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ABSTRACT 

Dynamic sliding at high strain rates along incoherent (frictional) interfaces is investigated 

experimentally in a microsecond time scale. A bimaterial system comprised of Homalite 

and steel plates and a homogeneous system consisting of two Homalite plates are 

considered. The plates are held together by a uniform compressive stress while dynamic 

sliding is initiated by an impact-induced shear loading. 

 

The evolution of maximum shear stress contours is recorded by high-speed photography in 

conjunction with dynamic photoelasticity. A newly developed technique based on laser 

interferometry is employed to locally measure sliding speed at the interface. The 

combination of the classic full-field technique of photoelasticity with the local technique of 

velocimetry is proven to be a very powerful tool in the investigation of dynamic sliding. 

 

The response of the Homalite-steel bimaterial system differs according to whether the 

impact loading is applied to the Homalite plate or to the steel plate. In the first case, the 

interaction between the traveling impact wave and the preexisting static field causes the 

generation of a relatively broad eye-like fringe formation emanating from the interface and 

propagating just behind the P-wave front. A disturbance traveling at the interface at a 

constant speed close to the Rayleigh wave speed of steel, which is higher than the shear 

wave speed of Homalite, generates a shear Mach line crossing the P-wave front and the 

eye-like fringe structure. Velocimetry reveals that sliding initiates behind the eye-like 

fringe pattern. A second shear Mach line, originating from the sliding tip, appears in the 



 

 

vii
photoelastic images, indicating that the sliding is supershear with respect to the shear 

wave speed of Homalite. A disturbance, traveling at constant speeds between the shear 

wave speed and the longitudinal wave speed of Homalite, appears behind the sliding tip. 

Self-sustained wrinkle-like opening pulses, propagating along the bimaterial interface at a 

constant speed between the Rayleigh wave and the shear wave speed of Homalite, are also 

observed. When the impact load is applied to steel plate, then the data acquired by the 

velocimeter are the only useful source of information. Analysis of these data shows that 

sliding at a given point initiates with the arrival of the P-wave front there, so that the 

rupture is sonic with respect to the steel and supersonic with respect to the Homalite. 

 

A central issue in the modeling of frictional sliding is the duration of the slip at a point on 

the interface compared to the duration of sliding. The most classic approach of sliding uses 

shear crack models (crack-like mode), where the slip duration at a point is significant 

fraction of the overall sliding. According to the pulse-like model, the duration of slip at a 

point is considerably shorter than the duration of sliding. 

 

In all the experiments performed on the bimaterial structure (Homalite-steel), sliding occurs 

always in a crack-like mode. In the case of a homogeneous system of Homalite plates, 

however, direct physical evidence of different modes of sliding is recorded. Crack-like 

sliding, pulse-like sliding and mixed mode sliding in the form of pulses followed by a crack 

are discovered. The propagation speeds of the sliding tips are not dependent on the 

confining stress but only on the projectile speed. They span almost the whole interval from 

sub-Rayleigh speeds to nearly the sonic speed of the material, with the exception of a 



 

 

viii
forbidden gap between the Rayleigh wave speed and the shear wave speed. Supersonic 

trailing pulses are also recorded. Mach lines with different inclination emanating from the 

sliding zone tips are discovered. Behind the sliding tip, wrinkle-like pulses are developed 

for a wide range of impact speeds and confining stresses. They always travel at speeds 

between the Rayleigh wave speed and the shear wave speed of Homalite. 
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SUMMARY 

This doctoral dissertation consists of five chapters. The overall theme is the experimental 

study of dynamic sliding along incoherent (frictional) interfaces featuring in a bimaterial 

system comprised of Homalite and steel plates, and a homogeneous system consisting of 

two Homalite plates. The plates are held together by a uniform compressive stress, while 

sliding is initiated by a shear loading induced via an edge impact near the interface. In the 

first chapter, an introduction to the subject of dynamic frictional sliding is presented. The 

second chapter illustrates the experimental methods employed in this investigation. It 

describes the experimental configuration for the dynamic photoelasticity and it details a 

newly developed technique, which is based on laser interferometry, for local sliding 

velocity measurement. Finally, the reliability of the proposed technique is tested 

extensively. 

 

In the third chapter, dynamic photoelasticity in conjunction with velocimetry is employed 

in the study of frictional sliding along the incoherent interface of a Homalite-steel 

bimaterial system in a microsecond time scale. The response of the system differs 

according to whether the impact loading is applied to the Homalite plate or to the steel 

plate. In the first case, the interaction between the traveling impact wave and the 

preexisting static field causes a relatively broad eye-like fringe formation, which emanates 

from the interface and travels behind the P-wave front. A disturbance traveling at the 

interface at a constant speed close to the Rayleigh wave speed of steel, (which is higher 

than the P-wave of Homalite,) generates a shear Mach line that crosses the P-wave front 
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and the eye-like fringe structure. Data recorded by the velocimeter show that this 

disturbance affects the relative velocity but does not create sliding. Velocimetry reveals that 

sliding initiates behind the eye-like fringe pattern. A second shear Mach line, emanating 

from the sliding tip, appears in the photoelastic images, indicating that the sliding is 

supershear with respect to the shear wave speed of Homalite. A disturbance, traveling at 

constant speeds between the shear wave speed and the longitudinal wave speed of 

Homalite, appears behind the sliding tip. Self-sustaining wrinkle-like pulses propagating 

along the bimaterial interface are also observed. It is expected that wrinkle-like pulses 

might play an important role in the failure mechanism of bimaterial structures subjected to 

impact shear loading. Unlike classic shear cracks in coherent interfaces of finite strength, 

sliding areas in frictional interfaces seem to grow without any noticeable acceleration phase 

and at various discrete speeds. When the impact load applies to steel plate then the data 

acquired by the velocimeter are the only useful source of information. Analysis of these 

data shows that sliding initiates with the arrival of the P-wave front so that the rupture is 

sonic with respect to the steel and supersonic with respect to Homalite. 

 

A central issue in the modeling of frictional sliding is the duration of the slip at a point on 

the interface compared to the duration of sliding. The most classic approach of sliding uses 

shear crack models (crack-like mode), where the slip duration at a point is significant 

fraction of the overall sliding. According to the pulse-like model, the duration of slip at a 

point is one order of magnitude shorter than the overall duration of sliding. In all the 

performed experiments on bimaterial structures (Homalite-steel), sliding occurs always in a 

crack-like mode. 
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In chapter 4 however, where the case of the homogeneous system of Homalite plates is 

studied, photoelasticity in conjunction with velocimetry provide direct physical evidence of 

different sliding modes. Crack-like, pulse-like and mixed mode sliding in the form of 

sliding pulses followed by a crack are discovered and recorded. The mechanism of sliding 

initiation and its dependence on impact speeds and on confining stress is studied 

thoroughly.  A relatively broad loading wave caused by the interference between the 

impact wave and the preexisting static stress field is observed emanating from the interface. 

Sliding velocity measurements reveal that sliding starts behind the loading wave. In 

addition, evidence of wrinkle-like pulses generated for a wide range of impact speeds and 

confining stresses are recorded. 

 

The combined use of classic dynamic photoelasticity with velocimetry allowed us to fully 

characterize the frictional sliding process. However, the maximum particle velocity which 

can be measured by the velocimeter is sm10 . In order to work within the above limit, low 

impact speeds were used in chapter 4. This limitation is suspended for the experiments in 

chapter 5, where only dynamic photoelasticity in conjunction with high-speed photography 

is used as a diagnostic tool. Thus, a wide spectrum of impact speeds is employed for sliding 

initiation. Experimental results obtained at high impact speeds (on the order of sm80 ) are 

compared to results obtained at low impact speeds (on the order of sm10 ). The observed 

propagation speeds of the sliding tips are not dependent on the confining stress but only on 

the projectile speed. They span almost the whole interval from sub-Rayleigh speeds to 
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nearly the sonic speed of the material, with the exception of a forbidden gap between the 

Rayleigh wave speed and the shear wave speed. Supersonic trailing pulses are also 

recorded. Mach lines with different inclination angles emanating from the sliding zone tips 

are discovered. In addition, behind the sliding tip, wrinkle-like pulses are generated for a 

wide range of impact speeds and confining stresses. They always travel at speeds between 

the Rayleigh wave speed and the shear wave speed of Homalite.  

 

Besides the impact speed, the static confining stress and the surface roughness are two 

parameters which also drastically affect the dynamic sliding. Three different types of 

contact surfaces with one order of magnitude difference in roughness between each other 

are also used. It is concluded that the surface roughness does not affect the propagation 

speeds of the rupture tip or the propagation speed of the wrinkle-like pulse. It affects, 

however, the rupture initiation process.  

 

Finally, it is noted that the following four papers have been emerged from this work: 

Coker, D., Lykotrafitis, G., Needleman, A. & Rosakis, A. J. Frictional sliding modes along 
an interface between identical elastic plates subject to shear impact loading. J.  Mech. and 
Phys. of Solids. 53, 884-922 (2005). 

Lykotrafitis, G., Rosakis, A. J. & Ravichandran, G. Particle Velocimetry and 
Photoelasticity Applied to the Study of Dynamic Sliding Along Frictionally-Held 
Bimaterial Interfaces: Techniques and Feasibility. Experimental  Mechanics. Accepted 
2005. 

Lykotrafitis, G., Rosakis, A. J. & Ravichandran, G. Visualizing “pulse-like” and “crack-
like” ruptures in the laboratory. Nature. Submitted (2005). 

Lykotrafitis, G. & Rosakis, A. J. Sliding along frictionally held incoherent interfaces in 
homogeneous systems subjected to dynamic shear loading. Int. J. Fract. Submitted (2005). 
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C h a p t e r  1  

Introduction 
 
Many physical systems of interest to both engineering and applied sciences involve 

dynamic frictional sliding along incoherent interfaces between two deformable solids. 

Examples include moving machinery surface interactions (relevant to both macro- and 

micro-machinery operations), material processing (e.g., cutting), the failure of fiber 

reinforced composites (e.g., dynamic fiber pullout) as well as earthquake dynamics (fault 

rupture). However, a unified framework for quantifying the wide range of observed 

dynamic frictional phenomena is only beginning to emerge. The classical Amontons-

Coulomb description of friction states that shear stress at an interface is proportional to the 

normal stress, with the coefficient of proportionality being the coefficient of friction. In this 

classic description of friction, two coefficients of friction are identified: a static coefficient 

of friction that governs the onset of sliding and a dynamic coefficient of friction that 

characterizes the behavior during sliding. In a slightly more advanced description, the 

coefficient of friction may take the form of a simple function of sliding distance (slip) or of 

sliding speed or of both while the linear dependence on normal stress is still preserved. 

 

From the microscale point of view, an evolving population of contacts and their local 

deformation, phase transition and fracture and the presence of various lubricants appear to 

play an important role in controlling the functional form of the dependence of frictional 

strength on slip sliding speed and normal stress. From the phenomenological point of view, 

rate and state models of friction have recently been introduced in an attempt to replace the 
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simplistic Amontons-Coulomb descriptions given above (e.g. Dieterich 1979; Ruina 1983; 

Rice and Ruina 1983; Linker and Dieterich 1992; Prakash and Clifton 1993; Prakash 

1998). Such models, based on experimental observations, attempt to describe the local 

microprocesses of surface interaction and to introduce the notion of “system memory” 

through appropriately chosen state variables. Rate and state models of friction have come to 

the fore because they substantially influence the predicted mode and stability of the 

dynamic interfacial sliding processes (Coker, Lykotrafitis, Needleman and Rosakis 2005). 

 

Dynamic sliding modes 

There are two widely accepted approaches to the description of dynamic sliding (Rice 

2001). The most classic approach uses elastodynamic shear rupture (or crack) models in 

which the surfaces behind the leading edge of rupture (rupture tip) continuously slide and 

interact through contact and friction. More recently, pulse-like models in which sliding 

occurs over a relatively small propagating region have been introduced. In these models, 

the sliding is confined to a finite length and is followed by interfacial locking. 

 

The duration of slip at a point on an interface (or fault) in comparison with the duration of 

the rupture of the entire fault is a central issue in the modeling of earthquake rupture (Rice 

2001). The crack-like mode has been generated in many numerical simulations of 

spontaneous rupture when a rate-independent friction law was implemented (Madariaga 

1976; Andrews 1976 and 1985; Das and Aki 1977; Day 1982; Ruppert and Yomogida 

1992; Harris and Day 1993). It has been pointed out, however, that inversions of seismic 

data for slip histories from well-recorded events (Heaton 1982 and 1990; Hartzell and 
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Heaton 1983; Liu and Helmberger 1983; Mendoza and Hartzell 1988 and 1989) indicate 

that the duration of slip at a point on the fault was one order of magnitude shorter than the 

event duration, giving rise to the concept of a pulse-like rupture mode. Some eyewitness 

accounts also reported short slip duration (Wallace 1983; Pelton, Meissner and Smith 

1984).  

 

The concept of a pulse-like rupture went against a widely-accepted view of how seismic 

rupture occurs. Its introduction was followed by various efforts to illuminate the physics 

leading to this process through analytical and numerical investigations. Different 

mechanisms for “self-healing” pulse generation along faults in homogeneous systems have 

been proposed. One postulation is that if the fault strength is low immediately behind the 

rupture front and is increased rapidly at a finite distance, then slip might be restricted to a 

short, narrow propagating area (Brune 1976). Recent theoretical and numerical 

investigations show that a strong velocity-weakening friction law model could indeed allow 

for pulse-like behavior of rupture under certain conditions (Zheng and Rice 1998). 

However, simulations utilizing velocity weakening have sometimes resulted in crack-like 

rupture and sometimes in “self-healing” pulse propagation (e.g., Cochard and Madariaga 

1994 and 1996; Perrin, Rice and Zheng 1995; Beeler and Tullis 1996; Ben-Zion and Rice 

1997; Lapusta et al. 2000; Cochard and Rice 2000; Nielsen, Carlson and Olsen 2000; 

Coker et al. 2005; Lapusta 2005). Friction laws along interfaces between two identical 

elastic solids have to include laboratory-based state evolution features and they must not 

exhibit ill-posedness or paradoxical features (Cochard and Rice 2000; Ranjith and Rice 

2001). It has been proven that generalized rate and state friction laws are appropriate 
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candidates for uniform faults (Cochard and Rice 2000; Ranjith and Rice 2001; Rice, 

Lapusta and Ranjith 2001; Zheng and Rice 1998). Within the frame of rate and state 

friction laws, the following three requirements have to be fulfilled for rupture to occur as a 

“self-healing” pulse (Zheng and Rice 1998; Rice 2001). One requirement is that the friction 

law must include strengthening with time on slipped portions of the interface that are 

momentarily in stationary contact (Perrin, Rice and Zheng 1995). Another is that the 

velocity weakening at high slip rates must be much greater than that associated with the 

weak logarithmic dependence observed in the laboratory during low-velocity sliding 

experiments. Lastly, the third requirement is that the overall driving stress has to be lower 

than a certain value, but high enough to allow for self-sustained pulse propagation (Zheng 

and Rice 1998).  

 

While strong velocity weakening is a mechanism which explains the onset of short duration 

slip-pulses along interfaces (faults) which separate similar materials, it is important to note 

that other mechanisms exist as well. One involves geometric confinement of the rupture 

domain by unbreakable regions (barrier model). That is, sliding (an earthquake) consists of 

a number of crack-like ruptures of short duration on a small rupture area that are separated 

by locked regions (Aki, 1979; Papageorgiou and Aki 1983a and 1983b). In one 

implementation of this scenario, a pulse-like rupture behavior was found in a 3D geometry 

when the rupture process was confined within a long but narrow region by unbreakable 

barriers (Day 1982). It was observed that the rupture started in a classic crack-like mode 

and it propagated in all directions. After some time, arresting waves arrived from the 

boundaries and they effectively relocked the fault behind the rupture front, resulting in two 
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slip pulses. Alternatively, a rupture nucleates and propagates bilaterally, but may arrest 

suddenly at a strong barrier at one end. Following its arrest, the reflected waves from the 

barrier spread back and heal the rupture surface. The combination of the still-propagating 

end of the rupture with the healing reflected wave forms a moving pulse-like configuration 

(Johnson 1990). 

 

In general, narrow slip pulses can be generated during dynamic sliding along interfaces by 

strongly velocity-weakening friction on a homogeneous system (same material across the 

interface), by strong fault zone heterogeneities (Rice 2001) or by variations in normal stress 

along the rupture interface. All of the above conditions (velocity weakening, 

heterogeneities and bimaterial contrast) can produce slip pulses with low dynamic stress at 

the active part of the slip and provide satisfactory solution to the heat flow paradox. An 

extensive discussion of the subject is presented by Nielsen and Madariaga 2003. We finally 

note that finite element calculations have been carried out by Coker, Lykotrafitis, 

Needleman and Rosakis 2005 for a configuration similar to the experimental setup used in 

this work. These simulations show that generation of slip pulses along an interface 

characterized by a rate and state dependent frictional law is feasible. 

 

Stability of sliding modes 

Renardy (1992) and Adams (1995) showed that sliding along a bimaterial interface 

governed by Amontons-Coulomb friction is unstable to periodic perturbations, with an 

instability growth rate proportional to the wave number, for a wide range of friction 

coefficients and material properties. Ranjith and Rice (1995) found that for moderate 
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material contrast for which the generalized Rayleigh wave exists, there are unstable 

modes for all values of the Coulomb friction coefficient. On the other hand, when the 

material contrast is large enough so that the Generalized Rayleigh wave does not exist, 

such unstable modes appear only for a friction coefficient larger than a critical value. For 

lower values of friction coefficient, periodic disturbances are either neutrally stable (do not 

grow with time) or stable (diminishing with time giving rise to stable sliding). 

Mathematically, instability makes the response of a material interface with Coulomb 

friction ill-posed (no solution exists) to generic (nonperiodic) perturbations or pulses, 

which can be thought of as infinite superposition of periodic perturbations of various 

wavelengths. Physically, the above instability implies that during sliding, energy is 

transferred to shorter wave lengths, leading to pulse sharpening and splitting. Numerically, 

the splitting of individual pulses creates inherent grid-size dependency for numerical 

calculations (Andrews and Ben-Zion 1997, Ben-Zion and Andrews 1998). Ranjith and Rice 

2001 demonstrated that an experimentally-based rate and state dependent friction law 

(Prakash-Clifton 1993, Prakash 1998), in which the shear strength in response to an abrupt 

change in normal stress evolves continuously over time, provides well-posedness 

(regularization) to the problem of generic perturbations propagation (solutions for non-

splitting single pulses can be found). Convergence through grid size reduction is then 

achieved (Cochard and Rice 2000). Ben-Zion and Huang 2002 proved that though the 

mathematical problem with regularized friction is well-posed, the self-sharpening behavior 

of the pulses still exists for large enough propagation distances or equivalently for long 

times. We finally note that use of rate and state dependent friction not only regularize the 

ill-posedness of the sliding problem but also eliminates certain features of models of sliding 
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between two identical elastic solids such as supersonic propagation of rupture fronts 

(Rice, Lapusta and Ranjith 2001). However, the physical reason for excluding supersonic 

propagation is not clear.  

 

In the case of sliding along an interface between two identical elastic solids (no mismatch 

in wave speeds across the interface) there is no coupling between normal stress and slip. 

Unstable slip is impossible under symmetric far field loading if the interface is governed by 

the classical Amontons-Coulomb law (i.e., with a single, constant coefficient of friction). 

Indeed, as described by Rice 2001, the study of instable pulses requires more elaborate 

friction laws for which, under constant normal stress, the frictional strength at a point 

decreases as the slip displacement or slip velocity increases. In cases where the frictional 

strength decreases with sliding speed (velocity weakening), questions of well-posedness 

and stability of sliding bear striking resemblance to the bimaterial case discussed above. 

For example, when the velocity-weakening frictional law does not feature any history 

dependence the problem of periodic perturbations is well-posed (solutions can be found) 

while these perturbations are unstable, with an instability rate proportional to the wave 

number, provided that the rate of velocity weakening is stronger than the critical level. 

They are neutrally stable or stable otherwise. For strong enough velocity weakening, 

however, the problem is ill-posed (no solution exists) for sliding involving isolated (or 

generic) self-healing pulses and the associated numerical problems of pulse splitting still 

remain an issue. As in the case of bimaterial sliding, the introduction of history dependence 

in the form of rate and state frictional laws provides regularization but does not necessarily 

guarantee stability (i.e. individual pulses that do not split up can be found but may still 
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grow with time). Perrin, Rice and Zheng 1995 and Zheng and Rice 1998 found from 2-D 

antiplane (mode-III) calculations that a well-posed solution to the problem of propagation 

of a self-healing rupture pulse in a homogeneous fault requires frictional constitutive laws 

that include healing in stationary contact augmented by strong dependency of friction on 

slip velocity, and other, loading, rupture and fault conditions. They also found that under 

certain conditions, which depend, among other things, on the rate of steady-state velocity 

weakening and on the loading, rupture can be partially crack-like and partially pulse-like, 

whereas under other conditions rupture may still propagate as a classically expanding 

crack. Ben-Zion and Huang 2002 numerically studied a configuration of two identical 

solids separated by a fault zone layer at the limiting case, where the layer is of zero width. 

They assumed constant external compressive and shear fields. They showed that the 

friction law used by Ranjith and Rice 2001 and Cochard and Rice 2000 regularizes the 

Adams instability as it does with the dissimilar materials. The same conclusion was 

reached analytically by Rice, Lapusta and Ranjith 2001. 

 

Sliding propagation speeds 

The issue of limiting propagation speeds arises in the dynamic fracture mechanics of 

growing shear cracks (Freund 1990; Broberg 1999; Rosakis 2002), which has many 

similarities to the frictional sliding process. These theories treat the rupture front as a 

distinct point (sharp-tip crack). The crack-like rupture of coherent interfaces, separated by 

similar and dissimilar solids subjected to dynamic shear loading, has been the subject of 

extensive experimental, numerical and analytical investigations in the past years and has 

been summarized by Rosakis 2002 in a recent review. Intersonic shear rupture in coherent 
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interfaces occurs persistently in bimaterial systems and in homogeneous structures which 

feature interfaces. The first experimental observations of intersonically traveling cracks 

were made in connection with crack propagation along the interface of bimaterial systems 

(Tippur and Rosakis 1991; Liu, Lambros and Rosakis 1993; Lambros and Rosakis 1995, 

Singh and Shukla 1996; Rosakis, Samudrala, Singh and Shukla 1998; Kavaturu, Shukla 

and Rosakis 1998). Intersonic crack propagation in homogeneous systems was first 

observed experimentally by Rosakis, Samudrala and Coker 1999 and by Coker and Rosakis 

2001 and has been numerically modeled by Needleman 1999 using the cohesive element 

methodology and by Hao, Wing, Klein and Rosakis 2004 using a mesh-free finite element 

methodology. A special rupture speed of Sc2  as the speed separating regions of unstable 

and stable intersonic shear crack growth has also been identified (Burridge, Conn and 

Freund 1979; Freund 1979; Samudrala, Huang and Rosakis 2002(a, b)). Atomistic models 

of intersonic shear rupture (Abraham and Gao 2000; Abraham 2001; Gao, Huang and 

Abraham 2001) as well as field observations of intersonic rupture events during recent 

large crustal earthquakes (Archuleta 1984; Olsen, Madariaga and Archuleta 1997; 

Hernandez, Cotton and Campillo 1999; Bouchon et al. 2001; Lin et al. 2002; Bouchon and 

Vallee 2003; Ellsworth et al. 2004; Xia, Rosakis and Kanamori 2004; Xia, Rosakis, 

Kanamori and Rice 2005) have demonstrated the remarkable length scale persistence (over 

eleven orders of magnitude) of intersonic rupture phenomena and of the main features 

observed in laboratory experiments and in continuum theory. 
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Wrinkle-like pulses 

The possibility of generating wrinkle-like pulses in incoherent frictionless contact between 

two dissimilar solids, when separation does not occur, was first investigated by Achenbach 

and Epstein 1967. These “smooth contact Stonely waves” (also known as slip waves or 

generalized Rayleigh waves) are qualitatively similar to those of bonded contact (Stonely 

waves) and occur for a wider range of material combinations. Comninou and Dundurs 1977 

found that self-sustained slip waves with interface separation (detachment waves or 

wrinkle-like slip pulses) can propagate along the interface of two similar or different solids 

which are pressed together. The constant propagation speed of these waves was found to be 

between the Rayleigh wave speed and the shear wave speed of the slowest material. 

Weertman 1980 obtained a 2D self-sustained wrinkle-like slip pulse propagating at the 

generalized Rayleigh wave speed along a bimaterial interface governed by Coulomb 

friction when the remote shear stress was less than the frictional strength of the interface. 

Finite-difference calculations of Andrews and Ben-Zion 1997 show the propagation of 

wrinkle-like pulses along a bimaterial interface governed by Coulomb friction. Particle 

displacement in a direction perpendicular to the fault is much greater in the slower material 

than in the faster material, resulting in a separation of the interface during the passage of 

the slip pulse. Anooshehpoor and Brune 1999 discovered such waves in rubber sliding 

experiments (using a bimaterial system consisting of two rubber blocks with different wave 

speeds). The above-mentioned detachment waves are radically different from the 

Schallamach waves (Schallamach 1971) which propagate very slowly compared to the 

wave speeds of the solid. 
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Summary 

As we see, there is a debate about the different high-rate phenomena that occur at the 

incoherent interface of two half-planes during frictional sliding and there are not enough 

experimental studies so far which would help to analyze the problem. Indeed, the majority 

of the existing experimental studies concentrate on processes occurring over large time 

scales (large compared to wave transit within the specimen) and they are concerned with 

developing qualitative and/or quantitative relationships between time-averaged friction data 

and various governing parameters. Unfortunately, most dynamic friction laws obtained 

using various experimental configurations and apparati lack the reproducibility of friction 

data (survey by Ibrahim 1994) to be of definite value to the theorists. The results of these 

experiments are multi-branched friction versus slip velocity curves, which even for the 

same material and the same experimental configuration depend not only on the properties 

of the frictional interface but also on the dynamic properties of the apparatus, such as mass, 

stiffness and damping. This suggests that the friction data obtained in the course of stick-

slip motions do not purely reflect the intrinsic properties of the surfaces in contact but are 

also greatly affected by several of the dynamic variables involved in each particular 

experimental setup. Another shortcoming of most experiments is the achievable range of 

sliding speeds, (on the order of sm /1μ ). An exception to this rule are the experiments of 

Prakash and Clifton 1993 and of Prakash 1998, who employed a plate-impact pressure-

shear friction configuration to investigate the dynamic sliding response of an incoherent 

interface in the microsecond time-scale (sliding speeds on the order of sm /10 ). The 

experimental results, deduced from the response to step changes imposed on the normal 
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pressure at the frictional interface, reinforce the importance of including frictional 

memory in the development of the rate-dependent state variable friction models. However, 

this setup is not able to provide information about the stress field developed in the 

specimen nor to shed light on the interfacial process during dynamic sliding. As in the 

cases described above, the implicit assumption crucial to the interpretation of the data is 

both stress and sliding process uniformity. Finally, the scarcity of fast sliding velocity data 

in the open literature has to be emphasized. We believe that this is an essential data set 

which could be proven as the ultimate arbitrator for the various dynamic sliding models 

and friction laws. 

      

The purpose of this work is to study the dynamic sliding process along incoherent 

(frictional) interfaces in the microsecond time scale. A bimaterial system comprised of 

Homalite and steel plates and a homogeneous system consisting of two Homalite plates are 

considered. The plates are held together by a static uniform compressive pre-stress while 

dynamic sliding is initiated by asymmetric impact. The evolution of the maximum shear 

stress contours is recorded by high-speed photography in conjunction with dynamic 

photoelasticity. A newly-developed technique based on laser interferometry is employed to 

measure the sliding velocity at discrete points along the interface. The combination of the 

classic full-field technique of photoelasticity with the local technique of velocimetry is 

proven to be a very powerful tool in the investigation of dynamic sliding. 

 

The response of the Homalite-steel bimaterial system differs according to whether the 

impact loading is applied to the Homalite plate or to the steel plate. In the first case, the 
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interaction between the impact wave and the preexisting static field causes the generation 

of a relatively broad eye-like fringe formation emanating from the interface behind the P-

wave front. A disturbance traveling at the interface at a constant speed close to the 

Rayleigh wave speed of steel, which is higher than the P-wave speed of Homalite, 

generates a shear Mach line crossing the P-wave front and the eye-like fringe structure. 

Velocimetry reveals that sliding initiates behind the eye-like fringe pattern. A second shear 

Mach line, originating from the sliding tip, appears in the photoelastic images, indicating 

that the sliding is supershear with respect to the shear wave speed of Homalite. A self-

sustaining wrinkle-like pulse, propagating along the bimaterial interface at a constant speed 

between the Rayleigh wave and the shear wave speed of Homalite, is observed. When the 

impact load is applied to steel plate, then the data acquired by the velocimeter are the only 

useful source of information. Analysis of these data shows that sliding at a given point 

initiates with the arrival of the P-wave front there.  

 

In the case of the bimaterial structure (Homalite-steel), sliding occurs always in a crack-like 

mode. In the case of a homogeneous system of Homalite plates, however, direct physical 

evidence of different modes of sliding is recorded. Crack-like sliding, pulse-like sliding and 

mixed mode sliding in the form of pulses followed by a crack are discovered. A relatively 

broad loading wave emanating from the interface and caused by the interference between 

the impact wave and the preexisting static stress field appears. The propagation speeds of 

the sliding tips are not dependent on the confining stress but only on the projectile speed. 

They span almost the whole interval from sub-Rayleigh speeds to nearly the sonic speed of 

the material, with the exception of a forbidden gap between the Rayleigh wave speed and 
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the shear wave speed. Supersonic trailing pulses are also recorded. Mach lines with 

different inclinations emanating from the sliding zone tips are discovered. Behind the 

sliding tip, wrinkle-like pulses are developed for a wide range of impact speeds and 

confining stresses. They always travel at speeds between the Rayleigh wave speed and the 

shear wave speed of Homalite. 
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C h a p t e r  2  

EXPERIMENTAL METHODS 

2.1  Introduction 

The purpose of this chapter is to provide a clear picture of the experimental procedures 

followed in order to address the subject of frictional sliding. The materials, the specimen 

configuration, the loading devices and the experimental setup employed in this 

investigation are described in detail. The time evolution of the dynamic stress field in the 

bulk was recorded by high-speed digital photography in conjunction with dynamic 

photoelasticity. A newly developed technique, based on laser interferometry, was employed 

to locally measure the horizontal and vertical components of the in-plane particle velocity. 

The above technique is presented in detail and its reliability is tested extensively. The 

methodology employed for the measurement of the local sliding velocity by using two 

independent velocimeters is demonstrated. We also describe the setup for the simultaneous 

measurements of the in-plane horizontal and vertical components of the particle velocity. 

The combination of the full-field technique of photoelasticity with the local technique of 

velocimetry will be proven to be a very powerful tool in the study of dynamic sliding. 

 

2.2  Materials and Specimen Configuration 

Experiments were performed to investigate the nature of dynamic frictional sliding along 

the incoherent interface of two plates made of identical material and along the interface of a 

high-contrast bimaterial system as well. In the case of identical plates, the material used 
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was Homalite-100, whereas in the case of a bimaterial system, the specimen consisted of 

a Homalite-100 plate and a steel plate. In both cases, the plates were held together by a 

uniform compressive stress (see Figure 1). Homalite-100 is a mildly rate-sensitive brittle 

polyester resin that exhibits stress-induced birefringence with an optical coefficient 

mKNF 6.22=σ . At the strain rate developed during the experiments (on the order of 

1310 −s ) and at room temperature, Homalite exhibits a purely linear elastic behavior. The 

longitudinal, shear and Rayleigh wave speeds in Homalite are smC H 25831 = , 

smC H 12492 =  and smC H
R 1155=  respectively. Steel was chosen as the other half of the 

bimaterial system because it provides a strong material property mismatch across the 

interface, similar to mismatches encountered in composites. The dilatational, shear and 

Rayleigh wave speeds in steel are smC S 58381 = , smC S 32272 =  and smC S
R 2983=  

respectively. The wave speeds for Homalite and steel were obtained by ultrasonic 

measurements using shear and pressure transducers operating at MHz5 .  

 

In the experiments, the configuration was approximated by plane stress conditions, since 

plate specimens mm2.76  high, mm7.139  long and mm525.9  thick were employed. The 

shear wave speeds are identical in 3-D and for the plane stress approximation. The same is 

true for the Rayleigh wave speed, since the contribution in the Rayleigh wave formation 

comes primarily from the shear wave. However, the plane stress longitudinal wave speeds 

of Homalite-100 and steel are smC H 21871 =σ , smC S 53781 =σ  respectively. 
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2.3  Experimental Setup and Procedure 

A compressive stress was applied with a press calibrated using a load cell. The asymmetric 

impact loading was imposed via a cylindrical steel projectile with a diameter of mm25  and 

a length of mm51 , fired by a gas gun. A steel buffer mm73  high, mm4.25  long and 

mm525.9  thick was attached to the impact side of the Homalite plate to prevent shattering 

and to induce a more or less planar loading wave (Figure 1). 

 

2.3.1  Dynamic Photoelasticity Setup 

Dynamic photoelasticity is a classical full-field technique, which visualizes the contours of 

maximum shear stress in the bulk of a birefringent plate (Frocht 1962; Durelli and Riley 

1965; Dally and Riley 1978). A typical experimental setup for dynamic photoelasticity 

experiments is shown in Figure 2. The optical setup was arranged for a light field. 

Isochromatic fringes are contours of maximum in-plane shear stress maxτ  governed by the 

stress optical law 

 

hFN /2 21max σ=σ−σ=τ  

 

where σF  is the material’s stress optical coefficient, h  is the specimen thickness, 21,σσ  

are the principal stresses and 21+= nN  (with ..,2,1,0=n ) is the isochromatic fringe 

order. A continuous laser was used as the light source in our experiments. The laser was set 

to operate on a single wave length of nm540  (green light). It emitted an intense beam 

mm2  in diameter and 100:1 vertically polarized. The laser beam first passed through a 
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quarter wave plate, which transformed it into a circular polarized beam. Then it passed 

through a mμ6  pinhole and a collimator lens. Finally, the coherent monochromatic circular 

polarized light went through a collimator lens and expanded in a uniform laser beam of 

mm130  diameter. The laser beam was transmitted through the specimen and an analyzer. 

The resulting photoelastic fringe pattern was recorded with a high-speed digital camera 

(Cordin model 220), which is able to record 16 distinct frames at framing rates up to 100 

million frames per second. In this experimental work, most of the high-speed photography 

was performed at 250,000 to 1,000,000 frames per second. The field of view was wide 

enough to cover most of the specimen. 

 

2.3.2  Sliding Velocity Measurement Setup 

The local sliding velocity was obtained as follows. A pair of fiber-optic velocimeters 

measured the horizontal particle velocities at two adjacent points across the interface. The 

horizontal relative velocity history was obtained by subtracting the velocity of the lower 

plate point from the velocity of the upper plate point. A schematic representation of the 

setup is shown in Figure 3(a) for the case of a bimaterial specimen. The same setup was 

also employed in the case of identical Homalite plates. The laser beams emitted from the 

velocimeter heads were focused on points M1 and M2 on the thin vertical surfaces of the 

reflective membranes, which were attached to the surfaces of the Homalite (top) and steel 

(bottom) plates respectively. The distance of each point from the interface was less than 

mμ250  before compression, and both points had the same horizontal distance from the 

impact side of the Homalite plates. A picture of the actual setup is presented in Figure 3(b). 
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The velocimeter and its use in measuring the in-plane components of a particle velocity 

are described in detail in the next section. 

 

2.3.3  Simultaneous Measurement of the Horizontal and Vertical Components of the 

Velocity  

By using two velocimeters, we can of course measure not only the horizontal component of 

the in-plane velocity, but the vertical component as well. For this, the laser beam is aimed 

perpendicular to the narrow horizontal surface of the reflective membrane. Preliminary 

experimental results showed that the velocities in steel plate (in bimaterial specimen) are 

one order of magnitude lower than the velocities in Homalite plate. Taking advantage of 

this fact, we assumed that the particle velocities in the steel plate were negligible and we 

carried out several tests using the two velocimeters we had at our disposal to record both 

the horizontal and vertical in-plane particle velocities. These were subsequently interpreted 

as sliding and opening speeds respectively. A schematic of the setup used for the 

measurement is shown in Figure 4. 

 

2.4  Background Experimental Work 

As described previously, the slip velocity measurement involved a pair of independent 

fiber-optic velocimeters that continuously measured the horizontal particle velocities at two 

adjacent points across the interface. By subtracting the velocity of the point below the 

interface from that of the point above the interface, the horizontal relative velocity history 

was obtained. Since this is the first time the technique of the in-plane relative velocity 

measurement is presented, different issues that emerged during its development are 
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addressed. We start by describing a relatively simple yet very accurate method to 

measure the in-plane and the out-of-plane components of the velocity at one point in the 

top plane. A point worth noting is that there have been only a few attempts to obtain in-

plane particle velocities associated with classical fracture mechanics (Sharpe 1971; Abou-

Sayed, Clifton and Hermann 1976; Kim, Clifton and Kumar 1977; Sharpe, Payne and 

Smith 1978; Lu, Suresh and Ravichandran 1998. 

 

2.4.1  Particle Velocity Measurement Setup 

A velocimeter was used to measure the horizontal and vertical in-plane components of the 

particle velocity as well as the out-of-plane velocity component. The velocimeter is 

composed of a modified Mach-Zehnder heterodyne interferometer (Polytec, OFV-511) and 

a velocity decoder (Polytec, OFV-5000) (see Figure 5). The interferometer combines the 

reference beam, which undergoes modulation through a Bragg cell, with the reflected beam 

from the surface point where the particle velocity is measured. From the interference of 

these two beams, the decoder gives the component of the velocity along the direction of the 

laser beam. The decoder was set to a full range scale of sm10±  with a maximum 

frequency of MHz5.1  and a maximum acceleration of g710 . The beam spot size was 

approximately mμ70 , whereas the error of the velocity measurements was %1 . 

 

Figure 6 shows how the different components of the particle velocity were measured. A 

reflective membrane mμ360  thick was attached to the surface. For the measurement of the 

out-of-plane component of the particle velocity, the velocimeter laser beam had to be 

perpendicular to the surface of the reflective membrane at the measurement position (beam 
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3 in Figure 6 focused at C). For the measurement of the in-plane horizontal component 

of the velocity, the laser beam had to be horizontal, parallel to the specimen surface, and 

focused on the vertical lateral surface of the membrane (beam 1 in Figure 3 focused at A). 

The vertical component of the velocity was measured by the vertical beam (beam 2 in 

Figure 6 focused at B) which was perpendicular to the horizontal lateral surface of the 

membrane. The reflective membrane consisted of small glass spheres (approximately 50 

µm in diameter) that were glued with an elastic epoxy to the plate surface. Each sphere acts 

as a small “cat’s-eye”, scattering light back along the path of the incident beam. As the 

laser beam usually hits several glass beads at one time, each of the beams can interfere with 

each other and produce a speckle pattern. If the focused spot is very small, as it was in the 

presenting experiments, the number of scattering centers is small and the angular 

dependence of the path length differences in a given direction is also small. This leads to a 

large solid angle over which the interference condition is reasonably constant and the 

speckle noise is small. In the experiments, the deviation of the laser beams from the normal 

direction to the corresponding membrane surface was approximately o2  to o3 , and an 

excellent quality signal was received from the velocimeter. This amount of deviation angle 

did not affect the results, as we demonstrate below. 

 

2.4.2  Reliability of the Proposed Technique 

As was already mentioned, two independent velocimeters were employed in the 

experiments. We had to verify that both instruments were calibrated and would 

consequently give the same result when they simultaneously measured the velocity at the 

same point. To this end, we performed the following experiment. A reflective membrane 
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was attached to the side S1 of the upper Homalite plate (see Figure 7) and a uniform 

compressive stress of MPa10  was applied to the specimen. Both velocimeters were 

focused at essentially the same point on the membrane, at mm10  from the interface. A 

projectile hit the buffer at a speed of sm13 . The diagram in Figure 8(a) depicts the 

variation of the horizontal velocity at a point measured by the two different velocimeters. 

As we can see, both measurements are almost identical. A magnification of the area of the 

diagram in Figure 8(a), which is designated by a dotted line, is shown in Figure 8(b). Only 

after the velocity reached the value sm10  (the saturation level of the device) did a very 

small difference (on the order of %1 ) appear between the two recordings. We note that 

when the velocity decreased, the devices once more gave identical results. 

 

Another issue to be clarified is the following. The velocimeter measures the component of 

the velocity of a point at the thin lateral surface of the reflective membrane along the 

direction of the laser beam. In order to prove that the velocity of the point on the membrane 

and the velocity of the corresponding point on the plate were the same, the following 

comparison was performed. Two reflective membranes were attached to the edge of the 

Homalite plate, on the side opposite the impact position (see Figure 9(a)). One was attached 

to the narrow surface S1, which was perpendicular to the direction of the impact, and the 

second membrane was attached to the lateral surface S2, which was parallel to the direction 

of impact. The horizontal particle velocities were measured at points A and B. The distance 

between these two points was approximately mm2 . The laser beam that was focused at A 

was vertical to the large membrane surface, and the out-of-plane velocity with respect to 

plane S1 was measured. This is the most favorable arrangement for the instrument, since it 
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has been designed to measure the out-of-plane velocities. We note that the above 

measurement gives the velocity of a point on the plate. The laser beam focused on B was 

vertical to the narrow surface of the membrane, and it measured the horizontal in-plane 

component of the velocity at point B of the membrane. Since point A was very close to 

point B, we can argue that their velocities should also be very similar. The confining 

pressure was MPa10  and the impact speed sm11 . In Figure 9(b), the velocity histories of 

both points A and B are shown. In this case the distance from the measurement points to 

the interface was mmd 5= , and both instruments gave almost identical results. The wave 

front arrived at the measurement points simultaneously at around sμ100 . The particle 

velocity increased until it reached a maximum value of approximately sm7 , and then it 

decelerated. Since the devices gave very similar results, we can safely argue that the point 

on the membrane had the same speed as the most adjacent point on the plate’s surface. 

Thus, we conclude that the procedure we followed for the measurement of the in-plane 

component of the velocity was accurate. 

 

The final subject for investigation is the following. In order to measure the horizontal 

component of the particle velocity at a point on the surface, the laser beam had to be 

horizontal and parallel to the plate surface. The maximum difference between the height of 

the velocimeters’ heads and the height of the point of reflection was less than mm5.2 . It is 

also noted that the velocimeters' heads were at a distance of about mm300  from the side of 

the reflective membrane. A difference in height of mm5.2  resulted in a deviation angle 

from the horizontal direction of less than o5.0 . This small deviation did not affect our 
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measurements, since the error from the projection of the velocity on the laser beam is 

two orders of magnitude less than the intrinsic error of the velocimeter, which is %1 .  

Although the deviation from the horizontal direction was very small, we were sometimes 

forced to move the velocimeter head a small distance out of the vertical plane of the 

specimen in order to have a good quality signal. The maximum angle was o5.2 , and in 

order to be sure that this lateral deviation did not affect the results, the following 

experiment was performed. A uniform compressive stress MPa10  was applied on a 

bimaterial (Homalite-steel) specimen. A reflective membrane was attached to the surface of 

the Homalite plate. Two independent velocimeters were pointed at essentially the same 

point A on the reflective membrane, but in different angles with respect to the vertical 

plane (see Figure 10(a)). Point A was at a distance of mm70  from the impact side of the 

Homalite plate and mm25  from the interface. One laser beam formed an angle of 

approximately o1  with the vertical plane, and the other laser beam formed an angle of 

approximately o5 . The distance of the velocimeter head from the measurement point was 

approximately mm300 . A projectile hit the buffer at a speed of sm5.9 . The diagram in 

Figure 10(b) illustrates the variation of the component of the horizontal particle velocity at 

A along the directions of the laser beams of the two different velocimeters. Both 

measurements were almost identical, and we conclude that even a o5  deviation angle from 

the vertical plane did not affect the result. It is noted that o5  is a very large deviation angle 

since it corresponds to a mm25  translation of the velocimeter head out of the plane of the 

Homalite plate, and it never happened during the frictional sliding experiments. After the 
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above tests, we concluded that the experimental error, due to small misalignments of the 

laser beam, was smaller than the inherent velocimeter error of %1 . 

 

The results of the above investigation demonstrate that the measurement technique can be 

used with confidence to record, in real time, the in-plane components of the particle 

velocity on the surface of a plate. 
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List of Figures 

  

Figure 1  Geometry and loading configuration for a bimaterial specimen consisting of a 

Homalite and a steel plate. 

 

Figure 2   Dynamic photoelasticity setup. A circular polarized laser beam passes through 

the specimen that is subjected to uniform confining stress and to impact shear 

loading via a projectile fired by a gas gun. The resulting isochromatic fringe 

patterns are recorded by a high-speed digital camera. 

 

Figure 3  (a) Schematic illustration of the experimental configuration for the sliding 

velocity measurement. The area inside the dotted line is shown magnified. 

Points M1 and M2 were at the same distance d  from the impact side of the 

Homalite plate; (b) Photograph of the actual setup. 

 

Figure 4 Schematic illustration of the experimental configuration for the simultaneous 

measurement of the horizontal and vertical components of the particle velocity. 

The area inside the dotted line is shown magnified. 

 

Figure 5 Photograph of the velocimeter. It is composed of an interferometer (Polytec, 

OFV-511), a velocity decoder (Polytec, OFV-5000) and a velocimeter head 

(Polytec, OFV-C-102). 
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Figure 6 Schematic illustration for the measurement of the in-plane and out-of-plane 

components of the particle velocity. The area inside the dotted line is shown 

magnified. 

 

Figure 7 Schematic illustration of the experimental setup for the simultaneous 

measurement of the horizontal velocity at essentially the same point on the 

lateral surface S1 of the upper Homalite plate by two independent velocimeters. 

The area inside the dotted line is shown magnified, mmd 10= . 

 

Figure 8 (a) The horizontal velocity history recorded by two independent velocimeters at 

a point that was situated on the lateral surface S1 of the upper Homalite plate at 

a distance of mm10  from the interface. The confining stress was MPa10  and 

the impact speed was sm13 . (b) The curves inside the dotted square of figure 

(a) are shown in higher resolution. 

 

Figure 9 (a) Schematic illustration of the experimental setup for the out-of-plane (A) and 

in-plane (B) horizontal particle velocity measurement. (b) Histories of the out-

of-plane and in-plane horizontal particle velocities. The confining stress was 

MPa10 , the impact speed was sm11  and the distance of points A and B from 

the interface was mmd 5= . 
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Figure 10 (a) Schematic illustration of the experimental setup for the horizontal particle 

velocity measurement for angles of o1  and o5  between the laser beam and the 

vertical Homalite plane. (b) Histories of the horizontal particle velocity for 

angles of o1  and o5  between the laser beam and the vertical Homalite plane. 

The confining stress was MPa10  and the impact speed was sm5.9 . The point 

A was at a distance mmd 70=  from the impact side of the Homalite plate. 
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Figure 1  Geometry and loading configuration for a bimaterial specimen consisting of a 
Homalite and a steel plate. 
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Figure 2 Dynamic photoelasticity setup. A circular polarized laser beam passes through the 
specimen that is subjected to uniform confining stress and to impact shear loading via a 
projectile fired by a gas gun. The resulting isochromatic fringe patterns are recorded by a 
high-speed digital camera. 
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Figure 3 (a) Schematic illustration of the experimental configuration for the sliding 
velocity measurement. The area inside the dotted line is shown magnified. Points M1 and 
M2 were at the same distance d  from the impact side of the Homalite plate (b) Photograph 
of the actual setup. 
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Figure 4 Schematic illustration of the experimental configuration for the simultaneous 
measurement of the horizontal and vertical components of the particle velocity. The area 
inside the dotted line is shown magnified. 
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Figure 5 Photograph of the velocimeter. It is composed of an interferometer (Polytec, 
OFV-511), a velocity decoder (Polytec, OFV-5000) and a velocimeter head (Polytec, OFV-
C-102). 
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Figure 6 Schematic illustration for the measurement of the in-plane and out-of-plane 
components of the particle velocity. The area inside the dotted line is shown magnified. 
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Figure 7 Schematic illustration of the experimental setup for the simultaneous 
measurement of the horizontal velocity at essentially the same point on the lateral surface 
S1 of the upper Homalite plate by two independent velocimeters. The area inside the dotted 
line is shown magnified, mmd 10= . 
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Figure 8 (a) The horizontal velocity history recorded by two independent velocimeters at a 
point that was situated on the lateral surface S1 of the upper Homalite plate at a distance of 

mm10  from the interface. The confining stress was MPa10  and the impact speed was 
sm13 . (b) The curves inside the dotted square of figure (a) are shown in higher resolution. 

 
 
 
 
 
 
 
 



 

 

44

 
 
Figure 9 (a) Schematic illustration of the experimental setup for the out-of-plane (A) and 
in-plane (B) horizontal particle velocity measurement. (b) Histories of the out-of-plane and 
in-plane horizontal particle velocities. The confining stress was MPa10 , the impact speed 
was sm11  and the distance of points A and B from the interface was mmd 5= . 
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Figure 10 (a) Schematic illustration of the experimental setup for the horizontal particle 
velocity measurement for angles of o1  and o5  between the laser beam and the vertical 
Homalite plane. (b) Histories of the horizontal particle velocity for angles of o1  and o5  
between the laser beam and the vertical Homalite plane. The confining stress was MPa10  
and the impact speed was sm5.9 . The point A was at a distance mmd 70=  from the 
impact side of the Homalite plate. 



 

C h a p t e r  3  

FRICTIONAL SLIDING OF INCOHERENT BIMATERIAL INTERFACES 
SUBJECTED TO IMPACT SHEAR LOADING 

3.1  Introduction 

Earlier interest in dynamic failure processes along bimaterial interfaces has been focused 

on the case of coherent interfaces (bonded interfaces of finite strength and toughness). 

However, many composite structures in various engineering applications (e.g., bolted joints 

and sandwich structures) consist of layers of different materials held together by applied 

pressure without any bond between the contact faces. In order to utilize these layered 

structures effectively, the failure procedure along the incoherent (frictional) interfaces is the 

key problem to be investigated. Here, we confine our attention to the failure process 

generated by impact shear loading. Unlike the case of coherent interfaces, where the 

resistance to failure through sliding comes from the bond between the plates, in the case of 

incoherent interfaces the resistance to sliding comes from the frictional forces between the 

surfaces in contact. 

 

Classic dynamic fracture theories (Freund 1990; Broberg 1999) of growing shear cracks 

have many similarities to the frictional sliding process. These theories treat the rupture 

front as a distinct point (sharp-tip crack). The crack-like rupture of coherent interfaces, 

separating similar and dissimilar solids subjected to dynamic shear loading, has been the 

subject of extensive experimental, numerical and analytical investigations in the past years 
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and was summarized by Rosakis in a recent review article (Rosakis 2002). Of relevance 

to the present study is the persistent occurrence of intersonic shear rupture along coherent 

bimaterial interfaces (Tippur and Rosakis 1991; Liu, Lambros and Rosakis 1993; Lambros 

and Rosakis 1995; Singh and Shukla 1996; Rosakis, Samudrala, Singh and Shukla 1998; 

Kavaturu, Shukla and Rosakis 1998). 

 

Theoretical and numerical investigations (Comninou and Dundurs 1977; Weertman 1980; 

Andrews and Ben-Zion 1997) have shown that incoherent interfaces of compressed 

bimaterial structures can sustain wrinkle-like pulses involving separation. Particle 

displacement in a direction perpendicular to the interface is greater in the slower material 

than in the faster material; that may result in a local separation of the interface during 

sliding. Wrinkle-like pulses have also been observed experimentally in rubber sliding 

experiments (Anooshehpoor and Brune 1999). We note that the wrinkle-like pulses 

(separation or detachment waves) propagate at a speed close to the shear wave speed of the 

slower material and are different from the Schallamach waves, which are very slow 

compared to the wave speeds of the involved materials (Schallamach 1971). 

 

In this chapter, frictional sliding along incoherent interfaces in bimaterial systems is studied 

experimentally. Pairs of rectangular Homalite and steel plates are used. A uniform external 

compressive stress is applied to the bimaterial specimen via a hydraulic press. Asymmetric 

impact loading is imposed using a gas gun and a steel projectile. Dynamic photoelasticity is 

combined with laser interferometry-based velocimetry to record frictional sliding events in 

a microsecond time scale. The fringe pattern evolution in conjunction with the sliding 
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velocity history gives direct evidence of the sliding mode, the existence of a supersonic 

disturbance with respect to Homalite, the exact point of sliding initiation and the sliding 

propagation speed. Strong evidence of a wrinkle-like pulse traveling along the interface is 

also recorded. The results presented here show that under some loading conditions the 

failure of bimaterial structures subjected to impact shear loading can take the form of a 

supershear crack-like sliding, followed by a local opening displacement in the form of a 

wrinkle-like pulse. 

 

The following sections 3.2 and 3.3 are identical with sections 2.2 and 2.3 in chapter 2. The 

reason for this repetition is to ensure that chapter 3 can be self-contained. Some limited 

repetition regarding the materials used, the specimen configuration and the experimental 

techniques is also encountered in chapters 4 and 5 for the same reason as above. 

 

3.2  Materials and Specimen Configuration 

Experiments were performed to investigate the nature of dynamic frictional sliding along 

the incoherent interface of a high-contrast bimaterial system. The bimaterial specimen 

consisted of a Homalite-100 plate and a steel plate held together by a uniform compressive 

stress (see Figure 1). Homalite-100 is a mildly rate-sensitive brittle polyester resin that 

exhibits stress-induced birefringence with an optical coefficient of mKNF 6.22=σ . At the 

strain rate developed during the experiments (on the order of 1310 −s ) and at room 

temperature, Homalite exhibits a purely linear elastic behavior. The longitudinal, shear and 

Rayleigh wave speeds in Homalite are smC H 25831 = , smC H 12492 =  and 
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smC H

R 1155=  respectively. Steel was chosen as the other half of the bimaterial system 

because it provides a strong material property mismatch across the interface, similar to 

mismatches encountered in composites. The dilatational, shear and Rayleigh wave speeds 

in steel are smC S 58381 = , smC S 32272 =  and smC S
R 2983=  respectively. The wave 

speeds for Homalite and steel were obtained by ultrasonic measurements using shear and 

pressure transducers operating at MHz5 .  

 

In the experiments, the configuration was approximated by plane stress conditions, since 

plate specimens mm2.76  high, mm7.139  long and mm525.9  thick were employed. The 

shear wave speeds are identical in 3-D and for the plane stress approximation. The same is 

true for the Rayleigh wave speed, since the contribution in the Rayleigh wave formation 

comes primarily from the shear wave. However, the plane stress longitudinal wave speeds 

of Homalite-100 and steel are smC H 21871 =σ , smC S 53781 =σ  respectively. 

 

3.3  Experimental Setup and Procedure 

A combination of two experimental techniques was used in this investigation. Dynamic 

photoelasticity, which gives the full field maximum shear stress distribution, was used in 

conjunction with a new technique based on laser interferometry. This technique provides a 

continuous local measurement of the in-plane horizontal and vertical components of the 

relative velocity of two adjacent points across the bimaterial interface. The initiation and 

evolution of sliding was explored through photoelasticity and velocimetry at a micro-

second time scale.  
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The compressive stress was applied with a hydraulic press calibrated using a load cell. The 

asymmetric impact loading was imposed via a cylindrical steel projectile with a diameter of 

mm25  and a length of mm51 , fired by a gas gun. A steel buffer mm73  high, mm4.25  

long and mm525.9  thick was attached to the impact side of the Homalite plate to prevent 

shattering and to induce a more or less planar loading wave. 

 

3.3.1  Dynamic Photoelasticity Setup 

A typical experimental setup for dynamic photoelasticity experiments is shown in Figure 2. 

The optical setup was arranged for a light field. Isochromatic fringes are contours of 

maximum in-plane shear stress maxτ  governed by the stress optical law 

 

hFN /2 21max σ=σ−σ=τ  

 

where σF  is the material’s stress optical coefficient, h  is the specimen thickness, 21,σσ  

are the principal stresses and 21+= nN  (with ...,2,1,0=n ) is the isochromatic fringe 

order. A continuous laser was used as the light source in our experiments. The vertically 

polarized laser beam first passed through a quarter wave plate, which transformed it into a 

circular polarized beam. Then it expanded in a uniform laser beam of mm130  diameter. 

The laser beam was transmitted through the specimen and an analyzer. The resulting 

photoelastic fringe pattern was recorded with a high-speed digital camera (Cordin model 

220), which is able to record 16 distinct frames at framing rates up to 100 million frames 
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per second. In this experimental work, most of the high-speed photography was 

performed at 250,000 to 1,000,000 frames per second. It is noted that the field of view was 

wide enough to cover most of the specimen. 

 

3.3.2  Sliding Velocity Measurement Setup 

The local sliding velocity was obtained as follows. A pair of fiber-optic velocimeters 

measured the horizontal particle velocities at two adjacent points across the interface. The 

horizontal relative velocity history was obtained by subtracting the velocity of a point on 

the lower plate from the velocity of a point across the interface on the upper plate. A 

schematic representation of the setup is shown in Figure 3(a). The laser beams emitted 

from the velocimeters were focused on points M1 and M2 on the thin vertical surfaces of 

the reflective membranes, which were attached to the surfaces of the Homalite (top) and 

steel (bottom) plates respectively. The distance of each point from the interface was less 

than mμ250  before compression, and both points had the same horizontal distance from 

the impact side of the Homalite plates. A picture of the actual setup is presented in Figure 

3(b). The technique is presented in detail in Lykotrafitis, Rosakis and Ravichandran 2005. 

 

3.3.3  Simultaneous Measurement of the Horizontal and Vertical Components of the 

Velocity 

The two velocimeters can be used to measure not only the horizontal component of 

the in-plane velocity, but also the vertical component. For this, the laser beam is aimed 

perpendicular to the narrow horizontal surface of the reflective membrane. Preliminary 
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experimental results showed that the velocities in steel plate are one order of magnitude 

slower than the velocities in Homalite plate. Taking advantage of this fact, we assumed that 

particle velocities in the steel were negligible and we carried out several tests using the two 

velocimeters we had at our disposal to record both the horizontal and vertical in-plane 

particle velocities. These were subsequently interpreted as sliding and opening speeds 

respectively. A schematic of the setup employed for the measurement is shown in Figure 9.  

 

3.4  Sliding Induced by an Impact Shear Loading Applied on the Homalite Plate of a 

Bimaterial Specimen 

 

3.4.1  Initiation and Evolution of Dynamic Frictional Sliding 

In the present experiments, dynamic photoelasticity (in conjunction with high-speed 

photography) was combined with velocimetry to investigate the initiation and evolution of 

frictional sliding along the incoherent interface of a bimaterial specimen consisting of 

Homalite and steel. The specimen was subjected to a uniform compressive load of MPa10  

and impacted on the Homalite side at a speed of sm /5.16 .The sequence of photoelastic 

images in Figure 4 is studied in combination with the horizontal velocities measurements 

presented in Figure 5. The images in Figure 4 show the isochromatic fringe pattern in the 

Homalite plate at selected times. A pair of fiber-optic velocimeters recorded the history of 

the horizontal in-plane velocities of two adjacent points, M1 and M2 in the Homalite (top) 

and steel (bottom) plate respectively (see Figure 3). Both points were at the same horizontal 

distance of mm110  from the impact side of the Homalite plate and at less than mμ250  



 

 

53
from the interface. Figure 5 shows the histories of the horizontal in-plane velocities of 

both points, as well as the history of the relative horizontal velocity. The insert in Figure 

5(a) displays the history of the relative displacement, which was obtained from the velocity 

history by numerical integration. 

 

The images in Figures 4(a)-(e) have similar structure, and this signifies that sliding had 

reached a more or less steady state. At sμ110  (see Figure 4(f)), reflected waves from the 

free left side of the plate had entered the picture and the sliding process became transient, 

resulting in a distorted photoelastic fringe pattern. As can be seen in Figure 4(a), the 

compressive stress wave (P-wave) in the Homalite plate arrives from the right, in front of a 

relatively broad fringe structure (shown just behind point F), which has a rib-eye structure 

and emanates from the interface. Since this structure was missing in similar experiments, 

without external pressure, we can safely conjecture that it was caused by the interference of 

the impact wave with the preexisting static pressure. 

 

A head wave emanates from point A on the interface and crosses the eye-like fringe 

structure. Point A is ahead of the P-wave front in the Homalite plate. This shows that a 

disturbance was traveling along the interface at a speed higher than the P-wave in 

Homalite. The propagation speed V  of the disturbance was determined in each frame by 

measuring the Mach angle θ  and using the relation θsin2
HCV = , where HC2  is the shear 

wave speed of Homalite. The average value was == SCsm 288.02830  

HHS
R CCC 11 1.13.195.0 == σ , where SC2  is the shear wave speed of steel, S

RC  is the Raleigh 
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wave speed of steel, HC σ1  is the plane stress P-wave speed of Homalite and HC1  is the 

plane strain P-wave speed of Homalite. The disturbance traveled at a speed %5  lower than 

the Rayleigh wave speed of steel and %12  lower than the shear wave speed of steel. This 

result was consistently repeatable. We note that this disturbance is not a generalized 

Rayleigh wave, since such waves do not exist for bimaterial systems with large contrast in 

material properties, such as we have in this case (Achenbach and Epstein 1967; Ranjith and 

Rice 2001; Rice, Lapusta and Ranjith 2001). The photoelastic images do not provide 

conclusive evidence regarding the exact nature of the disturbance at point A. 

 

The effect of the above disturbance on the process of sliding was deciphered by using the 

recorded velocity data presented in Figure 5(b), which shows an expanded view of the 

history of the velocity of points M1 and M2 at the initiation of sliding. Point M2, which was 

on the surface of the steel plate, started moving first at approximately sμ5.57 , under the 

influence of the compressive stress wave propagating in the steel plate. Point M1 on the 

Homalite plate started moving at sμ59 . During the following sμ14 , M1 and M2 were 

moving at the same speed until approximately sμ72 . At that time, the point in the steel 

plate (M2) decelerated and its velocity became negative. The velocity of the point on the 

Homalite plate (M1) followed the same trend after approximately sμ5.1 . Up to that time, 

there was no sliding, since both points traveled together under the influence of the P-wave 

in the steel plate, and the relative velocity oscillated around zero. Then, at about sμ74  and 

sμ76  respectively, the velocities of M1 and M2 started increasing again. However, in this 

case, the velocity of the point on the Homalite surface increased faster than the velocity of 
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the point on the steel plate. The corresponding photoelastic frame taken at sμ75  (Figure 

4(b)) shows that a Mach line emanated from the interface, at a short distance in front of the 

reflective point, and ahead of the P-wave front in the Homalite plate. A very simple 

calculation shows that a disturbance traveling at a speed of HHS
R CCC 11 1.13.195.0 == σ  is 

expected to be at the reflective point at about sμ74 . This confirms that the disturbance 

caused the increase of the particle velocities. The disturbance was supersonic with respect 

to Homalite, and therefore, it was ahead of the P-wave front traveling in the Homalite plate. 

In addition, a Mach cone was formed with a tip at the disturbance. The initial impact of the 

projectile on the steel buffer created a compression P-wave, transmitted into the Homalite 

plate. Because of friction, some of the energy also transmitted into the steel plate. The P-

wave traveled faster in the steel plate than in the Homalite plate, and thus, a precursor 

effect emerged. Nevertheless, photoelasticity is not very sensitive to compression, and 

because of this we could not see a possible Mach cone associated with the interface 

disturbance traveling at the P-wave speed of steel. The disturbance, however, caused the 

photoelastic fringe pattern to warp enough for it to be captured by the high-speed camera. 

The insert in Figure 4(a) schematically illustrates the loading configuration, the resulting 

wave fronts, the shear head wave and the supershear sliding tip with the resulting Mach 

cone.  Curves 1, 2 and 3 correspond to the P-wave front in the steel plate, the shear wave 

front in the steel plate and the P-wave front in the Homalite plate. Point A represents the 

disturbance, just behind the shear wave front in the steel plate, and point B1 represents the 

sliding tip. 
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In Figure 4(c), the tip of the first Mach line has passed the position of velocity 

measurement, whereas the eye-like structure has just arrived there. The velocimeter 

recording shows that at approximately sμ76  the relative horizontal velocity between M1 

and M2 has increased, but yet not very sharply. We also note that the numerically 

calculated relative horizontal displacement between the points M1 and M2 was less than 

mμ1  until sμ84 . This indicates that until sμ84  there was no sliding, but only shear elastic 

deformation of the material close to the interface (material between M1 and M2). Thus, the 

disturbance and the eye-like fringe structure did not create slip. 

 

However, at approximately sμ84 , a drastic change occurred in the relative velocity and in 

the relative displacement (see Figure 5(a)). The velocity of the measurement point in the 

Homalite plate increased rapidly, whereas the velocity of the point in the steel plate 

remained almost constant. This resulted in a very steep rise in the relative velocity and in a 

very abrupt change in the slope of the relative displacement vs. time diagram. We conclude 

that the sliding, at the position of measurement, started at around sμ84 . The corresponding 

photoelastic frame (see Figure 4(d)) captured at sμ85  is extremely revealing, in which a 

fringe concentration point (point B1 of Figure 4(a) and (b)) coincides with the measurement 

position. It is the sliding tip, and because it propagated with a supershear speed, a Mach 

line emanated from this position. Indeed, following the positions of the tip in different 

frames and using a linear interpolation, we obtained the tip propagation velocity which was 

HCsm 258.11970 = , higher than the shear wave speed of Homalite. 
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The velocimeter measurement (Figure 5(a)) shows that the speed increased sharply from 

sμ84  to approximately sμ98 , and then it remained almost constant until sμ110 , where a 

second acceleration event occurred. The time instance of sμ98  (when the acceleration 

ceased) corresponded to a fringe concentration point B2 (see Figure 4(d)). After point B2, 

the fringes were parallel to the interface, which means that a constant maximum shear 

stress field was formed. In Figure 4(f), captured at sμ110 , the area of the photoelastic 

pattern with inclined fringes arrived at the measurement position, and this coincided with 

the initiation of the secondary acceleration caused by the arrival of the reflected waves 

from the free side of the Homalite plate. From the relative velocity history diagram, we 

conclude that sliding was continuous during the recording time. This means that sliding 

occurred in a crack-like mode.  

 

The above exhaustive study of the experimental results clearly shows the power of the 

proposed point velocity measurement in combination with the full field technique of 

photoelasticity. We were able to completely identify the different fringe formations in the 

photoelastic images and explicitly connect them to the changes in sliding velocity. We 

finally note that, after the initiation of sliding, the in-plane horizontal particle velocity in the 

steel plate was one order of magnitude lower than the velocity in the Homalite plate. This is 

true not only for the experiment analyzed above, but for all of the performed experiments 

using Homalite - steel bimaterial specimens, impacted on the Homalite plate. 
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The findings of this experiment are similar to results obtained by experiments on crack 

growth in bimaterials (Samudrala, Huang and Rosakis 2002; Samudrala and Rosakis 2003; 

Coker, Rosakis and Needleman 2003). The first observations of intersonically traveling 

cracks were made in connection with crack propagation along the interface of bimaterial 

systems (Tippur and Rosakis 1991; Liu, Lambros and Rosakis 1993; Lambros and Rosakis 

1995; Singh and Shukla 1996; Rosakis, Samudrala, Singh and Shukla 1998; Kavaturu, 

Shukla and Rosakis 1998). In the shear crack propagation experiments, the Homalite and 

steel plates were bonded together and a notch was machined along the bond line at one 

edge. Thus, the resistance to rupture was generated mainly from the bond. In the present 

study, the resistance to sliding was due to the frictional stress between the surfaces of the 

two plates in contact. It is noted that the frictional resistance was not uniform along the 

interface and not constant with time, since the dynamic compression and the sliding 

velocity were changing with position and time. 

 

3.4.2   Influence of Impact Speed and Confining Stress on Sliding 

Figure 6(a) displays an instantaneous isochromatic fringe pattern developed in an 

experiment where the impact speed decreased to sm12  while the confining pressure was 

kept constant at MPa10 . The fringe configuration has basically the same structure with 

that in the experiment presented in the previous section. A head wave which crosses the 

eye-like fringe structure appears as, does the fringe formation B1B2. The recorded velocity 

history of points M1 and M2 is illustrated in Figure 6(b). In this case, however, the 

velocities were measured mm70  from the impact side of the Homalite plate and the 
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maximum speed was less than sm10 , which is the velocimeter limit. We thus captured 

the evolution of the velocities over a longer period of time than before. By synchronizing 

the showed in Figure 6(a) velocity history recordings with the captured high-speed images, 

the different features appearing in the photoelastic image can be identified. The initial 

disturbance (at point A), which traveled at approximately 

SHH CCCsm 221 92.037.214.12955 ===  and created the head wave which crossed the 

eye-like fringe structure, arrived at the measurement position at sμ96 . The sliding started 

at point B1 at approximately sμ103  and was propagating at a supershear speed of 

HCsm 268.12097 = . At approximately sμ110  the velocity started increasing faster; this is 

shown in the photoelastic picture as a disturbance in the fringe structure (second dotted 

line). At approximately sμ112 , when point B2 arrived at the measurement position, the 

velocity slowed down, and was oscillating until sμ120 , when another acceleration 

occurred. Then, the velocity remained high at approximately sm6  for sμ30 . The velocity 

then decreased until approximately sμ180 , when another acceleration started, caused by 

the arrival of the reflected waves from the free left side of the Homalite plate. The last 

acceleration in Figure 5(a) happened sooner because the measurement point was closer to 

the free side of the Homalite plate, and the reflected waves arrived earlier in that case than 

here. The velocity of point M2 on the steel plate was one order of magnitude lower than the 

velocity of point M1, and thus, the relative velocity was almost identical with the velocity 

of point M1. 
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Figure 7(a) shows the in-plane relative horizontal velocity history measured at the same 

distance of mm70  from the impact side of the Homalite plate in two different experiments. 

The external compression was MPa10  and the impact speeds were sm13  and sm12 . 

The two measurements were consistent.  They include an initial acceleration period and a 

period where the variation in speed is small. The relative velocity generated by the impact 

at sm13  was slightly higher than the sliding velocity generated from the impact at sm12  

during the whole recording period. The duration of the first period of sliding was 

approximately sμ70 , the same for both experiments, and then a second period of sliding 

started because of the reflected waves from the free left side of the Homalite plate. The in-

plane relative horizontal velocities measured mm30  from the impact side of the Homalite 

plate are displayed in Figure 7(b), for three different experiments performed at MPa10  

external confining pressure and at impact speeds of sm9 , sm11  and sm13 . The 

duration of the first period of sliding was approximately sμ60 , the same for all three cases. 

The relative velocities increased with the impact speed. We mention that the velocity 

corresponding to an impact speed of sm13  saturated the velocimeter at around sμ20  and 

sμ50 , but each time it recovered its measurement ability. It is also noted that the speeds 

after sμ70  increased slowly, because the reflected waves had not arrived at the 

measurement position before the end of the recording. In Figure 7(c), the horizontal 

velocity histories recorded mm30  and mm70  from the impact side of the Homalite plate 

are compared. In both cases the impact speed was sm13 . The results show that the 

maximum velocity decreases because of attenuation. They also show that the duration of 
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the initial period of sliding increases as the distance between the measurement position 

and the impact side of the Homalite plate increases. 

 

In this paragraph, results are presented for confining stresses less than MPa10 . In Figure 

8(a), the confining stress was MPa5  and the impact speed was sm13 . As the confining 

stress decreases, the eye-like fringe structure becomes less pronounced. By synchronizing 

the photoelastic images with the recorded relative velocity history (Figure 8(b)), we can 

conclude that the sliding at the velocity measurement point M started at approximately 

sμ50 , when point B crossed the measurement position. The sliding speed was supershear 

( HH CCsm 12 75.055.11932 == ) and because of this a Mach line, highlighted by a dotted 

line, emanates from point B. A fringe structure can be seen at point C. It is noted that this 

structure crossed the measurement position at approximately sμ70  and it did not generate 

any visible effect on the velocity history diagram. It traveled at a speed of 

HCsm 20.11261 = , close the shear wave speed of Homalite, and its character will be 

revealed in the next section. Decreasing the compression further at MPa5.1  and keeping 

the impact speed at sm5.13 , the eye-like fringe structure has almost completely 

disappeared (see Figure 8(c)). The fringe density is low and there is no visible discontinuity 

that would signify the initiation of sliding. However, by matching the velocity history 

diagram (Figure 8(d)) with the sequence of the recorded photoelastic images, the sliding tip 

can be located at point B (Figure 8(c)). The sliding at point M started at approximately 

sμ82 . At point C, a fringe structure appears traveling along the interface. Figures 8(b) and 
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8(d) show that the velocity of sliding increased more abruptly at lower compression than 

in the case of a confining stress of MPa10 . This fact indicates that minor elastic effects 

took place before the initiation of sliding. 

 

3.4.3 Observation of Wrinkle-like Pulses  

The particle velocities in the steel plate were one order of magnitude less than the velocities 

in Homalite plate. Taking advantage of this fact, we used two velocimeters to record both 

the horizontal and vertical in-plane components of the velocity at a point on the Homalite 

plate, very close to the interface (see Figure 9). We then interpreted our measurements as 

“sliding” and “opening” speeds by assuming that the steel plate is effectively rigid 

compared to the Homalite. 

 

Figure 10 shows a sequence of six isochromatic patterns displaying the evolution of 

maximum shear stress contours in the Homalite plate. The confining external stress applied 

to the bimaterial specimen was MPa5  and the speed of the projectile at impact was 

sm22 . Figure 11(a) shows the histories of the horizontal and vertical in-plane 

components of the velocity at points M and N respectively on the Homalite plate. These 

points were at a distance of mm70  from the impact side of the Homalite plate and at a 

distance of less than mμ250  from the interface (see Figure 9). At sμ40 , the arrival of the 

P-wave front and the eye-like fringe structure at point M was captured by the high-speed 

camera (see Figure 10(a)). This was fortuitous, because we could now combine visual 

evidence from the photoelastic picture with the recording of the velocimeters. Figure 11(a) 
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shows that at sμ40  the horizontal velocity increased, whereas the vertical velocity 

became negative, showing that point N moved downward, toward the velocimeter head. 

The interpretation is clear. Point M moved to the left under the influence of the horizontal 

compressive stress generated by the impact. Because of the Poisson effect, the horizontal 

compressive stress induced a dynamic (inertial) vertical compressive stress that forced 

point N to move downward. Using the experience accumulated from the previous 

experiments, we estimated that sliding started at approximately sμ46 , when the relative 

velocity increased rapidly. From sμ40  to sμ46 , elastic shearing occurred, whereas sliding 

initiated when the tip of the Mach line (point B in Figure 10(a)) crossed the velocity 

measurement position M. At sμ50 , the sliding tip B was to the left of the measurement 

position (Figure 10(b)), signifying that the sliding had already started. Point B was 

traveling at a supershear speed of HCsm 255.11932 = . Figure 11(a) shows that at around 

sμ60  the horizontal velocity reached its maximum value and the sliding continued for the 

rest of the recording time with no large variations in the sliding tip speed. 

 

It is interesting to follow the evolution of the vertical velocity in Figure 11(a), and 

especially the evolution of the vertical displacement depicted in Figure 11(b). It is noted 

that the vertical displacement was obtained from the vertical velocity history by numerical 

integration. At the start, the specimen was subjected to a uniform external compression of 

MPa5 . A very simple 1D calculation showed that the vertical displacement of point N 

from the initial uncompressed position was less than mμ1 . The impact wave created a 

dynamic (inertial) compression which added to the static compression and the displacement 
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became more negative. However, after sμ55 , the vertical velocity became positive, 

which means that point N was moving upward, approaching the initial uncompressed 

position. At approximately sμ65 , the displacement became positive, signifying the 

initiation of the detachment of the Homalite plate from the steel plate. At approximately 

sμ95 , the opening closed and sliding continued again under compression. Looking at the 

photoelastic images in Figure 10, we see that at sμ65  a fringe structure (shown by arrow 

C) approached the measurement position. At sμ70  this structure arrived at N, when an 

interface opening started. At sμ100  (see Figure 10(f)), when the opening had closed, the 

fringe structure had departed from N. The propagation speed of this fringe pattern was 

HCsm 20.11260 = , the shear wave speed of Homalite. The data show that the above fringe 

structure represents a wrinkle-like pulse traveling along the interface. The obtained speed is 

also consistent with theoretical predictions. The wrinkle-like pulse (detachment wave) had 

been predicted theoretically by Comninou and Dundurs 1977 and Weertman 1980 and 

numerically by Andrews and Ben-Zion 1997. However, this is the first observation of a 

wrinkle-like pulse at high strain rate experiments on elastic bimaterials. Optical evidence of 

wrinkle-like pulses traveling along interfaces of similar-material plates have also been 

recorded (see Lykotrafitis and Rosakis 2005). Anooshehpoor and Brune 1999 have found 

similar wrinkle-like pulses in sliding experiments involving very slow wave speed 

materials such as foam rubber. The above-mentioned fringe structure was very robust. It 

appeared in all of our experiments conducted at high impact speeds and low compressive 

loads, and was always connected to a local opening. We mention that the wrinkle-like pulse 

was not present in the first experiment, because the impact speed was not high enough to 
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trigger detachment. Finally, we note that the whole area from point B to point C in 

Figure 10(a) was sliding under compression.  

 

As the impact speed decreased, we expect that the wrinkle-like pulse will create smaller 

vertical separation. In Figure 12(a) a photoelastic image shows the fringe pattern at a 

specific time in the case of a projectile speed of sm13  and a confining pressure of MPa5 . 

Although, the fringe density is lower than that in Figure 9, the eye-like structure and the 

following Mach-line are clearly visible. The supershear speed of the sliding tip was 

approximately HCsm 247.11833 = . A broad fringe structure located just behind the 

measurement point M signifies the wrinkle-like pulse. It is less visible than that in Figure 

10, where the impact speed was higher. Its propagation speed was HCsm 20.11261 = . The 

time evolution of the vertical displacement at the measurement position is displayed in 

Figure 12(b). As in the case of the lower impact speed, the loading wave generates 

compression and a decompression period follows later. The maximum opening was 

approximately mμ12 , almost half of the opening produced in the case of sm22 . 

Experiments at lower impact speeds than sm13  and at the same external pressure show 

reduced decompression produced by the wrinkle-like pulse. By increasing the confining 

stress the same effect was observed: the decompression decreased. Figure 12(c) shows a 

snapshot of the isochromatic fringes generated by an impact speed of sm11  while the 

external applied stress was MPa10 . It is noted that no visual sign of a wrinkle-like pulse 

appears in the full field photoelastic images. The history of vertical displacement (Figures 

12(d)) shows that after the initial dynamic compression caused by the impact loading the 
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decompression was not enough to produce a significant positive displacement. Thus, in 

this case there was not any wrinkle-like pulse propagated along the interface, consistent 

with the fact that no fringe structure characteristic of the wrinkle-like pulse appears in the 

corresponding photoelastic image. We finally note that the wrinkle-like pulse did not 

appear in some of the experiments presented in the previous section as well (see Figures 4 

and 6(a)), because the impact speed was again not high enough to produce detachment. 

 

3.4.4  Frictional Sliding Induced by High Impact Speeds  

In the experimental results we have presented up to this point, the impact speeds were low, 

less than sm22 . In this section, dynamic sliding initiated by impact speeds on the order of 

sm50  will be investigated. Only photoelasticity will be employed here, since the resulting 

maximum particle velocities from the impact loading were well beyond sm10  which is 

the limit of the velocimeter. 

 

Figure 13(b) displays an instantaneous isochromatic fringe pattern generated by an impact 

speed of sm52 , at a uniform confining stress of MPa10 . It is observed that while the 

basic characteristic features which appeared in cases at lower impact speeds and at the 

same confining stress (see e.g., Figure 4(a)) are also present here, new features emerge in 

the picture. An eye-like fringe pattern traveling behind the P-wave front (F) emanated from 

the interface. A head-wave originating from point A ahead of the P-wave front crossed the 

eye-like fringe formation. The inclination of the Mach line shows that the head wave was 

created by a disturbance moving along the interface at a supersonic speed (with respect to 
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Homalite) of HHH CCCsm σ112 3.11.125.22813 === . We note at this point that because 

of the high impact speed, the head wave was intensified and thus became clearly visible. 

Figure 13(b) answers positively to any skepticism regarding the existence of such a wave 

based on the poor definition of the Mach line in previous cases at lower impact speeds. 

Figure 14(a) depicts the computed speeds of the head wave at various frames, using the 

relation θsin2
HCV = , and the obtained average value. A second Mach line, behind the 

eye-like fringe structure, emanates from the supershear sliding tip B. The sliding 

propagation speed of SHH CCCsm 212 79.00.10.22563 ===  was obtained from the 

inclination angle of the well-defined Mach line (Figure 14(a)). Both Mach lines are 

highlighted in the insert of Figure 13(b). Comparable experimental and numerical results, 

regarding the speed of the sliding tip, have been obtained by Coker, Rosakis and 

Needleman 2003 in the case of a dynamic crack growth along a composite-Homalite 

cohesive interface induced by an impact loading similar to that used in the present 

experiment. Two robust fringe structures appear behind the rupture tip (points C and D in 

Figure 13(b)). Following their position at different recorded photoelastic frames, their 

speeds were obtained through a linear interpolation. Figure 14(b) shows the positions of 

points C and D in various frames and the computed corresponding propagation speeds. The 

speed of point D was SH CCsm 22 71.084.12294 == . The fringe structure at point D could 

perhaps be linked to a theoretically predicted disturbance by Ranjith and Rice 2001, who 

studied the slip dynamics at an interface between dissimilar materials. In the case of a large 

contrast bimaterial system (steel-PMMA), they traced a disturbance traveling along the 

interface at a speed of PMMAC284.1 , similar to the speed of the disturbance that appeared in 
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our experiments. We also note that the disturbance at point D was robust and appeared in 

a persistent manner at high impact speed experiments. Its appearance becomes more 

pronounced as the confining stress decreases (see Figure 13 (c) - (d)). Point C was traveling 

at a speed of HCsm 296.01199 =  and we conclude that the corresponding fringe structure 

reflected the propagation of a wrinkle-like pulse along the interface, consistent to the 

results obtained at lower impact speeds.  

 

At a compression of MPa20  and at an impact speed of sm44  the same basic features as 

above arose with the eye-like fringe structure widened (Figure 13(a)). A remarkable 

difference is that in this case two sliding tips (B1 and B2) appeared. They traveled at 

different speeds and they formed an unstable supershear sliding zone which shrunk with 

time, as the speed of point B2 was HC289.12357 = , higher than the speed of B1 which was 

HC248.11854 = . Because both speeds were supershear, a transient double shock was 

formed. The disturbance at A, ahead of the P-wave front, was traveling at HC228.22851 =  

again creating a head wave which crossed the eye-like fringe formation. Behind the 

unstable segment B1B2, both the fast disturbance at D and the wrinkle-like pulse were 

present. The wrinkle-like pulse (point C) was traveling at HC299.01237 = . The fast 

disturbance D was transient and we were not able to obtain its propagation speed. The 

insert in Figure 13(a) highlights the head wave and the double Mach lines. 
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As the confining stress was decreased to MPa5 , the eye-like fringe structure shrank 

(Figure 13(c)) and it almost completely disappeared at MPa2  (Figure 13(d)). In Figure 

13(c), the Mach line corresponds to a rupture tip velocity of HC20.22545 = . The fast 

disturbance at D was traveling at HC274.12178 =  while the speed of the wrinkle-like pulse 

at C was HC299.01234 = . In the case displayed in Figure 13 (d), the confining stress was 

very low at MPa2  and the impact speed was sm44 . An unstable double shock wave  

was emanating from points B1 and B2, which were traveling at speeds of 

HCsm 263.12039 =  and HCsm 263.12039 =  respectively. The fast and slow (wrinkle-

like) disturbances also appeared, propagating at speeds of HCsm 263.12039 =  and 

HCsm 292.01151 =  respectively. In addition, another slow interface disturbance appeared 

at point E. Its speed was HCsm 29.01125 =  and it seems that it is of the wrinkle-like type 

since the fringe structure and the propagation speed are similar to the corresponding 

features of the wrinkle-like pulses. This result, along with results obtained from 

experiments performed at similar conditions, shows that as the confining pressure 

decreased, two or more wrinkle-like pulses propagated along the interface, since a local 

opening occurred more easily. 

 

3.4.5 Study of the Speeds of the Various Features Propagating Along the Bimaterial 

Interface 

The propagation speeds for the head wave, the sliding tip, the fast interface disturbance and 

for the wrinkle-like pulse for various impact speeds and for different confining stresses are 
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displayed in Figure 15. As the impact speed increased, the propagation speed of the 

sliding tip also increased, approaching the P-wave speed of Homalite (Figure 15(b)).The 

rupture tip speeds were supershear with respect to Homalite for all the performed 

experiments. Figure 15(a) shows that the head wave speed, which was consistently lower 

than the shear wave of steel but higher than the P-wave speed of Homalite, did not depend 

on the impact speed. The same is true for the wrinkle-like pulse. Its speed was, within an 

experimental error, between the Rayleigh wave speed and the shear wave speed of 

Homalite (Figure 15(d)), consistent with the theoretical values obtained by Comninou and 

Dundurs 1977. The speed of the fast interface disturbance was also not dependent on the 

impact speed (Figure 15(d)). We note, however, that this disturbance, unlike the previous 

features, was transient at confining stresses of MPa10  and MPa20 , and only with lower 

static pressures did it have a persistent appearance and a robust form. 

 

3.5  Sliding Induced by Impact Shear Loading Applied on the Steel Plate of the 

Bimaterial Specimen 

In this section, dynamic sliding initiated by impact loading applied on the steel plate is 

investigated. Figure 16(a) shows the isochromatic fringe pattern developed in the Homalite 

plate at a selected time with an impact speed of sm17  and a confining stress of MPa10 . 

The formation of a shear Mach line shows that a disturbance was traveling along the 

bimaterial interface at a speed higher than the shear wave speed of Homalite. The 

inclination angle of the Mach line was approximately o18 , which corresponds to a  

SS CCsm 12 7.025.14042 ==  propagation speed of the  disturbance. This result means that 
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the disturbance follows closely the P-wave front in the steel plate. For more information 

however, we have to resort to velocimetry since photoelasticity is not very helpful given 

that the photoelastic images do not have enough structure. This happens because the 

dynamic vertical compressive stress was very low, since the Young’s modulus of steel is 

large and thus the Poisson effect was very limited during sliding. Figure 16(b) depicts the 

evolution with time of the in-plane horizontal velocities of two points M1 and M2 (across 

the interface), which belonged to steel and Homalite plates respectively. The distance of M1 

and M2 from the impact side of the steel plate was mm30  and their distance from the 

interface was less than mμ250 . The velocity of point M1 on the steel plate was higher that 

the velocity of point M2 on the Homalite plate, despite the fact that steel is much a stiffer 

material than Homalite. This shows that the energy transfer from the steel plate to the 

Homalite plate was not efficient. The Poisson effect, as we have already mentioned above, 

was minor and the dynamic (inertial) compression applied to the Homalite plate was low. 

Consequently, the frictional resistance was also low, and the local sliding initiated almost 

immediately with the arrival of the P-wave front there, without any significant elastic 

deformation of the Homalite surface. This is clear from Figure 16(c), where the velocity 

history of points M1 and M2 at the first microseconds of the sliding initiation is depicted. 

The velocity of point M1 on the steel plate started increasing at approximately sμ36  

because of the horizontal compression applied from the longitudinal wave. Almost 

immediately, point M2 (on the Homalite plate surface) started moving, dragged by the 

motion in the steel plate because of friction. At sμ40  the relative velocity started 

increasing rapidly and sliding started (Figure 16(b)). This shows that elastic deformation 
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happened at the very first sμ4  after the longitudinal wave arrival at M1. The above result 

obtained through velocimetry agrees with the result obtained via photoelasticity (that a 

supershear disturbance, with respect to Homalite, was propagating along the interface just 

behind the P-wave front in steel) and makes clear that the disturbance was the sliding tip. It 

agrees also with both the experimental and numerical results obtained by Coker, Rosakis 

and Needleman 2003. We note that the process of sliding initiation was different in the case 

where the Homalite plate was impacted. For example, Figure 5(b) shows that for 

approximately sμ24  points M1 and M2 were traveling together, since merely elastic 

deformation occurred during this period. Only after sμ24  elapsed did the sliding start. 

 

Figure 17 displays the history of the in-plane horizontal velocities of points M1 and M2, 

belonging to steel and Homalite plates respectively. The external confining stress was 

MPa10  and the impact speed was sm5.13 . The horizontal distance of points M1 and M2 

from the impact side of the Homalite plate was again mm30 . The sliding initiation 

procedure was very similar to that depicted in Figure 16(b). We also note that the duration 

of the initial sliding period was approximately sμ43 (from sμ55  until sμ98 ), the same for 

both cases. The only difference is that the maximum horizontal velocity of M1 was lower 

than in the previous case since the impact speed was lower here. The velocity of point M2 

in Homalite plate was also lower in Figure 17 than in Figure 16. 

 

Figure 18 shows the time evolution of the horizontal in-plane velocities of points M1 and 

M2 located mm110  from the impact side of the steel plate. The external pressure was 
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MPa10  and the impact speed was sm17 . The same conditions were applied to the 

experiment shown in Figure 16. The velocities histories, however, depicted in Figure 16 

were measured mm30  form the impact side of the steel plate. The sliding initiation 

procedure is similar in both cases. The difference between the two measurements is due to 

the attenuation of the particle velocities in steel, whereas the attenuation of the speed in 

Homalite was smaller. Moreover, the variation of the particle velocity on steel at mm110  

was not as fast as it was at mm30 . 

 

We finally note that in all the performed experiments the duration of local sliding was long, 

and we conclude that rupture occurred in a crack-like mode. 

 

3.6  Concluding Remarks 

A new technique has been developed to record the evolution of the in-plane components of 

the particle velocity in real time. The combination of velocimetry with the full-field 

technique of dynamic photoelasticity was proven to be a very powerful tool in the study of 

dynamic frictional sliding along incoherent interfaces. 

 

The experiments involved bimaterial specimens consisting of Homalite-100 and steel plates 

held together by uniform compressive stress and subjected to impact shear loading. When 

the impact loading was applied to the Homalite plate, the following effects were captured: 

• The interaction between the impact wave and the preexisting static stress field caused a 

relatively broad loading wave that emanated from the interface. 
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• A disturbance, traveling along the interface at a speed close to the Rayleigh wave 

speed of steel, generated a Mach line that crossed the P-wave front and the eye-like 

fringe pattern. Data recorded by the velocimeter showed that this disturbance affected 

the relative velocity but did not cause sliding. 

• The velocimeter revealed that the sliding initiated behind the eye-like fringe structure. 

A shear Mach line was visible in the photoelastic images, indicating that the sliding was 

supershear with respect to the shear wave speed of Homalite. 

• The sliding occurred in a crack-like mode. 

• A fast interface disturbance was captured propagating behind the rupture tip at high 

impact speeds. 

• A self-sustaining wrinkle-like pulse propagating along the bimaterial interface was 

observed. It caused a local detachment between the two plates that was traveling at a 

speed close to the Rayleigh wave speed of Homalite. It is expected that the wrinkle-like 

pulse might play an important role in the failure mechanism of bimaterial structures 

subjected to impact shear loading. 

 

When the impact loading was applied to the steel plate, then velocimetry was the only 

source of information. Sliding at a point on the interface started almost immediately with 

the arrival of the P-wave front there and it occurred in a crack-like mode in all the 

performed experiments. 
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List of Figures 

  

Figure 1  Geometry and loading configuration for a bimaterial specimen consisting of a 

Homalite and a steel plate. 

 

Figure 2   Dynamic photoelasticity setup. A circular polarized laser beam passes through 

the specimen that is subjected to uniform confining stress and to impact shear 

loading via a projectile fired by a gas gun. The resulting isochromatic fringe 

patterns are recorded by a high-speed digital camera. 

 

Figure 3  (a) Schematic illustration of the experimental configuration for the sliding 

velocity measurement. The area inside the dotted line is shown magnified. 

Points M1 and M2 were at the same distance d  from the impact side of the 

Homalite plate. (b) Photograph of the actual setup. 

 

Figure 4 A sequence of isochromatic fringe patterns showing an intersonic frictional 

sliding, the corresponding shear Mach line (B1) and a shear head wave (A). M1 

and M2 are the positions of the velocity measurements. 

 

Figure 5 (a) Histories of the horizontal in-plane velocities and of the relative velocity, 

measured at two adjacent points across the interface, mm110  from the impact 

side of the Homalite plate. The sliding initiated at B1. The insert shows the 
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history of the relative displacement. (b) Detail of the velocity history 

diagram, showing the arrival of the P-wave front in the steel plate (P), the 

arrival of the shear wave front in the steel plate (A) and the sliding initiation 

(B1). 

 

Figure 6 Representative isochromatic fringe pattern and corresponding horizontal 

velocity histories and relative horizontal velocity history of points M1 and M2 

located mm70  from the impact side of the Homalite plate. The head wave is 

highlighted by the white dotted line. The sliding started at B1. The black dotted 

line marks the warping of the fringes related to a change in the slope of the 

horizontal particle velocity in Homalite, which occurred at sμ110  after impact. 

 

Figure 7 (a) Comparison of the horizontal in-plane relative velocity histories of points 

M1 and M2, located at distances of mm70  from the impact side of the Homalite 

plate, for different impact speeds. (b) Comparison of the horizontal in-plane 

relative velocity histories of points M1 and M2, located at distances of mm30  

from the impact side of the Homalite plate, for different impact speeds. (c) 

Comparison of the horizontal in-plane relative velocity histories of points M1 

and M2, located at distances of mm70  and mm30  from the impact side of the 

Homalite plate, for the same impact speed of sm13 . In all cases, the external 

compression is MPa10 . 
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Figure 8 (a) and (c) Isochromatic fringe pattern captured during two different 

experiments. The supershear sliding initiated at B, whereas the wrinkle-like 

pulse is located at C. The dotted line highlights the Mach line. (b) and (d) 

Histories of the horizontal components of the in-plane particle velocity 

measured on the Homalite plate, mm70  from its impact side. 

  

Figure 9 Schematic illustration of the experimental configuration for the simultaneous 

measurement of the horizontal and vertical components of the particle velocity. 

The area inside the dotted line is shown magnified. 

 

Figure 10 Sequence of isochromatic fringe patterns showing intersonic frictional sliding, 

the corresponding shear Mach line (B) and the wrinkle-like pulse (C). M and N 

are at the corner of the reflective membrane, where the horizontal and vertical 

in-plane components of the velocity were measured. 

 

Figure 11 (a) Histories of the horizontal and the vertical components of the in-plane 

particle velocity measured on the Homalite plate, mm70  from its impact side. 

The sliding initiated at B. The confining stress was MPa5  and the impact speed 

was sm22 . (b) History of the vertical displacement. 
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Figure 12 Representative isochromatic fringe patterns and corresponding vertical 

displacement histories measured on the Homalite plate, mm70  from its impact 

side. 

 

Figure 13 Representative isochromatic fringe patterns from two different experiments at 

high impact speeds. The specimens were subjected to different confining 

stresses. Arrow A indicates the position of the disturbance which created the 

head wave. The arrows B, C, D and F indicate the positions of the rupture tip, of 

the wrinkle-like pulse, of the fast interface disturbance and of the P-wave front 

respectively. The arrow E indicates a second wrinkle-like pulse. The arrow B1 

and B2 indicate the positions of the sliding tips which are the origin of a 

transient double shock. 

 

Figure 14 (a) Sliding tip speeds and head wave speeds at different frames measured using 

the Mach angle. (b) Positions of the wrinkle-like pulse and the fast interface 

disturbance as a function of time.  

 

Figure 15 (a) Variation of the sliding tip speed with the impact speed for various confining 

stresses. (b) The head wave speed is independent of the impact speed. (c) The 

wrinkle-like pulse speed remained between the Rayleigh wave speed and the 

shear wave speed of Homalite-100, independent of the impact speed and the 
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confining stress. (d) The speed of the fast interface disturbance did not 

depend on the impact speed or on the confining stress.  

 

Figure 16 (a) Representative isochromatic fringe pattern from an experiment of sliding 

propagation initiated by impact on the steel plate. (b) Histories of the horizontal 

in-plane velocities and of the relative velocity, measured at two adjacent points 

M1 and M2, mm30  from the impact side of the Homalite plate. (c) Detail of the 

velocities histories diagram.  

 

Figure 17 Histories of the horizontal in-plane velocities and of the relative velocity, 

measured at two adjacent points across the interface, mm30  from the impact 

side of the Homalite plate. 

 

Figure 18 Histories of the horizontal in-plane velocities and of the relative velocity, 

measured at two adjacent points across the interface, mm110  from the impact 

side of the Homalite plate. 
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Figure 1  Geometry and loading configuration for a bimaterial specimen 
consisting of a Homalite and a steel plate. 
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Figure 2  Dynamic photoelasticity setup. A circular polarized laser beam 
passes through the specimen that is subjected to uniform confining stress and 
to impact shear loading via a projectile fired by a gas gun. The resulting 
isochromatic fringe patterns are recorded by a high-speed digital camera. 
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Figure 3 (a) Schematic illustration of the experimental configuration for the 
sliding velocity measurement. The area inside the dotted line is shown 
magnified. Points M1 and M2 were at the same distance d  from the impact 
side of the Homalite plate. (b) Photograph of the actual setup. 
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Figure 4 A sequence of isochromatic fringe patterns showing an intersonic 
frictional sliding, the corresponding shear Mach line (B1) and a shear head 
wave (A). M1 and M2 are the positions of the velocity measurements. 
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Figure 5 (a) Histories of the horizontal in-plane velocities and of the relative 
velocity, measured at two adjacent points across the interface, mm110  from the 
impact side of the Homalite plate. The sliding initiated at B1. The insert shows the 
history of the relative displacement. (b) Detail of the velocity history diagram, 
showing the arrival of the P-wave front in the steel plate (P), the arrival of the 
shear wave front in the steel plate (A) and the sliding initiation (B1). 
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Figure 6 Representative isochromatic fringe pattern and corresponding 
horizontal velocity histories and relative horizontal velocity history of points 
M1 and M2 located mm70  from the impact side of the Homalite plate. The 
head wave is highlighted by the white dotted line. The sliding started at B1. 
The black dotted line marks the warping of the fringes related to a change in 
the slope of the horizontal particle velocity in Homalite, which occurred at 

sμ110  after impact. 



 88

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 7 (a) Comparison of 
the horizontal in-plane relative 
velocity histories of points M1 
and M2, located at distances of 

mm70  from the impact side of 
the Homalite plate, for different 
impact speeds. (b) Comparison 
of the horizontal in-plane 
relative velocity histories of 
points M1 and M2, located at 
distances of mm30  from the 
impact side of the Homalite 
plate, for different impact 
speeds. (c) Comparison of the 
horizontal in-plane relative 
velocity histories of points M1 
and M2, located at distances of 

mm70  and mm30  from the 
impact side of the Homalite 
plate, for the same impact speed 
of sm13 . In all cases, the 
external compression is 

MPa10 . 
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Figure 8 (a) and (c) Isochromatic fringe pattern captured during 
two different experiments. The supershear sliding initiated at B, 
whereas the wrinkle-like pulse is located at C. The dotted line 
highlights the Mach line. (b) and (d) Histories of the horizontal 
components of the in-plane particle velocity measured on the 
Homalite plate, mm70  from its impact side. 
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Figure 9 Schematic illustration of the experimental configuration for 
the simultaneous measurement of the horizontal and vertical 
components of the particle velocity. The area inside the dotted line is 
shown magnified. 
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Figure 10 Sequence of isochromatic fringe patterns showing intersonic 
frictional sliding, the corresponding shear Mach line (B) and the 
wrinkle-like pulse (C). M and N are at the corner of the reflective 
membrane, where the horizontal and vertical in-plane components of 
the velocity were measured. 
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Figure 11 (a) Histories of the horizontal and the vertical components of the in-
plane particle velocity measured on the Homalite plate, mm70  from its impact 
side. The sliding initiated at B. The confining stress was MPa5  and the impact 
speed was sm22 . (b) History of the vertical displacement. 
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Figure 12 Representative isochromatic fringe patterns and corresponding 
vertical displacement histories measured on the Homalite plate, mm70  
from its impact side. 
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Figure 13 Representative isochromatic fringe patterns from two different 
experiments at high impact speeds. The specimens were subjected to 
different confining stresses. Arrow A indicates the position of the 
disturbance which created the head wave. The arrows B, C, D and F indicate 
the positions of the rupture tip, of the wrinkle-like pulse, of the fast interface 
disturbance and of the P-wave front respectively. The arrow E indicates a 
second wrinkle-like pulse. The arrow B1 and B2 indicate the positions of the 
sliding tips which are the origin of a transient double shock. 
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Figure 14 (a) Sliding tip speeds and head wave speeds at different 
frames measured using the Mach angle. (b) Positions of the wrinkle-
like pulse and the fast interface disturbance as a function of time.  
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Figure 15 (a) The head wave speed is independent of the impact speed. (b) 
Variation of the sliding tip speed with the impact speed for various confining 
stresses. (c) The speed of the fast interface disturbance did not depend on the 
impact speed or on the confining stress. (d) The wrinkle-like pulse speed 
remained between the Rayleigh wave speed and the shear wave speed of 
Homalite-100, independent of the impact speed and the confining stress. 
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Figure 16 (a) Representative isochromatic fringe pattern from an 
experiment of sliding propagation initiated by impact on the steel plate. 
(b) Histories of the horizontal in-plane velocities and of the relative 
velocity, measured at two adjacent points M1 and M2, mm30  from the 
impact side of the Homalite plate. (c) Detail of the velocities histories 
diagram.  
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Figure 17 Histories of the horizontal in-plane velocities and of the 
relative velocity, measured at two adjacent points across the interface, 

mm30  from the impact side of the Homalite plate. 
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Figure 18 Histories of the horizontal in-plane velocities and of the 
relative velocity, measured at two adjacent points across the interface, 

mm110  from the impact side of the Homalite plate. 



 

C h a p t e r  4  

DYNAMIC FRICTIONAL SLIDING ALONG INCOHERENT INTERFACES OF 
HOMOGENEOUS SYSTEMS AT LOW IMPACT SPEEDS 

4.1  Introduction 

In this chapter, dynamic sliding along incoherent (frictional) interfaces in homogeneous 

systems is investigated. Such interfaces (faults) along with their rupture behavior (frictional 

sliding) are of great interest not only to mechanics but also to seismology. A central issue 

in the modeling of earthquake rupture is the duration of slip at a point on the fault 

compared to the duration of the rupture of the entire fault (Rice 2001). The most classic 

approach of seismic rupture uses shear crack models (Broberg 1999; Freund 1990; Rosakis 

2002), where the slip duration at a point (“rise time”) is a significant fraction of the overall 

rupture propagation time. The crack-like mode has been generated in many numerical 

simulations of spontaneous rupture when a rate-independent friction law was implemented 

(Madariaga 1976; Andrews 1976 and 1985; Das and Aki 1977; Day 1982; Ruppert and 

Yomogida 1992; Harris and Day 1993). It has been pointed out, however, that inversions of 

seismic data for slip histories from well-recorded events (Heaton 1982 and 1990; Hartzell 

and Heaton 1983; Liu and Helmberger 1983; Mendoza and Hartzell 1988 and 1989)  

indicate that the duration of slip at a point on the fault was one order of magnitude shorter 

than the event duration, giving rise to the concept of a pulse-like rupture mode. Some 

eyewitness accounts also reported short slip duration (Wallace 1983; Pelton, Meissner and 

Smith 1984).  
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The concept of a pulse-like rupture went against a widely accepted view of how seismic 

rupture occurs. Its introduction was followed by various efforts to elucidate the physics 

leading to this process through analytical and numerical investigations. Different 

mechanisms for “self-healing” pulse generation along a homogeneous fault have been 

proposed. One postulation is that if the fault strength is low immediately behind the rupture 

front and is increased rapidly at a finite distance, then slip might be restricted to a short, 

narrow propagating area (Brune 1976). Recent theoretical and numerical investigations 

show that a strong velocity-weakening friction law model could indeed allow for pulse-like 

behavior of rupture under certain conditions (Zheng and Rice 1998). However, simulations 

utilizing velocity weakening have sometimes resulted in crack-like rupture and sometimes 

in “self-healing” pulse propagation (e.g., Cochard and Madariaga 1994 and 1996; Perrin, 

Rice and Zheng 1995; Beeler and Tullis 1996; Ben-Zion and Rice 1997; Lapusta et al. 

2000; Cochard and Rice 2000; Nielsen, Carlson and Olsen 2000; Coker et al. 2005; 

Lapusta 2005). Friction laws along faults between two identical elastic solids have to 

include laboratory-based state evolution features and they must not exhibit ill-posedness or 

paradoxical features (Cochard and Rice 2000; Ranjith and Rice 2001). It has been proven 

that generalized rate and state friction laws are appropriate candidates for uniform faults 

(Cochard and Rice 2000; Ranjith and Rice 2001; Rice, Lapusta and Ranjith 2001; Zheng 

and Rice 1998). Within the frame of rate and state friction laws, the following three 

requirements have to be fulfilled for rupture to occur as a “self-healing” pulse (Zheng and 

Rice 1998; Rice 2001). One requirement is that the friction law must include strengthening 

with time on slipped portions of the fault that are momentarily in stationary contact (Perrin, 
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Rice and Zheng 1995). Another is that the velocity weakening at high slip rates must be 

much greater than that associated with the weak logarithmic dependence observed in the 

laboratory during low-velocity sliding experiments. Lastly, the third requirement is that the 

overall driving stress has to be lower than a certain value, but high enough to allow for self-

sustained pulse propagation (Zheng and Rice 1998).  

 

While strong velocity weakening is a mechanism which explains the onset of short duration 

slip-pulses along faults which separate similar materials, it is important to note that other 

mechanisms exist as well. One involves geometric confinement of the rupture domain by 

unbreakable regions (barrier model). That is, an earthquake consists of a number of short 

duration, crack-like ruptures on a small rupture area that are separated by locked regions 

(Aki, 1979; Papageorgiou and Aki 1983a and 1983b). In one implementation of this 

scenario, a pulse-like rupture behavior was found in a 3D geometry when the rupture 

process was confined within a long but narrow region by unbreakable barriers (Day 1982). 

It was observed that the rupture started in a classic crack-like mode and it propagated in all 

directions. After some time, arresting waves arrived from the boundaries and they 

effectively relocked the fault behind the rupture front, resulting in two slip pulses. 

Alternatively, a rupture nucleates and propagates bilaterally, but may arrest suddenly at a 

strong barrier at one end. Following its arrest, the reflected waves from the barrier spread 

back and heal the rupture surface. The combination of the still-propagating end of the 

rupture with the healing reflected wave forms a moving pulse-like configuration (Johnson 

1990). 
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Since friction depends on normal stress, variations in normal stress on the rupture 

interface are also thought to be responsible for pulse formation (Richardson and Marone 

1999). For example, expansion of pore fluid, caused by frictional heating, can dramatically 

reduce the effective normal stress and consequently the frictional stress. Pore pressure, 

however, may rapidly decrease behind the rupture tip, causing re-strengthening and 

possibly locking of the fault. 

 

The possibility of generating wrinkle-like pulses along incoherent frictional interfaces in 

homogeneous systems is also investigated in this chapter. Comninou and Dundurs 1977 

found that self-sustained slip waves with interface separation (detachment waves or 

wrinkle-like slip pulses) can propagate along the interface of two identical solids, which are 

pressed together. The constant propagation speed of these waves was found to be between 

the Rayleigh wave speed and the shear wave speed of the material. It is known that a 

system consisting of two identical half-planes and subjected to compression and to far field 

shear loading cannot sustain the propagation of a wrinkle-like pulse along the interface. In 

the setup used in our investigation, however, the loading was not strictly shear and there is 

not any physical reason to exclude the possibility of a wrinkle-like pulse. 

 

4.2  Specimen Configuration and Loading 

In order to investigate the physical plausibility of generating the two rupture modes 

described above, a number of well-controlled experiments involving dynamic sliding along 

incoherent (frictional) interfaces in homogeneous systems were performed. Two Homalite-

100 plates, subjected to a uniform compressive stress, were frictionally held along the 
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interface. The top plate was also subjected to an impact shear loading (Figure 1). Each 

of the plates was mm7.139  long, mm2.76  wide and mm525.9  thick. All the experiments 

were executed at the same external confining stress of MPaP 10= , applied by a calibrated 

press. Homalite-100 is a brittle polyester resin that exhibits stress-induced birefringence 

and is mildly rate-sensitive. At the strain rate developed during our experiments (on the 

order of 1310 −s ) and at room temperature, Homalite exhibits a purely linear elastic 

behavior. The pressure, shear and Rayleigh wave speeds of Homalite-100 are 

smCP 2187= , smCS 1249=  and smCR 1155=  respectively. The asymmetric impact 

loading was imposed via a cylindrical steel projectile with a diameter of mm4.25  and 

length of mm8.50 , fired using a gas gun. The impact speeds ranged from sm10  to 

sm20  in the study of horizontal sliding and from sm9  to sm28  in the study of the 

vertical displacement along the interface. A steel buffer mm73  high, mm4.25  long and 

mm525.9  thick was attached to the impact side of the upper plate to prevent shattering and 

to induce a more or less planar loading wave. 

 

4.3  Experimental Techniques 

Dynamic photoelasticity, which depicts full-field contours of maximum shear stress, was 

combined with a newly-developed laser interferometry-based technique, which gives a 

local measurement of the sliding velocity at the interface (Figure 2). The results were 

registered in a microsecond time scale. The evolution of the isochromatic fringe pattern 

was recorded by a high-speed digital camera. In most of the experiments, the recording 
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frame rate was 1 frame per sμ4 . A collimated laser beam with a diameter of mm130  

was used to illuminate most of the specimen. A pair of independent fiber-optic 

velocimeters was used to continuously measure the horizontal particle velocities at two 

adjacent points M1 and M2 across the interface. A schematic illustration of the experimental 

setup is shown in Figure 2b. The vertical distance of each point from the interface was less 

than mμ250  before deformation. Both points had the same horizontal distance from the 

impact side of the Homalite plates. By subtracting the velocity of the point below the 

interface (M2) from that of the point above the interface (M1), the horizontal relative 

velocity history was obtained. The velocimeter consists of a modified Mach-Zehnder 

interferometer and a velocity decoder. The decoder was set to a full range scale of sm10±  

with a maximum frequency of MHz5.1  and a maximum acceleration of g710 . The beam 

spot size was approximately mμ70 , whereas the error of the velocity measurements was 

%1 . A Nicolet Integra 40 digital oscilloscope was used to record the output voltage of the 

velocimeter. The technique and the corresponding experimental setup are presented in 

detail in chapter 2 and in Lykotrafitis, Rosakis and Ravichandran 2005. 

 

4.4  Experimental Results 

 

4.4.1  Initiation of Dynamic Frictional Sliding  

We start with the investigation of dynamic sliding initiation. The specimen (Figure 1) was 

subjected to a uniform confining pressure of MPa10 , whereas the impact speed was 

smV 24= . An instantaneous isochromatic fringe pattern recorded at sμ40  after impact is 
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displayed in Figure 3(a). An eye-like fringe structure is observed traveling, from right to 

left, behind the longitudinal wave front. At sμ40 , this structure has just arrived at the 

position where the horizontal particle velocities were measured. The pair of velocimeters 

was aimed at the adjacent points M1 and M2. Both points were at the same horizontal 

distance of mm70  from the impact side of the Homalite plate and at less than mμ250  

from the interface. Figure 3(c) shows the recorded in-plane horizontal velocities histories 

and the relative velocity history as well. In Figure 3(d), we focus on the time interval 

between sμ30  and sμ52 , where the sliding initiation process took place. The red line 

corresponds to the horizontal velocity of point M2 in the upper plane, the dark blue line 

corresponds to the horizontal velocity of point M1 in the lower plane and the green line 

corresponds to the relative velocity. The longitudinal wave front arrived at the 

measurement position at sμ37  (approximately sμ3  before the arrival of the eye-like fringe 

structure there). At this time, the velocities of both points M1 and M2 commenced to rise. 

However, the relative velocity was almost zero until sμ45 , because the velocities of both 

points were practically the same. This fact shows that the longitudinal wave generated by 

the impact was traveling in the bulk of the two plates undisturbed by the interface and it 

caused the same acceleration for both points M1 and M2. At sμ45  the relative velocity 

started to increase but it remained very low, less than sm5.0 , until approximately 

sμ5.50 . A numerical integration of the relative velocity with respect to time from sμ0  to 

sμ5.50  resulted in relative horizontal displacement of less than mμ2  between points M1 

and M2. This is explained by invoking the occurrence of an elastic shear deformation rather 
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than rupture (interfacial sliding) from sμ45  until sμ5.50 . At that time, the relative 

velocity rose sharply and interfacial sliding began.  

 

The above description of the sliding initiation mechanism agrees also with the high-speed 

photoelastic image captured at sμ50  (Figure 3(b)). In this picture, the fringe concentration 

point A was just behind the measurement position. We thus establish that A is the rupture 

tip. The speed of A was obtained by following its position in various frames. The variation 

was very well approximated as linear and thus it was concluded that the propagation speed 

was constant. A linear interpolation resulted to a supershear rupture tip speed of SC32.1 . 

Consequently, two Mach lines forming a shear Mach cone emanated from the sliding tip. 

These Mach lines are highlighted by two dotted lines in Figures 3(a) and (b). Soon after the 

initiation of sliding, the horizontal velocity of point M2, exceeded the value of sm10 , 

which is the instrument limit, and the recording was interrupted. In the experiments 

presented in the rest of the section, the impact speed was lower than smV 24= . We were, 

thus, able to continuously record the evolution of in-plane horizontal velocities for a long 

period of time and draw conclusions about the mode of the generated dynamic frictional 

sliding. 

 

4.4.2 Visualizing Pulse-like and Crack-like Ruptures in the Laboratory 

An instantaneous isochromatic fringe pattern obtained at an impact velocity of smV 19=  

is shown in Figure 4(a). An eye-like fringe structure is again observed traveling, from right 

to left, behind the longitudinal wave front. The rupture tip A followed this fringe structure 
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at a supershear speed of SC36.1 . Consequently, two Mach lines forming a shear Mach 

cone emanated from the sliding tip. The tip can be located by tracing the Mach lines to the 

interface. The rupture tip speed which was obtained by two methods was found to be 

constant. First, we followed the position of the tip in various frames, as we did in the 

previous experiment. The variation was again very well-approximated as linear and thus it 

was concluded that the propagation speed was constant. The rupture tip speed was obtained 

by using a linear interpolation. In the second method, the Mach angle θ  was measured, and 

by using the relationship θ= sinSCv  the rupture tip speed v  was obtained frame by frame. 

Both methods gave consistent values for the propagation speeds. 

 

The evolution over time of the horizontal relative velocity of two adjacent points M2 and 

M1, belonging to the upper and lower plate, respectively, at a distance of mm70  from the 

impact side of the Homalite plate, is displayed in Figure 4(b).  The horizontal particle 

velocities of the adjacent points never exceeded the instrument limit value of sm10  and 

were thus continuously recorded for a time period of sμ60 . The procedure of the initiation 

of sliding followed the same pattern as in the first experiment. When the longitudinal wave 

front arrived at the measurement positions M1 and M2 of Figure 4(a), where the pair of the 

interferometers was pointed, the velocities of both points started to increase. However, the 

relative horizontal velocity was zero for the next few microseconds and it remained very 

low for a time interval of approximately sμ13 . A numerical integration of the relative 

velocity with respect to time from sμ0  to sμ13  resulted in a relative horizontal 

displacement of mμ2  between points M1 and M2. An elastic shear deformation arose 
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during the above period of time. The sliding started at approximately sμ13  when the 

rupture tip (point A) arrived at the measurement position and the relative velocity increased 

sharply. After it reached its maximum value of approximately sm6 , it decreased and then 

it fluctuated, but never went below sm4   during the recording time. As is evident from 

Figure 4(b), the sliding was continuous and thus we can safely say that rupture occurred in 

a classic crack-like mode.  

 

As was already noted, the speeds of the rupture tips in the first two presented experiments 

were substantially higher than the shear wave speed of Homalite, and therefore the situation 

is similar to intersonic shear rupture propagation observed to occur along “coherent” and 

incoherent interfaces separating identical monolithic solids (Rosakis, Samudrala and Coker 

1999 and 2000; Needleman 1999; Coker and Rosakis 2001; Samudrala, Huang and Rosakis 

2002a and 2002b; Xia, Rosakis and Kanamori 2004). In the former experiments (Rosakis, 

Samudrala and Coker 1999 and 2000; Samudrala, Huang and Rosakis 2002a and 2002b), 

the “coherent” interfaces were bonded and they featured intrinsic strength and toughness in 

the absence of confining pressure. Unlike the present study, the resulting modes were 

always crack-like and the rupture speeds were not constant.  

 

In contrast to these early shear crack growth experiments, the present work involves 

incoherent or frictional interfaces and static far-field compressive loading. Here, the 

frictional resistance to sliding depends on the normal stress through the friction law. The 

normal stress, however, is a superposition of the static externally-imposed pressure and a 



 

 

110
dynamic (inertial) compression generated by the impact loading as follows. The P-wave 

produced by the impact loading creates a primarily horizontal compressive stress in the 

upper plate close to the interface, and due to the Poisson effect it also creates compression 

in the direction vertical to the interface. As the sliding proceeds, the vertical stress to the 

rupture interface changes, and thus the friction changes as well. The change in friction, 

however, affects the evolution of sliding. Thus, we infer that sliding is dependent on impact 

loading not only through the horizontal compression, which is the driving force for sliding, 

but also through the vertical compression which affects the resistance to sliding. Because of 

that dependence, essential changes in the rupture procedure are to be expected as the 

impact speed decreased. 

 

Consistent with the above line of reasoning, further reduction of the impact speed to 

sm17  resulted in drastic changes to the fringe pattern (Figure 5(a)) and to the horizontal 

relative velocity history of points M1 and M2 (Figure 5(b)). M1 and M2 were again located 

at a distance of mm70  from the impact side of the Homalite plate. The photoelastic images 

clearly show a fringe structure (located between points A1 and A2) traveling along the 

interface. Synchronizing the captured photoelastic frames with the horizontal relative 

velocity history, we were able to correlate the fringe concentration points A1 and A2 with 

abrupt changes in the horizontal relative velocity (Figure 5(b)). At A1, the relative velocity 

increased rapidly and the sliding started. This signifies that A1 was the rupture tip. In this 

experiment, however, the relative velocity, after it reached its maximum value of 

approximately sm4 , decreased significantly to sm9.1  in a very short time interval of 
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about sμ7 . Thereafter, at A2 the relative velocity increased again rapidly. This fact is 

reflected in the corresponding photoelastic fringe pattern as a fringe concentration point 

(Figure 5(a)). The propagation speeds of A1 and A2 were SC19.1  and SC  respectively, 

within experimental error. The propagation speed of A1 was supershear. However, the low 

impact speed of sm17  produced a low-density fringe pattern, and the Mach lines 

emanating from A1 were not well formed. The fringe structure (A1A2) was self-sustained. It 

also expanded with time, since the propagation speed of A1 was higher than that of the 

propagation speed of A2. Behind A2, the relative velocity of points M1 and M2, after 

reaching a maximum value of approximately sm5 , decreased once again to sm2.1  in a 

time interval of about sμ7 . At point A3, which is almost at the left edge of the dark square 

area (Figure 5(a)), the relative velocity increased and remained high for the rest of the 

recording time. Point A3 propagated at a sub-Rayleigh speed of SC85.0  and signified the 

start of a clearly crack-like behavior of the rupture. By comparing the photoelastic fringe 

pattern evolution and the evolution of the relative velocity, it can be concluded that the 

rupture event was composed of two distinctive modes. From A1 to A3, the relative velocity 

changed rapidly twice in sμ13 , forming two pulses which were followed by a crack-like 

rupture mode which began at A3. 

 

By further decreasing the impact speed, a similar, albeit much simpler, behavior of the 

relative velocity was observed. Figure 6(a) shows an instantaneous isochromatic fringe 

pattern obtained at an impact speed of sm15 . The corresponding relative horizontal 

velocity history, measured at mm30  from the impact side of the Homalite plate, is shown 
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in Figure 6(b). By combining the horizontal relative velocity measurement with the 

recorded photoelastic frames, we can identify two rupture tips A1 and A2, which are fringe 

concentration points and are propagating along the rupture interface at speeds of SC09.1  

and SC98.0  respectively. The deformation at the velocity measurement position was 

elastic until approximately sμ18  when the rupture tip A1 arrived there and sliding 

commenced. As in the previous case, the commencement of slip corresponds to an 

accumulated relative horizontal displacement of mμ2 as well. Subsequently, the horizontal 

relative velocity increased rapidly from sm6.0  to a local maximum of sm5.2 . After 

sμ5 , the relative velocity decreased abruptly back to sm6.0  at point A2 (Figure 6(b)). 

The slip ceased since the relative velocity was very low, allowing surface asperities to re-

establish contact and be deformed elastically. The above observations show that the stable 

fringe structure (A1A2) represents a “self-healing” slip pulse of approximately sμ7  in 

duration. Directly after the pulse, the relative velocity increased rapidly to sm4.6  and 

retained its large value of approximately sm4  for a long period of time, of about sμ40 . 

This suggests that the initial rupture of the pulse-like mode was immediately followed by a 

second rupture of the crack-like mode. Thus, as it has been anticipated, the experimental 

results presented up to this point indicate that the rupture process is very sensitive to impact 

speed. Indeed, as the projectile speed was decreased while keeping the external confining 

stress constant, the rupture tip speed was also decreased. Finally, the rupture mode changed 

from a crack-like mode to a mixed mode where either multiple slip pulses or a single “self-

healing” slip pulse were followed by a crack. 
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By further reducing the impact speed to sm10 , the rupture mode became purely pulse-

like. The horizontal relative velocity was measured at a distance of mm70  from the impact 

side of the Homalite plate and its evolution over time is shown in Figure 7. The rupture 

started at A1 and propagated at a sub-Rayleigh speed of SC76.0 , whereas after sμ15  the 

sliding ceased at A2. The duration of sliding was very short compared to the approximately 

sμ100  duration of the impact event, and thus we infer that an isolated “self-healing” pulse 

was formed. Such a case clearly indicates that a pulse-like mode of rupture can definitely 

occur under appropriate conditions. 

 

In the previous experiment, the speed of the rupture tip was relatively low and thus there 

was enough time for the reflective waves to arrive at the measurement position and to 

interfere with the incoming waves produced by the impact. In Figure 7(a), the characteristic 

shape of the eye-like fringe structure has been deformed because of the interaction between 

the incoming waves with the reflective waves. The formation of the pulse is due to this 

interaction. This way of producing a short duration slip at a given point bears strong 

similarities to the barrier model (Day 1982; Aki 1979; Papageorgiou and Aki 1983a and 

1983b). There, the role of the barriers is played by the boundaries of the specimen. It is 

worth noting, however, that the formation of pulses in Figure 5 and Figure 6 cannot be 

explained by the barrier model, since these pulses featured very fast rupture tip speed and 

they were formed well before the reflective waves reached the measurement position. In 

these cases, we conjecture that the pulse formation was due either to the velocity-
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weakening character of the friction law or to changes in the frictional resistance because 

of the variations in dynamic normal stress on the rupture interface. 

 

In the last part of this section, the influence of confining stress on dynamic sliding is 

studied. Figure 8 displays the histories of the in-plane horizontal velocities and of the 

relative velocity of two adjacent points M1 and M2 at impact speeds on the order of sm13  

and at three different uniform confining stresses. Points M1 and M2 were located at mm70  

from the impact side of the Homalite plate for all three experiments presented here. At a 

static pressure of MPa10  and at an impact speed of sm5.13 , Figure 8(a) shows that both 

points were moving at the same velocity for more than sμ20  (from a point before sμ40  

until sμ60 ). For an additional period of sμ23  (from sμ60  until sμ83 ), points M1 and M2 

traveled at similar velocities. This indicates that the deformation of the corresponding 

contact surfaces was elastic during the above period of time. Sliding initiated at sμ83  and 

continued until approximately sμ115 , when the relative velocity became instantaneously 

zero. Then, a second period of sliding started. In this experiment, the high confining stress 

generated high frictional shear stress, which forced the two faces in contact to move locally 

together for more than sμ43 . We would expect that this interval will decrease as the 

confining stress decreases. 

 

Indeed, Figure 8(b) shows that at an external compression of MPa5  and at an impact 

speed of sm13 , points M1 and M2 were moving together for about sμ19  (from 
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approximately sμ42  until sμ61 ). It is also noted that the maximum velocity sm5.7  

of point M2, in the upper plate where the impact occurred, was higher than the maximum 

velocity sm6  of point M2 in the previous experiment performed at MPa10  static 

compression. The maximum velocity of point M1 in the lower plate, however, was 

approximately sm5.2  at MPa5  compression, lower than sm3  which was the maximum 

speed of point M1 at MPa10  external compression. This is due to the fact that at lower 

external pressure the duration of the acceleration of point M1 through friction was shorter at 

MPa5  than at MPa10  confining stress. 

 

A similar behavior of the velocities of points M1 and M2 is inferred from the study of the 

results displayed in Figure 8(c). In this case, the uniform external pressure applied to the 

specimen was MPa5.1  and the impact speed was again sm13 . In that experiment, points 

M1 and M2 were moving together only for about sμ3  before the initiation of sliding. The 

maximum velocity of point M2 was approximately sm5.7 , whereas the maximum 

velocity of point M1 was about sm5.1 , the lowest of the three cases. It is finally noted that 

the duration of the initial period of sliding decreased as the confining stress increased and 

the sliding mode transformed gradually from crack-like to pulse-like. 

 

4.4.3 Wrinkle-like Pulses along Interfaces in Homogeneous Systems 

Experiments performed at MPa10  and at impact speeds on the order of sm20  generated 

a rich isochromatic fringe pattern. High-speed photoelastic images captured during these 
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experiments show that a very robust fringe structure propagated behind the rupture tip 

(e.g., fringe formation indicated by the arrow B in Figure 10(a)). A similar fringe structure 

has been observed in the experiments involved bimaterial interface in chapter 3. It was 

proved that a wrinkle-like pulse (detachment wave), propagated along the interface, caused 

the formation of the above fringe structure. Prompted by this similarity, we decided to 

investigate if a wrinkle-like pulse was once more responsible for the generation of the 

fringe structure observed here, in the case of identical plates interface. It is known that a 

system consisting of two identical half-planes and subjected to compression and to far field 

shear loading cannot sustain a wrinkle-like pulse propagating along the interface. In the 

setup used in this experiment, however, the loading was not strictly shear and there is not 

any physical reason to exclude the possibility of a wrinkle-like pulse. A pair of independent 

velocimeters was employed to measure the vertical in-plane components of the velocities 

of two adjacent points M1 and M2, located across the interface. Adding algebraically the 

corresponding velocities, the relative vertical velocity can be obtained. The arrangement of 

the velocimeters is shown schematically in Figure 9(a), whereas a picture of the real setup 

is shown in Figure 9(b). 

 

An instantaneous isochromatic fringe pattern obtained at confining stress of MPa10  and at 

an impact speed of sm28  is shown in Figure 10(a). The rupture tip A was propagating at a 

constant supershear speed of SC49.1 . A shear Mach cone is clearly visible in the 

photoelastic image. A fringe structure located at point B, in Figure 10(a), was propagating 

at a speed of SC96.0 . The time evolution of the relative vertical displacement of points M1 
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and M2, which were located mm70  from the impact side of the Homalite plate, is 

displayed in Figure 10(b). A simple 1-D calculation shows that the initial static 

compression of MPa10  caused a negative relative displacement of approximately mμ3.1 . 

Negative relative displacement means that the two points approached each other under 

compression. The P-wave front arrived at about sμ5.2 after the triggering of the 

oscilloscope. Because of the Poisson effect, the horizontal dynamic (inertial) compression 

generated a vertical dynamic compression in addition to static compression. A negative 

relative displacement was caused by the dynamic compression. The rupture point crossed 

the velocity measurement position at approximately sμ10  and it did not cause any visible 

change to the vertical components of the velocities of points M1 and M2. The relative 

displacement became positive at approximately sμ31 . The photoelastic picture, captured at 

sμ30 , clearly shows the fringe structure at B, which is under investigation, very close to 

the measurement position. The study of the entire set of the 16 recorded photoelastic 

images in combination with the relative vertical displacement history sheds light on the 

distribution of the dynamic compression along the interface during sliding. The interface 

was locally under dynamic compression immediately after the arrival of the P-wave front 

until the arrival of the mentioned fringe formation. The entire area from the rupture point A 

to the location of the fringe structure at B was sliding under compression. The length of the 

area AB was estimated to be approximately mm40 , whereas the entire length of the 

interface was mm7.139 . The fringe structure at B caused at least a decompression or even 

an opening locally at the interface. At approximately sμ42  the relative vertical 

displacement became negative and the compression increased abruptly. During the rest of 
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the recording time the interface at the velocity measurement position was sliding under 

compression. We, thus, can relate the fringe structure at B to a wrinkle-like pulse 

propagating along the interface. As we quoted above, its propagation speed, perhaps not 

very surprisingly, was very close to SC96.0  which lies in the interval between the shear 

and the Rayleigh wave speeds of the material. This issue will be discussed in detail in 

chapter 5.   

 

At an impact speed of sm18  and at a static uniform compression of MPa10 , the fringe 

structure B in Figure 11(a) is not well-formed. This is due to the fact that the lower impact 

speed generated a lower dynamic compression and consequently a lower fringe density 

image and poorly formatted fringe structures. Figure 11(b) shows that the dynamic vertical 

compression was significantly lower than the vertical compression in Figure 10(b). The 

maximum positive vertical displacement, however, was almost the same in both cases. The 

relative displacement became positive at sμ93 . The fringe structure at B was captured 

crossing the measurement position at sμ100  (Figure 11b). Later, at sμ121 , a new period 

of compression started. Therefore, a wrinkle-like pulse can again be connected to the fringe 

structure at B.  

 

We need to clarify why the vertical displacements in the above experiments are the same, 

while the impact speeds are quite different. This can be explained as follows: The high 

impact speed in Figure 10 created high vertical compression and thus the driving force for 

the wrinkle-like pulse formation had to overcome a high compressive stress. In the case of 
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Figure 11, however, the smaller driving force had to overcome a smaller dynamic 

compressive stress and finally generated the same positive vertical displacement as that in 

Figure 10. That is, the large driving force in Figure 10 was counterbalanced by the larger 

dynamic compressive stress which had to be overcome. 

 

Reviewing the results from all the performed experiments, we verified that, at a confining 

stress of MPa10 , the lowest impact speed which can generate a wrinkle-like pulse is 

approximately sm17 . Figure 12(a) displays an isochromatic fringe pattern obtained at a 

confining stress of MPa10  and at an impact speed of sm9 . It is clear that no fringe 

structure related to a wrinkle-like pulse appears. That is reflected by the relative vertical 

displacement history shown in Figure 12(b), where the maximum value of the displacement 

was only about mμ3.0 . A comparison of the photoelastic image shown in Figure 12(a) 

with photoelastic images obtained at the same static compression of MPa10  and at similar 

impact speeds during experiments where the horizontal particle velocities measurements 

were available, shows that the rupture started at point A. 

 

In this section, the fringe structure at B was clearly related to the existence of a wrinkle-like 

pulse propagating along the interface. In the next chapter, further experimental results will 

strengthen the above correlation, showing that the propagation speed of the above fringe 

structure was always between the Rayleigh wave speed and the shear wave speed of 

Homalite. This result agrees with the theoretical prediction made by Comninou and 

Dunders 1977 for the propagation speed of the wrinkle-like pulses. 
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4.5  Conclusions 

The experimental results presented in this chapter enlighten the sliding initiation process 

and provide conclusive evidence of the occurrence of various sliding rupture modes (crack-

like, pulse-like or mixed) propagating dynamically along incoherent interfaces. Of 

particular interest here is the first experimental evidence of the formation of both 

supershear and sub-Rayleigh sliding pulses of the “self-healing” type, leading the first 

direct validation of predictions made on the basis of theoretical and numerical models of 

dynamic shear rupture. These pulses were found to propagate in the absence of interfacial 

opening. The experiments also provide hints of the dominant physical mechanisms 

governing the choice of various rupture modes and their evolution. It is also noted that 

wrinkle-like pulses (associated with interfacial opening and propagating at speeds between 

RC  and SC ) were discovered propagating along the interface for various loading 

conditions. 
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List of Figures 

Figure 1  A homogeneous system, consisting of two identical incoherent Homalite plates, 

is subjected to uniform compressive stress and to impact-generated shear 

loading. 

 

Figure 2  (a) Dynamic photoelasticity setup. (b) Schematic illustration of the experimental 

configuration for the sliding velocity measurement. The area inside the dotted 

circle is shown magnified. Points M1 and M2 were at the same horizontal 

distance d  from the impact side of the Homalite plate. 

 

Figure 3 (a) and (b) Isochromatic fringe patterns captured at sμ40  and sμ50  

respectively after impact. The external uniform compression was MPa10  and 

the impact speed was sm24 . The rupture tip is at the fringe concentration 

point A. The dotted lines highlight the location of the Mach lines emanating 

from the rupture tip. (c) Horizontal velocity histories and relative horizontal 

velocity history of points M1 and M2 located mm70  from the impact side of the 

Homalite plate. The rupture commenced when the rupture tip A reached the 

velocity measurement position. (d) Detail of the diagram displayed in (c). 

 

Figure 4  (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm19  and the external compression was MPa10 . The 
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rupture tip is at the fringe concentration point A. The inserts highlight the 

location of the Mach lines emanating from the rupture tip and the specimen 

configuration. (b) Relative velocity history of points M1 and M2 located at a  

distance of mm70  from the impact side of the Homalite plates. The rupture 

commenced when the rupture tip A reached the velocity measurement position. 

 

Figure 5  (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm17  and the external compression was MPa10 . The 

fringe concentration point A1 is the rupture tip of the pulse-like rupture mode, 

A2 is the rear edge of the first pulse and A3 is the rear edge of the second pulse. 

The crack-like mode initiated at A3 right after the second pulse. (b) Relative 

velocity history of points M1 and M2 located at a distance of mm70  from the 

impact side of the Homalite plates. The rupture commenced when the rupture 

tip A1 reached the velocity measurement position and two pulses A1A2 and 

A2A3 were formed. The crack-like rupture mode initiated at A3 right behind the 

second pulse. 

 

Figure 6  (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm13  and the external compression was MPa10 . The 

fringe concentration points A1 and A2 are the rupture tip and the rear edge 

respectively of the pulse-like rupture mode. The crack-like mode initiated at A2 

right after the pulse. (b) Relative velocity history of points M1 and M2 located at 
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a distance of mm30  from the impact side of the Homalite plates. The 

rupture commenced when the rupture tip A1 reached the velocity measurement 

position and a pulse A1A2 was formed. The crack-like rupture mode initiated at 

A2 right behind the second pulse. 

 

Figure 7 (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm10  and the external compression was MPa10 . The 

fringe concentration points A1 and A2 are the rupture tip and the rear-edge 

respectively of the “pulse-like” rupture mode. (b) Relative velocity history of 

points M1 and M2 located at a distance of mm70  from the impact side of the 

Homalite plates. The rupture commenced when the rupture tip A1 reached the 

velocity measurement position and an isolated pulse A1A2 was formed. 

 

Figure 8 (a) - (c) Horizontal in-plane velocity histories and horizontal in-plane relative 

velocity histories of points M1 and M2 located at a distance of mm70  from the 

impact side of the Homalite plate. The impact speeds are essentially the same, 

on the order of sm13 for all three experiments, whereas the external 

compression decreases. 

 

Figure 9 (a) Schematic illustration of the experimental configuration for the relative 

vertical velocity measurement. The area inside the dotted line is shown 

magnified.  Points M1 and M2 are at the same horizontal distance from the 
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impact side of the Homalite plate. (b) Photography of the actual setup 

displaying the arrangement of the velocimeters’ heads.  

Figure 10 (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm28  and the external compression was MPa10 . The 

rupture tip is at the fringe concentration point A and the wrinkle-like pulse is at 

point B. (b) Relative vertical displacement history of points M1 and M2, located 

at a distance of mm70  from the impact side of the Homalite plate. The rupture 

tip and the wrinkle-like disturbance crossed the velocity measurement position 

at approximately sμ10  and sμ32  after triggering, respectively. 

 

Figure 11 (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm18  and the external compression was MPa10 . The 

rupture tip is at the fringe concentration point A and the wrinkle-like pulse is at 

point B. (b) Relative vertical displacement history of points M1 and M2 located 

at a distance of mm70  from the impact side of the Homalite plate. The rupture 

tip and the wrinkle-like disturbance crossed the velocity measurement position 

at approximately sμ82  and sμ100  after impact, respectively. 

 

Figure 12 (a) Isochromatic fringe pattern generated during an experiment for which the 

impact speed was sm9  and the external compression was MPa10 . The 

rupture tip is at the fringe concentration point A. No wrinkle-like pulse 
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appeared. (b) Relative vertical displacement history of points M1 and M2 

located at a distance of mm100  from the impact side of the Homalite plate. 
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Figure 1 A homogeneous system, consisting of two identical incoherent Homalite plates, is 
subjected to uniform compressive stress and to impact-generated shear loading. 
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Figure 2 (a) Dynamic photoelasticity setup. (b) Schematic illustration of the experimental 
configuration for the sliding velocity measurement. The area inside the dotted circle is 
shown magnified. Points M1 and M2 were at the same horizontal distance d  from the 
impact side of the Homalite plate. 
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Figure 3 (a) and (b) Isochromatic fringe patterns captured at sμ40  and sμ50  respectively 
after impact. The external uniform compression was MPa10  and the impact speed was 

sm24 . The rupture tip is at the fringe concentration point A. The dotted lines highlight 
the location of the Mach lines emanating from the rupture tip. (c) Horizontal velocity 
histories and relative horizontal velocity history of points M1 and M2 located mm70  from 
the impact side of the Homalite plate. The rupture commenced when the rupture tip A 
reached the velocity measurement position. (d) Detail of the diagram displayed in (c). 
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Figure 4 (a) Isochromatic fringe pattern generated during an experiment for which the 
impact speed was sm19  and the external compression was MPa10 . The rupture tip is at 
the fringe concentration point A. The inserts highlight the location of the Mach lines 
emanating from the rupture tip and the specimen configuration. (b) Relative velocity 
history of points M1 and M2 located at a distance of mm70  from the impact side of the 
Homalite plates. The rupture commenced when the rupture tip A reached the velocity 
measurement position. 
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Figure 5 (a) Isochromatic fringe pattern generated during an experiment for which the 
impact speed was sm17  and the external compression was MPa10 . The fringe 
concentration point A1 is the rupture tip of the “pulse-like” rupture mode, A2 is the rear 
edge of the first pulse and A3 is the rear edge of the second pulse. The “crack-like” mode 
initiated at A3 right after the second pulse. (b) Relative velocity history of points M1 and 
M2 located at a distance of mm70  from the impact side of the Homalite plates. The rupture 
commenced when the rupture tip A1 reached the velocity measurement position and two 
pulses A1A2 and A2A3 were formed. The “crack-like” rupture mode initiated at A3, right 
behind the second pulse. 
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Figure 6 (a) Isochromatic fringe pattern generated during an experiment for which the 
impact speed was sm15  and the external compression was MPa10 . The fringe 
concentration points A1 and A2 are the rupture tip and the rear edge respectively of the 
“pulse-like” rupture mode. The “crack-like” mode initiated at A2 right after the pulse. (b) 
Relative velocity history of points M1 and M2 located at a distance of mm30  from the 
impact side of the Homalite plates. The rupture commenced when the rupture tip A1 
reached the velocity measurement position and a pulse A1A2 was formed. The “crack-like” 
rupture mode initiated at A2 right behind the second pulse. 
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Figure 7 (a) Isochromatic fringe pattern generated during an experiment for which the 
impact speed was sm10  and the external compression was MPa10 . The fringe 
concentration points A1 and A2 are the rupture tip and the rear-edge respectively of the 
“pulse-like” rupture mode. (b) Relative velocity history of points M1 and M2 located at a 
distance of mm70  from the impact side of the Homalite plates. The rupture commenced 
when the rupture tip A1 reached the velocity measurement position and an isolated pulse 
A1A2 was formed. 
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Figure 8 (a) - (c) Horizontal in-plane velocity histories and horizontal in-plane relative 
velocity histories of points M1 and M2 located at a distance of mm70  from the impact side 
of the Homalite plate. The impact speeds are essentially the same, on the order of sm13  
for all three experiments, whereas the external compression decreases. 
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Figure 9 (a) Schematic illustration of the experimental configuration for the relative 
vertical velocity measurement. The area inside the dotted line is shown magnified.  Points 
M1 and M2 are at the same horizontal distance from the impact side of the Homalite plate. 
(b) Photography of the actual setup displaying the arrangement of the velocimeters’ heads. 

 



 

 

139

 

Figure 10 (a) Isochromatic fringe pattern generated during an experiment for which the 
impact speed was sm28  and the external compression was MPa10 . The rupture tip is at 
the fringe concentration point A and the wrinkle-like pulse is at point B. (b) Relative 
vertical displacement history of points M1 and M2, located at a distance of mm70  from the 
impact side of the Homalite plate. The rupture tip and the wrinkle-like disturbance crossed 
the velocity measurement position at approximately sμ10  and sμ32  after triggering, 
respectively. 
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Figure 11 (a) Isochromatic fringe pattern generated during an experiment for which 
the impact speed was sm18  and the external compression was MPa10 . The rupture tip is 
at the fringe concentration point A and the wrinkle-like pulse is at point B. (b) Relative 
vertical displacement history of points M1 and M2, located at a distance of mm70  from the 
impact side of the Homalite plate. The rupture tip and the wrinkle-like disturbance crossed 
the velocity measurement position at approximately sμ82  and sμ100  after impact, 
respectively. 

 



 

 

141

 

Figure 12 (a) Isochromatic fringe pattern generated during an experiment for which the 
impact speed was sm9  and the external compression was MPa10 . The rupture tip is at 
the fringe concentration point A. No wrinkle-like pulse is appeared. (b) Relative vertical 
displacement history of points M1 and M2 located at a distance of mm100  from the impact 
side of the Homalite plate. 



C h a p t e r  5  

FRICTIONAL SLIDING ALONG INCOHERENT INTERFACES OF 
HOMOGENEOUS SYSTEMS INDUCED BY HIGH-SPEED IMPACT SHEAR 

LOADING 

5.1  Introduction 

The combined use of classic dynamic photoelasticity with the newly developed technique 

of velocimetry allowed us to fully characterize the frictional sliding process. Various 

photoelastic fringe formations were related to physical events like supershear sliding, 

pulse-like sliding and wrinkle-like pulses. However, the maximum particle velocity which 

can be measured by the velocimeter is sm10 . In order to comply with the above limit, low 

impact speeds were used in chapter 4. Here, only dynamic photoelasticity in conjunction 

with high-speed photography is used as a diagnostic tool. Thus, a wide spectrum of impact 

speeds is employed for sliding initiation. Experimental results obtained at high impact 

speeds (on the order of sm80 ) are compared to results obtained at low impact speeds (on 

the order of sm10 ). 

Besides the impact speed, the static confining stress and the surface roughness are two 

parameters which also drastically affect the dynamic sliding. In this chapter, results from 

experiments performed at various static compressive stresses are presented. Three different 

types of contact surfaces with one order of magnitude difference in roughness between 

each other are also used. 

 

5.2  Material and Specimen Configuration 

The material and specimen configuration employed in this chapter are the same as those in 

chapter 4. The experimental results were recorded in a microsecond time scale and the 

initiation and evolution of sliding at high impact speeds were explored. The material used 

was Homalite-100 and dynamic photoelasticity was employed to extract stress field 
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information. The isochromatic fringe patterns formed in the Homalite plates were 

clearly visible at impact speeds higher than sm9 . The longitudinal, shear and Rayleigh 

wave speeds in Homalite are smCP 2583= , smCS 1249=  and smCR 1155=  

respectively. The above values were obtained by ultrasonic measurement, using pressure 

and shear transducers operating at MHz5 , which give the wave speeds in the 3-D bulk 

material.  In the performed experiments, however, the configuration was plane stress, since 

plate specimens mm2.76  high, mm7.139  long and mm525.9  thick were employed. The 

plane stress shear wave speeds are identical to the values obtained in the 3-D configuration. 

The same is true for the Rayleigh wave speed, since the contribution in the Rayleigh wave 

formation comes primarily from the shear wave. However, the plane stress longitudinal 

wave speed of Homalite-100 is smCP 2187=σ  and it is different from the corresponding 

3-D value. 

 

5.3  Experimental Procedure 

The experimental procedure was similar to that used by Rosakis, Samudrala and Coker 

1999 and by Samudrala and Rosakis 2003 in the investigation of shear crack propagation. 

The plate specimens were held together by a uniform compressive stress applied by a 

calibrated hydraulic press (see Figure 1). The asymmetric impact loading was imposed via 

a cylindrical steel projectile of diameter mm25  and length mm51  fired using a gas gun 

with impact velocities ranging from sm9  to sm72 . A steel buffer mm73  high and 

mm4.25  long was attached to the specimen at the impact site to prevent shattering and to 

induce a more or less planar loading wave. 
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Figure 2 shows a typical experimental setup for dynamic photoelasticity experiments. The 

photoelastic optical setup was arranged for light field. The isochromatic fringes are 

contours of maximum in-plane shear stress maxτ  governed by the stress optical law 

 

hFN /2 21max σ=σ−σ=τ  

 

where σF  is the stress optical coefficient (for Homalite mKNF 6.22=σ ), h  is the 

specimen thickness, 21 ,σσ  are the principal stresses and 21+= nN  (with ...,2,1,0=n ) is 

the isochromatic fringe order. A continuous, circular polarized laser beam of mm130 in 

diameter was transmitted through the specimen and an analyzer. The resulting isochromatic 

fringe pattern was recorded by a high-speed digital camera (Cordin model 220), which is 

able to record 16 distinct frames at framing rates up to 100 million frames per second. In 

this experimental work, most of the high-speed photography was performed at 250,000 to 

1,000,000 frames per second. The field of view was wide enough to cover most of the 

specimen. 

 

Homalite plates of three different surface roughnesses were utilized. First, the Homalite 

plates were used as received from the machine shop without undergoing any specific 

treatment. The average roughness of the surfaces in contact was 

approximately nmRa 400= . The average roughness aR  is simply the average of the 

absolute values of the surface height variations iz  measured from the mean surface level. 

Expressed in equation form, this is ∑=
=

N

i
ia zNR

1
1 , where N  is the number of  equally-
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spaced measured points. The mean surface level is defined such that 0
1

=∑
=

N

i
iz . The 

measurements were performed by a mechanical stylus surface profiler Tencor Alphastep 

200. The polished surfaces were prepared as follows. A Buehler No 70 pad and Lapmaster 

abrasive 1900 were first employed for 10 minutes.  Then a Buehler No 40 pad with 

diamond compound 3 microns was used for 40 minutes and finally the surfaces were 

polished by a diamond compound of 41  micron for 10 minutes. The above treatment of 

the Homalite plate surface resulted to a mirror-like surface with an average roughness of 

nmRa 20= . In order to prepare the rough surfaces, we started from the polished surfaces 

and we roughened them by bead blasting with glass beads of  (C 40-60, CAS 65997-17-3) 

for 30 seconds. The above procedure resulted to an average surface roughness of 

mRa μ= 3.6 . The pictures in Figure 12 were taken by an SEM electronic microscope with 

magnification 1000 and show representative sections of the three different types of surfaces 

used in the experiments. It is clear that the morphologies of the three surfaces are very 

different. 

 

5.4  Photoelastic Stress Field during Dynamic Sliding of a Homalite Plate Subjected to 

a Constant External Compressive Stress and Different Impact Speeds.   

In this section the influence of the impact speed on the sliding process along incoherent 

interfaces is investigated. Results are described from a number of experiments, performed 

at the same external confining stress of MPa10  and at different impact speeds. The images 

in Figure 3(a) show the isochromatic fringe patterns at selected times for an impact speed 

of sm7.32 . The images at different times are similar, indicating that the sliding 

propagation had reached a more or less steady state. In Figure 3(b), our attention is focused 

on the image (iii) of the Figure 3(a). The loading wave front arrives from the left. The 

arrow A shows the position of the longitudinal wave front. A relatively broad fringe pattern 
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(shown just behind point A) having a rib-eye structure emanates from the interface. 

Since this structure was missing in similar experiments without external pressure (see 

section 5.5), we can safely conjecture that it was caused by the interference of the loading 

wave with the preexisting confining static pressure. In addition, it is noted that the eye-like 

fringe structure was not related to the sliding process, since it developed also in simple 

impact experiments where the specimens did not have any interface and consequently no 

sliding was allowed. 

 

The impact loading created a horizontal compressive stress 11σ  in the upper plate, close to 

the interface. This was the driving stress for the sliding. Because of the Poisson effect, the 

horizontal compressive stress induced a dynamic (inertial) vertical compressive stress, 

which depended on the impact speed. A very simple calculation, based on the theory of 1-D 

wave propagation in solids, gives that for impact speeds on the order of sm40 , the 

maximum dynamic compressive stress is expected to be on the order of MPa10 , which is 

comparable to the confining static stress we used. The dynamic compressive stress was 

added to the confining stress and the frictional sliding resistance 22στ f=  (where f  is the 

dynamic friction coefficient) increased. Consequently, there was a coupling between 11σ  

and the static friction. The compressive stress 11σ  generated the shear stress which 

produced sliding when it overcame the static friction, and at the same time it increased the 

static friction via the Poisson effect. 
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The sliding started at point B where the driving shear stress attained its maximum and 

became equal to the resisting friction. The sliding propagated intersonically behind the 

loading wave and a shear Mach cone emanating from the rupture point was formed by a 

sharp change in the fringe density. The insert of Figure 3(b) focuses on the region near the 

propagating tip and a dotted line is drawn along the Mach discontinuity. The position of the 

longitudinal wave front was measured in each one of the 16 available frames. As it is 

shown in Figure 4(a), the positions followed an almost linear pattern which means that the 

P-wave speed was constant and the longitudinal wave did not exhibit measurable amounts 

of dispersion within the window of observation of our experiments. A linear interpolation 

gave a plane stress longitudinal wave speed of sm2161 , which is very close to the value 

sm2187  obtained by an ultrasonic measurement as mentioned in the previous section. 

Using the ultrasonic measurement technique, the glassy properties of Homalite-100 are 

obtained. The fact that both methods gave essentially the same value for the longitudinal 

wave speed means that the strain rate during the impact experiment was high and the 

specimen did not exhibit any viscoelastic behavior. Independent measurements show that 

the strain rate was on the order of 11000 −s . 

 

The propagation speed of sliding was obtained in two different ways and found to be 

constant. First, we followed the positions of the sliding tip B (see Figure 4(a)) in different 

frames. The variation is very well approximated as linear and thus we can conclude that the 

sliding propagation speed was constant. A linear interpolation gave a sliding tip speed of 

SCsm 5.11868 ≅ . Then, by using the relation θ= sincv s , where v  is the speed of the 
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sliding tip and θ  is the Mach angle, the sliding tip speed at different frames was 

obtained (see Figure 4(b)). Again, a constant sliding tip speed within an experimental error 

is observed. The average value of the sliding tip speed is SCsm 54.11927 ≅  . Both 

methods are found to be in agreement to within %1.3 . The above result was obtained by 

using the shear wave speed of Homalite measured ultrasonically. Again, the fact that both 

methods give essentially the same result strengthens the conclusion, drawn from the P-

wave propagation speed measurement, that during impact experiments the Homalite 

specimens do not exhibit viscoelastic behavior. 

 

Some distance behind the sliding tip a fringe structure was formed (point C in Figure 3(b)). 

This structure was very robust and it was propagated with a speed of SCsm 03.11288 ≅ , 

which is close to the Rayleigh and shear wave speeds of Homalite-100. As we have shown 

in chapter 4, this fringe structure is related to a wrinkle-like pulse propagating along the 

interface. Other characteristic features in Figure 3(b) are: (i) a cusp in the stress contours at 

the interfaces, indicating that the propagation speed is slightly faster along the interface 

than in the bulk; (ii) the fringe density is higher in the plate where the impact loading was 

applied, showing that energy is not transferred easily across the interface and (iii) the fringe 

discontinuity at the interface shows that there is a relative sliding between the two faces 

behind the rupture point, reflecting the fact that rupture happened in a crack-like mode. 

 

Figure 3(c) displays the variation of the maximum shear stress maxτ  along a horizontal line 

drawn at a distance of cm3.0  from the interface of the specimen. Assuming that in the 
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undisturbed area of the isochromatic fringe pattern of Figure 3(b) the stress field was 

mainly MPa1022 −=σ , the expression hFN 2/221max σσστ =−=  results in the 

deviation of the maximum shear stress maxτ  from the static value of MPa5 . The above 

assumption regarding the static value of the stress 22σ  has been verified by a static finite 

element calculation. As the line crossed the eye-like fringe structure, maxτ  initially 

increased and then decreased to almost the initial value. At the rupture point A, a sharp 

change in the slope of the diagram of the maximum shear stress occurs. At the Mach line 

the increase of maxτ  becomes steeper. Along the wrinkle-like pulse, the slope of maxτ  

diagram decreases and becomes almost constant as the impact area is approached. Very 

close to the edge maxτ  increases, since the corner of the specimen is approached.  

 

Finally, an important comment on the frictional sliding experiment discussed above is that 

the sliding tip speed and the wrinkle-like pulse speed were constant during the entire 

observation time. That is a general result and it holds true for all the experiments 

performed. The sliding tip speed, the wrinkle-like pulse speed and the speeds of all the 

other disturbances or singularities, which are identified in the rest of the paper propagating 

along the interface, were always constant. This is a strong characteristic of frictional sliding 

and it agrees with theoretical results (Adams 1998; Rice, Lapusta and Ranjith 2001; Ranjith 

and Rice 2001) which predict constant discrete propagation speeds for all the different 

disturbances and singularities along the interface. 
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In Figure 5, isochromatic fringe patterns are shown at three different times for the same 

compressive load of MPa10  as in the previous experiment and at a higher impact speed of 

sm2.42 . The sliding propagated intersonically at approximately SCsm 56.11948 = . 

Although the general characteristics we encountered at the slower impact speed were still 

preserved, new features enriched the picture. Behind the loading wave a shear Mach cone 

was formed. In addition, a second Mach line which was non-parallel to the first one was 

observed behind the rupture point (Figure 5(a)). The Mach line was at a shallower slope 

corresponding to a supershear (approximately sonic) propagation speed of 

PS CCsm 97.001.22514 == . Non-parallel shock lines imply a highly transient and 

unstable contact process. Indeed, in Figure 5(b) the tip of the second Mach line approached 

the end of the first Mach line. Finally, these two points merged as the second point caught 

up with the first point (see Figure 5(c)). The sliding continued at the lower speed and thus 

only one Mach line is observed in the next recorded frames. More detailed views of the 

rupture process are shown in the inserts of Figures 5(a) and (b). The dual and single shock 

waves structures are highlighted by dotted lines. The existence of two Mach lines means 

that there was onset of sliding at two different points and thus we can conjecture that the 

initial sliding which started at point B1 stopped after a while and new sliding started at 

point B2. In this way, an unstable sliding pulse was formed between the points B1 and B2 

followed by a crack-like sliding which started at point B2. Behind the second Mach line, the 

wrinkle-like pulse appeared at point C. It propagated with a speed of SC92.0 , close to the 

Rayleigh wave speed of Homalite. Figure 5(c) shows the position histories of the first and 

second sliding tips and the wrinkle-like pulse for the case above. It is evident that the 



 151
second sliding tip moved faster than the first sliding tip and at approximately sμ50  the 

pair of points coalesced. 

 

Figure 6 shows an instantaneous isochromatic fringe pattern caused by an impact speed of 

sm60 , at a confining stress of MPa10 . Rupture tip B was traveling at a speed of SC64.1  

and a Mach cone was formed. The fringe structure related to a wrinkle-like pulse appears at 

C. Its propagation speed was SC01.1 . Unlike in the case of Figure 5, we were not able to 

capture any transition from double shock to single shock. A reason would be that the 

transition happened in the very first few microseconds, when the fringe density was too 

high and the Mach lines were not visible. It is noted that all the experiments performed at a 

confining stress of MPa10  and at very high impact speeds (higher than sm40 ) generated 

essentially similar stress distributions. As we have seen in chapter 4, however, the situation 

changes dramatically at low impact speeds. 

 

Figure 7 shows very vividly the change in the photoelastic images as the impact speed 

decreased. Figure 7(a) depicts the photoelastic field at sμ40  after impact. The impact 

speed was sm3.24 , while the static pressure was kept constant at MPa10 . The sliding tip 

traveled at a supershear speed of SCsm 45.11813 =  and a Mach cone emerged from it. 

The wrinkle-like pulse formed and propagated at SCsm 98.01228 ≅ . Lower impact speeds 

result in lower dynamic stresses and therefore a lower fringe pattern density is developed 

than arises at higher impact speeds. Up to this point, the presented isochromatic fringe 

patterns had a more or less similar structure. The photoelastic stress field developed in the 
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case of sm13  impact speed is different, however, as is clearly shown in Figure 7(b). 

Two fringe concentration points B1 and B2 are observed. The sliding started at point B1, the 

end of the eye-like fringe pattern. However at B2, there was another fringe concentration 

point which was a second sliding tip. Following B1 and B2 at different frames we found that 

they traveled at constant speeds of SCsm 14.11427 ≅  and SCsm 08.11347 =  

respectively. Based on similar results in chapter 4, where sliding velocity measurements 

were available, we conjecture that the section B1B2 was a self-sustained pulse which 

propagated at a supershear speed. At point B2 a crack-like sliding started, since an almost 

uniform fringe discontinuity along the interface was formed. The Mach cones are not so 

prominent because the fringe density is low, and the fringe discontinuity along the Mach 

lines was not well formed. However, the two Mach lines can definitely be traced if the 

kinks of the fringes in the upper plate were to be connected. 

 

In the last part of this section, the influence of the impact speed on the propagation speeds 

of the sliding tip and of the wrinkle-like pulse is explored. Figure 8(a) shows the variation 

of the sliding propagation speed with the impact speed at a constant uniform confining 

stress of MPa10 . The slowest impact speed we were able to achieve using the gas gun was 

sm9 . In this case and in other cases with impact speeds close to sm10  the sliding tip 

speed was sub-Rayleigh. At impact speeds higher than sm11  the sliding edge speed 

became supershear. We observed that for impact speeds in the range of sm20  to sm40 , 

the sliding speed was close to Sc2 . This is a special rupture speed and it has been shown 

that it separates regions of unstable and stable intersonic shear crack growth (Samudrala, 
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Huang and Rosakis, 2002a and 2002b). When the impact speed increased, the sliding 

tip speed increased toward the plane stress P-wave speed. It is worth mentioning that no 

sliding speed was observed in the interval between the Rayleigh wave speed and the shear 

wave speed of Homalite-100. This experimental observation agrees with theoretical works 

on steady-state shear crack propagation which exclude this speed interval based on 

energetic arguments (Freund, 1990; Broberg, 1999). We also note that the performed 

experimental sliding tip speed measurements feature high-enough resolution to obtain 

propagation speeds in the interval between RC  and SC , if such speeds existed. This is 

proven by the fact that almost all the recorded speeds of the wrinkle-like pulses were in this 

speed interval. 

 

The propagation speeds of wrinkle-like pulses at different impact speeds and at the same 

confining stress of MPa10  are shown in Figure 8(b). The sliding speed was, within an 

experimental error, always between the Rayleigh wave and the shear wave speed of 

Homalite-100. This result, in combination with the experimental results regarding the 

relative vertical displacement obtained in chapter 4, favors our conjecture that the interface 

disturbance was actually a wrinkle-like pulse. As has been already mentioned, the 

theoretical and numerical analysis on the subject predicts the same wave speed limits with 

those identified in Figure 8(b). 

 

We finally note that experiments performed at lower compression show that the speed of 

the wrinkle-like pulse is not affected by the change in the static confining stress. The 
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rupture speed, however, is affected and it was supershear even at the lowest achieved 

impact speed.  

 

5.5  Frictional Sliding Without Confining Pressure 

Experiments at different impact speeds and without external stress applied are presented in 

this section. Using the above configuration, we were able to observe only the effect of 

impact loading on the sliding process. Figure 9(a) shows an instantaneous photoelastic 

fringe pattern at sμ92  after impact. The projectile speed was sm13 . The fringes at the 

wave front are almost vertical to the interface, showing that a shear loading was almost 

obtained. At point C, a fringe structure characteristic of a wrinkle-like pulse is present. We 

also note that the eye-like fringe pattern was not formed. This proves that the eye-like 

fringe structure is indeed generated by the interaction between the loading wave and the 

static confining stress. Regarding sliding, we conjecture that it started almost immediately 

after the P-wave front. However, we cannot identify any sliding tip, since the fringe density 

is very small. 

 

Another characteristic of the fringe pattern is that the fringes on the left of the wrinkle-like 

pulse were slightly bent toward the interface. This is more pronounced in Figure 9(b) where 

the impact speed was sm24 . The fringes bent toward point B and a fringe concentration 

point was about to be formed. The wrinkle-like fringe structure was at C and traveled at 

SCsm 9.01126 ≅ .We also note that the first three fringes on the left of point B are slightly 

inclined but they do not clearly form a Mach cone. At higher impact speeds the fringe 

density was higher and the different features of the fringe pattern are visible. In Figure 9(c), 
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the isochromatic fringes are shown for an impact speed of sm40  and at sμ64  after 

impact. The wrinkle-like structure is better defined than in the case of sm24  impact 

speed. Point C traveled along the interface at a speed of SCsm 85.01065 ≅ . The fringes on 

the left of the wrinkle-like pulse were bent and a Mach zone was clearly emanating from 

the section B2B3.  This Mach zone has an internal structure and it shows that a disturbance 

on the interface traveled at a supershear speed of PS CCsm 82.07.12118 =≅ . Also the 

inclination of the fringes on the left of point B2 is visible and a zone B1B2 has been formed. 

From the inclination angle we computed the sliding zone speed as 

PS CCsm 71.046.11830 == . Based on the fringe pattern, we can argue that sliding 

started at point B1 and the whole zone B1B2 propagated along the interface. We also note 

that the stress field in the lower plate was very low in front of point B2. This means that the 

lower plate did not interact with the upper plate and the interface did not exhibit 

considerable friction, which would have created, by the principle of action reaction, a 

significant shear stress field in the lower plate. It is obvious, however, in Figure 9(c) that at 

point B2, the stress field in the upper plate was disturbed and a significant stress field 

developed in the lower plate. It is reasonable to argue that the horizontal compressive stress 

in the upper plate increased to the right of the P-wave front on the side of impact. Because 

of the Poisson effect, this caused an increase in the vertical dynamic (inertial) compressive 

stress. Higher vertical compressive stress resulted in higher friction, which created the field 

in the lower plate. According to the above argument, B2B3 was acting like a shear loading 

zone which was propagated along the interface with a supershear speed. A Mach zone 

emerging from the area B2B3 is clearly visible in Figure (9). B2B3 is similar to a cohesive 
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zone developing during shear crack propagation along glued (coherent) interfaces 

(Samudrala, Huang and Rosakis, 2002a and 2002b). 

 

Figure 9(d) shows the photoelastic fringe pattern at sμ74  after impact from a projectile at a 

high speed of sm4.72 . The wave front is at A, whereas the bent fringes form a very 

narrow cohesive-type zone (B2B3). A Mach cone clearly emanates from the zone B2B3 at 

the interface and shows that a disturbance traveled along the interface with a supershear 

speed. The speed has been measured by means of the Mach angle and by following the 

positions of B2 at different frames. The two measurements give SCsm 55.11943 ≅  and 

SCsm 47.11835 ≅ , which are very close (within a 5% experimental error). The narrow 

zone was detached from the wrinkle-like structure, appearing at point C of the interface 

(see Figure 9(d)). This separation verifies our conjecture that the creation of a cohesive type 

zone B2B3 is independent of the wrinkle-like pulse and it is instead related to the sliding 

procedure. Based again on the isochromatic fringe pattern we can argue that sliding started 

at point B1. 

 

It is clear from this investigation that the main features of the stress field (with the 

exception of the eye-like fringe pattern, which is associated to the loading wave) were 

governed by the impact speed. 
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5.6  Influence of External Pressure on the Sliding Process 

In order to investigate the influence of external pressure on sliding, three cases with very 

different external applied pressures and similar impact speeds (within the range of 

sm45 to sm51 ) are compared. In Figure 10(a) the initial pressure was MPa20  and the 

impact speed was sm5.45 . We observed a complex sliding procedure (similar to the case 

of Figure 5, discussed extensively in section 5.3). The sliding tip speed was 

SCsm 49.11859 ≅ . A second sliding edge, which existed in the previous frames, is not 

shown in this picture since it already merged with the sliding edge. Comparing Figure 10(a) 

with Figure 5(c), we first observe that the eye-like structure at the higher external stress had 

more fringes, and the compression zone AB was wider than in the case of MPa10  

confining pressure. The sliding occurred behind the sliding tip in the section BC, which 

was smaller than the corresponding segment BC in Figure 5(c). This means that the sliding 

area was larger in the case of lower external pressure for the same impact speed. At MPa5  

confining external pressure (see Figure 10(b)), the loading structure had fewer fringes and 

the loading wave zone AB was decreased. The fringe structure was simpler than the fringe 

structure at higher confining pressures and there was not a second sliding edge. The sliding 

tip speed was SC62.1 . 

 

At a very low external pressure of MPa5.1  (Figure 10(c)), the eye-like fringe structure was 

not formed. The photoelastic fringe pattern was similar to the fringe pattern developed in 

the case discussed extensively in section 5, where no external pressure was applied. From 

the discontinuity of the fringe pattern on the interface we can conclude that at MPa5  and 
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MPa5.1  external pressure there is an extended sliding area behind the rupture point 

(the whole section BC is a sliding zone) which shows that the rupture mode is crack-like. 

These sliding zones were larger than the corresponding zones developed in the cases with 

higher external compressive loads. We also mention that the wrinkle-like pulse was present 

in all cases since the impact speeds were high enough. Finally, it is noted that the sliding tip 

speed did not depend on the confining stress. 

 

The results derived by an intermediate impact speed on the order of sm20  were similar to 

the results of the high impact speeds discussed above. Because of this similarity, we will 

not present this case. Instead we will proceed with the case of the low impact speed of 

sm13 (see Figure 11). In this speed range, sliding exhibits some very interesting 

properties. 

 

At MPa10  external pressure (Figure 11(a)), two fringe concentration points B1 and B2 are 

observed. In this case a supershear sliding pulse was generated ahead of a crack. Another 

significant result is that the wrinkle-like pulse was not generated because the impact 

loading was too small and the wrinkle-like pulse could not overcome the confining 

pressure. In Figure 11(b), the confining pressure was MPa5  and the wrinkle-like pulse was 

formed; it is visible at point C. In this case the sliding tip B traveled at supershear speed of 

SCsm 5.11872 ≅  and the Mach cone is clearly visible. For an even smaller external 

pressure of MPa5.1 , the wrinkle-like pulse was more prominent, whereas the supershear 

sliding tip B speed was SCsm 32.11655 ≅  (see Figure 11(c)). 
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In this section, the influence of the external confining pressure on the sliding process was 

discussed. Many features the stress field developed during sliding were greatly affected by 

the static pressure (e.g., eye-like fringe structure, length of sliding section, sliding modes). 

We note, however, that the sliding tip speed was not dependent on the confining pressure 

but only on the projectile speed. Higher projectile speed resulted in higher sliding tip speed. 

The speed of the wrinkle-like pulse was not dependent on the confining pressure or on the 

projectile speed; it was always in the theoretically defined speed range ( )SR CC , . 

 

5.7  Effect of the Surface Roughness on Dynamic Sliding 

The surfaces of the Homalite plates employed in the experiments up to this point had not 

undergone any special treatment. The average roughness was approximately nmRa 400= . 

In this section, the effect of surface roughness on the sliding process and especially on the 

initiation of sliding is investigated. First, experimental results from dynamic sliding of 

polished surfaces are displayed and they are compared to corresponding results from the 

sliding of untreated surfaces. In the second part, the dynamic sliding of roughened surfaces 

is investigated. The average roughness of the polished surfaces was approximately 

nmRa 20= , one order of magnitude lower than the roughness of the untreated surfaces. 

The roughened surfaces featured an average roughness of approximately mRa μ3.6= , one 

order of magnitude higher than the roughness of the untreated surfaces. Samples of the 

three different surfaces magnified by an electronic microscope are displayed in Figure 12. 

From the pictures it is obvious that the morphologies of the surfaces are different. 
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5.7.1 Dynamic Sliding of Polished Surfaces 

Instantaneous isochromatic fringe patterns captured at specific times during experiments 

which involved Homalite plates with polished and untreated surfaces are shown in Figures 

13(a) and (b) respectively. The uniform confining stress ( MPa10 ) and the impact speed 

( sm19 ) were the same for both cases. The images feature similar structures. Sliding 

started at point B behind an eye-like fringe structure propagating from right to left. The 

rupture tips speeds were in both cases supershear and similar ( SC3.1  in the case of 

polished surfaces and SC36.1  in the case of untreated surfaces). The fringe structure 

related to wrinkle-like pulses also appears. Its propagation speed was approximately 

SC03.1  in the case of the polished surfaces and SC  in the case of the unpolished surfaces. 

Again the speeds were essentially the same within an experimental error. 

 

The general features of the two photoelastic pictures and the extracted propagation speeds 

of the rupture tips and the wrinkle-like pulses are very similar for both polished and 

unpolished contact surfaces. There is, however, a significant difference in the fringe 

patterns around the rupture tip, which means that the rupture initiation process was 

different in the two cases. In Figure 13(b), the rupture tip B is almost under the center of 

the eye-like fringe structure and the fringes are stretched around B. In Figure 13(a), the 

rupture tip B is further away from the center of the eye-like fringe structure and the fringes 

on the left of B are continuous from the upper plate to the lower plate. This means that the 

maximum value of dynamic friction was higher in the case of the polished surfaces than in 
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the case of the unpolished surfaces. Figure 14 presents photoelastic pictures captured in 

four experiments with polished surfaces performed at the same external pressure of  

MPa10  and at different impact speeds. Using our experience, acquired by velocimetry, we 

conjecture that the rupture tip in Figure 14(a) is at point B. The impact speed was low 

( sm2.6 ) and the sliding tip was traveling at a subshear speed of SC94.0 . As the impact 

speed increased at sm14 , the rupture became supershear with a propagation speed of 

SC3.1 . Two Mach lines emanate from rupture tip B, which is located far from the center of 

the eye-like fringe structure (Figure 14(b)). As the impact speed increased to sm21  

(Figure 14(c)) and to sm49  (Figure 14(d)), the sliding tip speed also increased to SC37.1  

and to SC56.1  respectively. By comparing those speeds to the corresponding sliding tip 

speeds developed in experiments with unpolished surfaces, it can be concluded that the 

surface roughness does not affect the resulting rupture tip speed. The same conclusion 

holds true also for the wrinkle-like pulse speeds. In addition, it is observed that the sliding 

tip distance from the center of the eye-like structure decreased as the impact speed 

increased. This means that the process of sliding initiation occurred more abruptly as the 

impact speed increased. 

 

5.7.2 Dynamic Sliding of Roughened Surfaces 

Figure 15 displays the photoelastic images captured during dynamic sliding of roughened 

surfaces. The compression was MPa10  and the impact speeds were sm22  and sm40 . 

In both cases the rupture was supershear. In the first experiments the speed of the rupture 

tip and of the wrinkle-like wave were approximately SC30.1  and SC9.0 . The rupture tip 
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speed in the second experiment was SC52.1  and the speed of the wrinkle-like pulse 

was approximately SC99.0 . The configurations of the isochromatic fringe patterns are very 

similar to the fringe patterns developed in previous experiments which involved untreated 

surfaces. We thus conclude that increase of roughness from nmRa 400=  to mRa μ3.6=  

does not greatly affect the sliding process at a compression of MPa10  and with impact 

speeds between sm22  and sm40 . 

 

5.8 Conclusions 

The evolution of dynamic frictional sliding along incoherent interfaces of two identical 

Homalite plates, held together by compressive stress and subjected to impact shear loading, 

was experimentally investigated. The case of freely standing plates with no external 

pressure was also studied. The stress fields developed during the events were recorded in a 

micro-second time scale by high-speed photography used in conjunction with classical 

dynamic photoelasticity. By modifying the experimental parameters of impact speed and 

superimposed quasi-static pressure the following significant effects were captured: 

• The interaction between the impact wave and the preexisting static stress field caused a 

relatively broad loading wave that emanated from the interface. 

• As the projectile speed decreased under a certain value, the sliding transitioned from 

pure crack-like to a slip pulse followed by a crack. 

• The observed propagation speeds of the sliding tips were not dependent on the 

confining pressure but only on the projectile speed. The speeds spanned almost the 

whole interval from sub-Rayleigh to nearly the P-wave speed of the material, with the 
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exception of a forbidden gap between the Rayleigh wave speed and the shear wave 

speed. 

• Sub-Rayleigh and intersonically propagating pulses were discovered and recorded.  

• Mach lines with different inclinations emanating from the sliding zone tips were 

observed. 

• Unlike classic shear cracks in coherent interfaces of finite strength, sliding areas in 

frictional interfaces seem to grow without noticeable acceleration phases and at various 

discrete speeds. 

• Behind the sliding tip, wrinkle-like pulses that traveled always (independently of the 

impact speed or the confining stress) at speeds between the Rayleigh wave speed and 

the shear wave speed of the material were identified. 

• There was a cusp in the stress contours at the interface, indicating that the propagation 

speed was slightly faster along the interface than in the bulk. 

• The surface roughness does not affect the propagation speeds of the rupture tip or the 

propagation speed of the wrinkle-like pulse. It affects, however, the rupture initiation 

process.   
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List of Figures 

 

Figure 1 Geometry and loading configuration for a specimen consisting of two identical 

incoherent Homalite plates. 

 

Figure 2 Experimental setup. A circular polarized laser beam passes through the 

specimen which is subjected to impact shear loading via a projectile fired by a 

gas gun. The resulting isochromatic fringe patterns are recorded by a high-speed 

digital camera. 

 

Figure 3 (a) Isochromatic fringes of intersonic sliding propagation at different time 

instances. (b) The P-wave front (A), the sliding tip (B) and the wrinkle-like 

pulse (C) are shown clearly in the magnification of the fringe pattern (iii). (c) 

Variation of maximum shear stress along a line at cm3.0  distance from the 

interface. 

 

Figure 4 (a) Positions of the longitudinal wave front, the sliding tip and the wrinkle-like 

pulse as a function of time. (b) Sliding tip speeds at different frames measured 

using the Mach angle. 

 

Figure 5 (a-c) Isochromatic fringes of sliding propagation at different time instances. 

Two sliding tips (B1 and B2) were propagating at different intersonic speeds. In 

the inserts the dual and single Mach lines are marked. (d) Positions of the 
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sliding leading edge, the second sliding tip and the wrinkle-like pulse as a 

function of time. 

 

Figure 6 Isochromatic fringes of sliding propagation. The arrows B and C indicate the 

positions of the rupture tip and of the wrinkle-like pulse respectively. The 

arrows B and C indicate the positions of the rupture tip and of the wrinkle-like 

pulse respectively. 

 

Figure 7 Representative isochromatic fringe patterns from four different experiments of 

sliding propagation initiated by different impact speeds. The specimens were 

subjected to the same confining stress. The arrows B and C indicate the 

positions of the rupture tip and of the wrinkle-like pulse respectively. The arrow 

B1 indicates the position of the sliding tip, whereas the arrow B2 shows the 

position of a fringe concentration point which corresponds to velocity 

discontinuity. 

 

Figure 8 (a) Variation of the sliding tip speed with the impact speed. The confining stress 

was MPa10 . (b) The wrinkle-like pulse speed remained between the Rayleigh 

wave speed and the shear wave speed of Homalite-100, independent of the 

impact speed. 

 

Figure 9 Representative isochromatic fringe patterns from four different experiments of 

sliding propagation initiated by different impact speeds. No confining stress was 
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applied. The arrows B and C indicate the positions of the rupture tip and of 

the wrinkle-like pulse respectively. The arrow B1 indicates the position of the 

sliding tip, whereas the arrows B2 and B3 show the position of fringe 

concentration points which correspond to velocity discontinuities. 

 

Figure 10 Representative isochromatic fringe patterns from three different experiments of 

sliding propagation initiated by similar high impact speeds; the specimen was 

subjected to different confining stresses. Arrows A, B and C show the positions 

of the P-wave front, of the sliding tip and of the wrinkle-like pulse respectively. 

 

Figure 11 Representative isochromatic fringe patterns from three different experiments of 

sliding propagation initiated by the same low impact speed; the specimen was 

subjected to different confining stresses. Arrows B and C show the positions of 

the sliding tip and of the wrinkle-like pulse respectively. Arrows B1 and B2 

indicate the position of the sliding tips. 

 

Figure 12 Picture showing sections of unpolished, polished and roughened Homalite 

surfaces taken via a SEM electronic microscope at a magnification 1000. The 

surfaces B and C have been carbon coated. 

 

Figure 13 Representative isochromatic fringe patterns developed in two different 

experiments of dynamic sliding, initiated by the same impact speed. In both 

cases the specimen were subjected to the same static uniform pressure. (a) The 
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surfaces in contact were polished. (b) The surfaces in contact were 

unpolished. Arrows B and C indicate the sliding tip and the wrinkle-like pulse 

respectively. 

 

Figure 14 Representative isochromatic fringe patterns developed in four different 

experiments of dynamic sliding, initiated by different impact speed. In all cases 

the specimen were subjected to the same uniform confining stress. The surfaces 

in contact were polished. 

 

Figure 15 Representative isochromatic fringe patterns developed in two different 

experiments of dynamic sliding, initiated by different impact speeds. In both 

cases the specimen were subjected to the same uniform confining stress. The 

surfaces in contact were roughened. 
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Figure 1 Geometry and loading configuration for a specimen consisting of two identical 
incoherent plates. 
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Figure 2 Experimental setup. A circular polarized laser beam passes through the specimen 
which is subjected to impact shear loading via a projectile fired by a gas gun. The resulting 
isochromatic fringe patterns are recorded by a high-speed digital camera. 
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Figure 3 (a) Isochromatic fringes of intersonic sliding propagation 
at different time instances. (b) The P-wave front (A), the sliding tip 
(B) and the wrinkle-like pulse (C) are shown clearly in the 
magnification of the fringe pattern (iii) (c) Variation of maximum 
shear stress along a line at cm3.0  distance from the interface. 
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Figure 4 (a) Positions of the longitudinal wave front, the sliding tip and the wrinkle-like 
pulse as a function of time. (b) Sliding tip speeds at different frames measured using the 
Mach angle. 
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Figure 5 (a-c) Isochromatic fringes of sliding propagation at different time 
instances. Two sliding tips (B1 and B2) were propagating at different intersonic 
speeds. In the inserts the dual and single Mach lines are marked. (d) Positions of 
the sliding leading edge, the second sliding tip and the wrinkle-like pulse (C) as a 
function of time. 
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Figure 6 Isochromatic fringes of sliding propagation. The arrows B and C indicate the 
positions of the rupture tip and of the wrinkle-like pulse respectively.  
 



 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Representative isochromatic fringe patterns from two different 
experiments of sliding propagation initiated by different impact speeds. 
The specimens were subjected to the same confining stress. The arrows B 
and C indicate the positions of the rupture tip and of the wrinkle-like pulse 
respectively. The arrow B1 indicates the position of the sliding tip, whereas 
the arrows B2 shows the position of a fringe concentration point which 
corresponds to velocity discontinuity. 
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Figure 8 (a) Variation of the sliding tip speed with the impact speed. The 
confining stress was MPa10 . (b) The wrinkle-like pulse speed remained 
between the Rayleigh wave speed and the shear wave speed of Homalite-100, 
independent of the impact speed. 
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Figure 9 Representative isochromatic fringe patterns from four 
different experiments of sliding propagation initiated by different 
impact speeds. No confining stress was applied. The arrows B and C 
indicate the positions of the rupture tip and of the wrinkle-like pulse 
respectively. The arrow B1 indicates the position of the sliding tip, 
whereas the arrows B2 and B3 show the position of fringe concentration 
points which correspond to velocity discontinuities. 
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Figure 10 Representative isochromatic fringe patterns from three different 
experiments of sliding propagation initiated by similar high impact speeds; 
the specimen was subjected to different confining stresses. Arrows A, B and 
C show the positions of the P-wave front, of the sliding tip and of the 
wrinkle-like pulse respectively. 
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Figure 11 Representative isochromatic fringe patterns from three 
different experiments of sliding propagation initiated by the same low 
impact speed; the specimen was subjected to different confining 
stresses. Arrows B and C show the positions of the sliding tip and of 
the wrinkle-like pulse respectively. Arrows B1 and B2 indicate the 
position of the sliding tips. 
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Figure 12 Picture showing sections of unpolished, polished and roughened Homalite surfaces 
taken via a SEM electronic microscope at a magnification 1000. The surfaces B and C have 
been carbon coated. 
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Figure 13 Representative isochromatic fringe patterns developed in two different 
experiments of dynamic sliding, initiated by the same impact speed. In both cases the 
specimen were subjected to the same static uniform pressure. (a) The surfaces in contact 
were polished. (b) The surfaces in contact were unpolished. Arrows B and C indicate the 
sliding tip and the wrinkle-like pulse respectively.
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Figure 14 Representative isochromatic fringe patterns developed in four different 
experiments of dynamic sliding, initiated by different impact speed. In all cases 
the specimen were subjected to the same uniform confining stress. The surfaces in 
contact were polished. 
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Figure 15 Representative isochromatic fringe patterns developed in two 
different experiments of dynamic sliding, initiated by different impact speeds. In 
both cases the specimen were subjected to the same uniform confining stress. 
The surfaces in contact were roughened. 



C h a p t e r  6  

EPILOGUE 

In this thesis work, dynamic sliding along incoherent (frictional) interfaces was 

investigated experimentally in a microsecond time scale. A bimaterial system comprised of 

Homalite and steel plates and a homogeneous system consisting of two Homalite plates 

were considered. The plates were held together by a uniform compressive stress while 

dynamic sliding was initiated by an impact-induced shear loading. The evolution of 

maximum shear stress contours was recorded by high-speed photography in conjunction 

with dynamic photoelasticity. Simultaneously with photoelasticity, a newly-developed, 

very accurate technique based on laser interferometry was employed to locally measure, at 

high temporal resolution, sliding speed at the interface. This technique is suitable for 

general use and it can be easily employed at different experimental configurations. The 

combination of velocimetry with the full field technique of photoelasticity is proven to be a 

very powerful tool in studying fast events in solid structures.  

 

The response of the Homalite-steel bimaterial system differed according to whether the 

impact loading was applied to the Homalite plate or to the steel plate. In the first case, the 

interaction between the traveling impact wave and the preexisting static field caused the 

generation of a relatively broad eye-like fringe formation emanating from the interface and 

propagating just behind the P-wave front. A disturbance, traveling at the interface at a 

constant speed (close to the Rayleigh wave speed of steel, which is higher than the shear 

wave speed of Homalite) generated a shear Mach line crossing the P-wave front and the 
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eye-like fringe structure. Velocimetry revealed that sliding initiated behind the eye-like 

fringe pattern. A second shear Mach line, originating from the sliding tip, appeared in the 

photoelastic images, indicating that the sliding was supershear with respect to the shear 

wave speed of Homalite. A disturbance, traveling at constant speeds between the shear 

wave speed and the longitudinal wave speed of Homalite, appeared behind the sliding tip. 

Self-sustaining wrinkle-like opening pulses, propagating along the bimaterial interface at a 

constant speed between the Rayleigh wave and the shear wave speed of Homalite, were 

also observed. When the impact load was applied to the steel plate, the data acquired by the 

velocimeter were the only useful source of information. Analysis of these data showed that 

sliding at a given point initiates with the arrival of the P-wave front there, so that the 

rupture was sonic with respect to the steel and supersonic with respect to the Homalite. 

 

A central issue in the modeling of frictional sliding is the duration of slip at a point on the 

interface compared to the duration of sliding. The most classic approach to sliding uses 

shear crack models (crack-like mode), where the slip duration at a point is a significant 

fraction of the overall sliding. According to the pulse-like model, the duration of slip at a 

point is considerably shorter than the duration of sliding. 

 

In all the experiments performed on the bimaterial structure (Homalite-steel), sliding 

always occurred in a crack-like mode. However, in the case of a homogeneous system of 

Homalite plates, direct physical evidence of different modes of sliding was recorded. 

Crack-like sliding, pulse-like sliding and mixed mode sliding in the form of pulses 

followed by a crack were discovered. The propagation speeds of the sliding tips were 
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dependent on the projectile speed. They spanned almost the whole interval from sub-

Rayleigh speeds to nearly the sonic speed of the material, with the exception of a forbidden 

gap between the Rayleigh wave speed and the shear wave speed. Supersonic trailing pulses 

were also recorded. Mach lines with different inclinations emanating from the sliding zone 

tips were discovered. Behind the sliding tip, wrinkle-like pulses were developed for a wide 

range of impact speeds and confining stresses. They always traveled at speeds between the 

Rayleigh wave speed and the shear wave speed of Homalite. 

 

Although the results of this work show in an unprecedented detail how dynamic frictional 

sliding occurs in bimaterials and in homogeneous systems with interfaces, they cannot be 

directly used to validate the various friction laws since there is no appropriate theoretical 

solution for the experimental configuration employed here. However, the presented 

experimental results can be indirectly used to validate the theoretical models of friction 

through numerical simulations. Finite element calculations can be performed to verify or 

discard various types of friction laws on the basis of agreement or essential disagreement 

between the numerical and the experimental results. Finite element calculations on 

dynamic frictional sliding between deformable bodies have always been a very challenging 

task for numerical analysts. A main source of difficulty, as was recently recognized (see 

chapter 1), was the ill-posedness of the corresponding boundary and initial value problem if 

the right friction law was not implemented. Coker et al. (2005) took advantage of the latest 

advances in frictional sliding theory and by using a rate-enhanced, rate and state friction 

law of Prakash-Clifton type, they were able to perform stable (grid-size independent) finite 

element calculations for a configuration very similar to the experiments described above. 
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Their attempt gave promising results. The use of a rate-enhanced Prakash-Clifton law was 

an essential element for the successful completion of the simulations because of the 

presence of fast changes in the local compression at the interface, caused by the wave 

propagation, during the dynamic sliding. The Prakash-Clifton law is currently considered 

the only friction law which correctly describes the effect of fast changes in the compression 

on the frictional resistance. We note that for various impact speeds the numerical 

simulations exhibit a richer behavior than the experimental results, and generate not only 

crack-like, pulse-like and mixed mode ruptures but also trains of pulses and pulses 

following a crack-like rupture. This indicates that the simulated dynamic frictional sliding 

is very sensitive to various parameters introduced by the friction law. We believe that the 

similarity between the numerical and the experimental results can perhaps be improved by 

fine tuning the parameters of the friction law and by perhaps using a more advanced model 

than elasticity for the description of the response of the bulk to impact loading and to 

dynamic sliding. 

 

My work in the near future will aim to identify the friction law which is valid during 

dynamic sliding. Finite simulations can be used to distinguish between the various friction 

laws and to perhaps discard some categories of friction laws which profoundly disagree 

with the experimental results. We also plan to investigate other experimental configurations 

which are either closer to theoretically studied boundary value problems and/or are easier 

to simulate. In this way, the comparison between the theoretical and experimental results 

will give more reliable conclusions.  
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