
Reflection and Its Application to Mechanized

Metareasoning about Programming Languages

Thesis by

Xin Yu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended June 12, 2006)

ii

c© 2007

Xin Yu

All Rights Reserved

iii

Acknowledgments

Although I am listed as the author of this thesis, many other people should share

the credit for its production. First and foremost I thank my advisor, Professor Jason

Hickey, who has provided me with a great deal of support, guidance and instruction

throughout my time at Caltech. This is joint work with him and my fellow researchers:

Aleksey Nogin and Alexei Kopylov, from discussions with whom I benefited a lot.

I would also like to thank the members of our group, Cristian Tapus, Nathan

Gray, Jerome White, and David Goblet, for their help and friendship.

I greatly appreciate the efforts of my thesis committee (Professors Jason Hickey,

Alain Martin, Steven Low, and Dr. Rajeev Joshi).

Without the always ready help from various Caltech personnel, my life during the

past six years would be painful. I specially thank Jeannie and Divina from the Health

Center, and Natalie, Edith, and Icy from the Graduate Office.

I also owe much gratitude to my friends, most notably Zhe Wu, Cong Zhang, and

Ling Zhou, for the happiness they brought and encouragement they never hesitated

to share.

Above all, I thank my family for their unfailing love, care and support. For them,

“thanks” is never enough.

iv

Abstract

It is well known that adding reflective reasoning can tremendously increase the power

of a proof assistant. In order for this theoretical increase of power to become accessible

to users in practice, the proof assistant needs to provide a great deal of infrastructure

to support reflective reasoning. In this thesis we explore the problem of creating a

practical implementation of such a support layer.

Our implementation takes a specification of a logical theory (which is identical to

how it would be specified if we simply intended to reason within this logical theory,

instead of reflecting it) and automatically generates the necessary definitions, lemmas,

and proofs that are needed to enable the reflected metareasoning in the provided

theory.

One of the key features of our approach is that the structure of a logic is preserved

when it is reflected, including variables, meta variables, and binding structure. This

allows the structure of proofs to be preserved as well, and there is a one-to-one map

from proof steps in the original logic to proof steps in the reflected logic. The act of

reflecting a language is automated; all definitions, theorems, and proofs are preserved

by the transformation and all the key lemmas (such as proof and structural induction)

are automatically derived.

The principal representation used by the reflected logic is higher-order abstract

syntax (HOAS). However, reasoning about terms in HOAS can be awkward in some

cases, especially for variables. For this reason, we define a computationally equivalent

variable-free de Bruijn representation that is interchangeable with the HOAS in all

contexts. The de Bruijn representation inherits the properties of substitution and

alpha-equality from the logical framework, and it is not complicated by administrative

v

issues like variable renumbering.

We further develop the concepts and principles of proofs, provability, and struc-

tural and proof induction. This work is fully implemented in the MetaPRL theorem

prover. We illustrate with an application to F<: as defined in the POPLmark chal-

lenge.

http://metaprl.org/

vi

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

1.1 What Is Reflection . 4

1.2 Programming Language Metatheory 5

1.3 Terminology . 7

1.4 Organization . 10

2 Previous Models of Reflection 11

3 A Hybrid HOAS/de Bruijn Representation of the Syntax 18

3.1 Bound Terms . 19

3.2 Terminology . 20

3.3 Abstract Operators . 21

3.4 Inductively Defining the Type of Well-Formed Bterms 22

3.5 Our Approach . 24

4 Formal Implementation of the Syntax in a Theorem Prover 25

4.1 Computations and Types . 25

4.2 HOAS Representation . 26

4.3 Vector HOAS Operations . 29

4.4 de Bruijn Representation . 30

4.5 Operators . 37

vii

4.6 The Type of Reflected Terms . 37

4.7 Exotic Terms and Decidability . 39

4.8 A Small Example . 41

4.9 Related Work . 42

5 The HOAS Representation Function 44

6 Sequent Representation 47

6.1 Sequent Context Induction . 47

6.2 Computation on Sequent Terms . 50

6.3 Computing Canonical Sequent Representations 51

7 Proof Reflection 54

7.1 Proof Checking . 55

7.2 Derivations and Provability . 56

7.3 Proof Reflection and Automation . 58

7.4 Proof Induction . 60

7.5 Preliminary Discussion . 62

8 An Example: F<: 65

8.1 Defining the Syntax of F<: . 65

8.2 Reflected Syntax . 67

8.3 The F<: Logic . 68

8.4 Structural Induction . 70

9 Discussion and Future Work 73

Bibliography 76

A Architecture and Summary of the Implementation in MetaPRL 84

B Partial Listing of Relevant MetaPRL Theories 86

B.1 Itt hoas base module . 87

http://metaprl.org/
http://metaprl.org/

viii

B.1.1 Parents . 87

B.1.2 Terms . 87

B.1.3 Rewrites . 89

B.2 Itt hoas vector module . 91

B.2.1 Parents . 91

B.2.2 Terms . 91

B.2.3 Rewrites . 93

B.3 Itt hoas debruijn module . 96

B.3.1 Parents . 96

B.3.2 Terms . 97

B.3.2.1 A de Bruijn-like representation of syntax 97

B.3.2.2 Basic operations on syntax 97

B.3.3 Rewrites . 99

B.4 Itt hoas operator module . 106

B.4.1 Parents . 106

B.4.2 Terms . 106

B.4.3 Rules . 107

B.4.4 Concrete Operators . 109

B.5 Itt hoas destterm module . 110

B.5.1 Parents . 111

B.5.2 Terms . 111

B.5.3 Rules . 112

B.5.4 Rewrites . 112

B.6 Itt hoas bterm module . 114

B.6.1 Parents . 114

B.6.2 Terms . 114

B.6.3 Rewrites . 116

B.6.4 Rules . 117

1

Chapter 1

Introduction

Very generally, reflection is the ability of a system to be “self-aware” in some way.

More specifically, by reflection we mean the property of a computational or formal

system to be able to access and internalize some of its own properties.

It is well known that reflection can tremendously increase the power of a formal

reasoning system. Surprisingly, formal systems tend to avoid the subject, or provide

poor tools for reflective work. The fundamental goal of this work is to provide a

method for implementing a practical reflection of syntax, computation, and proof in

a logical framework.

The implementation of a reflection system has two core parts: representing the

syntax, and mechanizing the reasoning. The issue of representation is central, and far

from trivial: dealing with formal syntax means dealing with structures that involve

bindings, and in a logical context it seems natural to use the same formal tools to

describe syntax—often limiting the usability of such formalizations to specific theo-

ries and toy examples. Representing languages with bindings has been recognized as

crucial by the theorem proving community; it requires a treatment of α-equivalence

and capture-avoiding substitution. Many different solutions to the binding problem

have been proposed. For example, one may use nameless or de Bruijn encodings for

variables [23], nominal representations [53, 17], or higher-order abstract syntax [52]

(HOAS), with various trade-offs. The de Bruijn encoding provides a very concrete

representation with a clear induction principle, but reasoning is cluttered by superflu-

ous artifacts like the need to perform name shifting, and one gets very little built-in

2

help from the prover for these issues. At the other extreme, HOAS provides a clean

abstract representation with excellent support from the prover, but variable names

are inaccessible and the induction scheme can be hard to formulate. Nominal ap-

proaches are in between; names are accessible, the representation is mildly cluttered

by explicit renamings, but frequently the existing framework logic or metalogic must

be extended to include explicit naming contexts.

In this work we present a hybrid approach using a combined HOAS/de Bruijn

representation for terms. To address the issue of computation and induction over

terms, each reflected term has two equivalent forms. One is a HOAS representation,

where variables in the object logic are represented by variables in the reflected logic,

and binding is preserved. On top of it there is a de Bruijn representation layer, where

binders are specified by arity, and variables are denoted with numerical indices. These

two representations are formally and computationally indistinguishable, which allows

the appropriate representation to be selected at the appropriate time. For example,

the HOAS representation is normally the preferred form for users because of its clarity,

but the de Bruijn representation is more appropriate for computations that involve

induction or computation on variables (for example, computing the free variables of

a term).

The fundamental reason that our approach is practical is that it preserves structure

exactly in this sense: all variables, including both object and meta variables, are

preserved by the representation. In the manner of HOAS, binding structure is also

preserved by the transformation, both for formulas and for (sequent) judgments. One

might call this meta-higher-order abstract syntax.

The benefit of preserving the term structure is that mechanized reasoning works

transparently. That is, there is a one-to-one correspondence from proof steps in the

original logic to reflected proof steps in the metalogic. In fact the translation is direct

and mechanical, which means that proof automation in the original logic also applies

in the reflected logic.

The reflection framework we implement provides a context that is convenient

for talking about representations and specifying properties of proofs in a uniform

3

way that applies to all logical theories that can be specified as a logic in the logical

framework. Furthermore, the act of reflecting a logic is automated, and the principles

for structural and proof induction are automatically derived for every reflected theory.

Naturally, our work can be applied to develop mechanized methods for a pro-

gramming language metatheory, with which we can reason not only about individual

languages, but also about classes of languages, language schemas, and so on. The

reason is that a programming language can be defined as a particular logic in the

logical framework, using the same mechanisms for definition, reasoning, and automa-

tion that are available to other logics. There are at least three logics in consideration

here—P: the programming language (also called the “object logic”); M: the meta-

logic in which reasoning about the programming language is to be performed; and F:

the meta-metalogic, or framework logic, in which the metalogic M is defined. The

choice of framework logic F and metalogic M are based mainly on the choice of the

prover, which then restricts the set of choices for the framework logic and the met-

alogic (in many cases F and M are one and the same). The main issue here is to

define a representation of programs and judgments in P in terms of formulas, propo-

sitions, and sentences in M. We use reflection to provide a uniform representation

map, where a programming language P is reflected en masse to form a subtheory of

the metalogic M. As mentioned earlier, the act of reflecting a language is automated;

all definitions, theorems, and proofs are preserved by the transformation and all the

key lemmas (such as proof and structural induction) are automatically derived. We

will illustrate with an application to the F<: language as defined in the POPLmark

challenge [12].

To summarize, the contributions of this thesis include:

• a new approach to representing languages with bindings;

• a theory of implementing a practical reflection of syntax, computation, and

proof in a logical framework;

• an implementation that can be used for mechanized metareasoning about pro-

gramming languages.

4

We have carried out a complete formal account of this work in the MetaPRL logical

framework [41, 43]. In the appendices of this thesis, we provide an architectural

overview of the formal implementation, and also list several most important modules

of this work. All formalizations are available online [43,42]. An important feature of

this work is that no extensions to the metalogic or framework logic are needed.

In the rest of this chapter, we provide some background knowledge. We first give

a more detailed account of what reflection is in Section 1.1, then in Section 1.2 give

an introduction on the current state of the art in automated programming language

metatheory. In Section 1.3 we develop the syntax and language of logics. At the end

of the chapter, we outline the structure of this thesis.

1.1 What Is Reflection

As mentioned earlier, reflection is the ability of some entity to refer to itself.

There are many areas of computer science where reflection plays or should play

a major role. When exploring properties of programming languages (and other lan-

guages) one often realizes that languages have at least two kinds of properties—

semantic properties that have to do with the meaning of what the language’s con-

structs express, and syntactic properties of the language itself.

Suppose for example that we are exploring some language that contains arithmetic

operations. And in particular, in this language one can write polynomials like x2 +

2x + 1. In this case the number of roots of a polynomial is a semantic property since

it has to do with the valuation of the polynomial. On the other hand, the degree

of a polynomial could be considered an example of a syntactic property since the

most natural way to define it is as a property of the expression that represents that

polynomial. Of course, syntactic properties often have semantic consequences, which

is what makes them especially important. In this example, the number of roots of a

polynomial is bounded by its degree.

Another area where reflection plays an important role is run-time code generation—

in most cases, a language that supports run-time code generation is essentially re-

http://metaprl.org/

5

flective, as it is capable of manipulating its own syntax. In order to reason about

run-time code generation and to express its semantics and properties, it is natural to

use a reasoning system that is reflective as well.

There are many different flavors of reflection. The syntactic reflection we have seen

in the examples above, which is the ability of a system to internalize its own syntax,

is just one of these many flavors. Another very important kind of reflection is logical

reflection, which is the ability of a reasoning system or logic to internalize and reason

about its own logical properties. A good example of a logical reflection is reasoning

about knowledge—since the result of reasoning about knowledge is knowledge itself,

the logic of knowledge is naturally reflective [11].

In most cases it is natural for reflection to be iterated. In the case of syntactic

reflection we might care not only about the syntax of our language, but also about

the syntax used for expressing the syntax, the syntax for expressing the syntax for

expressing the syntax and so forth. In the case of the logic of knowledge it is natural

to have iterations of the form “I know that he knows that I know . . . ”

Reflection can add a lot of additional power to a formal reasoning system [34,10].

In particular, it is well known [36,44,29,48] that reflection allows a superexponential

reduction in the size of certain proofs. In addition, reflection could be a very useful

mechanism for implementing proof search algorithms [3,33,21]. See also Harrison [40]

for a survey of reflection in theorem proving.

1.2 Programming Language Metatheory

It has been well established that better programming technology is needed to assure

the safety and reliability of our software infrastructure. As found in the PITAC

reports [55, 56], our software infrastructure is fragile, technologies to build reliable

software are inadequate, and the demand for reliable software exceeds our ability to

produce it.

The development of new programming languages is a crucial part of addressing the

software development problem. New languages, including domain-specific languages,

6

can simplify development and maintenance by making programs more concise and

clear, and they can improve reliability in the form of guarantees that hold for all

programs written in the language. For example, strongly-typed languages guarantee

memory and code safety, though at some loss in expressivity. Domain-specific lan-

guages can often go further, guaranteeing additional properties relevant to a domain.

Programming language properties and guarantees are more than just properties of

specific programs—they are properties of any program written in the language. They

ensure that, no matter how a program is constructed or modified, the guarantees will

continue to hold. They can be a tremendous benefit during software development

because no design effort is needed, the guarantees simply hold.

The study of programming language properties is called programming language

metatheory. Given the benefits of metatheoretical guarantees, one might wonder

why there are not more such languages in widespread use. There are at least two

answers. First, while the properties of any individual language may be precise, the

properties of the composition of languages is not nearly as clear, and there has been

little research on this topic. For this reason (and others) programmers prefer to keep

their repertoire, and their risk, limited. Second, programming language metatheory

can be exceedingly tedious and error prone, using highly technical, yet routine, proof

methods. This leads to a reluctance on the part of the designer to perform the proofs,

and a reluctance on the part of the community to read the proofs. The consequence

is that even in the rare case when a new language is accompanied by proofs, these

proofs are given less scrutiny than we might wish. This leaves us with two central

problems: (1) the metatheoretical properties of systems constructed using multiple

languages are poorly studied, and (2) new languages are rarely accompanied by a

strong metatheory.

Automated methods promise a solution to part of the problem. Since proofs

tend to be routine, why not have a machine perform the tedious, technical work?

There has been some progress in this direction recently, notably presented as the

POPLmark challenge [12], which poses the specific problem of automated reasoning

for the kernel System F<: language (the polymorphic λ calculus with subtyping).

7

Several researchers are performing ongoing work related to the challenge [20, 59, 30],

and it seems likely that acceptable solutions will be found, at least for F<:. In these

approaches, the F<: language is formal, and the proofs are mechanized. However,

the proof methods are ad hoc.

Stated more generally, the current state of the art in automated metatheory ad-

dresses the problem of formal automated reasoning about specific concrete languages

using custom methods for each language. What is missing is the ability to reason

about properties that apply to multiple languages, or relations between languages, or

formal functions that map the properties of one language to another. That is, what

is missing is (1) reuse of formal knowledge, and (2) reasoning about systems with

components written in several languages.

Our reflection framework can provide mechanized methods for a programming

language metatheory with the following abilities.

• The ability to reason about classes of languages, so that results may be reused

to cover multiple concrete languages

• The ability to perform higher-order reasoning, establishing relationships be-

tween languages.

1.3 Terminology

We assume that the language of the logical framework F contains sequents, second-

order meta variables, and terms, as shown in Figure 1.1. A term t is a formula

containing variables, concrete terms, or sequents. A concrete term op{b1; · · · ; bn} has

a name op, as well as some subterms b1, . . . , bn that have possible binding occurrences

of variables. For example, a term for representing the sum i + j might be defined as

add{.i; .j} (normally, we will omit the leading “.” if there are no binders, writing it as

add{i; j}). A term for lambda-abstraction λx. t would include a binding occurrence

1Strictly speaking, context variables are bindings and meta-variables have context arguments in
addition to term arguments. This does not affect the presentation until we get to context induction
(Chapter 6), and we omit context arguments for now.

8

t ::= x object (first-order) variables
| z[t1; · · · ; tn] second-order meta-variables
| Γ ` t sequents
| op{b1; · · · ; bn} concrete terms

b ::= x1, . . . , xn. t bound terms
Γ ::= h1; · · · ; hn sequent contexts
h ::= X[t1; · · · ; tn] context meta-variables1

| x : t hypothesis bindings and terms
P ::= R1; R2; · · · ; Rn a logic
R ::= t1 −→ · · · −→ tn inference rules

(ti are closed w.r.t. object variables)

Figure 1.1: Syntax of formulas and logics

lambda{x. t}. Note that in this case, the primitive binding construct is the bound

term b, and λ-binders are a defined term. An alternate choice would be to use a single

primitive λ binder (for example, as is done in LF [39]).

A sequent Γ ` t includes a sequent context Γ, which is a sequence of dependent

hypotheses h1; · · · ; hm, where each hypothesis is a binding x : t or a context variable

X[t1; · · · ; tn] (x and X bind to the right). Note that sequents can be arbitrarily

nested inside other terms and are not necessarily associated with judgments.

Second-order meta variables z[t1; · · · ; tn] and context variables X[t1; · · · ; tn] in-

clude zero or more term arguments t1, . . . , tn. These meta variables represent closed

substitution functions, and are implicitly universally quantified for each rule in which

they appear [45]. For example, a second-order variable z[] represents all closed terms

(normally we will write simply z, omitting empty brackets2). The second-order vari-

able z[x] represents all terms with zero or more occurrences of the variable x (that is,

any term where x is the only free variable).

To illustrate, consider the “substitution lemma” that is valid in many logics. In

textbook notation, it might be written as follows, where t1[x ← s] represents the

2This will not cause confusion with first-order variables, since, when in use, a first-order variable
cannot occur free in a judgment and a second-order variable cannot be bound; we can always
distinguish them.

9

substitution of s for x in t1, and x 6∈ fv(∆) is a side condition of the rule.

Γ, x : t3, ∆ ` t1 ∈ t2 Γ, ∆ ` s ∈ t3 (x 6∈ fv(∆))

Γ, ∆ ` t1[x← s] ∈ t2

In our more concrete notation, s, t1, t2, t3 are all represented with second-order

variables, and Γ, ∆ with context variables. Substitutions are defined using the term

arguments; rules are defined using the meta implication · −→ ·, and we consider all

meta variables to be universally quantified in a rule. The concrete version is written

as follows (where we use s ∈ t as a pretty form for a term member{s; t}, and zi are

second-order meta variables).

(X; x : z3; Y ` z1[x] ∈ z2) −→

(X; Y ` z0 ∈ z3) −→

(X; Y ` z1[z0] ∈ z2)

(1.1)

In the final sequent, the term z1[z0] implicitly specifies substitution of z0 for x in z1.

Note how the term arguments are used to specify binding precisely—the variable

x is allowed to occur free in z1, but in no other term. The reason we adopt this

second-order notation is for the precision that can be obtained without the need for

side conditions. All rule schemas representable with substitution notation are also

representable as second-order schemas, but not vice versa, except with a sufficiently

rich set of side conditions.

For the final part, a logic P is an ordered sequence of rules. Each rule may be an

axiom, or it may be derived from the previous rules in the logic.

In the particular framework logic FMetaPRL that we use, logics are considered to

be open ended. That is, the models of the logic include models with possibly more

formulas, more rules, and more sentences that are true. In particular, F does not

provide any proof induction principle for its theories. This is of little consequence;

once reflected, a theory can be closed, and we will obtain an induction principle.

http://metaprl.org/

10

1.4 Organization

The general structure of this text roughly follows the research path that it describes.

Chapter 2 begins with a brief survey of existing techniques for formal reasoning about

syntax. Next in Chapter 3 we outline our approach to reasoning about syntax and in

Chapter 4 we present a formal account of our syntax theory for simple terms based on

a Martin-Löf style computational type theory and the implementation of that account

in the MetaPRL theorem prover, and in Chapter 6 extend it to sequent judgments,

where we rely on the use of “teleportation” to perform sequent context induction.

Once the representation for terms is defined, we proceed to develop a representation

of proofs and the corresponding principle for proof induction (Chapter 7). We pro-

ceed with some examples relating to the POPLmark challenge [12] (Chapter 8) where

we also develop the principle for structural induction (Section 8.4). We finish with

discussion and future work (Chapter 9).

http://metaprl.org/

11

Chapter 2

Previous Models of Reflection

Any form of logical reflection is preconditioned by the ability to reflect the syntax.

Reflecting syntax in a logical system entails writing proof rules that express that

reflection, i.e., establishing an inferential connection between the actual syntax used

in the object logic P and the meta terms in the metalogic M supposedly referring to

it. In this chapter, we take a look at previous methods that have been used to reflect

the syntax. We also discuss more related work in Section 4.9.

In 1931 Gödel used reflection to prove his famous incompleteness theorem [35]. To

express arithmetic in arithmetic itself, he assigned a unique number (a Gödel number)

to each arithmetic formula. A Gödel number of a formula is essentially a numeric

code of a string of symbols used to represent that formula.

A modern version of the Gödel’s approach was used by Aitken et al. [7,2,3,18] to

implement reflection in the NuPRL theorem prover [19, 4]. A large part of this effort

was essentially a reimplementation of the core of the NuPRL prover inside NuPRL’s

logical theory.

In Gödel’s approach and its variations (including Aitken’s one), a general mech-

anism that could be used for formalizing one logical theory in another is applied to

formalizing a logical theory in itself. This can be very convenient for reasoning about

reflection, but for our purposes it turns out to be extremely impractical. First, when

formalizing a theory in itself using generic means, the identities between the theory

being formalized and the one in which the formalization happens become very ob-

fuscated, which makes it almost impossible to relate the reflected theory back to the

http://nuprl.org/
http://nuprl.org/
http://nuprl.org/

12

original one. Second, when one has a theorem proving system that already imple-

ments the logical theory in question, creating a completely new implementation of

this logical theory inside itself is a very tedious redundant effort. Another practical

disadvantage of the Gödel numbers approach is that it tends to blow up the size of

the formulas; and iterated reflection would cause the blow-up to be iterated as well,

making it exponential or worse.

A much more practical approach is being used in some programming languages,

such as Lisp and Scheme. There, the common solution is for the implementation to

expose its internal syntax representation to user-level code by the quote constructor

(where quote(t) prevents the evaluation of the expression t). The problems outlined

above are solved instantly by this approach: there is no blow-up, there is no repetition

of structure definitions, there is even no need for verifying that the reflected part is

equivalent to the original implementation since they are identical. Most Scheme

implementations take this even further: the eval function is the internal function for

evaluating a Scheme expression, which is exposed to the user level; Smith [57] showed

how this approach can achieve an infinite tower of processors. A similar language

with the quotation and antiquotation operators was introduced in [38].

This approach, however, violates the congruence property with respect to compu-

tation: if two terms are computationally equal then one can be substituted for the

other in any context. For instance, although 2∗ 2 is equal to 4, the expressions “2*2”

and “4” are syntactically different, thus we cannot substitute 4 for 2*2 in the ex-

pression quote(2*2). The congruence property is essential in many logical reasoning

systems, including NuPRL and MetaPRL.

A possible way to expose the internal syntax without violating the congruence

property is to use the so-called quoted or shifted operators [1, 13, 14] rather than

quoting the whole expression at once. For any operator op in the original language,

we add the quoted operator (denoted as popq) to represent a term built with the

operator op. For example, if the original language contains the constant “0” (which,

presumably, represents the number 0), then in the reflected language, p0q would stand

for the term that denotes the expression “0”. Generally, the quoted operator has the

http://nuprl.org/
http://metaprl.org/

13

same arity as the original operator, but it is defined on syntactic terms rather than

on semantic objects. For instance, while ∗ is a binary operator on numbers, p∗q is

a binary operator on terms. Namely, if t1 and t2 are syntactic terms that stand for

expressions e1 and e2 respectively, then t1p∗qt2 is a new syntactic term that stands for

the expression e1∗e2. Thus, the quotation of the expression 1∗2 would be p1q p∗q p2q.

In general, the well-formedness (typing) rule for a quoted operator is the following:

t1 ∈ Term · · · tn ∈ Term

popq{t1; · · · ; tn} ∈ Term
(2.1)

where Term is a type of quoted terms. The requirement that the arity of op be n

is implicit—since a quoted operator has the same arity as the original operator, the

assumption is that the system will simply disallow typing something of the wrong

arity.

Note that quotations can be iterated arbitrarily many times, allowing us to quote

quoted terms. For instance, pp1qq stands for the term that denotes the term that

denotes the numeral 1.

Formalizing Languages with Bindings

Problems arise when quoting expressions that contain binding variables. For example,

what is the quotation of λx. x? There are several possible ways of answering this

question. A commonly used approach [52, 25, 24, 8, 9] in logical frameworks such as

Elf [51], LF [39], and Isabelle [49, 50] is to construct an object logic with a concrete

pλq operator that has a type like

(Term→ Term)→ Term or (Var→ Term)→ Term.

In this approach, the quoted λx. x might look like pλq(λx. x) and the quoted λx. 1

might look like pλq(λx. p1q). Note that in these examples the quoted terms have to

make use of both the syntactic (i.e., quoted) operator pλq and the semantic operator

λ.

http://www-2.cs.cmu.edu/~fp/elf.html
http://isabelle.informatik.tu-muenchen.de/

14

Exotic Terms. Näıve implementations of the above approach suffer from the

well-known problem of exotic terms [22, 24]. The issue is that in general we cannot

allow applying the pλq operator to an arbitrary function that maps terms to terms

(or variables to terms) and expect the result of such an application to be a “proper”

reflected term.

Consider for example the following term

pλq(λx. if x = p1q then p1q else p2q).

It is relatively easy to see that it is not a real syntactic term and cannot be obtained

by quoting an actual term. (For comparison, consider pλq(λx. pifq x p=q p1q pthen

q p1q pelseq p2q), which is a quotation of λx. if x = 1 then 1 else 2).

How can one ensure that pλqe denotes a “real” term and not an “exotic” one?

That is, is it equal to the result of quoting an actual term of the object language?

One possibility is to require e to be a substitution function; in other words it has to

be equal to an expression of the form λx. t[x] where t is composed entirely of term

constructors (i.e., quoted operators) and x, while using destructors (such as case

analysis, the if operator used in the example above, etc.) is prohibited.

There are a number of approaches for enforcing the above restriction. One of

them is the usage of logical frameworks with restricted function spaces [52,39], where

λ-terms may contain only constructors. Another is to first formalize the larger type

that does include exotic terms and then to define recursively a predicate describing

the “validity” or “well-formedness” of a term [25,24] thus removing the exotic terms

from consideration. Yet another approach is to create a specialized type theory that

combines the idea of restricted function spaces with a modal type operator [28,26,27].

There the case analysis is disallowed on objects of “pure” type T , but is allowed on

objects of a special type ¦T . This allows expressing both the restricted function space

“T1 → T2” and the unrestricted one “(¦T1)→ T2” within a single type theory.

Another way of regarding the problem of exotic terms is that it is caused by

the attempt to give a semantic definition to a primarily syntactic property. A more

15

syntax-oriented approach was used by Barzilay et al. [15, 16, 14]. In Barzilay’s ap-

proach, the quoted version of an operator that introduces a binding has the same

shape (i.e., the number of subterms and the binding structure) as the original one

and the variables (both the binding and the bound occurrences) are unaffected by

the quotation. For instance, the quotation of λx. x is just pλqx. x.

The advantages of this approach include

• This approach is simple and clear.

• Quoted terms have the same structure as original ones, inheriting a lot of prop-

erties of the object syntax.

• In all the above approaches, the α-equivalence relation for quoted terms is inher-

ited “for free.” For example, pλqx. x and pλq y. y are automatically considered

to be the same term.

• Substitution is also easy: we do not need to reimplement the substitution that

renames binding variables to avoid the capture of free variables; we can use the

substitution of the original language instead.

To prune exotic terms, Barzilay says that pλqx. t[x] is a valid term when λx. t[x] is

a substitution function. He demonstrates that it is possible to formalize this notion

in a purely syntactical fashion. In this setting, the general well-formedness rule for

quoted terms with bindings is the following:

is substk {x1, · · · , xk. t[~x]} · · · is substl {z1, · · · , zl. s[~z]}

popq{x1, · · · , xk. t[~x]; · · · ; z1, · · · , zl. s[~z]} ∈ Term
(2.2)

where is substn {x1, · · · , xn. t[~x]} is the proposition that t is a substitution function

over variables x1, . . . , xn (in other words, it is a syntactic version of the Valid predi-

cate of [25, 24]). This proposition is defined syntactically by the following two rules:

is substn {x1, · · · , xn. xi}

16

and

is substn+k {x1, · · · , xn, y1, · · · , yk. t[~x; ~y]}
...

is substn+l {x1, · · · , xn, z1, · · · , zl. s[~x; ~z]}

is substn {x1, · · · , xn. popq{y1, · · · , yk. t[~x; ~y]; · · · ; z1, · · · , zl. s[~x; ~z]}}

In this approach the is substn {} and pλq operators are essentially untyped (in

NuPRL type theory, the computational properties of untyped terms are at the core of

the semantics; types are added on top of the untyped computational system).

Recursive Definition and Structural Induction Principle. A difficulty

shared by both the straightforward implementations of the (Term → Term) → Term

approach and by the Barzilay’s one is the problem of recursively defining the Term

type. We want to define the Term type as the smallest set satisfying rules (2.1)

and (2.2). Note, however, that unlike rule (2.1), rule (2.2) is not monotonic in the

sense that is substk {x1, · · · , xk. t[~x]} depends nonmonotonically on the Term type.

For example, to say whether pλqx. t[x] is a term, we should check whether t is a sub-

stitution function over x. It means at least that for every x in Term, t[x] should be in

Term as well. Thus we need to define the whole type Term before using (2.2), which

produces a logical circle. Moreover, since pλq has type (Term → Term) → Term, it

is hard to formulate the structural induction principle for terms built with the pλq

term constructor.

Variable-Length Lists of Binders. In Barzilay’s approach, for each number

n, is substn {} is considered to be a separate operator—there is no way to quantify

over n, and there is no way to express variable-length lists of binders. This issue

of expressing the unbounded-length lists of binders is common to some of the other

approaches as well.

Metareasoning. Another difficulty that is especially apparent in Barzilay’s ap-

proach is that it only allows reasoning about concrete operators in concrete languages.

This approach does not provide the ability to reason about operators abstractly ; in

particular, there is no way to state and prove metatheorems that quantify over oper-

http://nuprl.org/

17

ators or languages, much less classes of languages.

Although it is possible to solve the problems outlined above (and we will return to

the discussion of some of those solutions in Section 4.9), our desire is to avoid these

difficulties from the start. We propose a natural model of reflection that manages to

work around these difficulties. In the next two chapters, we will show how to give a

simple recursive definition of terms with binding variables, which does not allow the

construction of exotic terms and does allow structural induction on terms.

18

Chapter 3

A Hybrid HOAS/de Bruijn
Representation of the Syntax

As discussed in the previous chapter, representing syntax with bindings is hard. In

the following two chapters, we propose a new approach to reflective metareasoning

about languages with bindings. We present a theory of syntax that:

• in a natural way provides both a higher-order abstract syntax (HOAS) approach

to bindings and a de Bruijn-style approach to bindings, with easy and natural

translation between the two;

• provides a uniform HOAS-style approach to both bound and free variables that

extends naturally to variable-length “vectors” of binders;

• permits metareasoning about languages—in particular, the operators, languages,

open-ended languages, classes of languages etc. are all first-class objects that

can be reasoned about both abstractly and concretely;

• comes with a natural induction principle for syntax that can be parameterized

by the language being used;

• provides a natural mapping between the object syntax and metasyntax that is

free of exotic terms, and allows mapping the object-level substitution operation

directly to the metalevel one (i.e., β-reduction);

• is fully derived in a preexisting type theory in a theorem prover;

19

• is designed to serve as a foundation for a general reflective reasoning framework

in a theorem prover;

• is designed to serve as a foundation for a programming language experimenta-

tion framework.

In this chapter we provide a conceptual overview of our approach; details are given in

the next two chapters. We will show how we deal with concrete operators and abstract

operators, and how we inductively define the type of all well-formed reflected terms.

3.1 Bound Terms

One of the key ideas of our approach is how we deal with terms containing free

variables. We extend to free variables the principle that variable names do not really

matter. In fact, we model free variables as bindings that can be arbitrarily α-renamed.

Namely, we will write bterm{x1, · · · , xn. t[~x]} for a term t over variables x1, . . . , xn.

For example, instead of term xp∗qy we will use the term bterm{x, y. xp∗qy} when it

is considered over variables x and y and bterm{x, y, z. xp∗qy} when it is considered

over variables x, y and z. Free occurrences of xi in t[~x] are considered bound in

bterm{x1, · · · , xn. t[~x]} and two α-equal bterm{} expressions (“bterms”) are consid-

ered to be identical.

Not every bterm is necessarily well-formed. We will define the type of terms in

such a way as to eliminate exotic terms. Consider for example a definition of lambda-

terms.

Example 3.1: Define a set of reflected lambda-terms as the smallest set such that

• bterm{x1, · · · , xn. xi}, where 1 ≤ i ≤ n, is a lambda-term (a variable);

• if bterm{x1, · · · , xn, xn+1. t[~x]} is a lambda-term, then

bterm{x1, · · · , xn. pλqxn+1. t[~x]}

is also a lambda-term (an abstraction);

20

• if bterm{x1, · · · , xn. t1[~x]} and bterm{x1, · · · , xn. t2[~x]} are lambda-terms, then

bterm{x1, · · · , xn. papplyq{t1[~x]; t2[~x]}}

is also a lambda-term (an application).

In a way, bterms could be understood as an explicit coding for Barzilay’s substitution

functions. And indeed, some of the basic definitions are quite similar. The notion of

bterms is also very similar to that of local variable contexts [32].

3.2 Terminology

Before we proceed further, we need to define some terminology.

Definition 3.1: We change the notion of subterm so that the subterms of a bterm

are also bterms. For example, the immediate subterms of bterm{x, y. xp∗qy} are

bterm{x, y. x} and bterm{x, y. y}; the immediate subterm of bterm{x. pλqy. x} is

bterm{x, y. x}.

Definition 3.2: We call the number of outer binders in a bterm expression its bind-

ing depth. Namely, the binding depth of the bterm bterm{x1, · · · , xn. t[~x]} is n.

Definition 3.3: Throughout the rest of the thesis we use the notion of operator

shape. The shape of an operator is a list of natural numbers each stating how many

new binders the operator introduces on the corresponding subterm. The length of the

shape list is therefore the arity of the operator. For example, the shape of the +

operator is [0; 0] and the shape of the λ operator is [1].

The mapping from operators to shapes is also sometimes called a binding signature

of a language [32,54].

Definition 3.4: Let h be a shape of [d1; · · · ; dN], and let l be a list of bterms [b1; · · · ; bM].

We say that l is compatible with h at depth n when

21

1. N = M ;

2. the binding depth of bterm bj is n + dj for each 1 ≤ j ≤ N .

3.3 Abstract Operators

Expressions of the form bterm{~x. popq{· · · }} can only be used to express syntax with

concrete operators. In other words, each expression of this form contains a specific

constant operator popq. However, we would like to reason about operators abstractly;

in particular, we want to make it possible to have variables of some type “O” that

can be quantified over and used in the same manner as operator constants. In order

to address this we use explicit term constructors in addition to bterm{~x. popq{· · · }}

constants.

The expression B{n; “popq”; btl}, where “popq” is some encoding of the quoted

operator popq, stands for a bterm with binding depth n, operator popq and subterms

btl. Namely,

B{n; popq; bterm{x1, · · · , xn, ~y1. t1[~x; ~y1]} :: · · · ::

bterm{x1, · · · , xn, ~yk. tk[~x; ~yk]} :: nil}

is

bterm{x1, · · · , xn. popq{~y1. t1[~x; ~y1]; · · · ; ~yk. tk[~x; ~yk]}} .

Here, nil is the empty list and :: is the right-associative list cons operator and

therefore the expression b1 :: · · · :: bn :: nil represents the concrete list [b1; · · · ; bn].

Note that if we know the shape of the operator op and we know that the B

expression is well-formed (or, more specifically, if we know that btl is compatible with

the shape of op at depth n), then it would normally be possible to deduce the value

of n (since n is the difference between the binding depth of any element of the list btl

and the corresponding element of the shape(op) list). There are two reasons, however,

for supplying n explicitly:

• When btl is empty (in other words, when the arity of op is 0), the value of n

cannot be deduced this way and still needs to be supplied somehow. One could

22

consider 0-arity operators to be a special case, but this results in a significant

loss of uniformity.

• When we do not know whether a B expression is necessarily well-formed (and

as we will see it is often useful to allow this to happen), then a lot of definitions

and proofs are greatly simplified when the binding depth of B expressions is

explicitly specified.

Using the B constructor and a few other similar constructors that will be introduced

later, it becomes easy to reason abstractly about operators. Indeed, the second ar-

gument to B can now be an arbitrary expression, not just a constant. This has a

cost of making certain definitions slightly more complicated. For example, the notion

of “compatible with sh at depth n” now becomes an important part of the theory

and will need to be explicitly formalized. However, this is a small price to pay for

the ability to reason abstractly about operators, which easily extends to reasoning

abstractly about languages, classes of languages and so forth.

3.4 Inductively Defining the Type of Well-Formed

Bterms

There are two equivalent approaches to inductively defining the general type (set) of

all well-formed bterms. The first one follows the same idea as in Example 3.1:

• bterm{x1, · · · , xn. xi} is a well-formed bterm for 1 ≤ i ≤ n;

• B{n; op; btl} is a well-formed bterm when op is a well-formed quoted operator

and btl is a list of well-formed bterms that is compatible with the shape of op

at some depth n.

If we denote bterm{x1, · · · , xl, y, z1, · · · , zr. y} as V{l; r}, we can restate the base case

of the above definition as “V{l; r}, where l and r are arbitrary natural numbers, is a

well-formed bterm.” Once we do this it becomes apparent that the above definition

23

has a lot of similarities with de Bruijn-style indexing of variables [23]. Indeed, one

might call the numbers l and r the left and right indices of the variable V{l; r}.

It is possible to provide an alternate definition that is equivalent to the definition

above, but is closer to pure HOAS. We define the following terms.

• λbx. t[x], where t is a well-formed substitution function, is a well-formed bterm

(the λb operation increases the binding depth of t by one by adding x to the

beginning of the list of t’s outer binders).

• T{op; btl}, where op is a well-formed quoted operator, and btl is a list of well-

formed bterms that is compatible with the shape of op at depth 0, is a well-

formed bterm (of binding depth 0).

Other than better capturing the idea of HOAS, the latter definition also makes it

easier to express the reflective correspondence between the metasyntax (the syntax

used to express the theory of syntax, namely the one that includes the operators B,

λb, etc.) and the meta-metasyntax (the syntax that is used to express the theory

of syntax and the underlying theory, in other words, the syntax that includes the

second-order notations.) Namely, provided that we define the subst{bt; t} operation

to compute the result of substituting a closed term t for the first outer binder of the

bterm bt, we can state that

subst{λbx. t1[x]; t2} ↔ t1[t2] (3.1)

where t1 and t2 are literal second-order variables, and↔ is the computational equality

relation1. In other words, we can state that the substitution operator subst and the

implicit second-order substitution in the “meta-metalanguage” are equivalent.

The downside of the alternate definition is that it requires defining the notion of

“being a substitution function.”

1Computational equality means that when a↔ b is true, a may be replaced with b in an arbitrary
context. Examples include beta-reduction λx. t[x] y ↔ t[y], arithmetical equalities (1 + 2↔ 3), and
definitional equality (an abstraction is considered to be computationally equal to its definition).

24

3.5 Our Approach

In our work we combine the advantages of both approaches outlined above. In the next

chapter we present a theory that includes both the HOAS-style operations (λb, T) and

the de Bruijn-style ones (V, B). Our theory also allows deriving the equivalence (3.1).

In our theory the definition of the basic syntactic operations is based on the HOAS-

style operators; however, the recursive definition of the type of well-formed syntax

is based on the de Bruijn-style operations. Our theory also includes support for

variable-length lists of binders.

25

Chapter 4

Formal Implementation of the
Syntax in a Theorem Prover

In the following two chapters we describe how the syntax theory is formally defined

and derived in the NuPRL-style Computational Type Theory in the MetaPRL Theorem

Prover. In this chapter we develop the representation for simple terms, and then we

extend it to sequent judgments in the next chapter. For brevity, we will present a

slightly simplified version of our implementation; full details are available in [42].

4.1 Computations and Types

In our work we make heavy usage of the fact that our type theory allows us to define

computations without stating upfront (or even knowing) what the relevant types are.

In NuPRL-style type theories (which some even dubbed “untyped type theory”), one

may define arbitrary recursive functions (even potentially nonterminating ones). Only

when proving that such function belongs to a particular type, one may have to prove

termination. See Allen [5, 6] for a semantics that justifies this approach.

The formal definition of the syntax of terms consists of two parts:

• The definition of untyped term constructors and term operations, which in-

cludes both HOAS-style operations and de Bruijn-style operations. We can

establish most of the reduction properties without explicitly giving types to all

the operations.

http://nuprl.org/
http://metaprl.org/
http://nuprl.org/

26

• The definition of the type of terms. We will define the type of terms as the

type that contains all terms that can be legitimately constructed by the term

constructors.

4.2 HOAS Representation

At the core of our term syntax definition are two basic HOAS-style constructors.

• λbx. t[x] is meant to represent a quoted term with a free variable x. The intended

semantics (which will not become explicit until later) is that λbx. t[x] will only

be considered well-formed when t is a substitution function.

Internally, λbx. t[x] is implemented simply as the left injection1 of a lambda

abstraction.

λbx. t[x] := inl{λx. t[x]}

This definition is abstract and is used only to prove the properties of the two

destructors presented below; it is never used outside of this section (Section 4.2).

• T{op; ts} represents a closed quoted term (i.e., a bterm of binding depth 0) with

operator op and the list of subterms ts. It will be considered well-formed when

op is an operator and ts is a list of terms that is compatible with the shape of

op at depth 0. For example, T{pλq; [λbx. x]} is pλx. xq.

Internally, T{op; ts} is implemented as the right injection of a pair of the oper-

ator and the list of subterms.

T{op; ts} := inr{〈op, ts〉}

Again, this definition is never used outside of this section.

1The left injection of a, inl{a}, is an element of some union type A ∪ B, if a has type A.
Similarly, the right injection of b, inr{b}, is also an element of A ∪ B, if b has type B. The
decide {x; y. t1[y]; z. t2[z]} term decides the handedness of the term x in A∪B, for which we usually
use its pretty form “matchx with inl{y} → t1[y] | inr{z} → t2[z].”

27

We also implement two destructors:

• subst{bt; t} (with shorthand bt@t) is meant to represent the result of substituting

term t for the first variable of the bterm bt. Internally, subst{bt; t} is defined as

subst{bt; t} := match bt with

| inl{f} → f t

| inr{〈o, s〉} → •

where the symbol • is used to denote a dummy or error term. That is, a

substitution is defined only for binders.

We derive the following property of this substitution operation:

(λbx. t1[x])@t2 ↔ t1[t2]

where ↔ is the computational equality relation and t1 and t2 are completely

arbitrary, perhaps even ill-typed. This derivation is the only place where the

internal definition of subst{bt; t} is used.

Note that the above equality is exactly the “reflective property of substitution”

(3.1) that was one of the design goals for our theory.

• weak dest {bt; bcase; op, ts.mkt case[op; ts]} is the destructor designed to provide

a way to find out whether bt is a λb term or a T{op; ts} term and to “extract”

the op and ts in the latter case. In the rest of this thesis we will use the “pretty-

printed” form for weak dest—“match bt with λb → bcase | T{op; ts} →

28

r ::= x first-order variables
| z[r1; · · · ; rn] second-order meta-variables
| T{popq; [r1; · · · ; rn]} reflected terms
| λbx. r binding
| Γrp`qr reflected sequents

Γr ::= q1; · · · ; qn reflected sequent contexts
q ::= X[r1; · · · ; rn] context meta-variables
| x : r hypothesis binding

Figure 4.1: Reflected terms in HOAS form

mkt case[op; ts].” We also derive the following properties of weak dest:

matchλbx. t[x] with

λb → bcase

| T{op; ts} → mkt case[op; ts]

↔ bcase

matchT{op; ts} with

λb → bcase

| T{o; t} → mkt case[o; t]

↔ mkt case[op; ts]

Figure 4.1 shows the set of term representatives that are used to represent re-

flected terms in HOAS form. This includes the usual first-order, second-order, and

context variables. It also includes the two new term representatives we introduced:

T{popq; [r1; · · · ; rn]} which represents a reflected term with operator op and subterms

r1, . . . , rn, and λbx. r which introduces bindings.

Sequents are shown in Figure 4.1 for reference. However, quoted sequents are

treated as noncanonical forms. That is, sequents are eliminated from the representa-

tion through an appropriate coding, as will be discussed in Chapter 6.

29

4.3 Vector HOAS Operations

As we have mentioned at the end of Chapter 2, some approaches to reasoning about

syntax make it hard or even impossible to express arbitrary-length lists of binders. In

our approach, we address this challenge by allowing operators where a single binding

in the metalanguage stands for a list of object-level bindings. In particular, we allow

representing λbx1. λbx2. · · · . λbxn. t[x1; . . . ; xn] as vbnd{n; x. t[nth{x; 1}; . . . ; nth{x; n}]},

where “nth{l; i}” is the “ith element of the list l” function.

We define the following vector-style operations:

• vbnd{n; x. t[x]} represents a “telescope” of nested λb operations. It is defined

by induction2 on the natural number n as follows:

vbnd{0; x. t[x]} := t[nil]

vbnd{n + 1; x. t[x]} := λbv. vbnd{n; x. t[v :: x]}

We also introduce vbnd{n; t} as a simplified notation for vbnd{n; x. t} when t

does not have free occurrences of x.

• vsubst{bt; ts} is a “vector” substitution operation that is meant to represent the

result of simultaneous substitution of the terms in the ts list for the first |ts|

variables of the bterm bt (here |l| is the length of the list l). It is defined by

induction on the list ts as follows:

vsubst{bt; nil} := bt

vsubst{bt; t :: ts} := vsubst{bt@t; ts}

2Our presentation of the inductive definitions is slightly simplified by omitting some minor tech-
nical details. See Appendix B for complete details.

30

Below are some of the derived properties of these operations:3

λbv. t[v]↔ vbnd{1; l. hd(l)} (4.1)

∀m,n ∈ N.
(
vbnd{m + n; x. t[x]} ↔ vbnd{m; y. vbnd{n; z.t[y } z]}}

)
(4.2)

∀l ∈ List. (vsubst{vbnd{|l|; v. t[v]}; l} ↔ t[l]) (4.3)

∀l ∈ List. ∀n ∈ N.
(
n ≥ |l| ⇒

(vsubst{vbnd{n; v. t[v]}; l} ↔ vbnd{n− |l|; v. t[l } v]})
) (4.4)

∀n ∈ N.
(
vbnd{n; l. vsubst{vbnd{n; v. t[v]}; l}} ↔ vbnd{n; l. t[l]}

)
(4.5)

where “hd” is the list “head” operation, “}” is the list append operation, “List”

is the type of arbitrary lists (the elements of a list do not have to belong to any

particular type), N is the type of natural numbers, and all the variables that are not

explicitly constrained to a specific type stand for arbitrary expressions.

Equivalence (4.2) allows the merging and splitting of vector bind operations.

Equivalence (4.3) is a vector variant of equivalence (3.1). Equivalence (4.5) is very

similar to equivalence (4.3) applied in the vbnd{n; l. · · ·} context, except that (4.5)

does not require l to be a member of any special type.

4.4 de Bruijn Representation

As mentioned in the introduction, defining an induction principle for the HOAS rep-

resentation can be difficult. The issue is how to deal with bindings. In this section we

develop a de Bruijn representation that is computationally equivalent to the HOAS

representation. This will then lead us to a type definition and induction principle.

The de Bruijn representation introduces two new constructors based on the HOAS

constructors defined in the previous two sections.

• The term V{l; r} represents a variable; the natural number l is called the left

3Note that all the proofs of these properties are carried out formally in the MetaPRL system.
The complete list of theorems we derived can be found online at [42].

http://metaprl.org/

31

binding index, and r the right binding index. It is defined as

V{l; r} := vbnd{l; λbv. vbnd{r; v}} .

We can see that this definition indeed corresponds to the informal

bterm{x1, · · · , xl, y, z1, · · · , zr. y} definition given in Section 3.4. A variable acts

as a selector, with the following equivalence.

V{l; r}@t1@ · · ·@tl+1@ · · ·@tl+r+1 ↔ tl+1

We can derive the following equivalences for variables.

λbx. V{l; r} ↔ V{l + 1; r}

V{0; r}@t ↔ t

V{l + 1; r}@t ↔ V{l; r}

• The term B{n; op; ts} is called a bound term. It is meant to compute a bterm of

binding depth n, with operator op, and with ts as its subterms. This operation

is defined by induction on natural number n as follows.

B{0; op; ts} := T{op; ts}

B{n + 1; op; ts} := λbv. B{n; op; map λt. t@v ts}

Informally,

B{n; op; [s1; · · · ; sm]} ↔ λbx1. · · · . λbxn. T{op; [s1@x1@ · · ·@xn;

· · · ;

sm@x1@ · · ·@xn]}.

The two commutativity properties below indicate the computational behavior

32

of the bound terms.

B{n + 1; op; [s1; · · · ; sm]}@r ↔ B{n; op; [s1@r; · · · ; sm@r]}

(subst-commutes)

λbx. B{n; op; [s1[x]; · · · ; sm[x]]} ↔ B{n + 1; op; [λbx. s1[x]; · · · ; λbx. sm[x]]}

(bind-commutes)

The subst-commutes property indicates that to substitute into a bound term,

the substitution should be applied to each of the subterms. Note that an outer

binder is removed as well.

The bind-commutes property defines the conversion to de Bruijn representation,

which is obtained by “pushing” all binds inward as far as possible. For example,

consider the following term fragment, shown first in informal HOAS notation.

pλz.match z with inl{x} → x | inr{y} → zq

To write it formally, we choose the operator lambda for λ, and decide for match,

which gives the following concrete representation.

plambda {z. decide{z; x. x; y. z}}q

By definition of T{; ,} we obtain the following term in HOAS form, with binders

in the expected positions.

T{plambdaq; [λbz. T{pdecideq; [z; λbx. x; λby. z]}]}

This term is equivalent to the following term in de Bruijn form by definitions

of B{; a; n}d V{;,} with the binder pushed inwards.

B{0; plambdaq; [B{1; pdecideq; [V{0; 0}; V{1; 0}; V{0; 1}]}]}

33

The above HOAS and de Bruijn forms are computationally equivalent. In a

metalogic like computational type theory, where computational equivalence is

a congruence, the two forms are formally equivalent in all contexts and can

be interchanged at will. The HOAS form corresponds closely to the original

expression, while the de Bruijn form is variable free.

de Bruijn-style Destructors

We also define a number of de Bruijn-style destructors, i.e., operations that compute

various de Bruijn-style characteristics of a bterm. Since the V and B constructors

are defined in terms of the HOAS constructors, the destructors have to be defined

in terms of HOAS operations as well. Because of this, these definitions are often far

from straightforward.

It is important to emphasize that the tricky definitions that we use here are only

needed to establish the basic properties of the operations we defined. Once the basic

theory is complete, we can raise the level of abstraction and no usage of this theory

will ever require using any of these definitions, being aware of these definitions, or

performing similar tricks again.

• bdepth{t} computes the binding depth of term t. It is defined recursively using

the Y combinator.

Y

λf. λb. match b with

λb → 1 + f (b@T{ptrueq; nil})

| T{ ; } → 0

t

In effect, this recursive function strips the outer binders from a bterm one by

one using substitution (note that here we can use an arbitrary T expression as a

second argument for the substitution function; the arguments to T do not have

to have the “correct” type) and counts the number of times it needs to do this

before the outermost T is exposed.

34

Informally,

bdepth{t} := match t with

| inl{f} → bdepth{f •}+ 1

| inr{〈o, s〉} → 0.

We derive the following properties of bdepth.

∀l, r ∈ N. (bdepth{V{l; r}} ↔ (l + r + 1))

∀n ∈ N. (bdepth{B{n; op; ts}} ↔ n)

Note that the latter equivalence only requires n to have the “correct” type, while

op and ts may be arbitrary. Since the bdepth operator is needed for defining the

type of well-formed bterms, at this point we are not yet able to express what

the “correct” type for ts would be.

• left{t} is designed to compute the “left index” of a V expression. It is defined

as

Y

λf. λb. λn. match b with

λb → 1 + f (b@T{n; nil}) (n + 1)

| T{n′; } → n′

t 0.

In effect, this recursive function substitutes T{0; nil} for the first binding of t,

T{1; nil} for the second one, T{2; nil} for the next one, and so forth. Once

all the binders are stripped and a T{n; nil} is exposed, n is the index we were

looking for. Note that here we intentionally supply T with an argument of a

“wrong” type (N instead of the operator type); we could have avoided this, but

then the definition would have been significantly more complicated.

As expected, we derive that

∀l, r ∈ N. (left{V{l; r}} ↔ l) .

35

• right{t} computes the “right index” of a V expression. It is trivial to define in

terms of the previous two operators.

right{t} := bdepth{t} − left{t} − 1

• subterms{t} is designed to recover the last argument of a B expression. The

definition is rather technical and complicated. We first define the number of

subterms of a term.

num subterms{t} := Y

λf. λb. match b with

λb → f (b@T{ptrueq; nil})

| T{ ; l} → |l|

t

Then we compute the nth subterm of a term.

nth subterm{t; n} := Y

λf. λb. match b with

λb → λbv. f (b@v)

| T{ ; l} → nth{l; n}

t

The definition for subterms of a term follows trivially.

subterms{t} := lof{i. nth subterm{t; i}; num subterms{t}}

where

lof{i. f [i]; n} := [f [0]; · · · ; f [n− 1]]

The main property of the subterms operation that we derive is

∀n ∈ N. ∀ts ∈ List.

(subterms{B{n; op; ts}} ↔ map (λb. vbnd{n; v. vsubst{b; v}}) ts) .

36

The right-hand side of this equivalence is not quite the plain “ts” that one

might have hoped to see here. However, when ts is a list of bterms with binding

depths at least n, which is necessarily the case for any well-formed B{n; op; ts},

equivalence (4.5) will allow simplifying this right-hand side to the desired ts.

• getop{t; op} is an operation such that

∀n ∈ N. (getop{B{n; op; ts}; op′} ↔ op)

and ∀l, r ∈ N. (getop{V{l; r}; op} ↔ op) .

Its definition is similar to that of left{}.

• isvar{t} decides whether a bterm is a V or a B. It is defined as

isvar{t} := getop{t; ptrueq} 6= getop{t; pfalseq}.

• dest bterm {t; l, r. vcase[l; r]; d, op, ts. op case[d; op; ts]} is designed to extract all

the components of the de Bruijn-like representation of a bterm. In the rest of

this thesis we will use the “pretty-printed” form for dest bterm—“match t with

V{l; r} → vcase[l; r] | B{d; op; ts} → op case[d; op; ts]”. It is defined as

if isvar{t} then vcase[left{t} ; right{t}]

else op case[bdepth{t}; getop{t; •}; subterms{t}].

It should be noted that the de Bruijn representatives V{n; m} and B{n; o; s} and the

corresponding destructors are defined in terms of the HOAS operations. They do not

add any additional properties that were not already provable in the metalogic—in

other words, the extension is conservative. In our implementation, all equivalences

have been formally verified.

37

4.5 Operators

The type O of operators is defined abstractly. We only require that operators have

decidable equality and that there exist a function of type O → N list that computes

operators’ shapes. The term shape{op} represents a list of natural numbers specifying

the binding arities of the corresponding subterms. The following are some examples.

shape{plambdaq} = [1]

shape{pletq} = [0; 1]

shape{paddq} = [0; 0]

shape{pdecideq} = [0; 1; 1]

4.6 The Type of Reflected Terms

Naturally, since we wish to reason about programs in type theory, we should give a

type that specifies the collection of reflected terms. For this we rely on the function

image type, originated by Nogin and Kopylov [46]. The image type has the form

Img{A; x. f [x]} where f [x] is an arbitrary function, A is its domain, and the type

includes exactly those terms f [a] for each a ∈ A.

While it would be straightforward to define a type containing all de Bruijn-style

terms, we plan to be a bit more careful and include only those where the binding

depths are “sensible.” For example, suppose our language contains a term called let

with the expected form.

pletx = t1 in t2[x]q

↔

plet {t1; x. t2[x]}q

↔

T{pletq; [pt1q; λbx. pt2[x]q]}

38

Type definitions
dom{T} := N ∗ N + (Σn : N. Σo : O. {s : T list | compatible{n; shape{o}; s}})4

f(t) := match t with inl{〈n,m〉} → V{n; m} | inr{〈n, o, s〉} → B{n; o; s}

T0 := void
Ti+1 := Img{dom{Ti}; x. f(x)}

BTerm :=
⋃

i∈N
Ti

Depth compatibility
compatible{n; s; t} := ∀i ∈L {0..|t| − 1} . bdepth{nth{t; i}} = n + nth{s; i}5

Figure 4.2: Definition of the type BTerm

The first equivalence holds because “let x = t1 in t2[x]” is just the pretty-printed form

of “let {t1; x. t2[x]}.” In this case, the term T{pletq; [pt1q; λbx. pt2[x]q]} makes sense

only if the subterm λbx. pt2[x]q contains exactly one more binder than the subterm

pt1q. In other words, for any reflected term B{n; pletq; [r1; r2]} we require that the

binding depths are well-formed.

bdepth{r1} = n

bdepth{r2} = n + 1

We define the type BTerm of reflected terms in Figure 4.2. In this formulation,

the function f(t) produces a variable or bound term in de Bruijn form. The type Ti

represents a quoted term tree with maximal subterm depth i. Finally, the desired

type BTerm is the type of all term trees with finite depth; it contains all expressions

of the forms:

• V{i; j} for all natural numbers i, j; and

4The dependent product Σx : A. B[x] is a space of pairs where A is a type, and B[x] is a family
of types indexed by x ∈ A. The elements of the product space are the pairs 〈a, b〉, where a ∈ A and
b ∈ B[a].

5∀x ∈L l. T [x] represents that for each element x of the list l, T [x] holds. Similarly, ∃x ∈L l. T [x]
defines the existential quantifier for lists.

39

• B{n; op; ts} for any natural number n, operator op, and list of terms ts that is

compatible with shape{op} at depth n.

We derive the intended introduction rules for the BTerm type:

i ∈ N j ∈ N

V{i; j} ∈ BTerm
,

n ∈ N op ∈ O ts ∈ BTerm list compatible{n; shape{op}; ts}

B{n; op; ts} ∈ BTerm
.

Also, the structural induction principle is derived for the BTerm type. Namely,

we show that to prove that some property P [t] holds for any reflected term t, it is

sufficient to prove

• (base case) P holds for all variables, that is, P [V{i; j}] holds for all natural

numbers i and j;

• (induction step) P [B{n; op; ts}] is true for any natural number n, any operator

op, and any list of reflected terms ts that is compatible with shape{op} at depth

n, provided P [t] is true for all elements t of the list ts.

Note that the type of “terms over n variables” (where n = 0 corresponds to closed

terms) may be trivially defined using the BTerm type and the “subset” type constructor—

{t : BTerm | bdepth{t} = n}.

4.7 Exotic Terms and Decidability

Further discussion is in order here. First, we should note that what we call the

“HOAS” representation is in fact a very restricted form of HOAS, where the Img{·; ·}

type constructor is used to restrict the function spaces. For instance, consider the

standard HOAS representation of a universal quantifier ∀x : t1. t2[x]. In traditional

HOAS, this might be represented with a term constructor taking two arguments.

∀ : Type→ (Term→ Prop)→ Prop

40

There are two potential problems with this representation. First, how should

alpha-equality of terms be defined? Strictly speaking, the second argument to a ∀

term is a function. Since function equality is undecidable in general, if alpha-equality

is to be computable, this cannot be an arbitrary function as we normally think of

it! Second, if the function is unrestricted, the issue of exotic terms arises as we have

mentioned in Chapter 2, where the function analyzes the structure of its argument

inappropriately.

The approach taken in LF to the first problem is to syntactically restrict the

function space by disallowing term destructors. In LF the λ terms are strongly nor-

malizable and alpha-equality is therefore decidable. In LF, exotic terms are simply

not expressible.

Our approach is similar, but also somewhat different. Our HOAS allows us to

express exotic terms, however since the BTerm type is formalized as the image of the

de Bruijn representation (and the formalization does not refer to function spaces), the

exotic terms are left out and the BTerm type is restricted to only those HOAS-style

expressions that are not exotic.

Theorem 4.1: The type BTerm contains only those terms that have a de Bruijn

representation.

Proof: The induction principle (Section 4.6), which was mechanically checked, es-

tablishes that the only terms in BTerm are V{n; m} and B{n; o; s}. ¥

Corollary 4.1: The type BTerm does not contain exotic terms.

For example, consider the following exotic term, for some arbitrary fixed term t.

λbx. λby. if x = t then x else y

This term is in canonical form, but it does not have type BTerm because it is not

computationally equivalent to any V{n; m} or B{n; o; s}.

Similarly, the mechanically-checked introduction rules for the BTerm type [42] es-

tablish that all the terms that have a de Bruijn representation belong to this type. For

41

those HOAS-style expressions that are members of the BTerm type, the corresponding

de Bruijn representation is computable and therefore the alpha-equality is decidable

(as it can be reduced to straightforward comparisons of de Bruijn representations).

4.8 A Small Example

To illustrate the utility of the de Bruijn representation, let us write a simple function

to compute the free variables of a term (as might be used in closure conversion

for example). That is, suppose we have a term t with binding depth n. In the

HOAS representation, this term is computationally equivalent to a term of the form

t = λbx1. · · · . λbxn. r, and we wish to determine which of the variables x1, . . . , xn are

free in r.

Now suppose we work directly with the HOAS representation. Calculating the free

variables seems simple enough. First, we choose two distinct terms r1 6= r2. Then, xi

occurs free in r iff the substitutions are not equal r[r1/xi] 6=α r[r2/xi].
6 This leads

to the following definition.

fvHOAS(t) =

i | r @r1@ · · ·@r1

︸ ︷︷ ︸

i

6=α r @r1@ · · ·@r1
︸ ︷︷ ︸

i−1

@r2

However, this definition is somewhat unsatisfying. It involves n substitutions and

n equality tests. Most of all, it does not conform to the kind of näıve model we would

expect, where the term is traversed in the usual way. In contrast, the de Bruijn

destructor representation allows the more näıve algorithm.

In the following program, S is the set of free variables, t is the term being analyzed,

and fold is the list fold function that calls fvdB for each of the terms in the list l. The

key part is the variable case, where the variable is added if its index i is less than n,

6We write =α to emphasize that this is the expected alpha-equality. Since this is HOAS, this
is just term equality =. As mentioned in the previous chapter, the decidability of term equality in
general depends on the definition of the HOAS representation.

42

which indicates that the variable is free.

fvdB(S, t) = match t with

| V{i; j} → if i < n then S ∪ {i} else S

| B{n; o; l} → fold fvdB S l

We claim that the de Bruijn-style computation fvdB is clearer than the correspond-

ing HOAS computation fvHOAS. It has a more straightforward computational flavor,

and is perhaps somewhat easier to reason about. Of course, there is no magic here.

The two functions are extensionally equivalent. Furthermore, since the de Bruijn

representation is defined in terms of HOAS, it merely codifies a style of computation

that is reducible to operations on the HOAS.

4.9 Related Work

In Chapter 2 we have already discussed a number of approaches that we consider

ourselves inheriting from. Here we would like to revisit some of them and mention a

few other related efforts.

Our work has a lot in common with the HOAS implemented in Coq by Despeyroux

and Hirschowitz [25]. In both cases, the more general space of terms (which include

the exotic ones) is later restricted in a recursive manner. In both cases, the higher-

order analogs of first-order de Bruijn operators are defined and used as a part of

the “well-formedness” specification for the terms. Despeyroux and Hirschowitz use

functions over infinite lists of variables to define open terms, which is similar to our

vector bindings.

There are a number of significant differences as well. Our approach is sufficiently

syntactical, which allows eliminating all exotic terms, even those that are extension-

ally equal to the well-formed ones, while the more semantic approach of [25, 24] has

to accept such exotic terms (their solution to this problem is to consider an object

term to be represented by the whole equivalence class of extensionally equal terms);

http://coq.inria.fr/

43

more generally while [25] states that “this problem of extensionality is recurrent all

over our work,” most of our lemmas establish identity and not just equality, thus

avoiding most of the issues of extensional equality. In our implementation, the sub-

stitution on object terms is mapped directly to β-reduction, while Despeyroux, Felty,

and Hirschowitz [24] have to define it recursively. In addition, we provide a uniform

approach to both free and bound variables that naturally extends to variable-length

“vector” bindings.

While our approach is quite different from the modal λ-calculus one [28, 26, 27],

there are some similarities in the intuition behind it. Despeyroux, Pfenning, and

Schürmann [28] says “Intuitively, we interpret ¤B as the type of closed objects of

type B. We can iterate or distinguish cases over closed objects, since all constructors

are statically known and can be provided for.” The intuition behind our approach

is in part based on the canonical model of the NuPRL type theory [5, 6], where each

type is mapped to an equivalence relations over the closed terms of that type.

Gordon and Melham [37] define the type of λ-terms as a quotient of the type

of terms with concrete binding variables over α-equivalence. Michael Norrish [47]

builds upon this work by replacing certain variable “freshness” requirements with

variable “swapping.” This approach has a number of attractive properties; however,

we believe that the level of abstraction provided by the HOAS-style approaches makes

the HOAS style more convenient and accessible.

Ambler, Crole, and Momigliano [8] have combined the HOAS with the induction

principle using an approach which in some sense is opposite to ours. Namely, they

define the HOAS operators on top of the de Bruijn definition of terms using higher

order pattern matching. In a later work [9] they have described the notion of “terms-

in-infinite-context” which is quite similar to our approach to vector binding. While

our vector bindings presented in Section 4.3 are finite length, the exact same approach

would work for the infinite-length “vectors” as well.

http://nuprl.org/

44

Chapter 5

The HOAS Representation
Function

The representation function p·q defines a quotation translation that produces a quoted

form of its argument. To be clear, the quotation p·q is terminology we use in this

paper to describe the translation; it is not a part of any of the formal logics (F, M,

P). It is important that p·q be total, where · can range over all the constructs of a

formal logic, including rules, theorems, terms, etc.

The definition of the representation function is shown in Figure 5.1. The parts

of interest are the quotations for concrete terms, sequents, and inference rules. The

quoted representation of a concrete term, pop{b1; · · · ; bn}q, produces a new term with

a quoted name popq, and the quotation is carried out recursively on the subterms

pb1q; · · · ; pbnq. The quotation of a sequent, pΓ ` tq, is similar. For sequents, the

“turnstile operator” is quoted, and the parts are quoted recursively.

The quotation of bound terms introduces a binder, written λbx. t, that represents

each binding in quoted form. Note that the binding variable itself is unchanged; the

variable is preserved as a binding, but each binding is explicitly coded as a λb.

As we can see, the representation function preserves the structure of the term,

including variables, meta variables, and binding structure. This makes it possible to

preserve a one-to-one correspondence between proofs in an original logic P and its

reflected logic pPq.

Finally, the quotation of an inference rule, pt1 −→ · · · −→ tnq becomes a state-

45

Terms
ptq : pxq = x

pz[t1; · · · ; tn]q = z[pt1q; · · · ; ptnq]
pΓ ` tq = pΓq p`q ptq
pop{b1; · · · ; bn}q = T{popq; [pb1q; · · · ; pbnq]}

pbq : px1, · · · , xn. tq = λbx1. · · · . λbxn. ptq

Sequent contexts
pΓq : ph1; · · · ; hnq = ph1q; · · · ; phnq

phq : px : tq = x : ptq
pX[t1; · · · ; tn]q = X[pt1q; · · · ; ptnq]

Rules and logics
pPq : pR1; · · · ; Rnq = pR1q; · · · ; pRnq

pRq : pt1 −→ · · · −→ tnq = (Z ` ¤Ppt1q) −→ · · · −→ (Z ` ¤Pptnq)

Figure 5.1: The definition of the representation function

ment about provability (Z ` ¤Ppt1q) −→ · · · −→ (Z ` ¤Pptnq). The context variable

Z is fresh, and each sequent (Z ` ¤Pptiq) is a judgment in the metalogic M about

provability in P. As we will see in Chapter 7, ¤?(·) is a specific binary predicate

defined in metalogic M using the standard definitional mechanisms provided by the

logical framework F.

Informally, the reflected form of the rule states that if each premise t1, . . . , tn−1 is

provable in logic P, then so is tn. A key goal is that the reflected rule pRq must be

automatically derivable from the definition of P. For clarity, when reasoning about a

single logic we will normally omit the subscript ¤P and simply write ¤.

Returning to our example, the quoted form of the substitution lemma (1.1) is as

follows, where we write s p∈q t for pmemberq{s; t}.

Z ` ¤(X; x : z3; Y p`q z1[x] p∈q z2) −→

Z ` ¤(X; Y p`q z0 p∈q z3) −→

Z ` ¤(X; Y p`q z1[z0] p∈q z2)

(5.1)

The operators have been quoted (in this case p`q and p∈q), and the theorem is

46

now a statement about provability expressed in the metalogic as Z ` ¤ · · · . Only the

operator names have been changed, otherwise the structure, including variables and

binding, has not changed.

For an example with binding, consider the rule for universal-introduction, shown

below with the translated version. In this case, the binder x is translated to a meta

binder with λb.

pX; x : z1 ` z2[x] −→ X ` ∀x : z1.z2[x]q

=

Z ` ¤(X; x : z1 p`q z2[x]) −→ Z ` ¤(X p`q p∀q{z1; λbx. z2[x]})

In the next two chapters, we will show how to represent rules in detail and discuss

about proof reflection.

47

Chapter 6

Sequent Representation

So far, we have delayed the discussion of the sequent representation. Other than

formalizing the syntax, our goal is to mechanize the reasoning, which means we also

need to represent inference rules and proofs, and for this purpose we must be able to

represent sequents first. We want to reduce the sequent representation to the terms

that already exist.

6.1 Sequent Context Induction

The issue is that arbitrary sequents, especially those that are used to define judgments

in the programming language P, usually include context variables. For example,

consider a rule that might be used to define typing of a lambda abstraction.

p
X; x : A ` z[x] ∈ B

X ` λx : A. z[x] ∈ A→ B
lambda-introq

=

Z ` ¤(X; x : A p`q z[x] p∈q B)
Z ` ¤(X p`q (pλq x : A. z[x]) p∈q (Ap→qB))

plambda-introq

Here, X and Z are sequent context variables, A, B, and z[x] are second-order vari-

ables, and x is a first-order variable. In general, sequent context variables are bindings,

sequent contexts are not terms, and they cannot be modeled directly in the object

logic. How can we reduce a sequent with a context variable to canonical form?

Since the framework metalogic we are using (the MetaPRL metalogic) does not

http://metaprl.org/

48

include context quantifiers, one option is to add them and use them in the proof-

checking predicate. However, this is undesirable in part because the framework’s

metalogic would become extremely expressive and powerful, but also because the

extension is perilous and difficult to get right.

Instead, Hickey extends the framework’s metalogic with a weak theory of sequent

context induction called teleportation. The central logical property is that contexts

are finite and inductively defined. Note that this represents a strengthening of the

metalogic by effectively including Peano arithmetic.

Teleportation. The concept behind teleportation is fairly simple. Since contexts

are inductively defined, contexts can be “migrated” from one point in a judgment to

another. Scoping must be preserved, including context variable scoping, but beyond

that the migration locations are unconstrained. The teleportation rule simply states

that in order to be able to teleport the whole context at once, we only need to be

able to migrate it one hypothesis at a time.

To formalize this more precisely, we introduce the notion of teleportation con-

texts, written R[[Γ]], which represents a term or a rule with exactly one occurrence

of the context Γ. We will use the symbol ε to denote the empty context. These

definitions are for presentation purposes; they are not part of the metalogic. Telepor-

tation is specified using a pair of nested teleportation contexts, which we will write as

F [[·; G[[·]]]]. Here F [[Γ; G[[∆]]]] must be a rule that has exactly one occurrence of each

of the Γ, ∆ and G; in addition G must be in the scope of Γ.

The simplest teleportation rule hoists the context from G to F .

(base) F [[ε; G[[X]]]]

(step) F [[X; G[[x : t; Y [x]]]]] −→ F [[X; x : t; G[[Y [x]]]]]

F [[X; G[[ε]]]]

The teleportation rules are added as new primitive rules in our system. The

conservativity theorem for sequent schema [45], which states that the language of

meta variables is a conservative extension of the meta-theory, can be extended to

49

include teleportation rules. The central observation here is that for any particular

finite concrete context Γ, any proof using the teleportation rules can be transformed

into a proof without teleportation by posing a finite sequence of lemmas, one for each

of the intermediate steps.

A simple example. The best way to understand teleportation is through exam-

ples. For a fairly natural one, consider the problem of context exchange. Suppose a

logic has the structural exchange rule for hypotheses.

X1; y : t2; x : t1; X2[x; y] ` t3[x; y]

X1; x : t1; y : t2; X2[x; y] ` t3[x; y]

We wish to derive the context-exchange property.

X1; Z2; Z1; X2 ` t

X1; Z1; Z2; X2 ` t

The proof in this case can be posed as a nested induction. To begin, we propose

to migrate Z1 right. To apply the teleportation rule, for each occurrence of a context

variable Γ on which we wish to perform induction, we specify a teleportation target,

written as •Γ. In the example of context exchange, the annotated rule is written as

follows.
X1; Z2; Z1; •Z1

; X2 ` t

X1; Z1; Z2; •Z1
; X2 ` t

In the goal clause, the target •Z1
specifies that Z1 is to be shifted right across Z2; in

the premises, Z1 is shifted in place. The induction produces a base case

X1; Z2; Z1; X2 ` t

X1; Z2; Z1; X2 ` t
,

which is trivial, as well as a step case

X1; Z2; Z1; X2 ` t X1; S; Z2; x : A; T [x]; X2[x] ` t[x]

X1; S; x : A; Z2; T [x]; X2[x] ` t[x]
.

50

The step case follows from the hypothesis migration lemma below.

X1; Z; x : A; X2[x] ` t[x]

X1; x : A; Z; X2[x] ` t[x]

We prove it by migrating Z past the hypothesis x : A. Here is the annotated rule for

the lemma.
X1; •Z ; Z; x : A; X2[x] ` t[x]

X1; •Z ; x : A; Z; X2[x] ` t[x]

The base case is trivial. The step case,

X1; Z; x : A; X2[x] ` t[x] X1; S; y : B; x : A; T [y]; X2[y; x] ` t[y; x]

X1; S; x : A; y : B; T [y]; X2[y; x] ` t[y; x]
,

follows directly from the hypothesis exchange rule.

6.2 Computation on Sequent Terms

The sequent induction scheme also introduces a sequent induction combinator for

computation over a sequent context. The sequent ind{x, y.step[x; y]; s} performs

computation over a sequent term s. The reduction rules for sequent computation are

as follows.

sequent ind{x, y. step[x; y]; (` t)} → t (base)

sequent ind{x, y. step[x; y]; (z : t1; X[z] ` t2[z])} →

step[t1; λz. sequent ind{x, y. step[x; y]; (X[z] ` t2[z])}] (left-reduction)

sequent ind{x, y. step[x; y]; (X; z : t1 ` t2[z])} →

sequent ind{x, y. step[x; y]; (X ` step[t1; λz. t2[z]])} (right-reduction)

To illustrate, suppose we wish to develop a “vector” universal quantifier. That is,

a sequent with the following definition, given that the logic has a “scalar” quantifier

∀x : t1. t2[x].

x1 : t1; · · · ; xn : tn `∀ tn+1 := ∀x1 : t1, · · · , xn : tn. tn+1

51

The definition is implemented in terms of sequent induction.

Γ `∀ t := sequent ind{x, y.∀z : x. (y z); (Γ ` t)}

We get the following reductions.

`∀ t → t

x : t1; X[x] `∀ t2[x] → ∀x : t1. (X[x] `∀ t2[x])

X; x : t1 `∀ t2[x] → X `∀ (∀x : t1. t2[x])

The simple introduction rule can be derived directly.

Z; x : t1 ` (X[x] `∀ t2[x])

Z ` (x : t1; X[x] `∀ t2[x])
(vall-intro-single)

Furthermore, a general introduction rule is also derivable using the teleportation rules.

Z; X ` t

Z ` (X `∀ t)
(vall-intro)

Using similar methods, it is possible to define a logic of vector operators, quantifiers,

and a vector lambda calculus.

Note that in these rules, the variable X is a context variable, and the rules are

valid for any instance of X.

6.3 Computing Canonical Sequent Representations

With this new tool in hand, let us return to the topic of reflection, where the issue was

that we need to reduce the reflected sequents (with context variables) to canonical

representations.

At this point, the plan is conceptually easy. There are two parts. First, we develop

a canonical representation of concrete sequents without context variables. For the

second part, we define a (formal) function that computes the canonical representation

52

from the noncanonical form that includes context variables.

The first part is an issue of coding, where the goal is to define a representation that

preserves the structure of concrete sequents. We choose the following representation,

where pλHqx : t1. t2 is a quoted term that represents a hypothesis, its binding, and

the rest of the sequent; and pconclq{t} represents the conclusion of the sequent.

x1 : t1; · · · xn : tnp`qtn+1 := pλHqx1 : t1. · · · .pλHqxn : tn. pconclq{tn+1}

where

pλHqx1 : t1. t2 := T{phlambdaq; [t1; λbx. t2]}

pconclq{t} := T{pconclq; [t]}

For the second part, we define a function over arbitrary quoted sequents using

sequent ind that computes the canonical representation from its noncanonical form.

This function, written `B, is defined as follows.

X `B t := sequent ind{x, y. pλHqz : x. (y z); (X ` pconclq{t})}

Using this definition, the representation of a reflected rule is computed using `B

in place of p`q. The original reflected form of a rule

R = (Γ1 ` t1) −→ · · · −→ (Γn ` tn)

is

pRq = (Z ` ¤(pΓ1q p`q pt1q)) −→ · · · −→ (Z ` ¤(pΓnq p`q ptnq)).

Using the noncanonical forms, the new representation is

pRq = (Z ` ¤(pΓ1q `B pt1q)) −→ · · · −→ (Z ` ¤(pΓnq `B ptnq)).

53

For example, the reflection form of the lambda-typing rule is as follows.

Z ` ¤(X; x : A `B z[x] p∈q B)

Z ` ¤(X `B (pλq x : A. z[x]) p∈q (Ap→qB))
plambda-introq

The right-hand side will be proved by first reducing the `B sequents to canoni-

cal form. Note that contexts and context variables are not terms, and so it remains

impossible to quantify over them directly. However, the reduced form of a noncanon-

ical `B sequent with context variables does contain sequent subterms with context

variables. With teleportation it is possible to show that these embedded terms are

well-defined.

Note that occurrences of `B represent actual sequents, and a sequent X `B t has

the type BTerm when X ` t is a proper sequent. Since the reflection translation p·q

preserves variables, including context variables and bindings, the reflected form of the

rule has the same binding structure as the original rule in the programming language

P. In fact, the reflected rule is in a form that can be used directly as a proof step in

the reflected logic pPq, and there is a one-to-one correspondence from proof steps in

P to proof steps in pPq. Furthermore, as we discuss in the next chapter, the reflected

rules (such as plambda-introq) are automatically derivable in the metalogic M.

54

Chapter 7

Proof Reflection

As mentioned earlier, reflection contains two main parts: representing the syntax,

and mechanizing the reasoning. Heretofore we have postponed the treatment of the

provability predicate ¤P t, in which t is the quotation of a formula provable in logic

P. In fact, a concept we have glossed over is the truth of reflected rules—if logic P

defines a rule R, the truth of pRq does not follow axiomatically. It must be proved,

and the proof relies on the definition of the provability predicate. For the most part,

this definition is a coding problem where the objective is to construct a formal data

structure that corresponds exactly to the legal derivations/proof trees. To define

provability properly, we take the following steps.

• First, for each rule R ∈ P, we define a proof checking predicate that specifies

whether a proof step is a valid application of rule R.

• Next, we define the (legal) derivations to be the proof trees where each proof

step in the tree is validated by some rule R ∈ P.

• A formula t is provable in logic P if, and only if, there is a derivation with root

t.

The usual properties hold: proof checking is decidable, provability is not decidable in

general.

55

7.1 Proof Checking

A logic P is an ordered list of inference rules R1, . . . , Rm. A proof is a tree of inferences,

and it is legal only if each proof step corresponds to an inference using some rule Ri.

A proof step is a node in the proof tree that corresponds to a concrete inference

t1 −→ · · · −→ tn−1 −→ tn. We call the terms t1, . . . , tn−1 the premises, and the term

tn the goal.

In general, a rule R defines a schema, where each second-order meta variable

stands for a term, and each context meta variable stands for a context. A concrete

proof step is a valid inference of a rule R iff for each second-order meta variable in

R there is an actual term, and for each context meta variable in R there is an actual

context, such that the concrete inference is an instance of the rule.

Let us state this more formally. The arity of a meta variable is the number of its

arguments, so a variable z[t1; · · · ; tn] has arity n. Let BTerm{i} be the type of quoted

terms of arity i, corresponding to the space of substitution functions BTermi → BTerm.

Similarly, let Context{i} be the type of contexts of arity i (the contexts correspond

to lists of quoted terms).

Consider a rule R with free second-order variables xj1
1 , · · · , xjn

n and free context

variables X i1
1 , · · · , X im

m , where the superscripts ik and jk indicate the arities of the

variables.1 Then a concrete inference r is a valid instance of rule R iff the following

holds.

∃xj1
1 : BTerm{j1}, · · · , x

jn

n : BTerm{jn}.

∃X i1
1 : Context{i1}, · · · , X

im
m : Context{im}.

r = R ∈ ProofStep

(7.1)

That is, the concrete inference r is equal to an instance of rule R. The type ProofStep

is the type of proof steps, defined as BTerm list × BTerm, containing the pairs

〈premises, goal〉. In our MetaPRL implementation, each premise/goal is a reflected

sequent; as stated in Chapter 6, it has type BTerm.

For the purposes of proof checking, the existential witnesses are assembled into

1In a setting where context variables are treated as binders, the variable arities are expressions
that depend on the lengths |Xk|.

http://metaprl.org/

56

a proof witness term, and passed as explicit arguments to the checker. A proof

witness is defined to be an element of the Witness type, which in turn is defined as

BTerm list× Context list.

Returning to the example of the substitution lemma (5.1), the corresponding proof

checker is defined as follows, where r is the concrete proof step to be checked.

checks{subst lemma; r; 〈[z1; z2; z3; z0], [X; Y]〉} =

r =

〈

[(X; x : z3; Y `B z1[x] p∈q z2); (X; Y `B z0 p∈q z3)],

(X; Y `B z1[z0] p∈q z2)

〉

∈ ProofStep
(7.2)

Note that we use `B instead of p`q in the subst lemma above; as mentioned in

Chapter 6, this is the canonical representation of sequents.

In general, the “rule checker” predicate checks{R; r; w} takes three arguments,

where R is a rule, r ∈ ProofStep is a concrete inference, and w ∈ Witness is the

witness for the rule instantiation. Given a logic P with rules R1, . . . , Rn, a proof step

is valid iff it is an instance of one of the rules in the logic.

checksP{r; w} := ∃R ∈P [R1; · · · ; Rn]. checks{R; r; w}

Since proof step equality is decidable, and each logic has a finite number of rules, the

checksP{r; w} predicate is decidable as well.

7.2 Derivations and Provability

Now that we have defined proof step checking, the next part is to define the valid

derivations, or proof trees. For this chapter, we will assume we are referring to a

specific logic P, using the proof-checking predicate checksP for logic P.

The type D of all derivations is defined inductively in the usual way. A derivation

is a finite tree of proof steps; the derivation is valid iff each proof step is valid. The

derivations are defined inductively over the length of the derivation. There are no

derivations of length 0, and a derivation of length i has a goal term and a list of

57

derivation premises, in the following form, where Di is the type of derivations of

length at most i, and each premise di−1

j has length at most i− 1.

Di 3
di−1

1 · · · di−1

n

t

Given a derivation d, we define goal{d} to be the goal term of d. Extending this to

lists, we define goal{[d1; · · · ; dn]} to be the list of goal terms for derivations d1, . . . , dn.

The type Di of derivations of length at most i can be defined formally as follows,

where void is the empty type. The type D of all derivations is the union of all

derivations of finite length.

D0 := void

Di+1 := Σpremises : Di list. Σgoal term : BTerm. Σwitness : Witness.

checksP{〈goal{premises}, goal term〉 ;witness}

D :=
⋃

i∈N

Di (7.3)

This definition also allows us to prove an induction principle, which will form the

basis for proof induction.

∀P. ((∀premises : D list. ∀g : BTerm. ∀w : Witness.

(checksP {〈goal{premises}, g〉 ; w}

⇒ ∀p ∈L premises. P [p]

⇒ P [〈premises, g, w〉]))

⇒ ∀d : D. P [d])

At this point, the definition of the provability predicate ¤ t is straightforward. A

quoted term t is provable iff there is a derivation where t is the goal term.

¤ t := ∃d : D. (goal{d} = t ∈ BTerm)

58

7.3 Proof Reflection and Automation

One important consequence of structure preservation is that proofs can be reflected

as well.

Lemma 7.1: The refinement relation for rules [45] is preserved when reflected. Specif-

ically, let R be a rule, and σ be a refinement of R (by second-order and context sub-

stitution), producing R′. The following diagram is commutative for an appropriate

refinement σ′.

R
σ
−→ R′

↓ ↓

pRq
σ′

−→ pR′q

Proof: Define σ′ to be the reflected form of σ. Namely, for each substitution in

σ, define a corresponding substitution in σ′, where each term operator is reflected.

Because the p·q mapping preserves binding and free variable structure, σ ′ will be a

valid refinement function [45]. By construction, σ′(pRq) is pR′q. ¥

Lemma 7.2: If P defines an axiom R, the reflected form of R, pRq, is a theorem in

the metalogic M.

Proof: Suppose R is an axiom with premises t1, . . . , tn−1, and goal tn.

R = t1 −→ · · · −→ tn−1 −→ tn

As mentioned in chapters 5 and 6, its reflected form is as below.

pRq = (Z ` ¤(pΓ1q `B pt1q)) −→ · · · −→ (Z ` ¤(pΓnq `B ptnq))

The definition of the provability predicate says that there is a derivation with root

pΓiq `B ptiq for all i = 1..n, which means there is a finite tree of valid proof steps.

Each valid proof step is an instance of one of the inference rules in the logic. As

59

T1

T21 T22

R1

R2

T31 T32 T33

R3

R4 R5 R6

Original logic P

automatic−−−−−−−−→

¤pT1q

¤pT21q ¤pT22q

pR1q

pR2q

¤pT31q ¤pT32q ¤pT33q

pR3q

pR4q pR5q pR6q

Metalogic M

Figure 7.1: An example proof tree and its reflected form: ¤pT1q is proved automatically

pointed out by Nogin and Hickey [45], this implies that Γi ` ti is provable in P. This

holds for all i = 1..n, so pRq is true in M. ¥

Theorem 7.1: When reflected, the derived rules in P are automatically derivable in

the metalogic M.

Proof: Consider a proof in the original logic P of some theorem T1. In a foundational

prover, the proof is expressed as a tree of inferences that can be linearized to a finite

sequence of rule applications R1, R2, . . . , Rm, which means after applying rule R1, T1

produces subgoals T21, T22, . . . , T2j and the subgoals are then proved sequentially by

rule applications R2, . . . , Rm. See Figure 7.1 for an example proof tree of T1, where

after applying R1 we get T21 and T22. T21 is proved by applying R2, and T22 by

R3, . . . , R6.

By definition, the reflected rule pT1q has the same structure as T1. Lemma 7.2

states that pR1q is a derived theorem in M. If we apply pR1q on pT1q, by Lemma 7.1,

we will get a series of subgoals pT21q, pT22q, . . . , pT2jq, which are the structure-

preserved reflected forms of T21, T22, . . . , T2j (see Figure 7.1). The proof of this the-

orem follows immediately by induction on the depth of the proof tree. The proof

60

of pT1q is a one-to-one map of the original theorem, using reflected justifications in

place of the original. That is, the reflected proof is pR1q, pR2q, . . . , pRmq. ¥

While this might seem quite straightforward, the important property here is that

the prover internals do not need to be reflected. It is not necessary to formalize the

inference mechanics of the theorem prover, because the original mechanism works

without change in the reflected theory.

Proof automation is similar. Again, in a foundational prover,2 each run of heuristic

or decision procedure is justified by a sequence of inferences R1, R2, . . . The existing

automation may be used for reasoning in the reflected logic, provided that rule selec-

tion for reflected proofs uses the reflected rules rather than the original ones.

7.4 Proof Induction

Up to this point, we have presented a structure-preserving representation function, a

mechanism for formalizing reflected logics, and a procedure for deriving reflected prov-

ability rules. This system is already powerful enough to express and prove metaprop-

erties over reflected systems. However, it remains impractical. There is a piece

missing, namely induction on the provability predicate ¤ t.

What exactly is the induction principle for provability? Suppose we wish to prove

a theorem of the form ¤ x ⇒ P [x], where x is a variable, and P is a predicate on

quoted terms. Since x is provable, that means that there is a derivation with root x,

and we can apply induction on the length of the derivation.

Now, for illustration, assume that the logic P contains three rules, P = [t11; t21 −→

2It is not clear to us whether a similar mechanism might work for non-foundational provers (those
with “trusted” decision procedures).

61

t22; t31 −→ t32 −→ t33]. Then the induction form has the following shape.

(rule sketch)

Γ;¤ t11 ` P [t11]

Γ;¤ t21;¤ t22; P [t21] ` P [t22]

Γ;¤ t31;¤ t32;¤ t33; P [t31]; P [t32] ` P [t33]

Γ;¤ x ` P [x]

However, this rule is not quite right. The issue is that the terms tij will, in

general, contain meta variables, and the meta variables must be separately universally

quantified for each induction case.

As mentioned in Chapter 6, explicit quantification of meta variables is not ex-

pressible in our metalogic FMetaPRL. However, here it is acceptable to use object-

quantifiers provided by the metatheory MCTT. There is no appreciable effect on proof

automation as long as the first-order form is compatible with the automatically gen-

erated reflected rules. The correct form of the rule explicitly quantifies over the meta

variables, reusing the mechanism for generating the proof-checking rules. For the

current example, we introduce explicit quantifiers. In this case we write tij[~X] to rep-

resent a term that may contain any of the variable ~X but is otherwise free of context

variables.

Γ; ~X : Context;¤ t11[~X] ` P [t11[~X]]

Γ; ~X : Context;¤ t21[~X];¤ t22[~X]; P [t21[~X]] ` P [t22[~X]]

Γ; ~X : Context;¤ t31[~X];¤ t32[~X];¤ t33[~X]; P [t31[~X]]; P [t32[~X]] ` P [t33[~X]]

Γ;¤ x ` P [x]

In our implementation, we generate a variant of this rule that allows for induction

over terms, not just variables. This is done by introducing a “shared” term u that

establishes a connection between the provable term t and the predicate P . The actual

theorem has the form Γ; u : t1;¤ t2[u] ` P [t3[u]], where u is the shared part. The new

form is derivable from the previous case for provability on variables, and is stated

http://metaprl.org/

62

below.

∀P. ∀t2. ((∀v : t1. ∀premises : BTerm list. ∀w : Witness.

(checksP{(premises, t2[v]); w}

⇒ ∀p ∈L premises. ¤ p

⇒ ∀p ∈L premises. ∀w : t1. (t2[w] = p⇒ P [w])

⇒ P [v]))

⇒ ∀u : t1. (¤ t2[u]⇒ P [u]))

This mechanism establishes the principle of proof induction. The principle of

structural induction is reducible to proof induction by specifying the syntax of a

language as a logic of type checking, as will be discussed in Section 8.4.

7.5 Preliminary Discussion

At this point, all the pieces are in place. We have defined

1. the type BTerm of reflected terms,

2. the reflection function p·q,

3. the provability predicate ¤ r (for r ∈ BTerm), and

4. we have derived a proof induction principle.

The following are the key steps when using this methodology.

• To reason about a specific programming language P:

1. Formalize the syntax and axioms/typing rules R1, . . . , Rn as a primitive

logic P in the framework F.

2. State any relevant theorems R′
1, . . . , R

′
m of interest in P. Prove those that

do not require metatheoretical reasoning.

63

3. Instruct the framework to reflect the logic P. The framework will create a

subtheory pPq of the metalogic M having the following parts,

– a definition of ¤P,

– inference rules pR1q, . . . , pRnq,

– theorem statements pR′
1q, . . . , pR

′
mq,

– a proof induction principle for ¤P r, where r is a reflected formula in

pPq.

• The following are proved automatically by the framework:

– Each inference rule pRiq is derived as a theorem of M.

– The induction principle is derived as theorem of M.

– Any proofs of the theorems R′
1, . . . , R

′
m are reflected to form the proofs of

pR′
1q, . . . , pR

′
mq.

3

• At no point are new axioms added to F and M; the subtheory pPq is fully

derived.

As we have mentioned, the structure of terms and rules is preserved by the transfor-

mation pPq. The practical consequence is that reasoning in the original logic P maps

directly to reasoning in the reflected logic pPq; any approach to constructing a proof

of the theorem R′
i in P equally applies to proving pR′

iq in pPq.

If a theorem R′
i is not proved in P, the framework will state the corresponding pR′

iq

as a theorem to be proved in the reflected logic pPq by the user. The reflected logic

pPq affords an induction principle, and in addition permits the use of quantifiers from

M that are not available in P. These two properties together enable the statement

(and proof) of metatheoretical principles that could not be proved in P itself. Such

metatheoretical principles can then be used in the proof of pR′
iq.

It should be noted that this is only a fragment of reflection—we do not add a

reflection rule ¤ptq⇒ t. Any metatheorem that is proved in pPq remains a fact solely

3This step is mechanical, but in our implementation it is not yet complete.

64

of pPq; the original theory P remains open and unconstrained. While a reflection rule

could be added as a new axiom to F, we believe it is unnecessary and that the

consequent strengthening of the framework logic F is undesirable and dangerous.

65

Chapter 8

An Example: F
<:

To illustrate reflection in practice, we have formalized an initial part of the program-

ming language/type system F<:, as defined by the POPLmark challenge. This work

(as well as the reflection mechanism that has been discussed), is implemented in the

MetaPRL logical framework. In this system, the framework logic F is the logic of

sequent-schema [45], which is essentially a logic of second-order Horn formulas; the

metalogic M is Computational Type Theory [42], a variant of Martin-Löf type theory.

Following the methodology described in the previous chapter, the first step is to

define PF
<:

as a primitive logic in F. This immediately brings us to the issue of

syntax and representation. In most textbook accounts, the syntax of a logic receives

little discussion; the syntax is frequently described with a context-free grammar, and

then dismissed so that the discussion can proceed to more interesting issues. In a

formal account, the process cannot be dismissed, and in fact is quite important, as it

provides the basis for structural induction.

8.1 Defining the Syntax of F<:

The syntax of F<: is shown in Figure 8.1 in the usual textbook form as well as in the

concrete syntax for defining the terms of a logic in MetaPRL. The textbook form is

standard. The MetaPRL form introduces each term as a declaration. The “typeclass”

declarations, such as declare typeclass Ty, define classes of syntax (this should not

be confused with the word typeclass as it is used in Haskell or other languages; the

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/

66

Syntax in textbook form Raw syntax for PF
<:

(in MetaPRL)

t ::= Types declare typeclass Ty
| Top the maximal type declare Top: Ty
| t1 → t2 function space declare TyFun{t1: Ty; t2: Ty}: Ty
| ∀X <: t1. t2[X] universal type declare TyAll{t1: Ty; X: Ty. t2[X]: Ty}: Ty

e ::= Expresssions declare typeclass Exp
| λx : t. e[x] functions declare lambda{t: Ty; x: Exp. e[x]: Exp}: Exp
| e1 e2 applications declare apply{e1: Exp; e2: Exp}: Exp
| ΛX <: t. e[X] type abstraction declare Lambda{t: Ty; X: Ty. e[X]: Exp}: Exp
| e[[t]] type application declare Apply{e: Exp; t: Ty}: Exp

P ::= Propositions declare typeclass Prop
| e ∈ t type membership declare member{e: Exp; t: Ty}: Prop
| t1 <: t2 subtyping declare subtype{t1: Ty; t2: Ty}: Prop

J ::= Γ ` P Judgments declare typeclass Judgment

Γ ::= h1; · · · ; hn sequent contexts declare sequent {
h ::= x : t value assumption | Exp: Ty

| X <: t type assumption | Ty: TyBound
>- Prop}: Judgment

Figure 8.1: The syntax of F<:, in textbook form and in the concrete syntax for P

67

meaning here is simply that the term Ty denotes a syntactic collection of terms). The

term declarations are in a restricted form of HOAS. For example, the declaration

TyFun{t1: Ty; t2: Ty}: Ty specifies that the term TyFun represents a type (Ty) with

two subterms, both of which must be types. The declaration TyAll{t1: Ty; X: Ty.

t2[X]: Ty}: Ty is similar, but it introduces a binding X, and the subterm t2[X] must

be a type if X is a type.

Sequent declarations introduce a new issue. In F<:, sequent hypotheses have two

forms, one that introduces an expression binder, and another that introduces a type

binder. For example, in the F<: sequent X <: Top; x : X ` x ∈ X, the variable X has

type Ty, and x has type Exp. The corresponding MetaPRL declaration includes the

two cases. As a technicality, the MetaPRL framework logic F includes only a single

binding form, so we introduce a new term BoundedBy{t: Ty}: TyBound. The F<:

hypothesis X <: Top takes the form X: BoundedBy{Top}.

8.2 Reflected Syntax

When reflected, a formula t ∈ PF
<:

becomes a formula ptq ∈ BTerm. However,

we should be careful here, because the transformation ptq is defined over many more

terms than those in PF
<:

. For example, we have plambda{Top; x.Top}q ∈ BTerm even

though lambda{Top; x.Top} is not a well-formed formula of F<:. The type BTerm

includes all the reflected formulas; what is needed is to define subtypes BTermC where

C is a syntactic class (for example BTermTy).

However, näıve definitions of BTermC quickly run aground. For example, suppose

we wish to define the type BTermTy using a type-theoretic form of set comprehension

BTermTy := {t : BTerm | isty{t}},

where isty : BTerm→ B is a predicate and isty{t} is true iff t is a term that represents

http://metaprl.org/
http://metaprl.org/

68

a type in F<:. The pseudocode is as follows.

isty{t} = match t with

| Top→ true

| TyFun{t1; t2} → isty{t1} ∧ isty{t2}

| TyAll{t1; x.t2[x]} → isty{t1} ∧ ∀x : BTermTy. isty{t2[x]}

However, the final clause for TyAll includes a quantification over BTermTy, so the type

definition must at least be recursive. Furthermore the occurrence is negative; this

approach is unlikely to work. In fact, this kind of negativity is just an instance of the

general problem of naming in formal metatheory.

However, there is a simple and easy way out, which is to define the syntax as

a logic. That is, each term declaration is viewed as a syntactical judgment. We

introduce a syntactical judgment `M (we call it a “metatype” judgment) that defines

syntactic well-formedness. Some examples are shown in Figure 8.2. The syntax

rules are expressed in prereflected form. For the most part, these rules are entirely

straightforward. Each declaration defines a corresponding type-checking rule in the

logic `M . Sequent declarations result in two or more type-checking rules, where there

is one rule for each of the kinds of hypotheses in the sequent.

If we wish, we can now give a formal definition to the type BTermTy as follows.

BTermTy := {t : BTerm | ¤ (`M t ∈M Ty)}

Note however that this type includes only the closed terms t. For this reason, in our

implementation, we use the predicate ¤ (ΓM `M t ∈M Ty) directly.

8.3 The F<: Logic

We now proceed to define the logical (as opposed to syntax) rules of the F<: type

system. The rules themselves are standard, we show a small fragment in Figure 8.3.

69

Syntax judgments Rules
JM ::= ΓM `M t ∈M C syntax judgment
ΓM ::= x1 : C1; · · · ; xn : Cn syntax contexts

ΓM ; x : C; ∆M [x] `M x ∈M C

Syntax declaration Syntax judgments

TyAll{t1: Ty; X: Ty; t2[X]: Ty}: Ty
ΓM `M t1 ∈M Ty ΓM ; X : Ty `M t2[X] ∈M Ty
ΓM `M TyAll{t1: Ty; X: Ty; t2[x]: Ty} ∈M Ty

lambda{t: Ty; x: Exp; e[x]: Exp}: Exp
ΓM `M t ∈M Ty ΓM ; x : Exp `M e[x] ∈M Exp

ΓM `M lambda{t: Ty; x: Exp; e[x]: Exp} ∈M Exp

sequent{Exp: Ty | Ty: TyBound ` Prop}: Judgment

ΓM `M P ∈M Prop
ΓM `M (` P) ∈M Judgment

ΓM `M t ∈M Ty
ΓM ; x : Exp `M (Y [x] ` P [x]) ∈M Judgment
ΓM `M (x : t; Y [x] ` P [x]) ∈M Judgment

ΓM `M t ∈M TyBound
ΓM ; x : Ty `M (Y [x] ` P [x]) ∈M Judgment
ΓM `M (x : t; Y [x] ` P [x]) ∈M Judgment

Figure 8.2: A fragment of the syntax judgments

Here, the letters e, s, S, and T stand for second-order meta variables. As before,

hypothesis x : BoundedBy{t} represents the form x <: t.

The remainder of the logic now proceeds much as it did for the syntax. When

reflected, the rules define a logic of provability in pPq. The reflected sublogic pPq

enables reasoning both by structural induction (based on the syntax rules) and proof

induction (based on the logical rules), and the user can draw on either principle as

need be.

Textbook notation Concrete representation in MetaPRL

x ∈ dom{Γ}
Γ ` x <: x

sa tvar
prim sa tvar :

X; x : BoundedBy{t}; Y [x] ` subtype{x; x}

Γ; x <: S ` e ∈ T
Γ ` Λx <: S. e ∈ ∀x <: S. T

t tabs
prim t tabs :

X; x : BoundedBy{S} ` member{e[x]; T [x]}
X ` member{Lambda{S; x.e[x]}; TyAll{S; x.T [x]}}

Figure 8.3: A fragment of logical rules from F<:

70

One point to note is that some metaproperties are expressible in the original

logic, and it is usually desirable to do so in these cases. For example, the property of

reflexivity of subtyping is expressible (though not provable) in the original logic, as a

theorem of the following form.

Γ ` t <: t

When reflected in the context of the F<: syntax, we require that the theorem be

a valid judgment of the logic FF
<:

, and the theorem takes the form

(¤`M (Γ p`q t <: t) ∈M pJudgmentq)⇒ (¤ (Γ p`q t p<:q t)),

where quotations have been added in the appropriate places by the reflection mech-

anism.

8.4 Structural Induction

Since the syntax is expressed as a type-checking logic, structural induction reduces to

proof induction. That is, a type-checking judgment has the form ¤ (ΓM p`Mq ptq p∈Mq pCq),

for some term t and syntax class C. Induction on the provability yields the possible

cases for the term t.

To illustrate, suppose we wish to prove reflexivity of subtyping. The proof pro-

ceeds as follows. For clarity, we have omitted occurrences of the quotation symbol

p·q; it should be understood that every non-variable term is quoted.

• ¤ (`M (Γ ` x <: x) ∈M Judgment)⇒ ¤ (Γ ` x <: x)

This is the goal to be proved. We forward chain, using the assumption as

follows.

– ¤ (`M (Γ ` x <: x) ∈M Judgment)

This is the assumption. Proof induction on the Judgment judgment leads

to the following fact, where the bΓc denotes the reduction of the context

Γ to a syntactic context with hypotheses of the form x : C.

71

– ¤ (bΓc `M (x <: x) ∈M Prop)

From the declaration for subtype, we can infer from (x <: x) that x is a

type by proof induction.

– ¤ (bΓc `M x ∈M Ty)

• We now perform structural induction on ¤ (bΓc `M x ∈M Ty), to obtain the

following subgoals. By assumption (bΓc `M x ∈M Ty) has a proof, and that

proof must end with one of the Ty rules, so x is either a variable or one of Top,

TyFun, or TyAll.

– ¤ (Γ; x <: T ; ∆[x] ` x <: x)

– ¤ (Γ ` Top <: Top)

– ¤ (bΓc `M t1 ∈M Ty)⇒ ¤ (Γ ` t1 <: t1)⇒

¤ (bΓc `M t2 ∈M Ty)⇒ ¤ (Γ ` t2 <: t2)⇒

¤ (Γ ` (t1 → t2) <: (t1 → t2))

– ¤ (bΓc `M t1 ∈M Ty)⇒ ¤ (Γ ` t1 <: t1)⇒

¤ (bΓc; x : Ty `M t2[x] ∈M Ty)⇒

¤ (Γ; x <: Top ` t2[x] <: t2[x])⇒

¤ (Γ ` (∀x <: t1. t2[x]) <: (∀x <: t1. t2[x]))

Each of these subgoals is now provable from the rules in pF<:q.

In other cases, the metatheorems are not expressible in the original logic. For ex-

ample, the proof of transitivity of subtyping requires the proof of two properties by

simultaneous induction.

1. If Γ ` t1 <: t2 and Γ ` t2 <: t3, then Γ ` t1 <: t3.

2. If Γ, x <: t2, ∆[x] ` t4[x] <: t5[x] and Γ ` t6 <: t2, then Γ, x <: t6, ∆[x] `

t4[x] <: t5[x].

72

Since the theorem is the simultaneous proof of two rules, it cannot be expressed in

F<:. In the reflected system it simply becomes a conjunction.

(¤Γ ` t1 <: t2)⇒

(¤Γ ` t2 <: t3)⇒

(¤Γ ` t1 <: t3)

∧

(¤Γ, x <: t2, ∆[x] ` t4 <: t5)⇒

(¤Γ ` t6 <: t2)⇒

(¤Γ, x <: t6, ∆[x] ` t4 <: t5)

The proof proceeds in the usual way, by structural induction on t2 [12, Appendix

A].

73

Chapter 9

Discussion and Future Work

The goal of this work is to develop a practical theory of logical reflection. While re-

flection can be defined over many different representations, we believe that a practical

approach requires reusing existing automated methods, and doing so requires that the

structure of a theory be preserved, including variables, meta variables, and bindings.

We presented a structure-preserving representation of syntax and logical terms, using

a hybrid approach of a combined HOAS/de Bruijn representation. Based on a weak

form of sequent context induction called teleportation, we developed a mechanism that

allows reasoning and computation over terms that include sequent context variables.

This led to a formalization of proofs, proof-checkers, and derivations, together with

automated generation of reflected rules and induction forms in the reflected theory.

In some ways, the result seems simple. When a logic is reflected, its presentation

changes only slightly, and the existing reasoning methods and proof procedures con-

tinue to work. The difference is, of course, that reasoning about metaproperties of

the logic becomes possible.

It was important to us that the development of the theory of reflection be accom-

panied by its implementation. This makes it more useful of course, but an additional

reason is that the theory of reflection is rife with paradoxes, and it is easy to fall into

false thinking. While we have tried to simplify the account in this thesis, the actual

formalization was demanding. In Appendix A we show an architectural overview of

the theories we implemented in MetaPRL and in Appendix B we provide a selected

listing of the most important implemented theories. The complete theory listing is

http://metaprl.org/

74

online and freely available [42].

Part of the power of our approach comes from the availability of first-order forms

(including the de Bruijn representation) that are used to build the formal foundations.

The goal, however, is to provide users with a convenient HOAS-based high-level

interface.

This formal framework of reflection provides a general and uniform way to define,

view, and manipulate programming languages, and can be used to develop program-

ming language metatheories. Currently, we are using reflection to develop an account

of the F<: type theory as defined by the POPLmark challenge. Using our environ-

ment for the task of formalization is straightforward; the routine proofs are fully

automated. In addition, for simple proofs, the first-order forms are entirely hidden.

One challenge, however, is to simplify the use of proof induction, which, as discussed

in Section 7.4, relies on the first-order representation, including the metalogic quan-

tifiers. The use of metalogical quantifiers differs from the rest of the account, where

implicit framework quantifiers are used to quantify over second-order and context

variables. The result is that there is a mismatch in representation when induction

is performed, and proofs by induction are overly complicated. We believe that this

can be solved by reformulating the induction rules, and we are currently working on

a solution.

Another area of immediate interest is the issue of evaluation contexts, which are

needed for reasoning about preservation and progress. We believe that the syntactical

definitions used frequently in the literature provide a natural way to define evaluation

contexts, and we are pursuing this line of investigation.

We believe that our results may be generalized to other provers and frameworks.

The non-standard properties of the logical framework that we rely upon are the

following.

1. Programs may be expressed without first giving them a type; in addition, pro-

grams may have more than one type.

2. Computation defines a congruence; any two programs that are computationally

75

(beta) equivalent can be interchanged in any formal context.

3. For reasoning about sequents, a weak induction principle is needed on sequent

context variables.

4. A function image type [46].

76

Bibliography

[1] E. Aaron and S. Allen. Justifying calculational logic by a conventional metalin-

guistic semantics. Technical Report TR99-1771, Cornell University, Ithaca, New

York, Sept. 1999.

[2] W. Aitken and R. L. Constable. Reflecting on NuPRL : Lessons 1–4. Technical

report, Cornell University, Computer Science Department, Ithaca, NY, 1992.

[3] W. Aitken, R. L. Constable, and J. Underwood. Metalogical Frameworks II:

Using reflected decision procedures. Journal of Automated Reasoning, 22(2):171–

221, 1993.

[4] S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The NuPRL open log-

ical environment. In D. McAllester, editor, Proceedings of the 17th International

Conference on Automated Deduction, volume 1831 of Lecture Notes in Artificial

Intelligence, pages 170–176. Springer Verlag, 2000.

[5] S. F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types. In D. Gries,

editor, Proceedings of the 2nd IEEE Symposium on Logic in Computer Science,

pages 215–224. IEEE Computer Society Press, June 1987.

[6] S. F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD

thesis, Cornell University, 1987.

[7] S. F. Allen, R. L. Constable, D. J. Howe, and W. Aitken. The semantics of

reflected proof. In Proceedings of the 5th Symposium on Logic in Computer

Science, pages 95–197. IEEE Computer Society Press, June 1990.

http://nuprl.org/
http://nuprl.org/

77

[8] S. Ambler, R. L. Crole, and A. Momigliano. Combining higher order abstract

syntax with tactical theorem proving and (co)induction. In TPHOLs ’02: Pro-

ceedings of the 15th International Conference on Theorem Proving in Higher

Order Logics, pages 13–30, London, UK, 2002. Springer-Verlag.

[9] S. J. Ambler, R. L. Crole, and A. Momigliano. A definitional approach to prim-

itive recursion over higher order abstract syntax. In Proceedings of the 2003

workshop on Mechanized reasoning about languages with variable binding, pages

1–11. ACM Press, 2003.

[10] S. Artemov. On explicit reflection in theorem proving and formal verification.

In H. Ganzinger, editor, Proceedings of the 16th International Conference on

Automated Deduction, volume 1632 of Lecture Notes in Artificial Intelligence,

pages 267–281, Berlin, July 7–10 1999. Trento, Italy.

[11] S. Artemov. Evidence-based common knowledge. Technical Report TR-2004018,

CUNY Ph.D. Program in Computer Science Technical Reports, Nov. 2004.

[12] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,

P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mech-

anized metatheory for the masses: The POPLmark challenge. Available from

http://www.cis.upenn.edu/group/proj/plclub/mmm/, 2005.

[13] E. Barzilay. Quotation and reflection in NuPRL and Scheme. Technical Report

TR2001-1832, Cornell University, Ithaca, New York, Jan. 2001.

[14] E. Barzilay. Implementing Reflection in NuPRL. PhD thesis, Cornell University,

2006.

[15] E. Barzilay and S. Allen. Reflecting higher-order abstract syntax in NuPRL.

In V. A. Carreño, C. A. Muñoz, and S. Tahar, editors, Theorem Proving in

Higher Order Logics; Track B Proceedings of the 15th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs 2002), Hampton, VA,

August 2002, pages 23–32. National Aeronautics and Space Administration, 2002.

http://www.cis.upenn.edu/group/proj/plclub/mmm/
http://nuprl.org/
http://nuprl.org/
http://nuprl.org/

78

[16] E. Barzilay, S. Allen, and R. Constable. Practical reflection in NuPRL. Short

paper presented at 18th Annual IEEE Symposium on Logic in Computer Science,

June 22–25, Ottawa, Canada, 2003.

[17] J. Cheney. Towards a general theory of names, binding and scope. In Proceedings

of the 2005 workshop on Mechanized reasoning about languages with variable

binding, pages 33–40. ACM Press, 2005.

[18] R. L. Constable. Using reflection to explain and enhance type theory. In

H. Schwichtenberg, editor, Proof and Computation, volume 139 of NATO Ad-

vanced Study Institute, International Summer School held in Marktoberdorf, Ger-

many, July 20–August 1, NATO Series F, pages 65–100. Springer, Berlin, 1994.

[19] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,

R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,

J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the NuPRL Proof

Development System. Prentice-Hall, NJ, 1986.

[20] K. Crary, R. Harper, and M. Ashley-Rollman. POPLmark submission. Available

at http://www.cis.upenn.edu/group/proj/plclub/mmm/submissions.shtml,

2005.

[21] L. Crus-Filipe and F. Weidijk. Hierarchical reflection. In K. Slind, A. Bunker,

and G. Gopalakrishnan, editors, Proceedings of the 17th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of

Lecture Notes in Computer Science, pages 66–81. Springer-Verlag, 2004.

[22] J. Davis and D. Huttenlocher. Shared annotations for cooperative learning. In

Proceedings of the ACM Conference on Computer Supported Cooperative Learn-

ing, Sept. 1995.

[23] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theo-

rem. Indagaciones Mathematische, 34:381–392, 1972. This also appeared in

http://nuprl.org/
http://nuprl.org/
http://www.cis.upenn.edu/group/proj/plclub/mmm/submissions.shtml

79

the Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,

Amsterdam, series A, 75, No. 5.

[24] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in

Coq. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the Inter-

national Conference on Typed Lambda Calculus and its Applications (TLCA’95),

volume 902 of Lecture Notes in Computer Science, pages 124–138. Springer-

Verlag, Apr. 1995. Also appears as INRIA research report RR-2556.

[25] J. Despeyroux and A. Hirschowitz. Higher-order abstract syntax with induc-

tion in Coq. In LPAR ’94: Proceedings of the 5th International Conference

on Logic Programming and Automated Reasoning, volume 822 of Lecture Notes

in Computer Science, pages 159–173. Springer-Verlag, 1994. Also appears as

INRIA research report RR-2292.

[26] J. Despeyroux and P. Leleu. A modal lambda calculus with iteration and case

constructs. In T. Altenkirch, W. Naraschewski, and B. Reus, editors, Types

for Proofs and Programs: International Workshop, TYPES ’98, Kloster Irsee,

Germany, March 1998, volume 1657 of Lecture Notes in Computer Science, pages

47–61, 1999.

[27] J. Despeyroux and P. Leleu. Recursion over objects of functional type. Mathe-

matical Structures in Computer Science, 11(4):555–572, 2001.

[28] J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for higher–

order abstract syntax. In R. Hindley, editor, Proceedings of the Interna-

tional Conference on Typed Lambda Calculus and its Applications (TLCA’97),

volume 1210 of Lecture Notes in Computer Science, pages 147–163, Nancy,

France, Apr. 1997. Springer-Verlag. An extended version is available as

Technical Report CMU-CS-96-172, Carnegie Mellon University.

[29] A. Ehrenfeucht and J. Mycielski. Abbreviating proofs by adding new axioms.

Bulletin of the American Mathematical Society, 77:366–367, 1971.

http://coq.inria.fr/
http://www.inria.fr/rrrt/rr-2556.html
http://coq.inria.fr/
http://www.inria.fr/rrrt/rr-2292.html
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-172.ps.gz

80

[30] M. Fairbairn. POPLmark submission. Available at

http://www.cis.upenn.edu/group/proj/plclub/mmm/submissions.shtml,

2005.

[31] S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van

Heijenoort, editors. Kurt Gödel Collected Works, volume 1. Oxford University

Press, Oxford, Clarendon Press, New York, 1986.

[32] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In

Proceedings of 14th IEEE Symposium on Logic in Computer Science, pages 193–

202. IEEE Computer Society Press, 1999.

[33] H. Geuvers, F. Wiedijk, and J. Zwanenburg. Equational reasoning via partial

reflection. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher

Order Logics: 13th International Conference, TPHOLs 2000, volume 1869 of

Lecture Notes in Computer Science, pages 162–178. Springer-Verlag, 2000.

[34] F. Giunchiglia and A. Smaill. Reflection in constructive and non-constructive

automated reasoning. In H. Abramson and M. H. Rogers, editors, Meta-

Programming in Logic Programming, pages 123–140. MIT Press, Cambridge,

Mass., 1989.

[35] K. Gödel. Über formal unentscheidbare sätze der principia mathematica und

verwandter systeme I. Monatshefte für Mathematik und Physik, 38:173–198,

1931. English version in [58].

[36] K. Gödel. Über die Länge von beweisen. Ergebnisse eines mathematischen Kol-

loquiums, 7:23–24, 1936. English translation in [31], pages 397–399.

[37] A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In J. von Wright,

J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics:

9th International Conference, Turku, Finland, August 1996: Proceedings, volume

1125 of Lecture Notes in Computer Science, pages 173–190. Springer-Verlag,

1996.

http://www.cis.upenn.edu/group/proj/plclub/mmm/submissions.shtml

81

[38] J. Grundy, T. Melham, and J. O’Leary. A reflective functional language for

hardware design and theorem proving. Technical Report PRG-RR-03-16, Oxford

Univerity, Computing Laboratory, 2003.

[39] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal

of the Association for Computing Machinery, 40(1):143–184, Jan. 1993. A revised

and expanded version of the 1987 paper.

[40] J. Harrison. Metatheory and reflection in theorem proving: A survey and critique.

Technical Report CRC-53, SRI International, Cambridge Computer Science Re-

search Centre, Millers Yard, Cambridge, UK, Feb. 1995.

[41] J. Hickey, A. Nogin, R. L. Constable, B. E. Aydemir, E. Barzilay, Y. Bryukhov,

R. Eaton, A. Granicz, A. Kopylov, C. Kreitz, V. N. Krupski, L. Lorigo,

S. Schmitt, C. Witty, and X. Yu. MetaPRL — A modular logical environment. In

D. Basin and B. Wolff, editors, Proceedings of the 16th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs 2003), volume 2758 of

Lecture Notes in Computer Science, pages 287–303. Springer-Verlag, 2003.

[42] J. J. Hickey, B. Aydemir, Y. Bryukhov, A. Kopylov, A. Nogin, and X. Yu. A

listing of MetaPRL theories. http://metaprl.org/theories.pdf.

[43] J. J. Hickey, A. Nogin, A. Kopylov, et al. MetaPRL home page.

http://metaprl.org/.

[44] A. Mostowski. Sentences undecidable in formalized arithmetic: An exposition of

the theory of Kurt Gödel. Amsterdam: North-Holland, 1952.

[45] A. Nogin and J. Hickey. Sequent schema for derived rules. In V. A. Carreño, C. A.

Muñoz, and S. Tahar, editors, Proceedings of the 15th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs 2002), volume 2410 of

Lecture Notes in Computer Science, pages 281–297. Springer-Verlag, 2002.

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/theories.pdf
http://metaprl.org/
http://metaprl.org/

82

[46] A. Nogin and A. Kopylov. Formalizing type operations using the “Image” type

constructor. Submitted to Workshop on Logic, Language, Information and Com-

putation (WoLLIC), 2006.

[47] M. Norrish. Recursive function definition for types with binders. In K. Slind,

A. Bunker, and G. Gopalakrishnan, editors, Proceedings of the 17th International

Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004), volume

3223 of Lecture Notes in Computer Science, pages 241–256. Springer-Verlag,

2004.

[48] R. Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic

Logic, 36:494–508, 1971.

[49] L. Paulson and T. Nipkow. Isabelle tutorial and user’s manual. Technical report,

University of Cambridge Computing Laboratory, 1990.

[50] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes

in Computer Science. Springer-Verlag, New York, 1994.

[51] F. Pfenning. Elf: a language for logic definition and verified metaprogram-

ming. In Proceedings of the 4th IEEE Symposium on Logic in Computer Sci-

ence, pages 313–322, Asilomar Conference Center, Pacific Grove, California, June

1989. IEEE Computer Society Press.

[52] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the

ACM SIGPLAN ’88 Conference on Programming Language Design and Imple-

mentation (PLDI), volume 23(7) of SIGPLAN Notices, pages 199–208, Atlanta,

Georgia, June 1988. ACM Press.

[53] A. M. Pitts and M. Gabbay. A metalanguage for programming with bound names

modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Mathematics of

Program Construction, volume 1837 of Lecture Notes in Computer Science, pages

230–255. Springer-Verlag, Heidelberg, 2000.

http://isabelle.informatik.tu-muenchen.de/
http://isabelle.informatik.tu-muenchen.de/
http://www-2.cs.cmu.edu/~fp/elf.html

83

[54] G. Plotkin. An illative theory of relations. In R. Cooper, K. Mukai, and J. Perry,

editors, Situation Theory and Its Applications, Volume 1, number 22 in CSLI

Lecture Notes, pages 133–146. Centre for the Study of Language and Information,

1990.

[55] President’s Information Technology Advisory Committee. Report to the

President—information technology research: Investing in our future, Feb. 1999.

[56] President’s Information Technology Advisory Committee. Report to the

President—Cyber security: A crisis of prioritization, Feb. 2005.

[57] B. Smith. Reflection and semantics in Lisp. Principles of Programming Lan-

guages, pages 23–35, 1984.

[58] J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical

Logic, 1879–1931. Harvard University Press, Cambridge, MA, 1967.

[59] J. Vouillon. POPLmark submission. Available at

http://www.cis.upenn.edu/group/proj/plclub/mmm/submissions.shtml,

2005.

http://www.cis.upenn.edu/group/proj/plclub/mmm/submissions.shtml

84

Appendix A

Architecture and Summary of the
Implementation in MetaPRL

As mentioned earlier, this work is fully implemented in the MetaPRL theorem prover.

Here we show the architecture of the formal implementation of our reflection frame-

work in MetaPRL (Figure A.1). In the parentheses next to each module name, we

give orderly the number of rules and rewrites in that module, the total number of

proof tactics we used to prove them, as well as the total number of actual proof steps

in the system.

Corresponding to the presentation in this thesis, we divide the architecture into

three parts: syntax representation, sequent representation, and proof reflection, each

of which consists of a number of theories/modules that define the corresponding terms

and operations, and include axioms and/or fully derived theorems.

The five modules surrounded by the broken line is the “core” of our theory, which

defines a hybrid HOAS/de Bruijn representation of syntax as mentioned in Chapter 4,

and provides a foundation for our whole reflection work.

To help with better understanding of our work, we include a selected listing of

the modules we implemented in Appendix B, as indicated by the blue shades in

Figure A.1. For a complete theory listing, please refer to the nightly updated online

resource [42].

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/

85

Syntax representation

Sequent representation

Proof reflection

itt_hoas_base (6,6,64)

itt_hoas_vector (29,55,4185)itt_hoas_vbind (8,13,139)

itt_hoas_debruijn (39,105,15283)

itt_hoas_destterm (10,8,283) itt_hoas_lof (47,159,15892)

itt_hoas_bterm (97,283,14390)

itt_hoas_normalize (16,16,8695)itt_hoas_relax (54,343,33312) itt_hoas_util (2,10,270)

itt_hoas_operator (29,25,447)

itt_hoas_bterm_wf (20,148,33917)

itt_hoas_sequent_bterm (70,408,14639)

itt_hoas_lof_vec (14,30,427)

itt_hoas_sequent (63,198,5916)

itt_hoas_proof (56,253,10304)

itt_hoas_sequent_proof_step (6,24,993)

itt_hoas_sequent_term (52,118,1945)

itt_hoas_sequent_normalize (20,44,1127)

itt_hoas_sequent_term_wf (30,184,10070) itt_hoas_meta_types (0,0,0)

itt_hoas_sequent_proof (15,49,1961)

itt_hoas_proof_ind (7,41,1708)

itt_hoas_sequent_elim (1,1,15)

Figure A.1: Architecture of the reflection formalization in MetaPRL

http://metaprl.org/

86

Appendix B

Partial Listing of Relevant
MetaPRL Theories

This appendix is a printout of some of the relevant MetaPRL theories and was gener-

ated automatically by the MetaPRL system. The complete implementation is available

online [43, 42]. The MetaPRL notation used in this appendix is partially explained

in [45, 42, 43]. Rules and rewrites marked with a “*[n1, n2]” are derived (n1 and

n2 provide a measure of the proof size) and the “![· · ·]” marker means that the

rule/rewrite is an axiom. Most of the operators are presented in their pretty-printed

forms.

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/

87

B.1 Itt hoas base module

The Itt hoas base module defines the basic operations of the Higher Order Abstract

Syntax (HOAS).

B.1.1 Parents

Extends Base theory

Extends Itt dfun

Extends Itt union

Extends Itt prod

Extends Itt list2

B.1.2 Terms

The expression B x . t [x] represents a “bound” term (“bterm”) with a potentially free

variable x. In order for it to be well-formed, t must be a “substitution function”.

The T (op; subterms) expression represents a term with the operator op and sub-

terms subterms. In order for it to be well-formed, the length of subterms must equal

the arity of op and each subterm must have the “binding depth” (i.e. the number

of outer binds) equal to the corresponding number in the shape of op (remember,

the shape of an operator is a list of natural numbers and the length of the list is the

operator’s arity).

The expression bt@t represents the result of substituting t for the first binding in

bt .

Finally, the weak dest bterm operator allows testing whether a term is a bind or

a mk term and to get the op and subterms in the latter case.

define unfold bind :

Itt hoas base!bind{x. ’t<|!!|>[’x]}

(displayed as “B x . t [x]”) ←→

88

inl (λx .t [x])

define iform bind list :

Itt hoas base!bind list{’terms<|!!|>}

(displayed as “bind list{terms}”) ←→

B terms

define unfold mk term :

Itt hoas base!mk term{’op<|!!|>; ’subterms<|!!|>}

(displayed as “T (op; subterms)”) ←→

inr (op, subterms)

declare Itt hoas base!illegal subst

(displayed as “illegal subst”)

define unfold subst :

Itt hoas base!subst{’bt<|!!|>; ’t<|!!|>}

(displayed as “bt@t”) ←→

match bt with

inl f − > f t

| inr opt − > illegal subst

define iform subst list :

Itt hoas base!subst list{’terms<|!!|>; ’v<|!!|>}

(displayed as “subst list{terms ; v}”) ←→

terms@v

define unfold wdt :

Itt hoas base!weak dest bterm

{’bt<|!!|>;

’bind case<|!!|>;

op, sbt. ’mkterm case<|!!|>[’op; ’sbt]}

(displayed as

“match bt with

B − > bind case

| T (op; sbt) − > mkterm case[op; sbt]”) ←→

89

match bt with

inl f − > bind case

| inr opt − > let

(op, sbt) = opt

in

mkterm case[op; sbt]

B.1.3 Rewrites

*[1, 12] rewrite reduce subst {| public reduce |} :

(B x . bt [x])@t ←→ bt [t]

*[1, 10] rewrite reduce wdt bind {| public reduce |} :

match B x . t [x] with

B − > bind case

| T (op; sbt) − > mkterm case[op; sbt]

←→

bind case

*[1, 12] rewrite reduce wdt mk term {| public reduce |} :

match T (op; subterms) with

B − > bind case

| T (o; sbt) − > mkterm case[o; sbt]

←→

mkterm case[op; subterms]

On occasion, it is also useful to work with subterm lists directly, without the operator.

Define another constructor mk terms{l} that represents a list of terms l .

define unfold mk terms :

Itt hoas base!mk terms{’l<|!!|>}

(displayed as “mk terms{l}”) ←→

90

inr l

define unfold weak dest terms :

Itt hoas base!weak dest terms

{’bt<|!!|>;

’bind case<|!!|>;

l. ’terms case<|!!|>[’l]}

(displayed as

“weak dest terms{bt ; bind case; l. terms case[l]}”) ←→

match bt with

inl x − > bind case

| inr y − > terms case[y]

*[1, 10] rewrite reduce weak dest terms bind

{| public reduce |} :

weak dest terms

{B x . t [x];

bind case;

terms. terms case[terms]}

←→

bind case

*[1, 10] rewrite reduce weak dest terms mk term

{| public reduce |} :

weak dest terms

{T (op; subterms);

bind case;

terms. terms case[terms]}

←→

terms case[(op, subterms)]

*[1, 10] rewrite reduce weak dest terms mk terms

{| public reduce |} :

weak dest terms

91

{mk terms{l};

bind case;

terms. terms case[terms]}

←→

terms case[l]

B.2 Itt hoas vector module

The Itt hoas vector module defines the “vector bindings” extensions for the basic

ITT HOAS.

B.2.1 Parents

Extends Itt hoas base

Extends Itt nat

Extends Itt list2

Extends Itt fun2

Extends Itt list3

B.2.2 Terms

The B x : n . t [x] expression, where n is a natural number, represents a “telescope” of n

nested bind operations. Namely, it stands for B v1. B v2. . . . (B v n. t [[v1; v2; . . . ; v n]]).

We also provide an input form bind{n; t} for the important case of a vector

binding that introduces a variable that does not occur freely in the bterm body.

The bt @n t expression represents the result of substituting term t for the n + 1-st

binding of the bterm bt .

The bt@ltl expression represents the result of simultaneous substitution of terms

tl (tl must be a list) for the first | tl | bindings of the bterm bt .

92

define unfold bindn :

Itt hoas vector!bind{’n<|!!|>; x. ’t<|!!|>[’x]}

(displayed as “B x : n . t [x]”) ←→

(Ind(n) where Ind(n) =

n = 0⇒ Ind(n) = λf .f []

n > 0⇒ Ind(n) = λf .B v . Ind(n − 1) (λl .f v :: l)) (λx .t [x])

define unfold substn :

Itt hoas vector!subst{’n<|!!|>; ’bt<|!!|>; ’t<|!!|>}

(displayed as “bt @n t”) ←→

(Ind(n) where Ind(n) =

n = 0⇒ Ind(n) = λbt .bt@t

n > 0⇒ Ind(n) = λbt .B v . Ind(n − 1) (bt@v)) bt

define unfold substl :

Itt hoas vector!substl{’bt<|!!|>; ’tl<|!!|>}

(displayed as “bt@ltl”) ←→

match tl with [] − > (λb.b) | h :: .f − > (λb.f (b@h)) bt

define iform simple bindn :

Itt hoas vector!bind{’n<|!!|>; ’t<|!!|>}

(displayed as “bind{n; t}”) ←→

B : n . t

define iform bindn list :

Itt hoas vector!bind list{’n<|!!|>; ’terms<|!!|>}

(displayed as “bind list{n; terms}”) ←→

map(bt .bind{n; bt}; terms)

define iform substl list :

Itt hoas vector!substl list{’terms<|!!|>; ’v<|!!|>}

(displayed as “substl list{terms ; v}”) ←→

terms@lv

93

B.2.3 Rewrites

*[1, 20] rewrite reduce bindn base {| public reduce |} :

B x : 0. t [x] ←→ t [[]]

*[1, 16] rewrite reduce bindn up

{| public reduce Ocaml!lab

[3742:n,

3768:n,

”labels”:s]

{some{denormalize labels}} |} :

n ∈ N −→

B l : n + 1. t [l] ←→ B v . B l : n . t [v :: l]

*[2, 56] rewrite reduce bindn upleft :

n ∈ N −→

B l : 1 + n . t [l] ←→ B v . B l : n . t [v :: l]

*[1, 36] rewrite bind into bindone :

B v . t [v] ←→ B l : 1. t [hd{l}]

*[1, 23] rewrite bindone into bind :

B l : 1. t [l] ←→ B v . t [[v]]

*[7, 437] rewrite split bind sum :

m ∈ N −→

n ∈ N −→

B l : m + n . t [l] ←→ B l1 : m . B l2 : n . t [l1 @ l2]

*[2, 26] rewrite reduce bindn right :

n ∈ N −→

B l : n + 1. t [l] ←→ B l : n . B v . t [l @ [v]]

*[1, 10] rewrite merge bindn {| public reduce |} :

m ∈ N −→

n ∈ N −→

B : m . B : n . t ←→ B : m + n . t

94

*[1, 18] rewrite reduce substn base {| public reduce |} :

bt @0 t ←→ bt@t

*[1, 14] rewrite reduce substn case {| public reduce |} :

n ∈ N −→

bt @n + 1 t ←→ B x . bt@x @n t

*[1, 10] rewrite reduce bindn subst {| public reduce |} :

n ∈ N −→

B v : n + 1. bt [v]@t ←→ B v : n . bt [t :: v]

*[8, 1766] rewrite reduce substn bindn1 bind(x.bt [x]):

m ∈ N −→

n ∈ N −→

n ≥ m −→

(B v . B l : n . bt [v :: l]) @m t ←→

B l : n . bt [insert at(l , m, t)]

*[1, 18] rewrite reduce substn bindn2 {| public reduce |} :

m ∈ N −→

n ∈ N −→

n ≥ m −→

B l : n + 1. bt [l] @m t ←→ B l : n . bt [insert at(l , m, t)]

*[1, 10] rewrite reduce substl base {| public reduce |} :

bt@l[] ←→ bt

*[1, 12] rewrite reduce substl step

{| public reduce Ocaml!lab

[6051:n,

6077:n,

”labels”:s]

{some{denormalize labels}} |} :

bt@lh :: t ←→ bt@h@lt

*[1, 14] rewrite reduce substl step1 {| public reduce |} :

(B v . bt [v])@lh :: t ←→ bt [h]@lt

95

*[1, 65] rewrite reduce substl step2 {| public reduce |} :

n ∈ N −→

B v : n + 1. bt [v]@lh :: t ←→ B v : n . bt [h :: v]@lt

*[3, 82] rewrite reduce substl bindn1 {| public reduce |} :

l ∈ List −→

B v : |l |. bt [v]@ll ←→ bt [l]

*[3, 1092] rewrite reduce substl bindn2 :

l ∈ List −→

n ∈ N −→

n ≥| l | −→

B v : n . bt [v]@ll ←→ B v : n − |l |. bt [l @ v]

*[2, 100] rewrite reduce bsb1 {| public reduce |} :

n ∈ N −→

B v : n . B w : n . bt [w]@lv ←→ B w : n . bt [w]

*[1, 20] rewrite reduce bsb2 {| public reduce |} :

n ∈ N −→

m ∈ N −→

B v : n . B w : n + m . bt [w]@lv ←→ B w : n + m . bt [w]

*[1, 16] rewrite unfold bindnsub :

n ∈ N −→

B v : n + 1. bt [v]@lv ←→ B u. B v : n . bt [u :: v]@u@lv

*[1, 8] rewrite subst to substl : e@x ←→ e@l[x]

*[2, 105] rewrite bindn to list of fun :

n ∈ N −→

B x : n . e[x] ←→ B x : n . e[list of fun{i. x i ; n}]

*[1, 26] rewrite coalesce bindn bindn :

n ∈ N −→

m ∈ N −→

B x : n . B y : m . e[x ; y] ←→

B x : n + m . e[nth prefix{x ; n}; nth suffix{x ; n}]

96

*[2, 71] rewrite substl append right :

l ∈ List −→

e@l(l @ [x]) ←→ e@ll@x

*[1, 6] rewrite substl append left :

l ∈ List −→

e@x@ll ←→ e@lx :: l

*[5, 92] rewrite substl substl list :

l1 ∈ List −→

l2 ∈ List −→

e@ll1@ll2 ←→ e@l(l1 @ l2)

*[1, 16] rewrite substl substl lof :

n ∈ N −→

m ∈ N −→

e@llist of fun{x. f [x]; m}@llist of fun{x. g [x]; n} ←→

e@l(list of fun{x. f [x]; m} @ list of fun{x. g [x]; n})

B.3 Itt hoas debruijn module

The Itt hoas debruijn module defines a mapping from de Bruijn-like representation

of syntax into the HOAS.

B.3.1 Parents

Extends Itt hoas base

Extends Itt hoas vector

Extends Itt nat

Extends Itt list2

Extends Itt image2

97

B.3.2 Terms

B.3.2.1 A de Bruijn-like representation of syntax

Our de Bruijn-like representation of (bound) terms consists of two operators. var(left , right)

represents a variable bterm, whose “left index” is left and whose “right index” is right .

Namely, it represent the term B x1. . . . (B x left . B y . B z1. . . . (B z right . v) . . .)

The mk bterm(n; op; btl) represents the compound term of depth n. In other

words, mk bterm(n; op; [B v : n . bt1[v]; . . . ; B v : n . bt k [v]]) is B v : n . T (op; [bt1[v]; . . . ; bt k [v]]).

define unfold var :

Itt hoas debruijn!var{’left<|!!|>; ’right<|!!|>}

(displayed as “var(left , right)”) ←→

B x : left . B v . B x : right . v

define unfold mk bterm :

Itt hoas debruijn!mk bterm

{’n<|!!|>;

’op<|!!|>;

’btl<|!!|>}

(displayed as “mk bterm(n; op; btl)”) ←→

(Ind(n) where Ind(n) =

n = 0⇒ Ind(n) = λbtl .T (op; btl)

n > 0⇒ Ind(n) = λbtl .B v . Ind(n − 1) ((btl@v))) btl

B.3.2.2 Basic operations on syntax

D bt is the “binding depth” (i.e. the number of outer bindings) of a bterm bt .

l v and r v provide a way of computing the l and r indices of a variable var(l , r).

try get op bt with Not found -> op returns the bt ’s operator, if bt is a mk bterm

and returns op if bt is a variable.

subterms bt computes the subterms of the bterm bt .

98

define unfold bdepth :

Itt hoas debruijn!bdepth{’bt<|!!|>}

(displayed as “D bt”) ←→

fix(f .λbt .weak dest terms

{bt ;

1 + (f (bt@T (·; [])));

y. 0}) bt

define unfold left :

Itt hoas debruijn!left{’bt<|!!|>}

(displayed as “l bt”) ←→

fix(f .λbt .λl .match bt with

B − > f (bt@T (l ; [])) (l + 1)

| T (op;) − > op) bt 0

define unfold right :

Itt hoas debruijn!right{’bt<|!!|>}

(displayed as “r bt”) ←→

(D bt) − (l bt) − 1

define unfold get op :

Itt hoas debruijn!get op{’bt<|!!|>; ’op<|!!|>}

(displayed as

“try get op bt with Not found -> op”) ←→

fix(f .λbt .match bt with

B − > f (bt@T (op; []))

| T (op;) − > op) bt

declare Itt hoas debruijn!not found

(displayed as “not found”)

define iform unfold get op1 :

Itt hoas debruijn!get op{’bt<|!!|>}

(displayed as “get op{bt}”) ←→

try get op bt with Not found -> not found

99

define unfold num subterms :

Itt hoas debruijn!num subterms{’bt<|!!|>}

(displayed as “num subterms{bt}”) ←→

fix(f .λbt .match bt with

B − > f (bt@T (·; []))

| T (; btl) − > | btl |) bt

define unfold nth subterm :

Itt hoas debruijn!nth subterm{’bt<|!!|>; ’n<|!!|>}

(displayed as “nth subterm{bt ; n}”) ←→

fix(f .λbt .match bt with

B − > B v . f (bt@v)

| T (; btl) − > btl n) bt

define unfold subterms :

Itt hoas debruijn!subterms{’bt<|!!|>}

(displayed as “subterms bt”) ←→

list of fun

{n. nth subterm{bt ; n};

num subterms{bt}}

B.3.3 Rewrites

*[1, 18] rewrite reduce mk bterm base

{| public reduce Ocaml!lab

[4431:n,

4457:n,

”labels”:s]

{some{denormalize labels}} |} :

mk bterm(0; op; btl) ←→ T (op; btl)

*[1, 14] rewrite reduce mk bterm step

100

{| public reduce Ocaml!lab

[4561:n,

4587:n,

”labels”:s]

{some{denormalize labels}} |} :

n ∈ N −→

mk bterm(n + 1; op; btl) ←→ B v . mk bterm(n; op; btl@v)

*[1, 50] rewrite reduce mk bterm empty

{| public reduce Ocaml!lab

[4744:n,

4770:n,

”labels”:s]

{some{denormalize labels}} |} :

n ∈ N −→

mk bterm(n; op; []) ←→ B x : n . T (op; [])

*[1, 6] rewrite fold mk term :

T (op; subterms) ←→ mk bterm(0; op; subterms)

*[1, 12] rewrite reduce bdepth mk term {| public reduce |} :

D T (op; btl) ←→ 0

*[1, 12] rewrite reduce bdepth mk terms

{| public reduce |} :

D mk terms{e} ←→ 0

*[1, 16] rewrite reduce bdepth bind {| public reduce |} :

D (B v . t [v]) ←→ 1 + (D t [T (·; [])])

*[5, 1437] rewrite reduce bdepth var {| public reduce |} :

l ∈ N −→

r ∈ N −→

D var(l , r) ←→ (l + r) + 1

*[4, 79] rewrite reduce bdepth mk bterm

{| public reduce |} :

101

n ∈ N −→

D mk bterm(n; op; btl) ←→ n

*[4, 128] rewrite reduce getop var {| public reduce |} :

l ∈ N −→

r ∈ N −→

try get op var(l , r) with Not found -> op ←→ op

*[2, 91] rewrite reduce getop mkbterm {| public reduce |} :

n ∈ N −→

try get op mk bterm(n; op; btl) with Not found -> op ′ ←→

op

*[2, 107] rewrite num subterms id {| public reduce |} :

btl ∈ List −→

n ∈ N −→

num subterms{mk bterm(n; op; btl)} ←→ | btl |

*[2, 136] rewrite nth subterm id {| public reduce |} :

n ∈ N −→

m ∈ N −→

k ∈ N −→

k < m −→

nth subterm

{mk bterm(n; op; list of fun{x. f [x]; m});

k} ←→

B v : n . f [k]@lv

*[2, 467] rewrite subterms id {| public reduce |} :

btl ∈ List −→

n ∈ N −→

subterms mk bterm(n; op; btl) ←→ map(bt .B v : n . bt@lv ; btl)

*[6, 502] rewrite left id {| public reduce |} :

l ∈ N −→

r ∈ N −→

102

l var(l , r) ←→ l

*[2, 551] rewrite right id {| public reduce |} :

l ∈ N −→

r ∈ N −→

r var(l , r) ←→ r

*[1, 10] rewrite subst var0 {| public reduce |} :

r ∈ N −→

var(0, r)@t ←→ B x : r . t

*[1, 14] rewrite subst var {| public reduce |} :

l ∈ N −→

r ∈ N −→

var(l + 1, r)@t ←→ var(l , r)

*[1, 16] rewrite subst mkbterm {| public reduce |} :

bdepth ∈ N −→

mk bterm(bdepth + 1; op; btl)@t ←→

mk bterm(bdepth; op; btl@t)

*[1, 12] rewrite bind var {| public reduce |} :

l ∈ N −→

r ∈ N −→

B x . var(l , r) ←→ var(l + 1, r)

*[1, 43] rewrite lemma {| public reduce |} :

btl ∈ List −→

(B btl)@v ←→ btl

*[1, 14] rewrite bind mkbterm {| public reduce |} :

bdepth ∈ N −→

btl ∈ List −→

B x . mk bterm(bdepth; op; btl) ←→

mk bterm(bdepth + 1; op; B btl)

*[1, 1297] rewrite lemma1 {| public reduce |} :

r ∈ N −→

103

n ∈ N −→

r ≥ n −→

B gamma : n . B x : r . t@lgamma ←→ B x : r . t

*[4, 1507] rewrite lemma2 {| public reduce |} :

l ∈ N −→

r ∈ N −→

n ∈ N −→

((l + r) + 1) ≥ n −→

B gamma : n . var(l , r)@lgamma ←→ var(l , r)

*[4, 1279] rewrite lemma3 {| public reduce |} :

m ∈ N −→

n ∈ N −→

m ≥ n −→

B gamma : n . mk bterm(m; op; btl)@lgamma ←→

mk bterm(m; op; btl)

Define a type of variables V ar that is more abstract than the raw de Bruijn repre-

sentation.

define unfold Var :

Itt hoas debruijn!Var (displayed as “V ar”) ←→

Img(v : N × N.let (i , j) = v in var(i , j))

let fold Var = makeFoldC << V ar >> unfold Var

*[1, 16] rule var type univ {| public intro [] |} :

〈Γ〉 ` V ar ∈ U′i

*[1, 6] rule var type wf {| public intro [] |} :

〈Γ〉 ` V ar Type

*[1, 27] rule var wf {| public intro [] |} :

[wf] 〈Γ〉 ` l ∈ N −→

[wf] 〈Γ〉 ` r ∈ N −→

104

〈Γ〉 ` var(l , r) ∈ V ar

*[3, 42] rule var elim {| public elim [] |} Γ:

〈Γ〉 ; i : N; j : N; 〈∆[var(i , j)]〉 ` C [var(i , j)] −→

〈Γ〉 ; x : V ar; 〈∆[x]〉 ` C [x]

*[1, 34] rule var sqsimple

{| public intro []; public sqsimple |} :

〈Γ〉 ` sqsimple{V ar}

Boolean operations on variables.

define unfold beq var :

Itt hoas debruijn!beq var{’x<|!!|>; ’y<|!!|>}

(displayed as “beq var{x ; y}”) ←→

((l x) = b (l y)) ∧ b ((r x) = b (r y))

*[1, 30] rewrite reduce beq var :

l1 ∈ N −→

r1 ∈ N −→

l2 ∈ N −→

r2 ∈ N −→

beq var{var(l1, r1); var(l2, r2)} ←→

(l1 = b l2) ∧ b (r1 = b r2)

*[3, 104] rule beq var wf {| public intro [] |} :

[wf] 〈Γ〉 ` x ∈ V ar −→

[wf] 〈Γ〉 ` y ∈ V ar −→

〈Γ〉 ` beq var{x ; y} ∈ B

*[5, 101] rule beq var assert intro {| public intro [] |} :

〈Γ〉 ` x = y ∈ V ar −→

〈Γ〉 ` ↑ beq var{x ; y}

*[10, 193] rule beq var assert elim {| public elim [] |} Γ:

[wf] 〈Γ〉 ; u : ↑ beq var{x ; y}; 〈∆[u]〉 ` x 〈|Γ|〉[] ∈ V ar −→

105

[wf] 〈Γ〉 ; u : ↑ beq var{x ; y}; 〈∆[u]〉 ` y 〈|Γ|〉[] ∈ V ar −→

〈Γ〉 ; u : x = y ∈ V ar; 〈∆[u]〉 ` C [u] −→

〈Γ〉 ; u : ↑ beq var{x ; y}; 〈∆[u]〉 ` C [u]

This is the main theorem that shows that B x . e[x] commutes with mk bterm(n; op; subterms).

*[1, 17] rewrite reduce bind of mk bterm of list of fun :

n ∈ N −→

m ∈ N −→

B x . mk bterm(n; op; list of fun{y. f [x ; y]; m}) ←→

mk bterm(n + 1; op; list of fun{y. B x . f [x ; y]; m})

*[6, 149] rewrite reduce vec bind of mk bterm of list of fun :

i ∈ N −→

n ∈ N −→

m ∈ N −→

B x : i . mk bterm(n; op; list of fun{y. f [x ; y]; m}) ←→

mk bterm(n + i ; op; list of fun{y. B x : i . f [x ; y]; m})

Some equivalences on binds.

*[3, 3852] rewrite reduce bindn nth {| public reduce |} :

n ∈ N −→

m ∈ N −→

m < n −→

B x : n . x m ←→ var(m, n − m − 1)

*[16, 2909] rewrite reduce bindn nth2 {| public reduce |} :

n1 ∈ N −→

n2 ∈ N −→

m ∈ N −→

m < n1 −→

106

B x1 : n1 . B x2 : n2 . x1 m ←→ var(m, n1 + n2 − m − 1)

*[2, 12] rewrite reduce bind var {| public reduce |} :

n ∈ N −→

l ∈ N −→

B x : n . var(l , r) ←→ var(n + l , r)

B.4 Itt hoas operator module

The Itt hoas operator module defines a type Operator of abstract operators; it

also establishes the connection between abstract operator type and the internal notion

of syntax that is exposed by the computational bterms theory (Base operator).

B.4.1 Parents

Extends Itt theory

Extends Base operator

Extends Itt nat

Extends Itt list2

B.4.2 Terms

The Operator type is an abstract type with a decidable equality. We only require

that an operator have a fixed shape.

As in the case of concrete quoted operators, the shape of an abstract operator

is a list of numbers, each stating the number of bindings the operator adds to the

corresponding subterm; the length of this list is the arity of an operator.

declare const Itt hoas operator!Operator

(displayed as “Operator”)

declare Itt hoas operator!shape{’op<|!!|>}

107

(displayed as “shape(op)”)

declare Itt hoas operator!is same op

{’op 1<|!!|>;

’op 2<|!!|>}

(displayed as “is same op(op1; op2)”)

B.4.3 Rules

Operator is an abstract type.

![〈Γ〉 ` ·] rule op univ {| public intro [] |} :

〈Γ〉 ` Operator ∈ U′l

*[1, 7] rule op type {| public intro [] |} :

〈Γ〉 ` Operator Type

Equal operators must be identical.

![〈Γ〉 ` ·] rule op sqeq {| public nth hyp |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` op1 ≡ op2

*[1, 10] rule op sqsimple

{| public intro []; public sqsimple |} :

〈Γ〉 ` sqsimple{Operator}

is same op decides the equality of Operator.

![〈Γ〉 ` ·] rule is same op wf {| public intro [] |} :

〈Γ〉 ` op1 ∈ Operator −→

〈Γ〉 ` op2 ∈ Operator −→

〈Γ〉 ` is same op(op1; op2) ∈ B

108

![〈Γ〉 ` ·] rule is same op eq

{| public intro [AutoMustComplete]; public nth hyp |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` ↑ is same op(op1; op2)

![〈Γ〉 ` ·] rule is same op rev eq :

[wf] 〈Γ〉 ` op1 ∈ Operator −→

[wf] 〈Γ〉 ` op2 ∈ Operator −→

〈Γ〉 ` ↑ is same op(op1; op2) −→

〈Γ〉 ` op1 = op2 ∈ Operator

*[5, 127] rule op decidable {| public intro [] |} :

〈Γ〉 ` op1 ∈ Operator −→

〈Γ〉 ` op2 ∈ Operator −→

〈Γ〉 ` Decidable(op1 = op2 ∈ Operator)

*[1, 14] rule is same op elim

{| public elim [ThinOption thinT] |} Γ:

[wf] 〈Γ〉 ; x : ↑ is same op(op1; op2); 〈∆[x]〉 ` op1〈|Γ|〉[] ∈ Operator −→

[wf] 〈Γ〉 ; x : ↑ is same op(op1; op2); 〈∆[x]〉 ` op2〈|Γ|〉[] ∈ Operator −→

[main]

1. 〈Γ〉

2. x : ↑ is same op(op1; op2)

3. op1 = op2 ∈ Operator

4. 〈∆[x]〉

` C [x] −→

〈Γ〉 ; x : ↑ is same op(op1; op2); 〈∆[x]〉 ` C [x]

Each operator has a shape — a list of natural numbers that are meant to represent

the number of bindings in each of the arguments. The length of of the list is the

operator’s arity.

define iform unfold arity :

109

Itt hoas operator!arity{’op<|!!|>}

(displayed as “arity{op}”) ←→

arity(op)

![〈Γ〉 ` ·] rule shape nat list {| public intro [] |} :

〈Γ〉 ` op ∈ Operator −→

〈Γ〉 ` shape(op) ∈ N List

*[1, 24] rule shape list {| public intro [] |} :

〈Γ〉 ` op ∈ Operator −→

〈Γ〉 ` shape(op) ∈ List

*[1, 33] rule shape nat list eq {| public intro [] |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` shape(op1) = shape(op2) ∈ N List

*[2, 44] rule shape int list {| public intro [] |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` shape(op1) = shape(op2) ∈ int List

*[1, 36] rule arity nat {| public intro [] |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` arity(op1) = arity(op2) ∈ N

*[1, 36] rule arity int {| public intro [] |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` arity(op1) = arity(op2) ∈ int

*[3, 46] rule shape int list sq {| public intro [] |} :

〈Γ〉 ` op1 = op2 ∈ Operator −→

〈Γ〉 ` shape(op1) ≡ shape(op2)

B.4.4 Concrete Operators

This section establishes the connection between the abstract notion of operator and

the internal notion of operator that is exposed by the computational bterms theory

110

(Base operator).

Essentially, it postulates that the abstract operator is compatible with the notion

of operators that we have defined computationally, that the computationally-defined

operations on operators act as expected, and that the syntactic operations we defined

(such as shape) correspond exactly to the built-in operations of the meta-theory. In

a way, this theory establishes the operator expressions as denotations for constants

of the Operator type — this is similar to how numerals denote constants of type int.

First, we define a concrete representation for operators. We will represent an

operator by a bterm of the form operator[op : op]

declare Itt hoas operator!operator[op:op]

(displayed as “operator[op : op]”)

![〈Γ〉 ` ·] rule op constant {| public intro [] |} :

〈Γ〉 ` operator[op : op] ∈ Operator

*[1, 7] rule shape const nat list {| public intro [] |} :

〈Γ〉 ` shape(operator[op : op]) ∈ N List

![] rewrite bterm shape :

shape(operator[op : op]) ←→ list of numlist{shape(op)}

![] rewrite bterm same op :

is same op(operator[op1 : op]; operator[op2 : op])

←→

meta eq[op1 : op, op2 : op]{true; false}

B.5 Itt hoas destterm module

The Itt hoas destterm module defines destructors for extracting from a bterm the

components corresponding to the de Bruijn-like representation of that bterm.

111

B.5.1 Parents

Extends Itt hoas base

Extends Itt hoas vector

Extends Itt hoas operator

Extends Itt hoas debruijn

Extends Itt hoas df

B.5.2 Terms

The is var operator decides whether a bterm is a var or a mk bterm. In order

to implement the is var operator we assume that there exist at least two distinct

operators (for any concrete notion of operators this would, of course, be trivially

derivable but we would like to keep the operators type abstract at this point).

The dest bterm operator is a generic destructor that can extract all the compo-

nents of the de Bruijn-like representation of a bterm.

declare Itt hoas destterm!op1 (displayed as “op1”)

declare Itt hoas destterm!op2 (displayed as “op2”)

define unfold isvar :

Itt hoas destterm!is var{’bt<|!!|>}

(displayed as “is var(bt)”) ←→

¬bis same op(try get op bt with Not found -> op1; try

get op bt

with Not found ->

op2)

define unfold dest bterm :

Itt hoas destterm!dest bterm

{’bt<|!!|>;

l, r. ’var case<|!!|>[’l; ’r];

bdepth, op, subterms. ’op case<|!!|>[’bdepth;

112

’op; ’subterms]}

(displayed as

“match bt with

var(l , r) − > var case[l ; r]

| BTerm(bdepth, op, subterms) − > op case[bdepth;

op;

subterms]”) ←→

if is var(bt) then var case[l bt ; r bt] else op case[D

bt ;

try get op bt with Not found -> ·;

subterms bt]

B.5.3 Rules

![〈Γ〉 ` ·] rule op1 op {| public intro [] |} :

〈Γ〉 ` op1 ∈ Operator

![〈Γ〉 ` ·] rule op2 op {| public intro [] |} :

〈Γ〉 ` op2 ∈ Operator

B.5.4 Rewrites

![] rewrite ops distict {| public reduce |} :

is same op(op1; op2) ←→ false

*[1, 13] rewrite same op id {| public reduce |} :

op ∈ Operator −→

is same op(op; op) ←→ true

*[1, 22] rewrite is var var {| public reduce |} :

m ∈ N −→

n ∈ N −→

113

is var(var(m, n)) ←→ true

*[1, 20] rewrite is var mk bterm {| public reduce |} :

op ∈ Operator −→

n ∈ N −→

is var(BTerm(n, op, btl)) ←→ false

*[1, 38] rewrite dest bterm var {| public reduce |} :

l ∈ N −→

r ∈ N −→

match var(l , r) with

var(l , r) − > var case[l ; r]

| BTerm(d , o, s) − > op case[d ; o; s] ←→

var case[l ; r]

*[1, 28] rewrite dest bterm mk bterm {| public reduce |} :

n ∈ N −→

op ∈ Operator −→

subterms ∈ List −→

match BTerm(n, op, subterms) with

var(l , r) − > var case[l ; r]

| BTerm(bdepth, op, subterms) − > op case[bdepth;

op;

subterms] ←→

op case[n; op; map(bt .B v : n . bt@lv ; subterms)]

*[2, 125] rewrite mk bterm eta lof {| public reduce |} :

l ∈ N −→

n ∈ N −→

BTerm(n, op, list of fun{i. B v : n . f [i]@lv ; l}) ←→

BTerm(n, op, list of fun{i. f [i]; l})

*[1, 37] rewrite mk bterm eta {| public reduce |} :

n ∈ N −→

subterms ∈ List −→

114

BTerm(n, op, map(bt .B v : n . bt@lv ; subterms)) ←→

BTerm(n, op, subterms)

B.6 Itt hoas bterm module

The Itt hoas bterm module defines the inductive type BTerm and establishes the

appropriate induction rules for this type.

B.6.1 Parents

Extends Itt hoas destterm

Extends Itt image2

Extends Itt tunion

Extends Itt subset

B.6.2 Terms

We define the type BTerm as a recursive type. The compatible shapes(depth; shape; subterms)

predicate defines when a list of subterms subterms is compatible with a specific op-

erator.

define unfold compatible shapes :

Itt hoas bterm!compatible shapes

{’depth<|!!|>;

’shape<|!!|>;

’btl<|!!|>}

(displayed as

“compatible shapes(depth; shape; btl)”) ←→

115

∀x , y ∈ shape, btl . ((depth + x) = D y ∈ int)

define unfold dom :

Itt hoas bterm!dom{’BT<|!!|>}

(displayed as “dom{BT}”) ←→

(N × N) + (depth : N × op : Operator × {subterms : BT List |

compatible shapes(depth; shape(op); subterms)})

define unfold mk :

Itt hoas bterm!mk{’x<|!!|>} (displayed as “mk{x}”) ←→

match x with

inl v − > let (left , right) = v in var(left , right)

| inr t − > let

(d , v) = t

in

let (op, st) = v in BTerm(d , op, st)

define unfold dest :

Itt hoas bterm!dest{’bt<|!!|>}

(displayed as “dest{bt}”) ←→

match bt with

var(l , r) − > inl (l , r)

| BTerm(d , op, ts) − > inr (d , (op, ts))

define unfold Iter :

Itt hoas bterm!Iter{’X<|!!|>}

(displayed as “Iter{X }”) ←→

Img(x : dom{X }.mk{x})

define unfold BT :

Itt hoas bterm!BT{’n<|!!|>} (displayed as “BT{n}”) ←→

Ind(n) where Ind(n) =

n = 0⇒ Ind(n) = V oid

n > 0⇒ Ind(n) = Iter{Ind(n − 1)}

define const unfold BTerm :

116

Itt hoas bterm!BTerm (displayed as “BTerm”) ←→

∪n : N.BT{n}

define unfold BTerm2 :

Itt hoas bterm!BTerm{’i<|!!|>}

(displayed as “BTerm{i}”) ←→

{e : BTerm | D e = i ∈ N}

define unfold ndepth :

Itt hoas bterm!ndepth{’t<|!!|>}

(displayed as “ndepth{t}”) ←→

fix(ndepth.λt .match t with

var(l , r) − > 1

| BTerm(bdepth, op, subterms) − > maxl(map(x .ndepth x ; subterms)) + 1) t

B.6.3 Rewrites

Basic facts about compatible shapes

*[1, 8] rewrite compatible shapes nil nil

{| public reduce |} :

compatible shapes(depth; []; []) ←→ True

*[1, 8] rewrite compatible shapes nil cons

{| public reduce |} :

compatible shapes(depth; []; h2 :: t2) ←→ False

*[1, 8] rewrite compatible shapes cons nil

{| public reduce |} :

compatible shapes(depth; h1 :: t1; []) ←→ False

*[1, 10] rewrite compatible shapes cons cons

{| public reduce |} :

compatible shapes(depth; h1 :: t1; h2 :: t2)

←→

117

((depth + h1) = D h2 ∈ int)

∧ compatible shapes(depth; t1; t2)

*[1, 16] rewrite bt reduce base {| public reduce |} :

BT{0} ←→ V oid

*[1, 12] rewrite bt reduce step {| public reduce |} :

n ∈ N −→

BT{n + 1} ←→ Iter{BT{n}}

B.6.4 Rules

*[1, 57] rule bt elim squash {| public elim [] |} Γ:

[wf] 〈Γ〉 ; 〈∆〉 ` n〈|Γ|〉[] ∈ N −→

[base] 〈Γ〉 ; 〈∆〉 ; l : N; r : N ` [P [var(l , r)]] −→

[step]

1. 〈Γ〉

2. 〈∆〉

3. depth : N

4. op : Operator

5. subterms : BT{n〈|Γ|〉[]} List

6. compatible shapes(depth; shape(op); subterms)

` [P [BTerm(depth, op, subterms)]] −→

〈Γ〉 ; t : BT{n + 1}; 〈∆〉 ` [P [t]]

*[1, 15] rule bt elim squash0 {| public nth hyp |} Γ:

〈Γ〉 ; t : BT{0}; 〈∆〉 ` P [t]

*[5, 255] rule bt wf and bdepth univ {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` (BT{n} ∈ U′l) ∧ ∀t : BT{n}. (D t ∈ N)

*[5, 234] rule bt wf and bdepth wf {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

118

〈Γ〉 ` BT{n} Type ∧ ∀t : BT{n}. (D t ∈ N)

*[1, 13] rule bt univ {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BT{n} ∈ U′l

*[1, 13] rule bt wf {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BT{n} Type

*[1, 15] rule bterm univ {| public intro [] |} :

〈Γ〉 ` BTerm ∈ U′l

*[1, 13] rule bterm wf {| public intro [] |} :

〈Γ〉 ` BTerm Type

*[1, 7] rule nil in list bterm {| public intro [] |} :

〈Γ〉 ` [] ∈ BTerm List

*[2, 49] rule bdepth wf {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` D t ∈ N

*[1, 13] rule bdepth wf int {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` D t ∈ int

*[1, 13] rule bdepth wf positive {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` (D t) ≥ 0

*[1, 20] rule bterm2 wf {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BTerm{n} Type

*[1, 16] rule bterm2 forward

{| public forward []; public nth hyp |} Γ:

1. 〈Γ〉

2. x : e ∈ BTerm{d}

119

3. 〈∆[x]〉

4. e〈|Γ|〉[] ∈ BTerm

5. D e〈|Γ|〉[] = d 〈|Γ|〉[] ∈ N

` C [x] −→

〈Γ〉 ; x : e ∈ BTerm{d}; 〈∆[x]〉 ` C [x]

*[1, 10] rule bterm2 is bterm {| public nth hyp |} Γ:

〈Γ〉 ; x : BTerm{d}; 〈∆[x]〉 ` x ∈ BTerm

*[2, 57] rule compatible shapes univ {| public intro [] |} :

[wf] 〈Γ〉 ` bdepth ∈ N −→

[wf] 〈Γ〉 ` shape ∈ int List −→

[wf] 〈Γ〉 ` btl ∈ BTerm List −→

〈Γ〉 ` compatible shapes(bdepth; shape; btl) ∈ U′l

*[2, 53] rule compatible shapes wf {| public intro [] |} :

[wf] 〈Γ〉 ` bdepth ∈ N −→

[wf] 〈Γ〉 ` shape ∈ int List −→

[wf] 〈Γ〉 ` btl ∈ BTerm List −→

〈Γ〉 ` compatible shapes(bdepth; shape; btl) Type

*[2, 35] rule bt subtype bterm {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BT{n} v BTerm

*[1, 59] rule dom wf1 {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` dom{BT{n}} Type

*[1, 42] rule compatible shapes sqstable :

[wf] 〈Γ〉 ` bdepth ∈ int −→

[wf] 〈Γ〉 ` shape ∈ int List −→

[wf] 〈Γ〉 ` btl ∈ BTerm List −→

〈Γ〉 ` [compatible shapes(bdepth; shape; btl)] −→

〈Γ〉 ` compatible shapes(bdepth; shape; btl)

*[1, 55] rule dom wf {| public intro [] |} :

120

〈Γ〉 ` T v BTerm −→

〈Γ〉 ` dom{T} Type

*[2, 186] rule dom monotone {| public intro [] |} :

〈Γ〉 ` T v S −→

〈Γ〉 ` S v BTerm −→

〈Γ〉 ` dom{T} v dom{S}

*[2, 176] rule dom monotone set {| public intro [] |} :

〈Γ〉 ` T ⊆ S −→

〈Γ〉 ` S v BTerm −→

〈Γ〉 ` dom{T} ⊆ dom{S}

*[1, 14] rule iter monotone {| public intro [] |} :

〈Γ〉 ` T v S −→

〈Γ〉 ` S v BTerm −→

〈Γ〉 ` Iter{T} v Iter{S}

*[1, 80] rule bt monotone {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BT{n} v BT{n + 1}

*[3, 72] rule var wf0 {| public intro [] |} :

〈Γ〉 ` X v BTerm −→

[wf] 〈Γ〉 ` l ∈ N −→

[wf] 〈Γ〉 ` r ∈ N −→

〈Γ〉 ` var(l , r) ∈ Iter{X }

*[2, 56] rule var wf {| public intro [] |} :

[wf] 〈Γ〉 ` l ∈ N −→

[wf] 〈Γ〉 ` r ∈ N −→

〈Γ〉 ` var(l , r) ∈ BTerm

*[3, 161] rule mk bterm bt wf {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

[wf] 〈Γ〉 ` depth ∈ N −→

[wf] 〈Γ〉 ` op ∈ Operator −→

121

[wf] 〈Γ〉 ` subterms ∈ BT{n} List −→

〈Γ〉 ` compatible shapes(depth; shape(op); subterms) −→

〈Γ〉 ` BTerm(depth, op, subterms) ∈ BT{n + 1}

*[6, 114] rule mk bterm wf {| public intro [] |} :

[wf] 〈Γ〉 ` depth ∈ N −→

[wf] 〈Γ〉 ` op ∈ Operator −→

[wf] 〈Γ〉 ` subterms ∈ BTerm List −→

〈Γ〉 ` compatible shapes(depth; shape(op); subterms) −→

〈Γ〉 ` BTerm(depth, op, subterms) ∈ BTerm

*[2, 72] rule mk bterm wf2 {| public intro [] |} :

[wf] 〈Γ〉 ` d1 = d2 ∈ N −→

[wf] 〈Γ〉 ` op ∈ Operator −→

[wf] 〈Γ〉 ` subterms ∈ BTerm List −→

〈Γ〉 ` compatible shapes(d1; shape(op); subterms) −→

〈Γ〉 ` BTerm(d1, op, subterms) ∈ BTerm{d2}

*[3, 21] rule mk term wf {| public intro [] |} :

[wf] 〈Γ〉 ` op ∈ Operator −→

[wf] 〈Γ〉 ` subterms ∈ BTerm List −→

〈Γ〉 ` compatible shapes(0; shape(op); subterms) −→

〈Γ〉 ` Term(op, subterms) ∈ BTerm

*[1, 18] rule mk term wf2 {| public intro [] |} :

[wf] 〈Γ〉 ` d = 0 ∈ N −→

[wf] 〈Γ〉 ` op ∈ Operator −→

[wf] 〈Γ〉 ` subterms ∈ BTerm List −→

〈Γ〉 ` compatible shapes(0; shape(op); subterms) −→

〈Γ〉 ` Term(op, subterms) ∈ BTerm{d}

*[7, 559] rule bt elim squash2 {| public elim [] |} Γ:

[wf] 〈Γ〉 ; 〈∆〉 ` n〈|Γ|〉[] ∈ N −→

[base] 〈Γ〉 ; 〈∆〉 ; l : N; r : N ` [P [var(l , r)]] −→

[step]

122

1. 〈Γ〉

2. n > 0

3. 〈∆〉

4. depth : N

5. op : Operator

6. subterms : BT{n〈|Γ|〉[] − 1} List

7. compatible shapes(depth; shape(op); subterms)

` [P [BTerm(depth, op, subterms)]] −→

〈Γ〉 ; t : BT{n}; 〈∆〉 ` [P [t]]

*[2, 250] rule bterm elim squash

{| public elim [ThinFirst thinT] |} Γ:

〈Γ〉 ; 〈∆〉 ; l : N; r : N ` [P [var(l , r)]] −→

1. 〈Γ〉

2. 〈∆〉

3. depth : N

4. op : Operator

5. subterms : BTerm List

6. compatible shapes(depth; shape(op); subterms)

` [P [BTerm(depth, op, subterms)]] −→

〈Γ〉 ; t : BTerm; 〈∆〉 ` [P [t]]

*[4, 105] rule bterm induction squash1 Γ:

〈Γ〉 ; 〈∆〉 ; l : N; r : N ` [P [var(l , r)]] −→

1. 〈Γ〉

2. 〈∆〉

3. n : N

4. depth : N

5. op : Operator

6. subterms : BT{n} List

123

7. compatible shapes(depth; shape(op); subterms)

8. ∀t ∈ subterms . [P [t]]

` [P [BTerm(depth, op, subterms)]] −→

〈Γ〉 ; t : BTerm; 〈∆〉 ` [P [t]]

*[8, 514] rewrite bind eta {| public reduce |} :

bt ∈ BTerm −→

(D bt) > 0 −→

B x . bt@x ←→ bt

*[2, 1197] rewrite bind vec eta {| public reduce |} :

n ∈ N −→

bt ∈ BTerm −→

(D bt) ≥ n −→

B gamma : n . bt@lgamma ←→ bt

*[4, 634] rewrite subterms lemma {| public reduce |} :

n ∈ N −→

subterms ∈ BTerm List −→

∀i : Index(subterms). ((D (subterms i)) ≥ n) −→

map(bt .B v : n . bt@lv ; subterms) ←→ subterms

*[5, 1538] rule subterms depth

{| public intro [] |} shape 〈|Γ|〉[]:

[wf] 〈Γ〉 ` bdepth ∈ N −→

[wf] 〈Γ〉 ` shape ∈ N List −→

[wf] 〈Γ〉 ` btl ∈ BTerm List −→

〈Γ〉 ` compatible shapes(bdepth; shape; btl) −→

〈Γ〉 ` ∀i : Index(btl). ((D (btl i)) ≥ bdepth)

*[2, 19] rule subterms depth2

{| public intro [] |} shape 〈|Γ|〉[]:

[wf] 〈Γ〉 ` bdepth ∈ N −→

[wf] 〈Γ〉 ` shape ∈ N List −→

[wf] 〈Γ〉 ` btl ∈ BTerm List −→

124

〈Γ〉 ` compatible shapes(bdepth; shape; btl) −→

〈Γ〉 ` ∀i : Index(btl). ((D (btl i)) ≥ bdepth)

*[2, 31] rule subterms depth3

{| public intro [] |} shape 〈|Γ|〉[]:

[wf] 〈Γ〉 ` bdepth ∈ N −→

[wf] 〈Γ〉 ` shape ∈ N List −→

[wf] 〈Γ〉 ` btl ∈ BTerm List −→

〈Γ〉 ` compatible shapes(bdepth; shape; btl) −→

〈Γ〉 ` ∀x ∈ btl . ((D x) ≥ bdepth)

*[2, 38] rewrite dest bterm mk bterm2 {| public reduce |} :

n ∈ N −→

op ∈ Operator −→

subterms ∈ BTerm List −→

compatible shapes(n; shape(op); subterms) −→

match BTerm(n, op, subterms) with

var(l , r) − > var case[l ; r]

| BTerm(bdepth, op, subterms) − > op case[bdepth;

op;

subterms] ←→

op case[n; op; subterms]

*[3, 86] rewrite dest bterm mk term {| public reduce |} :

op ∈ Operator −→

subterms ∈ List −→

match Term(op, subterms) with

var(l , r) − > var case[l ; r]

| BTerm(bdepth, op, subterms) − > op case[bdepth;

op;

subterms] ←→

op case[0; op; subterms]

*[1, 79] rewrite mk dest reduce {| public reduce |} :

125

t ∈ BTerm −→

mk{dest{t}} ←→ t

*[1, 20] rewrite reduce ndepth1 {| public reduce |} :

l ∈ N −→

r ∈ N −→

ndepth{var(l , r)} ←→ 1

*[1, 26] rewrite reduce ndepth2 {| public reduce |} :

op ∈ Operator −→

bdepth ∈ N −→

subs ∈ BTerm List −→

compatible shapes(bdepth; shape(op); subs) −→

ndepth{BTerm(bdepth, op, subs)} ←→

maxl(map(x .ndepth{x}; subs)) + 1

*[2, 228] rule iter monotone set {| public intro [] |} :

〈Γ〉 ` T ⊆ S −→

〈Γ〉 ` S v BTerm −→

〈Γ〉 ` Iter{T} ⊆ Iter{S}

*[1, 78] rule bt monotone set {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BT{n} ⊆ BT{n + 1}

*[7, 807] rule bt monotone set2 {| public intro [] |} :

[wf] 〈Γ〉 ` k ∈ N −→

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` n ≥ k −→

〈Γ〉 ` BT{k} ⊆ BT{n}

*[3, 163] rule ndepth wf {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` ndepth{t} ∈ N

*[11, 436] rule ndepth correct {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

126

〈Γ〉 ` t ∈ BT{ndepth{t}}

*[2, 42] rule bt subset bterm {| public intro [] |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` BT{n} ⊆ BTerm

*[1, 81] rule dest bterm wf {| public intro [] |} :

[wf] 〈Γ〉 ` bt ∈ BTerm −→

[wf] 〈Γ〉 ; l : N; r : N ` var case[l ; r] ∈ T −→

[wf]

1. 〈Γ〉

2. bdepth : N

3. op : Operator

4. subterms : BTerm List

5. compatible shapes(bdepth; shape(op); subterms)

` op case[bdepth; op; subterms] ∈ T −→

1. 〈Γ〉

`

match bt with

var(l , r) − > var case[l ; r]

| BTerm(bdepth, op, subterms) − > op case[bdepth;

op;

subterms] ∈

T

*[1, 183] rule dest wf {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` dest{t} ∈ dom{BTerm}

*[3, 102] rule bterm elim {| public elim [] |} Γ:

〈Γ〉 ; 〈∆〉 ; l : N; r : N ` P [var(l , r)] −→

1. 〈Γ〉

127

2. 〈∆〉

3. bdepth : N

4. op : Operator

5. subterms : BTerm List

6. compatible shapes(bdepth; shape(op); subterms)

` P [BTerm(bdepth, op, subterms)] −→

〈Γ〉 ; t : BTerm; 〈∆〉 ` P [t]

*[1, 17] rule dom elim {| public elim [] |} Γ:

〈Γ〉 ; dom{T}; u : N × N; 〈∆[inl u]〉 ` P [inl u] −→

1. 〈Γ〉

2. dom{T}

3. v :

depth : N × op : Operator × {subterms : T List |

compatible shapes(depth; shape(op); subterms)}

4. 〈∆[inr v]〉

` P [inr v] −→

〈Γ〉 ; t : dom{T}; 〈∆[t]〉 ` P [t]

*[1, 98] rewrite dest mk reduce n:

n ∈ N −→

t ∈ dom{BT{n}} −→

dest{mk{t}} ←→ t

*[3, 41] rule bt elim1 {| public elim [] |} Γ:

[wf] 〈Γ〉 ; t : BT{n + 1}; 〈∆[t]〉 ` n 〈|Γ|〉[] ∈ N −→

[step] 〈Γ〉 ; x : dom{BT{n}}; 〈∆[mk{x}]〉 ` P [mk{x}] −→

〈Γ〉 ; t : BT{n + 1}; 〈∆[t]〉 ` P [t]

*[3, 382] rule bterm elim squash1 {| public elim [] |} Γ:

〈Γ〉 ; t : BTerm; 〈∆[t]〉 ; l : N; r : N ` [P [var(l , r)]] −→

1. 〈Γ〉

128

2. t : BTerm

3. 〈∆[t]〉

4. depth : N

5. op : Operator

6. subterms : BTerm List

7. compatible shapes(depth; shape(op); subterms)

` [P [BTerm(depth, op, subterms)]] −→

〈Γ〉 ; t : BTerm; 〈∆[t]〉 ` [P [t]]

*[3, 101] rule bterm elim2 {| public elim [] |} Γ:

〈Γ〉 ; t : BTerm; 〈∆[t]〉 ; l : N; r : N ` P [var(l , r)] −→

1. 〈Γ〉

2. t : BTerm

3. 〈∆[t]〉

4. bdepth : N

5. op : Operator

6. subterms : BTerm List

7. compatible shapes(bdepth; shape(op); subterms)

` P [BTerm(bdepth, op, subterms)] −→

〈Γ〉 ; t : BTerm; 〈∆[t]〉 ` P [t]

*[5, 122] rule bterm elim3 Γ:

〈Γ〉 ; l : N; r : N; 〈∆[var(l , r)]〉 ` P [var(l , r)] −→

1. 〈Γ〉

2. bdepth : N

3. op : Operator

4. subterms : BTerm List

5. compatible shapes(bdepth; shape(op); subterms)

6. 〈∆[BTerm(bdepth, op, subterms)]〉

` P [BTerm(bdepth, op, subterms)] −→

129

〈Γ〉 ; t : BTerm; 〈∆[t]〉 ` P [t]

The following is the actual induction principle (the previous rules are just elimination

rules).

*[6, 261] rule bterm induction {| public elim [] |} Γ:

[base] 〈Γ〉 ; t : BTerm; 〈∆[t]〉 ; l : N; r : N ` P [var(l , r)] −→

[step]

1. 〈Γ〉

2. t : BTerm

3. 〈∆[t]〉

4. bdepth : N

5. op : Operator

6. subterms : BTerm List

7. compatible shapes(bdepth; shape(op); subterms)

8. ∀t ∈ subterms . P [t]

` P [BTerm(bdepth, op, subterms)] −→

〈Γ〉 ; t : BTerm; 〈∆[t]〉 ` P [t]

*[1, 57] rule is var wf {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` is var(t) ∈ B

*[2, 123] rule subterms wf1 {| public intro [] |} :

[wf] 〈Γ〉 ` t ∈ BTerm −→

〈Γ〉 ` ¬(↑ is var(t)) −→

〈Γ〉 ` subterms t ∈ BTerm List

BTerm has a trivial squiggle equality.

*[18, 455] rule bterm sqsimple

{| public intro []; public sqsimple |} :

130

〈Γ〉 ` sqsimple{BTerm}

*[2, 40] rule bterm sqsimple2

{| public intro []; public sqsimple |} :

[wf] 〈Γ〉 ` n ∈ N −→

〈Γ〉 ` sqsimple{BTerm{n}}

Define a Boolean equality (alpha equality) on BTerms.

define unfold beq bterm :

Itt hoas bterm!beq bterm{’t1<|!!|>; ’t2<|!!|>}

(displayed as “beq bterm{t1; t2}”) ←→

fix(beq bterm.λt1.λt2.match t1 with

var(l1, r1) − > match t2 with

var(l2, r2) − > beq var{var(l1, r1); var(l2, r2)}

| BTerm(d1, o1, s1) − > false

| BTerm(d1, o1, s1) − > match t2 with

var(l2, r2) − > false

| BTerm(d2, o2, s2) − > (d1 = b d2)

∧b is same op(o1; o2)

∧b (∀bt1, t2 ∈ s1, s2. (beq bterm t1 t2))) t1 t2

*[1, 22] rewrite reduce beq bterm var var

{| public reduce |} :

l1 ∈ N −→

r1 ∈ N −→

l2 ∈ N −→

r2 ∈ N −→

beq bterm{var(l1, r1); var(l2, r2)} ←→

beq var{var(l1, r1); var(l2, r2)}

*[1, 55] rewrite reduce beq bterm var bterm

{| public reduce |} :

131

l ∈ N −→

r ∈ N −→

d ∈ N −→

o ∈ Operator −→

s ∈ List −→

beq bterm{var(l , r); BTerm(d , o, s)} ←→ false

*[1, 38] rewrite reduce beq bterm bterm var

{| public reduce |} :

l ∈ N −→

r ∈ N −→

d ∈ N −→

o ∈ Operator −→

s ∈ List −→

beq bterm{BTerm(d , o, s); var(l , r)} ←→ false

*[1, 35] rewrite reduce beq bterm bterm bterm

{| public reduce |} :

d1 ∈ N −→

o1 ∈ Operator −→

s1 ∈ BTerm List −→

d2 ∈ N −→

o2 ∈ Operator −→

s2 ∈ BTerm List −→

compatible shapes(d1; shape(o1); s1) −→

compatible shapes(d2; shape(o2); s2) −→

beq bterm{BTerm(d1, o1, s1); BTerm(d2, o2, s2)} ←→

(d1 = b d2)

∧b is same op(o1; o2)

∧b (∀bt1, t2 ∈ s1, s2. beq bterm{t1; t2})

*[10, 326] rule beq bterm wf {| public intro [] |} :

[wf] 〈Γ〉 ` t1 ∈ BTerm −→

132

[wf] 〈Γ〉 ` t2 ∈ BTerm −→

〈Γ〉 ` beq bterm{t1; t2} ∈ B

*[6, 152] rule beq bterm intro {| public intro [] |} :

〈Γ〉 ` t1 = t2 ∈ BTerm −→

〈Γ〉 ` ↑ beq bterm{t1; t2}

*[24, 791] rule beq bterm elim {| public elim [] |} Γ:

[wf] 〈Γ〉 ; u : ↑ beq bterm{t1; t2}; 〈∆[u]〉 ` t1〈|Γ|〉[] ∈ BTerm −→

[wf] 〈Γ〉 ; u : ↑ beq bterm{t1; t2}; 〈∆[u]〉 ` t2〈|Γ|〉[] ∈ BTerm −→

〈Γ〉 ; u : t1 = t2 ∈ BTerm; 〈∆[u]〉 ` C [u] −→

〈Γ〉 ; u : ↑ beq bterm{t1; t2}; 〈∆[u]〉 ` C [u]

define unfold beq bterm list :

Itt hoas bterm!beq bterm list{’l1<|!!|>; ’l2<|!!|>}

(displayed as “beq bterm list{l1; l2}”) ←→

∀bt1, t2 ∈ l1, l2. beq bterm{t1; t2}

*[1, 8] rewrite reduce beq bterm list nil nil

{| public reduce |} :

beq bterm list{[]; []} ←→ true

*[1, 8] rewrite reduce beq bterm list nil cons

{| public reduce |} :

beq bterm list{[]; u :: v} ←→ false

*[1, 8] rewrite reduce beq bterm list cons nil

{| public reduce |} :

beq bterm list{u :: v ; []} ←→ false

*[1, 18] rewrite reduce beq bterm list cons cons

{| public reduce |} :

beq bterm list{u1 :: v1; u2 :: v2}

←→

beq bterm{u1; u2} ∧ b beq bterm list{v1; v2}

*[2, 15] rule beq bterm list wf {| public intro [] |} :

[wf] 〈Γ〉 ` l1 ∈ BTerm List −→

133

[wf] 〈Γ〉 ` l2 ∈ BTerm List −→

〈Γ〉 ` beq bterm list{l1; l2} ∈ B

*[2, 173] rule beq bterm list intro {| public intro [] |} :

〈Γ〉 ` t1 = t2 ∈ BTerm List −→

〈Γ〉 ` ↑ beq bterm list{t1; t2}

*[6, 213] rule beq bterm list elim {| public elim [] |} Γ:

[wf]

1. 〈Γ〉

2. u : ↑ beq bterm list{t1; t2}

3. 〈∆[u]〉

` t1〈|Γ|〉[] ∈ BTerm List −→

[wf]

1. 〈Γ〉

2. u : ↑ beq bterm list{t1; t2}

3. 〈∆[u]〉

` t2〈|Γ|〉[] ∈ BTerm List −→

〈Γ〉 ; u : t1 = t2 ∈ BTerm List; 〈∆[u]〉 ` C [u] −→

〈Γ〉 ; u : ↑ beq bterm list{t1; t2}; 〈∆[u]〉 ` C [u]

Simple rules for forward chaining.

*[1, 34] rule beq bterm forward {| public forward |} Γ:

[wf] 〈Γ〉 ; 〈∆[·]〉 ` t1〈|Γ|〉[] ∈ BTerm −→

[wf] 〈Γ〉 ; 〈∆[·]〉 ` t2〈|Γ|〉[] ∈ BTerm −→

〈Γ〉 ; 〈∆[·]〉 ; t1〈|Γ|〉[] = t2〈|Γ|〉[] ∈ BTerm ` C [·] −→

〈Γ〉 ; x : ↑ beq bterm{t1; t2}; 〈∆[x]〉 ` C [x]

*[1, 34] rule beq bterm list forward {| public forward |} Γ:

[wf] 〈Γ〉 ; 〈∆[·]〉 ` t1〈|Γ|〉[] ∈ BTerm List −→

[wf] 〈Γ〉 ; 〈∆[·]〉 ` t2〈|Γ|〉[] ∈ BTerm List −→

〈Γ〉 ; 〈∆[·]〉 ; t1〈|Γ|〉[] = t2〈|Γ|〉[] ∈ BTerm List ` C [·] −→

134

〈Γ〉 ; x : ↑ beq bterm list{t1; t2}; 〈∆[x]〉 ` C [x]

Equality reasoning.

*[2, 103] rule mk bterm simple eq {| public intro [] |} :

[wf] 〈Γ〉 ` d1 = d2 ∈ N −→

[wf] 〈Γ〉 ` op1 = op2 ∈ Operator −→

[wf] 〈Γ〉 ` subterms1 = subterms2 ∈ BTerm List −→

〈Γ〉 ` compatible shapes(d1; shape(op1); subterms1) −→

1. 〈Γ〉

`

BTerm(d1, op1, subterms1)

= BTerm(d2, op2, subterms2) ∈ BTerm

*[4, 113] rule mk bterm eq {| public intro [] |} :

[wf] 〈Γ〉 ` d1 = d3 ∈ N −→

[wf] 〈Γ〉 ` d2 = d3 ∈ N −→

[wf] 〈Γ〉 ` op1 = op2 ∈ Operator −→

[wf] 〈Γ〉 ` subterms1 = subterms2 ∈ BTerm List −→

〈Γ〉 ` compatible shapes(d1; shape(op1); subterms1) −→

1. 〈Γ〉

`

BTerm(d1, op1, subterms1)

= BTerm(d2, op2, subterms2) ∈ BTerm{d3}

*[2, 22] rule bterm depth eq {| public nth hyp |} :

〈Γ〉 ` t ∈ BTerm{d} −→

〈Γ〉 ` d = D t ∈ int

*[1, 391] rule bterm depth ge {| public nth hyp |} :

〈Γ〉 ` t ∈ BTerm{d} −→

135

〈Γ〉 ` (D t) ≥ d

	Acknowledgments
	Abstract
	Introduction
	What Is Reflection
	Programming Language Metatheory
	Terminology
	Organization

	Previous Models of Reflection
	A Hybrid HOAS/de Bruijn Representation of the Syntax
	Bound Terms
	Terminology
	Abstract Operators
	Inductively Defining the Type of Well-Formed Bterms
	Our Approach

	Formal Implementation of the Syntax in a Theorem Prover
	Computations and Types
	HOAS Representation
	Vector HOAS Operations
	de Bruijn Representation
	Operators
	The Type of Reflected Terms
	Exotic Terms and Decidability
	A Small Example
	Related Work

	The HOAS Representation Function
	Sequent Representation
	Sequent Context Induction
	Computation on Sequent Terms
	Computing Canonical Sequent Representations

	Proof Reflection
	Proof Checking
	Derivations and Provability
	Proof Reflection and Automation
	Proof Induction
	Preliminary Discussion

	An Example: F<:
	Defining the Syntax of F<:
	Reflected Syntax
	The F<: Logic
	Structural Induction

	Discussion and Future Work
	Bibliography
	Architecture and Summary of the Implementation in MetaPRL
	Partial Listing of Relevant MetaPRL Theories
	Itt_hoas_base module
	Parents
	Terms
	Rewrites

	Itt_hoas_vector module
	Parents
	Terms
	Rewrites

	Itt_hoas_debruijn module
	Parents
	Terms
	A de Bruijn-like representation of syntax
	Basic operations on syntax

	Rewrites

	Itt_hoas_operator module
	Parents
	Terms
	Rules
	Concrete Operators

	Itt_hoas_destterm module
	Parents
	Terms
	Rules
	Rewrites

	Itt_hoas_bterm module
	Parents
	Terms
	Rewrites
	Rules

