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Abstract

We first delve into particle phenomenology with a study of soft-collinear effective theory (SCET),

an effective theory for Quantum Chromodynamics for when all particles are approximately on their

light-cones. In particular, we study the matching of SCETI involving ultrasoft and collinear particles

onto SCETII involving soft and collinear particles. We show that the modes in SCETII are sufficient

to reproduce all of the infrared divergences of SCETI , a result that was previously in contention.

Next we move into early universe cosmology and study alternative mechanisms for generating

primordial density perturbations. We study the inhomogeneous reheating mechanism and extend

it to describe the scenario where the freeze-out process for a heavy particle is modulated by sub-

dominant fields that received fluctuations during inflation. This scenario results in perturbations that

are comparable to those generated by the original inhomogeneous reheating scenarios. In addition, we

study yet another alternative to single field inflation whereby the curvature perturbation is generated

by interactions at the end of inflation, as opposed to when inflaton modes exit the horizon. We clarify

the circumstances under which this process can dominate over the standard one and we show that

it may result in a spectrum with an observable level of non-Gaussianities.

We then turn to studies of the landscape paradigm, which hypothesizes that the observed universe

is just one among a multitude of possibilities that are realized in separate causal regions. Such a

landscape has been used to explain the smallness of the cosmological constant, at least when only

it scans across the landscape. We study the scenario where both the cosmological constant and the

strength of gravity, parameterized by the effective Planck mass, scan across the landscape. We find

that selection effects acting on the cosmological constant are significantly weaker in this scenario and

we find the measured value of the Planck mass to be exponentially unlikely under certain plausible

assumptions about the landscape. Finally, we study some other models of the landscape as part

of a possible explanation for quark-sector flavor parameters in the Standard Model. In this picture

quark Yukawa couplings result from overlap integrals involving quark and Higgs wavefunctions in

compactified extra dimensions, and the values we measure result from random selection from a

landscape of possibilities. We find that many of the salient features of the measured flavor parameters

are typical of the landscape distribution.
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Chapter 1

Introduction

This thesis includes all of the published work resulting from my graduate studies at Caltech (and

some work to be published in the near future). Since my interests have shifted during these studies,

there is no unifying theme that relates all of the chapters in this thesis. Therefore each subject

of investigation is presented as a separate chapter with no attempt to unify this work as a whole.

To serve as an introduction to this work, a brief background discussion to each of the major topics

covered in this thesis is included in the sections below.

1.1 Soft-Collinear Effective Theory

My graduate studies began with an investigation into soft-collinear effective theory (SCET), an

effective theory for Quantum Chromodynamics (QCD). A slightly edited version of the publication

resulting from this work appears as Chapter 2 of this thesis. In what follows I provide background

to this work and describe its context. This involves supplying very brief introductions to SCET and

to heavy quark effective theory (HQET). More in-depth descriptions of SCET and HQET can be

found in the references cited below. At the end of this section I describe my personal contributions

to the work presented in Chapter 2.

We start with a brief description of SCET. The reason for seeking an effective theory for QCD

in the first place is that at the energy scales associated with hadrons the QCD coupling “constant”

αs is of order unity. This makes it very difficult to study QCD perturbatively at these energies.

SCET [1, 2, 3, 4] identifies a different perturbative quantity that can sometimes be used to study QCD

interactions. Specifically, in many QCD interactions the invariant four-momentum dot product p2

for the constituent particles involved in an interaction is much less than then square of the interaction

energy Q2. This hierarchy can be parameterized using the small quantity λ, with p2 ∼ Q2λ2. We

can then study QCD perturbatively with respect to an expansion in powers of λ.

It is convenient to work in light-cone coordinates which refer to the light-cone four-vectors n and

n̄, with n2 = n̄2 = 0 and n · n̄ = 2 (for example, particles moving back-to-back along the z-axis



2

would follow the four-vectors n = (1 , 0 , 0 , 1) and n̄ = (1 , 0 , 0 ,−1) where the first component is the

time component). In these coordinates the components of a general four-momentum are written

pµ = (n · p, n̄ · p, p⊥) ≡ (p+, p−, p⊥) , (1.1)

where p⊥ ≡ p − 1
2 (n̄ · p)n − 1

2 (n · p)n̄. In this notation p2 = p+p− + p2
⊥ from which we can see

that for off-shellness p2 ∼ Q2λ2 we may have pµ ∼ Q(λ2, 1, λ) or pµ ∼ Q(λ, λ, λ). The former

are referred to as collinear momenta and denoted with a subscript c while the latter are referred

to as soft momenta are are denoted with a subscript s. Since adding a single soft momentum to a

single collinear momentum takes the latter further off-shell (by increasing the p+ component of the

momentum), soft-collinear interactions must involve at least two soft and two collinear particles. On

the other hand, a single collinear particle may directly couple to what is referred to as an ultrasoft

(usoft) particle, which is defined by the momenta scaling pµ ∼ Q(λ2, λ2, λ2) and which is denoted

with the subscript us.

The SCET Lagrangian is obtained by integrating out collinear momenta from the QCD La-

grangian. The use of light-cone coordinates is pivotal for making the power counting in λ manifest.

We first write pµc = p̃µ + kµ where p̃µ = 1
2p

−nµ + pµ⊥ includes the large components of the collinear

momentum and kµ includes everything else. Fermions can then be expanded according to

ψ(x) =
∑

p̃

e−ip̃·xψn,p̃(x) =
∑

p̃

e−ip̃·x [ξn,p̃(x) + ξn̄,p̃(x)] , (1.2)

where ξn̄,p̃ ≡ 1
4 n̄/n/ψn,p̃ and ξn,p̃ ≡ 1

4n/n̄/ψn,p̃ are projections of the original fermion onto its collinear

and anti-collinear components. The next step in elucidating the power-counting is to separate the

gluon fields into collinear, soft, and usoft components Aµ = Aµc +Aµs +Aµus, where the components

are separated so as to satisfy the power-counting

Aµc ∼ Q(λ2, 1, λ) , Aµs ∼ Q(λ, λ, λ) , Aµus ∼ Q(λ2, λ2, λ2) . (1.3)

Furthermore, the large collinear momenta of Aµc are factorized analogously to those of ψ as in

Eq. (1.2). When the QCD Lagrangian is written in terms of ξn̄,p̃, ξn,p̃, Ac, As, and Aus, one finds

that at leading order the field ξn̄,p̃ does not interact with soft or usoft degrees of freedom. Therefore

at tree level the field ξn̄,p̃ can be replaced by substituting the solution to its equation of motion.

Putting all of this together gives the leading-order SCET Lagrangian,

LSCET =
∑

p̃,q̃

e−i(p̃−q̃)·xξ̄n,q̃

[

in ·D + (p̃/⊥ + iD/ c⊥)
1

p̃−+ in̄ ·Dc
(p̃/⊥ + iD/ c⊥)

]

n̄/

2
ξn,p̃ , (1.4)

where Dc
µ = ∂µ − igAcµ is a collinear covariant derivative.



3

The SCET Lagrangian can be simplified by introducing a convenient notation [3]. We define

what are referred to as label operators which act according to the definitions

n̄ · Pξn,p̃ ≡ p̃− ξn,p̃ , Pµ⊥ξn,p̃ ≡ p̃
µ
⊥ξn,p̃ . (1.5)

The covariant collinear derivative Dc can then be written in terms of the label operators, that is

Dc
µ = Pµ − igAcµ . (1.6)

One advantage of this notation is that it allows us to absorb the large collinear momenta back into

the collinear fields. Thus we define the collinear field

ξn ≡
∑

p̃

e−ip̃·xξn,p̃ . (1.7)

The label operators then act to pull out the full collinear momentum of a field χn. For example,

n̄ · Pξn =
∑

p̃

p̃−e−ip̃·xξn,p̃ . (1.8)

This allows the SCET Lagrangian to be written in the simpler form,

LSCET = ξ̄n

[

in ·D + iD/ c⊥
1

in̄ ·Dc
iD/ c⊥

]

n̄/

2
ξn . (1.9)

Note that the leading-order Lagrangian contains no couplings between soft and collinear fields, and

that couplings between usoft and collinear fields proceed only via the first term. In fact, even this

interaction can be removed via a clever field redefinition [4]:

ξn = Ynξ
(0)
n , A = YnA

(0)Y †
n , Yn(x) = P exp

(

ig

∫ 0

−∞
ds n ·Aus(x+ ns)

)

, (1.10)

where the “P” refers to path ordering. This field redefinition essentially converts the in · D in

Eq. (1.9) into an in ·Dc, keeping the remaining form of the Lagrangian the same.

The Feynman rules for SCET derive from the Lagrangian Eq. (1.9). The rules for interacting

(u)soft degrees of freedom are exactly the same as in QCD. Meanwhile, the propagator for a collinear

quark with momentum p = p̃+ k is given by

n/

2

ip̃−

p̃−k+ + p̃2
⊥ + iε

. (1.11)

If we do not perform the field redefinitions of Eqs. (1.10) then collinear fields interact with soft

gluons via the first term in Eq. (1.9). This gives the vertex factor n/
2 ignµT

a where T a is a generator
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for SU(3). Interactions between collinear quarks and collinear gluons are more complicated and

proceed via the second term in Eq. (1.9). This gives the vertex factor

n/

2
ig

(

nµ +
p̃/⊥
p̃−
γ⊥µ +

q̃/⊥
q̃−
γ⊥µ −

p̃/⊥q̃/⊥
p̃−q̃−

n̄µ

)

T a , (1.12)

where the collinear quark carries collinear momentum p̃ and the collinear gluon carries collinear

momentum p̃ − q̃. There is no special power counting among the components of (u)soft momenta;

therefore interactions between (u)soft fields follow the usual Feynman rules of QCD.

It is now time to discuss some specific applications of SCET. First, consider the inclusive decay

of a heavy hadron such as the B meson. Such decays involve collinear particles with off-shellness of

order p2
c ∼ mbΛQCD and involve non-perturbative degrees of freedom with momenta components of

order ΛQCD [2]. Identifying the large energy scale with the b mass, Q ∼ mb, we see this scenario is

described by SCET with λ =
√

ΛQCD/mb where the non-perturbative degrees of freedom correspond

to usoft particles. To distinguish it from a second type of application that is described in the next

paragraph, this application of SCET is referred to as SCETI .

A second application of SCET is the study of exclusive decays of heavy hadrons to light hadrons,

for example B → ππ [5, 6]. In this application the off-shellness of collinear particles is p2
c ∼ Λ2

QCD,

which corresponds to an SCET collinear momentum with λ → λ̃ = ΛQCD/mb in the example

B → ππ. Meanwhile, the non-perturbative degrees of freedom are still described by particles with

momenta components of order ΛQCD. Thus in this scenario non-perturbative degrees of freedom

correspond to soft particles, and usoft particles are unimportant for the processes. This application

of SCET is referred to as SCETII .

Although both SCETI and SCETII correspond to the same perturbative expansion with re-

spect to momenta components, SCETI describes collinear degrees of freedom with off-shellness

p2
c ∼ QΛQCD whereas SCETII describes collinear degrees of freedom with off-shellness p2

c ∼ Λ2
QCD.

Therefore SCETII can be viewed as a low-energy effective theory to SCETI . As such, it should

be possible to match SCETI onto SCETII by integrating out the degrees of freedom with energies

greater than those described by SCETII . These correspond to what would be soft momenta in

SCETI , those components with magnitude of order
√

QΛQCD. The work in Chapter 2 performs

this matching, which involves some unanticipated subtleties.

Although the work in Chapter 2 concerns matching SCETI onto SCETII , it also references

HQET in the specific examples chosen to elucidate this matching. Therefore we now present a

brief introduction to HQET. This is an effective theory for QCD where the perturbative expansion

parameter is taken to be the energy of light degrees of freedom over the mass of a heavy quark with

which they interact (for a complete review see for example [7]). In the case of a hadron containing

the bottom quark, for example, this would be ε = ΛQCD/mb. The large momentum of the heavy
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quark ψ is factorized as it is in SCET:

ψ(x) = e−imψv·x
[

hv(x) + h̃v(x)
]

, (1.13)

where hv = 1
2 (1 + v/)eimψv·xψ and h̃v = 1

2 (1− v/)eimψv·xψ are projections of ψ and v is the velocity

of the heavy quark ψ.

It can be shown that the effects of the field h̃v are suppressed relative those of hv by a power of

ε = ph/mψ, where ph is the residual momentum of the hv field. Therefore it is lower order in the

expansion and can be ignored. The resulting Lagrangian for hv is

LHQET = h̄v iv ·Dhv , (1.14)

where D is the ordinary covariant derivative. The heavy quark propagator that follows from this

Lagrangian is given by

1 + v/

2

i

v · k + iε
, (1.15)

where k is the residual momentum of the heavy quark, k = p −mψv. Meanwhile, the coupling of

the heavy quark to a gluon gives the vertex igvµT
a. This is all the background to HQET that is

required to approach Chapter 2.

Chapter 2 of this thesis is based on “Infrared regulators and SCET(II),” Christian W. Bauer,

Matthew P. Dorsten, and Michael P. Salem, Physical Review D 69, 114011 (2004) [8]. My tangible

contributions to this collaboration were that I discovered the infrared regulator for SCET that is used

to support the main conclusions of this paper, I was the first to verify that this regulator succeeded in

disentangling the ultraviolet and infrared divergences that are mixed in pure dimensional regulation,

and I was the first to perform some of the other calculations in support of this paper. I verified all

of the calculations presented in the paper. Finally, I contributed toward developing a meaningful

interpretation of the results of this work.

1.2 Alternative Mechanisms to Generate Primordial Density

Perturbations

After studying soft-collinear effective theory, my interests turned toward early universe cosmology.

The work that ensued involved the study of alternative mechanisms to generate the primordial

density perturbations observed in the cosmic microwave background (CMB). It will put this work

in context to first describe the standard mechanism for generating these density perturbations. It

should be emphasized that the standard picture is commonly adopted only due to its simplicity, and



6

not because experimental evidence distinguishes it from any other possibilities. For reviews of the

standard picture with references to the original literature, see for example Refs. [9, 10, 11].

In the standard picture the primordial density perturbations are ultimately sourced by quantum

fluctuations in a single inflaton field ϕ. If over some volume the field ϕ dominates the energy

density and the non-gradient potential energy of ϕ is sufficiently greater than the gradient energy

and the kinetic energy in ϕ, then this volume will rapidly expand such that the field gradients and

kinetic energy redshift away while the non-gradient potential energy in ϕ remains relatively constant.

The geometry of this volume rapidly approaches the homogeneous and isotropic FRW metric. If

the ensuing period of expansion is to resolve the horizon problem then the local physical horizon

must expand at a speed less than the physical speed of light. Since the local physical horizon is

proportional to the Hubble radius H−1, this constraint is encapsulated in the requirement that the

so-called first slow-roll parameter ε be less than one:

ε ≡ d

dt

(

1

H

)

< 1 . (1.16)

A period of expansion with this relation satisfied is called inflation.

The generation of density perturbations from inflation can be seen qualitatively as follows. In

a volume where ε < 1 physical modes of constant wavelength can rapidly expand from being well

within the local horizon to being much larger than the local horizon. Modes that correspond to

quantum fluctuations of the inflaton vacuum expectation value (vev) freeze into classical pertur-

bations about the otherwise homogeneous vev of ϕ when they expand beyond the local horizon.

These perturbations in ϕ imply that inflation lasts slightly longer in some regions than in others.

Meanwhile, the redshift of energy density is highly suppressed during inflation relative the redshift of

matter or radiation afterward. Thus the perturbations in ϕ as modes exit the local horizon translate

directly into density perturbations in the radiation after reheating. The observed scale invariance of

these density perturbations implies that H does not vary significantly during inflation, which in turn

implies ε� 1. In this limit the quantitative understanding of inflation becomes more transparent.

Clearly the limit ε� 1 corresponds to a Hubble rate that is nearly constant in time and therefore

this limit corresponds to (quasi-) de Sitter space-time. By examining the Einstein field equations it

is not hard to see that this limit corresponds to suppressed ϕ dynamics, ϕ̇2 � V , and thus a nearly

constant, potential-dominated energy density:

H2 ' V

3m2
P

. (1.17)

About 60 e-folds (a factor of e60 in scale factor growth) of such nearly de Sitter expansion is sufficient

to solve the horizon and flatness problems of the original hot big bang picture, while being more

than enough to redshift away any relics of the grand unification phase transition if inflation occurs
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below this transition. It is not hard to construct inflaton models to generate over 60 e-folds of

inflation; indeed a simple canonical massive scalar V = 1
2m

2
ϕϕ

2 easily generates far more inflation.

On the other hand the inflationary paradigm also explains the generation of the small primordial

perturbations to the otherwise uniform energy density of the early universe. Constructing “natural”

models of inflation that result in perturbations matching those observed in the CMB presents a

significant challenge.

We now outline the calculation of these perturbations in the standard picture. This is straight-

forward to do within the so-called δN formalism [12, 13, 14, 15]. This formalism notes that on

super-Hubble scales the number of e-folds of expansion between an initial (time t0) flat hypersurface

and a final (time t) hypersurface of constant density is given by

N(t,x) = ln

[

a(t)eζ(t,x)

a(t0)

]

, (1.18)

where a is the homogeneous scale factor and ζ is the gauge-invariant Bardeen curvature perturba-

tion [16, 17]. This result also ignores the effect of anisotropic stress perturbations, but these are not

excited by fluctuations in a scalar field (nor by fluctuations in non-relativistic matter and radiation).

Rearranging the terms in Eq. (1.18) gives

ζ(t,x) = N(t,x)− ln

[

a(t)

a(t0)

]

≡ δN(t,x) . (1.19)

In the standard picture the fluctuations in ζ stem from fluctuations in ϕ when modes leave the

local horizon. The effect of these fluctuations on N is relatively small such that we can Taylor

expand to obtain ζ:

ζ = N ′δϕ+
1

2
N ′′δϕ2 − 1

2
N ′′〈δϕ2〉+ . . . . (1.20)

Here the prime denotes differentiation with respect to ϕ and δϕ(t,x) is the spatial variation in

ϕ, evaluated on the initial flat hypersurface defined during inflatino. The observation that non-

Gaussianities are suppressed in the power spectrum of ζ implies that we only need to keep the first

term in this expansion. In the slow-roll approximation the number of e-folds of expansion can be

written

N '
∫ tf

ti

Hdt ' − 1

m2
P

∫ ϕf

ϕi

V

V ′ dϕ , (1.21)

such that N ′ = (1/m2
P)V/V ′. Thus the power spectrum for ζ is related to the power spectrum for

δϕ by Pζ ' (1/2εm2
P)Pδϕ.

The power spectrum for the (real valued) inflaton fluctuations δϕ are calculated using the quan-
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tum theory of a scalar field in slightly perturbed de Sitter space. One calculates the two-point

correlation function which relates to the power spectrum according to the definition1

〈δϕ(t,k)δϕ(t,k′)〉 ≡
(

2π

k

)2

Pδϕ(k) δ(3)(k− k′) . (1.22)

Here k labels the Fourier mode of the transformed inflaton ϕ. The standard result comes from

evaluating the correlation function in Eq. (1.22) at tree level in the limit where V ′/V and V ′′/V are

roughly constant, which holds when ε � 1 and ε̇/εH � 1. It is customary to define a new small

parameter that relates to the second constraint. This is referred to as the second slow-roll parameter

(ε being the first slow-roll parameter) and it can be defined η ≡ 2ε− ε̇/2εH. It is useful to note that

when ε� 1 and η � 1 the slow-roll parameters are simply related to the inflaton potential:

ε ' m2
P

2

(

V ′

V

)2

, η ' m2
P

(

V ′′

V

)

. (1.23)

Indeed, many authors use these as the definitions for ε and η. To leading order in ε and η and on

scales much larger than the Hubble radius during inflation the power spectrum for δϕ can be written

Pδϕ(k) ' 1

2
H2
k(−kτ)2η−4ε , (1.24)

where τ measures conformal time (τ = −1/aHk with the scale factor a normalized to a = 1 at

k = Hk) and Hk is the Hubble rate when the mode k exits the Hubble radius. The weak dependence

on k and η imply that the power spectrum of δϕ is nearly scale invariant and does not decay much

during the course of inflation. The scale dependence of this power spectrum is parameterized by the

tilt n− 1. Using Hk ∝ k−ε one finds

n− 1 ≡ d lnPδϕ
d ln k

= −6ε+ 2η . (1.25)

Putting all this together we find the curvature perturbation that results from single field inflation

has the approximate power spectrum

Pζ '
1

4ε

H2

m2
P

, (1.26)

with H evaluated during inflation and with a tilt given by Eq. (1.25). This curvature perturbation

ultimately sources the fluctuations in temperature that are observed in the CMB, and matching the

actual spectrum of CMB fluctuations onto what is expected from the above curvature perturbation

implies tight constraints on the inflaton potential. On the other hand, if alternative mechanisms

1Note that some authors use Pδϕ ≡ Pδϕ/2π2 for the power spectrum.
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exist to generate this curvature perturbation then the CMB power spectrum may not constrain the

inflationary dynamics as strongly as the standard picture suggests. This motivates investigation into

what other physical processes may generate the primordial curvature perturbation.

Perhaps the simplest generalization of the standard picture is to include a single additional field

σ into the inflationary dynamics. As we shall see, processes involving the field σ may generate the

principle component of the primordial curvature perturbation even if the energy density associated

with σ is sub-dominant during all of inflation. In this case all of the dynamics described above are

unchanged, except that the curvature perturbation generated by the inflaton is no longer constrained

by the CMB. The basic idea is that analogous to the case with the inflaton ϕ, the vev of σ will

receive fluctuations as modes expand beyond the local horizon. Although σ is sub-dominant during

inflation these fluctuations δσ may be transferred to the dominating form of energy density by a

variety of processes that follow inflation. As an introduction to the work of Chapters 3 and 4 we

now discuss one of these possibilities in greater detail.

Dvali, Gruzinov, Zaldarriaga, and independently Kofman (DGZK) proposed a mechanism to

generate density perturbations that is alternative to the standard picture and that requires only

a single light scalar σ in addition to the inflaton ϕ [18, 19, 20]. As has been mentioned, both σ

and ϕ receive fluctuations to their vevs δσ and δϕ that behave classically as modes expand beyond

the Hubble radius. Since we are interested in providing an alternative to the standard picture for

generating density perturbations, we presume the fluctuations δϕ are insignificant to the subsequent

evolution of the universe. On the other hand we assume there exist interactions between the fields

σ and ϕ such as those contained in the interaction Lagrangian density

Lint =
λ1

2
Mσϕ2 +

λ2

4
σ2ϕ2 +

λ3

2

σ

M
ϕ ψ̄ψ +

λ4

2
ϕ ψ̄ψ , (1.27)

where the λi are dimensionless couplings, M is a mass scale, and the field ψ represents a fermion

via which the inflaton reheats the universe.

To review a standard picture of reheating consider first the scenario λ1 = λ2 = λ3 = 0. In this

picture inflation ends with the inflaton ϕ rocking back and forth at the bottom of its potential well,

with effective mass mϕ. During this coherent oscillation the energy density in ϕ redshifts like non-

relativistic matter. Meanwhile, if the fermion ψ is very light next to the inflaton then the inflaton

decays into ψ particles at the rate Γ = λ2
4mϕ /32π. However the ψ particles will be relativistic

and thus redshift like radiation. It can be shown that the energy density in ψ becomes comparable

to the energy density in ϕ when Γ = H, which is when the inflaton is said to decay. The energy

density in the presumably radiative byproducts of ψ interaction have energy density (π2/30)g∗T 4

for g∗ effective bosonic degrees of freedom at the temperature T . Thus the reheat temperature is

TRH ∼ g−1/4
∗
√

ΓmP.
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Now consider the scenario with λ3 6= 0. At tree level the decay proceeds as before except with

the new decay rate

Γ′ =
mϕ

32π

(

λ4 + λ3
〈σ〉
M

)2

. (1.28)

The vev of σ receives spatial fluctuations δσ during inflation, and these translate into spatial fluc-

tuations in the decay rate:

δΓ =
mϕ

32π

[

2λ3λ4

(

1 +
λ3

λ4

σ0

M

)

δσ

M
+ λ2

3

δσ2

M2

]

, (1.29)

where σ0 is the homogeneous component of 〈σ〉. Since the reheat temperature is proportional to
√

Γ,

it can be seen immediately that the fluctuations in σ translate into temperature fluctuations after

reheating. Alternatively, one can view density perturbations as arising due to greater redshifting of

energy density in regions where ϕ decays to radiation more rapidly.

It is not hard to see how the other interactions in Eq. (1.27) lead to density perturbations. Both

the first and second terms here can be seen as introducing a σ-dependent offset to the effective mass

of ϕ. The spatial variations in the vev of σ then translate into spatial variations in the mass of

ϕ. Since the inflaton decay rate Γ is proportional to the mass of ϕ, these variations correspond to

fluctuations in the decay rate and density perturbations result as described above. In fact it is not

necessary that ϕ in Eq. (1.27) be the inflaton. One can envision scenarios where the σ field is so

light and long-lived that it lies sub-dominant even as some other massive field S comes to dominate

the energy density after reheating occurs in the early universe. If S interacts with σ as ϕ does in

Eq. (1.27), then fluctuations in the effective mass or decay rate of S translate into fluctuations in the

duration of S domination and hence density perturbations. Although these generalizations to the

original DGZK mechanism were noted in Ref. [19], an important effect was neglected. Specifically, if

the field S is to dominate the energy density of the universe, it must freeze-out of equilibrium with

the rest of the universe. If S freezes-out while non-relativistic then fluctuations in its mass and its

annihilation cross section translate into fluctuations in its relic abundance. These generate density

perturbations comparable to those generated by inhomogeneous decay when the decay of S reheats

the universe. These effects are described in Chapter 3 of this thesis.

The primordial spectrum of density perturbations that results from the DGZK mechanism has

interesting characteristics. For one, it should be noted that the amplitude of the power spectrum of

ζ will not be given by Eq. (1.26), but by a spectrum depending on ϕ-σ coupling parameters, 〈σ〉,
and the power spectrum of σ fluctuations Pδσ. Since σ is sub-dominant during inflation Pδσ is not

required to have the same form as Pδϕ. However, it turns out that the amplitudes of these power

spectra are the same when each is evaluated for a mode leaving the Hubble radius and to leading
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order in small parameters. On the other hand the spectrum of δσ differs only in its tilt,

n− 1 = −2ε+ 2λ , (1.30)

where λ ≡ m2
σ/3H

2
k is a new small parameter. Finally, although this point has not been emphasized

above, it can be shown that the spectrum of fluctuations in δϕ is always highly Gaussian in its

statistical distribution [21]. In contrast, it can be seen for example from Eq. (1.29) that the level of

non-Gaussianities in the DGZK mechanism are controlled by the relative sizes of coupling parameters

and the ratio σ0/M .

Other alternatives to the standard picture of density perturbation generation are simply related to

the DGZK mechanism. For example, the DGZK mechanism was preceded by the so-called curvaton

mechanism [22, 23, 24] in which the light field σ need not interact with any degrees of freedom

other than those to which it slowly decays. In this picture the light field σ receives fluctuations to

its vev just as in the DGZK mechanism but persists well after inflation as a cold relic. Eventually

the curvaton comes to dominate the energy density of the universe and begins coherent oscillations

about the bottom of its interaction potential. When these oscillations begin is modulated by the

vev of sigma which has received spatial variations; thus density perturbations result from σ decay.

Yet another alternative was proposed by Lyth in Ref. [25]. This also features a light scalar σ,

however now the context is hybrid inflation. In hybrid inflation the vacuum energy that drives de

Sitter expansion is eliminated when a “waterfall” field χ achieves a non-zero vev. However during

inflation the field χ has a large effective mass due to interactions with the inflaton ϕ, and this

effective mass pins χ to χ = 0, which is a point of high potential energy. As in standard inflation

the vev of ϕ slowly decreases and eventually this opens an instability in χ whereby it can cascade

to the minimum of its potential. In Lyth’s proposal the effective mass of the waterfall field χ is

determined by both the vev of ϕ and the vev of a light field σ. Then fluctuations in the vev of σ

modulate the precise timing of when the field χ cascades to its minimum, in turn modulating the

duration of inflation. This mechanism for generating density perturbations is discussed in greater

detail in Chapter 4 of this thesis.

Chapter 3 is based on “Fluctuating annihilation cross sections and the generation of density

perturbations,” Christian W. Bauer, Michael L. Graesser, and Michael P. Salem, Physical Review D

72, 023512 (2005) [26]. My individual contributions to this work include that I developed the general

analysis for the evolution of density perturbations that is presented in Section 3.5 (this was later

further generalized by Michael Graesser) and I performed the full Boltzmann analysis and obtained

the numerical results of Section 3.6. In addition, I performed-first many of the calculations in this

paper and I verified all of the work. Finally, I wrote most of the published manuscript.

Chapter 4 is based on “On the generation of density perturbations at the end of inflation,” Michael
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P. Salem, Physical Review D 72, 123516 (2005) [27]. Aside from input from some discussions with

acknowledged sources, I am entirely responsible for this paper.

1.3 Low-Energy Consequences of a Landscape

Finally, my graduate studies have included investigations into what may be the implications for the

low-energy effective theory that describes our universe of an enormous landscape of metastable states

in the fundamental theory. These investigations are motivated by the convergence of a few recent

results in high energy theoretical physics. First among these is the discovery that string theory,

the leading candidate for a fundamental theory of physics, may contain a staggering multitude

of meta-stable solutions, each of which may permit a different set of apparent physical laws for

the low-energy effective theory (see [28] and references therein). Meanwhile, the phenomenom of

eternal inflation [29, 30, 31] provides a means of populating all of the meta-stable states in the

fundamental theory in a vast multiverse of distinct “pocket” universes. Finally, these possibilities

received motivation in the anthropic argument justifying the observed smallness of the cosmological

constant. For background we now describe this argument in greater detail.

Weinberg was the first to make concrete the observation that if the cosmological constant were

too large and if all other physics remained the same then non-linear gravitationally bound structures,

and hence life, would not readily form in this universe [32, 33]. The basic argument requires the

following background. In our universe the spectrum of primordial density perturbations is nearly

scale invariant such that the amplitude of perturbations just entering the Hubble radius is nearly

constant. During radiation domination the fluctuations in the baryon and radiation energy densities

decay after entering the Hubble radius, while fluctuations in the dark matter grow only logarithmi-

cally with time. On the other hand, after matter domination fluctuations in the dark matter density

grow in proportional to the growth in scale factor, and after recombination the baryons also gather

in the resulting potential wells. Under gravitational attraction these perturbations to the energy

density continue to grow until cosmological constant dominates the energy density of the universe,

after which growth in linear density perturbations essentially halts.

The above evolution of density perturbations implies that perturbations can only grow non-linear

due to evolution between matter domination and the domination of cosmological constant. On the

other hand, perturbations must grow non-linear before they can separate from the cosmic expansion,

collapse, virialize, and further collapse and fragment into galaxies. If the cosmological constant were

too large (relative to the energy density in matter at matter-radiation equality) then only very rarely

would a fluctuation in the otherwise-constant energy density of the universe have sufficiently large

initial amplitude to have become non-linear by the domination of cosmological constant. Thus if we

demand that typical fluctuations in the energy density of the universe eventually grow non-linear,
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then this implies a constraint on the size of the cosmological constant.

By itself this constraint does not explain anything; however it has important implications in the

context of a fundamental theory that contains an enormous “landscape” of meta-stable solutions.

If the landscape of the fundamental theory is sufficiently large, meta-stable states may exist with

a wide range of cosmological constants, including very tiny cosmological constants deriving from

chance cancellations among larger terms contributing to the “vaccum” energy of the meta-stable

state. Meta-stable states with a cosmological constant as small as ours would seem to be exceedingly

rare among the meta-stable states that constitute the full landscape of the theory, and therefore all

else being equal one would consider it very unlikely that we would happen to find ourselves in such a

state. However, the previously described constraint on the size of the cosmological constant changes

this expectation.

Specifically, we should not expect to measure with equal likelihood each value of the cosmological

constant that is realized in the landscape. Not only will some values may be realized in many

meta-stable states and some meta-stable states be realized more frequently in the multiverse than

others, but also the likelihood for observers like us to evolve in a given universe will depend on its

value of the cosmological constant, in addition to the other low energy physics that governs the

universe. In principle we imagine a probability distribution function that weights each value of

the cosmological constant by our likelihood to observe it, and the least presumptuous (non-trivial)

assumption regarding the value of the cosmological constant that we measure is that it is typical of

the values receiving significant weight in this distribution. Our likelihood to observe a value of the

cosmological constant is weighted by the relative likelihood that the value is obtained within a given

universe in the multiverse times the relative likelihood that we could have arisen in that universe.

Inclusion of the latter factor follows from what is called the anthropic principle [34, 35, 36].

In the case of the cosmological constant, it will turn out that almost all of the weight of the full

probability distribution function lies over values of the cosmological constant that are extremely small

compared to the natural scale for this quantity, which is presumed to be comparable to the Planck

scale. If zero cosmological constant is not a special point among the landscape of allowed values,

then it is reasonable to presume that over the range of values that receive significant weight the

distribution of cosmological constant values among the meta-stable states in the fundamental theory

is relatively constant. This means the shape of the distribution function for the cosmological constant

is determined primarily by the so-called anthropic factor, which weights the relative likelihood for

us to have evolved in a given universe. The anthropic factor is in principle extremely complicated

to compute, as it should account for all of the environmental selection effects that modulate the

likelihood for our existence. However if we restrict attention to a subset of the landscape defined

by universes exactly like ours except for the value of the cosmological constant, the problem is

dramatically simplified. Such a restriction is only meaningful if the landscape is so vast that this
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restriction still leaves a very large number of allowed values of the cosmological constant; yet the

string theory landscape appears that it may be so vast. It is convenient to assume that the set of

allowed values of the cosmological contant may be approximated as a continuous distribution.

The only environmental condition that seems important to our existence and is determined

in part by the cosmological constant is the existence of non-linear gravitational structures. This

is described above. To account for this quantitatively it is convenient to work within the Press-

Schechter formalism [37]. In this picture, one looks at the probability for a randomly selected

co-moving volume to have separated from the Hubble flow by some specified time. We are interested

in whether non-linear structures ever form, so we take this time to be the infinite future. Whether a

given volume ever separates from the Hubble flow is a function of the mass over-density z contained in

that volume, calculated assuming linear density perturbation evolution, and evaluated at the infinite

future. The quantity z is a Gaussian random variable root-mean-square amplitude σ∞(ρΛ, µ) that

depends on both the energy density in cosmological cosntant ρΛ and the size of the enclosed volume,

which we parameterize by the mass µ that the volume encloses. Meanwhile, for a volume to seperate

from the Hubble flow requires z & 1.69. Thus the likelihood that a volume enclosing at least mass

µ will separate from the cosmic expansion is

F (ρΛ, µ) =

√

2

π

1

σ∞

∫ ∞

1.69

exp

[

−1

2

z2

σ2
∞

]

dz = erfc

[

1.69√
2σ∞

]

, (1.31)

where clearly erfc denotes the complementary error function, erfc(x) ≡ 2π−1/2
∫∞
x
e−z

2

dz.

An overdensity that seperates from the Hubble flow will eventually collapse and virialize. The

percentage of over-densities that eventually virialize is a function of the enclosed mass µ because the

root-mean-square amplitude of the initial density perturbations depends on µ. Whether a viralized

over-density will collapse into a galaxy habitable to observers like us will depend on µ, but not on

the cosmological constant. Usually it is assumed that there is some minimum over-density mass µ0

which will form a habitable galaxy and all larger over-densities are equally suitable for life. Then if

only the cosmological constant scans over the landscape, the number of observers in a given universe

will be proportional to the mass fraction in suitable galaxies in that universe, which is proportional

to F . Under this reasoning F (ρΛ, µ0) gives the likelihood to for a value of the cosmological constant

ρΛ to be measured. If µ0 is chosen to coincide with the mass of the Milky Way galaxy, then about

5% of observers measure a value of the cosmological constant smaller than the value we measure.

The above explanation for the size of the cosmological constant is certainly tenuous. For one,

it is inappropriate to assume that conditions appropriate for life are independent of µ aside from

a cut-off at the Milky Way mass. Allowing for smaller galaxies will make the value of ρΛ that we

measure more atypical of the full distribution. Furthermore, within string theory the landscape of

meta-stable states appears to allow for more parameters than the cosmological constant to scan.
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Any parameter on which σ∞ depends will affect the distribution of ρΛ if it too is allowed to scan.

One such possibility involves the scanning of the apparent Planck mass over meta-stable states in the

fundamental theory. The apparent Planck mass may determine the abundance of baryons and dark

matter, in addition to the amplitude of primordial density perturbations. Both of these quantities

enter into σ∞. Exploring this possibility is one of the subjects of Chapter 5.

Although the landscape explanation for the cosmological constant is tenuous, it must be admitted

that it is among the most plausible explanations for the observation of dark energy. This, and that

an enormous landscape appears to be a natural consequence of string theory, has motivated the

investigation of other consequences of a landscape. One example is the study of how inflationary

parameters may be selected within the multiverse, which led to the discovery of the so-called runaway

inflation problem that is described and extended in Chapter 5 of this thesis. A second example is the

subject of Chapter 6 of this thesis. This is the possibility that the flavor structure of the Standard

Model might be discribed simply as random selection from the string theory landscape. We now

provide some very brief background to this idea.

The paradigm of flavor in the Standard Model of particle physics involves the observed patterns

among the elements of the coupling matrices to the following interactions:

Lflavor = λuij ū
i qjL h+ λdij d̄

i qjL h
∗ + λeij ē

i ljL h
∗ +

Cij
M

liL l
j
L hh , (1.32)

where qL, lL (u, d, e) are the left (right) handed quark and lepton fields, h is the Higgs, the indices

i and j label generation and we have suppressed gauge symmetry indices. To provide a theoretical

description of the spectrum of flavor parameters, i.e. the observable elements of the matrices λu,d,e

and C, is a major problem for theoretical physics. Since most of these elements are very small,

the historical approach has been to presume some large symmetry that is softly broken in the

Standard Model [38, 39]. However, progress invoking theoretically motivated models of approximate

flavor symmetry (AFS) has been limited, while the AFS program in general suffers for the extreme

flexibility in its ability to explain any possible flavor patterns.

In Chapter 6 an entirely different approach is suggested. It has already been proposed [40] that

the observed hierarchy among Standard Model flavor parameters may be attributed to Standard

Model Yukawa couplings deriving from overlap integrals involving the zero mode wavefunctions of

Standard Model fields over a set of extra dimensions. Such a picture is motivated by the possibility

that such interactions could arise due to gauge couplings in a more fundamental theory, after the

higher-dimensional components of the gauge fields are integrated out in the low energy effective

theory. In the original proposal the central locations of the Standard Model wavefunctions were

arbitrarily chosen so as to reproduce the observed hierarchy. In Chapter 6 we demonstrate that

this arbitrariness is not necessary. Specifically, for plausible geometries of the compactified extra
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dimensions, the specific flavor patterns of the Standard Model arise statistically in a landscape

ensemble where the central locations of the Standard Model particle wavefunctions are allowed

to sit at independent and random positions in the extra dimensional geometry. One needs only

assume that the Standard Model particle wavefunctions are highly localized (for example, having

Gaussian profile) and that discrepancies between the observed spectrum of flavor parameters and

the most likely landscape values are due to random selection from the full statistical ensemble. The

investigation of Chapter 6 restricts attention to studying flavor in the quark sector of the Standard

Model; a study of the lepton sector is in preperation at the submission time of this thesis.

Chapter 5 is based on “The scale of gravity and the cosmological constant within a landscape,”

Michael L. Graesser and Michael P. Salem, arXiv:astro-ph/0611694 [41]. I initiated this project and

I lead its direction. In addition, I was the first to perform all of the calculations and numerical

analyses that are presented in the paper. Finally, I wrote the first draft of the manuscript and I

wrote most of the subsequent editions.

Chapter 6 is based on “Quark and lepton masses from the landscape,” Lawrence J. Hall, Michael

P. Salem, and Taizan Watari, which at the submission time of these thesis is still in preparation [42].

With respect to the content of chapter 6, I wrote the code for some of the numerical analyses, I

checked the code for all of the numerical analyses, and I optimized the parameters for the numerical

analysis. I verified all of the calculations in the paper, and I performed-first about half of the calcu-

lations obtaining approximate analytic results for the flavor parameter distributions. I formulated

the precise implementation of statistical tests for the landscape predictions, and I wrote Section 6.4.

Finally, I performed extensive editing and reorganizing of the manuscript.
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Chapter 2

Infrared Regulators and SCETII

We consider matching from SCETI , which includes ultrasoft and collinear particles, onto

SCETII with soft and collinear particles at one loop. Keeping the external fermions off their

mass shell does not regulate all IR divergences in both theories. We give a new prescription to

regulate infrared divergences in SCET. Using this regulator, we show that soft and collinear

modes in SCETII are sufficient to reproduce all the infrared divergences of SCETI . We explain

the relationship between IR regulators and an additional mode proposed for SCETII .

Based on C. W. Bauer, M. P. Dorsten, and M. P. Salem, Phys. Rev. D 69, 114011 (2004).

2.1 Introduction

Soft-collinear effective theory [1, 2, 3, 4] describes the interactions of soft and ultrasoft (usoft)

particles with collinear particles. Using light-cone coordinates in which a general four-momentum

is written as pµ = (p+, p−, p⊥) = (n·p, n̄·p, p⊥), where n and n̄ are four-vectors on the light cone

(n2 = n̄2 = 0, n · n̄ = 2), these three degrees of freedom are distinguished by the scaling of their

momenta:

collinear: pµc ∼ Q(λ2, 1, λ),

soft: pµs ∼ Q(λ, λ, λ),

usoft: pµus ∼ Q(λ2, λ2, λ2).

(2.1)

The size of the expansion parameter λ is determined by the typical off-shellness of the collinear

particles in a given problem. For example, in inclusive decays one typically has p2
c ∼ Q2λ2 ∼

QΛQCD, from which it follows that λ =
√

ΛQCD/Q. For exclusive decays, however, one needs

collinear particles with p2
c ∼ Λ2

QCD, giving λ = ΛQCD/Q. One is usually interested in describing the

interactions of these collinear degrees of freedom with non-perturbative degrees of freedom at rest,

which satisfy pµ ∼ (ΛQCD,ΛQCD,ΛQCD). Thus inclusive processes involve interactions of collinear

and usoft degrees of freedom, while exclusive decays are described by interactions of collinear and

soft degrees of freedom. The theory describing the former set of degrees of freedom is called SCETI ,
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while the latter theory is called SCETII [5].

Interactions between usoft and collinear degrees of freedom are contained in the leading-order

Lagrangian of SCETI ,

LI = ξ̄n

[

in·D + iD/⊥c
1

in̄·Dc
iD/⊥c

]

n̄/

2
ξn , (2.2)

and are well understood. The only interaction between collinear fermions and usoft gluons is from

the derivative

iDµ = iDµ
c + gAµus . (2.3)

These interactions can be removed from the leading-order Lagrangian by the field redefinition [4]

ξn = Ynξ
(0)
n , An = YnA

(0)
n Y †

n , Yn(x) = P exp

(

ig

∫ 0

−∞
ds n·Aus(x+ ns)

)

. (2.4)

However, the same field redefinition has to be performed on the external operators in a given problem,

and this reproduces the interactions with the usoft degrees of freedom. Consider for example the

heavy-light current, which in SCETI is given by

JIhl(ω) =
[

ξ̄nWn

]

ω
Γhv , (2.5)

where hv is the standard field of heavy quark effective theory [7], the Wilson line Wn is required

to ensure collinear gauge invariance [3], and ω is the large momentum label of the gauge invariant

[ξ̄nWn] collinear system. Written in terms of the redefined fields, this current is

JIhl(ω) =
[

ξ̄(0)n W (0)
n

]

ω
Γ
[

Y †
nhv

]

. (2.6)

For exclusive decays, we need to describe the interactions of soft with collinear particles. This

theory is called SCETII [5]. Since adding a soft momentum to a collinear particle takes this particle

off its mass shell (pc + ps)
2 ∼ (Qλ,Q,Qλ)2 ∼ Q2λ ∼ QΛQCD, there are no couplings of soft to

collinear particles in the leading-order Lagrangian.1 Thus, the Lagrangian is given by [6, 43, 44]

LII = ξ̄n

[

in·Dc + iD/⊥c
1

in̄·Dc
iD/⊥c

]

n̄/

2
ξn . (2.7)

In this theory, the heavy-light current is given by

JIIhl (ω, κ) =
[

ξ̄(0)n W (0)
n

]

ω
Γ
[

S†
nhv

]

κ
, (2.8)

1At higher orders, higher dimensional operators with at least two soft and two collinear particles can appear.
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where Sn is a soft Wilson line in the n direction defined by

Sn(x) = P exp

(

ig

∫ 0

−∞
ds n·As(x+ ns)

)

. (2.9)

This is the most general current invariant under collinear and soft gauge transformations.

This chapter is organized as follows: We first consider the matching of the heavy-light current in

SCETI onto the heavy-light current in SCETII using off-shell fermions. While the terms logarithmic

in the off-shellness do not agree in the two theories, we argue that this is due to unregulated IR

divergences in SCETII . We then discuss IR regulators in SCET in more detail. We first identify the

problems with SCET regulators and then propose a new regulator that addresses these issues. Using

this regulator we then show that soft and collinear modes in SCETII are sufficient to reproduce the

IR divergences of SCETI and explain the relationship between IR regulators and an additional mode

proposed for SCETII [43, 44].

2.2 Matching from SCETI onto SCETII

The only difference between SCETI and SCETII is the typical off-shellness of the collinear degrees of

freedom in the theory. The theory SCETI allows fluctuations around the classical momentum with

p2
c ∼ QΛQCD, while the theory SCETII allows fluctuations with only p2

c ∼ Λ2
QCD. Since both theories

expand around the same limit, SCETII can be viewed as a low energy effective theory of SCETI .

Therefore, one can match from the theory SCETI onto SCETII by integrating out the O(
√

QΛQCD)

fluctuations.

To illustrate this matching, we consider the heavy-light current. Using the definitions of this

current given in Eqs. (2.5) and (2.8), we can write

JIhl(ω) =

∫

dκ C(ω, κ) JIIhl (ω, κ) . (2.10)

At tree level one finds trivially C(ω, κ) = 1. In fact, this Wilson coefficient remains unity to all

orders in perturbation theory, as was argued in Ref. [45].

To determine the matching coefficient at one loop, we calculate matrix elements of the current

in the two theories. There are two diagrams in SCETI , shown in Fig. 2.1. We use SCETI without

performing the field redefinitions of Eq. (2.4) so that the matching between SCETI and SCETII is

not trivial. For on-shell external states, we find for the two integrals

iAIa = g2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][−v ·k + i0][k2 + i0]
, (2.11)

iAIb = 2g2CFµ
4−d
∫

ddk

(2π)d
n̄·(pc − k)

[−n̄·k + i0][k2 − 2pc ·k + i0][k2 + i0]
. (2.12)
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k(a)
→ →

k(b)

Figure 2.1: Diagrams in SCETI contributing to the matching. The solid square denotes an insertion
of the heavy-light current.

→
k(a)

→
k(b)

Figure 2.2: Diagrams in SCETII contributing to the matching.

The factor of 1/[−n̄ ·k + i0] in iAIb comes from the Wilson line that appears in the heavy-light

current. Meanwhile, the diagrams in SCETII are shown in Fig. 2.2. For on-shell external states the

two integrals are exactly the same as in SCETI :

iAIIa = g2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][−v ·k + i0][k2 + i0]
, (2.13)

iAIIb = 2g2CFµ
4−d
∫

ddk

(2π)d
n̄·(pc − k)

[−n̄·k + i0][k2 − 2pc ·k + i0][k2 + i0]
. (2.14)

Since the integrands are exactly the same, the loop diagrams will precisely cancel in the matching

calculation. Thus we find that the Wilson coefficient C(ω, κ) remains unity, even at one loop. This

confirms the arguments in Ref. [45] to this order.

The fact that both of these integrals are scaleless and therefore that they integrate to zero might

bother some readers. The vanishing of these diagrams is due to the cancellation of collinear, infrared

(IR) and ultraviolet (UV) divergences. Introducing an IR regulator will separate these divergences,

and the UV will be regulated by dimensional regularization. In Ref. [1] a small off-shellness was

introduced to regulate the IR divergences of SCETI . In Refs. [43, 44] the divergence structure

of SCETII was studied keeping both the heavy and the collinear fermions off-shell. Using this IR

regulator, the authors of Refs. [43, 44] argued that SCETII does not reproduce the IR divergences of

SCETI and introduced a new mode in SCETII to fix this problem. To gain more insight into their

argument, we will go through their calculation in some detail.
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In SCETI the first diagram is

AIapc = −ig2CFµ
4−d
∫

ddk

(2π)d
1

[p̃c − n·k + i0][v ·(ps − k) + i0][k2 + i0]

= −g
2CF
2π

(4π)1−d/2Γ

(

2− d

2

)

µ4−d
∫ ∞

0

dn·k (n·k − p̃c)−1
n·kd/2−2 (n·k − 2v ·ps)d/2−2

=
αsCF

4π

[

− 1

ε2
+

2

ε
log
−p̃c
µ
− 2 log2 −p̃c

µ
+ 2 log

(

1− 2v ·ps
p̃c

)

log
2v ·ps
p̃c

+2Li2

(

2v ·ps
p̃c

)

− 3π2

4

]

, (2.15)

where d = 4 − 2ε and p̃c = p2
c/n̄ ·pc. In going from the first line to the second, we closed the n̄ ·k

contour below, thus restricting n·k to positive values, and performed the Euclidean k⊥ integral. The

second diagram gives

AIbpc = −2ig2CFµ
4−d
∫

ddk

(2π)d
n̄·(pc − k)

[−n̄·k + i0][(k − pc)2 + i0][k2 + i0]

=
αsCF

4π

[

2

ε2
+

2

ε
− 2

ε
log
−p2

c

µ2
+ log2 −p2

c

µ2
− 2 log

−p2
c

µ2
+ 4− π2

6

]

. (2.16)

In this diagram it is necessary to choose d < 4 for the k⊥ integral, but one requires d > 4 for the

n̄·k integral. In the former integral, dimensional regularization regulates the divergence at k⊥ =∞,

while in the latter it regulates the divergence at n̄ ·k = 0. Both of these divergences have to be

interpreted as UV, as discussed in Section 2.3. In addition, each of the diagrams contains a mixed

UV-IR divergence of the form log p2
c/ε. This mixed divergence cancels in the sum of the two diagrams

and we find, after also adding the wave function contributions,

AIpc =
αsCF

4π

[

1

ε2
+

2

ε
log

µ

n̄·pc
+

5

2ε
+ log2 −p2

c

µ2
− 2 log2 −p̃c

µ
− 3

2
log
−p2

c

µ2
− 2 log

−2v ·ps
µ

+2 log

(

1− 2v ·ps
p̃c

)

log
2v ·ps
p̃c

+ 2Li2

(

2v ·ps
p̃c

)

+
11

2
− 11π2

12

]

. (2.17)

This reproduces the IR behavior of full QCD.

Now consider the SCETII diagrams. The second is identical to the one in SCETI : AIIbpc = AIbpc .

k
→

Figure 2.3: Contribution of the additional SCETII mode proposed in Refs. [43, 44].
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The first diagram, however, is different. For this amplitude we find

AIIapc = −ig2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][v ·(ps − k) + i0][k2 + i0]

= −g
2CF
2π

µ4−d
∫ ∞

0

dn·k
∫

dd−2k⊥
(2π)d−2

1

n·k (k2
⊥ + n·k2 − 2v ·ps n·k)

= −αsCF
2π

(4π)2−d/2Γ

(

2− d

2

)

µ4−d
∫ ∞

0

dn·k n·kd/2−3(n·k − 2v ·ps)d/2−2 . (2.18)

Note that convergence of this integral at n·k = ∞ requires d < 4, whereas convergence at n·k = 0

requires d > 4. Here dimensional regulation is regulating both a UV divergence at n·k =∞, as well

as the divergence at n ·k = 0 , which is IR in nature, as we will discuss in Section 2.3. Using the

variable transformation x = n·k/(n·k− 2v·ps) to relate this integral to a beta function [46] one finds

AIIapc =
αsCF

4π

[

1

ε2
− 2

ε
log
−2v ·ps
µ

+ 2 log2 −2v ·ps
µ

+
5π2

12

]

. (2.19)

Adding the two diagrams together with the wave function contributions gives

αsCF
4π

[

3

ε2
− 2

ε
log

2v ·ps p2
c

µ3
+

5

2ε
+ log2 −p2

c

µ2
+ 2 log2 −2v ·ps

µ
− 3

2
log
−p2

c

µ2

− 2 log
−2v ·ps
µ

+
11

2
+
π2

4

]

. (2.20)

We can see that in the sum of the two diagrams the terms proportional to log p2
c/ε or log v ·ps/ε do

not cancel as they did in SCETI . Furthermore, the finite terms logarithmic in p2
c or v·ps do not agree

with the corresponding terms in the SCETI result. This fact prompted the authors of Refs. [43, 44]

to conclude that SCETII does not reproduce the IR divergences of SCETII and that a new mode is

needed in the latter effective theory. However, as we mentioned above, there are problems with IR

effects in this diagram. In fact, as we will show in great detail in the next section, the off-shellness

of the fermions does not regulate all IR divergences in this diagram. This means that the fact that

the terms logarithmic in the fermion off-shellness do not agree between SCETI and SCETII does not

imply that the IR divergences are not reproduced correctly since some 1/ε poles are IR in origin.

We also calculate the diagram in SCETII containing the additional mode proposed in Refs. [43,

44]. The new messenger mode has momenta scaling pµsc ∼ (Λ2
QCD/Q, ΛQCD, Λ

3/2
QCD/Q

1/2). (Note

that the invariant mass of this term satisfies p2
sc ∼ Λ3

QCD/Q � Λ2
QCD.) The diagram is shown in

Fig. 2.3 and for its amplitude we find

AIIcpc = −2ig2CFµ
4−d
∫

ddk

(2π)d
1

[p̃c − n·k + i0][2v ·ps − n̄·k + i0][k2 + i0]

=
αsCF

4π

[

− 2

ε2
+

2

ε
log

2v ·ps p̃c
µ2

− log2 2v ·ps p̃c
µ2

− π2

2

]

. (2.21)
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Adding this term to the Eq. (2.20) cancels the terms proportional to log(2v·ps p2
c/µ

3)/ε and we find

AIIpc =
αsCF

4π

[

1

ε2
+

2

ε
log

µ

n̄·pc
+

5

2ε
+ log2 −p2

c

µ2
− 3

2
log
−p2

c

µ2
− 2 log

−2v ·ps
µ

+2 log2

(−2v · ps
µ

)

− log2

(

2v · psp̃c
µ2

)

+
11

2
− π2

4

]

. (2.22)

This result does not agree with the SCETI expression in Eq. (2.17). However, this is expected, since

the off-shellness in SCETII satisfies p̃c � v ·ps. In this limit the SCETI result in Eq. (2.17) agrees

with the result in Eq. (2.22).

2.3 Infrared Regulators in SCET

2.3.1 Problems with Known IR Regulators

One of the most important properties of SCETI is the field redefinition given in Eq. (2.4), which

decouples the usoft from the collinear fermions. It is the crucial ingredient for proving factorization

theorems. Furthermore, only after performing this field redefinition is it simple to match from

SCETI onto SCETII , since one can identify the Wilson line Yn in SCETI with the Wilson line

Sn in SCETII . However, it is a well known fact that field redefinitions only leave on-shell Green

functions invariant [47]. Hence, the off-shellness of the collinear quark p2
c used to regulate the IR

in SCETI takes away our ability to perform this field redefinition. Since no field redefinition is

performed on the heavy quark, one is free to give it an off-shellness.

IR divergences appear in individual diagrams, but they cancel in the set of diagrams contributing

to a physical observable. More specifically, the IR divergences in virtual loop diagrams are cancelled

against those in real emissions, which physically have to be included due to finite detector resolutions.

From this it is obvious that the IR divergences in the heavy-light current originate from regions of

phase space where either the gluon three-momentum |k| or the angle θ between the gluon and the

light fermion goes to zero. Other divergences arise if the three-momentum of the gluon goes to

infinity or θ goes to π. These divergences are UV. To check if the IR divergences match between the

two theories one has to use an IR regulator that regulates all IR divergences in both theories. To get

insight into the behavior of the three-momentum and the angle, it will be instructive to perform the

required loop integrals by integrating over k0 using the method of residues, and then integrating over

the magnitude of the three-momentum and the solid angle. This will allow us to identify clearly the

IR divergences as described above. Let us illustrate this method by showing that all 1/ε divergences
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in the SCETI one-loop calculation of the previous section are UV. For the first diagram we find

AIapc = −ig2CFµ
4−d
∫

ddk

(2π)d
1

[p̃c − n·k + i0][v ·(ps − k) + i0][k2 + i0]

= −g
2CF
2

Ωd−2

(2π)d−1
µ4−d

∫ ∞

0

d|k||k|d−2

∫ 1

−1

dcos θ sind−4 θ

(|k|(1− cos θ)− p̃c) (|k| − v ·ps)|k|
. (2.23)

Performing the remaining integrals, we of course reproduce the result obtained previously, but this

form demonstrates that all divergences from regions |k| → 0 and (1 − cos θ) → 0 are regulated by

the infrared regulators and thus all 1/ε divergences are truly UV.

The second diagram is

AIbpc = −2ig2CFµ
4−d
∫

ddk

(2π)d
n̄·(pc − k)

[−n̄·k + i0][(pc − k)2 + i0][k2 + i0]

= −2ig2CF [I1 + I2] , (2.24)

where I1 and I2 are the integrals with the n̄ ·p and the n̄ ·k terms in the numerator, respectively.

The integral I2 is standard and we find

I2 =
i

16π2

[

1

ε
− log

−p2
c

µ2
+ 2

]

, (2.25)

where ε regulates only UV divergences. For the first integral we again perform the k0 integral by

contours and we find

I1 =
in̄·pc

2

Ωd−2

(2π)d−1
µ4−d

∫ ∞

0

d|k||k|d−2

∫ 1

−1

dcos θ sind−4 θ

×
[

− 1

k2(1 + cos θ)[2|k|(p0 − |p| cos θ)− p2
c ]

+
1

a[p0 + a+ |k| cos θ][2p2
0 + 2p0a− 2|k||p| cos θ − p2

c ]

]

, (2.26)

where pc = (p0,p) and a =
√

k2 + p2 − 2|k||p| cos θ. From this expression we can again see that all

IR singularities from |k| → 0 and (1−cos θ)→ 0 are regulated by the off-shellness, and all remaining

divergences are UV. Note furthermore that in the limit |k| → ∞, with unrestricted θ, the two terms

cancel each other, so that there is no usual UV divergence. This agrees with the fact that there are

five powers of k in the denominator of the integrand in Eq. (2.24). However, in the limit |k| → ∞
with |k|(1 + cos θ)→ 0 the second term of Eq. (2.26) remains finite, whereas the first term develops

a double divergence. Thus, it is this region of phase space that gives rise to the double pole in this

diagram. The presence of the square roots makes the evaluation of the remaining integrals difficult,

but we have checked that we reproduce the divergent terms of the result given in Eq. (2.16).

From the above discussion it follows that the off-shellness of the external fermions regulates all
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the IR divergences, and that the 1/ε divergences all correspond to divergences of UV origin. The

situation is different in SCETII , since the off-shellness of the light quark does not enter diagram (a).

In this case we find

AIIapc = −ig2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][v ·(ps − k) + i0][k2 + i0]

= −g
2CF
2

Ωd−2

(2π)d−1
µ4−d

∫ ∞

0

d|k||k|d−2

∫ 1

−1

dcos θ sind−4 θ

k2(1− cos θ)(|k| − v ·ps)
. (2.27)

The IR divergence originating from the limit (1 − cos θ) → 0 is not regulated by the off-shellness.

Thus part of the 1/ε divergences in Eq. (2.19) are of IR origin. In other words, the fact that the

terms logarithmic in the off-shellness in the SCETI amplitude Eq. (2.17) are not reproducing the

corresponding terms in the SCETII amplitude Eq. (2.20) does not imply that the IR divergences

do not match between the two theories. In order to check whether the IR divergences of the two

theories match, one needs a regulator that regulates all IR divergences in both SCETI and SCETII .

As an alternative IR regulator one could try to use a small gluon mass. Consider the first diagram

in SCETI again, this time with a gluon mass. We find

AIam = −ig2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][v ·(ps − k) + i0][k2 −m2 + i0]

= −g
2CF
2

Ωd−2

(2π)d−1
µ4−d

∫ ∞

0

d|k||k|d−2

∫ 1

−1

dcos θ sind−4 θ

× 1

(k2 +m2 − v ·ps
√

k2 +m2)(
√

k2 +m2 − |k| cos θ)
. (2.28)

Again, all divergences |k| → 0 and (1− cos θ)→ 0 are regulated by the gluon mass, but in the limit

|k| → ∞ with |k|(1− cos θ)→ 0 the integrand becomes

|k|d−4 sind−4 θ

|k|(1− cos θ) + m2

2|k|
, (2.29)

so that the term that could potentially regulate the (1 − cos θ) → 0 divergence goes to zero as

|k| → ∞. This is why a gluon mass cannot be used to regulate the IR of SCET.

2.3.2 A New Regulator for SCET

The gluon mass is not an appropriate IR regulator for SCET because it appears in the combination

m2/|k| in the expression Eq. (2.29). Instead of using a gluon mass, consider adding the terms

Lcreg = −δ
2
AcµP̄Aµc , L(u)s

reg = −δ
2
A(u)s
µ in̄·∂Aµ(u)s (2.30)
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to the collinear and (u)soft gluon Lagrangians. Here, P̄ is the label operator which picks out the

large momentum label of the collinear gluon field. Both of these terms are generated if a similar term

is added to the full QCD gluon action before constructing SCET. Note that these terms preserve

the invariance of the theory under the field redefinitions given in Eq. (2.4).

We here note that an alternative regulator has previously been introduced in Ref. [48]. In

that paper a quark mass is used in conjunction with an “analytic” regulator, which regulates the

(1 − cos θ) → 0 divergence. The conclusions about the soft-collinear mode in Ref. [43, 44] are

similar to the ones drawn here. However, we believe that a regulator such as the one introduced

here is advantageous, since it can naturally be defined at the level of the Lagrangian, and a single

dimensionful parameter regulates all IR divergences.

The infinitesimal, dimensionful parameter δ suffices to regulate all IR divergences in SCET,

unlike the gluon mass. Following the same steps as in Eq. (2.28). We find

AIaδ = −g
2CF
2

Ωd−2

(2π)d−1
µ4−d

∫ ∞

0

d|k||k|d−2

∫ 1

−1

8 dcos θ sind−4 θ

b(δ + b)(δ + b− 2|k| cos θ) , (2.31)

where we have introduced

b =
√

4k2 + δ2 + 4|k|δ cos θ . (2.32)

Obviously, the parameter δ regulates the divergences |k| → 0 and (1− cos θ)→ 0, just as the gluon

mass did. Expanding around the limit |k| → ∞ with |k|(1− cos θ)→ 0 the integrand becomes

|k|d−4 sind−4 θ

|k|(1− cos θ) + δ
, (2.33)

and this IR region is therefore regulated as well. Even though δ is enough to regulate all IR

divergences in SCET, we will keep the heavy quark off its mass-shell for later convenience.

Performing the integrals using the method above is difficult. While performing the k0 integration

using the method of residues gives insight into the divergence structure of the loop integrals, it is

simpler to perform the integrals using the variables n ·k and n̄ ·k instead. The first diagram in

SCETI with this new regulator is then given by

AIaδ = −ig2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][v ·(ps − k) + i0][k2 − δn̄·k + i0]

= −g
2CF
2π

(4π)1−d/2Γ

(

2− d

2

)

µ4−d
∫ ∞

δ

dn·k n·k−1 (n·k − δ)d/2−2
(n·k − 2v ·ps)d/2−2

=
αsCF

4π

[

− 1

ε2
+

2

ε
log

δ

µ
− 2 log2 δ

µ
+ 2 log

(

1− 2v ·ps
δ

)

log
2v ·ps
δ

+2Li2

(

1− 2v ·ps
δ

)

− 3π2

4

]

. (2.34)



27

Similarly, it is possible to show that the parameter δ regulates all IR divergences in the second

diagram, for which we find

AIbδ = −2ig2CFµ
4−d
∫

ddk

(2π)d
n̄·(pc − k)

[−n̄·k + i0][k2 − 2k ·pc + i0][k2 − δn̄·k + i0]

=
αsCF

4π

[

2

ε2
+

2

ε
− 2

ε
log

δ n̄·pc
µ2

+ log2 δ n̄·pc
µ2

− 2 log
δ n̄·pc
µ2

+ 4− π2

6

]

. (2.35)

The mixed UV-IR divergences cancel in the sum of the two diagrams,

AIδ =
αsCF

4π

[

1

ε2
+

2

ε
log

µ

n̄·pc
+

5

2ε
+ log2 δn̄·pc

µ2
− 2 log2 δ

µ
− 3

2
log

δn̄·pc
µ2

− 2 log
δ − 2v ·ps

µ
+ 2 log

(

1− 2v ·ps
δ

)

log
2v ·ps
δ

+2Li2

(

1− 2v ·ps
δ

)

+
11

2
− 11π2

12

]

, (2.36)

and one can show that this result reproduces the IR behavior of full QCD.

Since the regulator is in the gluon action, it is the same for SCETI and SCETII , and the two

diagrams in SCETII are identical to those in SCETI since the integrands are exactly equal:

AIIδ = AIδ . (2.37)

Therefore, the IR divergences in SCETII are exactly the same as those in SCETI .

While in SCETI it is possible to choose the scaling δ ∼ Qλ2 such that both the contributions to

the collinear and the usoft gluon action are leading order in the power counting, the same is not true

in SCETII . Choosing δ ∼ Qλ2 to make the IR regulator leading order in collinear gluon Lagrangian

makes it suppressed by one power of λ in the soft Lagrangian. This can be understood physically,

since in going from SCETI to SCETII the typical scaling of the (u)soft momenta remains of order

ΛQCD, while the off-shellness of the collinear particles is lowered. However, the IR divergence from

n·k → 0 corresponds to (1− cos θ)→ 0, and the typical cutoff on (1− cos θ) is set by the collinear

scales. Since n ·kc � n ·ks it is natural that any cutoff κ regulating the n ·ks → 0 divergence will

satisfy κ� n·ks. This is not a problem, since the IR regulator does not introduce a new scale into

the effective theory.

If one insists on keeping the scaling manifest, one is forced to drop the regulator term in the soft

gluon Lagrangian. In this case, the diagram (a) in SCETII no longer includes the IR regulator δ and

is therefore not regulated properly. The calculation then reduces to the result given in Eq. (2.19).

Part of the 1/ε divergences in this result are from true UV divergences, but others are due to the

unregulated (1− cos θ)→ 0 IR divergences, which arise from physics at the scale n·k ∼ Qλ2. These

IR divergences can be recovered by adding a diagram containing a gluon scaling as n ·k ∼ Qλ2,
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n̄·k ∼ Qλ. Requiring n·k n̄·k ∼ k2
⊥, this is the soft collinear messenger mode introduced in [43, 44].

The resulting diagram (c) gives

AIIcδ = −2ig2CFµ
4−d
∫

ddk

(2π)d
1

[−n·k + i0][2v ·ps − n̄·k + i0][k2 − δn̄·k + i0]

=
αsCF

4π

[

− 2

ε2
+

2

ε
log
−2v ·ps δ

µ2
− log2 −2v ·ps δ

µ2
− π2

2

]

. (2.38)

Adding all the diagrams we find

αsCF
4π

[

1

ε2
+

2

ε
log

µ

n̄·pc
+

5

2ε
+ log2 δn̄·pc

µ2
− 3

2
log

δn̄·pc
µ2

− 2 log
−2v ·ps
µ

+2 log2

(−2v · ps
µ

)

− log2

(−2v · psδ
µ2

)

+
11

2
− π2

4

]

, (2.39)

which again reproduces the SCETI result for δ � v ·ps. From this discussion it follows that the

presence of the soft collinear messenger mode depends on the precise implementation of the IR

regulator in the theory. Since the definition of an effective theory should be independent of the

regulator used for an explicit calculation, one can view the soft-collinear messenger mode as part of

the IR regulator.

The term added to the gluon Lagrangian breaks gauge invariance. However, in this regard it is

on the same footing as a gluon mass. Since the coupling of gluons to fermions is via a conserved

current, this breaking of gauge invariance is only a problem once gluon self-interactions are taken into

account. For the renormalization of operators such as the heavy-light current considered in this work,

this only arises at the two-loop level. In matching calculations, the IR divergences always cancel.

Hence any IR regulator, including the one proposed here, is applicable to matching calculations at

any order in perturbation theory. More care has to be taken when using this regulator to calculate

operator mixing, and in this case gauge non-invariant operators have to be included beyond one loop

order. The main advantage of the new regulator is that it preserves invariance of SCETI under the

field redefinition given in Eq. (2.4).

2.4 Conclusions

We have considered the matching of the heavy-light current in SCETI onto the corresponding current

in SCETII , in particular addressing the question whether all of the long distance physics in SCETI is

correctly reproduced in SCETII . Using the off-shellness of the external heavy and light fermions,

it was argued in Refs. [43, 44] that a new collinear-soft messenger mode is required in SCETII to

reproduce all the long distance physics of SCETI . Regulating the IR divergences in SCETII with

an off-shellness is problematic, since the off-shellness prevents performing the field redefinition re-

quired to decouple the usoft gluons from the collinear particles, which allows the matching onto



29

SCETII easily. In this work we investigated the relationship between IR regulators and the defini-

tion of SCETII . By performing the k0 loop integral by contours and then writing the remaining

integrals as d|k|d cos θ, we showed explicitly that the off-shellness leaves the IR angular divergence

(1− cos θ)→ 0 unregulated in SCETII .

We then introduced a new regulator for SCET that regulates soft (|k| → 0) and collinear (cos θ →
1) IR divergences in both SCETI and SCETII . This regulator modifies the gluon action, much

like a gluon mass, and thus preserves the field redefinition required to decouple usoft gluons from

collinear particles in SCET. Using this regulator, we showed explicitly that SCETII as formulated in

Refs. [4, 45] reproduces all the IR divergences of SCETI . We also argued that any cutoff κ regulating

the collinear divergence has to satisfy κ � n ·ks. Regulating SCETII this way therefore naturally

requires keeping a formally subleading regulator in the theory.

We also showed that a soft-collinear messenger mode is required in the definition of the IR

regulator if one insists on power counting the regulator in the same way as kinetic terms in the

action. In this case, there are unregulated IR divergences left in soft diagrams, which are corrected

by additional contributions from the soft-collinear mode.

The new regulator introduced in this work preserves the invariance of SCETI under the field

redefinitions of Eqs. (2.4), and is therefore useful in studying factorization theorems beyond tree

level.
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Chapter 3

Fluctuating Annihilation Cross
Sections and the Generation of
Density Perturbations

Fluctuations in the mass and decay rate of a heavy particle which for some period dominates the

energy density of the universe are known to lead to adiabatic density perturbations. We show

that generically the annihilation cross section of the same particle also receives fluctuations,

which leads to entropy perturbations at freeze-out. If the particle comes to dominate the energy

density of the universe and subsequently decays, this leads to an additional source of adiabatic

density perturbations. On the other hand, non-adiabatic density perturbations result when the

particle does not decay but contributes to the observed dark matter.

Based on C. W. Bauer, M. L. Graesser, and M. P. Salem, Phys. Rev. D 72, 023512 (2005).

3.1 Introduction

Measurements of the cosmic microwave background radiation [49, 50, 51] have revealed a highly

uniform energy density background with super-horizon perturbations on the order of one part in 105.

In the standard inflationary paradigm (for reviews, see for example Refs. [9, 52, 10]), these density

perturbations were created in the inflationary epoch when quantum fluctuations of the inflaton field

expanded beyond the Hubble radius and were converted into density perturbations upon inflaton

decay. However, to obtain the observed level of density perturbations from this mechanism requires

tight constraints on the inflaton potential [53].

Recently, Dvali, Gruzinov, Zaldarriaga and independently Kofman (DGZK) proposed a new

mechanism [18, 19, 20] for producing density perturbations. A nice feature of their scenario is that

the only requirements on the inflaton potential are to produce the required e-foldings of inflation

and at a scale consistent with WMAP data. The DGZK mechanism posits the existence of some

heavy particle S with a mass and decay rate that depend on the vacuum expectation value of some

light field χ. Here χ is presumed to have acquired super-horizon fluctuations during the inflationary
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epoch; however χ never contributes significantly to the energy density of the universe Nevertheless,

the fluctuations in χ persist and result in fluctuations in the mass and decay rate of S, so long as

the χ mass mχ is less than the Hubble rate H at the time at which fluctuations are transferred

to radiation. In the DGZK mechanism the field S comes to dominate the energy density of the

universe and decays into radiation while mχ < H. Fluctuations in the mass and decay rate of S

result in fluctuations in the duration of S energy domination, which in turn lead to adiabatic density

perturbations since the energy of a massive S field redshifts more slowly than that of radiation.

The DGZK mechanism is closely related to the previously proposed “curvaton” scenario [22, 23,

24]. In the curvaton mechanism, the field χ is not coupled to any other fields. Instead, well after

inflation has ended, χ itself comes to dominate the energy density of the universe. The fluctuations

in χ modulate the duration of χ domination which leads to adiabatic density perturbations on χ

decay. This work of this chapter is not concerned with this possibility.

The DGZK mechanism has been studied extensively. For example, the evolution of the density

perturbations that result from this mechanism has been studied in detail using gauge invariant

formalisms in Refs. [54, 55, 56]. These perturbations are shown to possess a highly scale invariant

spectrum in Ref. [57] and are shown to contain significant non-Gaussianities in Ref. [58]. The

original DGZK mechanism has also been extended to apply to preheating as studied in Ref. [59].

For discussions of the limitations of this mechanism see for example Refs. [60, 61, 62].

In the original DGZK scenario [18, 19] it is assumed that S decouples while being relativistic. In

this work we generalize this to apply to the case where S freezes-out of equilibrium with a fluctuating

annihilation rate 〈σv〉. We use the term “freeze-out” to refer specifically to the scenario where S

decouples from thermal equilibrium after it has become non-relativistic. In this case the number

density of S at a temperature T after freeze-out is

nS ' T 3

mSmpl〈σv〉
, (3.1)

where mpl is the Planck mass and mS is the mass of S. Therefore we expect fluctuations in the mass

and annihilation rate of S during freeze-out to result in fluctuations in the number density of S. If

S lives long enough to dominate the energy density of the universe and subsequently decays, these

entropy perturbations are converted into adiabatic perturbations. These add to the ones produced

by the original DGZK mechanism and the quantum fluctuations of the inflaton.

The remainder of this chapter is organized as follows. In Section 3.2 we describe the density

perturbations produced by our generalized DGZK mechanism. Sections 3.3 and 3.4 contain explicit

models for implementing our mechanism and for producing the fluctuating masses and coupling

constants, respectively. In Section 3.5 an alternate analytical description is given which allows to

track the evolution of the perturbations, while in Section 3.6 Boltzmann equations are derived and
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solved numerically to confirm the analytical arguments presented in other sections of this chapter.

Conclusions are given in Section 3.7.

3.2 Analytical Determination of the Perturbations

Our generalized DGZK mechanism includes a heavy particle S with mass mS , decay rate Γ and anni-

hilation cross section 〈σv〉, where S decays to and interacts with radiation. We begin by identifying

several key temperature scales. The temperature at which S begins to thermalize with radiation is

denoted as Ttherm. We assume for simplicity that S particles are produced only as they thermalize

from radiation annihilation below T = Ttherm. We also define:

1. Tf.o.: Temperature at which S freezes-out of thermal equilibrium;

2. Tdom: Temperature at which S begins to dominate the energy density of the universe;

3. Tdec: Temperature at which S decays.

Since the number density of S particles falls off exponentially after S becomes non-relativistic, Tf.o.

is typically within an order of magnitude of mS . Therefore in this work we always take Tf.o. ' mS .

In terms of mS , Γ and 〈σv〉 we also find

Tdom '
1

mpl〈σv〉
, Tdec ' mpl Γ

2/3〈σv〉1/3 , (3.2)

where we have assumed Tdec < Tdom in the last equation. This condition is necessary for significant

density perturbations to be produced by this mechanism. In Eq. (3.2) the cross section is to be

evaluated at the freeze-out temperature Tf.o.. Note that for S particles to be produced in the first

place we require Ttherm > Tf.o..

As described in Refs. [18, 19], the period of S domination between Tdom and Tdec gives rise to

an enhancement of the resulting energy density compared to a scenario where the S domination is

absent. Comparing energy densities at common scale factor one finds that after S decays

ρ =

(

ρdom

ρdec

)1/3

ρrad , (3.3)

where

ρdom ' T 4
dom , ρdec '

T 3
dec

mpl〈σv〉
, (3.4)

and ρrad is the energy density which would result without any period of matter domination. As

discussed in detail in Section 3.4, couplings to an additional field χ can give rise to fluctuations in
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mS , Γ, and 〈σv〉:

mS = mS (1 + δm) , 〈σv〉 = 〈σv〉
(

1 + δ〈σv〉
)

, Γ = Γ (1 + δΓ) , (3.5)

where the barred quantities refer to background values. According to Eqs. (3.2–3.5), these fluctua-

tions give rise to fluctuations in Tdom and Tdec which result in energy density perturbations

δρ

ρ
= −2

3
δΓ −

4

3
δ〈σv〉 . (3.6)

Note that although δρ/ρ contains no explicit dependence on δm, both δ〈σv〉 and δΓ are in general

functions of δm.

Comparing the energy density at a common scale factor corresponds to choosing a gauge where

the perturbation in the scale factor vanishes, ψ = 0. Thus the fluctuation in the energy density

computed here can be directly related to the gauge invariant Bardeen parameter [16, 17]

ζ = −ψ +
δρ

3(ρ+ p)
. (3.7)

Thus we find after S decays

ζ = −1

6
δΓ −

1

3
δ〈σv〉 . (3.8)

We can obtain the same result in synchronous gauge, where different regions all have the same

global time. Since ρ ∼ 1/t2 in both matter and radiation dominated universes, one finds that δρ = 0

on surfaces of constant time. Thus the Bardeen parameter is

ζ = −ψ =
δa

a
. (3.9)

To obtain ζ, we only need to determine a(t,Γ, 〈σv〉,m) and then compare two regions at fixed t, but

different Γ, 〈σv〉 and mS . Assuming the S particles freeze-out while non-relativistic and decay after

dominating the energy density of the universe, this gives

a(t) =
a(t)

a(tdec)

a(tdec)

a(tdom)

a(tdom)

a(tf.o.)

a(tf.o.)

a(t0)
a(t0) =

(

t

t0

)1/2(
tdec

tdom

)1/6

a(t0) , (3.10)

where tdec ' Γ−1 is the time when S decays, tdom ' m3
pl〈σv〉2 is the time at which it dominates the

energy density of the universe, and tf.o. is the time at which it freezes-out. Substituting gives

a(t) =

(

t

t0

)1/2

m
−1/2
pl Γ−1/6〈σv〉−1/3a(t0) . (3.11)
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Using this result and Eq. (3.9) we again obtain Eq. (3.8).

The above discussion is approximate and requires that S completely dominates the energy density

of the universe. Obtaining the perturbations when S does not dominate requires that we include the

matter contribution to the scale factor or energy density during radiation domination. This is done

in Section 3.5 using a different formalism. In Section 3.6 we confirm these analytic results using a

numerical calculation of the density perturbations using Boltzmann equations.

3.3 Explicit Models for Coupling S to Radiation

It is important to verify that models exist which exhibit the features discussed in the previous section.

We present two models in which the annihilation cross section is determined by renormalizable and

non-renormalizable operators, respectively.

The first model is given by the Lagrangian

L =
√−g

[

(∂µS)2

2
+

(∂µX)2

2
− m2

S

2
S2 − m2

X

2
X2 − gmS

2
S X2 − λ

4
S2X2

]

. (3.12)

We assume that X is in thermal equilibrium with the remaining radiation and that S particles are

only produced through their coupling to X. The interaction terms in the above model yield an S

decay rate and cross section

Γ ∼ g2mS , 〈σv〉 ∼ λ2

M2
, (3.13)

where

M '







T when T > mS ,

mS , when T < mS .
(3.14)

Note that we neglect the O(g4) contribution to the cross section. This is justified given the limits

on the coupling constants derived below.

The requirement that Ttherm > mS and that S remains in thermal equilibrium down to T ' mS

gives the condition on the coupling λ

λ >

√

mS

mpl
. (3.15)

On the other hand the condition Tdec < Tdom implies

g2λ4 <
m3
S

m3
pl

. (3.16)
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Thus a necessary (but not sufficient) condition on g to satisfy both Eq. (3.15) and Eq. (3.16) is

g <

√

mS

mpl
. (3.17)

Finally, we require that the period of S domination does not disrupt big bang nucleosynthesis (BBN).

Thus the decay of S must reheat the universe to a temperature Trh > TBBN, where Trh '
√

Γmpl.

This gives the constraint

g2 >
T 2

BBN

mSmpl
. (3.18)

Using TBBN ' 10−21mpl, the above relations provide the constraint mS & 10−21mpl. Given any mS

satisfying this constraint, limits on λ and g are calculated using Eq. (3.15) and Eq. (3.16).

Note that in this model the S particles are produced at T = Ttherm and remain in thermal

equilibrium with the radiation until they freeze-out at T ' mS . This is different from the assumption

made in Ref. [19], where S starts in thermal equilibrium and decouples while still relativistic. In order

to achieve the latter scenario, the coupling of S to radiation has to proceed via a higher dimensional

operator; that is via the propagation of an intermediate particle with mass much greater than mS .

This brings us to our second model. Consider a heavy fermion ψS and a light fermion ψX ,

coupled via an additional heavy scalar φH with mass mH ,

Lint = gS ψ̄SψS φH + gX ψ̄XψX φH . (3.19)

We assume that the fermion ψS decays to radiation with rate Γ. The annihilation cross section is

〈σv〉 ∼ g2
Sg

2
X

m4
H

M2 , (3.20)

where M is defined in Eq. (3.14). In this case, thermalization occurs for temperatures bounded by

mS

(

m4
H

m3
Smpl

1

g2
Sg

2
X

)1/3

< T < g2
Sg

2
Xmpl . (3.21)

The conditions that S is in in thermal equilibrium when it reaches T ' mS gives the condition

g2
Sg

2
X >

m4
H

m3
Smpl

. (3.22)

Note that one still needs to have a decay rate that is small enough such that ψS decays after it

dominates the universe. The point of this second example is to show that in non-renormalizable

models the heavy species can either decouple while non-relativistic or while relativistic, depending

on whether Eq. (3.22) is satisfied or not.
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3.4 Models for Producing the Fluctuations

The density perturbations in the DGZK mechanism and our generalization originate in fluctuations

in a light scalar field χ. In this section we write down explicit models for couplings between the

fields S and χ. The reason for doing this is that these interactions can give rise to back reactions

which can constrain the magnitude of the produced density perturbations. Similar results hold for

couplings between ψS and χ.

The fluctuations in χ are created during the inflationary era when δχ ∼ Hinf . We find it

convenient to split χ into homogeneous and inhomogeneous parts, χ = 〈χ〉+δχ. Note that this does

not correspond to a perturbative expansion. Then the leading order equation of motion for χ can

be split into homogeneous and inhomogeneous parts,

〈χ̈〉 = −3H〈χ̇〉 − 〈V ′〉 ,

δχ̈ = −3Hδχ̇+ 4φ̇〈χ̇〉 − δV ′ − 2φ〈V ′〉 . (3.23)

Here V ′ = 〈V ′〉 + δV ′ is the derivative of the χ potential with respect to χ, separated into homo-

geneous and inhomogeneous parts. Also, φ is the time perturbation in conformal Newtonian gauge.

The terms proportional to φ enter into the leading order equation of motion for δχ because their

homogeneous coefficients do not.

To simplify the analysis, we first consider the scenario where 〈χ〉 is negligible. From Eqs. (3.23)

we see this is the case when 〈χ〉 < δχ. Thus we require the equation of motion for 〈χ〉 to be Hubble

friction dominated for 〈χ〉 < δχ. This gives the condition

H2δχ > H2〈χ〉 > 〈V ′〉 . (3.24)

The fluctuations δχ persist so long as the equation of motion for δχ is Hubble friction dominated.

With 〈χ〉 < δχ this translates into the condition

H2δχ > δV ′ + 2φ〈V ′〉 . (3.25)

Note that we can combine our simplifying condition that the vev 〈χ〉 be negligible, Eq. (3.24), with

the condition that the fluctuations in δχ be Hubble friction dominated, Eq. (3.25). This gives the

inequality

H2δχ > V ′ . (3.26)

We consider the constraints this condition imposes on models for transferring χ fluctuations to
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the radiation. We first consider the renormalizable interactions

Lχ =
√−g

[

−αS
4
S2χ2 − µS

2
S2χ

]

, (3.27)

and neglect any couplings between χ and X as they are irrelevant to our mechanism. When χ

fluctuates these interactions result in S mass fluctuations of

δm =
αSδχ

2

4m2
S

+
µSδχ

2m2
S

∼
√

(

αSH2
inf

m2
S

)2

+

(

µSHinf

m2
S

)2

, (3.28)

where in the last expression we have estimated the size of the rms fluctuation at two widely sepa-

rated co-moving points. This mass fluctuation gives rise to fluctuations in the decay rate and the

annihilation cross section of S according to the mass dependence of Eqs. (3.13).

As described above, for this fluctuation to persist and for 〈χ〉 to remain negligible requires that

H2δχ > V ′. Although we assume the self-interaction of χ is always negligible, the interactions of

Lχ contribute to V and provide the constraint

H2δχ >
(αS

2
δχ+

µS
2

)

〈S2〉 , (3.29)

where 〈S2〉 is evaluated in the thermal bath. This constraint is tightest at T = mS when 〈S2〉/H2 ∼
m2

pl/m
2
S . Thus we obtain the constraints

αS <
m2
S

m2
pl

, µS <
m2
S

m2
pl

Hinf . (3.30)

The constraints of Eqs. (3.30) provide the same upper bound to both of the terms in Eq. (3.28).

Thus the back reactions of the interactions in Lχ limit the level of density perturbations produced

via this mechanism to

ζ ∼ δm <
H2

inf

m2
pl

. 10−8 , (3.31)

where the last limit on Hinf/mpl is measured by the WMAP collaboration [53].

The fluctuations resulting from the second interaction in Lχ are linear in δχ and are therefore

predominantly Gaussian in their distribution. Since the observed level of Gaussian fluctuations

restricts ζ to be ζ ∼ 10−5, this interaction cannot provide a significant fraction of the observed

density perturbations. However, the fluctuations resulting from the first term in Lχ are quadratic in

δχ and are therefore non-Gaussian [59]. Recent analysis [63] limits the amplitude of non-Gaussian

perturbations to about 10−8. Thus we see that our model can provide non-Gaussian perturbations

right up to the limit of current observation. A lower level of perturbations is obtained by simply
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reducing αS or µS .

As a variant on the above scenario, we next consider the non-renormalizable couplings

L′
χ =

√−g
[

−λ
4

χ2

M2
1

S2X2 − λ

4

χ

M2
S2X2

]

. (3.32)

When χ fluctuates these interactions result in fluctuations in 〈σv〉

δ〈σv〉 =
2δχ2

M2
1

+
2δχ

M2
∼
√

(

H2
inf

M2
1

)2

+

(

Hinf

M2

)2

. (3.33)

As above, we require that Eq. (3.26) be satisfied. For the interactions of L′
χ this gives

H2δχ >
λ

4

(

2δχ

M2
1

+
1

M2

)

〈S2X2〉 . (3.34)

As in the previous example, this constraint is tightest at T = mS when 〈S2X2〉/H2 ∼ m2
pl. Therefore

we find

1

M2
1

<
1

λ

1

m2
pl

,
1

M2
<

1

λ

Hinf

m2
pl

. (3.35)

Analogous to the previous example, the constraints of Eqs. (3.35) provide the same upper bound

to both terms in Eq. (3.33). Thus the back reactions of L′
χ limit the level of density perturbations

produced via this mechanism to

ζ ∼ δ〈σv〉 <
1

λ

H2
inf

m2
pl

. (3.36)

This bound is significantly weaker than the bound of Eq. (3.31) obtained via a fluctuating S mass.

For example, the fluctuations resulting from L′
χ could form the dominant contribution to the observed

density perturbations if λ is sufficiently small. In addition, for a given ζ decreasing λ allows for a

lower scale of inflation. Constraints on the smallness of λ are discussed in Section 3.3. Of course, a

lower level of Gaussian (non-Gaussian) perturbations is obtained by increasing M2 (M1).

Above we have taken 〈χ〉 to be negligible, which corresponds to taking 〈χ〉 < δχ. Although this

simplifies the presentation, it also unnecessarily strengthens the constraints on µS and M2. Referring

to the second of Eqs. (3.23), we see that for arbitrary 〈χ〉 the requirement that δχ remains Hubble

friction dominated gives

H2δχ > φ̇〈χ̇〉 , H2δχ > δV ′ , H2δχ > φ〈V ′〉 . (3.37)

The first condition provides the constraint 〈χ〉 < δχ/φ, with the evolution of φ ∼ ζ described in
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Section 3.5. It is sufficient to take φ ∼ 10−5, which also ensures that the homogeneous correction that

〈χ〉 provides to mS does not change mS by more than order unity.1 Through an analysis analogous

to that above, we find the conditions of Eqs. (3.37) constrain the level of Gaussian fluctuations for

the respective interactions of Lχ and L′
χ to

ζg <
〈χ〉
δχ

H2
inf

m2
pl

, ζg <
1

λ

〈χ〉
δχ

H2
inf

m2
pl

;
〈χ〉
δχ

<
1

φ
. (3.38)

The additional factor of 〈χ〉/δχ significantly weakens both bounds on Gaussian perturbations. This

allows for greater freedom in choosing µS , M2, λ, and/or Hinf .

It is important to note that these considerations must be applied with care when allowing for

non-Gaussian perturbations (αS 6= 0 or M1 finite). For example, in this case the mass fluctuation

resulting from Lχ becomes

δm =
αSδχ

2

4m2
S

+
αS〈χ〉δχ

2m2
S

+
µSδχ

2m2
S

. (3.39)

We see that non-Gaussian perturbations of amplitude ζng are always accompanied by Gaussian

perturbations of amplitude ζg ∼ (〈χ〉/δχ)ζng. Therefore the level of non-Gaussian perturbations is

limited to ζng ∼ (δχ/〈χ〉)ζg.

3.5 Evolution of Density Perturbations

In this section we determine the evolution of density perturbations generated by a fluctuating cross

section or mass during freeze-out. Unlike other analytic derivations given elsewhere in this work, the

one provided here allows us to easily follow the growth of the non-adiabatic perturbation during the

radiation dominated era after freeze-out. We work in conformal Newtonian gauge with negligible

anisotropic stress and use the line element

ds2 = a2
[

−(1 + 2φ)dη2 + (1− 2ψ)δijdx
idxj

]

, (3.40)

with ψ = φ. We track the evolution of perturbations using the gauge invariant entropy perturbation

S and curvature perturbation ζ.

We will assume that the scattering and annihilation interactions between S and the radiation

conserve total particle number. This allows us to obtain a first integral of the Boltzmann equa-

tions. Conservation of total particle number in a fixed co-moving volume implies for the entropy

1In Section 3.5 we find that after freeze-out φ evolves as φ ∼ (ρS/ρ) ζf , where ζf ∼ 10−5 is the final curvature
perturbation. Thus if we consider the scenario where χ fluctuations are transferred at freeze-out and χ subsequently
decays, we may take 〈χ〉 to be constrained by φ−1 at freeze-out, which considerable weakens the bounds in Eqs. (3.38).
However, in this case 〈χ〉 provides a homogeneous adjustment to mS which may be much larger than mS . This effect
could then significantly alter the constraints calculated in Section 3.3.
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perturbation

S ≡ δS − δR = − (δR − 3φ)

(

1 +
nR
nS

)

+
λ0

nSa3
, (3.41)

where δS ≡ δnS/nS and δR ≡ δnR/nR are the perturbations in the number densities of S and

radiation, respectively. Here λ0 is an integration constant which vanishes in the absence of initial

adiabatic perturbations.

Eq. (3.41) has a few salient features that we now discuss. First note that it admits an adiabatic

solution S = 0 whenever both nR/nS and nSa
3 are constant. This solution is the familiar δS =

δR = 3φ+const, with the constant fixed by λ0. During freeze-out, however, the conditions described

above are not satisfied, and entropy perturbations S f.o. are generated. Using Eq. (3.1) we find

S f.o. ' −δ〈σv〉 − δm . (3.42)

After freeze-out the heavy particle no longer interacts with the radiation and therefore both δS and

δR obey the perturbed Einstein field equation δ̇S,R = 3φ̇. This is trivially integrated to give

δS,R = 3φ+ δf.o.S,R − 3φf.o. . (3.43)

Thus, after freeze-out the entropy perturbation remains constant S = S f.o..

To derive the evolution of the curvature perturbation ζ, we use Eq. (3.7) together with δρS =

ρS(δS + δm) and δρR = (4/3)ρRδR to find, after several lines of algebra,

ζ ' ρS(S f.o. + δm)

3ρS + 4ρR
+

1

3

(

δf.oR − 3φf.o.
)

. (3.44)

Using Eq. (3.41), the second term on the right is suppressed by (nS/nR)(4ρR/ρS+3) compared to the

first term and is subsequently neglected. We see that in the radiation dominated era the curvature

perturbations produced during freeze-out are suppressed relative to the entropy perturbations.

Once the the heavy particle starts to dominate the energy density of the universe, we find

ζ ' −1

3
δ〈σv〉 , (3.45)

in agreement with the results obtained in previous sections of this chapter. If S is the dark matter,

such a large ratio of entropy to curvature perturbations is disfavored by data, which requires |S/ζ| .
1/3 [53]. If instead S decays, the entropy perturbations in S are transferred to radiation. Including

the result of inhomogeneous S decay [18, 19, 54, 55, 56], the resulting curvature perturbation is

ζ ' −1

3
δ〈σv〉 −

1

6
δΓ . (3.46)
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3.6 Numerical Results

We now solve for the evolution of density perturbations during freeze-out using Boltzmann equations

(see for example Refs. [9, 52, 64]). As above, we work in conformal Newtonian gauge and consider

only super-horizon perturbations, neglecting all spatial gradients next to conformal time derivatives.

Since we assume that S is non-relativistic, the distribution function for S is fS = eµ/T feq, where

feq is the Maxwell-Boltzmann equilibrium distribution function. Then integrating the background

Boltzmann equations over all of phase space gives

ṅS + 3HnS = a〈σv〉
(

n2
eq − n2

S

)

− aΓnS ,

ṅR + 3HnR = − a〈σv〉
(

n2
eq − n2

S

)

+ aΓnS . (3.47)

where dots denote derivatives with respect to conformal time, H = ȧ/a and neq is the equilibrium

number density of S particles. To describe the evolution of the scale factor we use Einstein’s field

equation,

H2 =
a2

3m2
pl

(ρR + ρS) . (3.48)

To derive the subleading order Boltzmann equations we allow for fluctuations in mS , 〈σv〉 and Γ

as defined in Eqs. (3.5). Note that the resulting fluctuations in the number density of the radiation

δR correspond to temperature fluctuations δT = δR/3. Therefore the equilibrium number density of

S particles acquires fluctuations

δeq =
3

2
(δm + δT ) + exp

[

−mS

T
(δm − δT )

]

− 1 . (3.49)

When the subleading Boltzmann equations are integrated over all phase space we obtain

δ̇S − 3φ̇ = a〈σv〉n
2
eq

nS

(

φ+ δ〈σv〉 + 2δeq − δS
)

− a〈σv〉nS
(

φ+ δ〈σv〉 + δS
)

− aΓ (φ+ δΓ) ,

δ̇R − 3φ̇ = − a〈σv〉n
2
eq

nR

(

φ+ δ〈σv〉 + 2δeq − δR
)

+ a〈σv〉n
2
S

nR

(

φ+ δ〈σv〉 + 2δS − δR
)

+ aΓ
nS
nR

(φ+ δΓ + δS − δR) . (3.50)

Note that in deriving the Boltzmann equations we assumed δeq � 1. This ceases to be valid once

T . mS(δm − δT ). In this case, however, the factor of n2
eq in front of the terms containing δeq is

exponentially suppressed compared to the remaining terms.

The independent perturbations in Eqs. (3.50) are δS , δR, and φ. To describe the evolution of φ
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Figure 3.1: Evolution of S and ζ in units of δ〈σv〉 as a function of log(mS/T ). The solid, dotted,
and dashed curves correspond to 〈σv〉mSmpl = 105, 107, and 109, respectively. The large values of
〈σv〉mSmpl are necessary to ensure that the heavy particle is in thermal equilibrium at T0 = mS/4.

we use the first order perturbation to Einstein’s field equation,

Hφ̇+H2φ = − a2

6m2
pl

(δρR + δρS) . (3.51)

We solve the above system of equations numerically. The effects of a fluctuating decay rate Γ

are well-studied [18, 19, 54, 55, 56] so we set Γ = 0 to simplify our results. For concreteness we

also assume S interacts with one out of one hundred radiative degrees of freedom and we begin

integration at T0 = mS/4 with nS(T0) = neq(T0). The results for the gauge invariant quantities S
and ζ are shown in Fig. 3.1 for several values of 〈σv〉mSmpl.

The curvature perturbation ζ is negligible compared to δ〈σv〉 until the heavy particle contributes

significantly to the energy density. It asymptotes to a value ζ ' −0.3. The entropy perturbation S
grows during freeze-out and soon thereafter reaches a constant value of S ' −0.9. These results and

the other features of Fig. 3.1 are in good agreement with the analytical results given in Eq. (3.42)

and Eq. (3.45).

3.7 Conclusions

In Refs. [18, 19, 20] it was shown that fluctuations in the mass and the decay rate of a heavy particle

S, which at some point dominates the energy density of the universe, lead to adiabatic density

perturbations. In this scenario it was assumed that the heavy particle decouples from radiation

while it is still relativistic.

In this work we have shown that if the heavy particle remains in thermal equilibrium until it
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becomes non-relativistic, fluctuations in the annihilation cross section of this particle with radiation

lead to additional sources of perturbations. We have presented two simple toy models illustrating

this effect. These additional fluctuations are generic, unless the annihilation cross section is mediated

by an additional particle with mass exceeding mS . If the S particle is stable, for example if S is

dark matter, then the resulting perturbations are non-adiabatic.

A simple analytical calculation determines the size of the density perturbations from fluctuations

in the mass, decay rate and annihilation cross section. The fluctuations due to variations in the

annihilation cross section are shown to be of similar size as the ones generated from the original

DGZK mechanism. These results are checked numerically using Boltzmann equations in conformal

Newtonian gauge in Section 3.6.
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Chapter 4

On the Generation of Density
Perturbations at the End of
Inflation

Recently a mechanism was proposed whereby the primordial density perturbations are gener-

ated at the end of inflation. We continue the analysis of the proposed model of this mechanism

and calculate the maximum extent to which the density perturbations produced via this model

can dominate over those of the standard inflationary paradigm. In addition, we provide a

straightforward variation of this model which allows for greater amplification of the density

perturbations. Finally, we show that a variation in the implementation of the original model

results in significant non-Gaussianities in the resulting spectrum of density perturbations. The

level of non-Gaussianities can be made to saturate the current observational bound.

Based on M. P. Salem, Phys. Rev. D 72, 123516 (2005).

4.1 Introduction

Measurements of the cosmic microwave background radiation [49, 50, 51] have revealed a highly

uniform background energy density with nearly scale-free perturbations with relative amplitudes

typically on the order of a few parts in 105. A possible source of these perturbations is found in the

quantum fluctuations of one or more light scalar fields during an early epoch of inflation [65, 66] (for

reviews see Refs. [9, 10, 11]). This is because in the (quasi-) de Sitter space of inflationary expansion,

a quantum fluctuation in a scalar field evolves according to its classical equations of motion after its

wavelength exceeds the rapidly decreasing Hubble length [67, 68, 12, 17]. These fluctuations in the

scalar field are frozen so long as the effective mass of the scalar is much smaller than the Hubble rate;

and they may be converted into energy density perturbations via a variety of proposed mechanisms.

For example in the standard inflationary paradigm [10, 11], inflation is driven by the potential

energy of a single slowly-rolling scalar field. In this case the inflaton can be viewed as a unique clock

parameterizing the evolution of the early universe. Therefore fluctuations in the inflaton translate

into fluctuations in the duration of inflation. Since the energy density of the universe redshifts more
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rapidly after inflation than during inflation, this results in energy density fluctuations on surfaces of

constant scale factor after inflation.

More recently, it was proposed that energy density perturbations could result from fluctuations in

light scalar fields that do not contribute significantly toward the inflationary dynamics. For example,

in the “curvaton” scenario [22, 23, 24] (see also Refs. [69, 70]) a light scalar field dubbed the curvaton

receives fluctuations. After inflation, the curvaton evolves as a massive fluid and therefore redshifts

more slowly than the radiative products of reheating. If the curvaton eventually dominates the energy

density of the universe and then decays, density perturbations result because the duration of curvaton

domination depends on the fluctuating curvaton. The inhomogeneous reheating scenario [18, 20] also

achieves density perturbations by varying the duration that a massive fluid dominates the energy

density of the universe. In this case the duration of domination is modulated via a decay width that

depends on some fluctuating light scalar field. Other ways to modulate the duration of of massive

fluid’s domination have been proposed in Refs. [19, 59, 26, 62, 71]. A nice review of these ideas can

be found in Ref. [72].

Another variant upon these proposals was recently proposed in Ref. [25] (note however that a

similar idea was previously applied in Ref. [73]). Whereas in the standard picture the duration of

inflation is influenced by the fluctuations in the inflaton as relevant modes leave the Hubble radius,

in this picture the duration of inflation is influenced by fluctuations in the inflaton when inflation

ends. This can occur, for example, if inflation ends at an inflaton value that depends on some other

field that receives fluctuations during inflation. In Ref. [25] a specific model was used to demonstrate

that this scenario can lead to significant amplification of the density perturbations that result from

slow-roll inflation.

Here we continue the analysis of that model and calculate the maximum extent to which the

resulting density perturbations can dominate over those of the standard inflationary paradigm.

We also explore the sensitivity of this result to the tuning of model parameters. In addition, we

provide a straightforward variation of this model which allows for greater amplification of the density

perturbations. Finally, we show that a slight variation in the implementation of the original model

allows for significant non-Gaussianities in the spectrum of density perturbations. The level of non-

Gaussianities can be made to saturate the current observational bound.

The remainder of this chapter is organized as follows. In Section 4.2 we describe the novel

mechanism of Ref. [25] and describe a convenient notation and formalism for this study. The specific

model used to illustrate this mechanism in Ref. [25] is then described in Section 4.3, while in Section

4.4 we analyze this model in greater detail. In Section 4.5 we introduce two variations upon this

model and study their consequences. One variation greatly amplifies the effect of this mechanism

while the other may generate significant non-Gaussianities in the primordial spectrum of density

perturbations. Finally, discussion is provided and conclusions are drawn in Section 4.6.
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4.2 Background

We parameterize metric perturbations using the curvature perturbation on surfaces of constant

scale factor, otherwise known as the Bardeen variable ζ [16, 17]. In this chapter we ignore tensor

perturbations, which allows us to write the spatial metric

gij = a2(t)e2ζ(t,x)δij , (4.1)

since scalar field fluctuations carry no anisotropic stress (for a review of cosmological perturbation

theory see for example Refs. [74, 75]).

The proposal of Ref. [25] is most easily studied within the so-called δN formalism of Refs. [13,

12, 14, 15] (see Refs. [76, 77] for recent extensions of this formalism). This formalism notes that on

super-Hubble scales the number of e-folds of expansion between an initial (time t0) flat hypersurface

and a final (time t) hypersurface of constant density is given by

N(t,x) = ln

[

a(t)eζ(t,x)

a(t0)

]

, (4.2)

Rearranging the terms in Eq. (4.2) gives

ζ(t,x) = N(t,x)− ln

[

a(t)

a(t0)

]

≡ δN(t,x) . (4.3)

We limit our attention to the case where inflation is driven by a single inflaton. Then fluctuations

in N come only from the value of the inflaton when its wavelength becomes larger than the Hubble

length, denoted φk, and the value of the inflaton at the end of inflation, denoted φe. Thus the

number of e-folds of universal expansion is N(φk, φe), and

δN ' ∂N

∂φk
δφk +

∂N

∂φe
δφe . (4.4)

Both δφk and δφe will ultimately stem from fluctutions in scalar fields as modes exit the Hubble

radius; in the δN formalism both of these are evaluated on the initial flat hypersurface defined at

t0. That the power spectrum for ζ is observed to be predominantly Gaussian allows us to neglect

higher-order terms that might appear in the expansion of Eq. (4.4).

In the standard picture, inflation ends when the slow-roll conditions are violated. For single field

inflation this happens at a unique value φe and therefore the second term in Eq. (4.4) is zero. For

inflation to end at varying values of φe requires the addition of at least one other field. For example,

with an additional field σ it is possible that φe(σ) depends on σ and inflation ends within a range
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of φe given by

δφe '
∂φe

∂σ
δσ . (4.5)

If the masses of the scalar fields are much less than the Hubble rate the fields acquire a constant

power spectrum of fluctuations Pδφk = Pδσk = (Hk/2π)2, where Hk is the Hubble rate at the time

the mode k exits the Hubble radius (for a pedigogical review of such calculations see for example

Ref. [78]). Thus the power spectrum for ζ is

Pζ '
H2
k

4π2

[

(

∂N

∂φk

)2

+

(

∂N

∂φe

∂φe

∂σk

)2
]

. (4.6)

The density perturbations generated at the end of inflation will dominate over those produced from

the standard picture when

∂N

∂φe

∂φe

∂σ
>
∂N

∂φk
. (4.7)

Note that ∂N/∂φk 6= ∂N/∂φe since the former probes the dependence of N on φ deep in the

inflationary epoch while the latter probes the dependence of N on φ near the end of inflation.

4.3 The Specific Model

The above ideas were demonstrated in Ref. [25] using a specific model described by the potential

V (φ, χ, σ) =
1

4g

(

m2
χ − gχ2

)2
+

1

2
m2
φφ

2 +
1

2
λφφ

2χ2 +
1

2
λσσ

2χ2 + Vσ(σ) . (4.8)

As was noted in Ref. [25], this is the original hybrid inflation model [79, 80] but with interactions

involving an additional light scalar field σ added with the last two terms.

Hybrid inflation assumes the the same initial conditions that are assumed in chaotic inflation

[81, 79, 80]. However, during the early stages of hybrid inflation the field χ is pushed to zero much

faster than the field φ (and likewise faster than σ in the above model). Then φ becomes a slowly-

rolling inflaton with inflation assisted by the vacuum energy m4
χ/4g. As in Ref. [25], we assume

that the self interaction of σ represented by the term Vσ does not contribute significantly toward

the inflationary dynamics.

The field χ is pinned to the origin until the curvature in its potential, ∂2V/∂χ2, becomes negative.

In Ref. [25] a scenario is described in which inflation ends abruptly as χ rolls away from the origin.
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This happens when

∂2V

∂χ2
= λφφ

2
e + λσσ

2
e −m2

χ = 0 . (4.9)

Therefore if the field σ receives fluctuations δσ as modes exit the Hubble radius, then inflation ends

at field values φe that vary according to

δφe ' −
λσσe

λφφe
δσ . (4.10)

Referring back to Eq. (4.6), we see the density perturbations resulting from fluctuations δφe dominate

over those resulting from δφk when

R ≡ λ2
σσ

2
e

λ2
φφ

2
e

(

∂N/∂φe

∂N/∂φk

)2

=
λ2
σσ

2
e

λ2
φφ

2
e

εk
εe
> 1 . (4.11)

In the second equation we have used that the first slow-roll parameter can be written

ε ≡
m2

pl

2

(

1

V

∂V

∂φ

)2

=
1

2m2
pl

(

∂N

∂φ

)−2

. (4.12)

An important consequence of this mechanism is that the spectral tilt is given by the tilt in the

spectrum of fluctuations δσ, as opposed to δφ. This gives a tilt which is independent of the second

slow-roll parameter η [25, 78]. Therefore η is not directly constrained by observation. In addition,

since ε̇ ' 2Hε (2ε − η) it appears as if ε may decrease significantly during the course of inflation if

η � ε. Thus it was suggested in Ref. [25] that the condition of Eq. (4.11) is easily satisfied.

However, one might note that R is proportional to εk which according to this mechanism is

constrained by observational bounds on the spectral tilt. These give εk . 0.02 [51] in the absence of

cancellations [25]. In addition, we do not expect εe and φe to be independent of each other. Thus it

is worthwhile to investigate Eq. (4.11) in greater detail in order to determine precisely what limits

the extent to which the density perturbations of this model can dominate over those produced via

the standard inflationary paradigm.

4.4 A More Detailed Analysis

We now consider the model of Eq. (4.8) in greater detail in order to clarify the constraints on R

as given by Eq. (4.11). Consistent with the analysis of Ref. [25] we ignore the contribution of Vσ

toward the vacuum energy. As described above, the χ field rolls away from the origin when φ takes



49

the value

φe =

√

m2
χ − λσσ2

e

λφ
≈ mχ
√

λφ
. (4.13)

To explain the second approximation, first note that we require λσσ
2
e < m2

χ in order to avoid

χ remaining trapped at the origin after φ reaches zero. Meanwhile, the precise value of σe is a

stochastic variable constrained by conditions independent of λσ and mχ. Thus to ensure that the

desired dynamics are typical of this model requires we set m2
χ/λσ � σ2

e for typical values of σe.

For inflation to last until φ = φe but then end abruptly when χ rolls away from the origin requires

one of two possibilities. One possibility is to require that φe = mχ/
√

λφ be sufficiently large that

inflation ends while the potential energy of φ dominates the vacuum energy. Since for the potential

energy of φ to drive inflation requires that φ be of the order of the Planck mass [81], this requires a

Planck scale mχ unless λφ � 1. Nevertheless, it can be shown that this scenario gives

R ' φ2
k

σ2
e

(

λσσ
2
e

m2
χ

)2

, (4.14)

where φk is φ evaluated 60 e-folds before the end of inflation. This value of R is never significantly

greater than that calculated for the second possibility, which we now study in greater detail.

The second possibility for inflation to last until φ = φe but then to end abruptly when χ rolls

away from the origin requires that m4
χ/4g dominate the energy density at the end of inflation and

that m2
χ be much greater than the Hubble rate at the end of inflation. These conditions require:

2g

λφ

m2
φ

m2
χ

� 1 ,
1

12g

m2
χ

m2
pl

� 1 , (4.15)

where mpl denotes the reduced Planck mass. The first constraint of Eqs. (4.15) allows us to write

∂N

∂φe
=

V

m2
pl

(

∂V

∂φe

)−1

' m4
χ

4gφem2
φm

2
pl

≈
√

λφm
3
χ

4gm2
φm

2
pl

. (4.16)

Meanwhile

∂N

∂φk
=

1

φkm2
φm

2
pl

(

m4
χ

4g
+

1

2
m2
φφ

2
k

)

. (4.17)

Plugging these values into Eq. (4.11) gives

R ≈ λσ
4g2

(

λσσ
2
e

m2
χ

)

m6
χφ

2
k

(

m4
χ

2g
+m2

φφ
2
k

)−2

. (4.18)
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Again, φk is the value of the inflaton field when the mode k exits the Hubble radius. For cosmological

scales of interest this happens about 60 e-folds of inflation prior to the end of inflation.

In order to find the maximum value for R, we find the value of φk that maximizes R and set the

parameters g, mχ, and mφ such that the mode k exits the Hubble radius 60 e-folds prior to inflation.

This is equivalent to finding the balance between the vacuum energy m4
χ/4g and the potential energy

m2
φφ

2 that maximizes R. The result is

φk =
1√
2g

m2
χ

mφ
, (4.19)

with the constraint that the mode k leaves the Hubble radius at Nk ≈ 60, with

Nk =
1

4m2
φm

2
pl

[

m4
χ

g
ln

(

√

λφφk

mχ

)

+m2
φφ

2
k −

m2
φm

2
χ

λφ

]

≈ m4
χ

8gm2
φm

2
pl

ln

(

λφ
2g

m2
χ

m2
φ

)

. (4.20)

In the last expression we have used the constraints of Eqs. (4.15) to identify the most significant

term. Putting this all together we find the maximum value of R to be

R ≈ Nk
(

λσσ
2
e

m2
χ

)2m2
pl

σ2
e

[

ln

(

λφ
2g

m2
χ

m2
φ

)

]−1

. (4.21)

Before proceeding to study Eq. (4.21) we should check that producing the correct power spectrum

normalization does not introduce any constraints that conflict with our present assumptions. Ap-

plying Eq. (4.6) to the scenario considered above we find that when density perturbations generated

at the end of inflation dominate we have

Pζ ≈
2

π2
NkR

(

1

12g

m2
χ

m2
pl

)

m2
χ

m2
pl

[

ln

(

λφ
2g

m2
χ

m2
φ

)

]−1

. (4.22)

To match observation we require Pζ to be very small, Pζ ≈ (5×10−5)2 [49]. According to the second

of Eqs. (4.15) the first term in parentheses is already constrained to be much less than order unity

and in fact can be set as small as necessary to match observation. In addition we expect m2
χ/m

2
pl to

be very small. Thus to set Pζ to match observation does not introduce any constraints in conflict

with those of the above analysis.

We have written the ratio R in the form of Eq. (4.21) in order to emphasize the maximum extent

to which the perturbations produced at the end of inflation may dominate over those produced as

cosmological scales exit the Hubble radius. The first term in this expression is weakly constrained

by the energy scale of inflation and is here taken to be Nk ≈ 60. The first term in parentheses

is constrained to be significantly less than unity as explained in the discussion below Eq. (4.13).

Finally, the argument of the logarithm must be much greater than unity in order to satisfy the first
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constraint of Eqs. (4.15). Therefore the last term must be less than unity. Thus for appropriately

tuned parameters we might expect the product of these three factors to be a couple orders of

magnitude below unity.

However, Eq. (4.21) also contains a factor m2
pl/σ

2
e . In (quasi-) de Sitter space a scalar field such

as σ evolves both according to its classical equation of motion and due to quantum fluctuations as

modes leave the Hubble radius. The net effect of this evolution is that the correlation function 〈σ2〉
migrates toward a fixed value depending on Vσ and the Hubble rate H [82, 83, 84]. For example, if

inflation lasts long enough and if Vσ = 1
2m

2
σσ

2 then 〈σ2〉 ∼ H4/m2
σ [82, 83, 84]. Taking a typical

value of σe to be σe ∼
√

〈σ2〉 gives

m2
pl

σ2
e

∼ m2
σ

H2

m2
pl

H2
. (4.23)

The dynamics described above require m2
σ � m2

φ � H2, so the first term in Eq. (4.23) must be at

least a few orders of magnitude below unity. However, the second term can be very large. Current

observation gives m2
pl/H

2 & 108 [53], which is more than sufficient to compensate for all the small

factors in R if parameters are tuned appropriately. Reducing the scale of inflation allows for greater

values of R. Of course, our Hubble volume could also be a region of atypically small σe. Finally,

we may reduce σe to an arbitrarily small scale by considering σ to be a pseudo-Nambu-Goldstone

boson (see for example Refs. [22, 23, 24, 85]).1 Thus in a number of circumstances we expect the

level of density perturbations generated at the end of inflation to be significantly larger than those

produced when cosmological scales exit the Hubble radius.

In Eq. (4.21) the parameters g, mφ, and mχ are tuned such that scales of cosmological interest

leave the Hubble radius when φk is given by Eq. (4.19). To study the result of relaxing this tuning

requires to invert Eq. (4.20) to obtain φk(Nk) and insert the result into Eq. (4.18) to obtain R (Nk).

This allows for the remaining parameters in R to be freely varied while R retains its original meaning;

that is, that R compares density perturbations produced at the end of inflation to those produced

when cosmological scales exit the Hubble radius.

Note that the first two terms in the brackets of Eq. (4.20) always dominate over the third term

and that they are comparable to each other when φk is given by Eq. (4.19). Remember that φk

is defined as the value of φ Nk ≈ 60 e-folds before the end of inflation. Decreasing mφ slows the

evolution of φ which therefore decreases φk. In this case the first term in brackets becomes more

1An interesting scenario involves a pseudo-Nambu-Goldstone boson that ranges over a scale ∼ mχ. Then λσ may
be a coupling of order unity and we obtain

R ≈ Nk

m2
pl

m2
χ

, (4.24)

where we have dropped the logarithm and other factors of order unity. Clearly R is much greater than unity in this
case.
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important and inverting Eq. (4.20) gives

φ2
k ≈ φ2

e exp

(

8Nk
gm2

φm
2
pl

m4
χ

)

. (4.25)

For φk less than in Eq. (4.19) the important functional dependence of R is R (φk) ∝ φ2
k. Thus we

see that R decreases exponentially when the ratio gm2
φm

2
pl/m

2
χ is decreased from its optimal value.

On the other hand, increasing mφ quickens the evolution of φ and therefore increases φk. In

this case the second term in the brackets of Eq. (4.20) becomes more important. Inverting Nk in

this case gives φ2
k ≈ Nkm

2
pl which is relatively independent of the model parameters. Therefore

the magnitude of R changes predominantly through its dependence on m2
φφ

2
k in the denominator of

Eq. (4.18). Thus we see that significantly increasing the ratio gm2
φm

2
pl/m

4
χ from its optimal value

results in a roughly proportional decrease in the in size of R.

4.5 Generalizing the Model

4.5.1 Varying the Potential for φ

According to Eq. (4.7), the generation of density perturbations at the end of inflation is most effective

when the slow-roll parameter near the end of inflation is much less than when cosmological scales of

interest exit the Hubble radius. Thus to enhance the resulting perturbations we desire a potential

for φ that decreases more steeply for φ deep in the inflationary epoch and decreases more gently for

φ near the end of inflation. This can be accomplished by replacing the 1
2m

2
φφ

2 term in Eq. (4.8)

with 1
4λφ

4.

We analyze this scenario in exact analogy to the analysis in Section 4.4. Again we assume that

the vacuum energy at the end of inflation is dominated by the m4
χ/4g term. The calculations proceed

just as in Section 4.4, and in the end we find

R ' 108N3
k

(

λσσ
2
e

m2
χ

)2(m2
pl

σ2
e

)(

λφm
2
pl

m2
χ

)2

. (4.26)

As described in Section 4.4, the term in the first set of parentheses is expected to be significantly

less than unity. However the last term is expected to be greater than unity in order that χ becomes

pinned to the origin in the early stages of inflation. In addition, the numerical prefactor 108N 3
k ∼ 107

for Nk ≈ 60. The discussion about the factor m2
pl/σ

2
e near the end of Section 4.4 applies here. Thus

we see the maximum level of density perturbations produced at the end of inflation can be greatly

amplified by simply introducing a φ4 potential.
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4.5.2 Relaxing the Constraint on λσ

In Section 4.3 we followed the assumption presented in Ref. [25] that near the end of inflation

λσσ
2 < m2

χ so that inflation ends before φ reaches zero. It is interesting to explore the consequences

of lifting this assumption. If we do not demand that λσσ
2 < m2

χ, then for large enough λσ or σ the

χ field is still pinned to the origin when φ reaches zero. We then expect inflation to continue with

the σ field rolling down its potential until the condition of Eq. (4.9) is met. At this point χ rolls

away from the origin and abruptly initiates the end of inflation.

Nevertheless, if mφ � H during inflation, then φ will retain a power spectrum of fluctuations

given by Pδφk = (Hk/2π)2. Thus the fields σ and φ have essentially changed places, with σ playing

the part of the inflaton and φ the fluctuating field. However, in this scenario φ has no homogeneous

component and

δσe = −λφ
λσ

δφ2
k

σe
. (4.27)

The density perturbations produced at the end of inflation are now entirely non-Gaussian!

It should be noted here that the original model described in Section 4.3 also results in non-

Gaussianities. As described in Ref. [25], in that model the non-Gaussianities result from higher

order terms that appear in the Taylor expansion of δN in Eq. (4.4). As such these non-Gaussianities

are always suppressed relative the Gaussian component of the spectrum of fluctuations. The situation

we consider here is different in that the non-Gaussianities arise at leading order in the expansion of

δN . In fact, it is possible for these non-Gaussians to dominate the spectrum of fluctuations. We are

interested in the possibility for Gaussian fluctuations to be generated by the standard mechanism (as

modes exit the Hubble radius) while non-Gaussianities are generated at the end of inflation. This

would allow for a spectrum like that which is measured to be generated but with non-Gaussianities

at a level that could be measured in the foreseeable future.

It is standard to parameterize the level of non-Gaussianities using the quantity fNL which for

our purposes can be defined according to the equation

ζ = ζg −
3

5
fNLζ

2
g , (4.28)

where ζg symbolizes a variable with a Gaussian spectrum [86]. In this case ζg is the curvature

perturbation produced via the standard inflationary paradigm,

ζg =
∂N

∂σk
δσk . (4.29)

Here we have assumed for simplicity that scales of cosmological interest exit the Hubble radius after

φ has rolled to zero. Thus we treat the relevant stages of inflation as driven by the σ field, assisted
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by the vacuum energy m4
χ/4g, with φ being a heavier field fluctuating about the origin. We neglect

the non-Gaussian component of ζ produced when relevant scales exit the Hubble radius as this is

in general relatively small [21]. For comparison to observation it does not matter whether the non-

Gaussian fluctuations are sourced by the same field as the Gaussian fluctuations [63]. Therefore we

can combine Eq. (4.4), Eq. (4.28) and Eq. (4.29) to obtain

fNL = −5

3

(

∂N

∂σe
δσe

)(

∂N

∂σk
δσk

)−2

=
5

3

λφ
λσ

1

σe

∂N

∂σe

(

∂N

∂σk

)−2

. (4.30)

If we take Vσ = 1
2m

2
σσ

2, it is straightforward to calculate the largest possible fNL by translating the

arguments of Section 4.4. In particular, we note that σe = mχ/
√
λσ and

∂N

∂σe
' 1

4g

m4
χ

σem2
σm

2
pl

=

√
λσ

4g

m3
χ

m2
σm

2
pl

. (4.31)

Likewise, minimizing the factor (∂N/∂σk)
−2 gives σk = m2

χ/
√

2gmσ and

∂N

∂σk
=

1√
2g

m2
χ

mσm2
pl

. (4.32)

Finally, putting all this together we find

fNL '
5

6

λφm
2
pl

m2
χ

. (4.33)

It must be emphasized this is an upper limit; smaller fNL are easily achieved by choosing parameters

that do not minimize (∂N/∂σk)
−2. Note also that in this implementation of the model the only

constraint on λφ is that λφδφ
2 = λφ(Hk/

√
2)2 � m2

χ. This constraint assures that χ always rolls

away from the origin before σ reaches zero, and gives

λφ

(

1

12g

m2
χ

m2
pl

)

� 1 . (4.34)

Referring to second constraint of Eqs. (4.15), we see the term in parenthesis is already constrained

to be much less than unity. Therefore this mechanism permits a non-Gaussian component to the

density perturbations up to the observational limit of fNL . 135 [63].

For the above calculation to be appropriate requires that the ζg of Eq. (4.29) actually be the

dominant contribution to the curvature perturbation. For this to be the case its power spectrum

must have a magnitude Pζ,g ≈ (5× 10−5)2 in order to match observation [49]. From Eq. (4.6) and

Eq. (4.32) we have

Pζ,g =

(

∂N

∂σk

)2
H2
k

4π2
=

1

8π2εk

H2
k

m2
pl

, (4.35)
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where we have used that in this scenario the first slow-roll parameter as the mode k exits the Hubble

radius is

εk =
1

2m2
pl

(

∂N

∂σk

)−2

=
gm2

σm
2
pl

m4
χ

. (4.36)

We have written the power spectrum in this way in order to employ the observational constraints

on the spectral tilt and on the level of gravity waves.

Since the primary, Gaussian density perturbations are now sourced during inflation, the spectral

tilt is n − 1 = 2η − 6εk ≈ 2εk . 0.04 [51], where we have used that the second slow-roll parameter

in the scenario we are considering is given by

η ≡
m2

pl

V

∂2V

∂σ2
≈

4gm2
σm

2
pl

m4
χ

≈ 4εk . (4.37)

Meanwhile, it is observed that H2
k/m

2
pl . 10−8 [53]. In this model we can decrease the spectral tilt

independently of H2
k/m

2
pl by simply decreasing mσ. Therefore we simply require to set H2

k/m
2
pl .

10−9 to match observation. Here

H2
k

m2
pl

=
1

6g

m4
χ

m4
pl

=
5

3
λφf

−1
NL

(

1

12g

m2
χ

m2
pl

)

, (4.38)

where we have expressed the result in terms of fNL to clarify which are the remaining free parameters.

According to the second constraint in Eq. (4.15), the term in parentheses is already constrained to

be much less than unity. In fact, it can be set as small as necessary to satisfy observation. Moreover,

since the three terms in Eq. (4.38) depend on three independent parameters (λφ, g, and mχ), we

have considerable freedom in exactly how we satisfy the observational bound. Thus we conclude

that this model allows for significant non-Gaussianities for a range of model parameters.

4.6 Discussion and Conclusions

In this work we continue the analysis of the model proposed in Ref. [25] to generate density per-

turbations at the end of inflation. We confirm that these density perturbations can easily dominate

over those produced via the standard inflationary paradigm, and explore the sensitivity of this result

to the tuning of model parameters. In addition, we provide a straightforward variation of this model

which allows for even greater amplification of the density perturbations.

It is worthwhile to consider how general is this analysis. According to Eq. (4.7) the production of

density perturbations at the end of inflation is most effective when the slow-roll parameter near the

end of inflation is much less than that when cosmological scales of interest exit the Hubble radius.

Since inflation can only end with the slow-roll parameter rising to unity, this suggests the mechanism
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is most effective only when the inflationary potential contains large derivatives near the point where

it dips toward its minimum. These large derivatives are most naturally accomplished by inserting

a second field direction for the vacuum energy to fall to zero and initiate a reheating phase. This

is precisely the scenario implemented in hybrid inflation and generalized in the models considered

here.

We also study a variation in the implementation of the model proposed in Ref. [25] that results in

modified inflationary dynamics. We show that this case results in a spectrum of density perturbations

with significant non-Gaussianities for a range of model parameters. In particular it is shown that

these non-Gaussianities are capable of saturating the current observational bound.
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Chapter 5

The Scale of Gravity and the
Cosmological Constant within a
Landscape

It is possible that the scale of gravity, parameterized by the apparent Planck mass, may obtain

different values within different universes in an encompassing multiverse. We investigate the

range over which the Planck mass may scan while still satisfying anthropic constraints. The

window for anthropically allowed values of the Planck mass may have important consequences

for landscape predictions. For example, if the likelihood to observe some value of the Planck

mass is weighted by the inflationary expansion factors of the universes that contain that value,

then it appears extremely unlikely to observe the value of the Planck mass that is measured

within our universe. This is another example of the runaway inflation problem discussed in

recent literature. We also show that the window for the Planck mass significantly weakens

the anthropic constraint on the cosmological constant when both are allowed to vary over a

landscape.

Based on M. L. Graesser and M. P. Salem, eprint astro-ph/0611694.

5.1 Introduction

Theoretical results from inflationary cosmology [29, 30, 31, 87] and from string theory [88, 89, 90, 91,

92, 28] motivate the possibility of an eternally inflating multiverse that is populated by an infinite

number of sub-universes, each obtained via local tunneling, diffusion, and/or classical slow-roll into

one of a myriad of allowed metastable states. (For other motivations to consider such a landscape see

for example Refs. [93, 94, 95, 96, 97].) In this landscape picture, each of these universes may contain

different values for physical parameters, or even different particles and interactions, from those that

are observed within our local universe. However, the anthropic principle [34, 35, 36] asserts that the

physical laws that may be observed within any universe must be restricted to those that permit the

evolution of observers in the first place.

Combined with the anthropic principle, the landscape picture has emerged as a plausible ex-
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planation for many striking features of our universe. In particular, it has been used to justify the

“unnatural” smallness of the Higgs mass [98, 99, 100], the cosmological constant [32, 33] (for earlier

work see [101, 102, 35, 103]), and the neutrino masses [104]; to predict the size of supersymmetry

breaking [105, 106, 107, 108, 109, 110, 111]; to describe the tilt in the spectrum of density perturba-

tions [112] and other inflationary parameters [113]; to constrain the baryon to photon ratio [114] and

the ratio of baryons to dark matter [115, 116, 117], as well as to explain some seemingly fine-tuned

relationships between parameters describing the theories of quantum electrodynamics and quantum

chromodynamics [118]. Nevertheless, generating precise predictions from a landscape picture faces

several major challenges.

One of these challenges is to identify an anthropic criteria that is both specific and compelling.

Yet even after such an anthropic condition has been defined, it is a daunting task to discern its envi-

ronmental requirements, to deduce their implications for physical parameters, and then to derive the

associated anthropic constraints. One may proceed by considering the variation in only one physical

parameter, starting from its value within our universe. However, apparently tight constraints on

any single parameter may be significantly weakened when more than one parameter is allowed to

vary. This seems to be the case with both the Higgs mass [119] (see however Ref. [120]) and the

cosmological constant [121, 122, 123]. Moreover, all anthropically allowed universes may not be

connected by the continuous variation of physical parameters. For example, the seemingly viable

“cold big bang” universe [124] results from independently varying several cosmological parameters

to values very far from those obtained within our universe.

In addition, to calculate the expectation values of physical parameters within a landscape requires

determining an appropriate measure to weight among the various possible universes [125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]. That is, a precise anthropic criteria

does not account for all of the selection effects that contribute to the probability for a particular

universe to be observed. Universes may be more or less likely based on how readily they are obtained

via the physical dynamics that govern the multiverse. To account for this requires a complete

understanding of the multiverse, its landscape, and the governing theory. Indeed, there is a more

subtle challenge underlying this program, which is to develop an appropriate and self-consistent

calculus to regulate calculations involving the infinite number of infinitely expansive universes that

may be contained within the multiverse [125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136,

137, 138, 139, 140].

Nevertheless, a set of hypotheses to resolve these challenges may be excluded if it predicts a very

low likelihood to observe a universe with some physical characteristic that our universe possesses.

For example, consider a proposal that includes a specific notion of observer, a consistent calculus to

determine expectation values over the multiverse, and a theory to describe the landscape including

how metastable states are mapped onto universes within the multiverse. If this proposal then predicts
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that an exponentially small number of observers measure a cosmological constant at or below the

value obtained in our universe, then the proposal and the specific landscape in question are probably

not both correct.

We investigate the possibility that the scale of gravity may scan over the landscape. This is

consistent with the results of Ref. [141], where only parameters with mass dimension were found

to vary over a model of the landscape. We everywhere parameterize the scale of gravity using the

(reduced) Planck mass mP. Although mP is commonly taken to be a fixed fundamental scale, this

need not be the case. For example, the multiverse may be governed by a low-energy effective theory

with the Lagrangian,

L =
1

2

√−gM2F [φ]R+ Lφ + L′ , (5.1)

where the fundamental mass scale is M , R is the Ricci scalar, φ is the collection of fields that specify

the metastable state of a universe, Lφ is the effective Lagrangian for these fields, and L′ is the

effective Lagrangian for matter. We assume that within each metastable state the fields φ are very

massive and fixed to values φ → φ∗ and are therefore non-dynamical. The strength of gravity will

therefore be a constant within each metastable state, determined by the effective Planck mass,

mP ≡
√

F [φ∗]M . (5.2)

We also assume that within each universe mP is fixed prior to slow-roll inflation.

Alternatively, our analysis may be viewed in the so-called Einstein frame where the scale of

gravity is everywhere fixed. To accomplish this, one simply performs the conformal transformation

gµν → F−1[φ∗]g̃µν . Then the scale of gravity is everywhere M , but all other parameters with

dimension mass are scaled by the factor F [φ∗]−1/2. Thus our analysis is equivalent to fixing the

Planck mass to be the fundamental scale of physics but varying all other mass scales uniformly.

Stated another way, in our analysis the frame-independent ratio of masses m/mP scales as F [φ∗]−1/2,

where for example m may be the cutoff of the theory, the Higgs mass, or the scale of strong dynamics.

This picture was previously suggested in the penultimate section of Ref. [119]. The idea that the

effective value of mP may vary across the multiverse within the context of Brans-Dicke theory was

studied in Refs. [128, 129, 130, 142]. In addition, Ref. [143] studied a model of the form of Eq. (5.1)

to show how inflationary dynamics can explain the hierarchy between the apparent Planck scale and

the electroweak scale. As described below, our focus is different from the focus of this work.

We calculate the range over which mP may scan while still satisfying anthropic constraints.

We restrict our attention to universes that possess the same particles, interactions, couplings, and

physical scales that are observed within our universe. Note that this means that the cut-off to the

low-energy effective theory depends on M , not mP. Within the context of the model described by
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Eq. (5.1), these assumptions require the existence of a large number of states that have approximately

equal particle physics parameters yet different values of mP. We do not explore the interesting case

of a landscape model that permits only correlated changes in mP and the other particle physics

parameters. Note that the above restrictions are conservative in the sense that lifting them can only

expand the range of allowed mP.

Many anthropic constraints relate to the formation of galaxies and depend on the spectrum of

energy density fluctuations evaluated at matter-radiation equality. On any given distance scale,

this spectrum has an approximately Gaussian distribution about some root-mean-square (rms) am-

plitude, and we calculate constraints as if all fluctuations have the rms amplitude. Perhaps not

surprisingly, the range of mP that is consistent with all of the anthropic constraints is rather nar-

row. It also depends on what models are chosen for inflation, baryogenesis, and the dark matter. As

an example, if we assume that inflation is chaotic with potential V (ϕ) = 1
2m

2
ϕϕ

2, that baryogenesis

results from efficient leptogenesis, and assume a weakly interacting massive particle (WIMP) to be

the dark matter, then anthropic considerations combine to constrain mP to be 0.1 . m̂P . 1.5,

where m̂P is the ratio between mP and the value obtained within our universe: 2.4× 1018 GeV.

Even a very narrow anthropic range for mP may have significant consequences for proposals to

calculate its expectation value within a landscape. In particular, it is plausible that some proposals

will ultimately weight universes in part according to their inflationary expansion factor. This expan-

sion factor depends exponentially on the number of e-folds of inflation that the universe undergoes,

which in turn depends on mP. In this case the probability distribution for mP will be peaked only

where some other selection effect cancels this strong exponential dependence. This other selection

effect could be a very sharp peak or boundary to the underlying landscape distribution; otherwise

the effect must come from an exponentially strong anthropic dependence on mP. Yet such a strong

anthropic dependence on mP would be in conflict with the observation that mP has even a nar-

row anthropic window in our universe. Thus we are forced to conclude that under these weighting

schemes the observation of our universe is either extremely atypical or our value of mP sits at some

sharp peak or boundary in the underlying landscape distribution. This point is completely analogous

to the “σ-problem” and “Q catastrophe” identified in Refs. [144, 145].

We here note that a runaway problem associated with varying the effective Planck mass during

eternal inflation has already been discussed in Refs. [142, 128, 129, 130]. These papers studied

the evolution of mP in Brans-Dicke theory when the Brans-Dicke field is allowed to be dynamical

during inflation. On the other hand, we study the case where the fields φ in Eq. (5.1) are very

massive and therefore non-dynamical. The difference between these scenarios is subtle because at

some level φ must be dynamical in order for the landscape to be populated within the multiverse.

Our approach is to assume that the fields φ are only dynamical at the very high energies that

dominate the dynamics of the multiverse. At these energies the dynamics of φ could be described
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as in Refs. [142, 128, 129, 130] or they could be described by different effects. We simply treat these

dynamics as unknown except to assume that the φ are fixed prior to the slow-roll inflation that

eventually reheats into each of the anthropically favorable low-energy universes such as our own.

We also consider the anthropic window for the cosmological constant Λ when both Λ and mP

are allowed to (independently) scan over the landscape. Even when the allowed range for mP is

relatively narrow, it still allows for a significant broadening of the allowed range for Λ. To see this,

note that Λ is constrained only by Weinberg’s anthropic bound [32, 33],

ρΛ . ρeqσ
3
eq . (5.3)

Here ρΛ is the energy density in cosmological constant, ρeq is the matter density at matter-radiation

equality, and σeq is the typical fluctuation in matter density at equality. The broadening occurs

because for WIMP dark matter, decreasing mP significantly increases ρeq and for most models

also significantly increases σeq. For example, if we again assume chaotic inflation with potential

V (ϕ) = 1
2m

2
ϕϕ

2 and that baryogenesis results from efficient leptogenesis, then ρΛ may be over a

million times the value observed within our universe when m̂P & 0.1. Of course, a larger anthropic

window for ρΛ does not necessarily imply that our value of ρΛ is less likely to be observed. We

illustrate the distribution of observed values of ρΛ with a very simplified calculation. The results

of this calculation suggest that to observe the cosmological constant at or below the level obtained

within our universe is very unlikely unless the landscape distribution of mP is dominated by values

very near to or larger than the value obtained within our universe.

The remainder of this chapter is organized as follows. In Section 5.2 we calculate the range of mP

allowed by anthropic constraints in universes otherwise like ours. Constraints come from a variety

of cosmological processes and we summarize our results in Section 5.2.8. Then in Section 5.3 we

argue that the value of mP that we observe is extremely unlikely if universes within the landscape

are weighted by their inflationary expansion factor. In this section we also discuss some caveats to

this argument. The scenario where both mP and Λ may vary across the landscape is discussed in

Section 5.4. The next two sections compliment work in the main body of this chapter. Section 5.5

discusses some anthropic constraints for cosmological histories that differ signficantly from ours.

Section 5.6 demonstrates how runaway inflation problem dominates what might otherwise seem

apparently tight selection effects. Finally, we draw our conclusions in Section 5.7.

5.2 Anthropic Constraints on the Scale of Gravity

It is straightforward to organize the immediate effects of changing the scale of gravity when all other

mass scales and couplings are kept fixed (this implies that the cut-off of the theory is also fixed).
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Then scanning the Planck mass corresponds to changing the proportionality constant between the

Einstein and the stress-energy tensors,

Gµν =
1

m2
P

Tµν . (5.4)

In a homogeneous universe this simply changes the relationship between the Hubble rate H, its time

rate of change Ḣ, and the energy (ρ) and pressure (P ) densities,

H2 =
ρ

3m2
P

, Ḣ = −ρ+ P

2m2
P

. (5.5)

This bears upon anthropic conditions because the Hubble rate determines when particle interactions

freeze out of equilibrium. This affects the relative densities of, for example, matter to radiation and

protons to neutrons.

Of course the universe is only approximately homogeneous. According to the present under-

standing, inhomogeneities are generated by quantum fluctuations in at least one scalar field as it

exits the Hubble radius during (nearly) de Sitter inflationary expansion in the early universe. If this

is the case, then the Hubble rate also effects the size of the initial inhomogeneities. At late times,

these inhomogeneities re-enter the Hubble radius and the scale of gravity takes on a new role. Then

gravity provides a self-interaction to over-densities that may cause them to grow. Over-densities that

grow too large become gravitationally bound and separate from the cosmic expansion. Within these

structures, the expansion of the universe is inconsequential but the scale of gravity still determines

the internal dynamics.

We analyze the anthropic significance of these effects in chronological order, beginning with the

effects on inflation. We then discuss baryogenesis, big bang nucleosynthesis, matter domination,

structure formation, stellar dynamics, and finally the stability of stellar systems. The anthropic

constraints are displayed in Figs. 5.1–5.4 and summarized in Section 5.2.8. The complexity of this

analysis, along with the many uncertainties in our understanding of various cosmological processes,

make a precise determination of anthropic constraints impractical. Therefore we strive for approx-

imations that capture the key effects of scanning mP. Usually, we determine the dominant scaling

behavior of a quantity with mP and cite a precisely determined value from our universe to deter-

mine the value in another universe. Unless otherwise stated, the values for cosmological parameters

within our universe are taken from the tables in Ref. [117] (note however that we work in terms of

the reduced Planck mass). Throughout this chapter we denote the ratio of a quantity to the value

that it obtains within our universe using a hat, for example

m̂P ≡
mP

2.4× 1018GeV
. (5.6)
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Finally, we use units where ~ = c = kB = 1.

5.2.1 Inflation

An early period of inflation is believed to have homogenized our universe and yet provided the seeds

of cosmic structure through the generation of small density perturbations (for reviews of inflation see

for example [10, 11]). We parameterize these effects using the total number of e-folds of inflation N

and the Bardeen curvature perturbation ζ. In principle, both N and ζ are constrained by anthropic

considerations. Meanwhile, for inflation to occur in the first place requires that the Hubble radius

expand at a rate slower than the speed of light. This effect is parameterized by requiring that the

first slow-roll parameter, εI ≡ −Ḣ/H2, is smaller than unity. Finally, at some point inflation must

end and the universe must reheat to establish the initial conditions for the subsequent big bang

evolution. We discuss the mP dependence of each of these below.

5.2.1.1 Satisfying Slow-Roll for N e-folds of Inflation

For inflation to occur in the first place requires that at some time εI < 1. When inflation is driven

by the potential energy of a canonical scalar field ϕ, the first slow-roll parameter can be written

εI '
m2

P

2

(

Vϕ
V

)2

, (5.7)

where V is the inflaton potential and the subscript on Vϕ denotes differentiation with respect to ϕ.

Although at first glance εI appears to increase with increasing mP, this can usually be compensated

for by starting the inflaton ϕ further up the potential. This is the case with each of the canonical

inflationary models presented below. Therefore we assume that the occurrence of inflation in the

first place does not significantly constrain mP.

Meanwhile, the total duration of inflation is constrained by the need to homogenize a universe

large enough to allow for the formation of structure. This constraint, however, is very weak, since

our observable universe appears immensely larger than is necessary to form a galaxy. Moreover,

inflationary scenarios that predict the observed value of ζ typically allow for far more e-folds of

inflation than are necessary to enclose our universe. Therefore we assume that the anthropic bound

on N does not significantly constrain mP.

5.2.1.2 The Curvature Perturbation ζ

Anthropic constraints on the amplitude of ζ stem from primordial black hole production, structure

formation, and the stability of stellar systems and are described in Sections 5.2.4, 5.2.5, and 5.2.7.

Presently we discuss the dependence ζ(mP) for future reference. For inflation driven by a canonical



64

Mechanism to generate ζeq mP dependence of ζeq

Inflation with V (ϕ) ∝ ϕp m
p/2−2
P

Natural inflation m−3
P

Hybrid inflation m−3
P

Ghost inflation m
−5/2
P

End of inflation scenario χm−3
P

Curvaton scenario χ−1m−1
P

Inhomogeneous reheating χ−1m−1
P or χm−1

P

Table 5.1: The dependence of ζeq on mP for a variety of mechanisms to generate the curvature
perturbation. The result for inhomogeneous reheating depends on the relative size between χ and
other mass scales in the Lagrangian, and can interpolate between the two dependences given above.

scalar ϕ, the curvature perturbation on a co-moving scale with wave-vector k is

ζ(k) ∝ V 3/2

m3
PVϕ

∣

∣

∣

∣

k=aH

, (5.8)

where V and Vϕ are evaluated when the scale k exits the Hubble radius. Anthropic constraints on

ζ apply to scales k . keq, where keq is the wave-vector of the Hubble radius at matter-radiation

equality. The potential V evaluated when these scales first exit the Hubble radius may depend upon

mP even when V (ϕ) does not.

In our universe, ζ does not change appreciably with k, and we assume this holds at least ap-

proximately in other universes. Therefore we take ζ ≈ ζ(keq) ≡ ζeq over all scales of interest. The

scale keq of matter-radiation equality itself depends on mP. However this dependence is logarithmic

and its effect on ζeq is suppressed by the smallness of the slow-roll parameter, so we ignore it. Still,

to solve for ζeq requires to choose a specific model for inflation. Since there is no standard model

of inflation, we must be content with a only a plausible range for the dependence on mP. We de-

duce this range by studying several of the most popular models of inflation. The results for chaotic

inflation [81] with V (ϕ) ∝ ϕp, for hybrid inflation [80], for natural inflation [146], and for ghost

inflation [147] are listed in Table 5.1.

The curvature perturbation ζeq may also be generated at the very end of inflation [25, 27] or even

much later as in the curvaton [22, 23, 24] and inhomogeneous reheating [18, 19, 20, 26] scenarios.

In each of these models a sub-dominant scalar χ receives fluctuations while the fluctuations to the

inflaton are presumed to be negligible. The fluctuations in χ are then transferred to radiation either

at the end of inflation, during reheating, or during a phase transition much later. In each of these

cases, the amplitude of the curvature perturbation depends on the local vacuum expectation value

(vev) of χ. The dependence of ζeq on χ and mP when each of these mechanisms operates efficiently

(that is, when any reheating occurs far out of equilibrium) is listed in Table 5.1.

We note that these models are very flexible to anthropic selection. Although in principle χ may
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be set by interactions such that it is fixed among the set of universes we consider, in most cases χ

is a stochastic variable over these universes. When ζeq is generated at the end of inflation or via

the curvaton or inhomogeneous reheating scenarios, then this implies that ζeq is also a stochastic

variable over different universes. Therefore in these cases there exist universes with far different mP

but the same ζeq as in our universe, as well as universes with the same mP but different ζeq.

For future convenience we write ζeq in the form,

ζ̂eq ≈ m̂−α
P , (5.9)

where according to our notation ζ̂eq is the curvature perturbation relative its value in our universe.

The various models of inflation that we studied suggest that we should restrict α to the range

0 ≤ α ≤ 3. However, the mechanisms that generate ζeq at the end of or well after inflation may

generate a wide range of ζeq for a wide range of mP. Although it is technically possible that keeping

inflationary parameters fixed but varying mP will cause the dominant contribution to the curvature

perturbation to shift from one mechanism to another, this scenario should still be well approximated

by the above guidelines so long as the variation in mP is not too large.

5.2.1.3 Reheating

The reheating of the universe after inflation is achieved by coupling the inflaton to other degrees of

freedom. In a typical model, after inflation the inflaton rocks within its potential well and redshifts

like matter. The radiative decay products of the inflaton then dominate the energy density of the

universe only after the Hubble rate falls below the decay width ΓI . At this time the energy density

in the inflaton is ρI = 3m2
PΓ2

I . If ΓI is independent of mP, then the reheat temperature scales like

T̂RH = m̂
1/2
P . (5.10)

We have no empirical knowledge about reheating other than that TRH is above the temperature of

big bang nucleosynthesis. However, if our universe is described by a grand unified theory, then TRH

must be below the temperature of monopole production. In addition, if net baryon number is not

generated during reheating, then TRH must be high enough to support the dominant mechanism of

baryogenesis. We comment on constraints like these in Section 5.3.

5.2.2 Baryogenesis

We parameterize the net baryon number of a universe with the ratio between the number density

of baryons and the number density of photons: η ≡ nb/nγ . Although we see no direct anthropic

constraints on the value of η, it will enter into the anthropic constraints described in Sections 5.2.5
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and 5.2.7. Presently, we seek to parameterize the dependence of η on mP for future reference.

As with inflation, there is no standard model of baryogenesis. Therefore we must again content

ourselves with only a range for the dependence on mP, based on the most plausible mechanisms.

For a summary of these see, for example, the reviews of Refs. [148, 149, 150].

Perhaps the most plausible mechanism to produce net baryon number is leptogenesis [151, 152].

For example, net lepton number is rather easily obtained by the out-of-equilibrium decay of a right-

handed neutrino (RHN). The resulting lepton asymmetry can then be converted into net baryon

number by sphaleron transitions within the Standard Model [153]. The value of η that results from

leptogenesis depends on how far out of equilibrium the RHN decays. If RHN decay occurs far out

of equilibrium then the resulting baryon asymmetry η is independent of mP. Otherwise, it scales

roughly according to η ∝ m−1
P . Note that baryogenesis via leptogenesis requires that the RHN, for

example, be produced in the first place. We comment on this requirement in Section 5.3.

The Standard Model of particle physics itself generates appropriate conditions for baryogenesis,

when it is augmented by relatively light supersymmetric (SUSY) scalars to strengthen the elec-

troweak phase transition. The process of electroweak baryogenesis is complex; yet interestingly it

operates independently the scale of gravity. That is, although universal expansion is necessary to

decrease the temperature of the universe and thus spur the electroweak phase transition, this process

is relatively independent the rate of temperature change. Therefore electroweak baryogenesis gives

a baryon asymmetry that is independent of mP [148, 149, 150].

Finally, we look at Affleck Dine (AD) baryogenesis [154]. This mechanism takes advantage of

scalar fields that possess baryon or lepton number, as would exist in SUSY or a grand unified

theory (GUT). During inflation these fields may acquire large vevs, and then the influence of baryon

non-conserving interactions on their subsequent evolution may generate significant baryon number.

There are many models to implement AD baryogenesis and each may give a different dependence on

mP. We simply give the result for a set of scenarios described in Ref. [155], where the scalar fields

overlap a SUSY flat direction that is lifted by non-renormalizable interactions and a negative induced

mass term during inflation. To fit the resulting baryon asymmetry to observation requires different

parameterizations when different non-renormalizable interactions dominate; however in each case

the dependence on mP is given by η ∝ m−3/2
P [155].

For future reference, it is convenient to write the baryon to photon ratio in the form

η̂ ≈ m̂−β
P . (5.11)

From the above discussion, we expect 0 ≤ β ≤ 3/2, with perhaps the most plausible values being

β = 0 or 3/2. As was the case with inflation, if more than one mechanism contributes to the

net baryon number then we still expect the η that results to be well approximated by the above
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guidelines.

5.2.3 Big Bang Nucleosynthesis

The process of big bang nucleosynthesis (BBN) populates the universe with light elements. In partic-

ular, the mass fractions of hydrogen (X) and helium (Y ) are important for anthropic considerations

described in Sections 5.2.5 and 5.2.6. Since we are only interested in X and Y , we may take a

very simplified view of BBN. Specifically, we assume that BBN generates appreciable concentrations

of only hydrogen and helium-4. This is clearly appropriate within our universe, where the other

products of BBN account for only about 0.01% of the mass fraction of the universe. Although this

fraction may change significantly for differing values of mP, it would take a very large variation in

mP for this change to become significant next to X or Y . A basic description of BBN can be found

in Ref. [9].

When we approximate BBN to result in only hydrogen and helium-4, we require only the ratio

of neutrons (n) to protons (p) to deduce X and Y . Specifically,

X ≈ 1− n/p
1 + n/p

, Y ≈ 1−X . (5.12)

A free neutron has ∆E ≈ 1.3 MeV more energy than a free proton. Thus if neutrons and protons

are kept in thermal equilibrium by interactions that convert each into the other, then n/p is given

by the Boltzmann factor,

n/p = exp (−∆E/T ) , (5.13)

where T is the temperature. Neutrons and protons are converted into each other via interactions

such as n+ν ←→ p+ e, where the ν denotes an electron neutrino and the e an electron. In fact, the

rates of these interactions decrease faster with temperature than does the Hubble rate. Therefore,

below some temperature TF the universe expands too rapidly for, for example, an n and a ν to find

each other and convert into a p and an e. Below this temperature the relative concentrations of n

and p are fixed and the interaction is said to freeze-out.1

The freeze-out temperature TF is obtained by equating the total rate of interactions converting

neutrons to protons, Γnp, with the Hubble rate H. Then the neutron to proton ratio is n/p ≈
exp (−∆E/TF ). Our universe contains n/p ≈ 1/7 such that X ≈ 3/4. Note that varying mP so as

to decrease TF works to decrease n/p and therefore push X closer to unity. Since in our universe

1The decay of neutrons decreases n/p from its value at TF by about 14% within our universe. This loss is
determined by the time at which neutrons are efficiently captured into Helium, which depends on mP only via a
logarithmic dependence on η(mP) [9]. Inspecting Fig. 4.4 of Ref. [9], it can be shown that in the most extreme case
of β = 3/2, less than half of the neutrons decay for m̂P . 6. On the other hand, for m̂P & 6 the helium fraction is
less than a tenth of the hydrogen fraction. Therefore this effect is always negligible at our level of analysis.
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X ≈ 3/4, this effect is negligible at our level of analysis. On the other hand, for temperatures

T ≥ TF the rate of conversion between neutrons and protons is Γnp ∝ T 5 and is independent of η.

Since H ∝ T 2/mP, the freeze-out temperature scales like TF ∝ m−1/3
P when TF is larger than in our

universe. Therefore we find,

n/p ≈ exp
[

− ln(7) m̂
1/3
P

]

. (5.14)

The fractions X and Y are given by Eqs. (5.12). For example, when m̂P = 10, 5, 0.2, and 0.1 we

have X ≈ 1, 0.9, 0.5, and 0.4, respectively.

5.2.4 Matter Domination

We have assumed that the early universe is dominated by relativistic degrees of freedom, at least

since BBN. However as the universe cools, massive degrees of freedom eventually become non-

relativistic. As it becomes non-relativistic, the number density of this matter becomes exponentially

suppressed relative that of radiation. However, this dilution eventually causes matter to freeze out

of equilibrium with the remaining radiation. Subsequently, the energy density of a massive species

i will redshift as ρi ∝ mini while the energy density in radiation scales as ρrad ∝ Tnrad. Thus it

is inevitable that matter should ultimately come to dominate the energy density of the universe

(structure formation constraints ensure that the cosmological constant does not become significant

before matter domination).

Nevertheless, the energy density at matter-radiation equality and the fraction of matter in

baryons are relevant to anthropic constraints described in Sections 5.2.5 and 5.2.7. In addition,

our assumption that the early universe is radiation dominated does not hold if ζ is too large. In this

case, primordial black holes may dominate the energy density of the universe while baryons are still

relativistic. Then all of the baryons would be redshifted away or swallowed into black holes. This

possibility is studied at the end of this section. In the following we neglect the neutrino content of the

universe. Their influence upon cosmology is commonly viewed as insignificant and we do not expect

this to change since as a hot relic their density relative baryons is fixed. In addition, we assume the

dark matter to be a WIMP. This allows for relatively precise predictions, as opposed to, for example,

axion dark matter where the density is set by a stochastic variable [156]. (Note however that the

stochastic nature of axion dark matter makes this possibility more flexible to anthropic selection,

see for example Refs. [115, 117].)

The energy density in a WIMP dark matter candidate is set by the relic abundance that results

from the freeze-out of annihilation interactions when the temperature drops below the mass of the
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WIMP. After matter-radiation equality this gives the scaling,

ρcdm ∝ m−1
P T 3 . (5.15)

Meanwhile, after baryogenesis the relative abundance of baryons η is conserved. Therefore at tem-

peratures below the nucleon mass the energy density in baryons scales like

ρb ∝ ηT 3 . (5.16)

Using that in our universe ρb/ρcdm ≈ 1/5 and that the energy density in radiation scales as ρrad ∝ T 4,

we find the energy density at matter-radiation equality to be

ρ̂eq ≈
(

1

6
η̂ +

5

6
m̂−1

P

)4

. (5.17)

Finally, we note the baryon fraction within matter,

f̂b ≈
(

1

6
+

5

6
η̂−1m̂−1

P

)−1

. (5.18)

As described above, these results do not hold if ζ is so large as to produce an abundance of

primordial black holes (PBHs) [157, 158]. Numerical analysis reveals that a PBH is formed when

an energy density fluctuation σ & 0.7 enters the Hubble radius [159]. Meanwhile, during radiation

domination σ = 4
3 ζ at Hubble radius crossing [74]. Therefore we require ζ(k) . 0.5 in order to

prevent the formation of a PBH when the scale k enters the Hubble radius. In fact, this implies a

somewhat stronger constraint on ζ. This is because ζ is a stochastic variable with a Gaussian tail

and because a PBH need not be formed each Hubble time in order for PBHs to dominate the energy

density of the universe. This constraint is worked out in Ref. [121] and we follow that analysis.

The likelihood that a curvature perturbation with root-mean-square ζ is greater than or equal

to 1/2 is f(ζ) = erfc(2−3/2ζ−1), where the complementary error function is defined erfc(x) ≡
2π−1/2

∫∞
x
e−z

2

dz. PBHs redshift like matter while the other degrees of freedom redshift like radia-

tion. Therefore by matter-radiation equality PBHs will compose roughly (aeq/apbh)f of the energy

density of the universe. Here apbh is the scale factor at which newly formed PBHs have sufficient

mass to persist until equality. Then PBHs do not dominate the energy density of the universe when

erfc(2−3/2ζ−1
eq ) .

apbh

aeq
, (5.19)

where we have neglected any tilt in ζ. This approximation underestimates the largest ζeq since

recent observations suggest a negative tilt [53, 160].
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The complementary error function depends very strongly upon its argument; therefore the mP

dependence of the ratio apbh/aeq is inconsequential for our analysis. As one looks to earlier times,

the lifetimes of PBHs decreases more rapidly than cosmic time decreases. Therefore Eq. (5.19)

ensures that PBHs dominate at no time prior to equality. Solving for when PBH lifetimes equal

about 70,000 years gives apbh/aeq ∼ 10−20 which gives ζeq . 6 × 10−2. Translating this into a

constraint on mP, we find

m̂α
P & 7× 10−4 , (5.20)

where we have used that the density fluctuation at Hubble radius crossing is σ ≈ 5× 10−5 [53, 160].

Eq. (5.20) is always weaker than the stellar lifetime constraint of Section 5.2.6.

5.2.5 Structure Formation

The formation of structure within our universe occurs in several stages. First, over-densities in the

nearly pressureless dark matter begin to grow upon entry into the Hubble radius. During radiation

domination, this growth is logarithmic with time, while after the dark matter comes to dominate the

energy density of the universe over-densities grow in proportion to the growth in the cosmic scale

factor. On the other hand, over-densities in the baryons cannot grow until after recombination.

However, within an e-fold or so after recombination they have grown to match the over-density in

dark matter, and subsequently grow in proportion to the growth in the cosmic scale factor. When

these over-densities have grown sufficiently they separate from the Hubble flow and virialize to form

what are termed halos.

After virialization, the cold dark matter within halos is stabilized against gravitational collapse by

its inability to release its kinetic energy. However, the baryons within the halo must collapse beyond

their initial virialization radius if they are to fragment and condense into galaxies and ultimately into

stars. This requires that the baryons have a means to dissipate their thermal energy. The constraints

on mP that are implied by these stages of structure formation are discussed in the sections below.

Presently, we describe the initial growth in over-densities for future reference. The subject of galaxy

formation and in particular star formation is complex and not yet fully understood. We rely heavily

on the simplifying assumptions and models of Refs. [117, 121].

We find it convenient to track the evolution of over-densities in position space, as opposed to

Fourier space. At matter-radiation equality, the variance of energy density fluctuations over scales

with co-moving radius R is,

σ2
eq(R) =

∫ ∞

0

dk

2π2
k2W (kR)T (k)P (k) , (5.21)



71

where W is a window function that may be chosen to be a “top hat” with radius R, T is a transfer

function to account for the evolution of perturbations between when they enter the Hubble radius and

equality, and P is the primordial power spectrum of fluctuations, P (k) ∝ 〈ζ(k)2〉. We parameterize

a co-moving scale with radius R according to the total mass µ that is enclosed within a sphere of

radius R. In addition, we measure µ relative to the mass of our galaxy (more precisely the mass of

our galaxy plus its dark matter halo); thus µ = 1 corresponds to 1012M�, where M� is the mass of

the sun.

A numerical curve fit to Eq. (5.21) gives [117],

σeq ' 1.45× 10−3 s(µ)ζ̂eq(mP) , (5.22)

where the function s(µ) carries the scale dependence of σeq. This scale dependence occurs because at

the time of equality smaller scales have been within the Hubble radius for a longer time than larger

scales. The function s(µ) is equivalent to Eq. (A13) in Ref. [117]. However, we have normalized s(µ)

such that s(1) = 1. In addition, we define the variable µ with respect to a different scale than the

authors of Ref. [117]. Therefore within this chapter s is given by,

s(µ) =
[ (

0.76 ln[17 + µ−1/3]− 0.22
)−0.27

+ 0.17µ0.18
]−3.7

. (5.23)

Note that s is a decreasing function of µ. In addition, note that σeq is the root-mean-square (rms)

value of a Gaussian random field. Therefore constraints involving σeq (or ζ̂eq) are never sharp in the

sense that they may be overcome by fluctuations that happen to be larger or smaller than is typical.

After recombination but before the domination of cosmological constant, a linear over-density is

given by [104]

σ ≈
(

2

5
+

3

5

a

aeq

)

σeq . (5.24)

Soon after recombination the first term is negligible. Eq. (5.24) is accurate until cosmological

constant domination, after which σ grows by another factor of about 1.44 and then stops. An over-

density separates from the Hubble flow and virializes when a linear analysis gives σ = 1.69 [37, 161].

Thus the cosmic mean energy density at virialization is,

ρ∗ ≈
(

3

5

σeq

1.69

)3

ρeq ≈ 1.4× 10−10ρeqζ̂
3

eqs
3 . (5.25)

The energy density within the condensed halo is larger by roughly a factor of 18π2. We denote this,

ρvir ≈ 18π2ρ∗ ≈ 2.4× 10−8ρeqζ̂
3

eqs
3 . (5.26)
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Note that these quantities depend on both mP and the mass scale µ of the virialized halo.

The above description of halo formation relies on three important aspects of the standard cosmol-

ogy: we assume that the dark matter density dominates over the baryon density, that recombination

occurs before the virialization of the dark matter halo, and that virialization occurs before the dom-

ination of cosmological constant. Enforcing the above conditions implies constraints on mP. These

are discussed in the next section. We discuss the possibility for a non-standard path toward structure

formation in Section 5.5.

5.2.5.1 Halo Virialization

Before proceeding to galaxy formation, we must ensure that over-densities separate from the cosmic

expansion and virialize before the domination of the cosmological constant halts their growth. As

mentioned above, an over-density σ has separated from the Hubble flow when a linear analysis gives

σ ≥ 1.69. On the other hand, the maximum size that is reached by an rms linear over-density is

given by,

σ∞ ≈ 1.44× 3

5

aΛ

aeq
σeq ≈ 3.20 ρ̂1/3

eq ζ̂eqs , (5.27)

where aΛ is the scale factor at ρΛ domination. Therefore the requirement that σ∞ ≥ 1.69 gives

ρ̂eqζ̂
3

eqs
3 & 0.1 . (5.28)

Since with a larger value for mP structures form later, this is a constraint against increasing mP.

Substituting previous results into Eq. (5.28) gives

(

1

6
m̂−β

P +
5

6
m̂−1

P

)4

m̂−3α
P s(µ)3 & 0.1 . (5.29)

The curves that saturate this inequality for various choices of α and β are displayed in Figs. 5.1–5.4

under the label “σ∞ = 1.69.” In light of these plots, our value of mP may be construed as nearly

saturating this constraint. However, this perception derives from the strong mP dependence of ρvir,

and not from our galaxy being at the edge of saturating the Weinberg bound. In addition this

constraint, analogous to many others below, holds for an rms fluctuation σeq but is weaker for larger

fluctuations. For these reasons we emphasize that although Eq. (5.29) does not allow for mP to be

increased significantly, it is still true that our value of mP is not at the edge of the anthropic range.

Since the existence of an anthropically allowed window surrounding our value of mP is essential to

the arguments of Section 5.3, we provide a more elaborate discussion of this boundary in Section 5.6.

This may serve as an illustration of how ‘soft’ are other constraints that depend on σeq.

The above analysis assumes that halos virialize at least an e-fold or so after recombination. This
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is to ensure that baryons may collapse into the dark matter potential wells and participate in the

virialization. Thus we require ρ∗/ρrec . e−3. The energy density at recombination is set by the

temperature of recombination, which depends only logarithmically on mP and η. We ignore this

logarithmic dependence and take Trec ≈ 3000 K in every universe that we consider. Using that at

any time after equality ρ∗ ∝ ρrec ∝ T 3, we find for this constraint,

ρ̂−3/4
eq ζ̂ −3

eq s−3 & 8× 10−8 . (5.30)

Since with a smaller value of mP the matter energy density at equality and the amplitude of density

perturbations are both larger, this is a constraint against decreasing mP. In terms of m̂P and µ,

this gives

(

1

6
m̂−β

P +
5

6
m̂−1

P

)−3

m̂3α
P s(µ)−3 & 8× 10−8 . (5.31)

The curves that saturate this constraint for various α and β are displayed in Figs. 5.1–5.4 with the

label “trec = e−2/3tvir.”

Finally, we require that dark matter dominate over baryonic matter so that dark matter potential

wells are deep enough to condense baryon over-densities after recombination. This simply translates

into the constraint fb . 1/2, which gives

m̂P . 51/(1−β) for β < 1 ,

m̂P & 51/(1−β) for β > 1 . (5.32)

For β = 1 this argument provides no constraint on mP since in that case fb is independent mP.

5.2.5.2 Galaxy Formation

Although the dark matter within a halo cannot dissipate its kinetic energy to further collapse, the

baryons may do so via electromagnetic interactions. If the cooling timescale τcool is less than the

timescale of gravitational dynamics τgrav, then not only do the baryons collapse, but perturbations

in the baryon density fragment into smaller structures. These structures ultimately fall into a

rotationally supported disk. Perturbations may further fragment if the disk satisfies the Jeans

instability criteria, which is that τgrav be less than the time it takes for a pressure wave to traverse the

perturbation. Fragmentation continues until perturbations become Jeans-stable and over-densities

relax adiabatically into hot balls of gas. This appears to be the path by which halos within our

universe ultimately condense into galaxies of stars (for background see for example Ref. [162]).

In order to ensure galactic dynamics similar to those within our universe, one might therefore
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first impose that for typical halos, τcool . τgrav.
2 We take the dynamical timescale of the halo to be

the time it would take for a test particle to free-fall to the center of the halo. For a spherical halo

of constant density, this is

τgrav ≈
√

3
2π

2mPρ
−1/2
vir . (5.33)

For the cooling timescale we use the total thermal energy divided by the rate of energy loss, per

unit volume:

τcool ≈
3

2

fb ρvir

mNµb

Tvir

Λc
, (5.34)

where µb is the mean molecular weight of the baryons in the halo (in units of the nucleon mass mN ),

Tvir is the mean temperature of the halo, and Λc is the rate of energy loss per unit volume. The

quantity fb ρvir/mNµb is the baryon number density, including electrons.

The mean molecular weight depends on the ionization fraction and the hydrogen mass fraction

of the halo. For example, for a fully ionized halo we have,

µb ≈
nH + 4nHe

ne + nH + nHe
≈ 4

3 + 5X
, (5.35)

where the subscripts denote electrons, hydrogen, or helium. Note that µb never strays more than a

factor of two from unity. To estimate the temperature of the halo, we first note that in a virialized

halo the mean kinetic energy equals half the mean gravitational binding energy. Thus for a halo

of mass M we write Mv2
vir ≈ 3

40πm
−2
P M2R−1, where vvir is a characteristic velocity for virialized

particles and R is the radius of the halo. Since M ≈ 4π
3 R

3ρvir and since Tvir ≈ 1
3µbmNv

2
vir, we

obtain

Tvir ≈
1

78
µbmNm

−2
P M2/3ρ

1/3
vir . (5.36)

Note that Tvir ∝ σeq so that Tvir is a stochastic variable for halos of a given mass.

The baryons within a halo may cool via Compton scattering, bremsstrahlung, the excitation

of hydrogen or helium lines, in addition to other mechanisms. These all contribute to the rate

of thermal energy dissipation Λc. Thus Λc is a complicated function of temperature, which also

2We note that more careful considerations involving galactic dynamics may suggest a far weaker constraint than
the one we pursue. We require τcool . τgrav, where each timescale is evaluated at virialization. However, the baryons
within a halo will cool even if this condition is not satisfied. As described in Ref. [163], this cooling pushes the gas
of baryons along a curve in the temperature-density phase space that eventually leads to the condition τcool . τgrav
being satisfied, albeit at a much later time. It is then necessary to consider any other factors that might constraint
the timescale τcool. Ref. [117] has pointed out that if τcool is not much smaller than the Hubble time, then baryons
do not cool significantly before being reheated by halo mergers. Eventually halo merging ceases due to cosmological
constant domination. However, even then, one must worry about too large a faction of baryons evaporating from the
halo before they cool sufficiently to sink deeper into the gravitational potential well [117]. These considerations are
beyond the scope of this work.
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depends on the halo composition and therefore the hydrogen and helium fractions X and Y . Rather

than attempt an estimate of Λc, we use the cooling rates given in Refs. [164, 165]. These include the

processes listed above, but we neglect the possibility for molecular cooling, which is insignificant at

the temperatures we consider. The galactic cooling constraint τcool . τgrav is now,

m3
P Λc f

−1
b M−2/3ρ

−11/6
vir & 5× 10−3 . (5.37)

The curves that saturate this inequality are displayed in Figs. 5.1–5.4 with the label “τcool = τgrav.”

As noted in Ref. [117], if a galaxy contains too little mass then early supernovae may blow away

a significant fraction of its baryons when they explode. We expect the effects of a supernova to

be relatively localized if the gravitational binding energy of the galaxy by far exceeds the energy

released in the supernova [117]. This can be ensured by requiring that the energy released in the

supernova be less than the halo binding energy,

Ebind ≈
3

40πm2
P

M2

R
≈ 1

26
m−2

P M5/3ρ
1/3
vir . (5.38)

Note that the baryons within a galaxy are much more tightly bound than when in the original halo

(see for example the galactic disk estimates of Sections 5.2.5.3 and 5.2.7). Therefore Eq. (5.38) is a

significant underestimate of the binding energy of a galaxy.

We expect the energy released in a supernova to scale roughly as the binding energy of a Chan-

drasekhar mass at its Schwarzschild radius [117], or as the binding energy of a typical star, both

of which are proportional to m3
P (see Section 5.2.6). Thus we write this energy Esnm̂

3
P, where

Esn ≈ 1051 erg is the typical supernova energy within our universe. Requiring that Ebind & Esn

gives,

m̂−5
P ρ̂1/3

eq ζ̂eq µ
5/3s & 4× 10−9 . (5.39)

Since halos of a given mass become more weakly gravitationally bound as mP is increased, Eq. (5.39)

is a constraint against increasing mP. After inserting previous results this becomes,

(

1

6
m̂−β

P +
5

6
m̂−1

P

)4/3

m̂−5−α
P µ5/3s(µ) & 4× 10−9 . (5.40)

The curves that saturate Eq. (5.40) are displayed in Figs. 5.1–5.4 under the label “Ebind = Esn.”

5.2.5.3 Star Formation

If the above conditions are met, the baryons in a halo will radiate away energy and settle into a disk

supported by its angular momentum. We then require that the disk fragment so that ultimately
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stars may form [117]. The stability of galactic disks against both radial and vertical perturbations

can be studied using a standard Jeans analysis, which compares the dynamical timescale τgrav to

the time it takes a pressure wave to traverse the perturbation. It turns out that the stability criteria

for the two modes differ by only an order unity coefficient [117, 162, 166]. In Ref. [166] it is shown

that for perturbations in the vertical direction, perturbations are unstable when the total mass of

the disk satisfies,

Mdisk & 120m2
PvpvcRdisk , (5.41)

where vp is the typical peculiar velocity of particles in the disk, vc is the circular velocity of these

particles, and Rdisk is the disk radius.

The mass of the disk is simply the mass of the baryons in the halo, Mdisk = fbM . Meanwhile,

the peculiar velocity is related to the temperature of the disk. This temperature will be the lowest

temperature to which the baryons can cool as they collapse, which is roughly set by the hydrogen

line temperature TH ≈ 104 K.3 Therefore the typical peculiar velocity may be written,

vp ≈
√

3TH

µbmN
. (5.42)

The circular velocity vc is deduced by conserving angular momentum as the baryonic halo collapses.

On the one hand, the disk angular momentum can be roughly written as RdiskMdiskvc. On the other

hand, the baryons in a halo start with angular momentum 1√
8π
fbλm

−1
P M3/2R1/2, where λ is the

dimensionless spin parameter [167, 168, 169, 170],

λ ≡
√

8π
JEbind

mPM5/2
, (5.43)

where J is the magnitude of the angular momentum, Ebind is the gravitational binding energy, and

all of the above quantities are evaluated for the original halo. Before the gravitational collapse of the

baryons out of the dark matter halo, it is reasonable to assume that the angular momentum of the

baryons and dark matter are equally distributed according to mass, such that initially Jb = MbJh/Mh

where the subscripts b and h refer to baryonic and dark matter halo quantities [166]. Then assuming

that angular momentum is conserved as the baryons in the halo collapse, we find

vc ∼
λ√
8π

m−1
P M1/2R1/2R−1

disk . (5.44)

3Although the rate of galactic cooling is reduced below the temperature of hydrogen line freeze-out, cooling still
proceeds via molecular transitions in, for example, H2. Therefore Tmin may become very small if one is willing to
wait a long time before disk fragmentation. We follow Ref. [117] and study when galactic dynamics are similar to
those within our universe.
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We do not require to solve for Rdisk after this expression for vc is inserted into Eq. (5.41).

Eq. (5.41) can now be written in the simple form [117],

fb & 4λ

(

TH

Tvir

)1/2

. (5.45)

The spin parameter λ is different for different halos, but it is roughly independent of mP, µ and

the amplitude of density perturbations, and it typically lies near λ ≈ 0.05 [167, 168, 169, 170].

Substituting into Eq. (5.45) gives

µ̂
1/2
b f̂bm̂

−1
P ρ̂1/6

eq ζ̂ 1/2
eq µ1/3s1/2 & 0.2 . (5.46)

This results in a constraint against increasing mP. We use previous results to convert this into a

constraint on m̂P and µ, which gives

(

1

6
m̂−β

P +
5

6
m̂−1

P

)−1/3

m̂
−1−β−α/2
P µ1/3s1/2 & 0.2 , (5.47)

where µ̂b(m̂P) depends relatively weakly on mP and has been ignored. The curves that saturate this

constraint for various α and β are displayed in Figs. 5.1–5.4 with the label “disk inst..”

It is essential that at some point fragmentation ceases so that over-densities can smoothly collapse

into a star. The process of fragmentation may be seen to terminate when individual fragments

become sufficiently opaque so as to trap most of their radiation [171]. In the Jeans picture, this

allows the temperature of a perturbation to rise and correspondingly increase the sound speed and

thus prevent further fragmentation. As described in Ref. [171], the mass scale at which this occurs

is relatively independent the dominant contributions to the cooling rate and opacity and gives a

typical stellar mass that scales like m3
P. Interestingly, this is the same scaling behavior that restricts

the sizes of stars based on their internal temperature being high enough to fuse hydrogen and their

radiation pressure being low enough so as to not blow the star apart. We elaborate on this in the

next section.

5.2.6 Stellar Dynamics

We have so far ensured that the fragmentation of over-densities persists on all scales greater than

a relatively small scale that is roughly proportional to m3
P. We now require that the temperature

within some of the remaining structures is sufficient to fuse hydrogen to form a star. It is possible

that the mere existence of stars is not a sufficient condition for the existence of observers. Therefore

we also consider the requirement that some of these stars supernova in order to generate heavy

elements. In addition, we consider the requirement that some of these stars have both a surface



78

temperature within a factor of two that of the sun and a main-sequence lifetime of at least a few

billion years. Our motivation for selecting these specific criteria is simple. Without knowing what

are the necessary conditions for observers to arise within a stellar system, we study what seem at

least to be two sufficient conditions.

Ref. [118] has studied the basic requirements that constrain the properties of stars. For decreas-

ing stellar mass, the central temperature must be above some minimum temperature Tnuc that is

necessary to fuse hydrogen. The central temperature within a low-mass star is estimated by bal-

ancing the influences of gravitational pressure and electron degeneracy. This gives for the central

temperature of a low-mass star [118],

Tc ∝ m−4
P M4/3 , (5.48)

where M is the stellar mass. The least massive stars have Tc = Tnuc. Since Tnuc is independent of

mP, in any universe these stars have mass

Mmin ∝ m3
P . (5.49)

On the other hand, there is also an upper limit to the mass of a star. If the radiation pressure

within a star well exceeds the gravitational pressure that its mass can provide, then the star itself

becomes unstable upon the ignition of its core. This constrains the maximum mass that a star may

have, such that it satisfies the scaling [118],

Mmax ∝ m3
P . (5.50)

Note that the minimum and maximum mass of a star both scale as m3
P. This is also the scaling

of the typical mass that becomes sufficiently opaque to prevent further fragmentation. This means

that, given a window of masses for which stars exist in our universe, there will also be such a window

within universes with significantly different values of mP.

5.2.6.1 Stellar Lifetimes and Spectra

We now seek constraints to ensure that some of the stars produced within a particular universe

have surface temperatures and main-sequence lifetimes that appear to be sufficient for the evolution

of observers. Our purpose in investigating this condition is to ensure that we do not overlook

what might be viewed as an important anthropic constraint. Therefore we adopt a very restrictive

perspective and require that some stars have surface temperatures of at least 3500 K and that

these stars have main-sequence lifetimes greater than the timescale of biological evolution, τevol ≈
5× 109 yrs. This surface temperature is chosen in part to simplify the calculation of stellar lifetimes
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and in part because a black body at this temperature radiates a significant fraction of its power into

the frequency band accessible to chemistry. The evolutionary timescale τevol should be understood

to include the time required for a planet to condense and cool, minus the time it takes the star to

reach main-sequence hydrogen burning. This time may be different for different planets, but we do

not expect it to form the dominant contribution to τevol.

The main-sequence lifetime of a star is roughly equal to the available energy of the star divided

by the typical rate that it radiates energy away,

τ? ∝ XML−1 . (5.51)

Here L is the typical luminosity of the star during main-sequence and X is the hydrogen fraction. We

assume that differences in composition other than differences in the hydrogen fraction have benign

consequences. In addition, we neglect the mP dependence of the mean molecular weight µ?, since

µ? changes by only roughly a factor of two as X ranges from zero to unity. For an introduction to

the major concepts of stellar astrophysics, we have found useful Refs. [172, 173, 174, 175].

Our narrow purpose allows for a simplified analysis of the necessary stellar dynamics. Since we

specify stars by their surface temperature, we write the luminosity L ∝ R2T 4
s for stellar radius R

and surface temperature Ts. To eliminate R, we note that the central temperature of a star scales

as

Tc ∝
1

m2
P

M

R
. (5.52)

Thus we can write,

τ? ∝
Xm4

PT
2
c

MT 4
s

. (5.53)

The lifetime of a star is maximized by considering the minimum allowed surface temperature, in

this case Ts = 3500 K. Since both the lower end and the upper end of the window for stellar masses

scale as m3
P, as a basic approximation we may take this to be the scaling for all stellar masses at

fixed Ts and Tc. Combining this with Eqs. (5.51), (5.52), and (5.53) gives,

τ̂? ≈ X̂m̂P , (5.54)

where τ̂? is measured in units of the main-sequence lifetime of these stars within our universe. This

lifetime is roughly 100 billion years [176]. Therefore the constraint τ? & τevol becomes

X̂m̂P & 5× 10−2 . (5.55)



80

This requires that m̂P satisfy m̂P & 0.1.

We now consider this analysis in a little more detail. In particular, we consider the effects of

convection and electron degeneracy explicitly in order to motivate that we can keep Ts/Tc fixed

while scaling mP and that the stellar mass scales like m3
P at fixed Tc. An ionized star in which

radiation pressure can be neglected and in which the energy transport is everywhere dominated by

convection is well approximated as a polytrope with polytropic index i = 3/2 [172, 174, 175]. This

implies certain scalings between stellar properties and in particular that for these stars Ts/Tc is

independent of mP, M and R. Within our universe, stars with surface temperatures at and below

3500 K have masses M . 0.35M� and are well approximated by these polytropes. In addition,

it can be shown that stars defined by these temperatures remain convection dominated as mP is

decreased [174, 175]. To see this intuitively, note that convection is driven by tidal forces and, all

else being equal, one expects the tidal forces within a star to increase as mP is decreased. Therefore,

we expect Ts/Tc to be fixed for stars with Ts = 3500 K as mP is decreased.

Meanwhile, so long as electron degeneracy is significant within the center of the star, the mass

required to achieve a fixed central temperature scales like m3
P [118]. Stars with a surface temperature

of 3500 K are indeed partially degenerate within our universe, but they could become non-degenerate

after some amount of scaling M ∝ m3
P. To see that there can exist stars for which the degeneracy

remains fixed, consider again the polytrope model. The electron degeneracy at the center of a star

is a function of the ratio neT
−3/2
c , where ne is the number density of electrons. The scaling relations

applicable to an i = 3/2 polytrope imply that the electron density ne scales like the average density

of the star, which at constant central temperature scales like m6
PM

−2. Next note that the electron

degeneracy at the center of a star is a constant if the mass of the star scales as M ∝ m3
P for fixed

central temperature Tc. This is precisely the scaling that describes a partially degenerate star, which

means that a partially degenerate star remains partially degenerate as mP is scaled while keeping Tc

fixed. Therefore we expect stars with a surface temperature of 3500 K to remain partially degenerate

as we decrease mP keeping Ts fixed, so that indeed M ∝ m3
P. These arguments justify the constraint

Eq. (5.55).

It is illuminating to consider a different form of analysis. This applies to ionized stars where

radiation pressure can be neglected but radiation dominates over convection in the transport of

energy. Then the scaling of the stellar mass M with mP for fixed Tc may be obtained for a class

of stars (so-called homologous stars4) by applying homologous transformations to the equations of

hydrodynamical equilibrium. To perform such an analysis, we must phenomenologically model the

opacity of the star and the rate of energy generation per unit mass with the respective formulae [172],

κ ≈ κ0ρ
nT−s , ε ≈ ε0X2ρT ν . (5.56)

4This is a very restrictive class, since by definition the mass distribution for two homologous stars of mass Mi and
radius Ri must satisfy m1(r)/M1 = m2(rR2/R1)/M2, where mi(r) is the mass contained within a sphere of radius r.
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The terms κ0 and ε0 are constants while the exponents n, s, and ν depend on the physical properties

of the star. The Kramers opacity of intermediate mass stars such as our sun is modeled using

n = 1 and s = 7/2. Then it can be shown that, independent of ν, the stellar mass scales like

M ∝ X1/3m
10/3
P for fixed central temperature [172]. For such stars Ts/Tc is not constant, so

one cannot use Eq. (5.53). However, at fixed central temperature the homology transformations

determine the scaling of the luminosity to be L ∝ X2m6
PM

−1 ∝ X5/3m
8/3
P . Inserting these scalings

into Eq. (5.51) gives

τ̂ ′? ≈ X̂−1/3m
2/3
P , (5.57)

where τ̂ ′? is the main-sequence lifetime in units of an appropriate lifetime evaluated within our

universe.

This gives a slightly weaker dependence on mP than Eq. (5.55); however stars that are well-

described by these approximations have shorter lifetimes than those described by an i = 3/2 poly-

trope. In addition, the physical characteristics that make these approximations applicable will not

continue to describe stars as we decrease mP with Ts fixed. (They do continue to describe stars as

mP is increased for fixed Ts, since this tends to lessen the importance of convection.) Nevertheless,

this confirms the qualitative form of Eq. (5.55) and suggests that an analogous analysis would apply

if surface temperatures closer to that of the sun were demanded.

5.2.6.2 Heavy Element Production

Supernovae are believed to be the exclusive source of heavy elements within our universe. However,

the dynamics of supernovae are very complex and are still not fully understood (for reviews see for

example Refs. [177, 178]). Therefore ensuring the existence of supernovae in universes with differing

values of mP is clearly speculative. In this section we simply provide some qualitative remarks in

support of this possibility. There are many types of supernovae within our universe; for convenience

we focus on what are called type Ia supernovae.

Type Ia supernovae are understood to erupt via the accretion of matter by a white dwarf star.

Meanwhile, white dwarfs are created when a star has consumed all of its hydrogen and helium fuel

but does not possess sufficient mass either to drive its central temperature high enough to ignite

carbon fusion or to form a black hole. According to the scaling relationships discussed in the previous

section, the first condition is always satisfied given that it is satisfied within our universe. On the

other hand, the Schwarzschild radius and the physical radius of a star at fixed central temperature

both scale as R ∝ m−2
P M . Therefore white dwarfs will exist in all of the universes that we consider.

The supernova of an accreting white dwarf proceeds when its growing mass reaches the Chan-

drasekhar limit and the star becomes unstable through the nuclear ignition of its carbon. The
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relevant physical scales for this phenomena are set by the Chandrasekhar mass and the binding

energy of a Chandrasekhar mass at about a Schwarzschild radius. Since these and the typical stellar

mass all scale as m3
P, it seems plausible that type Ia supernovae would occur within universes with

significantly differing values of mP. This ensures the production of heavy elements within these

universes.

There is a possible caveat to this result. Within the context of another anthropic analysis, it

has been remarked [120] that the relatively low production of oxygen by type Ia supernovae may

significantly hinder the formation of life if oxygen is not generated elsewhere. However, it is not

clear that this suppression, roughly 3% to 8% relative type II supernova [179, 180], is sufficient

to render life overwhelmingly unlikely. The arguments of Ref. [120] were aimed against a scenario

where type II supernova would definitely not occur. Since these supernova occur for a wide range

of stellar masses within our universe, it is plausible that universes with mP not too unlike ours will

also contain type II supernovae. It is beyond the scope of this work to investigate more precisely for

what values of mP these supernovae will occur.

5.2.7 Stability of Stellar Systems

As is illustrated in Refs. [117, 121], an important anthropic constraint derives from requiring that

stellar systems are stable against cosmic disruptions. Specifically, if a second star grazes too close to

an existing stellar system, then a habitable planet may be thrown out of its anthropically fortuitous

orbit. Here we seek a constraint to ensure that such encounters are typically too infrequent to

interfere with the evolution of life. First, we define a destructive encounter rate,

γ ∼ n?σ?vp , (5.58)

where n? is the number density of stars, σ? = πb2 is the cross section for an encounter with “fatal”

impact parameter b, and vp is the typical peculiar velocity of a star. Note that all of the stars within

a given neighborhood have the same circular velocity; thus the circular velocity does not contribute

to the encounter rate.

The typical peculiar velocity of the stars in a galaxy is approximately determined by the tem-

perature of the constitutive baryons during the phase of star formation. Since the baryons in a

galaxy quickly cool to about TH ≈ 104 K and cool relatively slowly thereafter, we take this to be the

relevant temperature. The corresponding peculiar velocity is then given by Eq. (5.42). For m̂P = 1

this gives a typical peculiar velocity of about vp ' 20 km/s which agrees well with observation. The

number density of stars n? is equal to the number density of baryons divided by the typical number

of baryons within a star, N?. Recall from Section 5.2.5 that the number density of baryons within
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a galactic halo is equal to fbρvir/mNµb. Therefore n? can be written,

n? =
f?fb ρvir

mNµbN?
, (5.59)

where f? is a fudge factor inserted to account for the increased density of the galactic disk, for the

fraction of baryons that do not end up within stars, and for any clustering that may be involved in

the star formation process. A typical star within our universe contains 1057 baryons; therefore the

results of Section 5.2.6 suggest N? ∼ 1057m̂3
P/µ̂? ∼ 1057m̂3

P/µ̂b. To estimate f? is somewhat more

challenging.

The factor f? accounts for several effects. For example, stars may form in clusters such that

most stars exist in a neighborhood of higher density than the average density of stars in a galaxy.

On the other hand, a significant fraction of baryons may compose a relatively diffuse interstellar gas

and therefore not contribute to the stellar encounter rate. As it is beyond the scope of this work

to compute the mP dependence of these effects, we simply treat them as being independent of mP.

Meanwhile, we also expect f? to be proportional to the relative density of the galactic disk to that

of the baryons in the halo. Rather than concern ourselves with the specific geometry of the galactic

disk, we study a simple model to obtain the mP dependence. We expect the factor f? to roughly

scale like

f? ∝
R3

HdiskR2
disk

, (5.60)

where Hdisk is the typical disk thickness. This can be written [166],

Hdisk ∝ m2
PM

−1
diskR

2
diskv

2
p . (5.61)

Meanwhile, to solve for Rdisk we note that the circular velocity for stars is given by both by Eq. (5.44)

and by,

vc ∝ m−1
P M

1/2
diskR

−1/2
disk . (5.62)

Equating these expressions gives Rdisk ∝ λ2f−1
b R. Finally, putting all of this together gives,

f? ∝
f5
b

λ8

v2
vir

v2
p

. (5.63)

Note the strong dependence of f? on the spin parameter λ. The spin parameter is a stochastic

variable with statistical properties related to those of ζeq. For example, the Milky Way appears to

be characterized by λ ≈ 0.06 [181] while typical galaxies may have λ a factor of two larger or smaller

than this [167, 168, 169, 170]. This and other factors suggest that the factor f? may vary widely
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among galactic environments within any particular universe. In addition, as explained above we

have ignored several effects that might enter into f?. For concreteness we normalize f? to the value

that describes our solar environment in the Milky Way, f? ∼ 105 [117]. This gives

f? ∼ 105m̂−2
P µ̂bf̂

5
b µ

2/3ρ̂1/3
eq ζ̂eqs(µ) , (5.64)

where the dependence of f? on mP stems entirely from its dependence on fb and Tvir.

It is left to calculate the impact parameter for fatal encounters. We are specifically interested in

the persistence of stellar systems that contain a planet in orbit about a star such as those considered

in Section 5.2.6. In addition, we focus on planetary orbits that receive electromagnetic radiation

with an intensity that is comparable to that from the sun at the orbit of the earth. We then assume

that an encounter will not be devastating to such a stellar system if the gravitational field from

the grazing star is less than a tenth that of the primary star in the vicinity of the orbiting planet.

Therefore we approximate b to be roughly
√

10 times the radius of orbit for a planet receiving about

the same stellar intensity as the earth but in orbit about the stars studied in Section 5.2.6. Note

that the luminosity of a star is L ∝ R2T 4
s while the intensity at a distance r is I ∝ L/r2. Therefore

b =
√

10 rau
R⊗T 2

⊗
R�T 2

�

R	
R⊗

, (5.65)

where the subscript � designates a quantity for the sun, ⊗ designates a star with surface temperature

T⊗ = 3500 K in our universe, R	 is the radius of a star with this surface temperature within a

universe with a different value for mP, and rau is one astronomical unit. Eq. (5.65) has been written

so that every quantity can be evaluated within our universe except for R	/R⊗ ≈ m̂P, which is

deduced using the results of Section 5.2.6.

We put all these results together to obtain γ. The constraint that stellar systems typically

survive a dangerous close encounter for long enough that life may evolve is τevol . γ−1, where again

τevol = 5× 109 yrs. In terms of cosmological parameters this is,

m̂3
Pµ̂

−1/2
b f̂−6

b ρ̂−4/3
eq ζ̂ −4

eq µ−2/3s−4 & 10−5 , (5.66)

where we have used the models of Ref. [176] to substitute R⊗T 2
⊗/R�T 2

� ≈
√

L⊗/L� ≈ 0.14. De-

creasing mP reduces the cross section for dangerous impacts, since the “anthropically-favorable”

radius decreases, yet increases the number density of stars. The net effect is a constraint against

decreasing mP. The explicit constraint implied for mP is given by

(

1

6
m̂−β

P +
5

6
m̂−1

P

)2/3

m̂3+4α+6β
P µ−2/3s−4 & 10−5 , (5.67)
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Figure 5.1: Anthropic constraints on m̂P, plot as a function of halo mass scale µ, for α = 1 and
β = 0. The logarithms are base ten and the empty circle corresponds to the mass scale of our galaxy
with mP as observed within our universe. The region within the µ − m̂P plane that is excluded
by any constraint is the region that does not include this circle. The parameters α and β as well
as the labels on the curves are defined in the text (see for example the summary of Section 5.2.8).
Note that in this and subsequent figures the galactic cooling constraint does not include the effects
of molecular cooling.

where µ̂b depends relatively weakly on mP and has been ignored. The curves that saturate this

inequality are displayed in Figs. 5.1–5.4 using the label “γ−1 = τevol.”

5.2.8 Summary

Let us now summarize the results of the previous sections. Many anthropic constraints depend on the

primordial curvature perturbation ζeq and on the baryon to photon ratio η. Lacking any standard

model for the generation of either of these, we write them generically as ζeq ≈ m̂−α
P and η ≈ m̂−β

P ,

where m̂P is the ratio between the apparent Planck mass and the value obtained within our universe.

For the most popular models of inflation, α ranges between one (m2
ϕϕ

2 chaotic inflation) and three

(hybrid and natural inflation). Meanwhile, popular models of baryogenesis give β between zero

(efficient leptogenesis and electroweak baryogenesis) and 3/2 (specific models of SUSY Affleck-Dine

baryogenesis).

Most of the anthropic constraints under consideration are displayed in Figs. 5.1–5.4, for repre-

sentative values of α and β. We assume a WIMP candidate to dominate the dark matter density.

Many constraints depend on the total mass within the galactic halo for which they are evaluated.

This mass is denoted µ and is measured in units of the Milky Way mass, or 1012 solar masses. Note

the empty circle in each panel of Figs. 5.1–5.4. This corresponds to a mass scale equal to the mass

of the Milky Way with a Planck mass equal to the value obtained within our universe. The region
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Figure 5.2: Anthropic constraints on m̂P, plot as a function of halo mass scale µ, for α = 1 and
β = 3/2. For more details see the caption to Fig. 5.1.

within the µ–m̂P plane that is excluded by any constraint is the region that does not include this

circle. For clarity we do not display the constraints that primordial black holes form a sub-dominant

contribution to the energy density of the universe and that the dark matter dominates over baryonic

matter. These are weaker constraints than those displayed in Figs. 5.1–5.4 and they are easy to cal-

culate from Eq. (5.20) and Eqs. (5.32). Finally, we note that many of the constraints in Figs. 5.1–5.4

are deduced by assuming that other constraints are satisfied. For example, the “disk inst.” curve

is changed when the constraint represented by the curve “trec = e−2/3tvir” is not satisfied. The

continuous curves in Figs. 5.1–5.4 are intended to guide the eye.

We annotate Figs. 5.1–5.4 as follows. A number of constraints come from the various levels of

structure formation. The curve labeled “τcool = τgrav” (this curve has a distinctive ‘dorsal fin’ shape)

marks the separation between the mass scales of halos that contain baryons which cool faster than

they (would) collapse and those that do not. As explained in Section 5.2.5.2, this is one among a

set of sufficient, but perhaps not necessary, conditions that allow for galaxy formation. Another one

of these conditions is that galactic disks be Jeans-unstable, which occurs below the curve labeled

“disk inst.” in Figs. 5.1–5.4. Meanwhile, structure formation requires that over-densities separate

from the cosmic expansion before the domination of the cosmological constant halts their growth.

This requirement is filled below the curve labeled “σ∞ = 1.69.” Finally, our analysis of structure

formation assumes that galactic halos virialize after recombination, which occurs for mP values

located above the curve labeled “trec = e−2/3tvir.” Alternative paths to structure formation are

discussed in Section 5.5.

We also consider a few anthropic criteria that are not directly related to structure formation.
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Figure 5.3: Anthropic constraints on m̂P, plot as a function of halo mass scale µ, for α = 3 and
β = 0. For more details see the caption to Fig. 5.1.

For example, another constraint that we consider is that galaxies not be so small that they are

blown apart by internal supernovae. This will not happen if the binding energy of a galactic halo

well exceeds the energy released via supernovae. This condition is satisfied for µ and m̂P to the

right of the curve labeled “Ebind = Esn.” In addition, one might require that collisions between

stellar systems be such that impact parameters so small as to dislodge a habitable planet occur on

a timescale that is much larger than the evolutionary timescale, here taken to be τevol ≈ 5×109 yrs.

This constraint is satisfied above the curve labeled “γ−1 = τevol.” Finally, one might wish to restrict

attention to universes that contain stars that have surface temperatures in excess of about 3500 K

and that have main-sequence lifetimes in excess of about four billion years. These correspond to

positions above the line labeled “τ? = τevol” in Figs. 5.1–5.4.

Except for the stellar lifetime constraint, every constraint displayed in Figs. 5.1–5.4 depends on

the size of the initial over-density that eventually grows into a galaxy. The curves in Figs. 5.1–5.4

correspond to choosing this initial fluctuation to be the rms of the density perturbations at a scale µ

evaluated at matter-radiation equality. However, the initial over-density describing any galaxy is a

stochastic variable that may be larger or smaller than this. Therefore all of the curves in Figs. 5.1–

5.4 will be shifted when one considers galaxies that are away from the norm. In addition, the disk

instability and close encounters curves (labeled “disk inst.” and “γ−1 = τevol” respectively) depends

very strongly on other stochastic quantities, such as the galactic spin parameter (see Section 5.2.7).

Therefore the range of mP that is consistent with the above constraints is larger than the windows

in Figs. 5.1–5.4 would suggest if one allows observers to arise in atypical environments within any

given universe.
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Figure 5.4: Anthropic constraints on m̂P, plot as a function of halo mass scale µ, for α = 3 and
β = 3/2. For more details see the caption to Fig. 5.1.

5.3 The Probability Distribution for the Scale of Gravity

If the Planck mass mP scans across a landscape of universes, then the value within any particular

universe may not be uniquely determined. However, with an understanding of the landscape and a

calculus to regulate over a conceivably infinite number of infinitely expansive universes, we may in

principle calculate the distribution of mP. Since we cannot access any of the other universes within

the landscape, such a distribution cannot be directly tested. Nevertheless, we may still use this

distribution to calculate the likelihood that we should observe the value of mP that we do. As we

are forced to test this distribution using only our universe, we must be careful to account for any

selection effects that would attenuate the distribution of mP.

These selection effects generate a factor S that multiplies the “prior” distribution I. Thus we

write the probability to measure the Planck mass to be mP,

P (mP) = S(mP)I(mP) . (5.68)

The factor I(mP) may be taken as the likelihood for universes with Planck mass mP to arise within

the multiverse, while S(mP) may be understood as the likelihood for observers to arise within those

universes. We restrict our prior I to account for only universes exactly like ours except for their value

of mP. This is equivalent to restricting the selection criteria in S. As mentioned in the introduction,

there are many subtle issues that complicate the calculation of S and I. Our purpose here is not to

resolve any of these issues based on technical grounds. Instead we explore an empirical constraint

that may complicate some proposals to address them.
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One might expect the likelihood for a universe to support observers to be proportional to the

total baryonic mass within galaxies in that universe. (Note that here and below we do not presume

proportionality factors to be independent of mP.) Meanwhile, the baryonic mass within galaxies

is proportional to the total energy within a universe. This quantity diverges in proportion to the

volume of the universe. Nevertheless, we may hope for a regularization scheme that allows for the

volumes of universes to be compared. Since the energy density does not redshift during inflation, it

is possible that when volumes are properly regulated, the ratio between the total energy densities

of two universes will be proportional to the ratio of their inflationary expansion factors.

While this argument may be intuitively appealing, such a prescription for volume-based weighting

presents well-known difficulties [131, 132, 133, 134, 135, 136]. For instance, its conclusion is crucially

dependent on a specific global spacelike slicing, which is ambiguous outside the horizon of any one

observer. For example, an observer can chose a spacelike slicing that is engineered to create a very

large initial volume for the observer’s own universe, while also suppressing the initial volume of the

universes of casually disconnected observers. The suppression of an initial volume can be used to

cancel the inflationary expansion factor, such that this slicing would give a dramatically different

counting than the weighting described above.

Nevertheless, in at least one proposal this ambiguity has been overcome and the result includes a

selection effect that weights universes according to their inflationary volume [135]. We assume that

this result holds and write,

S(mP) = A(mP)V(mP) . (5.69)

Here A is proportional to the anthropic factor, which ultimately gives the likelihood per unit volume

for some class of observer to arise within a universe. Depending on one’s notion of an observer, A
might include, for example, the baryonic mass fraction within galaxies, the fraction of stars with

lifetimes in excess of few billion years, and/or other environmental specifications. The factor V is

the inflationary expansion factor for the universe,

V(mP) = e3N(mP) , (5.70)

where N(mP) is the number of e-folds if inflation that typically occurs after a universe with Planck

mass mP has arisen within the multiverse.

If inflation is driven by a single canonical scalar field, then the number of e-folds of inflation is

N =
1

m2
P

∫ ϕi

ϕf

V

Vϕ
dϕ . (5.71)

Here ϕf is the value of the inflaton when inflation ends, set by when the first slow-roll parameter
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equals unity, and ϕi is the value of the inflaton when inflation begins. Note that in general N

depends explicitly on mP. As a specific example, consider chaotic inflation with an inflaton potential

V (ϕ) = 1
2m

2
ϕϕ

2. This gives

N =
1

4

ϕ2
i

m2
P

− 1

2
. (5.72)

It seems evident that N will generically depend on mP. Yet without understanding the mechanism

by which a universe is obtained within the multiverse, it is not clear what is the (typical) value of

ϕi and what is its dependence on mP.

To illustrate that the explicit and implicit dependences of N on mP are not expected to cancel,

three models to determine ϕi are now considered. The first model sets ϕi to be the value where

classical evolution of ϕ begins to dominate over the quantum fluctuations experienced whenever a

mode exits the Hubble radius. This is set by the solution to

1√
12π

V 3/2

m3
PVϕ

= 1 . (5.73)

If this is the case, the total number of e-folds is

N '
√

6π
mP

mϕ
. (5.74)

The second model assumes that ϕi is determined by where the inflaton energy density equals the

Planck energy density. In this case,

N ' m2
P

m2
ϕ

. (5.75)

On the other hand, if ϕi is determined by where the inflaton energy density equals M 4, then

N ' M4

m2
ϕm

2
P

. (5.76)

Not only does N generally depend on mP, but the dependence is very strong for mP near the

value obtained within our universe. Consider for example the case of chaotic inflation with ϕi set by

Eq. (5.73). Then N ∼ 105 m̂P, where m̂P is the Planck mass in units of the value obtained within our

universe. Meanwhile, if Eq. (5.75) sets the value of ϕi, then N ∼ 1010 m̂2
P. Clearly different choices

for ϕi, and in particular different models of inflation, will in general give a different dependence of

N on mP. However, the dependence is always strong. This is because our universe experienced a

large number (at least about sixty) of e-folds of inflation.

The ambiguity over the mP dependence of N is not of concern. The important result is that
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so long as the dependence on mP of A and I is significantly weaker than the strong exponential

dependence in V, then we expect mP to be most probably observed very near one of the boundaries

of the anthropic range. The analysis of Section 5.2 reveals that this is not the case with at least

the factor A and the value of mP observed within our universe. We illustrate this with an explicit

example in Section 5.6. There we show that even in the contrived case where N ∼ 60 m̂P, the volume

factor V(mP) overwhelms what appears to be one of the tightest anthropic constraints. This pushes

the expectation value for mP well beyond what we estimated to be the anthropic boundary, while

the value obtained within our universe sits far down the tail of the distribution. This is exactly

analogous to the runaway “σ-problem” and the “Q catastrophe” introduced in Refs. [144, 145]. We

refer to our example as the “mP-problem.”

The σ-problem and Q catastrophe were motivated by the fact that in many models of inflation

the total number of e-folds of inflation depends on the inflationary parameters that also set the

level of density perturbations (the authors of Refs. [144, 145] use the notations σ ∼ Q ∼ ζ). For

example, in chaotic inflation with potential V (ϕ) = 1
2m

2
ϕϕ

2 one finds N ∼ ζ−1. Therefore if the

inflationary parameters may scan over the landscape, by the same argument given above we expect

ζ to be pushed to one of its anthropic boundaries, whereas in our universe it sits comfortably near

the middle of the anthropic window [117]. It has been pointed out [182] that this argument is

not completely satisfactory, since by hypothesis universes with an enormous number of e-folds are

preferred. In such universes, ζ may plausibly depend on different parameters during a long stretch

of early inflation than it does near the end of inflation, when scales important to the formation of

structure are generated. Moreover, we note that the curvature perturbation is related to the first

slow-roll parameter,

ζ ∼ 1√
εI

V 1/2

m2
P

. (5.77)

Inflation of longer duration requires a smaller εI , yet for inflation to end at all requires that at some

point εI evolve toward unity. Therefore ζeq may be significantly decreased from its value during

most of inflation by the necessary condition that εI interpolate between some very small value and

unity by the end of inflation.

We emphasize that the mP-problem is not hampered by these issues. That is, unlike ζ, mP

is a constant within any given universe.5 We also emphasize that if the model of inflation that

describes our universe exhibits an mP-problem, then allowing more parameters to vary across the

landscape cannot mitigate this problem. That is, although allowing more parameters to vary might

5Of course, the inflationary landscape hypothesis presumes that the fields φ described in the introduction, c.f.
Eq. (5.1), will evolve within the multiverse. Indeed, this is how the landscape is populated. However, we assume that
the vacua defined by the fields φ are selected prior to period of inflation in which we take interest, during which mP

is constant. Specifically, the factor I is assumed to account for any selection effects due to the field evolution prior to
this period of inflation, and the terms A and V are defined to apply only after a particular metastable state, with a
specific value of mP, has been selected.
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dramatically shift the expectation value for mP after the additional parameters have been marginal-

ized, this can only happen if the overwhelming majority of universes near the new expectation value

have values for the other parameters that are very different than ours. We would still be left with

the challenge to explain why we find ourselves in a universe like ours, and not with these different

parameter values.

There are significant caveats to this result. First of all, it is not clear that the selection effects

in S should actually factorize as in Eq. (5.69). Since the diverging volumes of sub-universes is one

of the circumstances that complicates making landscape predictions, we cannot be assured that the

resolution of this problem will result in universes with greater inflationary expansion factors being

more likely to harbor observers. Another caveat to this discussion is that little is known about

the distribution I(mP). As we have defined it, this term receives two separate contributions. One

contribution comes from the distribution ofmP values over the landscape, that is the frequency ofmP

values among the number of metastable states that are allowed by the underlying theory. A second

contribution comes from the dynamics of the multiverse, which may prefer certain metastable states

over others as the multiverse evolves in time. This is because the tunneling and diffusion rates of

quantum fields will in general depend on mP, such that metastable states with certain values of mP

will appear more frequently within the multiverse than others. This mP dependence within I(mP)

could be very strong; see for example the studies of quantum diffusion in Refs. [128, 129, 130].

Therefore I(mP) may depend more sharply on mP than does V(mP), with a local peak within

the anthropic range. This might at first seem incredibly fortuitous. However, the situation is very

different from the case of the cosmological constant ρΛ. In that case we observe ρΛ to be very far

from its ‘natural’ value and therefore we must presume a very diverse and densely packed landscape

in order for the value that we observe to exist at all. However, since we do not know the natural

value of mP, its landscape window could be much smaller.6 In addition, it is possible that the

landscape is not as densely populated as we have presumed, in particular once we restrict attention

to metastable states in every way like ours except in the value of mP. For example, if the spacings

between allowed values of mP are significant next to the size of the anthropic window, then our value

of mP might be consistent with the shape of I(mP).

Furthermore, the model of inflation that describes our universe may not actually exhibit an

mP-problem. This would happen, for example, if the number of e-folds of inflation that describe

this model were independent of mP or had a maximum for some finite value of mP. An interesting

6It is tantalizing that within the context of weighting universes by inflationary expansion factors, the chaotic
inflation model with N set by either Eq. (5.74) or Eq. (5.75) pushes mP to larger values, while the largeness of mP

relative to other mass scales is well-noted in our universe. Let us assume a fundamental scale M ∼ MGUT. Then in
this case we expect mP � MGUT, and it is possible that mP ∼ 103MGUT is simply the largest that the landscape
allows. Furthermore, Eq. (5.74) pushes the inflaton mass mϕ to smaller values, and perhaps mϕ is the smallest that
the landscape allows. Thus we obtain the apparent hierarchy

mP � MGUT � mϕ . (5.78)
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example of the latter case occurs when the effective Planck mass is not fixed within our metastable

state, but evolves as in Brans-Dicke theory. This scenario has been studied in Refs. [128, 129, 130],

where it is shown that for some non-minimally coupled models of inflation, the inflationary expansion

factor is maximized when inflation ends at some finite value of mP. Note however that for this or

any other model of inflation to avoid the mP-problem, it would have to generate more e-folds of

inflation than all of the other anthropically viable possibilities within the landscape. Moreover, the

value of mP that maximizes N would have to lie within the anthropic window.

Finally, it is possible that the analysis of Section 5.2 missed or underestimated an important

anthropic condition. This might appear as the most attractive possibility, but one must be careful

to appreciate the strength of the exponential dependence within V(mP). In order to cancel this

exponential dependence and thus make the observed value of mP reasonably likely, an anthropic

constraint must appear to exponentially suppress the likelihood for observers to arise within our

universe. The observed prevalence of galaxies, long-lived stars, supernovae, and planets, along with

the observation that our solar system does not seem to occupy a particularly over- or under-dense

region within the Milky Way, all seem to suggest that this is not the case. Since there do not yet

exist experimentally confirmed theories for inflation, reheating, and baryogenesis, it is still possible

that one of these processes presents an anthropic selection effect that provides this exponential

suppression. This possibility is explored relative to the reheating temperature and baryogenesis in

the context of the σ-problem in Ref. [183]. Since the reheating temperature in general also depends

on mP, this analysis applies equally to our scenario.

5.4 Anthropic Constraints on Λ and the Scale of Gravity

It is straightforward to extend the analysis of Section 5.2 to the case where both mP and the

cosmological constant ρΛ may (independently) scan over a landscape. The only constraint that

is affected by this generalization is the requirement that over-densities separate from the Hubble

flow before their growth is halted by the domination of the cosmological constant. The maximum

amplitude reached by a linear rms over-density in this scenario is,

σ∞ ≈ 1.44× 3

5

aΛ

aeq
σeq ≈ 3.20 ρ̂1/3

eq ρ̂
−1/3
Λ σ̂eq . (5.79)

On the other hand, an over-density has separated from the Hubble flow when a linear analysis gives

σ ≥ 1.69 [37, 161]. Therefore an rms fluctuation will eventually form a halo if σ∞ ≥ 1.69, which

gives the generalization of Eq. (5.28):

ρ̂eqσ̂
3
eqρ̂

−1
Λ & 0.1 , (5.80)
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where we find it convenient to henceforth use σ̂eq instead of ζ̂eqs. This is the only result from

Section 5.2 that changes when ρΛ may scan over the landscape.

Clearly, Eq. (5.80) is weakened as ρΛ is decreased from the value it obtains within our universe.

In this case, Eq. (5.28) eventually ceases to be the strongest constraint and mP is bounded from

above by one of the other curves in Figs. 5.1–5.4. We may also interpret Eq. (5.80) as an upper

bound on ρΛ for a specified value of mP. In universes with a larger value of mP, ρΛ is then more

tightly bound than in our universe. However, in universes where mP is smaller than in our universe,

the bound on ρΛ may be significantly weakened. This effect can be dramatic. For example, if we

take m̂P = 0.1 and if α = 1 and β = 0, then ρΛ may be increased by a roughly a factor of ten million

and still satisfy Eq. (5.80). Of course, to determine the most likely range within which to observe ρΛ

requires to determine the prior distribution I(ρΛ,mP) and to incorporate all of the selection effects

into a factor S(ρΛ,mP), as described in Section 5.3. Both of these tasks are beyond the scope of

this work.

Nevertheless, it is worthwhile to proceed but within a very simplified picture. While our level of

analysis does not permit even an approximate landscape prediction, our results do imply restrictions

on the dependence of S and I on mP. Our first assumption is that the landscape is so densely packed

that we can approximate the prior distribution I(mP, ρΛ) to be a continuous and smooth function

of both mP and ρΛ. Then we can write the probability distribution for ρΛ in the form

P (ρΛ) ∝
∫

S(mP, ρΛ)I(mP, ρΛ)dmP . (5.81)

We discuss in Section 5.3 and in Section 5.6 how our universe appears extremely unlikely to be

observed if S contains a factor proportional to the inflationary expansion factor. Since we wish to

expose additional restrictions on S and I, we now assume that S does not contain this factor.

It is helpful to first consider the distribution P (ρΛ) when mP is fixed to the value obtained

within our universe. This corresponds to taking S ∝ δ(m̂P − 1) and thus eliminating the integral in

Eq. (5.81). Refs. [32, 33] argue that it is appropriate to restrict attention to only positive values of

ρΛ and to take the distribution I to be roughly independent of ρΛ. Although the rms fluctuation

σeq is constrained by Eq. (5.80), any particular over-density may be larger or smaller than σeq. This

implies that galaxies of a given mass will form in universes even when ρΛ is larger than what is

allowed by Eq. (5.80). On the other hand, galaxies of a given mass become statistically rarer as ρΛ

is increased. To account for this, it is customary to speculate that the likelihood for a particular

universe to be observed is proportional to the fraction of its total mass that collapses into galaxies

with masses above some minimum µmin [32, 33]. This minimum galaxy mass is presumably set by

other anthropic considerations.

The spectrum of density perturbations is at least approximately described by Gaussian statistics.
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Therefore a randomly selected co-moving volume may or may not collapse, depending on the size of

the matter over-density contained within the volume. We parameterize volumes using the mass µ

that they enclose, measured in units of the Milky Mass, 1012M�. Then the likelihood that a mass µ

will eventually separate from the cosmic expansion is given by the Press-Schechter function [37, 161],

F (µ) =

√

2

π

1

σ∞(µ)

∫ ∞

1.69

exp

[

−1

2

z2

σ2
∞(µ)

]

dz = erfc

[

0.373 ρ̂
1/3
Λ

ρ̂
1/3
eq σ̂eq(µ)

]

. (5.82)

The percentage of over-densities that eventually virialize is a function of the enclosed mass µ because

the rms amplitude of the initial density perturbations σeq depends on µ (see Section 5.2.5). The

fraction of galaxies that have mass between µ and µ + dµ is (dF/dµ)dµ. Since F (µ → ∞) = 0,

this means that the fraction of mass contained within galaxies with mass above the mass scale µ is

simply the Press-Schechter function F evaluated at µ. When only the cosmological constant scans

over the landscape, ρ̂eq = σ̂eq = 1. This gives P (ρΛ) ∝ S(ρΛ) ∝ F (µmin, ρΛ) [33, 117].

In order to study the scenario where both ρΛ and mP scan over the landscape, we adopt a very

simplified picture. First, we assume that I is independent of both ρΛ and mP over the anthropically

allowed window. We emphasize that, unlike the case with ρΛ, we are unaware of any physical

justification for this assumption regarding mP. Second, we restrict our attention to galaxies with

masses near the mass of the Milky Way. We perform this restriction simply so that we may ignore

the scale dependence of anthropic constraints. It turns out that values of mP somewhat larger than

our own do not contribute significantly toward P (ρΛ). To highlight this result we simply neglect

all constraints on increasing mP. On the other hand, the selection effects that bound mP from

below are very important when determining P (ρΛ). For simplicity we consider selection effects from

only one additional constraint; which is that stellar encounters are rare enough on average to allow

for life to evolve in the intervening time. According to Figs. 5.1–5.4, this is usually the strongest

constraint on decreasing mP. The exception appears to be the case of low α and low β, where the

galactic cooling constraint can interfere and the stellar lifetime constraint is not far below the close

encounters constraint. We simply ignore the cooling constraint and note that we could just as well

evaluate P (ρΛ) for galaxy masses somewhat below the mass of the Milky Way to obtain a similar

result. To account for stellar lifetimes, we impose a hard cut-off below m̂P = 0.1.

As mentioned above, the mass fraction within galaxies with masses between µ and µ + dµ is

δF ≡ (dF/dµ)dµ. This quantity in general depends on the time at which one looks at the universe.

We count galaxies in the infinite future, which is practically equivalent to counting galaxies at any

time after the domination of ρΛ. Then

dF

dµ
∝ 1

σ2
∞

∣

∣

∣

∣

dσ∞
dµ

∣

∣

∣

∣

e−1.43/σ2
∞ . (5.83)
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The only µ dependence within F stems from the dependence on σ∞ ∝ σeq ∝ s(µ), where s(µ) is

given by Eq. (5.23). Within any given universe, to consider only galaxies with a particular mass µ in

the far future is equivalent to selecting only over-densities with a particular amplitude at equality.

This is because within that universe over-densities with smaller amplitudes will form galaxies with

smaller mass while over-densities with larger amplitudes will form galaxies with larger mass (recall

that we look at the universe after ρΛ domination when the growth in over-densities has halted). The

amplitude of the initial over-density that is selected by looking at a particular galaxy mass µ is the

one that gives σ(µ) = 1.69 in the infinite future.

We must now account for the close encounter constraint mentioned above. This constraint is

converted into a selection effect by noting that if the rate of disastrous encounters between stellar

systems is γ, then the probability that a stellar system will survive for a time τ is e−γτ . The rate γ

is discussed in Section 5.2.7. Note that it depends on the amplitude of the initial over-density that

seeded the galaxy. We restrict our attention to galaxies with masses near to the mass of the Milky

Way. As described above, these galaxies only come from over-densities that satisfy σ(µ ≈ 1) = 1.69

in the infinite future. At equality, these over-densities have an amplitude

σ ≈ 5× 10−4 ρ̂
1/3
Λ ρ̂−1/3

eq . (5.84)

Now we can write the likelihood Pss that a stellar system will survive for at least a time τ within

this set of galaxies. We take τ = τevol ≈ 5× 109 yrs, which gives

Pss ≈ exp
(

−7× 10−7m̂−3
P µ̂

1/2
b f̂6

b ρ̂
4/3
Λ µ2/3

)

, (5.85)

where the dependence on a general mass scale µ has been restored for future reference.

So far our assumptions correspond to weighting universes by the fraction of stellar systems that

survive close encounters for longer than τevol and that exist in galaxies with mass near to the Milky

Way mass. We also require mP ≥ 0.1 in order to ensure that sufficiently long-lived stars exist in

these universes. Finally, we should account for the fact that the abundance of baryons relative dark

matter will depend on the value of mP within each universe. Putting all of this together gives the

probability density,

P (ρ̂Λ) ∝
∫ µmax

µmin

dµ

∫ ∞

0.1

dmPfb(mP)Pss(mP, ρ̂Λ, µ)
d

dµ
F (mP, ρ̂Λ, µ) . (5.86)

The full mP dependence of fb, Pss, and dF/dµ is found by substitution of the results from Section 5.2.

In general Eq. (5.86) is integrated over a window µmin ≤ µ ≤ µmax, but as motivated above, in

our main analysis we restrict to a narrow window about µ = 1. Finally, as explained previously,

Eq. (5.86) makes the simplifying but unrealistic assumption that I(mP, ρΛ) ≈ constant.
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Figure 5.5: The distribution P (ρ̂Λ) displayed against log(ρ̂Λ). The solid curve is P (ρ̂Λ) marginalized
over universes in which mP may vary and with α = 1 and β = 0, the longer-dashed curve is the
same quantity but for α = 3 and β = 3/2, while the shorter-dashed curve is P (ρ̂Λ) evaluated when
mP is fixed to the value within our universe. All three distributions are for fixed galactic masses
µ = 1. See text for results obtained for a range of galactic masses. The normalizations are chosen
for clarity.

The results of a numerical computation of P (ρΛ) are displayed in Fig. 5.5. For reference, we

also display the result when mP is fixed to the value obtained within our universe (note that this

corresponds to dF/dµ|µ=1 and not F (µ = 1)). Our value of ρΛ corresponds to the origin on this

graph. Evidently the assumptions of this section render the observation of ρΛ at or below our value

very unlikely. In fact, the fraction of P (ρΛ) that sits below ρ̂Λ = 1 is about 7 × 10−5 for α = 1,

β = 0 and about 4× 10−4 for α = 3, β = 3/2. Since relatively large values of ρΛ receive significant

weight only when mP is relatively small, we also see that most of the weight of these distributions

comes from values of mP that are below the value obtained within our universe. This is evidence of

a sort of ‘statistical pressure’ that gives greater weight to those values of marginalized parameters

that permit a larger value of ρΛ. This is why it was unimportant to account for selection effects that

constrain mP from above.

Here we note the importance of the close encounters constraint and of recombination timing

constraint (i.e. the “trec = e−2/3tvir” constraint) in bounding the anthropically allowed variation

of ρ̂Λ. Inspecting Figs. 5.1–5.4 indicates that of the constraints limiting mP from below, the close

encounters bound is the strongest. For µ = 1, it bounds m̂P & 10−0.2 for α = 3 and β = 3/2, and

approximately m̂P & 10−0.8 for α = 1, β = 0. Inserting these limits on m̂P into Eq. (5.80) gives

maximum values for ρ̂Λ in good agreement with the peaks in Fig. 5.5. Had only the star lifetime

constraint m̂P & 0.1 been imposed, the maximum allowed value of ρ̂Λ would have been much larger.

For α = 1 and β = 0, ρ̂Λ could be as large as 4 × 107. In the case of α = 3 and β = 3/2, ρ̂Λ can

be as large as 2× 1014. But the anthropic constraints in Figs. 5.1–5.4 for this latter model indicate
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that the “trec = e−2/3tvir” constraint is stronger than the star lifetime constraint. Imposing the

recombination constraint requires instead that ρ̂Λ be no larger than about 4× 108.

The analysis that leads to the curves in Fig. 5.5 gives at best a crude approximation for the actual

probability distribution for ρΛ. One improvement to the analysis would be to weight universes by

the mass fraction that collapses into galaxies that have a range of anthropically favorable masses,

instead of the fraction that collapses into only galaxies with the Milky Way mass. Including galaxies

with greater masses will tend to push the weight of the distributions toward smaller ρΛ, while

including galaxies with smaller masses pushes the weight of the distributions toward larger ρΛ. We

have checked that under the assumptions outlined above, allowing for a range of galaxy masses

0.1 ≤ µ ≤ 10 tends to push the weight of the distributions P (ρΛ) to slightly larger values of ρΛ.

Previous calculations of the distribution P (ρΛ) integrate over all galaxy masses equal to or larger

than the Milky Way mass. Although our anthropic considerations offer no reason to ignore galaxies

with mass below that of the Milky Way, and galactic cooling constraints limit the formation of

galaxies with larger masses, we nevertheless consider the evaluation of Eq. (5.86) for a range of

masses 1 ≤ µ ≤ ∞. Integrating over 0 ≤ ρ̂Λ ≤ 1 gives the probability P∗ that observers in such

galaxies would observe a cosmological constant less than or equal to our own. Numerically, we find

P∗ = 1× 10−3 for α = 3, β = 3/2 and P∗ = 2× 10−4 for α = 1, β = 0. For comparison, we find that

in our universe P∗ = 0.06. To reiterate, these calculations ignored any additional selection effects

that might depend on µ, such as the effects of different galactic cooling rates.

Another improvement to the analysis would be to include more mP-dependent selection effects.

The abundance of heavy elements and of long-lived stars with appropriate surface temperatures both

seem important when determining the likelihood for observers to arise within a universe. However,

the analysis of Section 5.2 does not shed light on how to calculate these selection effects. One thing

that is clear is that the range of typical stellar masses scales as m3
P. This means that galaxies of a

fixed mass will contain more stars as mP is decreased. If all else were equal this would result in a

greater number of observers per unit baryon mass in a galaxy, which would tend to push the weight

of P (ρΛ) toward larger values of ρΛ. In addition, the rate of destructive encounters γ is a function

of stochastic variables, including for example the spin parameter λ. The statistical distribution of

these variables could tend to strengthen or weaken the close encounter constraint as a function of

mP. However, when everything else is equal the ‘statistical pressure’ alluded to below Eq. (5.86)

tends to give greater weight to those values of stochastic variables that allow for a smaller mP and

larger ρΛ.7

Of course, a proper calculation of P (ρΛ) requires an understanding of the prior distribution for

7We have confirmed this phenomena with the following simple example. The close encounter rate γ is propor-
tional to a factor f? that accounts for the increased density of the galactic disk relative the dark matter halo (see
Section 5.2.5.3). This factor depends sensitively on λ, f? ∝ λ−8. In the preceding analysis, we normalized the factor
f? so as to give the correct stellar density within our neighborhood of the Milky Way. However, λ is a stochastic
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mP, I(mP). It must be emphasized that shape of I(mP) could dramatically influence the shape of

the distribution P (ρΛ). Therefore the results of this section are best understood as an empirical

restriction on the dependence of I(mP) on mP. Since this is our main point in this section, let us

be very explicit. The curves displayed in Fig. 5.5 suggest that within a very simplified landscape

picture, it is very unlikely to observe a value of ρΛ that is at or below the value within our universe.

This means that if a landscape picture is to describe our universe, it should contain important

ingredients that were neglected in our analysis. In addition, these additional ingredients should

provide a strong emphasis for larger values of mP. Thus we conclude that for a landscape picture

to describe our universe as among those that are likely to be observed, it is necessary that I(mP)

or some other neglected selection effect must receive the vast majority of its weight for values of mP

that are very near to or larger than the value obtained within our universe. We emphasize that the

analysis of this section did not assume that the inflationary expansion factor enters into landscape

calculations.

5.5 Nonstandard Paths toward Structure Formation

One might wonder what are the constraints on structure formation if we do not assume that dark

matter dominates over baryonic matter, or that virialization occurs after recombination. If dark

matter does not dominate over baryonic matter, then the evolution of over-densities in the dark

matter does not significantly affect the evolution of over-densities in baryons. Without appreciable

dark matter potential wells, baryon over-densities do not grow (even logarithmically) until after

recombination. This is because in the era before recombination, the Jeans length for the tightly

coupled baryons,

RJ =
√

8
3πH

−1vs , (5.88)

where vs = 1/
√

3 is the speed of sound prior to recombination, is always larger than the Hubble

radius. Growth therefore does not occur in either the radiation or baryon-dominated era until after

recombination. Between recombination and the domination of cosmological constant the evolution

variable. N-body simulations suggest that the distribution for λ can be approximated using [184]

Pλ(λ)dλ ∝
dλ

λ
exp

[

−2 ln2(28.6λ)
]

. (5.87)

This distribution has a peak at about λ ≈ 0.03, while the Milky Way appears to be described by λ ≈ 0.06 [181]. This
implies that typical values of λ more tightly constrain mP than the value represented in Fig. 5.5. Therefore, one might
expect that when we treat λ as a stochastic variable with distribution Pλ(λ), that the weight of the distributions P (ρΛ)
will shift to smaller values of ρΛ. In fact, the opposite trend occurs, as the previously mentioned ‘statistical pressure’
is such that the weight of the distributions P (ρΛ) actually shifts the location (in ρ̂Λ) of the peak by approximately
an order of magnitude toward larger values of ρΛ.
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of over-densities may be approximated by

σ ≈ (a/arec)σrec . (5.89)

The spectrum of fluctuations at recombination σrec is scale dependent in the sense that it is constant

for scales larger than the Hubble radius at recombination but rapidly decreases to zero as one looks

at smaller distance scales. This is because of the tight coupling between baryon and radiation

over-densities, and because the latter decay after they enter the Hubble radius.

As in the standard picture, after the domination of cosmological constant over-densities will grow

by a factor of 1.44 and then stop. Thus the maximum amplitude achieved by a linear analysis of an

rms fluctuation is

σ∞ ≈ 1.44× (aΛ/arec)σrec ≈ 5× 10−2 ρ̂1/3
eq ζ̂eq . (5.90)

Here we have used that σrec ≈ 5×10−5ζ̂eq on scales larger than the Hubble radius at recombination,

and that recombination occurs at a temperature Trec ≈ 3000 K, where we ignore the logarithmic

dependence of Trec on mP and η. The formation of structure still requires that a linear analysis gives

σ∞ ≥ 1.69 before the growth in over-densities is halted by the domination of cosmological constant.

This gives the constraint,

ρ̂recζ̂
3

eq & 5× 105 . (5.91)

Eq. (5.91) constrains mP according to

(

1

6
m̂−β

P +
5

6
m̂−1

P

)

m̂−3α
P & 5× 105 . (5.92)

This constraint is much stronger than the constraint it replaces, Eq. (5.29).

Allowing for baryons to dominate the matter density of the universe may affect the other con-

straints in Figs. 5.1–5.4 in two ways. First, the halo density and background density at virialization,

ρvir and ρ∗, are now reduced by a factor of 3 × 10−6 due to the difference between σrec and σeq.

Second, structure formation only occurs on scales greater than the Hubble radius at recombina-

tion, since sub-horizon perturbations are suppressed. Ignoring the mP dependence in Trec, this

implies a minimum halo mass set by the horizon mass at recombination, corresponding to a scale of

roughly µmin ∼ 106. It can be shown that no value of mP satisfies all of the constraints displayed

in Figs. 5.1–5.4 after these effects have been included. Dropping the constraint that virialization

precede recombination does not change this result.

We now turn to the second assumption of Section 5.2.5, which is that recombination occurs at
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least an e-fold of expansion before virialization. To investigate what happens when virialization

occurs before recombination, we adopt the following simplified picture. Dark matter over-densities

grow when they enter the Hubble radius, and we assume that they become non-linear and virialize

as they would within our universe. However, growth in the baryon over-densities is hampered by

their interaction with the photon Hubble flow before recombination. Therefore we approximate that

baryons do not participate at all in the over-densities of the dark matter and are rarefied relative

the halo density as they follow the Hubble flow.

Within this simplified model, the final baryon fraction within a halo will be at most about

fb/18π
2, and will decrease by a factor of e−3 ≈ 0.05 for each e-fold of expansion between virializa-

tion and recombination. However, it turns out that only two of the constraints that we consider

depend significantly on the baryon fraction of the halo. These are the disk instability constraint of

Section 5.2.5.3 and the close encounters constraint of Section 5.2.7. (The explicit fb dependence in

the galactic cooling constraint of Section 5.2.5.2 is canceled by an implicit dependence within Λc.)

To explore whether this situation opens a new window for allowed values of mP, it is helpful to

adopt the following picture. Instead of simply eliminating the recombination timing constraint of

Eq. (5.31), we continuously weaken it. For example, we may demand that recombination occur at

most Nrec e-folds of expansion after virialization and then study the above constraints as Nrec is

increased.

When we do this, we find that the curves in Figs. 5.1–5.4 corresponding to the disk instability

constraint, the close encounters constraint, and the recombination timing constraint all slide down-

ward as Nrec is increased. This shifts the allowed window for mP such that larger values of mP,

including the value obtained within our universe, become excluded as lower values become allowed.

It turns out that the disk instability curve slides downward at a faster rate than that of the recom-

bination timing curve, so that as the window for allowed mP moves to smaller mP it also grows

smaller. Ultimately, the window gets pushed against other constraints, such as the stellar lifetime

constraint or the galactic cooling constraint, and disappears. This happens at about Nrec ≈ a few.

5.6 Analysis of a Structure Formation Constraint

In Section 5.3 it is argued that if the probability to observe a particular value of mP is weighted

in part by the inflationary expansion factor of universes that contain that value of mP, then it is

overwhelmingly preferred that mP should be measured at one of the boundaries of its anthropic

window. It is clear from the discussion of Section 5.2 that our value of mP is not at either of its

anthropic boundaries. Nevertheless, it is worthwhile to investigate more quantitatively just how ‘far’

is our value of mP from its anthropic boundaries. For simplicity we investigate the selection effect

from only one anthropic constraint. Specifically, we look at the structure formation requirement
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Figure 5.6: The normalized distribution P (m̂P) for N = 60 m̂P (solid) and N = 60 ln(m̂P) (dashed)
for when the landscape distribution for mP depends on the inflationary expansion factor. Our
universe corresponds to m̂P = 1. In both cases F is defined using α = 3 and β = 3/2. Although in
both cases selection effects appear to prefer a specific range for mP, our value is far outside of this
range.

that halos virialize before the domination of cosmological constant (Section 5.2.5.1). Note that this

provides the tightest constraint on mP according to the curves in Figs. 5.1–5.4.

The arguments of Section 5.3 are appropriate primarily when the landscape is so densely packed

that we can approximate the prior distribution I(mP) to be a continuous function of mP within the

anthropic window. The probability to observe mP to lie within the range dmP can then be written,

P (mP)dmP ∝ A(mP)V(mP)I(mP)dmP , (5.93)

where the factors on the right-hand side are defined in Section 5.3. Of course, we are assuming that

universes are weighted in part by their inflationary expansion factor V. Since we have no knowledge

about the shape of I(mP), we take I(mP) ≈ constant. As suggested above, we take the anthropic

factor A to be conditioned by only the constraint that halos virialize before the domination of

cosmological constant prevents this.

To proceed, we assume that the likelihood to observe a given value of mP is proportional to the

baryon fraction within galaxies of mass greater than or equal to the mass of the Milky Way, 1012M�.

Allowing for smaller galaxies or allowing for observers that do not require a galactic environment

can only expand the window of allowed mP. The Press-Schechter function [37] gives the fraction of

matter that collapses into a galaxy of mass greater than or equal to a given scale. It is derived in
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Section 5.4 and given by Eq. (5.82). We reproduce it here for convenience,

F = erfc

[

0.373

(

ρ̂Λ

ρ̂eqσ̂3
eq

)1/3
]

. (5.94)

The prefactor comes in part from evaluating F in the infinite future and at the Milky Way mass

scale. The mP dependence is given by

(

ρ̂Λ

ρ̂eqσ̂3
eq

)1/3

=

(

1

6
m̂−β

P +
5

6
m̂−1

P

)−4/3

m̂α
P . (5.95)

Note that when α and β are positive, F is a decreasing function of increasing mP. We are interested

in the baryonic matter within galaxies. Therefore A should contain a factor of the baryon fraction

fb, given by Eq. (5.18), along with F .

Finally, we take V(mP) ∝ e3N for N e-folds of inflation. We require that N(mP) be an increasing

function of mP so that mP is pushed to larger values, saturating the constraint in Eq. (5.29). In

addition, we want α = 3 and β = 3/2 so that this constraint on increasing mP is as strong as possible.

Rather than propose a specific model of inflation, we assume that one can contrive a model with

the relatively weak dependence N ≈ 60 m̂P. Then putting all of our assumptions together gives the

probability distribution,

P (mP) = N fb(mP)F (mP)e3N(mP) , (5.96)

where N is a normalization factor. The normalized distribution P (mP) is displayed in Fig. 5.6 for

α = 3 and β = 3/2. Although it is intriguing that in this scenario the erfc function overcomes the

exponential volume factor, this happens for a value of mP somewhat larger than the value that we

observe. This O(1) change in mP is significant due to the exponential sensitivity of P on mP. Indeed,

the fraction of the distribution function P (mP) that sits below m̂P = 1 is completely negligible

compared to that which sits above (explicitly, this fraction is roughly 10−53). This distribution is

so sharply peaked because N is relatively large. For example, expanding about the local maximum

gives P ∼ exp[−cN∆2] where c ∼ O(1) and ∆ is the difference between m̂P and its value at the

maximum. Even if the number of e-folds depends very weakly on mP, for example N ≈ 60 ln(m̂P),

we still find the preference for larger mP to be overwhelming.

We now provide a final point of clarification. A careful reader may notice that according to

Fig. 5.6, the values of mP that are most likely to be observed lie well outside the anthropically

allowed windows of Figs. 5.1–5.4. This is because the relevant curves in Figs. 5.1–5.4 are calculated

by assuming that all over-densities have initial amplitudes equal to the rms amplitude. Meanwhile,

Fig. 5.6 takes into account that the initial amplitude of an over-density is at least approximately a
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Gaussian random variable. The discrepancy between the results in Figs. 5.1–5.4 and 5.6 reflect that

under the assumptions of this section, the overwhelming majority of galaxies stem from over-densities

that begin with amplitudes many standard deviations away from the norm. Although these galaxies

result from relatively unlikely initial over-densities, the fact that they arise within enormously larger

universes more than compensates for this. This result stems from the sharp dependence on mP in

the inflationary expansion factor. If the proper landscape measure does not contain this factor, then

the distribution for mP would be very different than Fig. 5.6 indicates.

5.7 Conclusions

If the magnitude of the apparent Planck mass mP may scan across a landscape of possibilities, then

there may exist universes with physical parameters and interactions in every way like those within

our universe except for their value of mP. We have calculated the range over which mP may scan

over such universes while still satisfying a number of anthropic constraints. Perhaps not surprisingly,

if we combine all of the anthropic constraints we find a rather narrow window for allowed mP. The

results for WIMP dark matter and representative models of inflation and baryogenesis are displayed

in Figs. 5.1–5.4. Of course, the window for allowed mP is expanded if one loosens the anthropic

criteria.

More interestingly, this window will expand if an important cosmological quantity is determined

by a stochastic process. For example, many scenarios to generate a primordial curvature perturbation

depend on the local vev of a light scalar field, as does the density of dark matter when it is determined

by the axion. If these models apply, then the curvature perturbation and/or dark matter density

are not correlated with changes in mP, and a much larger window for mP may be able to satisfy

anthropic constraints. Our purpose has been to calculate a minimal window for allowed mP, so we

have not considered these possibilities in detail.

Even a very small window for allowed values of mP has important implications for the landscape

paradigm. In particular, the probability to observe a particular value of mP may be weighted by

the inflationary expansion factor of universes that contain that value. This effect inputs a strong

exponential dependence on mP into the probability distribution, which must be offset by another

strong selection effect near the peak of the distribution. This other selection effect could be a very

sharp peak or boundary to the underlying landscape distribution; otherwise the effect must come

from an exponentially strong anthropic dependence on mP. Such a strong anthropic dependence on

mP would be in conflict with the observation that mP has even a narrow anthropic window in our

universe. This is another example of the runaway inflation problem discussed in the recent literature.

We also consider the anthropic window for the cosmological constant Λ when both Λ and mP

are allowed to independently scan over the landscape. Even when the allowed range for mP is
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relatively narrow, it still allows for a significant broadening of the allowed range for Λ. This is

because Λ is only constrained by the necessity that cosmic structures separate from the Hubble flow

before Λ domination. Meanwhile, the time at which structures separate from the cosmic expansion

is proportional to a high power of mP. The result is that even for values of mP within the small

allowed windows of Figs. 5.1–5.4, Λ may be over ten million times larger in other universes than it is

within ours. Just because Λ may be larger does not automatically imply that our value of Λ is less

likely to be observed, since selection effects may ultimately weight smaller values of Λ more than

larger values. We perform a very basic calculation which suggests that anthropic selection effects

tend to make larger values of Λ more likely to be observed. This suggests that the observation of

a cosmological constant at or below the level obtained within our universe is very unlikely unless

unknown anthropic selection effects or the underlying landscape distribution of mP is dominated by

values very near to or larger than the value obtained within our universe.
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Chapter 6

Quark Masses and Mixings from
the Landscape

We propose that the flavor structure of the Standard Model may arise due to random selec-

tion from a landscape of solutions to a more fundamental theory. Specifically, we study a

set of “Gaussian landscapes” where the Standard Model fields have localized (Gaussian) zero

mode wavefunctions over some geometry of extra dimensions, and the Standard Model Yukawa

couplings derive from overlap integrals involving these wavefunctions. Focusing on the quark

sector, we find that the observed generation structure and pairing structure of the Standard

Model are typical of landscapes where the central locations of the quark wavefunctions are

allowed randomly scan over the extra dimensions.

Based on work in preparation, L. J. Hall, M. P. Salem, and T. Watari.

6.1 Introduction

A minimal extension of the Standard Model describes all laboratory data with 26 free parameters.

Of these, 20 arise from the Yukawa matrices λu,d,e and the coupling matrix C that appear in the

flavor interactions

Lflavor = λuu q h+ λdd q h∗ + λee l h∗ +
C

M
l l h h , (6.1)

where q, l (u, d, e) are the left (right) handed quark and lepton fields. Of the flavor interactions, the

most well known are those in the quark sector, with all ten quark flavor parameters having been

measured. The present experimental limits for these parameters are given in Table 6.1. Given the

continued progress on improving the accuracy of these experimental limits, along with the limits

on other flavor parameters, the most striking fact is that there is nothing approaching a standard

theory of the origin of these parameters. We lack not only a convincing explanation of any of the

numerical values for these parameters, but we remain ignorant about the overall picture of flavor.

A complete theory of flavor would address both the quark and lepton sectors and would provide

answers to three very different questions: (1) What is the origin of the fermion quantum numbers and
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λu (3.0± 1.0)× 10−6 log10 λu −5.53+0.13
−0.17

λc (1.4± 0.1)× 10−3 log10 λc −2.87± 0.03

λt (4.9± 0.3)× 10−1 log10 λt −0.31± 0.02

λd (6.7± 2.7)× 10−6 log10 λd −5.18+0.15
−0.22

λs (1.3± 0.4)× 10−4 log10 λs −3.90+0.10
−0.13

λb (5.7± 0.1)× 10−3 log10 λb −2.24± 0.01

1
π θ

CKM
12 (7.31± 0.03)× 10−2 log10

(

1
π θ

CKM
12

)

−1.136± 0.002

1
π θ

CKM
23 (1.344+0.003

−0.025)× 10−2 log10

(

1
π θ

CKM
23

)

−1.872+0.001
−0.008

sin θCKM
13 (4.01± 0.09)× 10−3 log10

(

sin θCKM
13

)

−2.397± 0.010

δCKM 1.00+0.06
−0.10 log10

(

δCKM
)

0.00+0.03
−0.05

Table 6.1: The ten quark sector flavor parameters. For comparison to distributions provided through-
out this chapter, the measured values of these parameters have been run up to the Planck scale
assuming no physics beyond the Standard Model enters up to this scale. All data comes from the
pdgLive feature from the Particle Data Group [185].

why are there three generations? (2) What determines the qualitative pattern of the quark and lepton

mass matrices? For example, why do the charged fermion masses and mixings have a hierarchical

pattern, while in the neutrino sector there are large mixing angles? (3) What determines the precise

values of the 20 flavor parameters? Restricting attention to the quark sector, the couplings λu,d

are symmetry breaking parameters of the flavor symmetry group U(3)3, where one U(3) factor acts

on each of q, u, d. The dominant approach to constructing theories of flavor is to use symmetries

to reduce the number of free parameters, n [38, 39]. For example, an underlying flavor group

Gf ⊂ U(3)3 and a more unified gauge symmetry both limit n, leading to precise predictions if

n < nobs, the number of observables. A hierarchy of symmetry breaking scales can lead to small

dimensionless parameters that explain qualitative features of the mass matrices [38], and there are

many realizations with Gf both Abelian and non-Abelian. Still, it is striking that the progress along

these lines is limited, even as more precise data have become available. Perhaps this is a sign that

a completely new approach is needed.

The cosmological dark energy apparently has little to do with flavor. However, it may be the

first evidence for a huge landscape of vacua, with the observed value of the cosmological constant

resulting from environmental selection for large scale structure [32, 33]. If we take string theory to

be a theory of a landscape of meta-stable states rather than a theory of a single vacuum, then what

are the implications for flavor? The enormous number of vacua, required for a sufficiently fine scan

of the cosmological constant, results from the large number of ways background gauge fluxes can

link non-trivial compact manifolds of extra spatial dimensions [88]. The low energy four dimensional

theory is likely to vary enormously from one vacuum to another. This is seen very directly in the
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light fermion sector, since the number of light fermions is precisely determined by these background

gauge fluxes. Furthermore, in many vacua the background gauge fluxes lead to a localization of

the wavefunctions of the light fermions in these extra dimensions, φai (y) for fermion of type a and

generation i. The value of some entry of the usual Yukawa coupling matrices is then given by an

integral over the extra dimensions y, for example for the up sector

λuij ∝
∫

φuRi (y)φqLj (y)φh(y) dy , (6.2)

where φh(y) is the profile of the Higgs. If the various wavefunctions in Eq. (6.2) are peaked at

different locations, then it is very easy to see that the overlap integral could lead to a small Yukawa

matrix element. Hence localization in extra dimensions is an alternative to symmetries for fermion

mass hierarchies [40]. However, the localization depends on the background gauge fluxes, so matrices

such as λu,d would all scan from one universe to another. Thus the problem of flavor is drastically

altered: symmetry breaking patterns are replaced with landscape probability distributions, together

with possible environmental selection effects.

While there may be strong environmental effects acting on the electron, up and down masses [186],

and possibly also on the top mass [100] and on the lepton sector from leptogenesis, most of the flavor

parameters do not seem to be strongly selected. Therefore it could be that most flavor parameters

have values that simply reflect the underlying probability distribution over an enormous number

of solutions to the fundamental theory. The precise value of such observables is accidental, not

fundamental, since any nearby value would be just as probable. Although it may be unappealing

that there is nothing fundamental or beautiful relating the flavor parameters in our universe, so far

this possibility cannot be dismissed.

In any particular meta-stable state, the Yukawa couplings have a relevant dependence on n =

nS + nF parameters, where nS of the parameters scan and nF of them are fixed. If n < nobs then

data can determine the subset of vacua in which we happen to live and nobs − n predictions can

be made. A certain simple model with a single extra dimension has nobs − n = 1, giving a single

prediction [187]. We will assume that n > nobs, so that no such precise predictions are possible.

In this case one must consider the probability distributions for the nS parameters that scan. In a

particular landscape the distributions for the flavor observables may be quite constrained, so that it

is possible to determine whether the observed pattern of fermion masses is typical of this landscape.

In this chapter we study the emergence of qualitative features of quark and masses and mixings that

arise from scanning over a simple toy landscape that is based on the overlap of wavefunctions in

extra dimensions, as in Eq. (6.2). An investigation of the lepton sector is in progress.

The large mixing angles observed in atmospheric and solar neutrino oscillations inspired the idea

that the relevant Yukawa couplings of the neutrino sector are governed by randomness rather than
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by flavor symmetries [188]. By introducing a simple probability distribution for the elements in the

Dirac and Majorana neutrino mass matrices, probability distributions for the neutrino observables

were generated and found to agree well with data. In particular, realistic modest hierarchies in the

ratio of ∆m2 for atmospheric and solar oscillations and in θ13 were found to be quite probable in this

picture of Neutrino Anarchy. In other work a statistical analysis was performed on both the charged

and neutral fermion sectors [189]. This is much bolder, since the hierarchies are much stronger in

the charged sectors. Yet this hierarchy was found to result from choosing a simple three-parameter

probability distribution for the Yukawa couplings. In Section 6.2 we analyze this scheme in some

detail, studying both its accomplishments and limitations, to gain insight into some features of

landscape models.

In Sections 6.3 through 6.6 we introduce simple “Gaussian landscapes” and study the resulting

distributions for quark masses and mixings. These landscapes share features expected from certain

string landscapes, for which they can be viewed as simplified or toy models. The key feature of a

Gaussian landscape is that all quark fields and the Higgs field have zero mode wavefunctions with

Gaussian profiles in the extra dimensions, and that the centers of these profiles all scan independently

with flat probability distributions over the volume of the extra dimensions. For simplicity, the

number of free parameters used to describe the geometry of the extra dimensions and the widths

of the Gaussian profiles is kept to a minimum. The main question we address is: are the observed

quark masses and mixings typical of these simple Gaussian landscapes?

In Section 6.3 we introduce a Gaussian landscape for quarks on a circular extra dimension

S1, with all Gaussian profiles having the same width. Numerical probability distributions for the

nine CP conserving flavor observables are provided, and a qualitative semi-analytic description of

these distributions is derived. The results are compared with those that result from introducing

approximate flavor symmetries, with some similarities and some differences emerging. Finally, the

effects of possible environmental selection on the top mass is studied. The large number of flavor

parameters in the Standard Model allows for a reasonably significant evaluation of goodness-of-fit

between a Gaussian landscape and the observed flavor structure. This is described in Section 6.4,

with the S1 Gaussian landscape used for illustration. The effects on the quark sector from adding

more dimensions to the Gaussian landscape are examined in Section 6.5, together with a preliminary

study of the effects of geometry. Section 6.6 contains some analytic results for reference. Finally, we

provide discussion and concluding remarks in Section 6.7.

6.2 Prelude: Hierarchy without Flavor Symmetry

In previous work it has been suggested that the components of the Yukawa matrices λu,d,e and the

coupling matrix C are selected randomly and independently of each other [188, 189]. For example,
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in Neutrino Anarchy [188] one finds that the large mixing angles underlying neutrino oscillation

are typical of the lepton interactions that arise when each element of the matrices λe and C is

independently selected from simple probability distributions such as

dP (λe)

d lnλe
= const. for λemin < λe < λemax ,

dP (C)

d lnC
= const. for Cmin < C < Cmax , (6.3)

for λmin,max and Cmin,max order unity, or from distributions such as

dP (λe)

dλe
= const. ,

dP (C)

dC
= const. (6.4)

(for more details see [188, 190]). Such an absolute anarchy of lepton couplings tends to result

in degenerate mass eigenvalues. On the other hand, Ref. [189] introduced a power-law probability

distribution for the Yukawa matrix elements, dP (λ)/dλ ∝ λδ−1 for λmin < λ < λmax and dP (λ)/dλ =

0 otherwise. By assuming λmin � λmax and choosing δ appropriately, quark Yukawa matrices with

each matrix element following such a distribution can roughly accommodate the hierarchical pattern

of quark mass eigenvalues [189]. According to Ref. [189], δ = − 0.16 provides the best fit to the

quark sector.

In this work we propose a significant modification to these ideas. However as a prelude to

discussing our proposal it is worthwhile to first study the model of Ref. [189] in greater detail. To

this we devote the remainder of this section. To simplify the analysis we specialize to the particular

case δ = 0, such that

dP (λ)

d log10 λ
∝



















0 for λ > λmax ,

1/ log10(λmax/λmin) for λmin < λ < λmax ,

0 for λ < λmin .

(6.5)

Henceforth we refer to this distribution as a scale-invariant distribution. In this section we also

restrict attention to the quark sector. Note that CP-violating phases are not introduced in this

landscape because all of the matrix elements are real-valued. A pair of 3 × 3 Yukawa matrices

is generated by choosing each of the 18 matrix elements randomly according to the distribution

Eq. (6.5). Just like in the Standard Model, the quark masses and mixings are calculated from the

eigenvalues of the Yukawa matrices and the unitary transformations that diagonalize them. This

process is then repeated to generate an ensemble of these nine observables.

6.2.1 The Distribution of Mass Eigenvalues

Let us first study the probability distributions of the quark masses, which are just the eigenvalues

of the Yukawa matrices. Since the up-type and down-type Yukawa matrices are generated indepen-
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Figure 6.1: Distributions of the three eigenvalues of Yukawa matrices whose each element follows
the distribution Eq. (6.5). From left to right the three panels correspond to the smallest, middle
and largest eigenvalues. The sum of all three distributions reproduces Figure 9a of [189]. We used
log10 λmin = −9 and log10 λmax = 0.1 for this simulation.

dently of each other and in exactly the same way, the distributions of eigenvalues for the up sector

and those of the down sector are exactly the same. Thus we only need to study one of the two sectors.

Results of a numerical study are shown in Figure 6.1, where we have chosen λmin/λmax = 10−9.1

and have generated an ensemble of 105 3× 3 Yukawa matrices.

With some approximations we can understand the shapes of the distributions in Figure 6.1. Let

λ′3 denote the largest element of the 3 × 3 matrix λ. Meanwhile, the largest element of the 2 × 2

sub-matrix of λ that excludes λ′3 is denoted λ′2. For example, in the matrix

λ =











λ23 λ′2 λ21

λ13 λ12 λ′1

λ′3 λ32 λ31











, (6.6)

λ′3 is the largest among the nine entries and λ′
2 the largest in the upper right 2×2 sub-matrix. Given

this characterization, the probability distribution for the variables λ′
1,2,3 and λij is

dP (x′1,2,3, xij) = 36Θ(x′3 − x′2)Θ(x′3 − x32)Θ(x′3 − x23)Θ(x′3 − x31)Θ(x′3 − x13)Θ(x′2 − x′1)

×Θ(x′2 − x21)Θ(x′2 − x12) dx
′
1dx

′
2dx

′
3dx12dx21dx13dx31dx23dx32 , (6.7)

where Θ is the step function. The factor of 36 comes from the nine possible locations for λ′
3 times

the four possible locations for λ′2. In addition we have introduced the notation

x′i ≡
ln(λ′i/λmin)

ln(λmax/λmin)
, xij ≡

ln(λij/λmin)

ln(λmax/λmin)
. (6.8)

The largest eigenvalue of Eq. (6.6) is approximately λ′
3; this approximation is poor if one of λ32,

λ31, λ23 and λ13 is almost as large λ′3, but this is unlikely if ln(λmax/λmin) is large. We call this

largest eigenvalue λ3 and define x3 analogously to x′3. The probability distribution of x3 is therefore
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Figure 6.2: The approximate distribution of the three eigenvalues given in Eqs. (6.9–6.11), and those
of mixing angles given in Eqs. (6.16, 6.17). We have used the same λmax and λmin as are used in
Figure 6.1.

approximated by integrating out from Eq. (6.7) all the variables except x′
3:

dP (x3) ' 9x8
3 dx3 . (6.9)

Meanwhile, we approximate the middle eigenvalue λ2 by λ′2 and the smallest eigenvalue λ1 by λ′1.

This approximation is poor when the see-saw contributions (λi3λ3j)/λ
′
3 and (λ12λ21)/λ

′
2 are larger

than λ′2 and λ′1, respectively. Thus we do not expect this approximation to be reliable for small

values of x2 and x1. Nevertheless, integrating out all of other variables we find

dP (x2) =
36

5
x3

2(1− x5
2) dx2, (6.10)

dP (x1) =
36

5

(

1− x3
1

3
− 1− x8

1

8

)

dx1 . (6.11)

The probability distributions Eqs. (6.9–6.11) are shown in Figure 6.2. Remarkably, they capture the

gross features of the numerical results in Figure 6.1. Therefore we use these distributions to examine

the qualitative aspects of the mass distributions that follow from the landscape Eq. (6.5).

The average 〈xi〉 and the standard deviation σi of the three Yukawa eigenvalues (both on a

logarithmic scale) can be calculated from the distributions Eqs. (6.9–6.11):

〈x3〉 = 0.90, σ3 = 0.09, x3 ∼ [0.81− 0.99] , (6.12)

〈x2〉 = 0.72, σ2 = 0.16, x2 ∼ [0.56− 0.88] , (6.13)

〈x1〉 = 0.36, σ1 = 0.22, x1 ∼ [0.14− 0.58] . (6.14)

The three eigenvalues are on average well-separated and they overlap with neighboring eigenvalues

only slightly at one standard deviation. Even this slight overlap between the distributions is mis-

leading. Recall that by definition for any particular set of Yukawa matrices we have x3 > x2 > x1.

Thus the combined distribution for these eigenvalues is not a naive product of Eqs. (6.9–6.11) but
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Figure 6.3: Distribution of the three mixing angles of the CKM matrix. A similar figure is found in
[189], where the distributions are shown over the range 0 ≤ θij ≤ π/4, δ = −0.16, and presumably
a different λmax/λmix is chosen.

is given by integrating the other six variables out of Eq. (6.7). This gives

dP (x1, x2, x3) = 36x4
3x

2
2 Θ(x3 − x2)Θ(x2 − x1) dx1dx2dx3 . (6.15)

Thus it happens that in the the subset of cases where x3 is small, the distribution of x2 is pushed

to even smaller values. Hence the three eigenvalues tend to be well-separated even in the logarith-

mic scale, and only rarely are adjacent eigenvalues comparable. Note that none of this depends on

the choice of λmin and λmax. In short, hierarchical structure (Yukawa eigenvalues well-separated

in logarithmic scale) is generated statistically in a landscape where each matrix element indepen-

dently follows the scale-invariant distribution Eq. (6.5). Whether the hierarchy is large or small is

determined by whether log10(λmax/λmin) is large or small.

6.2.2 Pairing Structure in Electroweak Interactions

Let us now study the mixing angles. Figure 6.3 shows the distributions of mixing angles in the

quark sector that result from a numerical simulation where each element of both the up-type and

down-type Yukawa matrices is assumed to follow the distribution Eq. (6.5) independently.1 The

probability distribution function of the mixing angles are shown against the axes of dθ12, dθ23 and

1Using Eqs. (6.9–6.11) we find these distribution functions to be given by the approximate analytic form:

dP (t) ∼
3

50
(10 − 15t + 6t4 − t9)(5 − 8t3 + 3t8) dt , where t ≡

ln | sin θ12|

ln(λmin/λmax)
, (6.16)

dP (t) ∼
9

32
(8 − 9t + t9)(1 − t8) dt , where t ≡

ln | sin θ23,13|

ln(λmin/λmax)
. (6.17)
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d(sin θ13) because the invariant measure2 of SO(3) mixing matrices is dθ12∧dθ23∧d(sin θ13). Since in

this model the Yukawa couplings are all real- and positive-valued, the CKM quark mixing matrices

are SO(3) matrices.

The prominent feature of these distributions is the twin peaks at θij = 0 and |θij | = π/2 for

all three mixing angles. This feature is straightforward to understand. Suppose that the randomly

generated Yukawa matrices are of the form

λuij ∼











∗ λ′u2 •
∗ • λ′u1

λ′u3 ∗ ∗











, λdij ∼











• ∗ λ′d2

∗ λ′d3 ∗
λ′d1 ∗ •











, (6.18)

where the ∗’s are assumed to be less than λ′u
3 or λ′d3, and the •’s less than λ′u2 or λ′d2. Ignoring the

see-saw contributions to eigenvalues, i.e. when (∗ ∗ /λ′
3)� λ′2 and (• • /λ′2)� λ′1, we find that the

three left-handed quark doublets qj = (uL, dL)j (j = 1, 2, 3) are approximately

q1 = (tL, dL), q2 = (cL, bL), q3 = (uL, sL), (6.19)

where tL, cL and uL stand for left-handed components of the heaviest, middle and lightest mass

eigenstates of up-type quarks. The down-type mass eigenstates bL, sL and dL are defined similarly.

The CKM matrix for the up-type and down-type Yukawa matrices Eq. (6.18) is roughly

VCKM ∼











1

1

1











, (6.20)

corresponding to θ12 ∼ θ23 ∼ π/2 and θ13 ∼ 0. This explains one of the 23 combinations of peaks in

Figure 6.3. When the λ′u/d3,2,1 are found in different entries of the 3× 3 Yukawa matrices, other peak

combinations are obtained. Continuous distributions connecting θij ∼ 0 to |θij | ∼ π/2 originate

from the see-saw contributions that we have ignored. Thus the distributions become more and

more localized around the peaks as λmax/λmin is increased and see-saw contributions become less

important. Therefore the small mixing angles of the observed CKM matrix are not atypical of

distributions with large values of λmax/λmin.

How then do we interpret the peaks at π/2? The flavor structure of the Standard Model is

characterized by two general features. On the one hand, the W -boson current connects three ap-

proximately distinct pairs of quarks that have hierarchical masses—we refer to this as “generation

structure.” Moreover, the W -boson current connects pairs such that the lightest up-type quark is

2The importance of the invariant measure is emphasized in Ref. [190].
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approximately paired with the lightest down-type quark, the middle up-type quark is approximately

paired with the middle down-type, etc. We refer to this as the “pairing structure” of the Standard

Model. Mixing angles near π/2 maximally violate this pairing structure; for example the set of

angles θ12 ∼ θ23 ∼ π/2 and θ13 ∼ 0 of Eq. (6.20) corresponds to the quark pairings in Eq. (6.19).

There are more combinations of mixing angles (23) than the 3! combinations of quark pairs because

some choices of mixing angles correspond to the same combination of quark pairs.

6.2.3 Problems

Is the existence of mixing angle peaks about |θij | = π/2 really a problem? The landscape that

we have discussed so far may reproduce the pairing structure of mass eigenstates in the W -boson

current (when θ12 ∼ θ23 ∼ θ13 ∼ 0), but more often it does not. Although it might be argued that

this is just a 1/23 coincidence problem; it is still difficult to accept that the pairing structure of flavor

is not revealing something important about the underlying theory. On the other hand, even if one

accepts this coincidence, in this landscape it is still difficult to understand why Vub ∼ θ13 ∼ 4×10−3

is so small compared to the Cabibbo angle θ12. It does not appear that this is a shortcoming that

can be solved by a more ideal choice of λmax/λmin.

An even bigger problem is to understand how the probability distribution Eq. (6.5) arises or

what is the correct distribution to replace it. That is, although the phenomenology of the landscape

that we have considered may be deemed acceptable, we do not have a solid theoretical ground on

which to base it.3 In the remaining sections of this chapter we analyze some landscape models

that successfully reproduce the phenomenology of generation and pairing structure, while making

progress on the problems described above.

6.3 A Toy Landscape: Quarks in One Extra Dimension

The landscape discussed in section 6.2 assumes that all 18 elements of λu and λd are scanned

independently. Yet without any correlation between these two Yukawa matrices, pairing structure

will never be obtained. For example, in order to ensure that the heaviest up-type quark tL is

contained in the same SU(2)L doublet as the heaviest down-type quark bL, we require the following.

When an (i, j) element of the up-type Yukawa coupling λuij u
i
R q

j
L h

∗ is large, at least one of the three

down-type Yukawa couplings λdkj d
k
R q

j
L h (k = 1, 2, 3) involving the same quark doublet qjL should

be large. A landscape of vacua must realize such a correlation between the up-type and down-type

3Such an attempt is made in [191]. However, we consider that correlation among Yukawa couplings and the number
of dimension of extra dimensions are crucial ingredients in understanding flavor physics, and these are missing in [191].
The intersecting D6–D6 system mentioned in [191] is dual to a T 3-fibered compactification of Heterotic string theory
and is simulated by the D = 3 toy landscape model of this chapter. On the other hand the scale invariant distribution
Eq. (6.5) is derived from a D = 1 toy landscape model in section 6.3 of this chapter, but not from D = 3 toy landscape
models.
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Yukawa matrices in order to explain the pairing structure.

Perhaps one of the simplest ideas to introduce such a correlation is to introduce an extra dimen-

sion. If a large Yukawa coupling of λuij u
i
R q

j
L h

∗ is due to a substantial overlap of the wavefunctions

of qjL and h∗, then the down-type Yukawa couplings involving the same qjL tend to be larger because

of the overlap of qjL and h. At the same time, for highly localized wavefunctions the overlap of some

triplets of uR, qL and h∗ can be very small, and so there is hope to explain the hierarchically small

Yukawa couplings necessary to account for light quarks.

In this section we present a simple toy landscape based on Gaussian wavefunctions spanning

a circular extra dimension. Although a single extra dimension is introduced for simplicity, this

model captures the essence of what one expects more generally from such “Gaussian landscapes”

based on multiple extra-dimensional field theories. Later, in Section 6.5, we will study what are the

effects of more complicated geometries of extra dimensions. Through numerical simulation and an

approximate analytical analysis, we find that both the generation structure and the pairing structure

of quarks are obtained statistically in this landscape. No flavor symmetry is needed.

6.3.1 Emergence of Scale-Invariant Distributions

We introduce a single extra dimension with the simplest geometry: S1. The wavefunctions for all of

the quarks and the Higgs boson are assumed to be Gaussian with a common width d. Each quark

and the Higgs may have its wavefunction centered at an arbitrary point on S1, for any one of these

fields the wavefunction is

ϕ(y; y0) '
1

π1/4(M5d)1/2
e−

(y−y0)2

2d2 . (6.21)

Here y is the coordinate of S1 and M5 is the cut-off scale of a field theory in 3 + 1 dimensions. This

wavefunction is normalized so that

M5

∫ L

0

dy ϕ2(y) = 1, (6.22)

where L is the circumference of S1. The wavefunction Eq. (6.21) should be made periodic on S1,

while maintaining the normalization in Eq. (6.22). Yet as long as the width of the Gaussian profile d

is parametrically smaller than the circumference L, the wavefunction is almost Gaussian. One should

examine whether Gaussian wavefunctions arise as solutions of equations of motion of field theories

in extra dimensions, but we defer this theoretical study to future work. Presently we study whether

the assumption of Gaussian wavefunctions on extra dimensions leads to a successful explanation of

the physics of quark masses and mixing angles.
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We calculate the up-type and down-type Yukawa matrices with the overlap integrals

λuij = gM5

∫

S1

dy ϕuRi (y; ai)ϕ
qL
j (y; bj)ϕ

h(y; y0) ,

λdkj = gM5

∫

S1

dy ϕdRk (y; ck)ϕ
qL
j (y; bj)ϕ

h(y; y0) , (6.23)

where g is an overall constant. ϕqLj (y), ϕuRi (y), ϕdRk (y) and ϕh(y) are wavefunctions of left-handed

quark doublets qj (j = 1, 2, 3), right-handed up-quarks ūi (i = 1, 2, 3), right-handed down-quarks

d̄k (k = 1, 2, 3) and of the Higgs boson, respectively, all of the Gaussian form Eq. (6.21). The

center coordinates of these Gaussian wavefunctions are bj , ai, ck and y0, respectively. The matrices

λu,d are real, so that CP is conserved in this toy landscape. We defer to future work the study of

CP-violating complex Gaussian wavefunctions.

In this section, we analyze a toy landscape where the center coordinates bj , ai, ck and y0 are

scanned freely and independently from one another on S1. Because of the translational symmetry

of S1, only the relative difference between these center coordinates affects observables. Thus the

effective number of scanning parameters is nS = 9. On the other hand, there are nine observables

determined from the Yukawa matrices in the quark sector: 3× 2 mass eigenvalues and three mixing

angles. Thus the scanning parameters cover the space of observables and no precise prediction among

the observables is available. However, since this Gaussian landscape covers the space of observables,

our vacuum is unlikely to be missed in this ensemble.

The other model parameters, namely the width d, circumference L, cut-off scale M5 and overall

coupling g, are treated as fixed. This treatment must appear quite arbitrary, and it really is. Among

the myriad of other possibilities are to scan some or all of these parameters, to allow the up-sector and

the down-sector to have different values of g or to allow their couplings to be scanned independently,

to choose a different width d for different wavefunctions, etc. An extreme version of the landscape

would allow everything to scan, leaving no fixed parameters to be input by hand. We adopt the

assumption above—namely four fixed parameters—because of a practical attitude. Nothing is known

about the distribution of these parameters within string theory, let alone what are the appropriate

weighting factors coming from cosmological evolution and environmental selection effects. If the

distribution of these parameters is sharply peaked around a certain point in the four-dimensional

parameter space, then these parameters can be treated as effectively fixed. Such a possibility is not

implausible because some toy landscapes predict Gaussian distributions for some parameters, and

moreover, cosmological evolution may yield exponentially steep weight factors.

Note that out of these four fixed parameters there are only two independent combinations that

affect the Yukawa matrices. First, the coordinate of the extra dimension can be made dimensionless

by defining ỹ ≡ M5y. Now the circumference is M5L and the width of the wavefunction is M5d.

Second, the new coordinate ỹ can be rescaled: ỹ′ ≡ cỹ. Under this redefinition of the coordinate,
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both M5L and M5d scale, but the ratio L/d does not. Thus two fixed parameters, g and L/d, control

the Yukawa couplings of this toy landscape. (Note that L and M5 do affect the low-energy values

of gauge couplings and Newton’s constant.)

The Yukawa couplings, given by the overlap integrals Eq. (6.23), can be expressed more explicitly

in terms of the underlying parameters in a restricted region of the parameter space. Suppose that

L � d. Then the compactness of S1 is not important in the calculation of the Yukawa couplings,

as long as the center coordinates of quarks, ai (or ck) and bj , are close to that of the Higgs boson

y0 (which, by translational invariance, we set as the origin of the coordinate y). For such a vacuum,

the Yukawa couplings are given by

λij '
(

4

9π

)
1
4 g√

M5d
e−

1
3d2

(a2
i+b

2
j−aibj). (6.24)

It is useful to compare this result to the form for the Yukawa couplings that results from approxi-

mate Abelian Flavor Symmetries (AFS) [38, 39]. In the most general AFS scheme there is a small

symmetry breaking factor associated with each quark field, εqL,uR,dRi , which leads to Yukawa matrix

elements

λij = gij ε
q
i ε
q̄
j , (6.25)

where the gij are all of order unity. A mass hierarchy among the generations is realized by imposing

ε3 � ε2 � ε1 in the left, right, or both sectors. Models with fewer parameters can be constructed

and then the symmetry breaking parameters are not all independent; consider for example a single

Abelian symmetry with a symmetry breaking parameter ε that appears in different entries with

different powers due to generation dependent charges. Generation charges (0,2,3) then give ε3 : ε2 :

ε1 = 1 : ε2 : ε3. No matter how the model is arranged, the mass hierarchy arises because the first

generation feels much less flavor symmetry breaking than the third. Note that AFS theories are

very flexible—any hierarchical pattern of fermion masses can be described by an appropriate AFS.

We can understand the result Eq. (6.24) within this context. First notice that ai and bj can

be both positive and negative and therefore the factor of aibj in Eq. (6.24) is statistically neutral.

Anticipating this statistical averaging, we cast Eq. (6.24) into the form of Eq. (6.25) with the

identification

εq̄i = e−
a2i
3d2 , εqj = e−

b2i
3d2 . (6.26)

An important feature is that the AFS factor εqj is shared by all elements of both the up-type and

the down-type Yukawa couplings that involve the left-handed quark doublet qjL. This introduces a

correlation between the up-type and down-type Yukawa matrices.

We first study the probability distribution for a single entry in the Yukawa matrix, ignoring

correlations with other entries. This allows us to determine the the analogue of Eq. (6.5) for this toy
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Figure 6.4: Distribution of 105 randomly generated Yukawa matrix elements. From left to right the
panels correspond to (d/L, g) = (0.08, 1), (0.1, 1), and (0.14, 1).

landscape. Here we do not have a distinction between the up-type and down-type Yukawa matrices

because we assume that the center coordinates of both the uR and dR wavefunctions are distributed

randomly over S1. The Yukawa coupling Eq. (6.24) is a function on the two-dimensional parameter

space {(a, b) ∈ [0, L] × [0, L]}. The probability that the Yukawa coupling is larger than some value

λ0 is given by the area of an ellipse,

(a+ b)2

4
+

3(a− b)2
4

= 3d2 ln

[

g√
M5d

1

λ0

(

4

9π

)
1
4

]

. (6.27)

When the signs of a and b are opposite, the overlap of the three wavefunctions is small and the

Yukawa coupling becomes small. This is why the region of λ > λ0 is short in the (a − b) axis and

long in the (a+ b) axis. The probability that λ > λ0 is given by

P (λ > λ0) ' 2
√

3π

(

d

L

)2

ln

(

g√
M5d

1

λ0

(

4

9π

)
1
4

)

, (6.28)

and hence the distribution is flat:

dP (λ)

d lnλ
= 2
√

3π

(

d

L

)2

' 11

(

d

L

)2

. (6.29)

The distribution may cease to be flat as a or b approaches ±L/2, where the parameter space ends,

because we ignored the periodic boundary condition in the calculation that led to Eq. (6.24). Setting

this point aside we see that the probability distribution of Yukawa couplings in this toy landscape

is flat on the lnλ axis and has an approximate span of

∆ lnλ = ln

(

λmax

λmin

)

' 1

11

(

L

d

)2

, (6.30)

arising from the inverse of the height of the distribution function Eq. (6.29). The overall hierarchy

among Yukawa couplings ∆ lnλ = ln(λmax/λmin) is proportional to (L/d)2; the narrower the wave-

functions become, the further the wavefunctions can be separated, and the smaller Yukawa couplings



120

-8 -6 -4 -2 0

1000

2000

3000

4000

5000

6000

7000

8000

-8 -6 -4 -2 0

1000

2000

3000

4000

5000

6000

7000

-8 -6 -4 -2 0

2000

4000

6000

8000

10000

12000

14000

16000

log10 λu,d log10 λc,s log10 λt,b

0 0.1 0.2 0.3 0.4 0.5

5000

10000

15000

20000

25000

30000

0 0.1 0.2 0.3 0.4 0.5

5000

10000

15000

20000

25000

30000

35000

-1 -0.5 0 0.5 1

5000

10000

15000

20000

25000

30000

35000

40000

|θ12|/π |θ23|/π sin θ13

-8 -6 -4 -2 0

2000

4000

6000

8000

10000

12000

14000

-8 -6 -4 -2 0

2000

4000

6000

8000

10000

-8 -6 -4 -2 0

1000

2000

3000

4000

5000

6000

7000

log10(|θ12|/π) log10(|θ23|/π) log10 | sin θ13|

Figure 6.5: Distribution of three quark Yukawa eigenvalues and mixing angles, based on a numerical
analysis with (d/L, g) = (0.08, 1).

can be. As seen from Eq. (6.24), the upper end of this scale-invariant distribution λmax is roughly

g/
√
M5d. Note that the scale-invariant distribution Eq. (6.5) was introduced almost by hand in

[189] in order to account for the large hierarchy among Yukawa couplings. It is interesting that this

distribution is a natural prediction of our simple toy landscape.

We performed a numerical calculation to confirm the semi-analytical analysis above, taking

account of the compactness of S1 by making the wavefunction Eq. (6.21) periodic. The center

coordinates of the quark wavefunctions a, b, c were generated randomly 105 times, and the Yukawa

coupling was calculated through Eq. (6.23). This process was repeated for three different sets of

the (d/L, g) parameters: (0.08, 1), (0.10, 1) and (0.14, 1). The resulting distributions, shown in

Figure 6.4, are all roughly scale-invariant (flat on a logarithmic scale), with heights proportional to

(d/L)2, just as we expected from the semi-analytical discussion.

6.3.2 Quark-Sector Phenomenology of the Gaussian Landscape

Let us now move on to study the probability distributions of the mass eigenvalues and mixing angles.

Figure 6.5 shows the result of a numerical simulation with (d/L, g) = (0.08, 1). The distributions of

Yukawa eigenvalues in Figure 6.5 are similar to those in Figure 6.1, but with narrower distributions
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Figure 6.6: Distribution of the three AFS suppression factors, the three Yukawa eigenvalues, and
the CKM mixing angles; the latter calculated naively from Eq. (6.38) and Eqs. (6.40–6.42). The
CKM mixing angle θ23 is the one most sharply peaked at zero, while θ13 is most spread out. These
figures correspond to d/L = 0.08 and thus ∆ log10 ε = 5.65. Recall that these distribution functions
are not reliable for small eigenvalues.

of λu,d and with the distributions of λc,s shifted downward. The prominent difference between the

mixing-angle distributions in Figure 6.5 and those in Figure 6.3 is the absence of the unwanted

peaks at |θij | ' π/2. Thus we find the pairing structure of the quark sector follows from this toy

landscape; introducing correlation between the up-type and down-type Yukawa matrix elements

works perfectly. Moreover, in contrast to Figure 6.3 the distribution of θ13 in Figure 6.5 has a clear

peak at θ13 � O(1) when displayed on a logarithmic scale.

The distributions of Yukawa eigenvalues and mixing angles in Figure 6.5 can be understood

analytically if we allow ourselves to make an approximation. We have seen in section 6.3.1 that both

the up-type and down-type Yukawa matrices have an AFS structure. Thus, we begin by determining

the probability distribution of the AFS suppression factor εq, q̄ in Eq. (6.26). The value of εq (εq̄) is

determined by the distance |b| (|a|, |c|) of the left-handed (right-handed) quark wavefunction from

the Higgs boson wavefunction. Since the center coordinates are scanned randomly over the extra

dimension S1, the probability measure is

dP (b) =
2

L
d|b| , for 0 ≤ |b| ≤ L

2
. (6.31)

The measure for the right-handed quarks is the same, and we only deal with the left-handed quarks

hereafter. Converting the variable from |b| to ln εq using Eq. (6.26), we find

dP (y) =
dy

2
√
y
, for 0 ≤ y ≤ 1 , (6.32)

where y ≡ ln εq/∆ln ε and we have defined ∆ ln ε ≡ −(L/d)2/12.

The center coordinates of the three left-handed quark wavefunctions are chosen randomly, thus

three AFS suppression factors follow Eq. (6.32) independently. The smallest of these corresponds

to the suppression factor ε1 for the lightest quark, while the middle factor ε2 and largest factor ε3
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correspond to the middle and the heaviest quarks. The distribution of ε1,2,3 is given by

dP (y1, y2, y3) =
3!

23

dy1 dy2 dy3√
y1y2y3

Θ(y1 − y2)Θ(y2 − y3) , for 0 ≤ yi ≤ 1 , (6.33)

where yi ≡ ln εi/∆ln ε. Note that in this notation y1 > y2 > y3. The distributions of the individual

AFS suppression factors ε3, ε2, and ε1 are obtained by integrating Eq. (6.33) with respect to the

other two variables:

dP (y3) =
3

2

(1−√y3)2√
y3

dy3, (6.34)

dP (y2) = 3 (1−√y2) dy2, (6.35)

dP (y1) =
3

2

√
y1 dy1. (6.36)

These distribution functions are shown in Figure 6.6. The average of each of these AFS suppression

factors is given by

〈ln ε3〉
∆ln ε

= 〈y3〉 = 0.1 ,
〈ln ε2〉
∆ln ε

= 〈y2〉 = 0.3 ,
〈ln ε1〉
∆ln ε

= 〈y1〉 = 0.6 ,
〈ln(ε1/ε2)〉
〈ln(ε2/ε3)〉

= 1.5 . (6.37)

In a sense, this toy landscape predicts the ratio of the AFS charges for the three generations: 6:3:1.

However the distribution functions Eqs. (6.34–6.36) contain more information.

The distributions of Yukawa eigenvalues follow from Eq. (6.33) with the approximation

ln(λi/λmax) ∼ ln εqi ε
q̄
i . (6.38)

Explicit expressions of the distribution functions derived in this way are given in Section 6.6,

Eqs. (6.64–6.66) and are plotted in Figure 6.6. From Eqs. (6.64–6.66) we see that for small val-

ues of zi ≡ ln(λi/λmax)/∆ln ε (these correspond to large eigenvalues), the distribution functions

behave as 6= 0, ∝ z2, and ∝ z2
1 , which is confirmed in the numerical simulation in Figure 6.5.

On the other hand, over the range of small eigenvalues the distribution in Figure 6.6 disagrees with

the numerical results in Figure 6.5. For example, the distributions based on the AFS approximation

extend all the way down to ln(λ/λmax) ∼ 2∆ ln ε, while the numerical results cover a logarithmic

range close to Eq. (6.30). Since ∆ ln ε ' −∆lnλ, the former ranges over twice the logarithmic scale

of the latter. This discrepancy arises from the compactness of the extra dimension. That is, what

really matters in the exponent of Eq. (6.24) is

min
[

(a+ nL)2 + (b+mL)2 − (a+ nL)(b+mL)
]

, for n ,m ∈ Z . (6.39)

As the center coordinates a and b approach ±L/2, non-zero choices of n and m may become just



123

as important as n = m = 0 in Eq. (6.24). Indeed, when |a| ∼ |b| ∼ L/2 integers n and m can be

chosen so that the last term is negative. Thus when the compactness of the extra dimension is taken

into account this term is not statistically neutral and the full expression Eq. (6.39) cannot be larger

than (L/2)2. This is why the distributions of Yukawa couplings and eigenvalues in Figure 6.4 and

6.5 span over ln(λ/λmax) ∼ ∆ln ε.

Distribution functions of the mixing angles can also be obtained by pursuing the AFS approxi-

mation, along with the additional (crude) approximations:

lnVus ∼ ln (max {(εq1/εq2)u-sector, (εq1/ε
q
2)d-sector}) , (6.40)

lnVcb ∼ ln (max {(εq2/εq3)u-sector, (εq2/ε
q
3)d-sector}) , (6.41)

lnVub ∼ ln (max {(εq1/εq3)u-sector, (εq1/ε
q
3)d-sector}) . (6.42)

Explicit expressions are given in Section 6.6, Eqs. (6.68–6.70), and are plotted in Figure 6.6. These

approximate analytic distribution functions capture qualitative features of the numerical results.

Note that the distribution function of sin θ13 becomes zero at log10(sin θ13) ∼ 0 because sin θ13 can

be of order unity only when all three eigenvalues are almost degenerate in either the up- or down-

sector, and the probability for this to occur is small. The averages of the mixing angles in logarithm

axes are ordered

〈θ13〉 < 〈θ12〉 < 〈θ23〉 , (6.43)

both in the numerical simulation and in the analytic distributions; see Eq. (6.71). This is regarded

as a consequence of the AFS charges in Eq. (6.37); indeed in Eq. (6.37) we have

〈ln(ε1/ε3)〉 < 〈ln(ε1/ε2)〉 < 〈ln(ε2/ε3)〉 . (6.44)

Whether the assignments in Eq. (6.37) are observationally acceptable or not is debatable, and we

will return to this issue in section 6.4. Related discussion is also found in section 6.5.

To summarize, we see that the qualitative expectations from an AFS-type mass matrix hold true

in this landscape. In particular, the similarities between the landscape generated Yukawa couplings

Eq. (6.24) and those of Eq. (6.25) allow us to understand Gaussian landscapes, at least to some

degree, using intuition from models of AFS. Of course, between these approaches the origin of small

parameters is completely different: in the landscape they arise from small overlaps of wavefunctions

well separated in the extra dimension, whereas in AFS they arise from small symmetry breaking

parameters. Let us now emphasize this distinction.

A crucial general feature of all AFS models is that the mass hierarchy between generations,

m3 � m2 � m1, arises because there is a hierarchy in the amount of symmetry breaking coupled

to these generations. This is true in the general Abelian case by the choice ε3 � ε2 � ε1. In more
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restricted versions having εi ≈ εQi , the hierarchy is imposed by a choice of charges Q1 > Q2 > Q3.

If the flavor symmetry is non-Abelian, then there is a hierarchy of symmetry breaking, for example

the rank may be broken from i to i − 1 with strength εi. Thus AFS can in principle describe

any flavor pattern, for example one heavy generation with Yukawas of order unity and two very

light generations with Yukawas of order 10−10. The situation with this Gaussian landscape is very

different. Each Yukawa coupling is a statistical quantity, with a probability distribution that is

approximately scale invariant over a range determined by a single small parameter, d/L. Relative to

this range, the hierarchy of mass eigenvalues, including the typical intergenerational mass ratios and

mixing angles, arises purely from statistics. Unlike with the AFS parameters εi, there is no sense in

which the fundamental theory distinguishes between generations. Therefore unlike with AFS, this

Gaussian landscape cannot accommodate one heavy generation and two very light generations of

comparable mass. Within statistical uncertainties, the landscape determines the AFS charges.

6.3.3 Environmental Selection Effects

It is a formidable task to understand or even simply to enumerate all of the environmental effects that

would be associated with a landscape scanning over the flavor parameters of the Standard Model.

Furthermore, without a specific theory for the landscape it is unclear whether certain qualitative

features of the flavor sector arise due to environmental selection, due to systematic features of the

landscape distributions, or due to accident. Consider these examples. In the Gaussian landscape of

this section, λ1/λ2 tends to be smaller than λ2/λ3. Therefore if L/d is chosen so as to explain the

hierarchy λ2/λ3, then the relative lightness of the up and down quarks are explained. The value

of L/d required to reproduce the quark masses we measure may be selected dynamically within

the fundamental theory or it may be selected due to environmental effects associated with having

very light up and down quarks. Likewise, the unexpected hierarchy mt/mb may be due to the

dynamical or accidental selection of different coupling constant g’s for the up and down sectors,4

or environmental selection effects could favor a very large top quark mass as described in [100].

Selection of a heavy top increases the likelihood for an “accidental” hierarchy of the charm quark

mass over the strange quark mass.

We now describe qualitative effects associated with one possibility for environmental selection,

which is the selection of a large top mass to ensure the stability of our present Higgs phase [100]. Since

the distributions in Figure 6.5 are rather broad, the precise form of this environmental condition is

not very important and consider a simple cut on the top Yukawa:

log10 λt ≥ − 0.3 . (6.45)

4This hierarchy may also be due to weak-scale supersymmetry with a large tan β; however in this case one has to
assume that the wavefunctions for the up-type and down-type Higgs are located at the same position in the extra
dimension.
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Figure 6.7: Distribution of quark Yukawa eigenvalues. The first row shows the distributions from
Figure 6.5 before the t-cut is imposed. The last two rows show the distributions of the roughly 6%
of Yukawa matrices that pass the t-cut.

We emphasize that we impose this t-cut to study qualitative effects; it is not intended to be precise.

We first study the distributions of the quark Yukawa eigenvalues, which follow the distributions

shown in Figure 6.7. The three distributions in the first row correspond to Yukawa eigenvalues before

the environmental cut is imposed. Since the our toy model has not introduced any difference between

the up- and down-type sectors, the three distributions are the same in both sectors. Imposing the

t-cut reduces the sample size by 6%. After the t-cut is imposed, the eigenvalue distributions are

modified into those displayed in the second and third rows of Figure 6.7. A notable effect of the

t-cut is that the distributions of the other Yukawa eigenvalues are dragged upward. This effect is

more evident in the up-sector than in the down-sector, which fits well with the observation that the

charm quark is heavier than the strange quark. The effects of environmental selection are also seen

in the distributions of the mixing angles; see Figure 6.8. The distributions of all three mixing angles

are significantly reduced near | sin θij | ∼ 1.

6.3.4 Summary

This simple toy model addresses some of the major problems with the scheme of [189]. For one,

it eliminates the peaks at π/2 in the distributions of the mixing angles and thus provides a high
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Figure 6.8: Distribution of mixing angles. The first row shows the distributions from Figure 6.5
before the t-cut is imposed. The second row shows the distributions corresponding to the roughly
6% of Yukawa matrices that pass the t-cut.

probability for the correct pairing between up-type and down-type quarks. In addition, it provides

an explanation (though still at the toy-model level) for the underlying distribution of Yukawa matrix

elements. Finally, it is not hard to achieve distributions that seem to fit the observed masses and

mixings. Indeed, there is improvement in the fit to very small mixing angles and the observations

mc > ms and mt > mb may be understood in the context of a selection effect. This comes from a

model with only two free parameters, g and L/d.

Not every aspect of flavor structure is reproduced in this Gaussian landscape. In particular, it

appears that a good fit to the top Yukawa coupling tends to predict a bottom Yukawa coupling

that is too large. When the same underlying model is applied to the charged lepton sector, the tau

lepton will also be predicted too heavy. We consider this problem not merely due to an un-optimized

choice of parameters L/d and g. Note for example that the distribution of Yukawa eigenvalues in

Figure 6.4 has a sharp cutoff at the largest allowed eigenvalue, “λmax.” This holds regardless of

the choice of L/d and g. In addition, the distributions of the largest eigenvalues λb,t,τ are sharply

peaked at this largest eigenvalue. This implies that a very large λt cannot be understood as a rare

statistical upward fluctuation, even if environmental selection prefers such a fluctuation. Meanwhile,

it is very unlikely that both the bottom and the tau lepton correspond to rare statistical downward

fluctuations. These problem comes from the scale-invariant distribution Figure 6.4 and cannot be

addressed by choosing parameters differently.

There may be a number of ways to modify the toy model of this section and thereby alleviate

this problem. Some of these are presented in section 6.5, where it is discussed how the geometry

of extra dimensions can affect the underlying distribution of eigenvalues in a Gaussian landscape.
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Before proceeding to that discussion, we take a moment to discuss how such landscape models can

be more quantitatively tested.

6.4 Testing Landscape Model Predictions

We here take an aside to discuss some possibilities for testing landscape models of family structure.

The key observation of this section is that these models predict correlated distributions for many low

energy parameters. In addition, for at least several of these parameters we expect dynamical and

environmental selection effects to be relatively weak. This situation allows for landscape predictions

to be compared to experimental measurements at higher significance than could be done for previous

landscape models. Although we view this possibility as very promising, we emphasize that in this

work we provide only toy models of flavor in the landscape. Thus the Gaussian landscape of section

6.3 is referred to below only for illustrative purposes. Henceforth we refer to this as the S1 model.

The distributions for the nine quark sector flavor parameters that are predicted by the S1 model

are displayed in Figure 6.5. The simplest evaluation of how well these distributions fit observation is

to simply compare the measured value of each parameter to its predicted distribution. On the other

hand, a key feature of these distributions is the existence of correlations between the various flavor

parameters. Thus it is possible for each flavor parameter to be reasonably typical of its distribution,

yet for the complete set of flavor parameters to be atypical among the predicted distribution of

complete sets. A simple way to explore this feature is to study specific relationships among the

flavor parameters and compare to the predicted distributions for these relationships. For example,

we may select the ratios λc/λb and λu/λs to characterize the size of the hierarchies between the

generations, and select the ratios λb/λt, λs/λc, and λd/λu to characterize the discrepancies between

masses within each generation. Rather than present the profile of each of these distributions, in

Figure 6.9 we display the median of each distribution with error bars representing the 16th and 84th

percentile values, alongside the values determined by running experimentally measured quantities

(including their uncertainties) up to the Planck scale.

Figure 6.9 reveals that although neither λt nor λb are very atypical of their distributions, the

ratio λb/λt is over two standard deviations below the median of its distribution. This discrepancy is

reduced but not eliminated if we speculate that environmental selection strongly prefers a relatively

large top quark mass, as suggested in Ref. [100] and implemented by the t-cut of section 6.3. The

results for this scenario are displayed in the right panel of Figure 6.9. It is interesting that the

measured value of λs/λc is also low relative the median of its distribution. This suggests a sub-

pattern to flavor hierarchy that might be addressed for example by allowing different couplings g

apply to the up and down sectors.



128

-3

-2

-1

0

1

-3

-2

-1

0

1

Figure 6.9: Typical values of several flavor parameters. From left to right the pairs of error bars
correspond to λb/λt, λc/λb, λs/λc, λu/λs, λd/λu, θ12/π, θ23/π, and sin θ13; the vertical scale is
logarithmic. The figure to the left corresponds to no selection cuts whereas the figure to the right
corresponds to flavor parameters that survive the t-cut of section 6.3. For each pair of error bars the
first corresponds to the measured value and the second to the middle 68% of the Gaussian landscape
of section 6.3.

6.4.1 The Chi-Square Statistic

We now pursue more quantitative analyses. One example is to use the so-called chi-square statistic as

a measure of goodness-of-fit between the observed flavor parameters and their hypothetical landscape

distributions. For concreteness consider again the S1 model of section 6.3. It is convenient to denote

the relevant set of quark flavor parameters by

{xi} ≡ log10{λu, λc, λt, λd, λs, λd, |θ12|/π, |θ23|/π, | sin θ13|} , (6.46)

with the logarithm acting on every element of the list. The chi-square for this list is then

χ2 =
∑

i, j

(

x̂i − 〈xj〉
) (

σ−1
)

ij

(

x̂j − 〈xj〉
)

, (6.47)

where hats denote the measured value of a parameter, brackets denote the landscape average, and

the co-variance matrix σ is given by

σij = 〈xixj〉 − 〈xi〉 〈xj〉 . (6.48)

If the distributions describing each element of the list {xi} were Gaussian, then the quantity χ2

would follow the chi-square distribution. This distribution is a function of the number of independent

random variables that enter the quantity χ2: if χ2 is determined by N random variables then the

chi-square distribution has a mean of N and a variance of 2N . Our S1 model relies on nine random

variables (the ai, bi, and ci) but contains two free parameters (g and L/d) that can essentially

be tuned to remove two of these variables.5 Therefore if the distributions describing the {xi} of

5In fact the free parameters L/d and g have not been fully exploited, since we have not performed a maximum
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Eq. (6.46) were Gaussian, we would expect the χ2 represented by Eq. (6.47) to be approximately

χ2 ≈ 7± 4. Values of χ2 well above this range would imply that, after accounting for correlations in

the underlying distributions, too many of the measured flavor parameters are too far from the means

of their distributions for it to be likely that these parameters were derived from such distributions.

Meanwhile, values of χ2 well below this range would indicate that the measured flavor parameters do

not exhibit the variance about their means that would be expected from the underlying distributions.

In fact the S1 model does not predict Gaussian distributions for any of the flavor parameters.

However, the statistical interpretation of the chi-square statistic is so useful that it may be worthwhile

to use Eq. (6.47) as a rough indicator of goodness-of-fit. The closer to a Gaussian profile are the

underlying distributions, the more precise becomes this interpretation. This is our motivation to

choose as the {xi} basis the logarithms of flavor parameters. With this in mind, we find χ2 ≈ 5 for

the S1 Gaussian landscape, with about half of the contributions to χ2 coming from the anomalously

large measured value of the top quark Yukawa. It is tempting to use the quantity χ2 to compare our

S1 model to the model of Ref. [189], or to models presented later in this chapter. However we must

keep in mind the appropriate interpretation of the chi-square statistic, which is a measure of how

well a data set is described by a set of distributions for that data. Thus it is not appropriate to use

χ2 to compare one theory to another; but instead to compare each model to the data, independent

of any other models. In the above example, χ2 ≈ 5 means that overall the observed set of flavor

parameters is typical of those predicted by the S1; that half of χ2 comes from the top indicates that

most of the observed flavor parameters do not exhibit quite the variance about the means of their

distributions that would be expected from the S1 model, with the unusually high mass of the top

“making up” for this.

6.4.2 The P-Value Statistic

Although the chi-square statistic has a familiar interpretation, this interpretation is only precise

when the underlying distributions are Gaussian. For non-Gaussian distributions we run into the

problem that the quantity χ2 of Eq. (6.47) depends on how we represent the measured quantities

{xi}. For example, it depends on whether we choose the first six {xi} to be the quark Yukawas

or their logarithms, or whether we replace some of these parameters with ratios of quark Yukawas.

This ambiguity stems from the distributions of Figure 6.5 being non-Gaussian.

This particular ambiguity is not present in the p-value statistic, which can be applied to a

correlated set of distributions with any profile. The p-value of a single flavor parameter xi is simply

the fraction of the distribution that is more atypical than the measured value x̂i. For example we

may consider the most typical value of a distribution with a single peak to be the mode (the most

likelihood analysis to determine the values that minimize χ2 in Eq. (6.47). However, the parameter values we use are
chosen to qualitatively fit our expectations for the measured values of {xi}.
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frequent value) in the peak, which we denote x. Then the p-value is the fraction of the distribution

that is farther from xi than the observed value x̂i. More precisely, if we approximate the distribution

as continuous with profile P (xi), then the p-value pi is

pi =

∫ x̂i

0

2P (xi) dxi for x̂i < xi , pi =

∫ ∞

x̂i

2P (xi) dxi for x̂i > xi . (6.49)

Note that like χ2 the p-value is a random variable. Whereas χ2 is distributed according to the

chi-square distribution, the p-value is distributed uniformly between zero and one.

The p-value itself suffers from ambiguity, but this is simply the ambiguity in how one defines

what is typical. For example, one may choose the most typical value to be the mode, the median,

or define the p-value in a more complicated way to handle the case of more than one peak in a

distribution. The purpose of the p-value is to generate a uniform distribution between zero and one,

such that values very close to zero or very close to one are interpreted as unlikely due to their unusual

distance or proximity to what is viewed the most typical value(s). The definition in Eq. (6.49) is

appropriate for the quark Yukawa distributions of Figure 6.5. For the mixing angles of Figure 6.5

it is reasonable to take zero as the most typical value and define the p-value to be the fraction of

mixing angles that is greater than any measured mixing angle.

Above we have described the p-value for a single quantity xi relative its hypothetical distribution.

We seek the p-value for a set of quantities {xi} relative their distributions. Consider first the product

of p-values each calculated as described above, k ≡ ∏i pi. In the case where the quantities xi are

independent of each other, k represents the fraction of the distribution of {xi} for which each element

is more atypical than the measured value. The quantity k is indeed a measure of how typical is

the measured set {x̂i}; however it is not uniformly distributed between zero and one. A quantity

uniformly distributed between zero and one is the fraction of possible sets {xi} for which k ≤ k̂,

where k̂ denotes the value of k coming from the measured set {x̂i}. We take this fraction to be the

p-value, which gives

p =

∫ k≤k̂
∏

i

dpi = k̂

N−1
∏

a=0

1

a!

(

− ln k̂
)a

. (6.50)

Here a is simply an index used to simplify the last expression, and N represents the number of

random variables in {xi}. For the S1 model of section 6.3 N = 7 and we find p = 0.53.

The result Eq. (6.50) does not include possible correlations between the parameters in {xi}.
These can be included by changing the way in which k is defined. As already mentioned, the

quantity k represents the fraction of {xi} that is more atypical than the measured set {x̂i}. Whereas

this fraction is equal to
∏

i pi when the xi are uncorrelated, for correlated xi one simply finds the

fraction {xi} for which each parameter is more atypical than the measured value in {x̂i}. The
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primary drawback to this method is that for data sets with large N it requires precise knowledge of

the underlying distributions. For example, we required 300,000 random sets of flavor parameters to

find 29 that were more atypical than the observed set. This corresponds to the reasonably typical

p-value p = 0.19.

6.5 Geometry Dependence

In section 6.3 we introduced and analyzed a toy landscape based on a single extra dimension,

and we found that it could provide both the generation structure and the pairing structure of

observed quark sector. However, the specific geometry that we studied is unlikely to derive from

superstring theory, where gauge fields and fermions of the low-energy effective theory may have as

many as six extra dimensions in which to propagate. In addition, the compactification geometry

that results in the Standard Model gauge groups may not be unique. Therefore, we initiate a study

into how the compactification geometry of extra dimensions affects the probability distributions of

observables, while also identifying some aspects of these distributions that do not depend on the

choice of geometry. We find that the qualitative results of section 6.3 can be achieved by Gaussian

landscapes in other geometries of extra dimension(s).

6.5.1 A Gaussian Landscape on T 2

To see how robust is the success of the Gaussian landscape on S1, we study the toy model on another

geometry. We first look at the simplest extension to more than one dimension, T 2 = S1 × S1, and

focus on a “square torus” where the two periods of the torus are both L. We assume that each of

the quarks and the Higgs have rotation-symmetric Gaussian wavefunctions of the form

ϕ(~y; ~y0) ∝ e−
|~y−~y0|2

2d2 , (6.51)

where the center coordinates ~y0 of each particle are randomly scanned over the internal space T 2.

The up-type and down-type Yukawa matrices are calculated by the overlap integration Eq. (6.23),

which is naturally generalized to integration on T 2. We defer to future work an investigation into how

reasonable are these assumptions in a dynamical field theory on an extra-dimensional space-time,

and for the moment focus on the phenomenology of this toy landscape.

Figure 6.10 shows the distribution of Yukawa matrix elements for a numerical simulation of this

model. As in the S1 model, the only parameters relevant to these distributions are g and L/d.

In addition, larger hierarchy is generated when the wavefunctions are more localized, i.e. when

L/d is larger. The key difference from S1 is that the distribution of Yukawa matrix elements is no

longer scale invariant. Instead, on T 2 the probability density for the largest and the smallest matrix
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Figure 6.10: Distribution of 104 randomly generated Yukawa matrix elements on T 2. From left to
right the panels correspond to (d/L, g) = (0.1, 1), (0.12, 1), and (0.14, 1).

elements is depleted. With regard to the Yukawa eigenvalues and mixing angles, we find that a

hierarchical pattern of Yukawa eigenvalues is generated (Figure 6.11) and that the distributions of

mixing angles are peaked at θij = 0 (Figure 6.12). Thus the generation and pairing structures of the

quark sector follow from the Gaussian landscape on T 2. Despite the apparent difference between

the distribution of the Yukawa matrix elements of the two toy landscapes (e.g. Figure 6.4 and

Figure 6.10), we see that the distribution of masses and mixing angles are roughly the same when

we compare Figures 6.11 and 6.12 to Figures 6.7 and 6.8. In particular, these distributions all come

with a width of about an order of magnitude, and the differences between the distributions from

the two toy landscapes is not statistically significant compared to this width. This demonstrates

that generation structure and pairing structure in the quark sector are robust features of Gaussian

landscapes.

The biggest difference between the distribution of observables in the two toy landscapes is the

right-hand-side tail of the distributions of log10 λb,t and log10 λs,c. These tails are more significant

in the Gaussian landscape on T 2 than in the toy landscape on S1. This is a consequence of the

difference in the distribution of individual Yukawa matrix elements, Figure 6.10 vs. Figure 6.4. The

depleted probability density of the largest Yukawa matrix elements in the Gaussian landscape on T 2

results in a softer cut-off of the distributions for the largest values of the largest Yukawa eigenvalues.

This applies to the heaviest and the middle quarks.

The effects of the possible environmental selection for a large top Yukawa coupling are studied

in Figure 6.11 and in Figure 6.12. The distributions of the mixing angles θ23 and θ13 are shifted

toward smaller angles, just as on S1. Since a cut in favor of a large top Yukawa coupling is in favor

of a larger hierarchy between the lighter quarks and the heaviest quarks, smaller θ23 and θ13 are

natural consequences. The inequality 〈λc〉 > 〈λs〉 also follows from the cut, just like in section 6.3.

The most important difference between the two landscapes may be in the distribution of the bottom

Yukawa coupling after the cut is imposed. It was rare that λb be less than 10−2 in the lower-right

distribution of Figure 6.7, but a significant fraction this distribution is below 10−2 in Figure 6.11.

Therefore the observed hierarchy λt/λb may be understood within the context of a landscape with

a large-top-Yukawa environmental selection, if the background geometry is chosen properly.
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Figure 6.11: Distribution of Yukawa eigenvalues in the Gaussian landscape on T 2, based on a
numerical simulation with (d/L, g) = (0.1, 5). The first row shows the distribution of the three
eigenvalues of the up (and down) sector. The second and third rows display the eigenvalues of the
roughly 6% of matrices that survive the t-cut of section 6.3.3.

6.5.2 Changing the Number of Dimensions

The studies in sections 6.3 and 6.5.1 demonstrate that generation structure and pairing structure

are obtained in the quark sector, once we assume a landscape based on localized wavefunctions on

extra dimensions. For the examples studied, differences in the distributions of observables were not

significant compared to the statistical widths of these distributions. However, looking more carefully

at some details of the distributions we found some interesting geometry dependence. Therefore it

will be that some geometries fit the observed flavor parameters better than others. The problem of

flavor may be changed from the historical approach of seeking a specific theory to predict the precise

values of flavor observables, to a new approach based on understanding the various compactification

geometries and what flavor parameter distributions they imply.

Within this context we would like study Gaussian landscapes based on manifolds in any number

of dimensions. However in practice the integration time grows very large as we move to manifolds

with more dimensions. Operating with Mathematica on desktop computers, we find it impractical

to study toy landscapes on manifolds with three or more dimensions.6 On the other hand, in

6We are referring to the number of dimensions in which gauge fields are free to propagate and fermion wavefunctions
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Figure 6.12: Distribution of mixing angles in the Gaussian landscape on T 2, based on a numerical
simulation with (d/L, g) = (0.1, 5). The bottom row displays the mixing angles of the roughly 6%
of matrices that survive the t-cut of section 6.3.3.

sections 6.3.1 and 6.3.2 we made significant progress by studying flavor parameter distributions in

the limit where the quark wavefunctions were more localized and near the Higgs wavefunction, such

that the compactness of the extra dimension was not important. We now generalize that analysis

to geometries in more than one extra dimension.

Let us consider a D-dimensional internal space with local coordinates ~y. Then in the limit where

we can ignore the size of the internal space the Yukawa coupling matrix is given by

λij ∝ e−
1
3d (|~ai|2+|~bj |2−~ai·~bj), (6.52)

which replaces Eq. (6.24) for the Gaussian landscape on S1. Here ~ai and~bj are the central coordinates

of the quark wavefunctions, relative to those of the Higgs. The Yukawa matrix again has the AFS

form Eq. (6.25), with suppression factors

εqj = e−
|~bj |

2

3d2 , εq̄i = e−
|~ai|

2

3d2 , (6.53)

are localized. This number of dimensions can in principle be different than the number of dimensions in a compactified
manifold or a stack of D-branes that realize the gauge groups of the Standard Model in string theory.
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replacing Eq. (6.26). In the extra factor gij = e~ai·
~bj/3d

2

(which is not necessarily of order unity)

the vectors ~ai and ~bj are sometimes unaligned, sometimes parallel, and sometimes anti-parallel.

This generates a random coefficient to each Yukawa coupling that is statistically neutral in the AFS

approximation. We note again that this analysis is valid only when the compactness of the internal

space is unimportant and the local geometry can be approximated as a flat D-dimensional space.

This is equivalent to focusing on only largest Yukawa matrix elements.

Ignoring the statistically neutral factor e~ai·
~bj/3d

2

, the Yukawa matrix elements are roughly

λ ∼ e−
|~r|2

3d2 , − lnλ =
|~r|2
3d2

, (6.54)

with ~r = (~a,~b) scanning a 2D-dimensional space. The natural probability measure is

dP ∝ d2D~r

L2D
∝ |~r|

2D−2 d|~r|2
L2D

∝
(

d

L

)2D

(− lnλ)D−1d| lnλ| , (6.55)

where L is the typical size of the extra dimensions. Indeed, the distribution of the Gaussian landscape

on S1 (D − 1 = 0) is flat, see for example Figure 6.4, and that of the Gaussian landscape on T 2

(D − 1 = 1) is linear in | lnλ| at its upper end. Both of these results are independent of the value

of L/d. The logarithmic range of the distribution of Yukawa couplings scales as (L/d)2.

The distribution of the AFS suppression factors, εqj , can be obtained as in section 6.3. In more

than one dimension the measure Eq. (6.31) is generalized to

dP (b) ∼ dDb

LD
∼ L2−2D dV (b)

db2
db2

L2
, (6.56)

where b ≡ |~b| and V (b) is a volume enclosed within a distance b from a given point. Analogous to

the analysis in section 6.3, we represent this distribution

dP (y) = f(y) dy , f(y) ∼ L2−2D dV (b)

db2
, (6.57)

where y ≡ ln ε/∆ln ε with ∆ ln ε ≡ − 1
3 (bmax/d)

2 now representing the logarithmic range of ε in

the D-dimensional geometry. Note that what is bmax will depend on the geometry—for example

bmax = L/
√

2 for the “square torus” and bmax = πR = L/2 for the S2 geometry discussed below—

however this only affects the distributions of small eigenvalues. In addition the density function

f(y) depends on the geometry of the extra dimensions, but its behavior for small y, i.e. ε ∼ O(1),

depends only the number of extra dimensions: f(y) ∝ yD/2−1. The smallest, middle and largest

AFS suppression factors then follow the probability distribution

dP (y1, y2, y3) = 3!f(y1)f(y2)f(y3)Θ(y1 − y2)Θ(y2 − y3) dy1dy2dy3 , (6.58)
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where yi ≡ ln εi/∆ln ε and again y1 > y2 > y3. Thus for small yi,

dP (y1) ∝ y3D/2−1
1 dy1 , dP (y2) ∝ yD−1

2 dy2 , dP (y3) ∝ yD/2−1
3 dy3 . (6.59)

Distribution functions of the masses and mixing angles can be obtained by using the approximations

Eq. (6.38) and Eqs. (6.40–6.42). In the limit of large eigenvalues and large mixing angles these

distribution functions behave as

dP (z1)

dz1
∝ z3D−1

1 ,
dP (z2)

dz2
∝ z2D−1

2 ,
dP (z3)

dz3
∝ zD−1

3 ,

dP (t12)

dt12
6= 0 ,

dP (t23)

dt23
6= 0 ,

dP (t13)

dt13
∝ t13 ,

(6.60)

where zi ≡ ln(λi/λmax)/∆ln ε and tij ≡ ln | sin θij |/∆ln ε. The behavior of the distribution functions

on the mixing angles do not even depend on the number of dimensions.

For small Yukawa eigenvalues and mixing angles, the AFS approximation breaks down and the

shape of geometry becomes important. But for the purpose of studying the zeroth order effects of

the number of dimensions, we introduce a crude approximation:

fD(y) = (D/2) yD/2−1 for 0 ≤ y ≤ 1 , fD(y) = 0 otherwise. (6.61)

The distribution functions of the individual suppression factors εi are obtained by integrating out

the other two variables from Eq. (6.58). Figure 6.13 shows these distributions for D = 1, D = 2,

and D = 3. As the number of extra dimensions increases, distributions of Yukawa eigenvalues shift

to smaller values, and the middle eigenvalue becomes closer to the smallest eigenvalue. Meanwhile,

the mixing angle between the first and second generations, i.e. θ12, becomes larger than the second

and third generation mixing angle θ23. These two phenomena are both sides of the same coin in

Yukawa matrices with the AFS structure. Since we measure

λd
λs

>
λs
λb
, and θ12 > θ23 , (6.62)

this may be regarded as an indication that D > 1. Note however that the compactness of extra

dimensions affects the distributions of the smallest eigenvalues and therefore the value of the ratio

〈ln(ε1/ε2)〉 / 〈ln(ε2/ε3)〉 predicted from Eq. (6.58, 6.61) cannot reliably be used to infer the number

of extra dimensions.

Although the distribution functions of the flavor parameters depend on the number of extra

dimensions D, there is an important common feature that is independent of D. As we have seen, all

the distribution functions (in their approximate forms) are given by power, polynomial, or logarith-
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Figure 6.13: Comparing D = 1, 2, and 3. The first row shows distributions of log10 ε1,2,3, the second
row of log10 λ1,2,3, and the third of log10 sin θij . In all cases the broadest mixing angle distribution
corresponds to θ13, while the distribution most sharply peaked at zero corresponds to θ23 in the
left panel and θ12 in the right panel (in the center panel the distributions of θ12 and θ23 coincide).
We used approximations Eq. (6.38) and Eqs. (6.40–6.42), which are not reliable for small Yukawa
eigenvalues. For clear comparison each distribution uses d/L = 0.08 and bmax = L/2.

mic functions of the logarithmic variables log10 λi or log10 | sin θij |. Specifically, These distribution

functions are not powers of λi or exponential functions of the logarithmic variables. Therefore,

the Gaussian landscapes described in this work are different from those in [192], where all of the

dimensionless coupling constants of the standard model are supposed to have narrow-width Gaus-

sian distributions. This common feature of our toy landscapes is traced back to our assumption

that the localized wavefunctions become exponentially small as one moves away from the center of

localization.

6.5.3 Information Not Captured by the Number of Dimensions

Although for a given number of extra dimensions the distribution of Yukawa matrix elements has a

universal form at its upper end, the full distribution depends on the the global background geometry

of the extra dimensions. The density function f(y) introduced in Eq. (6.56) looks like those in the

first column of Figure 6.14 for the two-dimensional manifolds T 2 and S2. Indeed, they appear quite
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Figure 6.14: Distribution of density functions f(y) (left column), AFS suppression factors εi (mid-
dle column), and the angles of quark diagonalization matrices εi/εj (right column). The top row
corresponds to T 2 geometry while the bottom row corresponds to S2. The sizes of T 2 and S2 are
set so that the average of ln ε2 = 0.275. The distribution function of ln(ε2/ε3) is larger than that of
ln(ε1/ε2) at ln(εi/εj) ∼ 0 for both T 2 and S2.

different. Therefore we would like to build some intuition for how choosing different geometries with

the same number of extra dimensions affects the distributions of the flavor parameters. To do this

we now compare the Gaussian landscape defined on T 2 to a Gaussian landscape defined on S2.

It is important to note that to obtain distribution functions for the observable flavor parameters

requires a number of consecutive integrations. In the AFS approximation, it is the density function

f(y) ∝ dV (b)/db2 that ultimately carries the information about the geometry of the extra dimen-

sions. In order to obtain approximate distribution functions of the flavor suppression factors, we

need to integrate two of the variables y1,2,3 out of the distribution Eq. (6.58). Since for any one of

the variables yi the density f(yi) is not integrated out, singularities in the original density function

f(yi) remain in the distribution function of ln εi. See for example the second column of Figure 6.14.

However, because of the other integrations, the detailed information carried by f(y) is smeared out,

and the two plots of Figure 6.14 are quite similar.

The Yukawa matrix eigenvalues λi are approximated by εu-sectori εd-sectori , and hence their distri-

bution functions are given by a convolution of the distribution functions of εi. Therefore the original

density function f(y) is integrated at least once. The same is true for the distribution functions

of the three angles of the matrices that diagonalize the up-type and down-type Yukawa matrices.

These angles are approximately εi/εj (i < j), such that their distribution functions are obtained

by integrating two variables out of Eq. (6.58) while keeping the distance ∆ij ≡ yi − yj fixed. The

third column of Figure 6.14 shows the distribution functions of ∆ij . The singularity in f(y) for T 2

is already smeared out, and we see that the distributions of ∆ij are very similar between T 2 and
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Figure 6.15: Distribution of 104 randomly generated Yukawa matrix elements on S2. From left to
right the panels correspond to (d/R, g) = (0.4, 1), (0.5, 1), and (0.6, 1).

S2, despite the differences in their density functions f(y).

The theoretical argument above relies on the AFS approximation. To support its conclusions, we

ran a numerical simulation of the Gaussian landscape on S2. As before, the quarks and Higgs are

represented by localized wavefunctions with width d. For example, on S2 a wavefunction centered

at θ = 0 is given by7

ϕ(θ, φ) ∝ e− θ2

2d2 . (6.63)

Of course, to generate an ensemble of Yukawa matrices the central coordinates of each wavefunction

are scanned uniformly over the geometry S2. Figure 6.15 shows the distribution of Yukawa matrix

elements for this model. Note that the overall shape of the distributions in Figure 6.15 are remarkably

similar to those in Figure 6.10, which involves the toy landscape on T 2. The distribution functions

are approximately proportional to | lnλ| for large Yukawa matrix elements, similar to Figure 6.10

and in agreement with the theoretical discussion in section 6.5.2. That the distributions on S2

are not as precisely linear for large matrix elements as those on T 2 can be understood in terms of

geometry: S2 has positive curvature while T 2 is flat. Figure 6.16 displays the distributions of the

three Yukawa eigenvalues for the Gaussian landscapes on S2 and T 2. These distribution are quite

similar between S2 and T 2, confirming the conclusion based on the AFS approximation.

Let us briefly summarize the conclusions of this section in the context of the above results.

The number of extra dimensions can be visible in the distribution functions of observable flavor

parameters because it determines the behavior of the density function f(y) at a boundary y ∼ 0.

That is, boundary conditions survive (for distributions we have seen so far) regardless of how many

times the distribution functions are integrated, convoluted, etc. This is why we obtain D-dependence

in the distribution functions of observable flavor parameters, see Eq. (6.60). Meanwhile, although

details about the geometry of the extra dimensions are still left in the distribution functions of the

AFS factors εi, they are smeared out through integration processes, and do not survive to the level

of observable flavor parameters. This means that we cannot learn very much about the geometry of

extra dimensions from the observed masses and mixing angles. On the other hand, it appears that

7Although this wavefunction is not smooth at θ = π, this is not of present concern. That is, the purpose of this
numerical simulation is not to determine the distribution precisely but to study its qualitative aspects.
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Figure 6.16: Comparison between the distributions of Yukawa eigenvalues from the Gaussian
landscape on T 2 with (d/L, g) = (0.1, 5) (top row) and the Gaussian landscape on S2 with
(d/R, g) = (0.5, 1) (bottom row).

we can understand the qualitative pattern of masses and mixing angles without knowing the details

of the underlying geometry.

6.6 Approximate Probability Distribution Functions

In this section we collect several probability distribution functions calculated using the AFS approx-

imation, i.e. using Eq. (6.38) and Eqs. (6.40–6.42), as a reference for discussion within the main

text of this chapter.

6.6.1 Gaussian Landscape with One Extra Dimension

We first collect the results from the Gaussian landscape on one extra dimension: S1. Below we list the

distribution functions of the Yukawa eigenvalues that follow from Eq. (6.33) and the approximation

Eq. (6.38):
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Here zi ≡ ln(λi/λmax)/∆ln ε where λmax = (4/9πd2)1/4g and on S1 we have ∆ ln ε = −12(d/L)2.

We also note the mean values of these distributions:

〈z3〉 = 0.2 , 〈z2〉 = 0.6 , 〈z1〉 = 1.2 . (6.67)

Meanwhile, the distribution functions of the CKM mixing angles follow from Eq. (6.33) and the set

of approximations Eqs. (6.40–6.42). They are given by:

dP (t12)

dt12
= 6

(
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)3 (
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√
t12
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dt12 , (6.68)
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where each applies over the full range 0 ≤ tij ≤ 1, with tij ≡ ln | sin θij |/∆ln ε. The mean values of

these distributions are:

〈t12〉 = 0.17 , 〈t23〉 = 0.10 , 〈t13〉 = 0.35 . (6.71)

6.6.2 Gaussian Landscapes on D = 2 and D = 3 using fD(y) in Eq. (6.61)

We now turn to results from Gaussian landscapes in higher extra-dimensional spaces. The D-

dimensional Gaussian landscape with density function fD(y) given by Eq. (6.61) predicts the fol-

lowing probability distributions of the AFS suppression factors:

dP (y3)

dy3
=

3D

2
y
D/2−1
3

(

1− yD/23

)2

, (6.72)
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1 . (6.74)

The approximate distribution of Yukawa eigenvalues follow from convolution of these suppression

factors. For the case of D = 2 these are given by:
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where again zi ≡ ln(λi/λmax)/∆ln ε, λmax = (4/9πd2)1/4g, and on S2 we have ∆ ln ε = −12(d/L)2

while on T 2 we have ∆ ln ε = −6(d/L)2. The mean values of these distributions are:

〈z3〉 = 0.25 , 〈z2〉 = 0.50 , 〈z1〉 = 0.75 ,
〈z1 − z2〉
〈z2 − z3〉

= 1 . (6.78)

Meanwhile, for D = 2 the distribution of mixing angles is

dP (t12)

dt12
= 6(1− t12)5, (6.79)

dP (t23)

dt23
= 6(1− t23)5, (6.80)

dP (t13)

dt13
= 12t13(1− t13)3(1 + 2t13) , (6.81)

again with tij ≡ ln | sin θij |/∆ln ε. The mean values of these distributions are:

〈t12〉 = 0.14 , 〈t23〉 = 0.14 , 〈t13〉 = 0.37 . (6.82)

In the case of D = 3, it is also possible to obtain analytic expressions for the approximate

distributions of Yukawa eigenvalues. However, these are very complicated and we do not list them

here. Instead, we simply list the mean values of these distributions:

〈z3〉 = 0.37 , 〈z2〉 = 0.61 , 〈z1〉 = 0.82 ,
〈z1 − z2〉
〈z2 − z3〉

=
5

6
. (6.83)
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The distribution functions of the three mixing angles are also very complicated for D = 3, so we do

not list these either. The mean values of these distributions are:

〈t12〉 = 0.11 , 〈t23〉 = 0.14 , 〈t13〉 = 0.33 . (6.84)

6.7 Discussion and Conclusions

This decade has seen the emergence of a major debate: to what extent is nature fundamentally

uniquely prescribed, for example by symmetries, vs. to what extent nature results from the statistics

of a huge landscape of solutions to the fundamental theory, modified by cosmological and environ-

mental selection. Within the Standard Model symmetries play a key role, but for physics beyond

the Standard Model the question remains largely open. Unified gauge symmetries have striking

achievements: for example a simple interpretation of the quantum numbers of a generation and a

precise numerical prediction for the ratios of the measured gauge couplings. For the paradigm of

flavor, however, the picture offered by approximate flavor symmetries (AFS) is much less compelling,

lacking both theoretical simplicity and significant successful predictions. Although the AFS descrip-

tion of flavor is apparently well suited to give an understanding of the hierarchical nature of the

charged fermion masses and the CKM mixing matrix, it also comes with too much flexibility: with

an appropriate choice of charges and symmetries any pattern of flavor can be generated.

In this chapter we have studied some very simple landscapes involving extra dimensions that could

account for flavor. Small symmetry breaking parameters are replaced by small overlap integrals of

wavefunctions in the extra dimensions. Localization of wavefunctions is a very natural expectation,

and may have a more elegant realization than Higgs potentials for flavor symmetry breaking. We

claim neither precise predictions nor a particular compelling statistical model, rather we investigate

what patterns of flavor emerge in the quark sector from the simplest landscapes, and what features

of these extra dimensional landscapes are relevant for the flavor problem.

In the simplest toy landscape, where the quarks and the Higgs having a universal Gaussian

wavefunction but with central peaks that scan randomly over a circular extra dimension, we find:

• A scale invariant probability distribution (over a finite range) for all Yukawa matrix elements.

• Generation structure: a hierarchy of quark masses.

• Pairing structure: the heaviest up- and down-type quarks are mostly paired in the same weak

doublet, as are the two middle and the two lightest quarks.

• Very small CKM mixing angles, typically with θ13 � θ12, θ23.

The relevant probability distributions are shown in Figures 6.4 and 6.5 and result from inputting

only two parameters. One parameter sets the common normalization to the Yukawa couplings in the
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higher dimensional theory, and is taken of order unity, g ≈ 1, as it can arise from higher dimensional

gauge interactions. The other is the ratio of the circumference L of S1 to the width d of the universal

Gaussian. This parameter is crucial since it sets the possible range of the Yukawa couplings. We

find that L/d ≈ 10 is sufficient to account for all the observed hierarchies in the charged fermion

sector.

This generation structure and pairing structure for the quarks can also be obtained from AFS

using two free parameters. For example, an approximate U(1) symmetry with a leading Yukawa

coupling g of order unity and others suppressed by various powers of a small symmetry breaking

parameter ε. However there is a crucial difference. In the AFS case one must carefully choose

the U(1) charges of each of the Standard Model quarks. A huge variety of mass patterns could

be accommodated by suitable choice of charges. In the Gaussian landscape case no such choices

are made, and each of the quarks is treated symmetrically. The different Standard Model particles

differ only by the location of their Gaussian wavefunction, and these are scanned randomly over the

extra dimension. The hierarchies arise purely from statistics; they cannot be changed as they do

not involve any free parameters beyond L/d.

While the above accomplishments of the Gaussian landscape on S1 are striking, there are certain

features that are less than ideal. Although they are peaked, the probability distributions for the

quark masses and the CKM mixing angles are quite broad, as can be seen in Figure 6.5. At half

maximum, the deviation from the peak value is typically an order of magnitude. Thus the statistical

nature of the landscape prevents us from making precise predictions. We have found that this order

of magnitude width is also typical of the Gaussian landscapes in two extra dimensions that we

have studied. The Gaussian landscape makes no distinction between up and down sectors. For the

lightest two generations this is fine: the u/d and c/s mass ratios could arise randomly. However, for

t/b this seems much less likely. That is, the probability distribution for the top and bottom quark

masses is narrower than for the other generations, making it unlikely that their Yukawa couplings

differ by roughly two orders of magnitude. Even a strong selection effect favoring a heavy top quark

does not completely remedy this problem.

One possibility to resolve this issue is to replace the universal coupling g with two parameters:

one for the up sector that is about an order of magnitude larger than the one for the down sector.

It would be interesting to find a landscape origin for such a “tanβ” factor. Another possibility

is that the narrowness of the t/b mass distribution is a special feature of the Gaussian landscape

on S1. We find that this is the case, to a degree. In the Gaussian landscape on T 2—where the

wavefunctions are distributed at random locations over the surface of a torus—the distribution of

top and bottom Yukawas is wider, as shown in Figure 6.11. A selection for a heavy quark, for

example to maintain the stability of our Higgs phase after electroweak symmetry breaking, could

then account for the t/b mass ratio. Indeed, for any number of extra dimensions we are able to
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analytically approximate the distribution of Yukawa eigenvalues near their maximal value, and we

find that that the probability distribution becomes more suppressed as the dimension increases. This

strengthens this interpretation of the t/b ratio.

The observed mass ratios between the second and third generation can be used to determine the

parameter L/d, such that we can predict the expected order of magnitude of the first generation

masses. Since this prediction is broadly correct, we can apparently conclude that the effects of

environmental selection, for example from nuclear physics, are not very strong on the first generation

masses. While this is true for the Gaussian landscape on S1, one must be very careful making such

inferences. In the actual landscape it may be that the ratio L/d itself scans, and then it is possible

that the range of Yukawa couplings is environmentally selected. Even if environmental selection

effects are not very powerful, they can still lead to significant modification of the distributions for

masses and mixings. This is illustrated in Fig 6.7 where a cut on the top quark mass induces an

asymmetry between the c and s distributions, favoring a heavier charm quark. In Figure 6.8 the

same cut is seen to reduce the probability of near maximal mixing in the quark sector.

Finally, we have made a first attempt to understand the robustness of the landscape results on

S1 by studying the probability distributions for the quark sector flavor observables that result from

two two-dimensional spaces: a torus T 2 with equal lengths L around each circle, and the two-sphere

S2 with radius R. The four itemized accomplishments listed above remain intact, except that the

probability distribution for Yukawa matrix elements deviates somewhat from the scale invariant

form. That is, over a range determined by L/d or R/d the distribution of Yukawa matrix elements

dP/d lnλ becomes a polynomial in lnλ, rather than being constant. Yet this is a mild change; apart

from the width of the distribution for the top and bottom Yukawa couplings mentioned above, the

gross structure is unchanged. Specifically, the family pairings, mass and mixing angle hierarchies and

order of magnitude widths of the distributions are all preserved, as seen for T 2 in Figures 6.11 and

6.12. Thus we conclude that these are robust features of quark sector flavor in Gaussian landscapes

on extra dimensions.
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