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Notation
Our set theoretical notation is quite standard: The letters «, 3, ¥, ... denote ordinals,
while &, A, p are reserved for inaccessible cardinals unless it is explicitly mentioned that
they are not. We let [¢,8] = {¢:a € ¢ < 4} and (a,f) = {(:e0 < { < B} and

similarly for half-open intervals.

The notation f: A — B expresses that f is a function with domain A and range
contained in B. {[S] (f_l[S] resp.) denotes the pointwise image of S (preimage of S
resp.).

As usual X (ITT resp.) is the collection of all formulas in the € language of set
theory with higher type variables and a unary predicate symbol whose prenex form has
n alternating blocks of type m quantifiers starting with 3 (V resp.). A formula is A if
it is equivalent with both a X' and a II5* formula and EBH (orII(r)n) if all quantifiers are
of type <m. If we write down a formula @ (X;,...,Xp) then this is to mean that all free

variables that occur in & are among X, ..., Xp.

Vo (the a-th level of the von Neumann hierarchy) is often understood as the
structure (Vy ,€) (frequently with a finite sequence of possibly k-ary relations on Vg
added on); however, we will simply write Vo = ® (A) instead of (V4 ,€,A) = @ for

example.

Unless remarked otherwise we will be working in ZFC. ZF~ (depending on the
context) and will always denote some suitable finite fragment of ZFC. Recall that we
have a flat pairing function (i.e., one that does not raise the von Neumann rank) such
that the coding and decoding is absolute for transitive models of a very weak fragment

of ZF.

Recall also that for each m > 1 and n > 1 there is a formula X ym (x,%) in I
n



such that for any limit ordinal «,
Vo E @ (%) iff Vo XE{]n (‘9. %)
for all ¥ € V., and & (%) in M where ‘@’ denotes a code of ® in V. All the

necessary details can be found in [Drake, 1974]. M is X3! correct for « inside N iff

Jﬂvlvfc+m—2|

C M in N; ie., M is closed under sequences of length Ivn+m—2| in N
where this means sequences of length <k in case m = 1. We call 6 S (n > 1)
correct for « (in parameters from V. ) inside N if in addition to this M correctly

computes the 1" facts that hold in N in parameters from Vietm ()

Given a model M of ZF~ we will use the notation (M)q to denote M’s version of
Vo for @« € M. However we will also use the notation M | “V, | ®” rather than
(M) E ®. Regarding our forcing formalism we take V as a relative term for the
ground model and construct generic extensions V[G] where partially ordered sets
(posets) will be giv;n preference over Boolean algebras. We contend that every element

of V[G] has a name in V and let VP denote the class of all P names in V relative to a

poset P € V.

o]
In general, 7, ¢ will denote names but we will also use the notation A for a name
for A € V[G]. In particular, if Q is a poset € V[G] and 7 € V[G] a Q name then we
denote by ?e vFP 4 name for 7. As usual X is the canonical name for x that happens to

be in the ground model. Very often (for instance if x is an ordinal) the X notation will
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be supressed. By a nice name for a subset of ¢ € VP we mean essentially a function
that associates with each r € dom(c) an antichain of P. Frequently the symbol I' will
occur as a canonical name for the generic (for a giveﬁ poset P). Thus we have for
instance p|- p € T for all p € P. Fn(I,2,x) will always denote a <& support product
of copies of the usual poset for adding a subset of ¥k where the copies are indexed by the

ordinals € I.

We say that a poset P is <« closed if for any decreasing sequence of length <«
of conditions there is some condition extending all the conditions in the sequence. As a
variant of this we will say that P is <« directed closed if for any directed X C P (i.e.,
¥p,g € X 3r € X r < p,q) of size <« there is some p € P withp < qforallq € X. P
is said to be & c.c. if every antichain has size <k. P has the property k if every subset
of P of size k has a subset of size k¥ that consists of pairwise compatible conditions.
Finally P is x centered if there is an equivalence relation on P with & equivalence classes

such that any two equivalent conditions are compatible.

All the forcing terminology being used in this thesis and not being explained here

can be found in [Baumgartner, 1983] and [Kunen, 1980].
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Introduction and Statement of Results

Indescribability is closely related to the reflection priﬁciples of Zermelo Frankel
set theory. In this axiomatic setting the universe of all sets stratifies into a natural
cumulative hierarchy (Vq:o € On) such that any formula of the language for set theory
that holds in the universe already holds in the restricted universe of all sets obtained by

some stage.

The axioms of ZF prove the existence of many ordinals « such that this
reflection scheme holds in the world V,, if one considers only first-order parameters over
Vo . Hanf and Scott [1961] noticed that one arrives at a large cardinal notion if one
allows second order parameters, i.e., predicates over V,. For a given collection Q of
formulas in the € language of set theory with higher type variables and a unary
predicate they define an ordinal a to be € indescribable if for all formulas ® in Q and
A C Vg,

(Vo€ A ) =P = I< (Vﬂ,E,A N Vﬂ) Ea.
Since a sufficient coding apparatus is available this definition is (for the classes of
formulas that we are going to consider) equivalent to the one that one obtains by
allowing finite sequences of relations over V, some of which are possibly k-ary. We will
be interested mainly in certain standardized classes of formulas. Let X[ (IIL' resp.)
denote the class of all formulas in the language introduced above whose prenex form has
n alternating blocks of quantifiers of type m starting with 3 (V resp.). In [Hanf-Scott,

1961} it is shown that in ZFC, II(lJ indescribability is equivalent to inaccessibility and II%

indescribability coincides with weak compactness.

Thus the existence of £7' (or ITh') indescribable cardinals is unprovable in ZFC.

However [Vaught, 1963] has shown that below any measurable cardinal there
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are many totally indescribable cardinals (where totally indescribable means X
indeécribable for all m, n). Moreover, it follows from the results in [Jensen, 1967] that
already below x(w) (i.e., the last cardinal with £ — (w)2<w), there are stationary many
totally indescribable cardinals. Therefore, indescribable cardinals are rather tame
inhabitants of the large cardinal zoo; in fact TH' and IT}' indescribability relativizes

down to L.

Since the 11(1) indescribability of « is a H% property over V., there are many H(l)
indescribables below the least IT % indescribable. Can this result be generalized to

arbitrary m and n?

By computing the complexity of a truth definition for ' and Q' formulas
[Levy, 1971] was able to prove that in ZFC

1 _ 1 1 _ 1
™ = 0p41 < Th+1 = %n+2

and

™ on < Tl Tnl

for m > 2 and n > 0, where 7' (o7 resp.) is the least IT' (ZR' resp.) indescribable
cardinal (if they exist). In fact he showed that the gaps are very large. Moreover he

proved that
° on #

for m > 2 and n > 1. The prominent question at this point is what can be said in ZFC
about the relative size of oh' and 7n* for m > 2 and n > 1. [Moschovakis, 1976]'
provided an answer under the assumption that all sets are constructible; i.e., V. = L. He

showed that in L, of' < 7).
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The mdin results of this thesis are:

Theorem ITI.1.1. (m > 2,n > 1)
CON(ZFC + 3x,k/(k < ¥/, k is I indescribable, and &' is B indescribable))

= CON(ZFC + op' > 7' + GCH). O

Note that in ZFC 4 of' > 73 one can prove that Lo{ln = (3 £ indescribable A
3 IO indescribable); thus by Godel’s second incompleteness theorem we cannot hope
for a proof of CON(ZFC + 3 X1 indescribable + 3 ITR' indescribable) = CON(ZFC
+ o' > 7') that is formalizable within ZFC unless ZFC + ¢! > 71 is inconsistent.

Therefore I11.1.1. is stated optimally.

There is also an Easton type result that says in effect that we have the ultimate
freedom in arranging the relative sizes of o' and 7j' (simultaneously for m > 2 and n

> 1) as far as the axioms of ZFC are concerned.

Theorem II1.7.1.Assuming the existence of X7}* indescribables for all m > 2, n > 1 and
given a function ¥F:{(m,n):m > 2, n > 1} — {0,1} there is a poset

P
Pe € L[9] such that GCH holds in (L[%])” ¥ and

| L[F] ont < Rt if F(m) =0
Pg  o® > 7 if F(m,n) = 1.
O

The proof of III.1.1. is based on two important techniques for obtaining consistency
result for large cardinals: The first technique is known as iterated forcing and originates

in the [Solovay-Tennenbaum, 1971] consistency proof of Martin’s axiom. Its
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underlying idea is that one defines the set of forcing condition by proceeding in stages
and in our case at each stage we will kill off a potential candidate for a Xh*
indescribable cardinal until we have taken care of all ordinals below a given IR
indescribable cardinal. The hard part in the proof of III.1.1. will be to guarantee that
the forcing which we define preserves the IT7)' indescribability of the cardinal that we
started out with. For this we will use master condition arguments. This way of
reasoning was first employed by [Siiver, 1971] and typically occurs in the following
setting: We are given an elementary embedding j:M — N where M and N are
modeling a large enough fragment of ZF together with posets P € M and Q = j(P) €
N, and we want to find an M generic G and an N generic H such that j lifts to an
embedding (that will again be called j) from M[G] into N{H]. A necessary and sufficient
condition for this to work is to pick G and H with the property that

(¥  VYpeG jp) eH

If we are given a generic G for P, then a master condition for Q relative to G will be a
condition q € Q such that for any N generic H C Q with q € H, (%) holds for G and H.
In order to make the proof of I11.1.1. amenable to master condition arguments we must

first find a reformulation of II-indescribability in terms of elementary embeddings.

Theorem L.1. (m > 1, n > 1) & is I} indescribable iff

] VM [M transitive, M = ZF 7, M| = k, s € M, M<F C M .=,

3j, N [N transitive, |[N| = |Vm+m_1], N an—l correct for k,

j:M — N, cpt j = «]]. O
A%

_al
where N is an—l correct for k means N 1™ 2 CN (N<'(c C Nform = 1) and-N

correctly computes the Zg‘_l facts that hold in parameters from N [ Vetm-
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It is an interesting observation that this reformulation suggests that for m > 1, Hrln
indescribability can be construed as an analogue of the concept of hypermeasurability in
[Mitchell, 1979] and we will also rephrase it in the context of extenders (cf. [Martin-

Steel, 1988]).

As a warm up routine for the proof of IIl.1.1. we are going to apply this
reformulation to evaluate the consistency strength of the failure of GCH at a IT

indescribable cardinal.

Theorem I1.1. (n > 1)
CON (ZFC + 3 IIl indescribable cardinal) <=

CON (ZFC + 3 k (« is [T} indescribable A 2% > ™)) O

This theorem generalizes a result of Silver (cf. [Kunen, 1980]) about the consistency
strength of the failure of GCH at a weakly compact cardinal. In the case of II}' (m >
2, n > 1) indescribability we obtain a result that is reminiscent of the failure of GCH at

a measurable cardinal.

Theorem I1.2. (£ > 1, m > 2,n > 1)
CON (ZFC + 3 Hnm+2—1 indescribable cardinal) <=

CON (ZFC + 3 & (x is T™ indescribable A 25 = k1)) O
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CHAPTER 1. A REFORMULATION OF II INDESCRIBABILITY
IN TERMS OF ELEMENTARY EMBEDDINGS

We will introduce a reformulation of II-indescribability which will enable us to
show that various notions of forcing used in Chapter II and Chapter III preserve

certain Il-indescribable cardinals.

Before we do this it is necessary to review a few elementary facts regarding the
logical complexity of some frequently used set theoretical statements. Suppose we code
a transitive set M of cardinality Ivn+m—1| (where m > 1) by a binary relation & on

Vfc—i—m—l :

For any & € V., the statement “% € M” is Z‘Iln(%,g) over Vi since it is

equivalent to
3F3IX F collapses X to &

where ¥ ranges over V., and X ranges over V 1 and “F collapses X to &~ is

K+m—

short for

F is a function A dom F D {Y:Y8X} A VY € dom ¥ VZ8Y Z € dom &

A VY € dom F F(Y) = {F(2):Z8Y} A B = {F(Y): Y8X}.

Hence this is zgl(x,as,s,er).

Actually “% € M” is Arln (%,8) over Vi since one can show that “% ¢ M” can

also be expressed in a Zrln (X,8) way over Vi by using [V, 1 M| < IV,H_m_lI.



But we will not need this in the sequel.

|V

. K m—QI
Next we examine “M +

C M” (where for m = 1 we mean by this

M<F ¢ M). This is equivalent to

VXIAYVZ[ZEY <= IxZ = Xyl

Here X,Y,Z range over Vn+m—-1 and x over V/c+m—2 (for m = 1 x ranges over V).

| many elements of V

Recall that any X € V4 codes Ist+m—2 kt+m—1 iz Xx

={y € Vﬁ+m_2:(x,y) € X}, where x, y range over Vtm—2 (for m = 1 there is an

analogous remark). So the whole formula is Z:)n(g) over V.

Finally let us investigate the complexity of the statement “M is %, correct for

|V

_ol
k.” For n = 0 recall that by definition this means M K+m—2

C M and we saw
above that this is )30 (8) over Vi. Recall that for each m, n > 1 there is a X'
formula x _m (.,.) that is universal for ZLH uniformly for all V (where a is a limit

n

ordinal). So for n > 1 we can express “M is Z’nm correct for £ in parameters from
Vitm” by
VX, Y{([33,Z[} collapses Z to K A <Vn+m—1’g) E “X codes a ann formula A
VZ »
3F, k 3G, Y[F collapses X to k A § collapses Y to Y A Vi &= X gm (k, Y]] -A.

3F, k3G, Y[F collapses X to k A § collapses Y to Y A Vi E x m(k,‘lj)] =
Sﬂ

33, Z[¥ collapses Z to & A <Vfc+m—-1 &) E XVZ (X,Y)))
z :

n



where Y, ¥, §, 3 range over Vn+m and X, Y, Z over VK+II1—1' Hence this formula
is Anm+1(8,rc) over V.
Theorem 1. (m > 1,n > 1) x is Hnm indescribable, iff
— <K
VMMtrans AMEZF- AJM|=xkAkeEMAM CM.=>.

% _al
| AN Rtm=20 -y A

3j, N[N trans A |[N| = |Vn+m_1 -

N is an 1 correct for & A j:M — N A cpt(j) = «]].

Proof. Suppose « is H;n ind and assume towards a contradiction that for some M as

above there is no j, N as above. We can code the structure (M,€) by a binary relation

E on k such that under the Mostowski collapsing function II for (x,E) we have II{0) =
-1 — —s

k. We let F & I ! xand T T {(n,€)in < w, € € k<% nis a (code of a) first

order formula that holds in (x,E) under the assignment —g} We abbreviate by

®(«,E,F,T) the statement

(x,E) is wellfounded and extensional A
F=0O"11xA00)=¢xA

T is the first order theory of («,E).

Note that E, F and T can be coded by subsets of k in the usual way. If ZF — denotes a
sufficiently large finite fragment of ZFC, then “(M,€) is bad” can be expressed as a

IIII:](A:,E,F,T) formula over Vi by quantifying over models of ZF —:



V Mo[ M trans A Mo = ZET A M| = [V, L] A

v _ol
M K+m2_C_./ﬂaA.ALZ:l correct for k A kK, E,F, T € M. = .

1
s |V;c+m—2|
M = “®(k,E,F,T) A = 3j, N[N trans A [N] = lvn+m—1| AN CNA

Nis Z™
n

correct for k A j: trans coll{k,E) — N A cpt j = &]”].

By the I, indescribability of x this formula must reflect to some inccessible A < x.

Thus we have
(ALE N A x M) is wellfounded and extensional
and F N (A x A) = Mostowski collapsing function _1] A, and 0 gets collapsed to A
and T N (w x A<“) is the first order theory of (LE N A x ).
Let (M*,€) be the transitive collapse of (\,E N (A x X)). Since (\,E N (A x 1)) < (x,E)
and by the choice of E and F there is j*:M* — M with cpt j* = X and j*()) = «. In
the usual way we can construct an elementary submodel (X,e) < (M,€) with |X| =
lv/\+m—2| - . m
|V/\+m—1| and X C X and j*[M™] U{A} € X. Then X is clearly Zn—-

1

correct for A, since M is. Now collapse X to a transitive N. Denote by j the
elementary embedding j* followed by this collapsing map. Obviously cpt j = X since
V/\+If.1—1 U {A} € X. We have just shown

|V ol
A+m QQN/\

Jj,N[N trans A N = IV/\+m—1I AN
N is E;n 1 correct for A A j: transcoll (\\E N A x A) — N A cpt j = A;

but this contradicts the fact that the above Hrrln statement holds at V/\ .



For the other direction in the theorem suppose that ®(A) is Hrr:l and A C Vg
and Vi = ®(A). Pick a transitive M with |M| = |V!| and M<F CMand k,AeM

and M = ZF ™, where ZF ™ is a suitable finite fragment of ZFC. Then let N be

m

transitive and Zn 1 correct for ¥ and j:M — N with cpt j = k. Since @ is IInm and

N k= ZF~ we get
N = “Ja < j(5) Vg k= 9((A) N Ve);”
hence, by elementarity of j
ME “a < kVy E (A N Vy)
but (M)y = Vg for @ < « so that really
Ja < kVy E (A N Vy);

i.e., ®(A) reflects. end of Theorem 1.

We will conclude this chapter by making some observations which will not be used in

the sequel but are nevertheless interesting in their own right.

— The first observation involves the concept of hypermeasurability. Recall that a
cardinal « is m-hypermeasurable (m > 1) if there is an elementary embedding of V into
some transitive inner model N with critical point & such that V/c+m C N. Theorem 1
suggests that Hin indescribability can be construed as an analogue of
rﬁ-hypermeasura.bility for m > 1 in the same way that H% indescribability relates to

measurability.



[Mitchell, 1979] and Dodd-Jensen (cf. [Dodd, 1982]) have produced an analysis
which shows that elementary embeddings j:V — M can be thought of as coming from
an ultrapower by a system of measures. This leads to the notion of an extender.
Given a transitive set X and a cardinal &, we say that E is an extender with support X
and critical point « if E is a function with dom E = (X)<w (the set of all finite 1:1
sequences of elements of X) and for s € (X)<w , E(s) = Eg is a & complete measure on

(Vm)doms (the set of all 1:1 sequences of elements of V of length dom s) such that

<w

for at least one s € (X) Eg is nonprincipal and

(1) foriy,i, € doms {b € (v,)doms . b(iy) € b(iy)} € Es iff s(iy) € s(is)
(2) (Coherence) if s < t (i.e., s is a subsequence of t) and s = t o 7 for some

7:dom s =5 dom t then for all A C (V,‘;)domS

A € Eiff AT € E,

wilere AT ={b e (V,g)domt:bon € A}

(3) (Normality) for any s € (X)<w and f:(V,,;)domS — V such that
{b € (v} )45 (b) € U {b(i):i € dom s}} € Es.
there exists some t € (X)<w with s < t such thatifs =t o«
with 7r':dom sl—-:—1> dom t then for some iz € dom t

{b € (Ve)3°omE:f(bo ) = b(io)} € Ey.

Given a transitive set M which models ZF ™~ and is closed under sequences of length <&

we define an M extender with support X and critical point x as above except that for



s € (X)<w Eg is an ultrafilter in P((\/n)doms) (1 M and that in condition (3) we only

consider f € M.

Since each Eg is countably complete and M<F C M each ultrapower Ult (M,Eg) is
wellfounded and we can collapse it to a transitive (Mg, €). Moreover the

coherence condition (2) implies that we have a system of elementary embeddings

(is,t: Mg — M,;:s < tands, t € (X)<w) that commute; i.e., for r, s, t € X <% with
r <s <t i, =ig, oirg. Therefore we can form the direct limit of the system
k) k)

{Mg:s € (X)<w) which we denoter by (M~,e~). We say that E is a wellfounded
extender if (M™,€7) is wellfounded. Note that E will automatically be wellfounded if
we work with countable 1:1 sequences rather than finite 1:1 sequences. In the context
of extenders we can rephrase IIlln {(m > 1) indescribability as follows:
K is Hrln indescribable iff for every transitive model M of ZF~ with |M| = «,
M<K CM and k& € M there is a wellfounded M extender with support Vrc+m—1

and critical point «.

Proof of this Fixm > 1.

If k is II'™ indescribable and M is a transitive model of ZF ™~ of size x and

1
closed under <x sequences by theorem 1 we can find a transitive N with V/~:+m—1 g N

and an elementary embedding j: M — N with ctp(j) = . Now fors € (Vn+m—1)<w

define Eg by

A € Eg iff s € j(A)

for A € P((V,c)doms) (Y M. Then E is a wellfounded M extender since the directed



system (Mg:s € <Vn+m—l)<w) can be represented inside N by using the fact that

each Eg is defined from j.

Conversely given any transitive M of size «k with M = ZF ™ , k € M and M <R

C M and a wellfounded M extender E with support V 1 and critical point & we

K+m—

take N to be the transitive collapse of (M™~,€7™) and let j denote the usual elementary
embedding j:M — N that we obtain from collapsing (M™~,e~). Clearly cpt(j) = «

and by (1) together with the normality condition (3) V 1 € N. Now the proof

K+m—

O

of the easy direction of theorem 1 shows that « is I™™ indescribable.
1 end of proof.
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CHAPTER II. THE CONSISTENCY STRENGTH OF THE FAILURE
OF GCH AT A II INDESCRIBABLE CARDINAL

In this chapter we will evaluate the consistency strength of the failure of GCH

at various II indescribable cardinals.

In the simple case of a H(l) indescribable ¥ one may force any number of new
subsets of ¥ and keep « inaccessible since the forcing is <« closed. However already in
the case of IIi indescribable cardinal this approach fails: If V = L holds in the ground
model and we add a new subset X C k via a < & Baire forcing then in the generic
extension the IIi statement “X ¢ L” does not reflect to any inaccessible A < k. For a
given II indescribable cardinal & in the ground model we will define a forcing iteration
of length # + 1 and then use the characterization in I.1. to guarantee that x remains [/

indescribable in any generic extension.

First we look at Hrll indescribable cardinals (n > 1). Theorem 1 generalizes a
theorem of Silver (cf. [Kunen, 1980]) which says that the failure of GCH at a weakly

compact cardinal is equiconsistent with the existence of a weakly compact cardinal.

Theorem 1. (n > 1) CON(ZFC + 3 HIll indescribable cardinal) <=

CON(ZFC + 3& (s is Hll1 indescribable A 2% > xT1))

1
Proof.- Suppose « is 11111 indescribable. We can assume V = L since £ remains II
indescribable in L. Fix £ > 2, we will define a forcing iteration Pn+1 such that

|~ “g is IIII1 indescribable A 2% = PR

k+1
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For limit ordinals A < & we let

P)‘ = lim_ dir P,, if A is inaccessible
<A

P/\ = lim inv Pﬂ otherwise
n<A

and for o < k& let &a € VPa a canonical term with
“—ija “(oQa is the trivial poset if « is not inaccessible and
(30, = Fn(a+e,2,a) if & is inaccessible”.
Note that for any inacessible A < &
Va < APyl < A
and hence for any Mahlo cardinal A < «

P/\ is A c.c.

since {a < A:Py = ligl dir Py} is stationary in A. Moreover we have
. n<a

[F=, “Ais inaccessible”
PA

since for any a < A

I p “P,, ) is <p closed”
a3 3

where pu is the next inaccessible >« because P is clearly p c.c. Since [P/\| = A we also

get

>A
- GCH
Py
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and a straightforward calculation shows

b 2= «TE
k+1

To finish the proof we have to show

1
||—P “k is II ) indescribable.”
k+1

e . 1 o
Fix a condition p* € PK+1 and @ in I, and a PK?+1 name A for a subset of

V, and assume towards a contradiction

p*”—P “@(K) describes &.”

k+1

By the reflection principle fix an ordinal § > the least inaccessible above xk with

Vs E[ZF A p*”—i) “@(K) describes &.”]
K

+1
Vs
Note that in particular PK+1 = Pfc+1.
i ”_ . <K
Using standard arguments we can find a transitive M with |M| = k and M C M

and « VE M and some pM, KM € M and an elementary embedding

i:M — V¢ with cpt i = (IC+)M and i(pM) = p* and i(xM) = A. Since & is Hrl1

indescribable we can find a transitive N with [N] = |Vg]| = & and N<f ¢ N and
2'1_' correct for k and an elementary embedding j: M — N with cpt j = «.
ot c WM '
Note that Poipiss’ cc and cpt i = (k' )" ; hence we can use the pullback

method to find an M generic GM for Pl;:/I+1 and a V generic GY for PK_*_1 such that

p* € GY and i lifts; i.e.,
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i
M — V&.

Suppose for a moment that we could find an N generic GN for PN

N[GN] is Zrlx 1 correct in V[GV] and j lifts; i.e.,

M[cMj J, N[GN]

pN 2
k+1 i(&)+1
v LN
Then we would arrive at a contradiction as follows. Since ® is I7 111 we get
N[GN] k= 3a < (k) Va F ®((S) N Va)
where
s:XszmdMﬁﬂgzqﬁMfﬂdeMmM]
and
S =j(S) N V.

Hence-by elementarity

MIGM] = 3o < & Vg = B(S N Vy).

j(gk)+1

such that

But by standard arguments (M[GM])a = (V[GV])a for a < k so that really in V[GV]

Ja < k Vg E ®(S N Vy),
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i.e., ®(S) reflects, a contradiction. Hence in order to finish the proof we have only to

construct GN with the properties above.

First note that Pf = P, since N € N. P, C V, implies that we have
i{p) = pforallp € Pe. Let G, = GV (| Px. For any H that is N[G,] generic for
the tail PN., | j will lift; i.e.,
K,(k)

M[Gx] — N[Gg*H]

N
Fitr)

M — N.

Pg

1
Now we construct an H that is ngj(/c) generic over N[Gg] such that N[G+H] is En 1

correct for « inside V[GV]. First we need the following:

Lemma 1.1. N[Gg]is Erlx correct for « inside V[Gg].

1

Proof of 1.1. Since P is k c.c. and N<¥ C N we get that N[G,c]<'€ C N[Gg] in V[Gg]

and hence (N[Gk])g = (VI[Gg])a for @ < k since & is inaccessible in V[G],. Thus

N[Gg] is 2(1) correct for « inside V[G].

Before we continue with the proof we need the following:

Fact 1 (¢ > 0). Suppose P C Vi is & c.c. and T € VP, Then we can find

* P .
T eV nV,H_ethh
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”_P (r € Vfc+€ =% =71).

Proof of Fact 1.2. We use induction on ¢ and start with £ = 0. Suppose we are given

T E VP and we already know that the claim holds for all terms of smaller rank than

the rank of r.

Since P is k c.c. there is a cardinal A < & with ”_P (tr € Vg = |1] < A). We

. 2 P . o onto
pick a term f € V* with H—P (reVg=>1:2 — 7). Foreach a < A we let

Aq a max antichain {p € P: 3¢ € dom 7 pH——P (f)(a) = o}
and for each p € Ay we pick op o € dom 7 with
e
P ”_—P Op,ax = f(a).

Since for each ¢ € dom 7 rank (¢) < rank(r) we can find terms a; o € vP n Vi
bt

such that

”_P (op,0 € Vi = 0';,0 = 0p,a)

now define
™ = {(0% 4 D) P € Ag, e < A)
G:Df p,x 9 (s 3]
then 7* C V, and |7*] < &; hence 7* € V, and moreover

-”—P(TEVK;=>T*=T).
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Now suppose we have arrived at stage £ + 1. Let
r* 5 {(¢*,p): (¢,p) € dom 7}
* P .
where forc € dom 7 o¢” € V' N Vlc+€ with
bp (0 € Vg = 0 = 0);

clearly 7* € Vrc+£+1 (if we use flat pairing) and

Lk
”——P (re V,g+g+1 >T=71). . end of 1.2.

We can now continue with the proof of the lemma. We proceed by induction and show

1

K correct for « inside V[Gg]. Let k + 1 < n — 1;it is

that for k < n — 1 N[G,] is X

enough to consider ®(A) in II1 with A € (N[G”])K+1 and (Vg E @(A))N[GH] and

k+1

to show that (V & Q(A))V[GK] since by induction hypothesis N{Gx] is le( correct in

V[Gg] for k. Pick p € G, and by € NP'C 2l VK+1 (by applying fact 1.2. in N) such

that A% = A and pI: “vy k= B(R).”
K

Now in N (sine @ is 111 ):
£+1

VMftrans Mo A Mo = ZFT A | M| = |[Vi] A <5 C M

/\.ALZ'llicorrectfornAP,c,KG./ﬂa.:>.

(e}
Aok ol Vi = 2]
by using the induction hypothesis in N. But this formula is IIllH_l(p,PK,K,fc). Hence

the same formula holds in V, but then by reflection principle in V

o]
Pl “Vk = ®(A)”
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So

VI[Gg]
(Vi = ®(A)) ) end Ef 1.1.

Now we consider N[Gg]’s version of the forcing at stage x. Since N[G,{]<’C -

+2)N[Gn]

N[Gk] in V[Gg] this is the initial segment of length (x of the forcing

FnV[GK](K,—i—e,?,n) that V[Gg] wants to do at stage k. If G denotes the V[G,] generic

VI[Gg] N[G“](n+e,2,n) is certainly

for Fn (n+£,2,n) coming from GV,' then g 5 G N Fn

1

generic over N[Gg]. Moreover the following lemma shows that N[Gg,g] is En 1

correct for « in V[GV].
Lemma 1.3. Suppose N = ZF™ and N<E C N and N is Z’Ill correct (n > 0) for x. If
G is Fn(fc+e,2,m) generic over V and g = G N Fn((fc+£)N ,2,k) then Nlg] is L'

correct in V[G] for k.

Proof of 1.3. Note that .N'[g]<'c C NJg] in V[G] since all posets are <k closed (we can

assume that N satisfied choice). We proceed by induction on n. To handle n + 1 it is

enough to consider ®(A) in Hrll with A € (N(g]) 4 and (Vi E @(A))N[g] and to

+1
' VI[G] . . . . ol .
show that (V, | ®(A)) since by induction hypothesisN[g] is X' correct in V[G]

for k. Pick p € g and a nice Fn((n+e)N,2,n) name A for A C Vi with

N [13 Q »”
plf Vi ®(A)”.
Fa((sTHN 2,6) K
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+

Since Fn(:c+e,2,fc) has the « ' c.c. there is a complete suborder Q € N of

Fn((m+e)N,2,K) with |Q|N = k and p € Q and X € .N'Q. Moreover Fn((n+e)N,2,fc)
~ Q x Fn(n+e)‘N »2,6) in N and Fn(n+e,2,n) ~ Q X Fn(n+,€,2,rc) in V. Hence if

g = g N Q then in N[g] || “Vek= ®(A).” Note that A € (N[g])RH.

Fn((m+e,2,n)

The following sublemma shows that N[g] is 2111+1 correct in V[g] for &.

Sublemma 1.3.1. Suppose N = ZF  and N<F C N and N is Z’rln correct (m > 0) for
k. If Q € N is a <« Baire poset with |Q| = « in N, then for any G which is V generic

for Q, N[G] is len correct for & in V[G].

Proof of 1.3.1. Note that .N'[G]<K' C N[G] in V[G] since Q is <x Baire. We now

proceed by induction on m.

with B € (N[G])

o . . 1
To handle m + 1 it is enough to consider ®(B) in Hm+ Kt 1

1

[G]

and (Vg E <I>(B))N and to show that (Vi E @(B))V[G] since by induction

hypothesis N[G] is Elln correct in V[G] for £. Pick q € G and Be .N'Q a nice Q name

for B C Vi with q]% Vi E <I>(1%). Since |Q| = &, we can assume that Q C Vy;

1

m+1):

hence B €V,.,q1- Nowin N (since @ is I

K+
Vbftrans Mo A Mo = ZFE T A [M] = [Vi| A <F C M
1 0o
/\./H:chorrectforn/\Q,BE./ﬂa.:'#.

2 k= allg “Vi 3(B)"].
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by using the induction hypothesis in N. But this formula is Hxln-{-l(q’Q’}%’K)' Hence
the same formula holds in V, but then by reflection principle in V

alg “Vi b= ®(B)"
so

(Vi E ‘P(B))V[G]- end 0?1.3.1.

1
Since @ is Hn+1 the induction hypothesis applied within N[g] tells us that in N[g]

Vob[trans Mo A M = ZF T A M| = [Ve] A <F C M A
1
./fLchorrectforfc/\AE./ﬂ:.ﬁ .

Mo = ”W—Q_) “Vik= 2(A)"].

1
But this formula is Hn+1(I€,A); hence by the sublemma it must hold in

V[g], so in V(g]

I Vi k= B(A).”
Fn(n+e 2,6

Therefore

(Ve E @(a)) ¥ 1CL end SF 13,

N [G K 3g]
h can

Next we have to construct h which is N[G ,g] generic for the tail P . .
&+1,(x)

be constructed in the usual way since N[G,c,g]<'c C N[Gg.g] in V[GV] and the tail is

1
certainly <k closed and |[N[G,g]| = k. Moreover N[G,g,h] will be En—l correct in

V[GV] since the tail is highly closed.
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So we have arrived at

M[G] —J" N{(Gg)]

N

Fe Fitn)

J

where j(Gg) = G * g * h and N[j(Gg)] is 2111_1 correct in V[GV} for .

In our final step we use a straightforward master condition argument to find a

N[j(Gg)] generic K for FnNL](GK)](j(n)+e,2j(n)) such that j lifts; i.e.,
MIGM— N[GH]
J

M[G] T’ N[(Gg)]

where GN = HGg) * K. K can be constructed in V[GV] by using that

P DRG0+ 2500)) is < closed in VIGY] and NGl = w. NIGN] will stil

be El 1 correct for « in V[GV] since Fn(j(;c)+e,2,j(fc)) is <j(x) closed in N[j(Gg)].

a
end of theorem 1.

Actually the case m = 1 is very special when one tries to make GCH fail at a T

indescfibable cardinal. This is because of the following

FACT:if one can force & to be Hlll (n > 0) indescribable by adding kT many subsets
of £ then adding any number A > & of subsets of « will force & to be Hrll
indescribable.

Thus in order to obtain the consistency of “x is HIII indescribable and 2% = A” (where

A is some cardinal >lc+) it is sufficient to define P’H_1 by adding at any inaccessible
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stage p<k p+ many subsets of p and then to show that ”F_ “k s Hrll
K+1
1

indescribable” if k was already Iy indescribable in the ground model.

Next we evaluate the consistency strength of the failire of GCH at a Hnm
indescribable with m > 2, n > 1. It will turn out that this is consistencywise stronger

than the existence of a IInm indescribable.

Theorem 2. (m > 2,n > 1, ¢ > 2) CON(ZFC + HK(HIT ind k A 28 = m+€)) .

m+¢—1
CON(ZFC + 3k I ind &).

P rOOf. « <<= ?

m+
Assume that V = L and « is I, indescribable. We define an iteration Pli+1 by

exactly the same clauses as in the proof of theorem 1 and we claim that

“xis I indescribable A 2% = x+¢ 7,

Il
Pfc+1

The proof closely follows the ideas in the proof of theorem 1 and we will keep the

notation that we used as much as possible. The hard part of the proof is again to

show that

) ”Pn+1 “xis I indescribable.”
Now we know that « is Hnm+ll—1 indescribable in the ground model; hence there is a
trgns N, with N |= ZF—,v|N| = 'V;c+m+12—2i’ van+m+2—3| C Nand N Enmj-lé—-l

correct for ¥ and an elementary embedding j:M — N with cpt j = k. After
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constructing GM and GY as in the proof of 1 we have only to come up with a le\(ln)-}-l

generic GNsuch that N[GN] is 2?—1 correct in V[GV] and j lifts; i.e.,
MigM] — N[GN]

PM P}\I
k+1 j(r)+1

M — N.

N +(m+€—3)
As in the proof of theorem 1 G, is P, = P, generic but now N[Gk]"

. . mti-—1 . :
N[Gg] in V[Gg] and N[Gg] is En—l correct in V[Gg]. Note that certainly
N v
(n+e) (Gl = (n+e) [GK]. So N[Gg] wants to do the same forcing at stage x of
PN that V[Gg] wants to do at stage x of P ; namely F‘n(fs:+€ 2,k) which we
J(K)+1 K k+1° ’ 9Ly

denote by P from here on. Before we continue with the proof we need some technical

lemmas.

+ +2

c.c. and <« closed and has size &

Note that P is & , 80 we can regard it as a subset

of Vere Moreover “_P V. = (V)"

Working in N[{Gx] we define by induction on r > 0 names \O/,H_r e (N[G,;])P-

Let %rz = (Vg)” and to define \% 1 choose for each nice P name 7 € N[GK]P for

K+r4
o . C s N[Gk] o
a subset of V., . a maximal antichain Ar C {p € P:p”T T C V). Then let

\ U{r} x Ay

T a nice P name
for a subset of Vfc+r

k+ir+1—
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N[Gk] -
I Ve+r = Vi
. . N[Gkl 9
Proof. We use induction on r > 0. By the <& closure of P H—P— Ve =V_.
. . S P . &G
Now assume G is P generic over N[Gg] and X € (N[Gg])® with X -
. . c N[Gk] ¢
(N[GE’GDK:+r' By induction hypothesis pick po € G such that p0||T X C

{)/IH-I" Choose a nice name 7 € (N[Gnk])P for subset of {}K-H‘ with pof}— X =

Then {q < po:3p > qp € A} is dense below py; hence A [ G # 0. So xG = ;G

oG 3G °G . . . 2 G
€ Vn+r+1' Conversely if X~ € V el then, by induction hypothesis clearly X
K+r
O
€ (N[Gg ’G])fc+r+l' end of 2.1.

) o
Lemma 2.2. (r > 1) every Vn+r and every nice P name for a subset of Vn—{-r can be

coded in a highly absolute way by an element of Vlc+r+€'

Proof. Since P C VK,+€ has the kT c.c. every P antichain A has a code A € V,C

+
Now we proceed by induction on r.
_r = 1: a nice P name )0( for a subset of Vi looks like this:
(o]
X =] {x}xAx
XEV
where each Ay is an antichain in P. Now we code )0( by )o( 5 code of

{(x,Ax):x € V,} which is € Vfc+€ since |Vk| = &.
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o}
Hence we can code V,H_1 by
S -
Ver1= {(#,A+):7 a nice P name for a subset of V}

S
clearly Vm_*_1 € VK,+1+Z .

A nice P name }0( for a subset of {)/ﬁ:‘*']- looks like this:

(o]
X=U {r} x B,
o
redomV'H_l
where each B, is an antichain in P. By definition each 7 € dom \o/fc-f-l is a nice P

name for a subset of Vi ; hence each 7 € dom %'6+1 has a code 7 € Vrc+€.

So we can code §( by

pado)]

~ (o]
= {(#,Br):7 € dom Vfc+1}'

)
Thus, clearly, X € V The induction step is now straightforward using exactly

k+1+¢-°

the same arguments

Finally it is clear that there is a weak fragment ZF~ of ZF such that for any

trans M with M = ZF~ and k, P € M M can correctly compute the coding and

ce g a
decodmg if it has enough closure. end of 2.2.

Let us denote by G the P generic that we add at stage x of Pn-{—l (i.e., GY = G, *xG).

Lemma 2.3. N[G,G] is Z:l_l correct for & in V[GV].
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K+(m+£—3)

Proof. Note that in V[GV] N[Gg ,G] C N[Gg,G] because P is kT ce.

An easy calculation shows that in V[GV] I(V[GV])K+m_9| K+(m+€—3).

Therefore we get that V[GV]) = (N[Gg,G _ 1. If n > 2 we proceed by
1 k+m—1

K+m—
induction on 0 < k < n — 1. In order to handle k + 1 < n — 1 it is enough to

m

consider ®(A) in Hk+1

with A € (N[Gg,G])x4m and N[Gk,G] = ®(A) and to show
A%
that V[G"] | ®(A).
. . 2 P o : . oG
We pick a nice P name A € N[Gg]® for a subset of Vfc—i—m—l with A~ = A

and p € G with

pINGA] wv, - a(R)

o ~ ) ~
Note that by lemma 2.2 A has a code K € Vfc+m+€—1 such that decoding .X from ,Z

is highly absolute. Now we have

_ Ivm+m+€—3l
VMM trans A M =ZF T A Mo CMA M=V o ol

m+€—1 (]
A Zk correct forxk A P, A € M =

Mo b= “pH—P “Vi = @ (thenice Pnameforasubset of {D/fc—{-m—l coded by K)”].

This holds because @ is IIkm+1 and we can apply the induction hypothesis within

+e-1 [ X
N[Gk]. Since this last formula is o (n,P,K) it must hold in V[Gg] because

k+1
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. m+f—1
N[Gg] is Zn—l

correct for & in V[Gg].

Hence we get in V[G]

V G [13 Q ””
pIVISa] v, a(R).
Therefore we conclude that in V[GV]

Vi = 8(A). end of 2.3.

Now we continue as in the proof of theorem 1 and construct H that is N[G.,G]

‘generic for the tail P This is done in the usual way by observing that the tail

£+1,j(k)

is <p closed in N[Gx,G] where p is the least inaccessible > x + 1 and by recalling

that |N[Gk,G]| = k. Moreover the closure of the tail will yield that N[G,,G,H] is

m v +(m+£-3) v
x 1 correct in V[G"] and N[G,,G,H]* C N[G,,G,H] in V[G"Y]. Since

j(p) = p for p € Py j lifts; i.e.,

M[GM] — N[(Gx)]

N

P, Pj(;c)

M — N
whererj(G,g) = Gk * G x H.
In our final step as in the proof of theorem 1 we use a straightforward master
copdition argument to pick K which is N[j(G,?)] generic for Fn(j(K,)+e,2,j(K:)) such

~that j lifts; i.e.,
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M[GM] — N[GN]

M N

P P
k+1 i(k)+1

M — N
where GN = Gk * G x H x K. N[GN] will be an-—l correct in V[Gv] since

Fa(i(x)T¢,2,(x)) is <i(x) closed in N[j(Gx)].

”»

«=
suppose & is HLH indescribable and 2% = r.:+e; we claim that
+£—1
(kis I ind)L
+é-1

Let ®(A) = V% ¢(%,A) where ¢ is E}r}n and % ranges over Vetmao—1 and

-1

A€ V‘H_1 N L and assume

(Vi = a(ANE.

If n > 2 then we need the following lemma before we continue with the proof.

Lemma 2.4. Forn > 2, ¢L(95,A) is 2?_1(%,A,n) over V.

Proof. Let T be a ﬁnite'fragment of ZF + V = L such that for any trans model M of

T we have M = Ly and write ¢(%,A) as
3%, - QB _q 0(%,%,,A)

-1
where Q € {3,V} and the %, range over Vn+m+£—1 and @ is 2;n+ .
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Since vn-{-rn+2—1 NnLC Lﬂ+(m+2-1) (Vg E ¢(93,A))L is equivalent to

-1
K+(m+ )

+(m+2e-1;

]
Qrp_1 <* Q%,_1 €Ll

6L(%,%; A).

F(m+e-2) +(m+0-1)

Now < 'Vfc+m—1| allows us to code each Ly; with y; < &

by a subset ‘Ui cVv then the last formula is equivalent to

k+m—1"

3Y =T QY _1EFTQM[Mtrans A S|=ZF A

|V/c+m—2l

=
| Mo} = |V | A M CMAB,Yp,, Y1 AEM K -

k+m-—1

M | 3%, € transcoll Yy - QEB_ _; € transcoll Y, _; 61(%,F, ,A)].

— -2
Note that for any such M K+(m+€ 2) = (H+(m+ ))an since |V, ol >
-3
r.:+(m+ ); hence Vn+m+£—2 NLC L™ so that (Vg E H)L is absolute for Ab.
]
end of 2.4.

Now fix M with |M| = k, M trans and M = ZF ™ and M<K C M and k € M. By the

v 9l
K+m—2" - N and N g™

™ indescribability of x there is a trans N with N 11

n
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correct and an elementary embedding j:M — N with ¢cpt j = x. By the lemma we get

forn > 2
(V$elLnvV (Vi = 9(3,4)HN
K+m+4€—1 V'K ’ :
. . . . mti-l
This holds also if n = 1 since then %(%,A) is ZO and we can use the

argument from the last part of the proof of the lemma where we mentioned that

Ve E H)L is absolute for M. Hence by the elementarity of j, for some a < &
(VB ELNVy, 1, (Va 9(SA N Va)M;

(Vo | (A N V)M,

But then by M < cCM
O

end of theorem 2.

(Vo = 3(A N V)b,
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CHAPTER III. THE CONSISTENCY OF o' > 703(m >2, n>1).

SECTION 1. General Remarks about the Construction.

The aim of this chapter is to prove the following.

Theorem 1.1. (m > 2,n > 1)

CON(ZFC + 3k, k' (k < ¥, k is IIE1 indescribable, and &' is an indescribable)

= CON(ZFC + ¢ > = 4 GCH)

In order to prove this theorem we will work in the theory ZF + V = L and assume

that we have a erln indescribable cardinal & and a 2;11 indescribable cardinal &' > &.

Then we will define a & + 1 stage iteration an such that

m . . . m . . . m
(1.2) |f—gz “there are no L indescribables <x, x is I ~ indescribable, & is z,
P

n

indescribable.”

Hence we will obtain

The definition of an will be motivated by the fact that we want no E;n indescribable

m
cardinals in V' ™ below k. Thus an will be essentially a x + 1 stage forcing iteration

where at stage A < k, where A is Mahlo we do some forcing that ensures that A will be
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m

an describable in V. ® . (The fact that we also have to do something at stage & will

play a role later in the proof that an preserves the HII? indescribability of x — we

already encountered this phenomenon in II.1. and II.2.)

Thus — as a first approximation — we can define the stages in Prrfl as follows:
m
P =
n,0 {0}

and for limit ordinals o < &:

ana = limdir P™ if « is inaccessible
’ C<a nac
and '
m m
P =liminv P otherwise.
n,o (<a n,¢
- - Pm/\
To define P for a Mahlo cardinal A < k we pick a canonical term Q cev
D,/\+1 . 1’1,/\
such that
I “Qm/\ is a certain finite step iteration of A is inaccessible and
P n
n,A ’
GCH > A holds and AT¢ = A THL (¢> 1);
otherwise Q is the trivial poset.”
n,A

To define the successor PII:l,B+1 for an ordinal @ that is not a Mahlo cardinal we

b4

m PmA
just pick a canonical name Q \ eEV A for the trivial poset; i.e., at stage # where

n,

is not Mahlo we don’t do anything. Now what exactly do we mean by “certain finite

step iteration” 7
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PIIl

Suppose we are in V n,A and A is inaccessible and GCLZ/\ holds and /\-i-é = (/\_M)L

for £ > 1. In the first two stages (for n = 1 this will be done in one forcing) of Qm/\
. it,

we add an object that is modulo coding of type m over Vi (i.e., a subset of Vn+m—1)
m

and then force that a certain statement ® ™ holds about this object. The first poset

-1 -1
will have size /\+(m ) and will be </\+(m ) closed. The second poset will be

-2 -1
</\+(m ) closed and <,\+(m ) Baire and AT™ c.c. and of size AT™ (forn =1

-1 -1
the first forcing will have size /\+(m ) and </\+(m ) closed). Hence in particular

after forcing with these posets, A is still inaccessible, GCHZ/\ holds, and /\+E =
(/\+Z)L for £ > 1. Recall that in the definition of Z'I;l describability of A we allow only
parameters that are subsets of V/\ . Hence in the next (m — 1) steps we code down the
object of type m on V/\ that we first added successively until we end up with code S/\

C A. This goes as follows: It will turn out that the object that we added at the first

+(m—1)- /\+(m—-1)

Since

step of stage can be coded by a subset A/\ C A

we can use almost disjoint forcing with

(m—1)

(/\+(m—1))L and /\+(m—2) _ ()‘+(m—2))L

of constructable subsets of

(m—2)

the E least almost disjoint family of size /\+

(m—2)

centered and </\+ closed. Thus after we

/\+(mi2). The forcing is /\+

‘ -2 ,
do this forcing and obtain a code for A, which is C /\+(m ) we still have that A is

inaccessible and GCHZA holds and AT¢ = (/\+e)L for £ > 1. Thus we can proceed in

this fashion until we end up with a code Sy C A.
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Now in the last step of our iteration Q \ we will force a club set Cy € Asuch
n’

that
m

X
Cy N {p < A:pinaccessible A V), |= @ I (the object coded by S)‘ NV, =0

Note that this forcing has size A and for each g < A there is a dense suborder that is

< it closed (it consists of all conditions whose top element >p).

Therefore we get the following:

b Qm)‘ has for each p4 < A a dense suborder that is < pu closed.
P n,
n

One can prove for each inaccessible A < &

m

(1.3) Va <A [Py |

<A

by induction on a. For the successor step one has to use that for each a < A

m . e m . .
“F{l—n IQn,al < XA since || “X is inac” because IPn,aI < A by induction

n,o

hypothesis. From (1.3) we can deduce

VYA < & (A Mahlo = an’,\ is A c.c)
since {a < A Pgl,a = dr;Iiif\n an,,,} is stationary in A by the Mahloness of A. Hence we
can conclude that for all Mahlo cardinals A < &

I “As regular A GCHZ? holds A AT = 0 THL (g 1)
n,A
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In order to show that for Mahlo A < &

F—m— “A is inaccessible”
P
n,A

we need to observe that at any intermediate stage the iteration factors in a nice way.

Lemma 1.4. Let 0 < a < k and Pm denote the tail of the iteration
n,a+1,kx+1

m

Pn,a+1

in V . If p denotes the least inaccessible € (a+1,6+1) then

s “for each v < p an,a+1,rc+1 has a dense suborder *P:ta-i-l,fc—i-l
Pn a+1

that is <v closed.”

Proof. Let G be P +1 generic and fix v < p. We claim that in V[G]:

n,o

(1.5) If 8 € (a,k+1] is a limit ordinal then P is either a direct or an inverse
n,a+1,8
limit. Moreover if cf # < v then PIn is an inverse limit.
n,a+1,5
In order to prove (1.5) note that Iana+1| < p and that for § € (a+1,k+1) with
ch[G](,B) < v we have P = liminy P. (in V). Now we can use the same ideas
g pg<p W0

as in [Baumgartner, 1983], Section 5.

For 6 € [a+1,k+1] we define

m m VIG « .
*Pn,a+1,6 5 {f e Pn,a+1,5 +V( € dom f ”PT[L f({) is in the <v closed
na+1,0

dense suborder of Qm ”1.
n,
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The first half of (1.5) implies that *p™

is dense. The full claim (1.5) shows that
n,a+1,6

O

" .
i1s <v closed. end of 1.4.

m
n,a+1,6

Given this lemma it is easy to see that for Mahlo A < «

|F—m— “A is inaccessible.”

n,o

This also shows that at each Mahlo stége A < Kk the requirements for doing a finite

step iteration Qnm/\ are satisfied. Then it will follow
b

13 m M M »
“Tnm there are no X'~ indescribables <«.

Finally one can apply 1.4. to show by induction on a < k that H—I—)—m—- GCH; hence we
n,o

obtain

— GCH.
P

n

Preservation of the Z'nm indescribability of k'
This follows from the fact that the iteration an can be defined inside any V, where

w>K 'is inaccessible so that in particular Pg] € V. We prove the following general

Lemma 1.6. Let k be E;n indescribable and P be a poset with P € V. Then

”—-13 “k is Z;n indescribable.”
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Proof. Suppose G is P generic and ® is Z‘nm and A € (V[G,‘-,])"c_*_1 and, in V[G]
., 0 P ... ,2.G )
Vg = ®(A). Pick A € V' with (A)” = A and p € G with

o
(L7) plbp “Ve I 2(R)
Let p be the least inaccessible <« with P € V. Now for any inaccessible v € (y,x)
. o P .
pick A, €eV" with
(o] o]

*
For each such v we can apply I1.1.2. and find ‘Ku € vP N VV_}_1 with

O* Q
P”—P Ay= Ay,

Then define

A* = A%,
ve(p,x)
v inaccessible
Clearly
o, ©
pllFp A™=A

and we have fx* C V and for each inaccessible v € (u,x)
' S * < *
(1.8) p]}—P ATV, =ATNV,.
(Here consider A* M V, as an element of VP, Now (1.7) is EII:](p,P,Fc,K*) over Vi

since it is equivalent to
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IM[ A transitive, Mo = ZF— , [ M| = [V |

v _ol
M Ktm—2 C Mo, M H;n . correct for k, Mb = [pH—P “Vk = ‘P(K*)”]]-

To see this note that for any such Ab the Hnm 1 correctness of b inside V for & will

imply that with any P-generic H M[H] will still be IInm 1 correct for k inside V[H]
because P € V. By the Enm indescribability of k¥ in V this Enm fact must reflect to

some inaccessible A € (p,k). So we get
[e]
plbp V5 E o&* NV
where we consider A* N V), as an element of vP, By applying (1.8) we obtain that in

VIG, (A* N V,)¥ = AN V,. Therefore in V[G]

V,\ F oA N V,\)§

i.e., ® reflects. end of 1.6.

Preservation of the H;n Indescribability of «.
This is the difficult part of the proof of (1.2) and we are going to use the reformulation

in L.1.
m

J . . . m o P
Assume towards a contradiction that ® is IIn and A € V ' and for some

epe m
condition p € P~ we have

pl—m “Q(X) describes k.”
P

n

By the reflection principle we can find some ordinal § > the least inaccessible above &
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such that Vg |= [ZF— A plﬁ “Q(K) describes x”]. Note that an € V.
n

Using standard arguments, one can construct a trans M of size & With M < -
M and an elementary embedding i:M — V6 with cpt i > k and some Mp € M and
o . oM M2 Q . .
MA € M with i("p) = p and i("™A) = A. Using more or less straightforward master
condition arguments we will construct a V generic VG for an and an M generic Mg
for M(P;n) such that i lifts; i.e.,

MMal L v,Val

and also p € VG.

Vet m—2al
By applying I.1. we can also find a trans N with |[N| = ]Vm+m_1| and N #Fm—2 CN

and N is Zn correct for £ in V together with an elementary embedding j:M — N
with cpt j = «.
In order to finish the proof we have to come up with an N generic NG for

N(P;n) such that N[NG] is Z’IIII 1 correct for « inside V[VG] and j lifts; i.e.,

: MMa) L NNgl
M) Neenh
M -— N.
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Since p € VG we get in V[G]

o] G .
®(A™) describes .

The Enm_ correctness of N[NG] for « inside V[VG] implies

1

[}
NING] E Vi | 9(AC).”
Then by elementarity of j and the fact that KG € M (since cpt j = k) we get
, 0
MMG] E 3o <k Vo E 8(AC N Vy).
It will be the case that (M[MG])<'Ic - M[MG] inside V[VG]. Thus in V[VG]
G
da <k Vo ESAT ) Va)-
Therefore we get a contradiction.

In order to find a generic NG with the properties above we use master
condition arguments. At the last step of the last stage of the construction of Ng
where we add a certain club set C j(«x) we will see that the iteration as we have defined
it does not allow us to pick a master condition. VWe are going to avoid this problem by
adding at each Mahlo stage A < & of an a At sequence (rather than just one) of
objects of type (m—1) over V/\ and then we make a an fact true for half of them and
its né_ga,tion for the other half. Then we code all these objects down until we end up
with a AT sequence of codes that are each C A. Finally we add a At sequence (rather
than just one) of closed sets C A eaf:h of which avoids a certain set of inaccessibles.

We shall see that with this modification we will be able to find a master condition in

the very last step of the construction of NG .



-39
The key point will be that in order to get a generic for the first step at stage &
in N(P;n) we do not merely take the generic for the first step at stage « in V(Pgl).
Instead we choose a certain permutation of the sequence of generic objects at the first
vV, ,m . . . .
step of stage & of " (P ). This permutation will ensure that for certain |M| = & —
many of the objects for which a X'~ fact holds in V["G], a I} fact (its negation) will

hold in N[NG] and this fact will allow us to pick a master condition in the very last

step of the construction of Ng.

The most difficult part of the proof will be to show that N[NG] will still be

zn 1 correct inside V[VG] for « in parameters from V., . after we do this

permutation.
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SECTION 2. o2/72.

2.1. The Iteration P% .

In this section we will write Py instead of Py . In Section 1 we have already

b
outlined the general structure of this iteration and here we will restrict ourselves in
exhibiting the 3 step iteration at stage A < « (where A is Mahlo) that we use in order

P
to make A Z’i describable in V ’\+1.

So assume G is P/\ generic over V = .. We
have seen in Section 1 that in V[G,] X is inaccessible, ()\_HZ)L = ate for £> 1 and

GCHZ? holds.

The forcing Q(l) that we use at the first step of stage A will add a sequence
(Ay:d < /\+) where for even v < At A~ is a pair consisting of a subset of AT and a
club set Q,\+ that is disjoint from it and for each odd v < At A~ is a subset of AT
Q(l) will be a AT product with </\+ support of posets that are each </\+ closed and
have size AT. So Q(l) is <A closed and has size AT. Hence if (A7:7</\+) is
generic for Q(l) then in V[G, ,K-y] still A is inac, (/\+)e = (/\+e)L for £ > 1 and
GCHZ’\ holds. If we let A.y 5 Ay for odd v and A7 5 the first component in the

2 . < . 3
pair Ay for even v then a 21 fact is true about each Ay where 7 is even (namely, “A

, 2 . N
is not stationary”) and a II1 fact is true about A, where v is odd (namely “Ay s
stationary”). Now in the next step Q(Q) we will add for each A.y - AT a code C A

Thus Q(2) =11 QA ‘where QA is the forcing for coding A7 C At by a set C A.

T<A 7 7
< Asupport
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For this let (TC:C < /\+) denote the < least constructible sequence of size AT of

almost disjoint subsets of A (note that At = (/\+)L in V[G, ,X7]). The conditions in

QA are pairs (s,b) where s C A and b C AT and [s], |b| < A and
~

(s1,b1) < (s9,by) iff s; D sg, by D by and
Va € byla ¢ Ay = To sy C syl

Clearly QA.), is <A closed and A centered (for this define (Sl ,b2)-(52 ,b2) iff s = s:,).

" Moreover if Sy is QA.,, generic then in V[G/\ ,X.y Sy forall ¢ € at.
¢ € A-y = S», N TC is unbounded in A

where S—y 5 U {s:3b(s,b) € S4} C A

If we pick a generic (Sy:7 < /\+) for Q(Q) then in V[G/\ ,X,y ,?7} for even v <

kT we created a Z? fact in the parameter S.y c X

(2.1) The set coded by §7 is not stationary in a7t

Note that for odd v < At A.y is still stationary in V[G/\,X.y 37] since by a

—

standard A system argument Q(2) has the property AT, Moreover in V(G4 ,X7 »S ~]

we still have A is inaccessible, At = ()\+)a for £ > 1 and GCHZ’\ holds.

In the final step of the 3 step iteration at stage A we add a sequence

Y
(Cyiy < /\+) of club sets C A via a product forcing Q(3) =111 Q(3) such that for
<A

each 7 < Z\t < Asupport

2
2y .
Cy N {x < A:pinaccessible A V, = @ 1(87 NV} =20



-49.

2
DI
Here & 1(87) is the Z’f statement in (2.1). Obviously each QZ ) has size A. Thus by
3

a standard A system argument Q(3) has the property AT, Furthermore for each o < A
Q(3) has a dense, <o closed suborder. Hence in particular Q(3) is <A Baire. So it is
easy to see that for Mahlo A < &

HP—- Als 22 describable.
A+1 1

In fact we have for each Mahlo A < &

”P— A is 22 describable.
k+1 1

Pr+1

since as we saw in Section 1, in V the tail P)‘_+_1 K+ 1 is highly Baire.
9

Ph:—!—-l

2.2. Preservation of the II? Indescribability of « in V

Assume towards a contradiction that for some condition p* € P .yqand @ in
2 o]
I} and A € VP we have

p*”—-—F— “@(K) describes «.”
k+1

Pick a 6> the least inaccessible greater than x such that
2 M ”»”
Vs E [ZF— A p*HT_l-i “®(A) describes £”].

Note P,H_1 € V,g-
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By standard arguments we can tind a transitive M with |M| = « and M<F ¢

M and an elementary embedding i:M — V(S with cpt i > k such that for some Mp,

MR e M iMp) = p* and i(MR) = A.

Now we have to find an M generic MG for MPn+1 and a V generic VG for
P, 1 such that p* € VG and i lifts:

MMg] - viVal

K+1 Pt

M —_— V&.

Construction of MG and VG.

Since cpt i > k and MP,C = P, C Vi we can take any V generic for Py, say G, with

p*|k € G and i will lift; i.e.,

M[Gx] — V,g[ch]

Py Py

M — V&-

» M . + .
For the first step at stage x of PR+1 and PR+1 recall that Q(l) is <k closed. Since

IM[Gk]| = & any M[G,] generic for MQ(I) only has to meet k dense sets. So in V[G]

we can pick a generic MX.Y for MQ(I) in the usual way.
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Q(l) is also <k directed closed, hence there is a condition extending all i(q)

—
for q in A~. Any such condition in Q(l) is a master condition.

For the second and third step note that both Q(Z) and Q(S) have the £ T c.c.;

hence the pullback method works since cpt i = (n+)M > K.

Note that by the usual arguments M[MG]<'c - M[MG] inside V[VG].

By I.1. the ]I? indescribability of x implies that in V = L there is a trans N with
IN| = rc+, N® C N (i.e., Nis 23 correct for £) and an elementary embedding j:M — N
with cpt j = k. Now we have to come up with an N generic NG for NPj(/s)+l such
that N{NG]* ¢ N[NG] inside V[V G] and such that j lifts; i.e.,

MMag] - N(Ng]

j(k)+1

Construction of N[NG].

First we find 'a. NG. that is Np, generic over N. Note that P, C Vi
(k) i(x)
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and NP,,; = Pg. Since cpt j = « it will therefore suffice to f{ind

then with NG, = Gy * NG

. | o MOKp
an(m) that is N[G,] generic for Pnj(n)’ (&) of

kJ(K)

j will lift.

ince 1S K c.c. we ge inside . ence the poset
Si Py i get N[Gx]® C N[Gg] inside V[G,]. H he p

NQ(l) that we use at the first step of stage « in NAPj(R) is the same as Q(l) which we
use at the first step of stage « in Pn+1' Now consider the <L least permutation II in

the ground model V = L such that

I Even,H_ — Even,H_ ~ Even('H'_)M

I Odd'H_ — Odd,c_‘_ U Even(n+)M.

Recall that in V = L ’(K+)M' = k. Denote by (Ay:7 < n+) the generic sequence
for Q(l) of PK.+1' Then define for the noncritical ¥ < kT (i.e., those v with v and

II(y) both even or both odd)

N
A, = A .
Y gt TI(y)

And for the critical v < kT (i.e., v odd and II(y) < (K+)M even)

N -~
Ay = A .
T gt ()
Because II is in the ground model (NA7:7 < K+) is certainly N[Gx] generic for Q(.l)'

~ ) —
Hence for each critical v < kT NA.Y is stationary in N[Gg ,NA7] but nonstationary

in V[Gx ,A 4.
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+

By the <k ' closure of Q(l) N[GE,N K,),]'C Cc N[G,C,N X.y] inside

+

via almost

— N ~
V[Gg,A y]. Hence Q(2) wants to add codes C k for each of the NA7 C &
disjoint forcing using the <L least constructible family (TC:C<KZ+) of almost disjoint
subsets of k. Hence with NS-y 5 SH(‘y) the sequence (NS7:7<K+) is certainly generic
for NQ(2) over N[Gyx,NA,]. And by the x¥ c.c. of Qg N[Gx,N A, NS 1% ¢
N[Gk , Ay, S.] inside V[Gx ,A5,S ] (note again that II is the ground model).
At the last step of stage k of NPj(n) we just take NC7 T, CH(7) and by the same
argument (NC7:C7<KZ+) is NQ(3) generic over N[Gg ,NX7,N§7] and we will have
N[GK ,NX'Y ,Ng‘y ,N67]'€ g N[GK; ,NX»r ,N_S')A/ ,N67] inside V[Gv]. The tail

+

Np has from the viewpoint of N[Gg ,NK-Y ,N§’7,NE’7] a <k ' closed dense

£+ 1,j(x)

+

suborder. Since |[N| = &' in the usual way we can in V[GV] pick a generic

—_ — —
over N[G,C,NA-)/,NS 7,NC7] and with NGj(ﬁ) 5 Gy *

NNG., (% C N[NG.( ] inside V[ G].

i(e) = (k)

Now we handle stage j(x) of NPj(fc)+1 . At the first step we note that the forcing we
encounter is <j(lc)+ directed closed; hence a straightforward master condition

argument works for the first step of stage & of MPn+1 .
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In the next step we proceed analogously since by the <j(«x) directed closure of

the forcing at the second step of stage j(x) of NP_j(r.:)—}-l we can always find a condition
. . . e . Ma . +M ]
extending all j(p) where p is a condition in the generic ("' Sy:y<(x")™") for the

second step of stage « in MP,C+1 .

Now we consider the very last step where we add a j(fc)+ sequence of club sets.

Before we finish the proof let us take a break and see what would happen if at stage «
of PK+1 we had just added one subset of kT rather than x7 many. In this‘
construction denote the pair consisting of a subset of kT together with a club
set C s disjoint from it that we add in the first step of stage x of MPK,-}-l by AM
and the one in the first step of stage x of P, by A. Let Mg C k be the code for Mz
and S C « be the code for A and M@ the club set that we add at the third step of
stage & of MPfc+1' In order to lift the embedding j at the very last step of this
construction we must find a club set ¢® C j(k) of cardinality <j(x) in
N[Gg ,j(MA),j(MS)] such that j(p) C c* for all conditions p “in” M@, But for all such
P P C_}" k and |[p] < k; hence j(p) = p. Thus we must have k € c*. The problem is
now that in order for c¢* to bé a condition in the forcing at the third step of stage j(x)
of Pj(;c)+1 we must have k ¢ c¢*. This ié true since in N[j(G,c),j(MA),j(MS)] Kk < j(K)

is inaccessible and
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22
22 Vo M8 N v

22

where & 1 (j(M§) N V,) says that the set C x¥ which is coded by j(M3) N V,; is
nonstationary in xT. To prove (2.2.) note that
iMSH N v, =M
since SM C « and that
§M = isMy =3
since gM C k.

But the set coded by S (namely, A) is nonstationary in N[Gg] and hence in
NGy SV A)Ms)).

We shall now see how the permutation II that we chose avoids this problem.

We define a condition c* for the forcing at step 3 of stage j(x) of NPj(»c)+1 by
dom (¢*) = {i(m):y < (xHM]

and for 7 < (n+)M:

x _ ~M .
%) = C7 .

"
where (C7 :7<K,+) is the generic for the last step of stage x of MP,C_*_I. We have to

show that c* is really a condition!



-49-

Notice that |c*| = & < j(x) and that for each v < (K+)M c*( ) is a closed
LY

subset of j(x) of cardinality <j(x). Now fix any v < (KZ+)M. We have to show that

in N[i(Gr)3(MA)i(MS )]

7y oM
(2.3) c;(7) N {r < j(x):p inaccessible A V,, = @ (j( S)j(-y) AV} =20
22

where & 1 is the statement (2.1).
Clearly we don’t have to worry about the p < « since j(Mg)j('y) NV, =
_](Mg YN Vy = Mg | V, and since V is the same whether computed in
v) [V Vp = 75y p ptw P

M[G,C,M‘X-y,Mg’.r]or in ND(GK)J(MX7)J(M§7)] Now for p = &k note that

J(MS)J(‘)I) N Vg = M§7 = i(Mg-,) = (ng)i('y) = S7 (i.e., the y-th code that we
added at step 2 of stage x of Pfc+1)' Recall that we defined NgH.'"l('y) = S.r and
that 11 [(IC+)M] c Oddn+‘ Hence the set coded by §7 , Le., A7 = NAH—l(./)’ is

—
stationary in N[GK,NA»Y]. But then this set must also be stationary in

. M L M ) .
N[i(Gk),i("" A 4),i(*" S )] by some elementary chain condition and closure arguments.

Thus we have shown (2.3).

. —
Finally it is clear that c* extends j(p) for all p in the generic MC7 and
therefore ¢* is a master condition for the very last step of the construction. Routine

arguments establish that N[NG]K' c N[NG] inside V[VG] .
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SECTION 3. arln/wlln(m >3).

In this section we will always write P, instead of Pllrl . At stage A < & (where
&

A is Mahlo) we will do a (m+1)-step iteration to guarantee that A will be len

P
describable in V A+1 .

Suppose that in V[G/\], where G, is P, generic we have: 1 is inac, (/\+e)L

/\+E for £ > 1 and GCHZA holds. In the first step Q(l) of the (m—1) step iteration

we force a sequence (A7:7</\+) where for each even v < At Ay is a pair consisting

+(m-—1) (m—-1)

of a subset of A and a club set C /\+ disjoint from it. For odd v < b

+{m—-1)

A will simply be a “new” subset of ¥ Hence Q(l) is AT product (with full

(m-1) +(m—1) .

support) of posets that are each < /\+ closed and have size A Thus

Q) is (@71 oced and has size AT ™™D, Note that Ay c aHm=1)

+(m—1) +

stationary for odd v < kT and A7 cC A is not stationary for even v < «

(where A.y is defined from A as in the r%/a% case). Moreover in V|G ,X.y] A s still
inaccessible and (AT)L = A for £ > 1 and GCHZ holds.

+(m-1)

In the next (m—1) steps we code each A.y CA down until we end up

with a_code that is a subset of A. At the k-th coding step (1<k<m —1) we will be

_m—k .m—k —k
given a sequence (S7 < /\+) where each S,y - /\+(m ) (for
m— . _m—(k+1)
k=1 S‘)’ = A4) and we want to code them by (S7 iy < A7) where each
_m—(k+1)

5 ATR=EFD Gefine AH0

v - =A). The forcing Q(k+1) that does this is a
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product of length A+(with full support if k < m — 2, with support < AT itk = m —

+(m—(k+1))

2 and with support < A if k = m — 1) where each factor is A centered

+(m—(k+1)) (m—k) +(m—k)

and < A closed and has size /\+ . Thus Q(k+1) has the A

+(m—(k+1)) +(m—k).

property and is <A closed and has size A So throughout the

coding: A is inaccessible, (/\—'_e)L = /\+Z for £ > 2 and GCHZ)‘ holds. Therefore to

M-k 4(m—k) SEFD (1))

code S7 cC A by some S—y we can use almost

(m—k)

disjoint forcing with the <y, least constructible family of size /\+ of subsets of

—(k+1
/\—f—(m (le+ )) In the (m+1) the step at stage A we add a sequence (Cy:v < /\+) of

club subsets of A such that for each v < kT

Em

Cy N {r < A:p inaccessible A Vp = & 1 (§7 NVw}=2~0

m

z +(m—1)

where & 1 S N V) says that the set C p coded by S Vy C pis

nonstationary.

The forcing Q(m+1) that adds (Cy:v < ,\+) is the analogue of the

corresponding forcing in the a%/w? case. The proof that
”‘ﬁ_ “k is IT_ indescribable”
k+1 1

is entirely analogous with the corresponding proof in the r% / a’% case.
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SECTION 4. ag /7r§ (The Generic Case).

4.1. The Iteration Pg .

We restrict ourselves to describing what we are going to do at the stage A < &

where A is Mahlo in order to guarantee that

H2— “)is Zg describable.”
P
3,A+1

Py

In this section we are going to use P/\ instead of P2 Choose a term COQ/\ eV

3,27
such that

o]
H—P— Q) is a certain 4 step iteration if A is inac,
A

AT = APSL for 0> 1 and GCH 22 holds;

o]
otherwise Q, is the trivial poset.

By “certain 4 step iteration” we mean the following: Suppose that G/\ is P/\ generic

and in V[G/\] A is inac, (/\_HZ)L =2t for > 1and GCHZA holds. In the first step

‘ +y at 2t PRa
Q(l) we add a sequence (Fy:7 < A7) where each F:2 X 2 — 2

18 a

Lipshitz function; i.e., each Fy is really a function with domain |J 2% x 2% and
+
a<A

+
range contained in 2<*" and for X, Y C AT one defines Fy(X,Y) =U Fy(XNa,
‘ a<A

Y N «). The poset Q(l) is a /\+ product with <A+ support of copies of the forcing
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PF where conditions in PF are functions f with

+
% 2<A

+
dom f as a subtree of 2</\ of size < /\+ A

V(s1.59) € dom £ [Ja < AT[ar > dom s; A £ (s ,55) € 2%7H1

A (51 ,89)(a) = 0]
AV([f(s1:89)(C) =1 = cf ( = A] A -
V(tq,tg) € dom f [(s{ ,39) extends (t;,t5) = f(s; 89) extends f(t, ,to)]]

and for f, g € Pp f < gifff O g. The conditions for PF look like this

xﬁ'
a
dom ¢ 1(S1,Sz)e2°'"
Clearly {Q(l)l = AT and Q(l) is <At closed. Hence in particular
VIG, a(F7:7</\+)] A is still inaccessible, GCHZ/\ holds, and (/\'HZ)L = ate

¢> 1.

in

for

In the next step, the forcing Q(2) which we will simply call Q from now on will make a

2 2 .
23 statement true about the Fy for 4 even and a II3 statement true for the Fy with v

odd. The Z’; statement about Fy will say

X ¢ AT vy C At F4(X,Y) is nonstationary.

The I g statement will be the negation

vX C At ay - At Fy(X,Y) stationary.
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For this note that AT = (/\+)L; hence any X C AT has a canonical code % € V/\+2

where & = {S: S € P(A) [N L A 3a(S is the f—a-th subset of A A o € X)} and any

BeV codes {a < AT :the < a-th constructible subset of ) is € %},
A+2 L

The poset Q will be a suborder of Fn(/\++,2,/\). At many coordinates

++

a < /\++ we will simply add a subset of /\+; at many other a < « we will add a

club subset of AT that is disjoint from F,(S;,S9) where (S;,S5) is some pair of

subsets of A+ associated with « if certain conditions are satisfied.

First we partition 2T into cofinal pieces C, A7('y < /\+) and B” (v < /\+)
such that AT C C. Then for each v < AT we pick an enumeration (TZ:C S A7) of
nice Fn(/\++,2,)\+) names for subsets of AT and for each v < AT an enumeration
((0'2’7 ,0'3’7) 1 ¢ € 'B7) of pairs of nice Fn(/\++,2,/\+) names‘for subsets of A such

that for any nice Fn(}\++,2,/\+) name 7 for a subset of AT and any v < AT there are

cofinally many ¢ with TZ = 7 and similarly for pairs of nice Fn(/\++,2,/\+ ) names for

subsets of AT . In the sequel we will call such enumerations of tupels of nice names
complete. Note that complete enumerations of length /\++ always exist since
Fn(AT 2,37 has the AT c.c. and size AT .

We now define the coordinates <a of @ by induction on a < /\++

fora =0

Qo 5 {9}
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if @« < AT T is a limit then
Qa = 5 {fe Fn(a2/\+) Vn < afln € Qp}
andifa € Cora € A7 (some ¥ < /\+) then

Qui1 5 (€ Fn(e+1,227) : fla € Qqa}

and if a € B” for some v < AT then
+
Qa+1<:_|)f {f € Fn(a+ 1,227 ):fla € Qo A
. Ly 2y
flo gy OO :¢ € AT Na) oy, 5 Foyf(@))

where for ( € A7

#l & AnD):3el(ng) € 7l AT < g ALEQ

and similarly
Ly i,y

= 1nf):3gl(ng) € 05" A< g ATeQal}

Q

and when the formula # is short for
Y . ¢ _ -
yisodd A[[-3 (€A ﬂa(rc_aa AT> =46, )A

v 2,y : Ly 2
(64 +0, )€ dom Fy A f(a) kills Fy (5, ,6, )]V i(e) =0].V

Ly . 1,7 2,7
o G, ) € dom Fy A f(e) kills F7(a' G, NV

3

¥ is even A (r' =

2,y Ly 2,y
e Na(i] =4 AT =67y A (e, 5,)) € dom Fay A

Ly 2,y
A () Kills Fy (5, 6 )] V £(a) = 0].
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Here I"C denotes the subset of At that we add at coordinate {. Since compatibility in
Fn(/\++,2,/\+) coincides with compatibility in the suborder Q, we get that Q has the

s+t

c.c. Moreover Q is <A closed because of the cofinality requirement that we put

into the definition of the forcing for adding (Fy:y < A+). However Q is not <t

: +  VIG,] +
closed since for each v < A |}—Q— “YX,Y € A7 Fy(X,Y) is stationary” and, as
: (1)

we shall see, Q makes “many” of these sets nonstationary. Lemma 4.1.3. will show

that Q is <A+ Baire. To prepare the proof of this we need some technical lemmas

which will also be helpful later.

It is easy to modify the definition of the forcing Q(l) so that rather than add

+ + +
:2’\ 2’\ 2’\ where v < At we add a sequence

X —

Lipshitz functions Fy

. + . s . . . . At At At
((Fy,Hy):y < A7) of pairs of Lipshitz functions with F ,Hy: 2 x 2 2

—

such that for all X, Y C At H-,(X,Y) is a club subset of AT which is disjoint from

Fy(X,Y). We denote the modified poset by Q’(l) L Itisaat product with <t
support of a posets whose conditions are pairs (f,h) where

fe PF A his a function A dom h = dom f

a+l a+1

A V(s,;t) € dom h [Fa < AT [& > dom s A h(s,t) € 2% 7" A f(s,t) € 2
A h(st)(e) = 1] A {¢ = h(s,t)(¢) = 1 = f(s,t)(()} = 0
A {¢:h(s,t)(¢) = 1} is closed] A

¥(s,t), (s',t") € dom h[(s,t) extends (s’,t) = h(s,t) extends h(s’,t')].
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If (fh) € Q,(l) then f € Q(l) and conversely for any f € Q(l) there are h with

(f.h) € Q,(l) . Moreover if D is dense in Q(l) then {(f,h) € Q,(l): f € D} is dense in

Ql(l)' Thus if (Fy,Hy):y < /\+) is Q,(l() generic over V[G,] then (Fy:vy < /\+) is

Q(l) generic over V[G,] and V[G, ,F,] C V[G, ,(Fy,Hy)]l. In V[G, ,(Fy,Hy)] we
. ++

now define the following poset (¢ < A )

szﬁ {a€Qe:Vy < Aty eBap) £0 =

VG, (F 1.B Ly 1,
alB |} [ /\((Q; 2l top q(B) € Hv(&ﬂ7 el

g Nk

Lemma 4.1.1. For each « S/\++ QY is </\+ closed.

Proof. Let a < AT and (ap: n < A) € VIG, ,(?751)7)] be a decreasing sequence of
conditions in Q},. By induction on ¢ < « we will construct q|¢ such that

al¢ € Q7

dom(q|() = {J, <\ dom(apl¢)

q|¢ < qpl¢ for all n < A.
We check only the case of a successor as ordinal ( + 1. If { € Cor ( € A7 for some
A< /\i’_ there is no problem. Now assume that { € B for some 7 < AT and for some
n <A qp(¢) # 0.

Then take

aO)= U ap©®U sap  top  an({)-

t
n<A n<i  ¢(edomaqy
(edomay an(¢)#0
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We get that q|(¢ + 1) € QC+1 since (in any model) if for some X, Y C AT Hy(X,Y)

is defined, then it is disjoint from F(X,Y) and closed.
By the same argument gq|({ + 1) € QZ+1. It is immediately clear that

ql(¢ + 1) < qql(¢ + 1) for all n < X and dom q|(¢ + 1) = U/\dom_ qpl(¢ + 1).
n<

O
end of 4.1.1

AHF

Lemma 4.1.2. For each a < QP is dense in Qg .

Proof. We use induction on o < /\++.

For a = 0 this is true since Q, = {0} = Q& . For a successor ordinal o + 1

we examine only the case where o € B” for some v < AT and we are given q € Qa+1

with g(a) # 0. Since in any model Hy(X,Y) is always unbounded (if defined) we can

pick an ordinal § < AT with 6> top q(a)and a condition q* < q with q* € Q} (by

sY . 2,y

VIG, ,(F+,H 1
VIG) o(F 4 7)]5€H7(&a Py

*
Qa

using that Qp, is dense in Q) such that q
Hence q* U {(a,q(a@) U {6})} is a condition in Q* ) below q. If a is a limit ordinal
a+

and q € Qq there are two possibilities: If cf(a) > AT then dom q is bounded in o and

we can by induction hypothesis find a condition q* € Q} below q. If cf(a) < A then
we pick a normal sequence (Ap:n < ) with sup Ay = a and /\ﬁ = a and § = cf(e)
n<p

< X. Now using induction on 7 <  we define a decreasing sequence (qn :n < B) with

qanp € QK’? and qy < qfhy.
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*x
By 4.1.1. each Q s </\+ closed so the construction works at limit ordinals
n

n < B. Clearly ag € Q% and extends q. end 0?4 L

Lemma 4.1.3. For any a < /\++ Qq is </\+ Baire.

++ o FEREEN:
Proof. Suppose the lemma was false for some a < A . Pick names A', B', C,
3 %)

—_
? Z , & C"Y in V[G/\] for the parameters that we need in the definition of Q4 and fix

a condition f € Q(l) with

VI[G oy © Sy T
(4.1.4) f H—G[—A] “ Qq(defined from A7 , ]%7, (03, ?‘Z, & 2’7) is not <A™ Baire.”
(1)

Pick some h such that (f,h) € Qél) . Now let ((Fy,Hy):y < A+) be Qzl) generic over
V[G,] and extending (f;h). In V[G, ,(f‘)./ ,ﬁ—ﬂ] Qq has a <t closed, dense suborder,

namely Q& . So in particular in V[G/\ ’F‘Y] Qg is <t Baire, contradicting (4.1.4).

O
end of 4.1.3.

As a corollary we get that for any o < /\++

—_
V[G, ,F ] + +
”—Q/\a_l V7</\+domF7=2’\ X2/\,-

X 1l,v 2,y
Therefore in the definition of Qa+1 we can omit the clause (&a’ ,&a’ ) € dom Fy in

the formula 6.

. 2 2
Next we want to see that forcing with QQ makes a ¥ _ or H3 statement about

3

Fy true depending on whether v is even or odd. We must first prove a technical fact

which will be used again later.



-60-

Lemma 4.1.5. For any condition q € Q and any ordinal § < At there is a stronger

condition q' € Q with Vy < At V8 € B7[q(ﬂ) # 0 = top ¢'(8) > §].

o}

p—
o] [e]
Proof. Suppose this was false. Pick names C, B7, A7 and

Q1)

VI[G,] and a condition f € Q(l) with

VIG S o . = —
(4.1.6.) f H——[-A—] “there is no q' € Q (&, K7 ,1%7 7 7 G . 0 ’7)
ey ¢
. ' + 27
withqg <qgAVy<A" VBeB'(q(f) #0
= top q'(8) > 8);”
pick some h with (f,h) a condition in the modified poset Q(l)' Now let

(Fy,Hy):y < /\+) be Q(i) generic over V[G/\]. Choose an increasing enumeration

(apin < X) of dom q where [X] = A.

In V[G/\,((F.y Hay)iy < /\+) we define a decreasing sequence (qp:n < A) where
forn < X

an € an
ap < qlayp
Yy < 2t vg e BT Nag(a(B) # 0 = top ay(8) > 6)

forn = 0 let q = 0.
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If » is a limit pick a condition qp € QEU with qn < q, Vn’ < 7. This is
n

possible since an is </\+ closed.

For successor 7 + 1 we examine only the case that ay € B” for some vy < At
and q(ap) # 0. Similarly as in the successor case of the proof of 4.1.2., we can find

some ordinal §' > § and a condition q* < ap, q!an+1 in Q3n+ such that top q*(a,’)

1

— &I :
= 6. Define this to be Apy1-

Once the sequence (qp:n<A) has been defined one can find a condition

q' e Q* + with the property that we want by either using the <)\+ closure
supn<:\an
Q* + of or repeating the argument for the successor case in the inductive
sup_' _sap
n<A

construction of the sequence above depending on whether dom q has a last element or

. ! o s . O
not. In particular q' € Q, so we get a contradiction with (4.1.6). end of 4.1.5.

Next we want to see that after forcing with Q any F,(X,Y) is stationary (for

X,Y C /\+) unless we kill it explicitly. To be more exact:

Lemma 4.1.7. Let G be a Q generic over V[G/\,F7]. In V[GA,?7,G] let X, Y C At

and yo < At and assume

A1770 A2970
V8 € BT Ya € Gla(8) # 0= (0] )%, (6 ) # (XYL
Then Fy (X,Y) is stationary.
Proof. Pick names (03, f°\7, ]%7, gz, 32.’7 in V[G/\] ( )for the parameters in the

definition of Q.
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Q(l)*Q

Let 0'1, 0'2, o € V[G,] and (f,q) € F», * G with

VIG,]

€ g g “Yact voeB™La(s) £0 (357,

557°) # (o1 0?)]

A o is club in /\+.”

In order to finish the proof we have to find a condition (f,q) < (f,g) and sl, 2 ¢

+

2<'\ and an ordinal a < )\+ such that
(s1 , s2) € dom '°
£7°(s! s2)(a) = 1

(f,9) H—-—(—[)—] “(0'1,0'2) extends (s1 ,s2) Aa €c.”

In order to come up with (f,q) and (sl,s2) and o we have to define a decreasing

sequence ((fy,qp):n < A) of conditions below (f,q) and auxiliary sequences

(ap:n < A)

(bp:m < A)

(Tp:p < A)

((bg:7 € Tp): n < )

(((sﬁ,7 g,,) B Eby)y € Ty)in < X)

| ((5,17,5727):1] <)



-63-

where 67, ap < AT and Ty C AT and bz - /\++ and Sjé?n’ s% - AT and at stage 7

of the construction we have

ap, bp > sup dom Y f7,(s,t) U sup(a , U § ,)
7' <n (s,t) edomf', 7 n<n 7
y€u suppf, n
n<n K

= {7<,\+:I°37ﬂ |J dom a # 0} U {70}

7] ” V[G ] { o 77,<77
(1) Vy € Ty bz _ B’ N U dom qn,
n'<n

9;7n6;77 :Siﬁ,7 (1: 132’7€T177,6 Eb;;)
V[G,] ) .
(fp»ap) HTQZ[I)T’\Q o' N 6;0 = s%, (i=1,2)

anEU

v ebi® (3 <na (8) #0 = (s51°,557°) # (5 52)]

V7 €Ty V6 €bylan' <u q,(8) #0 = top ay(d) > byl.

We cq_nstruct the sequences by induction on n < A. If we have arrived at stage n < A
and all requirements hold at the earlier stages of the construction we proceed as
follows: Since Q(l) * Q is <)\ closed there is a condition (f*,q*) < (f,g) which
extends all (fn, ,qn,) for 17’ < 7. Now pick ** < f* and Ty C U dom qn, and.

n <71
(by:y € Tp) with
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Ty = {7</\+:]°37n U d&n qn/ # 0} U {70}

V[G,] <
f**”Q—’\—{ v er
(1) {VyeTy by = B'n |J domgq,.
! n
n'<n

Then pick ordinals ay <" and 6,7</\+ and sets é7 s% c At (for

7€Ty,B€ b77 ,i=1,2) and a condition (f*** ,q**) < (f**,q*) such that

an,6n>supdomf ;7 (st)Us,up (¢ ;U6 )
(s, t)Edomf 7 n<n 7
v € supp **

51,7 i, .
8[3 nén = S[B:yn (121,2,ﬂ€b?)]a7€T7])

(F***,0*%) H—([)—] ANsp=sh (=12

0!7’60'

VB € b7° [3n < nq ,(ﬂ) #0=(s ’70, Z’z;o) # (Sn Sn)]

Note that all this can be done since Q(l) * Q is <A™ Baire. Finally (using 4.1.5.) we

pick (fn ,qn) < (f***,q**) such that

¥y € Ty VB € byla**(8) # 0 = top qy(B) > &].

This completes the definition of the sequences.

Now let a 5 nsi;i\ ayp and pick a condition f € Q(l) that extends all f, for

’7) € dom 7 where

n < A such that forally € U Tpandal g € U b (s;,‘)”sﬁ

17<A ‘YGTf’
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’7 U ’7 (i=1,2) and (51,82) € dom f° where sl = U sin(i =1,2) and
"8 Bt 2y B Tt 25

f7(s;’7,s;’7)( sup top ap(8))=0 if 3 < X 4(8) £ 0 and f70(s1 ,s2)(a) = 1.

g edomaqy
qp(B)#£0

Note that if 37 < A qp(B) # O then there is no conflict here.

We also define q by
d d
om q 5 U om qp
n<A

U qp(B) U { sup top qp(B)} if B € L<J/\ bg and ap(B) # 0
n
qn(ﬁ)¢0 €Ty
an(B) 5 for some n < A

g,\ ap(8) otherwise. -
n

Then (f,q) is a condition in Q * Q below (f,q) and sl,s2 and « have the
(1)

. O
properties that we want. end of 4.1.7.

Corollary 4.1.8. For odd v < At

[G,\’ ] + + . .
H——— VX C AT 3Y € A7 Fy(X,Y) is stationary.

Proof. Let G be Q generic over V[G/\ ,_}?7] and X C AT . Pick some & € A7 with

7o = X (note that (TZ:C € A7) is complete). We claim that F-y(X,Ga) is
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stationary in V[G/\ ,f‘).), ,G] where G% is the set g,\"' that G adds at coordinate o. If
Y -2,7.G o o .

q € G, then for all # € B' [ «a (0',3 )7 # G® since by the product lemma G is

generic over V[G/\ ,?7,G N Qq)]. Forall B € B” with B > o we get that q(8) # 0

. . Ly L1,y .Y o .

implies (Uﬂ 03') # (fq ,GY) by the definition of Qﬁ+1' Hence by 4.1.7.

ay . a
Fy(X,G%) is stationary. end of 4.1.8.

Lemma 4.1.9. For even v < At

—

VIG),F 4] + + : .
I}——Q—— IX C AT VY € A7 Fy(X,Y) is nonstationary.

Proof 4.1.9. Let G be a Q generic over V[G/\ ,F7]. We claim that in V[GA ,F'y,G]
vY ¢ AT F(G”,Y) is dead. Let Y C A" and pick # € B with (&};")Gr = G7 and

0"2’7 G = Y. Since ¥ is even, at coordinate § we add a club subset of At disjoint
B

5 0
from Fo(G',Y). end of 4.1.9.

Now let G be Q generic over V[G/\ F7] The next step in our 4-step iteration will add

. +
a code Sy C A for each Fy(y < /\+). Recall that 2<% s the same whether
computed in V[G, ,?7,G] or in V[G,]. But V[G,] is just L[G,] since we started out
</\+ +
in V = L. Moreover Gy, C P, C L, ; hence 2 C L ,[G,] and has order type A
A A A /\-f- A

under the canonical wellordering <L[G - Thus each F, has a code f‘7 C At
A
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with F.f € V[G/\ ,F7]. Now let Q(3) be the AT product with <A support of the posets

(QF7:7 < A) where for each v < AT the poset QF&, adds a code §7 C A for the set
f‘.y - At via the E least almost disjoint family of size AT of constructible subsets of A,
Note that AT = (AT)L and A is inaccessible and GCHZ" holds in V[G, ,F,G.
Thus as in the cr%lw% case each QF‘7 is A centered and <A closed. Hence by a A
system argument Q(3) has the property AT and is <A closed. Therefore in particular
Q(3) X Q(B) is AT c.c. and does not add any new subsets of AT all of whose initial

—

segments are in V[G/\ ,f‘)—y ,G]. Thus in V[G/\ ’?‘Y ,G,S 4] we have:

(4.1.10)  3X € AT VY C AT 3 [ trans, b = ZF T, [ 4] = [V, M2 C M,
X, Y€, #ol=AT = AT A it F € AT is the set coded by S5 C A via the
< least constructible family of size AT of almost disjoint subsets of A and if F is

L o At oAt +
the Lipshitz function with dom F = {(U,V) € 2 x 2% Va< A
’ At +
(Una, Vaa) € L[G,]} and rng F C {W € 27 :Va <] W na € L[G,]} that
: . <t +
is coded by F using < on 2 and if Va < AT Y [) a € L[G,] then
L[G,] A
F(X,Y) is not stationary”]

for even v < At and
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(4.1.11) VX € AT 3Y € AT VM [ trans, Mo = ZF T, | M| =V, ql M2 C M,

X, YemrtkEat=0NHlava<at XnaeLig) 5.
M F C AT is the set coded by §7 C A via the f least constructible family
of size AT of almost disjoint subsets of A and if F is the Lipshitz function with
At oAt +
dom F = {(U,V) € 2 x2% :Va< AT (Una,Vna)€ L{G,]}
at + :
and rng F C {W € 2% :Va < A" Wna e L[G,]} that is coded by
= <At i i
F using <L[G/\] on 2 then (X,Y) € dom F and F(X,Y) is stationary.”]

for odd v < At

Now the final step Q(4) in our 4-step iteration will be a At product with <A

support of posets (QZ4):7 < /\+) each of which adds a club set Cy C A such that

2
Cy N {p < A:pinaccessible V, = <I>23( S7ﬂ Vi, Gy NV, A Nw=29

2

2
where <I>Z3 denotes the 23

formula in (4.1.10). Note that for each v < At ]QZ4)] = A

and for each § < A, QZ4) has a dense suborder that is & closed. Therefore Q(4) has
the property At and for each & < X has a dense suborder that is § closed. So in
particular Q(4) X Q(4) has the AT c.c. and does not add any new subsets of AT all of

whose initial segments are in V[G/\ ,F», »G,S 4]. Hence in V[G/\ ,?7 ,G§7 ,C 5] we still

have (4.1.10.) and (4.1.11.). This completes the definition of the certain 4-step
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iteration that we want to do at stage A. Clearly for even v < At

2
Yo “¢23(§7 sGy ;) describes A"
PrxQ,

2 -
where ®3 is as in (4.1.10). The rest of the clauses in the definition of the iteration

Pfc+1 are as in Section 1. Note that as in Section 1:

”—YF“ “the tail P/\+1 1 has a <o closed dense suborder for each a < pu”
Py *Q, ot

where p is the least inaccessible >A. Thus

g V_ <“there are no 2’2 indescribables <& .”
k+1 3

As a minor technical point one might wonder how we can uniformly (in A < k) pick the

parameters that one needs to define the second step of the four-step iteration at stage
—

A. For this note that when we arrive at this step we are working in L[G/\ ,F 4] where

?7 is V[GA] generic for the first step at stage A. Thus we can simply pick the

< — _ least family of parameters to define the poset at the second step.
L{G zoF v]
2 Plc+1
4.2. Preservation of the IT 3 Indescribability of « in V .

The aim of this section is to prove

P
- ”—'“\;"1 “k is II; indescribable.”
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k+1

- o . 2 o Peig
Assume towards a contradiction ®(A) is II3 and A € V is a name for a subset of

Vi and p € P"H_1 with
(o]
pH—P—— “P(A) describes k.”
k+1

We pick an ordinal 6> the least inaccessible above & such that Vg = “ZF™ A Plg—
K41

CD(X ) describes &.”

v
Note in particular Pli+1 = Pfc-?—l € V(g- By using standard arguments we can
find a transitive M with |[M| = & and M<K C M and an elementary embedding i: M

(o]
— Vs with ¢cpt (i) > « and Mp, MA € M with i(Mp) = p and i(MX) — A. Since &
is Hg indescribable in V we can find transitive N with |[N| = kT and N¥ C N which is

2
2'2 correct for ¥ and an elementary embedding j:M — N with cpt j = . In order to
finish the proof we have to come up with a V generic VG for Pn+1 with p € VG an

. M M . N N - .
M generic G for P,H_l and an N generic ' G for Pj(n,)+1 such that i lifts and j

lifts and N[NG] is 22 correct for s inside V[VG]. Then we get a contradiction as

2

outlined in Section 1.

Constructing Mg and VG.
Note that P'CM = P, since M<# C Min V. So we pick a V generic G, for P, with

p|k € G and i lifts, since clearly i(p) = p for p € P.
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In the next step we consider Q(l) * Q. Let (Dg:a < k) € V4[Gg] be an enumeration
of all sets € M[G] which are dense in MQ(l) * MQ. Below any condition (MT,ME)
€ MQ(l) * MQ we can construct a decreasing sequence ((an ,qu_):n < k) such
that (Mf M ) € Dy(for n < k) and there is a condition (f,q) extending all (f; ) in
7y dny n U) »q g n-4qn
Q(l) * Q where f;, = i("fy) and q = i(""qy). The construction of this sequence
takes place in V[G,] but any initial piece of it is an element of M[G] since this is <«
closed inside V[Gg] because P, is x c.c. At stage 7 of this construction we pick MT,,
- M(n++) and for each v € Ty we pick sz C M(IC++) such that

o}
( MT,’ ={y < xT.:MB7 N U dom qu, # 0}
n'<n

Uy

Q
vy e M1, b7 =MB" N |J dom qu,

»
n'<n
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1 2
M ’7 M 77 g (K+)M for each 7 E MT']]

+)M and sets Sgnc S@n

and an ordinal Mén < (

and f € b, with

Mén > sup dom Mf7,(s,t) U  sup M&,
(s,t) € dom Mf;, " 77,<77 7
‘yesupprn,
n'<n

M[G 7 i, 51, H
Mty Map) It QM[*g]M' vy e M1y vo e Moy Mol = MalT 0 Moy fori=1,2
(1)

and

vy e M, va e MbJ[3y' < g qu,(ﬂ) # 0 = top qu,(ﬂ) > Mg,).

Once the sequence ((an ,qu):n < k) has been defined we use the elementarity of
1:M[Gg] — V4[Gg] to see that there is a condition (f,q) below all the (fy,qy) for
n < k. Let M—F—",y + MG denote the filter generated by ((an,qu):n < k). Clearly
M?-, " Mg s M[G,] generic for MQ(l) « MQ. Pick any V[{Gg] generic ?7 * G for

Q1 * Q with (£q) € Foy % G. Then i lifts; ie.,

— —
M[GfﬁsMF 7,MG] T’ V(S[GKHF’WG]
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For the last two steps of the 4-step iteration at stage x« where we code the Lipshitz

functions by subsets of k¥ and then add the club sets C k note that both posets are kT

c.c. Hence the pullback method works because cpt(i) = (IC+)M > k. So we have

found an M generic M@ for MP,H_l and a V generic VG for PE+1 with

MMg] - vyVal

M

P
PKZ+1 k+1

M —l—» Vs
Construction of NG.
Note that NP,C = j(P,g) | Vk = Pk, since P, C V, and cpt j = k. In particular
j(p) = p for all p € P,. Thus if G is any N[Gg] generic for the tail NPic,j(fc) then j
will lift; i.e.
M[Gg] i N[Gx*G]

N
5 P30

~ = . 2
We also want to choose G in such a way that N[G, * G] remains 22 correct for &

inside V[VG]. First we note



-74-
. .
Lemma 4.2.1. N[Gg] is 22 correct for & in V[G].

Proof. Recall that P, C V, and is & c.c. The proof is very similar to the proof of

0
I1.1.1. end of 4.2.1.

The & c.c. of Py implies that N[G] is closed under x sequences inside V[Gx]. Thus
NQ(I) (the poset at the first step of stage x of NPj(K,)) equals Q(l) (the poset at the
first step of stage x of Pn+l)' In the ground model V = L we pick the f least
permutation IT of kT such that

1:1

I: Evenk® =3 Evenx ™ - Even (;c+)M
onto

odd x* L} 0dd 1 U Even (x )M .
onto

Now let NF7 = FH(’)’) for v < k. Clearly N?7 is Q(l) generic over N[G].

N 1. o2 . —=
Lemma 4.2.2. N[G,, F 4] is 22 correct for « inside V[G ,F 4].

Proof. Note that N[G, ,N—F-)fy] = N[Gn,?7] and that IQ(l)I = k7. Thus Q(l) can be
coded by a subset of V,i1- Moreover Q(l) is <x¥ closed; thus II—Q— Vigr =
1)

(V,H_l)v. Hence every A € (N[GK,?7])K+2 has a nice Q(l) name A € (N[GK])K+2.

0

Now the proof of the lemma is a routine matter. end of 4.2.2.
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The correctness argument for the next step involving the poset Q will require a lot
more work. For this we need two more technical facts about . The first one will say
that different choices of parameters all lead to isomorphic posets Q. We begin with a
criterion which guarantees that we obtain a condition in Q, when we thin out certain
coordinates of a given condition in Q.

Definition 4.2.3. Fix a family of parameters to define the poset Q. A set S C h:++ is

said to be complete (relative to these parameters) if for all vy < kT
vieAT NS V(n,h)eTZ(domhgcadothS)
vieB' NS V(n,h)ea'ic’v(domhg(:dothS)(iz1,2)
and if kT C 8.

Definition 4.2.4. Given a fixed family of parameters and S C T define

Q% = {qg € Q:dom q C ]

and for each { < IC++

Q‘Z’ = {q € Q,:domq C §]
and for v < r.:+ and ¢ € A7
Si—z ={(nh):3H(nHer/ Ah<fAhE Q?]}
and similarly for { € B” and aic”y(i =1, 2). Ifitis clear from the context we will drop

the letter S and simply write, for instance, ?Z .
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++

Lemma 4.2.5. Suppose S C & is complete relative to a fixed family of parameters.

++

Then for each ¢ < & and all q € QC

qIS € QC and

Q7 Sc Q,

Proof. We proceed by induction on (. Note that the first claim implies the second

claim of the lemma. The cases {( = 0 and { a limit ordinal are clear. To prove the

++

first claim for a successor {( + 1 < & and a condition q € QC+1 we can assume

¢ € dom q and ¢ € B N S for some ¥ < k. Suppose towards a contradiction that

q|S ¢ Q?—*—l . Then there is a condition q' € Q? with q' < q|S and

At o (7 e ATASNOeET 58T Fy a(C)).

V[GKH?“/]
%

This is true since the completeness of S implies that for any H which is QC generic over

S
HNQ .
VG ,?7] ('f'g)H =('7'7]) ¢ forall p € A7 N S ¢ and similarly for 0'2-’7(i =1, 2).

Moreover for € A7 N¢ ((&2.’7)H ,(&?’V)H) = ((%,’)H ,Hn) implies 7 € S.
- If we define q” € QC by
" I(sN¢Q =4

q" 1(¢ - 8) =dal(¢ - S)

then with the remarks above
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V[Gg,F ) 14 .2,
q" I|—L-Q'°—C—7] = 0T,y (Fim € AT N Q), 02 7,0? TFy,a(0)

. . 0
which contradicts q € QC+1 . end of 4.2.5.

Now let (A7:7<fc+), (B7:7<m+), C, (TZ:C € A7) ((02’7 ,03’7):C € B7)(7<n+)
and (A7 :y<xt) (B :y<x™), T, (?Z:c e A7), ((72’7 ,3%’7)@ € BN (y<x™) be
two families of parameters and Q and Q be the corresponding posets. We will define a -
sequence of functions (ec (< fc++) such that
dom ec» g e, C fc++
¢ C domeC ¢ C rngec
e¢ isl:1
lecl < x* 7

n<({=>eyC e

n € A‘Y‘ﬂ C(B7 N ¢ resp., C ) ¢ resp.) <= eC(n) € K7(§7 resp., G resp.);
let eo = @ and for 2 limit { < kT let e = U ep -

n<¢

If we arrive at a successor ( + 1 and { ¢ dom e there are three cases: For ( € A7

(fbr some v < K,+) fix the minimal 7 € A7 with n > sup + g e; and



e
= (%Z) Cv(this is the image of %Z C kT x QC under the shift map induced by ecs

note that ¢ C dom eC) and let 41 () = 9. For( € B’ (for some v < n+) fix the
A 57 . + iy 1,y eC .

minimal n € B’ with n > sup' rng e and 7' = (O’C )" (i =1, 2) and let

e +1 ({)=9. For ¢ € C fix the minimal n € C with n > sup+rng e and let

e<+1(C) =17

If ( ¢ rng e U {5}, then again there are { cases: For ( € A7 (for some
. el
7 < IC+) fix the minimal £ > sup+dom e UL ¢+ 1 with 1'16’7 = (?2.’7) ¢ . For ¢ €

B” (for some v < ™) fix the minimal ¢ > sup™ dom er -U. ( + 1 with 015’7 =

-1
. e
@27y ¢ (i=1,2). For¢ € T fix the minimal £ € C with £ > sup™ dom ec U ¢

+ 1. Then let e<+1(§) = (.

Note that all this is possible since the sequences of terms and pairs of terms are
complete.
C n++

Lemma 4.2.6. For each ¢ with I€+ <(¢ < K.++ dom e is complete (rel. to

the paramaters for Q) and rng e - n++ is complete (rel. to the parameters for Q)

++y,

Proof. This is immediate from the definition of the sequence (eC (< K

O
end of 4.2.6.
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Lemma 4.2.7. For any ¢( < fc++
ec  rnge; domec
qQ €Q forallq € Q
and
eC—1 domeC _rmge.
q € Q for allq € Q
domec _roge; domec
Thus ec induces an isomorphism of Q with Q . Moreover, if H is Q

e
generic and H = {q C:q € H}
Vy<xT vv € A7 ) dom e (FOH = (%ZC(V))H

V‘7<KZ+ Vv e B? M dom e (&27)H = (%1’7 )H.

e((”)
Proof. The case { = 0 is clear.
Now suppose we are considering a successor ( + 1 < n++ and
’ domec+1 +
q € Q We can assume { > & . The worst case that can happen is that

we have to add first { to the domain of e and then { to the range of this function in

order to get e +1 from et

ﬂ=er+1(§) \

It

1
T
il

§'T

-§=®.18) 5 mg e;u{f)

b

dom eru{§}<

cleé,rly dom e U {€} is complete relative to the parameters of Q. Hence by 4.2.5.

domeC U {¢}
al(dom e, U {€}) € Q .
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gerU{¢
Claim 1. (ql(dom e, U {6}))ec+1 . an ecU{ }.

Proof of Claim 1. It suffices to show

€¢+1

T 5 (al(domep U {€1) “TIC+ 1) € Ty g

We can assume { € B for some y < kT and ¢ € dom @. Let EC be QC generic with

rnge

ql¢ € EC' Pick a Q

e
generic H with H() QC: ﬁ( and (g|dom eC) CE H.

dom eC:feC domec

Then H 5 {f{ e Q € H} is Q generic and q|dom e € H. Thus we

get in V[Gg ,_F_‘)-), JH]:

o1 (DT v € AT N domep), (3 HEE T F, a(6))

dom e u{¢} -
because q|(dom e U {¢}) € Q . This yields in V[Gg,F 4 ,H]

=3 o H - :.1, H ;2a H € +1
o (FDE v € K g e, GpE, GENE, a0 7O,
Since 7}'2’7 - kT x _Q—C this is equivalent to ’

H H H
6(H ;7)) ‘wer’no, (#é”) ‘, (??’7) ¢, Fy A0

end of proof of claim 1.




_81-

. =7 + €¢+1
Proof of the Claim 2. We can assume that € B’ for some vy < ' and q (n) # 0.

ec+1I

We know already from claim 1 that q n € Qﬂ' Now let H be Q,’ generic with

€41 _rnge; _rnge;

q lp € H. By 426. H ) Q is Q generic. Then H = {f €

Bf

dome, e rnge
‘¢ e T Na YisQ

domec
generic and q|dom e € H. The

completeness of dom e U {(} relative to the parameters of Q yields q|(dom ec U {<hH

domeCU{C} -
€ Q . Thus in V[Gg ,F 4 ,H]

o 7((FD) v € AT N0, (6, G, Py sa()).

Since 6'157 - kT x QC this is equivalent to

oD w € AV Ndom ), 3, (67N, Py (o)),
Therefore we obtain in V[Gg ,f‘)-y JH]
oHA(FDT v € BT Nmg ), G, 63 ME, By ().
The completeness of rng ec U {n} relative to the parameter for Q yields
7 HE .

- . — _ =1, ;2’ r—
0(Hy(F)H:iv e AT N 0, & HE, @0 HE, Fyia

o
end of proof of claim 2.

domec_{_1

-1
_rngec_i_1 qu+1 cq :

A similar argument shows that for q € Q
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Finally it is immediate from the definition of 1 that the the part of the
lemma about the terms holds and in fact we have already used this in the proofs of the
claims above.

domec

++

Now suppose ¢ is a limit ordinal <« and let q € Q For each v < (

qldom e, € Qdomey by 4.2.6. Thus by induction hypothesis (q|dom e,,)eV €

++

=rnge;

e
Q to show that g CII/ €Q,. Ata

Now one can use induction on v < &

(]

++ * and q C(l/) # 0 pick some £ <

successor v + 1 < & with » € B for some v < K

e e e

¢ with v € dom (q|dom eg) ¢ . Then (gq|dom es) E[u “6— 8. Since q C[V < (q|dom
v

e

e e
eg) E|y, we get q Cly [F=— 6. Hence q C|u + 1€ Qy+1. A similar argument shows
y ,

-1

_Tnge, g dom ec
that for q € Q q € Q . The rest of the lemma is immediate for a limit
ordinal (.
O
end of 4.2.7.

Corollary 4.2.8. Up to isomorphism there is only one fc++ iteration Q in V[Gg ’F‘Y]

that uses (Fy:7 < f€+)a end ofg4 2.8

++

The second technical result about Q illustrates that for any coordinate { < & , if we
consider the tail QC + 4 of the poset Q inside V[Gg,F 4] °, then this looks pretty
K

much like the original poset modulo a minor modification.
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Before we can prove this we need to set up some notation. Suppose that in

V[Gg ,—ﬁ7] we pick a family of parameters to define a K,++ iteration Q. If § < fc++

and Hy is Qg generic over V[G ,F‘y], in V[Gy ,F., Hgl, let:
Qé,C 5 {s € Fn([é,(),?,n+):3q € Hgqs € QC}'

= .Q
Pick a canonical name (36 ¢ € (V[Gg,F 4] % for Qs ¢ For each q € QC(6 < ¢ <

- Q
rz++) pick a term 86 ¢ € V[Gg ,F 4] § with

I 860 € Qe A Lallsi0) € By ¢ = &5 ¢ = alls.0

Lemma 4.2.9. For each ¢ with 6 < ¢ < x¥ T
[e]
q ,'——' (C{I(S, 8§’C)

defines an isomorphism of QC with a dense suborder of Qé- * (36 ¢

a
end of 4.2.9.

Next we associate with each nice Fn(n++,2,n+) name 7 for a subset of fc+ a canonical

= Q
name ;7 € V[Gg,F 4] 8 such that

(4210) Ik 57 = {(nh): 7 < kb e Fa(setT)2,6T) A
6

3f € T3g € Fn (6,2,6)[(n,g™h) € 7 A 1< g]}.
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Note that

||——Q “s7 is a nice Fn([&,n++),2,n+) name for a subset of kT .”
6.

++) ++,2,I€+)

Lemma 4.2.11. For any complete sequence (TC:( < K of nice Fn(x

names for subsets of kT .
”—Q—— “(6T<:C < I€++) is a complete sequence of nice FH([5,K++),2,I€+)
)
+ »

names for subsets of &

—_ —_

Proof. Let H be Qg generic over V[Gy,F 4] and in V[Gg,F 4 ,H] let ¢ be a nice

Q
Fn([&,n++),2,fc+) name for a subset of k. We pick q € Hand & € V[GK,?7] 8

with 3’H = ¢ and

q”v& “& is a nice Fn([&,n++),2,n+) name for a subset of T .”
Now define a nice Fn(n++,2,n+) name for a subset of k7 7 € VI[Ggk ’F’Y] via
r= (k)i < kt AbheFn(et T 26F) ALIs € Qs A LIS <qn
hi6 I (nhllow™ ™)) € 83
From (4.2.10) we obtain

dllg- 57 = ¢
Qs ¢
_ ++ . = . o
The completeness of (TC :¢ < k' ") in V[Gg,F 4] yields that there are arbitrarily large

++

(< k with Te=T Obviously we have for any such ¢

_ o o
al- g7 =7 . end of 4.2.11.
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In the sequel we will not always distinguish between sT (which is a name for a

term) and its interpretation 5 H (which is an element of

F([6,x T T),2,67)

(VIGg ,F7,H]) ) unless there is reasonable danger of confusing these

two objects.

++

We are now going to define what we mean by a modified 6, & iteration.

Suppose that in V[Gg ,F,y] we have a partition of § < kTt into A7(7 < fc+),

B7(7 < K.+) and C with kT C C and for each ¢ € A7(7 < fc+) and 5 € B7(7 < /c+)

1,y

we have nice Fn(n++ ,2,k) names TZ »op +

2
, 0'77’7 for subsets of k' .

Now let H be V[GK,_F?y] generic for the iteration Q6 defined from the

parameters. Suppose that in V[Gg ,FV,H] we partition [(5,KZ++) into cofinal pieces

K7(7 < n+), B”and C and we have sequences (?Z:C € K’y) and ((Fé."y,ﬁ"g’v):c €

§7) that are, for each y < KZ+, complete for Fn([é,n++),2,n+). Working in

++

V[Gg ,F ~ ,H] define th dified & iteration QA : +
kF v, we define the modifie , K iteration Q({A’':y < &)

(ﬁv:'yr < n+), C, (?Z:C ex’ v <x™), ((32’7 ,'5"%7)) ¢ € B”)) by induction on a
€ [6,fc++]:

Q555 10

and for limit «
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Qs 5 (€ Fn((8:0)267): V5 € [6, @) 11(6,0) € Qg g}

for a EK7 or C for some ¥ < kT

Qsas1g L€ Fo([8,a+1),2,c 1) :1f|[6,0) € Q5.0}

and for o € B for 7 < kT

Q0415 {f € (s, a+1),2,6 1) f][6,a) € Qg o A HlI8:2) ||—@— 9}

where the formula 8 says:
yis0dd AV €A NGB 2G5 52N AVCeR Na (R 10 #

—1’7 2’7) A f(a) is a condition for killing F»y(_ wr ,03’7)] V f(a) = 0] .v.

A]-"Y 2

7is even ATEY =37 v [v¢ € ATN 6(GDTHO) # a7 727 A

vee K Na (G ) 2EaT 72 A (o) kills Fy(Fa” 727)] V f(a) = 0]
where for n € A7

T 7 5 {(n.0):3gl(n.e) € ThAfE Qs A< g]}

.. N %
and similarly for @4 ' .

++

By an analogous proof as in 4.1.3. one can show that modified 6, «
iterations are <fc+ Baire. Moreover the analogue of 4.2.7. shows that up to

isomorphism there is only one 4, n++ iteration in V[Gg ,?7 H] (that is modified by

referring to (H,‘Y:'y € Evenn_*_) and (((%Z)H,HC):C € A7ﬂ b,y < IC+) and that uses
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(Fy:y < n+)). For any x T iteration Q in V[GR,?y ] defined from parameters
) ,
(A7:7 < I€+), (B7:7 < K.+) and C and (TZ:C € A7), ((a’%"y,ac"y):c € B7) and any

H that is Q6 generic over V[G, ,?7] there is a canonical ¢, KZ++ iteration Q in

V[Ggk ,?7 ,H] whose parameters arise from the parameters for Q. For this recall that
1 2,

for each v < P (61'Z:C e A7 N [5,n++)) and ((6‘7(’7’60( 7):( e BY n [6,fc++))

are complete in V[G ,?7 ,H] for Fn([&,n++),2,fc+). The following lemma shows that

at any intermediate stage § < K,++ Q factors in a nice way.

Lemma 4.2.12. In V[Gg ,?7 ,H] we have for each ¢ € [6,n++]

[+] H A
Q5,0 = Qg
Proof. We proceed by induction on § < { < I€++. If ( = 6 then note

&?,C = {@} = Qé’f'

++

If ( <« is a limit ordinal we distinguish two cases: If cf ({) > T the claim
follows from the induction hypothesis since all conditions have size <k, so we can
assumt; cf ({) < k. Clearly (.OQ?,C C Qé,C' Now we suppose q € Q(S,C' Then we pick
S C [6,¢) cofinal in ¢ with |S] < k. For each v € S thereis h), € H with hy, U q|v € Q.

Note that the sequence (h,:v € S) € V[Gg ,?7] by the </c+ Baireness of Q. Thus

we can pick h € H with hlg; Vv €S hy €T.
§
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Claim. h™q € QC'

Proof of the Claim. Show by induction on » that for § < v < ( hqlv € Q,. If

v = § this is clear and also the case of v being a limit ordinal is immediate. Now

-+

consider a successor v + 1. We can assume v € B” for some v < k' and v € dom q.

Suppose towards a contradiction that we don’t have h™q|v |- 6. So there is a
condition f € Qy with f < h™q|v and fH—Q—- = 6. Let p be the least ordinal >» in S.
V N
Since h”v h, € T and f|§ < h, we can find g € Q4 extending both hy and f[§. Now
6

g alp € Qu and g™f|[é,v) < f. Therefore g"q|v ”6— 6 and g~f{[é,v) H—Q— = 6, clearly
v v

a contradiction since f < h™q|v.

end of proof of claim

. . °H
The claim yields q € Q6 ¢
Finally consider the case of a successor {( + 1 < .‘G++. Note that by induction
. °H = . .
hypothesis Q6 ¢ = Q6 ¢ We will need the following:

Fact. If K is (3‘15{( generic over V[Gg ,?7 ,H] then for each v < kT and v € Ay N [6,<]

where ®; is as in 4.2.9. and similarly for 0’1,’7 (v e B N [6,¢])-

Proof of the fact. If n € ((67:'3)H)K fix h € K (3?” with (n,h) € (67:'Z)H and let
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t € Fn([&,n++),2,x,+) with t > h and (9,t) € (5TZ)H. Then pick ' € H and
g € Fn(8,2,cT) with ! < g and (n,g7t) € 7. Choose f € H such that f""h € Q,
and let f € H be a common extension of f” and f’. Now (7,f/"h) € %Z since

-1
0] H+K
f°h € Q and f'"h < g"t. Clearly ®5(f'"h) € H x K. Thus 5 € AN [ ].

73 [H*K]
; then fix f € H and h € K with f"h € Q, and

Conversely assume 7 € (
(n,£°h) € 1). Pick g € Fa(6,2,xT) and t € Fn([6,x T 7),2,cT) with £°h < g™t and

~ Y 7\H AH
g"t) € ty. Now (n,t) € (57p) sincef € Handf < g. Buth <tandh € Qg =

= . 27 \H 27 \H\K a
Q&,I/’ hence (1,h) € (57»)" and n € ((57v) ) ) end of the proof of the fact

o
Now we proceed with the successor case and consider q € Q(IS{(+1' We pick h € H
b

with h™q € QC+1' We can assume ( € dom q and ¢ € B” for some y < k1. Then

we obtain

Vv 4 ’ ’
hal¢ |1—[—f—7] O (7 € AT N1 0), 687 G2 TEy al0)).

The fact yields that

al¢ IM 37 (I ") € AT 1 6),

Do(siyin € AT N 150), 5507 5807 Fya(Q)).

Hence q € Q& C+1°
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Conversely if q € Q& (41 We can assume ¢( € dom q and ¢ € B” for some v < o
o] Q
Now we pick h € H with h™q|¢ € Q. and h|l= q € Q , where Q €
¢ op 6,0+1 5,C+1

Q - -
VIGg ,?7] % is a canonical name for the poset Qg C+1 € V[Gg,F 4 ,H] that we

defined above. Now we have

G,g, VG,‘C’ 58 f 3
hlV[ rA I al¢ “[_Q__]_ aE” , (GmEENY e AT N0
6,¢

O 2 : 1, 12, »
Kov(stnin € AT N[8,0), 5607 5607 Fya(0))
o ) = . Qs . o
where H is a canonical name € (V[Gx ,Fy]) ° for the Q; generic H and K is a Qg

[o} [¢]
name for the canonical Q5 ¢ name for the Q6 ¢ generic. By applying the fact we get

h~q|¢ ”_[—"—] 0 (F977(T7] ne A7 N¢,s ,7’ 03’7 F‘y ,q(¢))-

o]
Thus h™q € QC+1 and therefore q € Q?,C+1 . end 0?4_2.12

We are also going to use the following specialization of this: Suppose that in

++ ++,

VI[Gg ,?7] we have defined a & iterationQ such that for some § < &

+ Y Y _
(4.2.13.) Vy < k™ VY¢€A' Né supp T N Even(m+)M =9

+ 2l i,y -
Vy<k' Y(eB' N6 supp o ﬂEven(K+)M—@
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FH(KZ++,2,IC+)

where for 7 € V[G, ,?7] we define

SUpp 7 &= U{dom h:3e (c,h) € }.

A similar argument as in the proof of 4.2.5. shows that for each q € Qs

6~Even

a6 - Bven , ) eq *OV
(K+)M 6

The key point is that for any Q6 generic H

1, . .1, '
(ch 7)H # H” for any v € Even(n_|_)M and ¢ € B (] é since supp d¢ 7 c¢ - Even(m_i_)M.

5~Even(n+)M t5~Even(K_*_)M
Therefore Q6 Ce Qg- Now suppose H is Q& generic over
V[Gg ,F y]. Then in V[Gy F 4 H] let
*Q = {q € Fn([6,6 + M(lc+) + C),2,n+):3h €Hhogqe Q5+C}

55+ Mkt 4¢ T

where ( > 0and h o q € Fn(é + C,2,n+) is defined as follows:
h o q(v) & q(é + &) if v is the £-th ordinal € Even('c_}_)'VI

h o q(v) 5 h(v)ifv € 6 - Even(n_*_ M

)

hoq(6+V)‘:_D=fq(5+M(n+)+u)for05V<C.

o Qg .
We let *Q V[Gg,F 4] be a canonical name for

* and for each q € Q6+C we pick a canonical name *3

D s (nH)Mopc §,6+(x HM1¢

6~Even

- Q
€ V[Gg,F 4] 6 such that

+)M
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[o]
I *q € *Q A
I ¢$~Even('€_|_)M 6,6+M(K+)+C 6,6+M(/g+)+c
Qs

E Rql[6,6 *Q
[al Ven(n+)M ql[6,6 + () € Q5,6+M(n+)+c =

E “q|[6,6 = *q
qj Ven(n+)M q|[6,6 + ¢) q5,6+M(K:+)+C]]

where for g € Fn(Even( +)M,2,n+) and h € Fn([6,6+C),2,m+) we define
X :
g h e Fn([6,6+(n+)M +¢), 2,n+) by

| g h(s+v) 5 g(&) where ¢ is the v-th element of Even(n+)M

and

gh(6+ M+ =h(6+fore<c

As in 4.2.9 we have that

6~Even( +)M o
®.:Q — Q " * *Q
b7 +¢ 5 6,6+M(xt) + ¢
§-E , *§
a b= (al( ven b "y o Moty e

defines a dense embedding.

- Working inside V[Gg ,F,),,H] we are now going to define what we mean by a

++

special modified §, m++ iteration *Q +4 This is very similar to a modified 6, &
s , .

?

iteration except that at the first M(;c+) many coordinates >8 we have to add subsets

of kt such that: If v is the 5—ch even ordinal < (f:+)M then the set C kT that we

add at coordinate § + £ will be a witness for the E’; statement that we want to hold
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about Fy. In analogy with (4.2.10.) we will also associate with each nice

—

- Q&-Even(n+)M
Fn(;g++,2,,c+) name 7 € V[G,F 4] a canonical term zT € V [Gg ,F 4] 6

such that
T tr = {(na):n < k¥, q € Fa(ls,xTH),2,67) A
xHM
Q& .
dh el dg € Fn(&-Even( +)M,2,n+)[h <gAgogqe€erl}
K
clearly
I 5-Even “zr is a nice Fn([&,fc++),2,n+) name for a subset of k77
Q xHM
6

and just as in 4.2.11., for any complete sequence (TC:C < rc++) of nice

FH(KZ++,2,K.+) names for subsets of kT

++)’2”‘7+)

[} R “(:'S‘TC (< K,++) is a complete sequence of nice Fn([é,x
M
)

(K
Q&

names for subsets of fc+”

6~Even M
If we are in the special situation described in (4.2.13.) and H is Qg (&) generic

= . = . . . ++
over V[Gg,F,], then in V[G,C,F7,H] there is a natural special modified §, &

iteration *Q that refers to (H7:7 € Even . Even(n_*_)M) and (((?,‘;)H,Hn):n €

A7 Neé v < IG+) and uses (Fy:7 < n+) and whose parameters arise from the
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parameters of QQ via the operation 7 — gr above. The same ideas as in the case of

modified iterations lead to the following factor lemma:

ot

- (4.2.14.) Forall ¢ € [0,

+*QH Ok
Q6,6+(n+)M+C - Q6,6+(n+)M+C.

Once we are familiar with these facts it is rather easy to find a generic g for QN (the

N
i(r)+

that we use at the second step of stage & in Pfc+1'

poset at the second step of stage « in P 1) from the generic G for the poset Q

++,

In the ground model V = L let II* denote the following injection defined on &

H*(C-) =I(¢)if ¢ € Even .
K

m*(¢) = ¢if¢ e kT - Even .
K

Then 1I*: I€++ 1——-1» fc++ ~ Even . +M -
onto (x )

II* induces~a map H*:Fn(;c++,2,n+) — Fn(n++ - Even( +)M ,2,K,+); using
&

++ 5 +

this map we can associate with each nice Fn(x +) name 7 for a subset of k T a

++ +

*
nice Fn(x - Even +)M,2,fc+)' name r1 for a subset of k¥ in the usual way.
K

Recall that in N[Gg ,Nf‘)y] we have partitioned (fc++)N into cofinal pieces NC,
(NA7:7 < rc+) and (NB7:7 < K,+) and we have complete sequences (Nrg:n €
NA7,7 < fc+) and ((Na',ll"r,Na%’v):n € NB7,7 < n+) of (pairs of) nice

Fn((fc++)N ,2,k) names for subsets of kT from which we define the iteration (NQC:C
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< /c++) using (NF7:7 < lc+).

b

—_
Now in V[G,F 4] pick a partition of « into cofinal pieces *C, (*A7:7 <

K,+), (*B7,7 < fc+) such that *C N (n++)N = NC and for v < kT NAT = *AH('y)

II
N N(rc++) and NB7 = *B (1) N N(h:++) and pick for each v < kT complete

1 . .

sequences (*T,‘;:n € *A7) and (*0,7’7 ,*0'727’7):71 € *By) of (pairs of) nice
1

Fn(n++,2,h:+) names for subsets of kT such that for y < kT and n € NA7 *1',] ()

* i i *
= (N';'Z))H and for n € Ng? *0—17’ ™) = (1\'T<§-17"7)H (i = 1,2). Note that for these n:

II
supp "7y () M Even m = 0 and

™)

L,I(y)
supp *or Even = 0.
PP Ty N (M

)
Thus, if (QZC < I€++) denotes the n++ iteration that is defined in V[Gy ,—ﬁ7] from

N(n++)

—
. these parameters and uses F 4 we have for each ¢ with 0 < ( <

{~Even
M

*Q< Cec*Q,
and ¢
~Even +.M .
*QC (=) = {ql'I 'q € NQC}-

By 4.2.8. Q and *Q are isomorphic. Let G (coming from GV) be the Q generic and G* the
N, ++
(k" ")~Even
(xHM

pullback of G to*Q via an isomorphism of Q with*Q. Let g*aff G*N*Q
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H*

and g the pullback of g* to NQ via the map II*; ie., g = {q € NQ:q € g*}.

Clearly g is NQ generic. Now we have to show
N3 I . =
(4.2.15.) N[Gg, F.g]is 22 correct for « inside V [Gg ,F 4 ,G].
We begin with
Lemma 4.2.16. Suppose that N = ZF ™ is transitive and N = ZF~ and N* C N and
s 52 thai <kt +
Nis ¥ (n > 0) correct for « inside V where for some S C « 2 C L[S] and «
+.L + . . . r.;+ K
= (k")". Let (Fy:7v < k') € N be a sequence of Lipschitz functions 2 x 2
kbt ¥ +y (p? + ¥ ¥
— 2 and in N fix parameters (A" :y < & ), (B':y< & '), C, (TC:C € A')y <
rc+) and ((02’7 ,03’7):(,' < B7)(7 < n:+). Then in V pick parameters (X7:7 < /s+),
- = — 1,y _2,
(B7:7 < KZ+) C, (?Z:C € A’y)('y < n+) and ((FC7’0C7):C < B7)(7 < n+) such
that A’ N (n++)N = A7, B N (n++)N =87,C N (K++)N = C and ?Z = TZ
for { € A7 and ?7‘1(’7 = 01’7(i = 1,2) for ( € B” for each v < U Q eN
and Q € V are the corresponding iterations defined from these parameters both using

(Fy:r < K.+) and if G is Q generic over V, then N[G (] Q] is Ei correct for « in

VI[G].

Proof. Under the hypotheses it is clear that Q is an initial segment of Q

(i.e., Q = Q ++ .N')' Therefore G [} Q is N generic for Q. We proceed by induction
, . )

(

on n.
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The case n = 0 is clear: N[G N Q]® € N[G N Q] inside V]G] because Q and

+

Q are both <x™ Baire.

Now we handle the case n + 1. Because of the induction hypothesis it is

enough to consider ®(A) in H121+1 and A € (N[G QDo with N[GN Q] = “Vi =
®(A)” and to show that V[G] | “V, E ®(A).” By the kPt ce. of Q in N, we fix

5 < (fc++)N and a nice name A € Qg for A and a condition q € Q M G with

N o« o\ »
q ”_Q Vi = @(A).
Then clearly

N[GN Q4] E “”Tm—Qé Vi = ®(A).
sttt

Moreover, by the factor lemma 4.2.12. and by the analogue of 4.2.8. for modified §,

++

K iterations
NG N Qé] E “for all modified 6,n++ iterations that refer to (G7 iy € EvenKl_'_)
and (((+])@ G%): (e AT Nb,y<rT) and that use (Fy:y<n™):
I Vi E ®(A)”
The ix;duction hypothesis applied within N[G () Q;] yields in N[G N Q]

Vil

VY M[M trans, S = ZF, |M] = |Vn+1|, Mo C M, M 2121 correct for «,

(G7;7 € Evenn_’_) € S, (((%ZI)G,G”);n e A7 Né v < n'{") € M,

++

AE.AL,(F7:7<K+)E.AL,.AL|=6<R =
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M = “for all modified 6,n++ iterations that refer to (G7 :v € Even +)
K

and (((%Z)G,Gn):n e AT N6, v < xT) and use (Fyiy < K,+):

- Ve ®(A)].

Since kT = (n+)L, (G‘y:‘y < rc+) and ((( %n)G,Gn):n e A7 Né vy < rc+) which
are all subsets of kT can be coded by one subset of VK+1 . We can also express b |=
b < fc++ by picking, in N a wellorder of VK_'_1 of order type é and then requiring that
this wellorder of (i.e., a subset of V., ;) be in M. This formula will be Z? in this

parameter. For each v < kT Fy C L[S] where S C x. Hence we can use the canonical

<'€+ + . +
wellorder <L[S] on 2 to code each Fy by a subset of £~ . Then again these &

+

subsets of k' can be coded by one subset of Vfc+1' Therefore the last formula is

++ +

II2 in a parameter € (N[G ) Qé])n+2' Since § < & we have |Qs] < &7 =

n+1

|Vn+1' and N[G ] Q4] is 2121+1 correct for « inside V[G ] Qg]. Hence the last

formula which is Hz over V, must hold in V[G N Q(s]- Together with another

+1
application of 4.2.12. this yields:

VI[G] = “Vi E 2(A).” end ofD4.2.16.

We now return to the proof of (4.2.15):
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We assume that ®(A) is H2

2 N= .
g Y 21 and A € (N[Gg, Fq,,g])'c_*_2 with

NGk, NF 8] E “Vx | $(A)
and we have to show

N—* “ »
VGr NF .G | “Vi [ 2(A).

N
Q
Pick a § < N(fc++) and a nice name A € N[Gg ,N?‘y] § with A% = A and a

condition q € Qg [ g such that

NG NF 4] = a lhyg Vi b 0(R)7

Lemma 4.2.16. together with the factor lemma 4.2.12. yields
(4.2.17.) V[Gx ,NF for all modified 6, kT iterati
2.17. ks F v,8] | for all modified é6, « iterations that refer to
(g7 v E Evenn_‘_) and (((N%g)g ,gn) € NA7 Né,v< I‘E+)

and use (NF7:7 < fc+): - “Vg E ®(A).”

Now recall that V[G,C,N—I_?—)—y,g] = V[G,c,?.,,g*], which we call V* from here on.

Moreover by (4.2.14.) in V* the tail *Q of *Q is equal to a special modified

2

st +

, iteration that is modified by referring to ((g*’7:7 € k' ~ Even _ ) and
()
*
(((*?Zl)g ,g*’n):n e *A7 Nneé < n+)) and uses (Fy:y < .‘c+). The correctness

argument will be finished if we can show
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(4.2.18.) V* = for all special modified 6, k1T iterations that refer to

*Y

(g ' :v € Even -~ Even ) and
kT Mty

E3
(((*;g)g ,g*n);n e *A” N v< n+)) and that use (Fy:v < Ic+)

I “Vk = @(A).”

The rest of the correctness argument will therefore be concerned with establishing that

(4.2.17.) implies (4.2.18.).

In the remainder of this section all modified §, « iterations (where a € [6,n++]) will be
referring to (g7:7 < n+) and (((Ni",;)g ,gn):n e Na7 Neé v < fc+) and will use
Np . + . . . . . . *,7

("Fy:v < £7) and all special modified §, « iterations will be referring to (g *":v €

. :

Even , - Even p; ) and (((*%;)g ,g*’n):n e *A7 Neé v < lc+) and will use
" (=)

(Fy:v < fc+).

The key point in proving that (4.2.17.) implies (4.2.18.) is the following back and forth

++

property of modified and special modified §, & iterations in V*: Suppose we are

given a modified 6, § + 6, iteration 66 545, (6, < n++) that is defined from a

partition C, A (y < ;c‘*') and BY (v < kT)of [6,6 + §1) and from sequences (?Z:C €

AT (v < &Py and (@07 757 € BY) (v < w7,
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Let i:[6, 6 + 6> [6 + (¢« )M, 5 + (x )M 4+ 5) be defined by i;(6 + ¢)

=6+ (M 4 ¢for ¢ < 6
| — —
5 § + (xT)M 6+ (xTM + 6,
iy
I |
| T
) 4+ 6,
andlet & = [6,6 + («T)M) Ui, [Cland for v < kAR _ i [A7] and
of - 1 of 1
I =iy [B7] and
=N(7) _ 271 <7
Til(C) = TC) for ( € A
=i,1(y) _ 2i7\1 BT
75 (C) —(aC y*for(eB’ (i=1,2).
Let *Q denote the special modified &, § + (rc+)M + 61 iteration that

5,6+(x M4,

we define from these parameters. Since all these terms have support disjoint from

[6, & + (K,+)M) it is easy to see that

gl 8+ (M8 - [5,5+( M) _ s
8,6+(xHM+6, T 6+ (s T)M4sy

and

16,54 (sTM161) - [6,6+(xTIM) P
* — .
8,6+(xT)M+6, ={aha e B )
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Now suppose we “enlarge” the family of parameters for *Q ; le., we

5,6+(x )M 46,

have a partition of [§, § + (n+)M + 61 + &y) where 6y < kT into pieces that we

denote again by C_:, K7’ B (v < n+) and sequences (?Z:C € X‘)’) (y < n+) and
((?}’7 fg"y:( € ﬁ‘y) (v < r.:+). We denote the special modified §, § + (K+)M + &
+ 62 iteration that we obtain from these parameters by *66,6+(m+)M+61+62 .
Now define in:[6, 6 + ()M + 8, + 85) — 6,8 + 6 + (v M + 1 4 65) by
i (6 4+ C) =6+ 6, + Cfor0 < ¢ < (xH)M
(6 + MMy + ) =6+ Cfr0<¢ <

(G +MEN) 46, +0=6+6 +xHM 414+ ¢for0<¢<sy.

5 5+ 6, 5+ 68 + (xTM §+6;+(kHM+1+56,

Note that § + 6; + M(fc+) ¢ rng iy. Now define C= iy [6] u{é+46; + (n:+)M} and

AT = iy [AH(7)] and B! = ip [B (7)] for v < kT . Note that this does not conflict
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with the “old” partition of [, § + 61). We will now “expand” the old sequences (?Z:C

— 1 —_
e A7 N6+ 61y < n+) and ((54’7,73’7:(,' : Né+ 6;)r < n+) and define
sequences (T"Z:C € K7)(7 < n+) and ((?7'1.’7 ,’5"3’7):( € §7)(7 < r:+) such that we

. +M . .=
have for the modified 6, § + 6§, + (x )™ + 1 + §,, iteration Q
1 2 §,6+8,+(xHM 1146,

obtained from these parameters:

~[6,6+6, +(sTIM+14+¢) -{6+6, +(xT)M3

(4.2.19.) Q C

8,646+ THM+1+4¢ ¢ U5, 64+6,+(xHM14¢
and

~[6,6+6,+(kTHM+140) -{6+6,+(xT)M}
4.2.20. e
( ) Q6,6+61+(n+)""+1+c

ip -
q- :q€e™Q for all { € [0, &,].
{ 6,6+(n+)M+61+c} 10, 0]

Foré + 61 + M(ﬁ:+) +1+¢€ B for some ¥ < kT simply let

—i,7 é1’11(7) i2 s
c = (o i=1,2).
6+61+(/c+)M+1+C Df ( 6+(m+)M+61+<) ( )

For 6 + 6; + M(n+) +1+¢€ A7 for some 7 < kT we have to look at two cases. If

v is noncritical (i.e., either ¥ and II(y) are both even or both odd), then

?-7 — %H(‘y) )i2
§ +6;+(kTIM+14¢ B s+(xHM+68,+¢
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and if v is critical (i.e., v is odd and II(¥) < (n+)M even), let

A, a maximal antichain C <{q € *Q :
1 { 6,5+(x THYM 46, +¢

q”_ %H('y) — I‘6+£}.

where II(v) is the £-th even ordinal <(r.:+)M

and

A, a maximal antichain C {q € *Q :
2 { 5,6+(k )M 48 +¢

Assuming inductively that (4.2.19.) and (4.2.20.) hold for ¢ we pick

Q
_y V) 8,6+6,+(kTHM+14¢

—
5468, +(kHM414¢

such that for q € Al U A2

i
2, =7
q “|l T +\M =Tq
5+6 1
56+6,+(xT)+14¢  STEF(RTITALC

where for q € A

s+6,+(xTHM -
r (i-e., the canonical Q name for

T =
9 3¢ 5,548, +(x HM 41

the set that we add at coordinate § + §; + (IC+)M)

and for q € A2
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_(2I(y) ig
05 Coattragee)

It takes a routine but lengthy argument to show that (4.2.19.) and (4.2.20.) hold

throughout this construction: Suppose we have arrived at some coordinate Cg + 1 and
for all ¢ < ¢, (4.2.19.) and (4.2.20.) for g hold. We can restrict ourselves to checking

=1I
what happens if § + (h:+)M + 6 +¢y€B () for a critical v < kT By induction

(6,648, +H(sDM+14¢o) - {546, +(x 1M}

Q +
8,646 M1
hypothesis(4.2.19.) holds for ;. Thus (v 7 Ho+(rT) G

Q
8,8+6+(HMb14¢,
can be regarded as contained in (V*) . Then (4.2.20.) for ¢

together with the way in  which we  defined (?Z (€ Al N
(6+6¢+ (IC+)M 6+61 + (/c+)M +1+465)) and the fact that no term at any coordinate

in Q can “see” the set that we added at coordinate é§ + 6§, +
5.6+6,+(x )M ot

+1+6,

(K,+)M in Q yield:

6,546, +(x M 1145,
It cannot happen that we want to kill at coordinate § + (K,+)M + 6; + (g in *Q

(at coordinate § + 6; + (/c+)M + 1+ (pin Q resp.) and save at cooordinate

§+6; + (K+)M + 1+ (gin Q (at coordinate & + (KZ+)M + 61 + (g in Q* resp.).

- This implies (4.2.20.) for (g + 1. Then one proves (4.2.19.) for ¢p T+ 1 as follows:

Suppose q € Q where we assume again that § + 6, +
5,646, +(x M 414y +1 1

(K.+)M +1+ ¢y € B” for some critical 7 < kT and q(6+61+(n+)M+1+C) #* 0.

Let q' denote the unique element of Fn([§,6 + (K,+)M + 68 + ¢y +1),2 I€+) so that
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@2 =al([6, 6+ 6, + (DM 414 ¢5 + 1) - {6+ 6, + M.

By the argument that we just used to establish (4.2.20.) it follows that

!

q' €*Q

6,8+ (x M6, +¢o+1

i M +\M
Hence by (4220) (ql)12 € 6[6,6+61+(i 2% +1+C0+1)~{6+61+(.‘€ ) } )
6,646, +(x" )V +1+(o+1

Thus we get (4.2.19.) for (5 + 1.
We can also go through a similar procedure if we start with a special modified 4,

. In order to find a modified

§ + (xT)M + 5 iteration *Q (6, < xt )

6,6+ (x M 15,

6,6 + 1 + (n+)M + 6, iteration Q such that *Q

is
5,56+1+(x )M 45, 5.6+(xTYM+5,

ismorphic via a coordinate induced embedding il with the complete suborder

~[6,64+1+(x1)M+6,)-{6}
8,6+1+(s M6,

, we use the same ideas that established that i2 from above

had the right properties. Then for any extension Q of

Q of
8,6+1+(x

we can define an extension *Q
My, 6.6+ YMps 146,

* = = .
Q such that Q completely embeds into
6,5+ )M 45, 5.5+1+(x )M 15, +6,

o

Q via some i, such that i, o 1; = id4__
5,5+(c HM4s 4146, 2 2 71 *

Vs bt (sHMs,

This will work since the special modified iteration *Q does more

8,6+(kTHM4 8, +1+6,
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killing than the modified iteration Q . Using this back and forth
6,6+1+(x)M4s, 16,

property of modified and special modified iterations we now show that roughly speaking

generic extensions of V* via modified and special modified iterations satisfy the same Z’%

statements (in parameters from (V*)Ic+2)'

Lemma 4.2.21. Suppose that in V* we are given a modified 6, IC++ iteration Q +4
8,k

Let q be a condition in Q ++ with
b,k

b

V* 113 b
allg— Vi = 2().
5 K++

9’

Q66 6
++ ’+1for the

Let §; < & such that q € 66,6+61 and there is a witness € (V*)

2% statement ®. We have seen how to define an initial piece *Q f a

O
6,6+(n+)M+61

++

special modified §, & iteration which has a complete suborder isomorphic via some i

with 66,6+61 and which has the property that for any extension

of it we can define a complete embedding i, into
5,5+ )M 45, +6, 2

an extension 5 of (‘_26,6+61 with 12 o i1 = id—< . In this

6,648, +(x HM 4146, 5,645,

++

situation we have for any special modified 6§, « iteration *Q ++ that extends
N

2

=

Q :
6,6+(fc+)1"1+61

i *
0l g Vi k= 2(A)”
st T

2
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There is also an analogue for this lemma where one starts out with an initial segment of

a special modified §, n++ iteration in V*.

Proof. Suppose ®(A) = IX VY ¢(X,Y,A) where ¢ is Zi. Then pick §; < T with
— . - o
q € Q6,6+61 and such that there is a nice Q5,6+61 name for a subset of Vfc+1 say X

with

(4.2.22)) q“TS"V*_ “Ve EVY o(X,Y,A).7
++

b

Let i1:Q — *Q be a complete embedding such that we are in
1°%6,6+64 6,6+M(fc+)+61

the situation described above. We claim:

iy vE oly ,
q ”T—_ Vi E VY (X 7,Y,A)
++

?

for any extension *Q of *Q .
st t 5,5+M(xT)+4,

Suppose towards a contradiction that this fails for some extension *Q 4+
K

o+

Then there is some 62 < kK and a condition p € *Q and a nice

5,64+ M(xT)46,+6,

— . o i
* name for a subset of V,H_1 , say Y such that p < q 1

Q and
5,5+M(k )46, 46,

V* [13 Oil S b2
p ”_.__._*_ VIC h - gO(X ,Y,A).
Q4

Now let Q + ) M

be an extension of Q and

+1+69
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in: *Q — 6 be a complete embedding as
2 6,6+M(n+)+61+62 8,6+681+ M(K.+)+1+62

in the situation described above; then

i * i
(42.23) p? =Y “V. k- o(X,Y 2,A)
Q6 }C++

’

+

for any modified 6, & iteration 6 ++ that extends a
b,k

y

6,646, +(x M 1146,"

.. ’ . 2 oil i2 o
This is true because ¢ is ZO and (X ) “ = X.

i
On the other hand clearly p2 < q. Thus (4.2.23.) contradicts (4.2.22) since

there is an isomorphism of 6 with Q that is the identity on Q .
5 R++ s K++ 6,6+6

b b

O
end of 4.2.21.

Given this lemma, the proof that (4.2.17.) implies (4.2.18.) is now very easy. First

suppose that ®(A) in (4.2.17.) is Z;. Then (4.2.21.) yields (4.2.18.) since up to

isomorphism there is only one special modified 4, m++ iteration in V*. If ®(A) in

++

2
(4.2.17.) is II2 , assume towards a contradiction that for some special modified 4,

iteration *Q there is a condition q with q || “Vi = - ®(A).” Then by the version

*Q

of 4.2.21. that starts out with an initial piece of a special modified 4§, &

++

iteration, we
++ =

get that for some modified 6§, & iteration Q and some condition p € Q

p”—Q “Vi = - ®(A)” which contradicts (4.2.17.).

Next we consider the third step of stage & of NPJ.(K). Recall that in
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N[G,C,Nf,y,g] we have for each v < kT a code NF‘7 - kT for NF./ by using that in

— + » +
N[GK,NF7,g] 9<F C L[Ggk] which allows us to employ <L[G,g] on 2<% | But

+
9 <K N L[Gg] is the same whether computed in V[G ,F.y ,G] or N[Gg ,N?7 ,g] since

N[Gk ,NF,Y ,g] is closed under & sequences in V[GK,F7 ,G]. Thus Nf‘-y = FH('Y) for v
< &T. Hence QNF‘ (of N[Gg ,NF7,g]) agrees with QFH( ) (of V[Gk,F 4,G]). In
v ¥

short the forcing at step 3 of stage x in NPj(m) is just the forcing at step 3 of stage « of

P, with its factors permuted by . Thus with NS-Y 5 SH(’y) (where (Sy:7 < n+)
is the generic for the third step of stage x of Pn+1)’ clearly (NS7:7 < n+) is generic
for the third step of stage & of NPj(n) . Moreover the fact that the forcing at step 3 of
stage k of NPj(n) has size kT makes it easy to show that N[G, ,N_ﬁy,g,N§7] is Zg
correct for & in V[Gg ,?7,(},?7]. The &1 c.c. implies that N[G, ,N?7,g,N§7] is

. — —
closed under x sequences in V[Gg ,F v,G,S 4]

A similar argument shows that if (Cy:y < h:+) denotes the generic for the 3rd
step of stage k of Pn+1 that comes from GV, then with NC7 = CII('y) the sequence
(7'Cyry < k) is generic for the forcing at the third step of stage x of Pj(n)’ Since
this forcing has size n+, N[G,C,Nf‘).y,g,N—ng_a-y] will be Z; correct for & inside

— — +

V[Gg,F4,GS4,Cq] and by the s cc.  N[Gg,NF ,8,N5,,NC ] will be closed

under « sequences in V[GV].

Recall that the tail NP has a <pu closed dense suborder (where u is the

k+1,(x)
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next inaccessible in N > &). Since |N[GK,N—F+7,g,N_§7,NE7]| = xt we can in V[GV]

construct an H which is generic over N[Gy ,Nf‘)., ,g,N§7,NE7] for the tail in the usual
- Sy - _ NZ N N=
way. We know that j lifts with j(Gx) = Gg* "Fy*g* Sy * "Cy*x H

M[Gg] T’ N[(Gg)]

N
Pitx)

2
Moreover N[j(Gg)] is closed under & sequences and 22 correct for k inside V[GV] since

the tail is highly Baire.
Next we consider stage k of Mp and stage j(x) of Np Denote by
k+1 (w)+1-

(MF7:7 < (lc+)M), Mg, (MS~/:7 < (h:+)M) and (MC-Y:')' < (A:+)M) the generics for
the 4 steps of stage k of MP,H_1 that come from GM. Since the first three steps of
stage j(k) of PJP(IK)+1 are all <j(x) directed closed, it is easy to find master conditions in
these cases. The fact that |N[j(Gg)}] = kT allows us to construct generics for the first
3 steps of stage j(x) of PjI\(Ifc)-{—l that contain these master conditions in the usual way,
then j lifts.

MG, MF 4 Mg M5, —  N[(Gr)d(MF 4)i(Me) s(MS )]
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To handle the last step of stage j(k) of P}\gfc)+l where we add a sequence of club sets C

j(k) that avoid a certain set of inaccessibles, we proceeed just as in the U%/ﬂ'% case.
Define c¢* by

dom(c*) 5 {i(v):v < ("7+)M}

and for v < (fc+)M let

* _ ~M
%(y) g Cv Y sk

If we can verify that c* is a condition in the forcing at the last step of stage x of

ij(rs:)+1’ we are done. For this it 1is enough - to show that in

N[(G)JMF 4).5(Mg)d(MS )] for each v < (x )M

(4.2.24.) c‘;‘(‘y) N {p < j(k):p inaccessible A

22

Vil @ 3GM8);,y N Vad(Gr) N Vi(s) N w} =0

22

where @ 3 is the }Jz statement (4.1.10.). As in the a%/w% case we don’t have to worry

about the y < k. For pu = &k recall that j(k) [} & = &, j(Gk) [} Vx = Gk and

J(Mg)J ) N Vg = J(M§7) NV = Mg7 = i(Mg—y) = §7 (which is the y-th code that

(r

we add at the third step of stage x of PK+1). Recall also that §7 = Ng nd

1) *

H—l[(n+)M] C Odd,,. Thus in N[Gn,Nf‘),y,g] the IIg statement (4.1.11.) is true

about §7 = Ngﬂ_l('y) . In the last two steps of stage x of NPj(fc) we do not add any

—
new subsets of k1 all of whose initial statements are in N[Gg ,NF v ,g], since both posets
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have the kT property. Moreover the tail Np is highly Baire in

k+1,j(r)+1

N[Gg ,NF.Y ,g,Ng)., ,N67]. Thus we can conclude that the II§ fact (4.1.11.) holds about

22

5, = NSH_l(y) in N[j(G)d(MF 1)i(Mg)JMS )] also; e, Vi == @ 2GMS,)N

Vid(Gg) N Vg (k) N £). Thus we have proved (4.2.24.)
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SECTION 5. o2/72 (n > 2).

5.1. Definition of the Iteration P%.

We are going to define x + 1 stage iterations PI21 by induction on n. These
iterations are analogues of the one that we used in the “generic” case a%/w% and we will
restrict ourselves to describing what must be changed. At stage A < k of the iteration
P%, where A is a Mahlo cardinal, we will again have a four-step iteration: In the first
step we will add a At sequence (F7:7 < /\+) where each Fy is a Lipshitz function
e

In the second step we use a certain suborder of Fn(/\++ ,2,/\+) to make a 2121

2
statement true about the Fy with y even and IT | statement about the F, with y odd.

Then in the third step we code each F, by a subset Sy C A exactly as in a’%/wg
case and finally in the 4th step we add a sequence (Cy:7 < /\+) where each Cy C Ais
club and avoids the set of all inaccessibles p < A such that a certain L’i statement holds

in V, just as in the a%/w% case.

The 279 Step at Stage ) in PZ.
In order to keep notation as simple as possible we will not give the full definition of a
K.++ iteration Q that makes a 2121 statement true about the F, for even v and a III2,

statement about F, for odd y. Instead we will work with one Lipshitz function
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+ o
F:(2’\ )n—l — 22" and define an iteration Q o with
X

n

”Q—‘E 3X1 VX2 e Q Xn—l (’O(F(Xl ,...,Xn_l))
n

where the X, range over subsets of AT and Q € {3,V} and ¢ says that F(Xl oo Xp) 18

stationary or is nonstationary depending on whether n is even or odd, respectively. We

will also define an iteration Q 9 such that

Hn

”Q—2 V X]. 3X2 A Q Xn—°1 SO(F(XI ,...,Xn_l))

IIII

with Q and ¢ subject to the same conditions as above.

In order to define Q 9 and Q 9 in both cases we first partition AT into

Zn n

' k
cofinal pieces C and A( ) (1<k<n-—1)with 0 € C. Then foreach k with1 <k <n

— 1 we choose complete sequences of k-tuples of nice Fn(/\++ ,2,/\+) names for subsets
. k k
of AT and enumerate them along the coordinates in A( ); i.e., ((r(cl),...,rg. )):C €

k
A( )) Then we define our iterations to be suborders of Fn(/\++ ,2,/\+) where at each

- -1
coordinate { € At A(n 1) we simply add a new subset of AT and for ¢ € A(n )

if certain “killing

we add a club set € AT which is disjoint from F(%él),...,%gn“l))

(1),...,7‘-(11_1));

conditions” are met. If these conditions are not satisfied we save F(i'c

i.e., we force with the trivial poset {0}.
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In order to describe these killing conditions we associate with each n > 2 a finite

2 . -
binary splitting graph for X' and a finite binary splitting graph for IIi . The edges in

these graphs will be labeled by integers. If some edge is labeled by say k (0 < k < n —

2), this corresponds to the situation that in V ¢ (where QC is t‘he iteration restricted to
coordinates < () (¥ (1),..., (k+1)) =(7y (1) (k) Gn) for some 7 € A( ) ) ¢ where
G" is the set that we add at coordinate n. The label —k (0 < k < n — 1) corresponds
to the failure of this situation. The labels 0 and —0 express whether TE- ) = G° or not.
Now in order to determine whether we kill or save at coordinate { (in V C) we simply

pick the path in the graph that corresponds to the various agreements and

and check if it ends in a terminal mode that is

(1) -1

disagreements of (i‘c s

labeled “kill” or “save.” The graphs for n = 2 are very simple:

7 save
112 (kill) 2/

Zy
\11 o (kill)

i.e., no edges. And for n = 3 we have

2/1 save 22/0 kill

3$kill . _ 3\ 2/ save
T =
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proceed by induction

forn > 3 we

:
Py § ,<

;. N/ /wy\

/.Yu m 4m 3
VARV, VA YeYa
Y

(subtract 2 from resp.) all positive labels including 0

graph for Hr21—2 where we add 2 to
(all negative labels including —0 resp.).
graph for 2 _, with all labels

graph for £2_, with all labels

changed as above

changed as above
h for T3

graph for IT§

<)
<)
<
<)

to illustrate what the graphs look like in practice we write them out up ton = 7.
»
~
>
~
>
=

/\/\ /\/\
/\ /\

\7 A \7

an: - m Zm

2
1L, (kib)
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5 - save 4 kil
m, 2~
1 ”:3/4 34\—5m : 2B 2 258
n:/ X2 20/25\2 23/1'13\5
N, BN 2 375 AN 2 LMl o Ml
ZS\ans/ng\-s. T, 2B, 5 e
5\'3 24/’“" z‘5\2 3 I s
L« 5  save ﬂz( \kill
Sy R
3\-6km z53\_41_125/sav0
J\SHII

As in the 7r2/¢72 case both Q and Q are <\ closed and ATV c.c. Moreover an
3’73 II2 22

n n

argument analogous to the one in the wg/ag case shows that all these iterations are
<A+ Baire.

. . . 2 2
Next we show that these iterations force indeed the IIn and Z‘n statements

about F that we want. Note that lemma 4.1.7. can be proved about Q 9 and Q o by
o

21’1 n

virtually the same idea.

Lemma 5.1.1. Q 5 (Q o resp.) force the III21 (2'121 resp.) statements (over V,) that
I, n
we want.

Proof. We have to inspect two cases.

Case 1. nisodd,sayn = 2¢ + 1 (£ > 1).

2
The H2ll+1 statement says:

vX; ¢ At 3x, ¢ At 3%, € AT (X, 0 Xg,) is stationary.
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From the inductive definition it follows that the top path in the graph for H§£+1 is

labeled by the sequence 1, 2, ..., 2 — 1 and ends in a save node.

Now assume that G is Q o ~ generic over V[G)‘ ,F] and work in V[G/\ ,F,GJ if

I
20+1

1
X, € 2t pick m € A( ) with (i'(l))G = X;. Let X2 = G" (the set that G adds at

mn
coordinate 7;). For X5 C AT now pick 74 € A(3) with ((%%;))G,(‘i'%?)(;,(%%?;)) ) =

Y)
(X1:X9,X3) and let X, = G 3. Continue in this manner and define a tupel

(X1 ,...,X%). Since the top path in the graph for II2 is labeled 1, 3, ..., 2¢ — 1 and

2L+1

ends in a save node, the analogue of lemma 4.1.7. for QII2 yields that F(X1 ""’X2€)
26+1

is stationary.

The ZZ statement says:

+1

3X; ¢ At VX2 C vt VX9 C 2t F(X1 ""’X2Z) is not stationary.

Again let G be Q o generic over V[G,,F] and work in V[G, ,F,G]. From the
pX
20+1

inductive definitiorr it follows that the top path in the graph for EZ€+1 is labeled by the

sequence 0, 2, ..., 2 — 2 and ends in a killing node. Take X, = GO, For X9 C bR

pick 7y € A ((%5,12))(3,(%5,22))(;) = (G%,X,) and let X3 = G"2. Continue in this
(20)

fashion and define a tupel (Xl"“’X2£—1)' Now for XQZ C At find { eA with

(D¢ .(20,G\ _ . . 2
((1'C ) ,...,(TC ) ) = Xi, -y Xgy. Since the top path in the graph for 22£+1 ends

in a kill mode, we add the coordinate { a club set (_Z/\+ which is disjoint from

F(X] 1 Xop)-
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Case 2. nis even,say n = 2¢ (£ > 1).

Here a similar argument as in case 1 works. end 0?5_1'1.
Preservation of the H% Indescribability of k.

A . - 2 0 P%
We assume towards a contradiction that there is a condition p € Pf; and A € V' © and

& in 2 with

p |]—2 “Q(K) describes k.”
P

Pick an ordinal § > the least inaccessible above & such that

Vs EZFT A p||—2— “Q(R) describes x.”
P

n

Pick an elementary embedding i:M — V with cpt i > « and M trans, M| = & and

M<F c M. By the IIr2l indescribability of « in V there is trans N with |[N| = s, N* C N

and N is 2121_1 correct for ¥ and an elementary embedding j: M — N with cpt j = .

By the same argument as in the o%/wg case we can find a V generic VG for P%
and an M generic Mg for MP% and that p € VG and i lifts. Now we have to come up
with an N generic NG for NP% such that j lifts and such that N[NG] is still 2121__1

correct for & in V[VG].

The construction of NG is very similar to the construction in the a%/w% case.
Only the part where we have to find a generic for stage x of NP% from a generic for

stage x of VP% deserves a detailed exposition.
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Clearly the forcing that N[G,] wants to do in the first step of stage « of NPIQI is

the same as the one that V[G,] wants to do at the first step of stage x of P%, since
N[Gk] is closed under « sequences inside V[Gg]. Thus if (Fy:vy < n+) are the 7
Lipshitz functions that we add at the first step of st in V, then with NF.y = F
pshi ons that we add at the first step of stage « in en wi 7 & Frigy)
(NF.Y 1y < fc+) is certainly generic over N[G,] for the forcing that N[G,] wants to do
2 NET 7« 2
at the first step of stage x of Py and N[Gg, F 4] is X _q correct for x and closed

under & sequences in V[G ,-}?"7]

*+ iteration that VG ,?7] wants

Suppose that (QC:C < /c++) denotes the &

to use in order to make a 212, (11121 resp.) statement true about F, where v is even (odd

resp.) and (NQ:C < K,++) is the (fc++)N iteration that N[G,C,N?.r] wants to use for

N + : 2, 2 *, ++ 1:1
F.: . In th th th m™:
("Fy:v < k7). In the same way as in the 0'3/7r3 ca,sg we use the map ;c o
n++ ~ Even ., 5 to define a r.:++ iteration *Q in V[G ,F.,] with the property that
K

II* induces an isomorphism of NQ with a complete suborder of *Q +4+.N" Recall that
' (")
for critical v < kT *Q wants to make a 22 statement true about F — NF_ and
n-1 O(y) Y
NQ wants to make Hﬁ——l statement true about NF.),. However from the fact that
rng IT* N Even( +)M = @, it follows that no term that appears in Q* at a coordinate
K
++ N 3 143 ” 3 2 v
<(k' )" can possibly “see” the witness for the L7 ; statement about FII(7) (for
critical 7) that *Q adds at coordinate II(y). Now the key observation is that the edge

in the graph for 2121 which is labeled —0 leads into a subgraph which is identical with the

graph for III2l . Therefore, if G denotes the V[G ,_I?‘)-,] generic for Q and G*, the generic
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for *Q that is obtained from G (by applying the fact that Q and *Q are isomorphic

since the analogue of 4.2.7. clearly holds in the (7121/7r121 case), and if g* is the restriction
of G* to the complete suborder of *Q ;c++)N that is isomorphic to NQ, then g (the
pullback of g* via the isomorphism induced by II*) is clearly N[G, ,NF7] generic for
NQ. Now we claim

(5.2.1.) N[Gg ,Nf‘)., ,g] is Erzl—l correct for k in V[Gg ,?7 ,GJ.

Once we have proved this we can construct the rest of NG and carry out all the

remaining correctness arguments exactly as in the,a'g / w% case.

The Proof of (5.2.1.).

~ We start out exactly as in the 0’%/7!’% case and let ®(A) be a formula in 2121_1 u

H121—1 and A € (N[Gg ,NF./ ,g])ﬂ+2 and assume that
N[Gu,"Fygl E “Vi = $(A).

Q
Pick an ordinal § < «+T and a nice name & € (N[Gg ,?7]) § with A® = A and a
condition q € g [] Q4 such that

N[G ,N? o
q I}[N#Q"—] “Vie b= B(A).”

Clearly the analogues of the factor lemmas 4.2.12. and (4.2.14.) can also be established

for the 0'121/17121 case by using the exact same arguments as in the 0%/#% case and we

have already remarked that the analogue of the isomorphism lemma 4.2.7. is also true in
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the a%/w% case. Hence we can apply the analogue of lemma 4.2.16. and obtain that in
— —
v* G_ﬁ‘ V[Gg,F ¥ gl = V[Gg aNF ¥ 7g*] :

for all modified §, n:++ iterations that use N?»/

- Vk = ®(A).

In order to finish the proof it certainly suffices to show:

++

for all special modified §, & iterations which use ?7

- “Vk = @(A).”

++ ++

It goes without saying that modified 6, « iterations and special modified §, &
iterations in V* are defined totally analogous as in the 0%/7&'% case. Moreover, modified
. . N . + . . . . . +

iterations always use (" Fy:7 < & ') and special modified iterations use (Fy:y < 7).

+

Recall that for “many” ¥ < k modified and special modified iterations, both make a

2121 or a H,zl statement true about NF7 = FH(—y)' However for the critical v (i.e., ¥

odd and 7(7y) < (n+)M even) the modified iteration makes a II% statement true about

NF7 = FH('y) and the special modified iteration makes a Z'IQI statement true about

F Thus what is really going on here is the following:

I(y)"

We are working in a model (call it simply V) with a Lipshitz function
‘)’+ 1 7+ 2 2
F:(2" )» ™+ =27 . ®(A)is a formula in o, ;U X _jand A€V, o such that
for all 11121 iterations QII.

(5.2.2.) ”?1 “Vi b= B(A)”

and we want to see that for all 2121 iterations Q‘S
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(5.2.3.) ”_Q_Z “V = ®(A).”

In order to show this we use the (n — 1) back and forth property of 4‘3‘121/11121 . By this we

mean the following;:

For a given initial piece QgIl of a HI21 iteration it is possible to define an initial
piece Q12+6 of a Z‘% iteration and a complete embedding i that is an isomorphism of
. 1 |

le with a complete suborder of Qi‘j+61' If we enlarge le"'&l to say Qf+61+62

+

(where 62 < kK +), then we can define an extension Q(1571+2+62 of Q¢1511 and a complete

embedding i, that is an isomorphism of QE with a complete suborder of
2 1+6, 464

Q§11+2+62 with the property that iy o iy =id .
6y
This process can be repeated until we have defined embeddings i1 s lgy ey in-—l

and an initial segment QH of a II% iteration and an initial QZ of a 2,21 iteration such

that il’ vee in—l allow us to go back and forth n — 1 times between these two

iterations in the way described above; i.e., ik+1 ) ik =idforl <k <n - 2.

Moreover we can go through a similar procedure if we start with an initial

segment of a Z% iteration.

Proof of the (n — 1) Back and Fourth Property for 2121/11121 (n > 1).

We first treat the case E%n+1/H%n+l (n>1). Fixn > 1. Suppose we start out

. e r ++ 9 o
with an initial segment Q61 (where §; < £ ") for a X5 . iteration. Denote [0,61)
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by Il,E and [0, 1 + 6;) by Il,II and define il:Il,E — Il,II by i1(¢) = 1 + ( for
(< 61 . Note that 0 € rng i1 and for reasons that become apparent below we call 0 the
new coordinate in Il,H‘ Now define a H%n+l iteration HQ1+61 whose underlying
partition of Il,H is the partition induced by il and where we do not associate a tupel of
terms with 0. If no tupel of terms is assigned to coordinate { € Il,Z" then this is also
true for 1 + ¢ € Il,II‘ If a k-tupel (with k # 1) of terms appears at coordinate
¢ € 11,2 , then to coordinate 1 + { € Il,II we assign the tupel of terms each of which is
the il—shift of the corresponding term in the tupel that appears at { € Il,E' If a single
term ¢ is assigned to coordinate ( € 11’2 , then we pick a canonical term
Iq,, Tayy,

™ eV ¢ such that, in V

the set that we add at the new coordinate in Il I if certain
b

z

™ = altering coordinates hold in V R

about %C
iy .
(‘T'C) otherwise.
We will explain in a moment what these altering conditions are and we are also going to
show that in fact for each { € Il 5
1 ~
il induces an isomorphism of ZQC with HQlig {0}

which is a complete suborder of HQ1+C .

Z’Q I Q
. . . ¢ . . . 1+¢
This shows in particular that V can be regarded as being contained in V

and the definition of 7* makes sense.
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In the second step of the construction for 25n+1/ﬂgn+l assume we extend
HQ1+61 to say HQ1+61+62 where 6, <. T Let us denote [ 1 + 61,1+ 687 + 65)
by IQ,II and [6; 01 + 2+ 89) by 12,2 and define iQ:Il,H U I2,II — 11’2 U 12,2 by

in(0) = 6,
iy(1+¢) = ¢ (0<¢<bp)
b (1+6 +) =6 +2+¢ (0<¢<éy)

so that in particular i2 o i1 = idI 5 and 61 + 1 ¢ rng 12.
1,

. x . . .
Now we define an extension Q61+2+62 by choosing the partition of 12’2 that is

induced by iy. We assign no tupel of terms to coordinate §; + 1 which we call the new
coordinate in Iy 5-. If a k tupel (k # 2) is assigned to coordinate { € L, ;7 then the k-
. b 3

tupel that consists of the i2 shifts of the terms in this tupel will be assigned to

1 2
coordinate i2(C) € Il,]] . If a pair (7"2 ),%(C )) is associated with a coordinate ¢ € IQ,H ,
. X
2) i Q;
then we associate with ip({) € 12,2 the pair (7* ,(i-g )) 2) where * € V i(¢) s a
X
QiQ(C)

canonical term such that in V

[ the set that we add at coordinate §; + 1 if certain altering

T
Q .
¢ about _i'g.l)

¥ = < conditions hold in V

{ otherwise.

(+$)2
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Again we have to check that for { € 12 I i2 induces an isomorphism of HQC with

2Q;258~{61+1} which is a complete suborder of EQiz(C) .

We continue in this fashion until we have defined Il,E y eees I2n—1,2 and Il,II ,

veny I2n—1,II and embeddings il, e i2n—1' In the last step of the construction we
will not introduce a new coordinate to define IQn,Z from I2n,II and we shift all terms at

coordinates in IQn,II to get the terms for the corresponding coordinates in IQn,E'

The schematic picture that one should have in mind when doing this

construction looks like this:

L Lo Is i L1 Ion 5041
[IFaY i la 1 i o L (|
| I 1 ™ ¥ 9 1 I

1 1y 13 Ian-1 I2n
1 2 3 2n-1

i Lo [ 1 1 i 1
i | I 1 1 1 H 1 2

Ly L g Iy 5 Lpa, s Lnp Zon+1

The numbers below the arrows indicate the arity of the tupels whose first term gets
changed at this stage of the construction. The symbol o indicates that we have a new

coordinate in the interval where it occurs.

- We are now going to explain what the altering conditions are. Suppose we are

at stage k < 2n—1 of the construction above and k is odd (even resp.) and the k-tupel
(r(l) T(k)) is assigned to coordinate { € I (Cel resp.). Consider the graph
¢ TE ) s g k5 k,IT TesP-)- grap

for Eﬁ+2 (II§+2 resp.). Among all its killing paths consider the direct killing paths,
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i.e., those killing paths whose last edge is labeled with a non-negative integer. Now the

1) . . . . .
altering condition for %E. ) is satisfied if one of the agreement scenarios prescribed by

(1) (k) X Iq,

the direct killing paths hold about (TC yeena o ) in V ¢ (in V resp.).

Before we argue that the construction that we just described really works, let us
explain what the constructions look like in the other cases: If we start with an initial

++

segment HQ of a 2 iteration where 6, < & , we can define an initial segment
6, 2n+1 1 g
x 2 . . . it
Q1+61 of a 22n+1 iteration where all terms are obtained by shifting the terms from
HQC so that they cannot see the X' witness that we add at coordinate 0 of 2Q1+6 .
1 _ 1
In steps 2, 3, ..., 2n we proceed analogously as in the steps 1, 2, ..., 2n—1 of the

construction H%n+1/ﬂgn+l where we start with an initial piece of a E%n-f—l iteration.

Thus the schematic picture looks like this:

2
Il,).'} 12,2 13,2 Izn-l,z‘ Izn,z‘ 22n+1
Lo L f¥al [} .. Lo [ 1
v 1 | T T v T 1
L 1y 13 Ian-1 19n
1 2 2n-2 2n-1
[] [ Y t i 1 Lo 1
| v T ¥ 1 [ | 2
L L Is,n L1, Ln 5041

Again the numbers below the arrows indicate the arity of the tupels whose first term

gets changed if the altering condition is inet where now the altering condition for even
(odd resp.) stage k with k € {2, ..., 2n} is given by the direct killing paths in the graph
for 2ﬁ+1 (II%_*_1 resp.). As before the symbols o indicate that there is a new

coordinate in the interval where they appear.
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The constructions for the H%H/E%n case (n > 1) are totally analogous to the

corresponding ones in the H%n+1/25n+1 case.

Now we have to check that these constructions really work. Let us examine the

Zgn+l/ﬂgn+l case where we start with an initial piece of a 2%n+1 iteration.

Suppose we are at step k < 2n—1 of the construction with k being odd and ¢ € Ik -
b

For the construction to work we have to show

(5.2.4.) HQ' Il,II U.--u Ik,II ~ {new coordinate ¢ Ik,H} Ce IIQ

L (O (0

(5.2.5.) ik induces an isomorphism of ZQC with

IIQ Il,II U---u Ik,H - {new coordinate € Ik,H}

ik(()

where HQik((;) (ZQC resp.) denotes the H%n+1 (Z%n+1 resp.) iteration up to

coordinate i (¢) € Ik,II € € Ik,E resp.).

We show this by induction on ¢ € Ik - Clearly we can restrict ourselves to a
2

successor ordinal ¢ + 1 € Ik 5 where at coordinate { we possibly add a set that kills
X
(1) .(2n) , Q .
F(rC s e ). First we handle (5.2.5.). Note that V. can be thought of as being
) I

Qi
contained in V k(0

in the sense that by induction hypothesis ZQ is isomorphic to a

complete suborder of HQi © In order to prove (5.2.5.) it will therefore suffice to
k(¢

show the following two central facts.
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Jig
Qi (0

(5.2.6.) We cannot be on a killing path for H%n+l in V and on a

X

Q
saving path for E%n—{—l in v ¢

and
2 ~Q
(5.2.7.) We cannot be on a killing path for 5 , ; inV ¢ and on a saving

T
i
path for H%n+1in A% k C.

Once these two central facts have been proven we consider the first claim (5.2.4.): For

this it suffices to show that if q € I then q' which is obtained from q by

Qi (c+1)°

dropping the new coordinate in Ik,H is again a condition in Qik(c+1) . So assume
i

q € HQik(C+1) . There is a unique q”" € Fn(¢ + 1,2,I€+) with (q") k - q'. If we can

show that q" € 2Q<+1 , then we are done since we have already shown (5.2.5.). But

q” € ZQC+1 follows easily from the first central fact.

If we are at step k € 2 n — 2 of this construction where k is even, we proceed in

an analogous manner.

Finally at the last stage of this construction we do not have a new coordinate in
I2n,2 and all terms get shifted in iy ~where we go from IQn,]I to I?n,/_‘i’ We have to

show that

ip,, induces a complete embedding of HQC into EQi2n(() (for ¢ € IQn,II)‘

In order to prove this we use the first of the two central facts and obtain iy, (q) is a

condition in SQi © for all q € HQC' In order to show that each q € ZQi © has a
2n 2n
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i2n-reduction in HQC , we proceed by the method used in the proof of 4.1.3.
In order to show that the construction for H%n+1/23n+1’ starting with an

initial piece of a H%n+1 iteration, and the constructions for H%H/Z%n work we have

only to prove the analogues of the two central facts (5.2.6.) and (5.2.7.).

Proof of the Two Central Facts That Establish the n — 1 Back and Forth Property for

£2/1% (n > 2).

We prove by induction on n > 2 that the two central facts hold throughout the
constructions for Z‘%/II%. The key ingredient here is the inductive definition of the

graphs for 2% and II% which will be used all over the proof.

We begin the induction by examining the two basic cases 25/11% and Zg/l]%.
If we are given an initial piece of a IT % iteration 1 Q 5,7 then we can define an initial
piece of E% iteration ZQ1+61 by shifting all the terms in HQ61 so that they cannot see
the Z% witness that we add a coordinate 0 in 2Q1+61 .- Clearly the two central facts
hold in this case. If we start with an initial piece of a 2% iteration ZQél and define an
initial piece of a II% iteration HQ61 by using the same parameters, then clearly ZQél
- HQ61 since the graph for II% has no saving paths at all.

Now we examine the case where we start with an initial segment of a II%
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iteration HQél' In the first step we define an initial piece of a Z% iteration 2Q1+6
1

by shifting all the terms from HQalso they cannot see the 2% witness at coordinate 0 in

ZQI-}-& . The two central facts clearly hold at this step. In the second step suppose
1

z

Q
we are at coordinate { € 12 5 and on a killing path for Zg in V ¢

so that we have

X

I
. (e : Qiy(0)
either 0, or —0, —1. If we have 0 in V then there cannot be a 1in V

with a

term that appears at a coordinate € Il I since none of these terms can see the E%
b

witness that we add at the new coordinate § € Il 5 Furthermore there cannot be a 1
. b

I
Q:
in V 2(0) with a term that appears at a coordinate € Iy j since when going from
Lq
12’2 to 12,11 we change all 1’s in 12,2 because we have 0in V. ¢ . Thus we have —1
I I
Q; Q; Z‘Q
in V l2((); i.e., we kill in V 2(0) . If we have —0, —1in V ¢ then we clearly

i i
Ry(0) Q0

must have —1in V ; i.e., again we kill in V

Now suppose we start with an initial piece of a Z’g iteration ZQ5 . We can argue
1

similarly as we did in the second step of the last case to see that if { € L5 and we kill

zq Ig

at (in V , then we also kill at 11((') €l ginV . Conversely if we kill at
o X

i i Qil(O i hen i % learly impli 1; i kill

11(() in V , i.e., we have —1, then in V — 0 clearly implies —1; i.e., we ki
EQC

at ¢ in Vv In the second step a similar argument shows that if we are on a killing
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path for II% at a coordinate ¢ € 12 I’ then we are also on a killing path in EQ .
’ ia(¢)

Now suppose n > 4 and we have already proven the two central facts for all

constructions for Zﬁ/ﬂﬁ with k < n. We will restrict ourselves to looking at an odd
2n + 1 (n > 2) and consider the case of 2%n+1/ﬂgn+1 where we start with an initial

piece of a H%n+1 iteration. The arguments for the other cases are similar to the

argument that we present here in detail.

First we want to argue that the two central facts are satisfied through the first
2n — 2 stages of the construction. For this we make the following observation: The
subgraph of the graph for E%n+1 (Hlen+1 resp.) which consists of all edges that are

labeled by an integer of absolute value <2n — 3 is identical with the graph for

E%n—l (II%H_1 resp.) except that all nodes in the graph E%n——l(ngn—l resp.) of the

form QIQ{ (Q € {V,3}) have to be changed to Qﬁ+2 and we must replace each save
node by the graph for II% where the labels 1, —} get replaced by 2n—1 and —(2n—1)
resp. and each kill node must be replaced by the graph for Z’g where the labels 0, —0, 1, —1
get réplaced by 2n — 2, —(2n—-2), 2n — 1, —(2n—1) resp. If we now apply the
induction hypothesis about E%n—l/ﬂgn—l together with this observation, then we see
that up to the first 2n — 2 stages of the construction for Z%n+l/ﬂgn+1 we have the

following:
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Any time we are on a path in the subgraph of the graph for H%n+1

mentioned above that ends in “Zg” we cannot be on a path in the subgraph
of the graph for 2%n+1 that ends in “II%” and similarly if we interchange

2 2
H2n+1 a..nd 22n+1.

Then note that throughout the first 2n — 2 stages of the construction for
Egn+1/ﬂgn+1 all the terms in 2n — 2 and 2n — 1 tupels merely get shifted.
Moreover a Eg iteration clearly does more killing than a I7 g iteration. Hence the two
:zantral facts hold throughout the first 2n — 2 stages of the construction for
D51/ Moy
Now we consider the last two stages of the construction for 2%n+1/H%n+1
where we start with an initial piece of a H%n+1 iteration. First we show that if we kill
on the H%n+1 side, we cannot save on the 2%n+1 side. Inspection of the graph for
H%n+1 tells us tha,-t there are two cases for killing paths:
indirect killing; i.e., the last edge in the path is labeled —(2n—1) and
direct killing; i.e., the last edge in the path is labeled 2n — 2.
On‘thé other hand there are two ways of saving in the graph for 2%n+1:
indirect saving;, i.e., the last two edges of the path are labeled —(2n—2), 2n — 1 and
direct saving; i.e., the last two edges of the path are labeled 2n — 3, 2n — 1.

It can never happen that we are on an indirect killing path for H%n—}-l (i.e., —(2n—-1))
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and on a saving path for Z%n+1 (i.e., 2n — 1) since at stage 2n of the construction for

Z%n+l/ﬂgn+1 starting with an initial piece of a H%n+l iteration, a 2n — 1 tupel gets

altered only when we are on a direct killing path for Z%n+1 .

It cannot happen that we are on a.' direct killing path for Hgn+1 (i-e., ends in 2n
— 2) and on an indirect saving path for Z%n—f—l (i.e., the next-to-last edge is labeled
—(2n—2)). This is so because at stage 2n‘ — 1 of the construction for Zgn+1/ﬂgn+1
(starting with an initial piece of a H%n+1 iteration) a 2n — 2 tupel gets altered only if
we are on a direct killing paths in the graph of ]I%n. However the direct killing paths in
the graph for H%n can all be extended to save paths or indirect killing paths in the

graph for H%n+1 .

Finally we consider direct killing in H%n-}—l and direct sa.ying in 2%n+1‘ We
observe that the direct killing paths in H%n+1 are just all the killing paths in H%n—l
extended by one edge which is labeled 2n — 2 and all the direct saving paths in 2%n+1
are just all saving paths in Egn—l extended by one edge labeled 2n — 1. Now we can

2

apply our induction hypothesis about the Z‘Qn_l/II%n_l construction and hence this

constellation can never arise.

Next we show that in the last two stages of the construction Z‘gn+1/ﬂgn+1
(starting with an initial piece of H%n+1 iteration) we cannot kill on the Z%n+1 side

and save on the H%n+1 side.
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We have to check three cases here:

Indirect killing path for E%n+1 (i-e., ending in —(2n—1)) versus saving path in H%n+1
(always ending in 2n — 1) cannot occur since the first term in a (2n — 1)-tupel that gets
altered at stage 2n of the construction for Egn+1/ﬂgn+1 (starting with an initial piece
of a H%n+1 iteration) will then denote the set at the new coordinate € I?n,H . But no

term at a coordinage € I; U --- Uy 7 can “see” this set.
b b

Next we consider a direct killing path in 2%n+1 (i.e., ending in 2n — 2) versus
an indirect saving path in H%n+1 (i.e., ending in —(2n-—2), 2n — 1). In this situation
the 2n — 2 agreement in 2%n+1 had to occur with a (2n — 2)-tupel whose first term
‘denotes the set that we add at the new coordinate IQn——l,E' Therefore the 2n — 1
agreement in H%n+1 had to occur at a coordinate € IQn,H . Then this must come from
a 2n — 1 agreement in E%n+1 at a coordinage € I2n,2‘ . However we assumed we were
on a direct killing path in E%n+1. Thus any such 2n — 1 agreement would get
destro&ed at stage 2n of the construction for Zgn+1/ﬂgn+1 when going from IQn,Z to

IQn,II - a contradiction.

Finally we consider the case of a direct killing path in 2%n+1 (ending in 2n — 2)
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versus a direct saving path in H%n+1 (i.e., ending in 2n — 3, 2n — 1). We prove the

following:

Claim: If we are on a direct killing path for 2%n+1 and on a direct saving path for

H%n+1 , then there cannot be a 2n — 1 agreement on the H%n+1 side with
a 2n — 1 tupel that appears at a coordinate € Il,II u-.--u I2n,II .
The claim will give a contradiction to the fact that all direct saving paths for II%IH_1

end in an edge that is labeled 2n — 1.

Proof of the claim: First we note that the (2n — 2) agreement on the Zgn+1 side

cannot occur with a (2n — 2) tupel that appears at a coordinate € Ihn.s because in
?

that case any (2n — 1) agreement on the Z’%n+1 side had to occur at a coordinate

€ IQn,E' Since we are on a direct killing path for Zgn+1 , the first term in any 2n — 1

tupel that gives a 2n — 1 agreement on the E%n +1 side will be altered when going from

I2n,2 to I?n,II . This will result in —(2n — 1) on the Hgn+1 side - a contradiction.

Now there are 2 possibilities for a direct killing path in Z’%n +1° If its next-to-
the-last edge is labeled —(2n—3), then the first term in any 2n — 3 agreement on the
H%n+_1 side has to agree with the set that we add at new coordinate € 12n—2,H'
From this it follows that any 2n — 2 agreement on the E%n—i-l side has to occur at a
coordinate € IQn-—l,Z U I2n,2’ because none of the terms appearing at coordinates
€ 11’2 u .- u 1211—2,2' can see the set that we add at the new coordinate I2n—2,H'

By the remark at the beginning of the proof of the claim, the 2n — 2 agreement on the
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Zgn+1 side must therefore occur at a coordinate € IQn—l,E . Now we observe that the

direct killing paths in H%n are labeled exactly as the direct saving paths in H%n+1 if we
delete their last edge. Therefore the first term in any 2n — 2 tupel that gives a 2n — 2
agreement on the Z%n—i—l side has to agree with the set that we add at the new
coordinate € IQn—l,E' This implies that any 2n — 1 agreement on the Zgn+1 side
has to occur at a coordinate € I2n’2. But then we will end up with no 2n — 1
agreement on the H%n-}-l since in the 2n-th step of the construction for E%n+l/ﬂgn+l
(starting with an initial piece of H%n+1 iteration) all these 2n — 1 agreements vanish -

a contradiction.

So we have shown that the direct killing path in 2%n+1 cannot end with
—(2n—3), 2n — 2. Thus it must end in 2n — 4, 2n — 2. Inspection of the graph for

2%n+1 and Z’%n shows that we are on a direct saving path for Z%n in this case.

.Inspection of the graph for H%n+1 and II%n shows that the direct saving paths
in H%n+1 are obtained from the direct killing paths in II%Il by extending them with an
edge l@beled 2n — 1. We can assume by induction that:

If we are on a direct killing path for H%n and a direct saving path for
Z%n , then there cannot be a 2n — 2 agreement on the Zgn side with
a 2n — 2 tupel that appears at a coordinate € Il,E u--u I2n—1,2’

in the construction for Zgn/ﬂgn (starting with an initial piece of a

H%n iteration).
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Thus any 2n — 2 agreement on the E%n+1 side in the Z%n+1/ﬂgn+l construction has

to occur at a coordinate € I2n - Again the remark at the beginning of the proof of the
b

. . tradiction. .
claim gives a contradiction end of proof of claim

To show the two central facts for the E%n+1/II%n+1 construction (starting with an

initial piece of Z%n-i-l iteration) and the E%n/II%n construction, we use the same ideas

with the obvious modifications.

The (n ~ 1) Back and Forth Property for 2121/17121 Implies (5.2.3.) (n > 2).

The key point here is the following:
Lemma 5.2.8.Suppose we have a 2121 iteration QE and formula ®( ) in 2’121__1 together

with a condition q € QZ name K for a subset of VK+1 such that
(o]
q ”? "V E ®(A).”

z

++ 51

fé6 <&k
5 -
R 2 z g
V ! for the I statement & and if 11:Q61 — Q1+6 is a complete embedding as in
1

(o]
is large enough so that q € Q(SZ; and A € V and there is a witness in

the first stage of the construction that establishes the n — 1 back and forth property for

2121/113 starting with an initial piece of a 2’121 iteration, then we get for any II% iteration
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QH that extends Q{I+61

W@ kg Vi 2R

We also have an analogous version that starts out with an initial piece of a II%

iteration.

Proof. This will be proved by induction on n > 2 and we write down only the proof of

the first version of the lemma (the proof of the second version is entirely analogous.)

We begin with the case n = 2.

Let @(K) = 3IX ga(X,K) where X ranges over V , 5 and ¢ is Zg. Now pick §; < (Tt
x x
6, ' . . & Q51

and there is a nice name X € V

large enough such that q € Q(‘;‘; and A eV

with

algp Vb o(X,A).”

Now let QH be any H% iteration that extends QgIl; then
H “ oi; Qi )
i1(a) IF@ Vi = o(X 1A

since p is Zg and il :Qfs‘j — QgI is a complete embedding.
1 1
The case n = 3 has already been demonstrated in the proof for o%/w% in 4.2.21.

Now assume n > 4. Suppose Q(R) = 3IX VY ga(X,Y,K) where X, Y range over VK+2

++

and ¢ is 2§_3 . We pick §; < & large enough such that q € Q(‘sﬁ and .X € Qgi
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X
o) Q(Sl
and thereis X € V with

(5.2.9) q ||—(TQT VY o(X,Y,3).

We assume towards a contradiction that there is some IIIQ1 iteration QH that extends

(5.2.10.) - (i;(q) |w VY o(X1 v, 2.

++

Then there is 6, < & and a condition q' € Q{I+61+52 with q' < il(q) and

o Qf+6 +4
YeV 17%2 such that

(5.211) q = - (X'LY.AM),
Q
. oxx X .
Recall that we can find an extension Q of Qf and a complete embedding
61+2+6, 64 ’

i 'QII — QZ as in the second stage of the construction that
2°01+68, 46, 6142484 8

demonstrates the (n — 1) back and forth property for 2121/11121 (starting with an initial

piece of a 2,21 iteration).

Claim. iz(q’) |}—~Q—2 - go()"(,?(‘?,ﬁ) for any 27121 iteration QE extending Q621+2+62'

Proof of the claim: Assume towards a contradiction that we have some Z% iteration
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QZ and ég < x 7 and a condition " e Qézi+2+62+63 with ¢" < i2(q’) such that

o 01
q” “? o(X,Y 2,

>0

)

QZ‘

and there is a witness in V r the 2121_3 statement ¢.

Now proceed as in the 3rd stage of the construction that establishes the (n — 1)
back and forth property for E%/II% (starting with an initial piece of a 212, iteration) and
find an extension 8{I+5 460 +246 of Q{I_'_é 6 Since ¢ is 2'121_3 and we can go

1772 3 1772 .
back and forth n — 3 times between suitable extensions of Qi+2+62+63 and

6f+61+62+2+53 , we get by induction hypothesis:

2. . RT R
For any II'j iteration Q™ extending Q
n 1+51+62+2+63

.

. " 011 o O
(5212 iga") bgm  (XLY,A
QII

i

1).

Note that clearly X' = X" and (§>(12)13 =¥ and '3 = R,

Now fix (SIIas above. Recall that there is an isomorphism of QH and (SH

. . . = IT - !
that is the identity on Q . Thus iq(q < q and (5.2.11.) and (5.2.12.
> 1+51+52 3( ) < ( ) ( )

together are obviously a contradiction and the claim is proved.

O
end of proof of the claim.

Next fix any 2121 iteration QZ extending QZ . From the claim we obtain
_ 61+2+6,
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(5.2.13.) iy (d) n? IY - (X,Y,4).

There is an isomorphism of QE with QZ that is the identity on Qg‘j . Then i2(q') <q
1
and (5.2.9.) and (5.2.13.) give a contradiction. Hence our assumption (5.2.10.) was false

and we get
(o)
. ip (, 94
iy (@) ”—Q—ﬁ VY ¢ (X,Y,A7)
. . O
and the first version of the lemma is proved. end of 5.2.8.

It is now easy to obtain (5.2.3.) from (5.2.2.) by using this lemma: Assume that (5.2.2)
holds. If ®(A) 2121_1 then by the second version of the lemma we obtain (5.2.3). If
®(A) is II%_1 then we assume towards a contradiction that for some 2121 iteration QE

we have a condition q € QZ with

a5 “Vk - 3(A).”
Q
Then by the first version of the lemma we obtain a Ur21 iteration QH and a condition
q’ € QH such that
q' Iy S o(A)”

which contradicts (5.2.2.).
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SECTION 6. o3'/7(m>3, n>2).

The main ideas for establishing the consistency of of' > 73 (m > 3, n > 2)

have already been developed in the 0%/#% case.

We will write P, rather than an,a in this section. Let us describe the (m + 2)

step iteration that we use at stage A (where X is Mahlo) in order to make A X!

P
describable in V A+1 .

Suppose that G, is P, generic over V = L and in V[G/\] A is inaccessible and

ytHe (/\+£)L >A

for £ > 1 and GCH™" holds. In the first step we add a sequence (F.y:'y

+(m-1) +(m-1)
)n—l — 22 . Thus the

< /\+) where each F, is a Lipshitz function (2’\
forcing Q(l) is a AT product (with full support) of copies of the forcing notion Pp

where conditions in PF are functions f such that

+(m-1)

-1
dom f is a subtree of (2<A )n-—l of size </\+(m ) and

Ja < /\+(m—1)[ a+1

V(sq 8, 1) € dom [ a > dom sy A f(sqy,...,sp) € 2

A (81508, 1 Xa) = 0]

+(m—2)]

AV (515058, 1)) = 1 = cf({) = A
AY(tqsety 1) € dom f [(tq,...t) ;) extends (sq,..s;,_ 1) = f(ty,....t) 1)

extends f(sq,...,s, )]l

+(m-1)

and for f, g € Pp we let f < giff f D g. Clearly ]Q(l)l = A and Q(l) is
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-1
</\+(m ) closed. Hence if (Fy:vy < /\+) is Q(l) generic then in V[G)\ ’F’I’] we still

have that A is inaccessible At = (/\-*_e)L for £ > 1 and GCHZ’\ holds.

In the second step we will do an iteration Q(Q) (that we call Q in the remainder
of this section) which will make a L' fact true about F, for y even and its negation

+(m—1))‘ We

about Fy for v+ odd. Q will be a certain suborder of Fn(/\+m,2,/\

partition AT nto 27T many pieces say (Ay:y < /\+) and C with AT C C each of
. . +m -+ . pe . .

which has size A ; then for each v < A we partition A, into pieces

(Agk):l < k < n — 1) each of which has size AT™ .

Next for each k € {1,...,n — 1} we enumerate a complete sequence of k-tupels of

-1 -1
nice Fn(A+m,2,/\+(m )) names for a subset of /\+(m ) along the coordinates in

+(m-—1)

k
A( ) (Note that this is possible since Fn(/\+m,2,/\ ) is ytm c.c. and has size

Y
+(m—1)

ytm .) The poset Q will add a new subset of A at each coordinate in AT™ .

- -1
A(n b . At a coordinate a € A(n ) for some v < AT Q will add a club set
+ 7 Y
F<A

9\+<m_1) (1) ‘(n_l)) (where (7'(1) (n—l)) is the

that is disjoint from Fy (75 o,..s7 5,0 V0 05Ty

if certain killing conditions are met. If

n—1
tupel that appears at coordinate o € Ag, ))

these killing conditions are not satisfied we just force with the trivial poset {0}; i.e., we

-(1) . (n—1)

save Fo(Fy,a 5Ty, )

(n—1)

The killing conditions for o € Ay where 7 is even (i.e., the killing conditions

in T} are again given by the graph for TN'. Similarly the graph for I} tells us

/
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. (n—1) .
whether we kill at some o € Ay where v is odd. Now the graphs for

I (I resp.) look exactly like the graphs for 2% (H% resp.) except that the nodes are

labeled Ei{n and IIkm instead of 212{ and HIQ{. Clearly Q is </\+(m—2) closed (because

of the cofinality restriction in the definition of conditions in Q(l)) and AT™ cc. (since

-1
compatibility in Q agrees with compatibility in Fn(/\+m,2,/\+(m ))

(m—1)

An analogous proof as in the ag/wg case shows that Q is </\+ Baire. In

+(m-1)

particular this implies that for each v < at H——Q— dom Fy = (2’\ )n—l .

Moreover the analogue of 4.1.7. can be proved for Q; hence after forcing with Q

+(m—1)

F'Y(Xl"“’xn—l) (for v < )\+, X{»Xn C A ) will be stationary unless Q

explicitly killed it. Therefore if G is Q generic over V[G/\ ,F,y] we have in V[G/\ ,?7 ,G]

for odd ¥y < kT

+(m—1) +(m-1)

) +(m—1)
VX, C A 3Xy € A QX _, CA ¥ Foy(Xypen X )

where Q = 3 (Q = V resp.) and ¢ says F7(X1,...,Xn_1) is stationary (nonstationary

+(m-1)

resp.) in A for odd n (even n resp.). Clearly this is Hﬂn(F7).

For even v < kT the negation of this statement will hold about Fy , ie., a
Zh(Fy) fact.

For each v <« AT we can find a code F7 c A for Fy in V[G/\ F oy ,GJ.

(< /\+(m-1))V[G 3]

2</\+(m-1))V[G./\ F . ,G]

This uses the fact that ( and V[G,] =

L{G,] where G, C P, C L,. Hence we can use the canonical wellordering <L[G/\] on
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+(m=1)

2<’\ to do this coding.

+(m—1)

The steps Q(B)’ veey Q(3+m_2) will now code each F7 cC A down to a

subset S, C A. This is done in exactly the same way as in the o,rln/wrln proof. Finally

in the last step we add a sequence (C7:7 < /\+) where each Cy C A is club and
Cy N {p < A:p inaccessible

AV E @70 (Sy Vi, Gy N Vs AN W} = 0.

m
Here <I>2n is the analogue of (4.1.10.) for T*.

Now we can proceed as outlined in Section 1 and prove

“P— “thereareno X3 indescribables <k,
£+1

xis T indescribable, k' is T indescribable.”

The hard part of the proof of ”T)_ “k is IT]" indescribable” is again to show (in the
k+1 .

notation of Section 1) that

N[Gg ,N F‘y ,g] is an—l correct for & in V[Gg ,?7 ,G]

where G is the V generic for P, F»y is the generic for Q(l) of stage k of Pfc+1 and G
is the Q generic of stage x of P'H_1 and N_F+7 is the Q(l) generic for stage & of P‘%\(IK)

and g is the QN generic for stage « of le\gn) .

The strategy for this is the same as in the a%/w% case; i.e., the key point is that
S /O3 has the (n — 1) back and forth property which is proved by the same

arguments as in the a%/w% case.
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SECTION 7. Oracles — The Final Word on Indescribability.
In order to state the final theorem we need to introduce the notion of an oracle. An
oracle is simply a subset of w that codes a function with domain {(m,n):m > 2, n > 1}
that takes values in {0,1}.

" The final theorem is

Theorem 7.1. (ZFC) Assuming the existence of X1 indescribables for all m and n and

P
given any oracle ¥, there is a poset P € L[¥] such that GCH holds in (L[¥]) ¥ and

ot < @ if F(m,;n) =0
(72)  Ip { o om

o > 1 if F(m,;n) = 1.

Before defining Py (for a given oracle function ¥) we make some observations about
small forcing and indescribability. In 1.6. we have already seen that a forcing of size <«
cannot destroy the TR’ indescribability of k. The same statement is true about a ITh'
indgscribable cardinal k. The proof for this is totally analogous to the Xh' case.

However the reformulation in I.1. makes it possible to give an even easier proof.

"~ To complete the picture we show (cf. Corollary 7.8.) that no poset can create
new X' or I} indescribable cardinals (for any m, n > 1) that are larger than the

cardinality of the forcing. First we prove:

Lemma 7.3. (ZFC) Suppose.that & is inaccessible and P is a notion of forcing with |P|

< k. Let G be a P generic. Then, in V[G] for any X € Viet1:

(7.4.) XeEVXCVAVs[seV=X[]seV]

and forany 6 € V. ) (m > 2)
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(7.5.) BEVSBCVAVI[TEVAITI<k.2.FNT e V]

Here s ranges of V; and ¥ over V. 1, (of V[G]).

Proof. To prove the nontrivial direction of (7.4.) assume towards a contradiction that

for some condition p* € G and some )O( € VP we have
* Q C o)
pH—?- “XC (Vg AVsfseV=aXMNseVIAX gV.”

In V, pick a wellordering of V. of order type « and let seg, denote the segment of the
first a-many elements (¢ < k). We can (in V) for each o < & pick py < p* and x4 €
(V)i with
Pa |+ >°( N sega = Xq -
|P| < & implies that there is some p € P with py = p for cofinally many o.
Then let

be U X
a=P

= i

clearly
~ (o]
plFX=X
contradicting

pl-X V.

To prove the nontrivial direction in (7.5.) we assume (without loss of generality) m = 2

o)
and suppose towards a contradiction that for some p* € G and % in vP

P¥ I “B C (V)1 AVT[TEV

AT <Kk.=.BNTEVIAS gV
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Q
If for some p** < p* p** |- |¥| < &, then since |P| < & we can find T € (V)n+2 with
[e]
|F] < k and p** |- F D $. This clearly implies p** |}~ $ e V, a contradiction. Thus
we can assume
* [o]
P | %] > «.
Now we claim:

p* - IYCE(Y =xAVBYCBCX =3¢ V]

Proof of the Claim: Consider B 55 1o (P) and let H be B generic over V with p* € H.
. o B . OH OH OH
Since |B] < & we can find Y € V© such that in V[H] |Y*| = « and Y+ C S and
9 o] B OH v o B OH OH
X eB)":XeB "N (V) 1} ={XeY™:XeUY " N(V),y 1} ThenT" ¢V
implies
OH ' o ) B
(7.6) I eHVXeUY " N(V),1 bSIX eS|,
S _ B .1 &H o SH - QH. . ‘SH .
Now suppose % € V© with Y™ C B C 7 ; it follows that 2 ¢ V. Otherwise we
. . ) > B OH
can pick % € V with ||Z = B||” € H and then we get for all X € Y™ (V),H_1

- [o] - Q [o] [e] y
X esIB > 11X ez)B .z c %)B

[\
N

w [ v [9] [o] Q
>IX ez Bz =28 2 c 5B

- [e] Q [e]
=% =3B 15 c %P eH,
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o “ .
since for X € CIJH N (V)n+1 we clearly have || X € Z|| = 1 because "'CI)JH - gH — .

o
But this contradicts (7.6). Hence CUH works and the claim is proved.

D .
end of the proof of the claim

By the claim we can fix % € vP with
* O ] o Q [}
P IF“YCEA|Y=sAVB[YCECSE=>B¢V]
Let p** < p* and? € VP such that
* % 9 1:1 °
f: .
P - e B!

Then define (in V):
[e]
Vg (X € (V)ep1:3p <p™ 3o < npl- X =f(a)}-

Clearly |Y| = & and p**|}- "Sl)J C 4. Now (in V) wellorder 4 in order type x and for a

< & denote by seg, the segment of the first « element. Note that for o < &
¢}
P** |- % N segq € V.
Hence (in V) we can find for each @ < k¥ pg < p** and Y, with
[
Pa |- % [)sega = Ya-

Since |P| < & there must be some p < p** with P = pgq for cofinally many a. Then

Pl “ENY= U YgeV”
© Pa=P
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contradicting

& ¢ 0
PlEENYEV. end of 7.3.

We use this lemma to show

Lemma 7.7. (ZFC) If x, P, G are as in 7.3. then in V[G] for any % € Veim (where m

> 1) the formula “% € V” is X3 (F,(V)k) over V.

Proof. Form = 1 (7.4.) implies (s ranges over V)

BeVIFEC (V) AVs[se(V)e=BNse V)l

Clearly this is 3 (%,(V)x)-

For m > 2 we proceed by induction on m. Suppose % € V/c+m+1; then by (7.5.)

(where I rangesour V. .\ 1)

BEV=BECVym AVIT eV, [T <k=>BNT € V]

Now, by induction hypothesis this is E{)n_*_l because any I C Vfc+m of cardinality <«

can obviously be coded by some element of Vh:+m so that the whole formula is 2{}”’1
(V2w | end of 7.7

Remark. Of course lemma is not optimally phrased, but this version already allows us
to prove:
Corollary 7.8. (ZFC) If « is inaccessible and P a poset of size <« and G is P generic,
then form,n > 1

(kis T (TR resp.) indescribable)v[G]
implies

(kis T (IT resp.) indescriba.ble)v.
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Proof. If ®(A), where A C (V). is T0' (I resp.) then by 7.7, in V[G] the formula
(<I>(A))V is TRt (A,(V)k) (ITR*(A,(V)g) resp.). Then note that clearly (V) C V. (in

; o
V[G]). So we can use it as a parameter. end of 7.8,

We are now turning to the proof of 7.1. Suppose ¥ is an oracle and we have T3
indescribables for all m, n. We know that in L[¥] the following picture holds for m > 2,

n > 1:
L[¥ L[7F L[¥ L{¥
(7.9) < [ ]anm < [ ]wnm < ! ]agl+1 < [ ]an+1 <o

For the sake of completeness we give a proof of this fact.

Proof of (7.9). Fix m > 2 and n > 1. We work in L[F]. Let x be the least oy

indescribable. The proof strategy is to find a IT* statement ®(A,x) with A C V. such
that V. k= ®(A,&) and any inaccessible A to which ® reflects is £ indescribable. ®(A)
can be found as follows: We know that x being the least II]' indescribable is T}
describable. We fix some A C Vi and a X' formula ¥(A) such that V, = ¥(A) and
¥(A) does not reflect to any inaccessible A < & and such that the witness in the TJ"
formula ¥ is least in the canonical wellordering <L[G.F] with prope;rty that it is a witness
for a 1 formula ¥’ in a parameter A’ as above. We pick a sufficiently large finite

fragment T of ZF + V = L[¥] such that for any transitive model M of T with F € M

we have that X € M and Y <L[€F] X imply Y € M.
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Then we take ®(A,x) to be the formula

VM [ M transitive, b = T, | M| = Ivfc—}—m—ll’ M Zgl_l correct for «,

M = “k is not X! indescribable” .=>. M = “V, = ¥(A)”];
® is clearly IIN' over Vi and by the choice of T we get Vi = ®(A,k). If A < & is
inaccessible and V, | ®(A 1 V),A), then A must be I indescribable because we

cannot have V, | ¥(A N V) by our choice of ¥(A). Thus @ has the properties that

g
we want. . end of the proof of (7.9).

Actually the proof that we just gave works for a large class of inner models. The key
point is that the inner model under consideration (or at least its truncation up to the

first mea,surabie) must have a certain “good” wellorder.

We now resume the proof of 7.1. Working in L[¥F] we define for m > 2 and n >
1 the poset P?’n to be the trivial poset if F(m,n) = 0. If F(m,n) = 1 then we use the
L(%] m

exact same definition that we used for P! (with « = ) except that we replace L

L
by L[¥] and we do something only at Mahlo stages > [‘:T]a{ln . Then we let
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We must show that (7.2.) holds. So fix m’ > 2 and n’ > 1. Note that Pg = Py x Py

[N
m,n _ ,m';n _ m,n
X P3 where Py & m<]n_‘[’ o Pq_ and P, 5 Pg and Py = m)LI' o Pg’ .
m=m’An<n’ m=m'An>n’

First assume that F(m’;n') = 1. We know from Section 1 that for each

L[F] m'
a7
n+1

!
P3 has a <a closed, dense suborder. Hence P3 is < L[q]am, Baire.

a < ol 41

ThuS if G3 iS P3 generic over L[g], (L[G.F,G3])L[g] o = (L[g])L[fF] o . This

Tn'41 Tn'+1

, !
implies that in L[€F,G3] L[G'F]rnm, is still Hm, indescribable and that there are many Em,
n n

. ! [
indescribables above L[g]rm, . It implies also that L[¥,G3]’s version of Pgl oo agrees
n

1.1

!
with the Pg] " of L[F]. Thus if we denote by &' the least XM indescribable >
n

L(F] m'. . .
L[¥,G,] then f G, that is P L[Z, : In L[¥,G,.,G
i in [ 3] en for any G, that is P, generic over L[ G3] n L] Gy ol

! ' '
L[q]wm, is O™ indescribable, «' is X indescribable and there are no X
n n n n
oF !
indescribables below Ll ]WH} .
n
L[F] m' . .
Clearly |P1| < o . Hence by 7.8. for any G, that is P, generic over
n

, '
L[‘EF,G3,G2] we obtain that in L[€F,G3 ,Go ,Gl] there are no Z’nm, indescribables

! ! '
E[L[g]an} , L[g]wn}] and clearly we cannot have any X, indescribables below
n n : n

! ! ! !
L[g]a’lrln, . Also by |P¢] < L[q]anm, we get that L[G}]n'lr:} is still IIII:} indescribable and

. I
k! is still )Jnm, indescribable in L[¥,Gg,Gq,G]. This shows that for F(m';n') = 1 we
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have
LigF ! !
'Fp%,] o' > 2

!
Now we assume that F(m',;n’) = 0. Then Pg ~ Py x P3. The <o . Baireness of
n+1
P3 implies

! !/ !/ !
| LP[,‘:T] am, = L[g]am, < L[‘Ef]ﬂm, rn, .
3 n n n n

! ;
Pyl < L[Gj]agl, together with the observation that no generic extension of L[¥] can

! ‘ !
have any IT™} indescribables < L[g]an} yield that
n n

LI ' '
”_P[—G_;]UIII} <7rnm, .

Another factoring argument shows that for any cardinal p ||——LP7[gi ot = /,t+ . Hence
F

we get

L[F]

=2 gen.
Py
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