in the lower and middle-stratosphere, increasing to nearly 0.4 

K/day at the stratopause.  The comparable retrieval performance for the two instruments in terms 

of T and H2O profiles leads predictably to comparable performance in constraining cooling rate 

profiles. 
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Figure 8.5:  Left panel: Tropical Model Atmosphere clear-sky total IR cooling rate profile; right 
panel: a priori (dotted line) and a posteriori uncertainty after AIRS (dashed line) and notional 
FIRST (solid line) measurements.   
 

The improved upper-tropospheric H2O retrieval power for the notional FIRST instrument may 

allow for a decrease in uncertainty of 0.05 K/day in the cooling rate profile around 200 mbar.  For 

clear conditions, the results of this retrieval comparison are consistent with the findings of 

Mertens [2002], and emphasize that for FIR spectra the increased number of measurements of 

water vapor through the rotational lines imparts increased information about upper tropospheric 

water vapor. 

 

8.5 Mid- and Far-Infrared Cloud Analysis 

Where clouds are present, the extent to which mid-IR spectra can be used to recreate far-

IR spectra is an open question that deserves close scientific scrutiny.  Measurements from the 

CERES instrument provide a broadband view of the effect of clouds on the infrared, but since the 

spectral coverage of 5–100 μm is so broad, this instrument’s data provides minimal insight into 
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the causes of OLR variability and the nature of the underlying cooling rates, all of which are 

important for evaluating the strength of climate models.  Given the ubiquity of cloud cover and 

the fact that climate models must provide a comprehensive assessment of radiative transfer in the 

far-IR including clouds, it is important to understand the skill with which data from the current 

array of A-Train spectrometer measurements can be extrapolated to the far-IR, and how well the 

current spectra can impart information on cooling rate profiles for non-clear-sky scenes.  

Unfortunately, where clouds are present, the extrapolation of mid-IR spectra to the far-IR is made 

considerably more complicated relative to the clear-sky extrapolation, because the information in 

the cloudy spectra regarding the constituents needed to calculate OLR is obscured by one or more 

layers of generally optically thick clouds.  Consequently, the approach used in the previous 

section, in which standard atmospheric constituent retrievals are used to explore the extra 

information in the far-IR spectra as compared to the mid-IR spectra, is less feasible for cloudy 

conditions.  A simultaneous retrieval of T, H2O, and O3 profiles along with cloud microphysical 

property profile retrievals is reasonable for cases where cloud optical thickness is low but is 

difficult to formulate where cloud optical depth is high and there is no information regarding 

atmospheric constituents below the cloud deck. 

However, synthetic tests will allow for the development of methods to translate the 

information in the mid-IR regarding cloud cover to the far-IR.  For this analysis, the optical 

properties of clouds depend on their microphysical composition, and we employ a simple and 

straightforward parameterization for liquid clouds [Hu and Stamnes, 1993] and ice clouds [Fu et 

al., 1997] based on cloud water content (CWC) and cloud effective radius (CER) to derive 

absorption, extinction, and asymmetry parameters from which cloud reflectance and 

transmittance functions are derived.  Given these cloud optical properties, it is possible to 

formulate an expression for the radiance observed at the top-of-atmosphere which is necessary to 

understand the similarities and differences in response of the mid- and far-IR channels to the 
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presence of clouds.  We utilize the following equation for IR channel radiance reaching the 

detector as expressed by Wei et al. [2004]: 

 
( ) ucuccccuobs TRIITBTRTTII νννννννννννν

321 1 ++−−+=    (8.7) 
 
where obsIν  is the observed radiance for a certain channel ν, 1

νI  is the radiation from the 

atmosphere reaching the cloud’s lower boundary, uTν  is the transmittance between the cloud top 

and the observer, cTν  is the transmittance through the cloud, cRν  is the cloud reflectance, cBν  is 

the Planck emission for the cloud, 2
νI is the atmospheric radiation from above the cloud top, and 

3
νI  is the atmospheric downwelling radiation above the cloud top.  The cloud reflectance and 

transmittance functions can be formulated using the doubling-adding method [van de Hulst, 1963; 

Twomey et al., 1966] or the discrete ordinate method [Stamnes et al., 1988].  Where the cloud is 

optically thin, the 1st and/or 3rd terms on the RHS of Eq. (8.7) dominate the observed radiance.  If 

the cloud is optically thick at a level where uTν  is small, the 3rd term of the RHS of Eq. (8.7) will 

dominate the observation.  However, if the atmosphere is largely transparent from the cloud top 

to the observer, the measurement will be dominated by the 2nd term in the equation.  The 4th term 

generally contributes a small amount to the observation.  We will generally focus on the cases of 

10 μm optical depth less than 10 because these cases are less-dominated by the 2nd term of the 

RHS, and it is expected to be most difficult to address cloud and water vapor interactions where 

several of the terms of the RHS of Eq. (8.7) are of equal magnitude. 

One view that allows for the characterization of mid- and far-IR response to the presence 

of clouds is shown in Figure 8.6a–b.  Figure 8.6a shows the brightness temperature spectral 

residual for the notional FIRST instrument associated with a 1-km-thick liquid cloud layer with 

cloud top height (CTH) of 5 km for a Tropical Model Atmosphere.  The cloud water content 

(CWC) of this layer is 20 mg/m3 and the cloud effective radius (CER) is 5.89 μm.  Figure 8.6b 
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indicates a rearrangement of the results in Figure 8.6a by sorting channels according to brightness 

temperature and denoting mid- and far-IR channels separately.    

 

(a) 

(b) 
Figure 8.6:  (a) Spectral signature of a 1-km-thick liquid cloud where CTH = 5 km, CWC = 20 
mg/m3, and CER = 5.89 μm for the notional FIRST instrument under Tropical conditions.  (b) 
Scatterplot of brightness temperature residual associated with inclusion of the cloud layer vs. 
clear-sky brightness temperature for far-IR (black o’s) and mid-IR (red x’s) channels. 
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In this figure, several prominent features can be seen: most of the channels with brightness 

temperature below 260 K have very limited response to the presence of the cloud, because those 

channels’ weighting functions have very limited sensitivity to atmospheric conditions at or below 

5km.  For channels with brightness temperature between 260 and 290K, the cloud layer has an 

appreciable influence on the observation.  There is clearly differential sensitivity between mid- 

and far-IR channels due to differences in cloud optical properties between and mid- and far-IR.  It 

is possible to parameterize the response of mid-IR channels relative to far-IR channels, though 

some error will be incurred at the level of at least 0.5K.   

In Figure 8.7a, the brightness temperature spectral residual is shown for a Tropical Model 

Atmosphere for a 2-km-thick ice cloud with a CTH of 10 km, a CWC of 2.4 mg/m3, and a CER 

of 20.75 µm.  Similar to Figure 8.6b, that information is rearranged in Figure 8.7b to mid- and 

far-IR brightness temperature residuals as a function of clear-sky brightness temperature for those 

notional FIRST channels covering the 6.3 µm H2O band (1240 to 1613 cm-1) and those covering 

the rotational H2O band (50 to 630 cm-1).  This figure shows that for tropical conditions, the mid- 

and far-IR channels with brightness temperatures ranging from 220 to 250 K exhibit a similar 

response to the presence of a cirrus cloud.  Since the weighting functions for these channels peak 

in the upper troposphere, most clouds will only have a slight impact on these channels, and 

extrapolation of these channels from the mid-IR to the far-IR is particularly amenable to 

parameterization.  Meanwhile, those channels in the mid- and far-IR with a brightness 

temperature in excess of 270 K are quite sensitive to the presence of clouds.  Here, we can see 

that 6.3 µm channels have a lower brightness temperature residual than the rotational band 

channels.  The primary reason for this is that in the far-IR, these channels lie between 16 and 24 

μm, and the ice extinction coefficient is greater at these wavelengths than at 6.3 μm.   
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(a) 

(b) 
Figure 8.7:  Same as Figure 8.6a–b except that the plots relate to a 2-km-thick ice cloud where 
CTH = 10 km, CWC = 4.8 mg/m3, and CER = 20.75 μm, again under Tropical conditions. 
 

However, the relative difference in mid- and far-IR residuals of channels with clear-sky 

brightness temperature in excess of 270K is a function of cloud effective radius.   Figure 8.8 gives 

an indication of how well mid-IR predictors will work for far-IR channels with clear-sky 
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brightness temperatures greater than 270K.  This graph gives an indication of the relationship 

between knowledge of cloud effective radius and how-well these far-IR channels can be predicted 

given mid-IR measurements.   

 

 
Figure 8.8:  Slope-intercept relationships between mid-IR and far-IR channels with clear-sky 
brightness temperature greater than 270 K for varying CTH and CER. 
 

The more problematic set of far-IR channels involves those with brightness temperatures between 

250 and 270 K.  For these channels, the cirrus cloud is emitting at or near the altitude from which 

water vapor is emitting, and the wavelength-dependence of cloud optical properties confounds 

easy parameterization. 

The parameterization analysis described above is reasonable for tropical conditions but 

may not hold for other mid-latitude or polar conditions.  Similar to Figures 8.6a–b, Figures 8.9a–

b illustrate the relationship between mid- and far-IR channels in the Sub-Arctic Winter Model 

Atmosphere.  Again, those channels with weighting functions peaking above the top of the cirrus 

cloud (between 220 and 225K) will be affected almost identically in the mid- and far-IR.   
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(a) 

(b) 
Figure 8.9:  Same as Figure 8.7a–b except that the plots relate to a 2-km-thick ice cloud where 
CTH = 10 km, CWC = 4.8 mg/m3, and CER = 20.75 μm, again under Sub-Arctic Winter 
conditions. 
 

Those channels with brightness temperatures between 235 and 255K will be affected 

differentially in the mid- and far-IR, but this difference can be parameterized coarsely through 

cloud top height and cloud effective radius.  Mid- and far-IR channels between 225 and 235K 
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will be difficult to parameterize, though the parameterization will be able to predict far-IR 

channels to within 1K. 

 

(a) 

(b) 
Figure 8.10:  Same as Figure 8.6a–b except that the plots relate to a cloud-overlap scenario with a 
1-km-thick liquid cloud where CTH= 5 km, CWC = 20 mg/m3, and CER = 5.89 μm below a 2-
km-thick ice cloud where CTH = 10 km, CWC = 4.8 mg/m3, and CER = 20.75 μm, again under 
Tropical conditions. 
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For cases where liquid clouds underlie ice clouds, parameterization of mid- and far-IR 

cloud response can be fairly straightforward.  Figure 8.10a–b is similar to Figure 8.6a–b except 

that for this case, we include a 1-km-thick liquid cloud layer with CTH = 5 km, CWC = 20 

mg/m3, CER = 5.89 μm using a Tropical Model Atmosphere.  Also included is a 2-km-thick ice 

cloud with a CTH of 10 km, a CWC of 2.4 mg/m3, and a CER of 20.75 µm.  For channels below 

230 K, there is very little response by mid- or far-IR channels.  However, between 230 and 290 

K, the mid- and far-IR channel response can be parameterized linearly. 

If the mid-IR spectra can be used to extrapolate the far-IR spectra well, it is feasible to 

recreate the OLR using mid-IR spectra.  The AIRS data processing schedule outputs total-sky and 

clear-sky OLR currently as a Level 3 product (see Mehta and Susskind [1999] for details) but the 

data are only available where AIRS produces a valid set of retrieval products.  The AIRS retrieval 

algorithm systematically does not produce retrieval results for scenes with extensive and/or 

optically thick cloud cover, and so the OLR L3 product tends to be biased high.  A parameterized 

treatment of mid- and far-IR channels will not suffer this high bias because it does not rely on the 

retrieval algorithm but rather uses only channel radiance measurements.     

Final and open-ended questions pertain to mid- and far-IR heating rate determination 

from remote sensing measurements, and whether mid-IR data can be used to determine heating 

rates in the presence of clouds.  Heating rates can vary dramatically at cloud interfaces and within 

clouds due to the abrupt change in inter-layer transmittance.  Where optically thick cloud cover 

exists, substantial uncertainty in the T, H2O, O3, and other cloud profiles below the cloud top 

impedes any understanding of heating rates below clouds.  However, the determination of heating 

rates in the presence of optically thin cloud cover is well-posed and feasible.  The details of how 

the determination of mid- and far-IR spectra differentially describe heating rate profiles will 

require an extensive application of information theory concepts and will be left to future research. 

This analysis is essential for climate-measurement comparison efforts, especially in light of 

CLARREO. 
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It is necessary to discuss several caveats to the extrapolation of mid-IR measurements to 

the far-IR in the presence of clouds.  To begin with, it should be noted that this analysis uses 

notional FIRST mid-IR channels to extrapolate to the far-IR, though in practice, it is more 

reasonable to use existing operational spectrometer data such as AIRS to extrapolate to the far-IR.  

AIRS has a different spectral response function as compared to notional FIRST, but the response 

of the 6.3 μm channels to the presence of cloud cover is essentially identical in character for the 2 

instruments.  Also, since the T, H2O, and O3 profiles will not be known exactly a priori, there 

may be some additional error incurred in the above extrapolation.  Finally, a parameterization 

such as this one or, for example, the one developed by Huang et al. [2007], may be expedient in 

the absence of comprehensive far-IR measurements.  However, the work here and by others to 

extrapolate the mid-IR to the far-IR should not be taken as a full-fledged replacement of actual 

spectral measurements or the interactions of clouds and water vapor in the far-IR.  At the very 

least, the FIRST instrument should be used to verify the far-IR values predicted from any 

parameterization. 

 

8.6 Test Flight Results 

On September 18, 2006, the FIRST instrument was subjected to a balloon test flight and 

several thousand spectra were recorded over Ft. Sumner, NM (34.5 N, 104.3 W).  Similar to the 

previous test flight conducted on June 7, 2005 (see Mlynczak  et al.  [2006b] for details), this 

experiment was coordinated with the overflight of several EOS A-Train platforms, including 

Aqua and Aura.  Since CALIPSO and CloudSat were launched in April 2006, the second FIRST 

test flight benefitted from active sounding data that was nearly collocated.  Additionally, the first-

light spectra from the 2005 test flight occurred during exceptionally cloudless conditions, 

whereas shallow stratocumulus clouds were present for the second test flight.   
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(a) 

(b)

(c) 
Figure 8.11:  (a) Aqua MODIS RGB imagery for FIRST test flight September 18, 2006, at Ft. 
Sumner, NM.  The green circles indicate AIRS footprints, the black line indicates FIRST balloon 
trajectory with black numbers indicating footprint location at Aqua overpass.  (b) Spectra from 
the 10 FIRST detectors superimposed with the AIRS overpass spectrum.  (c) Difference between 
FIRST spectra at start of flight (clear conditions) and at time of AIRS overpass (broken cloud 
cover).  The zero residual line is indicated in dashed black. 



 - 183 - 

 

Figure 8.11a shows the collocation of Aqua-MODIS imagery, AIRS footprints, and FIRST 

detectors.  The RGB composite Aqua-MODIS 250-meter resolution imagery shows 

stratocumulus cloud features which cover the field of view of some but not all of the FIRST 

detectors, whereas the AIRS footprint is much larger than the clouds.  In Figure 8.11b, the 

brightness temperature spectra of the 10 FIRST detectors are plotted in addition to the AIRS 

spectra and show a similar character to each other.  The spectral residuals associated with the 

AIRS overpass are produced from the difference between the spectrum measured by each 

detector at the start of the test flight recording (clear conditions) and that measured at overpass.  

During this test flight, inter-detector discrepancies were approximately 1 K and were mostly time 

independent, allowing for meaningful cloud residual spectrum determination.  As seen in Figure 

8.11c, FIRST detector 4 in particular shows a spectral residual that is consistent with a cloud 

located at approximately 5 km with a cloud-water content of 80 mg/m3.   

While the CloudSat and CALIPSO footprints did not coincide directly with the FIRST 

footprint, they were within 200 km of the balloon, and all instruments sampled clouds that 

probably arose from the same meteorological conditions.  In Figure 8.12a, the radar reflectivity 

(2B-GEOPROF) from CloudSat shows no detectable cloud cover, but the CALIPSO 1064 nm 

attenuation at latitude 35–36 N shown in Figure 8.12b indicate thin clouds at around 5 km, though 

the processing algorithms for the CALIPSO lidar information do not currently allow for a detailed 

description of the cloud water content or effective radius.   

For the initial stages of understanding the spectra produced by the FIRST instrument, it is 

important to establish radiometric agreement between different instruments in the mid-IR, and 

between measurements and what radiative transfer models predict for far-IR spectra.   
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(a) 

(b) 
Figure 8.12:  (a) CloudSat Radar Reflectivity nearly-collocated with FIRST test flight on 
September 18, 2006.  (b) CALISPO 1064 nm Attenuated Backscatter nearly-collocated with the 
FIRST test flight on September 18, 2006.  
 

Once this is accomplished, one can be more confident in data derived from extended 

measurement campaigns.  Spectra can be gathered over a period ranging from several weeks to 

months from a ground-based site and compared to radiative transfer calculations derived from 

analysis fields and climate models to determine discrepancies of spectroscopy.  Given that 

systematic spectroscopic errors are routinely discovered with the advent of comprehensive 



 - 185 - 

measurements of a new spectral region, it is likely that an extended set of far-IR measurements 

will indicate the strengths and weaknesses in the current treatment of this part of the spectrum. 

 

8.7 Discussion 

The far-infrared (15–100 μm) portion of the spectrum is currently not measured directly 

by earth-observing hyperspectral satellite instruments, so the effect of water vapor and clouds on 

atmospheric energetics is inferred from other spectral regions.  Under clear-sky conditions, 

information contained in mid-IR spectroscopy is only slightly inferior to that contained in mid- 

and far-IR measurements.  Nevertheless, for comprehensive studies of water vapor between 100 

and 300 mbar, we find that far-IR spectra may be useful.  Upper-tropospheric water vapor in this 

region has a strong influence on the greenhouse effect, but any scientific advantage with FIR 

measurements can only be realized with high signal-to-noise ratio below 200 cm-1.   

The effect of clouds on the far-IR is much less determined by mid-IR spectra, however.  

The difference in cloud optical properties between the mid- and far-IR leads to a differential 

response between channels with the same clear-sky weighting functions in the two wavelength 

regions, necessitating the development of a parameterization to extrapolate mid-IR information to 

far-IR channels.  For cloud cover including optically thin liquid clouds and liquid clouds 

underlying optically thin ice clouds, most far-IR channels exhibit similar behavior to mid-IR 

channels, especially when the cloud residual brightness temperature signal is plotted against 

clear-sky brightness temperature.  For cases where only a thin ice cloud is present, however, it 

will be difficult to develop simple parameterizations for channels with clear-sky brightness 

temperature of 250–270K.  The information content of mid- and far-IR relative to heating rate 

profiles has been established for clear-sky conditions, but is a subject that deserves close 

scientific scrutiny for cloudy conditions.  
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Finally, we present a multi-instrument analysis of several FIRST test flight spectra from 

September 18, 2006.  Passive spectral measurements from AIRS and 250-meter imagery from 

MODIS are included with active sounding measurements from CALIPSO and CloudSat.  The 

combined set of measurements allows for a characterization of the FIRST spectra for scenes with 

small amounts of stratocumulus clouds.  While radiometric analysis of FIRST data from flight- 

and ground-based datasets is ongoing and will be reported in future work, the agreement between 

several different measurements lends credence to the accurate characterization of the scene.  

More far-IR spectra supported by A-Train measurements would be useful for understanding the 

strengths and deficiencies of mid-IR spectra in the determination of the far-IR for scenes with 

more diverse cloud cover.  Ultimately, an instrument with FIR capabilities must be tested within 

an orbital simulation framework to determine how well mid-IR spectra can constrain the far-IR 

radiative interaction between clouds and water vapor. 
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Chapter Nine.  Implications and Challenges. 

9.1 Introduction  

This research has explored several topics related to the remote sensing of fluxes and 

heating and cooling rates from satellite-borne instrumentation.  However, this work is merely a 

foray into a much larger set of work that may be possible with the current generation of satellite 

instrumentation, or with the future generation that is currently in the scoping phase.  This chapter 

will discuss future avenues of research that are tractable, and will also address challenges for the 

understanding of radiative fluxes and heating and cooling rates.  These challenges can be broadly 

divided into two categories: measurement retrieval methods and model-measurement 

comparisons.  First, measurement approaches from space will have limited sensitivity to fluxes 

and heating rates for certain scenes.  Further work is required for the implementation of methods 

for the proper utilization of the EOS A-Train measurements for the analysis of these quantities.  

Second, significant work is warranted for the development of proper methods for the comparison 

of fluxes and heating and cooling rates calculated in models and those derived from 

measurements. 

 

9.2 Frontier of Remote Sensing of Heating and Cooling Rates 

The current instrumentation suite from the NASA Earth Observing System A-Train 

[Asrar and Dozier, 1994] provides a very diverse set of measurements. However, the analysis of 

this voluminous set of measurements with respect to heating and cooling rates has not matured as 

of this writing.  Indeed, because the quality of many of the datasets exceeded the mission science 

requirements, it has become feasible to perform scientific research using the data in novel ways, 
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one of which is the characterization of heating and cooling rate profiles from the measurement 

suite. 

 It is possible to describe heating and cooling rates from passive satellite-borne 

spectrometers throughout the troposphere and stratosphere in clear-sky cases, and also from a 

tropospheric cloud-optical depth of around one into the stratosphere for scenes with clouds 

present.  The determination of in-cloud heating and cooling rates is essentially unconstrained by 

passive measurements but is moderately well constrained by current cloud-radar measurements, 

especially with respect to cloud boundaries.  Some of the difficulty in using radar measurements 

can be attributed to the fact that the heating and cooling rates are effectively sensitive to the 

second moment of the size distribution, while the signal measured by cloud-profiling radar such 

as CloudSat is determined by the sixth moment of the size distribution [Mather et al., 2007].  The 

coincidence of lidar measurements on CALIPSO may allow for a refined picture of radiative 

heating and cooling within thin clouds, but, as of this writing, the retrieval of meaningful cloud 

products from the total attenuated backscatter at 532nm and 1064 nm and depolarization ratio 

profiles [Vaughan et al., 2004] are not mature.  The development of CloudSat and CALIPSO 

products and comprehensive validation efforts (including in situ flux measurements) are 

necessary in order to have confidence in the heating and cooling rate products.  Indeed, a few 

efforts have been undertaken to attempt radiation closure analyses whereby fluxes are measured 

throughout the column to look for model deficiencies, but the in situ measurement of fluxes is a 

highly non-trivial task [Valero et al., 1996]. 

From a remote-sensing perspective, heating/cooling rates below clouds are very difficult 

to constrain because top-of-atmosphere measurements at most wavelengths are insensitive to the 

atmospheric state parameters that are necessary for calculating heating/cooling rate profiles.  

Efforts to retrieve heating and cooling rate values will benefit from the presence of 

comprehensive measurements at the ARM sites [Stokes and Schwartz, 1994] which are able to 



 - 189 - 

constrain heating rates in the lower troposphere similar to the combined ability of CloudSat and 

CALIPSO in the upper troposphere. 

 

9.3 Problems Amenable to Heating Rate Analysis  

There are many potential avenues for future research directed towards understanding 

radiative heating and cooling rates using remote-sensing measurements.  An example of 

scientifically relevant analysis of heating and cooling rates to determine energy balance within 

the Tropical Tropopause Layer was discussed in some detail in Chapter 7.  This shows how it 

may be possible to utilize remote sensing data to understand subtle transport processes that are 

controlled by radiative heating and cooling. 

There are many other possibilities for analysis of remote sensing data with respect to 

heating and cooling rate profiles.  As of the writing of this thesis, there are several open questions 

in the scientific community regarding the control that radiative processes exert on observed 

circulation patterns.  First, it has been hypothesized that rotational-band water vapor cooling 

exerts a strong control on cirrus detrainment from convective cloud anvils [Hartmann and 

Larson, 2002].  This so-called Fixed-Anvil Temperature (FAT) hypothesis has been the subject of 

a large amount of scientific discussion and is thought to be invariant under climate change 

scenarios.  The current set of A-Train measurements from AIRS, CloudSat, and CALIPSO would 

be able to describe convective cloud scenes, water vapor, and cirrus detrainment, and the cooling 

rates in the upper troposphere as described by these measurements would provide a real-world 

test of this hypothesis.  Moreover, future development of far-IR monitoring missions such as 

CLARREO may allow for a direct characterization of the rotational band processes that may be 

influencing the hypothesized control on anvil detrainment. 
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Second, some of the dynamical aspects of cloud formation and dissolution described by 

Houze [1994] indicate that an important role is played by radiation in the maintenance of cloud 

structure over the cloud lifetime.  It may be useful to examine the details of cloud radiative 

heating and cooling to determine whether radiative subsidence and uplifting as derived from 

measurements lead to cloud dynamical evolution that agrees with model calculations.  

Finally, while radiative heating and cooling rates are not the dominant mechanisms in the 

determination of stratospheric circulation, they do exert significant control over the residual 

circulation in the stratosphere. Studies such as those described by Pierce et al. [1993] offer a path 

of analysis for the interaction of dynamics and radiation during sudden stratospheric warming 

events.  Analysis of heating and cooling rates derived from measurements can provide a more-

detailed look at the balance of processes governing these events. 

 

9.4 Comparison of Heating Rates in Models and Measurements 

 

 
Figure 9.1:  From L’Ecuyer et al. [2008].  Annual mean radiation budget for the Earth from 82° N 
to 82° S derived from the CloudSat 2B-FLXHR product from September 2006 to August 2007.  
Contribution to atmospheric radiative heating from clear skies are represented by ΔFSW/LW,A and 
those due to clouds are represented by ΔFSW/LW,C. 
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(a) 

(b) 

(c) 
 

Figure 9.2:  (a) Mean Outgoing Longwave Radiation from the GISS ModelE OLR for a 
climatological January –March (b) OLR derived from CloudSat 2B-FLXHR-LIDAR product for 
January–March 2007. (c) OLR from Aqua CERES for January–March 2007. 
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One of the outstanding issues associated with this research is the establishment of 

methods for the comparison of heating/cooling rates derived from measurements with those 

calculated in the course of model runs.  For example, initial estimates of the radiative energy 

balance have been derived from CloudSat data, and a significant amount of information can be 

gained by comparing the figures shown in Figure 1.3 with those estimated in Figure 9.1.  

Whereas the top-of-atmosphere solar and thermal fluxes are very similar to those derived from 

other missions (i.e., [Barkstrom et al., 1984; Wielicki et al., 1996]),  the estimates of surface 

fluxes differ rather substantially between the former and latter figures.    Also, estimates of the 

distribution of radiative energy exchange within the atmosphere from measurements such as 

CloudSat are novel. 

 While CloudSat and CALIPSO measurements coupled with ECMWF analysis products 

can allow for the determination of OLR and heating and cooling rates, it is important to compare 

these values with those calculated in models.  An example of this can be seen in Figure 9.2 which 

first shows the OLR associated with the GISS ModelE [Schmidt et al., 2006] run of a 

climatological period covering January–March.  Also shown are the CloudSat-derived OLR from 

the 2B-FLXHR-LIDAR product (see L’Ecuyer et al. [2008] for details) from January–March, 

2007, and the Aqua CERES ES-4 OLR measurements for that same time period. 

Several different features can be seen in the OLR comparison: first, sub-tropical OLR 

values generally agree among CloudSat/CALIPSO, CERES, and GISS ModelE.  Second, the 

influence of convection on OLR in the GISS model generally agrees qualitatively with the 

CERES measurement, with some difficulties in the regions of the strongest convection in the 

equatorial tropics.  Finally, the description of the cloud radiative effect associated with tropical 

convection from CloudSat/CALIPSO tends to be overestimated as compared to the CERES 

measurement suite.   
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Figure 9.3:  OLR derived from CloudSat 2B-FLXHR product for January–March 2007. 
 

However, some of the discrepancies between CERES and the 2B-FLXHR-LIDAR product can be 

attributed to the simplified treatment of thin cirrus clouds.  Figure 9.3 shows the OLR product 

from the 2B-FLXHR (without the estimates of thin-cloud properties from lidar).  The agreement 

between CERES measurements and CloudSat 2B-FLXHR products is considerably improved 

over Figure 9.2b, suggesting that the algorithm for combining CloudSat and CALIPSO data may 

benefit from refinement.  However, as has been previously discussed, the production of similar 

OLR values from measurements and models is a necessary but not a sufficient condition for 

determining whether a model is treating the radiative budget of the scene appropriately. 

Figure 9.4 compares the zonally averaged cooling rate profiles derived from CloudSat 

over the same period of time described by the 2B-FLXHR and 2B-FLXHR-LIDAR products.  

Figure 9.4a shows several interesting features, including lower-stratospheric IR heating from 

ozone (regions of blue) and tropospheric cooling from water vapor (regions of green and yellow).  

It also shows the influence of clouds on cooling rates in the tropical mid troposphere due to 

convective clouds, and in the mid-latitude lower troposphere due to stratus clouds.   
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(a) 
 

(b) 
Figure 9.4: (a) Zonally averaged cooling rate profile contour map for January–March 2007 
derived from the CloudSat 2B-FLXHR product.  (b) Same as (a) but depicting results from the 
2B-FLXHR-LIDAR product. 
 

There are some subtle differences between the top and bottom panels of Figure 9.4, and a zeroeth-

order estimate of the impact of optically thin clouds on cooling rate profiles can be attained from 

these differences.  These results, though preliminary, suggest that mid-tropospheric cooling at 

most latitudes is well described by the A-Train, but that there is some remaining uncertainty in 

the characterization of cooling rates in the low-latitude stratosphere and the boundary layer at 

most latitudes. 
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Meanwhile, the characterization of cooling rates in the models shows a considerably 

different pattern.  The following figure shows zonal average cooling rate profiles calculated from 

a GISS ModelE control run that produces the OLR fields shown in Figure 9.2a. 

 

 
Figure 9.5: Zonally averaged cooling rate profile contour map from GISS ModelE results for a 
climatological January–March. 
 

There are several notable differences between the cooling rates derived from measurements and 

those produced by the GISS model, despite qualitative agreement in OLR.  The model produces 

substantial lower-tropospheric cooling rates that gradually decrease with altitude.  Also, lower-

stratospheric IR heating is slightly lower in the model, as compared to the CloudSat product. 

One of the principal benefits of a comparison between heating rates derived from 

measurements and those calculated in models is that the comparison is on a lower dimension, as 

opposed to the separate comparisons of temperature, water vapor, ozone, and cloud fields.  

Moreover, the values of heating and cooling rates are directly relevant to (and calculated by) 

climate models.  They are also much more specific than the comparisons of broadband top-of-

atmosphere albedo and outgoing longwave radiation (i.e., Figure 6.2).   
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The determination of appropriate comparison methods depends on the specific goals of 

the comparison.  For exploratory analysis of measurement and model heating/cooling rates, 

comparing mean heating and cooling rates or a relatively straightforward multivariate analysis of 

variance may be sufficient to make a determination about the statistical significance of whether 

two isolated heating/cooling rate profiles are similar. 

One of the most important goals of research devoted to the understanding of 

heating/cooling rate profiles is the determination of whether the balance of different energy 

exchange processes is being adequately represented by model calculations at large grid footprints.  

Therefore, it may be necessary to understand not just radiative energy exchange, but also the 

latent heat budget.  The latter information can be determined by precipitation measurements 

where they exist.  For this the Tropical Rainfall Measuring Mission (TRMM) [Kummerow et al., 

1998] provides a decade-long set of precipitation data in the tropics.  Also, the Advanced 

Microwave Scanning Radiometer [Kawanishi et al., 2003] provides column-integrated 

precipitation retrievals over oceans which may be useful for assessing measurement and model 

energy balance. Unfortunately, other estimates of global precipitation (i.e., the Global 

Precipitation Climatology Project [Adler et al., 2003]) are spatially sparse. 

 

9.5 Challenges for Future Analysis and Observing Systems 

The scientific community has attained a much greater understanding of the Earth-

atmosphere system as a result of model development and satellite-based measurement system 

implementation.  This understanding has been used to motivate serious policy discussions with 

respect to climate change among both the public and policy-makers.  However, at the same time, 

the community has been unable to make substantial progress in reducing the uncertainty in 

climate forecast predictions for the next 50–100 years.  Such continued uncertainty has partially 
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thwarted a cohesive climate change policy and suggests that the current organization of research 

efforts in the field of climate prediction may require new directions.  It would be fruitful for the 

diverse community of measurement specialists and modeling experts to work more in tandem to 

focus their considerable intellectual, computational, and engineering capabilities on the 

elucidation of climate feedbacks.  Moreover, if the dire consequences of climate change are 

realized, policy makers will have an urgent need for robust scientific recommendations regarding 

this topic, and the scientific community should be prepared to adopt a dramatically more central 

role in climate change policy. 

 The new generation of satellite missions recommended by the Decadal Survey of the 

Space Studies Board of the National Research Council, plus the realization of the capabilities of 

the current generation of A-Train instrumentation, promise to provide a foundation for moving 

forward in the establishment of a coherent set of measurements. Such measurements can be 

utilized on a large scale with models in support of integrated climate feedback studies.  One can 

hope that the research in this thesis will facilitate more scientific studies that integrate 

measurements and models in a manner that will ultimately be of social relevance. 
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Appendix A. Cooling Rate Retrieval Derivation. 

Remote sensing measurements provide information about quantities that are relevant to 

the calculation of cooling rate profiles, so it is reasonable to conclude that there is a functional 

relationship between these measurements and cooling rate profiles.  This relationship will be 

explored in some detail in this Appendix, following the work of Liou and Xue [1988].   

The derivation of retrieval of cooling rate profiles from top-of-atmosphere (TOA) spectra 

begins by establishing a relationship between atmospheric cooling rates and measured spectra.  

The cooling rate profile for a specific set of wavenumbers is a function of height and is given by: 

 

( ) ( )
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ν
ν ρ
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=′     (A.1) 

 
where ( )zνθ ′  is the cooling rate and ( )zFν  is the net flux over a set of wavenumbers ν , pC  is 

the specific heat at constant pressure, and ( )zρ  is the atmospheric density.  By ansatz, a kernel 

function can be introduced that relates the cooling rate to the TOA measurement, and that kernel 

function is given by: 

 
      ( ) ( ) ( )0,, =∞= μρ νν zTzCzK p     (A.2) 

 
where ( )0,, =∞ μν zT  is the monochromatic transmittance between height  z  and the top-of-

atmosphere at viewing zenith angle cosine μ .  When the quantity of interest is convolved with 

the kernel function, a measurement functional is produced which is given by: 

 

( ) ( )∫
∞
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dzzzKf ννν θ     . (A.3) 

 
Given the formulation for the net flux is derived from integrating the equation of radiative 

transfer over altitude and angle, and the flux divergence follows from a differentiation of net flux 
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with respect to the height coordinate, the following expression describes clear-sky flux 

divergence without a loss of generality: 
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In order to establish a functional relationship between cooling rates and remote sensing 

measurements, a simplified band model can be illustrative.  The random model [Goody, 1952] as 

modified by Möller and Raschke [1964] expresses the transmittance as a function of absorber 

amount for narrow spectral bands: 
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where a  and b  are band-specific coefficients, νσ  is the monochromatic  absorption coefficient, 

and η  is the absorber path length given by: 
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where u  is the optical path, p  is the pressure at level of interest, and surfp  is the surface 

pressure.  In the weak-line limit, the transmission function reduces to the following expression: 
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The convolution of the weighting function in Eq. (A.2) with the flux divergence profile produces 

the following expression: 
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where  νf   is the measurement functional.  The task then is to determine the relationship between 

the expression in Eq. (A.8) and TOA radiance measurements.  By inserting Eq. (A.4) into the 

RHS of Eq. (A.8), the following expression is achieved: 
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These terms must be evaluated separately.  By exchanging the order of integration for the first 

term of the RHS of Eq. (A.9), we find that: 
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where μ
σ
σχ
ν

ν = .  Integration of the LHS of Eq. (A.10) though the use of the Mean Value 

Theorem leads to a different RHS from that of Eq. (A.10), and since the forms of integration must 

yield identical answers, it can be shown that: 
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Moreover, since the emergent TOA spectral radiance can be expressed as 
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A very similar expression can be formulated for the TOA radiance over the entire band.  Since 

Planck emission is nearly a constant function of wavenumber over the band of interest, it can be 

shown that the first term on the RHS of Eq. (A.9) can also be described by: 
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Similar procedures can be followed for the second term on the RHS of Eq. (A.9) which yields the 

following expression: 
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The third term of the RHS of Eq. (A.9) can be derived by performing integration analytically with 

respect to η .  The result is a negative exponential function with surfη  as its primary argument.  

For large optical paths, this term approaches zero.  The final term on the RHS of Eq. (A.9) can be 

related directly to Eq. (A.13) and we can show that it can be described as 
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Therefore, the resulting expression for Eq. (A.9) becomes 
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This expression can also be applied to strong lines in a similar manner as described above to 

show that: 
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where μ  can be represented by the following: 
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Therefore, these results present a set of expressions relating measured TOA radiance with the 

convolution of the band cooling rate profile with the kernel function.  Inverse theory methods can 

be applied so that TOA spectral radiance measurements at several viewing angles can be used to 

retrieve the cooling rate profile over the band. 
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