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Abstract

Reliable predictive models for the response of structures are a necessity for many

branches of earthquake engineering, such as design, structural control, and structural

health monitoring. However, the process of choosing an appropriate class of models

to describe a system, known as model-class selection, and identifying the specific

predictive model based on available data, known as system identification, is difficult.

Variability in material properties, complex constitutive behavior, uncertainty in the

excitations caused by earthquakes, and limited constraining information (relatively

few channels of data, compared to the number of parameters needed for a useful

predictive model) make system identification an ill-conditioned problem. In addition,

model-class selection is not trivial, as it involves balancing predictive power with

simplicity.

These problems of system identification and model-class selection may be ad-

dressed using a Bayesian probabilistic framework that provides a rational, transpar-

ent method for combining prior knowledge of a system with measured data and for

choosing between competing model classes. The probabilistic framework also allows

for explicit quantification of the uncertainties associated with modeling a system.

The essential idea is to use probability logic and Bayes’ Theorem to give a measure

of plausibility for a model or class of models that is updated with available data.

Similar approaches have been used in the field of system identification, but many

currently used methods for Bayesian updating focus on the model defined by the set

of most plausible parameter values. The challenge for these approaches (referred to as

asymptotic-approximation-based methods) is when one must deal with ill-conditioned

problems, where there may be many models with high plausibility, rather than a single
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dominant model. It is demonstrated here that ill-conditioned problems in system

identification and model-class selection can be effectively addressed using stochastic

simulation methods.

This work focuses on the application of stochastic simulation to updating and

comparing model classes in problems of: (1) development of empirical ground motion

attenuation relations, (2) structural model updating using incomplete modal data

for the purposes of structural health monitoring, and (3) identification of hysteretic

structural models, including degrading models, from seismic structural response.

The results for system identification and model-class selection in this work fall into

three categories. First, in cases where the existing asymptotic approximation-based

methods are appropriate (i.e., well-conditioned problems with one highest-plausibility

model), the results obtained using stochastic simulation show good agreement with

results from asymptotic-approximation-based methods. Second, for cases involving

ill-conditioned problems based on simulated data, stochastic simulation methods are

successfully applied to obtain results in a situation where the use of asymptotics is

not feasible (specfically, the identification of hysteretic models). Third, preliminary

studies using stochastic simulation to identify a deteriorating hysteretic model with

relatively sparse real data from a structure damaged in the 1994 Northridge earth-

quake show that the high-plausibility models demonstrate behavior consistent with

the observed damage, indicating that there is promise in applying these methods to

ill-conditioned problems in the real world.
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Chapter 1

Introduction

Characterizing and, perhaps more importantly, predicting the response of civil struc-

tures under extreme loading events such as earthquakes is a challenging problem. The

scale of structures such as buildings, bridges, and dams, and their interaction with the

surrounding earth, precludes the study of complete systems in a laboratory setting,

and it is difficult to produce the response amplitiudes caused by large seismic events

in field tests. Variability in the material properties, quality of construction, environ-

mental conditions, and complex constitutive behavior of structural materials make it

impossible, or at least infeasible, to construct reliable deterministic structural models

from first principles. One approach to this problem is to use the recorded seismic

response from an instrumented structure to extract the parameters of a numerical

model of the structure (Pilkey and Cohen, 1972; Hart and Yao, 1976; Beck, 1978,

1996), a process known as system identification. However, even with the extensive

instrumentation available in many seismically active regions, system identification

can be difficult to carry out, since it is often an ill-conditioned inverse problem. An-

other issue in system identification is the selection of the model class to be identified,

where identifying a more complicated model must be weighed against its usefulness

for making accurate predictions. There may also be considerable uncertainty in the

identified model parameters, due to the sources of variability mentioned earlier, mea-

surement error, and the inherent inability of a mathematical model to exactly capture

the behavior of a real structure.

The challenges associated with the problem of system identification in earthquake
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engineering may be addressed through the use of a Bayesian probabilistic framework,

in which probability is treated as a multi-valued logic that may be used to perform

plausible inference. A Bayesian approach is capable of performing identification of

ill-c onditioned systems as well as providing a basis for a rational quantitative com-

parison of model classes, while explicitly including the effects of the uncertainty in the

problem. However, many current techniques for implementation of this framework

cannot be effectively implemented for ill-conditioned systems with many parameters.

This dissertation presents the application of techniques known as stochastic sim-

ulation methods to system identification in civil engineering problems, in particular

to the updating of structural models using recorded seismic response, working within

a Bayesian probabilistic framework.

1.1 System Identification

Typically, the approach to system identification is viewed as the process of identify-

ing a model for a physical system using available data (Eykhoff, 1974; Goodwin and

Payne, 1977; Doebling et al., 1996; Ljung, 1999; Nelles, 2001). This work focuses on

parametric system identification, where a model within a chosen model class is defined

by assigning values to a set of model parameters. Identification is usually performed

by finding the “best” set of parameters for the given model class, according to a

chosen criterion such as least-squares error. If the resulting model is deemed to be

adequate for its intended application, predictions are made using this optimal model;

if not, the model class is revised, and the process is repeated. Successful implemen-

tation of this method often requires the user to make difficult judgements without a

clearly defined basis for making comparisons and assessing performance. Nonetheless,

there is a high level of sophistication and effectiveness in current system-identification

methods. However, solutions are often somewhat ad hoc and require fine-tuning for

each problem. Users of system-identification methods must have considerable experi-

ence to avoid under- or over-fitting of the data, or to deal with ill-conditioned inverse

problems with multiple optimal (or near optimal) solutions. In short, there is no
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unifying framework to guide the user in selecting the model class, determining the

criteria used to compare models, etc.

An alternative approach, which has gained a substantial following in many re-

search disciplines in recent years, is to evaluate candidate models using the proba-

bility of the models given data from the system of interest. However, probability is

used not in the classical sense as the long-run frequency of some event, but rather as

a multi-valued logic that expresses the degree of plausibility of a given proposition,

such as the value of a model parameter being contained in a given range, or the failure

of a structure under earthquake loading during its expected lifetime.

The roots of the probability logic approach are in work performed by Reverend

Thomas Bayes and published posthumously (Bayes, 1763, 1958). He presented a

method for updating probability distributions for parameters based on available data

that would come to be known as Bayes’ Theorem, and it forms the foundation of a

framework for probabilistic inference. It was Pierre Simon Laplace (1781, 1812, 1951),

however, who showed the power of Bayes’ Theorem by applying it to problems using

real data and demonstrating the ability of probabilistic inference to separate “signal”

from “noise.” Other pioneers in Bayesian probabilistic inference and its applications

to real problems are Harold Jeffreys (1939) and Richard Cox (1961), who developed

formal axioms for probable inference. The culmination of this work is the theory of

probability as multi-valued logic as presented by Jaynes (1957, 2003).

The probability logic approach is applied to system-identification problems using

the probabilistic framework developed by Beck (1989, 1996) and Beck and Katafy-

giotis (1991, 1998). This framework has been successfully applied to a wide variety

of engineering systems, such as model updating for reliability (Beck and Au, 2002)

and structural health monitoring (Vanik et al., 2000; Yuen et al., 2004). This frame-

work has also been applied to more challenging problems such as updating non-linear

systems with uncertain input (Yuen and Beck, 2003b) and reliability-based control ro-

bust to probabilistic model uncertainty (May and Beck, 1998; Yuen and Beck, 2003a;

Scruggs et al., 2006).

When addressing the problem of system identification, the probability logic ap-
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proach does not necessarily demand starting from the ground up. It can be shown

that many effective methods in system identification can be equivalently expressed

in the context of probability logic. However, in the probability logic framework, any

assumptions and simplifications in a particular problem are explicitly stated as the

conditioning information in the probability statements, rather than being implicitly

incorporated into the identification method. It is therefore easier to understand the

various advantages and limitations associated with these assumptions. This method

also allows for the uncertainties associated with model parameters to be quantified,

which can be important in engineering applications.

1.2 Model-Class Selection

Once it has been decided how system identification will be performed on a model

class, the question still remains: What model class should be used? There may be

many potential model classes considered by the user for a given process. Model-

class selection is the process of choosing between competing model classes based on

available data. It can be viewed as a generalization of system identification to the

model-class level, as it is usually desired to find an “optimal” model class among the

pool of candidate model classes. The ability of a model class to fit the available data

is an important consideration. However, a more complicated model can typically fit

the data better than a less complicated one with fewer parameters. If the optimal

model class is chosen purely by minimization of the error between the data and

the corresponding predictions of the optimal model in each class, the optimal model

class will be biased in favor of more complicated models. This approach is therefore

likely to lead to over-fitting of the data. When an over-fitted model is used to make

predictions, it typically yields poor results because the model will be overly dependent

on the details of the data, giving predictions that reflect characteristics of the noise

in the data set as well as the behavior of the system of interest. This point was noted

for structural mechanics problems by Grigorou et al. (1979).

The need for considering both the quality of the data fit and the model complexity
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when choosing between model classes was recognized earlier by Jeffreys (1939). This

work pointed out a need for a “simplicity postulate” that would give a quantitative

expression of the principle known as “Ockham’s razor”: simpler models that are

consistent with the data should be preferred over more complex models that offer

only slight improvements in the fit to the data. In a non-Bayesian context, Box

and Jenkins (1970) expressed the same idea in citing the importance of developing

parsimonious models for time-series forecasting.

Early efforts at quantifying this desire for parsimony used ad hoc penalty terms

against over-parameterization (Akaike, 1974). However, such methods require con-

siderable experience and fine-tuning to be effective in selecting model classes for use

in system identification. The probability logic approach can easily be extended to

model-class selection and has been shown to automatically enforce model parsimony

(Schwartz, 1978; Gull, 1989; Sivia, 1996; Beck and Yuen, 2004). The extension of

the probabilistic framework to model-class selection allows for consistent, rational

comparisons of competing model classes based on the available data and conditioning

information.

1.3 Stochastic Simulation Methods

While the power of the probability logic approach to system identification and model-

class selection has been well demonstrated, there are still computational issues to be

resolved in its implementation, particularly when dealing with ill-conditioned prob-

lems. Stochastic simulation methods are a class of techniques that have been applied

to perform Bayesian inference (Geman and Geman, 1984; Gelfand et al., 1990; Gilks

et al., 1996) and also directly applied to system identification under the Bayesian

framework (Beck and Au, 2002). The methods have more recently been applied to

successfully perform model-class selection (Ching et al., 2005; Ching and Chen, 2006;

Muto and Beck, 2006).
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1.4 Overview

This dissertation presents the application of stochastic simulation methods to prob-

lems in system identification and model-class selection in a variety of engineering

problems, including several that are considered to be extremely difficult to identify.

The problems presented here demonstrate the ability of stochastic simulation methods

to give insight into systems that are difficult to handle with other system-identification

techniques.

Chapter 2 details the Bayesian probabilistic framework that is used to perform

system identification and model-class selection. Chapter 3 discusses stochastic sim-

ulation methods, introduces the specific methods to be used, and shows how these

methods may be applied to implement system identification and model-class selection

under the Bayesian probabilistic framework.

Chapter 4 presents an application of stochastic simulation methods to ground

motion estimation using empirical attenuation relations. Chapter 5 presents a method

for using stochastic simulation methods to perform structural health monitoring by

updating linear structural models using incomplete modal data.

Finally, Chapter 6 deals with the identification of a class of simple yet power-

ful hysteretic models using recorded strong-motion data, a problem that has been

demonstrated to be ill conditioned. Stochastic simulation techniques are successfully

applied to identify simulated deteriorating and non-deteriorating Masing hysteretic

shear-building models, and to the identification of a seven-story reinforced-concrete

structure damaged during the 1994 Northridge, California, earthquake.
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Chapter 2

Bayesian Model Updating and
Model-Class Selection

Though the Bayesian updating approach for statistical models and model-class se-

lection (discussed in Chapter 1) is now common in all fields of science, there are

far fewer applications to system identification in engineering. Beck (1989, 1996) and

Beck and Katafygiotis (1991, 1998) presented a Bayesian statistical framework for

model updating and making robust predictions in the context of system identifica-

tion in engineering. This chapter will illustrate how this statistical framework can

be used to view system-identification problems as Bayesian updating by embedding

a system model in a predictive probability model. It will also show that this concept

can be generalized to apply to the problem of data-based selection between competing

model classes. Additionally, some of the advantages and challenges associated with

this probabilistic framework will be examined.

2.1 Model Updating

Consider the case where the output of a system, denoted x ∈ RN , is to be modeled by

a model classMthat has Np model parameters in the vector θ ∈ Θ ∈ RNp , and output

y(θ) ∈ RN . Now choose some reasonable probability model for the uncertain predic-

tion error ε(θ) = x − y(θ) associated with the model defined by θ. The probability

model for the prediction-error determines the predictive probability density function

(PDF) for the system output of a model defined by a given parameter vector θ. This
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PDF is denoted as p(x | θ,M), which is read as “the probability density function of

x, conditioned on the model parameter vector θ and the model class M.” In the case

where the prediction error is modeled as a zero-mean, stationary, Gaussian variables

with covariance matrix Σ, which is a model supported by the principle of maximum

differential entropy (Jaynes, 1957; Cover and Thomas, 1991), the predictive PDF is

given by

p(x | θ,M) =
1

(2π)N/2 | Σ |1/2
exp

[
−1

2
(x− y(θ))T Σ−1 (x− y(θ))

]
(2.1)

A Bayesian model class, denoted M, consists of a predictive PDF p(x | θ,M), such

as the one in Equation 2.1, and a prior PDF p(θ | M) over the model parameters θ.

The prior PDF is chosen to express the initial plausibility of the predictive PDF given

by the each of the possible values of θ in Θ. This interpretation of the prior PDF

is consistent with the core idea of probability logic: The probability of b, given c, is

a measure of the plausibility of statement b based on the conditioning information

given in statement c (Cox, 1961; Jaynes, 2003).

Now suppose a set of data D, consisting of a set of measurements x̂, is available.

The goal of Bayesian updating is to use D to update the probability distribution over

the parameters to give the posterior PDF p(θ | D,M) based on Bayes’ Theorem:

p(θ | D,M) ∝ p(D | θ,M)p(θ | M) (2.2)

The constant of proportionality is p(D | M), called the evidence for model class M,

and is given by

p(D | M) =

∫
p(D | θ,M) p(θ | M)dθ (2.3)

Consider the case where the prediction error of each component of x is Gaussian,

uncorrelated with the other components of x, and has a variance of σ2, that is,

Σ = σ2 IN×N . Also, every predictive PDF defined by a vector θ ∈ Θ is considered

equally plausible a priori (a uniform prior PDF on θ). In this case, Equations 2.1
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and 2.2 lead to

p(θ | D,M) ∝ 1

(2πσ2)
N
2

exp

[
−‖x̂− y(θ)‖2

2σ2

]
(2.4)

where ‖.‖ denotes the Euclidean norm. It becomes apparent that finding the most

probable model, i.e. the model maximizing the posterior PDF p(θ | D,M), is equiv-

alent to solving a least-squares problem. Thus, a commonly used optimization tech-

nique can easily be stated as a Bayesian model-updating problem.

Note that while the framework introduced in this section is for continuous-valued

variables, it can easily be applied to discrete-valued variables by replacing the proba-

bility density functions p(.) with discrete probabilities P (.) and replacing the integrals

with the appropriate summations.

2.1.1 System Identifiability

Beck and Katafygiotis (1998) provided rigorous definitions of system identifiability for

a model class based on the data, D. These definitions can be stated more informally

as follows:

1. A model class M is globally system identifiable if a unique parameter vector θ̂ ∈

Θ exists that defines the maximum likelihood model, i.e., the model maximizing

the likelihood function p(D | θ,M). A globally identifiable model class is shown

for a two-dimensional parameter space in Figure 2.1(a).

2. A model class M is locally system identifiable if there are a finite number of

parameter vectors in Θ that maximize the likelihood function, as shown in

Figure 2.1(b).

3. A model class M is system unidentifiable if there is a manifold (surface) of

parameter vectors in Θ that maximize the likelihood function, as shown with a

one-dimensional manifold in Figure 2.1(c).

In this work, these definitions are slightly modified. Systems are classified based on

the most probable model, i.e., the model maximizing the posterior PDF p(θ | D,M),
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θ θ(1)

θ
θ

(2)

(a) (b) (c)

Figure 2.1: Conceptual sketch of system identifiability: (a) globally identifiable, (b)
locally identifiable and, (c) unidentifiable systems

rather than the maximum likelihood model. Note that these two definitions are equiv-

alent under the condition that the prior distribution is uniform over the parameter

space. Also, for convenience, descriptions such as “globally system identifiable” will

be shortened to “globally identifiable”.

2.1.2 Robust Predictive PDFs

A common use of posterior probability distributions is to make inferences about future

events based on past observations. Define XM
1 as a set of M potential observations

of some quantity x, expressed as XM
1 = {x1, . . . , xM}. Now consider the case where

the first N observations of XM
1 are contained in the data set DN and we wish to

calculate a predictive PDF to make inferences about the remaining observations,

XM
N+1. However, instead of calculating the predictive PDF for a single model in M

that is defined by the vector θ, we wish to calculate a predictive PDF that is based

on the entire model class M. The desired PDF can be calculated as follows from the

theory of total probability:

p(XM
N+1 | DN ,M) =

∫
p(XM

N+1 | θ,DN ,M)p(θ | DN ,M)dθ (2.5)

Note that θ alone defines the predictive PDF p(XM
N+1 | θ,M) of M, so the condition-

ing on DN in the first factor of the integrand is irrelevant and can be dropped:

p(XM
N+1 | DN ,M) =

∫
p(XM

N+1 | θ,M)p(θ | DN ,M)dθ (2.6)
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Papadimitriou et al. (2001) called the PDF defined by Equation 2.6 the robust predic-

tive PDF for model classM. The predictive PDF is robust with respect to uncertainty

in θ, because this uncertainty is explictly included. If the model class M is globally

identifiable on DN , then the optimal parameter vector θ̂ may be used to obtain an

approximation of the robust predictive PDF (Beck and Katafygiotis, 1998):

p(XM
N+1 | DN ,M) ≈ p(XM

N+1 | θ̂,M) (2.7)

The approximation is based on Laplace’s method of asymptotic approximation and

it is accurate to O
(

1
N

)
, so the size of the data set N must be large for an acceptable

approximation, usually the order of 50 or more.

2.1.3 Incorporating Additional Data

It is often the case that relevant data for a particular model class becomes available

after an initial identification is performed. Consider the model class M with model

parameters θ, updated with two sets of data, D1 and D2. The posterior PDF is given

by

p(θ | D1,D2,M) =
p(D1,D2 | θ,M)p(θ | M)

p(D1,D2 | M)
(2.8)

Note that the likelihood function may be expressed as

p(D1,D2 | θ,M) = p(D2 | θ,D1,M) p(D1 | θ,M) (2.9)

As in Equation 2.6, since θ alone defines the predictive PDF p(x | θ,M) of M, the

conditioning on D1 is irrelevant, such that

p(D1,D2 | θ,M) = p(D2 | θ,M) p(D1 | θ,M) (2.10)
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Using this result with the definition of the evidence given by Equation 2.3, it can

further be shown that

p(D1,D2 | M) = p(D1 | M)

∫
p(D2 | θ,M)p(θ | D1,M)dθ (2.11)

The final result is that Equation 2.8 can be expressed as

p(θ | D1,D2,M) =
p(D2 | θ,M) p(D1 | θ,M) p(θ | M)

p(D1 | M)
∫
p(D2 | θ′,M)p(θ′ | D1,M)dθ′

(2.12)

=
p(D2 | θ,M) p(θ | D1,M)∫
p(D2 | θ′,M)p(θ′ | D1,M)dθ′

In other words, Equation 2.12 states that updating with the entire data set is equiv-

alent to updating with data D1 and using the resulting posterior PDF as the prior

PDF for updating with D2.

This result can also be important in efficient implementation of Bayesian model

updating, allowing for a reduction in the computational effort of the problem by

partitioning the data, as will be demonstrated later. However, this is only possible in

cases where the posterior PDF can be exactly represented.

2.2 Model-Class Selection

As discussed in Chapter 1, the concept of choosing a model class that satisfied some

criteria for “model parsimony” was understood in the early 20th century (Jeffreys,

1939). However, no quantitative expression for a principle of parsimony was avail-

able until the pioneering work by Akaike (1974). Akaike recognized that maximum

likelihood estimation (corresponding to pure data fitting) is insufficient for model or-

der selection in time-series forecasting using autoregressive moving average (ARMA)

models; he introduced the Akaike information criterion (AIC), which combines a mea-

sure of the data-fit, the log-likelihood of the optimal model in the model class, with

a term penalizing larger numbers of uncertain (adjustable) parameters.

However, the form of the penalty term was determined in a rather ad hoc man-
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ner, lacking a rigorous basis. Schwartz (1978) modified the penalty term based on

a rigorous asymptotic analysis of Bayesian updating at the model-class level. This,

and subsequent work (Gull, 1989; MacKay, 1992; Sivia, 1996; Beck and Yuen, 2004),

demonstrated that a Bayesian approach to the problem of model-class selection au-

tomatically enforces model parsimony without the need for ad hoc penalty terms.

The goal of Bayesian model-class selection is to identify the most probable model

class within a selected group of candidate model classes. It can be viewed as a

generalization of the identification of the most probable values of the parameters

within a model class, as discussed in Section 2.1.

Consider a pool of Nm candidate model classes, M. Each model class Mj, j =

1 . . . Nm contains Nj model parameters, denoted θj. The model classes are defined

not only by the form for the likelihood function p(D | θj,Mj), but also by the choice

of prior probability distribution taken over the model parameters, p(θj | Mj).

It is sometimes claimed by critics of Bayesian methods that Bayesian model-class

selection assumes that the “true” model is included in the pool of candidate models,

but no such assumption is actually made. Bayesian model-class selection is a frame-

work for making rational comparisons between the models under consideration in the

selected set of candidate model classes. It is the responsibility of the user to choose

candidate model classes for a given problem or process. Also note that Bayesian

model-class selection is not necessarily restricted to a discrete pool of candidate mod-

els; through the use of continous hyper-parameters it is possible for the problem to

be continuous. An excellent example of this in a currently active area of research is

the relevance vector machine (Tipping, 2000), which can be viewed as the application

of Bayesian model-class selection to the support vector machine classifier (Oh and

Beck, 2006).

From Bayes’ theorem, we see that the probability of a particular model class Mj

is given by

P (Mj | D,M) =
p(D | Mj,M)P (Mj | M)

p(D | M)
(2.13)

where p(D | Mj,M) is the evidence for each model class, P (Mj | M) is the prior
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probability of model class Mj and p(D | M) is the normalizing constant given by:

p(D | M) =
Nm∑
i=1

p(D | Mi,M)P (Mi | M) (2.14)

It is apparent that the evidence should be the dominant factor in model-class selection,

especially in the case where a non-informative prior is taken over the model classes

(i.e., P (Mj | M) = 1
Nm

). This evidence is the normalizing constant for the posterior

distribution of θj, as defined in Equation 2.3.

2.2.1 Information-Theoretic Approach to Model-Class Selec-

tion

Insight into how Bayesian model-class selection automatically enforces model parsi-

mony can be obtained from considering the problem from an information-theoretic

point of view, as noted in Beck and Yuen (2004) and subsequently extended by Ching

et al. (2005).

Consider the natural logarithm of the evidence, ln[p(D | Mj)]. Since the posterior

probability distribution over θj is by definition normalized to unity, we can make the

statement

ln[p(D | Mj)] = ln[p(D | Mj)]

∫
p(θj | D,Mj)dθj (2.15)

The evidence is independent of θj, so it can be brought inside the integral. Making

substitutions according to Bayes’ Theorem (Equation 2.2):

ln [p(D | Mj)] =

∫
ln

[
p(D | θj,Mj) p(θj | Mj)

p(θj | D,Mj)

]
p(θj | D,Mj)dθj (2.16)

=

∫
ln[p(D | θj,Mj)]p(θj | D,Mj)dθj

−
∫

ln

[
p(θj | D,Mj)]

p(θj | Mj)

]
p(θj | D,Mj)dθj

From this formulation, we see that the first term, which is the posterior mean of the

log-likelihood, can be considered as a measure of the average data fit, while the second
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term is the relative entropy between the prior and posterior distributions, introduced

in the seminal information theory work by Shannon (1948) and later identified by

Kullback and Leibler (1951) as a measure of the “distance” between probability dis-

tributions, which is why it is sometimes also termed the Kullback-Leibler divergence.

The relative entropy is a measure of the information gained about the parameters

θj from the data D. Therefore, the evidence is comprised of a data-fit term and a

term that provides a penalty against more complicated models, that is, those which

extract more information from the data.

2.2.2 Evaluating the Evidence

The previous sections have shown that the key step in Bayesian model-class selection

is the evaluation of the evidence for a given model class. It is possible to approximate

the integral in Equation 2.3 directly with Monte Carlo simulation:

∫
p(D | θj,Mj)p(θj | Mj)dθj ≈

1

N

N∑
k=1

p(D | θ̃k,Mj) (2.17)

where θ̃k, k = 1 . . . N , are samples of θ drawn from the prior distribution p(θ | Mj),

but it is generally computationally inefficient to do so. In most cases, the region in

the parameter space Θ with significant posterior probability content is very concen-

trated compared to the prior distribution on θ, which leads to a large variance in the

estimator given by Equation 2.17 and so a very large number of samples is needed to

adequately approximate the evidence.

In the cases where the model is globally identifiable and a large number N of

data points is available, an asymptotic approximation to this evidence is possible.

Beck and Yuen (2004) show that the application of Laplace’s method of asymptotic

expansion to the integrals in Equation 2.16 yields the following approximations, when
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N is large:

∫
ln[p(D | θj,Mj)]p(θj | D,Mj)dθj ≈ ln[p(D | θ̂j,Mj)] (2.18)∫

ln

[
p(θj | D,Mj)]

p(θj | Mj)

]
p(θj | D,Mj)dθj ≈ ln

[
(2π)

Nj
2

∣∣∣H(θ̂j)
∣∣∣−1
]

(2.19)

− ln[p(θ̂j | Mj)]

where θ̂j is the vector of the most probable values of θj and H(θ̂j) is the Hessian

matrix of − ln[p(D | θj,Mj)p(θ | M)] evaluated at θ̂j. The approximation used here

is similar to the one used to derive the approximation in Equation 2.7, which implies

that the posterior PDF on θ is well approximated by a Gaussian distribution:

p(θj | D,Mj) ≈
1

(2π)
Nj
2

∣∣∣H(θ̂j)
∣∣∣− 1

2

exp

[
−1

2
(θj − θ̂j)

TH(θ̂j)(θj − θ̂j)

]
(2.20)

for θj in a neighborhood of θ̂j of size O(N− 1
2 ).

The quantity in Equation 2.19, which is the asymptotic approximation of the rel-

ative entropy, was identified by Gull (1989) as the logarithm of the “Ockham factor,”

a penalty against parameterization, denoted here by Kj. Thus, the log evidence for

Mj is approximately given by

ln[p(D | Mj)] = ln[p(D | θ̂j,Mj)]−Kj (2.21)

Beck and Yuen (2004) demonstrated the effectiveness of this asymptotic approach for

globally identifiable model classes for dynamical systems.

2.2.3 Bayesian Model Averaging

So far, it has been assumed that the goal of model-class selection is to select a single

model class for use in calculating the robust predictive PDF for a system. This is not,

however, required. If desired, the robust predictive PDF can be expanded to include

every model class predictive PDF over the entire candidate model pool. For example,
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the predictive PDF for some output Y given the input X, and the previously available

data D over the pool of Nm candidate models M, is given by

p(Y | X,D,M) =
Nm∑
j=1

P (Mj | D,M)

∫
p(Y | X, θj,Mj) p(θj | D,Mj)dθj (2.22)

This is essentially weighting the predictive PDF for each model class Mj, j =

1, . . . , Nm, with the posterior model class probabilities, P (Mj | D,M). In prac-

tice, it is often the case that one model class dominates; however, Bayesian model

averaging may be useful in cases where there are multiple model classes with sig-

nificant probabilites and there are substantial differences in the predictions (such as

different predicted structural behavior at unobserved degrees of freedom).

2.2.4 Influence of Prior PDFs

Prior PDFs generally do not significantly influence the form of the posterior PDF if

there is a sufficient amount of data and the model class is globally identifiable, except,

of course, in cases where regions of high probability content are completely excluded

(i.e., the value of the prior PDF is zero for those regions). However, if we consider the

information extraction term in Equation 2.16, it becomes apparent that the chosen

prior PDF may have a significant influence on model-class selection results.

This situation does not seem unreasonable when the chosen prior PDF is devel-

oped from previous work, experience, etc. However, it is often the case that the

user will have no information about a particular parameter or set of parameters. In

this case, it is desirable to select a prior PDF that accurately expresses this state,

sometimes referred to as an “ignorance prior,” or more appropriately described as a

“non-informative” prior; that is, a prior distribution that does not bias the posterior

in any way.

Naively, it would seem that the best choice for a prior PDF would be a uniform

distribution over a very large interval, or some similarly broad distribution. However,

while such a choice of prior PDF may not bias the identification within a given model
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class, it may create a bias in the model-class selection process; when widely dispersed

priors are used, Bayesian model-class selection tends to favor simpler model classes,

regardless of the quality of the data fit.

This behavior can be explained using the information-theory interpretation of

model-class selection. When widely dispersed priors are used, the information-gain

term dominates. Equation 2.16 may be re-written as

ln [p(D | Mj)] =

∫
ln [p(D | θj,Mj)]p(θj | D,Mj)dθj (2.23)

−
∫

ln [p(θj | D,Mj)]p(θj | D,Mj)dθj

+

∫
ln [p(θj | Mj)]p(θj | D,Mj)dθj

Now consider a uniform prior expressed as p(θj | Mj) = V −1
j , where Vj represents

the volume in the parameter space Θj (assumed to be bounded). Substituting this

into the previous equation,

ln [p(D | Mj)] =

∫
ln [p(D | θj,Mj)]p(θj | D,Mj)dθj (2.24)

−
∫

ln [p(θj | D,Mj)]p(θj | D,Mj)dθj − lnVj

Note that for very widely dispersed priors, where Vj grows with the dimension of

the parameter space, the evidence will favor less complicated models (fewer unknown

parameters) regardless of the data. From an information-theory viewpoint, the issue

is that for widely dispersed priors PDFs, there is a huge gain of information (an

infinite amount of information gained for improper priors, where Vj is infinite), which

makes the contribution to the evidence of the average data-fit term negligible. Thus,

widely dispersed priors are not non-informative in the model-class selection sense, as

they create a bias toward simpler models. A well-chosen non-informative prior would

therefore be a prior PDF that does not bias the evidence.

Jeffreys (1932, 1939) proposed a non-informative prior PDF based on considera-

tions of invariance under re-parameterization (e.g., specifying the prior PDF for θ is
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equivalent to specifying the prior for θ2), which has the following form:

p(θ | M) =
| I(θ | M) | 12∫

Θ
| I(θ′ | M) | 12 dθ′

(2.25)

where I(θ | M) is the Fisher Information Matrix (Fisher, 1925), defined as:

[I(θ | M)]ij =

∫
p(x | θ,M)

∂2

∂θi∂θj

ln[−p(x | θ,M)]dx (2.26)

This is known as the Jeffreys prior. It is widely accepted as a reasonable non-

informative prior PDF in the single-parameter case; however, implementation in

multivariate problems is difficult and there is no clear consensus on an appropriate

choice in such cases (Bernardo and Smith, 2000). Jaynes (1968, 2003) presents ar-

guments for non-informative prior PDFs based on maximum entropy considerations,

but again there is no widespread agreement on what is still a very active research

topic in Bayesian probability theory (see Bernardo and Smith (2000) for a summary).

Consequently, non-informative prior PDFs are not used in this work. Prior PDFs

are assigned to parameters based on assumptions that are considered to reflect rea-

sonable engineering judgement. Since these assumptions are explicitly stated, they

can easily be examined, criticized, and, if necessary, revised.

2.2.5 Comparing Bayesian Model Selection to Other Model-

Class Selection Criteria

The approximation to the evidence given by Equation 2.21 can be used to make

comparisons between Bayesian model-class selection and other well-known model-

class selection criteria. If we assume a Gaussian prior distribution p(θ | M) =

N(µ0,Σ0) and a globally identifiable model class based on a large amount of data,

then the relative entropy approximation K is given by

K =
1

2

(
ln

[
det Σ0

det Σ

]
+ Tr[Σ−1

0 Σ− INp×Np ] + (µ− µ0)
T Σ−1

0 (µ− µ0)

)
(2.27)



20

where Σ = H(θ̂j)
−1 and µ = θ̂j. If it is further assumed that the user-selected

covariance matrix for the prior PDF, Σ0, is chosen to be diagonal and that (σ0
i )

2

and (σi)
2, i = 1, . . . , Np are used to denote the principal variances of Σ0 and Σ,

respectively, then

K =
1

2

Np∑
i=1

(
ln

[
(σ0

i )
2

(σi)2

]
+

(σi)
2

(σ0
i )

2
− 1 +

(µi − µ0
i )

2

(σ0
i )

2

)
(2.28)

The variance of the posterior PDF decreases as the amount of the data increases (i.e.,

there is less uncertainty in the estimate as more data is used for updating), such that

(σi)
2 = O(1/N) (Beck and Katafygiotis, 1998). Therefore, the principal variances of

the posterior PDF can be expressed as

(σi)
2 =

k2
i

N
(2.29)

Substituting this expression into Equation 2.27, we find that

K =
1

2

Np∑
i=1

(
ln

[
N

(σ0
i )

2

k2
i

]
+

1

N

k2
i

(σ0
i )

2
− 1 +

(µi − µ0
i )

2

(σ0
i )

2

)
(2.30)

=
1

2
Np lnN +

1

2

Np∑
i=1

(
2 ln

[
σ0

i

ki

]
− 1 +

(µi − µ0
i )

2

(σ0
i )

2

)
+

1

N

Np∑
i=1

k2
i

(σ0
i )

2

=
1

2
Np lnN +O(1)

As N → ∞, the O(1) terms may neglected, so that the approximation of the log-

evidence is

ln[p(D | Mj)] ≈ ln[p(D | θ̂j,Mj)]−
1

2
Np lnN (2.31)

which is the form of the Bayesian information criterion (BIC) developed by Schwartz

(1978). Thus, the BIC is an asymptotic estimator of the log-evidence.

Now compare the approximation to the log-evidence given in Equation 2.21 to

Akaike’s Information Criterion (AIC) (Akaike, 1974), which is given in a generalized
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form by

AIC(θ̂j,Mj) = ln[p(D | θ̂j,Mj)]− cNp (2.32)

we see from Equation 2.28 that to achieve a penalty term in AIC would require that

(σi)
2 ≈ (σ0

i )
2, in order to get K = cNp where c = O(1) with respect to the data

size N , but this contradicts the fact that the variance of the posterior PDF depends

on the amount of data used for updating. Therefore, the AIC is not consistent with

the log-evidence and, given that it implies behavior that is known to be inconsistent

with posterior PDFs for globally identifiable systems, is a poor choice for a selection

criteria.

Another model selection criterion is known as the minimum description length

(MDL) principle, developed by Rissanen (1978, 2005) in the field of information the-

ory. In this approach, a probability distribution is viewed as a coding for an object,

such that the “length” of the code is identified with the negative binary (base two)

logarithm of the probability of an object. The goal of the MDL approach is to find the

shortest code length that represents the available data. Rissanen (1978) showed that

as the number of data points N approaches infinity, the MDL principle gives identi-

cal results to the BIC. Grünwald (2005), gives an even more powerful result for an

implementation of the MDL principle known as the normalized maximum likelihood

(NML) criterion, showing that, when Bayesian model-class selection is performed us-

ing a Jeffreys prior (see Equations 2.25 and 2.26) over the model parameters, the two

methods are indistinguishable.

2.3 Example

To illustrate some of the concepts discussed in this chapter, a simple example is

presented. Consider a system where output x(t) = cos
(

π
2
t
)

on the interval t ∈ [0, 1].

The available data D is a set of N = 100 measurements of x at times t̂ drawn

from a uniform distribution between 0 and 1. Gaussian white noise with a standard

deviation of 0.1 is added to the observations to form the vector x̂, which is shown
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(b)(a)

Figure 2.2: Data for example problem plotted with (a) the output of the “true” system
and (b) the predicted output for the maximum likelihood model in each model class.

in Figure 2.2(a). The candidate model classes will be first-, second- and, third-order

polynomials denoted M1, M2, and M3, respectively. Note that the“true” model

class is not contained in the candidate model pool. The prediction-error variance for

each measurement is assumed to be uncorrelated with a common variance σ, so that

the likelihood function is of the form shown in Equation 2.4, where the model output

at time t is given by

y(t | θ) =

Np∑
i=1

θi−1t
i−1 (2.33)

where Np is the number of terms in the polynomial and the polynomial cofficients θi

are uncertain parameters to be updated, along with σ.

The prior PDF for each coefficient in each model class is taken to be a zero-mean

Gaussian with standard deviation σ0. The prior PDF for the prediction-error variance

is uniformly distributed between 0 and 1 for all model classes.

The optimal model in each model class is determined by numerical optimization of

the log of the product of the likelihood function and the prior PDF, p(D | θ,M)p(θ |

M), which is proportional to the posterior PDF. Standard deviations are estimated

by approximating the covariance matrix of the posterior PDF as the inverse of the

Hessian matrix of the negative log of the posterior PDF, as in Equation 2.20. Table 2.1

shows the identified optimal models in each model class as the standard deviation of

the prior PDF σ0 is increased, as well as the maximum likelihood estimate for each
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Model Class σ0 θ3 θ2 θ1 θ0 σ

M1 0.1 -0.6310 0.9174 0.1899
(0.0574) (0.0347) (0.0148)

1 -1.0896 1.1836 0.1292
(0.0441) (0.0259) (0.0091)

10 -1.0929 1.1855 0.1292
(0.0441) (0.0259) (0.0091)

100 -1.0929 1.1855 0.1292
(0.0441) (0.0259) (0.0091)

MLE -1.0929 1.1855 0.1292
M2 0.1 0.6747 -0.2848 0.9946 0.1105

(0.0657) (0.0678) (0.0221) (0.0081)
1 -1.1295 0.0719 0.9820 0.0990

(0.1346) (0.1426) (0.0317) (0.0070)
10 -1.1487 0.0911 0.9789 0.0990

(0.1372) (0.1454) (0.0317) (0.0070)
100 -1.1488 0.0913 0.9789 0.0990

(0.1372) (0.1454) (0.0317) (0.0070)
MLE -1.1488 0.0913 0.9789 0.0990

M3 0.1 -0.4209 -0.4097 -0.1878 0.9667 0.1040
(0.0723) (0.0802) (0.0688) (0.0219) (0.0075)

1 0.0332 -1.1795 0.0921 0.9802 0.0.990
(0.3761) (0.5826) (0.2700) (0.0373) (0.0070)

10 0.5754 -2.0388 0.4659 0.9433 0.0985
(0.5401) (0.8467) (0.3804) (0.0459) (0.0070)

100 0.5820 -2.0572 0.4740 0.9424 0.0985
(0.5431) (0.8515) (0.3824) (0.00461) (0.0070)

MLE 0.5871 -2.0574 0.4739 0.9424 0.0985

Table 2.1: Most probable parameter estimates for each model class. Standard devia-
tions are shown in parentheses. “MLE” indicates the Maximum Likelihood estimate
for the parameters (no influence of the prior PDF).

model class (denoted “MLE”), which is not influenced by the prior PDF.

The results show that the optimal model is only significantly influenced by the

choice of prior PDF when values of σ0 are small, which would tend to restrict the

parameter values to the neighborhood around the origin. The difference between the

most probable parameter estimates and the maximum likelihood estimates are small

for larger values of σ0, compared to the estimated standard deviations for the posterior

PDF. Figure 2.3(a) shows the prior PDF, and Figures 2.3(b)–(d) show the posterior

PDF for each model class when σ0 = 10, demonstrating that the more complicated

model classes have greater uncertainty associated with the parameter estimates, since
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(c)

(b)

(a)

(d)

Figure 2.3: (a) Prior PDF for all parameters and posterior PDFs for the polynomial
coefficients of model classes (b) M1, (c) M2, and (d) M3, for the case where the
standard deviation of the prior PDF for each parameter is σ0 = 10.

the same data is being used to identify more parameters. Also note that the constant

term θ0 is well defined for all model classes, which is to be expected since none of

the other terms contribute significantly to the response for small t, thus most of the

information in this region is used to pin down θ0.

Model class M3 has the best fit to the data (the most probable value for σ

corresponds to the root-mean-square value of the error between data and the predicted

model ouput), though it is only slightly better than M2. This is illustrated by

Figure 2.2(b), which shows the predicted output for the maximum likelihood model
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σ0 Model Class ln[p(D | θ̂j ,Mj)] Kj ln [p(D | Mj)] Probability
10 M1 62.78 15.87 46.91 0.0000

M2 89.34 20.95 68.39 0.9153
M2 89.92 23.91 66.01 0.0847

100 M1 62.78 20.46 42.32 0.0000
M2 89.34 27.85 61.49 0.9906
M2 89.92 33.08 56.83 0.0094

10000 M1 62.78 29.67 33.11 0.0000
M2 89.34 41.66 47.68 0.9999
M2 89.92 51.51 38.41 0.0001

1000000 M1 62.78 38.88 23.90 0.0000
M2 89.34 55.48 33.86 1.0000
M3 89.92 69.93 19.99 0.0000

Table 2.2: Model-class selection results for the example problem.

in each model class.

The evidence is estimated using the asymptotic approximation given by Equa-

tions 2.18, 2.19, and 2.21. Results are shown in Table 2.2 for several values of σ0. We

see that model class M2 dominates. Model class M3 has a small non-zero probabilty,

as it benefits somewhat from a better data-fit term. However, as σ0 (and therefore

the information gain) increases, the more complicated model becomes less probable.

Since the data-fit term is essentially constant, while the information gain term grows

with σ0, model class M1 will be preferred for a very widely dispersed prior PDF

(as discussed in Section 2.2.4). However, these results demonstrate that even an ex-

tremely large prior such as σ0 = 1 × 106 still results in a preference for model class

M2.

2.4 Conclusions

Bayesian inference provides a rational, transparent framework, consistent with the

axioms of probability, for combining data with prior knowledge to update models,

make predictions that are robust to uncertainty, and choose between competing model

classes. The inclusion of the prior PDF on the parameters in defining a model class,

rather than as a separate element of the identification process, is a new concept, and

important due to the effect that prior PDFs can have on model-class selection. An
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information-theoretic interpretation of model-class selection aids in understanding

this effect, and also explains the Lindley paradox in Bayesian model-class selection.

This interpretation will play an important role in understanding several of the results

for model-class selection presented in later chapters. A simple example problem is

presented to demonstrate these concepts.
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Chapter 3

Stochastic Simulation Methods

The Bayesian methods for model updating and model-class selection presented in

Chapter 2 are often difficult to implement for ill-conditioned problems, which often

arise in system identification. The asymptotic approach for updating and model-class

selection is most useful when there is a large amount of data and the model class is

globally identifiable, although it can be applied in locally identifiable cases and even

unidentifiable cases where the manifold of optimal models is of low dimension (Pa-

padimitriou et al., 2001; Katafygiotis and Lam, 2002). However, it requires a possibly

non-convex high-dimensional optimization to determine the optimal parameter vec-

tors, which can be computationally challenging. Additionally, the asymptotic approx-

imation for the evidence requires evaluating the Hessian matrix of the log-likelihood

function, which may be difficult to perform analytically and computationally expen-

sive to accurately approximate numerically.

Given these challenges, in recent years attention has been focused on stochastic

simulation methods, especially Markov Chain Monte Carlo methods, for Bayesian

updating, prediction, and model-class selection.

3.1 Overview of Stochastic Simulation Methods

The goal of stochastic simulation methods is to generate samples that are distributed

according to some target PDF. In the specific case of Bayesian model updating, the

target is the posterior PDF, p(θ | D,M).
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While a variety of simulation methods is available, many of the methods are

not useful for Bayesian updating. In this work, we focus specifically on Markov

Chain Monte Carlo (MCMC) methods. Neal (1993), Gilks et al. (1996), Robert and

Casella (1999), and MacKay (2003) provide more comprehensive overviews of this

topic. The samples generated by MCMC methods are from a Markov chain whose

stationary distribution is the target PDF. The great advantage of these methods is

that non-normalized PDFs can be sampled, so that the samples may be drawn from

the posterior PDF without evaluating the evidence.

Note that efficient sampling methods are available for most well-known proba-

bility distributions (the uniform distribution, the Gaussian distribution, the gamma

distribution, etc.) and are implemented in commonly used software packages, such

as MATLAB. Thus, when sampling from a distribution with a known form is called

for, in this chapter or the following chapters, it may be safely assumed to be easily

implemented.

3.1.1 Metropolis-Hastings Sampler

One of the best-known and most commonly implemented MCMC methods is the

Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970). The

algorithm is presented in detail in Appendix A.1.

Denote the ith sample generated by the Markov chain by θ̃i. To obtain θ̃i+1,

a proposal PDF q(θ∗ | θ̃i) is used to generate a candidate sample. The sample is

accepted with probability min(1, r) where the acceptance ratio r is given by

r =
p(θ∗ | D,M) q(θ̃i | θ∗)
p(θ̃i | D,M) q(θ∗ | θ̃i)

(3.1)

=
p(D | θ∗,M) p(θ∗ | M) q(θ̃i | θ∗)
p(D | θ̂i,M) p(θ̃i | M) q(θ∗ | θ̃i)

If the candidate sample is not accepted, then θ̃i+1 = θ̃i. This procedure is repeated

until the desired number of samples has been generated.

The effectiveness of the M-H algorithm is heavily dependent on the proposal PDF.
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If there is not good insight into a good choice for the proposal PDF, the algorithm

may perform poorly, particularly in higher dimensions.

3.1.2 Gibbs Sampler

Another commonly implemented method is the Gibbs sampler, which is actually a

special case of the M-H algorithm but without the need to choose a proposal PDF

(Geman and Geman, 1984; Gelfand et al., 1990). The algorithm is presented in

detail in Appendix A.2. A sequence of draws are made from a series of conditional

PDFs, one for each component (or group of components) of the parameter vector

θ. For example, if the vector of model parameters θ is divided into two sub-groups,

θ1 and θ2, an initial value θ̃
(0)
2 is selected for θ2, and the sample θ̃

(1)
1 is drawn from

the conditional distribution p(θ1 | θ̃(0)
2 ,D,M), which in turn is used to obtain θ̃

(1)
2 ,

which is sampled from p(θ2 | θ̃(1)
1 ,D,M). The procedure is repeated until the desired

number of samples is obtained.

It can be shown that the updating step is an M-H step that is always accepted

(that is, an acceptance probability of unity). In general, the rate of convergence may

be slower than for other types of updates, but in cases where the full posterior PDF

can be decomposed into conditional PDFs that are easily sampled, the algorithm can

be extremely efficient. Additionally, the effective dimension of the problem is reduced

to the number of sub-groups, allowing for the treatment of model classes with a large

number of uncertain parameters.

3.1.3 Transitional Markov Chain Monte Carlo

A remaining challenge associated with model updating by stochastic simulation is the

fact that, unless the data is sparse, the posterior PDF occupies a much smaller vol-

ume in the parameter space than the prior PDF over the parameters. Consequently,

for higher-dimensional parameter spaces, it may still be very difficult to draw sam-

ples that cover all the regions of high-probability content. For this reason, Beck and

Au (2002) proposed a method where the model is gradually updated by using the
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M-H algorithm to sample from a sequence of target PDFs, where each target PDF

is the posterior PDF based on an increasing fraction of the available data. In this

manner, the target PDF gradually converges from the broad prior PDF to the con-

centrated posterior PDF. The samples from each intermediate PDF are used to form

a kernel density function (Silverman, 1986), an estimator for a density function that

is composed of a weighted sum of Gaussian distribution centered at samples in the

parameter space from the previous PDF in the sequence. The kernel density function

is used as a global proposal PDF for applying the M-H algorithm to the next level of

sampling.

Ching and Chen (2006) modified this approach to develop what they call they

transitional Markov chain Monte Carlo (TMCMC) method. This technique also uses a

series of intermediate PDFs. However, rather than updating with part of the available

data, the entire data set is used but its full effect is diluted by taking the target PDF

for the mth level of the sampler to be proportional to p(D | θ,M)βmp(θ | M), where

0 ≤ βm ≤ 1; here, β0 = 0 gives the initial target distribution proportional to the

prior PDF and βM = 1 for the final level of the sampler gives a target distribution

proportional to the posterior PDF. Figure 3.1 shows how the histograms for a single

parameter converge during a run of the TMCMC algorithm for increasing values of

βm, which can be thought of as the percentage of the full effect of the data applied at

a given level of the sampler. Due to the conceptual similarities between this approach

and the simulated annealing approach (Neal, 1993; Fishman, 1996), βm will be referred

to as the tempering parameter. In TMCMC, re-sampling is used between levels to

improve the rate of convergence. The TMCMC algorithm is presented in detail in

Appendix A.3. Another difference between the TMCMC algorithm and the approach

of Beck and Au (2002) is in the application of the M-H algorithm. Rather than using

a global proposal PDF based on a kernel density constructed from the samples from

the previous level, a local proposal PDF is used in what is essentially a random walk

from the previous samples in the parameter space.
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(0% Data)
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(1% Data)
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Figure 3.1: Convergence of the TMCMC algorithm for a single parameter

3.1.4 Determining Chain Length

The starting points for Markov chains used for Bayesian model updating are typically

drawn from the prior PDFs, and therefore it is very likely that these starting points

will be in a low-probability region of the posterior PDF. This region would then be

disproportionately represented in the resulting set of samples unless the number of

generated samples is very large. It is a common practice among MCMC users to

discard some number of samples generated at the start of the simulation, referred

to as the burn-in period for a Markov chain. The user is, in effect, waiting until it

is believed that the samples are being drawn from the stationary distribution (the

target PDF) before “recording” the generated samples. There is no widely accepted

criterion for setting the length of burn-in periods. For the purposes of this work, the

Markov chains for a given problem are determined by visual inspection. Figure 3.2(a)

shows samples generated by stochastic simulation methods for a model parameter. It

should be apparent that the burn-in period is set such that the effects of the initial

conditions of the sampler have “died out”.

The other issue in determining chain length is determining how many samples

are necessary to accurately represent the qunatities of interest, such as the mean

and standard deviation of the target PDF. This issue is sometimes referred to as the

convergence of a Markov Chain. There have been some suggested diagnostic criteria

to determine whether a Markov chain has converged, such as the Gelman-Rubin

statistic (Gelman and Rubin, 1992), which compares the variance within parallel

Markov chains to the variance between the chains, but there is no generally accepted

standard. In this work, convergence is determined by inspection of quantities of
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(a) (b)

Figure 3.2: (a) Samples generated by stochastic simulation. The index n denotes the
step number of the Markov chain. The dashed line indicates the end of the burn-in
period at n = 30. (b) The evolution of the mean and standard deviation as more
samples are added. The solid line indicates the mean, and the dashed lines indicate
the mean plus and minus the standard deviation.

interest. For example, Figure 3.2(b) shows the evolution of the mean and standard

deviation estimated from the Markov chain in Figure 3.2(a) as more samples are

added. The samples shown appear to have converged to the mean and standard

deviation of the target PDF after approximately 400 samples.

3.2 Representing Posterior PDFs with Samples

Once a set of samples has been generated for a posterior PDF, can the vector of

most probable parameters (the vector θ̂ maximizing the posterior PDF) be estimated

from the samples? One simple approach might be to take the sample mean for each

parameter, or, if the distribution is non-symmetric, fitting a curve to a histogram

of the samples of each parameter. However, this method is not always satisfactory,

because the posterior PDF is a joint PDF over the parameters. That is, if the model

parameter vector θ for model class M consists of components θ1 and θ2, the posterior

PDF p(θ | DM) is the joint PDF p(θ1, θ2 | DM). However, if the samples are

projected onto a 1-D space (i.e., taking a histogram), the resulting density function

is the marginal PDF for the parameter in question, integrating out the effect of the

other parameters. In the two-parameter case, the marginal posterior PDF for θ1 is
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Figure 3.3: (a) samples generated for a system, and histograms of the samples for
(b) θ1, and (c) θ2, which approximate the marginal PDFs. The solid line represents
the parameter values maximizing the joint PDF, while the dashed lines represent
parameter values maximizing each of the marginal PDFs.

given by

p(θ1 | D,M) =

∫
p(θ1, θ2 | D,M)dθ2 (3.2)

If the joint posterior PDF is well approximated by a multi-dimensional Gaussian

distribution, or some other symmetric distribution, the vector of most probable pa-

rameters (maximizing the joint PDF) may be determined by identifying the most

probable values for each component separately (maximizing each of the marginal

PDFs). However, if this is not the case, the results can be misleading.

Figure 3.3(a) shows samples generated from a PDF where one of the parameters

is Gaussian-distributed while the other is lognormally distributed, with significant

correlation between the parameters. Figures 3.3(b) and (c) show the histograms of

the samples for θ1 and θ2, respectively. The parameter values maximizing each of the

marginal PDFs (by curve-fitting of the histograms) are indicated by the dashed lines.

However, these values differ from the set of parameter values maximizing the joint

PDF, indicated by the solid lines.
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In this case, determining the most probable parameters from samples would in-

volve fitting some type of multi-dimensional function to the samples. However, if

such a representation is accurate and easily obtainable, there would be little need to

apply stochastic simulation methods. More sophisticated methods for estimating the

posterior PDF from samples, such as the kernel density estimator (discussed briefly in

Section 3.1.3) are available, but may be difficult to implement in higher-dimensional

parameter spaces. In this work, it is judged that cases in which the posterior PDF

cannot be accurately and efficiently represented by a single vector of parameter values

are where identification with stochastic simulation is most useful. In this case, the

posterior PDF is best represented by the entire set of samples rather than by sum-

mary statistics. Therefore, whenever most probable parameter values are estimated

from samples in this work, it is done by maximizing the marginal PDF of each pa-

rameter. Though this will inevitably result in discrepancies, there is still some value

in comparisons to most probable parameter values obtained through optimization of

the joint posterior PDF for parameters that are globally identifiable.

3.3 Model-Class Selection Using Stochastic Simu-

lation

One of the great advantages of the simulation methods discussed in Section 3.1 is the

ability to sample posterior distributions without calculating the normalizing constant.

However, the model-class selection requires the calculation of this constant, which is

given by the evidence for the model class based on the available data.

The essential problem in evaluating the evidence using stochastic simulation meth-

ods is that simulation methods do not provide the form of the target PDF, but rather

samples drawn from the target distribution. However, Ching et al. (2005) introduced

the following method for estimating the evidence from stochastic simulation results.
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Equation 2.16 can be re-written as follows:

ln p(D | Mj) =

∫
ln [p(D | θj,Mj) p(θj | Mj)]p(θj | D,Mj)dθj (3.3)

−
∫

ln p(θj | D,Mj)p(θj | D,Mj)dθj

=

∫
ln p(D | θj,Mj) p(θj | Mj)p(θj | D,Mj)dθj +H[p(θj | D,Mj)]

The first term can be approximated using N samples drawn from the target distri-

bution, θ̃k
j , k = 1 . . . N :

∫
ln [p(D | θj,Mj) p(θj | Mj)]p(θj | D,Mj)dθj ≈

1

N

N∑
k=1

ln[p(D | θ̂k
j ,Mj) p(θ̃

k
j | Mj)]

(3.4)

The second term in Equation 3.3 is the Shannon information entropy (Shannon, 1948)

for the posterior distribution:

H[p(θj | D,Mj)] ≡ −
∫

ln p(θj | D,Mj)]p(θj | D,Mj)dθj (3.5)

There are several algorithms available for estimating the information enropy of a

distribution using samples, such as the nearest-neighbor approach (Kozachenko and

Leonenko, 1987). However, this approach, which has been shown to work with samples

generated using the GS algorithm (Ching et al., 2005), cannot be used with methods

that generate repeated samples, such as the M-H algorithm.

The algorithms for model updating presented in Section 3.1.3 can also be used to

estimate the evidence for a model class. In the TMCMC algorithm, when generating

samples for the mth target PDF, re-sampling is performed on the samples from the

(m − 1)th level, θ̃k
(m−1)

, k = 1, . . . , N . The re-sampling weight for each sample,

w
(
θ̃k

(m−1)
)
, is the ratio of the target PDFs for themth and (m−1)th levels, evaluated
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at θ̃k
(m−1)

:

w
(
θ̃k

(m−1)
)

=
p(D | θ̃k

(m−1)
,M)βmp(θ̃k

(m−1) | M)

p(D | θ̃k
(m−1)

,M)βm−1p(θ̃k
(m−1) | M)

(3.6)

= p(D | θ̃k
(m−1)

,M)βm−βm−1

If N is chosen to be sufficiently large, then the samples θ̃k
(m−1)

, k = 1, . . . , N , are

distributed according to the target PDF fm−1(θ
(m−1)) for the (m − 1)th level that

is given by normalizing p(D | θ(m−1),M)βm−1p(θ(m−1) | M). Therefore, the ex-

pectation of w(θ(m−1)) under this PDF is approximated by the sample mean Sm

of w
(
θ̃k

(m−1)
)
, k = 1, . . . , N :

Sm =
1

N

N∑
k=1

w
(
θ̃k

(m−1)
)

(3.7)

≈
∫

p(D | θ,M)βmp(θ | M)

p(D | θ,M)βm−1p(θ | M)
fm−1(θ)dθ

≈
∫
p(D | θ,M)βmp(θ | M)dθ∫
p(D | θ,M)βm−1p(θ | M)dθ

The products of these means of the re-sampling weights for all of the levels during

one run of the TMCMC algorithm therefore gives the approximation

M∏
m=1

Sm ≈
∫
p(D | θ,M)βMp(θ | M)dθ∫
p(D | θ,M)β0p(θ | M)dθ

(3.8)

=

∫
p(D | θ,M)p(θ | M)dθ∫

p(θ | M)dθ

=

∫
p(D | θ,M)p(θ | M)dθ

= p(D | M)

Therefore,
∏M

m=1 Sm is an estimator of the evidence, which is shown by Ching and

Chen (2006) to be asymptotically unbiased.
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3.4 Evaluating Robust Predictive PDFs Using Sim-

ulation

Equation 2.7 shows how a predictive PDF may be estimated for globally identifiable

model classes of a system—but for systems with significant uncertainty in the param-

eters, this uncertainty must be taken into consideration using a more sophisticated

approach. If the samples θ̃k, k = 1 . . . K, are simulated from the posterior distribution

of θ, then the predictive PDF may be approximated by

p(XM
N+1 | DN ,M) ≈ 1

K

K∑
k=1

p(XM
N+1 | θ̃k,M) (3.9)

3.4.1 Sensitivity of Predictive PDFs to Prior Distribution

The sensitivity of the posterior PDF and model-class selection results is demonstrated

in Sections 2.2.4 and 2.3. Interestingly, stochastic simulation methods can be used to

determine the sensitivity of the predictive PDFs to the choice of prior PDF (Beck,

2005).

Consider a set of model classes M, consisting of Nm candidate models Mj, j =

1 . . . Nm, plus a reference model class M0. Now assume that each model class differs

only in the choice of the prior PDF over the vector of model parameters θ. The prior

PDF for each model class is given by p(θ | Mj) = πj(θ), with the reference model

class having a prior distribution p(θ | M0) = π0(θ).

The models are defined over a set of predictive PDFs p(XM
1 | θ), where XM

1 =

{x1, . . . , xM}. Let the data set DN = X̂N
1 consist of the first N measured vectors,

then the posterior PDF on θ for the reference model class is given by

p(θ | DN ,M0) =
p(DN | θ)π0(θ)

p(DN | M0)
(3.10)

and the predictive PDF for XM
N+1 is given by

p(XM
N+1 | DN ,M0) =

∫
p(XM

N+1 | DN , θ)p(θ | DN ,M0)dθ (3.11)
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where the likelihood of the data is given by

p(XM
N+1 | DN , θ) =

p(X̂N
1 , X

M
N+1 | θ)

p(X̂N
1 | θ)

(3.12)

Note that the predictive PDF for each candidate model class Mj can be expressed

in terms of the reference model class as follows:

p(XM
N+1 | DN ,Mj) =

p(DN | M0)

p(DN | Mj)

∫
p(XM

N+1 | DN , θ)p(θ | DN ,M0)
πj(θ)

π0(θ)
dθ (3.13)

Now suppose that K samples are drawn from the posterior PDF of the reference

model class p(θ | DN ,M0), denoted θ̂k, k = 1 . . . K, then the approximation for

Equation 3.13 can be made:

p(XM
N+1 | DN ,Mj) ≈

p(DN | M0)

p(DN | Mj)

1

N

K∑
k=1

πj(θ̂k)

π0(θ̂k)
p(XM

N+1 | DN , θ̂k) (3.14)

Similarly, the evidence for each model class in terms of the evidence of the reference

model class can be approximated using the samples θ̂k:

p(DN | Mj) =

∫
p(DN | θj)πj(θ)dθ (3.15)

= p(DN | M0)

∫
p(θ | DN ,M0)

πj(θ)

π0(θ)
dθ

≈ p(DN | M0)
1

N

K∑
k=1

πj(θ̂k)

π0(θ̂k)

Substituting this result into Equation 3.14,

p(XM
N+1 | DN ,Mj) ≈

K∑
k=1

wkp(X
M
N+1 | DN , θ̂k) (3.16)

wk ≡ πj(θ̂k)

π0(θ̂k)

/
K∑

i=1

πj(θ̂i)

π0(θ̂i)

Since the likelihood function is independent of the choice of prior, variations in πj(θ)

only affect the weighting coefficients wk, so the sensitivity of the predictive PDF
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can be readily evaluated. It now also possible to compare the probabilities of the

candidate models relative to the reference model:

P (Mj | DN ,M)

P (M0 | DN ,M)
=
P (DN | Mj)

P (DN | M0)
≈ 1

N

K∑
k=1

πj(θ̂k)

π0(θ̂k)
(3.17)

where the prior probabilities of the model classes, P (Mj | M), are chosen to be equal.

3.5 Conclusions

Several stochastic simulation methods are presented for use in Bayesian model updat-

ing. Each has specific advantages and disadvantages that will be highlighted in their

application to various system-identification problems in the following chapters. Ad-

ditionally, the samples generated using stochastic simulation can be used to perform

Bayesian model-class selection and to approximate robust predictive PDFs, which

allow predictions that are made with an updated model to directly incorporate mod-

eling uncertainty.
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Chapter 4

Ground Motion Attenuation
Relations

A problem of much interest in earthquake engineering is the estimation of the ground

motion that will be experienced at a given site due to an earthquake. Solving the full

problem, which would involve the fault rupture process, propagation of the seismic

waves through the Earth with reflection and refraction between strata, and the effects

of the soil around the site, is far too complicated to perform on a routine basis,

though studies involving sophisticated and very large finite-element models are being

conducted (Aagaard, 1999; Krishnan et al., 2006). In practice, information recorded

in previous earthquakes is used to make inferences about the expected ground motion

at a site. This is done using regression equations, called ground motion attenuation

equations, which use information such as the earthquake magnitude, distance, and

site conditions to estimate an intensity measure for ground motion, such as the peak

ground acceleration (PGA), or the spectral response at a specified period.

These attenuation equations are used in probabilistic loss estimation and, more

recently, in efforts to develop seismic early warning methods (Cua, 2005; Grasso et al.,

2005). The uncertainty associated with the regression parameters may contribute

significantly to the overall uncertainty in the final decision variables generated by

these methods (Grasso and Allen, 2005). Stochastic simulation methods allow for

these uncertainties to be quantified. Additionally, Bayesian model-class selection can

be used to choose the most appropriate form of the regression equation.
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This problem is studied here to serve as a relatively simple example of the appli-

cations of Bayesian updating to system identification and model-class selection using

real data.

4.1 Boore-Joyner-Fumal Attenuation Model

One well-known attenuation equation was first introduced by Joyner and Boore

(1981), developed from strong-motion data recorded during the 1979 Imperial Valley,

California, earthquake. Various refinements and modifications have been made since

its introduction (Boore et al., 1993, 1997). This work will focus on the model pre-

sented in Boore et al. (1993). Sibilio et al. (2006) present an application of stochastic

simulation methods to more recently developed ground-motion attenuation models.

The model, which will be referred to as the Boore-Joyner-Fumal (BJF) equation for

PGA, is given by

log10(PGA) = b1 + b2(M − 6) + b3(M − 6)2 + b4R + b5 log10(R) (4.1)

+b6GB + b7GC + ε

R =
√
d2 + h2

where M is the event magnitude; d is the distance to the surface projection of the

causative fault; h is a fictitious depth parameter introduced to be representative of the

depths of regional events; GB, GC ∈ {0, 1} are binary soil classification parameters

and ε is the prediction error. M , d, GB, and GC are input parameters for the atten-

uation model that define the seismic event and site soil conditions. The remaining

parameters must be determined empirically from existing strong-motion data.

The regression analysis in Boore et al. (1993) was performed using Equation 4.1

and a database D of 271 strong-motion records from 20 earthquakes occurring in the

western United States that ranged in magnitude from 5.2 to 7.7 and were recorded

at distances ranging from 0 to 120 km.

The candidate model classes are defined by different combinations of the terms in
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Model Model Form for Mean log10(PGA)
M1 b1 + b2(M − 6) + b3(M − 6)2 + b4R + b5 log10(R) + b6GB + b7GC

M2 b2(M − 6) + b3(M − 6)2 + b4R + b5 log10(R) + b6GB + b7GC

M3 b1 + b2(M − 6) + b4R + b5 log10(R) + b6GB + b7GC

M4 b1 + b2(M − 6) + b3(M − 6)2 + b5 log10(R) + b6GB + b7GC

M5 b2(M − 6) + b4R + b5 log10(R) + b6GB + b7GC

M6 b2(M − 6) + b3(M − 6)2 + b5 log10(R) + b6GB + b7GC

M7 b1 + b2(M − 6) + b5 log10(R) + b6GB + b7GC

M8 b2(M − 6) + b5 log10(R) + b6GB + b7GC

M9 b1 + b2(M − 6) + b5 log10(R)

Table 4.1: Summary of model classes examined for the BJF attenuation relation.

Equation 4.1. Including every possible combination would result in a pool of 27 = 128

candidate model classes. To reduce this number, the pool is restricted so that all

model classes contain the linear magnitude term, the logarithmic R term, and the

local soil-site-condition terms, except for one model class that excludes the site soil

condition terms to study the effects of ignoring this information. The candidate model

classes, Mj, j = 1, . . . , 9 are summarized in Table 4.1. Model class M1 includes all

terms. Model classes M2 through M4 exclude one term, model classes M5 through

M7 exclude two, and M8 excludes all three. Model class M9 includes only the

constant term, the linear magnitude term, and the logarithmic R term.

The expressions in Table 4.1 establish the deterministic models for the system.

To create probability models, as discussed in Section 2.1, the model prediction error ε

is assumed to be zero-mean Gaussian white noise, implying stochastic independence

between predictions for different event magnitudes, distances, and site soil conditions.

The resulting likelihood function is of the form

p(D | M, θ) =
Ne∑
i=1

Nr,i∑
j=1

1√
2πσ

exp

(
1

2σ2
(log10[PGA(i, j)]− Y (i, j | θ))2

)
(4.2)

where Ne is the number of seismic events comprising the data D, Nr,i is the number

of records in the data for the ith event, PGA(i, j) is the recorded peak ground ac-

celeration for the jth record of the ith event, and Y (i, j | θ) is the PGA predicted

by Equation 4.1 for the same record, given the parameter vector θ, containing the
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regression coefficients b = [b1, b2, b3, b4, b5, b6, b7] and the fictitious depth parameter h.

The final component needed to completely define each Bayesian model class,

Mj, j = 1, . . . , 9 , is the prior PDF over the model parameters. The prior PDF

for each component of b included in a given model class is taken to be an independent

Gaussian distribution with zero mean and a standard deviation of σb = 10, which is

considered to be a fairly broad prior, as shown in Figure 4.1(a). The prior PDF for

h for all model classes is a lognormal distribution with logarithmic mean ln[10.43],

which is the log of the mean of the available estimates for the depths of the seismic

events comprising data set D, and a logarithmic standard deviation of 0.5, resulting

in the PDF shown in Figure 4.1(b). For the prediction-error variance σ2, an inverse

gamma distribution is used for all model classes:

p(σ2 | Mj) =
βα

Γ(α)(σ2)α+1
exp

[
− β

σ2

]
(4.3)

where the shape parameter α and the scaling parameter β are defined by the user

and Γ(α) is the gamma function evaluated at α. For convenience, the inverse gamma

distribution will be denoted IG(α, β). The inverse gamma distribution is a condition-

ally conjugate distribution, which is a property that will be shown in the next section

to be very useful in improving the efficiency of the Gibbs sampler. The parameters

chosen for the prior PDF are α = 3, chosen to produce what is considered a reason-

able shape for the prior PDF, and β = 0.1165, which is the variance of the measured

values for log10(PGA) in the data D and thus is believed to scale the distribution

appropriately for this problem. The resulting PDF is shown in Figure 4.1(c).

With the Bayesian model classes now defined, Bayesian updating is performed to

obtain the posterior PDF for the regression coefficients b = [b1, b2, b3, b4, b5, b6, b7], the

fictitious depth parameter h, and the prediction-error variance σ2.

4.1.1 Estimation and Selection with Gibbs Sampler

The application of Gibbs sampling is as follows. In the first stage, samples for the

fictitious depth h and prediction-error variance σ2 are drawn from the prior PDFs,
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(a) (b) (c)

Figure 4.1: Prior PDFs for the BJF model parameters, which include (a) the regres-
sion coefficients bi, (b) the fictitious depth parameter h, and (c) the prediction-error
variance σ2.

denoted h̃(0) and (σ̃(0))2, respectively. The goal for this stage is to draw a sample for b

from the conditional PDF p(b | h̃(0), (σ̃(0))2,D,M). The resulting likelihood function

for the conditional PDF is linear in b, and it can be shown fast sampling from this

PDF is possible. Consider a linear system

Ŷ = AX + E (4.4)

where Ŷ is a vector of observations and A is a fixed matrix. X is a vector of uncertain

variables, which has a Normal prior PDF, N(X0,Σ0). The prediction error E is zero-

mean and Gaussianly distributed with a covariance matrix Σ, that is E ∼ N(0,Σ).

Gelfand et al. (1990) showed that the mean and covariance matrix of the Gaussian

distribution of X conditioned on Ŷ are given by

E(X | Ŷ ) = X0 + Σ0A
T (AΣ0A

T + Σ)−1(Ŷ − AX0) (4.5)

Cov(X | Ŷ ) = Σ0 − Σ0A
TAT (AΣ0A

T + Σ)−1AΣ0

Sampling of p(X | Ŷ ) is then trivial to perform. Appendix B shows in detail how these

expressions are derived. Rather than considering the entire data set at one time, it is

computationally more efficient to sequentially update with the data recorded during

each of the Ne earthquakes comprising the data set, as outlined in Section 2.1.3

because it avoids inversion of large matrices in Equation 4.5. For updating with

the Nr,1 records from the first earthquake in the data set, the vector Ŷ = PGA1,
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the vector of measured PGAs for the first earthquake, while X equals the vector of

the components of b included the given model class, and X0 is the vector of mean

values for the prior PDF over those components of b, chosen to be a vector of zeros

in Section 4.1. The matrices A, Σ, and Σ0 depend on the selected model class. For

example, for model class M7 the matrix A is given by

A =
[

1Nr,1×1 (M1 − 6)1Nr,1×1 R∗1 GB,1 GC,1

]
(4.6)

R∗1 = [log10(R1,j), j = 1, . . . , Nr,1]
T

R1,j =
√
d2

1,j + (h̃(0))2

where 1Nr,1×1 is aNr,1×1 vector of ones, d1,j is the distance from the surface projection

of the causitive fault to the jth measurement location for the first earthquake in the

data set, and GB,1 and GC,1 are the vectors of site soil classification parameters for

the measurement sites. The matrices Σ and Σ0 for model class M7 are given by:

Σ = (σ̃(0))2INr,i×Nr,i
(4.7)

Σ0 = σ2
bI5×5 (4.8)

where σb is the standard deviation of the prior PDF for each component of b, chosen

to be 10 in Section 4.1. Using Equation 4.5, the mean and covariance matrix of this

conditional PDF are obtained, and denoted µ1 and Σ1, respectively. Updating with

the data from the second earthquake in the data set is performed in a similar manner;

however, in this case, the vector X0 = µ1 and the matrix Σ0 = Σ1. The process is

repeated until the final mean and covariance matrix, µNe and ΣNe , are obtained and

used to generate the sample b̃(1), from a Gaussian PDF, N(µNe ,ΣNe).

In the second stage, the values for b and h are fixed (at b̃(1) and h̃(0), respectively),

and the conditionally distributed sample for σ2 is drawn from p(σ2 | b̃(1), h̃(0),D,M).

Recall that the chosen prior PDF is an inverse gamma distribution, IG(α, β), which

is a conditionally conjugate prior. That is, the conditional PDF is of the same form

as the prior PDF. It can be shown that the conditional PDF is proportional to an



46

inverse gamma distribution:

p(σ2 | b̃(1), h̃(0),D,M) ∝ IG

α+
1

2

Ne∑
i=1

Nr,i, β +
Ne∑
i=1

Nr,i∑
j=1

δ2
i,j

 (4.9)

δi,j = PGA(i, j)− Y (i, j | b̃(1), h̃(0)

Sampling from this distribution to obtain (σ̃(1))2 is therefore a simple procedure.

Appendix B gives the proof for this result, which is only true when the errors are

uncorrelated, (i.e. the covariance matrix for the prediction errors is constrained to be

diagonal).

The final step, drawing a sample for h from the conditional posterior PDF p(h |

b̃(1), (σ̃(1))2,D,M) is more complicated, since h enters into the regression equation

as a non-linear term, preventing the direct calculation of the mean and covariance

matrix in Equation 4.5. Two approaches were used for drawing from this conditional

distribution.

For the first approach, the M-H algorithm was used to generate samples from

the conditional PDF. Since only one parameter is involved, the computational cost is

reasonable. After discarding a burn-in period of 10 samples, h(1) is drawn from the

remaining samples with each sample equally likely to be selected. It was found that

between 200–300 samples from the M-H algorithm are necessary for convergence to

the conditional PDF for h.

The second approach uses an analytical approximation of the conditional posteior

PDF for h. The logarithm of this conditional PDF is proportional to the function

f(h), defined as

f(h) = p(D | h, b̃(1), (σ̃(1))2,M) p(h | M) (4.10)

f(h) is numerically optimized to determine the most probable value ĥ. An analytical

expression for the curvature of f(h) is evaluated at ĥ and used to form a lognormal

approximation to the posterior PDF, similar in concept to the Gaussian approxi-

mation in Equation 2.20. This lognormal PDF is used to generate the sample h(1).

Sampling using this method is much faster than the embedded M-H method. While
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the conditional PDF should only be well approximated by the lognormal distribution

in the neighborhood of ĥ, in practice the results are very similar to those generated

using embedded M-H to sample the conditional PDF.

Samples generated using the Gibbs sampler (GS) approach for model classM1 are

shown in Figure 4.2. A burn-in period of 30 samples was selected based on observation

of the initial runs of the sampler. The evolution of the mean and standard deviation

as more samples are added is shown in Figure 4.3. Based on these results, a chain

length of 600 samples is selected.

Three parallel chains of 600 samples (with a 30 sample burn-in period) were sim-

ulated for each model class. The estimated most probable parameter values and

standard deviations of the marginal posterior PDFs for each parameter are shown in

Table 4.2 for samples generated with the GS algorithm using an embedded Metropolis-

Hasting sampler to sample the conditional PDF for h. The same quantities, estimated

for samples generated with the GS algorithm using the asymptotic approximation for

the conditional PDF of h are shown in Table 4.3.

The evidence for each model class was estimated using the post burn-in samples

outlined in Equations 3.3 through 3.5 in Section 3.3 and used to determine the proba-

bility of each model class. The results of model-class selection are shown in Tables 4.2

and 4.3. Clearly, model class M8 is the most probable one based on the data D, by

a wide margin.

Figure 4.4 shows normalized histograms of the samples generated for the regression

coefficients and fictitious depth parameter for model class M1 using GS with an

embedded M-H sampler. The prior PDFs for each parameter are plotted, along with

the optimal values (obtained by optimizing the posterior PDF). Note that there is

good agreement between the optimal values and the high-probability regions indicated

by the samples. Also, note that for the regression coefficients, the prior PDF is

barely visible, indicating that the posterior is far more peaked than the prior PDF.

This is true even though Table 4.2 indicates that M1 has larger uncertainties for

the parameter estimates (broader posterior PDFs for the parameters) than the other

model classes, which is expected since the same data is being used to identify a greater
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Figure 4.2: Samples of BJF regression coefficients for model class M1 generated with
the GS approach. The index n denotes the step number of the Markov chain. The
dashed line represents the end of the burn-in period at n = 30.

Figure 4.3: Mean and standard deviation of samples in Figure 4.2 plotted against
the number of samples included (excluding a 30 sample burn-in period). The solid
line is the sample mean, and the dashed lines represent the mean plus and minus one
standard deviation.
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Mdl. b1 b2 b3 b4 b5 b6 b7 h σ Prob
M1 0.192 0.275 -0.081 0.002 -0.992 0.169 0.241 7.90 0.193 0.0

(0.269) (0.032) (0.037) (0.002) (0.210) (0.036) (0.038) (2.16) (0.009)
M2 0.273 -0.080 0.001 -0.839 0.174 0.248 6.32 0.196 0.0

(0.032) (0.038) (0.001) (0.038) (0.035) (0.037) (1.00) (0.009)
M3 0.195 0.226 0.003 -1.025 0.174 0.263 7.92 0.197 0.0

(0.270) (0.022) (0.003) (0.212) (0.035) (0.036) (2.08) (0.009)
M4 -0.067 0.275 -0.075 -0.770 0.164 0.240 6.08 0.196 0.1

(0.100) (0.033) (0.038) (0.062) (0.035) (0.035) (1.51) (0.009)
M5 0.223 0.001 -0.865 0.179 0.269 6.44 0.197 0.4

(0.022) (0.001) (0.035) (0.033) (0.034) (0.96) (0.009)
M6 0.276 -0.072 -0.801 0.155 0.232 6.87 0.197 4.0

(0.032) (0.037) (0.026) (0.032) (0.034) (0.98) (0.009)
M7 -0.052 0.226 -0.809 0.172 0.263 6.38 0.197 2.0

(0.095) (0.022) (0.056) (0.035) (0.036) (1.31) (0.009)
M8 0.230 -0.834 0.164 0.256 6.78 0.197 93.4

(0.022) (0.020) (0.031) (0.032) (0.97) (0.008)
M9 0.253 0.226 -0.890 6.92 0.216 0.0

(0.114) (0.025) (0.072) (1.49) (0.009)

Table 4.2: Most probable values of the marginal posterior PDFs for each parameter
(with standard deviations in parentheses) and model-class selection results for ground
motion attenuation based on samples using the GS algorithm with an embedded M-H
sampler for the conditional PDF of h.

Mdl. b1 b2 b3 b4 b5 b6 b7 h σ Prob
M1 0.235 0.274 -0.082 0.003 -1.029 0.167 0.240 7.94 0.196 0.0

(0.280) (0.032) (0.037) (0.002) (0.218) (0.035) (0.036) (2.19) (0.009)
M2 0.272 -0.079 0.001 -0.835 0.172 0.248 6.41 0.197 0.0

(0.032) (0.037) (0.001) (0.038) (0.034) (0.036) (1.04) (0.009)
M3 0.289 0.223 0.003 -1.028 0.175 0.264 7.90 0.198 0.0

(0.275) (0.023) (0.002) (0.215) (0.035) (0.036) (2.18) (0.009)
M4 -0.036 0.274 -0.074 -0.782 0.163 0.240 6.23 0.197 0.1

(0.128) (0.033) (0.038) (0.073) (0.034) (0.037) (1.62) (0.009)
M5 0.223 0.001 -0.863 0.178 0.269 6.51 0.198 0.4

(0.023) (0.001) (0.036) (0.034) (0.035) (1.02) (0.009)
M6 0.276 -0.073 0.802 0.156 0.232 6.83 0.197 3.6

(0.032) (0.038) (0.026) (0.032) (0.035) (1.01) (0.009)
M7 -0.028 0.227 -0.819 0.170 0.260 6.40 0.198 1.7

(0.102) (0.023) (0.059) (0.034) (0.034) (1.45) (0.009)
M8 0.229 -0.834 0.165 0.255 6.88 0.198 94.2

(0.021) (0.020) (0.032) (0.033) (1.02) (0.009)
M9 0.289 0.228 -0.907 7.12 0.216 0.0

(0.107) (0.025) (0.067) (1.59) (0.009)

Table 4.3: Most probable values of the marginal posterior PDFs for each parameter
(with standard deviations in parentheses) and model-class selection results for ground
motion attenuation based on samples using the GS algorithm with an analytical
approximation for the conditional PDF of h.
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Figure 4.4: Normalized histograms for samples generated for the parameters of model
class M1 using the GS algorithm with an embedded M-H sampler for the conditional
PDF for h, plotted with the prior PDFs for each parameter and the optimal estimate
for the parameter.

number of parameters. However, the marginal posterior PDF for the fictitious depth

parameter h is still fairly broad after updating for all model classes.

4.1.2 Estimation and Selection with TMCMC

The TMCMC algorithm is also used to perform updating for the candidate model

classes. Five chains of 1500 samples were generated for each model class. Conver-

gence to the target PDF typically required between 20–30 levels, depending on the

complexity of the model. Table 4.4 gives the estimated most probable model parame-

ter values and standard deviations of the marginal PDFs for each parameter obtained

from the samples.
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Mdl. b1 b2 b3 b4 b5 b6 b7 h σ Prob.
M1 0.283 0.276 -0.083 0.003 -1.070 0.172 0.245 8.44 0.202 0.0

(0.296) (0.035) (0.042) (0.002) (0.229) (0.037) (0.039) (2.27) (0.009)
M2 0.269 -0.078 0.001 -0.838 0.174 0.248 6.26 0.200 0.0

(0.034) (0.039) (0.001) (0.040) (0.036) (0.038) (1.02) (0.009)
M3 0.307 0.226 0.003 -1.115 0.173 0.266 9.05 0.204 0.0

(0.333) (0.025) (0.002) (0.255) (0.037) (0.039) (2.39) (0.009)
M4 -0.075 0.272 -0.074 -0.763 0.161 0.240 5.95 0.202 0.0

(0.100) (0.034) (0.040) (0.062) (0.037) (0.037) (1.03) (0.009)
M5 0.221 0.001 -0.864 0.178 0.270 6.37 0.203 0.0

(0.024) (0.001) (0.038) (0.037) (0.037) (1.03) (0.009)
M6 0.275 -0.074 -0.800 0.155 0.229 6.77 0.200 1.4

(0.033) (0.038) (0.027) (0.033) (0.036) (1.04) (0.009)
M7 -0.051 0.228 -0.809 0.171 0.262 6.23 0.202 0.3

(0.107) (0.023) (0.062) (0.037) (0.038) (1.46) (0.009)
M8 0.230 -0.834 0.161 0.253 6.71 0.201 98.3

(0.023) (0.022) (0.034) (0.034) (1.01) (0.009)
M9 0.252 0.227 -0.889 6.78 0.221 0.0

(0.111) (0.025) (0.070) (1.61) (0.010)

Table 4.4: Most probable values of the marginal posterior PDFs for each parameter
(with standard deviations in parentheses) and model-class selection results for ground
motion attenuation based on samples using Transitional Markov Chain Monte Carlo.

For each run of the TMCMC sampler, the evidence for each model class is es-

timated as outlined in Equations 3.6 through 3.8. The mean values of the five

estimates of the evidence for each model class were used to calculate the model class

probabilities, which are also shown in Table 4.4.

4.1.3 Comparison of Simulation Methods

For purposes of comparison, the most probable values based on the posterior distri-

bution were estimated from direct numerical optimization of the log of the posterior

PDF. The Hessian matrix of the log of the posterior is analytically derived from Equa-

tion 4.2 and then evaluated using the most probable values of the parameters. The

standard deviations of the model parameters were then estimated from the covariance

matrix for the Gaussian approximation of the posterior PDF, which is given by the

negative inverse of the Hessian matrix, as in Equation 2.20. The results are listed

in Table 4.5. Estimates of the most probable values and standard deviations of each

parameter, as shown in Tables 4.2 through 4.4 for the different methods are fairly
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Mdl. b1 b2 b3 b4 b5 b6 b7 h σ Prob.
M1 0.182 0.273 -0.081 0.002 -0.986 0.170 0.242 7.57 0.193 0.0

(0.272) (0.032) (0.037) (0.002) (0.216) (0.034) (0.036) (2.28) (0.008)
M2 0.271 -0.079 -0.001 -0.841 0.173 0.247 6.31 0.193 0.0

(0.032) (0.037) (0.001) (0.037) (0.034) (0.036) (0.98) (0.008)
M3 0.157 0.223 0.002 -0.993 0.176 0.264 7.50 0.195 0.0

(0.274) (0.022) (0.002) (0.218) (0.034) (0.035) (2.27) (0.009)
M4 -0.075 0.273 -0.075 -0.760 0.165 0.241 6.02 0.194 0.0

(0.100) (0.032) (0.037) (0.062) (0.034) (0.036) (1.50) (0.008)
M5 0.222 0.001 -0.868 0.178 0.268 6.43 0.195 0.0

(0.022) (0.001) (0.035) (0.034) (0.034) (0.97) (0.009)
M6 0.277 -0.072 -0.802 0.155 0.230 6.81 0.194 2.8

(0.032) (0.037) (0.025) (0.031) (0.034) (1.02) (0.008)
M7 -0.063 0.226 -0.800 0.171 0.262 6.19 0.195 1.2

(0.103) (0.022) (0.060) (0.034) (0.035) (1.49) (0.009)
M8 0.230 -0.834 0.163 0.252 6.83 0.195 96.0

(0.021) (0.020) (0.031) (0.032) (0.99) (0.009)
M9 0.243 0.227 -0.881 6.77 0.214 0.0

(0.108) (0.024) (0.068) (1.63) (0.009)

Table 4.5: Most probable parameter values (with standard deviations in parentheses)
and model-class selection results for ground motion attenuation using asymptotic
approach.

consistent, especially since some errors are expected due to the differences that arise

from maximizing the joint posterior PDF for the “optimal” results and maximizing

the individual marginal posterior PDFs for the simulations results (see Section 3.2).

The agreement between the direct optimization and simulation methods can clearly

be seen in Figure 4.4, which shows the optimal parameter values for M1 plotted

against histograms (estimated marginal PDFs) for each parameter and in Figure 4.5,

which shows the optimal parameter values forM7 plotted with the samples generated

for M7 using the GS approach (with a Metropolis-Hastings update for h) projected

on a series of 2-D sub-spaces of the parameter space.

The results from model-class selection are similarly consistent, with the ordering

of the three most probable model classes the same for all methods. Though there

are some differences in the probabilities estimated for each model class, all methods

clearly indicate that the preferred model is M8 with a probability of over 90% based

on the data D. The omission of the quadratic term in magnitude and the linear

term in R is unsurprising, given that the associated regression coefficients are very

nearly zero when those terms are included, with very small uncertainties, indicating
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Figure 4.5: Samples of the BJF regression coefficents included in M7 projected onto
a series of 2-D sub-spaces of the parameter space. Color indicates the distance of
the sample from the mean. The results of the direct numerical optimization of the
posterior are plotted for comparison

that these terms have little effect on the data fit and extract a large amount of

information from the data. The constant term b1 is, in some models, large enough to

have a significant effect on the data. However, the uncertainty is quite large, and the

loss in accuracy can be compensated to some degree by other parameters. Figure 4.5

shows significant interaction of b1 with both the coefficient b5, which is associated

with the logarithmic R term, and the depth parameter h, and that fixing b1 at zero

still leaves the parameters in a high-probability region.

The model-class selection results also indicate the importance of the site soil con-

ditions. Though model class M9 has a smaller number of uncertain parameters than

the other model classes, the simplicity is outweighed by poorer data fitting ability.

4.1.4 Comparison of Model Class Predictions

It is also of interest to compare the differences between the predictions given by dif-

ferent model classes. Figure 4.7 shows the estimated posterior mean of the predicted
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Figure 4.6: Samples of the BJF regression coefficents included in M8 projected onto
a series of 2-D sub-spaces of the parameter space. Color indicates the distance of
the sample from the mean. The results of the direct numerical optimization of the
posterior are plotted for comparison

relationship between site distance and PGA for the three most probable model classes

(in order of probability, M8, M6, and M7) for soil sites (site classes B and C) for

events of magnitude 5.5, 6.5 and 7.5. Note that while model class M8, the most

probable model class, and model class M7, which has the same general form as the

model identified by Boore et al. (1993), give nearly identifical curves, model class

M6, which includes a quadratic magnitude term that is not included in the other

two model classes, gives a quite different response. Though model class M7 appears

to be relatively close to the most probable model class, the model-class selection re-

sults shown in Tables 4.2 through 4.5 show that model class M6 is at least twice as

probable as model class M7. The measured PGA data for soil sites is also shown in

Figure 4.7, showing there is considerable scatter in the data.

Figure 4.8 shows a similar comparison of the prediction for each model class for

the relationship between magnitude and PGA for soil sites at distances of 5 km, 20 km

and 50 km. Again model class M8 and M7 give very similar predictions, while model

class M6 differs significantly. The effect of the quadratic magnitude term (intended
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Figure 4.7: Predicted distance-PGA curves for the three most probable model classes
at magnitudes of 5.5, 6.5 and 7.5 for soil sites (site classes B and C), plotted with
PGA data for soil sites.
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Figure 4.8: Predicted magnitude-PGA curves for the three most probable model
classes at distances of 5, 20 and 50 km for soil sites (site classes B and C), plotted
with PGA data for soil sites.

to represent magnitude saturation) in M6 is immediately evident.

Figure 4.8 also illustrates an important issue in the use of predictive models; specif-

ically the reliability of predictions in cases where little or no data is available. The

similar values for prediction-error variance, shown in Tables 4.2 through 4.5, indicate

that there is little difference in the data-fitting ability of model classes M6, M7, and

M8. However, it is clear from Figure 4.8 that the model class predictions for earth-

quakes of magnitude greater than 7.5 will be substantially different for model class

M6. If data for larger magnitude events were used for model updating and model-

class selection, it would very probably alter the model-class probabilities significantly,

particularly given recent work which provides strong evidence that the relationship

between PGA and distance is magnitude-dependent (Cua, 2005).
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4.2 Conclusions

Bayesian updating was performed on the Boore-Joyner-Fumal attenuation relation

using two different stochastic simulation methods. It was shown that the Gibbs

sampler (GS) algorithm can perform efficient sampling of the conditional distribution

for linear models, which can result in computational savings even if the model ouput

is not linear in all components. This property makes the GS algorithm potentially

very useful in dealing with models with large numbers of parameters, as will be

demonstrated in the next chapter. The TMCMC was succesfully implemented to give

samples of the posterior PDF that are reasonably consistent with the results from the

GS algorithm and the most probable model estimated using numerical optimization

of the posterior PDF.

Model-class selection was performed, demonstrating how Bayesian model-class

selection balances fitting of the available data with the principle of parsimonious

modeling, as the results favored model classes that eliminated unimportant or redun-

dant terms. Estimates of the evidence for each model class obtained using samples

generated using the GS algorithm are consistent with estimates based on the asymp-

totic approximation of the evidence, a technique that has been demonstrated to be

effective for dynamical systems (Beck and Yuen, 2004). Estimates of the evidence

obtained using samples generated with TMCMC were qualitatively consistent with

the other methods, but discrepancies in the relative weighting of the models suggest

the need for further investigation into the evidence estimation aspect of the TMCMC

algorithm.
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Chapter 5

Structural Health Monitoring

In civil engineering, structural health monitoring (SHM) typically refers to techniques

for the non-destructive evaluation of the condition of civil structures (Natke and Yao,

1988; Doebling et al., 1996; Bernal et al., 2002). One particular approach involves

comparing the posterior PDFs of linear structural model parameters updated using

modal properties obtained from ambient vibration data before and after potentially

damaging events to compute probabilities of sub-structure damage (Vanik et al., 2000;

Yuen et al., 2004; Ching and Beck, 2004).

It will be shown in this chapter that stochastic simulation methods may be effi-

ciently applied to this problem to obtain probability distributions for damage based

on data from the undamaged and potentially damaged system, which can be com-

bined to obtain a probabilistic description of the location and severity of damage.

The simulation techniques used allow for updating of structural parameters associ-

ated with degrees of freedom that are not directly observed in the data and can handle

problems with large numbers of uncertain parameters. The work presented in this

chapter was performed in collaboration with Dr. Jianye Ching and elements of it are

presented in Ching et al. (2005, 2006).
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5.1 Linear Model Updating with Incomplete Modal

Data

The dynamic response of a structure under strong earthquake shaking, particularly in

the case where damage occurs, is highly non-linear. However, when modal parameters

are extracted from small-amplitude responses, such as ambient vibration records or

records of weak shaking from earthquakes, it can be assumed that the behavior is

essentially linear. This is the case of interest in this chapter.

The data consists of Ns estimates of Nm dominant modes of vibration of a struc-

ture, obtained through reliable modal identification techniques such as MODE-ID

(Beck, 1978, 1996). This data is denoted D = {ω̂r,j, ψ̂r,j : r = 1 . . . Nm, j = 1 . . . Ns},

where ω̂r,j and ψ̂r,j ∈ RNo are the measured modal frequency and vector of observed

modeshape components, respectively, for the rth mode in the jth set of estimates.

Consider a linear structural model where the stiffness matrix K and the mass

matrix M are parameterized such that they are linear functions of the vector of

stiffness parameters θ ∈ RNθ and the vector of mass parameters ρ ∈ RNρ . That is, K

and M can be expressed as

K(θ) = K0 +

Nθ∑
k=1

Kθk
θk (5.1)

M(ρ) = M0 +

Nρ∑
k=1

Mρk
ρk (5.2)

where Kθk
, K0, Mρk

and M0 are constant matrices. The modes of vibration of a

structure are given by the eigenvalues and eigenvectors of the system defined by the

mass matrix M and the stiffness matrix K, and so satisfy the equation

[
K(θ)− ω2

r,jM(ρ)
]
φr = 0 (5.3)

where φr ∈ RNd is the vector of mode shape components for the rth mode shape.

Thus, the vector of prediction errors εr,,j based on the observed modal frequencies is
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given by

Kφr − ω̂2
r,jMφr = εr,j (5.4)

Note that this equation requires the complete modeshapes of the system, however,

typical measurements of the mode shapes do not include every degree of freedom

present in the identification model. In this case, the modeshapes of the identification

model are introduced as parameters to be updated (Beck et al., 2001), and are re-

ferred to as system mode shapes to differentiate them from the incomplete observed

modeshapes, which are part of the modal data. Though the system modeshapes rep-

resent the actual underlying mode shapes of the system, they are not constrained

to be eigenvectors of a structural model. The system modeshapes are related to the

observed modal data and the vector of prediction errors εr,,j as follows:

ψ̂r,j = Γφr + er,j (5.5)

where Γ is the No × Nd observation matrix, which relates the measured degrees of

freedom to those of the identification model.

The prediction errors for Equations 5.4 and 5.5, εr,j, and er,j, are modeled as

independent Gaussian variables. The prediction errors for each mode are assumed to

be zero mean and uncorrelated with the other modes and the prediction errors for

each modal component are mutually uncorrelated and have the same variance, that

is

εr,j ∼ N(0, σ2
rINd×Nd

) (5.6)

er,j ∼ N(0, δ2
rINo×No)

5.2 Model Updating Using the Gibbs Sampler

Updating of the parameters of the underlying structural model, the system mode-

shapes, and the prediction-error variances can be efficiently performed using the Gibbs

sampler approach (which will henceforth be referred to as the GS approach). The key
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insight is that by correctly structuring the problem, sampling from the conditional

PDFs can be performed very easily, by taking advantage of the expressions for the

mean and covariance of the conditional PDF for a linear system given by Equation 4.5.

The prior PDFs for the uncertain parameters in the model class M are as follows:

p(θ | M) = N(µθ,Σθ) (5.7)

p(ρ | M) = N(µρ,Σρ) (5.8)

p(φr | M) = N(µφr ,Σφr) (5.9)

p(δ2
r | M = IG (αδr , βδr) (5.10)

p(σ2
r | M = IG (ασr , βσr) (5.11)

Note that the prior PDFs, like those presented in Section 4.1.1, are conditionally

conjugate, simplifying the calculations for the conditional PDFs. The procedure for

using the GS algorithm for updating the linear structural model parameters is as

follows:

For the first step, values for the linear structural model parameters, θ̃(0) and ρ̃(0),

and the prediction-error variances, δ̃
(0)
r and σ̃

(0)
r , r = 1, . . . , Nm, are drawn from the

appropriate prior PDFs. The goal is now to draw a sample from the conditional PDF

for the system modeshapes, p(φr | θ(0), ρ(0), σ
(0)
r ,D), r = 1, . . . , Nm. Note that the

equations for each mode are de-coupled, so that information observed for one mode

is irrelevant to all the other modes, and the calculation of the conditional PDFs

can be performed independently for each mode. Also, recall from Section 2.1.3 that

updating with different data sets may be performed sequentially, with the posterior

PDF obtained by the first set of data used as the prior PDF for updating with the

second set of data, and so on. The same approach can be applied here to update with

one set of identified modal parameters at a time.

The mean and covariance matrix for the conditional PDF for the rth system

modeshape updated with just the first set of data (the identified frequencies ω̂2
r,1 and

modeshape components ψ̂r,1) are calculated from Equation 4.5. The vectors X0, X,
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and Y are given by

X0 = µφr (5.12)

X = φr (5.13)

Y = [ ψ̂T
r,1 01×Nd

]T (5.14)

where 01×Nd
is a 1×Nd vector of zeros. The matrices A, Σ and Σ0 are given by

A =

 Γ

K
(
θ̃(0)
)
− ω̂2

r,1M
(
ρ̃(0)
)
 (5.15)

Σ =

 (δ̃(0)
r

)2

INd×Nd (
σ̃

(0)
r

)2

INd×Nd

 (5.16)

Σ0 = Σφr (5.17)

The resulting mean and covariance matrix obtained from Equation 4.5 are denoted

µr,1 and Σr,1, respectively. Now, updating with the second set of data is performed

in the same manner, but the vector X0 and the matrix Σ0 are replaced with µr,1

and Σr,1, respectively. This process is repeated until the final mean and covariance

matrix for the conditional PDF, µr,Ns and Σr,Ns , are obtained. Samples for the system

modeshapes φ̃
(1)
r , r = 1, . . . , Nm are then drawn from this final conditional PDF.

The next step in the GS algorithm requires drawing samples for the structural

model parameters, θ and ρ, from the conditional PDF p(θ, ρ | D, φ̃(1)
r , σ

(0)
r ). The

approach is similar to the previous step, in that each mode and each data set may

be applied separately. For updating with the first modal equation and the first set

of modal data, Equation 4.5 is again used to find the mean and covariance matrix of

the conditional PDF for the model parameters, with the vectors X0, X, and Y given
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by:

X0 =
[
µT

θ µT
ρ

]T
(5.18)

X =
[
θT ρT

]T
(5.19)

Y = 0Nd×1 (5.20)

and the matrices A, Σ and Σ0 given by

A = [aθ1 . . . aθNθ
aρ1 . . . aρNρ

] (5.21)

aθj
= Kθj

φ̃
(1)
1

aρj
= −ω̂2

1,1Mρj
φ̃

(1)
1

Σ = (σ
(0)
1 )2INd×Nd

(5.22)

Σ0 =

 Σθ

Σρ

 (5.23)

As before, the resulting mean and covariance matrix are denoted µ1,1 and Σ1,1, and

replace X0 and Σ0, respectively. The updating steps are repeated until the final

conditional mean and covariance matrix, µNm,Ns and ΣNm,Ns, are obtained and these

are used to generate the samples θ̃(1) and ρ̃(1).

The final step in each iteration of the Gibbs sampler is the draw for the updated

prediction-error variances. As shown in Section 4.1.1, this can be done quite easily

if the prior PDF for the error variances is of a form that is conditionally conjugate.

The conditional PDFs for the error variances are proportional to inverse gamma

distributions,

p(δ2
r | φ̃(1)

r , θ̃(1), ρ̃(1),D) ∝ IG

(
αδ +

NsNo

2
, βδ +

Ns∑
i=1

‖ψ̂r,i − Γφ̃(1)
r ‖2

)
(5.24)

p(σ2
r | φ̃(1)

r , θ̃(1), ρ̃(1),D) ∝ IG

(
ασ +

NsNd

2
, βσ +

Ns∑
i=1

∥∥∥[K(θ̃(1))− ω̂2
r,iM(ρ̃(1))

]
φ̃(1)

r

∥∥∥2
)
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which are then sampled to obtain (δ
(1)
r )2 and (σ

(1)
r )2. These three steps are repeated

until the desired number of samples is generated.

5.2.1 Estimating the Probability of Damage

Damage, in this problem, will be defined to be a reduction in the value of any compo-

nent of the vector of stiffness parameters θ below some specified threshold value when

comparing the model identified with data from the possibly damaged structure, Dpd

to the model identified with data from the undamaged structure, Dud. Stochastic

simulation methods are used to generate Nud samples for the ith component of θ,

conditioned on the undamaged data, θ̃ud
i,k, k = 1 . . . Nud, and Npd samples conditioned

on the possibly damaged data, θ̃pd
i,k, k = 1 . . . Npd. The probability that the damage

fraction is at least d in the parameter component θi may be approximated using M

comparisons between the values of samples of the parameter θi generated from the

two sets of data, as follows:

P (θpd
i < (1− d)θud

i | Dud,Dpd) ≈ 1

M

M∑
j=1

I[θ̃pd
i,nj

< (1− d)θ̃ud
i,mj

] (5.25)

where I[.] is the indicator function, which is unity when the condition is satisfied and

zero otherwise and the samples θ̃ud
i,mj

and θ̃pd
i,nj

are chosen randomly from the available

samples conditioned on the undamged and possibly damaged data, respectively, for

the jth comparison. In this study, an equal number of samples is generated for the

undamaged and possibly damaged cases (Nud = Npd = N), so a full comparison of

all of the samples would require M = N2 evaluations. It was found in this work,

however, that the estimate of the probability of damage converged adequately to the

final value after randomly selecting M = N sample pairs for comparison.
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5.3 2-DOF Shear-Building Example

To examine the performance of the Gibbs sampler algorithm, studies are performed

using simulated data from a simple 2-DOF linear shear building. The lumped masses

of each floor are equal, and the ratio of inter-story stiffness to mass is 2,000 : 1 for

each floor. A Rayleigh viscous-damping matrix is chosen to give a damping ratio of

2% to both modes of vibration.

Data is generated from the undamaged model and two models with simulated

damage. Damage pattern DP 1 has a 30% reduction in the inter-story stiffness of the

first story, while DP 2 has a 30% reduction in the second-story stiffness. The mass

and damping matrices are unchanged in the damaged cases.

The three simulated structures are subjected to 110 seconds of white-noise ambi-

ent excitation at each degree of freedom, and the time histories of the acceleration

responses are calculated. Gaussian-distributed noise is added to each measurement,

with the standard deviation of the noise equal to 10% of the RMS (root-mean-square)

of the response record that it is added to.

Modal properties for each structure were estimated from the acceleration records

using the program MODE-ID (Beck, 1996). The first 10 seconds of each record were

discarded to eliminate possible transients, and the remaining 100 seconds were divided

into Ns = 10 segments, with modal properties identified for each segment. The results

of the identification are summarized in Table 5.1, which shows the mean and standard

deviation of the modal frequencies and ratios of the modeshape components identified

for each the 10 segments.

To study the effect that missing information has on the performance of the GS

method, two cases are considered. In the first case, a data set Dfull contains modal

frequencies and modeshape components for both modes, representing the case where

sensors are available on both floors and both modes can be clearly identified. In the

second case, a data set Dpart contains only the first modal frequency, representing the

case where only a single sensor is available and only the first mode is identifiable.
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Damage Pattern Frequency (Hz) Modeshape ratio φr,2/φr,1

1st Mode 2nd Mode 1st Mode 2nd Mode
Undamaged 4.43 11.59 1.58 -0.44

±0.13 ±0.35 ±0.07 ±0.12
DP 1 3.87 11.14 1.40 -0.42

±0.12 ±0.28 ±0.03 ±0.12
DP 2 4.17 10.42 1.92 -0.31

±0.12 ±0.26 ±0.09 ±0.14

Table 5.1: Identified modal frequencies and modeshape component ratios for the
2-DOF simulated shear building.

5.3.1 Damage Identification

A 2-DOF linear shear-building model is used for identification. The masses are con-

trolled by the parameters (ρ1, ρ2), and the inter-story stiffnesses by (θ1, θ2), as follows:

M =

 ρ1 0

0 ρ2

K =

 2000θ1 + 2000θ2 −2000θ2

−2000θ2 2000θ2

 (5.26)

Additionally, for each mode present in the data, a system modeshape vector φr and

prediction-error variance σr are identified.

The prior PDFs of (ρ1, ρ2) are chosen to be independent Gaussian PDFs, each with

a mean of 1 and a coefficient of variation (c.o.v., the standard deviation expressed

as a fraction of the mean) of 10%. The prior for each modeshape component was

taken to be an independent Gaussian PDF with a mean of zero and large c.o.v.,

giving a relatively flat prior. Inverse gamma distributions were taken for the prior

PDFs of the prediction-error variances, with shape parameters αδr = ασr = 3 and

scaling parameters βδr and βσr chosen to scale the prior PDFs to the variances of the

measured data for each mode.

Using this parameterization, setting the mass and stiffness parameters equal to

zero would result in an unwanted solution to Equation 5.4. For this example, the

chosen priors are “far” enough from this trivial solution that this is not a concern.

However, if the non-trivial solution were located closer to zero, it would cause prob-

lems. This could be addressed by assuming a lognormal distribution for the model

parameters and treating the logarithm of the model parameters as the uncertain
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Figure 5.1: Markov chain samples for the stiffness parameters generated using the
data from the undamaged 2-DOF model updating with (a) Dfull (globally identifiable)
and (b) Dpart (unidentifiable). The index n denotes the step number of the Markov
chain. The dashed lines in (a) indicate the end of the burn-in period at n = 50 (not
visible for the unidentifiable cases because of scale).

parameters.

The GS algorithm is used to generate five sets of samples from the posterior PDF

of the model parameters for each of the data sets Dfull and Dpart in the undamaged

case and the two damaged cases DP 1 and DP 2. For Dfull, 1000 samples are used in

each chain, while 50,000 samples per chain are generated for Dpart, for reasons that

will be discussed later. Figure 5.1(a) shows the Markov chain samples for the stiffness

parameters generated during run one using the data Dfull with the undamaged model,

and shows the end of the burn-in period, chosen by inspection to be 50 samples.

Figure 5.1(b) shows samples generated during one run with the undamaged model

using Dpart. The same burn-in period of 50 samples is chosen, but is not visible in

Figure 5.1(b) because of scale.

The identifiability of each case is immediately clear if the samples for the stiffness

parameters are plotted in the (θ1, θ2) space. Figure 5.2(a) shows that the samples of
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Figure 5.2: Stiffness parameter samples for the 2-DOF model plotted in the (θ1, θ2)
space for all damage cases (undamged, DP 1, DP 2) for (a) Dfull and (b) Dpart.

the stiffness parameters generated using Dfull are concentrated into a relatively small

area, indicating global identifiability. The apparent interaction between the stiffness

parameters is due to the fact that the mass parameters are also uncertain. On the

other hand, the samples generated using Dpart, shown in Figure 5.2(b), are spread out,

indicating that there is insufficient data to determine the stiffness parameters and so

giving an unidentifiable case. Damage probability curves are calculated for each case

using Equation 5.25. Figures 5.3 and 5.4 show the damage probability curves for the

cases with 1st-story damage and 2nd-story damage, respectively. A useful summary

of the information contained in a damage probability curve is the median damage

fraction, which is given by the value that has a 50% probability of exceedance (the

value on the x-axis of Figures 5.3 and 5.4 that corresponds with the intersection of

the damage probability curve with the line y = 0.5). It is immediately apparent that

the samples generated using Dfull can be used to determine the presence and location

of damage. The damage curve generated for DP 1 in Figure 5.3 has a median damage

fraction of 0.33, and the curve for DP 2 in Figure 5.4 has a median damage fraction of
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Dfull

Dpart 5,000
Dpart 10,000
Dpart 15,000
Dpart 25,000

part 50,000D

Dfull

Dpart 5,000
Dpart 10,000
Dpart 15,000
Dpart 25,000

part 50,000D

Figure 5.3: Estimated damage probability curves for DP 1.

0.22, with both values being roughly the same as the actual damage fraction, which

was 0.30 in both cases.

The cases where Dpart was used to generate the samples are more complicated.

It’s clear from Figures 5.3 and 5.4 that a larger number of samples is required for the

results of the damage curve to converge. In the case of DP 1, 15,000 samples seems to

be adequate, with a median damage fraction of 0.20. However, for DP 2, convegence

is slower and damage detection is difficult: for 15,000 samples, the median damage

fractions are close to being equal; 0.04 for the first story and 0.05 for the second

story. When 25,000 samples are considered, these damage fractions are 0.02 for the

first story and 0.09 for the second story. When all 50,000 are used, the mean damage

fraction for the first story is 0.06 and the second story is identified as undamaged.

To examine the variability of the estimated median damage fraction if only one

run of the GS algorithm is performed for the undamaged and possibly damaged case,

damage probabilty curves were calculated for each of the 25 possible combinations

of undamaged and possibly damaged runs for each damage pattern (5 runs of each

are available). The mean and standard deviation of the median damage fractions
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Dfull

Dpart 5,000
Dpart 10,000
Dpart 15,000
Dpart 25,000

part 50,000D

Dfull

Dpart 5,000
Dpart 10,000
Dpart 15,000
Dpart 25,000

part 50,000D

Figure 5.4: Estimated damage probability curves for DP 2.

obtained for these sets of damage probability curves are given in Table 5.2.

These results show that knowing only a single modal frequency gives insufficient

information for damage assessment. Insight into the results for the cases using Dpart

is given by considering the geometry of the detection problem in the (θ1, θ2)-space.

Figure 5.5 shows curves that represent combinations of θ1 and θ2 in the identification

model which will (when the mass parameters are fixed to unity) give the correct

identified frequency of the structure in each of the damage states considered. Clearly,

the values of (θ1, θ2) along the curves for ω1 in Figure 5.5 are nearly indistinguishable

on the basis of Dpart alone. The results in Table 5.2, however, show that there is

some indication of the presence of damage, particularly for DP 1, which, as seen in

Figure 5.5 has a curve for constant ω1 that is “farther” away from the curve for the

undamaged system than the curve for constant ω1 for DP 2.

5.3.2 Locally Identifiable Models

If we consider the curves for constant values of ω1 and ω2 in Figure 5.5, we see that

there should be two points in the (θ1, θ2)-space where the curves intersect. The 2-
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Data # Samples Damage Pattern Median Damage Fraction
θ1 θ2

Dfull 1000 DP 1 0.323± 0.005 0.040± 0.008
DP 2 0.000± 0.000 0.221± 0.006

Dpart 5000 DP 1 0.175± 0.094 0.081± 0.105
DP 2 0.145± 0.081 0.013± 0.044

Dpart 10000 DP 1 0.181± 0.070 0.056± 0.085
DP 2 0.112± 0.074 0.033± 0.068

Dpart 15000 DP 1 0.204± 0.061 0.033± 0.056
DP 2 0.108± 0.063 0.020± 0.043

Dpart 25000 DP 1 0.218± 0.048 0.016± 0.038
DP 2 0.106± 0.050 0.014± 0.033

Dpart 50000 DP 1 0.235± 0.035 0.003± 0.014
DP 2 0.113± 0.041 0.004± 0.011

Table 5.2: Estimated median damage fractions for the 2-DOF examples.

Figure 5.5: Curves in the (θ1, θ2)-space along which a given natural frequency (ω1 or
ω2) is held constant. The circles indicate the actual state of the structure.
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DOF shear-building models defined by these points of intersection have the same

natural frequencies, but different modeshapes. Therefore, if only the first two modal

frequencies are available, the system should in theory be locally identifiable, with

disconnected high-probability regions around each of the points of intersection. How-

ever, successfully representing this posterior PDF using sampling methods is difficult.

The GS algorithm generates samples that are relatively close together, so the samples

would tend to be clustered in one of the high-probabilty regions, with little chance

that the sampler would “wander” far enough to discover and populate the second

high-probability region. Hybrid algorithms that add “jumps” into the sampler may

be effective, but detract from the qualities that make the GS algorithm so attrac-

tive: the ability to operate in relatively high dimensions efficiently. It can be argued

that locally identifiable cases are probably uncommon in practice since they exist

on the “boundary” between identifiable and unidentifiable cases. However, studies

were made to see if adjustments to the GS approach can be made to detect multiple

separated regions of high probability.

Consider the case where only one sensor is available, but both modes have been

identified; that is, both modal frequencies ω1 and ω2 are available, but not the mode-

shape information. The curves in Figure 5.5 indicate that for the undamaged model,

there are two points in the (θ1, θ2)-space that will result in models with identical nat-

ural frequencies, (1, 1) and (2, 0.5). Figure 5.6 shows the histograms of the samples

of the stiffness parameters from five simulation runs with 2000 samples each that are

generated using ω1 and ω2 data from the undamaged model. Only the solution at (1,

1) is apparent. Recall, though, that the prior distribution is centered at (1, 1), and

is therefore biasing the results of the sampler to that solution.

For comparison, a similar set of samples was generated from the same data using

prior PDFs for θ1 and θ2 with a mean of 2 and standard deviations of 1 and 0.5,

respectively. To avoid converging to the trivial solution at (0,0), the coefficient of

variation on the mass parameters is reduced from 10% to 5%. Histograms of the

samples of the stiffness parameters are shown in Figure 5.7. The presence of two

distinct regions of high probability content are clearly visible, though the relative
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Figure 5.6: Samples generated using locally identifiable data from the undamaged
model.

distribution of samples between regions does not exactly match the expected value.

While this example demonstrates that the GS approach is theoretically capable

of generating samples from multi-modal posterior PDFs, in practice it is not very

robust. The ability of the GS algorithm to populate multiple high-probability regions

is very sensitive to the choice of prior PDFs, to the point where the user is almost

required to know beforehand the approximate location of each region in order to

choose the appropriate prior distributions. More general techniques, such as the

TMCMC algorithm, are better able to deal with multi-modal data, but even for these

methods, limitations and complications can arise, especially in higher dimensions.

5.3.3 Model-Class Selection

To examine the performance of the GS algorithm, a candidate pool of two model

classes is considered. The first model class, M1, is the four-parameter 2-DOF shear-

building model considered previously. The second model class, M2, is nearly iden-

tifical; however, the inter-story stiffnesses are constrained to be equal, that is, θ1 =

θ2 = θ. Note that in the case where only data from a single sensor is available

(M1 is unidentifiable), model class M2 is still globally identifiable, as can be seen by
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Figure 5.7: Samples generated using locally identifiable data from the undamaged
model with a shifted prior PDF.

examining Figure 5.5.

The evidence for each model class is estimated from samples generated with the

GS algorithm as outlined in Equations 3.3 through 3.5 in Section 3.3. The results are

shown in Table 5.3.

For cases using Dfull, model classM2 dominates for selections with data generated

from the undamaged structure. Since the inter-story stiffnesses actually are equal in

this case, the two model classes are expected to be able to fit the data equally well, so

the preference for the simpler model class in the evidence is reasonable. In contrast,

for the cases involving damage, the simpler model class M2 cannot match the data

as well as the more flexible model class M1.

When the data set Dpart is used to generate the samples, the results for the

damaged cases are very similar, though model class M1 is not as strongly preferred

as when Dfull is used, since the effect of the data-fitting performance of the candidate

model classes is somewhat reduced by the smaller amount of available data. However,

for the undamaged case, the more complicated model class M1 is preferred to the

simpler M2, which seems counter-intuitive when compared to the results obtained

using Dfull.
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Data Dmg. State Probability
M1 M2

Dfull Undmg. 0.235 0.765
DP 1 1.000 0.000
DP 2 1.000 0.000

Dpart Undmg. 0.875 0.125
DP 1 0.720 0.280
DP 2 0.808 0.192

Table 5.3: Model-class selection results for 2-DOF system

The result for the undamaged case using Dpart may be understood by examining

the information-theoretic interpretation of the evidence given by Equation 2.16. In

this case, the data fit is roughly equal for each model, but examination of the in-

formation gain for each model class shows that for the chosen prior PDFs over the

stiffness parameters, less information is extracted for model classM1. This is because

the samples for M1 are generated around a broad, curved region in the (θ1, θ2)-space

similar in geometry to the broad prior PDF, as shown in Figure 5.8(a), while model

class M2 is globally identifiable, with samples concentrated into a relatively small

regiong, compared to the prior PDF, as shown in Figure 5.9. Consequently, the

posterior distribution for M1 is “closer” to the chosen prior than the posterior distri-

bution for M2. The above result implies that a different prior PDF over the stiffness

parameters could significantly alter the results of Bayesian model-class selection. To

verify this, updating is performed for all cases using a prior PDF centered on (2, 2) in

the (θ1, θ2)-space. While the resulting samples are essentially indistinguishable from

those generated during the original analysis (after discarding the burn-in samples),

the results for model-class selection, shown in Table 5.4, are considerably different for

some of the cases.

For the cases using Dfull, there is a stronger preference for model class M2 in the

undamaged case, while the results for DP 1 and DP 2 are essentially the same as

before. Model class M1 is still preferred in the undamaged case using Dpart, though

the probability is slightly lower, but for the probabilities for DP 1 and DP 2 have

changed significantly. Model class M2 is now preferred for DP 1 and the probability

of model class M1 in DP 2 drops from 81% to 61%. By considering Figure 5.5,
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( a ) ( b )

Figure 5.8: Comparison of the posterior samples to the prior PDF for (a) the original
prior centered at (1,1) and (b) the shifted prior, centered at (1.5,1.5). The circles
indicate points one and two standard deviations from the mean of the prior PDF.

Figure 5.9: Comparison of the prior PDF and the marginal posterior PDF (calculated
from samples) for the stiffness parameter for model class M2.

Data Dmg. State Probability
M1 M2

Dfull Undmg. 0.028 0.972
DP 1 1.000 0.000
DP 2 1.000 0.000

Dpart Undmg. 0.832 0.168
DP 1 0.383 0.617
DP 2 0.609 0.391

Table 5.4: Model-class selection results for 2-DOF system with shifted prior PDFs.
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Data # Samples Dmg. State Median Damage Fraction
Dfull 1000 DP 1 0.188± 0.004

DP 2 0.253± 0.005
Dpart 1000 DP 1 0.148± 0.008

DP 2 0.063± 0.010

Table 5.5: Estimated median damage fractions for model class M2.

it becomes apparent that the first natural frequency is more sensitive to first-story

damage than second-story damage. Therefore, the identified stiffnesses for DP 1 are

lower than for DP 2, and consequently “further” away from the prior PDF over the

stifness parameters, given the simpler model class M2 the advantage.

It should be noted that this model-class selection criteria determines the most

probable model class for matching the identified modal information, rather than the

usefulness for damage detection. Table 5.5 gives estimates for median damage frac-

tions (and the standard deviations of those estimates) based on samples generated for

model class M2, and calculated in the same manner as the values given in Table 5.2.

Compared to the results for model class M1 shown in Table 5.2, model class M2

seems to be less sensitive to damage when Dpart is used for updating.

When choosing model classes for use in SHM applications, it may be more infor-

mative to use a selection criteria based on the ability of the model class to correctly

detect and localize damage. In this case, the data D would consist of sets of ambient

structural vibrations from a variety of damaged and undamaged models, where the

damage state is known and is also part of D. The likelihood function would then

measure the ability of the model classes to correctly predict the presence, location

and severity of damage. This approach to model-class selection would be very similar

to the “training” of neural networks (Lam et al., 2006).
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5.4 IASC-ASCE Structural Health Monitoring Sim-

ulated Benchmark Structure

The second case examined is the application of the GS approach to the connection-

damaged cases in the IASC-ASCE phase II simulated structural health monitoring

benchmark problems (Bernal et al., 2002; Ching et al., 2004). Data is generated

by a 120-DOF finite-element structural model of a four-story, two-bay by two-bay

structure, referred to as the benchmark model. The data corresponds to accelerations

measured at the four faces of each of the four floors above the base level; that is, two

sensors point in each of the x and y directions at each floor.

The connection-damage cases in the Phase II Benchmark problem involve the de-

tection and assessment of simulated beam-column connection damage with different

severeties and different locations in the benchmark model. The damage is simulated

by reducing the stiffness of the rotational springs modelling the beam-column connec-

tions. Two of the damage patterns presented in the benchmark case are considered:

DP 1 features complete loss of rotational stiffness at six first-floor beam-column con-

nections and four second-floor beam-column connections, as shown in Figure 5.10(a),

while DP 2 features complete loss of rotational stiffness at four first-story beam-

column connections, as shown in Figure 5.10(b). The connection-damage cases are

the most challenging in the simulated benchmark study, as the rotational degrees of

freedom are not directly observed.

The data consist of 210 seconds of simulated ambient response generated for each

model. Similar to the procedure used in the 2-DOF example, the first ten seconds

were discarded and the remainder of the records were partitioned into ten 20-second

segments. Modal parameters were identified for each segment using MODE-ID.

Eight modes were identified for each damage case, four each in the weak (x) and

strong (y) directions (as labeled in Figure 5.10). Table 5.6 shows the identified modal

frequencies for each case. Note that the identified frequencies of the modes of vibra-

tion in the weak direction are essentially unchanged by damage patterns DP 1 and

DP 2, as expected, since the damage corresponds to reductions of the rotational stiff-
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Figure 5.10: Diagram of benchmark structure showing damage locations for (a) DP
1 and (b) DP 2. The circles indicate connections with reduced rotational stiffness.
Taken from Ching et al. (2006).

nesses, affecting only the lateral stiffness in the strong direction. Figure 5.11 shows

the identified mode shapes. Only the translational components are directly identifi-

able from the sensor data. Notice that the damage has virtually no effect on these

mode shape components, indicating that essentially only the decreased frequencies

for modes S1 through S4 give information about the damage.

A 3-D 36-DOF identification model is used. The floors are assumed to be rigid for

in-plane deformation in the x-y plane but rotation along the x and y axes is allowed.

Damage Pattern Frequency (Hz)
W1 S1 W2 S2 W3 S3 W4 S4

Undamaged 3.19 3.98 9.79 13.41 16.66 25.15 23.72 39.28
±0.06 ±0.01 ±0.05 ±0.04 ±0.19 ±0.09 ±0.09 ±0.08

DP 1 3.20 3.42 9.78 12.91 16.69 24.68 23.72 39.11
±0.08 ±0.03 ±0.06 ±0.08 ±0.07 ±0.10 ±0.09 ±0.12

DP 2 3.19 3.79 9.79 13.13 16.72 25.15 23.72 39.17
±0.07 ±0.02 ±0.05 ±0.08 ±0.08 ±0.08 ±0.09 ±0.12

Table 5.6: Modal frequencies for the benchmark structure. “W” and “S” denote the
“weak” and “strong” directions, respectively.
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Figure 5.11: Mean identified mode shapes of the benchmark structure.

A diagram of the degrees of freedom for each floor is shown in Figure 5.12. Three

DOF are used to describe the motion of the ith floor, the translations xi and yi and

the rotation φi about the z axis. The remaing six degrees of freedom for each floor

describe the common local rotations about the x and y axes for the degrees of freedom

in each row. For example, in Figure 5.12, the rotation about the x axis at points 1, 2,

and 3 is given by γi,1 and the rotation about the y axis at points 3, 6, and 9 is given

by δi,3.

Two parameters are used for the rotational stiffness of each floor: One controlling

the rotational stiffness of all beam-column connections about the x axis and the

other controlling the rotational stiffness of the connections about the y axis. Four

parameters are used to control the column stiffness, each one specifying the stiffness

of the columns in one story. Four parameters are used to specify the mass of each

floor, which represents the mass of the floor slab plus the apportioned lumped masses

of the connected columns.

The prior PDF for each of the eight rotational stiffness parameters are taken to

be an independent Gaussian distribution, with a mean of 1 and a c.o.v. of 20%. The
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Figure 5.12: Degrees of freedom for the ith floor in the identification model.

columns dominate the global stiffness of the structure and also provide rotational stiff-

ness, so slight errors in the identified column stiffness can significantly influence the

identification of rotational stiffnesses. To reliably detect rotational stiffness damage,

the prior distributions on the column stiffnesses must be relatively constrained. The

prior PDF for each column stiffness parameter is taken to be an independent Gaussian

distribution with a mean of 1 and a c.o.v. of 2%. Given that design of moment-frame

buildings uses a “strong column-weak beam” principle, it seems reasonable to allow

variations in the rotational stiffnesses, which are tied to the column-beam connections

that should be damaged, to be larger than variations in the column stiffnesses.

It is assumed that prior information about the mass of the building is very reliable,

so that the prior PDF has a small variance. In this case, the prior for each mass

parameter is an independent Gaussian distribution with a mean of 1 and a c.o.v. of

1%. This choice of prior ensures that the mass parameters will be essentially fixed at

the nominal mean values.

Following the GS approach, Markov chain samples of the 16 structural parameters

(8 rotational stiffnesses, 4 column stiffnesses, 4 masses), the system modeshapes and

the prediction-error variances of each mode are obtained. Since each of the 8 modes

has 36 degrees of freedom, the total number of uncertain parameters is 312. Five

parallel chains of 5000 samples were simulated. Figure 5.13 shows the samples of the

rotational stiffness parameters for the undamaged case. A burn-in period of 1000
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Figure 5.13: Markov chain samples for the rotational stiffness parameters generated
using the data from the undamaged benchmark model. The index n denotes the step
number of the Markov chain. The dashed lines indicate the end of the burn-in period
at n = 1000.

samples was chosen after visual inspection.

The sample means of the translational components of the updated system mode-

shapes components are plotted for all damage states in Figure 5.14. As expected from

the identified modeshapes, the damage has no discernable effect. Figure 5.15 shows

the samples means of the average rotational components of the updated system mode-

shapes, which are calculated for the ith floor by averaging the components associated

with the rotations γi,j, j = 1, 2, 3 (see Figure 5.12) for the weak (x) direction and

δi,j, j = 1, 2, 3 in the strong (y) direction. The results indicate that the damage alters

the rotational components of the system modeshapes, particularly for the weak direc-

tion rotations for the first strong-direction modeshape. This is reasonable, since both

DP 1 and DP 2 feature damage at strong-direction beam-column connections, which

would be reflected in increased rotations about the perpendicular (weak) direction.

Insight into the overall performance of the GS approach can be gained by examining

the posterior PDFs of the rotational stiffness parameters. Figure 5.16 shows kernel
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Figure 5.14: Sample means of the translational components of the system modeshapes
for all damage cases.

Figure 5.15: Sample means of the rotational components of the system modeshapes
for all damage cases.
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Figure 5.16: Kernel probability densities for the rotational stiffness parameters built
from Markov chain samples.

probability densities (Silverman, 1986) for each parameter built from the combined

post-burn-in samples. A region of support of 2000 samples was used. The damaged

locations are clearly identified, and the stiffness parameters associated with undam-

aged structural elements generally show little difference between the PDFs generated

using the undamaged and the damaged data. As for the 2-DOF case, damage proba-

bility curves were generated for the rotational stiffness parameters. Figures 5.17 and

5.18 shows these curves for DP 1 and DP 2, respectively. The damage curves are

generated using samples for each damage configuration. For DP 1, convergence for

the damage curve appears to require only 2000 post-burn-in samples, while for DP 2,

between 3000 and 4000 samples are required.

To examine the variability of the damage probability curves if only one set of

samples is generated for the undamaged and possibly damaged case, damage proba-

bility curves were generated using all 25 combinations of undamaged and damaged

records for each damage pattern (since there are five runs available for each case).

The mean damage probability curve and the mean damage probabilty curve plus and
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Figure 5.17: Damage probability curves for DP 1 using 1000, 2000, 3000, and 4000
post-burn-in samples

minus one standard deviation are shown in Figures 5.19 and 5.20. The median

damage fraction for each stiffness parameter is calculated for each of the 25 damage

probability curves, as in the previous section. The mean and standard deviation of

the median damage fractions are listed in Table 5.7.

5.5 Conclusions

Thoughtful manipulation of the modal equations of a linear system leads to a form

where the GS algorithm can be readily applied to update the structural model pa-

rameters, system modeshapes, and prediction-error variances. Comparison of the

posterior PDFs of structural-model stiffness parameters, updated with data from un-

damaged and damaged systems, leads to a probabilistic description of the damage.

This method has the advantage of providing the uncertainties associated with iden-

tified model parameters and with the damage estimate.

A simple 2-DOF shear-building example demonstrated the ability of the GS algo-
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Figure 5.18: Damage probability curves for DP 2 using 1000, 2000, 3000, and 4000
post burn-in samples

Figure 5.19: Mean damage probability curves for DP 1 using five Markov chains for
the damaged and undamaged cases. The dashed lines represent the mean damage
curve plus and minus one standard deviation.
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Figure 5.20: Mean damage probability curves for DP 1 using five Markov chains for
the damaged and undamaged cases. The dashed lines represent the mean damage
curve plus and minus one standard deviation.

Damage Story Mean Damage Fraction
Pattern Weak Strong
DP 1 1st 0.000± 0.000 0.550± 0.022

2nd 0.044± 0.033 0.464± 0.025
3rd 0.043± 0.010 0.000± 0.000
4th 0.000± 0.000 0.011± 0.010

DP 2 1st 0.000± 0.000 0.331± 0.015
2nd 0.031± 0.029 0.067± 0.017
3rd 0.037± 0.013 0.000± 0.000
4th 0.000± 0.000 0.028± 0.008

Table 5.7: Median damage fractions for benchmark case. Values represent the mean
and standard deviations.
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rithm to deal with unidentifiable systems and also served to illustrate the effect that

the prior PDFs can have on Bayesian model-class selection results.

The two-stage SHM methodology using the GS algorithm was successfully applied

in two cases from the IASC-ASCE Structural Health Monitoring Simulated Bench-

mark problem. The cases studied are considered to be among the most challenging

available for this benchmark, as the damage is associated with degrees of freedom that

are not directly observed in the modeshapes identified from the data. The damage

in each case was properly identified and localized. It is noted that the identification

model included over 300 unknown parameters, demonstrating the ability of the GS

algorithm to operate effectively in high-dimensional parameter spaces.

Future work may include applications of the methodology to a newly introduced

benchmark problem for health monitoring of bridges (Caicedo et al., 2006), and to real

data. The latter is expected to be challenging, due to observed shifts in the natural

frequency due to environmental changes that may prove difficult to distinguish from

structural damage (Clinton et al., 2006).
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Chapter 6

Hysteretic Structural Models

Identification of structural models from earthquake response can play a key role in

structural health monitoring, structural control, and improving performance-based

design. However, implementation is complicated by the non-linear response of struc-

tures under strong seismic loading; in particular, the structural restoring forces are

hysteretic, depending on the previous time history of the structural response rather

than an instantaneous finite-dimensional state.

Current methods for developing finite-element models can produce structural re-

sponses that are qualitatively consistent with behavior observed during strong earth-

quake shaking, but system-identification methods based on updating these finite-

element models with measured seismic responses are challenging, because the large

number of uncertain parameters associated with these models makes the inverse prob-

lem extremely ill conditioned.

Simplified models can be used in the identification procedure but the selection

of an appropriate class of models to employ is complicated by the hysteretic struc-

tural restoring forces. Although some research into the identification of hysteretic

systems has been carried out (Jayakumar and Beck, 1988; Cifuentes and Iwan, 1989;

Benedettini et al., 1995), this earlier work does not quantify the modelling uncer-

tainties. A Bayesian updating approach has the advantage of being able to quantify

the uncertainty associated with model prediction of system response and to handle

ill-conditioned problems. In particular, stochastic simulation methods seem to be

particularly well suited to the problem of model updating and model-class selection
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for such systems.

6.1 Masing Hysteretic Models

One fundamental approach to constructing hysteretic force-deformation relations for

structural members or assemblages of structural members is to build them up from

constitutive equations (plasticity models), which govern material behavior at a point.

However, factors such as complex stress distributions, material inhomogeneities, and

the large number of structural elements make this approach impractical. Also, there

is no general consensus on the choice of plasticity model under arbitrary loading.

An alternative approach is to develop simplified models that capture the essen-

tial features of the hysteretic force-deformation relationship and then to validate the

models against the observed behavior of structures. This has been done by Jayaku-

mar (1987) for the well-known Bouc-Wen model (Wen, 1976), which is essentially

a planar version of the early endochronic model (Valanis 1971); these models are

mathematically convenient, especially for random-vibration studies using equivalent

linearization; but when they are subjected to asymmetric cyclic loading, these models

can exhibit an unphysical “drifting” behavior (Jayakumar, 1987), as shown in Fig-

ure 6.1. This behavior makes this class of models unsuitable for identification using

strong seismic responses, where irregular loading occurs.

A simplified hysteretic model with a physical basis was presented by Masing

(1926), which is based on the hypothesis that a one-dimensional hysteretic system

Figure 6.1: Drifting behavior for Bouc-Wen model under asymmetric cyclic loading.



91

could be viewed as a collection of many ideal elasto-plastic elements (a linear spring

in series with a Coulomb damper) with the same elastic stiffness but different yield

strengths. This idea was used in structural dynamics to form the distributed dlement

model (DEM), which consists of a finite or infinite collection of N ideal elasto-plastic

elements connected in parallel (Iwan, 1966, 1967) with a common stiffness k/N for the

springs but with different yield strengths r∗i /N, i = 1, . . . , N , as shown in Figure 6.2.

The restoring force r for a single-degree-of-freedom DEM subjected to a displacement

x is given by

r =
n∑

i=1

r∗i
N

+ kx
N − n

N
(6.1)

where n is the number of elements that have yielded. Infinite collections of elasto-

plastic elements can be considered by introducing a yield-strength distribution func-

tion φ(r∗), such that the restoring force r(x) during initial loading is

r(x) =

∫ kx

0

r∗φ(r∗)dr∗ + kx

∫ ∞

kx

φ(r∗)dr∗ (6.2)

where the first and second terms represent the contribution to the restoring force of

yielded and unyielded elements, respectively. Because there is an underlying physical

basis for the model, DEMs with a finite number of elements have been shown to give

good representations of the hysteretic behavior of some structures and do not exhibit

the previously discussed drifting behaviors. However, DEMs with an infinite number

of elements are difficult to implement directly, in contrast to the finite case where

the state of each element is tracked, though efficient algorithms for these types of

DEMs are the focus of recent work (Ashrafi et al., 2005). Fortunately, there are two

hysteretic rules that exactly describe the behavior of DEMs without needing to track

the internal behavior of the elements, which are now presented.

Masing (1926) postulated that the steady-state behavior of such a hysteretic sys-

tem subjected to cylic loading could be described as follows. If the initial or “virgin”

loading curve is described by the implicit relationship

f(x, r) = 0 (6.3)
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Figure 6.2: Conceptual sketch of the distributed element model. Taken from Chiang
(1992).

where x is the deflection and r is the restoring force, then each branch of the hysteresis

loop between the points (xa, ra) and (−xa,−ra) is given by

f

(
x− x∗

2
,
r − r∗

2

)
= 0 (6.4)

where (x∗, r∗) is the load-reversal point for that branch curve. For the unloading

branch, (x∗, r∗) ≡ (xa, ra) and (x∗, r∗) ≡ (−xa,−ra) for the loading branch. This is

commonly referred to as Masing’s rule.

Masing’s theory was extended to apply to the case of softening hysteretic systems

under arbitrary loading by Jayakumar (1987), who specified two hysteresis rules,

which will henceforth be referred to as the extended Masing rules:

1. The equation of any hysteretic force-deformation curve can be obtained by

applying the original Masing rule to the virgin loading curve using the latest

point of load reversal. For example, if the virgin loading curve OA in Figure 6.3

is given by Equation 6.3, then the branch curve CD is defined by Equation 6.4,

with (x∗, r∗) ≡ (xc, rc).

2. Once an interior curve under continued loading or unloading crosses a curve from

a previous load cycle, a hysteresis loop is completed and the load-deformation

curve then follows that of the previous cycle. For example, if the unloading

curve DE in Figure 6.3 is continued to point C, further unloading will follow a
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Figure 6.3: Hysteretis loop for transient loading of extended Masing model (Beck and
Jyakumar 1996).

path that is the extension of the curve ABC.

As already mentioned, the class of models defined by these rules was shown by

Jayakumar (1987) to describe the behavior of DEMs, which have an underlying physi-

cal model, and so they are expected to produce reasonable hysteretic behavior. Chiang

(1992) later demonstrated the relationship between the initial loading curve f(x, r)

in Equation 6.3 and the yield-strength distribution function φ(r∗) in Equation 6.2 as

follows:
dr

dx
= k

∫ ∞

kx

φ(r∗)dr∗ (6.5)

which also implies that the yield-strength distribution function may be calculated

from the initial loading curve:

φ(kx) = − 1

k2

d2r

dx2
(6.6)

6.1.1 Masing Shear-Building Model

Jayakumar and Beck (1988) performed system identification of a full-scale six-story

steel building tested pseudo-dynamically in the laboratory of the Building Research

Institute in Tsukuba, Japan (Foutch et al., 1986). Substantial yielding occurred in

the lower stories during the test, which was an experimental simulation under the Taft
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record from the 1952 Kern County earthquake in California. For the identification,

Jayakumar and Beck used a class of shear-building models in which a Masing model

was used to describe the relationship between the story shear forces and the inter-story

drifts. However, multiple optimal models were obtained when using a least-squares

output-error approach, with the results depending heavily on the initial choice of

the model parameters. This suggests that updating this class of models is an ill-

conditioned problem well suited for study with stochastic simulation technqiues.

Consider a structural model with a rigid foundation where the vector of relative

displacements of the structure x(t) is related to the ground acceleration ÿ(t) as follows:

Mẍ+ Cẋ+R = −Mbÿ (6.7)

where M is the mass matrix, C is the viscous-damping matrix, R is the vector of

restoring forces acting on each floor mass and b is the pseudo-static influence vector.

The restoring force at the ith floor mass is given by:

Ri = ri − ri+1 (6.8)

where ri the inter-story shear force at the ith story, which for initial loading is related

to the inter-story drifts by

ṙi = Ki(ẋi − ẋi−1)

[
1−

∣∣∣∣ ri

ru,i

∣∣∣∣αi
]

(6.9)

where Ki is the initial story-stiffness term, ru,i is the story ultimate strength, and

the smoothness of the transition from elastic to plastic response is controlled by the

positive parameter αi, as shown in Figure 6.4. Note that for i = n in Equation 6.8,

rn+1 = 0; and for i = 1 in Equation 6.9, x0 = 0. This class of models represents a

sub-class of Masing models; through the choice of initial loading curves, a huge variety

of hysteretic models can be described by the two extended Masing rules, including

many existing hysteretic models (Jayakumar, 1987).

The basic form of the force-deformation relationship given in Equation 6.9 is
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Figure 6.4: Plots of initial loading curves for Masing shear-building model for different
values of the elastic-to-plastic transition parameter αi.

similar to that of a Bouc-Wen model. The major difference is that this equation

serves only as the initial loading curve and must be combined with the two extended

Masing rules, rather than giving a complete description of the structural response.

6.1.2 Specifying Hysteretic Models with the Yield-Strength

Distribution Function

The implied yield-strength distribution functions for the Masing shear-building model

can be derived from Equation 6.6. The distribution functions for different values of

elastic-to-plastic transition parameters are shown in Figure 6.5. The resulting dis-

tributions appear to be plausible distributions for element yield strengths, with the

spread of the strengths decreasing with the “sharpness” of the transition between

elastic and plastic behavior. Of particular note are the special cases αi = 1, which

results in an exponential distribution, and αi = 2, which produces a lognormal dis-

tribution. Consequently, the force-displacement relationship for these two cases can

be determined explicitly (Jayakumar, 1987).
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Figure 6.5: Plots of yield-strength distribution functions for Masing shear-building
model for different values of the elastic-to-plastic transition parameter αi.

Chiang (1992) studied a class of models defined by what he called a generalized

Rayleigh distribution on the yield strength. Specifically:

φ(r) =
η

r

(
Γ

(
η + 1

η

)
r

ru

)η

exp

[
−
(

Γ

(
1 +

1

η

)
r

ru

)η]
(6.10)

Generalized Rayleigh distributions are plotted for different values of the positive

elastic-to-plastic transition parameter η in Figure 6.6. The differential formulation of

the force-displacement relationship can be expressed as

dr

dx
= K exp

[
−
(

Γ

(
η + 1

η

)
Kx

ru

)η]
(6.11)

where the gamma function Γ(.) is defined as

Γ(a) =

∫ ∞

0

e−tta−1dt (6.12)
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Figure 6.6: Plots of generalized Rayleigh distribution for yield strength for different
values of the elastic-to-plastic transition parameter η.

The advantage of this distribution is that the explicit form of the force-displacement

relationship can be calculated:

r(x) = ruΓ

(
νxη,

η + 1

η

)
+Kx exp (−νxη) (6.13)

where ν ≡
(
Γ
(

η+1
η

)
K
ru

)η

and Γ(., .) is the incomplete gamma function:

Γ(x, a) =
1

Γ(a)

∫ x

0

e−tta−1dt (6.14)

The initial loading curves for this model, which will be referred to as generalized

Rayleigh models, for different values of the elastic-to-plastic transition parameters η

are shown in Figure 6.7.

6.1.3 Developing Reasonable Prior PDFs for Masing Models

Recall from Chapter 2 that, in general, for globally identifiable systems with large

amounts of data, the prior PDFs do not significantly affect the results of model

parameter updating (though they can play a critical role in model-class selection).
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Figure 6.7: Plots of initial loading curves for generalized Rayleigh model for different
values of the elastic-to-plastic transition parameter η.

However, for ill-conditioned problems, the prior PDFs can have a great influence

on the final estimate, making the selection of reasonable prior PDFs an important

consideration.

In this respect, the Masing shear-building model presented previously has an im-

portant advantage; most of the model parameters correspond to actual properties

(the initial stiffness and ultimate strength) and initial estimates can be calculated

from material properties and structural drawings (Jayakumar, 1987).

Prior probability distributions for the mass parameters may be taken as relatively

peaked if structural drawings of the building design are available. If not, any infor-

mation about the type of construction materials and the use of the building can be

used to make an informed estimate (with correspondingly higher uncertainties).

If information on the member properties is available, the mean value of the linear

story stiffnesses can be calculated from finite elements or using an empirical method

such as Biggs’ formula (Anagnostopoulos et al., 1972). However, it is also possible to

rapidly obtain an estimate of the linear stiffnesses of a shear-building system using

only the modal properties.

The first-mode approximation method (Nielsen, 1964; Lai and Vanmarcke, 1980)
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can be used to estimate the story stiffnesses as follows: If the first mode has mode-

shape components φT
1 = [φ1,1φ1,2 . . . φ1,Nd

] then

Kφ1 = Φ
[
k1 k2 · · · kNd

]T
(6.15)

Φ =



φ1,1 φ1,1 − φ1,2 0 0 · · · 0

0 −φ1,1 + φ1,2 φ1,2 − φ1,3 0 · · · 0

0 0 −φ1,2 + φ1,3
. . .

...
...

...
. . . . . . 0

...
...

. . . φ1,Nd−1 − φ1,Nd

0 0 · · · · · · 0 −φ1,Nd−1 + φ1,Nd


(6.16)

Recall from Equation 5.4 that Kφ1 = ω2
1Mφ1, so given an estimate of the first

mode shape and natural frequency, as well as the mass matrix, the story stiffnesses

can be approximated. Note that the matrix defined in Equation 6.16 is singular

(non-invertible) if the first component of the modeshape, φ1,1, is zero, or if any two

consecutive modeshape components are equal, that is, φ1,i = φ1,i+1, i = 1, . . . , Nd −

1. As the relative displacement approaches zero, the associated stiffness approaches

infinity.

6.2 Studies with Simulated Data

To investigate the performance of the TMCMC algorithm with the class of Masing

models for identification of hysteretic systems, an initial study was performed using

simulated dynamic response data. The data is generated using a three-story Masing

shear-building system described by Equations 6.3 through 6.9 and the two extended

Masing rules. Each story has a mass of 1.25×105 kg and a small-amplitude inter-story

stiffness ofKi = 2.5×108 N/m. The ultimate strength of each story is ru,i = 1.75×106

N, and the value of the elastic-to-plastic transition parameter for each story is αi = 4.

The natural frequencies of the structure (based on a linear model given by the

small-amplitude stiffnesses) are 3.17 Hz, 8.88 Hz, and 12.86 Hz. The structure is
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excited with the Sylmar ground motion recorded at Olive View Hospital during the

1994 Northridge earthquake. The resulting response has peak drifts of 2.77 cm,

0.85 cm, and 0.50 cm for the first, second, and third stories, respectively. Viscous

damping is provided to the system through a Rayleigh damping matrix (sum of a term

proportional to the mass matrix M and a term proportional to the small-amplitude

stiffness matrix K) with coefficients cM = 0.293 and cK = 2.64 × 10−4 chosen to

provide 1% of critical damping in the first and second modes.

Two sets of responses are simulated to provide the data for model updating. The

first set corresponds to the time histories of inter-story drift, referred to henceforth

as Ddrift. To simulate measurement noise, a small amount of Gaussian discrete white

noise is added to each channel of generated data, with a standard deviation of 0.1 cm

for each measurement. This simulated data is shown in Figure 6.8. Each channel

corresponds to 500 data points at a sampling interval of 0.02 seconds. While dynamic

measurements of inter-story drifts are possible and have been performed for laboratory

testing of structures, their measurement in actual structures is rare. Accelerometers

are more commonly used for this purpose, so the second set of data, Dacc, consists of

simulated absolute accelerations of each floor. Again, Gaussian discrete white noise

is added to the responses, this time with a standard deviation of 0.5 m/s2, which is

equal to about 20% of the root-mean-square value of the time histories. Simulated

accelerations are plotted in Figure 6.9. The hysteresis loops generated by the Sylmar

ground motion for each story are shown in Figure 6.10. As indicated by the figure,

yielding in the simulated structure occurs primarily in the first story, with some

moderately non-linear behavior in the second story and almost linear response for

the third story.

6.2.1 Identification Model Classes

Four model classes are considered for system identification. All of them use the

Masing shear-building model in Equations 6.7 through 6.9 to generate the predicted

response, q
(i)
t , i = 1, . . . , Nd, t = 1, . . . , Nt, for Nd = 3 channels of Nt = 500 time-
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Figure 6.8: Simulated inter-story drift time histories.

Figure 6.9: Simulated floor acceleration time histories.



102

Figure 6.10: Simulated inter-story shear forces plotted against inter-story drifts.

points at a time-step of 0.02 seconds. The vector θ of uncertain model parameters

include those defining the viscous-damping matrix C; that is, cK and cM , and the

nine hysteretic structural parameters Ki, ru,i, and αi, i = 1, 2, 3, from Equation 6.9.

The prediction error is taken as Gaussian with zero mean and an equal (uncertain)

variance σ2
q for each channel. Therefore, the likelihood function is

p(D | θ,M) =
1

(2πσ2
q )

NtNd
2

exp

[
− 1

2σ2
q

Nd∑
i=1

Nt∑
t=1

(
q
(i)
t (θ)− q̂t

(i)
)2
]

(6.17)

where q̂t
(i) is the measurement for channel i at time-point t.

The mass matrix M is equal to the actual mass matrix, which is reasonable since,

as discussed, the mass distribution can be accurately evaluated based on structural

drawings. The three small-amplitude stiffnesses and ultimate strengths of the three

stories are to be estimated, along with the elastic-to-plastic transition parameters

αi, which are constrained to be equal for all three stories in model classes M1 and

M2 but are allowed to vary between stories for model classes M3 and M4. Rayleigh

damping coefficients are estimated for model classesM2 andM4, as described below.

The prior probablity distributions for the small-amplitude stiffnesses Ki are taken

to be independent lognormal distributions, each with logarithmic mean ln (2.5× 108)

and logarithmic standard deviation of 0.5. The PDFs for the ultimate strengths ru,i

are also independent lognormal distributions with logarithmic means of ln (2.5× 106)
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Figure 6.11: Prior PDFs for Masing shear-building model parameters. The dashed
lines indicate the values of the parameters used to generate the data.

and a logarithmic standard deviations of 0.5. The elastic-to-plastic transition parame-

ter αi is also lognormally distributed with logarithmic mean of ln(4) and a logarithmic

standard deviation of 0.5. Plots of the prior PDFs for Ki, ru,i, and αi are shown in

Figure 6.11.

The prediction-error variances for the identification with drift records is assumed

to be equal for all three stories and the prior PDF for σ2
drift is uniformly distributed

between 0 and 2.5× 10−5, which is approximately one-half of the mean square of the

“measured” drift time histories. Similarly, the prediction-error variance for identi-

fication with acceleration records, σ2
acc, is equal for all the stories and is uniformly

distributed between 0 and 3, which is again approximately one-half the mean square

of the “measured” acceleration time histories.

Model classes M1 and M3 contain no Rayleigh viscous-damping matrix, whereas

model classes M2 and M4 do, and so damping coefficients cK and cM are included

as uncertain parameters to be updated for those two model classes. The prior PDF

for cM is a uniform distribution between 0 and 1.5, and the prior PDF for cK is a

uniform distribution between 0 and 1.5 × 10−3. For both coefficients, the range of

the prior PDF is more than five times the actual value used to generate the data.

It should be noted that the model used to generate the data is contained in model

classes M2 and M4. The candidate model classes are summarized in Table 6.1.
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Model Class K1 K2 K3 ru,1 ru,2 ru,3 α1 α2 α3 cM cK σ

M1 free free free free free free free = α1 = α1 fixed fixed free
M2 free free free free free free free = α1 = α1 free free free
M3 free free free free free free free free free fixed fixed free
M4 free free free free free free free free free free free free

Table 6.1: Summary of parameters for candidate model classes.

6.2.2 Model Updating and Model-Class Selection with Drift

Time Histories

For each model class, three runs were performed using the TMCMC algorithm. Each

run used 1000 samples per level. Between 19 to 23 levels were needed to go from the

prior PDF to the posterior PDF in a given run. Figure 6.12 shows how the samples in

the (ru,1, K1) space converge for a run using model class M1 as the tempering param-

eter β increases, where the model class is globally identifiable. Figure 6.13 shows the

convergence of samples in the (ru,3, K3) space for model class M2, where the model

class is close to unidentifiable in the ru,3 direction, because of the lack of third-story

yielding in the data, as discussed later. The estimated most probable values and

standard deviations of the marginal posterior PDFs for each parameter, calculated

from the aggregate samples of the three runs performed for each model class, are

presented in Table 6.2. For purposes of comparison, the most probable parameter

values for each model class are also calculated by numerical optimization of the pos-

terior PDF, and also are shown in Table 6.2. The most probable values obtained by

optimization are within one standard deviation of the corresponding values obtained

by stochastic simulation, showing good agreement despite the expected discrepancy

between maximizing the joint PDF and maximizing the marginal PDFs (discussed

in Section 3.2). It should be noted that convergence of the optimization algorithm

was achieved using initial conditions based on the simulation results, otherwise there

would have been difficulties in the optimization due to ill-conditioning, particularly

in model classes M3 and M4, as will be seen later. For model classes M1 and M2,

the estimates of the three stiffness parameters are fairly well-constrained (e.g., see

Figures 6.12 and 6.13). The estimate for the first-story strength is also very tightly
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m = 1
β = 0.000

m = 5
β = 0.004

m = 9
β = 0.021

m = 13
β = 0.095

m = 16
β = 0.367

m = 19
β = 1.000

Figure 6.12: Plots of the samples in the (ru,1, K1) space generated at different “levels”
of one run of the TMCMC algorithm when updating model class M1 with drift data.
Repeated samples are indicated by size and shading of the markers.
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m = 1
β = 0.000

m = 5
β = 0.005

m = 13
β = 0.075

m = 17
β = 0.279

m = 21
β = 1.000

m = 9
β = 0.022

Figure 6.13: Plots of the samples in the (ru,3, K3) space generated at different “levels”
of one run of the TMCMC algorithm when updating model class M2 with drift data.
Repeated samples are indicated by size and shading of the markers.
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Model Class M1 M2 M3 M4

Sim. Opt. Sim. Opt. Sim. Opt. Sim. Opt.
K1 2.523 2.525 2.501 2.504 2.531 2.525 2.510 2.507

108 N/m (0.007) [0.002] (0.015) [0.003] (0.009) [-0.006] (0.017) [-0.003]
K2 2.503 2.500 2.486 2.488 2.477 2.483 2.468 2.472

108 N/m (0.012) [-0.003] (0.021) [0.002] (0.019) [0.006] (0.026) [0.004]
K3 2.492 2.495 2.474 2.476 2.530 2.522 2.472 2.492

108 N/m (0.013) [0.003] (0.017) [-0.002] (0.022) [-0.008] (0.018) [0.020]
ru,1 1.752 1.752 1.752 1.753 1.747 1.747 1.749 1.751

106 N (0.005) [0.000] (0.004) [0.001] (0.005) [0.000] (0.005) [0.002]
ru,2 1.756 1.764 1.809 1.815 1.691 1.685 1.757 1.748

106 N (0.036) [0.008] (0.039) [0.006] (0.066) [-0.006] (0.066) [-0.009]
ru,3 1.736 1.731 2.480 2.061 2.725 2.634 2.714 2.582

106 N (0.129) [-0.005] (0.901) [-0.419] (0.972) [-0.091] (1.140) [-0.132]
α1 3.916 3.890 3.911 3.922 3.899 3.949 3.879 3.891

(0.110) [-0.026] (0.103) [0.011] (0.110) [0.060] (0.098) [0.012]
α2 = α1 = α1 = α1 = α1 4.513 4.542 4.350 4.479

(fixed) (fixed) (fixed) (fixed) (0.643) [0.029] (0.496) [0.129]
α3 = α1 = α1 = α1 = α1 4.513 4.542 4.350 4.479

(fixed) (fixed) (fixed) (fixed) (0.643) [0.029] (0.496) [0.129]
cM 0.000 0.000 0.293 0.294 0.000 0.000 0.261 0.299

(fixed) (fixed) (0.049) [0.001] (fixed) (fixed) (0.061) [0.038]
cK 0.000 0.000 3.269 3.021 0.000 0.000 3.474 3.073

10−4 (fixed) (fixed) (0.660) [-0.248] (fixed) (fixed) (1.156) [-0.401]
σ2

drift 1.139 1.129 1.021 1.009 1.130 1.125 1.032 1.008
10−6 m2 (0.044) [-0.010] (0.041) [-0.012] (0.043) [-0.005] (0.036) [-0.024]

Table 6.2: The estimated most probable parameter values and standard deviations
for the marginal PDFs, calculated from samples, and for the joint PDF, calculated by
optimization of the posterior, for model updating with drift data using both stochastic
simulation and numerical optimization. Standard deviations are shown in parenthe-
ses, and the difference between the parameter values maximizing the marginal and
joint PDFs is shown in brackets.
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m = 13
β = 0.075

m = 17
β = 0.279

m = 21
β = 1.000

m = 1
β = 0.000

m = 5
β = 0.005

m = 9
β = 0.022

Figure 6.14: Normalized histograms for ru,3 calculated using the samples shown in
Figure 6.13 from one run of the TMCMC algorithm when updating model class M2

with drift data.

constrained (Figure 6.12), but the second-story strength is somewhat less pinned

down and the third-story strength has a relatively large uncertainty (Figure 6.13).

This behavior can be explained by looking at Figure 6.10; since the first story is

subjected to substantial yielding, much information about its ultimate strength is

available, but since no appreciable yielding occurs in the third story, the data only

provides information that low values of the third-story strength are not plausible, as

can be seen in Figure 6.13 by the way the samples move between the prior and the

posterior. Figure 6.14 also illustrates this by showing the evolution of the histogram

of ru,3. Note that for the higher values of ultimate story strength, the histogram for

the final level has the same shape as the prior PDF. This is because there is very little

information in the data about the upper limit of the ultimate strength of the third

story, so the posterior PDF there is limited by the prior PDF. This makes sense, as

the prior information must take precedence when no useful information is provided

by the data.

The estimates of the stiffness parameters for model classes M3 and M4 are still

fairly tightly constrained, as can be seen from Table 6.2. However, the second and
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m = 1
β = 0.000

m = 5
β = 0.006

m = 13
β = 0.080

m = 17
β = 0.231

m = 22
β = 1.000

m = 9
β = 0.029

Figure 6.15: Plots of the samples in the (ru,3, α3) space generated at different “levels”
of one run of the TMCMC algorithm when updating model class M3 with drift data.
Repeated samples are indicated by size and shading of the markers.

third stories exhibit more complicated behavior in the (ru,i, αi) space. For model

classesM1 andM2, the manifold of optimal models is essentially constrained to move

along a curve in the parameter space where only ru,3 varies, because the value of αi

is pinned down for all three stories by the yielding in the first story. Model class M3,

which does not constrain the elastic-to-plastic transition parameters to be equal for all

stories, has a manifold of optimal models that exhibits interaction between the story

ultimate strength and elastic-to-plastic transition parameters for the second and third

stories. Figure 6.15 shows how samples in the (ru,3, α3) space converge during one

run of the TMCMC algorithm when updating model class M3 with drift data. This

type of geometry cannot be well-represented by an asymptotic approximation, and

the numerical optimization necessary to make such an approximation is also difficult

to perform without a good initial estimate of the parameters. The samples from

updating model classM4 are also of interest. Figure 6.16 shows the aggregate samples

for the final level of all three simulation runs using drift data, plotted in the (ru,i, αi)
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Figure 6.16: Aggregate samples for the final level of three runs of the TMCMC
algorithm when updating model class M4 with drift data, plotted in the (ru,i, αi)
space for all three stories.

space for each story. The first-story parameters are globally identifiable, as expected.

The second-story parameters exhibit a manifold of optimal models similar to those

shown in Figure 6.15 for model class M3. However, the third story parameters are

not concentrated along a manifold, but are spread through the (ru,3, α3) space. A

clear lower bound on the samples is evident, but the upper bounds are essentially

constrained only by the prior PDF. Since the third story experienced almost no non-

linear behavior, this lower bound on the yielding parameters is all the information that

can be extracted. It is possible that for model class M3, the third-story samples are

concentrated along this lower bound (see Figure 6.15) in an attempt to compensate

for the lack of viscous damping, because in this region the associated hysteretic energy

dissipation is largest. In model class M4, the identified viscous-damping parameters

are fairly close to the values used to generate the data, thus no additional energy

dissipation is needed, and so the parameters associated with third-story yielding are

essentially free away from the “lower bound” (Figure 6.16). This geometry of the

posterior PDF cannot be represented with any type of asymptotic approximation

and it is even more challenging to perform optimization here than for model class

M3. Results of Bayesian model-class selection for model classes updated with drift

data are shown in Table 6.3. The log-evidence and average log-likelihood function

over the posterior PDF that are estimated from stochastic simulation are shown, along

with the information gain, which is not directly estimated but rather calculated from
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Model Class Average Data Fit Information Gain Log Evidence Probability
M1 8138.0 43.7 8094.3 0.0000
M2 8219.7 45.9 8173.8 0.8022
M3 8140.0 50.0 8090.0 0.0000
M4 8220.0 47.7 8172.4 0.1978

Table 6.3: Bayesian model-class selection results for drift data. The information gain
is the difference between the average data fit and the log of the evidence, which are
estimated using stochastic simulation

the other two quantities using Equation 2.16. The evidence clearly favors model class

M2, which is unsurprising as it contains the model used to generate the data and

has two fewer parameters than the other model class (M4) that contains the data-

generation model. The improvement in the data-fit for model class M2 more than

offsets the increased complexity (which is indicated by the larger information gain)

compared to model class M1.

Model class M3 not only gives a poorer data-fit than M2 but it also has a larger

information gain, while model classM4 exhibits a slightly improved data fit compared

to M2 (possibly due to over-fitting of noise), which does not balance out the extra

information needed to update the additional model parameters.

The results in Table 6.3 also show that model class M3 has a larger information

gain than model class M4, which has two additional parameters. Figures 6.15 and

6.16 may explain this somewhat counter-intuitive result. While the samples for model

class M3 are very tightly concentrated along a manifold in (ru,3, α3) space as seen

in Figure 6.15, the samples for model class M4 are spread out through the same

space, as seen in Figure 6.16 and as previously discussed. It seems reasonable that

the extra information implied by the concentration of samples on the manifold might

be greater than the information needed to identify the Rayleigh damping coefficients.

This is an important point, as it shows that, unlike methods such as the AIC and

BIC, the penalty against model complexity in Bayesian model-class selection is not

based solely on the number of parameters, but rather on how much extra information

is extracted from the data by the inclusion of these parameters.
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6.2.3 Model Updating and Model-Class Selection with Ac-

celeration Time Histories

The procedures applied to the drift response were also applied to the acceleration

response. Three runs were performed using the TMCMC algorithm for each model

class, each run using 1000 samples per level and needing between 19 to 23 levels to go

from the prior PDF to the posterior PDF in a given run. Table 6.4 summarizes the

results of the stochastic simulations for all four model classes and the most probable

parameter values obtained using optimization. Again, the differences in the most

probable parameter values obtained from simulation and optimization are less than

one standard deviation.

In general, the parameter uncertainties are less than those for the case where drift

data is used for updating, possibly because the acceleration records are richer in higher

frequencies, so model behavior in the elastic-to-plastic transition region plays a more

significant role in the response and constrains the corresponding model parameters

more than for updating with drift records. Model class M1 exhibits a much lower

identified value for the ultimate strength of the third story. This behavior is probably

an attempt to compensate for the energy dissipated by the stiffness-proportional

component of the viscous damping by using the hysteretic damping. The value may

be lower than that obtained by updating with drift data because the offset that

results from yielding, while important in the drift response, is at low frequencies and

therefore is not so strongly represented in the acceleration response.

Of particular note is the identification of model class M4. Figure 6.17 shows

plots of the aggregate samples plotted in the (ru,i, αi) space. Unlike the samples

obtained by updating with drift records that are shown in Figure 6.16, the third-story

yielding parameters are concentrated along a well-defined manifold in the (ru,i, αi)

space, perhaps due to the increased importance of the high-frequency response in the

acceleration records which provides more information for the updating.

Results for model-class selection using the acceleration data are shown in Table 6.5.

Again, model class M2 is preferred, by an even wider margin than for updating with
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Model Class M1 M2 M3 M4

Sim. Opt. Sim. Opt. Sim. Opt. Sim. Opt.
K1 2.503 2.501 2.500 2.500 2.523 2.526 2.500 2.499

108 N/m (0.007) [-0.002] (0.007) [0.000] (0.011) [0.003] (0.007) [-0.001]
K2 2.533 2.533 2.495 2.493 2.528 2.529 2.499 2.498

108 N/m (0.005) [0.000] (0.007) [-0.002] (0.006) [-0.001] (0.008) [-0.001]
K3 2.538 2.538 2.502 2.504 2.569 2.562 2.507 2.510

108 N/m (0.006) [0.000] (0.008) [0.002] (0.028) [-0.007] (0.011) [0.003]
ru,1 1.808 1.806 1.747 1.747 1.814 1.814 1.746 1.746

106 N (0.007) [-0.002] (0.007) [0.000] (0.006) [0.000] (0.024) [0.000]
ru,2 1.752 1.743 1.743 1.752 1.733 1.733 1.749 1.740

106 N (0.019) [-0.009] (0.014) [0.009] (0.020) [0.000] (0.024) [-0.009]
ru,3 1.511 1.516 1.771 1.752 2.016 2.230 2.417 2.389

106 N (0.020) [0.005] (0.064) [-0.019] (0.870) [0.214] (0.795) [0.028]
α1 3.873 3.922 4.023 4.032 3.771 3.749 4.056 4.068

(0.087) [0.049] (0.075) [0.009] (0.080) [-0.022] (0.079) [0.013]
α2 = α1 = α1 = α1 = α1 4.075 4.050 3.931 4.015

(fixed) (fixed) (fixed) (fixed) (0.193) [-0.025] (0.191) [0.084]
α3 = α1 = α1 = α1 = α1 1.826 2.014 2.456 2.690

(fixed) (fixed) (fixed) (fixed) (0.814) [0.188] (0.735) [0.234]
cM 0.000 0.000 0.296 0.303 0.000 0.000 0.303 0.310

(fixed) (fixed) (0.029) [0.007] (fixed) (fixed) (0.028) [0.007]
cK 0.000 0.000 2.801 2.764 0.000 0.000 2.788 2.721

10−4 (fixed) (fixed) (0.159) [0.037] (fixed) (fixed) (0.167) [-0.067]
σ2

acc 0.496 0.493 0.271 0.270 0.482 0.472 0.274 0.269
(m/s2)2 (0.019) [-0.003] (0.010) [-0.001] (0.018) [-0.010] (0.010) [-0.005]

Table 6.4: The estimated most probable parameter values and standard deviations
for the marginal PDFs, calculated from samples, and for the joint PDF, calculated by
optimization of the posterior, for model updating with acceleration data using both
stochastic simulation and numerical optimization. Standard deviations are shown
in parentheses, and the difference between the parameter values maximizing the
marginal and joint PDFs is shown in brackets.
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Figure 6.17: Aggregate samples for the final level of three runs of the TMCMC
algorithm when updating model class M4 with acceleration data, plotted in the
(ru,i, αi) space for all three stories.

Model Class Average Data Fit Information Gain Log Evidence Probability
M1 -1602.7 43.5 -1646.2 0.0000
M2 -1150.8 53.4 -1204.2 0.9989
M3 -1581.9 53.7 -1635.6 0.0000
M4 -1150.7 60.3 -1211.0 0.0011

Table 6.5: Bayesian model-class selection results for acceleration data. The informa-
tion gain is the difference between the average data fit and the log of the evidence,
which are estimated using stochastic simulation

drift data, since the improvement in data fit for model class M4 is negligible. It is

also of some interest that model class M3 is preferred to model class M1, while the

opposite was true when drift data was used for updating. The improvement in the

data fit is large enough to justify the extra information extracted from the data.

6.2.4 Robust Predictive PDFs for Hysteretic Models

To illustrate how samples of hysteretic structural model parameters obtained through

stochastic simulation may be used to incorporate uncertainty into predicted structural

response, consider the following example.

Model class M4, presented in Section 6.2.1, is updated using acceleration data as

before; however, in this case, only data from the first and third floors are available

(no acceleration measurements at the second floor). Table 6.6 presents the estimated

most probable values and standard deviations of the marginal posterior PDFs for

each parameter, calculated from a single run of the TMCMC algorithm using 1000
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K1 K2 K3 ru,1 ru,2 ru,3

108 N/m 108 N/m 108 N/m 106 N 106 N 106 N
Sim. 2.482 2.531 2.504 1.744 1.774 3.598

(0.019) (0.025) (0.013) (0.011) (0.039) (1.232)
Opt. 2.478 2.534 2.503 1.744 1.761 2.875

[-0.004] [0.003] [-0.001] [0.000] [-0.013] [-0.723]
α1 α2 α3 cM cK σ2

10−4 (m/s2)2

Sim. 3.96 3.74 4.21 0.307 2.758 0.248
(0.13) (0.21) (1.27) (0.043) (0.406) (0.011)

Opt. 3.96 3.77 4.69 0.319 2.597 0.243
[0.00] [0.03] [0.48] [0.012] [-0.161] [-0.005]

Table 6.6: The estimated most probable parameter values and standard deviations
for the marginal PDFs, calculated from samples, and for the joint PDF, calculated
by optimization of the posterior, for model updating with partial acceleration data
using both stochastic simulation and numerical optimization. Standard deviations are
shown in parentheses, and the difference between the parameter values maximizing
the marginal and joint PDFs are shown in brackets.

samples per level. Also presented are estimates of the most probable parameter

values obtained by optimization of the joint posterior PDF. Samples are plotted

on the (ru,i, αi) sub-spaces in Figure 6.18. As might be expected, there are large

uncertainties in the estimates for parameters associated with the third-story yielding

inelastic response.

The data-generating system (specified in Section 6.2) is then subjected to a differ-

ent input excitation, specifically the ground motion obtained at the Rinaldi Receiving

Station during the 1994 Northridge earthquake. This record features somewhat larger

Figure 6.18: Samples for model updating with partial acceleration data (first and
third floors), plotted in the (ru,i, αi) space for all three stories.
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Figure 6.19: Predicted maximum inter-story drifts for the updated model class in
response to the Rinaldi Receiving Station record. The shaded area is the normalized
histogram of the maximum predicted drift responses generated using samples obtained
from stochastic simulation. The dashed line represents the predicted maximum drift
based on parameter values obtained by optimization, and the solid line indicates the
actual response of the data-generating system.

accelerations compared to the Olive View hospital ground motion. Optimal and ro-

bust predictive PDFs for the peak inter-story drifts are calculated from Equations 2.7

and 3.9, respectively. Comparisons between the robust PDF, the optimal PDF, and

the actual values of the peak drifts exhibited by the data-generating system are shown

for each story in Figure 6.19.

Note that the prediction for maximum first-story drift has the greatest uncertainty.

This may seem surprising at first, as there is much less uncertainty associated with

the identified first-story model parameters compared to those for the third story.

However, the first story is where the greatest non-linear response occurs, and therefore

the first-story drifts are much more sensitive to the total uncertainty in the predictive

model than the much smaller third-story drifts.

6.3 Deteriorating Hysteretic Models

An important consideration in modeling structural responses to very strong shaking

is that damage to structural and non-structural elements can significantly alter the

dynamic characteristics of the structure during the shaking. Identifying time-varying

structural parameters to capture this deterioration in structural behavior is difficult
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and limits the applicability of the model for prediction of future response. However,

the class of Masing models can be straightforwardly extended to the case of deterio-

rating strength and stiffness using time-invariant parameters. As might be expected,

the issues with ill-conditioning and non-identifiability present for non-deteriorating

models persist, and even worsen, making stochastic simulation a highly relevant tool

for studying such systems.

6.3.1 Deteriorating Masing Models

The basis of the deteriorating Masing models is again the DEM, specifically the

displacement-controlled deteriorating DEM introduced by Iwan and Cifuentes (1986).

The model is similar to that described in the previous section; however, in this model

the individual elasto-plastic elements are allowed to “break” if the displacement ex-

ceeds a threshhold value, which was defined as µxy,i, where xy,i is the yield displace-

ment for the ith element and µ is the breaking ductility ratio, which for simplicity is

assumed to be the same for all elasto-plastic elements. Cifuentes and Iwan (1989)

successfully performed identification of this model using data from actual structures.

Ashrafi et al. (2005) identified damage using a class of infinite deteriorating DEMs,

but only for single-degree-of-freedom cases where the displacement and restoring force

time histories are available.

A generalized class of deteriorating Masing models have been constructed (Chiang,

1992, 1999). This was accomplished by studying the integral form of the restoring

force for DEMs, given in Equation 6.2. Chiang added a damage index function,

d(x, r∗) ∈ [0, 1], such that the restoring force during initial loading is then given by

r(x) =

∫ kx

0

r∗φ(r∗)d(x, r∗)dr∗ + kx

∫ ∞

kx

φ(r∗)dr∗ (6.18)

where φ(r∗)d(x, r∗) and 1 − φ(r∗)d(x, r∗) represent the fraction of undamaged and

damaged elements, respectively, with yield strengths in the interval (r∗, r∗ + dr∗).

Chiang determined the integrals giving the restoring forces for the unloading and

reloading cases.
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Figure 6.20: Yield-strength distribution for a deteriorating hysteretic system. The
shaded portion indicates elements that have broken after having exceeded the pre-
scribed force level indicated by the dashed line.

It was found that the behavior of the displacement-controlled deteriorating DEM

of Iwan and Cifuentes could be reproduced by choosing the damage index function:

d(x, r∗) = 1−H

(
kxm

µ
− r∗

)
(6.19)

where H(.) is the Heaviside step function, µ is the previously discussed breaking

ductility ratio, and xm is the maximum experienced displacement, defined as

xm(t) = max
τ≤t

|x(τ)| (6.20)

This can be viewed as all elements with yield strengths below the level kxm/µ hav-

ing been broken and no longer contributing to the restoring force, as illustrated in

Figure 6.20. Chiang (1992) developed expressions for the unloading and reloading

branch behavior for a hysteretic system with an initial loading curve as defined in

Equation 6.3, and showed that they could be combined with the extended Masing

rules, discussed in Section 6.1, to give deteriorating Masing models. Figure 6.21

shows the initial loading curves for deteriorating Masing models (based on a gener-

alized Rayleigh distribution with η = 1 for the yield strength) with several different

values of the breaking ductility ratio µ. The damage-index function given in Equa-

tion 6.19 also leads to the following expression for the fraction of broken elements,
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Figure 6.21: Initial loading curves for a deteriorating Masing model with a generalized
Rayleigh yield-strength distribution (with η = 1), plotted for different values of the
breaking ductility ratio µ

denoted as the damage fraction D(t):

D(t) =

∫ kxm/µ

0

φ(r∗)dr∗ (6.21)

which is simply the area of the shaded region in Figure 6.20. This might be con-

sidered a sort of generalized damage index, and by examining the restoring force in

Equations 6.2 and 6.18, it can be considered to give an expression for the fractional

loss in small-amplitude stiffness Dstiff (t). The expression for the fractional loss in

ultimate strength is given by

Dstr(t) =

∫ kxm/µ

0

r∗φ(r∗)dr∗ (6.22)

Note that if the element is based on a generalized Rayeigh distribution for the element

yield strength, as defined by Equations 6.10 through 6.13, then Dstiff (t) and Dstr(t)
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are given by the closed-form expressions

Dstiff (t) = 1− exp

[
−ν
(
xm

µ

)η]
(6.23)

Dstr(t) = Γ

(
ν

(
xm

µ

)η

,
η + 1

η

)
(6.24)

where the constant ν and the complete and incomplete gamma functions, Γ(.) and

Γ(., .), are defined as for Equation 6.13.

Note that there may be significant differences in stiffness and strength losses.

For example, the deteriorating system shown in Figure 6.20 has about a 9% loss

of stiffness, but only around a 2% loss in strength, since the broken elements have

relatively low strengths, and thus contribute only a small amount to the total stength.

Recall that for the Distributed Element Model, which can be viewed as the physical

basis for the Masing hysteretic model, each differential element contributes equally

to the elastic stiffness (see Figure 6.2), so the loss of lower-strength elements has a

greater effect on the small-amplitude stiffness of the system.

6.4 Studies of Deteriorating Systems with Simu-

lated Data

Data is generated using a three-story Masing shear-building model excited by the

Sylmar ground motion, as described in Section 6.2. However, instead of using the

Bouc-Wen-like initial loading curve described by Equation 6.9, the relationship be-

tween inter-story drift and inter-story shear force is described by Equation 6.11. This

is done because the rules defining the deteriorating hysteresis loops are more easily

implemented. The value of the elastic-to-plastic transition parameter is set to ηi = 3,

compared to αi = 4 for the Masing shear model used in Section 6.2. Comparison

of the curves in Figures 6.4 and 6.7 shows that the two models should produce rela-

tively similar initial loading curves in the non-deteriorating case. Values for the floor

masses, the small-amplitude story stiffnesses, ultimate story strengths, and viscous-
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damping matrix are identical to those used in Section 6.2. Two types of structures are

considered: a non-deteriorating system and a deteriorating system with a breaking

ductility ratio of µi = 6 for each story.

Simulated acceleration data is generated for each system, 500 data points for each

story at a sampling interval of 0.02 seconds. Gaussian discrete white noise is added

to the responses, with a standard deviation of 0.5 m/s2, which is equal to about 20%

of the root-mean-square value of the time histories. The data set corresponding to

the non-deteriorating structure will be henceforth referred to as Dyield and the set

corresponding to the deteriorating system as Ddmg.

The identification model class is a deteriorating hysteretic model. The likelihood

function is given in Equation 6.17. The exact viscous-damping matrix was used,

since the identifiability of this matrix had already been explored in the previous

example. Similarly, the identification model constrained the values of the elastic-

to-plastic transition parameter ηi to be equal at each story. The breaking ductility

ratio µi is similarly constrained. The resulting identification model has nine uncertain

parameters, which are listed in the first row of Table 6.7.

Prior PDFs for small-amplitude stiffness, story strength, and prediction-error vari-

ance are unchanged from the previous example. The prior PDFs for η and µ are

lognormal, with logarithmic means of ln(3) and ln(10), respectively, and logarithmic

standard deviations of 0.5.

6.4.1 Model Updating with Data from a Non-Deteriorating

System

Updating was performed with the data Dyield using TMCMC with 500 samples per

level. Three runs were performed, with 20 to 21 levels needed to converge from the

prior to the posterior PDF. The results are summarized in Table 6.7, which lists the

most probable values for the marginal PDF of each parameter, calculated from the

aggregate samples of the three runs. For comparison, the most probable parameter

values calculated by numerical optimization of the posterior PDF are also given. Note
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K1 K2 K3 ru,1 ru,2 ru,3 η µ σ2

108 N/m 108 N/m 108 N/m 106 N 106 N 106 N (m/s2)2

Sim. 2.497 2.501 2.497 1.747 1.757 1.633 3.02 20.24 0.280
(0.013) (0.020) (0.013) (0.007) (0.027) (0.144) (0.06) (5.58) (0.010)

Opt. 2.486 2.507 2.504 1.743 1.741 1.558 3.08 21.60 0.275
[-0.011] [0.006] [0.007] [-0.004] [-0.016] [-0.075] [0.06] [1.37] [-0.005]

Table 6.7: Most probable parameter values for marginal PDFs updated using data
from the non-deteriorating system and most probable parameter values for the joint
PDF obtained by optimization of the posterior. Standard deviations for simulation
results are shown in parentheses. Differences between the optimal results for the joint
PDF and the marginal PDFs are shown in brackets.

Final Stiffness Loss Final Strength Loss
1st Story 0.0042 0.0006

(0.0032) (0.0006)
2nd Story 0.0002 0.0000

(0.0002) (0.0000)
3rd Story 0.0000 0.0000

(0.0000) (0.0000)

Table 6.8: Mean values of final fractional stiffness and strength loss for updating using
data from the non-deteriorating system. Standard deviations for simulation results
are shown in parentheses.

that the initial estimates of the parameters for the optimization were based on the

results of the stochastic simulation, as the optimization was very sensitive to initial

conditions.

Figure 6.22 shows how the samples converge in the (ru,3, µ)-space. Samples for

most of the parameters are fairly well pinned down. However, the samples for µ are

widely spread. Since there is no actual damage, instead of identifying a particular

value for the breaking ductility ratio, the stochastic simulation results indicate a

minimum boundary for µ as demonstrated in Figure 6.22.

The fractional loss of strength and stiffness for any given sample can be calcu-

lated from the predicted structural response using Equation 6.21. The final damage

fractions (damage at the end of the response record) are calculated for each sample,

with the mean and standard deviation given in Table 6.8. These results are close to

the exact values, which are zero because there is no deterioration in the hysteretic

system used to generate the data.
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m = 5
β = 0.007

m = 17
β = 0.372

m = 21
β = 1.000

m = 9
β = 0.030

m = 1
β = 0.000

m = 13
β = 0.096

Figure 6.22: Plots of the samples in the (ru,3, µ) space generated at different “levels”
of one run of the TMCMC algorithm when updating model classM3 with acceleration
data generated with a non-deteriorating system. Repeated samples are indicated by
size and shading of the markers.
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m = 5
β = 0.008

m = 14
β = 0.100

m = 19
β = 0.418

m = 23
β = 1.000

m = 10
β = 0.036

m = 1
β = 0.000

Figure 6.23: Plots of the samples in the (ru,3, µ) space generated at different “levels”
of one run of the TMCMC algorithm when updating model classM3 with acceleration
data generated with a deteriorating system. Repeated samples are indicated by size
and shading of the markers.

6.4.2 Model Updating with Data from a Deteriorating Sys-

tem

Updating with the data Ddmg using TMCMC was performed using 500 samples per

level for three runs, with 23 to 24 levels needed to converge from the prior to the

posterior PDF. Figure 6.23 shows how samples converge in the (ru,3, µ)-space for one

run of the TMCMC algorithm. The samples for the final level are concentrated into a

much smaller region compared to Figure 6.22, which shows the samples generated by

updating with Dyield. Results for the most probable values and standard deviations,

obtained from the samples, are summarized in Table 6.9, along with the most probable

parameter values of the joint PDF identified by numerical optimization of the poste-

rior PDF. Generally, the identified values are close to the values of the parameters in

the model used to generate the data.
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K1 K2 K3 ru,1 ru,2 ru,3 η µ σ2

108 N/m 108 N/m 108 N/m 106 N 106 N 106 N m/s2

Sim. 2.487 2.509 2.512 1.756 1.740 1.604 3.04 5.86 0.255
(0.015) (0.024) (0.015) (0.006) (0.022) (0.307) (0.06) (0.07) (0.010)

Opt. 2.488 2.510 2.520 1.757 1.738 1.555 3.06 5.82 0.238
[0.001] [0.001] [0.008] [0.001] [-0.002] [-0.049] [0.02] [-0.04] [-0.005]

Table 6.9: Most probable parameter values for marginal PDFs updated using data
from the deteriorating system and most probable parameter values for the joint PDF
obtained by optimization of the posterior. Standard deviations for simulation results
are shown in parentheses. Differences between the optimal results for the joint PDF
and the marginal PDFs are shown in brackets.

Story Final Stiffness Loss Final Strength Loss
1st 0.1371 0.0609

(0.0033) (0.0016)
2nd 0.0053 0.0008

(0.0005) (0.0001)
3rd 0.0013 0.0001

(0.0005) (0.0001)

Table 6.10: Mean values of final fractional stiffness and strength loss for updating
using data from the deteriorating system. Standard deviations for simulation results
are shown in parentheses.

As shown previously, the damage fraction may be calculated from Equation 6.23.

The mean and standard deviation of the final maximum damage fractions calculated

for the samples are given Table 6.10. The evolution of the damage fraction in time

may also be tracked. Figure 6.24(a) shows the predicted inter-story drift time histories

calculated using the most probable parameter values given in Table 6.9, which are

then used to calculate the time histories of the story damage fractions, which are

shown in Figure 6.24(b).

The effect of the deterioration on the small-amplitude stiffness of the structure

can be directly confirmed by examining the predicted hysteresis loops. Figure 6.25

shows the hysteresis loop for the first story of the deteriorating structures predicted

using the parameter values from the sample with the largest value of log-likelihood

(and therefore expected to be drawn from a high-probability region of the posterior

PDF). The maximum inter-story drift occurs at point A, indicating the moment when

the maximum damage is achieved. Initial reloading from point A has an apparent
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Figure 6.24: Time histories of (a) inter-story drifts and (b) story damage fractions
predicted using the set of most probable parameters updated with Ddmg.

stiffness that is 86% of the initial small-amplitude stiffness, corresponding with the

identified damage fraction of 14% given in Table 6.10. There is no similar method for

directly confirming the strength loss, as the ultimate story strength is not approached

in the portion of the record after the point of maximum experienced drift.

6.5 Preliminary Study with Real Data from a Seven-

story Building Damaged in an Earthquake

The building selected for this study is a seven-story hotel located in Van Nuys, Cal-

ifornia, in the San Fernando Valley of Los Angeles County, which will henceforth be

referred to as the Van Nuys hotel. The Van Nuys hotel is a reinforced-concrete mo-

ment frame building constructed in 1966. The building was lightly damaged in the

1971 San Fernando Earthquake, and severely damaged in the 1994 Northridge earth-

quake, which has made it the focus of numerous studies, e.g., Jennings (1971); Scholl
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Figure 6.25: Hysteresis loop for the first-story response of the deteriorating model.
Point “A” indicates the maximum displacement, corresponding to peak damage.

et al. (1982); Islam (1996); Li and Jirsa (1998); Beck et al. (2002); Ching et al. (2004).

Trifunac et al. (1999) provides detailed descriptions and photographs of damage to

the structure resulting from the Northridge earthquake.

The Van Nuys hotel was instrumented with sixteen accelerometers during the

1994 Northridge earthquake; of particular interest are measurements of the east-

west accelerations at five floors, as the south frame of the building (which provides

lateral stiffness in the east-west direction) was heavily damaged during the event.

Accelerometers oriented in the east-west direction were installed in the southeast

corner of the ground floor and near the east wall of the structure on the second, third,

and sixth floors and the roof. Unfortunately, most of the damage to the south frame

occurred at the beam-column connections at the top of the fourth story (Trifunac

et al., 1999), as shown in Figures 6.26 and 6.27. This damage would be most clearly

reflected in the unmeasured fifth-floor accelerations.

The Northridge earthquake records for the east-west direction are used here for

system identification of the Van Nuys hotel. The ground floor accelerations are used

as the input ground motion, so only four channels of output data are available, mak-

ing this an extremely ill-conditioned system-identification problem when using the
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Figure 6.26: Schematic representation of damage to the south frame of the building
from the Northridge earthquake. Taken from Trifunac et al. (1999).

deteriorating Masing hysteretic model class.

6.5.1 Identification Model

Four model classes are considered, which are all seven-story deteriorating Masing

shear-building models based on a generalized Rayleigh distribution for the yield-

strength, similar to the three-story model used in Section 6.4. The input forces

are computed using the ground floor accelerations as the input ground motion and

assuming a rigid foundation.

The mass matrix for the structure is diagonal, with values for the floor masses,

taken from Ching et al. (2004), of 1.2002×105 kg for the first floor, 1.2002×105 kg for

the second through seventh floors, and 0.9587× 105 kg for the roof. As in the other

studies presented in this chapter, the masses are assumed to be known accurately and

thus the mass matrix is held constant.

Prior PDFs for the initial story stiffnesses are taken as independent lognormal
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Figure 6.27: Photograph of shear cracks occuring in the south frame of the structure
during the Northridge earthquake. Taken from Trifunac et al. (1999).
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distributions, with the logarithmic means for each PDF given by the log of the values

for story stiffness used in a seven-story linear-shear-building model presented in Ching

et al. (2004). These values for the small-amplitude stiffness are 1.00×108 N/m for the

first story, 1.20×108 N/m for the second story, 0.98×108 N/m for the third story, and

0.80×108 N/m for remaining four stories. The logarithmic standard deviation for each

PDF is 0.5. The prior PDFs for story strength are also independent lognormals, with

logarithmic means equal to the above values for small-amplitude stiffness multiplied

by 0.01 m, and logarithmic standard deviations of 0.5.

The prior PDFs for the elastic-to-plastic transition parameter ηi and the breaking

ductility ratio µi of each story are lognormal with means of 2 and 10, and logarithmic

standard deviations of 1 and 0.5, respectively.

A stiffness-proportional viscous-damping matrix is included to provide small-

amplitude damping, with the prior PDF for the constant of proportionality cK given

by a uniform distribution from 0 to 0.02. The stiffness-proportional damping matrix

is chosen because it most closely conforms to the viscous-damping matrix used in

Ching et al. (2004).

An inverse gamma prior is used for the prediction-error variance, with the shape

parameter α = 3 and the scaling parameter β = 1.87, the average of the variance in

each of the four output acceleration records.

For model class M1, the elastic-to-plastic transition parameters and the breaking

ductility ratios are constrained to be the same for each story; that is, ηi = η and

µi = µ, i = 1, . . . , 7. In model class M2, the elastic-to-plastic transtion parameter

is allowed to vary between stories with the breaking ductility ratio still constrained,

while for M3, the breaking ductility ratios are freed while the elastic-to-plastic tran-

sition parameters are kept constrained. Model class M4 allows both the elastic-

to-plastic transition parameter and breaking ductility ratio to vary between stories.

Model class M1 has a total of 18 uncertain parameters, while model classes M2 and

M3 each have 24 uncertain parameters and model class M4 has 30 uncertain param-

eters. All of these model classes therefore have a relatively large number of uncertain

parameters, much more than would normally be used in an ill-conditioned system-
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Model Class Ki, i = 1, . . . , 7 ru,i, i = 1, . . . , 7 ηi, i = 1, . . . , 7 µi, i = 1, . . . , 7 cK σ

M1 free free = η1 = µ1 free free
M2 free free free = µ1 free free
M3 free free = η1 free free free
M4 free free free free free free

Table 6.11: Summary of parameters for candidate model classes.

identification problem. The candidate model classes are summarized in Table 6.11.

6.5.2 Model Updating Using a Hybrid TMCMC-Gibbs Sam-

pler Algorithm

A very recent suggestion by Ching (2006) to improve the performance of the TMCMC

algorithm involves combining the method with the Gibbs sampler. In this case,

updating for all parameters except the prediction-error variance is carried out as

before, with the prediction-error variances fixed at the values from the previous level.

The resulting samples may then be considered to be distributed from a conditional

intermediate PDF. Then, for each sample of the parameter values, the conditional

distribution for the prediction-error variances is sampled. This method requires that a

conjugate prior be chosen for the prediction-error variance to allow for fast sampling,

as explained in Section 4.1.1, and hence the choice of the previously mentioned inverse

gamma prior.

The hybrid TMCMC-GS algorithm was used to generate Markov chains for each

of the three model classes, with 500 samples per level for model classes M1, M2 and

M3, and 2000 samples per level for M4, due to the larger number of parameters. 26

to 28 levels were needed to converge from the prior to the posterior PDF. Figure 6.28

shows the projection of the samples generated using TMCMC-GS onto the (Ki, ru,i)

sub-spaces for each story.

Figure 6.29 shows the predicted floor accelerations for the models in each model

class that are given by the sample with the largest value for the posterior, which can

reasonably be assumed to be close to the most probable parameter values in the model

class, plotted with the available acceleration data. These maximum posterior samples
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Figure 6.28: Posterior samples based on the Northridge earthquake data for each
model class projected onto the (Ki, ru,i) subspace for each story.
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differ quite substantially between model classes, as implied by Figure 6.28, because

the model classes are nearly unidentifiable. Note that while the model predictions

are able to match the lower-frequency behavior of the system; the relatively simple

shear-building identification model cannot generate the higher-frequency oscillations

present in the data. As expected, the model predictions for acceleration are fairly close

at the floors where acceleration measurements are available (second, third, and sixth

floor and roof), but differ somewhat for unobserved floors. Figures 6.30 through 6.33

show hysteresis loops for the first four stories that are predicted by the same models.

While the largest inter-story drifts are predicted for the third story, model class M2

also predicts significant non-linear behavior in the fourth story, which is consistent

with the observed damage. Model classes M1, M3 and M4 indicate nearly linear

behavior at the fourth story.

The final fractional loss in stiffness and strength is calculated for each sample

using Equations 6.23 and 6.24. The mean and standard deviations of the final damage

fractions are shown for each model class in Table 6.12. These results show more clearly

than the hysteresis loops, that significant (nearly 50%) loss of strength is identified

at the fourth story for model class M2, but not for the other three model classes (less

than 2% loss of strength).

While these results are interesting in that the predicted behavior for model class

M2 conforms to observed damage in the structure, further investigation is needed.

Based on the results of this study, perhaps a larger number of samples than used here

will be needed to ensure that the posterior PDF is better represented. With a larger

number of samples, model-class selection could also be performed.

Another issue to consider is the effect of the viscous-damping matrix. Though the

first-mode critical damping ratios for all model classes seem reasonable (ranging from

2 to 4%), the forces associated with viscous damping are unrealistically large, an issue

recently addressed by Hall (2006). Figure 6.34 shows that the damping force is nearly

equal in magnitude to the restoring force. Updating of model classes that omitted

the viscous-damping matrix completely were conducted, however, the updated models

predicted substantial yielding in the upper four stories. Non-linear behavior occurred
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Figure 6.29: Predicted floor accelerations for models corresponding to the maximum
posterior samples for each of the four model classes, plotted with the available data
from the Northridge earthquake.

Figure 6.30: Hysteresis loops for the Northridge earthquake response of the first four
stories of a model corresponding to the maximum posterior sample from model class
M1.
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Figure 6.31: Hysteresis loops for the Northridge earthquake response of the first four
stories of a model corresponding to the maximum posterior sample from model class
M2.

Figure 6.32: Hysteresis loops for the Northridge earthquake response of the first four
stories of a model corresponding to the maximum posterior sample from model class
M3.

Figure 6.33: Hysteresis loops for the Northridge earthquake response of the first four
stories of a model corresponding to the maximum posterior sample from model class
M4.
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Final Stiffness Loss Final Strength Loss
M1 M2 M3 M4 M1 M2 M3 M4

1st Story 0.8743 0.4437 0.7676 0.8645 0.2833 0.0987 0.2693 0.2972
(0.0118) (0.0245) (0.0119) (0.0106) (0.0111) (0.0061) (0.0192) (0.0191)

2nd Story 0.4926 0.4707 0.1446 0.0786 0.0200 0.0644 0.0021 0.0047
(0.0383) (0.0243) (0.0149) (0.0038) (0.0364) (0.0066) (0.0005) (0.0030)

3rd Story 0.9220 0.7052 0.8431 0.9391 0.4049 0.2232 0.3873 0.3339
(0.0089) (0.0296) (0.0115) (0.0043) (0.0184) (0.0199) (0.0180) (0.0222)

4th Story 0.4799 0.9219 0.2416 0.000 0.0184 0.4914 0.0085 0.000
(0.0212) (0.0106) (0.0231) (0.000) (0.0055) (0.0262) (0.0023) (0.000)

5th Story 0.6897 0.000 0.1523 0.0079 0.0828 0.000 0.0024 0.0004
(0.0281) (0.0000) (0.0177) (0.0168) (0.0118) (0.0000) (0.0007) (0.0010)

6th Story 0.4293 0.1650 0.3651 0.5736 0.0119 0.0071 0.0264 0.1043
(0.0233) (0.0304) (0.0258) (0.0359) (0.0031) (0.0016) (0.0042) (0.0236)

7th Story 0.6315 0.000 0.4911 0.0041 0.0619 0.000 0.0634 0.0001
(0.0831) (0.0000) (0.0379) (0.0063) (0.0317) (0.0000) (0.0124) (0.0002)

Table 6.12: Mean predicted values of final fractional stiffness and strength loss for
updating using data from the Northridge earthquake. Standard deviations for simu-
lation results are shown in parentheses.

almost immediately upon loading, since there is no other mechanism for dissipating

energy in the model class. Further studies are needed to determine if another form

of the viscous-damping matrix is appropriate, or if an alternative source of small-

amplitude damping should be used.

6.6 Conclusions

Identification of hysteretic models of structures using earthquake response records is

typically an ill-conditioned problem. Bayesian updating using stochastic simulation

has the capacity to perform updating of hysteretic structural models, including models

with degrading strength and stiffness. This identification approach allows for efficient

extraction of relevant information from the data despite the inherent ill-conditioning

of the inverse problem involved in system identification.

Bayesian model-class selection was also successfully performed. The results il-

lustrated the usefulness of the information-theoretic interpretation of the evidence;

model class complexity is not merely a matter of the number of uncertain parameters,

but rather relates to the amount of information extracted from the data.
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Figure 6.34: The restoring and damping forces acting on the second-floor mass pre-
dicted from a model from model class M3.

Future areas of work might include extending the class of Masing hysteretic models

to capture other types of hysteretic behavior, such as “pinching” hysteresis. This type

of hysteretic behavior, exhibited in the cyclic loading curve pictured in Figure 6.35, is

a common feature in the response of woodframe buildings. It seems possible that by

adding an element that captures this type of behavior to the underlying distributed

element model, expressions for the restoring forces could be obtained for use with the

extended Masing rules.

Another issue that needs further study is the use of viscous damping in hysteretic

models to represent small-amplitude energy dissipation. The simulated example prob-

lems demonstrated that although the viscous damping forces are relatively small com-

pared to the restoring forces, the exclusion of viscous damping from the identification

model can significantly alter the identified hysteretic structural parameters if vis-

cous (i.e., rate-dependent) damping is actually present in the structure. Preliminary

results from the study of the Van Nuys hotel suggest that the inclusion of viscous

damping may introduce large spurious forces into the calculated structural responses

despite apparently reasonable identified modal damping ratios. Though linear viscous

damping is perhaps the most commonly used method for introducing small-amplitude

energy dissipation into structural models, it is not clear that such rate-dependent dis-

sipation mechanisms are really present in civil structures. Also, the coefficients for
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Figure 6.35: Cyclic loading curve for a woodframe shear wall exhibiting “pinched”
hysteretic behavior. Taken from Folz and Filiatrault (2001)

a viscous-damping model to give an energy-dissipation mechanism are very difficult

to establish from structural drawings during design. In fact, the most likely source

of small-amplitude energy dissipation is friction from non-structural elements. These

elements could be well modeled by hysteretic elements, suggesting future directions

for research.

The final goal of the research presented in this chapter is the use of stochastic

simulation techniques to identify Masing hysteretic models for real structures. The

initial results, using relatively sparse data from the Van Nuys hotel, identify models

that predict behavior that is consistent with observed damage, but this work is still

in its preliminary stages. Further investigation into these records and others obtained

from buildings that have experienced damage during strong shaking is needed.
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Chapter 7

Conclusions and Future Work

The overall goal of the research presented in this dissertation is to demonstrate that

stochastic simulation methods are an effective tool for performing parameteric sys-

tem identification using a Bayesian probabilistic framework. Unlike traditional system

identification, where the goal is to find some “optimal” set of parameters, the goal of

the Bayesian probabilistic approach is to determine the probability density function

over the parameters that, using the theory of probability logic, expresses the plau-

sibility of each set of parameters in the parameter space, conditioned on both prior

knowledge and available data. This probabilistic treatment of the problem of system

identification allows for the quantification of the uncertainty associated with the iden-

tified model and with the predictions made using that model. Additionally, extension

of this concept to the model-class level allows for a Bayesian probabilistic approach to

model-class selection, which is shown to automatically enforce the concept of “model

parsimony.”

While Bayesian updating approaches have been applied before to problems of

system identification and model-class selection, these methods mostly rely on asymp-

totic approximations that are difficult to implement in ill-conditioned problems. The

use of stochastic simulation methods for Bayesian system identification and model-

class selection is a relatively new concept that offers a potential solution for ill-

conditioned updating problems. This is important because it is exactly these problems

where the Bayesian viewpoint can offer significant advantages over traditional system-

identification methods. Issues such as multiple local maxima or ill conditioning, which
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are treated as obstacles to be overcome in any type of “optimization” approach to

system identification, are viewed in the Bayesian interpretation as statements on the

limitations of the information available in the data. These limitations, which are

manifested as multiple high-probability regions or manifolds of nearly optimal solu-

tions, can then be accounted for in predictive modeling, instead of being discarded

as mere “sub-optimal models,” or by selecting only one of multiple optimal models

to make predictions.

Chapter 2 presents the Bayesian probabilistic framework for system identification

and model-class selection. The methodology of embedding a deterministic model

within a probability model is used, and the link between Bayesian updating and typ-

ical optimization approaches such as least squares is demonstrated. The process of

Bayesian model-class selection is presented, and an information-theoretic interpre-

tation is given in Section 2.2.1, demonstrating that model class complexity can be

viewed in terms of the information gained from the data. This interpretation can

greatly aid the user’s conceptual understanding of the problem.

Chapter 3 introduces the stochastic simulation methods used in this work, showing

how they are applied to model updating and to model-class selection, an area where

these methods are not commonly applied due to technical challenges.

The example of empirical equations for ground-motion attenuation, presented in

Chapter 4, demonstrates the consistency of the results for system identification and

model-class selection obtained using two different stochastic simulation methods with

results obtained using previously studied Bayesian probabilistic approaches based

on asymptotic approximations, an important step in developing confidence in these

techniques.

Chapter 5, dealing with the updating of linear structural models with modal data

for structural health monitoring, shows how stochastic simulation methods may be

applied to extract probabilistic descriptions for the existance and location of damage

using ambient response measurements. The simple 2-DOF system presented in Sec-

tion 5.3 provides a demonstration of the characterization of unidentifiable systems

using samples generated with stochastic simulation and shows how model-class se-
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lection results may be altered by the choice of prior PDF. Section 5.4 shows that

stochastic simulation techniques may be successfully applied to systems with hun-

dreds of uncertain parameters.

The identification performed in Chapter 6 of degrading and non-degrading hys-

teretic systems demonstrates the potential for stochastic simulation methods to deal

with ill-conditioned systems. The class of Masing hysteretic models used are rela-

tively simple, but can capture complex behavior and have an underlying physical

basis, preventing unphysical behavior such as excessive drifting. However, the iden-

tification of these models using simulated data in Sections 6.2 and 6.4 demonstrates

that optimization approaches are difficult to apply, with results that are very sensitive

to initial conditions. However, the posterior PDFs of these models can be effectively

characterized by samples generated using stochastic simulation. In particular, the

identification of deteriorating hysteretic structural models for multi-degree-of-freedom

systems using only acceleration responses has not, to the author’s best knowledge,

been accomplished previously, even for simulated data. In addition, the results of

model-class selection provide a more sophisticated example of how model complexity

may be viewed in terms of information gained from the data. Finally, the preliminary

results using real data from a structure damaged in the 1994 Northridge earthquake

are encouraging, in that identified models in one model class exhibit behavior consis-

tent with observed damage, but this data set deserves further study.

Goals for future work should first and foremost include the application of these

techniques to ill-conditioned problems involving real data. New stochastic simulation

methods, such as the hybrid TMCMC-GS method used in Section 6.5, should be de-

veloped and refined with the focus on continually improving computational efficiency.

Additionally, the issue of locally identifiable systems, briefly discussed in Section 5.3.2,

remains a challenge, even for more advanced stochastic simulation methods, and re-

lates to the problem of clustering, which is relevant in many other fields.

In conclusion, it is believed that ill conditioning is an unavoidable issue in per-

forming system identification on real-world civil structures. A Bayesian probabilistic

approach to these problems allows for the ill conditioning to be explicitly considered
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instead of being avoided by making unfounded assumptions, and stochastic simulation

methods appear to be a promising tool for implementing this approach.
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Appendix A

Stochastic Simulation Methods

A.1 Metropolis-Hastings Sampler

Consider a target PDF f(θ) ∝ p(D | θ,M) p(θ | M).

1. Draw the sample parameter vector θ̃1 from the prior PDF p(θ | M).

2. Draw a proposed sample parameter vector θ̃prop from the proposal PDF q(θ | θ̃1.

3. Determine the acceptance ratio r:

r =
p(θ∗ | D,M) q(θ̃i | θ∗)
p(θ̃i | D,M) q(θ∗ | θ̃i)

(A.1)

=
p(D | θ∗,M) p(θ∗ | M) q(θ̃i | θ∗)
p(D | θ̂i,M) p(θ̃i | M) q(θ∗ | θ̃i)

4. With probability r, set θ̃2 = θprop, otherwise, set θ̃2 = θ̃1.

5. Repeat steps 2 through 4 until the desired number of samples has been simu-

lated.

A.2 Gibbs Sampler

The parameter vector θ is divided into M groups, denoted θm, m = 1, . . . ,M .
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1. Draw samples for all parameter groups except the first, θ̃
(0)
m , m = 2, . . . ,M from

the prior PDFs p(θm | M).

2. Determine the PDF for the first parameter group θ1 conditioned on the data D

and the samples, p(θ1 | D, θ̃(0)
1 , θ̃

(0)
2 , . . . , θ̃

(0)
M ,M), and draw the sample θ̃

(1)
1 .

A.3 Transitional Markov Chain Monte Carlo

The Transitional Markov Chain Monte Carlo (TMCMC) algorithm, introduced by

Ching and Chen (2006) is a method for sampling the posterior PDF of the model

classM, defined by the parameter vector θ, the prior PDF over the parameter vector,

p(θ | M), and the likelihood function p(D | θ,M), updated with data D. This is done

by estimating a sequence of non-normalized intermediate PDFs, fm(θ), m = 0, . . . ,M ,

given by

fm(θ) ∝ p(D | θ,M)βm p(θ | M) (A.2)

where the tempering parameter βm increases monotonically with m such that β0 = 0

and βM = 1. The algorithm proceeds as follows:

1. f0(θ) = p(θ | M) is chosen by the user and is assumed to be in a form that can

be sampled to obtain θ̃
(0)
k , k = 1, . . . , N0.

2. The value of the tempering parameter for the next level, β1, is chosen such that

the coefficient of variation for
{
p(D | θ̃(0)

k ,M)β1−β0 , k = 1, . . . , N0

}
is equal to

some prescribed target value.

3. The plausibility weights for each sample, w(θ̃
(0)
k ) = p(D | θ̃(0)

k ,M)β1−β0 , are

calculated for k = 1, . . . , N0, as is the sample mean S1 of the N0 plausibility

weights.

4. Samples θ̃
(1)
k , k = 1, . . . , N1 are generated by applying the M-H algorithm as

follows: the kth sample is drawn from a Markov chain that starts with the lead

sample θlead equal to one of the samples
{
θ̃

(0)
k , k = 1, . . . , N0

}
where the prob-

ability that θlead = θ̃
(0)
k is given by w(θ̃

(0)
k )
/∑N0

j=1w(θ̃
(0)
j ). The M-H algorithm is
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applied using a Gaussian proposal PDF that is centered at the current sample

in the kth chain; that is, if θ̃
(0)
k is chosen as the lead sample for the third time,

the proposal PDF is centered at the second sample in the chain with θ̃
(0)
k as the

lead. The covariance matrix for the proposal PDF, Σm, is given by

Σm = c2m

N0∑
k=1

w(θ̃
(0)
k )
(
θ̃

(0)
k − θ

(0)
)(

θ̃
(0)
k − θ

(0)
)T

(A.3)

where

θ
(0)

=

N0∑
i=1

w(θ̃
(0)
i )θ̃

(0)
i

/ N0∑
j=1

w(θ̃
(0)
j ) (A.4)

and c2m is a control parameter that is chosen to balance the potential for large

MCMC moves with maintaining a reasonable rejection rate.

5. Steps 2 through 4 are repeated until level M , where βM = 1 is achieved.
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Appendix B

Conditional Distributions for
Linear Systems

Consider a system where the output Y ∈ RM is linearly related to the input X ∈ RN

through the matrix A ∈ RN×N , plus the prediction error ε ∈ RM , that is Y = AX+ε.

The prior PDF for X is a Gaussian distribution with mean µX and covariance

matrix ΣX . The error terms for each measurement are also Gaussian-distributed,

with zero mean and a variance σ2
j , j = 1, . . . ,M where the prior PDFs over the error

variances are inverse gamma distributions defined by the parameters γj and δj. The

prior PDFs of X and σ2
j are assumed to be independent.

Given the data Ŷ , it is desired to find the conditional distributions for X and the

prediction-error variances σ2
j , j = 1, . . . ,M , p(X | Ŷ , σ2) and p(σ2 | Ŷ , X).

By Bayes’ Theorem,

p(X | Ŷ , σ2,M) =
p(Ŷ | X, σ2,M) p(X | M) p(σ2 | M)

p(Ŷ | M)
(B.1)

∝ p(Ŷ | X, σ2,M) p(X | M)

∝ exp

(
− 1

2σ2
(Ŷ − AX)T (Ŷ − AX)− 1

2
(X − µX)T Σ−1

X (X − µX)

)

Note that the logarithm of this distribution is quadratic in X, showing that the PDF

is Gaussian. Thus, the distribution is completely defined by the conditional mean

and covariance matrix.

The conditional mean can be determined by maximizing log[p(X | Ŷ , σ2)], as
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shown below.
∂p(X | Ŷ , σ2)

∂X
= 0 (B.2)

which implies that

1

σ2
(Ŷ − AX)TA = (X − µX)T Σ−1

X (B.3)

1

σ2
AT (Ŷ − AX) = Σ−1

X (X − µX)

1

σ2
AT Ŷ + Σ−1

X µX =

(
1

σ2
ATA+ Σ−1

X

)
X

Solving for the mean of the conditional distribution,

X̂ =

(
1

σ2
ATA+ Σ−1

X

)−1(
1

σ2
AT Ŷ + Σ−1

X µX

)
(B.4)

= µX +

(
1

σ2
ATA+ Σ−1

X

)−1(
1

σ2
AT Ŷ + Σ−1

X µX − Σ−1
X µX −

1

σ2
ATAµX

)
= µX +

(
1

σ2
ATA+ Σ−1

X

)−1
1

σ2
AT (Ŷ − AµX)

= µX +

(
I + ΣX

1

σ2
ATA

)−1

ΣX
1

σ2
AT (Ŷ − AµX)

Introducing the following lemma,

(I + PQ)−1P = P (I +QP )−1 (B.5)

and defining the matrices P and Q as

P = ΣX
1

σ2
AT , Q = A (B.6)

it is found that

X̂ = µX + ΣXA
T (σ2IAΣXA

T )−1(Ŷ − AµX) (B.7)
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The conditional covariance matrix is given by

cov(X | Ŷ , σ2) = −
[
∇2

X(log[p(X | Ŷ , σ2)])
]−1

(B.8)

=

(
Σ−1

X +
1

σ2
ATA

)−1

Using the matrix identity in Equation B.5 with the definitions for P and Q given in

Equation B.6, the covariance matrix can be found:

cov(X | Ŷ , σ2) = (I + PQ)−1ΣX (B.9)

= (I + PQ)−1[(I + PQ)− PQ]ΣX

= ΣX − (I + PQ)−1PQΣX

= ΣX − P (I +QP )−1QΣX

= ΣX − ΣXA
T (σ2I + AΣXA

T )−1AΣX

The conditional PDF for the error variance can be expressed as

p(σ2 | Ŷ , X) =
p(Ŷ | X, σ2) p(σ2)

p(Ŷ | X)
(B.10)

∝ p(Ŷ | X, σ2) p(σ2)

∝ 1

σn σ2(γ+1)
exp

(
− 1

σ2
(Ŷ − AX)T (Ŷ − AX)− δ

σ2

)
∝ 1

σ2(γ+n
2
+1)

exp

(
− 1

σ2

[
δ +

1

2
(Ŷ − AX)T (Ŷ − AX)

])

which is an inverse gamma distribution, such that

p(σ2 | Ŷ , X) = IG

(
γ +

n

2
, δ +

1

2
σ(Ŷ − AX)T (Ŷ − AX)

)
(B.11)


