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ABSTRACT

We consider infinite partial orders in which the order
or comparability relations are transitive, non-reflexive, and non=-
symmetric., Our purpose is to construct for each infinite cardinal ¥
a so—called " R-universal" partial order in which every partial
order of cardinality X can be isomorphically embedded. Using the
Axiom of Choice we easily construct an R-universal partial order
of cardinality 2“ s wWhile for those infinite cardinals X for which

R, _ X

X = 2" 4 the General Continuum Hypothesis enables us to construct

an RN -universal partial order of cardinality iX.



Section

1e

24

3.

L

- v -

TABLE OF CONTENTS
Title

ACKHOWLEDGEMENTS -

ABSTRACT

Classes —~ fundamental concepts

Cardinals

Partizl orderings of classes

Linear orders and linear extensions of partial
orders

Universal infinite partial orders

REFERENCES

Page

ii

iii

~3

12

25

37

54



-1 -
UNIVER3AL INFINITE PARTIAL ORDERS

1. Classes~fundamental concepts.

We abstract from experience the concept of the collection of
a definite group of objects into a whole; this new entity, this
collection into a whole, we then call a class. The objects are called

the elements or members of the class; the class is said to contain

or to be composed of its elements, while the elements are spoken of as

belonging to or being contained in the class. To exhibit a class

which contains the elements a, b, ¢ (and possibly others) we write
{ a, b, c, *++ }; we denote the class of objects a which satisfy
some property P by { a : a satisfies P }. The assertion that
an object a belongs to a class A is written a ¢ A; the assertion
that a does not belong to A is written a £ A.

Many paradoxes have been stated in connection with the
concept of class; some of them arise from the use of the word "all®
and from our intuitive feeling that, given an objeet a and a class A
we should be able to assert exactly one of the statements: a £ A,
a £ A. Perhaps the simplest such paradox is furnished by the following
self-contradictory "class": "the class C, which is composed of all
those classes which are not members of themselves®™. If we assume that
C € C we immediately conclude that C £ C, and conversely.

As a result of the existence of such paradoxes, and in order
to establish a firm foundation for the construction of a consistent
theory, it has been found necessary to single out certain "well~bshaved"

classes which are then called sets; and to lay down various axioms
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governing the behavior of both sets and classes. We shall not attempt
to give here any complete exposition of an axiomatic theory of classes;
instead we shall simply mention those concepts, rules, and results

which are pertinent to our subject.

1.1. We have under consideration a universe of classes and
a universe of sets, with the understanding that every set is a class.

A class which is not a set is called a proper class. Certain classes,

such as the empty-or void-class /\ , the finite classes, and the

denumerable classes, are immediately defined to be sets. In addition,
many methods are defined for the construction of new classes, together

with rules stipulating when the newly formed classes are to be sets.

1e2s A class A 1is called a subclass (subset) of a class

(set) B if every element of A is also an element of B,‘in symbols
A € B, For every class A, /N & A; if A & B, the clagss of those
elements of B which are not also in A is denoted by B - A, If
AC B and B< A then A and B are identical, which we denote
by A = B. The collection of all subclasses of a class A is again
a class, denoted by T'(A); if A is a set, I'(A) is also a set.

As an example, the set { x, y, 2 } has the eight subsets:

T1= AN T5={Y,Z}

T2={x} Te= {2z, x}
T3={y} T7= {x,y}
T, = {2z} Tg = {xs5,2} .

Finally, classes having no elements in common are said to

be disjoint.
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1e3e Giveh any two objects a and b we may form the set
{ ay {a, b }}, which consists essentially of the two objects but has
the property that within it the object a 1is distinguished as, say,
"first", and the object b as "second", The set { a, { a, b } }

may thus be called the ordered pair containing a and b (in that

order), and is usually denoted by < a, b > .

ledhe Given two classes A and B, the collection of all
ordered pairs < a, b > with a € A and b € B 1is again a class,

called the cross product of A and B and denoted by A x B, If

A and B are both sets, then A x B is a set.
A simple example shows the reason for using the notation
A xB: let A={0,1} (two elements)and B= {x,5, 2}

(three elements). Then A x B has the six (=2 x 3) elements:

<0, x>, <y x>,
<0,y >, <l,y>,
<O,Z>’, <1’Z>.

15 A class M, all of whose elements are ordered pairs,

is called a (single-valued) mapping if M contains no two pairs

<ay b > and <a, ¢ > with b distinct from c¢. M is said to be bi~
unigque if in addition it containe no two pairs < a, b > and <¢, b >
with a distinct from c¢. The ccllection of first (second) elements of

the pairs ¢f M 4is a class called the domain (range) of M ang denoted

by D(M) [R(M)]; M is said to map D(M) onto R(M). For an element

¢ € D(M) there is a unique element P £ R(¥) for which <a, B> £ Nj
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this element B is called the image of o« by M and is denoted by
M*¢a, so that we have < ay M®a > € M, If the domain and range of
a mapping M are sets, then M 1itself is a set and is called a functicn.

The conversé, Mc, of g;gi—unique mapping M 1is the class of pairs

of M taken with the first and second elements interchanged; if M
is a function then M° is a function. If M and N are mappings with

D(N) = R(M), then the composition MN of the marpings M and N

is the class of ordered pairs < a, ¢ > for which there exists an
element b with <a, b >ecM and < b, ¢ >c N;y MN is a mapping

and if both M and N are functions, then MN is a function,

1.6. For no proper class A and set X is there a bi-
unique mapping of A onto X. This has the immediate consequence

that a mapping is a function if and only if its domain is a set.

1.7. Given two classes A and B, a mapping M for which

D(M) =A and R(M) € B is said tomap A into B; to express this

we write WM:A - B. The collection of all such mappings is a class

which we shall denote by BA; if both A and B are sets then BA

is again a set,

Again, a simple example will show the reason for using the

notation B': Iet A = {xyy5s 2} (three elements) and B = {0, 1}

(two elements). Then B® has the eight (= 23 ) elements:
<x, 0>, <x, 0>,

M1 = <y, 0>, ’ M = <ysy 1>, ’

<z, 0> <z, 1>
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<xy 1>, j<x, >
M2= <¥s 0>, 2, M6= <ys 0>, 2,
<z, 0> \<z, >
<x, 0>, f<x’1>,
M3= <Y’1>9}9 M7=<<5"’1>» ’
<z, 0> <2 0>
<x, 0>, <%, 1>,
.M4= <Y!0>3}9 M8= <y, 1>, .
<z, 1> <zy 1>

Suppose now that we form the eight subsets T, = {w: wehA and
Mi‘w=1} of Ay i =1y 24 eee » 8¢ Then Tys «so s Ty are exactly
the subsets of the example in 1.2., showing the essential similarity

between the classes T (4) and {0, 1}A.

1.8, Let M be a mapping with domain A such that for each
a£hy M%a is a class. The collection of elements x such that
there exists an a € A for which x ¢ M*a is a class called the

class union of the M“a over the index class A and is dencted by

U {Mfata eh } . The collection of elements x which belong to all

the M°a is a class called the class intersection of the M‘a over
the index class A and is denoted by {) {M®aieceA } . The union
and intersection of two classes S and T are denoted more simply by
S T and S N T. Finally, all of the above statements hold if the

words " mapping" and "class" are simultaneously replaced by "function"

and "geth,
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1.9. Finally, all of the results to be presented in this

paper require the following assumption. Axiom of Choice: Let F be

a function with domain X (which by 1.6. is a set) such that for each

aeX, Fa is a non-void set. Then there exists a function f:X -

\U{F“aa€eX} which has the property that for each a € X,

f®aeFqe The collection of all such functions f is a set which
we denote by IT{F‘aia € X } . It is easily seen that this (product)
set is a generalization of the cross product defined in l.4. « The
Axiom of Choice can be stated also in the following equivalent forms:

Given any set X there exists a funetion F: TI'(X) » X such that

for each non-void subset T of X, FT e T, an@ F°A =F°X.
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2. Cardinals

Perhaps the simplest property possessed by a set is the
"number" of elements belonging to it. For 2 given finite set this
number may be ascertained (uniquely) by some counting process; for
infinite sets the concept of number requires a new definition. This
definition may be gained by looking more closely at what is meant by
the statement "the finite sets X and Y have the same number of
elements". For example it is evident that the sets { a, by ¢} and
{0y s ¥} Doth have three elements. However, in this case the
peculiar nature of the elements themselves leads us to a further
observation, namely that we may associate a with a, B with b,
and ¥ with c¢. In effect, these associations, expressed in terms of
ordered pairs, furnish us with & bi-unique function F={<a, ¢ > ,
<by p> 4, <c, ¥>} vhichmaps {a,b,c} onto {a, B, ¥}.
It is easily seen that there are exactly n! (0! = 1) such functions
between any two sets of n elements each and no such functions between
sets of differing numbers of elements., Thus the notion of "the same
number of elements" for finite sets is equivalent to the existence of
bi-unique functions; extending this idea gives us the concept of

"number” for infinite sets.

R2ele Two sets S and T are said to be equivalent, written
S ~ T, if there exists a bi-unique function F which maps S onto T.
The identity function I = {<a, a>@ &S } shows that S ~S for
esach set S5; the relation of equivalence is reflexive. If S ~ T by

a function F, the function F° 1leads to the statement that T ~ 5;
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the relation of _equivalence is symmetric. If 8 ~ T by a function

F and T ~U by a function G, then S ~U by the function FG; the
relation of equivalence is trunsitive. Thus the relation of equivalence
splits the universe of sets into disjoint collections within each of
which any two sets are equivalent. We consider each collection to be
an entity which we call a cardinal; an arbitrary cardinal is denoted

by the symbol m . Each set S belongs to exactly one cardinal w ;

we say that S has cardinality w or is of cardinality w and write

[S| = m . The finite cardinals are simply the non-negative integers nj
the infinite cardinals are usuallydenoted by the symbol X ; X,
denotes the cardinality of the set of (non-negative) integers.

We next consider various operations between cardinals. For
this purpose we shall need representative sets having given cardinalities,
and it can be shown that we can construct for each cardinal m a
standard representative set S(m) of cardinality m with the property

that for distinet cardinals m and m , S{w) and S(n). are disjoint.

2.2. For two cardinals m &and v we say that ® m is less
than or equal to n ", in symbols m £ 1 , if there exists a subset
of 8(wn) which is equivalent to S(m). This definition is easily
seen to agree with the usual one for non-negative integers m and n.
We easily show that this relation is transitive by forming the com-
position of appropriate functions. F. Bernstein has shown that if
m<nad n £ m,ythen m = n . We say that " wm is strictly
less than wn ", in symbols m < 7 , if m £ n and mZ no.

By the Axiom of Choice (1.9.) it will result in 3.10. that for any two
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cardinals m and v we must have exactly one of the thrse relations

m< N, M= 7NM,Z40r M< Mo

2.3, If F 4is a function with domain X such that for
each o € X, F‘a is a cardinal, then we define the sum S {F ‘a:a £ X}

of the cardinals F ¢y over the index set X tobe S{F‘atac X}

= |U{S(F¢a)ia e X} |. (The disjointness of the S(F‘a) is of

prime importance heie.) For finite sums of non-negative integers this
definition is seen to agree with the one for ordinary addition. It is
clear that for each g € X, F°g & T {F‘ataeX} ., The sum of

two cardinals m and n is simply denoted by m + n .

24 If F is a function with domain X such that for
each a £ X, F‘ao is a cardinal, then we define the product

IT {F‘ ata € X} of the cardinals F ‘g over the index set X to be

TT{F¢atacXx} =|TI{S(F‘a)tae X} |. For finite products of
non-negative integers this definition is seen to agree with the one
for ordinary multiplication (see 1.4.). It is clear that for each

p X F p < II{F¢ataeX }. The product of two cardinals m

and 1 is simply denoted by mxn

2.5, For two cardinals m and M we define wm to the

power N , in symbols m' , to be m' = IS(m)S(n)],

For any

<
set S, 218l is clearly the cardinality of T'(S); it is easily shown
by assuming the contrary that for every cardinal m , m < Zm .

From this we see that there is no "largest' cardinal. We shall make

frequent use of the General Continuum Hypothesis: If X is an
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NP .o . . . R
infinite cardinal there exists no cardinal wm for which R < m <2,

1),

This hypothesis hes baen shown by W. Sierpinksi [1] to imply the Axiom

of Choic=.

2.6, Some easily proved results concerning cardinuals are
the followings

mz)m3 _ . Maoxm3
- ?

(1) (*m1 m

i

(2) if wm, < m and wm is arbitrary, then mm< mm
1 2 1 - 2

If X is an index set and m(a) is a unique cardinal

agssoclated with the element o of X, then:

(3) Z{m:aex} =X xm;
4) II{m:icex} = mlxi;
(5) I‘[{mm(“}:aex} = g Zim(a)ia e X} ;

6) TI{m@I™ taex} =[TI{m(a):acx} ™

e

(7) if m(a) is another unique cardinal associated with a,

and if wm(a) € n(a) for each o € X , then

Z{m(a):u e X}

A

Z{n(a)itae X} ard

A

TT{m(a)iac e X} TT{n{adiaex} .
Iet F Dbe a function with domain Y such that for each B £ ¥,

F‘B is a set and the F°B  are pair wise disjoint;
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define X= U{F g : p €Y} . If for each ¢ £X

m(a) is a unique cardinal, thent

ZAim{a)ia e X} ;

8  Z{Z{w(aiaeF‘p} : pe¥}

3

[T{m(a):a e X} ;

(9) IT{IT{m(a):ta e Fp } FeY}

(10) H{Z{m(a):acF‘p} ey} =
Z{TI{m(a)ia e R(£) } :£eX and £°F € F*B

-

for pe¥}.

We next introduce some structure into our classes and develop

some powerful tools of investigation and construction,.
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3. Partial orderings of clasaes.

Many classes arising in our experience and in mathematics

exhibit relations between their elements, for example: ®a is south of

b*, "a is below b%, "a 1is the father of b", "a is a subset of b,

Some of these relations are transitive: if a is south of b and b
is south of ¢, then a is south of c¢. On the other hand, "a is
the father of b" is not transitive. We also note that two objects
need not be comparable by a given (transitive) relation: an iceberg
is neither above nor below the surface of the body of water in which
it floats. We abstract from these and other examples the notion of a

(transitive) partial ordering of a class,

3.1. For a class A, a subclass B of A x A is called

a partial ordering of A (or A is partially ordered by B) if it

satisfies the conditionss:
(1*) forno a €A is <a,a>¢eB (B is non-reflexive);
(2¥) for no a, b el with a #b are both <a, b > and
<b,a>eB (B is non-symmetric);
(3¥*) if <a, b > and <by, ¢ > e By then <a,c>¢cB (B is
transitive).
Note that B may be void. We usually write M"a < b" (to be read "a is
less than b") in place of < a, b > £ B; with this convention we say
that the class A is partially ordered by the relation "<" if:

(1) forno a €A dowe have a < a ;

(2) Forno a, b e A with a #b do we have both a < b and b < a;

"(3) if a<b and b <c then a < c.



In place of a < b we sometimes write b >a ("b is greater than a%),
Clearl&, any subcléss of a partially ordered class A is again

partially ordered by the same relation; it is'called a suborder of A,
A set which is partially ordered is called (together with its relation

"<*) simply a partial order.

Elements a and b of A for which either a <b or b <a
holds are said to be comparable, while if neither a <b nor b <a

holds then they are said to be non-comparable; if a < b then the pair

<a, b> (¢ B) is spoken of as an order relation or comparability,

while if neither a <b nor b <a holds then both <a, b > and

<b,a> (£ B of course) are called non-comparabilities. An element

m of A for which there is no a € A with a >m is called 2 maximal

element of A, and analogously for a minimal element. If D € A

and b £ A such that for each a € D we have either b >a or b =a,
then b is called an upper bound (in A) for D, and analogously for
a lower bound.

An example of a partial order is furnished by the eight subsets
Tys eee s T8 of T'({a, by ¢ } ) given in 1.2, when the ordering is
by subset inclusion. This partial order can be exhibited graphically
as followss ///////,/’/i/?g Ta c}

as b {as e} {b, e}

>< o,
\l/
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3e2+ A partially ordered class A is said to be linearly

ordered by "<" (the class B of 3.1, is called a linear ordering of A)

if in addition we have:
(4) for every two distinct elements a, b of A, either a < b
or b <a holds,.
Every subclass of a linearly ordered class is itself linearly ordered.

A linearly ordered set is called simply a linear order. If a subset T

of a partial order & 1is itself a linear order, then it is called a
chain of S. If a <b in a linearly ordered class then we say that

"a precedes b" or that "o follows a%, If F is a function with
domain D such that for each d ¢ D, F‘d is a non-void linear order,
then [T{F“d:d e D} can be made into a partial order which we shall
denote by P( [I{F‘d:d e D} ) by introducing the order relations:
for fy5 £, € IT{F¢d:de D} , we define £, < £, if and only if

2
d < fgfi in F‘d forevery d €D, If every F‘d is a certain

&

1
linear order L, then we denote the partial order P( [T{F‘d:d ecD})

f

more simply by P(LD) .

3.3. A partially ordered class A is said to be well=

ordered by “<* (the class B of 3.1. is called a well-ordering of A)

if in addition we have:
(5) every non-void (partially ordered) subclass U of A has
a minimal element,
Every subclass of a well-ordered class is itself well-ordered. A well-
ordered class A is immediately seen to be lineurly ordered by con-

sidering all subclasses having two elements; the minimal element of

>
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gach non-void gubelags U is thus unigue and is called the "first
elementof U, if p is an element of 4, we define ﬁ to be the
subclass § = { mme A and w<pP in A} (P does not contain p).
A segment of A4 1s any subclass U of A which satisfies the
condition: if O €U &and T € A such that T < o in 4, then
T eU; if U is a segment not equal to A, then U 1is called a proper
segment of 4A; every proper segment U of 4 1is easily seen to equal

§ where P is the first element of A = U, 4 can have atmost
one maximal element; if 1t exists, this maximal element is called the last
element of 4. Every element P which is not a last element of A
has & successor Pxr namely the first element of the subclass
{wem>p in A} . If p 1is an element for which § has a last
element ,3*, then P is the successor to P* and P* is called
the predecessor of p o If an element p has no predecessor and is not

the first element of A, then it is called a limit element of Aj we

write p =lim{o:0 €V} 4if V is any subclass of P having
the property that for each m ¢ § there exists a o in V such thst
1< 0 (P itsell is such a subclass), More generally, if V is any
subclass of A, 1lin { o: o £V} is defined to be the first elsuent
of 4 npot less than any element of V, if such an element exists.

We are now already in a position to prove the following strong

form of transfinite induction.

3e4e Theorem: ILet A be a class and VW a well-ordered

class, Let there be mappings T:W »T{W) and R:T(A) x W = 4,

Then there exists a unique mapping F:W - A such that for sach
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peW,F‘p =R “<F(p, T), p >, where F(p, T) =

{F‘u : pe pntTio}.

Proof:
1) let C be the class of mappings F(U):U = 4 whose domains are
segments U of W and which have the property that for each p € U,
FU)‘p =R ‘< FUIp, ], p >, where FU)[p, 1] =

{FUW)‘M + pe P NT P} . Note that if U and V are

segments of W, then either U & V or V < U.

2) let F(U) and F(V) € C with U < V. Suppose there exists a
p €U such that F(U)‘p # F(V) ‘P . let o be the first such p.
Then F(U) ‘4 =TF(V)‘y for all u € &, so that F(U) [o, T]
=¥F(V) [oc, T « But then

\Y
it

FU)c =R *<FU) [os 1], o

v
i

R*<FW) [os Ty o F(V)o ,

a contradiction. Thus any two mappings in C . agree on the smaller of

their two domains,

3) Define F= (J{F(U):F(U) eC} . By2), F is a mapping

F:D(F) - A. Since D(F) is a union of segments of W, D(F) is itself

a segment of W, For p € D(F), there exists an F(U) ¢ C such that
p el and F'u =FU)u forall u eU. Tms Flp, T)=

F(U)[P s, T1 and

Fép =F@)‘p =r ¢ <FO) [p, T, p >=

R ¢ <F(PsT)’P>-



Hence' F has the desired property on the domain D(F) and by 2), F

is unique.

4) Suppose that D(F) # W. let p be the first element of W - D(F),
so that D(F) = P » We may then define a mapping G:D(F) U {P} > A
as follows: for i€ D(F), G ‘/u =F ‘/.4 , while G ‘p =

R¢ < F(p s T)y p > . But then we clearly would have G € C, so that

D{(a) ¢ D(F) and P e D(F), a contradiction. Thus D(F) = W,

which completes the proof of Theorem 3.4s «
Now, using the second form of the Axiom of Choice (1.9.),

we obtain the following useful corollery to Theorem 3.4. »

3.5, Theorem: Let A be a set and W a well-ordered class.

Let there be mappings T:W - T(W) and R:I(4) X W->r(4) . For

each f € W consider the following implication: 1if there is a mapping

F(p): P >4 such that for each M e P , F(p)'u &

é

RE<Fp)lpu, T, >, then R°<F(p)[p,Tl, p> isa

non~-void subset of A, where for /ucf—)U{P},F(P) [}J,T]‘—’

{ F(p) ‘v o voe /7 nrT ‘).4 } o If this implication holds for every

. p €W, then there exists a (not necessarily unigue) mapping F: W = A

such that for each p eW, F'p e R <F(p, 1), p >, where
Flp, T) = {Fu :/uep'nT‘P} .

Proof:
1) By the Axiom of Choice let there be a function Z:T'(A) » A such
that for non-void subsets B of A, Z ‘B € By while 2 ‘A =7 ‘4.

(The theorem is vacuously satisfied if 4 is void.) We define a mapping
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G:T'(A) x W+ 4 as follows: for B S A and p €W, G <By,p>
=2 ‘R “<B, p>. Then by Theorem 3.4. there exists a mapping
F:W > A such that for each p €W, Fip =G < F(p,s T p >

where F(p, T)= {F‘pu = pepnrép}.

2) Suppose there exists a p €W such that F‘p £RE< F(P, T),P>;

let o be the first such p o Then for all ye © , F ‘,u €

[3

R"<F(pm, T)y > so that the mapping F N & x A is a mapping
F(o): G » A such that for each u €T, F(o) ‘/u £

[

R°<F(o) [ pm, )y 4 > . By the hypothesis of the theorem then

R ¢< (o) [ o, Tl, 0> is a non-void subset of A, But then

Féo

G ¢ < F(O-’ T)9 o>=¢°< F(O’)[O—s T}s c >

]

z*‘R*<HMo)o,Tlyo>eR ‘< Fo)o, T],0>

R‘<F(0"9T)90->’

contrary to our assumption. Thus F satisfies the conclusion of
Theorem 3¢5.

We note that Theorems 3.4. and 3.5. have several natural
corollaries according as D(R) = T(A) instead of I'(&) x W, or
T‘p = p for all p €W, or both, In the remainder of this paper,
when we refer to these theorems it is to be understood that we are

using which ever corollary is applicable,

3+6s A bi-unique mapping M whose domain A and range B

are partially ordered classes is said to be an isomorphism between the

partially ordered classes A and B (in symbols A IT; B) if we have



the conditiont x <y in A if and only if M x < M‘y in B.

Two partially ordered classes A and B are said to be isomorphic (to
one anocther) if there exists an isomorphism between them; isomorphic
linearly ordered classes are said toc be similar (to one another).

The relation of isomorphism is reflexive (& f.A under the identity
mapping I‘a = a); symmetric (if A ﬁ B then B ;E 4), and transitive
(4f A 5B and B C then 4 %
ordered classes is split into disjoint collections of isomorphic

C). Thus the universe of partially

partially ordered classes. As we did in 2.1. for collections of
equivalent sets, we may think of each such collection as an entity which
we call an order type and assume that for each order type we have a

particular abstract representative.

3.7. The order types possessed by well=ordered sets are
called ordinals; we shall denote ordinals by small Greek letters; a well-
ordered set R which belongs to an ordinal P is said to have
ordinality p . The collection of ordinals is taken to be a class
which we denote by Ord. We introduce order relations into Ord as follows:
Let P s O be ordinals and Ry S be the abstract representatives of
ordinalities P 4 O respectively. Ve say that " P is less than o',
in symbols P <0 or G > P if R is similar to some proper
segment of S. To show that these order relations constitute a partial
ordering of Ord, it is sufficient to show that for any two well-ordered
sets V and W there can exist at most one function £:V > W whose
range is s segment of W and which is an isomorphism between V and

R(f). Suppose by way of contradiction that f and g are two distinct
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such isomorphisms and let w be the first element of V such that

£év #g°n; we may assume that f£°w > gm in W. Since R(f)

is a segment of W and f‘w > g¢w in W, we may define v = fc‘g‘tr;
then w=£2°f¢n>f“g¢n= v in V, since f 1is an isomorphism.
But now w > VvV in V implies that g ‘w > g‘v in W, so that

£fv =gén>gv in W, contrary to the minimality of w; thus

f =g and we have a partial ordering of Ord.

3.7.1s Next we show that Ord is actually linearly ordered.
Iet Sy, T be the representative well-ordered sets for arbitrary ordirals
o s T respectively. Define Z:TI'(S) = S to be the function such that
for US S, U#8S, 2°U = first element of S -U, and Z°S =2°A,
Then by Theorem 3.4. there exists a unique function F:T - S such that
for each p € T, F‘P=Z ¢ {F‘/" 2 M E P’}. We easily verify
the following three statements: If F is bi-unique and R(F) # S, then
F is an isomorphism between T and the proper segment R(F) of S,
so that T < o, If F is bi-unique and R(F) = S, then F is an
isomorphism between T and S, sothat T = o. If F is not
bi-unique, let p be the first element of T for which F'p = Féy
for some M < Q 5 then F N P X S is bi-unique and R(FNPxS) = S;
FN ﬁ XS is then an isomorphism between S and the proper segment

P of Ty, sothat o < T . Thus Ord is linearly ordered.

3s7.2. We see from 3,7.1. that for the representative well~
ordered set R of ordinality f there is a bi-unique correspondence
between the set of proper segments of R and the collection of ordinals

M <P namely f5 o Since there is also a bi-unique correspondence
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between the set of proper segments of 'R and the set of elements of
R (3.3.), we see that p 1is actually similar to R. Thus, § is a
set (1.6.) and is well-ordered with ordinality P We take ’3 as
the standard well-ordered set of ordinality P . At the same time

we also see from the above that Ord is well=-ordered.

3.7.3. Suppose that Ord were a set. BReing well-ordered it
would have some ordinality 2, from which it would follow by 3.7.2.
that Ord = Q . But this leads to the contradiction @ ¢ Q » since

Q is assumed to be in Ord. Thus, Ord is a well-ordered proper class.

3.7e4e We introduce addition and multiplication into Ord
as follows. let p , O £0rd. P + O is defined as the ordinality
of the (clearly well-ordered) set ;3 U O , where the order relations
of f') and O are retained and it is understood that every element of
P precedes every element of G . To define pxo 3 for <o, f>

and < M,V >¢€ P xCT , we define < oy B> << uu, V> if and only

i

if B< v y0ory, B =V and «a < M3 these order relations are easily

—

seen to constitute a well-ordering of P x J » and we define pxo

to be the ordinality of this set ﬁ x o,

3+.8. The Axiom of Choice is equivalent to the Well Ordering

Theorem: For every set S there exists a well-ordering of S. Clearly,

we may pick out the first element of each non-void subget of a well~
ordered set, so that the Well Ordering Theorem implies the (second form
of the ) Axiom of Choice (1.9.). To prove the converse: Let A be a

set and Z:T'(A) » A a function such that for each subset T of &, T
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# A, Z°TeA-T, and 2°A =2°A . By Theorem 3.4. there existe
a unigue mapping F:Ord - A such that for each p ¢ Ord,

F‘p =2 {F‘y :pep} . F carnot be bi-unique, by 1.6.. Let
T be the first non-zero ordinal for which F ‘w = F“0; then it is
easily shown that F N m x A is a bi-unigue function which maps ™

onto A and thus furnishes A with a well-ordering of ordinality w.

3.9. The Axiom of Choice is equivalent tc the Maximal

Principle: Every partial order P has a meximal chain C (meaning

that no element of P - C is comparable with every element of C);

thus if every chain of F has an upper bound in P then P has

a maximal element. First, let 24 be a set and B the set of well=

ordered subsets of A (a given subset of A may appear in B with
many well=-orderings). B is partially ordered by the relations: for
Cay DeBy, C<D in B, if and only if C is a proper segment of D.
Application of the Maximal Principle to B yields a well-ordering
of A, To prove the converse: Let P be a partial order ﬁith an
imposed well-ordering P = {p(m): M € P for some p € Ord }
(this well-ordering has no necessary connection with the partial
ordering of P). Then, taking both A& and W in Theorem 3.4. to be
the well-ordered set P, the range cof the function F is a maximal
chain of P provided that we define the function R:T'(P}) x P~ P

as follows:

for B € P and for pe?P,
p if B U<{p } is a chain of P,
R¢<By,p> = and

p(0) otherwise
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3.10, By the Well Ordering Theorem there is for every
cardinal m +the non-void set of ordinals which are the ordinalities
of well-ordered sets of cardinality w ; if p is such an ordinal we
have |§! = m and write simply |p| = m. The first ordinal so asso-

ciated with m is called the initial ordinal of m .+ The asso~

ciation of each infinite cardinal X with its initial ordinal w easily
yields the result that the collection of infinite cardinals is a

proper class well—ordered by magnitude and actually similar to Ord.

Using the isomorphism which provides this similarity, we may index the
infinite cerdinals as X (a € Ord) and denote by G, the initial
ordinal of k\"a. It is evident that each W, must be a 1imit ordinal
(3.3.)s If V is any set of cardinals m , then lim {m:wm €V}

is defined to be the smallest cardinal > m for all m £ V; if A

is a 1imit ordinal or zero, X = 1im {m: m < xx} and X

A A

is called a limit cardinal, For any set S of cardinality k3

a
(a € Ord) we may assume that there is a well-ordering of S, under which

we may write S = {s(m): pe @, }. Finally, the General Continuum
Hypothesis now states that for ay g € Ord with o> g, Na 2 2xﬁ,

equality holding if and only if a= g + 1.

3.11. We have the following facts conecerning cardinals and
ordinals., If V is a set of cardinals, some of which are infinlte, then
J{m:meV} =1lin {m: meV}. Let o € Ord; we consider
functions f having some domain B such that for each x & By f¢x 1s
a cardinal < Ka, and such that Na =2 {f ‘x:x £ B } « Among these

functions f +there will be one of minimal cardinality; we denote this
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minimal cardinal by wm(a) and notice that R,2 m (a) < K, e
If ma) < ¥, we call R singular; if m(a) = R, we call

F 24 o regular; every non-limit cardinal is regular; a regular limit

cardinal is called inaccessible. For a € Ord and wm < R, »m xxa

= X + By the General Continuum Hypothssis; we have:

a
( 1 OC=m,
R 0<m< wm(a),
m a
Re = < X m{a) < m< X, and
-~ - a
ot+1
m
\2 Haﬁmc

If A is a limit ordinal and B is a set of ordinals pB <X

such that A =1im {p : peB } , then =lin {wg s p €B}
= lim { Wgyq? P €B} . Among such sets B there will be one of
minimal cardinality; this minimal cardinal is in fact the m(X) of
the preceding paragraphs. If Ay, V € Ord and M > O, then there

exist unique ordinals ® (M,V) and $ (M, V) such that

@(H’V)SVs @()U,V) <M s and vV has the representation

V= ux@H,v)+ @ (u,v).
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L+ Linear orders and linear extensions of partial orders.

The investigations reported in this thesis are the results of
an attempt to generalize the well known fact that every denumerable
linear order is similar to some set of rational numbers. In particular,
we generalize the following proof of that fact: Let L be a denumerable
iinear order with its elements numbered 8oy 843 e s 8 s ees o We map
a, onto the dyadic ratiomal r_ =1 = 1/2°, Suppose we have mapped
8,9 ees 9 8 onto dyadic ratiocnals Tys eee 3 T in such a way that

the linear order { Tys eee 3 T } is similar to the linear order

{ 8 s eee s 8 } o We then map a onto the smallest dyadic rational

n+1

r of the form k/2°1, k odad and O < r 1 < 2» which yields

n+1
{ro, cee s Ty T } similar to { 8y eee 98 58 } « Continuing
by induction gives us the desired set of (dyadic) rationals.

The above proof has esseﬁtially two parts, namely, the
existence of appropriate minimal dyadic rationals and an induction to
obtain an isomorphism., In the following discussion we construct for
each infinite cardinal }za a set of "dyadic rationals", show the

existence of the necessary minimal rationals, and present an incductive

process in & form which is of use for further work.

4els Definition: Let a € Ord. If the functions f: & -2
are ordered according to first differences, the set 'icoa becomes a
linear order which we shall dencote by L(ﬁ'boa). We shall call a
function f:{ﬁ& > 2 a rational if there exists an ordinal 7(f) € CS;,

necessarily unique, such that f ¢ n(f) =1 while f‘}J =0 for

n(£) < M < W, .« Throughout further discussions, 3 will be used
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exclusively to denote this "terminating ordinal® of the rationals. We
-,
shall denote by La the suborder of L(2 %) consisting of the rationals.
Regarding these linear orders La we prove the following

theorem concerning the existence of minimal elements.

4e24 Theorem: Let o € Ord. Then La is a linear order of

- . R
cardinality 2 {2'77': nea, } 5 so that R, 2 lLal <2 %, ILet

—

P be any ordinal ¢ W, and let A be any subset of La such that

for each f € 4, 7n(f) < p .+ Then there exists a (unique) minimal

element h(4,p) in L, such that nin(a, p)] = p and h(i, p) > £
in L  for every f € A. Define B = {g:g ¢ Ly n(g) < p , and

g>f in L for every f ¢ A } . Then for every g € B, g > h(&, p)

in La’ Asguming the General Continuum Hypothesis, La has cardinality
Ky e
Proof’:
1) L, = U{T(Tz):nau_a} where T(n) = {f:f&La and
n(f) = n} , and the T(7n) are disjoint. But |T(q)| = zlnl
Ra

<2 sothat R < Z{lt{n)l:ne & }=1L]| =

X 1 £
2{2 %ipe &} = x_x2 =277, Assuming the General

Continuum Hypothesis, lT(’?” 2 R » 80 that )\"a < ILal =

\ —_ — — 2 _
Z{ltniline G }s2 Zi{vRgne 5} = RS= X

2) If A is void, the theorem is clearly satisfied by the rational

h(hs p) defined as follows: h(A, p)‘p =1 while h(a,p)‘M =0

for pe G, M # P o In the remainder of the proof, A is assumed

to be non~void.
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3) We define a function R:T[r(4)]x G = T(4) as follous:
for M€ ;’5 and for the void collection of subsets of A4, that
is for A eT[M(4)], R< A, M>= {f:fe A and Ff°0=
max { k‘O:tk e 4} };
for p e P and for Y € T[r4)] such that Y # A , we put
Y(¥*) = Y{cice¥Y} and
RE<Y, pu>= {fif e A and £y =max {k“u:k eY(*)}} ;
if Y(*) 4is void, then so is R ‘<Y, >,
Then by Theorem 3.4. there exists a unique function F:p - I'(4)
such that for each M E ﬁ s F‘/u =Ré< F(F),)u > , where
F(/U) ={Féy:ve = } o This function F is seen to have the
following properties:
a) For usv <p s Fu 2 Ffy, and the set
{pipep and Féu is non-void} is a segment of [
b) For ve P with £,0 £, e F v, we have £i9 £, € Fpu
and f1‘/u= fz‘/u for all p < v .
¢) Ifvep ,f; eF'v,and f, eA such that £, =£‘u
for all //151/, then f2 eF;uforall /u_<_v .
d) For any ve p , F°v is non-void if and only if Vv =0,
or, V> 0 and there exists some f ¢ 4 such that f e Féu
for all <V,
e) For o¢ P such that there is an £, € F¢‘c, and for every
V S 0, there exists no f, £4 such that fM = £ ‘u
for all m <7V while f

[4 [4
2v>f1v o

4) We define the rational h(A, P) of L, as follows:

3\

a) For Mef such that F°p is void, h(4, p)u = o0,
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b) For u £ such that F‘u is non-void, h{4, p)‘/u =fu
for any f € F‘u o, by 3b)e
c) h(A,p)‘p =1 and h(A,p)‘/u =0 for p < pm< W,
By 3a), we have thus defined h(4, p) over the whole domain Uq.
Clearly h(A,p) eL and 7plh(a,p)l=p.
5) Suppose there is a V € p and an f £ A such that £ = h(A,P)‘/u
for all u < v . Then we can show that f &€ Fiu for all M < v .
For suppose the contrary and let T be the first ordinal < Vv
such that f £ F‘r. Then either T =0 or f ¢ F‘u for all
M < T, 80 that by 3d), there exists some k £ F‘t, By 3b),
k‘ps = £ = h(h, p)°p for all < T , while by the hypothesis on
£ and by 4), £‘T=h(4, p)‘T =k‘T ., From this, 3c) yields f £ F‘r
a contradiction. Thus indeed f ¢ F‘/u for all < v ,
6) Suppose that f is an element of A such that f € F¢ M for
all M E ﬁ « We shall show that h{a, P) > f in La' By 4),
h(h, p)pM = 1té%u for all p<p , while h(a,p)p =1>0=fp,
since 77(f) <p. Thus h(a, P) >f in L.
7) Suppose that f € A such that for some ME F s £ £ F‘/J .
We shall show that in this case also, h(4, P) >f in La' let O
be the first ordinal ¢ F)' such that f ¢ F‘C". Then either o =0
or £feF‘u for all M < O, so that by 3d), there exists some
k€ F‘cs By 3b) and 4), k ¢ Féu for all < o , ku = £'u
=h(a, p)p forall <o ,and k‘c=hls,p)o., If
£f¢o = ko then by 3c) f € F'o, a contradicticn., By 3e), f'c ¥ k‘c .

Thus f£‘c <k‘c =h(4,p)‘c  and we have h(i,p) > f in Lye
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8) let t be contained in L  such that 7 (t)= p eand

t < h(A, p) in La' We shall show that there exists an element f
of A such that f >t in Lye Since 77(t) = n[h(A,P)] =P,
t and h(a, p) must differ at some first ordinal o < p . This
requires that t‘c=0<1= h(A,P)‘ o 5 SO that by 4), Féo is
non-voids let f € F‘oc . By 3b), £ € Féu for all M < O and by
L) h(A,p)‘,u = f‘/u for all u 2 o , while t‘}A = h(A,P)‘/u
=f forall < O and t'c <h(a,p)o=ffc. Tms £>t
in L. Steps 6), 7), and 8) assure that h(4,p) is the minimal
element k of La having the properties that 7 (k) = p  and
k>f in La for all f € A. We need only show that for each g ¢ B,
g > h(a, P) in L.

9) Suppose that there exists some k £ A such that k € Féu for all
M e P ;3 let g e B. We shall show that in this case g > h(4, P)
in L. By 4), h(h, p)‘M =Xk‘p forall e . Since g>k

in L and since n{g)s n(k) < p, g and k must differ at
some first ordinal o< P , and g‘c > k0. But then glu = ks
= h(A,p)‘)u for all p < O , while g‘c" > k‘c =h(4, p)oc ,

so that g > h{(4, p) in La‘ In the remainder of the proof we assume
that there exists no k € A such that k € F'u for all ue § .

10) 1In accordance with the assumption we have made in 9), let w be
the first ordinal < P such that there exists no f € 4 for which
feF‘u for all M <my m > 0, We shall show that = must be a limit
ordinals. For suppose that w had a predecessor w*, By the minimal
property W, there exists a k € A such that k ¢ F‘fx for all

M < w¥, or m* = 0, so that by 3d), there exists some f € F* un*,
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Then By 3b), f ¢ F‘,u for all i < @, contrary to the assumed property
of W, Thus v must be a limit ordinal; the meaning attached to
in this step will be retained throughout the following steps.
11) There exists no ordinal T < @ such that h(A, p)¢7 =1 while
_h(A, p)‘/x =0 for T < M < m, For suppose the contrary. Since =
is a limit ordinaly, 7 + 1 < @ so that by the minimal property of 1,
there exists some k £ A such that k € P’y for all u <7 + 1. By
L), then, h(h, P)M =k for all j < T . If k‘u =0 for all u
such that T < g <, then k‘um =h(a, p)p for all m e
so that by 5), k ¢ F‘/.x for all M ¢ T, a contradiction. Thus suppose

8 to be the first ordinal such that 7 < 8 <w and k¢§ =1.
Then k‘u=h(4, p)‘u for all pu< § while k“§=1> 0 = h(4, P')‘z;
so that k > h(a, p) in L,»s contrary to 6) and 7).
12) Suppose that u = P 5 let g e B. WUe shall show that g > h(4, p)
in L. Since n(g) <p= ~q[h(A, p)], g and h(a, p) must differ
at some first ordinal § < P If § = p » then h(A’P)‘ 7?(8)
=g‘7)(g)=l while h(A,P)‘)u = g‘H-——O for 77(%)</"‘<P="9
contrary to 11). Thus § < p =w. Since @ is a limit ordinal,

§ +1<m so that by the minimal property of = there exists some
k € A such that k ¢ F‘/u for all a4 < § + 1, By 4), then,
k‘p =hhyp)iu =gy forall p< § while k°§ =h(a,p)s
Fgté . If g8 < hi4, p)‘ § then g<k in L,» contrary to the
definition of B. Thus g‘é§ > n(4, p )¢5 and we have g > h(A,p)
in Lq.
13) Suppose finally that = < P 3 let g € B. We shall show that in

this last case also, g > h(4, p) in L, By 10) and 3d), F¢n is void,
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so that by 3a) and 4), h{4, p)ﬂu =0 for "< <P . Asin 12)»

g and h(4,p) must differ at some first ordinal § < p. If §=p,
then we must have 7 (g) < w. But then h(4, p)‘ 7?(g) =1l=g ‘n(g)
while h(A,‘P)‘}A =g‘m=0 for n(g) < M <m, contrary to 11).

If mg8< P » then necessarily g¢§ =1 > 0 = h(4, p)‘ § while

g4 =h(k, p)u forall p < & , so that g > h(k, p) in I_.
Finally, if §<m, 8§+ 1 <m since m is a limit ordinal, so that
by the minimal property of w, there exists some k £ A such that

k e F'p for all < § + 1. Then by 4)y g'4= h(h, p)p =k‘pu

for all M < § while k‘8 =h(A,p)‘8 #g“8§ . If g5 <h(a,p)°s
then g <k in L, contrary to the definition of B, Thus g‘§>
h(a, p)‘S and we have g > h{4, p) in L,» This completes the proof

of Theorem 4e.2. »

Le3. If P is a partial order and @ & linear order on the

same set of elements, then § is called a linesr extension of P if

every order relation of P is also an order relation of (., If P

is a partial order and L a linear order we say that a bi-unigue
function F:P - L generates a linear extension of P if a <b in
P implies that Ffa < F‘b in L; the linear extension generated is
the set of elements of F +together with the order relations trans—
mitted from L to P by means of the converse function ¥, I1f P
is already a linear order, F constitutes an isomorphism between P
and R(F) S L; we say that F embeds P in L, or that F is an

embedding of P in L.
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te now use Theorem 4.2. to prove a theorem concerning linear
extensions of partial orders; the theorem is stated and proved in the

follewing form for use in 5.10C. .

Lol Theorem: Let a € Ords Let F Dbe any partial order

of cardinality X with an imposed well-ordering P = { n( MIipe Q@ }.

For v <  denote by P, the set {p(u): pue U }. Consider

any two ordinals p and o such that 02 p<oc 2 W3 define

W=PU-PP and for p Sv< & ,WV=PV-PP . We define a function

H:P » T(P) as follows: for peP, Hp={x x<p in P} . If

there is a function G PP - La which generates & linear extension of

PP in such a manner that for each p(H) [ PP » n[G‘p(},«)] =}.4 ’

then there exists a unique function extending G +to {Ae_ domain P ,
F(Gy o')W » L_, which has the following two properties:
a) For each p(u) €W, 7[F(G, )¢ p(p)] = M. Now if for
each p(v) eW welet A(G,v) = { & p(u)p(u) e Ppn Hp(v)}
U {F(G,O“)‘P(}A):.p().,«) eWy, NHp(v) )} , then £ e A(Cs V)

implies that % (f) < v so that the rational hlA(G,v),v] of

Theorem 4.2. exists. The second property of F(G, o)) is that

b) For each p(v) e¥W, F(Gy o) p(v) =hnlaG,v),v].

These properties of TF(G, O) assure that the combined function

G U F(G, o) is a bi-unigue function from P, into L which generates

a linear extension of Po in such a manner that for each p( /,4) € Pgs

plauFG o) ¢ p(uil = 4.
Proof':
1) Define a function T:W » I'(W) as follows: for p € Wy T¢p = WnHp.

For pecW and BCL define B<p>=Bu{G‘q:q£Pf,n Hep }.
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2) We define a function R:T‘(Lu) x W= La as follows:
a) For p(v)eW and B C L, such that there exists an f € B
with 7(f) 2 v, R°<B, p(v) > = the unique rational k € L,
which has 7(k) = O.
b) For p(v)eW and B < L, such that f € B implies that
7?(1') < VvV, we have also that f ¢ B < p(V) > implies that
n(f) < V so that the raticnal h[B< p(v) >, v ] exists;
we put R < B, p(v) >=h[B<p(v) > v].
By Theorem 3:4. there exists a unique function F(G,O):W » L such

a
that for each p(v) € W,

F(Gy o) “p(v) =R < F(Gyo)lp(v)y Thy p(v) >
where
F(G o)lp(v )y 1] = {F(G, o) “ p(uu)ep(u) eWynTép(u)}.

3) Suppose that there exists a p( M) €W with g > 0 such that

nlFG, o) p(u)] =0, Iet p(v) be the first such p(u).
Then f & F(G, o)[p(v), T implies that f = F(G,o ) p(p) for some
p{m) € Wy, so that by the minimal property of p(v ), n(f) =
M < V , by 2). But then F(G, o)[p(1 ),T] is a subset B < L, for
which f ¢ B implies that 7(f) < v, so that F(G,0)‘p(v) =
R“<By p(v)>=h[B<p(v)> v] and thus wve have 7 [F(Gy0)*p(v)]
= v > 0, contrary to our supposition. Thus for each p(}J) £ W,

n PGy o Jp(p)] = py by 2).
4) By 3), for each p(y) e Wy £ € F(Gyor)[p(v), T] implies that

77(f) < VvV . Then by the definition of F(G, o), we have that

F(Gy o) ‘p(v) =0 { PG o)lp(v), T < p(v )>, v}
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But _ ’
F(Gy o) p(v ),T] < p(v) >= { PGy o) “p(pu)ip(p) e Wyn T p(v)}
U {ap(u)ip(u) e BponH p(v)} =4(Gv),
since Wy n T'p(v) =W, n H'p(v). Thus, F(G, o) p(v) =
n[a(G, v),vl.
5) Let p( /.,() and p(V) be comparable elements of Py  with u<ve
If v < p then by the assumption on G, G‘p(m) <G p(v) in

L, if and only if p(ﬂ)<p(u) in P. If p 2V <o then

G u ¥(G, o) “plu) e FG, o)lplv),T} < pv) >
if and only if p(},{) <p(v) in P; that is, G U F(Gyo)° p(/_A)
< FG, o) “p(v) in L, if and only if p(u) <p(v) in P. This

completes the proof of Theorem 4e4. .

L5« Definition: Let a € Ord. We call a linear order L
i\*a-universal if every linear order of cardinality Ra can be
embedded in L.
The following theorem, obtained in a somewhat different
manner by N. Cuesta Dutari [2; 243, Theorem 151, can be obtained as a

direct corollary to Theorem 4ude o

4Le6e Theorem: lLet a € Orde let L be any linear order

of cardinality X, with an imposed well-ordering L = {p(u): He CJ'G}

Then there exists an embedding F:L - La of L in Lu having the

fl

property that for each p(},{) eL, nlr¢ p(}.A )] M 5 that is,

La is an xa—universal linear order. Assuming the General Continuum

Hypothesis, La has cardinality X .
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Proof:
In Theorem 4.4.‘let P be the linear order L of the present theorem.
let 0=p and o = W, so that G is the null function and we
have F(/\, cga):L > L. The function F = F(A, coa) clearly
satisfies the conclusion of Theorem 4.6. .

Theorem 4.6. has also been obtained by W. Sierpinski [3; 62,
Theoreﬁ 3] for non~limit cardinals X+ The method of proof woulid
work as well on all regular cardinals but not on singular cardinals.
The proof is based on the following statement, which is due to F.

Hausdorff [4; 181-182]. Let « € Ord. A sufficient condition that a

linear order L be }<q~universal is that L have the two properties:

a) If E € L such that IEI < Iia, then there exist elements

a(E), b(E) in L such that for every c € E, a(E) < ¢ < b(E)

in L.

b) If Ey» E, & L such that 11«111, lEzl < K and such that

for each a € E and each a € E we have a < g in L
i T e R B R S-S

then there exists an element b(E1, EZ) in L such that for each

a; € By and each a, £ E, we have a1<b(E1,E2)<a in L.

2
That this condition is not a necessary one is easily seen by considering
appropriate subsets of L, for singular cardinals X e

As another corollary to Theorem 4.4. the theorem on linear

extensions of a partial order, due to E. Szpilrajn [57, may be given in

the following form.

4e7. Theorem: Let o € Ord. Consider any partial order P

of cardinality X with an imposed well-ordering, P = { p(}J):}aeiBA},

let a und b be distinct non-comparable elements of P. Then there
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exists a function F:P = ch which generates a linsar extension of P

in which a < b and which also has the property that for each

() Py MIFép(u)l = p
Proof:

1) Let us construct a new well-ordering of P, P = {q(#):ﬂ € CSQ } ’
in such a way that q(0) =b and q(1) =a. Thenlet 0= p ,

c = W, and let F(A, uu):P = L, be the function of Theorem 4.4.
for this newwell-ordering of P. Since b =q(0) £ q(1) =a in P,
we have that F(A, wﬁ)‘ (1) < F(A, (.)a)‘ q(0) in L(1 by Theorem
Lol so that F(AN, (")a) generates a linear extension L of P in
which a < b.

2) Consider now the original well-ordering of P under which we may
write L= {p(u)ip e & }. Then the function F:iL - L, of

Theorem 4.6. clearly satisfies the requirements of Theorem 4.7.
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5. Universal infinite partial orders

If P and 4 are partial orders and a bi-unique function
F:P - Q is an isomorphism between P and R(F) € Q, we say that F
embeds P in Q or that F is an embedding of P in Q.

We consider now any partial order P and denote by S the
set of all linear extensions L of P. By the theorem of E. Szpilrajn
[5] (which applies to both finite and infinité partial orders), the set
of order relations which are common to all the L € S is exactly the
partial ordering of P, Let us define the "elemental' function
F:P>P(I[{L:LeS} ) by: for aeP and F‘a =TF(a) e[[{L:L es},
Fla)*L=a for each L € S. Then by the above remark, F is clearly
an embedding of P in P(IT{L:L €S } ); we say that S realizes P.
Various subsets of S may analogously realize P; among such realizing
sets of linear extensions of P there will be one of minimal cardinality
(2 1, of course) because of the well-ordering of the class of cardinals.
B. Dushnik and E.W, Miller [6] call this minimal cardinal the dimension

of P and prove the following statements: (1) Every infinite partial

order has a dimension less than or equal to its cardinality. (2) If a

partial order P has an embedding in a second partial order W, then

dimension P < dimension Q. (3) For o € Ord and W™ satisfying

O0<mc< }<a, there exists a partial order of cardinality N:a

and dimension m.

We make immediate use of the above observations in the next

two theorems.,
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5.1 Definition: ILet o & Ord and m be any cardinal
satisfying 0 < | m < R+ We call a partial order P X a(m )=
universal if every partial order @ of cardinality o and dimension
< m has an embedding in P. If m = X Q? e call P simply

K -universal by virtue of 5.(1).

5.2 Definition: lLet o€ Ord and w be any cardinal
satisfying 0 < M < X ; let m have initial ordinal £ ( £ w,)e
We consider the partial order P(Lac). A function Fi E - La

will be called a limited series if there exists an ordinal § ¢ (l)_a

such that for each M € Es (e M) = §; this ordinal §
will be denoted by A(F). We denote by Pa(m) the suborder of P(Laé)
consisting of the limited series.

We now show that each P“(m) is Na(m )=universal.

5.3+ Theorem: let o € Ord and WM be any cardinal satisfying

0<m< XK. Let P be any partial order of cardinality X o

with an imposed well-ordering, P = { p( MIipe &} s which has

a dimension m where O < n £ m . Then there exists an embedding

F:P = Pa(m} of P in Pa(m) having the property that for each

() e P and Fp{p) =F(u) e P (m), A[F(u)] = p . That is,

Pa(m) is an Na( m)~universal partial order;also Pa(m) has dimension

m ., In particular, Pa( K ) 1is an X -universal partial order of
34
dimension R a and cardinality 2 a' Assuming the General Continuum

Hypothesis, Pa(m ) has cardinality X o Whenever m < R .
Proof:

”‘PG(m): U{T(5)=8£CJ—;} where T(8)={F:F£Pa(’m) and
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t

A(F) = 8} , and the T(§) are disjoint. Now |T(g§)| =2M*8i,

Ny
If m = X_, then pmx| 8] L, He

for § > 0, so that |P (R )|
— bt '

= Z{IT(8)]: §¢ X } = 27" However, if m « R s then by the

General Contimaun Hypothesis we have |7( &)} S o q 59 that K

[P (md| = Z{[r(8)]:8 ¢ G_} = Z{x,

= X .,
a

<
-

G

s

_ )
= N*
e @} -
2) Denote by ¢ the initial ordinel of m and by 7 the initial
ordinal of m, ¢ X £ 3 let X Dbe a realizing set of cardinality
of linear extensions of P with an imposed well-ordering,
E={L(pm)ipe T} . By Theorem hubey taking 0= p and o
= W, Lot G deL{p) = L~ be an embadding of L(/,c) in L,
3 . , ~ € _
having the property that for esch p{v) ¢ L{u), I ) p(v)] = v
for each e T o If ¥ < €, define G(},‘) = g0} for
T < M < . Foreach p(Vv) £ P, define & furction F{v):

AUURTIRIE SV T 4 ¢ o= ‘ ¢ . . *
Q - ch by putting F{(v) M = f‘(},«) p{v) for each M & (_:.
Then each F{v) ¢ Pﬁ( m) and we may define the desired function

TP = Pg(m) simply by putting 7¢p{v) = F{v) for ecach p(v) ¢ P,

By the definition of K, F is an embedding of P in Pa(m); further,

L

¥ has the property that for each p(/.,() £ P and P p()u)

Flu) e Py alF(LOT = s

¥

AS4]

m .

-

} By 5.(2,3) and step 2) above, we have dimension Pa(m) >
We shall show that dimension Pu(m) £ m by defining m linsar
extensions of PQ(‘m) and showing that these extensiocng realize

Pg(m) 3 we shall then have dimension Pa(m) = m ,
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4) For each u & E we define a linear extension L(M) of Pa(m)
as follows. For distinet elements F‘I’ F, of Pu(m)’ we define
F, <F, in L(p) if and only if:

a) F1‘/u < F2‘},( in L or

¢ = ['4 < -+ & - .

b) F“u FZ/.J and F‘l v > 1*2 v in La for the first ordinal

: = . ¢ ¢
v & { for which F/v # Fjv .

It is easily seen that each L( /q) is a linear extension of Pa(m).
Thus in order to show that the set { L{pd:pe & } realizes Pa(m),

we need only consider non=-comparable elements of Pa( me

5) Let F, and F, be distinct non-comparable elements of Pa(m).
Since these elements are distinct there exists a first ordinal p € E
« 3 3 ¢ <
such that F‘1 P ;f F2 P y and we may assume that F1 p < F2 P
in, L+ Thus we have F, <F, in L(p ). Since F, and F, are non-
comparable in P _(m), there mist exist an ordinal o ¢ & such that

- 6 (4 [1 [3 s :
o #p and Ffo 2F,) o in L. If Ffc >Ffo in L, then

2
ve have F, > F, in (o). If F1‘<r = F, 0" , then p is the first

2

ordinal in { for which F‘p #Ffp , and the fact that
F1‘P < Fz‘ p in L, implies that again F, > F, in L(o). Thus
the set { L(/u ):)u £ Z} realizes Pa(m), showing that dimension
Pa(m) < ™M and completing the proof of Theorem 5.3. .

It is easily seen that Theorem 5.3. reduces to Theorem 4.6.
when m = 1, Also it should be noted that steps 3), 4), and 5) of the
proof of Theorem 5.3. are direct generalizations of the corresponding

steps given by H. Komm [7; 510~511] in his proof of essentially the

same theorem for the case hod a = K o*
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5.4, We see from Theorem 5.3. that it should be possible
1o construet for each o £ Ord some suborder of Pa( }\*a) which would
be of cardinality R a and also would be Nq(m J=universal for

all w < X _ simltaneously. To see what suborder of P ( X,)

ghould be constructed, we consider a partial order P of cardinality
. XQ and dimension m < X a with an imposed well-ordering

= {p(ulipe @ }. Let F:P>P (M) be the embedding of
Thecrem 5.3, . We must extend this embedding to some embedding
G:P - Pa( }{a); this problem is equivalent to extending each limited
series Fe Pa(m) to a limited series H ¢ Pa( }\*a). The most
obvious way is to define H Dby: H‘}J = F‘/u for M 55 where
is the initial ordinal of m ( { < ), and H'M=F¢0 for

¢ £ M < w_. This method can easily be shown to yield the
desired result, but we shall find that the following method leads to
a further application.

Suppose we have a limited series F € Po(n Js n< s

and wish to extend F +to a limited series H ¢ Po( xo )e Ve may make
a “periodic! extension of F, that is, we may define for each M E oj; ’
H‘/A =F‘r, vhere 0< r <n and r is congruent to M modulo n.
By analogy, if F is a limited series in P _(m), m with initial
ordinal ¢ < W s we may extend F periodically to a function
He Pa(}{a) by means of: for u ¢ Cf;l, H‘/J =F°¢® (C,}_;),
(3.11.) where 0 < & (C,/u) < ¢ and $ (& o) 1is essentially
" congruent to M modulo ( ". We now make use of this idea of

pericdicity.
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5¢5. Definition: ILet a € Ord. We call a partial order P

Ka-sub-universal if every partial order of cardinality X o and

dimension < R’a has an embedding in P,

5.6, Definition: Let a € Ord. 4 function F ¢ Pa(Nq)

will be called a periocdic limited series if there exists a non-zero

s — $,y - & —~
ordinal € L _ such that F'pM =F P (nyp4) for each HoE O
The minimal (non-zero) such ordinal n will be denoted by I (F).
We denote by Pa the suborder of Pa( }\’a) consisting of the periodic

limited series.

5.7+ Theorem: Let a« € Ord and let P be any partial

order of cardinality Na with an imposed well—ordering,

P= {P(}J):)—l 5 (3; } sy which has a dimension m where 0 <WM < }{a.

Then there exists an embedding H:P - Pa of F in Pa having the

property that for each p(M) € P and B p(m) = H(u) € P,

alH(u)] =p and IT[H(m)] £ £ » the initial ordinal of m .

That is, Pa is an Ka—sub-universal partial order; also, Pa has

dimension w (a) where lim {m:m< X o }o< m{a) < R s

so that if ¥ a is a limit cardinal, Pa has dimension Ha.

Assuming the General Continuum Hypothesis, P(1 has cardinality Na.

Proofs
1) P = U{U{T(8§, m):0<u< wa} : b < (».)q} where
T(§, 1) ={F:F ¢ Pa’ A(F) = 8 qand TI(F) = } , and the T( §, )
are disjoint. Now |T( &, mw)| = 2'8[ % |l s 80 that, assuming the

General Continuum Hypothesis, [T( 8, w)| < X and we have
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R, < Z{Z,_{l‘l‘( §y )]0 < W < ua} : § < wa}=|Pa|

< Z{Z‘,{Nar0<rr< («)a}:8< c..)a}= N2=Na.

2) let F:P > Pa(m) be the embedding of P in Pa(m) of Theorem
543+, and consider each image F‘p().,() =F(u) € Pq(m). We define

new functions H(u) € P by: for p € &, H().AJ‘p = F(}A)‘ ® (¢ spls
clearly A[H(/u)] = M and H[H(/J N < ¢ . Ve now define the desired
function H:P - Pa by putting each H° p(}g )= H(}J); H clearly

satisfies the conclusion of the theorem.

3) By 5.(2,3) and step 2) above, dimension P,2m forall m < X j
by Theorem 5.3. and 5.(2), since P, S Pa( NG), dimension P S K,
Thus P has dimension m (a) satisfying 1lim {m:wm < xu}

< ma) < X ; this completes the proof of Theorem 5.7. .

548, In our final theorem we shall show that for certain
ordinals «, Pa is actually ¥ -universal. So far, in Theorems 5.3.
and 5.7. we have embedded partial orders F in the partial orders
Pa(m), Pa( Na), or P by means of realizing sets of linear extensions;
essentially we embedded all of P at once. We now consider means of
embedding partial orders inductively. To make clear the ideas we shall
show how to embed inductively in P = a partial order P = {p().x): ME C% }

whose first four elements form the partial order

»(3) p(3) > p(1),

Qs p(3) > p(2).

o

p(0) (1) p(2)
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We wish to map each p(m) of P onto some periodic limited series

Fu) e P so that A[F( gy ) = M o To exhibit the embeddings graphically
we shall consider the linear order Lo to be the set of dyadic rationals
between O and 2; that is, we shall associate with each function f € Lo

the dyadic rational

i £n = n(Z-f: ) £n
n=o 2" n=o 2
5.8.1. We see immediately that the partial order {p(0), p(1),

p(2)} (no comparabilites) has dimension 2 and is in fact realized

by the two linear extensions

p(2) »(1)
L, (0) and L1 : p(0) .
p(1) p(2)

Thus we can embed { p(0)y (1), P(2) } in Po by mapping each

p(i)y 1 =0, 1, 2, onto F{i) ¢ P where:

< _ 1 —
F(O)/u = >0 for all M € Wy
1 £
X1 or i even,
2
FO1)‘p =
2. for odd and
21 . ’
'222 for M even,
F2)'u =

for M odd «

S
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But this embedding carnot be extended. to an embedding of Q in PO

for the following reason. Suppose we map p(3) onto some function
R - ‘ ¢

F(3) in P o We must have both F(B)/u > F(1) J+ and

F(B)‘/u > F(E)‘/u for all M & W_. This would require that

F(B)‘/.J > F(O)‘/u for all M ¢ CS;, and we could not obtain the
necessary non—coumphrability < p(3), p(0) >, The difficulty, of course,
lies in the fact that we have utilized only two of the six possible
linear extensions of { p(0), p(1), p(2) } ; every realizing set of

linear extensions of Q has a linear extension in which both p(0) > p(1)

and p(0) > p(2), Ve next show how to overcome this difficulty.

5.8.2. We define a sequence of standard functions F( /u) e P,

M € & s satisfying L\[F(/u )1 = p as follows:

F(O)‘/u = -21—0 for all u € @,
A[F(0)1 = 0 and TI[F(0)] = 1;
L, 4 =0 meauo 2,
2
F(l)‘),n =
%’ sy M E1 modulo 2,
2
A[F(1)] = 1 and  TI[F(1)] = 2;
(
’ =0, 1 modulo 8,
, £ 2, 3 modulo &,
F(2)°%u = <

Z 4y 5 modulo 8,

1

6, 7 modulo 8,

Dol Mo N Nl
T X Y T
1}
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A[F(2)] = 2 and [T[F(2)) = g;
/1 -
-_3. ? H - O, see 9 7 mOdulO 64‘,
2
—3'3' ’ f" = 8, soe ,15 nodulo 64,
2
23- 9 /"‘ 516, cee ’23 nodulo 64,
v 2
—’-73- s M 224, «ee 431  modulo 64,
2
F(3) ‘= { 9
23 ] }J 532’ sse 939 modulo 64,
l%' ’ /A "40’ X ,47 modulo 64,
2
L, 4 =me, o 55 modulo 64,
2
L, M o= 63 :
3 ’ =03 o0 3 modul.o 04.,
\2
a[F(3)] = 3 and IT[F(3)] = 64;
ete.

The first four of these functions are shown in ®g. 1. It is clear
from the method of formation that each F( ).,4) has II[F(u)] =

IT {=2" VS MY "22{VV</“} 22}'((/1"“). It is also
clear that for each n € W_ o? every linear order formed from the set
of elements { a(0)y «u. , a(n) } is embedded in L by the

associations a(i) » F(i)“ M for same u < 22 n(n+1)

5.8.3, VWe embed Q in P0 as follows. Since there are no
comparabilities between p{(0), p(1), and p(2), we map p(i) onto F(i),

i=0,1, 2, Now we cannot map p(3) onto F(3) directly since we
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need p(3) > p(1) and p(3) > p(2). Instead we define a new function
G(3) as follows. For M€ CS; for which the associations

p(i) ~» F(i)‘/u s i =0, 14 2, 3, generate a linear extension of Q,
G(3)‘/J = F(3) p |+ For all other M & &, G(3)°p  is the

minimal rational of the form % , 0 < -153- <2, k odd, for which the
2 2

associations p(i) = F(i)‘/u sy i=0,1, 2, and p(3) = G(B)‘/u

do generate a linear extension of 4. This embedding of @ is shown in
Fig. 2. It is clear that this embedding of Q could be inductively
extended to an embedding of all of P in Po' Our last theorem

generalizes these ideas.

5.9. Definition: ILet X € Ord. We say that R, isa

o LN

denumerable type cardinal if R)\ =2 Ko is a denumerable

type cardinal. By the General Continuum Hypothesis (3.11) if X\ > 0,
X, 1is a denumerable type cardinal if and only if X is a limit
ordinal which is the limit of a denumerable increasing sequence of

ordinals < A . In the following theorem we assume the General Continuum

Hypothesis for X > O.

5.10. Theorem: ILet X, be a denumerable type cardinal

and let P be any partial order of cardinality N, with an imposed

well-ordering, P = {p ( M)z M€ &, } « Then there exists an

embedding F:P - P, of P in P, having the property that for

each p(M) € P and F “p(u) =F(u) e Pry 4[F(u)] = , and

1
if N =0, TI[F(u)] <2 MW ns g, P, isan X, -

universal partial order; also, Px has cardinality and dimension X, .
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Proof:

1) P, has cardinality and dimension X, by Theorem 5.7, .
2) We define subsets P(n) and P of P for each integer n > 0
as follows. If » =0, P(n) = {p@)} . If %A >0, let
A =lim { A{n)im ¢ wo} with A(n) < A(n+1) for each
n e &3, so that Wy = lim { W)t € o, } « Then P(0) =
{ p(/u): Mo< &)MO)} and for each integer n > 0, P(n) =
{ p(p): Wam=1) SM < W) } « For all values of A we put

= UJU{P(r)ir<n }
3) For each integer n > 0 lst w(n) = { f:f & L. and for each
p(y) € P(n), n[f‘p(/vl)] =M }. If A =0, |wn)| = 2" and we
may write w(n) = { fln,u)zp < 2n} where we may assume that
f(nym) < £(n, M+ 1) in L, If A >0, |w(n)| =H{2‘}"l:p()4)t:?(n)}
= 2" where <n > = z{ ]},4 I:p(ﬂ) € P(n)} =X{ s p < w)\(n)}'

)» SO that |w(n)| = 43 thus ve may well-order win)

= Aln E An H+

and write w(n) = {f(n,p )i p < anM }e.
L) We define functions g(n, ¢ ):P(n) - L, for each integer n > O
and for each ¢ € @, as follows:

a) Suppose that A = 0. We put g(0, &) = £(0,0) for all

E e & o For intevers n >0 and for each § ¢ @ o?

Tet (:(n)’ @(22 n(mt) ) ana £ (ayn) =

2 n(o-1) -12- n(n+1)
@[2 s ¢ ()], sothat ¢ (n) <2 and

1 n{n~-1)

1.
2n(n i) )

@)= 2 x £ (o) +r with r <2
and £ (n,n) < 2%s we put gny ) = fln, £ (nyn)]. These

constructions correspond exactly to those of 5.8.2. .
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b) Suppose that A > 0. We put g(0,¢) = £[0, &£ (0)1 for
each & € @, s where £(0) = & ( Waoyst, & )¢
For integers n > O and for each £ ¢ &, 5 let & (n) =
B( Wouyepp &7 and Llun) = OL w0, g3y @I,
80 th;t ¢ (n) < W)+ 2nd ((n) = W (n=1+1%

E(myn) + V with v < W and € (nyn) <

Aln=1)+1
w?\(n)H; we put g(n, &) = fln, &€ (n,n)]. These construc—

tions are generalizations of those in 2) above.

5) Ve show by induction on n that if n ¢ ('To and G:P_ = L,

is any function such that for each p(m) € P n[G‘p(),« N =p

then there exists an ordinal  &(G) € W, such that ¢ = U{g[r, ¥(c)]:
1 n(n+1)

r<n}. If \=0, ¥(G) my be taken < 22 ; if

A >0, ¥(c) may be taken < an)_H.

This statement is clearly true for n =0; let n > 0 and
assume that the statement holds for n - 1. We define a function
Hip 4 > L, by: H=GAP _,x L, . Then for each p(/.J) eP i

77[H ¢ p( M )1 = M s so that by our inductive assumption there exists
; 1
an ordinal ¥(H); if A=0, ¥(H) < 22 8@ “; if N > O,

F(H) < W, _qy4qs that sy H=U{glr, ¥@)Ter <n }. Now,
G=-H is a function G - H:P(n) - L,  such that for each p(};) e P(n),
n[G - H‘p(/q)] = M , so that there exists an ordinal § ¢ @,

such that G- H=f(n,{); if A =0, & <2% if A >0,

< e . ' g _
¢ w 7(\(n 41 We define an ordinal ¥ by means of: if A =0,
= n(n-1)

¥ = 2° . g -
2 x & + b;(H), if A >0, ¥ an_”Hx§+ X (H).
5 n(n-f-‘l)
Thus, for A =0, ¥ <2 y while for A > 0, < W

An)j+1°
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Clearlys, for r < n, g(r, d) = glr, ¥(H)] while g(n, ¥) = £(n, &),
so that G = U{g[r, ¥(Ml:ir<n} U £(n, £)=U{g(rs&)ir <n } ,

and we may take ¥ (G) = ¥.

6) Now, depending on the order relations in P, we define functions
k(n, §):P(n) » L, for each integer n > O and for each § ¢ Wy
by induc:t.ion on n. let n¢ ('Fo and { € &, and suppose that we
have defined functions k(r,{):P(r) » L, for every r <n in such
a manner that for each r < n and each p(m) € P(r )s n[k(r,é‘)‘p(},q)]
= M and that U { k(r, ¢ Jir < n } generates a linear extension of
Pp-p (with the convention that P_; = N)e 1f U{k(@,l)ir<n}
uglny, &) generates a linear extension of Pn, we define x(n, &)

= g(n, £ ); otherwise we define k(n,¢) = Fl U{k(ry{)ir <n } ,

QR (n)l, the function of Theorem A4.4. for the present partial order

ae]

= {p(/u):}l c'w—x},where RQn) =n+1 if N =C and
R(n) = C»J%(n) if A > 0. By induetion, if U{g(r, £)ir <n}
generates a linear extension of P , then k(ry§) =glr,&) for

r < n. Also by induction, for each € e @, , U{k(n,f)m ¢ ('5;}
generates a linear extension of P.

———

7) Ve define functions F(}J): @, L, foreach u € G,

by putting F(/u)‘c =k(n, ) ¢ p(/d) for each & € @, , where n
is the integer such that p()u) € P(n). Clearly, by 4) and 6), each
F(/,() e P, ( NA)’ and A[F(/«.x)] = M . Furthermore, by 4) and 6),
each F(}J) e P, 4 and in fact, for A =G, H[F(}J)] < Z%H(H )
and for A > 0, Il [F(}q N < W (n)+1° Now we can define the desired
function F:P -» P, simply by setting Fe p(/,() = F(}") for each

p( /u) £ P, Because of the closing remark in %), we need only check



-57 -
that ¥ preserves sll the non-comparebilities in P,

g) et nc and let G:Pn » L, be any function which generates

o

a linsar extensi

Q

n of P such that for each p( Iu) £ Py

[]

=M . By ths statenent in 5), there exists an ordinal
¥(3) e c—o_)\ sueh that G = U{g{r, ¥{&)ler <0 } « But then by
the next %o last sentence of &), kfr, ¥(&)] = glr, #{G)] for = < n,
sc that G = U{klr, ¥(®l:r £n } . But now any non~comparability
s B reslized by the extersic y G lime QO ta
in P ean be realized by the extensions (U{kin, 25‘(4_,}_ im £ W ¢ and
» L%
U{kin, ¥{G)1m ¢ C.)—;J} of two such functions G to the domain P,
(9
by Theorels 4eb. and 4.7 o Thus the funetion ¥ 1ig ths desired

embedding for Theorem 5.1C.

Z.11e We could, of course, perfornm a process analogous to

that in Theorem 5.10. for any limit cardinal ¥, , but we could not
4 A

.

make the statement of step 5) once n had passed Wye Step 5) wes
rueisl in proving step 8), which assures us that the function T
praserves the nen—couparabilities of P and is thus an embedding of 7
in P, .« For non-limit cardinals, Theorems 5.3, and 5.7. are the best
results the avthor has been able to obtain. Thus, at this point, the
exigtence of }za-universal partial orders of cardinality X,
remeins an open question for all but the denumerible type 1imit cardinals.

It appears to the author that Pﬂ is aboul the larzset subset

=3

of Pc( xﬁ) which ecan be specified by a rule of formation and still be

of cardinality NU. Tt might be worth while to inwvestigate furthsr
the propertiss of P 3 in pariticular, for non=iimit cardinuals X .o

) at
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it would be interesting to determine whether Pa +1 could be ¥ _,.=

ot
universal by settling whether the dimension of Pm‘-? is }{a
or ot »

ot
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