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Notation 

Our set theoretical notation is quite standard: The letters a, (3, 1 , ... denote ordinals, 

while x:, .\, µ are reserved for inaccessible cardinals unless it is explicitly mentioned that 

they are not. We let [a,(3] = {(:a ~ ( ~ /3} and (a,/3) = {(:a < ( < /3} and 

similarly for half-open intervals. 

The notation f: A -> B expresses that f is a function with domain A and range 

contained in B. f(S] (f- 1(S] resp.) denotes the pointwise image of S (preimage of S 

resp.). 

As usual L'g1 (.llg1 resp.) is the collection of all formulas in the E language of set 

theory with higher type variables and a unary predicate symbol whose prenex form has 

n alternating blocks of type m quantifiers starting with 3 (V resp.). A formula is ~g1 if 

it is equivalent with both a L'g1 and a .llg1 formula and L'o ( or n0) if all quantifiers are 

of type <m. If we write down a formula <I> (X1 , .. ,,Xn) then this is to mean that all free 

variables that occur in <I> are among x1 , ... , Xn. 

Va (the a-th level of the von Neumann hierarchy) is often understood as the 

structure (Va ,E) (frequently with a finite sequence of possibly k-ary relations on Va 

added on); however, we will simply write Va F <I> (A) instead of (Va ,E,A) F <I> for 

example. 

Unless remarked otherwise we will be working in ZFC. ZF- ( depending on the 

context) and will always denote some suitable finite fragment of ZFC. Recall that we 

have a flat pairing function (i.e., one that does not raise the von Neumann rank) such 

that the coding and decoding is absolute for transitive models of a very weak fragment 

of ZF. 

Recall also that for each m > 1 and n ~ 1 there is a formula X L'g1 (x,$) in L'fil 
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such that for any limit ordinal a, 

V Cl:' F ~ (ffi) iff V Cl:' F X EW ('~',ffi) 

for all g; E V 11:+m and ~ (ffi) in EW where •~• denotes a code of ~ m V w. All the 

necessary details can be found m [Drake, 1974]. .At, 1s Eg1 correct for ,- inside N iff 

M IV 11:+m-21 C M in u· . 
..,11b ..,11b J,, i.e., .At, is closed under sequences of length IV 11:+m-2 1 m N 

where this means sequences of length <11: in case m 1. We call .At, EW (n ~ 1) 

correct for K (in parameters from V 11:+m) inside N if in addition to this .At, correctly 

computes the EW facts that hold in jf in parameters from V 11:+m n .At,. 

Given a model M of ZF- we will use the notation (M)a to denote M's version of 

Va for a E M. However we will also use the notation M F "Va F ~" rather than 

(M)a F ~- Regarding our forcing formalism we take V as a relative term for the 

ground model and construct generic extensions V[G] where partially ordered sets 

(posets) will be given preference over Boolean algebras. We contend that every element 

of V[G] has a name in V and let vP denote the class of all P names in V relative to a 

poset PE V. 

0 

In general, T, u will denote names but we will also use the notation A for a name 

for A E V[G]. In particular, if Q is a poset E V[G] and r E V[G] a Q name then we 

denote by i E vP a name for r. As usual x is the canonical name for x that happens to 

be in the ground model. Very often (for instance if xis an ordinal) the x notation will 
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be supressed. By a mce name for a subset of (J' E yP we mean essentially a function 

that associates with each r E dom((J') an antichain of P. Frequently the symbol r will 

occur as a canonical name for the generic (for a given poset P). Thus we have for 

instance plf- p E r for all p E P. Fn(I,2,x:) will always denote a <x: support product 

of copies of the usual poset for adding a subset of x: where the copies are indexed by the 

ordinals E I. 

We say that a poset P is <x: closed if for any decreasing sequence of length <x: 

of conditions there is some condition extending all the conditions in the sequence. As a 

variant of this we will say that P is < x: directed closed if for any directed X ~ P (i.e., 

'v'p,q E X 3r E X r :=; p,q) of size <x: there is some p E P with p :=; q for all q E X. P 

is said to be x: c.c. if every antichain has size <x:. P has the property x: if every subset 

of P of size x: has a subset of size x: that consists of pairwise compatible conditions. 

Finally P is x: centered if there is an equivalence relation on P with x: equivalence classes 

such that any two equivalent conditions are compatible. 

All the forcing terminology being used in this thesis and not being explained here 

can be found in [Baumgartner, 1983] and [Kunen, 1980]. 
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Introduction and Statement of Results 

Indescribability is closely related to the reflection principles of Zermelo Frankel 

set theory. In this axiomatic setting the universe of all sets stratifies into a natural 

cumulative hierarchy (Va: a E On) such that any formula of the language for set theory 

that holds in the universe already holds in the restricted universe of all sets obtained by 

some stage. 

The axioms of ZF prove the existence of many ordinals a such that this 

reflection scheme holds in the world Va if one considers only first-order parameters over 

Va. Hanf and Scott [1961] noticed that one arrives at a large cardinal notion if one 

allows second order parameters, i.e., predicates over Va. For a given collection O of 

formulas in the E language of set theory with higher type variables and a unary 

predicate they define an ordinal a to be O indescribable if for all formulas <I> in O and 

(Va , E ,A) F <I> ⇒ 3 (J < a (V f3 , E ,A n V fJ) F <I> • 

Since a sufficient coding apparatus is available this definition is (for the classes of 

formulas that we are going to consider) equivalent to the one that one obtains by 

allowing finite sequences of relations over Va some of which are possibly k-ary. We will 

be interested mainly in certain standardized classes of formulas. Let Eg1 (llg1 resp.) 

denote_ the class of all formulas in the language introduced above whose prenex form has 

n alternating blocks of quantifiers of type m starting with 3 ( V resp.). In [Hanf-Scott, 

1961] it is shown that in ZFC, ll5 indescribability is equivalent to inaccessibility and lli 

indescribability coincides with weak compactness. 

Thus the existence of Eg1 ( or llg1) indescribable cardinals is unprovable in ZFC. 

However [Vaught, 1963] has shown that below any measurable cardinal there 
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are many totally indescribable cardinals ( where totally indescribable means Eg1 

indescribable for all m, n). Moreover, it follows from the results in [Jensen, 1967] that 

already below 11:(w) (i.e., the last cardinal with 11: -+ (w);w), there are stationary many 

totally indescribable cardinals. Therefore, indescribable cardinals are rather tame 

inhabitants of the large cardinal zoo; in fact Eg1 and llg1 indescribability relativizes 

down to L. 

Since the ll5 indescribability of 11: is a lli property over V,,,, there are many ll5 

indescribables below the least lli indescribable. Can this result be generalized to 

arbitrary m and n? 

By computing the complexity of a truth definition for llg1 and Eg1 formulas 

[Levy, 1971] was able to prove that in ZFC 

1 1 
O' n+l < 7r n+l 

and 

for m ~ 2 and n ~ 0, where 1rg1 (o-g1 resp.) is the least llg1 (Eg1 resp.) indescribable 

cardinal (if they exist). In fact he showed that the gaps are very large. Moreover he 

proved that 

for m ~ 2 and n ~ 1. The prominent question at this point is what can be said in ZFC 

about the relative size of o-g1 and 1rg1 for m ~ 2 and n ~ 1. [Moschovakis, 1976] 

provided an answer under the assumption that all sets are constructible; i.e., V = L. He 

showed that in L, o-g1 < 1rg1 
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The main results of this thesis are: 

Theorem III.LL (m ~ 2, n ~ 1) 

CON(ZFC + 3,c,,c1(,c < ,c', 1,, is Jig-1 indescribable, and ,c
1 is Eg-1 indescribable)) 

⇒ CON(ZFC + ug-1 > 1rg1 + GCH). □ 

Note that in ZFC + ug-1 > ,rg-1 one can prove that L m F (3 Eg-1 indescribable /\ 
Un 

3 Jig1 indescribable); thus by Godel's second incompleteness theorem we cannot hope 

for a proof of CON(ZFC + 3 Eg-1 indescribable + 3 JI}P indescribable) ⇒ CON(ZFC 

+ u}P > ,r}P) that is formalizable within ZFC unless ZFC + u}P > ,r}P is inconsistent. 

Therefore Ill.LL is stated optimally. 

There is also an Easton type result that says in effect that we have the ultimate 

freedom in arranging the relative sizes of u}P and ,r}P (simultaneously for m ~ 2 and n 

~ 1) as far as the axioms of ZFC are concerned. 

Theorem III. 7.LAssuming the existence of E}P indescribables for all m ~ 2, n ~ 1 and 

given a function ~:{(m,n):m ~ 2, n ~ 1}-+ {0,1} there is a poset 

GJ 
P ~ E L[~] such that GCH holds in (L[~]) ~ and 

{ 
u}P < 1r}P if ~(m,n) = 0 

u}P > 1rg1 if ~(m,n) = 1. 

□ 

The proof of Ill.LL is based on two important techniques for obtaining consistency 

result for large cardinals: The first technique is known as iterated forcing and originates 

in the [Solovay-Tennenbaum, 1971] consistency proof of Martin's axiom. Its 
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underlying idea is that one defines the set of forcing condition by proceeding in stages 

and in our case at each stage we will kill off a potential candidate for a EW 

indescribable cardinal until we have taken care of all ordinals below a given llW 

indescribable cardinal. The hard part in the proof of III.LL will be to guarantee that 

the forcing which we define preserves the llW indescribability of the cardinal that we 

started out with. For this we will use master condition arguments. This way of 

reasoning was first employed by [Silver, 1971] and typically occurs in the following 

setting: We are given an elementary embedding j: M --+ N where M and N are 

modeling a large enough fragment of ZF together with posets P E M and Q = j(P) E 

N, and we want to find an M generic G and an N generic H such that j lifts to an 

embedding (that will again be called j) from M[G] into N[H]. A necessary and sufficient 

condition for this to work is to pick G and H with the property that 

(*) Vp E G j(p) E H. 

If we are given a generic G for P, then a master condition for Q relative to G will be a 

condition q E Q such that for any N generic H C Q with q E H, ( *) holds for G and H. 

In order to make the proof of III.LL amenable to master condition arguments we must 

first find a reformulation of ll-indescribability in terms of elementary embeddings. 

Theorem LL (m ~ 1, n ~ 1) "' is llW indescribable iff 

VM [M transitive, MF ZF-, IMI = "',"'EM, M<"' ~ M . ⇒. 

3j, N [N transitive, INI = IV "'+m-ll, N E~-l correct for"', 

j : M --+ N, cpt j = "']]. □ 

m IV "'+m-21 <"' 
where N is En-l correct for "' means N ~ N (N ~ N form = 1) and N 

correctly computes the E~-l facts that hold in parameters from N n V "'+m. 
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It is an interesting observation that this reformulation suggests that for m ~ 1, IJ1 
indescribability can be construed as an analogue of the concept of hypermeasurability in 

[Mitchell, 1979] and we will also rephrase it in the context of extenders ( cf. [Martin-

Steel, 1988]). 

As a warm up routine for the proof of III.1.1. we are going to apply this 

reformulation to evaluate the consistency strength of the failure of GCH at a JI 

indescribable cardinal. 

Theorem II.1. (n ~ 1) 

CON (ZFC + 3 JI{i indescribable cardinal) ¢=> 

CON (ZFC + 3 IC (1C is JI{i indescribable/\ 21C > 1C+)) D 

This theorem generalizes a result of Silver ( cf. [Kunen, 1980]) about the consistency 

strength of the failure of GCH at a weakly compact cardinal. In the case of Jig1 (m ~ 

2, n ~ 1) indescribability we obtain a result that is reminiscent of the failure of GCH at 

a measurable cardinal. 

Theorem 11.2. (e ~ 1, m ~ 2, n ~ 1) 

CON (ZFC + 3 Jig1+e-l indescribable cardinal) ¢=> 

CON (ZFC + 3 IC (1C is Jig1 indescribable /\ 21C = IC +e)) D 
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Ich bin dabei mit Seel' und Leib; 
Doch freilich wii rde mir behagen 
Ein wenig Freiheit und Zeitvertreib 
An schonen Sommerfeiertagen. 

J.W.v. Goethe 
Faust, part one of the 
tragedy, Studierzimmer 

CHAPTER 1- A REFORMULATION OF II INDESCRIBABILITY 
IN TERMS OF ELEMENTARY EMBEDDINGS 

We will introduce a reformulation of IJ-indescribability which will enable us to 

show that various notions of forcing used in Chapter II and Chapter III preserve 

certain .II-indescribable cardinals. 

Before we do this it is necessary to review a few elementary facts regarding the 

logical complexity of some frequently used set theoretical statements. Suppose we code 

a transitive set M of cardinality IV K+m-ll (where m ~ 1) by a binary relation ~ on 

For any g; E V K+m the statement "9; E M" is E~(9;,~) over VII': since it 1s 

equivalent to 

3 GJ 3 X GJ collapses X to g; 

where GJ ranges over VII':+ m and X ranges over VII':+ m _ 1 and "GJ collapses X to g;" rs 

short for 

GJ is a function A dom GJ 2 {Y: ygx} A VY E dom GJ VZ~Y Z E dom GJ 

A VY E dom GJ GJ(Y) = {GJ(Z): zgy} A g; = {GJ(Y): ygx}. 

Hence this is E;(X,9;,~,GJ). 

Actually "9; E M" is ~l (9;,~) over VII': since one can show that "9; ~ M" can 

also be expressed in a Ei (X,g) way over VII': by using IV K+m n Ml :S IV K+m-1I• 
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But we will not need this in the sequel. 

. IV IC+m-21 
Next we examme "M C M" (where for m 1 we mean by this 

M<IC ~ M). This is equivalent to 

'v'X 3Y 'v'Z [zgy <==} 3 x Z = Xx], 

Here X, Y,Z range over V 1C+m-l and x over V IC+m- 2 (form= 1 x ranges over VIC). 

Recall that any X E V 1C+m-l codes IV IC+m- 2 1 many elements of V 1C+m-l via Xx 

= {y E V 1C+m-2 : (x,y) E X}, where x, y range over V 1C+m-2 (form = 1 there is an 

analogous remark). So the whole formula is E;(g) over VIC. 

IC." 

Finally let us investigate the complexity of the statement "M is E: correct for 

IV IC+m-21 
For n = 0 recall that by definition this means M ~ M and we saw 

above that this is Recall that for each m, n ~ 1 there is a E: 
formula x m (., . ) that is universal for E: uniformly for all Va ( where a is a limit 

:En 

ordinal). So for n ~ 1 we can express "M is E: correct for IC in parameters from 

m 
'v'X, Y([3%,Z[% collapses Z to IC /1. (V 1C+m-l'g) I= "X codes a En formula /1. 

Y E Vz+m /1. X Vz (X,Y)"] => 
- :Em 
- n 

3'!f, k 3~, 9J['!f collapses X to k /1. ~ collapses Y to 9J /1. VIC I= X m (k,9J)]] ./1.. 
:En 

3'!f, k3~, 9J['!f collapses X to k /1. ~ collapses Y to 9J /1. VIC I= x (k,9J)] => 
:r:; 

V 
3%, Z[% collapses Z to IC /1. (V 1C+m-l 'g) I= x ! (X,Y)]) 

:En 



-3-

where 9J, GJ, (J, % range over V 1,,+m and X, Y, Z over V 1,,+m-l. Hence this formula 

. m 
lS a 1(~,1,,) over V K,. 

n+ 

Theorem 1- (m ~ 1, n ~ 1) 1,, is n: indescribable, iff 

'<I M[M trans /\ M I= ZF- /\ IMI = 1,, I\ 1,, E M /\ M <1,, ~ M . ⇒ . 

[ I I I I 
IV,,,+m-21 

3j, N N trans /\ N = V,,, + m - l /\ N ~ N /\ 

N is Em 
1 

correct for 1,, I\ j: M --+ N /\ cpt(j) = 1,,l]. 
n-

Proof. Suppose 1,, is n: ind and assume towards a contradiction that for some M as 

above there is no j, N as above. We can code the structure (M,E) by a binary relation 

E on 1,, such that under the Mostowski collapsing function II for (1,,,E) we have II(O) = 
-1 ---+ ---+ < w 

1,,. We let F ~ II 1,,, and T ~ {(n,e ):n < w, e E ,,, , n is a (code of a) first 

---> 
order formula that holds in (1,,,E) under the assignment e }. We abbreviate by 

<I>( 1,,,E,F ,T) the statement 

(1,,,E) is wellfoul'l.ded and extensional /\ 

F = .u-l 1 ,,, /\ II(O) = ,,, /\ 

T is the first order theory of (1,,,E). 

Note that E, F and T can be coded by subsets of 1,, in the usual way. If ZF- denotes a 

sufficiently large finite fragment of ZFC, then "(M,E) is bad" can be expressed as a 

n:(1,,,E,F,T) formula over V,,, by quantifying over models of ZF-: 
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'\;/ .At,(.At, trans I\ .At, I= ZF- /\ !Al = IV i.+m-11 /\ 

IV 21 
.At, i.+m- ~ .At, /\ .At, E:_1 correct for i. I\ i., E, F, T E .At,. ⇒ . 

.At, I= "~(i.,E,F,T) /\-, 3j, N[N trans/\ !NI = IV i.+m-ll /\ NIV i.+m-2 ! ~ N I\ 

N is Em correct for i. I\ j: trans coll(i.,E)--+ N I\ cpt j = i.]"]. 
n-1 

By the JI: indescribability of i. this formula must reflect to some inccessible .,\ < K. 

Thus we have 

(.-\,E n .,\ x .,\) is wellfounded and extensional 

and F n (.,\ x .,\) = Mostowski collapsing function -l1 .,\, and O gets collapsed to .,\ 

and T n (w x .,\ <w) is the first order theory of (.-\,E n( .,\ x .-\)). 

Let (M* ,E) be the transitive collapse of (.-\,E n (.,\ x .-\)). Since (.,\,E n (.,\ x .,\)) -< (K,E) 

and by the choice of E and F there is j*: M* --+ M with cpt j* = .,\ and j*(.,\) = i.. In 

the usual way we can construct an elementary submode} (X,E) < (M,E) with !XI 

IV.-\+m-21 
IV .-\+m-ll and X ~ X and j*[M*] U{.,\} ~ X. Then X is clearly E:_1 
correct for .,\, since M is. Now collapse X to a transitive N. Denote by j the 

elementary embedding j* followed by this collapsing map. Obviously cpt j = .,\ since 

V .-\+m-l U {.,\} ~ X. We have just shown 

IV I 
3J·, N[N trans /\ N = IV I /\ N .-\+m-2 C N /\ .-\+m-1 -

N is Em 
1 

correct for .,\ /\ j: transcoll (.X,E n .,\ x .X)--+ N /\ cpt j = .X]; 
n-

but this contradicts the fact that the above JI: statement holds at V .,\. 
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For the other direction in the theorem suppose that <I>(A) is n: and A c;;; V 1,, 

and V 1,, F <I>(A). Pick a transitive M with IMI = IV 1,,I and M<1,, c;;; M and 1,,, A E M 

and M F ZF-, where ZF- is a suitable finite fragment of ZFC. Then let N be 

transitive and E: _ 
1 

correct for 1,, and j : M --+ N with cpt j = 1,,. Since <I> is n: and 

NF ZF- we get 

hence, by elementarity of j 

MF "3a < 1,,Va F <I>(A n Va)" 

but (M)a = Va for a ::; 1,, so that really 

i.e., <I>(A) reflects. □ 
end of Theorem 1. 

We will conclude this chapter by making some observations which will not be used m 

the sequel but are nevertheless interesting in their own right. 

The first observation involves the concept of hypermeasurability. Recall that a 

cardinal 1,, is m-hypermeasurable (m ~ 1) if there is an elementary embedding of V into 

some transitive inner model N with critical point 1,, such that V 1,,+m c;;; N. Theorem 1 

suggests that n1 indescribability can be construed as an analogue of 

m-hypermeasurability for m > 1 in the same way that lli indescribability relates to 

measurability. 
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[Mitchell, 1979] and Dodd-Jensen ( cf. [Dodd, 1982]) have produced an analysis 

which shows that elementary embeddings j: V -+ M can be thought of as coming from 

an ultrapower by a system of measures. This leads to the notion of an extender. 

Given a transitive set X and a cardinal 1,,, we say that E is an extender with support X 

and critical point 1,, if E is a function with dom E = (X} <w (the set of all finite 1: 1 

sequences of elements of X) and for s E (X}<w, E(s) = Es is a 1,, complete measure on 

(V ,,,}doms (the set of all 1: 1 sequences of elements of V,,, of length dom s) such that 

for at least ones E (X}<w Es is nonprincipal and 

(2) (Coherence) ifs -{ t (i.e., sis a subsequence oft) and s = to 1r for some 

1r: dom s Ll dom t then for all A ~ (V ,,,}dom s 

where A1r = {b E (V,,,)domt:bo1r EA} 

(3) (Normality) for any s E (X)<w and f:(V,,,)doms-+ V such that 

there exists some t E (X) < w with s -{ t such that if s = t o 1r 

· h . d l: l d h .r • d t wit 1r : om s --+ om t t en 1or some 10 E om 

Given a transitive set M which models ZF- and is closed under sequences of length <1,, 

we define an M extender with support X and critical point 1,, as above except that for 



-7-

s E (X}<w Es is an ultrafilter in P((VIC}doms) n Mand that in condition (3) we only 

consider f E M. 

Since each Es is countably complete and M<IC ~ M each ultrapower Ult (M,Es) is 

wellfounded and we can collapse it to a transitive (Ms, E}. Moreover the 

coherence condition (2) implies that we have a system of elementary embeddings 

(is t: Ms --+ Mt: s -< t and s, t E (X} <w} that commute; i.e., for r, s, t E X <w with 
' 

r -< s -< t, ir t = is t o ir,s. Therefore we can form the direct limit of the system 
' ' 

(Ms :s E (X}<w} which we denote by (M~,E~}. We say that E is a wellfounded 

extender if (M ~ ,E ~) is wellfounded. Note that E will automatically be wellfounded if 

we work with countable 1: 1 sequences rather than finite 1: 1 sequences. In the context 

of extenders we can rephrase Iff ( m ;::: 1) indescribability as follows: 

1,, is Hi indescribable iff for every transitive model M of ZF- with !Ml = 1,,, 

M<K CM and IC E M there is a wellfounded M extender with support V + 1 - Km-

and critical point 1,,. 

Proof of this Fix m > 1. 

If IC is Hi indescribable and M is a transitive model of ZF- of size 1,, and 

-
closed -under < IC sequences by theorem 1 we can find a transitive N with V + 1 C N 

IC m-

and an elementary embedding j: M--+ N with ctp(j) = IC. Now for s E (V 1C+m-l) <w 

define Es by 

A E Es iff s E j(A) 

for A E P((V 1C}doms) n M. Then E is a wellfounded M extender smce the directed 
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system (Ms: s E (V 11:+m-l) <w) can be represented inside N by using the fact that 

each Es is defined from j. 

Conversely given any transitive M of size K with M F ZF- , K E M and M < ,-,; 

~ M and a wellfounded M extender E with support V 11:+m-l and critical point r;, we 

take N to be the transitive collapse of (M~,E~) and let j denote the usual elementary 

embedding j:M---+ N that we obtain from collapsing (M~,E~). Clearly cpt(j) = ,-,; 

and by (1) together with the normality condition (3) V 11:+m-l ~ N. Now the proof 

of the easy direction of theorem 1 shows that K is II1 indescribable. □ 
end of proof. 
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CHAPTER II. THE CONSISTENCY STRENGTH OF THE FAILURE 
OF GCH AT A II INDESCRIBABLE CARDINAL 

In this chapter we will evaluate the consistency strength of the failure of G CH 

at various II indescribable cardinals. 

In the simple case of a II~ indescribable 1,, one may force any number of new 

subsets of 1,, and keep 1,, inaccessible since the forcing is < 1,, closed. However already in 

the case of II~ indescribable cardinal this approach fails: If V = L holds in the ground 

model and we add a new subset X ~ 1,, via a < 1,, Baire forcing then in the generic 

extension the II~ statement "X jt L" does not reflect to any inaccessible .\ < K. For a 

given II indescribable cardinal 1,, in the ground model we will define a forcing iteration 

of length 1,, + 1 and then use the characterization in I.1. to guarantee that "' remains II 

indescribable in any generic extension. 

First we look at II! indescribable cardinals (n ~ 1). Theorem 1 generalizes a 

theorem of Silver ( cf. [Kunen, 1980]) which says that the failure of GCH at a weakly 

compact cardinal is equiconsistent with the existence of a weakly compact cardinal. 

Theorem 1- (n > 1) CON(ZFC + 3 II! indescribable cardinal) ~ 

CON(ZFC + 3t. (1,, is II! indescribable /\ 2"' > t. +)) 

Proof._- Suppose 1,, 1s II! indescribable. We can assume V = L since K rem ams II l 
11 

indescribable in L. Fix e ~ 2, we will define a forcing iteration P ,,_ + 1 such that 

+e " K, • 
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For limit ordinals A ~ K we let 

PA = lim dir PT/ if A is inaccessible 
TJ<A 

PA = lim in v PT/ otherwise 
TJ<A 

and for a ~ K let Qa E VP a a canonical term with 

0 11-p a "Qa is the trivial poset if a is not inaccessible and 

Qa = Fn(a +e,2,a) if a is inaccessible". 

Note that for any inacessible A ~ 1,, 

and hence for any Mahlo cardinal A ~ "' 

since { a < A: Pa = lim dir PT/} is stationary in A. Moreover we have 
r,<a 

11-p "A is inaccessible" 
A 

since for any a < A 

I~ "P is <µ closed" 
Pa a,A 

where µ is the next inaccessible ~ a because Pa is clearly µ c.c. Since IP A I = A we also 

get 

>A lr--p GCH-
A 
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and a straightforward calculation shows 

To finish the proof we have to show 

lh ""' is JI! indescribable." 
p K+l 

Fix a condition p* E P K+l and ~ in JI! and a P K+l name A for a subset of 

V"' and assume towards a contradiction 

0 

p*Jh "~(A) describes"'·" 
p K+l 

By the reflection principle fix an ordinal 8 > the least inaccessible above "' with 

0 
"~(A) describes ,,;,."] 

V 
Note that in particular P K!l = P K+l. 

<"-Using standard arguments we can find a transitive M with IMI = "' and M ~ ]VI 

and E M and 

i: M --+ V 8 with cpt i 

some 
OM 
A E M and an elementary embedding 

+M M * . 0 M 0 

- (,,;, ) and i(p ) = p and 1(A ) = A. S. . Ill Ince K- 1s n 

indesq,ibable we can find a transitive N with IN I = JV,,;, I = "' and N <"' C N and 

E
1 

1 
correct for K and an elementary embedding j: M --+ N with cpt j K. 

n-

Note that P K+l is ,,;, + cc and cpt i = (K +)M; hence we can use the pullback 

method to find an M generic GM for P~+l and a V generic GV for PK+l such that 

p* E G V and i lifts; i.e., 
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M[GM]_i__. V5[GV) 

PM 
K+l P,_+1 

M 
i 

V5. -+ 

Suppose for a moment that we could find an N generic GN for PN such that 
j(,c)+l 

N[GN] is E
1 

1 
correct in V[G VJ and j lifts; i.e., 

n-

M[GM] 
j 

N[GN] -+ 

PN 
K+l 

PN 
j(,c)+l 

M 
j 

N. -+ 

Then we would arrive at a contradiction as follows. Since <I> is u! we get 

N[GN] F :la < j(,c) Va F <l>(j(S) n Va) 

where 

and 

s = j(S) n v ,_. 

Hence_-by elementarity 

But by standard arguments (M[GM])a = (V[GV])a for a~ K so that really in V[GV] 
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i.e., <I>(S) reflects, a contradiction. Hence in order to finish the proof we have only to 

construct GN with the properties above. 

First note that P~ = P 11: smce N <"' ~ N. P 11: ~ V 11: implies that we have 

j(p) = p for all p E P1,,, Let G11: = GV n P1,,, For any H that is N[G11:] generic for 

the tail pN '( ) j will lift; i.e., 11:,J K, 

M[G11:] -+ N[G11:*H] 

PN 
j(11:) 

M -+ N. 

Now we construct an H that is pN '( ) generic over N[G,c] such that N[G11:*H] is E
1 

l 11:,J II: n-

correct for 11: inside V[G V]. First we need the following: 

Lemma Ll- N[G11:] is E
1 

1 
correct for 11: inside V[G1,,], 

n-

and hence (N[G1,,]) 0 = (V[G1,,]) 0 for a ~ 11: since 11: is inaccessible in V[G]1,,, Thus 

Before we continue with the proof we need the following: 

Fact 1.2 ( R, ~ 0). Suppose P ~ V 11: is 11: c.c. and r E yP. Then we can find 

r* E yP n V 11:+£ with 
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Proof of Fact 1.2. We use induction on e and start with e = O. Suppose we are given 

T E yP and we already know that the claim holds for all terms of smaller rank than 

the rank of T. 

Since Pis IC c.c. there is a cardinal,\ < IC with lf-p (T E VIC ⇒ JTJ ~ ,\). We 

o p . o onto 
pick a term f EV with lf-p (TE VIC ⇒ f:,\ --+ T). For each a<,\ we let 

0 

Aa a max antichain {p E P: :3o- Edom T pJf-p f(a) = o-} 

and for each p E Aa we pick o-p,a E dom T with 

0 

p lf-p o-p,a = f(a). 

Since for each o- E dom T rank ( o') < rank( T) we can find terms o-;,a E vP n V ,c 

such that 

now define 

then T* ~ VIC and JT*I < 1Cj hence T* E VIC and moreover 

lf-p (TE VIC ⇒ T* = T). 
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Now suppose we have arrived at stage € + l. Let 

r* ~ {(o-*,p): (o-,p) Edom r} 

where for O" E dom T a-* E yP n V x:+e with 

lf-p (a- EV x:+€ => a- = a-*); 

clearly r* E V,,, + e + 1 (if we use flat pairing) and 

11-p (r EV x:+€+l => T = r*). □ 
end of 1.2. 

We can now continue with the proof of the lemma. We proceed by induction and show 

that for k ~ n - 1 N[G,,,] is E! correct for x: inside V[G,,,]. Let k + 1 ~ n - 1; it is 

enough to consider <I>(A) in JI!+l with A E (N[G,,,]),,,+l and (V,., F <l>(A))N[G,J and 

to show that (V,., F <I>(A)) V[G,,,] since by induction hypothesis N[G,,,] is E~ correct in 

0 p 
V[G,,,] for x:. Pick p E G,,, and A E N "' n V x:+l (by applying fact 1.2. in N) such 

that AG,,, = A and PII~ "Vk F <l>(A)." 

Now in N (sine <I> is JI
1 

1
): 

x+ 

'v' .Ab[trans .Ab I\ .Ab F ZF- I\ I.Ab I = IV,,, I I\ .Ab<"' C .Ab 

1 0 
I\ .Ab Ek correct for x: I\ P ,.,, A E .Al, . => . 

0 

.Al, F [Pl~,,, "V,,, F <l>(A)"ll 

by using the induction hypothesis in N. But this formula is IIk
1 

(p,P,,,,A,x:). Hence 
+1 

the same formula holds in V, but then by reflection principle in V 

PII ~ "V K, F <I>(A)." 
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So 

V[G,d 
(V K F <I>(A)) . □ 

end of 1.1. 

Now we consider N[G,.:]'s version of the forcing at stage i.:. Since N[G,-] <1. <;;; 

N[G,.:] in V[Gi.:] this is the initial segment of length (i.: +e)N[G,d of the forcing 

V[Gi.:] +e . 
Fn (i.: ,2,i.:) that V[G,.:] wants to do at stage i.:. If G denotes the V(G,-] genenc 

generic over N(G,,;], 

correct for i.: in V[Gv]. 

Moreover the following lemma shows that N[G,-,g] is E
1 
n-1 

Lemma Ll, Suppose .N' F ZF- and x<i.: <;;; .N' and .N' is E! correct (n ~ 0) for 1.. If 

correct in V[G] for i.:. 

Proof of Ll- Note that .N'[g]<i.: <;;; .N'[g] in V[G] since all posets are <i.: closed (we can 

assume that .N' satisfied choice). We proceed by induction on n. To handle n + 1 it is 

enougl! to consider <I>(A) in n!+l with A E (.N'[g])i.:+l and (V,.: F <I>(A)).N'[g] and to 

show that (V 1,, F <I>(A)) V[G] since by induction hypothesisN[g] is E! correct in V(G] 

for i.:. Pick p E g and a nice Fn((i.: +£),N' ,2,i.:) name A for A <;;; V,.: with 
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Since Fn( x: + € ,2,x:) has the x: + c.c. there is a complete suborder Q E N of 

~ Q x Fn(x: +€).N" ,2,x:) in .N" and Fn(x: +e ,2,x:) ~ Q x Fn(x: +e ,2,x:) in V. Hence if 

g = g n Q then in .N"[g] II +e "V d= <I>(A)." Note that A E (.N"[g]),-;;+l. 
Fn((x: ,2,x:) 

The following sublemma shows that .N"[g] is E
1 

1 
correct in V[g] for x:. 

n+ 

Sublemma 1.3.1. Suppose .N" I= ZF- and x<x: ~ .N" and .N" is E~ correct (m 2: 0) for 

x:. If Q E .N" is a < x: Baire poset with IQ I = x: in .N", then for any G which is V generic 

for Q, .N"[G] is E~ correct for x: in V[G]. 

Proof of 1.3.1. Note that .N"[G]<x: C .N"[G] m V[G] smce Q 1s <x: Baire. We now 

proceed by induction on m. 

To handle m + 1 it is enough to consider <I>(B) in JJ~+l with B E (.N"[G]\;:+l 

and (V x: I= <I>(B)).N"[G] and to show that (V x: I= <I>(B)) V[G] since by induction 

hypothesis .N"[G] is E~ correct in V[G] for x:. Pick q E G and B E .N"Q a nice Q name 

for B ~ V x: with qj~ V x: I= <I>(B). Since !QI = x:, we can assume that Q ~ V Ii:; 

hence B EV x:+l · Now in .N" (since <I> is JJ~+
1

): 

'v'.Ab[trans .Ab I\ .Ab I= ZF- I\ I.Ab!= IVx:l 11. .Ab <x: ~ .Ab 

1 0 
/\ .Al, Em correct for x: I\ Q, B E .Ab . => . 

0 

.Ab I= qjf-Q "V x: I= <I>(B)"]. 
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by using the induction hypothesis in N. But this formula is II
1 

(q,Q,B,K). Hence 
m+l 

the same formula holds in V, but then by reflection principle in V 

0 

qj~ "V /,; F 4>(B)" 

so 

□ 
end of 1.3.1. 

Since q> is JI
1 

1 
the induction hypothesis applied within N[g] tells us that in N(g] 

n+ 

1 
.Ab En correct for,,; /\ A E .Ab . ⇒ . 

.Ab F I +e "V ,,;F 4>(A)"J. 
Fn(,,; ,2,,,;) 

But this formula 
1 

lS II l(i,;,A); 
n+ 

hence by the sublemma it must hold 111 

V[g], so in V[g] 

+e "V /,; F 4>(A)." 
Fn(,,; ,2,,,;) 

Therefore 

□ 
encl of 1.3. 

Next we have to construct h which is N[G,,; ,g] generic for the tail PN[G,,;_,g] . h can 
,,;+lJ(K) 

be constructed in the usual way since N[G,,;,g]<,,; ~ N[G,,;,g] in V[GV] and the tail is 

certainly <,,; closed and IN[G,,;,g]I = ,,;. Moreover N[G,,;,g,h] will be E!_
1 

correct in 

V[G V] since the tail is highly closed. 
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So we have arrived at 

M[G,cl -:-+ NLl(GK)l 
J 

M --+ N 
j 

where j(GK) = GK * g * hand NLl(GK)] is E
1 

correct in V[G V] for K. 
n-1 

In our final step we use a straightforward master condition argument to find a 

M[GK,] -:-+ NLl(GK)l 
J 

where GN = j(GK) * K. K can be constructed m V[G V] by using that 

FnNLl(GK)l(j(K)+e,2j(K)) is <K closed in V[Gv] and INLl(GK,)]I = K. N[GN] will still 

be E!_
1 

correct for Kin V[G V] since Fn(j(K) +e ,2j(K)) is <j(K) closed in NLl(GK)]. 

□ 
end of theorem 1. 

Actually the case m = 1 is very special when one tries to make GCH fail at a II:P 
indesctibable cardinal. This is because of the following 

FACT: if one can force K to be II! (n ~ 0) indescribable by adding K + many subsets 

of K then adding any number ,\ > K of subsets of K will force K to be II! 
indescribable. 

Thus in order to obtain the consistency of "K is II! indescribable and 2K = ,\" (where 

,\ is some cardinal >K +) it is sufficient to define P K+l by adding at any inaccessible 
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stage µ ~ 1,, µ + many subsets of µ and then to show that lfp-- "K. 1s nk 
K+l 

indescribable" if K. was already nk indescribable in the ground model. 

m 
Next we evaluate the consistency strength of the failire of GCH at a ll n 

indescribable with m ~ 2, n ~ 1. It will turn out that this is consistencywise stronger 

than the existence of a n: indescribable. 

Theorem 2_. (m ~ 2, n ~ 1, I!, ~ 2) CON(ZFC + :lK.(ll: ind "' /\ 2/'i, 

m+e-1 
CON(ZFC + :lK. ll n ind 1,,). 

Assume that V 
m+e-1 

L and K. is ll n indescribable. We define an iteration P"' + 1 by 

exactly the same clauses as in the proof of theorem 1 and we claim that 

II-- "K, is llm indescribable /\ 2"' = "'+e " 
PK+l n 

The proof closely follows the ideas in the proof of theorem 1 and we will keep the 

notation that we used as much as possible. The hard part of the proof is again to 

show that 

11-- "K. is n: indescribable." 
p1,,+l 

m+e-1 
Now we know that 1,, is ll n indescribable in the ground model; hence there is a 

trans N, with NI= ZF-, INI = IV I NIV K+m+e- 3 I ~ N and N Em+e-l 
K+m+l!,-2 ' n-1 

correct for K. and an elementary embedding j: M --+ N with cpt j "'· After 
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constructing GM and G V as in the proof of 1 we have only to come up with a Pj( ,_) + 1 

generic GNsuch that N[GN] is Em 
1 

correct in V[G V] and j lifts; i.e., 
n-

M - N. 

N +(m+C-3) 
As in the proof of theorem 1 Gx: is P x: = P x: generic but now N[Gx:t C 

m+e-1 
is E 

n-1 
Note that certainly 

( ~ +e)V[Gx:] _ S [G ] d h "' o N x: wants to o t e same forcing at stage ,;; of 

P~( ) that V[Gx:] wants to do at stage x: of P x:+l; namely, Fn(x: +e ,2,x:) which we 
J II': +1 

denote by P from here on. Before we continue with the proof we need some technical 

lemmas. 

Note that P is x: + c.c. and < x: closed and has size x: + e, so we can regard it as a subset 

0 
Let V x: 

Working in N[Gx:] we define by induction on r > 0 names V x:+r E (N[G,_]l. 

(V x:r and to define V x:+r+l choose for each nice p name T E N[G,.t for 

o N[Gx:] o 
a subset of V x:+r a maximal antichain A 7 ~ {p E P: PII p r ~ V x:+r}. Then let 

Y,-+r+l= LJ{r}xA7 • 
r a mce P name 

0 

for a subset of V x:+r 
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Lemma 2.1. (r ~ 0) 

Proof. We use induction on r ~ 0. By the <K closure of P II N[GK] Vo - V 
P K,- K. 

Now assume G is P generic over N[GK] and X E (N[GK])p with :x.G C 

By induction hypothesis pick Po E G such that Poll N~G,,J 
0 
X C 

0 p O 0 

V K+r. Choose a nice name r E (N[GKk]) for subset of V K+r with Poll- X r. 

Then {q ~ Po: :lp ~ q p E Ar} is dense below p0 ; hence Ar n G =/= 0. So :x.G = rG 

E yG . Conversely if :x_G E yG then, by induction hypothesis clearly :x.G 
K+r+l K+r+l 

□ 
end of 2.1. 

0 0 
Lemma 2.2. (r ~ 1) every V K+r and every nice P name for a subset of V K+r can be 

coded in a highly absolute way by an element of V K+r+e. 

Proof. Since P ~ V K+e has the K + c.c. every P antichain A has a code A E V 11:+ e. 

Now we proceed by induction on r. 

0 

r = 1: a nice P name X for a subset of V K looks like this: 

XO= u {x} X Ax 
xEV,,, 

0 0 
where each Ax is an antichain m P. Now we code X by X code of 

'M 

{(x,Ax):x E VK} which is E V,,,+e since IVKI 1,,. 
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0 

Hence we can code V,,, + 1 by 

0 -
V i,,+l = {(r,Ar): r a nice P name for a subset of V ,,,} 

0 
clearly V K+l E V K+l+e . 

0 0 

A nice P name X for a subset of V,,, + 1 looks like this: 

X = LJ {r} x Br 
0 

rEdomV i,,+l 

0 

where each Br is an antichain m P. By definition each r E dom V i,,+l is a mce P 

0 

name for a subset of V,,,; hence each r E dom V i,,+l has a code r E V ,,,+ e. 

0 
So we can code X by 

0 
Thus, clearly, X E V i,,+l+£. The induction step is now straightforward using exactly 

the same argument:-

Finally it is clear that there is a weak fragment ZF- of ZF such that for any 

trans M with M F ZF- and ,,,, P E M 

decoding if it has enough closure. 

M can correctly compute the coding and 

□ 
end of 2.2. 

Let us denote by G the P generic that we add at stage,,, of P i,,+l (i.e., G V = G,,, * G). 
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+(m+€-3) 
Proof. Note that in V[G V] N[G11: ,Gt ~ N[G11: ,G) because P is 11: + c.c. 

An easy calculation shows that in V[GV) l(V[GV])11:+m- 2 1 = 11: +(m+e-3 )_ 

V 
Therefore we get that (V[G D11:+m-l = (N[G11: ,GD11:+m-l. If n 2:'.: 2 we proceed by 

induction on O < k ~ n - 1. In order to handle k + 1 < n - 1 it 1s enough to 

consider <l>(A) in -":+l with A E (N[G11: ,GD11:+m and N[G11: ,G] F <l>(A) and to show 

that V[G V] F <l>(A). 

We pick a nice P name A E N[G11:t for a subset of V 11:+m-l with AG = A 

and p E G with 

PIIN[;11:J "VII: F <l>(A)." 

0 0 0 0 
Note that by lemma 2.2 A has a code A E V 11:+m+e-l such that decoding A from A 

is highly absolute. Now we have 

m+e-1 o 
/\.Ab Ek correctfor11: /\ P,A E .Ab ⇒ 

~ 0 0 

.Ab F "plf-p "V 11: F <[> (theniceP nameforasubset of V 11:+m-l coded by A)"). 

This holds because <[> 1s .llm and we can apply the induction hypothesis within 
k+l 

m+e-1 o 
Since this last formula is .llk (11:,P,A) it must hold m V[Gd because 

+1 
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m+e-1 
N[G,d is E n-l correct for ,;, in V[G,,,]. 

Hence we get in V[G,,,] 

PIIV[;,,,] "V K, F <I>(A)." 

Therefore we conclude that in V[G V] 

V K, F <I>(A). □ 
end of 2.3. 

Now we continue as in the proof of theorem 1 and construct H that is N[G,,,,G] 

generic for the tail PN ·c ) . This is done in the usual way by observing that the tail 
,;,+l,J k 

is <µ closed in N[G,;, ,G] where µ is the least inaccessible > ,;, + 1 and by recalling 

that IN[G,,, ,G]I "'· Moreover the closure of the tail will yield that N[G,,, ,G,H] 1s 

+(m+e-3) 
Em correct in V[G V] and N[G,,, ,G,H]"' c N[G,,, ,G,H] in V[G V]. Since 

n-1 

j(p) = p for p E P 11: j lifts; i.e., 

M --+ N 

In our final step as in the proof of theorem 1 we use a straightforward master 

condition argument to pick K which is Nu(G11:)] generic for Fn(j(11:) +e ,2j(,;,)) such 

that j lifts; i.e., 



-26-

M --+ N 

where GN = Gx: * G*H*K. N[GN] will be Em correct in V[G VJ 
n-1 

Fn(j( x:) + (! ,2,j( x:)) is <j( x:) closed in N[j( G x: )] . 

........ " ".....,,. 

suppose x: is n: indescribable and 2x: = x: +£; we claim that 

m+£-1 L 
( x: is ll n ind) . 

m+£-1 
Let <l>(A) = Vffi ¢(ffi,A) where 'If' is E n-l and g; ranges over V x:+m+e-l and 

A E V x:+l n Land assume 

(V x: I= <I>(A)f. 

If n ~ 2 then we need the following lemma before we continue with the proof. 

Lemma 2.4. For n ~ 2, ¢L(ffi,A) is Em 
1

(ffi,A,x:) over V x:. 
n-

smce 

Proof. _- Let T be a finite fragment of ZF + V = L such that for any trans model JV! of 

T we have M = LonnM and write ¢(ffi,A) as 

m+£-1 
where Q E {3, V} and the g;i range over V x:+m+£-l and 0 is E

0 
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Since V 11:+m+£-l n L ~ L +(m+£-l) (V 11: F 1P(ffi,A)f is equivalent to 
II: 

+(m+£-2) +(m+e-1) 
Now 11: ~ IV 11:+m-ll allows us to code each Lri with 'Yi < 11: 

by a subset 9Ji ~ V 11:+m-l; then the last formula is equivalent to 

3 9J 1 FT · · · Q9Jn- l FT Q .At,( .Al, trans /1. .Al, F ZF- /1. 

IV11:+m-21 ⇒ 
I.At,l=IV11:+m-ll/l..At, ~.Al,/l.$,9J1,···,9Jn-l'AE.AI, ·/1.. 

+(m+£-2) +(m+£-2) .At, . 
Note that for any such .Al, 11: = (11: ) smce IV ;;;+m- 2 1 > 

+(m+£-3) .At, L . 
1,, ; hence V 1,,+m+e-2 n L ~ L so that (V 1,, F 0) 1s absolute for .Al,. 

□ 
end of 2.4. 

Now fix M with IMI = 1,,, M trans and M F ZF- and M<K ~ Mand 1,, E M. By the 

Il
m IV1,,+m-21 rn 

indescribability of 1,, there is a trans N with N C N and N )' n ~n-1 
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correct and an elementary embedding j: M --+ N with cpt j = 1,,. By the lemma we get 

for n ~ 2 

LN (Vffi E L n V 1,,+m+e-1 (V,,, F ¢($,A)) ) . 

m+e-1 
This holds also if n = 1 since then ¢($,A) is E 

O 
and we can use the 

argument from the last part of the proof of the lemma where we mentioned that 

(V 1,, F 0)L is absolute for ..At.. Hence by the elementarity of j, for some a < 1,, 

i.e., 

□ 
end of theorem 2. 
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CHAPTER III. THE CONSISTENCY OF ug1 > 1rg1(m ~ 2, n ~ 1). 

SECTION 1- General Remarks about the Construction. 

The aim of this chapter is to prove the following. 

Theorem Ll- (m ~ 2, n ~ 1) 

CON(ZFC + 3K, K
1 (K < K

1
, K is n: indescribable, and K

1 is E: indescribable) 

=> CON(ZFC + u~ > + GCH) 

In order to prove this theorem we will work in the theory ZF + V = L and assume 

that we have a n: indescribable cardinal K and a E: indescribable cardinal K
1 > "'· 

Then we will define a K + 1 stage iteration P: such that 

(1 2) IL________ " h Em . d "b bl . llm . d "b bl 1 • ,,n1 
. ~ t ere are no n m escn a es ~ K, K 1s n m escn a e, K 1s L.., 

11 
pn 

indescribable." 

Hence we will obtain 

The definition of P: will be motivated by the fact that we want no E: indescribable 

pm 
cardinals in V n below K. Thus P: will be essentially a K + 1 stage forcing iteration 

where at stage ,\ < ,-, where ,\ is Mahlo we do some forcing that ensures that ,\ will be 
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pm E: describable in V n (The fact that we also have to do something at stage ,;, will 

play a role later in the proof that P: preserves the n: indescribability of ,.,., - we 

already encountered this phenomenon in II.1. and II.2.) 

Thus - as a first approximation - we can define the stages in P: as follows: 

pm = {0} 
n,O 

and for limit ordinals a ~ 1,;: 

m 
P n a = limdir 

' (<a 
if a is inaccessible 

and 
m 

P n a = liminv 
' (<a 

otherwise. 

pm 

To define Pm A for a Mahlo cardinal A < K we pick a canonical term Qm E V n,,\ 
n, +1 . n,A 

such that 

11-m­p 
n,A 

"Qm is a certain finite step iteration of A is inaccessible and 
n,A 

GCH ~ A holds and A +e 

otherwise Qm is the trivial poset." 
n,A 

To define the successor Pm for an ordinal /3 that 1s not a Mahlo cardinal we 
n,/3+1 

pm 

just pick a canonical name Qm E V n,A for the trivial poset; i.e., at stage /3 where (3 
n,A 

is not Mahlo we don't do anything. Now what exactly do we mean by "certain finite 

step iteration" ? 
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pm 

Suppose we are in V n,>. and >. is inaccessible and GCL~). holds and ). +e = (>. + C)L 

for e ~ l. In the first two stages ( for n = 1 this will be done in one forcing) of Q 
111 

n,>. 

we add an object that is modulo coding of type mover V,,, (i.e., a subset of V 1;;+m-l) 

Em 
and then force that a certain statement <I> n holds about this object. The first poset 

will have size >. +(m-l) and will be <>. +(m-l) closed. The second poset will be 

+(m-2) +(m-1) +m +m < >. closed and < >. Baire and >. c.c. and of size >. ( for n = 1 

+(m-1) +(m-1) 
the first forcing will have size >. and <>. closed). Hence in particular 

after forcing with these posets, >. is still inaccessible, GCH ~). holds, and >. + e = 

(). + e f for e ~ l. Recall that in the definition of E: describability of >. we allow only 

parameters that are subsets of V).. Hence in the next (m - 1) steps we code down the 

object of type m on V). that we first added successively until we end up with code S). 

~ >.. This goes as follows: It will turn out that the object that we added at the first 

+(m-1) . +(m-1) 
step of stage can be coded by a subset A). C >. . Smee >. = 

( ' +(m-l))L and '+(m-2) = (' +(m-2))L 1 d" . r . 1 " " " we can use a most 1sjomt 1orcing wit 1 

+(m-1) 
the < least almost disjoint family of size >. of constructable subsets of 

L 

+(m-2) . . +(m-2) +(m-2) 
). _ . The forcmg 1s ). centered and <>. closed. Thus after we 

do this forcing and obtain a code for A;. which is ~ >. +(m-
2

) we still have that >. is 

inaccessible and GCH~). holds and >. +e = (>. +ef for l!. ~ l. Thus we can proceed in 

this fashion until we end up with a code S). ~ >.. 
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Now in the last step of our iteration Qm we will force a club set C.,\ C .,\ such 
n,.,\ 

Em 
C .,\ n {µ < .,\: µ inaccessible /\ V µ p= <I> n (the object coded by S .,\ n V p)} = 0. 

Note that this forcing has size .,\ and for each µ < .,\ there is a dense suborder that 1s 

<µ closed (it consists of all conditions whose top element ?_µ). 

Therefore we get the following: 

m 
Q has for each µ < .,\ a dense suborder that is < µ closed. 

n,.,\ 

One can prove for each inaccessible .,\ ~ "' 

by induction on a. For the successor step one has to use that for each o: < .,\ 

llpgi since ".,\ is inac" 

hypothesis. From (1.3) we can deduce 

V .,\ ~ "' (.,\ Mahlo ⇒ P::\ is .:\ c.c) 
' 

because JPm J < .,\ by induction n,o: 

since {~ < .,\ Pg1 a = dirlim Pg11/} is stationary in .:\ by the Mahloness of .,\. Hence we 
' TJ<A ' 

can conclude that for all Mahlo cardinals .,\ < "' 
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In order to show that for Mahlo A ~ K 

I f---m- "A is inaccessible" 
p 

n,A 

we need to observe that at any intermediate stage the iteration factors in a nice way. 

Lemma 1.4. 
m 

Let O < o: < K and P 
1 1 

denote the tail of the iteration 
n,o:+ ,K+ 

Ifµ denotes the least inaccessible E (o:+1,K+l) then 

"for each v < µ Pm has a dense suborder *pm 
n,o:+1,K+l n,o:+1,K+l 

that is <v closed." 

Proof. Let G be Pm 
1 

generic and fix v < µ. We claim that in V[G]: 
n,o:+ 

(1.5) If f3 E (o:,K+l] is a limit ordinal then Pm /3 is either a direct or an inverse 
n,o:+1, 

limit. Moreover if cf /3 < v then Pm /3 is an inverse limit. 
n,a+l, 

In order to prove (i.5) note that !Pm I < µ and that for /3 E (a+l,K+l) with 
n,a+l 

liminv 
r,</3 

as in [Baumgartner, 1983], Section 5. 

For 6 E [o:+1,K+l] we define 

Pm (in V). Now we can use the same ideas n,r, 

m m V[G] 
*p = {f E P :-'</(Edom f 11 m "f(() is in the <v closed 

n,o:+1,6 ".l)f n,o:+1,6 p 
n,a+l,( 

m 
dense suborder of Q "}. 

n,( 
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The first half of (1.5) implies that *pm 
1 

• is dense. The full claim (1.5) shows that 
n,a+ ,u 

□ *pm • is < v closed. 
n,a+l,u end of 1.4. 

Given this lemma it is easy to see that for Mahlo .,\ ~ x:, 

lf---m- ".,\ is inaccessible." 
pn a 

' 

This also shows that at each Mahlo stage .,\ ~ x:, the requirements for doing a finite 

step iteration Qm, are satisfied. Then it will follow n,A 

I~ "there are no E: indescribables <x:, ." 
Pn 

Finally one can apply 1.4. to show by induction on a < x:, that I~ GCH; hence we 
Pn,a 

obtain 

Preservation of the E: indescribability of x:,'. 

This follows from the fact that the iteration P: can be defined inside any V µ where 

µ > x:, ~J:s inaccessible so that in particular P: E V µ. We prove the following general 

Lemma 1.6. Let x:, be E: indescribable and P be a poset with P E V x:, • Then 

11-p "x:, is E: indescribable." 
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Proof. Suppose G is P generic and~ is E: and A E (V[G,c]),c+l and, in V[G] 

V ,c F ~(A). Pick A E yP with (A)G = A and p E G with 

0 

(1.7) Plf-p "V,,, F ~(A)." 

Let µ be the least inaccessible <,c with P E V µ. Now for any inaccessible II E (p,1,,) 

pick A. 11 E yP with 

o* 
For each such II we can apply 11.1.2. and find A

11 
E yP n V v+l with 

0 * 0 
Plf-p Av= Av. 

Then define 

X*G]f U 
11E(µ,1,,) 

11 inaccessible 
Clearly 

o* o 
Plf-p A = A 

o* Av. 

0 
and we have A* ~ V,,, and for each inaccessible II E (µ,1,,) 

o* o* (1.8) Plf-pA nvv =A nvl/. 

(Here consider A* n Vv as an element of VP. Now (1.7) is E:(p,P,ic,A*) over v,,, 

since it is equivalent to 
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3.At,[.At, transitive, .At, F ZF- , I..A1ol = IV i-+m-11 

IV i-+m-21 m o 
.At, ~ ..A1o, .At, Jin-l correct for i., .At, F [Pl~ "Vii: F <l>(A*)"]]. 

To see this note that for any such .At, the Jim correctness of .At, inside V for ,- will 
n-1 

imply that with any P-generic H ..A1o[H] will still be II:_ 
1 

correct for K inside V[H] 

because P E V ,_. By the E: indescribability of K in V this E: fact must reflect to 

some inaccessible A E (µ,i. ). So we get 

where we consider A* n V) as an element of vP. By applying (1.8) we obtain that in 

o* G V[G], (A n V )) = An V). Therefore in V[G] 

i.e., <I> reflects. □ 
end of 1.6. 

Preservation of the II: Indescribability of K. 

This is the difficult part of the proof of (1.2) and we are going to use the reformulation 

in I.1. 

o pm 
Assume towards a contradiction that <I> 1s II: and A E V n and for some 

condition p E P:1 we have 

0 

pjf---m "<l>(A) describes i.." 
pn 

By the reflection principle we can find some ordinal 8 > the least inaccessible above K 
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o m 
such that V 8 F [ZF- /\ p I~ "<I>( A) describes 11:"]. Note that P n E V 8 . Pn 

Using standard arguments, one can construct a trans M of size 11: with M<K C 

M and an elementary embedding i: M --+ V 8 with cpt i > 11: and some Mp E M and 

MA EM with i(Mp) = p and i(MA) = A. Using more or less straightforward master 

condition arguments we will construct a V generic VG for P: and an M generic MG 

for M(P:) such that i lifts; i.e., 

M 

and also p E VG. 

i 
--+ 

--+ 
l 

V 

I I I I 
IV11:+m-21 

By applying 1.1. we can also find a trans N with N = V 11:+m-l and N C N 

and N is Em 
1 

correct for K in V together with an elementary embedding j: M --+ N 
n-

with cpt j = 11:. 

In order to finish the proof we have to come up with an N generic NG for 

N (Pm) such that N[N G] is Em correct for 11: inside V[V G] and j lifts; i.e., 
n n-1 

j 
--+ 

M N. 
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Since p E VG we get in V[G] 

<I>(A G) describes ,-., . 

The E:_
1 

correctness of N[NG] for,-., inside V[V G] implies 

Then by elementarity of j and the fact that AG E M (since cpt j K) we get 

It will be the case that (M[MG]) <,-., ~ M[MG] inside V[V G]. Thus in V[V G] 

Therefore we get a contradiction. 

In order to find a generic NG with the properties above we use master 

condition arguments. At the last step of the last stage of the construction of NG 

where we add a certain club set ~ j(,-.,) we will see that the iteration as we have defined 

it does not allow us to pick a master condition. We are going to avoid this problem by 

adding at each Mahlo stage .,\ ~ ,-., of P: a .,\ + sequence (rather than just one) of 

objects of type (m-1) over V .,\ and then we make a E: fact true for half of them and 

its negation for the other half. Then we code all these objects down until we end up 

with a .,\ + sequence of codes that are each ~ .,\. Finally we add a.,\+ sequence (rather 

than just one) of closed sets ~ .,\ each of which avoids a certain set of inaccessibles. 

We shall see that with this modification we will be able to find a master condition in 

the very last step of the construction of NG. 
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The key point will be that in order to get a generic for the first step at stage 1,, 

m N (P:) we do not merely take the generic for the first step at stage 1,, in V (P:). 

Instead we choose a certain permutation of the sequence of generic objects at the first 

step of stage 1,, of V (P:). This permutation will ensure that for certain IMI = 1,, -

many of the objects for which a E: fact holds in V[V G], a n: fact (its negation) will 

hold in N[N G] and this fact will allow us to pick a master condition in the very last 

step of the construction of NG. 

The most difficult part of the proof will be to show that N[N G] will still be 

Em correct inside V[V G] for 1,, m parameters from V 1,,+m after we do this 
n-1 

permutation. 
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In this section we will write Pa instead of P 2
1 . In Section 1 we have already ,a 

outlined the general structure of this iteration and here we will restrict ourselves in 

exhibiting the 3 step iteration at stage ). ~ 1,, (where ). is Mahlo) that we use in order 

to make ). E
2 
1 

p 
describable in V ). + 1 So assume G is P). generic over V = L. vVe 

have seen in Section 1 that in V[G).] .Xis inaccessible, (A +ef = .X +e for e > l and 

>.X 
GCH- holds. 

The forcing Q(l) that we use at the first step of stage .X will add a sequence 

(A'}':). < ). +) where for even 'Y < ). + A'}' is a pair consisting of a subset of.\+ and a 

club set ~,\ + that is disjoint from it and for each odd 'Y < .\ + A'}' is a subset of.\+. 

Q(l) will be a ). + product with <>. + support of posets that are each <.\ + closed and 

have size .x+. So Q(l) is<>.+ closed and has size>.+. Hence if (A'Y:'Y<.\+) is 

generic for Q(l) then in V[G).,A'Y] still). is inac, (>.+)e = p+C)L fore~ land 

>). - -
GCH- holds. If we let A'Y ~ A'Y for odd 'Y and A'Y ~ the first component in the 

pair A'Y for even 'Y then a E~ fact is true about each A'Y where 'Y is even (namely, "i-\-y 

2 
is not stationary") and a JI 

1 
fact is true about A'Y where 'Y is odd (namely "i-\-y is 

- + stationary"). Now in the next step Q(2) we will add for each A'Y ~ >. a code C .\. 

Thus Q(2) = TI 
'Y<>.+ 

<>.support 

Q- where Q- is the forcing for coding A'Y ~ ). + by a set C >.. 
A'Y A'Y 
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For this let (T( :( < A+) denote the <L least constructible sequence of size ,\+of 

almost disjoint subsets of .X (note that ,\ + = (,\+fin V[G_x ,A,]). The conditions in 

QA are pairs (s,b) wheres~ A and b ~ .x+ and isl, lbl < A and 
"Y 

(s1 ,b1) ~ (s2 ,b2 ) iff s 1 2 s2 , b 1 2 b2 and 

Clearly QA is <.X closed and .X centered (for this define (s1 ,b2 )-(s2 ,b2 ) iff s 1 = s2 ). 
"Y 

Moreover if S, is Q - generic then in V[G ,\,A, ,S,] for all ( E ,\ +: 
A, 

(EA, {=::;> S, n T( is unbounded in .X 

where S, ~ U {s: :lb(s,b) ES,}~,\. 

If we pick a generic (S,:, < .X +) for Q(2) then in V[G .X ,A, ,S,] for even , < 

+ 2 -
1,, we created a E 

1 
fact in the parameter S, ~ ,\: 

(2.1) The set coded by S, is not stationary in ,\ + 

Note that for odd , < ,\ + A, is still stationary in V[G ,\,A, :S 1 ] since by a 

+ --+ --+ 
standard A system argument Q(2) has the property .X . Moreover in V[G, ,A, ,S , ] 

we still have.Xis inaccessible, .X + = (.X +/for€ ~ 1 and GCH~.X holds. 

In the final step of the 3 step iteration at stage ,\ we add a sequence 

(C,: 1 < A+) of club sets ~ ,\ via a product forcing Q(3) = f1 
,<,\+ 

each , < ,\ + <.Xsupport 

2 
El -

C, n {µ < .X:µ inaccessible/\ V µ I= <I> (S, n V µ)} = 0. 

such that for 
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2 

L\ _ 2 ' Here ~ (S,) is the E
1 

statement in (2.1). Obviously each Q has size A. Thus by 
(3) 

a standard ~ system argument Q(3) has the property A+. Furthermore for each a < A 

Q(3) has a dense, <a closed suborder. Hence in particular Q(3 ) is <A Baire. So it is 

easy to see that for Mahlo A ~ 1,, 

II A is E
2
1 

describable. 
P.X+l 

In fact we have for each Mahlo .X ~ 1,, 

II .X is E
2
1 

describable. 
p ,,,+1 

p 
. . S . 1 . V .x+ l h ·1 P . h" hl B . smce as we saw m ect10n , m t e ta1 .X + l ,1,, + 1 1s 1g y a1re. 

p 
2.2. Preservation of the II~ Indescribability of 1,, in V 1,,+l 

Assume towards a contradiction that for some condition p * E P,,, + 1 and cfi 111 

2 0 p 
IJ 1 and A E V we have 

0 

p*II "~(A) describes 1,, ." 

P,,,+1 

Pick a 6> the least inaccessible greater than 1,, such that 

0 
"~(A) describes 1,,"]. 

Note P,,, + l E V 6 . 
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By standard arguments we can t:ind a transitive M with IMI = 1,, and M<"' ~ 

M and an elementary embedding i: M --+ V 8 with cpt i > 1,, such that for some MP, 

Now we have to find an M generic MG for Mp 1,,+l and a V generic VG for 

P 1,,+l such that p* E VG and i lifts: 

M[MG] --+ V5[V G] 
l 

M 
P,,,+1 P,,,+1 

M --+ V5. 
l 

Construction of MG and VG. 

Since cpt i > 1,, and Mp,,, = P,,, ~ V ,,,we can take any V generic for P,,,, say G,,, with 

p*I,,, E G,,, and i will lift; i.e., 

M[G,,,] 

P,,, P,,, 

M --+ 

For the first step at stage 1,, of P:+l and P 1,,+l recall that Q(l) is <K + closed. Since 

IM[G,,,]I = 1,, any M[G,,,] generic for MQ(l) only has to meet 1,, dense sets. So in V[G,,,] 

we can pick a generic M1 1 for MQ(l) in the usual way. 
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Q(l) is also <1- + directed closed, hence there is a condition extending all i( q) 

M-+ 
A 1 . Any such condition in Q(l) is a master condition. 

For the second and third step note that both Q(2) and Q(3) :1ave the 1,, + c.c.; 

hence the pullback method works since cpt i = (1- +)M > 1-. 

Note that by the usual arguments M[MG]<'- ~ M[MG] inside V[V G]. 

By I.1. the JI~ indescribability of "' implies that m V L there 1s a trans N with 

INI = ,.+, N" ~ N (i.e., N is E~ correct for 1-) and an elementary embeddingj:lVI--+ N 

with cpt j = 1-. Now we have to come up with an N generic NG for Npj(K)+l such 

that N[N G]" ~ N[N G] inside V[V G] and such that j lifts; i.e., 

--+ 
j 

M --+ N. 
j 

Construction of N[N G]. 

First we find a NGj(1-) that 1s N Pj( 1-) generic over N. Note that P,.., C 
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and Np,,, P,,,. Since cpt j K, it will therefore suffice to find 

NG "( ) that is N[G,,,] generic for N[G,,,Jp "( ) ; then with NG.( ) = G,,, * NG '( ) 
K.,J K, K.,J K, J K, GJ)f h:,J le 

j will lift. 

Since P,,, is "' c.c. we get N[G,,,]"' ~ N[G,,,] inside V[G,,,]. Hence the poset 

N Q(l) that we use at the first step of stage 1,, in Npj(1,,) is the same as Q(l) which we 

use at the first step of stage "' in P 1,,+l. Now consider the <L least permutation II in 

the ground model V = L such that 

II: Even,,,+ --+ Even,,,+ - Even · M 
(1,,+) 

Recall that in V = L 1(1,, +)Ml = "'· Denote by (A1 : 1 < 1,, +) the generic sequence 

for Q(l) of P ,,,+ 1 . Then define for the noncritical 1 < "'+ (i.e., those I with -1 and 

II( 1 ) both even or both odd) 

And fo~ the critical 1 <,,,+(i.e., 1 odd and II(,)< (1,,+)M even) 

Because II is in the ground model (N A1 : 1 < "'+) is certainly N[G,,,] generic for Q(l)' 

Hence for each critical 1 < 1,, + N A. 1 is stationary in N[G,,, ,N"A ,] but nonstationary 

-in V[G,,, ,A,]. 
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By the <K- + closure of Q(l) N ---+ "' N[G"', Ar] ~ N[GK.,N Ar] inside 

---+ N N- + 
V[G"' ,Ar]- Hence Q(2) wants to add codes ~"' for each of the Ar C "' via almost 

disjoint forcing using the < L least constructible family (T ( : ( < "'+) of almost disjoint 

subsets of"'· Hence with Nsr 'M SII(r) the sequence (NSr:r<K-+) is certainly generic 

+ And by the "' c.c. of Q(2) 

N---+ N---+ ---+ ---+ 
N[G"' , Ar, S rJ inside V[G"' ,Ar ,S rJ (note again that II is the ground model). 

At the last step of stage "' of Npj(K-) we just take Ncr 'M CII(r) and by the same 

C The tail 

N N---+ N---+ N---+ + 
PK-+lJ(K.) has from the viewpoint ofN[G"', Ar, Sr, Cr] a<"' closed dense 

suborder. Since INI = "'+ in the usual way we can m V[G VJ pick a generic 

Now we handle stage j( K-) of N Pj( K-) + 1 . At the first step we note that the forcing we 

encounter is <j( K-) + directed closed; hence a straightforward master condition 

argument works for the first step of stage "' of MP K-+ 1 . 
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In the next step we proceed analogously since by the <j(i-) directed closure of 

the forcing at the second step of stage j(i-) of N Pj(i-)+l we can always find a condition 

extending all j(p) where pis a condition in the generic (MS,:,<(i-+)M) for the 

second step of stage i- in MP,_+ 1 . 

Now we consider the very last step where we add aj(i-)+ sequence of club sets. 

Before we finish the proof let us take a break and see what would happen if at stage 1., 

of P i-+l we had just added one subset of ,- + rather than ,- + many. In this 

construction denote the pair consisting of a subset of ,- + together with a club 

set ~ i- + disjoint from it that we add in the first step of stage ,- of MP,_+ 1 by A i'vI 

and the one in the first step of stage ,- of P 11: by A. Let MS ~ ,- be the code for lVI A 

and S ~ 11: be the code for A and Mc the club set that we add at the third step of 

stage 11: of Mp 11:+l. In order to lift the embedding j at the very last step of this 

construction we must find a club set c* ~ j(11:) of cardinality <j(i;,) 111 

N[G11: j(M A)j(MS)] such that j(p) C c* for all conditions p "in" Mc. But for all such 

p p §- 11: and IPI < 11:; hence j(p) = p. Thus we must have K E c*. The problem is 

now that in order for c* to be a condition in the forcing at the third step of stage j ( i;,) 

is inaccessible and 
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E2 

where <l> l (j(MS) n V 11:) says that the set C 11: + which is coded by j(MS) n V,;, is 

nonstationary in 11: +. To prove (2.2.) note that 

since gM ~ 11: and that 

since gM ~ 11:. 

But the set coded by S (namely, A) is nonstationary in N[G11:) and hence 111 

We shall now see how the permutation II that we chose avoids this problem. 

We define a condition c* for the forcing at step 3 of stage j(11:) of N Pj(11:)+l by 

where (C~ :-y<11:+) is the generic for the last step of stage 11: of Mp11:+i · We have to 

show that c* is really a condition! 
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Notice that le*! = K < j(1,,) and that for each , < (1,, +)M c; is a closed 
J( ,) 

subset of j(1,,) of cardinality <j(1,,). Now fix any , < (1,, +)M. We have to show that 

2 
17

1 · M-(2.3) cJ(,) n {µ < j(,,:):µ inaccessible AVµ I= <I> (J( S)j(,) n V µ)} = 0 

E2 

where <I> 1 is the statement (2.1). 

Clearly we don't have to worry about the µ < K since j(MS)j(,) n V µ 

· M- M-J( S,) n V µ = S1 n V µ and since V µ+w is the same whether computed 111 

K note that 

· M- M- M- M- -
J( S\(,) n V,;: = S, = i( S,) = (i S\(,) = S, (i.e., the ,-th code that we 

N-
added at step 2 of stage K of PK+ 1) . Recall that we defined S rr :-- l ( 

1
) S1 and 

that rr- 1 [(,;: +)M] ~ Odd +. Hence the set coded by S,, i.e., A, = NA 1 , is 
K, II- (Ai) 

stationary in N[G,,: ,NA,]. But then this set must also be stationary in 

NLi(G,,:),j(MA, ),j(Ms 'Y )] by some elementary chain condition and closure arguments. 

Thus we have shown (2.3). 

M---+ 
Finally it is clear that c* extends j(p) for all p in the generic C I and 

therefore c* is .a master condition for the very last step of the construction. Routine 

arguments establish that N[NG]K ~ N[NG] inside V[V G]. 
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SECTION ,a. u1{1 /1r1{1 (m?. 3). 

In this section we will always write Pa instead of Pm
1 

At stage ..X ~ 1,, (where 
,a 

..X is Mahlo) we will do a ( m + 1 )-step iteration to guarantee that ..X will be E~ 

p 
describable in V A+ 1 

Suppose that in V[G ,x], where GA is P ,x generic we have: A is inac, (A+ e f 

A +e for e ?. l and GCH?.A holds. In the first step Q(l) of the (m-1) step iteration 

we force a sequence (A1 : 1<..X +) where for each even 'Y < A+ A 1 is a pair consisting 

of a subset of ..X +(m-l) and a club set <;; ..X +(m-l) disjoint from it. For odd 1 < >. + 

A 1 will simply be a "new" subset of 'Y +(m-l). Hence Q(l) is ..X + product (with full 

+(m-1) +(m-1) 
support) of posets that are each < A closed and have size ..X . Th us 

Q(l) is <..X +(m-l) closed and has size A +(m-l)_ - +(m-1) 
Note that A 1 <;; ..X is 

+ - +(m-1) + 
stationary for odd ")' < ,,;, and A 1 <;; A is not stationary for even 1 < ,c 

(where A1 is defined from A 1 as in the 1ri/ui case). Moreover in V[G1 ,A1 ] .\ is still 

inaccessible and (A +ef = ..X +e for e ?. l and GCH?.A holds. 

- +(m-1) 
In the next (m-1) steps we code each A 1 <;; A down until we end up 

with a_code that is a subset of ..X. At the k-th coding step (1 ~ k ~ m -1) we will be 

given a sequence 
m-k 

(S · 'Y <A+) where each 'Y • C 
..X +(m-k) 

(for 

m-(k+l) - - + = A 1 ) and we want to code them by (S
1 

: r < ..X ) where each 

m-(k+l) (k l) 
S-,,.,, <;; '+m- + (define '+o ') Th -'" . Q h d l. . , " " =" . e 1orcrng (k+l) t at oes t 11s 1s a 
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product of length A+ (with full support if k < m - 2, with support <A+ if k = m -

2 and with support < A if k = m - 1) where each factor is A +(m-(k+l)) centered 

and < A +(m-(k+l)) closed and has size A +(m-k)_ Thus Q(k+l) has the A +(m-k) 

property and is <A +(m-(k+l)) closed and has size A +(m-k). So throughout the 

coding: A is inaccessible, (A +ef A +e for e 2: 2 and GCH::2:A holds. Therefore to 

m-k 
code S 

+(m-k) - m-(k+l) , +(m-(k+l)) 
C A by some Sr C " we can use almost r 

disjoint forcing with the <L least constructible family of size A +(m-k) of subsets of 

A +(m-(k+l)). In the (m+l) the step at stage A we add a sequence (Cr: r < A+) of 

club subsets of A such that for each r < 1,, + 

Em 

Cr n {µ<A:µ inaccessible AVµ F <P 1 (Sr n V µ)} = 0 

Em 
1 +(m-1) -

where <P (S n V µ) says that the set C µ coded by s n V µ C µ IS 

nonstationary. 

The forcing Q(m+l) that adds (Cr: r < A+) 1s the analogue of the 

corresponding forcing in the ui / 1ri case. The proof that 

II p "1,, is JI~ indescribable" 
,,,+1 

is entirely analogous with the corresponding proof in the 1ri / ui case. 
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2 2 ( SECTION 1,. uaf1r
3 

The Generic Case). 

4.1. The Iteration P~. 

We restrict ourselves to describing what we are going to do at the stage A < 1,, 

where A is Mahlo in order to guarantee that 

11 "A is E
3
2 

describable." 
p2 

3,A+l 

2 o PA 
In this section we are going to use PA instead of P , . Choose a term QA E V 

3,A 

such that 

0 

I~ QA is a certain 4 step iteration if A is inac, 
A 

+e +e L >A A = (A ) for e ~ l and GCH - holds; 

0 

otherwise QA is the trivial poset. 

By "certain 4 step iteration" we mean the following: Suppose that GA 1s PA generic 

A +e for e ~ l and GCH~A holds. In the first step 

+ 
Q(l) we add a sequence (F1 : 1 < A+) where each F1 :2A X IS a 

Lipshitz function; i.e., each F I is really a function with domain LJ 2a x 2a and 

a<A+ 
+ 

range contained in 2<A and for X, Y ~ A+ one defines F,(X,Y) = LJ F1 (X n a, 
. a<A+ 

Y n a). The poset Q(l) is a A+ product with <A+ support of copies of the forcing 
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PF where conditions in PF are functions f with 

<A+ <A+ + dom fas a subtree of 2 x 2 of size < A I\ 

and for f, g E PF f ~ g iff f 2 g. The conditions for PF look like this 

dom f 

Clearly IQ(l)I = 

V[GA,(F1 :1 <A+)] 

e ~ 1. 

A+ and Q( 1) is <A+ closed. Hence in particular m 

A is still inaccessible, GCH~A holds, and (A +ef = A +e for 

In the next step, the forcing Q(2) which we will simply call Q from now on will make a 

E~ statement true about the F I for I even and a ll~ statement true for the F I with 1 

odd. The E; statement about F I will say 

3X s; A+ '<:/Y s; A+ F1(X,Y) is nonstationary. 

The ll~ statement will be the negation 

'<:/X s; A+ 3Y s; A+ F ,(X,Y) stationary. 
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For this note that ,\ + = (,\ +f; hence any X ~ ,\ + has a canonical code ffi E V ,\+ 2 

where ffi = {S: S E P(,\) n L /1. 3a(S is the <-a-th subset of,\ /1. a E X)} and any 
L 

ffi E V ,\+ 2 codes {a < ,\ + : the f a-th constructible subset of,\ is E ffi}. 

The poset Q will be a suborder of Fn(,\ ++ ,2,,\). At many coordinates 

a < ,\ ++ we will simply add a subset of,\+; at many other a < 1 ++ we will add a 

club subset of ,\ + that is disjoint from F ,(S1 ,S2 ) where (S 1 , s2 ) is some pair of 

subsets of,\+ associated with a if certain conditions are satisfied. 

First we partition ,\ ++ into cofinal pieces C, A 1 ( 1 < ,\ +) and B 1 ( 1 < ,\ +) 

such that ,\ + ~ C. Then for each 1 < ,\ + we pick an enumeration ( r ! : ( E A 1 ) of 

nice Fn( ,\ ++ ,2,,\ +) names for subsets of ,\ + and for each 1 < ,\ + an enumeration 

((o-~'1 ,o-~'1 ) : ( E 'B') of pairs of nice Fn(,\ ++,2,,\ +) names for subsets of,\+ such 

that for any nice Fn(,\ ++ ,2,,\ +) name T for a subset of,\+ and any 1 < ,\ + there are 

cofinally many ( with T ~ = T and similarly for pairs of nice Fn( ,\ + + ,2,,\ + ) names for 

subsets of ,\ +. In the sequel we will call such enumerations of tupels of nice names 

complete. Note that complete enumerations of length ,\ ++ always exist since 

Fn(,\ +_+ ,2,,\ +) has the ,\ ++ c.c. and size ,\ ++. 

We now define the coordinates <a of Q by induction on a ~ ,\ ++ 

for a = 0 
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if a ::; >. ++ is a limit then 

and if a E C or a E A 1 ( some 1 < >. +) then 

and if a E BI for some 1 < >. + then 

where for ( E A 1 

and similarly 

a-;'~ {77,f): 3g[(77,g) E u~' I\ f::; g /\ f E Qa]} 

and when the formula 0 is short for 

1 1 1,1 ( 2,1 
1 is odd /\ [[ ,3 ( E A n a ( f- ( = a- a I\ r = a- a ) /\ 

1,, 2,, 1,, 2,, 
(8- a ,a-a ) Edom F1 /\ f(a) kills F1 (8- a ,a-a )] V f(a) = O] .V. 

- 1 1,, 1,, 2,, 1,, 2,, 
1 is even/\ [[r = a- o: /\(a-a ,a-a ) Edom F1 /\ f(a) kills F,(a-a ,a-a )] V 

1 1 1,, ( 2,, 1,, 2,, 
[,3( EA n a(f-( = 8-o: /\ r = a-a ) /\ (a-a ,a-o: ) Edom F1 /\ 

1,, 2,, 
/\ f(o:) kills F,(a- a ,a- o: )] V f(a) = O]. 
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Here f( denotes the subset of A+ that we add at coordinate (. Since compatibility in 

Fn( A++ ,2,A +) coincides with compatibility in the suborder Q, we get that Q has the 

A++ c.c. Moreover Q is <A closed because of the cofinality requirement that we put 

into the definition of the forcing for adding (F 1 : 'Y < A+). However Q is not <A+ 

closed since for each 1 < A+ II V[G A] "VX,Y ~ A+ F 1 (X,Y) is stationary" and, as 
Q(l) 

we shall see, Q makes "many" of these sets nonstationary. Lemma 4.1.3. will show 

that Q is <A+ Baire. To prepare the proof of this we need some technical lemmas 

which will also be helpful later. 

It is easy to modify the definition of the forcing Q(l) so that rather than add 

Lipshitz functions F 1 : 2A + x 2A + --+ 2A + where 1 < A+ we add a sequence 

A+ A+ A+ 
((F 1 ,H1 ): 'Y < A+) of pairs of Lipshitz functions with F 1 ,H1 : 2 x 2 --+ 2 

such that for all X, Y ~ A+ H1 (X,Y) is a club subset of A+ which is disjoint from 

F1 (X,Y). We denote the modified poset by Q'(l) . It is a A+ product with <A+ 

support of a posets whose conditions are pairs (f,h) where 

f e- PF A his a function A <lorn h = <lorn f 

A V(s,t) E <lorn h [3a < A+ [a > <lorn s A h(s,t) E 2a+l A f(s,t) E 2a+l 

A h(s,t)(a) = 1] A {( : h(s,t)(() = 1 = f(s,t)(()} = 0 

A {(:h(s,t)(() = 1} is closed] A 

V(s,t), (s 1,t1
) E <lorn h[(s,t) extends (s 1,t1

) ⇒ h(s,t) extends h(s',t')]. 
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If (f,h) E Q1 (l) then f E Q(l) and conversely for any f E Q(l) there are h with 

(f,h) E Q1(l). Moreover if D is dense in Q(l) then {(f,h) E Q1(l): f E D} is dense in 

Q1 (l)° Thus if ((F,, H,):, < ,\ +) is Q1 (1) generic over V[G ,\] then (F,:, < ,\ +) is 

now define the following poset ( ( ~ ,\ + +) 

Lemma 4.1.1. For each a ~,\ ++ Qi¥ is <..\ + closed. 

conditions in Qi¥. By induction on ( ~ a we will construct qi( such that 

qi( E Q( 

dom(ql() = LJ
77
<,\ dom(q77 1() 

We check only the case of a successor as ordinal ( + 1. If ( E C or ( E A' for some 

,\ < ,\ + there is no problem. Now assume that ( E B' for some , < ,\ + and for some 

Then take 

q(() = LJ q77(() LJ 
11<J.. 

(€domq,, 

sup top q17 ( (). 
11<J.. (€domq 11 

q,,(();i!O 
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We get that qi((+ 1) E Q(+l since (in any model) if for some X, Y ~ ..\+ H,(X,Y) 

is defined, then it is disjoint from F,(X,Y) and closed. 

By the same argument qi(( + 1) E Q(+l' It is immediately clear that 

qi(( + 1) ::; q11 1(( + 1) for all 11 < ..\ and dom qi(( + 1) = U dom q11 1(( + 1). 
11<..\ 

□ 
end of 4.1.1 

Lemma 4.1.2. For each a ::; ..\ ++ Qi is dense in Q 0 • 

Proof. We use induction on a ::; ..\ ++. 

For a = 0 this is true since Q0 = {O} = Q6 . For a successor ordinal a + 1 

we examine only the case where a E B' for some , < ..\ + and we are given q E Q
0

+ 1 

with q(a) # 0. Since in any model H,(X,Y) is always unbounded (if defined) we can 

pick an ordinal 8 <..\+with 8> top q(a)and a condition q*::; q with q* E Qi (by 

- -
using that Qi is 

V[G ..\ ,(F, ,H, )] 1,, 2,, 
dense in Q 0 ) such that q* II Qa 8 E H,( & 

0 
,& a ). 

Hence q* U {(a,q(a) U {8})} is a condition in Q* below q. If a is a limit ordinal 
a+l 

and q E: Q 0 there are two possibilities: If cf( a) ~ ..\ + then dom q is bounded in a and 

we can by induction hypothesis find a condition q * E Qi below q. If cf( a) ::; ..\ then 

we pick a normal sequence ( ..\ 11 : 11 ::; /3) with sup ..\ 11 = a and ..\ /3 = a and /3 = cf( a) 
11</3 

::; ..\. Now using induction on 11 ::; /3 we define a decreasing sequence ( q 11 : 11 ::; /3) with 



-59-

By 4.1.1. each Q* is <>. + closed so the construction works at limit ordinals 
>.TJ 

TJ ~ /3. Clearly q/3 E Qit and extends q. D 
end of 4.1.2. 

Lemma 4.1.3. For any a ~ >. ++ Qa is <>. + Baire. 

-+ -+ 

Proof. Suppose the lemma was false for some a ~ >. ++. Pick names A 1 , B 1 , C, 
61 di,; Q(l) 
T ( , u ( in V(G >.] for the parameters that we need in the definition of Qa and fix 

a condition f E Q(l) with 

( 4.1.4) 
V[G ] -+ -+ -+ -+· 

). 0 I O I O o I o 1, /) • + f II "Qa(defined from A , B , C, T (, u ( 1s not <>. Baire." 
Q(l) 

Pick some h such that (f,h) E Q(l)" Now let ((F 1 ,H1 ):, < >. +) be Q(l) generic over 

-+ -+ + 
V[G>.] and extending (f,h). In V[G>.,(F,,H,)] Qa has a<>. closed, dense suborder, 

namely Qit. So in particular in V(G>. ,F ,] Qa is <>. + Baire, contradicting (4.1.4). 

D 
end of 4.1.3. 

As a corollary we get that for any a ~ >. + + 

1,, 2,, 
Therefore in the definition of Qa+ 1 we can omit the clause ( & a ,& a ) E <lorn F I in 

the formula 0. 

2 2 
Next we want to see that forcing with Q makes a E

3 
or II 

3 
statement about 

F I true depending on whether I is even or odd. We must first prove a technical fact 

which will be used again later. 
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Lemma 4.1.5. For any condition q E Q and any ordinal 8 < ,\ + there is a stronger 

condition q 1 E Q with 'v 1 < ,\ + 'v /3 E B 1 [ q(/3) -:f. 0 => top q1 (/3) > 8]. 

Proof. Suppose this was false. - -o o I o I C: 1 o'l,1 o'2,1 Pick names C, B , A and T (, <J' ( , <J' ( m 

Q 
V[G ,\] (l) and a condition f E Q(l) with 

(4.1.6.) 
V[G] ---+ - ---+ - -

II ,\ " . ' 0 0 I O I O I O 1,'Y O 2,"'f f Q there 1s no q E Q ( C, A ,B , T ( ,<J' ( ,<J' ( ) 

(1) 

=> top q1(/3) > 8);" 

pick some h with (f,h) a condition in the modified poset Q(l). Now let 

((F 1 ,H1 ): 1 < ,\ +) be Q(h generic over V[G ,\]. Choose an increasing enumeration 

(o:'f/:'T/ < X) ofdom q where IXI = ,\. 

for,,, < X 

for 'f/ = 0 let q'T/ = 0. 
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If 1J is a limit pick a condition qT/ E Q~T/ with qT/ < q
111 

'r/111 < 1J. This 1s 

possible since Q~T/ is <A+ closed. 

For successor 1J + l we examine only the case that a 11 E BI for some ; < A+ 

and q(a 11 ) =j:. 0. Similarly as in the successor case of the proof of 4.1.2., we can find 

some ordinal 81 > 8 and a condition q* ~ qT/, qlaTJ+l in Q~TJ+l such that top q*(a 77 ) 

= 81
• Define this to be qTJ+l. 

Once the sequence ( qT/ : 1J < A) has been defined one can find a condition 

q 1 E Q* + with the property that we want by either using the <A+ closure 
sup1J<5.a1J 

Q* + of or repeating the argument for the successor case m the inductive 
sup 7J<.>. a 11 

construction of the sequence above depending on whether dom q has a last element or 

not. In particular q1 E Q, so we get a contradiction with (4.1.6). 

Next we want to see that after forcing with Q any F 1(X,Y) 1s 

X, Y ~ A+) unless we kill it explicitly. To be more exact: 

□ 
end of 4.1.5. 

stationary ( for 

--+ --+ + 
Lemma 4.1.7. Let G be a Q generic over V[GA ,F ,]. In V[GA,F 1 ,G) let X, Y ~ A 

and 10 < A+ and assume 

i 1,,o G 2,,o G 
'r//3 EB O 'r/q E G[q(/3) =j:. 0 => ((a- /3 ) , (& /3 ) ) =j:. (X,Y)]. 

Then F 10 (X,Y) is stationary. 

--+ --+ --+ --+· Q(l) 
Pl.ck names C

0
, A

0 1 , B
0 1 , 0r;., ~ ;' 1n V[G ] .c th t th .,, v .,, A 1or e parame ers m e 

definition of Q. 
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Q(l)*Q - --+ 
Let o-1 , o-2 , o- E V[G Al and (f ,q) E F 1 * G with 

I\ o- is club in A+." 

In order to finish the proof we have to find a condition (f,q) < (f ,q) and s1 , s2 E 

2<A + and an ordinal a < A+ such that 

V[G Al 1 2 1 2 
(f,q) liq *Q "(o- ,o- )extends (s ,s) /\ a E o-." 

(1) 

In order to come up with (f,q) and (s1 ,s2 ) and a we have to define a decreasing 

sequence ((f77 ,q77 ): 1J < A) of conditions below (f ,q) and auxiliary sequences 
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'Y + + 'Y ++ i 'Y . + where 8'T/ , a'T/ < A and T'T/ C .A and b C A and s ' s1 C_ .A and at stage 'T/ - 'T/ - /3,'T/' 'T/ 

of the construction we have 

> sup 
11'<11 

<lorn 
(s,t) fdomf'Y, 

11 

f',(s,t) U 
'T/ 

sup(a I U 8 1) 
11'<11 'T/ 'T/ 

'Yf u suppf, 
11'<11 11 

+ o, u T,,, = {,<A : B n <lorn q , =I= 0} u bo} 

V[G.A]{ 'TJ'<'TJ 'T/ 
f,,, 11 o 

Q(l) V, E T'T/ b~ B' n LJ <lorn q 1 
,,,, <'TJ 'T/ 

(i = 1, 2) 

V /3 E b 'Yo [3'TJ' < 'T/ q (/3) =/= 0 ⇒ (/,'Yo s2,,o) =/= (s1 s2 )] 
'T/ ,,,, /3,'T/ ' /3,'T/ 'T/' 'T/ 

V, E T'T/ V /3 E b~[3'T/1 < 'T/ q 1(/3) =/= 0 ⇒ top q'T/(/3) > 8,,,]. 
'T/ 

We construct the sequences by induction on 'T/ < A. If we have arrived at stage 'T/ < A 

and all requirements hold at the earlier stages of the construction we proceed as 

follows: Since Q(l) * Q is <A closed there is a condition (f* ,q*) ~ (f,q) which 

extends all (f , ,q , ) for ,,,, < 'T/· 
'T/ 'T/ 

(b~:, E T'T/) with 

Now pick f** ~ f* and T'T/ ~ LJ 
,,,, <'T/ 

<lorn q , and 
'T/ 
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+ o, u -
T 17 = {, < .X : B n dom q 1 =fa 0} U {,0 } 

V[G ] { I 17 f** II .X 17 <11 

Q(l) \/ 1 E T 17 bJ B' n LJ dom q 1 • 

,,,, <11 17 

Then pick ordinals a 17 < A+ and 817 < A+ and sets i, 'Y 
s/3 ' '17 

s~ C .X + (for 

1 E T 17 ,(3 E bJ ,i = 1,2) and a condition (f*** ,q**) :S: (f** ,q*) such that 

8
17 

> sup dom f**,'Y 
** 'Y (s,t)Edomf ' 

(s,t) U sup (a I U 8 1) 
,,,, <11 17 17 

1 E suppf** 

oi,, n C i,, (' (3 b' ) rr/3 u17 =sf3,1l 1=1,2, E 77 ,,ET77 

(f***,q**) 11 v[G.xJ in , i 
Q Q <, 017 = S17 

(1)* 
(i = 1,2) 

\/ (3 E bJ
0 

[377
1 < 77 q 1((3) =fa O ⇒ (s/3

1
''

0 
,s

2
(3':0

) =fa (s~ ,sij)]. 17 , 17 ,., 

Note that all this can be done since Q(l) * Q is <-X + Baire. Finally (using 4.1.5.) we 

pick (f17 ,q17 ) :S: (f*** ,q**) such that 

This completes the definition of the sequences. 

Now let a ~ sup a 17 and pick a condition f E Q(l) that extends all f 17 for 
11< .X 

17 < A such that for all I E LJ T 17 and all (3 E U b~ (s/3
1
'' ,s

2
(3'1 ) E dom f1 where 

n<.X 11<>. ·, -yeT17 
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si,, = LJ si,, (i = 1,2) and (s1 ,s2 ) E dom f10 where si a;=f LJ s~(i = 1, 2) and 
fJ C'.I)f 77<>. (J,77 .Ii 77<>. 

f,( 1,, 2,,)( 
sf] , sf] sup 

11<>. 
f3 f. dom q 11 
Q11(/3);t0 

Note that if 377 < >. q 77 (f3) =/= 0 then there is no conflict here. 

We also define q by 

dom q = LJ <lorn q 77 
C'.I)f 77< >. 

LJ q 77 ((J) U { sup top q 77 ((J)} if fJ E LJ bJ and q 77 ({J) =/= 0 
77 <).. 11<>. 11<>. 

Then ( f,q) is a condition 

properties that we want. 

q 11 (/3);t0 -yf.T 11 

for some 77 < >. 

otherwise. " 

in Q(l) * Q below (f ,q) and (s1 ,s2 ) and a have the 

□ 
end of 4.1.7. 

Corollary 4.1.8. For odd 1 < >. + 

---+ 

II V[G~,F,] VX ~ ;..+ 3Y ~ ;..+ F,(X,Y) is stationary. 

Proof. Let G be Q generic over V[G >. ,F 1] and X C >. +. Pick some a E A I with 

_G 
TO:' X (note that (rr( E A 1 ) is complete). We claim that F ,(X,Ga) 1s 
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stationary in V[G ,\ ,F 1 ,G] where Ga is the set ~,\ + that G adds at coordinate a. If 

q E G, then for all /3 E B' n a ( a}' )G -:p Ga since by the product lemma Ga is 

generic over V[G ,\ ,F, ,G n Qal• For all /3 E B' with /3 > a we get that q(,8) -=p 0 

implies ( a}' ,a}') -:p u· l ,Ga) by the definition of Q ,8 + l. Hence by 4.1.7. 

F ,(X,Ga) is stationary. □ 
end of 4.1.8. 

Lemma 4.1.9. For even 1 < ,\ + 

--+ 
V[G,\,F ,] + + II Q 3X ~ ,\ VY ~ ,\ F ,(X,Y) is nonstationary. 

--+ --+ 
Proof 4.1.9. Let G be a Q generic over V[G,\ ,F ,]. We claim that in V[G,\ ,F 1 ,G] 

VY~ ,\ + F,(G' ,Y) is dead. Let Y ~ ,\+and pick /3 EB' with (o-1'')G = G' and 

(o-~'')G = Y. Since I is even, at coordinate ,8 we add a club subset of,\+ disjoint 

from F,(G' ,Y). □ 
end of 4.1.9. 

--+ 
Now let G be Q generic over V[G,\ ,F ,]. The next step in our 4-step iteration will add 

a code S, ~,\for each F,('Y < ,\+). <-'+ Recall that 2 is the same whether 

--+ 
computed in V[G ,\ ,F, ,G] or in V[G ,\]. But V[G ,\] is just L[G ,\] since we started out 

,\+ + 
in V = L. Moreover G,\ ~ P,\ ~ L,\; hence 2< ~ L +[G,\] and has order type,\ 

,\ 

under the canonical wellordering <L[G ,\]" Thus each F, has a code F, ~ ,\ + 
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with Fi E V[G,\,Fi]. Now let Q(3) be the,\+ product with<,\ support of the posets 

(QF : i < ,\) where for each i < ,\ + the poset QF adds a code Si C ,\ for the set 
i i 

F,., C ,\ + via the < least almost disjoint family of size ,\ + of constructible subsets of,\, 
I - L 

Note that ,\ + = (,\ +f and ,\ 1s inaccessible and GCH~,\ holds m -V[G ,\,Fi ,G]. 

Thus as m the o-il1ri case each QF is ,\ centered and <,\ closed. Hence by a ~ 
i 

system argument Q(3) has the property ,\ + and is <,\ closed. Therefore in particular 

Q(3) x Q(3) is ,\ + c.c. and does not add any new subsets of ,\ + all of whose initial 

- - -segments are in V[G ,\,Fi ,G]. Thus in V[G ,\,Fi ,G,S i] we have: 

(4.1.10.) 

X, Y E A, .At, F ",\ + = (,\ +f A if F ~ ,\ + is the set coded by Si ~ ,\ via the 

< least constructible family of size ,\ + of almost disjoint subsets of,\ and if F is 
L 

+ + 
the Lipshitz function with dom F = {(U ,V) E 2,\ x 2,\ : Va < ,\ + 

F(X,Y) is not stationary"] 

for even i < ,\ + and 



-68-

(4.1.11.) VX ~ A+ 3Y ~ A+ V .Al, [A trans, .Al, F ZF-, IAI = IV A+ll, AA ~ A, 

X, YE A/\ AF "A+= (A+f /\Va< A+ X n a E L[GA]" . ⇒ . 

.Al, F " if F ~ A+ is the set coded by S, ~ A via the f least constructible family 

of size A+ of almost disjoint subsets of A and if F is the Lipshitz function with 

A+ + and rng F ~ {W E 2 : Va < A W n a E L[G A]} that is coded by 

+ 
F using <L[GA] on 2<A then (X,Y) E <lorn F and F(X,Y) is stationary."] 

for odd , < A+ . 

Now the final step Q( 4) in our 4-step iteration will be a A+ product with <A 

support of posets (Q(4):, < A+) each of which adds a club set C, ~ A such that 

2 

C, n {µ<A:µ inaccessible Vµ F ~E
3

( s,n Vµ, GA n Vµ, Anµ)}= 0 

L'2 2 + 
where~ 3 denotes the E

3 
formula in (4.1.10). Note that for each, < A IQ(4 )1 = A 

and fo~ each 6 < A, Q(4) has a dense suborder that is 6 closed. Therefore Q( 4 ) has 

the property A+ and for each 6 < A has a dense suborder that is 6 closed. So in 

particular Q(4) x Q(4) has the A+ c.c. and does not add any new subsets of A+ all of 

--+--+ --+ --+--+ 
whose initial segments are in V[GA,F,,G,S,]. Hence in V[GA,F,,G,S,,C,] we still 

have (4.1.10.) and (4.1.11.). This completes the definition of the certain 4-step 



-69-

iteration that we want to do at stage A. Clearly for even , < A+ 

2 

where <I>.!7 3 1s as in ( 4.1.10). The rest of the clauses in the definition of the iteration 

P IC+ 1 are as in Section 1. Note that as in Section 1: 

II Vo "the tail PA+l,1C+l has a< a closed dense suborder for each a<µ" 
PA*QA 

whereµ is the least inaccessible >A. Thus 

II V "there are no E
3
2 

indescribables <IC." 
PIC+l 

As a minor technical point one might wonder how we can uniformly (in A ~ IC) pick the 

parameters that one needs to define the second step of the four-step iteration at stage 

---+ 
A. For this note that when we arrive at this step we are working in L[G A ,F 1 ] where 

---+ 
F I is V[G A] genetic for the first step at stage A, Thus we can simply pick the 

< ---+ least family of parameters to define the poset at the second step. 
L[GA,F,] 

4.2. Preservation of the 11~ Indescribability of IC in V p IC+ 1 

The aim of this section is to prove 

"Pv1 "1C is 11~ indescribable." 
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Assume towards a contradiction <I>( A) is JI; and A E V p IC+ 1 is a name for a subset of 

VIC and p E P IC+l with 

0 

PII p "<I>(A) describes IC." 
IC+l 

We pick an ordinal 8> the least inaccessible above IC such that V 8 F "ZF- /\ Pl~ 
IC+l 

0 

<I>(A) describes IC." 

Note in particular P IC+ 1 
V5 

P 1C+l E V 8 . By using standard arguments we can 

find a transitive M with IMI = IC and M<IC C M and an elementary embedding i: M 

Mo o 
p and i( A) = A. Since IC 

is JI: indescribable in V we can find transitive N with INI = IC+ and NIC ~ N which is 

E~ correct for IC and an elementary embedding j: M --+ N with cpt j = IC. In order to 

finish the proof we have to come up with a V generic VG for P IC+ 1 with p E VG an 

M generic MG for Mp 1C+l and an N generic NG for Npj(1C)+l such that i lifts and j 

lifts and N[NG] is I:~ correct for IC inside V[V G]. Then we get a contradiction as 

outlined in Section 1. 

Constructing MG and VG. 

Note that P~ = PIC since M<IC ~ Min V. So we pick a V generic GIC for PIC with 

pj1C E GIC and i lifts, since clearly i(p) = p for p E PIC. 
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M 

In the next step we consider Q(l) * Q. Let (Da: a < 11:) E V 8[G11:] be an enumeration 

of all sets E M[G11:] which are dense in MQ(l) * MQ. Below any condition (Mr°,Mq) 

that (Mf77 ,Mq 77 ) E D 77 (for 77 < 11:) and there is a condition (f,q) extending all (f77 ,q 77 ) in 

Q(l) * Q where f77 = i(Mf77 ) and q 77 = i(Mq 77 ). The construction of this sequence 

takes place in V[ G 11:J but any initial piece of it is an element of M [ G 11:J since this is < 1,, 

closed inside V[G11:] because P,,, is 11: c.c. At stage 77 of this construction we pick MT 77 

MT77 = {, < ,,,+:M1P n u <lorn Mq '=I= 0} 
1J1<1J 1J 

\:/-y E MT77 bJ = MiP n LJ <lorn Mq 1 

77' < 1J 1J 



and /3 E bJ with 

and 

-72-

dam Mf11(s,t) 
T/ 

u 

Once the sequence ((Mfr, ,Mqr,): 'TJ < ,c) has been defined we use the elementarity of 

i:M[G,-]--+ v8[G,-] to see that there is a condition (f,q) below all the (f7J,q'TJ) for 

'TJ < ,c. Let MF,* MG denote the filter generated by ((Mf7J,Mq'TJ):7J < ,c). Clearly 

MF 1 * MG is M[G,-] generic for MQ(l) * MQ. Pick any V[G,-] generic F 1 * G for 

-Q(l) *_ Q with (f,q) E F 1 * G. Then i lifts; i.e., 

M 
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For the last two steps of the 4-step iteration at stage 1,, where we code the Lipshitz 

functions by subsets of 1,, and then add the club sets ~ 1,, note that both posets are 1,, + 

c.c. Hence the pullback method works because cpt(i) = (1,, +)M > 1,,. So we have 

found an M generic MG for Mp 1,,+l and a V generic VG for P 1,,+l with 

M[MG] --+ V8[VG] 
i 

PM 
,,,+1 

p 
K+l 

M --+ v8 . 
1 

Construction of NG. 

Note that Np,,, = j(P,,,) n V,,, = P,,,, since P,,, ~ V,,, and cpt j = "'· In particular 

j(p) = p for all p E P,.,. Thus if G is any N[G,.,] generic for the tail Np "() then j 
K,J K, 

will lift; i.e. 

M[G,,,] --+ N[G,,,*G] 
j 

P,,, Np 
j(1,,) 

M --+ N. 
j 

We also want to choose G in such a way that N[G,., * G] remams E
2 

correct for 1,, 
2 

inside V[V G]. First we note 



-74-

Lemma 4.2.1. N[G11:] is E~ correct for 11: in V[G11:]. 

Proof. Recall that P 11: C V 11: and is 11: c.c. The proof is very similar to the proof of 

II.1.1. D 
end of 4.2.1. 

The 11: c.c. of P 11: implies that N[G11:] is closed under 11: sequences inside V[G11:]- Thus 

N Q(l) (the poset at the first step of stage 11: of N Pj(11:)) equals Q(l) (the poset at the 

first step of stage 11: of P 11: + 1). 

permutation II of 11: + such that 

In the ground model V = L we pick the < least 
L 

+ 1:1 + + M II: Even11: --+ Even 11: - Even ( 11: ) 
onto 

Odd 11: + ..!J Odd 11: + U Even (11: +)M . 
onto 

Now let NF, = F II(,) for,< 11: +. Clearly NF, is Q(l) generic over N[G11:l• 

Lemma 4.2.2. N[G.x ,NF,] is E~ correct for 11: inside V[G11: ,F ,]. 

~ - + Proof. Note that N[G11:, F ,] = N[G11: ,F ,] and that IQ(l)I = 11: . Thus Q(l) can be 

coded by a subset of V 11:+l. Moreover Q(l) is <11: + closed; thus II Q(l) V k+l = 

Now the proof of the lemma is a routine matter. D 
end of 4.2.2. 
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The correctness argument for the next step involving the poset Q will require a lot 

more work. For this we need two more technical facts about Q. The first one will say 

that different choices of parameters all lead to isomorphic posets Q. We begin with a 

criterion which guarantees that we obtain a condition in Q, when we thin out certain 

coordinates of a given condition in Q. 

Definition 4.2.3. Fix a family of parameters to define the poset Q. A set S C 1,, ++ is 

said to be complete ( relative to these parameters) if for all 1 < 1,, + 

V( EA I n S V(17,h) E r ( (dom h ~ ( ⇒ dom h ~ S) 

V( E B 1 n S 'v'(17,h) E a-~ 1 (dom h ~ ( ⇒ dom h ~ S) (i = 1, 2) 

Definition 4.2.4. Given a fixed family of parameters and S ~ 1,, ++ define 

QS { q E Q : dom q ~ S) 

and for each ( < 1,, ++ 

and fof r < "'+ and ( E Ar 

81} = {(17,h): 3f((17,f) E r ( /\ h ~ f /\ h E Q~)} 

and similarly for ( E Br and a-~1 (i = 1, 2). If it is clear from the context we will drop 

the letter S and simply write, for instance, r ( . 
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Lemma 4.2.5. Suppose S ~ 1,, ++ is complete relative to a fixed family of parameters. 

++ Then for each ( ~ 1,, and all q E Q( 

qJS E Q( and 

Proof. We proceed by induction on (. Note that the first claim implies the second 

claim of the lemma. The cases ( = 0 and ( a limit ordinal are clear. To prove the 

first claim for a successor ~ + 1 < 1,, + + and a condition q E Q( + 1 we can assume 

( E dom q and ( E B' n S for some 1 < "'+. Suppose towards a contradiction that 

qJS ~ Q~ +l. Then there is a condition q' E Q~ with q' ~ qJS and 

This is true since the completeness of S implies that for any H which is Q( generic over 

HnQS · 
V[G,,,,F,] u·i)H =(fi) ( for all T/ EA' n sn ( and similarly for 11,'(i = 1, 2). 

Moreover for TJ EA' n ( ((o-~'')H,(a-~'')H) = ((f-i)H,HT/) implies TJ ES. 

- If we define q" E Q( by 

q" J(S n () = q' 

q" I(( - S) = qj(( - S) 

then with the remarks above 
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which contradicts q E Q( +l. □ 
end of 4.2.5. 

two families of parameters and Q and Q be the corresponding posets. We will define a 

sequence of functions ( e( :( < K ++) such that 

r r -r -r -
1/ E A n ((B n ( resp., C n ( resp.) ¢::::> e((TJ) E A (B resp., C resp.); 

let e0 .?= 0 and for a limit ( < K ++ let e( = LJ eT/ • 

TJ<( 

If we arrive at a successor ( + 1 and ( ~ dom e( there are three cases: For ( E A 'Y 

(for some r < K +) fix the minimal 1/ E A:7 with 1/ ~ sup + rng e( and 
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note that ( ~ dom e() and let e( + 1 ( () = 77. For ( E Br (for some r < 11: +) fix the 

minimal 77 E Br with 1J ~ sup+ rng e( and a'"~r - ( a-~r t( (i = 1, 2) and let 

e(+l (()=77. For ( EC fix the minimal TJ EC with Tf > sup+rng e( and let 

If ( ¢ rng e( U {77}, then again there are ( cases: -r For ( E A (for some 

. e :-1 
r <,.+)fix the minimal e ~sup+ <lorn e( .u. ( + 1 with T~r = (i=",r) (,, For ( E 

13r (for some I < K +) fix the minimal e ~ sup+ <lorn e( .u. ( + 1 with a-:t 
-1 

. e( 
(-&-( 7 ) (i = 1, 2) . For ( E C fix the minimal t, E C with t, ~ sup+ dame( .u. ( 

Note that all this is possible since the sequences of terms and pairs of terms are 

complete. 

Lemma 4.2.6. For each ( with 11: + ~ ( < K. ++ dom e( ~ K ++ is complete (rel. to 

++ -the paramaters for Q) and rng e( ~ 11: is complete (rel. to the parameters for Q). 

Proof. This is immediate from the definition of the sequence (e(: ( < K. ++). 

D 
end of 4.2.6. 
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Lemma 4.2.7. For any ( < "'++ 

e rnge dome 
q ( E Q ( for all q E Q ( 

and 
e- 1 dome _rnge( 

q ( E Q ( for all q E Q 

dome( _rnge( dome( 
Thus e( induces an isomorphism of Q with Q . Moreover, if H is Q 

- e( 
generic and H = {q :q E H} 

V1<K + 'r/11 E A I n dome( (rZ)H = c~z((v))H 

w + w B'i' n d (_i,'i')H (~i,1 )H 
v 1 <K vll E om e( u 11 = u e((v) . 

Proof. The case ( = 0 is clear. 

Now suppose we are considering a successor ( + 1 < "'++ and 

dome(+l + 
q E Q . We can assume ( ~ 1,, • The worst case that can happen is that 

we have to add first ( to the domain of e( and then ( to the range of this function in 

order to get e( + 1 from e(: 

clearly dom e( U {e} is complete relative to the parameters of Q. Hence by 4.2.5. 

dome( U {e} 
qj(dome( U {e}) E Q 
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Proof of Claim 1- It suffices to show 

-, + - -We can assume ( E B for some , < x: and ( E <lorn q. Let H( be Q( generic with 

_ rng e ( _ _ _ _ e ( _ 
Pick a Q generic H with H n Q( = H( and (qjdom e() E H. 

<lorn e( e( dome( 
Then H = {f E Q :f E H} is Q generic and qjdom e( E H. Thus we 

G_Df 

-get in V[Gx: ,F, ,H]: 

dome( U {e} 
because qj(dom e( U {0) E Q 

Since#~' ~ x: + x Q( this is equivalent to . 

e( +l _rnge( +l 
Claim 1- q E Q . 

- -This yields in V[Gx: ,F, ,HJ 

□ 
end of proof of claim 1. 
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-'Y + e(+l 
Proof of the Claim£· We can assume that 'f} E B for some 1 < 1,, and q ('fJ) =/:- 0. 

e(+l 
We know already from claim 1 that q l7J E Q'f}. Now let H be Q'f} generic with 

By 4.2.6. 
_rnge( rnge( 

H n Q lS Q generic. Then H ~ {f E 

dome( e( _rnge( dome( 
Q :f E H n Q } is Q generic and qJdom e( E H. The 

completeness of <lorn e( U { (} relative to the parameters of Q yields qJ( dam e( U { (}) 

dome,u{(} -+ 

E Q . Thus in V[G,_ ,F 1 ,HJ 

Since o-~1 ~ K + x Q( this is equivalent to 

-+ -
Therefore we obtain in V[G,. ,F 1 ,HJ 

0(H ((.::...'Y)H -A, n ) (.::...1,'Y)H c-2,'Y)H F -c )) , 1 , r v : v E rng e ( , <T 'fJ , <T 'fJ , 1 ,q 'f} • 

The completeness of rng e( U {'fJ} relative to the parameter for Q yields 

□ 
end of proof of claim 2. 

-1 d 
_rnge(+l e(+i ome(+l 

A similar argument shows that for q E Q q E Q · 
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Finally it is immediate from the definition of e( + 1 that the the part of the 

lemma about the terms holds and in fact we have already used this in the proofs of the 

claims above. 

++ dome( 
Now suppose ( is a limit ordinal <1,, and let q E Q For each v < ( 

qldom ev E Qdomev by 4.2.6. Thus by induction hypothesis (qldom ev)ev E 

-Qrngev N . d . ++ h h e(I -Q . ow one can use m uct1on on v < 1,, to s ow t at q v E v . At a 

successor v + 1 < 1,, ++ with v E B' for some; < "'+ and /( (v) =/= 0 pick some l < 

( with v Edom (qldom ee)ee Then (qldom ee)eelv II Qv 0. Since qe(lv ~ (qldom 

ee e( e 
ee) Iv, we get q Iv I~ 0. Hence q (Iv+ 1 E Qv+l · A similar argument shows 

Qv 

rnge( e/ dome( 
that for q E Q q E Q The rest of the lemma is immediate for a limit 

ordinal(. 

D 
end of4.2.7. 

Corollary 4.2.8. Up to isomorphism there is only one 1,, ++ iteration Q in V[G,,, ,F ,] 

that uses (F 1 : ; < 1,, +), D 
end of 4.2.8. 

The second technical result about Q illustrates that for any coordinate ( < 1,, + + , if we 

consider the tail Q + + of the poset Q inside V[G,,, ,F ,] Q(, then this looks pretty 
(,1,, 

much like the original poset modulo a minor modification. 
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Before we can prove this we need to set up some notation. Suppose that in 

V[ G,. ,F 1 ] we pick a family of parameters to define a x: + + iteration Q. If 8 < x: + + 

-+ -+ 
and H 8 is Q8 generic over V[G,. ,F ,], in V[G,. ,F 1 ,H8], let: 

o -+ Q8 
Pick a canonical name Qb,( E (V[G,. ,F ,] for Qb,( . For each q E Q((8 < ( < 

++ o -+ Q8 
x: ) pick a term qb,( E V[G,. ,F ,] with 

Lemma 4.2.9. For each ( with 8 ~ ( ~ x: ++ 

0 

defines an isomorphism of Q( with a dense suborder of Q 8 * Qb,(. 

□ 
end of 4.2.9. 

Next we associate with each nice Fn(x: ++,2,x: +)namer for a subset of x: + a canonical 

-+ Q8 
name 8r E V[G,. ,F ,] such that 

(4.2.10.) II Qb 8r = {(77,h): 1J < x: +, h E Fn([8,x: ++),2,x: +) /\ 

-3f E f:lg E Fn (8,2,,-+)[(17,g-h) Er I\ f~ g]}. 
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Note that 

I~ "8r is a nice Fn((8,x: ++),2,x: +) name for a subset of x: + ." 
8 , 

Lemma 4.2.11. For any complete sequence (r(:( < x:++) of nice Fn(x:++,2,x:+) 

names for subsets of x: +. 

II Q
8 

"( 8r (: ( < x: ++) is a complete sequence of nice Fn((8,x: ++),2,x: +) 

names for subsets of x: + ." 

- -Proof. Let H be Q8 generic over V(Gx: ,F ,] and in V(Gx: ,F 1 ,H] let <7' be a nice 

Fn((8,x: ++),2,x: +) name for a subset of x: +. We pick q E H and 3- E V(Gx: ,F ,] Q8 

with 3-H = <7' and 

qll Q
8 

"3- is a nice Fn((8,x: ++),2,x: +) name for a subset of x: + ." 

Now define a nice Fn(x: ++ ,2,x: +) name for a subset of x: + T E V(Gx: ,F ,] via 

hl6 II Q8 (11,hl(6,x: ++)) E 3-}. 

From ( 4.2.10) we obtain 

qll Q6 6T = 3-. 

The completeness of ( T (: ( < x: ++) in V(Gx: ,F ,] yields that there are arbitrarily large 

( < x: ++ with r ( = r. Obviously we have for any such ( 

□ 
end of 4.2.11. 
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In the sequel we will not always distinguish between 6r (which is a name for a 

term) and its interpretation (which IS an element of 

++ + 
(V[GIC ,F 

1 
,H])Fn([

6
,IC ),

2
,1C )) unless there is reasonable danger of confusing these 

two objects. 

We are now going to define what we mean by a modified 6, IC++ iteration. 

Suppose that m V[GIC,F1 ] we have a partition of 6 < IC++ into A1 (1 < IC+), 

B 1 ( 1 < IC+) and C with IC+ ~ C and for each ( E A 1 ( 1 < 11: +) and T/ E B 1 ( 1 < IC+) 

h . ( ++ ) I l,1 2,1 C b f + we ave mce Fn IC ,2,IC names r (, r,T/ , r,T/ 1or su sets o IC . 

-Now let H be V[GIC ,F 1 ] generic for the iteration Q8 defined from the 

parameters. Suppose that in V[GIC ,F 1 ,H] we partition [6,IC ++) into cofinal pieces 

-1 + -1 - , - 1 1,1 2,1 A (1 < IC ), Band C and we have sequences (r(:( EA) and ((if( ,if( ):( E 

B1 ) that are, for each 1 < IC+, complete for Fn([6,1C ++),2,IC +). Working in 

V[GIC ,F 1 ,H] we define the modified 6, IC++ iteration Q((A1 : 1 < IC+), 

(-B 1 - +) -C (-1 ( E A1 < +) ((- 1'1 - 2'')) ( E B1 )) by induction on a : I < IC , , T ( : , I IC , <, ( ,<r ( 

and for limit a 
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- + -Q 8 = {f E Fn([8,a),2,IC ) : V /3 E [8,a) fJ(b,/3) E Q8 /3} 
,a ~f ' 

-, - + for a E A or C for some , < IC : 

- + -Q, +l = {f E Fn([8,a+l),2,IC ):fJ[8,a) E Q, } u,a ~f u,a 

and for a E B' for , < IC+ 

Q. +l = {f E Fn([8,a+l),2,1C +) :fJ[8,a) E Q. /\ fJ[8,a) 11 - 0} 
u,a ~f u,a Q 

8,a 

where the formula 0 says: 

(..2...l,, ..2... 2,,) f( ) · d"t· ~ k"ll" F (..2...l,, ..2... 2 '')] f( ) OJ 17 a ,17 a I\ a 1s a con 1 10n 1or 1 1ng , 17 a ,17 a V a = . V. 

-, 
where for 'T/ E A 

and similarly for :F~'. 

By an analogous proof as in 4.1.3. one can show that modified 8, IC++ 

iterations are <1C + Baire. Moreover the analogue of 4.2.7. shows that up to 

isomorphism there is only one 8, IC++ iteration in V[GIC ,F, H] (that is modified by 
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(F +)) F ++ . . Q . V[G --.F ] d fi d f 
1 : 1 < 1,, • or any 1,, 1terat1on m ,,, , 'Y e me rom parameters 

H that is Q8 generic over V[G,- ,F 1 ] there is a canonical 8, 1,, ++ iteration Q in 

-V[G,- ,F 1 ,H] whose parameters arise from the parameters for Q. For this recall that 

are complete in V[G,,, ,F 1 ,H] for Fn([8,,- ++),2,,- +). The following lemma shows that 

at any intermediate stage 8 < 1,, ++ Q factors in a nice way. 

- ++ Lemma 4.2.12. In V[G,,, ,F 1 ,H] we have for each ( E [8,,- ] 

Proof. We proceed by induction on 8 ~ ( ~ ,- ++. If ( = 8 then note 

If ( ~ ,-+ + is a limit ordinal we distinguish two cases: If cf ( () ~ ,-+ the claim 

follows from the induction hypothesis since all conditions have size ~'-, so we can 

assume cf(() ~ 1-. Clearly Qf( ~ Q8,(. Now we suppose q E Q8,(. Then we pick 

S ~ [8,() cofinal in ( with ISi ~ 1,,. For each v E S there is hv E H with hv U qlv E Qv. 

- + Note that the sequence (hv:v ES) E V[G,,,,F 1 ] by the <1- Baireness of Q8 . Thus 

we can pick h E H with hi! Q
8 

Vv E S hv E r. 
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Proof of the Claim. Show by induction on v that for 8 ~ v ~ ( h-qjv E Qv. If 

v = 8 this is clear and also the case of v being a limit ordinal is immediate. Now 

consider a successor v + 1. We can assume v E B' for some , < "'+ and v E <lorn q. 

Suppose towards a contradiction that we don't have h-qjv I~ 0. So there is a 

condition f E Qµ with f ~ h-qjv and fll Qv -, 0. Let µ be the least ordinal >v in S. 

Since hll Q
8 

hµ E r and fj8 ~ h, we can find g E Q 8 extending both hµ and fj8. Now 

a contradiction since f ~ h-qjv. 

□ 
end of proof of claim 

The claim yields q E Qr,(. 

Finally consider the case of a successor ( + 1 < "'++. Note that by induction 

hypothesis Qr,( = Q8,(. We will need the following: 

Fact. _If K is Qr,( generic over V(GK, ,F, ,H] then for each , < "'+ and v E A, n [8,(] 

where <1>8 is as in 4.2.9. and similarly for a-~' (v E B' n [8,(]). 
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t E Fn([8,,c ++),2,,c +) with t ~ h and (77,t) E (8-rZ)H. Then pick f" E H and 

g E Fn(8,2,,c+) with -r'' ~ g and (77,g-t) E rZ. Choose -r'" E H such that f"'-h E Qv 

and let f' E H be a common extension of f"' and -r''. Now (77,-r'-h) E rZ since 

<I>- 1[H*K] 
-r'-h E Qv and -r'-h ~ g-t. Clearly <1> 8(-r'-h) EH* K. Thus 7J E (rZ) 8 

r <I>-l[H*K] 
Conversely assume 77 E (rv) 8 ; then fix f E H and h E K with rh E Qv and 

□ 
end or the proof of the fact 

Now we proceed with the successor case and consider q E Qr,( +l. We pick h E H 

with h-q E Q( +l. We can assume ( E <lorn q and ( E Br for some r < ,c +. Then 

we obtain 

The fact yields that 

Hence q E Q«5,(+l · 
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Conversely if q E Q8,( +l we can assume ( E <lorn q and ( E B' for some 1 < IC+. 

0 0 

Now we pick h E H with h-ql( E Q( and hll Q.5 q E Q8,( +l, where Q8,( +l E 

-+ Q8 - -+ 
V[G1C,F,] is a canonical name for the poset Q.5,(+l E V[G1C,F,,H] that we 

defined above. Now we have 

-+ 0 
V[G F H] 

"qi( II IC~ ,, 

Q8,( 

0 -+ Q.5 0 
where H is a canonical name E (V[GIC ,F ,]) for the Q8 generic H and K is a Q8 

0 0 
name for the canonical Q.5,( name for the Q.5,( generic. By applying the fact we get 

OH □ 
Thus h-q E Q(+l and therefore q E Q8,(+l · end of4.2.12 

We are also going to use the following specialization of this: Suppose that in 

V[GIC ,F ,] we have defined a IC++ iterationQ such that for some 8 < IC++: 

(4.2.13.) v, < IC+ v, EA, n 8 supp r; n Even + M = 0 
'> ( IC ) 

supp u~' n Even + M = 0 
'> ( IC ) 
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-+ Fn(1C++,2,1C+) 
where for r E V[GIC ,F rl we define 

supp r ~ U{dom h:3u (u,h) Er}. 

A similar argument as m the proof of 4.2.5. shows that for each q E Q 0 

b-Even + M 

ql(b - Even + M) E Q 0 (IC ) The key point is that for any Q 0 generic H 
(IC ) 

( o-(l,r )H -:/= Hr for any r E Even + M and ( E Br n b since supp &(l,r ~ ( - Even + M. 
(IC ) (IC ) 

b-Even + M 
Therefore Q 0 (IC ) ~c Q 0 . 

b-Even + M 

N H . Q~ (IC ) . ow suppose rs u generic over 

-+ -+ 
V[G1C,Frl- Then in V[G1C,Fr,Hl let 

where ( ~ 0 and h o q E Fn(b + (,2,IC +) is defined as follows: 

h o q(11) = q(b + e) if II is thee-th ordinal E Even + M 
~f (IC ) 

h o q(11) = h(11) if II E b - Even + M 
~f (IC ) 

We let be a canonical name for 

*Q + M and for each q E Qb+( we pick a canonical name *q + M 
b,b+(IC ) +( b,b+(IC ) +( 

b-Even + M 

Q 
(IC ) 

-+ b 
E V[G1C ,F rl such that 
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qlEven + M ;:::ql[8,8 + () = *q M + ] ] 
(11: ) 8,8+ (11: )+( 

where for g E Fn(Even + M, 2, 11: +) and h E Fn([8,8+(),2,11: +) we define 
(11: ) 

g;:::h E Fn([8,8+(11: +)M + (), 2,11: +) by 

g;:::h (8 + v) ;ff g(e) where e is the v-th element of Even + M 
-.i1f (K ) 

and 

As in 4.2.9 we have that 

defines a dense embedding. 

-- Working inside V[G11: ,F 1 ,H] we are now going to define what we mean by a 

special modified 8, K ++ iteration *Q ++. This is very similar to a modified 8, 11: ++ 
8,11: 

iteration except that at the first M(11: +) many coordinates ~8 we have to add subsets 

of 11: + such that: If I is the e-th even ordinal < (11: +)M then the set ~ 11: + that we 

add at coordinate 8 + e will be a witness for the E~ statement that we want to hold 
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about F1 . In analogy with (4.2.10.) we will also associate with each nice 

+ -+ -+ Q8-Even(11: +)M 
Fn(11: + ,2,11: +) namer E V[G11: ,F 1 ] a canonical term 6r E V [G11: ,F ,] 8 

such that 

llt--------:-----
8-Even + M 

Q (11: ) 
8 

* . + ++ + 8T = {(17,q) .17 < 11: , q E Fn([8,11: ),2,11: ) /\ 

clearly 

Ii-I---,----- "1r is a nice Fn([8,11: ++),2,11: +) name for a subset of 11: +,, 
8-Even + M u 

Q (11: ) 
8 

and just as in 4.2.11., for any complete sequence ( r (: ( < 11: ++) of mce 

Fn(11:++,2,11:+) names for subsets of 11:+ 

II 8 
. "nr r: ( < 11: ++) is a complete sequence of nice Fn([8,11: ++),2,11: +) 

-Even + M u '> 
Q (11: ) 

8 

names for subsets of 11: +,, 

8-Even + M 

If we ~re in the special situation described in ( 4.2.13.) and H is Q8 (11: ) generic 

over V[G11: ,F ,], then in V[G11: ,F 1 ,H] there 1s a natural special modified 8, 11: ++ 

iteration *Q that refers to (H': 1 E Even + - Even + M) and (((fh)H ,H 77 ): 77 E 
/'i, ( /'i, ) 

A I n 8, 1 < 11: +) and uses (F 1 :, < 11: +) and whose parameters arise from the 
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parameters of Q via the operation T -+ 'Jr above. The same ideas as m the case of 

modified iterations lead to the following factor lemma: 

(4.2.14.) For all ( E [0,11: ++] 

Once we are familiar with these facts it is rather easy to find a generic g for QN ( the 

poset at the second step of stage K in Pfc11:)+l) from the generic G for the poset Q 

that we use at the second step of stage K in PK+ 1. 

In the ground model V = L let II* denote the following injection defined on K + + : 

II*(() = II(() if ( E Even +. 
K 

II*(() = ( if ( E K + + - Even +. 
K 

Th II* ++ 1:1 ++ E en : K --+ K - ven . + M . 
onto (11: ) 

II* induces-a map II*:Fn(11: ++ ,2,11: +) --+ Fn(11: ++ - Even + M ,2,11: +); using 
(11: ) 

this map we can associate with each nice Fn(K ++ ,2,11: +) name T for a subset of K + a 

nice Fn(11: ++ - Even + M ,2,11: +y name TIT* for a subset of K + in the usual way. 
(11: ) 

Recall that in N[G11: ,NF,] we have partitioned (11: ++)N into cofinal pieces Ne, 

(NA 1 : 1 < K +) and (NB 1 : 1 < K +) and we have complete sequences (N r;: 1/ E 

Fn((11: ++)N ,2,11:) names for subsets of K + from which we define the iteration (N Q(: ( 



-95-

Now in V[GIC ,F 1 ] pick a partition of IC++ into cofinal pieces *C, (* A 1 : 1 < 

IC+), (*B 'Y ,'Y < IC+) such that *c n (IC ++)N = NC and for I < IC+ NA 'Y = * A IT(,) 

n N (1C ++) and NB 1 = *BIT(,) n N (1C ++) and pick for each 1 < IC+ complete 

sequences (*rJ:,,., E *A') and (*u~'',*u~''):'T/ E *B') of (pairs of) nice 

Fn(1C ++ ,2,IC +) names for subsets of IC+ such that for 1 < IC+ and 'T/ E NA 1 *r~( ,) 

* IT(,) 
supp TT/ n Even + M = 0 and 

(IC ) 

* i,IT(,) n 0 supp <TT/ Even + M = . 
(IC ) 

Thus, if (Q(: ( :::; IC++) denotes the IC++ iteration that is defined in V[GIC ,F ,] from 

- N ++ these parameters and uses F I we have for each ( with O :::; ( :::; ( IC ) 

(-Even + M 
*Q (IC ) C *Q 

( _c ( 

and 

By 4.2-.8. Q and *Qare isomorphic. Let G (coming from Gv) be the Q generic and G* the 

N ++ (1C )-Even + M 

pullback of G to *Q via an isomorphism of Q with *Q. Let g* ~ G* n *Q (IC ) 
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and g the pullback of g* to N Q via the map II*; i.e., g 

Clearly g is N Q generic. Now we have to show 

(4.2.15.) N[GK ,NF 1 ,g] is E~ correct for K inside V [GK ,F 1 ,G]. 

We begin with 

Lemma 4.2.16. Suppose that N F ZF- is transitive and N F ZF- and NK .c;;; N and 

N is E~ (n 2::: 0) correct for K inside V where for some S c;;; K 

for ( E A 
I and o'~

1 = o-~
1 (i = 1,2) for ( E B I for each 1 < K +. If Q E N 

and Q E V are the corresponding iterations defined from these parameters both using 

(Fi: r- < K +) and if G is Q generic over V, then N[G n Q] is E~ correct for K in 

V[G]. 

Under the hypotheses it is clear that Q is an initial segment of Q 

(i.e., Q = Q ++ N). Therefore G n Q is N generic for Q. We proceed by induction 
(K ) 

on n. 
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The case n = 0 is clear: .N"[G n Q]IC ~ .N"[G n Q] inside V[G] because Q and 

Q are both <IC+ Baire. 

Now we handle the case n + 1. Because of the induction hypothesis it is 

enough to consider <I>(A) in n!+1 and A E (.N"[G n QDIC+2 with .N"[G n Q] F "VIC F 

<I>(A)" and to show that V[G] F "VIC F <I>(A)." By the IC++ c.c. of Q in .N", we fix 

8 < (IC ++).N" and a nice name A E Q8 for A and a condition q E Q8 n G with 

q I~ "VIC F <I>(A)." 

Then clearly 

Moreover, by the factor lemma 4.2.12. and by the analogue of 4.2.8. for modified 8, 

++ 't . IC 1 erat1ons 

"for all modified 8 ,IC++ iterations that refer to ( G 1 : 1 E Even +) 
IC 

If- VIC F <l>(A)." 

The induction hypothesis applied within .N"[G n Q8] yields in .N"[G n Q8] 

V .Ab(.Ab trans, .Ab F ZF-, I.Abl = IV 1C+ll, .AblV ICI ~ .Ab, .Ab E~ correct for IC, 

(G' : 1 E Even +) E .Ab, (((rJ)G ,G,,,):TJ EA I n 8, 1 < 1C+) E .Ab, 
IC 

+ ++ A E .Ab, (F,:, < IC ) E .Ab, .Ab F 8 < IC .=>. 
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.Ab F "for all modified 8 ,1,, + + iterations that refer to ( G' : , E Even +) 
K, 

II- V K, F <I>(A)"]. 

are all subsets of 1,, + can be coded by one subset of V i,;,+l. We can also express .Ab F 

8 < i,;, ++ by picking, in if a wellorder of V i,;,+l of order type 8 and then requiring that 

this wellorder of (i.e., a subset of V i,;,+l) be in .Ab. This formula will be E~ in this 

parameter. For each 1 < i,;, + F I C L[S] where S ~ 1,,. Hence we can use the canonical 

<K+ + + wellorder < L[S] on 2 to code each FI by a subset of 1,, • Then again these 1,, 

subsets of 1,, + can be coded by one subset of V i,;,+l. Therefore the last formula is 

formula which is II
2 

over V 1,, must hold m V[G n Qc]• Together with another n+l u 

application of 4.2.12. this yields: 

V[G] F "VI,, F <I>(A) ." D 
end of 4.2.16. 

We now return to the proof of (4.2.15): 
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We assume that <I>(A) is .ll~ U E~ and A E (N[G1C ,NF 1 ,g])IC+ 2 with 

and we have to show 

N 
N ++ 0 N-+ Q8 ° g Pick a 8 < (1C ) and a mce name A E N[GIC, F ,] with A A and a 

condition q E Q8 n g such that 

N-+ o 
N[GIC' F ,] I= "q I~ VIC I= <I>(A)." 

Q 

Lemma 4.2.16. together with the factor lemma 4.2.12. yields 

(4.2.17.) V[GIC ,NF 1 ,g] I= for all modified 8, IC++ iterations that refer to 

N-+ [ -+ *] . * Now recall that V[G1C, F 1 ,g] = V GIC ,F 1 ,g , which we call V from here on. 

Moreover by (4.2.14.) in V* the tail *Q ++ of *Q is equal to a special modified 
8,IC 

8,IC ++ iteration that is modified by referring to ((g *,'Y:, E IC+ - Even + M) and 
(IC ) 

* 
(((*fh)g ,g*'17 ):17 E *A' n 8, 1 < IC+)) and uses (F,:, < IC+). The correctness 

argument will be finished if we can show 
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(4.2.18.) V* F for all special modified 8, 1,, ++ iterations that refer to 

( *,1' ) g : 1' E Even + - Even M + and 
If, (1,, ) 

* 
(((*r;)g ,g*T/):r, E *A7 n 8, 1' <,,,+))and that use (F7 :7 < ,,,+) 

If- "V If, F <I>(A)." 

The rest of the correctness argument will therefore be concerned with establishing that 

(4.2.17.) implies (4.2.18.). 

In the remainder of this section all modified 8, a iterations (where a E [8,1,, ++]) will be 

(NF 1': 1' < 1,, +) and all special modified 8, a iterations will be referring to (g *,1': 1' E 

* Even+ - Even M ) and (((*r;)g ,g*,T/):r, E *A7 n 8, 1' <,,,+)and will use 
If, (1,,+) 

(F 1': 1' < ,,, +). 

The key point in proving that (4.2.17.) implies (4.2.18.) is the following back and forth 

property of modified and special modified 8, 1,, ++ iterations in V*: Suppose we are 

given a modified 8, 8 + 81 iteration Q8 8+8 ( 81 < 1,, ++) that is defined from a 
' 1 
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l---t----------------+-----
6 6 + (,c+)M 6 + (,c+)M + 61 

1--------------+-----------
6 

Bil(,) = i [B '] and 
~f 1 

Let *Q + M denote the special modified 6, 6 + (,c +)M + 61 iteration that 
6,6+(,c ) +61 

we define from these parameters. Since all these terms have support disjoint from 

and 
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Now suppose we "enlarge" the family of parameters for *Q + M ; i.e., we 
c5 ,c5 + ( K ) + c51 

have a partition of [c5, c5 + (x: +)M + c5 1 + c52 ) where c52 < x: ++ into pieces that we 

denote again by C, A', B' (1 < x:+) and sequences('¥(:( EA') (1 < x:+) and 

-1,, -2,, =, + + M ((u ( ,u ( :(EB ) (1 < x: ). We denote the special modified c5, c5 + (x: ) + c5 1 

+ c52 iteration that we obtain from these parameters by *Q + M . 
c5,c5+(x: ) + 81 + 82 

c5 

c5 

M + - = +M Note that c5 + c5 1 + (x: ) !l rng i2 . Now define C = i2 [C] U {c5 + c5 1 + (x: ) } and 
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with the "old" partition of [6, 6 + 61). We will now "expand" the old sequences (r I: ( 

(-'Y ,. -A')( +) d ((_l,, - 2'') ,. -B')( < ~+) such that we sequences T ( : .,. E , < 1,, an u ( ,c; ( : .,. E , ,., 

obtained from these parameters: 

and 

For 6 + 61 + M(,,,+) + 1 + (EB' for some 'Y <,,,+simply let 

For 6 + 61 + M(,,,+) + 1 + (EA' for some 1 <,,,+we have to look at two cases. If 

1 is noncritical (i.e., either I and II('Y) are both even or both odd), then 

_, ::§:II(,) i2 

T 6 +61 +(1,,+)M+l+( ~ (r 6+(1,,+)M+61 +() 
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and if; is critical (i.e., ; is odd and II(;) < (1- +)M even), let 

A1 a maximal antichain 5;; 

where II(;) is thee-th even ordinal <(1- +)M 

and 

A2 a maximal antichain 5;; { q E *Q . 
8,8+(1-+)M+81 +(. 

qi~ ¥II(,) ¥- r8+e}. 
8+(,-+)M+81 +( 

Assuming inductively that ( 4.2.19.) and ( 4.2.20.) hold for ( we pick 

such that for q E A1 U A2 

where for q E A1 

(i.e., the canonical Q + M name for 
8,8+81 +(1- ) + 1 

the set that we add at coordinate 8 + 81 + (1- +)M) 

and for q E A2 
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It takes a routine but lengthy argument to show that (4.2.19.) and (4.2.20.) hold 

throughout this construction: Suppose we have arrived at some coordinate (o + 1 and 

for all (::; ( 0 (4.2.19.) and (4.2.20.) for ( 0 hold. We can restrict ourselves to checking 

what happens if 8 + (i;; +)M + 81 + ( 0 E Bil(,) for a critical , < i;; +. By induction 

together with the way m which we defined 

Then (4.2.20.) for ( 0 

(re=( E A' n 

in Q + M can "see" the set that we added at .coordinate 8 + 81 + 
8,8+81 +(i;; ) +1+82 

(i;; +)M in Q + M yield: 
8,8+81 +(i;; ) +1+82 

It cannot happen that we want to kill at coordinate 8 + (i;; +)M + 81 + ( 0 in *Q 

(at coordinate 8 + 81 + (i;; +)M + 1 + ( 0 in Q resp.) and save at cooordinate 

8 + 81 + (i;; +)M + 1 + ( 0 in Q (at coordinate 8 + (i;; +)M + 81 + ( 0 in Q* resp.). 

This implies (4.2.20.) for ( 0 + 1. Then one proves (4.2.19.) for ( 0 + 1 as follows: 

Suppose q E Q + M where we assume again that 8 + 81 + 
8,8+81 +(i;; ) +1+(0 +1 

Let q1 denote the unique element of Fn([8,8 + (i;; +)M + 81 + ( 0 + 1), 2, i;; +) so that 



-106-

By the argument that we just used to establish ( 4.2.20.) it follows that 

Thus we get (4.2.19.) for ( 0 + 1. 

We can also go through a similar procedure if we start with a special modified 8, 

ismorphic via a coordinate induced embedding i1 with the complete suborder 

had the right properties. 

we can define an extension of 

id*_ 

Q8,8+(K+)M+61 

This will work since the special modified iteration *Q + does more 
6,8+(K )M+81 +1+82 
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killing than the modified iteration Q + M . Using this back and forth 
6,0+1+(11: ) +61 +62 

property of modified and special modified iterations we now show that roughly speaking 

generic extensions of V* via modified and special modified iterations satisfy the same E§ 
statements (in parameters from (V*) 11:+2 ). 

Lemma 4.2.21. Suppose that in V* we are given a modified 6, 11: ++ iteration Q ++. 
6,11: 

Let q be a condition in Q ++ with 
6,11: 

qll V* "VII: F ~(A)." 
Q ++ 6,11: 

++ -Let o1 < 11: such that q E Q0 o+o 
' 1 

Q 
d (v*) 6,6+61 an there is a witness E for the 

E§ statement ~- We have seen how to define an initial piece *Q + M of a 
o,0+(11: ) +o1 

special modified 6, 11: ++ iteration which has a complete suborder isomorphic via some i1 

with and which has the property that for any extension 

*Q + M (62 < 11: ++) of it we can define a complete embedding i2 into 
6,0+(11: ) +61 +62 

In this 

situation we have for any special modified 6, 11: ++ iteration *Q ++ that extends 
6,11: 

il V* 
II "V ~ I- ~(A)." q *Q "' r 

f;: ++ u,11: 
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There is also an analogue for this lemma where one starts out with an initial segment of 

a special modified 6, 1,, ++ iteration in V*. 

Proof. Suppose cI>(A) = 3X r/Y 'P(X,Y,A) where 'P is E~. Then pick 61 < 1,, ++ with 

0 

q E Q6 6+ 6 and such that there is a nice Q6 6+ 6 name for a subset of V K+l say X 
' 1 • 1 

with 

V* o 
(4.2.22.) qJI Q "V,,, FrlY 'P(X,Y,A)." 

C ++ u,K 

Let i1 · Q c c c -- *Q M + be a complete embedding such that we are m 
• u,u+ul 6,6+ (1,, )+61 

the situation described above. We claim: 

0 i1 
"V K, F r/Y 'P(X ,Y,A)" 

for any extension *Q ++ of *Q M + 
c cc+ ("" )+c

1
· u,K u,u ,,, u 

Suppose towards a contradiction that this fails for some extension *Q ++. 
6,1,, 

Then there is some 62 < 1,, ++ and a condition p E *Q M + and a nice 
6,6+ (1,, )+61 +62 

*Q M + nam~ for a subset of V +l, say Y such that p ~ qil and 
6 6+ (1,, )+61 +62 "' 

V* 
P II *Q 

6,,,++ , 

0 i1 0 
"V K, F -, ip(X ,Y ,A)." 

Now let be an extension of and 
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in the situation described above; then 

(4.2.23.) 
0 0 i2 

"V K, F -, <p(X,Y ,A)" 

for any modified 6, 1,, ++ iteration Q ++ that extends Q 
6,1,, 6,6+61 +(,,,+)M+1+62 . 

2 0 i1 i2 0 
This is true because <pis E

0 
and (X ) = X. 

i2 
On the other hand clearly p ~ q. Thus ( 4.2.23.) contradicts ( 4.2.22) since 

there is an isomorphism of Q + + with 
6,1,, 

Q ++ that is the identity on Q6 6+6 • 
6,1,, ' 1 

□ 
end of 4.2.21. 

Given this lemma, the proof that (4.2.17.) implies (4.2.18.) is now very easy. First 

suppose that <I>(A) in (4.2.17.) is E~. Then (4.2.21.) yields (4.2.18.) smce up to 

isomorphism there- is only one special modified 6, 1,, ++ iteration in V*. If <I>(A) in 

(4.2.17.) is ll~, assume towards a contradiction that for some special modified 6, 1,, ++ 

iteration *Q there is a condition q with q II *- "V,,, F -, <I>(A)." Then by the version 
- Q 

of 4.2.21. that starts out with an initial piece of a special modified 6, "'++ iteration, we 

get that for some modified 6, 1,, ++ iteration Q and some condition p E Q 

Pl~ "V 1,, F-, <I>(A)" which contradicts (4.2.17.). 
Q 

N Next we consider the third step of stage 1,, of P j (,,,) . Recall that m 
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N[GIC, NF 1 ,g] we have for each 1 < IC+ a code NF 1 ~ IC+ for NF I by using that in 

N--+ <1C + <1C + 
N[GIC, F 1 ,g] 2 ~ L[G1C] which allows us to employ <qGIC] on 2 But 

<1C+ --+ N--+ 
2 n L[GIC] is the same whether computed in V[G1C ,F, ,G] or N[GIC, F, ,g] since 

N--+ --+ N 
N[G1C, F 1 ,g] is closed under IC sequences in V[GIC ,F 1 ,G]. Thus F 1 

+ ~ -< IC . Hence QN _ (of N[GIC, F 1 ,g]) agrees with QF (of V[GIC ,F 1 ,G]). In 
F, II(,) 

short the forcing at step 3 of stage IC in N Pj( IC) is just the forcing at step 3 of stage IC of 

P1C+l with its factors permuted by II. Thus with Ns, ~ Sil(,) (where (S,:, < 1C+) 

is the generic for the third step of stage IC of P 1C+ 1), clearly (NS,:, < IC+) is generic 

for the third step of stage IC of N Pj( IC) . Moreover the fact that the forcing at step 3 of 

stage IC of Npj(1C) has size IC+ makes it easy to show that N[G1C,NF,,g,Ns",] is E~ 

correct for IC in V[GIC ,F 1 ,G]',]. The IC+ c.c. implies that N[GIC ,NF 1 ,g, Ns ,] is 

- -closed under IC sequences in V[GIC ,F 1 ,G,S ,]. 

A similar argument shows that if ( e,:, < IC+) denotes the generic for the 3rd 

step of stage IC of P 1C+l that comes from Gv, then with Ne, = ell(,) the sequence 

(Ne, : 1 < IC+) is generic for the forcing at the third step of stage IC of N Pj( IC)° Since 

+ N--+ Net N--+ 2 this forcing has size IC , N [ G IC , F 1 ,g, S 1 , e 1 ] will be E 
2 

correct for IC inside 

- - -V[GIC ,F, ,G,S ,,e ,] + and by the IC c.c. 
N--+ Net N--+ 

N[G1C, F 1 ,g, S 1 , e,] will be closed 

under IC sequences in V[G V]. 

Recall that the tail Np 1C+l,j(1C) has a <µ closed dense suborder (whereµ is the 
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next inaccessible in N > x:). Since IN[Gx;,NF,,g,Ns,,Ne,]1 = II:+ we can in V[Gv] 

construct an H which is generic over N[Gx; ,NF I ,g, Ng ,,Ne,] for the tail in the usual 

way. We know that j lifts with j(Gx;) = Gx; * NF I * g * Ng I * Ne I * H 

M[Gx:] - NLl(Gx;)] 
j 

Px: N 
pj(x:) 

M - N. 
j 

Moreover NLl(Gx;)] is closed under 11: sequences and E~ correct for x: inside V[Gv] since 

the tail is highly Baire. 

Next we consider stage x: of Mp x:+l and stage j(11:) of Npj(11:)+l · Denote by 

the 4 steps of stage 11: of MP 11: + 1 that come from GM . Since the first three steps of 

stage j(x:) of Pflx:)+l are all <j(x:) directed closed, it is easy to find master conditions in 

these cases. The fact that INLl(Gx:)]I = 11: + allows us to construct generics for the first 

3 steps of stage j(x:) of Pflx:)+l that contain these master conditions in the usual way, 

then j _lifts. 

M--+ M l\,t;:;'" 
M[Gx;, F ,, g, s ,ll -

M N 
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To handle the last step of stage j(x:) of Pflx:)+l where we add a sequence of club sets ~ 

j( x:) that avoid a certain set of inaccessibles, we proceeed just as in the (11 / 71'1 case. 

Define c* by 

dom(c*) 'M {j(,): 1 < (x:+)M} 

and for 1 < (x:+)M let 

If we can verify that c* is a condition m the forcing at the last step of stage x: of 

N 
pj(x:)+1' we are done. For this it 

NLi(Gx:)J(MF 1 ),j(Mg),.i(Ms 1 )] for each 1 < (x: +)M 

( 4.2.24.) c;e,) n {µ < j( x:): µ inaccessible /\ 

is enough to show that m 

E2 

where cl>· 3 is the E: statement (4.1.10.). As in the (11/71'1 case we don't have to worry 

about the µ < x:. For µ = K recall that j(x:) n X: = x:, j(Gx:) n V K = Gx; and 

M- M- M- M- -
j( S)j(,) n V,,, = j( S1 ) n Vx: = S1 = i( S1 ) = S, (which is the 1-th code that 

we add at the third step of stage "' of P +l). Recall also that S1 = Ns l and 
x: rr- (1) 

rr- 1[(x: +)M] ~ Odd,,,+. Thus in N[G,,,, NF 1 ,g] the n! statement (4.1.11.) is true 

- N- N 
about S1 = Srr-l(,). In the last two steps of stage,;, of Pj(,;,) we do not add any 

new subsets of x: + all of whose initial statements are in N[Gx: ,NF 1 ,g], since both posets 



-113-

have the "'+ property. Moreover the tail NP x: + 1 j (,..,) + 1 is highly Bai re in 

N[Gx;,NFr,g,Nsr,NcrJ· Thus we can conclude that then! fact (4.1.11.) holds about 

E2 

Sr = Ngrr-1( r) in NLl(G,..,)j(MF r )j(Mg)j(Ms r )] also; i.e., V x: I=· ct> 3ocMsr )n 

V ,..,j(Gx:) n V,.., j("') n x:). Thus we have proved (4.2.24.) 
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SECTION g_. u~/1r~ (n ~ 2). 

5.1. Definition of the Iteration P~. 

We are going to define 1,, + 1 stage iterations P~ by induction on n. These 

iterations are analogues of the one that we used in the "generic" case 0-5/ 1r5 and we will 

restrict ourselves to describing what must be changed. At stage .,\ ::; 1,, of the iteration 

P~, where .,\ is a Mahlo cardinal, we will again have a four-step iteration: In the first 

step we will add a .,\ + sequence (Fr: r < .,\ +) where each Fr is a Lipshitz function 

+ + (2.,\ )n-1 __. 2.,\ 

In the second step we use a certain suborder of Fn( .,\ + + ,2,.,\ +) to make a E~ 

statement true about the Fr with r even and JI~ statement about the Fr with r odd. 

Then in the third step we code each Fr by a subset Sr ~ .,\ exactly as in u5/1r5 

case and finally in the 4th step we add a sequence (Cr: r < .,\ +) where each Cr ~ .,\ is 

club and avoids the set of all inaccessibles µ < .,\ such that a certain E~ statement holds 

in V µ just as in the u5/1r5 case. 

In order to keep notation as simple as possible we will not give the full definition of a 

1,, + + iteration Q that makes a E~ statement true about the Fr for even r and a JI~ 

statement about Fr for odd r- Instead we will work with one Lipshitz function 
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+ + 
F: (2A t-1 

----+ 2A and define an iteration ·Q 2 with 
En 

where the Xi range over subsets of A+ and Q E {3, 'v'} and i.p says that F(X1 , ... ,Xn) is 

stationary or is nonstationary depending on whether n is even or odd, respectively. We 

will also define an iteration Q 2 such that 
nn 

with Q and i.p subject to the same conditions as above. 

In order to define Q 2 and Q 2 in both cases we first partition A++ into 
En lln 

cofinal pieces C and A (k) (1 ~ k ~ n - 1) with O E C. Then for each k with 1 < k < n 

- 1 we choose complete sequences of k-tuples of nice Fn( A++ ,2,A +) names for subsets 

of A+ and enumerate them along the coordinates in A(k\ i.e., ((r~l) , ... ,r~k)):( E 

A (k\ Then we define our iterations to be suborders of Fn( A++ ,2,A +) where at each 

coordinate ( E A++ - A (n-l) we simply add a new subset of A+ and for ( E A (n-l) 

we add a club set ~ A+ which is disjoint from F(f-~l) , ... ,f-~n-l)) if certain "killing 

conditions" are met. If these conditions are not satisfied we save F(r~l) , ... ,f-~n-l)); 

i.e., we force with the trivial poset {0}. 
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In order to describe these killing conditions we associate with each n ~ 2 a finite 

binary splitting graph for E! and a finite binary splitting graph for n! . The edges in 

these graphs will be labeled by integers. If some edge is labeled by say k (0 < k ~ n -

Q 
2), this corresponds to the situation that in V ( (where Q( is the iteration restricted to 

Coordl·nates < r) (T. ~l) . (k+l)) (. (l) . (k) GT/) .c E A(k) n r h ., ., , ... ,T ( = Tr, , ... ,TT/ , 1or some T/ ., w ere 

GT/ is the set that we add at coordinate T/· The label -k (0 < k < n - 1) corresponds 

.(1) 
to the failure of this situation. The labels O and -0 express whether T ( = G0 or not. 

Q 
Now in order to determine whether we kill or save at coordinate ( (in V () we simply 

pick the path in the graph that corresponds to the various agreements and 

disagreements of ( r~l) , ... ,r~n-l)) and check if it ends m a terminal mode that 1s 

labeled "kill" or "save." The graphs for n = 2 are very simple: 

.ll~ (kill) 

i.e., no edges. And for n = 3 we have 

.ll2___J-- save 

3--:::-r--kill 

2 ---9-- kill 
E3 
~ 2___1---save 

-0 .ll 
3-::-r- kill 



for n ~ 3 we proceed by induction 

y···} 
'Z 

~--.} 
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graph for JI~_2 where we add 2 to 

(subtract 2 from resp.) all positive labels including 0 

(all negative labels including -0 resp.). 

graph for E~ _ 2 with all labels 

changed as above 

graph for E~ _ 2 with all labels 

changed as above 

graph for JI~ 

to illustrate what the graphs look like in practice we write them out up to n = 7. 

2 
fli(kil) 

2)/-
1""'3 ,-1 

...... kil 
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As in the 1r~/ 0-5 case both Q 2 and Q 2 are <-X closed and .X + + c.c. Moreover an 
IIn En 

argument analogous to the one in the 1r~/ 0-5 case shows that all these iterations are 

<-X + Baire. 

Next we show that these iterations force indeed the II~ and E~ statements 

about F that we want. Note that lemma 4.1.7. can be proved about Q 2 and Q 2 by 
En IIn 

virtually the same idea. 

2 2 
Lemma 5.1.1. Q 2 (Q 2 resp.) force the II n (En resp.) statements (over V _x) that 

IIn 17n 
we want. 

Proof. We have to inspect two cases. 

Casel. nisodd,sayn=2l+1(€~1). 

2 
The IIU+l statement says: 
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2 
From the inductive definition it follows that the top path in the graph for rr

2
£+l 1s 

labeled by the sequence 1, 2, ... , 2£ - 1 and ends in a save node. 

Now assume that G is Q 2 generic over V[G,\ ,F] and work in V[G,\ ,F,G] if 
II 

2£+1 

x1 ~ ,\ + pick 11 1 E A (l) with ( f-½~))G = X 1 . Let X2 = G 77 (the set that G adds at 

. + . (3) . ( . (1) G . (2) G . (3) G) coordmate 11 1). For X3 ~ ,\ now pick 113 EA with (r 773 ) ,(r 773 ) ,(r 773 ) = 
773 

(X1 ,X2 ,X3 ) and let X4 = G . Continue in this manner and define a tupel 

(X1 , ... ,Xu)· Since the top path in the graph for JI~£+l is labeled 1, 3, ... , 2£ - 1 and 

ends in a save node, the analogue of lemma 4.1.7. for Q 2 yields that F(X1 , ... ,X2e) 
II 2£+1 

is stationary. 

2 
The E2£+l statement says: 

Again let G be Q 2 
E 

2£+1 

generic over V[G,\,F] and work in V[G,\,F,G]. From the 

inductive definition- it follows that the top path in the graph for E~£+ 
1 

is labeled by the 

sequence O, 2, ... , 2£ - 2 and ends in a killing node. Take x1 = GO. For x2 ~ ,\ + 

pick 772 E A (
2

) ((f-~i)G ,(f-~~)G) = (GO ,X2 ) and let x3 = G
772

. Continue in this 

. + (2£) . 
fashion and define a tupel (X1 , ... ,X2£_ 1). Now for x2£ ~ ,\ find ( E A with 

((f-?))G , ... ,(f-~2£))G) = x1 , ... , x2£. Since the top path in the graph for E~£+l ends 

in a kill mode, we add the coordinate ( a club set ~,\ + which is disjoint from 
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Case i. n is even, say n = 2€ (€ ~ 1). 

Here a similar argument as in case 1 works. □ 
end of 5.1.1. 

Preservation of the .ll~ Indescribability of x:,. 

0 p2 
We assume towards a contradiction that there is a condition p E P~ and A E V n and 

cf> in .ll~ with 

0 

P I~ "cf>(A) describes x:,." 
Pn 

Pick an ordinal 8 > the least inaccessible above x:, such that 

0 
V 8 I= ZF- /\ Pl~ "cf>(A) describes x:,." 

Pn 

Pick an elementary embedding i: M --+ V 8 with cpt i > x:, and M trans, IMI x:, and 

M<"' ~ M. By the .ll~ indescribability of x:, in V there is trans N with INI = x:,, N"' C N 

and N is E~-l correct for x:, and an elementary embedding j: M--+ N with cpt j x:,. 

By the same argument as in the a-§/ 1r§ case we can find a V generic VG for P~ 

and an M generic MG for Mp~ and that p E VG and i lifts. Now we have to come up 

with an N generic NG for Np~ such that j lifts and such that N(NG] is still E~-l 

correct for x:, in V(V G). 

The construction of NG is very similar to the construction in the a-~/ 1r~ case. 

Only the part where we have to find a generic for stage x:, of NP~ from a generic for 

stage x:, of VP~ deserves a detailed exposition. 
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Clearly the forcing that N[G,c] wants to do in the first step of stage 1,, of N Pii is 

the same as the one that V[G,,,] wants to do at the first step of stage 1,, of Pii, since 

N[G,,,] is closed under 1,, sequences inside V[G,,,]. Thus if (F-y: -y < 1,, +) are the 1,, + 

Lipshitz functions that we add at the first step of stage 1,, in V, then with NF "Y ~ F II( "Y) 

(NF-y:"Y <,,,+)is certainly generic over N[G,,,] for the forcing that N[G,,,] wants to do 

2 N----,. 2 
at the first step of stage 1,, of Pn and N[G,,,, F -y] is En-l correct for 1,, and closed 

----,. 
under 1,, sequences in V[G,,, ,F -y]-

Suppose that (Q(: ( < 1,, ++) denotes the 1,, ++ iteration that V[G,,, ,F -y] wants 

to use in order to make a Eii (llii resp.) statement true about F-y where -y is even (odd 

resp.) and (N Q: ( < 1,, ++) is the (1,, ++)N iteration that N[G,,, ,NF -y] wants to use for 

(NF "Y: -y < 1,, +). In the same way as in the o-~/11] case ++ l·l we use the map II*:,,, -=-+ 
. onto 

1,, ++ ~ Even + M to define a 1,, ++ iteration *Q in V[G,,, ,F -y] with the property that 
( K, ) 

II* induces an isomorphism of N Q with a complete suborder of *Q ++ N. Recall that 
( K, ) 

for critical ''i < 1,, + *Q wants to make a :E~-l statement true about F II(-y) = NF I and 

N Q wants to make ll~-l statement true about N F-y. However from the fact that 

rng II* n Even + M = 0 , it follows that no term that appears in Q* at a coordinate 
( K, ) 

<(1,,++)N can possibly "see" the witness for the :E~-l statement about FII(-y) (for 

critical 1 ) that * Q adds at coordinate II( -y). Now the key observation is that the edge 

in the graph for :Eii which is labeled -0 leads into a subgraph which is identical with the 

graph for llii. Therefore, if G denotes the V[G,,, ,F -y] generic for Q and G*, the generic 
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for *Q that is obtained from G (by applying the fact that Q and *Q are isomorphic 

since the analogue of 4.2.7. clearly holds in the o-~/1r~ case), and if g* is the restriction 

of G* to the complete suborder of *Q ++ N that is isomorphic to N Q, then g (the 
( K ) 

pullback of g* via the isomorphism induced by II*) is clearly N[G,,; ,NF,] generic for 

NQ. Now we claim 

(5.2.1.) N- 2 -N[GIC, F 1 ,g) is En-l correct for IC in V[GIC ,F 1 ,G]. 

Once we have proved this we can construct the rest of NG and carry out all the 

remaining correctness arguments exactly as in the 0-5/ 1r5 case. 

The Proof of (5.2.1.) . 

. We start out exactly as in the o-5/1r5 case and let <I>(A) be a formula in E~-l U 

2 N-. 
II n-l and A E (N[GIC, F 1 ,g])IC+ 2 and assume that 

++ o - Q6 og 
Pick an ordinal 6 < K and a mce name A E (N[GIC ,F ,]) with A A and a 

condition q E g n Q 6 such that 

0 

"VIC F <I>(A)." 

Clearly the analogues of the factor lemmas 4.2.12. and ( 4.2.14.) can also be established 

for the a-~/ II~ case by using the exact same arguments as in the o-5/1r5 case and we 

have already remarked that the analogue of the isomorphism lemma 4.2.7. is also true in 
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the o-~/1r~ case. Hence we can apply the analogue of lemma 4.2.16. and obtain that in 

* --+ N--+ * V ~ V[G1C,F,,g] = V[GIC, F 1 ,g ]: 

for all modified 6, IC++ iterations that use NF 1 

I~ VIC F lf>(A). 

In order to finish the proof it certainly suffices to show: 

for all special modified 6, IC++ iterations which use F 1 

I~ "VIC F <I>(A)." 

It goes without saying that modified 6, IC++ iterations and special modified 6, IC++ 

iterations in V* are defined totally analogous as in the o-j/1rj case. Moreover, modified 

iterations always use (NF 1 : 1 < IC+) and special modified iterations use (F 1 : 1 < IC+). 

Recall that for "many" 1 < IC+ modified and special modified iterations, both make a 

E~ or a ll~ statement true about NF 1 = F II( 
1

) . However for the critical 1 (i.e., 1 

odd and 1r( 1 ) < (1C +)M even) the modified iteration makes all~ statement true about 

NF 1 = F II( 
1

) and the special modified iteration makes a E~ statement true about 

F II( 
1

) . Th us what is really going on here is the following: 

We are working in a model ( call it simply V) with a Lipshitz function 

+ 
--+ 21 . <I>(A) is a formula in ll~-l U E~-l and A E V 1C+ 2 such that 

for all ll~ iterations Qll. 

(5.2.2.) I~ "VIC F <I>(A)" 
Q 

and we want to see that for all E~ iterations QE 
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(5.2.3.) I~ "V /,; F ~(A)." 
Q 

In order to show this we use the (n - 1) back and forth property of E~/ lI~. By this we 

mean the following: 

For a given initial piece Qf of a lI~ iteration it is possible to define an initial 
1 

piece Qf +6 of a E~ iteration and a complete embedding i1 that is an isomorphism of 
1 

Qf with a complete suborder of Qf +6 . 
1 1 

If we enlarge 

(where 62 < ,,; ++), then we can define an extension Qf + 2 + 6 of Qf and a complete 
1 2 1 

embedding i2 that is an isomorphism of Qf +6 +6 with a complete suborder of 
1 2 

Qf + 2 + 6 with the property that i2 o i1 = id II. 
1 2 Q6 

1 

This process can be repeated until we have defined embeddings i1 , i2 , ... , in-l 

and an initial segment qII of a II~ iteration and an initial QE of a E~ iteration such 

that i1 , ... , in-l allow us to go back and forth n - 1 times between these two 

iterations in the way described above; i.e., ik+l o ik = id for 1 $ k $ n - 2. 

Moreover we can go through a similar procedure if we start with an initial 

segment of a E~ iteration. 

Proof of the (n -1) Back and Fourth Property for E~/ II~ (n ~ 1). 

We first treat the case E~n+l/ II~n+l (n ~ 1). Fix n ~ 1. Suppose we start out 

with an initial segment E Q
61 

(where 61 < ,,; ++) for a E~n+l iteration. Denote [0,61) 
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( < 61 . Note that O ~ rng i1 and for reasons that become apparent below we call O the 

new coordinate in ll,JI. Now define a JI~n+l iteration JI Ql+bi whose underlying 

partition of 11 JI is the partition induced by i1 and where we do not associate a tupel of 
' 

terms with 0. If no tupel of terms is assigned to coordinate ( E 11 E, then this is also 
' 

true for 1 + ( E 11 JI . If a k-tu pel ( with k =I=- 1) of terms appears at coordinate 
' 

( E 11 E, then to coordinate 1 + ( E 11 JI we assign the tupel of terms each of which is 
' ' 

the i1-shift of the corresponding term in the tupel that appears at ( E 11 E. If a single 
' 

term T ( is assigned to coordinate ( E ll,E, then we pick a canonical term 

the set that we add at the new coordinate in 11 JI if certain 
' E 

altering coordinates hold in V Q( about f- ( 

( T () il otherwise. 

We will explain in a moment what these altering conditions are and we are also going to 

show that in fact for each ( E 11 E 
' 

i1 induces an isomorphism of E Q( with JI Qi!~-{O} 

which is a complete suborder of JI Ql+( . 

Eq JIQl+( 
This shows in particular that V ( can be regarded as being contained in V 

and the definition of T* makes sense. 
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In the second step of the construction for E~n+lf JI~n+l assume we extend 

so that in particular i2 o i1 = id1 and i\ + 1 ~ rng i2 . 1,L' 

Now we define an extension E Q81 +2+
82 

by choosing the partition of 12,E that is 

induced by i2 . We assign no tupel of terms to coordinate 81 + 1 which we call the new 

coordinate in 12 E. If a k tupel (k # 2) is assigned to coordinate ( E 12 JI, then the k-
, ' 

tupel that consists of the i2 shifts of the terms in this tupel will be assigned to 

coordinate i2(() E Il,JI. If a pair (f-~l) ,f-?)) is associated with a coordinate ( E 12,JI, 

E 
* (2) i2 * E V Qi2W then we associate with i2 ( () E 12,E the pair ( r ,( f- ( ) ) where r is a 

E 

canonical term such that in V 
Qi

2
(() 

r* = 

the set that we add at coordinate 81 + 1 if certain altering 

JIQ 
conditions hold in V ( about f-~l) 

(f-~
1
)/2 otherwise. 
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Again we have to check that for ( E 12,JI, i2 induces an isomorphism of JI Q( with 

We continue in this fashion until we have defined Il,E, ... , I2n- l,E and Il,.ll, 

... , I2n-l,JI and embeddings i1 , ... , i2n-l. In the last step of the construction we 

will not introduce a new coordinate to define I2n,E from I2n,JI and we shift all terms at 

coordinates in I2n,JI to get the terms for the corresponding coordinates in I2n,E. 

The schematic picture that one should have in mind when doing this 

construction looks like this: 

l1,11 I2 JI 
' 

l3,11 12n-l,JI I2n,11 

1•1 ~ \/ i,f 't 11 13 
1 3 2n-1 

10 
11,..v 12,..v I3,..v 12n-1,..v l2n,..v 

The numbers below the arrows indicate the arity of the tupels whose first term gets 

changed at this stage of the construction. The symbol o indicates that we have a new 

coordinate in the interval where it occurs. 

- We are now going to explain what the altering conditions are. Suppose we are 

at stage k ~ 2n-1 of the construction above and k is odd (even resp.) and the k-tupel 

(T?), ... , Tt)) is assigned to coordinate ( E Ik,E (( E Ik,JI resp.). Consider the graph 

for E~+ 2 (JI~+2 resp.). Among all its killing paths consider the direct killing paths, 
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i.e., those killing paths whose last edge is labeled with a non-negative integer. Now the 

altering condition for f-~l) 1s satisfied if one of the agreement scenarios prescribed by 

,(1) ,(k) 
the direct killing paths hold about ( r ( , ... , r ( ) 

Eq IIq 
m V ( (in V ( resp.). 

Before we argue that the construction that we just described really works, let us 

explain what the constructions look like in the other cases: If we start with an initial 

segment II Q
81 

of a II~n+l iteration where 81 < 1,, ++, we can define an initial segment 

E Q1+
81 

of a E§n+l iteration where all terms are obtained by shifting the terms from 

II Q(
1 

so that they cannot see the E witness that we add at coordinate O of E Q 1 + 81
. 

In steps 2, 3, ... , 2n we proceed analogously as in the steps 1, 2, ... , 2n-1 of the 

construction II~n+l/ E~n+l where we start with an initial piece of a E~n+l iteration. 

Thus the schematic picture looks like this: 

11,.L' 12 .L' 
' 

Ia,.L' 12n-l,.L' I2n,.L' 1•1 \ 
10 

;I 11 i,f \" 2n-2 2n-

10 10 
11,JI 12,JI Ia JI 

' 
12n-l,JI I2n,11 

Again the numbers below the arrows indicate the arity of the tupels whose first term 

gets changed if the altering condition is met where now the altering condition for even 

(odd resp.) stage k with k E {2, ... , 2n} is given by the direct killing paths in the graph 

for E~ +l (II~+l resp.). As before the symbols o indicate that there is a new 

coordinate in the interval where they appear. 



-129-

The constructions for the H§n/ E§n case (n > 1) are totally analogous to the 

corresponding ones in the JI§n+l/ E§n+l case. 

Now we have to check that these constructions really work. Let us examine the 

E~n + 1 / H§n + 1 case where we start with an initial piece of a E§n + 1 iteration. 

Suppose we are at step k ~ 2n-1 of the construction with k being odd and ( E Ik E. 
' 

For the construction to work we have to show 

(5.2.4.) HQ_ Il,H U · · · U Ik H - { new coordinate E I k JI} c HQ. 
' ' -C Ik(() Ik(() 

(5.2.5.) ik induces an isomorphism of E Q( with 

HQ I1 H U · .. U Ik H - { new coordinate E I k JI} 
. ' ' ' Ik(() 

where H Qik(() (17 Q( resp.) denotes the H§n+l (E§n+l resp.) iteration up to 

coordinate ik(() E Ik H (( E Ik E resp.). 
' ' 

We show this by induction on ( E Ik E. Clearly we can restrict ourselves to a 
' 

successor ordinal ( + 1 E Ik E where at coordinate ( we possibly add a set that kills 
' 

• (1) • (2n) Eq( 
F( T ( , ••• ,T ( ). First we handle (5.2.5.). Note that V can be thought of as being 

JI 
Qik( ) E 

contained in V ( in the sense that by induction hypothesis Q is isomorphic to a 

complete suborder of JI Q. 
lk(() 

In order to prove (5.2.5.) it will therefore suffice to 

show the following two central facts. 
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IIq. 
(5.2.6.) We cannot be on a killing path for Il§n+l in V 'k(() and on a 

Eq 
saving path for E§n+l in V ( 

and 

(5.2.7.) 
Eq 

We cannot be on a killing path for E§n+l in V ( and on a saving 

II 
2 V Qik(() 

path for II 2n + 1 in 

Once these two central facts have been proven we consider the first claim (5.2.4.): For 

this it suffices to show that if q E JI Qik((+l), then q1 which is obtained from q by 

dropping the new coordinate in Ik,JI is again a condition in II Qik((+l) So assume 

q E JIQik((+l) There is a unique q 11 E Fn((+l,2,11:+) with (q11 /k = q1
• Ifwe can 

show that q 11 E E Q( + 1 , then we are done since we have already shown ( 5.2.5. ). But 

q 11 E 17Q(+l follows easily from the first central fact. 

If we are at step k ~ 2 n - 2 of this construction where k is even, we proceed in 

an analogous manner. 

Finally at the last stage of this construction we do not have a new coordinate in 

12n,E and all terms get shifted in i2n where we go from I2n,JI to I2n,E We have to 

show that 

i2n induces a complete embedding of II Q( into E Qi
2
nW (for ( E I2n,JI ). 

In order to prove this we use the first of the two central facts and obtain i2n ( q) is a 

condition in EQi
2
n(() for all q E JI Q(. In order to show that each q E E Qi

2
n(() has a 
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i2n -reduction in II Q(, we proceed by the method used in the proof of 4.1.3. 

In order to show that the construction for II§n+l/ E§n+l' starting with an 

initial piece of a II§n+l iteration, and the constructions for II§n/ E§n work we have 

only to prove the analogues of the two central facts (5.2.6.) and (5.2.7.). 

Proof of the Two Central Facts That Establish the n 1 Back and Forth Property for 

2 2 En/IIn (n ~ 2). 

We prove by induction on n ~ 2 that the two central facts hold throughout the 

constructions for E~/ II~. The key ingredient here is the inductive definition of the 

graphs for E~ and II~ which will be used all over the proof. 

We begin the induction by examining the two basic cases E§/ II§ and E~/ II~. 

If we are given an initial piece of a II§ iteration II Q8 , then we can define an initial 
1 

piece of E§ iteration E Q 1 + 61 
by shifting all the terms in II Q

61 
so that they cannot see 

the E§ witness that we add a coordinate O in E Q1 + 61
. Clearly the two central facts 

hold in this case. If we start with an initial piece of a E§ iteration E Q
61 

and define an 

initial piece of a II2
2 iteration II Q c by using the same parameters, then clearly E Q 

Ul 81 

~ II Q since the graph for II2
2 has no saving paths at all. 

61 

Now we examine the case where we start with an initial segment of a nj 
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iteration II Q
01

. In the first step we define an initial piece of a E§ iteration E Q1 +6'i 

by shifting all the terms from II Q
01 

so they cannot see the E§ witness at coordinate O in 

17Q1+
61

. The two central facts clearly hold at this step. In the second step suppose 

EQ 
we are at coordinate ( E I2,E and on a killing path for E§ in V ( so that we have 

Eq . IIqi W 
either 0, or -0, -1. If we have O in V ( then there cannot be a 1 m V 2 with a 

term that appears at a coordinate E Il,JJ since none of these terms can see the L'§ 

witness that we add at the new coordinate O E 11 E . Furthermore there cannot be a 1 
' 

IIq 
in V i2 (() with a term that appears at a coordinate E 12 JI since when going from 

' 
Eq 

12 E to 12 JI we change all 1 's in 12 L' because we have 0 in V ' . Thus we have -1 
' ' ' 

IIq. 
. k"ll . V 12 (() 1.e., we 1 1n 

E 
If h O 1 . V Q' th l l we ave - , - 1n en we c ear y 

IIq IIq. 
must have -1 1·n V i2 (() • • k"ll. V 12(() ; 1.e., agam we 1 m 

Now suppose we start with an initial piece of a E 2 iteration E Q c • We can argue 
3 01 

similarly as we did in the second step of the last case to see that if ( E 11 E and we kill 
' 

EQ( IIQ. (() 
at ( in V , then we also kill at i1 ( () E I in V 11 Conversely if we kill at l,II 

IIQ EQ 
· ( ;-) · V i1 ( () · h 1 th . V ( 0 l l . 1· 1 . k"ll 11 ., 1n , 1.e., we ave - , en 1n - c ear y imp 1es - ; 1.e., we 1 

EQ 
at ( in V ( In the second step a similar argument shows that if we are on a killing 
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path for JI~ at a coordinate ( E 12 JI , then we are also on a killing path in E Q. 
, 12(() 

Now suppose n > 4 and we have already proven the two central facts for all 

constructions for E~/ JI~ with k < n. We will restrict ourselves to looking at an odd 

2n + 1 (n ~ 2) and consider the case of E~n+l/JI~n+l where we start with an initial 

2 piece of a JI 2n + 1 iteration. The arguments for the other cases are similar to the 

argument that we present here in detail. 

First we want to argue that the two central facts are satisfied through the first 

2n - 2 stages of the construction. For this we make the following observation: The 

subgraph of the graph for E~n+l (JI§n+l resp.) which consists of all edges that are 

labeled by an integer of absolute value ~2n - 3 is identical with the graph for 

E§n-l (JI§n-l resp.) except that all nodes in the graph E§n_ 1(JI§n-l resp.) of the 

form Q~ (Q E {V ,3}) have to be changed to Q~+ 2 and we must replace each save 

node by the graph for JI~ where the labels 1, -1 get replaced by 2n -1 and -(2n-1) 

resp. and each kill node must be replaced by the graph for E~ where the labels O, -0, 1, -1 

get replaced by 2n - 2, -(2n-2), 2n - 1, -(2n-1) resp. If we now apply the 

induction hypothesis about E§n-l/ JI§n-l together with this observation, then we see 

that up to the first 2n - 2 stages of the construction for E§n+l/ JI§n+l we have the 

following: 



-134-

Any time we are on a path in the subgraph of the graph for lI§n+l 

mentioned above that ends in "E§" we cannot be on a path in the subgraph 

of the graph for E§n + 1 that ends in "II§" and similarly if we interchange 

2 2 
II2n+l and E2n+l. 

Then note that throughout the first 2n - 2 stages of the construction for 

L'§n+l/ II§n+l all the terms in 2n - 2 and 2n - 1 tupels merely get shifted. 

Moreover a E§ iteration clearly does more killing than a II§ iteration. Hence the two 

,e;ntral facts hold throughout the first 2n - 2 stages of the construction for 

Now we consider the last two stages of the construction for E§n+l/II§n+l 

where we start with an initial piece of a II§n+l iteration. First we show that if we kill 

on the II§n+l side, we cannot save on the E~n+l side. Inspection of the graph for 

II§n + 1 tells us that there are two cases for killing paths: 

indirect killing; i.e., the last edge in the path is labeled -(2n-1) and 

direct killing; i.e., the last edge in the path is labeled 2n - 2. 

On th~ other hand there are two ways of saving in the graph for E§n+l: 

indirect saving;, i.e., the last two edges of the path are labeled -(2n-2), 2n - 1 and 

direct saving; i.e., the last two edges of the path are labeled 2n - 3, 2n - 1. 

It can never happen that we are on an indirect killing path for lI§n+l (i.e., -(2n-1)) 
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and on a saving path for E§n+l (i.e., 2n - 1) since at stage 2n of the construction for 

E 2 /II2 t . "th . . . 1 . f II2 . . 2 1 1 
2n+l 2n+l s artmg WI an 1mt1a piece o a 2n+l iteration, a n - tupe gets 

altered only when we are on a direct killing path for E§n + 1 . 

It cannot happen that we are on a direct killing path for Il§n+l (i.e., ends in 2n 

- 2) and on an indirect saving path for E§n + 1 (i.e., the next-to-last edge is labeled 

-(2n-2)). This is so because at stage 2n - 1 of the construction for E§n+l/ Il§n+l 

(starting with an initial piece of a ll§n+l iteration) a 2n - 2 tupel gets altered only if 

we are on a direct killing paths in the graph of ll§n . However the direct killing paths in 

the graph for ll§n can all be extended to save paths or indirect killing paths in the 

2 graph for n 2n + 1 . 

2 2 Finally we consider direct killing in n 2n+l and direct saving in E 2n+l · We 

observe that the direct killing paths in ll§n+l are just all the killing paths in Il§n-l 

extended by one edge which is labeled 2n - 2 and all the direct saving paths in E§n + 1 

are just all saving paths in E§n-l extended by one edge labeled 2n - 1. Now we can 

apply our induction hypothesis about the E§n-l/ ll§n-l construction and hence this 

constellation can never arise. 

Next we show that m the last two stages of the construction E§n+lf ll§n+l 

2 2 ( starting with an initial piece of II 2n + 1 iteration) we cannot kill on the E 2n + 1 side 

and save on the Il§n+l side. 
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We have to check three cases here: 

Indirect killing path for E~n+l (i.e., ending in -(2n-1)) versus saving path in lI~n+l 

( always ending in 2n - 1) cannot occur since the first term in a (2n - 1 )-tupel that gets 

altered at stage 2n of the construction for E~n+l/lI~n+l (starting with an initial piece 

of a lI§n+l iteration) will then denote the set at the new coordinate E I2n,1I . But no 

term at a coordinage E Il,lI U • • • U I2n,1I can "see" this set. 

Next we consider a direct killing path zn E§n+l (i.e., ending in 2n - 2) versus 

an indirect saving path in lI§n+l (i.e., ending in -(2n-2), 2n - 1). In this situation 

the 2n - 2 agreement m E§n+l had to occur with a (2n - 2)-tupel whose first term 

denotes the set that we add at the new coordinate I2n _ 1 E . Therefore the 2n - 1 
' 

agreement in lI~n+l had to occur at a coordinate E I2n,1I. Then this must come from 

a 2n - 1 agreement in E~n + 1 at a coordinage E I2n,E . However we assumed we were 

on a direct killing path m E~n+l. Thus any such 2n - 1 agreement would get 

destroyed at stage 2n of the construction for E§n+l/ lI§n+l when going from I2n,E to 

l2n 1I - a contradiction. 
' 

Finally we consider the case of a direct killing path in E§n + 1 ( ending in 2n - 2) 
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versus a direct saving path in ll§n+l (i.e., ending in 2n - 3, 2n - 1). We prove the 

following: 

Claim: If we are on a direct killing path for E§n + 1 and on a direct saving path for 

ll§n + 1 , then there cannot be a 2n - 1 agreement on the ll§n + 1 side with 

a 2n - 1 tupel that appears at a coordinate E r1 .ll U · · · U r2n .ll . 
' ' 

The claim will give a contradiction to the fact that all direct saving paths for ll§n + 1 

end in an edge that is labeled 2n - 1. 

Proof of the claim: 2 First we note that the (2n - 2) agreement on the E 2n+l side 

cannot occur with a (2n - 2) tupel that appears at a coordinate E I2n E because in 
' 

that case any (2n - 1) agreement on the E§n+l side had to occur at a coordinate 

E I2n,E . Since we are on a direct killing path for E~n + 1 , the first term in any 2n - 1 

tupel that gives a 2n - 1 agreement on the E§n+l side will be altered when going from 

r2n,E to I2n,.ll · This will result in -(2n - 1) on the .ll~n+l side - a contradiction. 

Now there are 2 possibilities for a direct killing path in E~n+l. If its next-to­

the-last edge is labeled -(2n-3), then the first term m any 2n - 3 agreement on the 

side has to agree with the set that we add at new coordinate E I2n_2 n · 
' 

From this it follows that any 2n - 2 agreement on the E~n+l side has to occur at a 

coordinate E r2n - l,E U I2n,E because none of the terms appearing at coordinates 

E Il,E U ·· · U I2n-2,E can see the set that we add at the new coordinate I2n-2,.ll. 

By the remark at the beginning of the proof of the claim, the 2n - 2 agreement on the 
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L'§n+l side must therefore occur at a coordinate E I2n-l,E. Now we observe that the 

direct killing paths in ll§n are labeled exactly as the direct saving paths in ll§n + 1 if we 

delete their last edge. Therefore the first term in any 2n - 2 tupel that gives a 2n - 2 

2 agreement on the E 2n+l side has to agree with the set that we add at the new 

coordinate E I2n _ 1 E . 
' 

2 This implies that any 2n - 1 agreement on the E 2n+l side 

has to occur at a coordinate E I2n,E. But then we will end up with no 2n - 1 

agreement on the ll§n+l since in the 2n-th step of the construction for L'§n+l/ ll§n+l 

( starting with an initial piece of ll§n + 1 iteration) all these 2n - 1 agreements vanish -

a contradiction. 

2 So we have shown that the direct killing path in E 2n + 1 cannot end with 

-(2n-3), 2n 2. Thus it must end m 2n - 4, 2n - 2. Inspection of the graph for 

L'§n+l and L'§n shows that we are on a direct saving path for E§n in this case. 

Inspection of the graph for ll§n+l and ll§n shows that the direct saving paths 

in ll§n+l are obtained from the direct killing paths in ll§n by extending them with an 

edge labeled 2n - 1. We can assume by induction that: 

If we are on a direct killing path for ll§n and a direct saving path for 

L'§n , then there cannot be a 2n - 2 agreement on the E§n side with 

a 2n - 2 tupel that appears at a coordinate E Il,E U ·· · U I2n-l,E 

in the construction for E§n/ ll§n (starting with an initial piece of a 

ll~n iteration). 
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Th us any 2n - 2 agreement on the E§n + 1 side in the E§n + 1 / .ll §n + 1 construction has 

to occur at a coordinate E I2n E. Again the remark at the beginning of the proof of the 
' 

claim gives a contradiction. □ 
end of proof of claim 

To show the two central facts for the E§n+l/ .ll§n+l construction (starting with an 

initial piece of E§n+l iteration) and the E§n/ .ll§n construction, we use the same ideas 

with the obvious modifications. 

The (n - 1) Back and Forth Property for E~/ .ll~ Implies (5.2.3.) (n ~ 2). 

The key point here is the following: 

Lemma 5.2.8.Suppose we have a E~ iteration Q 17 and formula <I>( ) in E~-l together 

with a condition q E Q 17 name A for a subset of V x:+l such that 

0 

q I~ "V K F <I>(A)." 
Q 

QE 
If 8 < x: ++ is large enough so that q E Q 17 and A E V 

81 and there is a witness in 
81 

QE 
V 81 for the E~ statement <I> and if i1 : Qf -+ Qf +8 is a complete embedding as in 

1 1 

the first stage of the construction that establishes the n - 1 back and forth property for 

E~/ .ll~ starting with an initial piece of a E~ iteration, then we get for any .ll~ iteration 
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i1(q) 11-JJ "VK: F <I>(Ai1
)." 

Q 

We also have an analogous version that starts out with an initial piece of a JI~ 

iteration. 

Proof. This will be proved by induction on n ~ 2 and we write down only the proof of 

the first version of the lemma ( the proof of the second version is entirely analogous.) 

We begin with the case n = 2. 

Let <I>(A) _ 3X <p(X,A) where X ranges over V K+ 2 and <pis E5. Now pick 81 < K ++ 

QE QE 
large enough such that q E QE and A E V 81 and there 1s a nice name X E V 81 

81 

with 

0 0 

q I~ "V K: F <p(X,A)." 
Q 

Now let q,II be any II~ iteration that extends Qf; then 
1 

since <p is E5 and i1 : Qf -+ Qf is a complete embedding. 
1 1 

The case n = 3 has already been demonstrated in the proof for o-~/ 11j in 4.2.21. 

0 0 
Now assume n ~ 4. Suppose <I>(A) = 3X VY <p(X,Y,A) where X, Y range over V K+2 

and <p is E 2n_ 3 . We pick 81 < K: ++ large enough such that q E QE and A E QE 
81 81 
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QE 
and there is X E V 

81 
with 

0 0 
(5.2.9) q I~ VY <p(X,Y,A). 

Q 

We assume towards a contradiction that there is some JI~ iteration QJI that extends 

Then there is 82 < K ++ and a condition q 1 E QJI with q' < i1( q) and 
1+81 +82 

~ 11 

y E V Q 1+61+62 such that 

f O i1 O O i1 
(5.2.11.) q II _ JI -, <p(X ,Y ,A ). 

Q 

~E E Recall that we can find an extension Q
81 

+ 2 +
82 

of Q
81 

and a complete embedding 

. ~JI ~E 
12: Q1+8

1 
+8

2 
-+ Q8

1 
+2+8

2 
as in the second stage of the construction that 

demonstrates the (n - 1) back and forth property for E~/ JI~ (starting with an initial 

piece of a E~ iteration). 

r o o i2 o 2 ~ E ~ E 
Claim. i2(q) II _ E -, <p(X,Y ,A) for any En iteration Q extending Q 8 +2+8 Q 1 2 

Proof of the claim: Assume towards a contradiction that we have some E~ iteration 
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QE and 63 < ,,;, ++ and a condition q 11 E Qf + 2 + 6 +6 with q 11 ~ i2(q1
) such that 

1 2 3 

q " II - E ( 0 0 i2 0 ) _ t.p X,Y ,A 
Q 

-E Q 
d h . . . 61+2+62+63 r h 2 an t ere 1s a witness m V 1or t e E 3 statement t.p. n-

Now proceed as in the 3rd stage of the construction that establishes the (n - 1) 

back and forth property for E~/ .ll~ (starting with an initial piece of a E~ iteration) and 

~.ll -_ll 2 
find an extension Q 1+

61 
+

62
+ 2 +

63 
of Q 1+

61 
+

62
. Since t.p is En_ 3 and we can go 

-E back and forth n - 3 times between suitable extensions of Q and 
61 +2+62+63 

Qf+6 +6 +2+6 , we get by induction hypothesis: 
1 2 3 

For any .ll~ iteration Q.ll extending Q.ll £ 
1+61 +62 +2+u3 

Now fix Q.ll as above. Recall that there is an isomorphism of Q.ll and Q.ll 

that is the identity on Qf+
61 

+
62

. Thus i3 (q11
) ~ q 1 and (5.2.11.) and {5.2.12.) 

together are obviously a contradiction and the claim is proved. 

D 
end of proof of the claim. 

Next fix any E~ iteration QE extending Qf + 2 + 6 . From the claim we obtain 
1 2 
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f O 0 
(5.2.13.) i2 (q) II _ E 3Y-, <p (X,Y,A). 

Q 

There is an isomorphism of QE with qE that is the identity on Qf . Then i2 ( q 1) :::; q 
1 

and (5.2.9.) and (5.2.13.) give a contradiction. Hence our assumption (5.2.10.) was false 

and we get 

0 

i1 (q) II _ II \:/Y <p cx\Y,Ai1
) 

Q 

and the first version of the lemma is proved. □ 
end of 5.2.8. 

It is now easy to obtain (5.2.3.) from (5.2.2.) by using this lemma: Assume that (5.2.2) 

holds. If cI>(A) E~-l then by the second version of the lemma we obtain (5.2.3). If 

cI>(A) is II~-l then we assume towards a contradiction that for some E~ iteration QE 

we have a condition q E QE with 

q I~ "V /'i, F -, cI>(A)." 
Q 

Then by the first version of the lemma we obtain a II~ iteration QII and a condition 

q1 E QII such that 

which contradicts ( 5.2.2. ). 
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SECTION fi. o-W /1rg1(m2:'.:3, n2:'.:2). 

The main ideas for establishing the consistency of ug1 > 1rg1 (m > 3, n > 2) 

have already been developed in the ui/1ri case. 

We will write Pa rather than P~a in this section. Let us describe the (m + 2) 

step iteration that we use at stage A ( where A is Mahlo) in order to make A Eg1 
p 

describable in V A+l 

Suppose that GA is PA generic over V = L and in V[G A] A is inaccessible and 

+e +e L >A A = ( A ) for € 2:'.: 1 and GCH- holds. In the first step we add a sequence (F -y: -y 

A +(m-1) +(m-1) 
< A+) where each F-y is a Lipshitz function (2 )n-l -+ 2A . Thus the 

forcing Q(l) is a A+ product (with full support) of copies of the forcing notion PF 

where conditions in Pp are functions f such that 

A +(m-1) +( -1) 
dom f is a subtree of (2< t-1 of size <A m and 

and for f, g E PF we let f < g iff f 2 g. Clearly IQ(l)I 
, +(m-1) d Q 
" an (l) 1s 
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<-X+(m-l) closed. Hence if (F1 : 1 < .x+) is Q(l) generic then in V[G,x,F,] we still 

have that ,\ is inaccessible,\ +e = (.\ +Ef fore 2 1 and GCH 2 ,\ holds. 

In the second step we will do an iteration Q(2) (that we call Q in the remainder 

of this section) which will make a Eg-1 fact true about F I for I even and its negation 

about F I for I odd. 
. +m +(m-1) 

Q will be a certam suborder of Fn(,\ ,2,.\ ). We 

partition ,\ +m into ,\ + many pieces say (A,: 1 < ,\ +) and C with ,\ + C C each of 

which has size ,\ +m; then for each 1 < ,\ + we partition A 1 into pieces 

(A~k): 1 $ k $ n - 1) each of which has size ,\ +m. 

Next for each k E {1, ... ,n - 1} we enumerate a complete sequence of k-tupels of 

+m +(m-1) +(m-1) 
nice Fn(,\ ,2,.\ ) names for a subset of ,\ along the coordinates in 

A~k). (Note that this is possible since Fn(.\ +m ,2,.\ +(m-l)) is ,\ +m c.c. and has size 

,\ +m .) The poset Q will add a new subset of,\ +(m-l) at each coordinate in ,\ +m -

LJ A~n-l) . At a coordinate a E A~n-l) (for some 1 < A+) Q will add a club set 

,<,x+ 

+(m-1) . (1) . (n-1) (1) (n-1) 
~,\ that is disjoint from F 1 (r 1 ,a , ... ,r1 ,a ) (where (r1 ,a , ... ,T1 ,a ) is the 

tupel that appears at coordinate a E A~n-l)) if certain killing conditions are met. If 

these killing conditions are not satisfied we just force with the trivial poset {O}; i.e., we 

• (1) • (n-1) 
save F 1 (r 1 ,a , ... ,r1 ,a ). 

The killing conditions for a E A~n-l) where I is even (i.e., the killing conditions 

in Eg-1) are again given by the graph for .Eg-1 . Similarly the graph for ng-1 tells us 
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whether we kill at some a E A~n-l) where , is odd. Now the graphs for 

Eg1 (Hg1 resp.) look exactly like the graphs for Eii (Hii resp.) except that the nodes are 

labeled Ek and Hk instead of Ef and nf. Clearly Q is <,\ +(m-
2

) closed (because 

of the cofinality restriction in the definition of conditions in Q(l)) and ,\ +m c.c. (since 

compatibility in Q agrees with compatibility in Fn(A +m ,2,,\ +(m-l\ 

An analogous proof as in the oj/1r~ case shows that Q is <,\ +(m-l) Baire. In 

+ V[G F ] ,\+(m-1) 1 particular this implies that for each , < ,\ II ~ ' dom F, = (2 )n - . 

Moreover the analogue of 4.1.7. can be proved for Q; hence after forcing with Q 

- -explicitly killed it. Therefore if G is Q generic over V[G ,\ ,F,] we have in V[G ,\ ,F, ,G] 

for odd 1 < 1,, +: 

where Q = 3 (Q = 't/ resp.) and t/J says F ,(X1, ... ,Xn-l) is stationary (nonstationary 

resp.) in,\ +(m-l) for odd n (even n resp.). Clearly this is Hg1(F,). 

For even "f < 1,, + the negation of this statement will hold about F 1 , i.e., a 

+ +(m-1) -
For each "f < ,\ we can find a code F, C ,\ for F "f in V[G ,\ ,F, ,G]. 

,\ +(m-1) V[G ,F "f ,G] 
This uses the fact that (2< ) ,\ 

L[G,\] where G,\ C P,\ ~ L,\. Hence we can use the canonical wellordering <L[G,\] on 
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,\ +(m-1) 
2 < to do this coding. 

+(m-1) 
The steps Q(3), ... , Q(3+m-2) will now code each F, ~ ,\ down to a 

subset S, ~ ,\. This is done in exactly the same way as in the uf (1rf proof. Finally 

in the last step we add a sequence (C,:, < ,\+)where each C, ~ ,\ is club and 

C, n {µ < ,\: µ inaccessible 

Em 
Here <l> n is the analogue of ( 4.1.10.) for EW. 

Now we can proceed as outlined in Section 1 and prove 

II "there are no EW indescribables ~ ,c, 
p ,c+l 

If, is nw indescribable, ,c1 is EW indescribable." 

The hard part of the proof of 11 P ",c is llW indescribable" is again to show (in the 
,c+l .• 

notation of Section 1) that 

N[G,c ,N F 1 ,g] is E~-l correct for ,c in V[G,c ,F 1 ,G] 

-where G,c is the V generic for P,c, F I is the generic for Q(l) of stage ,c of P ,c+l and G 

is the Q generic of stage ,c of P ,c+l and Np I is the Q(l) generic for stage ,c of Pfl,c) 

and g is the QN generic for stage ,c of Pj~ ,c). 

The strategy for this is the same as in the u~ / 71'"~ case; i.e., the key point is that 

EW / nw has the (n - 1) back and forth property which is proved by the same 

arguments as in the u~/ 71'"~ case. 
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SECTION l- Oracles - The Final Word on Indescribability. 

In order to state the final theorem we need to introduce the notion of an oracle. An 

oracle is simply a subset of w that codes a function with domain {(m,n): m ~ 2, n ~ 1} 

that takes values in {0,1}. 

The final theorem is 

Theorem 7.1. (ZFC) Assuming the existence of Eg1 indescribables for all m and n and 
p 

given any oracle GJ, there is a poset P GJ E L[GJ] such that GCH holds in (L[GJ]) GJ and 

(7.2.) 
o-g1 < 1rg1 if GJ(m,n) = 0 

o-g1 > 1rg1 if GJ(m,n) = 1. 

□ 

Before defining P GJ (for a given oracle function GJ) we make some observations about 

small forcing and indescribability. In 1.6. we have already seen that a forcing of size < 1,, 

cannot destroy the Eg1 indescribability of 1,,, The same statement is true about a llg1 

indescribable cardinal 1,,, The proof for this is totally analogous to the Eg1 case. 

However the reformulation in 1.1. makes it possible to give an even easier proof. 

To complete the picture we show (cf. Corollary 7.8.) that no poset can create 

new Eg1 or llg1 indescribable cardinals (for any m, n ~ 1) that are larger than the 

cardinality of the forcing. First we prove: 

Lemma 7.3. (ZFC) Suppose-that 1,, is inaccessible and P is a notion of forcing with IPI 

< K. Let G be a P generic. Then, in V[G] for any X E V 1,,+l' 

(7.4.) X E V -¢::::::> X ~ V /1. Vs [s E V ⇒ X n s E V] 

and for any$ E V 1,,+m (m ~ 2) 
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(7.5.) g; e v <=} s; ~ v " vGJ [GJ E v " 1GJ1 s; "' . ⇒. g; n GJ E vJ. 

Heres ranges of V"' and GJ over V K+m (of V[G]). 

Proof. To prove the nontrivial direction of (7.4.) assume towards a contradiction that 

for some condition p* E G and some X E yP we have 

0 0 0 
p* I~ "X f (V),,, /\ Vs [s E V => X n s E V] /\ X ~ V." 

In V, pick a wellordering of V"' of order type "' and let sega: denote the segment of the 

first a:-many elements ( a: < "'). We can (in V) for each a: < "' pick Pa: s; p * and xa: E 

(V),,, with 

0 

Pa: ,~ X n sega: = Xa: . 

!Pl < IC implies that there is some p E P with Pa: = p for cofinally many a:. 

Then let 

X = u Xa: 
Pa:=P 

clearly 

0 

p If- X = X 

contradicting 

0 -
p If- X ~ v. 

To prove the nontrivial direction in (7.5.) we assume (without loss of generality) m = 2 

and sup-pose towards a contradiction that for some p* E G and $ in yP 

0 

p* I~ "$ ~ (V),,,+1 /\ 'r/GJ [GJ E V 

0 0 

" 1 GJ I s; K • ⇒. g; n GJ E vJ " g; ~ v.,, 
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0 

If for some p** 5 p* p** Ir iffil 5 K, then since IPI < "'we can find '!J" E (V)IC+2 with 

0 0 
l'!J"I $ "' and p** Ir '!I" 2 g;_ This clearly implies p** Ir g; E V, a contradiction. Thus 

we can assume 

0 

p* II- lffil ~ "'· 

Now we claim: 

0 0 
p* II- 39J s; $(l9JI = IC I\ \IZ[9J s; Z s; X ⇒ Z ~ V]]. 

Proof of the Claim: Consider B ~ r.o. (P) and let H be B generic over V with p* E H. 

Since IBI < "' we can find 9J E yB such that in V[H) l9JHI = IC and q;H s; g;H and 

implies 

Now suppose % E yB with q;H s; %H s; g;H; it follows that %H ~ V. Otherwise we 

0 v B OH 
can pick Z EV with IIZ = ZII E Hand then we get for all X E 9J n (V)/f,+1 

v O B O O B = IIZ = ZII . IIZ s; $II E H' 
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OH V V OH OH 
since for X E 9J n (V),.+1 we clearly have IIX E ZII = 1 because 9J ~ Z = z. 

But this contradicts (7.6). Hence iyH works and the claim is proved. 

□ 
end of the proof of the claim 

By the claim we can fix '11 E VP with 

0 0 0 0 0 

p* If- "9J ~ s; /\ l9JI = K I\ 'vZ [9J ~ z ~ s; ⇒ z ~ VJ." 

Let p** ~ p* and f E vP such that 

** IL fo. 1:1 gr 
p ' .K--+ ll• onto 

Then define (in V): 

0 

9J 'M {X E (V),_+l: 3p ~ p** 3a < K Plf- X = f(a)}. 

Clearly l9JI = K and p**lf- '11 ~ i(f. Now (in V) wellorder 9J in order type K and for a 

< K denote by sega the segment of the first a element. Note that for a < K 

0 

p** If- s; n sega E v. 

Hence (in V) we can find for each a < K Pa ~ p** and 9Ja with 

0 

Pa If- s; n sega = 9Ja. 

Since IPI < K there must be some p ~ p** with p = Pa for cofinally many a. Then 

0 

p If- "$ n 9J = u 9Ja E V" 
Pa=P 
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contradicting 

0 

p If- g; n 9J ¢ v. D 
end of 7.3. 

We use this lemma to show 

Lemma 7.7. (ZFC) If 1,,, P, Gare as in 7.3. then in V[G] for any$ EV 1,,+m (where m 

~ 1) the formula "$ E V" is Eg1 ($,(V),,,) over V,,,. 

For m = 1 (7.4.) implies (s ranges over V ,,,) 

$ E V iff $ ~ (V),,, /\ Vs [s E (V),,, ⇒ $ n s E (V),,,]. 

Clearly this is E! ($,(V),,,). 

For m ~ 2 we proceed by induction on m. Suppose $ E V 1,,+m+l; then by (7.5.) 

(where~ ranges our V 1,,+m+l) 

Now, by induction hypothesis this is Eg1+l because any ~ ~ V 1,,+m of cardinality ~"' 

can obviously be coded by some element of V 1,,+m so that the whole formula is Eg1+l 

D 
end of 7.7. 

Remark. Of course lemma is not optimally phrased, but this version already allows us 

to prove: 

Corollary 7 .8. (ZFC) If 1,, is inaccessible and P a poset of size < 1,, and G is P generic, 

then for m, n ~ 1 

( 1,, is Eg1 ( .llg1 resp.) indescribable) V[G] 

implies 

(1,, is Eg1 (.llffl resp.) indescribable)V. 
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Proof. If <I>(A), where A ~ (V)IC is EW (HW resp.) then by 7.7, in V[G) the formula 

(<I>(A))V is EW (A,(V)1C) (.llW(A,(V)IC) resp.). Then note that clearly (V)IC ~ VIC (in 

V[G]). So we can use it as a parameter. □ 
end of 7.8. 

We are now turning to the proof of 7.1. Suppose GJ is an oracle and we have Eg1 

indescribables for all m, n. We know that in L[GJ) the following picture holds for m ~ 2, 

n ~ 1: 

(7.9) 
L[GJ) m L[GJ) m L[GJ) m L[GJ) m 

· .. < Un < 7rn < u 1 < 7r 1 < .. · · n+ n+ 

For the sake of completeness we give a proof of this fact. 

Proof of (7.9). Fix m ~ 2 and n ~ 1. We work in L[GJ). Let IC be the least .llg1 

indescribable. The proof strategy is to find a .llg1 statement <I>(A,IC) with A ~ VIC such 

that VIC p <I>(A,IC) and any inaccessible A to which <I> reflects is Eg1 indescribable. <I>(A) 

can be found as follows: We know that IC being the least .llg1 indescribable is Eg1 

describable. We fix some A ~ VIC and a Eg1 formula w(A) such that VIC p w(A) and 

1l!(A) does not reflect to any inaccessible A < IC and such that the witness in the Eg1 

formula W is least in the canonical wellordering <L[GJ) with property that it is a witness 

for a Eg1 formula ii,' in a parameter A 1 as above. We pick a sufficiently large finite 

fragment T of ZF + V = L[GJ) such that for any transitive model M of T with GJ E M 

we have that X E Mand Y <L[GJ) X imply Y E M. 



-154-

Then we take <I>(A,IC) to be the formula 

'v' .Al, [A transitive, .Al, FT, IAI = IV 1C+m-il, .Al, E~-l correct for IC, 

.Al, F "IC is not Eg1 indescribable" . ⇒ . .Al, F "VIC F 'li"(A)"]; 

<I> is clearly 1Ig1 over VIC and by the choice of T we get VIC F <I>(A,IC ). If A < IC 1s 

inaccessible and VA F <I>(A n VA ,A), then A must be Eg1 indescribable because we 

cannot have VA F 'li"(A n VA) by our choice of 'li"(A). Thus <I> has the properties that 

we want .. □ 
end of the proof of (7.9). 

Actually the proof that we just gave works for a large class of inner models. The key 

point is that the inner model under consideration ( or at least its truncation up to the 

first measurable) must have a certain "good" wellorder. 

We now resume the proof of 7.1. Working in L[<:f] we define form ~ 2 and n ~ 

1 the poset P;1'n to be the trivial poset if <:f(m,n) = 0. If ~(m,n) = 1 then we use the 

exact same definition that we used for Pg1 ( with IC = L[<:f] 7rg1 ) except that we replace L 

by L['!f] and we do something only at Mahlo stages ~ L[<:f]ug1 . Then we let 

TI 
m~2,n~l 
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We must show that (7.2.) holds. So fix m' 2:'.: 2 and n' 2:'.: 1. Note that Pg: ~ P 1 x P 2 

rr 
m<~' or , 

m=m An<n 

' ' Pm,n d p _ pm ,n d 
g: an 2 ~ g: an P 3 rr 

m>r;n' or , 
m=m /\n>n 

First assume that 'J(m',n') = 1. We know from Section 1 that for each 

L[<Jl m' L['Jl ' a < u P3 has a <a closed, dense suborder. Hence P is < um Baire. 
n'+l 3 n'+l 

Thus if G3 is P3 generic over L[<J], (L[<J,G3])L[<Jl , = (L['J])L['Jl , This 
m m 

un'+1 un'+1 

implies that in L[<J ,G3l L[<Jl,r!T\, is still nm,' indescribable and that there are many Em,' 
n n n 

indescribables above L[<Jl1rrn,'. It implies also that L[<J,G3l's version of P~}1' ,n' agrees 
n 

m' n' with the Pg: ' of L[<Jl. ' m' Thus if we denote by ,,_ the least E , indescribable > 
n 

m' II , indescribable, ' m' ,,_ is E , m' indescribable and there are no E , 
n n 

indescribables below L['Jl1rrn,'. 
n 

n 

L[<Jl m' Clearly IP11 < u , . Hence by 7.8. for any G 1 that is P 1 generic over 
n 

' L[<J,G3 ,G2l we obtain that m L[<J,G3 ,G2 ,G1l there are no E:, indescribables 

L[~] m'] m' ,r , and clearly we cannot have any E , indescribables below 
n n 

L[<J]urn,'. Also by IPil < L[<J]um' we get that L['J]1rrn,' is still nm,' indescribable and 
n n' n n 

'. ,,_, is still Em, indescribable in L[<J,G3 ,G2 ,G1l. This shows that for 'J(m',n') = 1 we 
n 
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have 

Now we assume that ':F(m',n') = 0. Then P':f ' ~ P 1 x P3. The <o-11} Baireness of 
n +1 

P 3 implies 

II L[':f) m' - L[':f) m' L[':f] m' m' 
P u,- a-,< 1Tr=1T, 

3 n n n n 

L[':f) m' u I together with the observation that no generic extension of L[':f] can 
n 

' L[':f) ' have any .llll} indescribables < um yield that 
n n' 

Another factoring argument shows that for any cardinal µ 

we get 

11~':f) GCH. 
':f 

µ + Hence 
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