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Abstract

Adviser: Richard Wilson.

This thesis consists of an introductory chapter and three independent chapters. In
the first chapter, we give a brief description of the three independent chapters: abelian
n-adic codes; generalized skew hadamard difference sets; and equivariant incidence
structures.

In the second chapter, we introduce n-adic codes, a generalization of the Duadic
Codes studied by Pless and Rushanan, and we solve the corresponding existence
problem. We introduce n-adic groups, canonical pplitters, and Margarita Codes to
generalize the “self-dual” codes of Rushanan and Pless, and we solve the correspond-
ing existence problem.

In the third chapter, we consider the generalized skew hadamard difference set
(GSHDS) existence problem. We introduce the combinatorial matrices Ag g,, where
G1 = (Z/exp(G)Z)* and G is a group, to reduce the existence problem to an integral
equation. Using a special finite-dimensional algebra or Association Scheme, we show
Af e, = %I for general G. With the aid of A ¢,, we show some necessary conditions
for the existence of a GSHDS D in the group (Z/pZ) x (Z/p*Z)***!, we provide a
proof of Johnsen’s exponent bound, we provide a proof of Xiang’s exponent bound,
and we show a necessary existence condition for general G.

In the fourth chapter, we study the incidence matrices Wy (v) of t-subsets of
{1,...,v} vs. k-subsets of {1,...,v}. Also, given a group G acting on {1,... v},
we define analogous incidence matrices M;; and M{, of k-subsets’ orbits vs. -
subsets’ orbits. For general G, we show that M;; and Mj, have full rank over Q,
we give a bound on the exponent of the Smith Group of M;; and M, and we give

a partial answer to the integral preimage problem for M;; and Mj,. We propose
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the Equivariant Sign Conjecture for the matrices W; x(v) using a special basis of the
column module of W, consisting of columns of W, ;; we verify the Equivariant Sign
Conjecture for small cases; and we reduce this conjecture to the case v = 2k +t. For
the case G = (Z/nZ), we conjecture that M;, has a basis of the column module of M,
that consists of columns of M;,. We prove this conjecture for (t,k) = (2,3),(2,4),
and we use these results to calculate the Smith Group of M4, M§74, Ms 3, and Mé73

for general n.
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Chapter 1

Introduction

1.1 Abelian n-adic Codes

In [21], Pless and Rushanan introduced a family of cyclic binary codes called the
Duadic Codes to generalize the cyclic binary Quadratic Residue Codes. Using the
language of primitive idempotents® in F,[G], where F, is the finite field of ¢ elements

and G is an abelian group, Duadic Codes were introduced as in definition 1.1.1.

Definition 1.1.1. Let p € Aut(G), and let e = 3 . e4]g] be a primitive idempotent
in F[G]. Define e as 3 cqeglo(g)]. Let e =e and ey = p-e. If

1
ep ey = 1—@2[9],

geG
then we say that ey, eo, i forms a Duadic Code and we call i the splitting of the code.

Duadic Codes were of special importance since they provided a construction for
Finite Projective Planes. This link is sumarized in the following result that is found

in [23] in its most general form.

Theorem 1.1.2. Let C' be a duadic code with splitting given by p_y then the minimum

distance for oddlike? code words, dy, satisfies

d%—do—i-lZv.

LAn idempotent is primitive, if for every other idempotent f, ef = fe=f #0=¢ = f.
2A word w = >_geq Colgl is oddlike, if 37 ¢y # 0.
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If equality holds then the supports of the minimum-weight oddlike codewords of weight
dy are the blocks of a projective plane of order (dyg — 1). Furthermore, dy is the mini-
mum distance of C', and the minimum weight codewords are precisely those codewords

that are constant on the supports of the blocks of the finite projective plane.

Originally, Duadic Codes were introduced in the cyclic binary case. Since their

introduction, there has been various generalizations with respect to:
1. Parity of the characteristic of the field,
2. Number of idempotents used, and
3. The cyclic and noncyclic abelian case.

The following is a history of these generalizations:

1. The family of Duadics in even characteristic, by Rushanan in [22]. These
are codes in F,[G] where G is an arbitrary abelian group, ¢ is even, and 2

idempotents are used in its definition. The existence problem is solved.

2. The family of Duadics in odd characteristic, by Smid in [25]. These are
codes in F,[Z/nZ] where ¢ is odd and 2 idempotents are used in its definition.

The existence problem is solved.

3. The family of Triadic Codes, by Pless and Rushanan in [21]. These are
codes in [ [Z/nZ] where ¢ is even and 3 idempotents are used in its definition.

The existence problem is solved.

4. The family of Polyadic Codes, by Brualdi and Pless in [4]. These are codes
in F,[Z/nZ] and m idempotents are used in its definition. The existence problem

is solved.

5. The family of m-adic Polyadic Codes, by Ling and Xing in [18]. These are
codes in F,[G] where G is a general abelian group, and m idempotents are used

in its definition. The existence problem is solved for the “nondegenerate” case.
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We will provide for a different generalization of Duadic Codes that will parallel
the family of m-adic Polyadic Codes of San Ling, and the Duadic Codes of Rushanan.
This will be the family of n-adic codes defined by:

Definition 1.1.3. Let n be a prime and G be an abelian group. An n-adic code is a
pair e, w where e is an idempotent and p € Aut(G) satisfying Stab,(e) = {pF|pk-e =
e} = (u™), under the action of Aut(G) on the primitive idempotents of F,[G], and

(e1,...,en) = F,[G],
(er) N{e2) N Nfen) = (dg)

1
= <@ Z[QD,

geG

i—1

where e; = '~ - e.

Remark: The term n-adic, introduced in definition 1.1.3, is not related to p-adic
numbers.
We will solve the existence problem for n-adic codes as it is given by the next

theorem.
Theorem 1.1.4. Let n be a prime, then the following are true:

1. There is an n-adic code in Fy[G] if and only if there is an n-adic code in F,[S]

for every sylow subgroup S of G.
2. There are no n-adic codes in F,[G] when G is an n-group.

3. Let G be an s-group where (s,n) = 1. Let ty(k) = |ug| in Aut(Z/sZ). Then,

s—1

, then there is an n-adic
tq(s)

(a) Let s be an odd prime and assume n divides

code in Fy[G].

L and G = (Z/sZ)™ x

(b) Let s be an odd prime, assume n does not divide tsqzs),

(Z)S*Z)™ x - - x (Z/s"Z)™. Then,

i. If s =1 modulo n there is an n-adic code in F[G] if and only if m; = 0

modulo n for all 1.
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ii. If s # 1 modulo n there is an n-adic code in F,[G] if and only if ts(n)
divides m; for all i.
(c) Let s =2 be such that (2,n) = 1. Let G = (Z/sZ)™ X (Z]s*Z)™ x --- X
(Z)s"Z)™ . There is an n-adic code in Fy[G] if and only if t,,(2) divides m;
for all 1.

We will continue our study of n-adic codes by providing conditions under which n-
adic codes become Triadic Codes, Polyadic Codes, and m-adic Polyadic Codes. This
will put the concept of n-adic codes into perspective with the current generalizations
of duadic codes.

We will also provide a generalization of proposition 1.1.2, given as proposition
1.1.5 below, by introducing the concept of n-adic groups for which there will always
be a canonical splitter of order n, and by calling the analogous “self-dual” codes

Margarita codes.

Theorem 1.1.5. Let e, y; give a Margarita code in F,[G] where G is an n-adic group
and p; a canonical splitter of order n. Let dy be the minimum weight of all oddlike
vectors of (e). Let w € (e) be an oddlike vector of weight do. Let w = 3 p Byl
where B C G is the support of w. Let B= > genlyl be the characteristic function of
the support of w. Define ry,, ¢ G — 7 as,

Tonuc(g) = |HyN (B Xx...x B),

where

Hy = {(91,-.-,9n) € G x -+ X Glgr + pu(g2) + - + pn—1(gn) = g}

Then,
1. The constant dy satisfies diy — 1y, (1) +1 > |G|,
2. If dy —rp (1) + 1= |G, then:

(a) The oddlike word satisfies w = o % B for some o € F,,
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(b) The characteristic function of the support of w satisfies,

B (u-B)x--x(uf™" - B) = (raue(l) = DA+ [g-

geG

3. The constant 1, ,, (1) satisfies 1y, 4, (1) = do modulo n.

1.2 Generalized Skew Hadamard Difference Sets

We will assume that the reader is familiar with the theory of Difference Sets as it
can be found in Jungnickel’s book in [12], and in Lander’s book in [17]. Also, we will
assume that G is an abelian group, and we will use the additive notation for its group
operation.

Skew Hadamard Difference Sets (SHDS) are subsets D of an abelian group G such
that in the group algebra Z[G|:

D(x)D(z™") = (k=N[0]+G(z),
D(x)+ D(z™") = G(z) -1

The following is what is known about the existence problem for SHDSs. This can

be found in Chen, Sehgal, and Xiang’s paper in [6].
Theorem 1.2.1. A SHDS has parameters (v, k,\) = (v, L, %) Also, if D C G

2
1s a SHDS, and G is abelian, then:

2a+1

1. The order of the group v has the form v =1p , where p =3 mod 4,

2. If x is any nonprincipal character, then:

—1+e/—v

x(D) = 5

where €, € {+1,—1},
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3. If G=Z/p"Z X L] p™7 X --- X L[p*Z where: a; > as > -+ > a, and a; > 2,
then:

(a) The exponents a; and as are the same, i.e. , a; = ag,

(b) The exponents a;s satisfy,

a4 +a,+1

a; < 1

This is Xiang’s exponent bound.

We introduce the concept of a Generalized Skew Hadamard Difference Set (GSHDS),

given by:

Definition 1.2.2. A generalized skew hadamard difference set (GSHDS) is an ele-
ment of the group algebra D(z) € Z[G] such that:

D(z)D(z") = (ko = M[1]+ AG(x),
D(z) + D(z") = G(z)—[1],

where [1] = x° is the multiplicative unit of Z|G], k, = |D(z) N D(z~")|, and n, is a
Non-Quadratic Residue of (Z/exp(G)Z)*.

In our study of GSHDSs, we introduce the concept of Quadratic Residue Slices
(QRS) defined by:

Definition 1.2.3. Let G be an abelian p-group, and G, = (Z/exp(G)Z)* be the
numerical multipliers of G. Let g, , ..., Qg be the distinct orbits of the action of Gy
on G = G\{0}. A Quadratic Residue Slice (QRS) is any formal sum of the form:

r

E GQgi Qgia
i=1

where eq, € {£1}.

Using the language of QRSs, we extend the existence conjecture of SHDS to
GSHDS.
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Conjecture 1.2.4. If G is an abelian group that affords a GSHDS, then G 1is ele-

mentary abelian.

We prove the analog of proposition 1.2.1 for GSHDS using a unified framework in
the language of Quadratic Residue Slices (QRS).
We introduce a combinatorial matrix Ag g, that is well defined in any abelian

p-group and depends on the choice of a set of representatives of the action of G; on
G\{0}.

Definition 1.2.5. Let G be an abelian p-group with exponent p*. Let 0 : G — G
be an noncanonical isomorphism such that 6(g)(g") = 0(¢')(g). Let Qg be an orbit
of G1 = (Z)exp(G)Z)* on G = G\{0} and Q, an orbit of Gy = (Z/exp(G)Z)* on
é = é\{XQ}. Then, Ag.a, is defined on the set of orbits of Gy on G wversus the set
of orbits of Gy on é using 6 by:

(2)o(p-g) if0(g")(g) =y,

0 else,

AG»Gl (Qe(g’% Qg) =

where (%) is the quadratic residue symbol, o(g) is the order of g in the group G, xo
is the principal character, n, is a fized primitive pth root of unity, andp - g =p-g =
g+ g+ -+ gisg added to itself p times.

Using the matrix A¢ ¢, , we introduce the concept of difference coefficients as:

Definition 1.2.6. Let d be the vector representation of a QRS D C G, i.e., a vector

of £1. The difference coeflicients of D are given by the vector Ag c,d.
We show the following properties of Ag ¢, :
Theorem 1.2.7. The following hold:

1. The incidence matriz A a, satisfies,

Gl

2
AG7G1 - D Ir,ra

where I, s the identity matriz.
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2. There is a GSHDS D in G if and only if there is a vector d of £1s such that
Ag,d= ,/%J for some integral vector d.

We proceed to study difference coefficients, and we show integral formulas involv-
ing them. In our study of difference coefficients, we prove Xiang’s exponent bound

for GSHDS, and we introduce the concept of difference intersection numbers.

Definition 1.2.8. Let D be a QRS in G, and let L C G be a subgroup with % =
{diL,...,¢g.L}. The difference intersection numbers of D with respect to L in G are
defined as:

ve(D,g;) = |DNgLl—[D™ ngL|.

Using part 1 of theorem 1.2.7 and the structure of Galois Rings, we find necessary
conditions for the existence of a GSHDS in the family of groups (Z/pZ) x (Z/p*Z)***+1.
We achieve this by first using the multiplicative structure of the Galois Ring GR(p?, «)
to deduce a “Canonical Form” for Ay g,, where H = (Z/p?Z)**. Using the “Canonical

Form” of Ay p,, we deduce the following existence conditions:

Theorem 1.2.9. Let G = (Z/pZ) x (Z/p*Z)?, and D C G a GSHDS. Let H =
{0} x (Z/p*Z)* C G and L =p- H ~ (Z/pZ)®. Let D' = HND, and D" = LN D.
Let,

1. The vector of +1s representing D" be d'.

2. Decompose d' by d' = (dif ,d'T, ... ,d;TQ) where d} is a (p* +p+ 1) x 1 vector of

+1s representing disjoint Hy classes of D’.
3. The vector of difference coefficients of the Hy classes of d; be cz/.

Then, there is a ordering of the Hy classes of H and a set of Hyi-orbit representatives

such that:

1. The set D" is a GSHDS in L.
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2. The image of dy under Ar 1, has form Ap 1, dy = pdy where dy is a p*+p+1x1
vector of +1s. Define dy the "dual” of D" .

3. The image ofglv(] under Ar 1, has form ALLlcflvo = pc%, for some integral c%.

2

4. The vector jo of the previous part satisfies c?o =>" d.
. 7 2 5
5. The vector of £1s of part 2 satifies pdo = > 5, d;.

Theorem 1.2.10. Let D be a GSHDS in G = (Z/pZ) x (Z/p*Z)*’ L, and let K =
(Z/pZ)*". Then, there are elements A, B € Z|K] that depend on D, and there is an
element Ly € Z[K] that depends on the structure of G such that:

1. The elements A and B satisfy p*? A = xo(A)K () + Lo * BV, where xo is the

principal character of K.

2. The elements A and B satisfy p*® B = xo(B)K(x) + pLo * AV, where xq is

the principal character of K.
3. All the coefficients of A are odd, and xo(A) is odd.
4. All the coefficients of B are odd, and xo(B) is odd.

5. The principal character of A has value xo(A) = pP~teobo; where € is +1, and

by is an odd integer.

6. The principal character of B has value xo(B) = pPeqao; where €y is £1 and

equal to the g of part 5, and aqy is an odd integer.

We close the chapter with a proof of Johnsen’s exponent bound using the matrix
Ac.c,, and with a necessary existence condition between the Difference Coefficients
and the difference intersection numbers of a GSHDS D in a general abelian p-group

G.
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1.3 Equivariant Incidence Structures

We consider the incidence matrices Wy defined on the ¢-subsets vs. k-subsets of

{1,...,v} by:

1 ifTCK,
Wikler,ex) =
0 else.

The following problems concerning the matrices W;; have been solved in the
literature:

1. What is the rank of W, ;7 When is W, onto? When is W, injective?

2. How can the kernel of W, be characterized? Do we know a canonical basis for

the kernel?

3. Does Wy, allow for a column Z-basis? That is, is there a subset of the columns

of W, that is a basis for the column space of W, over Z? This is the concept

of a (t, k)-basis.
4. What is the Smith Normal Form of W, ;7
5. What is a left inverse of W, when W, is injective?
6. What is a right inverse of W, when W, is surjective?

7. When does an integral vector have an integral preimage under W; ;7

Questions 1, 5, and 6 have been answered by Kramer in [13, 14, 15]. Questions
3, 4, and 7 have been answered by Wilson in [26]. Question 2 has been answered by
Ajoodani-Namini and Khosrovshahi in [1], and by Bier in [3].

We consider these questions when there is an action of a group . That is, we
ask the same questions for My = (Wyx)o, and for M/, = (W/,)o)"; where My is
defined by

Mth(eQT,GQK> = |{K, € QK|T C K/}|,
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and My, is defined by

M| (ear eq) = {T'€Qr|T' C K},

where Q7 is an orbit of GG on the t-subsets, and 2 is an orbit of G on the k-subsets.

1.3.1 General G

For general G:
1. We show M, and My, have full rank.

2. We provide a partial answer to the integral preimage problem of M, for arbi-

trary G.

3. We provide some bounds on the exponent of the Smith Group of M, and Mj,
for arbitrary G.

4. We provide a left inverse of M, when M, is injective.

5. We provide a right inverse of M;; when M, is surjective.

6. We provide a left inverse of M{, when M, is injective.

7. We provide a right inverse of M{, when M, is surjective.

8. We solve for the Smith Group of M}, provided that for ¢ < k:

(a) The matrix M, ,(n) affords a (¢, + 1)-basis.

(b) A vector z has an integral preimage under M;, , if and only if (

divides M;,z fori=1,... 1.

gy

1.3.2 Case G = Stab(Q2)

We propose the following property of L;j, = Wi, My, M{, that we call “trivial

positive equivariant signing.”
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Definition 1.3.1. Let 3 be a (1, k)-basis of Li,. We say that € is a trivial positive

equivariant signing for (L, 3), if for every K’ e~ 3,

Liexr = Y C(K' K)e(K)Lyex,
Kep

we have € € {—1,0,1} and C(K', K) > 0.
We say the signing € is G-invariant, where G C S,, whenever ¢(o - K) = ¢(K) for
allo € G and K € By.

We consider the action of the group G = Stab(2), where Q is a partition of
{1,...,v}. By introducing the concepts of: monotone families, compatible sets, equiv-
ariant compatible sets, and inclusion maps; we give reduction criteria to show for a

given G-invariant family ;5 of columns of Wy x(v):
1. When ;4 is a (¢, k)-basis of Wy (v).
2. When the set of G-orbits in 3, i.e., 37, is a (t, k)-basis for M.

3. When the set (;; admits a trivial positive equivariant signing for W, that is

G-invariant.
4. When the set Bfk admits a trivial positive equivariant signing for M/, .

We show the Bier-Frankl (B-F) basis and the Khosorovshahi-Ajoodani (KAj) basis
allow a stabilizer group G of the form Stab(€); ) where

Qe = {L...,o—k—t}U{v—k—t+1lv—k—t+2}U--

Ufv—k+t—1lLv—k+t}U{v—k+t+1,... 0}
for the KAj basis, and

Qr = {v,... k+t+1}U{k+tk+t—-1}U---
U{k—t+2k—t+1}U{k—1t,... 1},
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for the B-F basis. We also show that these bases are equivalent.
Using the reduction results, we prove that these bases admit a trivial positive
equivariant signing that is G-invariant for the cases: (1,2),(2,3), by providing a

proof; (3,4),(5,6), via a computer program. We also show:

Proposition 1.3.2. Let (B, be the KAj (t,k)-basis or the B-F (t,k)-basis, then:
Brx(v) admits a trivial positive equivariant signing that is G = Stab(Qyx(v))-invariant
for allv > k+t+1 if and only if B ,(v) admits a trivially positive equivariant signing
that is G = Stab( ;(2k + t))-invariant for v =2k + t.

We propose the following conjecture that we call the “Equivariant Sign Conjec-

ture.”

Conjecture 1.3.3. Let (B, be the KAj (t, k)-basis or the B-F (t, k)-basis, then B

admits a trivial positive equivariant signing that is G = Stab(S i) -invariant.

1.3.3 Case G = (Z/nZ)
For the group G = (Z/nZ):

1. We solve the integral preimage problem for M;; when G = Z/nZ and n is a

prime.

2. We calculate the Smith Group of M; 4 and of M3 for arbitrary n by solving
for a (2, 3)-basis.

3. We calculate the Smith Group of M, , and of My, for arbitrary n by solving
for a (2, 4)-basis.

4. We give some partial results for a generating set of the column space of Mg ,.

We also propose the following conjectures that we call the “(¢, k)-basis Conjec-

tures.”

Conjecture 1.3.4. (Weak version) Let ged(tk,n) = 1, and let t < k < n — k.
Then, M{, admits a (t,k)-basis.
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Conjecture 1.3.5. (Strong version) Let t < k < n — k. Then, M{, admits a
(t, k)-basis.

We close the chapter by showing how the (¢, k)-basis conjectures can be used to

calculate the Smith Group of M.

Proposition 1.3.6. Let ged(n,(2(k — 1)) =1, and 1 <t <k <n—k <n-—t
Assume the (t,k)-basis conjecture holds for n, and for all (i —1,i) where i =1,...,k.

Then, M{,(n) has Smith Group given by:

(z) (lz) 7) x (7] (];: 22) 7)W=t (Z/ (’“ - 3) Z)ram=ram) o .

t—3
x(Z/ (lj B ((f - 11))) Z)re () =rea(m),

_ )

where ri(n) = ~= is the number of orbits on the i-subsets for i =2,...,t.
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Chapter 2
Abelian n-adic Codes

2.1 Preliminaries

We will consider abelian group codes that are given by ideals in F,[G] and are also
known as G-codes. We will assume that (¢, |G|) = 1, where ¢ is a prime power, and
that G is abelian. This will make F,[G] a semisimple algebra and all ideals in F,[G]
principal (generated by idempotents, unique up to units).

We will assume the natural action of Aut(G) on the idempotents e of G' defined
for any o € Aut(G) as:

where e = > e4lg].

We will also assume the natural action of Aut(G) on G defined for any o € Aut(G)
and y€Gaso-x=yoo L

As F,[G] is semisimple, every G-invariant subspace I; splits. That is, there is a
G-invariant subspace I, such that F[G] = I; @ I. In particular, if I; = (e), then
I, = (1—e) and F[G] = (e) & (1 —e). Hence, F [G] = (e1) & --- & (e,); where
(e;) are ideals that cannot be written as the sum of 2 proper ideals, i.e., irreducible.
The idempotents ey, ..., e, are called primitive idempotents. We note that it can be

shown that any idempotent of F,[G] is the sum of some irreducible idempotents, that

Is, e =¢; + - +¢.
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By considering a splitting field for G, i.e., F;r where F}, has all exp(G)th roots
of unity, one can show that in F-[G] D F,[G] there are |G| irreducible idempotents
given by the irreducible characters of G into F},; where the idempotent corresponding

to the character y is given by:

e = é > x(g Mgl
9ea@

One can show that the Galois group of F,- over F, is generated by the Frobenious
Map z — x?. We will denote the Frobenious Map by o,. We note that, one can show
that if x(¢g) is an irreducible character, then o,(x(g)) is another irreducible character.
Thus, o, induces an action on the irreducible characters of G.

The following is a well-known result in Character Theory, and it can be found in

Isaacs’ book in [10], chapter 9.

Theorem 2.1.1. Let e be the an irreducible idempotent in F |G|, let Fyr be a splitting
field of G. Then, in Fr[G], e = ey, + -+ ey, where x1,...,x; forms an orbit of o,

acting on the irreducible characters of G.

By using theorem 2.1.1, we will proceed to calculate the irreducible idempotents
of F,|G] by introducing the concept of cyclotomic cosets.

Note that o,(x(9)) = (x(9))? = x%(g). Hence, in G, o, acts like raising to the gth
power. This map g — ¢%, a numerical multiplier, is clearly in Aut(@) as (q,|G|) = 1.

By using any noncanonical isomorphism 7 : G +— é, where G is the group of
characters, we can identify any x = x, € G with a n(g). By using this identification,
we can identify the orbit of x = x,, under o, in G with the orbit of g1 under p, in G.

Thus, by theorem 2.1.1, if e is an irreducible idempotent in F,[G], then there is

some orbit of i, acting on G, say Cj,, such that

e = E Cxg>

9€Cy,

where the above equation is taken in F - [G]. The orbits of y, on G are called the gth
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cyclotomic cosets of G.

We will call the irreducible idempotent dg, = /e, €y, = |—(1;| > geclg] which cor-
responds to the trivial cyclotomic coset C; = {1} the trivial irreducible idempotent,
clearly a primitive idempotent in F [G].

It can be shown that if X = {C,,,...,C,,} are all the distinct p, orbits of G,
then X forms an Association Scheme. That is, if in Z[G] we let C) = > gec,, 9> then

there are pﬁ ; € Z such that:

T
! r k v
Co Coy = D 1iiCiy
k=0

Thus, the algebra generated by X' = {C} ,...,C; } in F,[G] is finite dimensional
of dimension r + 1. One can show that this subalgebra is also semisimple and has
as idempotents the primitive idempotents of F,[G]. In particular, this shows that
primitive idempotents, and for that matter any idempotent, are constant on the gth
cyclotomic cosets of G. However, there is an easy way of seeing this. Let e be an

idempotent, then:

= Z cql9’]
geG
= Mg "€,

which says that ji, is a multiplier of e. Thus, the coefficients of e are p, invariant; that
is, they are constant on the gth cyclotomic classes. Note also that Aut(G) induces
an action on the primitive idempotents of F,[G]. We can show this by considering
a primitive idempotent d,, = ) geCy, Exo OF Fyg [G] C F[G], where F,» is a splitting
field for G. Consider:
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= Z (- eXg)?

9€Cy,

where, e, = ﬁ > ogea Xo((g)H)[g']. Thus,

pee — ﬁzxg«g’rl)m(g’)]

- ﬁ S (67 () )lg]
— ﬁ S (1 (g) ™))

1 _
= 7 > (1 xg)((¢) Mg
g'eG
Define p*(x)(¢") = (1 - x)(¢'). Note that pu*(x) is again an irreducible character
since u € Aut(G). One can show that p* is an automorphism of the group of irre-
ducible characters, i.e., u* € Aut(@), and that the map p — p* is an anti-isomorphism

from Aut(G) to Aut(G).

Clearly, p1 - ey, = €,x(y,), and

P dg, = Z €1 (xg)

gECgi

= § : eXg’

gep*(Cy;)

~

where 11*(Cy,) is defined in the following way: since p* € Aut(G), and {x,|lg € C,,}
form a cyclotomic coset in G , ;1" (Cy,) denotes the cyclotomic coset in G corresponding

to the cyclotomic coset {1*(x4)|g € Cy,} in G.

We can be more precise on the definition of p*(Cy,) by using the isomorphism

i
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n:G — G. Define i : G — G such that 1*(Xg) = Xa(g)-' More precisely, i is
defined such that p*(n(g)) = n(fi(g)). Hence, a(g) = n~'(n*(n(g))). Clearly, u*(Cy,)
is [i(Cy,) = Ch(g,) by definition, therefore, i - dg, = dy(g,)-

Thus, p - dg, = dyg,) is a primitive idempotent and this shows that u acts on
the primitive idempotents the same way [ acts on the cyclotomic cosets. One can
show that the map g — [ is an isomorphism of Aut(G) of order two. So, given
o € Aut(G), there is a unique 7 € Aut(G) such that ¢ = 7. Also, the action of p on
the primitive idempotents is the same as the action of i on the cyclotomic cosets via
the correspondence established by 7.

We will define X = {dg,,d,,,...,d, } as the set of all the primitive idempotents
of F[G]. Also, for given Y C X, we will define ey = >_, .y dy as the idempotent
of F,[G] that corresponds to Y. We note that the previous definition is exhaustive.
That is, given an idempotent e of F,[G] there is Y C X such that e = ey.

Using the previous notation, one can show:

ex = 1,

eg = 0,
ex, ¥ex, = €x,nXs) (2.1)
(ex,,exy) = {ex,uxy); (2.2)
ex, = euxy)s (2.3)

where X7 C X, Xo C X, and pu(X1) = {p-dy = duge) | dg € X1}

2.2 Abelian n-adic Codes

Definition 2.2.1. We will assume that n is a prime. An n-adic code is a pair e, i

where e is an idempotent and p € Aut(G) satisfying Stab,(e) = {pF|p* e = e} =

LClearly, i € Aut(G).
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(u") and
(e1,...,en) = F G, (2.4)
{er) N{e2) N---Nien) = (dygy) (2.5)
1
= <@ gze;[g]%

where e; = p~ - e. We will call u the splitter of the code.

Definition 2.2.2. We will say that an n-adic code i, e is “reduced” if (e;)N(e;) = dy,

for all, 7.

Examples of n-adic codes are given by the @-codes of Rushanan in [22], which are
n-adic codes where n = 2.
The main objective of this section is to solve the existence problem for abelian

n-adic codes in Fy[G]. This is is summarized by theorem 2.2.3.
Theorem 2.2.3. The following are true:

1. There is an n-adic code in F[G] if and only if there is an n-adic code in F [S]

for every sylow subgroup S of G.
2. There are no n-adic codes in F,[G] when G is an n-group,

3. Let G be an s-group where (s,n) = 1. Let ts(k) = |ug| in Aut(Z/sZ). Then,

(a) Let s be an odd prime. Assume n divides tizsl), then there is an n-adic code

in F,[G].

(b) Let s be an odd prime. Assume n does not divide %, and G = (Z/sZ)™ x
(Z)s*Z)™ x -+ x (Z/s"Z)™ . Then,
i. If s =1 modulo n there is an n-adic code in F[G] if and only if m; = 0
modulo n for all 1.
ii. If s # 1 modulo n there is an n-adic code in F[G] if and only if ts(n)

divides m; for all i.
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(c) Let s =2 be such that (2,n) = 1. Let G = (Z/sZ)™ X (Z]s*Z)™ x --- X
(Z)s"Z)™ . There is an n-adic code in F,[G] if and only if t,,(2) divides m;
for all 1.

We proceed to show existence conditions for n-adic codes. The next subsections

will take care of the individual cases of theorem 2.2.3.

2.2.1 Existence Criteria

We will show criteria for existence of n-adic codes that will be used in the proof of
theorem 2.2.3.

A direct consequence of the n-adic code definition is that the order of the splitter
|| in Aut(G) is divisible by n. We can show this by contradiction. If |u| = n*xn’+1
where [ € {1,...,n — 1}, then

lul . e

nxn/+1

o~

1
=
B,

which contradicts the choice of n as the smallest power of y such that u* - e = e.
Using equations (2.1) and (2.3), and the n-adic code definition, we can force
set conditions. Let e = ey for some Y C X where e, 4 give an n-adic code, then

e; = pi'"' - e = ey i-1(yy. Equations (2.1), (2.3), and (2.5) give the following:

dgy = €1%---%e,
= €y * Cu(y) Xoeee ok Eun—1(Y)

= eymu(y)n-nun1(y)-

Thus,

YOu)n-np" (YY) = {dg}. (2.6)
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Similarly, equations (2.2) and (2.4) give:
YupY)u---up(Y) = X (2.7)

We can use the previous set conditions to deduce properties of the splitter pu.
Corollary 2.2.4. Let, e, i give an n-adic code in F[G], then:

1. If there is a primitive idempotent d such that d x p = d then d = dg =

ﬁ ZQEG[Q] .
2. If there is a cyclotomic coset such that i(C,) = C, then Cy = {1}.

Proof. Both conclusions are equivalent, as the action of p on the primitive idempo-
tents is the same as the action of i on the cyclotomic cosets and dg, corresponds to
Cy = {1}. Only the first statement will be shown.

Let d be a primitive idempotent; then Equation (2.7) says that d € p*(Y) for
some k. That is, d = p* - d' for some d € Y. Suppose u-d = d. Note that
phttod =t (¥ - d') = pt - d = d which shows that d € p**(Y) for all I. That is,
d € p'(Y) for all . Equation (2.6) forces d = d,. O

We define m,(G) as the number of cyclotomic ¢ cosets of G = G\{1}.
Theorem 2.2.5. Let e, i give an n-adic code in F,[G] then:

1. The orbits of the action of i on the cyclotomic cosets ofé have length divisible
by n.

2. The number of cyclotomic q-cosets ofé is divisible by n. That is, my(G) = 0

modulo n.

Proof. Clearly, part 2 is a consequence of part 1. Let e, give an n-adic code in
F,[G]. Let © be an orbit of /i on the cyclotomic cosets of G. Let || = n! * ny where

(n,n1) = 1.2 Note that x4/ = p™ has order n'. Clearly, (.) is an isomorphism of

2This is possible since n is prime.
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Aut(@), and || = |i| = n!. Since || = n!, all orbits of i’ on Q have size a power
of n.
It suffices to show that p’ has no fixed points in 2 because then all orbits of u’ on
Q) have size n'”, where [ > 1; that is, their length is divisible by n. Hence, £ must
have size divisible by n.
Suppose 4’ has a fixed point in €, that is 4/(C,) = C,. We will show that e, y/

gives another n-adic code. Clearly, (n,n1) = 1 implies
{0,1,....,n—1} = {0,n1,2%ny,...,(n—1)*n},
where the above equation is modulo n. Therefore,
{e,p-e,...,u" e} = {e,u™ e,y e} (2.8)

By using an arithmetic argument, we can show that n is the smallest power of p’ such

that (1/)" - e = e. Therefore,

F Gl = (epi-e,... u"-e)
= (e e (W) e,

(dgo) = (N {u-e)n---N{u""t-e)
= (N -e)n---n ()" -e)

Hence, e, i/ gives an n-adic code.
By corollary 2.2.4, C, = C} = {1}; however, this contradicts our choice of {2 which
is made of cyclotomic cosets of G and 1 ¢ G. O

Theorem 2.2.6. There is an n-adic code in F,[G] if and only if there is 0 € Aut(G)

such that the orbits of o on the cyclotomic cosets of G have length divisible by n.
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Proof. Suppose there is an n-adic code in F,[G] given by e, 1. By the proof of theorem
2.2.5, 0 = i’ has order n! and the orbits of o on the cyclotomic cosets of G have length
divisible by n.

Conversely, let o be such that the orbits of o on the cyclotomic cosets of G have
length divisible by n. Let €4,...,€Qy be the orbits of o on the cyclotomic cosets of
G. Let Q; = {Coyprv-- ,ngi,Ni} where Nj is divisible by n and o(Cy, ) = Cy, |
where k is taken modulo N;. Let

Qi = {Cik, Ciktns s Cittens - - - Cj,k+(%—1)*n}
where k + [ * n is taken modulo N; and k € {1,...,n}. Note that o(€;x) = Q41
by construction, where k is taken modulo n.

Let dy, =) 96C,, EXo be the primitive idempotent corresponding to the cyclotomic
coset Cy,. Choose p € Aut(G) such that o = 0. Define d;;, = ZCHGQM dg. Since
the action of p on the primitive idempotents is the same as the action of ¢ on the
cyclotomic cosets, and o(£2;5) = Qjry1, we have p - djp = djp+1. Define e, =
dgo +di g+ doj, +- -+ dyg, then p- e, = epqq and all {ey,...,e,} are distinct by
construction.

Note that d;; * dj i = 0, unless j = 5" and k = k’. Also, d;;, * ds, = 0. Hence,
€1 k€% ok ey = dg,.

Also note that e;+- - -+e,—(n—1)ey*- - -xe,, = 1. Thus, (eq,...,e,) = (1) = F,[G],
and (e;) N--- N (e,) = (dg); therefore, ey, u gives an n-adic code.

We observe that the constructed n-adic code ey, u is also “reduced.” O

As a corollary, we deduce that the “reduced” condition does not modify the solu-

tion to the existence problem for n-adic codes.

Corollary 2.2.7. F,[G] allows an n-adic code if and only if F,[G] allows a “reduced”

n-adic code.

Proof. (=). Let there be an n-adic code in F [G]; then by theorem 2.2.6, there is
o € Aut(G) such that the orbits of o on the cyclotomic cosets of G have length
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divisible by n. Applying theorem 2.2.6, once again, we can construct an n-adic code
in F,[G] that is reduced.
(<) This is clear. O

Theorem 2.2.8. There is an n-adic code in F[G] if and only if there is 0 € Aut(G)

such that |o| = n' and o fives no cyclotomic coset of G.

Proof. Suppose there is an n-adic code in F,[G] given by e, . Then by the proof of
theorem 2.2.5, o = i’ has order n! and o fixes no cyclotomic coset of G.

Conversely, suppose o € Aut(G) such that |o| = n! and ¢ fixes no cyclotomic
coset of G. Then, the orbits of o on the cyclotomic cosets of G have length divisible
by n. Using the same construction of the second part of the proof of theorem 2.2.6,

one can construct an n-adic code in Fy[G]. O

For the next sections, ty (k) = |p| in Aut((Z/K'Z)), will denote the multiplicative

order of & modulo &'.

Corollary 2.2.9. Let G = (Z/sZ) x --- x (Z/sZ) ~ (Z/sZ)". If there is an n-adic

code in F[G], then m,(G) = ;’:(3 = 0 modulo n.

Proof. By theorem 2.2.5, it suffices to show that m,(G) = <—=%. This will be done by
using the fundamental counting principle.

Define N; = |{g € é|,l,bqi(g) = pi(9) = g}|. Let t = t,(q), then

Clearly, Ny = s" —1. Note that N; = 0for ¢ € {1,...,t—1}; because, if ,i(g) = g
then (¢ —1)*g = 0 in G. Thus ¢ — 1 = 0 modulo |g| = s. This contradicts the
choice of i. Thus, no g exists such that p,(g) = g. Therefore,

my(@) = (5"~ 1)+ 0+ +0).
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Theorem 2.2.10. If there is an n-adic code in F [K] and in F,[L] then there is an
n-adic code in F,[K x LJ.

Proof. By theorem 2.2.8, it suffices to show that there is v € Aut(K x L) of order

|v| = n!, and ~ fixes no cyclotomic coset of K x L. By theorem 2.2.8, there are o €
Aut(K) and 7 € Aut(L) of orders |o| = n* and |7| = n'2, where o fixes no cyclotomic
coset of K and 7 fixes no cyclotomic coset of L. Consider y(k,1) = (o(k),7(1)).
Clearly, |v| = lem(|o], |7]) = lem(nh, n'2) = n!. Let C(x ) denote the cyclotomic coset
of K x L containing (k,l). Now, suppose 7(C(r)) = C(x1) where C(y ) is a cyclotomic
coset of K x L; then, (o(k), 7(1) = v(k, 1) = pi(k,1) = pg(k,1) = (gs(k), g (1)).
Thus, o(k) = p,i(k) and 7(1) = p,i(1). Therefore, o(Cy) = Cy and 7(C;) = C;. By
the choice of o and 7, C = C} and C; = C. Thus, C(;;y = C(1,1) and this contradicts

the choice of C(;y since C(y1) is not a cyclotomic coset of K x L. Therefore, v fixes

no cyclotomic coset of K x L. O

Theorem 2.2.11. Let e, u give an n-adic code in F,[G]. Suppose K C G is a subgroup
such that j(K) = K. Then, there is an n-adic code in F [K] and F,[G/K].

Proof. By theorem 2.2.5, the orbits of ¢ = i on the cyclotomic cosets of G have
length divisible by n. Consider the restriction of ¢ to K. Since u(K) = K, it can
be shown that i(K) = K. Thus, 0 € Aut(K). Since o(K) = K, the orbit of a
cyclotomic coset C}. of K is made up of cyclotomic cosets of K. By assumption of o,
all orbits of ¢ on the cyclotomic cosets of K have length divisible by n. By theorem
2.2.6, there is an n-adic code in F,[K].

To show the other result, consider the epimorphism p : G — G/K which can be
extended to an algebra epimorphism p : F[G] — F,[G/K]. As p(K) = K, pu factors
through K to give ¢ € Aut(G/K) defined by ¢(gK) = u(g)K. Note that ¢ has the
property p(p-e) = ¢-p(e) . Consider the pair e/ = p(e), ¢; it will be shown that they

give an n-adic code in F,[G/K]. As p is an epimorphisms of algebras, ¢’ = p(e) is



Also, note that:

Thus, (YN {(p-€)N---N (" -e) = (dg).

It suffices to show that the smallest power of ¢ that fixes ¢’ is n. Clearly, u™-e = e,
since ¢"-€¢' = ¢"-p(e) = p(u"-e) = p(e) = €. Suppose that thereis 1 < k < n—1such
that ¢*- ¢’ = ¢/. Note that, since n is prime, (k,n) = 1; thus by choosing k' such that
kxk' = nxni+1, we have that ¢’ = ¢F* ./ = gmmtl. ¢/ = ¢.¢/. In particular (¢/) =
(eyp-€,...,¢" - ¢) = (1) = FJG/K]. By uniqueness of idempotents generating
ideals in F,[G/K], we have that ¢/ = 1 in F,[G/K]. Thus, p(e) = 1 in F,|G/K]
which forces e to be an idempotent of F,[K] alone. Note that since pu(K) = K,
{e;p-e,...,u" 1 e} are idempotents of F [K]. Thus F,[G] = (e,p-e,...,u" ! -e)
is a subideal of F[K]. This is a contradiction; therefore, ¢ - ¢’ cannot equal e’. Thus,

no such k exists. Therefore, n is the smallest power of ¢ that fixes €’. O

Theorem 2.2.11 can be applied to any characteristic subgroup. In particular, it
can be applied to the sylow subgroups of GG, since these are characteristic as G is

abelian. Thus, theorems 2.2.10 and 2.2.11 yield the following corollary.

Corollary 2.2.12. There is an n-adic code in F[G] if and only if there is an n-adic
code in F[S] for every sylow subgroup S of G.
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And also,

Corollary 2.2.13. Let s be a prime and let (s,q) = 1. If there is an n-adic code in
F,[Z/s"Z], then there is an n-adic code in F,|Z/sZ).

Proof. Let G(1y = (s) C (Z/s"Z). Clearly, Gy is a characteristic subgroup of Z/s"Z.
By applying theorem 2.2.10 to L = (Z/s"Z)/G ) ~ Z/sZ, the conclusion follows. [J

Corollary 2.2.12 reduces the existence problem to s-groups, where s is a prime.
We will see that the existence problem in s-groups has different answers depending

on s.

2.2.2 Existence in n-groups

For this section, we will let G = (Z/nZ)™ x -+ x (Z/n"Z)™ be an n-group. We will

show that there are no n-adic codes in F,[G].

Lemma 2.2.14. If G = (Z/nZ)™, then there are no n-adic codes in F,[G].

Proof. By corollary 2.2.9, m,(G) = 717;1(;)1 = 0 modulo n. Note that modulo n we

have:
n™ —1 n—1
= {1+n+---+nm 1}
tn(q) tn(q)
~on—1
tn(q)
# 0
This is a contradiction. Thus, there cannot be an n-adic code in F,[G]. O]

Theorem 2.2.15. Let G = (Z/nZ)™ X -+ X (Z/n"Z)™ be an abelian n-group, then

there are no n-adic codes in F,[G].

Proof. Define G(;) = {9 € G | |g| divides n'}. Clearly, G, is a characteristic sub-
group of G. Suppose there is an n-adic code in Fy[G]. Consider L = G/G—1) ~
(Z/nZ)™. By theorem 2.2.11, there is an n-adic code in F,[L]. This contradicts
lemma 2.2.14. O
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2.2.3 Existence in s-groups with (s,n) =1

The existence problem depends on the value of s modulo n and on the parity of s
modulo 2. The parity of s modulo 2 is important, since (Z/s"Z)* is not cyclic when
s = 2, whereas it is when s is an odd prime. Because of this, the proofs have to be

modified. We note that by the previous section, we can assume that s # n.

2.2.3.1 Existence in s-groups, (s,2) =1
First, we will consider G = Z/sZ. Let t = ts(q).

Theorem 2.2.16. There is ann-adic code inF[Z/sZ] if and only if =+ = my(Z/sZ) =

0 modulo n.

Proof. Suppose there is an n-adic code in F,[Z/sZ], then by theorem 2.2.5 we have

my(Z/sZ) = 0 modulo n. Note that by corollary 2.2.9 we have *=t = m(Z/sZ).

Conversely, suppose N = 5;—1 = n xny is divisible by n. Let {C,,,...,Cy,} be

all the cyclotomic cosets of G. By theorem 2.2.6, it suffices to find o € Aut(G) such
that the orbits of o on the cyclotomic cosets of G have length divisible by n. It will
be shown that o = py, where Aut(Z/sZ) = (Z/sZ)* = () will do the job.

Consider, H = #0 — &/0° _ O " Note that every coset of H is a cyclotomic

(bg) — (@) (a)
coset. This can be seen by considering,?

C, = {lollg*d.....[9xd" "]}
= ue({[1)1a],- -, [d"'1})
= pg({1q))-

Since H is cyclic and generated by p;, this shows that u; acts transitively on the
cosets of H. Thus, y; acts transitively on the cyclotomic cosets of G. Therefore, the
action of p; on the cyclotomic cosets of G is one orbit of length N. Since N =0

modulo n, the conclusion follows. O

Now, we consider G = Z/s"Z.

3We remind the reader that in G = Z/sZ, 1 = [0] since G is written additively and 1 # [1].
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Theorem 2.2.17. There is an n-adic code in Fy[Z/s"Z] if and only if there is an
n-adic code in F,[Z/sZ].

Proof. Suppose there is an n-adic code in [F,[Z/s"Z], then by corollary 2.2.13 there
is an n-adic code in Fy[Z/sZ].

Conversely, suppose there is an n-adic code in F,[Z/sZ]. Let G = Z/s"Z. Since
s # 2, Aut(G) = () is cyclic. Following the same construction as in the proof of
theorem 2.2.16, we will show that the action of y; on the cyclotomic cosets of G has
orbits of length divisible by n.

Define S; = {g € G | g = s % g1, (g1,s) = 1}. Clearly, S; is a characteristic
subset of G. Thus, S; is the union of cyclotomic cosets of G. Also, G = SiU---U§,.

Define N; to be the number of cyclotomic cosets of S;. First, we will calculate

N; = si:i(&sq_)l). Second, we will show that pu; acts transitively on the cyclotomic cosets
of S; and that N; is divisible by n if and only if N; is divisible by n. By theorem
2.2.16, N = % is divisible by n. Hence, this will show that the action of y; on the
cyclotomic cosets G is made up of r orbits, each orbit of length N; where all N;s are
divisible by n. By theorem 2.2.6, the conclusion will follow.

Let Aut(Zg) = (Z/s'Z)* be the units of the ring Z/s'Z. Define H; = (Z{Zf)* and
K; = (Z/s'Z)*. Consider C, a cyclotomic coset of S;. Then, g = s"~* * g;, where

(g1,5) = 1. Note that we think of g; as a unit in Z/s'Z. Consider,

T

Cy, = {[s" " *aq],[s" " *gi*q],...,[s" g1 x gD}
= i (g ({1, [d), -, [ 971}))

= =i (g, (H1q))-

The above implies that Cy is the image under pg-i of a coset of H;. This shows

that the number of cyclotomic cosets of S; is the order of H;. The order of H; can be



31

calculated directly as:

(Z/s'Z)"]

|<:uq>|
sHs—1)
tsi(q)

Since y; generates (Z/s"Z)*, it also generates (Z/s'Z)* for every 1 < i < r.* Thus,
1 acts transitively on the cosets of H; and therefore on the cyclotomic cosets of .S;.

Now we show that |H;| is divisible by n if and only if |H;| is divisible by n. This
will show that N; is divisible by n if and only if N; is divisible by n, and the proof
will be finished.

Lemma 2.2.18. ¢ is an n-adic residue modulo s if and only if q is an n-adic residue

modulo s* for every i.°

Proof. This is a result from Number Theory and can be shown in the following way.
Clearly, if ¢ is an n-adic residue modulo s?, then it is an n-adic residue modulo s.

Conversely, suppose ¢ is an n-adic residue modulo s. Consider the equation:
X"—q = 0, (2.9)

in the s-adic numbers QQs, where s is a prime. Since ¢ is an n-adic residue modulo
s, Equation (2.9) has a solution in the residue field Z,/(sZ;) = F, of Q,.% Note that
f(z) = 2™ — q has no double roots in Fy as f'(z) = n* 2" ! and (f(x), f'(x)) =1
in Fy[z]. Thus, f(z) = (z — x,)g(z), where z, € Fy; and g(x) € Filx], where
(9(x),x — x,) = 1 in Fy[z]. By Hensel’s lemma, this factorization can be lifted to
a factorization in Zg[z|. That is, there is X, € Z; and h(x) € Zg[x] such that:
f(z) = (xr — Xo)h(x), x — X, = x — x, mod sZ,[x|; where, h(x) = g(x) mod sZg[z].
Thus, X™ = ¢ has a solution in the s-adic integers, namely X,. Through the canonical

projection from Zs — Z,/(s'Zs) = 7Z/s'Z, we find a solution of X" = ¢ in Z/s'Z.

411, when viewed as an element of (Z/s'Z)* is basically y;, where [ = [, modulo s* (1 <[, < s*—1).
5q is an n-adic residue modulo s’ if and only if there is x € Z/s'Z such that 2™ = ¢ mod s'.
SHere, Z, denotes the s-adic integers.
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Thus, ¢ is an n-adic residue modulo s°. O

Let K; = (Z/s'Z)*. Suppose that |H;| = 5:11_((8(1_)1) is divisible by n. Note that,
since (s,n) = 1 and n divides |H;| = sil,((sqgl), we have that n divides =1

tyila)

In
particular, n divides s — 1; therefore, n divides |K;| = s/~!(s — 1) for all j.
Since Kj is cyclic and n divides | K|, we have that % = Z/nZ, where K} = {g €
J

K; | 2" = g, for some = € K;}.” Therefore, we have the following lemma.

Lemma 2.2.19. If n divides |H;| for some i, then n divides |K;| for all j and
Z/nZ.

K;
Kr

Now we are ready to prove our final claim.

Lemma 2.2.20. The order of H; is divisible by n if and only if the order of Hy is

divsible by n.

Proof. Suppose |H;| is divisible by n. By lemma 2.2.19, n divides | K| and % =7Z/nZ
J
for all 7.
Since K; is cyclic, we can apply the following claim to K; that we include without

proof.

Claim 2.2.21. Suppose H, K are subgroups of a cyclic group G. If |H| divides |K|
then H C K.

Consider,

[(ug)| = [Hi| = | K|
K;
K3
= nx*x|K}|

* | K|

Since n divides |H;|, this forces |(i,)| to divide |K[*|. By claim 2.2.21, we have that

(pg) C K. In particular, ¢ is an n-adic residue modulo s'.

"In general, if G is cyclic of order m, then G/G™ = Z/(n, m)Z.
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By lemma 2.2.18, ¢ is an n-adic residue modulo s. Thus p, € K7'. Consider:

Ky
(Hq)
Ky
— | *
Ky

Ky
<Nq> .

Hy| - \

K}
(1)

= n=*

Thus, n divides |Hq|.
Conversely, suppose n divides |H;|. By lemma 2.2.19, we have that n divides K
and % = (Z/nZ) for all j. By considering,

(ko) |+ [ Hi| = [K|
K
K}
nx | KY,

* | KT

one can conclude that |(u,)| divides |K{| since n divides |Hy|. Thus, ¢ is an n-adic
residue modulo s by claim 2.2.21 about cyclic groups. By lemma 2.2.18, ¢ is an n-adic

residue modulo s*. Using the same argument as above, by considering the equation:

|Hi| =

we conclude that n divides H;. O
U]

Now we consider general s-groups. Let G = (Z/sZ)™ x --- x (Z/s"Z)™. Note

that if m,(Z/sZ) = tqu) = 0 modulo n, then by theorem 2.2.16 there is an n-adic

code in F,[Z/sZ]. By theorem 2.2.17, there is an n-adic code in F,[Z/s"Z], for all r.

By theorem 2.2.10, there is an n-adic code in F,[G]. Thus we have:
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Corollary 2.2.22. If m,(Z/sZ) = 0 modulo n and G = (Z/SZL)™ X --- X (Z/s"Z)™

is an s-group with (s,n) =1, s odd, then there is an n-adic code in F,[G].

However, what happens when m,(Z/sZ) # 0 modulo n? This is answered partially

by the following theorem.

Theorem 2.2.23. Suppose m,(Z/sZ) # 0 modulo n, (s,n) =1, and s an odd prime.
If there is an n-adic code in G = (Z/sZ)™ x --- x (Z/s"Z)™, then either:

1. If s =1 modulo n, then 7, = 0 modulo n for all k,
2. If s # 1 modulo n, then t,(s) divides my for all k.

Proof. Consider the case G = (Z/sZ)™. Suppose there is an n-adic code in F,[G].

By theorem 2.2.5, stﬂsl(q—)l = my(G) = 0 modulo n. Thus, f’squ){l Fs+ e fsml) =

‘il(—q_)l = 0 modulo n. Since # 0 modulo n and n is a prime, we can divide by
s—1

ts(q)

modulo n, this implies m; = 0 modulo n. If s # 1 modulo n, this implies % =0

s—1
ts(q)

in the previous equation to get 1 4+ s+ -+ + s™ 1 = 0 modulo n. Thus, if s =1

modulo n forcing s™ = 1 modulo n. That is, ¢,(s) divides .
Now consider the general case G = (Z/sZ)™ x --- x (Z/s"Z)™, and suppose there

is an n-adic code in Fy[G]. Define the following groups:

Go = {9€G|]lg| divides s'},
GV = {s'xg|lgeG}.

G ~
Gn-1)

(Z/sZ)™. By theorem 2.2.11, F,[L] has an n-adic code. Thus, 7, satisfies one of the

Clearly, G(i),G(i) are characteristic subgroups of G. Note that L =

conclusions of the previous case.

Suppose that: m;,q,..., 7 are known to be divisible by n, if s = 1 modulo n; or

they are known to be divisible by t,(s), if s # 1 modulo n. Consider K = G((il) =

(Z)SZ)™ x -+ x (Z/s"""*1Z)™. By theorem 2.2.11, there is an n-adic code in F,[K].

Consider H = £ = (Z/sZ)™+ "+ by theorem 2.2.11, F,[H] has an n-adic code.

Thus, m; + -+ - + 7, is divisible by n, if s = 1 modulo n; or, it is divisible by t,(s), if
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s # 1 modulo n. Clearly, this forces m; to be divisible by n, if s = 1 modulo n; or, to
be divisible by t,(s), if s # 1 modulo n.
Inductively, all 7; are divisible by n, if s = 1 modulo n; or, they are all divisible

by t,(s), if s # 1 modulo n. O
The following results are the converse to the above.

Theorem 2.2.24. Suppose my(Z/sZ) # 0 modulo n, (s,n) = 1, and s is an odd
prime. Let G = (Z/sZL)™ X -+ X (Z/s"Z)™ where my, is divisible by n for all k, and

s = 1 modulo n. Then, there is an n-adic code in F,[G].

Proof. 1t suffices to show that: there is an n-adic code in F[G] where G = (Z/s"Z) x
o X (Z)s"Z) = (Z)s"Z)", and r is arbitrary. The conclusion will follow by theorem
2.2.10.

So, let G = (Z/s"Z)". Consider 7 € Aut(G) defined by 7(ai,...,a,) = (¢ *
Ap, @1, .., an—1). Note that 7" = p, in Aut(G). It will be shown that the orbits of 7
on the cyclotomic cosets of G have length n. The result will follow by theorem 2.2.6.

Since 7" = pi4, we have that for any cyclotomic coset Cq, ... a,):

.....

than n, then there is 1 < k < n — 1 such that Tk(C(al ,,,,, an)) = Cla,

~~~~~~

...............

the equations modulo s":

l
qxay = q *ap,

l
ay = (¢ *aj,

l
an = ¢ *0ap—1.
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Ixn—1

From these, we can deduce a, = q x a,, modulo s". Note that if a,, = 0 modulo

s", then by the above equations a; = 0 modulo s" for all i. Thus, we can assume

r—i lxn—1

«a, modulo s*

modulo s'. Thus, t.(q) divides [ *n — 1 which forces t,:(q) # 0

a, = s"'xal, where (a},,s) = 1. Hence, we can deduce that a,, = ¢

which gives 1 = ¢g"*"~!
modulo n.
However, we will deduce that t,i(¢q) = 0 modulo n, for all 4, from our assumptions.

This will show a contradiction and will show that n is the smallest power of 7 that

fixes Cq, . Therefore, the conclusion will follow.

-----

(2/s2)

Using the notation of the proof of theorem 2.2.17, |H;| = |

modulo n. The proof of theorem 2.2.17 shows that |H;| # 0 modulo n if and only if
|H;| # 0 modulo n. Thus |H;| = Gl ) £ 0 modulo n. Since s = 1 modulo n, the

i (9)

following equation modulo n:

forces t.i(q) = 0 modulo n.

O

Theorem 2.2.25. Suppose my(Z/sZ) # 0 modulo n, (s,n) = 1, and s is an odd
prime. Let G = (Z/sZ)™ X --- X (Z/s"Z)™ , where my, is divisible by t,(s) for all k

and s # 1 modulo n. Then, there is an n-adic code in F[G].

Proof. 1t suffices to show that there is an n-adic code in F,[G] where G = (Z/s"Z) x
x(Z/s"Z) = (Z/s"Z)*®) and r is arbitrary. The conclusion will follow by theorem
2.2.10.
Let k = t,(s). Consider an unramified extension K = Q,(3) of Q, of degree k.
Let Ok be the ring of integers of K. As K is unramified, s is the uniformizer of Og.

By Hensel’s Lemma, O has all the (s* —1)th roots of unity. In particular, O has an

8Q, are the s-adic numbers.
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nth root of unity, call it « € Og. Note that Ox/s"Ox = (Z/s"Z) x - --x (Z/s"Z) = G
as abelian groups under addition. If y, is a numerical multiplier of G, then p, acting
on Ok/s"Ok is given by p,(x + s"Ok) = qv + s"Og. Thus, a g-cyclotomic coset in
Ok /s"Ok is a set of the form {z + s"Ok, qx + s"Ok, ¢*xv + s"Ok, . .., ¢'x + s" Ok }.

Consider the map pu(z + s"Ok) = azx + s"Og, u lifts to an automorphism of G.
Note that p has order n as « is an nth root of unity. We claim that p fixes no
cyclotomic coset of (O /s"Ok)\s"Ox = G. Since p has prime order, it will follow
that all orbits of p on the cyclotomic cosets of G have length n. Hence, by theorem
2.2.6, there is an n-adic code in F,[G].

Suppose there was x + s"Og such that p(x + s"Og) = ¢!z + s"Of. Then, ax =
¢'x + sy for some z,y € Ok. As x4+ s"Of is non trivial, the s-valuation of z is 0 <
vs(z) < r—1. Thus, z = s"*@z’ where 2’ is a unit. Therefore, o = ¢'+s" @)y (2") 71,
Since 1 < r — vy(x), we have a = ¢! mod sOg. Since o maps to a nontrivial nth
root of unity in the residue field, we have that t(¢q) does not divide [. However,
1 =a" = ¢™ mod sOg. Thus, t,(q) divides In. This forces n to divide ,(q).

Consider: s — 1 = ts(q)% = 0 mod n. This contradicts the assumption that
s # 1 mod n. O

2.2.3.2 Existence in 2-groups with (2,n) =1

Theorem 2.2.26. There are no n-adic codes in F[Z/2"Z)].

Proof. Note that C' = {2771} is fixed by all u € Aut(Z/2"Z).° In particular, C is a
cyclotomic coset of Z//ET‘/Z that is fixed by all u € Aut(Z/2"Z). Thus, for any u, the
orbit of C' under p has length 1. In particular, the length of the orbit of C' under p

cannot be divisible by n, where n is an odd prime. This contradicts theorem 2.2.5. [

Theorem 2.2.27. If there is an n-adic code in G = (Z/27)™ X --- x (Z/2"Z)™, then
tn(2) divides my, for all k.

Proof. This proof is similar to the proof of theorem 2.2.23. O

Ou € Aut(Z/2"7Z) if and only if u = u; where [ is odd. That C'is fixed by y; is a trivial calculation.
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Theorem 2.2.28. Let G = (Z/27)™ X -+ x (Z/2"Z)™ where my is divisible by t,(2)
for all k. Then, there is an n-adic code in F [G].

Proof. Proceed as in theorem 2.2.25. It suffices to show the theorem for G =
(Z)27Z) x --- x (Z)2"Z) = (Z)2"Z)"*?) | where r is arbitrary. The result will fol-
low by theorem 2.2.10.

Let k = t,(2), and consider an unramified extension K = Qq(3) of Qy of degree
k10 Let Ok be the ring of integers of K. As K is unramified, 2 is the uniformizer
of Og. By Hensel’s Lemma, Og has all the (28 — 1)th roots of unity. In particular,
Ok has an nth root of unity, call it @ € Ok. Note that Ok /2"0Ox = (Z/2"Z) x
-+ X (Z)2"Z) ~ G as abelian groups under addition. If 41, is a numerical multiplier
of G, then p, acting on Ok /s"Ok is given by p.(x + 2"Ok) = qv + 2"Of. Thus,
a g-cyclotomic coset in Ok /2"Of is a set of the form {z + 2"Ox, qx + 2" Ok, ¢*z +
2Ok, ...,q¢'x +2"Ok}.

Consider the map p(z + 2"Ok) = ax + 2"Og, p lifts to an automorphism of G.
Note that p has order n, as « is an nth root of unity. We claim that u fixes no
cyclotomic coset of (O /2"0x)\2"0Ox = G. Since p has prime order, it will follow
that all orbits of p on the cyclotomic cosets of G have length n. Hence, by theorem
2.2.6, there is an n-adic code in F,[G].

Suppose there was @ + 2"O such that ax + 2"Og = u(z 4+ 2"Ok) = ¢'z + 2"Ok.
Thus, there is y € Ok such that ax = ¢'x + 2"y. Since x + Ok is a nontrivial class,
the 2 valuation of x is 0 < wy(z) < r — 1. Note that there is a unit z, such that
r =2"@g, Thus, a = ¢' +2""2@yx>1 Since 1 < r — vy(x), we have that o = ¢
mod 20g. Thus, a = ¢' in the residue field. As ¢ is an odd prime ((¢, |G]) = 1), we
have that ¢ = 1 in [Fyx. Thus, @ = 1 in the residue field. This is a contradiction since

a maps to a nontrivial nth root of unity in the residue field.

10Q, is the 2-adic numbers.
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2.3 Duadic Code Generalizations and n-adic Codes

We will recall the definitions of the generalizations of Duadic Codes by previous
authors and then show equivalence results between these and n-adic codes.

The history of Duadic Codes starts with a generalization of the cyclic Quadratic
Residue Codes by Rushanan in [22], and by Pless and Rushanan in [21]; whom,

introduced the notion of Generalized ()-Codes given by:

Definition 2.3.1. Let e; and ey be two idempotents of F,[G]| and i € Aut(G) such

that the following two equations hold:

€y = /’L'ela
1
€1+€2—1 = @Zg
geG

The four codes: Cy = (e1),C} = (1 — e3), Cy = (e3), Chy = (1 — 1) are the Generalized
Q-Codes defined by ey, ez, and p.

Generalized )-codes then became known as Duadic Codes in the literature. Duadic
Codes were first studied in the cyclic binary case. Since their introduction there have

been various generalizations with respect to:
1. parity of the characteristic of the field,
2. number of idempotents used,
3. the cyclic and noncyclic abelian case.

The following is a history of these generalizations:

The Duadic Even Characteristic, by Rushanan in [22]. These are codes in
[F,[G] where G is an arbitrary abelian group, ¢ is even, and 2 idempotents are used
in its definition.

The Duadic Odd Characteristic, by Smid in [25]. These are codes in F[Z/nZ]

where ¢ is odd and 2 idempotents are used in its definition.
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The Triadic Codes, by Pless and Rushanan in [21]. These are codes in F,[Z/nZ]
where ¢ is even and 3 idempotents are used in its definition.

The Polyadic Codes, by Brualdi and Pless in [4]. These are codes in F[Z/nZ]
and m idempotents are used in its definition.

The m-adic Polyadic Codes, by Ling and Xing in [18]. These are codes in F,[G]
where (G is a general abelian group and m idempotents are used in its definition.

Cyclic Triadic Codes were introduced by Pless and Rushanan in [21] to generalize
Duadic Codes with respect to the number of idempotents. The following is their

definition.

Definition 2.3.2. Let e;,eq,e5 be three even-like idempotents in F,[Z/nZ] where
(n,q) =1 and:

1. There is a coordinate permutation py,, where py, € Aut(G), such that: py - ey =

€2, Up + €2 = €3, U} - €3 = €.

2. The idempotents satisfy

1

e1 + ey +eg —2eje0e3 = 1——5 g.
n
geG

Then, ey, es are called even-like Triadic Codes.
Definition 2.3.3. A Triadic Code is called “reduced” if e;e; = 0 whenever i # j.

Cyclic Triadic Codes were later generalized further by Brualdi and Pless in [4] by
introducing the concept of Cyclic Polyadic Codes.

Definition 2.3.4. Let m be an integer with m > 2. A Cyclic Polyadic Code or
an m-adic family of even-like codes of class I (over GF(q) of length n) is a family
Co, Cy,...,Ch_1 of distinct cyclic even-like codes satisfying:

1. There exist an integer a, where ged(a,n) = 1, such that p, cyclically permutes:

COaCb s 7Cm—1-
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2. There exist a cyclic code F' of V = (GF(q))" such that C; N C; = F, for all

i .
3. (Co,Ch,...,Cpy) = (dg,), where dg, = ﬁzger(g), G = (Z/nZ), and p is

the left reqular representation of G onto GL(V') with V = (GF(q))™.

Definition 2.3.5. If Cy,...,C,,_1 s an m-adic polyadic family of even-like cyclic
codes of class I, then we will call this family “reduced” if C; N C; = {0} for all i, 5.

Just recently, Ling and Xing in [18] have introduced a generalization of Cyclic
Polyadic Codes from the cyclic case to the case of an arbitrary abelian group G.
These new codes, called m-adic Polyadic Codes, are defined by first introducing the

notion of an m-splitting.

Definition 2.3.6. Let G be an abelian group and X, # ¢ a subset of G. An m-
splitting of G over X, is an (m + 1)-tuple (X, Xo, ..., Xm—1) such that:

1. Each X; is a the union of q-cyclotomic cosets of G, where q is a power of a

prime.

2. The sets X, Xo, ..., Xm_1 form a partition of G, 1.e.,

G = XoUXoU---UX,, ;.

3. There exists us € Aut(Q), i.e., there is an s with ged(s,exp(G)) =1, such that
ts(Xoo) = Xoo and ps(X;) = Xiqq for all 0 < i < m — 1, where the subscripts

are taken modulo m.

Definition 2.3.7. Let (X, Xo, ..., Xm—1) be an m-splitting of G over Xo, and X! =
Xoo\{0}. For any subset of X of G, define the ideal in F,|G| induced by X as

Iy = {ceF,G]|c =0,Vre X},
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where

C/; - Z Xﬂc(g)cga

geG

Xe = 0(x) where 6 :G — G,

for some noncanonical isomorphism 0. Alternatively, using the language of primitive

idempotents, we define Ix as
IX = <6N)(>.

Any of the following four families of codes given by the m-splitting are referred as an
m-adic Polyadic Code in F[G]:

1. (Class 1). Cy,...,Cp_y where C; = I (x1_ux,)

2. (Class 1I). 6\1, c C{m: where @ = Ix ux,,

3. (Class IIl). Dy, ..., D,,_1 where D; = Ix_x,,

4. (Class 1V). l/)\l, . ,ﬁm: where b\l = I (x..ux,)-
Definition 2.3.8. We will call any m-adic Polyadic Code “reduced” if X, = {0}.

We proceed to show that the codes of Ling and Xing generalize all Duadic gener-

alizations done by Brualdi, Rushanan and Pless.
Proposition 2.3.9. The following hold:

1. A Cyclic Triadic Code is a 3-adic Polyadic Code of Class I in the sense of Ling
and Xing.

2. A Cyclic Polyadic Code given by an m-adic family of even-like codes is an m-

adic Polyadic Code of Class I in the sense of Ling and Xing.

Proof. We recall a fact that can be found in the work of Pless and Rushanan in [21].

to prove the first assertion.
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Claim 2.3.10. If e, e9,e3 is a Triadic Code then e;e; = ejezes for all i, j.

Using the notation of primitive idempotents, let e; = ey,. The equation e;e; =

e1eg€es reduces to:
!
y,ny, = X,

where X/ is some fixed subset of G.

Let X; = Y\ X/ and X = X, U {0}, then clearly
(Xoc>7 X17 X27 X3)7

is a 3-splitting of G and the codes given by I.(x; ux,) = (ex, ux,) = (ey;) are a family
of 3-adic Polyadic Codes of Class I in the sense of Ling and Xing.

The second assertion uses a similar construction. O

We will show that Abelian n-adic Codes generalize Duadic Codes and intersect
the other Duadic Generalizations under the “reduced” condition. Before we state the
equivalence result: we note that for an n-adic code e, 1 to exist, it is necessary to

assume that e be an oddlike idempotent. Otherwise, if d4ye = 0, we would have

0 = dye(p-e)(p?-e)-- (""" e
= dgodgo
= d

90

which is a contradiction. Thus, we assume that all n-adic codes are given by oddlike
idempotents.
Proposition 2.3.11. The following equivalences are true:

1. An oddlike Duadic code is a 2-adic code.

2. A 2-adic code is an oddlike Duadic code.

3. If (u,e) is a “reduced” Triadic Code, then (p,e+d,,) is a “reduced” 3-adic code.
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4. If (n,e) is a “reduced” 3-adic code, then (pu,e—dy,) is a “reduced” Triadic Code.

5. If (p,(eo), -, {(em-1)) is a “reduced” Cyclic Polyadic Code in the sense of
Brualdi and Pless and m is a prime, then (u, (eo + dgy,)) is a “reduced” m-adic

code.

6. If (u,eo) is a “reduced” n-adic code and G = (Z/nZ) is cyclic, then

(:ua <60 - dgo>> T <en—1 - d90>)

1s a “reduced” Cyclic Polyadic Code in the sense of Brualdi and Pless.

7. If (1, Co = (€g)y...,Crm1 = (em—1)) is a “reduced” m-adic Polyadic Code of
Class IV and m is a prime, then (u,{€o),...,{(em-1)) is a “reduced” m-adic

code.

8. If (u,eo) is a “reduced” m-adic code, where is m a prime, then (u,eq) is a

“reduced” m-adic Polyadic Code of Class IV.

Proof. We proceed to show each part separately.
Part 1. Let e;,e9 = - e1, p be a Duadic Code in Fy[G]. Clearly, the following

equations hold:

€ = U-E€q,

ert+e—1 = dgy.

To show that ey, e, u forms a 2-adic code, we must show that:
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Suppose that [, has odd characteristic. Consider:

1+3d,, = (1+d,)?
= (e1+e)?
= e1+ey+ 2e1e9
= (e1+e—1)+1+2¢e6

= dgo +1+ 26162.

Thus 2d,, = 2eies. Hence, ejes = dy,. Therefore, it follows that eq,eq, v is a
2-adic code.
Now, suppose that I, has even characteristic. Let e; = ex,, es = ex, and d,, =

eqoy- Clearly, because the characteristic is even, ex, + ex, = ex,;ax,. Thus:

ex;AX, = €x; teéx,
= 1+d,

= ex + €{0}-

Therefore, X;AXs = XA{0}. Hence, X; N Xy = {0}; or, X; N X, = {} and
{0} C~ (X1 U Xy).

If X1NX,={0} then ejes = ex,ex, = eo) = dy,; thus, it follows that ey, e, form
a 2-adic code.

If {0} C~ (X7 U Xy); then, dyeq; = 0 and dyeo = 0. Thus, contradicting the
assumption that e; and e, are oddlike idempotents.

Part 2. Suppose that ey, es, u forms a 2-adic code, then:

e1+ ey —ees = 1,

€16y = dgo .

Thus, e; 4+ e2 = 1 + dg,. Hence, €1, €5 forms a Duadic Code.

Part 3. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.
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Part 4. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.
Part 5. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.
Part 6. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.
Part 7. Suppose (i, {eo),...,(em-1)) is a “reduced” m-adic Polyadic Code of
Class IV and m is a prime. Define Y; such that e; = ey,. Clearly, since e;e; = dg,, we

have:

YNy, = {0}.

By letting X; = Y;\{0} and X, = {0}, the partition (X, Xo,..., Xm_1) forms
an m-splitting. Thus, YoU---UY,,_y =G and YyN---NY,,_1 =Y;NY; = {0}. These
equations guarantee that the idempotents e; form a “reduced” m-adic code.

Part 8. Suppose (u, €g) is a “reduced” m-adic code, where m a prime. Let X; be

defined by e; = ey,, where e; = 1t - eg. By the reduced condition,

dy = dg,
= 6i€j
- eXZ €Xj

- eXij~

Thus, X; N X; = {0} for all 4, 5. Since (e, ..., en_1) = F,[G] = (1), we must have:

XOOUX()UUXm,l = G

Note that, by letting ¥; = X;\{0} for 0 < i < m — 1, and Y = {0}, we can
construct the m-splitting (Yo, Yy, ..., Y1) of G. Using this m-splitting, the n-adic
code becomes a “reduced” m-adic Polyadic Code of Class IV. |
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2.4 Abelian n-adic Groups

We will prove an analogous result to proposition 1.1.2 for abelian n-adic codes by
introducing the concept of abelian n-adic groups.

The case when the splitter © = g is a numerical multiplier, where (I, |G|) = 1, will
be of interest to us. Since Stab,(e) = (1"), it will be required that |;| be divisible
by n. Hence, we will consider numerical multipliers of order n; that is, nontrivial
solutions to the equation 2™ = 1 modulo exp(G).

Because, the equation ™ = 1 modulo m will not always have nontrivial solutions,
we will impose some conditions on G to guarantee a nontrivial solution. This is shown

by the following theorem.

Proposition 2.4.1. Let m = pg° « p{* * - - - x p® where (p;,p;) =1 fori #j, a; > 1
fori > 1, ag > 0, and po = n. The equation " = 1 modulo m has a nontrivial
solution modulo pi* for all 1 < i <1 if and only if p; = 1 modulo n for all 1 <i <r

and either: ag = 0; or, ag > 2.

Proof. This is a consequence of the fact that ™ = 1 has a nontrivial solution modulo
p® if and only if n divides ¢(p®) = p*~(p — 1). O
Proposition 2.4.2. Let m = p{' *--- % p", where n does not divide m.

1. If p; =1 mod n for all 1 < i <r, then there is a nontrivial solution to ™ =1

mod pi* for all 1 <1i <r where:
(a) The solution | satisfies | # 1 mod p; for alli=1,...,r,
(b) The solution | satisfies | # 1 mod plf for all 1 < f < «; and for all

1<y <r.

2. If there is a nontrivial solution to x™ = 1 mod p" where x # 1 mod p; for all

1<i<r, thenp;=1modn foralll <7 <.

Proof. We proceed to show each part separately.
Part 1. This is an application of the Chinese Remainder Theorem. As n divides

p; — 1, there is a nontrivial solution /; to ™ = 1 mod p;. Lift this solution to a
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solution L; of 2™ =1 in Q,, using Hensel’'s Lemma. Define I; = L; mod p;"Z,, as the
projection onto Z,, /p;" Z,,.

Note that this choice of I} has the property:
l; # 1 mod p],

for every 1 < f < «;. We can deduce this by contradiction. If it I, = 1 mod plf , then
Il =1 mod pzf and L; = Il = 1 mod p;; but, L; = [; mod p; by construction, thus
l; = L; =1 =1 mod p;. Hence, contradicting the choice of [;.

Thus, we have a set of solutions (l},...,ll) to 2" = 1 mod (p7*,...,pS"). By the
Chinese Remainder Theorem, we can find a solution to 2™ = 1 mod m = pi™* *--- p&~
with the desired properties.

Part 2. Under the assumptions, we must have n divide ¢(p§) = p®~!(p; — 1) for
all 1 <14 < r. Since n does not divide m, we must have n divide p;, — 1. Hence, the

result follows. O

Thus, by proposition 2.4.2, it suffices to assume that all primes s that divide
|G| have the property s = 1 modulo n to guarantee the existence of a nontrivial
w € Aut(G), numerical multiplier, with the properties: p* = 1, and [ # 1 mod s
for every prime power s dividing exp(G); i.e., p;—1 is a numerical multiplier of G. In

this subsection, we will assume that G always has this property and call G an n-adic

group.

Definition 2.4.3. If G is an abelian group such that s =1 mod n for every prime s

dividing exp(G), then G is an n-adic group.

Corollary 2.4.4. If G is an n-adic group, then there is a numerical multiplier

such that:
1. The multiplier | satisfies I =1 mod exp(G),

2. The multiplier | satisfies | # 1 mod s* for every prime power s' dividing the

exp(G),
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3. The map py_1 is a numerical multiplier of G; that is, (I — 1,exp(G)) =1,
4. The following holds "™ " + 1" 2+ ---+ 1+ 1 =0 mod exp(Q).

Proof. Parts 1 and 2 are consequences of proposition 2.4.2. We show part 3 by
noting: if s divides exp(G) and [ — 1, then the choice of [ in proposition 2.4.2 gives

us a contradiction. Part 4 follows from the following identity modulo exp(G):

0 = [I"—-1,
= (=)' 1+ 1).

Hence, by part 3, (I — 1) is invertible modulo exp(G). Therefore, part 4 follows. [
Definition 2.4.5. We will define a splitter p; in G such that:

1. The splitter 1 is an nth root of unity, i.e. , I" =1 mod exp(G),

2. The splitter satisfies | # 1 mod s for every prime power s* dividing exp(G),
a canonical splitter.

As a consequence we have the following.

Proposition 2.4.6. An abelian group G allows a canonical splitter if and only if G

15 an n-adic group.

Proof. This is a consequence of proposition 2.4.2. O

2.4.1 Canonical Splitters for n-adic Groups

Theorem 2.4.7. Let G be an n-adic group. Let p; be a canonical splitter of order n
in Aut(G). Then, p fizes a cyclotomic coset of G = G\{0} if and only if t,(q) = 0

modulo n for some prime s dividing |G|.

Proof. (=). Let G = S, X --+- x Ss, be an n-adic group; where each s; = 1 modulo

n, and S, are the s;-sylow groups of G.
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Suppose Cy, a cyclotomic coset of G, is fixed by . Hence, 1y(Cy) = Cy; thus,
[+ g=q' % g. In other words, | = ¢/ modulo |g|. Without loss of generality, assume
st is the highest power of s; that divides |g|. Thus, we have | = ¢/ modulo si. Let
s = s1. Since [" = 1 modulo exp(G) and |g| divides exp(G), we have 1 = [" = ¢/"
modulo s°. In particular, t.(q) divides fn. Thus,

Since [ is a canonical splitter, [ # 1 modulo s’. If n does not divide ¢ (q), then

ts(q) divides f. Hence, modulo s

I = ¢

— (qtsi(Q))tsi%
f

— 1ts7;(4)

=1

Y

which is a contradiction. Thus, ¢4 (q) does not divide f and therefore n divides t,i(q).

Since t4(q)|tsi(q)|s"'ts(q) and (s,n) = 1, we have that n divides ¢,(q) if and only
if n divides t,i(q). Thus, n divides ts(¢q) and the conclusion follows.

(«<). Conversely, suppose n divides t4(q) for some s dividing |G|. Then, n divides
tsi(q) for all i. Without loss of generality, assume s = s1. Let S, = (Z/sZ)™ x -+ X

(Z/s'Z)™, where s' is the highest power of s that divides exp(G). Consider,
g = (0,...,0) x---x (s™710,...,0) € S,, CG.

Clearly, g has order s. Let f = #, then (¢/)" = 1 modulo s. Note that, [" = 1
modulo s. Since all the nontrivial solutions of ™ = 1 modulo s are powers of one
another, because n is a prime and (Z/sZ)* is cyclic; we have " = ¢/ modulo s, where
1 <ng <n—1. Thus, we have 1;°(C,) = C,, where 1 < ng < n—1. Since n is prime

and p' = 1, this implies y,(C,) = C,. Hence, the conclusion follows. [J
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Corollary 2.4.8. Let G be an n-adic group. Let p; be a canonical splitter of order
n in Aut(G). Then, F[G] has an n-adic code with splitter given by p; if and only if
ts(q) # 0 modulo n, for every prime s dividing |G|.

Proof. By theorem 2.2.10, y is a splitter for an n-adic code in F,[G] if and only if
all orbits of j; on the cyclotomic cosets of G have length divisible by n. Since p;
has order n and n is a prime, this is equivalent to saying that f; fixes no cyclotomic
coset of G. Note that g, = =t = py, where (I')® = 1 modulo exp(G). It can be
shown that I’ = [""! = [7! is also a canonical splitter. By theorem 2.2.5, u fixes
no cyclotomic coset of G if and only if ts(q) # 0 modulo n for every s dividing |G|.

Hence, the result follows. O

We note that, if u; is a canonical splitter and e, y give an n-adic code, then e, ™,
1 < ng <n—1 gives the same n-adic code. Also, for the case n = 2, there is a unique

canonical splitter given by p_;.

Definition 2.4.9. In an n-adic Group, we call the n-adic codes e, j; given by canon-

ical splitters Margarita Codes.

For n = 2, Margarita codes are the almost self dual codes of Rushanan in [22] and

Pless in [20].

2.4.2 Margarita Codes

A quick calculation using Equation (2.5) shows that the minimum distance dy of
oddlike words!! in an n-adic code satisfies the bound d3 > |G|. One can do better for
Margarita codes; however, we will introduce some preliminaries before we show this

result.

Proposition 2.4.10. Let p; be a canonical splitter in the n-adic group G. Then,

(I —1,exp(Q)) = 1; that is, py—1 is a numerical multiplier.

Han oddlike word is w = > gec Wolg] where >° o wy # 0 in Fo.
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Proof. Let p give a canonical splitter in F,[G] and assume e, g gives an n-adic code.
Note that since G is an n-adic group, we have that for every prime s; dividing |G|,
s; = 1 mod n. Also, since y; has order n, we must have {" = 1 mod exp(G).
Let s be a prime dividing exp(G),'? and [ — 1. Since s — 1 = cn for some positive
constant ¢, we must have n < ecn = s — 1. Thus, n — 1 < s and we deduce that

n < cn = s — 1. Therefore, n does not divide s — 1. |

Theorem 2.4.11. Let e, y; give a Margarita code in F,[G] where G is an n-adic group
and p; a canonical splitter of order n. Let dg be the minimum weight of all oddlike
vectors of (e). Let w € (e) be an oddlike vector of weight dy. Let w = 3 5 B9l
where B C G is the support of w. Let B = > genld] be the characteristic function of
the support of w. Define ry, ¢ : G — Z as,

Tnuc(g) = |HyN (B Xx...x B),

where

Hy = {(91,---,9n) € G x - X Glgr + pu(g2) + - + pn—1(gn) = g}

Then,
1. The constant dy satisfies dij — 1y,,,¢(1) +1 > |G|,
2. If dyp — rp (1) + 1 = |G, then:

(a) The oddlike word satisfies w = o x B for some o € F,

(b) The characteristic function of the support of w satisfies,

B (u-B)x--x(uf™" - B) = (rame(l) =D+ ) [g)-

geG

3. The constant r, ,, (1) satisfies 1y, ¢(1) = do modulo n,

4. The constant ry, ,, (1) satisfies 1y p,.c(1) > do.

2and therefore |G].
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Proof. We proceed to show each part separately.

Part 1. Define Fy(zy,...,2,) =21 + 1% 29 + -+ + 1" 1 %z, where: x; € G, l' xx
means (), and + is the group addition of G. Clearly, Fj is a group homeomorphism
from G x --- X G = G" — G. We will show that this map is onto.

Let dp be the minimum weight among all oddlike words of (e). Let w be an oddlike
vector of (e) of weight do. Define B C G such that w = > _p By[g], 3y # 0. Let
B(z) = 3_,cplgl- By Equation (2.5), we conclude that there is an o € F, such that:

axy g = S BuBu BolFilor. - gn)] (2.10)
geG (91,--,9n)EBX--xB
= O _Balgl) * O Balmlg)) -+ % O Bylur™"(9)))

n—1

= wx (- w)xx (- w).

In particular, this shows that Fj is onto.

For the moment define,

Hg = {(gla7gn)€GxXG|ﬂ(gla7gn):g}7

L, = HyN(Bx---xB),

7ﬁn,,ul,G'(g) = |Lg’

Clearly, |L,| > 1.

Let 1 be the identity of G, a direct calculation shows that 7, ,, (1) > dy. This
is because: Fi(g,...,9) = (1+1+---+1"1)%xg=0%xg =1, since [ is a canonical
splitter. Thus, {(g,...,9)lg € G} C Hy and {(g,...,9)|lg € B} C L;. Therefore,
do = |B| < [L1| = 7. 6(1),

We note that for n = 2 we can calculate ry ,, (1) = do; however, we leave it as
an exercise.

By considering Equation (2.10), we can deduce the bound

dg = o) +1 = |G,
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because,

dy = |Li|+) Ll
g#1

= rnaﬂl,G(D + Z |Lg|

g#1

Z T”aMhG(]‘> + Z 1
g#1
= Tauc(l) ]G -1

Part 2. Assume for now the following result that will be shown later.
Claim 2.4.12. |L,| =1 for all g # 1 if and only if df — 1y ,c(1) +1=|G|.

Consider the subcases:

(a) Equation (2.10) shows that: if Fi(gi,...,g,) # 1, then 8y, --- 3, = o, where a
is defined by Equation (2.10).

Let g,g' € G and g # ¢/, consider Fi(g,/,...,g') = g(g")= 4" = g(g) ™ #
1; we must have 3,(3,)" ! = a for all g, ¢’ € G, where g # ¢'. Hence, 8, = [,
for all g,¢"” € B. Thus (2a) follows.

(b) Without loss of generality, we can assume that §, = 1, then w = B. Equation
(2.10) gives:

B (- B)s--x(up™" - B) = Z‘LQHQ]

geG

(rnuc(1) = D]+ ) _[g].

geG

Thus, it suffices to show claim 2.4.12. Assume that |L,| = 1 for g # 1, consider:

dy = |Lif+ Z L]
g€G,g#1
Tnuc(l) + |Gl — 1.
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Conversely, if dff — 7, ¢(1) + 1 = |G|, then

Do Ll = dy =L = df — rape(1) = |G - 1.

9€G,g#1

Thus, |L,| =1 for all g # 1.
Part 3. Note that, if (¢1,...,9,) € Hy, then (g,,91,...,9n-1) € Hy; because, if

ln—l

91(g2)" -+ (gn) = 1
then,
1= (1)
n—1

= (g1(g2)' -+ (gn)" )
2 n—1 n

= (9)"(92)" - (gn-1)"" (gn)’

= gn(gl)l T (gn—l)ln_

Hence, (gn,91,---,9n-1) € Hy. Thus, we have shown that H; is invariant under

the action of Z/nZ, where [1| € Z/nZ acts like [1]%(g1,92, - - -, 9n) = (Gns G1s- -+ Gn—1)-
Note that since n is prime, all orbits of this action have length 1 or n. Also, note
that: if [1] * (g1,-.-,92) = (91,---,9n), then (g1,...,9,) = (91,---.,91). In addition,
note that B x --- x B, where B C G, is also invariant under the action of Z/nZ.
Thus, Ly = Hi N B x --- X B is invariant under the action of Z/nZ, and the only
fixed points of Ly are points of the form (g,...,g) where g € B. In particular, this
shows that r,, ,, ¢(1) = |L1| = |B| + nxk = dy + n * k. Hence, the conclusion follows.

Part 4. This is a clear consequence of part 3. [

Since for 2-adic codes the canonical splitter is given by p_q, and ry, , ¢ can be

computed to be dy; theorem 2.4.11 gives theorem 1.1.2 as a corollary.

Corollary 2.4.13. Let e, give a 2-adic Margarita code in F[G]. Let dy be the

minimum weight of all oddlike vectors of (e). Let w € (e) be an oddlike vector of
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weight do. Let w =3 p Bylg] where B C G is the support of w. Let B = > genldl-
Then,

1. The minimum oddlike weight satisfies d3 — do +1 > |G|.
2. If &2 —dy + 1 =G|, then,

(a) The oddlike vector w is constant, i.e. , w = a B for some o € F,

(b) The shifts ofé form the blocks of a projective plane of order (dg—1). That

is, B (B™') = (do — D[1] + X ,e6lg).

2.5 Conclusion

We have introduced the concept of n-adic codes and solved their existence problem.
Additionally, we have introduced the concept of canonical splitters to define Margarita
Codes, which are generalizations of Rushanan’s Self-Dual Codes; and, we have shown
the generalized minimal oddlike weight support theorem, theorem 1.1.5, for Margarita
Codes.

We close this chapter with a few observations about n-adic codes:

1. We note that for Margarita n-adic codes with n # 2, r,, ,, ¢ depends also on the

idempotent e and the oddlike word of minimal length.

This is shown by the 3-adic code in Fy9[Z/7Z] given by the canonical splitter
i = 1o and the idempotent e = 9[0] 4 5[1] +2[2] 4 8[3] + 18[4] + 11[5] 4 6[6]. This
pair u,e gives a code of minimal oddlike weight 3. Consider the two oddlike
words of weight 3 given by wy = 26[2] 4 9[3] + 8[5] and wy = 21[4] + 10[5] + 3[6].

The values of r3 ,, ¢ that arise from w; is 6 and from w, is 3.

2. Theorem 2.2.16 has been proven for Duadic Codes by Pless and Rushanan in

[21] for even Characteristic, and by Smid in [25] for odd characteristic.

3. Corollary 2.4.8 for the case n = 2, ¢ = 2™, and G = Z/sZ where s is an odd
prime has been proven by Rushanan in [22] in page 102; and also by Pless in

[20] in theorem 2 of the cited paper.
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4. Corollary 2.4.13 for the case ¢ = 2 has been proven by Pless in [20] in theorem
4 and corollary 1 of the cited paper.

5. Theorem 1.1.5 has also been generalized to m-adic Polyadic Codes by Ling and
Xing in [18]. This is given by theorem 2.5.1.

Theorem 2.5.1. Let C' € {Cy,...,Cp_1,... ,Z/)\O, o ,D/m:} be an m-adic
Polyadic Code over F, associated with the m-splitting

(XomXOa S 7Xm71)7

of the finite abelian group G given by .

Let n' =[G : (X)]. Suppose that ps(Xeo) = pgr(Xoo), where r > 1. Then, for
p > 1 dwiding m the minimum weight d of the codewords in C’\C’, also known

as the oddlike words, satisfies:

dm — dm/P 4 1 if Smp = 0 mod exp(G),

dm otherwise,

where

@)
I
-
Q

The analogous result for m-adic Polyadic Codes, by Ling and Xing, gives a more
general bound on the minimum distance of oddlike words. For the case when:
m is a prime, s is given by a splitter of order m, and the additional assumption
that the m-adic Polyadic Code is “reduced”; Ling and Xing’s result reduces to a
result about Margarita Codes by choosing r = 1 and p = m. This is illustrated
by the following theorem.

Theorem 2.5.2. Let m be a prime. Let C be a “reduced” Class IV m-adic

Polyadic Code, i.e., Xoo = {0}, in an m-adic group G where the splitting is
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given by a canonical splitter ps of order m. Then, n' =[G : (X)) = |G| =n
and the minimum weight d of the codewords in C’\é, i.e., oddlike words, satisfy:

d™—d+1 if Smm = 0 mod exp(G),

dm otherwise,

where:

m(m—1) m(m—2)

Smm = S m +8§ m —|—+S2Wm+8%+].

= " 4" P s+ L

Since s is a canonical splitter, we always have s, , = 0 mod exp(G); hence, we

get a similar bound to that of theorem 1.1.5.
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Chapter 3

Generalized Skew Hadamard
Difference Sets

We will assume that G is an abelian group, and we will use the additive notation for
its group operation. We will begin with the definition of generalized skew hadamard

difference Sets, and then construct towards a generalization of proposition 1.2.1.

Definition 3.0.3. A generalized skew hadamard difference set (GSHDS) is an ele-
ment of the group algebra D(z) € Z[G] such that:

D(x)D(z™) = (k, — N[1] + \G(), (3.1)
D(z) + D(z™) = G(z)—[1], (3.2)

where [1] = 2° is the multiplicative unit of Z|G], k, = |D(z) N D(x™"°)|, and n, is a
Non-Quadratic Residue of (Z/exp(G)Z)*.

We will assume that ng is a Non-Quadratic Residue of (Z/exp(G)Z)*, and xo is

the principal character of G.

Lemma 3.0.4. Let G admit a GSHDS, then k, =0 or k, = k. Also:

1. If k, =0, then k = ”—;1, A= %, and for any nonprincipal character x

—1+en/v

x(D) = 5
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2. If k, =k, then k = ”2;1, A= ”T_S, and for any nonprincipal character x

—1+e/—v

x(D) 5

where in the above, €, € {1, —1}.

Proof. Let x be a nonprincipal character of G. Equation (3.2) forces k = |D(z)| =
v—1. Also, Equation (3.1) forces:

ko + Av—1) = K

hence,

v—1 v—1

—2\), (3.3)

thus, k = ”T_l divides k,.

By definition k, < k. Therefore, either k, = 0 or k, = k. Clearly, by Equation
(3.3), if kg = 0 then A = *7*. Similarly, we can show: if k, = k then A = *2.

Note that equations (3.1) and (3.2) yield:

D(z)* 4+ D(x) + [1](ko — A) = (k—NG(x). (3.4)

Let us suppose that k, = 0 and apply x to Equation (3.4), we get:

v—1
hence,
—14+€e,4/v
o) = e

where €, € {1, —1}.
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Similarly, one can show that if k, = k, then

—1+e/—v

x(D) 5

The proposition follows. |
Proposition 3.0.5. Let G admit a GSHDS D, then |G| = p***! and,
(a) If k, = 0, then |G| = p**™ =1 mod 4,
(b) If k, = k, then |G| = p**™! = 3 mod 4.

Proof. We proceed to show each part separately.

Part a. Let us assume k, = 0. Also that, v = |G| is composite and divisible by
two distinct primes p and s. Let x be a character of order p and ¢ a character of order
s. Lemma 3.0.4 shows that x(D) = _1%’“@ Since x(D) is an algebraic integer in
Q(n,), where 7, a primitive pth root of unity, this shows that /v € Q(,). Similarly,
using ¢ instead of x one can show that /v € Q(n;). Thus, /v € Q(n,) NQ(ns) = Q.
Hence, forcing v to be a square.

We claim that v cannot be square by showing a contradiction using Fourier inver-
sion. So let us suppose v is a square and let x be an arbitrary nonprincipal character.
By lemma 3.0.4, x(D) is a rational integer. Thus, it remains invariant under the
action of any Galois automorphism of Q(7)esp()). Since the Gal(Q(Negpc))|Q) =
(Z/exp(G)Z)*, we can choose the Galois automorphism g, € Gal(Q(Nezp(c))|Q)* to
conclude that x(D(z")) = pin, (x(D(x))) = x(D(x)). Thus,

hence, x(D(z)D(x™)) = x(D)? is always a nonnegative integer.

Ing is a Non-Quadratic Residue.
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By calculating D(z)D(z™) at [1] using Fourier inversion and applying the above

equation we conclude:

k? + Z;Gél X(D)zm'

D(&)D(a")([1)) -

However, from Equation (3.1) and k, = 0, we know D(x)D(z™)([1]) = 0. Thus,

the previous equation gives:

Y

v

forcing k to be zero. Hence, D(x) = 0; giving a contradiction.

v—1
4 Y

Therefore, v cannot be a square. Thus, v must be a prime power. Since A =
for this case, we have that |G| = p" = v =1 mod 4.

Similarly, we can show v is an odd prime power by using a similar argument as
the one used to show that v cannot be a square. Hence, the conclusion follows

Part b. This case is very similar to the previous case. Let us suppose v is
composite and divisible by at least two distinct primes p and s. Let x be a character
of order p and 1 a character of order s. By lemma 3.0.4, x(D) = _1%’“/:’ is an
algebraic integer in Q(,). Hence, /—v € Q(n,). Similarly, by using ¢ instead of
X, we can show that v/—v € Q(n,). Thus v—v € Q(n,) N Q(ns) = Q. This is a
contradiction as v > 1. Hence, v is divisible by only one prime.

Since v = 3mod 4 as A = “T_g, this forces v to an odd prime power. The conclusion

follows. O

As a consequence of proposition 3.0.5, we will assume that G is an an abelian p-

group, where p > 3 and exp(G) = p*. We will also assume that |G| = v = p?*t = pm,
where m = 2a + 1, when G contains a GSHDS. We get the following result as a

corollary to the the above results.

Corollary 3.0.6. Let G be a p-group and D be a GSHDS. Let p* = exp(G), n be a

Quadratic Residue mod p*, and m a Non-Quadratic Residue mod p°*. Then,

1. |G| =v = p*tl
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Proof. Clearly, part 1 is a consequence of proposition 3.0.5. We proceed to show
part 2. Clearly, if u, € Gal(Q(n,s)
n € (Z/p*Z)* and x € G, then

Q) is the Galois automorphism corresponding to

X(D(") = pn(x(D(x)))
= n(x(D)).

Note that,

—L+ex (_71)7)

2
e, — 1
= pEXT +pa€xwa

where w = ﬂ. Hence, x(D) € Q(w) C Q(nps).

Note that Q(w) is the fixed field of the quadratic residues subgroup (Z/p*Z)** C
(Z/p°Z)* = Gal(Q(ns)|Q). Thus, u,(x(D)) = x(D), since n is a quadratic residue
mod p*. Hence, x(D(z")) = (D) = x(D(x)) for any arbitrary character y € G. By
Fourier inversion, we must have D(z") = D(x).

Now we show part 3. Clearly, there is n’ such that m = n,n’ mod p® and n’ is
a quadratic residue mod p®. Let ¢, be the induced algebra isomorphism of Z[G| by
the numerical multiplier p,y € Aut(G) (pn(g) = g+---+g =n'g).? By applying ¢,
to Equation (3.1) of the GSHDS condition, we get:

G (D(x)D(2")) = (ko — N)ow([1]) + Ao (G()). (3-5)

Note that ¢,/ (D(x)) = D(2™) = D(z) by part 2. Also, ¢ (D(z")) = D(z""™) =

2The algebra isomorphism is given by O (X gec aldl) = 2o e Colbn (9)] = 22 e cqln'gl-
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D(z™) and ¢, (G(x)) = G(z"') = G(z). Hence, Equation (3.5) simplifies to:

D(x)D(z™) = (k, — N)[1] + \G(z).

Note that the value at [1] of the left-hand side of the above equation gives |D(x)N
D(z~™)|, and the value of the right-hand side at [1] is k,. Hence, k, = |D(z)ND(x~™)|

and the result follows. O

The next lemma will be used in proposition 3.0.8.

Lemma 3.0.7. Let G admit a GSHDS D. Then, a nonzero (nonidentity) element g

can be at most %1 times the difference of two elements of D.
Proof. We will proceed by cases depending on the value of k.

Case ko = 0. By using the GSHDS equations, we conclude:

v—1 v—>5 +v—1
4

D(z").

Since in this case v = p?**™! = 1(4), we must have that —1 is a quadratic residue mod

p*. Hence, D(z™') = D(z) and:

D(x)D(z™")

v—5
4

Thus, a nonzero element g € G is the difference of two elements of D: times, if
g € D; and % times, if ¢ € D(z™). In particular, g can be the difference of two
elements of D at most % times.

Case k¢ = k. In this case, —1 is a nonquadratic residue mod p*. Hence, D(z™!) =

D(x™). Also, the GSHDS equations give the following:

D(x)D(z") = 1] +

hence,
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Thus, a nonzero element of g € G is the is the difference of two elements of D
exactly % times. Since % < %1, we can say that g is the difference of two elements

of D at most ”T_l times. O

The following result, shown for Skew Hadamard Difference Sets in [5], is due to

Camion and Mann.

Proposition 3.0.8. Let G admit a GSHDS D. Then, G = Z/p°*Z X L] p°Zx 7| p™ 7 X

<o X L/pMZ where s > az > -+ > ay.

Proof. Assume that G = Z/p°Z x Z/p™7Z X Z|p™7Z X --- X L/p“Z, where s > ag >
= a. Let S ={(a1,as,...,a) € G| ayis aunit in Z/p°Z}. Clearly, [S| =v— 7.
Also, by choosing b = a;* mod p, 1+ bp*~! is a quadratic residue mod p*. Note that
if g € S then g — (14 bp*1)g = (p*1,0,...,0).

Consider SN D, clearly this set is closed under the action of the quadratic residues
mod p*. Hence, the element (p*~!,0,...,0) can be written as the difference of two
elements SN D at least |S N D| times.

We proceed to calculate |S N D| by observing that S is closed under the action of
G1 = (Z/p*Z)*. Let Gy = (Z/p°Z)*?, then every Gy orbit of S splits into two equally

sized orbits of G5. Since D is the sum of G5 orbits where each G5 orbit is picked from

exactly one G orbit;® we must have |[S N D| = |2ﬂ = %TE
Thus, the element (p°~*,0,...,0) can be written as the difference of two elements

v—

2

of SN D C D at least —2£ times. By the previous lemma, this number cannot exceed

v—1

+ - Therefore, we must have:

v —

SIS

v—1
< .
2 — 4

Hence, we deduce v(1 — 12_7) < —1. Thus, 1 — ]% < 0, implying p < 2. Clearly a

contradiction. O

In the next sections, we will build the necessary concepts to prove proposition

1.2.1 part 3b, which is known as Xiang’s exponent bound.

3This deduction follows from the fact that D is invariant under the action of G5, the quadratic
residues, and the fact that D(z) + D(z") = G(x) — [1].
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3.1 Quadratic Residue Slices (QRS)

For the rest of the chapter, we will assume that G is an abelian p-group, and has
exp(G) = p* with |G| = v = p™ = p?**1. We will embed G| = (Z/p*Z)* C Aut(G)
and Gy = (Z/p*Z)** C Aut(G); where, a € G; — p, € Aut(G) and p,.(g9) =
g+ -+ g=axg. We will also assume a natural action of: u € Aut(G) on g € G
given by p- g = p(g); and of u € Aut(G) on x € G given by - x = xyop L.

The results of the last section showed that: if G admits a GSHDS D, then G, =
(Z/p*Z)** are numerical multipliers of D. We will introduce the concept of Quadratic

Residue Slices to simplify the study of GSHDSs.
Definition 3.1.1. Let D be a subset of G such that:

1. D(2") = D(x), for all n € Gs,

2. D(z) + D(z™) = G(x) — [1], where n, is a nonquadratic residue mod p®,
then, we say D is a Quadratic Residue Slice (QRS).

We will also assume that {g,...,g,} is a full set of orbit representatives of the
action of G; on G = G\{0}, and similarly, {x1,...,x,} as a full set of representatives
of the action of G on @\{1} Hence, will assume that r = r(G) is the number of
orbits of Gy = (Z/exp(G)Z)* on G\{0}.

We will denote by O,, as the G class of g; and by €2, as the Gy class of g;. Clearly,

Q, = Oy + 0.

g gi

We will define 2,, and O,, similarly.
We will represent QRSs in 4 useful ways:

1. Define X = @;_, CQ,, as the space of Gy classes on G\{0}. A QRS D of G is
any vector d =y ., d;Qy, of £1s of X where:

ng‘ lf dl - 1,

DNQ, =
! 0o if d; = —1.
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As short-hand notation, we will write sometimes D = "' | Opg,.,, where 3; €

(Z/p°Z)* and:

DN Op M <%) =1

N, =

’ O i (2) = -1,

2. Define Y = @@_, CQ,, as the space of G classes on G\{1}. A QRS D of G is
any vector d =Y ., d;Q,, of £1s of X where:

OXz‘ lf dz = 1,
o) if d; = —1.

3. Define W = @;_, C(O,, — Oé?o)) as the space of Compact QRSs of G. A QRS
D of G is any vector of d =Y, d;(Oy, — Oy of +1s where:

0, ifd; =1,
DNQ,
o) if d; = —1.
4. Define V =@,_, C(Q,, — QQ;‘O)) as the space of Compact QRSs of G. A QRS
D of G is any vector of d = S di(Oy, — O)) of £1s where:

e T 0" if g, = 1.

3.1.1 The Aut(G) Action

We will introduce an action of Aut(G) on the set of QRSs of G and on the set of
QRSs of G. Before we proceed to show this action, we will introduce the spaces where

the actions will be defined.

Definition 3.1.2. (Action of G on QRSs). Let X = @;_, CQ,, be the space of
Gy classes in G\{0}. Clearly, a QRS of G is a vector of £1s in X. The action of
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Aut(G) on X is defined as:

(o = (2o,

p
where n € (Z/p°Z)* such that o(g;) = pon - g;-

Definition 3.1.3. (Action of G on QRSs). Let Y = P;_, CQ,, be the space of
Gy classes in é\{l} Clearly, a QRS of G is a vector of £1s in Y. The action of
Aut(G) on'Y is defined as:

n

py (o), = (_) Qs

p
where n € (Z/p°Z)* such that o - x; = pin, - X;j-

For technical reasons that will be clear later, we will require the notion of a

“commutative” pairing.
Definition 3.1.4. A bijection 0 : G — G is a commutative pairing if:
1. 6 is an isomorphism of abelian groups.

2. 0(g)(g') = 0(g')(g) for all g,g" € G.

We will use 6 to relate the x;s to the g;s by x; = 0(g:).
From the definition of a commutative pairing, we can construct a “bilinear” map

« as it is shown in the following proposition.

Proposition 3.1.5. Let 6 : G — G be a commutative pairing and p, € (Z/p*Z)* C
Aut(G). Fiz a p°th primitive root of unity n,s. Define a(g,g’) such that 6(g)(¢') =
(1ps)*99) . Then:

1. a(g,9') = alg', g) mod p*.
2. na(g,q’) = alpn - g,9") mod p°.

8. alpn - g,9') = alg, pin - g') mod p°.
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4. a1+ g2, 9") = alg1,9") + a(ga, g') mod p*.
5. alg, g1 + 95) = alg, 9) + alg, gy) mod p°.

Proof. We will show part 2 and 3. The remaining parts are trivial calculations.

To show part 2, consider:

(pe)*#m99) = Oy - g)(g)
= (0(g)(g"))"
= ((mpe)@9)

= (N )na(g,g’)_

Clearly, part 2 follows from the above equations.

To show part 3, consider the following mod p®:

o -9,9) = na(g,g)
= na(g,g)
= ot -9,9)

= g, ftn-¢").

OJ

We note that € induces an involution (-)* : Aut(G) — Aut(G). The following

proposition constructs (-)*.

Proposition 3.1.6. Let 0 € Aut(G) and 0 a commutative pairing, then there is a
unique v € Aut(G) such that:

Proof. Let g € G, clearly 6(g) oo € G. Since 0 is an isomorphism, there is ¢” such
that 0(¢") = 0(g) o 0. Define v(g) = ¢".
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We proceed to show ~y(g) is a bijection. It suffices to show ~(g) is injective,

surjectivity will follow from G being finite. Let g1, g2 € G such that v(g1) = 7(g2).
That is,

0(gi)oo = ()

Clearly, since 6 is an isomorphism of abelian groups, 6(g; — g2) 0 0 = xo. Thus,
G =1Im(o) C Ker(6(g1 — g2)). Therefore, 6(g1 — g2) = x0. Hence, g1 — g> = 0, since
0 has trivial kernel. Therefore, v is injective.

Now, we proceed to show Z-linearity and uniqueness. It suffices to show Z-linearly
for ~, since uniqueness follows from 6 having trivial kernel.

Note that v(g; + g2) is defined as the unique g5 such that 6(g3) = 0(g1 + ¢g2) 0 0.

Consider,
0(v(g1 +92)) = 0(g3)
= 0(g1+g2)00
= (0(g1) 00)(0(g2) 0 0)
= (0(7(91)))(0(7(g2)))
= 0(v(g1) +7(92)).
Thus, (g1 + g2) = 7(g1) + 7(g2)- O

Definition 3.1.7. Let 0 € Aut(G) and 6 a commutative pairing, then (o)* is defined
as the unique v € Aut(G) such that for all g,¢" € G:

We note some properties of the (-)* operation that we leave as exercises.

Proposition 3.1.8. Let 0, € Aut(G).
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We can calculate the action of Aut(G) on Y in terms of the action of Aut(G) on

X when the pairing # is used. Proposition 3.1.9 shows this result.

Proposition 3.1.9. Identify each x; with g; via a commutative pairing 0. The action

of py on'Y is given by:

pr(o) = px((e71)").

Proof. Clearly,

o) = (o,

p

where 0 - x; = i, - X; and n € (Z/p°*Z)*. By using the pairing § we can deduce:

0((0™)"(9:))(9) = 0(gi)(o'(9))

= 0-Xi

Thus, (671)*(g;) =n~' - g;. Clearly this shows that py (o) = px((c71)*). O

3.1.2 Character Values of QRS

Quadratic Residue Slices have special character values; these are given by the follow-

ing proposition, which was originally drafted by Chen, Sehgal, and Xiang in [6].
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Proposition 3.1.10. Let D be a QRS in G, |G| = p™, x € G, and let w = ’1%(*”’
Then, the following are true:

1. x(D) = ay + (2a, + 1)w, for some integer a,.

2. If m = 2a, then 3x 3 p* [(2a, +1).

3. If m=2a+1, then Ix 2 p*™ J(2a, + 1).

4. Ifm=2a+1 and Vy € G p*|(2ay, + 1), then D is a GSHDS.

Proof. Note that, if D is a QRS, then D(z") = D(z) for all n € (Z/p*Z)** = Gs.
Since x(D(2")) = pn(x(D)), where u, € Gal(Q,,.|Q) = (Z/p*Z)* = G, is the Galois
Automorphism corresponding to n, we must have u,(x(D)) = x(D) for all pu, € Gs.
Thus, x(D) belongs to the fixed field of G5 in Q(7,:). Since this fixed field is Q(w),

we must have x(D) € Q(w). Also, note that x(D) is an algebraic integer, hence,
x(D) belongs to Og() = Z & Zw. Thus, x(D) = ay + byw.

Since D(z) + D(z") = G(z) — [1], we deduce that x(D) + n,(x(D)) = —1. Note
that p,,(x(D)) = fin, (ay +byw) = ay + by pin, (w). Since n, is a nonquadratic residue,
it is a nontrivial coset of G1 /Gy = Gal(Q(w)|Q) = Z/2Z. Thus, iy, is the nontrivial

—1-/(5h)p

Galois automorphism of Q(w), i.e., conjugation. Hence, jin,(w) = 0 = —5"— =

-1 —w.

Thus, pn,(x(D)) = ay + by (-1 —w) = (ay — by) — byw. Hence,

-1 = X(D)+ pn,(x(D))
= ay+byw+ (ay —by) — byw

= 2a, — b,.

Thus, we deduce that b, = 2a, + 1. This shows part 1.

Now, we show part 2. Let ng be a fixed nonquadratic residue, first note that

—14(2ay+1), /(L) _
X(D) = ay + (2a, + 1w = VT and i, (X(D)) = ay + (204 + DT =
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Let us assume otherwise, that is, Vy € é, p* | 2a, + 1. Let, 2a, + 1 = p*c, for
some integer c,. The previous analysis calculates the nontrivial character values of
the element D(x)D(z") in C[G]. These character values are given by:
_ 20411
1 —p* (=)

A(D@)D(a")) = ———F=c2,

Now we proceed by cases. First assume that p = 1 mod 4. Then —1 is a quadratic

residue mod p*. Hence D(z~!) = D(x) and

D(z™™) = ¢n,(¢-1(D(2)))
= 6, (D(z71))
= On,(D(2))
= D(a"™).

Note that D(z)D(z"™) evaluated at [1] is |D(z) N D(z~")| = |D(xz) N D(a™)| = 0,
since D(z) + D(z") = G(x) — [1]. Now, we proceed to calculate D(z)D(z") at [1]

using Fourier inversion:

D@)DE™)([1) = 3 (D) D)X

geG

Hence,

20412

1 (pP—1)? 1 —p*ticd
e D

XFX0
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where Y is the trivial character of G. From the above equation we deduce that:

PPt -1 = pt Yy
XFX0
which implies that p | (p* — 1). Clearly a contradiction.

Now, we assume that p = 3 mod 4. Under this assumption —1 is nonquadratic
residue, hence —n, is a quadratic residue. Thus, D(z7") = D(x) and |D(z) N
D(z™)| = |D(z)| = 5*. Clearly, D(z)D(z") evaluated at [1] is |D(z) N D(z™)| =
=+, We proceed as the previous case and we calculate D(x)D(z") at [1] using

Fourier inversion to get:

From the above equation we deduce once again:

an(p2a . 1) _ p2a+1 Z Ci
XFX0

Hence, p | (p*® — 1), clearly a contradiction.

For part 3, we can use similar proof to one used in part 2.

2a+1

We proceed to show part 4. We assume that |G| =v =1p and 2a, + 1 = p%c,

for some integer c,. If we perform a similar analysis as in the proof of parts 2 and 3,
that is we calculate the value of D(z)D(x"°) at [1] using Fourier inversion; we get an

equation that simplifies in both cases p =1 or p = 3 mod 4 to:

p2a+1 <p2a+1 _ 1) _ p204+1 Z Ci-
XFX0

2 _ 2041 2 : 2a+1
Hence, Zx#xo c=p 1. Thus, ¢; = 1, since we have a sum of p

— 1 nonneg-
ative integers adding up to p**™ —1. Therefore, 2a, +1 = £p* and x(D(z)D(z")) =
1-(FHp*tt

1

Using Fourier inversion once again, one can show that D(z)D(z") = (k,— \)[1]+
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AG(z).* We proceed and show this. Let g € G be nonzero, then

P@DE)(lg) = (5 + 3 x(DE)DE")X(e)
XFX0
v—1)2 1—v(= -
- L0t 12
XFX0
= -1 - (- o)
U—2+(%)
B 1
= A\

OJ

Definition 3.1.11. Let D be a QRS in G and x € G. By the previous proposition,
xX(D) = ay + (2a, + D)w. We will call de(x, D) = 2a, + 1 the difference coefficient of
D in G at y.

Definition 3.1.12. Let D be a QRS. The dual of D, denoted by D is defined in G

D = {xeG\{1}|da(x,D) > 0}.

Note that D is a QRS whenever D is a QRS. This is nontrivial to show, but it
follows from the definition of QRSs and the following equation that we leave as an

exercise.

-1

n
de(pn - x, D) = (7)dg(x, D) when n € Gy.

Also, direct calculations show that in general D # D; however, this is true when D
is a GSHDS, we will show this later.
We will prove proposition 3.1.15 as a start at calculating the character value of a

general QRS D; we first prove a few lemmas that will aid in its proof.

4This equation will be different depending on the parity of p mod 4.
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Lemma 3.1.13. Let 7 = Y I~ 11( )np, where n, is any primitive pth root of unity,

then 72 = (%)p.

Proof. This is a straight-forward calculation. Consider

2 = Z (a_b) 77;;er
p

a,b=1,....p—1
- T ()
p
a,b=1,....p—1 p
—CLbil b2 a—b
- Z D E Ty
a,b=1,....p—1
-y (—abl> asb
- 77p )
a,b=1,....p—1 p

where in the above, b= is the multiplicative inverse of b mod p. In the last equation,

let ¢ = ab~! and a = bc; these substitutions give:

2o Z <p)77p( =

SR EE)

Note that 77p =1, 1'is again a primitive pth root of unity and thus a conjugate
of 1,. Therefore, both 7, and 7, are roots of the same irreducible polynomial ¢,(z)
over the Q. Hence, 141, 4+ 77 4 ---nP~" = O since ¢,(z) = 1+ x4 ---+ 27" Thus,
S 1(np Do =3 1(77p) —1. Therefore, our calculation of 72 simplifies to:
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Consider,

)z > (o)

ce(Z/pL)*

= V((Z/p2)"),

where 1 is a the Quadratic Residue symbol that is viewed as a multiplicative character
of the group (Z/pZ)*. Since 1) is nontrivial on (Z/pZ)*, we must have ¢((Z/pZ)*) = 0.
Thus, the calculation of 72 simplifies to:

R

c=1

-1 -1
= | — )p— | — |v((Z/pZ)"
(5 )= (5w
5)
= — D,
p
hence, the result follows. O

Lemma 3.1.14. Let p be an odd prime and n, a pth root of unity. Let w = Y {n} |
<;> =land 1 <n<p-1} andw =} {n, | (5) =—1and1<n<p-—1}. Then,

Proof. Note that, the irreducible polynomial ¢,(z) of 7, over the rationals Q is
p(z) =1+ a2+ -+ 271 Hence, 0 = 1+ > 7" 1177; 1+ w + @. This shows
part 1.

To show part 2 and part 3, we will make use of the Gauss sum 7 = S 7~/ (;—;)77;.
For the following, let wy = w and w; = W. Note that 7 = wy —w; = 14 2wy. Thus, by
lemma 3.1.13, we have (— L)y = (1 + 2wp)?. Hence, wy = £
follow. O

and parts 2 and 3
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For the rest of the chapter, we will choose 7, such that w = ——5—— and

—1-y/(5p

W = 2

Proposition 3.1.15. Let O, be the Gy orbit of g € G and x € G. Then

Oy if x(9) =1,

0 else,

\

where o(p - g) is the order of the elementp-g=g+---+ g, i.e., g summed p times,

W= 2 2

Proof. Note that Gy = K x H = (Z/(p — 1)Z) x (Z/p*~*Z) via the decomposition
n = no(1 + pby + p?*by + -+ + p*tby_1), where ng € (Z/pZ)* = Z/(p — 1)Z = K
and 1+ pby + -+ p* b,y € H with b; € {0,...,p — 1}. Another form of H is
{n € Giln = 1 mod p}. From this decomposition of G, a decomposition of Gs
follows as Go = K* x H = (Z/pZ)** x H. Hence, O, = Z1§i§p71,(%)=1[i ~gl{p-9g)
where: i-g=g¢g+ -+ ¢, g summed ¢ times; p-g =g+ ---+ g, g summed p times;
and (p - g) is the group generated by p - g. Thus,

X(0,) = S x(-g)xp-9)).

1§i§p—1,<%):1

Since G is an abelian group, x({p - g)) changes values depending on the restriction

of x to (p-g). That is,

olp-g) ifx(p-g) =1,

x(p-g) = _
0 if x(p-g) # 1.

Also note that when x(p-g) = 1, we must have x(g) = 1, for somen € {0,...,p—
1} depending on g and y. Let us assume, n # 0, then
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Y X9 = oo

1§i§p—1,(%)=1 1§i§p—17(§):1
wog=w if <%> =1,
w =w if <ﬂ> = —1,
p
where we use the notation and results of lemma 3.1.14 in the above equation.

Combining the deductions of the above paragraphs gives the conclusion of the

proposition. ]

Corollary 3.1.16. Let m € G4, then

wo(p 9) if X(Q) — 77;’ (%> — 1
Oy = ] P X =, (m) =1,

Oyl x(9) =1,

0 else.

\

Proof. This is a consequence of the previous proposition and the fact that: if x(¢) =

n,, then x(m - g) = n™. O
Now, we are ready to calculate the character value an arbitrary QRS D.

Proposition 3.1.17. Let D =Y., Og,,, be a general QRS, where 3; € {1,n0}. Let
x € G, then x(D) = ay + da(x, D)w where:

dote.0) = S ("2 Yot 0 | x(00) = 5}
o= 001 x(a) =13 = 3 {otw-00 | o0 = . (") = =1}

o dG’(XaD)_]'
neTy
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where 1, is a fized primitive pth root of unity such that,

a1 (z) s
G

2

Proof. From corollary 3.1.16, we have:

x(D) = ZX(OBi'Qi)
=1
= fitow+hw

= (fx = hy) + (9 — hyw,

where,
fo = D {04l x(g:) =1},
e = Z{O(p-gi)lx(gi):np,( . ) :1}7
h = Z{O(P-gi> | x(9:) an,( , ) — _1}'
The result follows from the above equations. 0

3.1.3 The QRS Incidence Structure Ag g,

Proposition 3.1.17 motivates the definition of an incidence structure that will prove

helpful when determining the character values of a general QRS D.

Definition 3.1.18. Let gi,...,9, be the orbit representatives of the action of G
on G\{0}. Letf:G — G be any commutative pairing. Let x; = 0(g;). Clearly,
X1,---,Xr are orbit representatives of the action of Gy on @\{1} The G1 QRS

incidence structure on G, called A, , is defined by:

xir$g;) = (M>O(p “9;),

Ac.c, (22 )
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where a(g;, g;) is defined by proposition 3.1.5 by:
0(a)(a.) —= nl9i9s)
(9:)(g;) = ™,

where n, = (7]?,5)1"571 satisfies the assumptions of proposition 3.1.17; and, fo(x) :
(Z/p°Z) — (Z]pZ) is a function defined by:

y if x =p*y mod p*,
fo(z) =

0 else.

For the rest of the chapter, we will assume that g¢;s and y;s are chosen as in

definition 3.1.18. That is, they are paired via a noncanonical isomorphism 6 : G — G

such that 6(g)(g") = 0(¢')(9).

The definition of Ag g, motivates the introduction of the function o'(g,¢’) =
fo(a(g, ¢’)) that is understood as a function o/ : G x G — (Z/pZ). Clearly, o is no
longer “bilinear,” however, o inherets some properties of «. This is summarized by

the following proposition.
Proposition 3.1.19. Let g,¢' € G, 0 € Aut(G), and n € (Z/nZ)*, then modulo p:
1. d(g,9) =g 9),
2. nd/(g,9") = o/ (pn - 9,9'),
3. (- 9,9') = (g, n - 9),
4. d'((0) - g,9') =/ (g,0-9).
Proof. Clearly, these are trivial calculations. |

The following result on Ag ¢, and the difference coefficients of an arbitrary QRS

D paraphrases proposition 3.1.17.

Proposition 3.1.20. If D is a QRS such that D = >"._, Og..,., then the difference
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coefficients of D are given by:

dl dG (X17 D)
Ace | = : ,

dr dG(X’/‘a D)

where d; = <@>
p

The following proposition shows that A ¢, is indeed an Aut(G) map from X, the
QRS space of G, to Y ,the QRS space of G.

Proposition 3.1.21. The matrizc Agq, is an Aut(G) map from X to Y. More

precisely, for any o € Aut(G):

px(((0)) DA = Acairx(0),
where we view Agq, as a matriz on X x X by defining it as:

Acc (Qg,,,) = Aca(Qogg), Qy,)-
Proof. Let A= A, and 0 € Aut(G). Clearly,

A(Qy,,Qy) = Ay, 9y,)

= (gﬁ&ﬁﬁ>0@-%)

p

Note that,

ARy, Qo) = (M> o(p - 95)




Let o(g;) = ptn - gj, where n €

Apx (U)ng

. <. <. <.
I < |l < |l < |l Bl
(S (S (S —

Define n; € (Z/p*Z)* be such tha

=
—+
=
-+

ApX (U)ng

I
-
i M s
I

-. -. -. -. -,
Il < |l < < 1 < |l =
— — — — —

I
)
=

—~

7~ N 7N N

VIS RBIS ©IS

33

Z[p°Z)*. dentify Qo(y,) with Q. Consider
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In addition to being an Aut(G)-map, the matrix Ag g, also satisfies a simple

equation that will be shown later.
Proposition 3.1.22. The matriz Ag g, satisfies:

Sy

2
AG,G‘1 = D

The equation of proposition 3.1.22 will prove to be an useful tool in studying
GSHDS. The following corollary is an example of its usefulness.

Corollary 3.1.23. Let D be a GSHDS and D its dual. Then,

1. D is a GSHDS.

el

2. D=D.

Proof. Let |G| = v = p***t. Let D = Y., Og,q and d be the r x 1 vector in the
QRS space X, where d; = (%) Clearly, Ag.c,d = (da(x1, D), .. .,dc(xr, D))T is the
vector of distinct difference coefficients of D. Since D is a GSHDS, by proposition
3.1.10 part 4 we have dg(x:, D) = p®€;, where ¢; € {1,—1}. Hence,

Age,d = p*d,

where d is the 7 x 1 vector given by

— 1 if dG(XmD) > 0,
1 ifdg(xi, D) < 0.

&
I

Clearly, if the dual of D is given by D = Y7, O...,,, where v; € {1,n0}; then

<%> = d; by construction. Hence, d is a representation of D.

Multiplying the above equation by A¢q ¢, and using proposition 3.1.22, we deduce:

Agcd = pd,
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hence, D is a GSHDS by proposition 3.1.10 part 4. In particular, we also deduce

d=d.

Since d is the representation of D and d= d, we must have D =D. |

As a closing remark, we note that A ¢, appears in the calculation of the character

values of elements of the space of Compact QRSs of G.

Proposition 3.1.24. Let W = @/, C(O,, — 0% and a = 37_, a;(O,, — O5)

where a; € C, then:

1. Let x; =0(g;) € @, then:

X;(Og, = OF) = (M)O(p-gi) (_—1>p

D p
—1

- AG,Gl (OXJ'7 ng) (?)p

2. Let x; =0(yg;) € G, then:

- ~1
Xj(a) = (Z AG7G1 (OvaOgi)a'i) (?)]D
i=1
Proof. Part 1 is a clear application of proposition 3.1.15 and the definition of A¢ ;.
Part 2 is an application of part 1. |

3.2 Difference Coeflicients

In this section, we will study properties of the difference coefficients that arise from
an arbitrary QRS D in an abelian p-group GG. We will work toward stablishing the
generalized version of Xiang’s exponent bound, i.e., proposition 1.2.1 part 4b. We
will use the notation and assumptions of the previous sections.

We start with a reduction formula that is due to Chen, Sehgal, and Xiang in the
language of Skew Hadamard Differenc Sets.
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Proposition 3.2.1. Let D be a QRS in G, G' C G, and D' = G'ND. Let \' € G
and LE, () ={x € G| xler =x'}. Then:

1. GT ~ (/GQ\,), where GT = {x € G | x|e = 1}.

2. Every character X' € G’ can be extended into a character X1 of G exactly |G'T| =
(G : G'] times. That is, the set LS (x') = xaG'" where x; is any extension of
X' from G' to GG.

3. The difference coefficients obey the formula:

/ / 1
dar(X'\ D) = ———= > da(x,D).
G: & xeLE, (x')

—

Proof. To show part 1, note that one can define a map x : G’ — (%) by k(x)(9G") =
x(g) for a given y € G'T. If g = g1g’ for some ¢ € G, then x(g9) = x(g19') =

—

x(g1)x(¢") = x(gq1). Thus, (x) € (&) is well defined. Note that, if £(x1) = r(x2),

—

then x; = x2 by definition. Hence, & is injective. To show surjectivity, let X € (%)

Consider the character x = X o7, where 7 : G — g is the canonical projection of G

onto the factor group g Clearly, x(x) = X. This shows part 1.
To show part 2, consider the restriction map 6 : GG by 0(x) = x |¢'. We show

that 6 is onto. Let ker() = G'T = {y € G | x |e=1}. Note that x € Ker(9) if and

—

only if ¥ € (&).> Hence, |Ker(6)| = ‘lg,”. Thus, the image of 6, which is isomorphic
G el

, has order s = |G’| and must be all of G’. Thus, 6 is onto.

to %W)
Note that L& (x') = 071(x') = xaG'", where x; is any fixed extension of ¥’ to all
of G. By the above, |L& (X')| = |Ker(0)| = [G : G']. This shows part 2.

To show part 3, let G = (g1 + G') U (g2 + G') U --- U (g, + G'), where g; = 0 and
r =[G : G']. Note that D = D" U (g2 + D2) U---U (g, + D,), where D; C G’ such

that DN (¢, + G') = g: + D;.

Swhere X(9G’) = x(9).
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Counsider the sum:

Y. x(D) = ) (D)

X€LE, (X') x€G'T
= > A{)D) + (xx)(gz2 + Da) + -+ + (xxa) (gr + D)}
xeG'T
= > {a@) + x(g2)xalg2)xa (D) + -+ + x(g0)x1(g:)x1 (D)}
x€G'T
= [G:GI(D) + xa(g2)xa(D2) Z X(g2) + -+

xeG'T

+xa(gxa(Dr) Y x(gr).

XGG/T

—

Since G'T" ~ £ via the pairing y € G'" with ¥ € (£); we have, whenever g; ¢ G,

by the second orthogonality relation:

d oxlg) = D Xed)
xX€G'T E(/GQT)

Hence,

Y. x(D) = [G:GWD).

XELg/(XI)

Clearly, D’ is a QRS as D is a QRS. Thus,

G : Gy +do(,D'w) = Y {ax+de(x, D)w}.

XELg/ (x")

By equating the w-coordinate on both sides of the above equation we get the conclu-

sion. ]
The next result is an application of the previous proposition.

Corollary 3.2.2. Let D be GSHDS in G and G' C G a subgroup with D' = DNG'.
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Let p*+1 = |G| and x' € G'. Then,

G —n
dor(X, D) = ]La+‘1{|D NaGT = D" NG,

where ng is a Non-Quadratic Residue in (Z/p°Z)*, p* = exp(G); and D is the dual
QRS of D in G.

Proof. Clearly, since D is a GSHDS, dg(x, D) = p“e,; where €, € {1,—1}. Hence,
by proposition 3.2.1 part 3, we have:

d ( ID/) _ ’Gll Z
G’ X? - a+1 EX?

p
XEx1G'T

where we have chosen a fixed arbitrary extension x; of x’ to G. Note that by definition
of D,
> e = DG - D" N6,
x€x1G'T

Thus, the result follows. O

The right-hand side of corollary 3.2.2 motivates the definition of the difference

intersection numbers.

Definition 3.2.3. Let D be a QRS in G, L C G be a subgroup, % ={q\L,...,q.L}.

The difference intersection numbers of D with respect to L in G are defined as:
ver(D,g) = [DNgLl—|D"™ NgiLl.

The difference intersection numbers will occur in some calculations that will follow.
We will show a relationship of the difference intersection numbers to the difference
coefficients at the end of the section. For now, we point out the the G»-invariance of

the ve (D, ¢')s.
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Proposition 3.2.4. Let | € G and L C G a subgroup. Assume n € (Z/p*Z)* = Gy,
then:

n
varL(D,pn - 1) = (§>VG,L(DJZ‘)-

Proof. Clearly, u, is a bijection of G’ and hence of % Also, since D is a QRS,

pn - D =
D) if () =1,
P
D i (ﬂ — 1
M - D(Tbo) == v
D) if ﬂ) —1
P
Consider,
var(Dypn-li) = DN (- LL) = DY 0 (- L)
= (" - D) NLL| = |, - D™) N LL
| vy i (g) ~1,
_VG’,L<D,li) if <%> = —1.
Hence, the conclusion follows. |

The next result has been shown by Chen, Sehgal, and Xiang for Skew Hadamard

Difference Sets [6]. This result will be used in the proof Xiang’s exponent bound.

Proposition 3.2.5. Let G be an abelian p-group and |G| = p™. Let K, = {g | p'-g =
0}, D be a QRS, and |K;| = p*'. If1 > | &

1
2

|, then there are at least | K[| = p™"

characters x such that p' Jda(x, D).

Proof. Define ¢ : G — G by ¢(9) = p' - g. Let K = Ker(¢) = K; and Dg, =
DNK,;, Dy = D\Dg,. Clearly, both D, and Dy are invariant under the action of the
quadratic residues. Also, note that if D = >""_, Og,.,., then Dy = > {Og,.4

pl} and DKz - Z{Oﬁzgz | O(gi) < pl}'

o(gi) >
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Consider,

3
&

o(p-gi) | x(g:) —np} (3.6)

da(x, D) = Z{ p)
)

(
{3
+3{

o(p-gi) | x(9:) =my,0 (gz)<p}

7fﬁ p%Hx@J—%,@0>p}

= Z{(nf) o(p-g:) | x(¢:) = mp, 0 (gz)<p} mod p'

= dKl (X|Kz7 ‘DKZ) mod pl.

By proposition 3.1.10 parts 2 and 3, there is y’ € f(\l such that pLﬂ%lJ does not
divide dk, (X', Dk,). Since Ll/%lj <1, we must have p’ does not divide d;, (X', Dr,)-

By Equation (3.6), we have that any extension of y of x’ to G has the property
da(x, D) = dk, (X, Dk,) mod p'. Since p! does not divide d;, (X', Dk,), we must have
p! not divide dg(x, D). Since there are |K/| = [G : K] = p™ " extensions of X' to
a character y of G, we must have at least p” " characters y such that p' does not

divide dg(x, D). O

Corollary 3.2.6. Let G = Z/p*Z X | p°Z, then for any D, a QRS, there are at least

p*= characters x € G such that p does not divide dg(x, D).

Proof. We will use proposition 3.2.5 by letting [ = 1. A direct calculation gives
Ky = {(p°~%,0),(0,p*")). Thus, |K;| = p? and | KT :pz(s_l) Since 1 > [#1] =1,
we can apply proposition 3.2.5 and conclude that there p?*~b characters y € G such
that p does not divide dg(x, D). O

The next result is the generalization of Xiang’s exponent bound. It can be found

in [6] in the context for Skew Hadamard Difference Sets.

Proposition 3.2.7. Let D be GSHDS in G where |G| = p*** and p* = exp(Q).
Then,
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Proof. Note that, if G is elementary abelian, then the result follows. So let us assume
that G is not elementary abelian. By proposition 3.0.8, we have that G = Z/p°Z x
L)p°LXL|p™L XX L/p"Z where s > a3 > -+ > ;. Let G' = Z/p° X Z/p°Z C G
and D' = D NG'. By corollary 3.2.6, there is y' € G’ such that p does not divide
de (X', D'). Let x; be an extension of x’ from G’ to G. By corollary 3.2.2, we deduce
the following.

&l (o)
de (X, D) = z|aa+|1{|Dﬂle’T|—\D NG

— p257(a+1){’5m XlG/T’ . ‘E(no) N XlG/T‘}-

By the choice of x’, we must have p not dividing dg(x’, D’). This forces the exponent

of p in the above equation to be negative. Hence, giving the result. |

We close this section with a result that shows a relationship between the difference

intersection numbers and the difference coefficients.

Proposition 3.2.8. Let 7 : G — H be a group homeomorphsim that is surjective with
kernel Ker(mw) = L. Let 0 be a commutative pairing of G and choose the restriction
of 0 to H as the commutative pairing of H. That is, 0y = 0 |u.

Let hy, ..., hs be a complete set of Hy-representatives of H\{0} and define x; =
01 (h;) as the corresponding complete set of Hy-representatives of H\{1}. Choose g|
to be any lift of h; under m, i.e., g, is chosen so that w(g.) = h;. Extend each x; to a
character of G by letting x; = x; om. Then,

I/G,L<D7g/1) dG(Daxll)

Anm, : =

VG,L(Dvgg) dG(Daxg)

Proof. We will consider D(z) — D(z") in Z[G]. By applying the projection m, we
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will deduce:
7(D = D) = 3 ven(D.g)(On ~ OF)
i=1

By applying x; to Equation (3.7), we can deduce by use of proposition 3.1.24:

1 -1

dG(DaX;‘) (_?)p = ZVG,L(D,QQ)AH,HI (Ovath‘) (—)p
=1

p

From the above equation, the conclusion follows.

Thus, it suffices to show Equation (3.7). Let G decompose into:
Clearly, as sets:

D = U_/(DniL),

Do) — Ut (D™ N [;L).

Hence, as elements in Z[G]:
t

n(D) = Y |[DnLLlh;

=1

t
a(DM)) = > [D") ALk,
=1
Thus,

t
7(D—D")) = > var(D,l)h
=1

= Z VG,L(D,W_l(h»h,

heH

where 77!(h) is any preimage in G of h under 7.
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We can deduce Equation (3.7) by applying the Ga-invariance property of the

difference intersection numbers to Equation (3.8), i.e., proposition 3.2.4. |

3.3 The G, Association Scheme

In this section, we will prove proposition 3.1.22 by using the character table of a
special Association Scheme.

We will assume a noncanonical isomorphism 6 : G — G such that 0(9)(g) =
0(g')(g). We will let g, ..., g, be the Gy-orbit representatives of the action of G; on
G\{0}. From the representatives g, ..., g, and 0, we will get x; = 6(g;) that will be
the corresponding G;-orbit representatives of the action of Gy on G\{1}.

First, we introduce the algebra H(G, K) where K C Aut(G), which we will call
the S-ring algebra of G with respect to K.

Definition 3.3.1. Let K C Aut(G) and define the action of K on C[G| by o - [29] =
[2°@)]. Let HG,K) = C[G]¥ = {2 € C[G] | 0 - 2 = 2,Yo € K}. H(G,K) will be
called the S-ring algebra of G' with respect to K.

Proposition 3.3.2. The set H(G, K) is a subalgebra of C[G].

Proof. 1t suffices to show H(G, K) is closed under the convolution product of C[G].
Note that for general 2,2’ € C[G] and 0 € Aut(G), o - (2% 2') = (0 -2) * (o - 2'),°
because G is abelian and o is an autormorphism of G.

Let 2,2/ € H(G,K)and 0 € K, then o - (2% 2') = (0-2) % (0-2') = z % 2'. Hence,
zx2' € HG,K). O

The algebras H(G, K) are examples of S-rings, and are studied in detail by Bannai
and Ito in [2]. In the following, we will show that H(G, K') has a character table, and
we will calculate it for general K.

Standard character theory shows that the primitive idempotents of C[G] are given

Swhere * is the convolution product of C[G].
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ey = 52@@9}.

geG

Note that if o € Aut(G), then one can define an action on the primitive idempotents

of C[G] by:

7o = g L@

— |—(§,Z‘x<ol<‘gmwg]
- l—g|2<a~x><g>w
geG

where we have defined the action of o € Aut(G) on x € G by (0-x)(g) = x(c7(9)).
The action of K C Aut(G) on the primitive idempotents of C[G] give us a formula
for the linearly independent idempotents of H(G, K).

In the following, we will assume that hg = 0, hq, ..., h; are the distinct orbit repre-
sentatives of the action of K on G; and we will let x{ = 0(ho), ,x1 = 0(h1),...,x] =
0(h;) be the distinct orbit representatives of the action of K on @, where xj is the

trivial character. We will also let [ be the number of orbits of the action of K on G.

Proposition 3.3.3. Let O, be the orbit of x; under the action of K on G. Let Oy,
be the orbit of h; under the action of K on G. Let d\; = ero  ex. Then,

1. The dimension of H(G, K) is given by dimc(H(G,K)) =1+ 1.
2. The set {Ony, Oy, ..., Opr} is a basis of H(G, K).

3. The set {dy;,dy;, ... ,dy} is a basis of idempotents of H(G, K).



95
4. Given z € H(G, K),

l
£ = ZX;(Z)de
=0
l
Z = ZZ}”O}”,
=0
where 2y, is the value of z on [x"].
5. The basis change from {dy,} to {Op,} is given by Oy, = Zé’:o X (O, )dy, -
6. The basis change from {Op,} to {d,.} is given by d,;, = ﬁ Zé:o Oy (h;)On;
where Oy (h;) =22 o, X(y)-

7. Let Cg be the (I +1) x (I + 1) matriz given by Ca k(X hj) = Xi(Oy,), and
Be,k be the (I + 1) x (I + 1) matriz given by Be i (hi, X}) = Oy (hi). Then,

BarCaox = |Gig141,
CoxBax = |Gip141,
Bex = Cek,

where 14141 is the (I + 1) x (I 4+ 1) identity matriz.

Proof. First, we will show part 1 and part 2. Note that if z € H(G, K) then z =

> gec %gl2?]; and given o € K,

zZ = 0-Z

= Z Zg[xa(g)]

geG

= Z Zo=1(g) [.779]

geG

Hence, zy = 2z,-1(4), i.e., 2 is constant on the orbits of K on (. This shows part 1
and 2.

Clearly, the number of orbits of the action of K on G is the same as the number
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of orbits of the action of K on G. To show part 3, it suffices to show that: the vectors
dy are linearly independent, they belong to H(G,K), and they are idempotents
themselves. Clearly, each d,; is an idempotent, as each d,; is a sum of distinct

orthogonal primitive idempotents. Consider,

l
0 = E deX;'
Jj=0
l

= ch{ Z ext

7=0 XGOX;_

= Zc;ex,
xe@
where in the last equation, c;{s are paired with the ¢;s. Since, the e, are linearly
independent as they form another basis of C|[G] because G is abelian; we must have
cj = ¢}, = 0. This shows linearly independence of the d,;.
To show that each d,, € H(G, K), suffices to show that o - d,, = d/ for 0 € K.

Consider,

a-dxg = E o ey

XEOX;

= E eU'X

XGOXIZ-
= D &
XGOXIZ-

= dy.

This shows part 3.
Now we show part 4. Clearly, if z € H(G, K), then z is constant on the orbits of
the action of K on G. That is, z = Y.\_, z,,0p,. Also, note that z * e, = x(2)ey;”

"We are using G is abelian.
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hence, for ¢ € K:

= x(o(2))ey-

Hence, for 0 € K, x € G and z € H(G,K), x(z2) = x(0(2)). In particular, we have
that:

Z*dx;- = E 2 ¥ ey

Since

1] = [

= Y

xeG

l
= > dy,
=0

we have that z = Zgzo zxdy = Zé’:o Xj(2)dy:. This shows part 4.
To show part 5, note that [29] = > _5x(g9)ey. Hence, Op, = >° 5 x(On,)ey.
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Note that, if o € K, then

(0-0)On) = (@00 =)

gEOh.

7

= > (X9

9€0},

= Y xlo )

SO

= ) xl(g)

SO

Thus, x(Op,) = X'(Op,) whenever x, x’ € O,. Therefore,

Ohi = Z X(Ohi)ex

xe@G

l
= Z X;' (th)dxg :
=0

This shows part 5.

Part 6 is shown similarly. Note that e, = |—é‘ > gec X(9)[29], hence

dy = 52{2 X(@)}a?]

geG XGOX/_
i

- ﬁZoX;(gM.

geG
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Similarly as in the previous part, we can show that:

Ou(9) = D xl9)

Thus,

1 9
dy = @ZOXQ(Q)[x]

geG

l
1
= q > 0y (h;)O0n,,
=0

hence showing part 6.
Part 7’s first two equations are clearly a consequence of parts 5 and 6. We show

the last equation. Note that, O, = 6(O,) by the choice of 6 and ;. Thus,

Op(hy) = Y x(hy)
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Thus, by the choice of § and x/, we have that

Be,x(hi,xj) = Oy (hi)

= Xé(Oh]‘)
= Car(X} hj).

Therefore, B(G, K) = Cg k. O

Parts 5 and 6 of proposition 3.3.3 gives the basis change between two basis of
H(G, K). Although not needed here, one can show that the d,s are the primitive
idempotents of H(G, K), and that H(G, K) is a semisimple algebra. Thus, parts 5
and 6 of proposition 3.3.3 gives the character table and the inverse character table of
H(G,K). Also, one can show that H(G, K) is itself an Association Scheme, as it is
an S-ring in the sense of Bannai and Ito in [2]; and also a Hecke Algebra. However,
we will not use this structure.

To prove proposition 3.1.22, we will consider the case when G is an abelian p-group

with K = G5, and we will exploit the identity of part 7 of proposition 3.3.3.
Proposition 3.3.4. Let G be a an abelian p-group. Then,

9 G|
Ace, = ?Im,

where r is the number of Gy orbits in G\{0}, I,, is the identity r x r matriz, and

r=r(Q) is the number of Gy orbits of G = G\{0}.

Proof. Let g1, ..., g, be the distinct orbit representatives of the action of G; on G\{0}.
Let go = 0, and ¢,.; = ng - g; for i = 1,...,r; where ng is a Non-Quadratic Residue
mod p* = exp(G). Clearly, go,1,---,9r, Grs1,- - -, g2r are orbit representatives of the
action of Gy on G. Let x; = 0(g;). With the choices of g; and y; and using proposition
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3.3.3 and corollary 3.1.16, we have that a matrix representation of Cg ¢, is:

1 |091|""Ogr| |Og1|"'|Ogr|
1 Ay A )
1 A A

where Ay = By + wAg g, ;47) = By +WAgg,,° 1is the r x 1 vector of all 1s, and By

is given by:
10y, | if xi(g;) =1,
Bi(xi,g5) = § —olp-g;) if xi(g;) =my and (%) = —1,
0 else.

Now, we proceed by cases. First let p = 3 mod 4. Clearly, —1 is a Non-Quadratic

Residue mod p* = exp(G). Also, @ is the complex conjugate of w, thus:

1 |Og1|"'|Ogr‘ ’Ogl|""Ogr|
Cea, = | 1 Ay Ay
1 4 Ag

By proposition 3.3.3 part 7, we get that Cs6,Ca.q, = |G|I. Thus:

1 |Og1|"'|Ogr| |Og1|"'|09r| 1 |Og1|"'|Ogr| |Og1|"'|09r|
1 Ao Ay 1 Ag Ao
l AO A_O l A_O A()

= |G|I.

8Note that @ is not necessarily the complex conjugate of w but it is instead the Galois conjugate

of w in Q(w).
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From the above equation, we can deduce the following equations:

Jo + AgAp + AgAy = |G, (3.9)
Jo+ A2+ A, = 0, (3.10)
where Jy = JDiag(|Oy,|,...,|0,.|) and J is the r x r matrix of all 1s. Substracting

Equation (3.10) from Equation (3.9), we get:

IGII = AgAo+ AgAy — A2 — Ay
= —(Ao—Ap)(A — Ay).

Note that Ag — Ag = (w — ©)Ac.q, = vV—pAcg,. Thus,

|G|[ = _<\/__pAG7G1 )(\/ijG,Ch)

= pA%LGla
hence, the result follows.
Now, we proceed to prove the case when p = 1 mod 4. Under this case, —1 is a
Quadratic Residue and w is a real number; thus, Ay is a real matrix and Ay = Ao,

Ay = Ay. Therefore, the equation Ce.¢,Caq.q, = |G|I reduces to:

1 |Og1|"'|09r| |Ogl|' '|Ogr| 1 |Og1|"'|Ogr| |091|"'|Ogr|
1 Ao Ao 1 Ao Ao
l :4\6 AO l Z; A()
= |G|I.
Hence, we deduce the following equations:
5 2
|G| = Aj+ Ay + o, (3.11)
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Substracting Equation (3.12) from Equation (3.11), we get:

GII = A2+ Ay — AgAg — AgAg
= (A — Ag)(Ap — Ay).

Under the assumption that p =1 mod 4, Ay — ANO = /PAcc,. Thus,

GII = (VPAca)(VPAcar)

2
- pAG,Gl .

Hence, the result follows. |
As a corollary we get a relationship in the Smith Normal Form of Ag ¢, .

Corollary 3.3.5. Let Si be the Smith Normal Form of Ac.c, and |G| =p™. Then

1. The matriz Ag.c, has Smith Normal Form,
Sqg = Diag((1)™, (p)™,...,(p"™ 1)*1).

2. The exponents of part 1 satisfy am,—1—; = a; for alli € {0,...,m —1}.

Proof. Let S = Sg be the SNF of A = A ¢,, then there are unimodular matrices
E, F such that EAF = S. Thus, A~! = FS™'E. Since A? = p™~'I, we must have
A=p" At € M,(Z) is an r x r matrix of integers. Therefore, as A = pm 1Al =
p"IFSTIE, we have that pm 1S™! = F~'AE~! must be integral since E,F are

unimodular. Let S = Diag(sy,...,Ss,), then:

sst 0 - 0

0 s5° 0
pmflsfl — pmfl ‘2

0 0
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Hence, p™~! is divisible by s;. Thus, s; must be a pth power. Therefore, all invariant
factors of A are powers of p.
If s, < p™ ! then s,A™' = F(s,S™")E € M,(Z) is an integral matrix; but,
s A7l = 1A ¢ M,(Z) as A has entries that are &1 given by columns that corre-
spond to ,, where g; has order p*~'. Thus, s, > p™!. By using a similar argument,

1

we can show that s, > p™~! gives a contradiction. Hence, s, = p™~! and part 1

follows.

To show part 2, note that A = p™~1A~! = p 1 FS~1E. Thus, if,
S = Diag((1)™,..., (p™ 1),
then

A = FDiag((p™y®,..., (1) ")E

= F'Diag((1)* ..., (p" 1)®)E,

where I/ = F'Py and £ = E'P,, for some permutation matrix F,. By uniqueness
of the SNF', we have that ag = a,,—1,a1 = apm—_2,...,a,_1 = ag. Hence, the result

follows. O
+1 p+1

Corollary 3.3.6. Let G = Z/pZ x 7./p7Z, then Ag.q, has SNF Diag((1)"z, (p)"=).

Proof. By the previous corollary, S = Diag((1)%, (p)**) and ag = ay. Since ag+a; =
r = p+ 1, the result follows. O

We calculate Ag ¢, for G = (Z/p°Z) as an illustrative example and leave the proof

as an exercise.
Proposition 3.3.7. Let G = (Z/p°Z), then:

1. A full set of G orbit representatives of G is given by X1 = {1,p, -, p*1}.

2. A commutative pairing for G is given by:

0(a)(b) = .
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3. By using,

X = CQpr ®CQpz® - &,
Y == CQXPS—I EB CQXPS—Q EB ttt @ QX17

where X, = 0(p;), we can calculate Ag g, as:

000 -~ 0 pt

00 0 - p=2 0
AG,Gl =

00 p> -+ 0 0

0Op 0 -+ 0 0

100 -~ 0 0

3.4 Results for Special Groups

We will give two examples of the map 6 : G — G such that 6(g)(¢)) = 6(¢')(9):
then, we will use these s to state GSHDS existence conditions for the special groups
(Z/pZ) x (Z/p*Z).

Our results will make use of Galois Rings, which are defined in proposition 3.4.1.

Proposition 3.4.1 can be shown using standard local algebraic number theory.

Proposition 3.4.1. Let K = Q,(n) be an umramified extension of Q, of degree .
Let O be the ring of integers of K. Define R(p*,a) = pkOgK. Let q = p®, then:

1. R(p*, o) = (Z/p*Z)(n) is the Galois extension of the ring (Z/p*Z) of degree a

and exponent p*.

2. There is a set of “Teichmiiller Units,” 7 = {1,n,...,n72} C (Ok)*, of (¢—1)th

primitive roots of unity in Ok that are distinct mod pO .

3. Every element v € R(p*, ) decomposes into:

v = ro(y)+rm(Y)p+ -+ ()Pt
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where the r;(vy) € T U{0} are unique.

4. The Gal(K | Qp) = (Fr); where Fr, the “Frobenious” map, is defined by
Fr(n) =n".

5. The Gal(K | Q,) induces a group of automorphisms of R(p®,«) that leaves
(Z/p*Z) invariant and is defined by Fr(v) = ro(y)P+r1(y)Pp+- - +rp_1(7)Ppi~L.

6. The Trace map Tr : K — Q,, defined by:
n—1
Tr(x) = Z Fri(z),
§=0

induces a Trace map Tr : R(p*,a) — (Z/p*7Z).

By using Galois Rings, we give a list of H; orbit representatives for H = (Z/p*Z)“

that will prove useful.
Proposition 3.4.2. Let H = (Z/p*Z)* and L={g9 € H | o(g) =p} =p- H.

1. H can be viewed as Galois Ring R(p*, ) by using any isomorphism of additive

groups k : H — R(p?,a). That is, we can define the corresponding multiplica-

tion on H as:
grg = K (k(g)*k(g")).

2. Let r" be number of orbits of the action of Ly = (Z/pZ)* on L\{0}, then r' =
pa—1+pa—2+__.+p+1.

3. Let g = p*. There is a set pi,1 = {k1,...,k,1} of elements of H of order p?,
called the “Teichmuller Units,” such that:

P lg—1 = {p'klv"'ap'ko‘—l}

= I\{0}.
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4. There are sets {l1, ..., L} C pig—1 and {ly,... . Uo s} C pg—1 U{0}, such that,

(a) The elements {p-li,...,p-l.} are orbit representatives of the action of L,
on L = L\{0}.

(b) The elements {p-1,...,p-l._1} are orbit representatives of the action of
(Z/pZ),+) on (L, +).

(c) The elements h;j = l; +p-1;; = li x (1 +pl}) , wherei = 1,...,7" and
j=1,...,p° Y, form a set of orbit representatives of the action of H, on

the elements of order p? in H.

Proof. Part 1 is clear. We show part 2 by observing that L; has order p — 1 and
is acting on, L\{0}, a set of size p* — 1. Since this action has no fixed points,

a direct use of Burnside’s formula for group actions gives the number of orbits as

pr—1
p—1

=p* 1+ p*2 4 ...+ p+ 1. Hence, part 2 follows.

To show parts 3 and 4, we will view H as a Galois Ring; the extra operation of
multiplication will help us construct the desired H; orbit representatives.

Let K = Q,(3) be an unramified extension of Q,, the p-adic numbers, of degree a.
Denote by O the ring of integers in K. Let 7 be the Teichmailler Units of proposition
3.4.1.

Define p,—1 = 7 mod p?Of. Since R(p? a) is a local ring with maximal ideal
given by pR(p?, «), it follows that all units have order p?. Hence, every element of
ftq—1 has order p?. To show part 3, let k; # ks both in ftq—1 such that p-ky = p- ky
in L C H. By construction, there are 77 # 19 both in 7 such that p-n = p -
mod p?Of. Thus, p- (g —1n2) = 0 mod p?O. Since K is an unramified discrete
valuation ring with prime p, it follows that p divides 1, — 19, i.e., n; = 12 mod pOk.
This contradicts proposition 3.4.1 part 2. Hence, p- ji;—1 C L\{0} has ¢ — 1 elements.
Since |L\{0}| = ¢ — 1, it must be the case that p - 1,1 = L\{0}.

Now, we proceed to show part 4. By using standard local algebraic number theory,
we know that K* = (p) X i1 x UY; where (p) = {p’ | i € Z} and UV = {z € Ok |

x = 1+pz where z € Ok }. Thus, we can deduce that R(p?, a)* can be parameterized
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by tuples in the following form:

R(p*, )" = {(ao,a1) | ag € ptg1, a1 € p1g1 U{0}}, (3.13)

where (ag, a1) = ap(1+pa1) € R,(2, «). We note that the parametrization in Equation
(3.13) is more of a multiplicative decomposition instead of an additive decomposition.
That is, (ag,0)(0,a1) = (ag,a1) but (ag,0) + (0,a1) # (ao,a1).

Note that (Z/p*Z) = Z,/p*Z, C Ok /p*Ox = R,(2,a). A direct calculation shows
that:

(Z/p*Z)* = {(bo,b1) | by € pip-1,b1 € pp—y U{0}},

where 1,1 is the subset of p,_1 consisting of the (p — 1)th roots of unity. Note that
the action of (Z/p*Z)* on H is given by multiplication of (Z/p*Z) on R,(2,«). Also,

note that multiplication of tuples has a nice formula since:

(bo,bl)(ag,al) = bo(l +pb1)a0(1 —|—pCL1) (314)
= boao(1 + p(by + a;)) mod p*Ox

= (boag, b + a1),

where the addition in the second coordinate is taken as addition in F,, and multipli-
cation in the first coordinate is taken as multiplication in (F,)*.

Clearly, if we are considering elements of order p?, then we are considering the
elements of R(p* a)*. Also, the action of (Z/p*Z)* = H; on R(p*,a)* = H “de-
composes” via the use of Equation (3.14) onto the action of F; on F; on the first
coordinate and the action of (F,,+) on (F,, +) on the second coordinate.

Let mq,...,m, be orbit representatives of the action of g, 1 on p,_;. Also,

let nq,...,nye-1 be orbit representatives of the action of (F,,+) = p,—1 U {0} on

(Fg, +) = g1 U{0}.
We claim that the set of tuples (m;, n;) = m;(1 + pn;) form a set of orbit repre-

sentatives of the action of (Z/p*Z)* on R(p?, «)*. This will show part 4.
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Let (m,n) € R(p? «)*. Clearly, m belongs to the orbit of some m;,. That is,
there is by € pp—1 such that m = bym,,. Also, n belongs to the orbit of some nj,.
That is, there is by € (F,,+) = pp—1 U {0} such that n = by + n;,. Note that this
means (m,n) = (b, b1)(miy, 0y, ), where (bo,b1) € (Z/p*Z)*. Hence, the list (m;,n;)
is exahustive.

It suffices to show that each orbit is represented by at most one (m;,n;). Suppose
that (m;,n;) and (m;, nj) represent the same orbit H; orbit of H\{0}. Clearly, there
is b € Hy = (Z/p*Z)* such that:

mi(1+pn;) = bxmy(l+pnj).

Since, we can decompose b into (by,by), clearly, (my,n;) = (bo,b1)(mi,n;) =
(bomy, b1 + nj). Thus my = bym,; and nj = by + n;. Hence, forcing i = ¢’ and j = j

by the choice of the m;s and n;s. |

We note that the [ ;s of proposition 3.4.2 may repeat themselves; but, the /;s and

l;s do not.

3.4.1 Examples of ® : G — G

Our first example are s induced by Invariant Factor Inner Products.

Definition 3.4.3. Let G be an abelian p-group with invariant factor decomposition
G = (Z/p"Z) x (Z)p™Z) X -+ x (Z/p™7Z), where a; > ay > -+ > a, > 1. Given
9,9 € G, let g=(g1,---,9-),9 = (g1, - ,4g.), where g;,g; € Z/p“Z. The invariant

factor inner product is defined as:

(g D¢ = D ggp™ " mod p™.
=1

The following proposition justifies the definition of (¢’, g).

Proposition 3.4.4. Let x € CAJ, there is a unique ¢’ = (by,...,b,) € G such that for



110

any g = (c1,...,¢) € G,

xg) = ",
where (¢, = > bic;p™ ™% mod p™, and nya is a fived primitive p®th root of
9,9 i=1 Tp

unaty.

Proof. Clearly, to know the values of xy on G, we only need to know x on a set of
minimal generators of G. Using the notation of definition 3.4.3, f; = (1,0,...,0), fo =
0,1,...,0),..., fr = (0,0,...,1) are canonical generators of G; hence, it suffices to
know y at the f;s.

a1-a; pa1—aib,

Let x(f;) = nf,éi. Since 7pe; = Me, , we have that x(f;) = 1 . Given
g=(c1,...,¢;)=c1- fi+---+c¢ - fr, we have that:

x(g) = xla-fi++e-fr)
= x(f)" - x(f)

— pal_alblcl .. pal_arbrcr
- T]pal p1

— npal‘“l bici+-+p*1 7 hbrcr
= M

_ {99

- npal

It suffices to show that ¢’ = (by,...,b,) is unique when x is fixed. This follows by

construction, as the b;s determine x once we fix the basis f;s. O

Note that in the above proof, the choice of ¢’ = (b1, ..., b,) depends on the choice
of the f;s and of the root 1y« . Thus, the choice of ¢’ is noncanonical. However, the

above proposition gives a way of defining 6.

Corollary 3.4.5. Let 0(¢')(g) = 'r];%/l’wc’, then 6 : G — G is an isomorphism and
0(9')(g) = 0(9)(¢")-
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Hence, we can define Ag ¢, in terms of (¢, g), by:

Zlo(p-g) if (¢, 9)c =np™ ' mod p™,
AG,Gl(OG(g’)vOQ) = (p> “ (315)

0 else.

Definition 3.4.6. When Aq g, s defined using an invariant factor inner product

(,)q, we will say that Ag.q, is induced by an invariant factor inner product.

The second example for 6 is uses the multiplication and trace function in a Galois

Ring. The following proposition will justify our example for 6.

Proposition 3.4.7. Let H = R(p*,a) ~ (Z/p*7Z)® be a Galois Ring of degree a and
exponent p*. Let Tr : R(p*, o) — (Z/p*7Z) be the trace function of proposition 3.4.1,

then the following map 60 : H — H is a commutative pairing:’
Tr(g'=
0 ) g) = ny' "™,

where M. 15 a fived pFth primitive root of unity in C, and g,¢9' € H.

Definition 3.4.8. Let G = (Z/p*Z)~. We will say that Ag g, is induced by a Galois

ring structure when Ag q, s of the form:

where x is multiplication in the Galois Ring G = R(p*, «), and Tr is the trace function

of proposition 3.4.1.

We note that the choice of Tr() depends on the embedding of H = (Z/p*Z)* in
the Galois Group R(p", @), and the choice of 7.

9where H is viewed as an abelian group under +.
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3.4.2 Results for ®s Induced by Invariant Factor Inner Prod-

ucts

As an application of Agq,, using (¢',9),, we will show a result that gives some

algebraic conditions whenever there is a GSHDS in G = Z/pZ x (Z/p*Z)>.

Corollary 3.4.9. Let H = (Z/p*Z)* and L = p- H = (Z/pZ)*. Then, there is an
ordering of the orbits of the action of Hy on H\{0}, such that:

0 pAL,Ll s pAL,L1
} Ma,p
AL,L1 pJH,1,1 s PJH,Lpa—l
AH,Hl == . . . o1 )
p ma,p
AL7L1 pJH7pa71’1 A pJH’pa717po¢71

where Jy;; has nonzero support on the zero pattern of App,, and my, = p* ' +

Pl p+ 1

Proof. We will organize the orbit H; orbit representatives according to the parametriza-
tion of proposition 3.4.2. Using the notation of proposition 3.4.2, consider the follow-

ing enumeration of the orbits:

{p-li,....,p- L} for elements of order p,
{h+p-ly b t+p-loy, i +p-la, .., for elements of order p?.
lyr+p- lrl727 ol +pe llea—l, vyl +p- ZT/7pa—1}

Using the above enumeration, we can calculate Ay g, as the following:

Ao,o PAo,l s ]9140,pa—1
A1,0 pA1,1 ce pAl,p"‘*l
AH,Hl X . 5
Apoz—170 pApa—lJ e pApa—lma—l

where the A, ;s are all ' x 1’ matrices; A ;, where 1 < j, is defined on tuples of the
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form (p-ly, li+p-1; ;); Aio, where 1 < i, is defined on tuples of the form (Ix +p-Ij ;, l1);
Ay is defined on tuples of the form (p - ly,p-1;); and A;;, where 1 < 4,1 < j, is
defined on tuples of the form (I +p -l ;I +p -1 ;).
We proceed to calculate the A; ;s using Equation (3.15). First note that:

«

(a1, a0), (b1 ba))y = > aibi,

i=1

hence, (g, ¢'); is the regular inner product.

We calculate Ag. Since Ao is valued on tuples of the form (p - ly,p - l;) and

p-lp-leyy = by

= 0 mod p°.

By Equation (3.15), Ago = 0.
Now, we calculate A, (1 <i). Since A, is valued on tuples of the form (I + p -

lyi:p - lr) and

<lk +p : l;g,ﬂp ' lt>H = p<lk7 lt>H +p2<l;<:7ialt>H
= p(l, ls) ; mod p?

= p(l, 1), mod p*,

where [}, is the result of taking all the coordinates of I, mod p. Hence, by using
Equation (3.15), we have A; = Ay, ,. The proof that Ay ; = Ay, is similar to this
case.

It suffices to show that A, ;, where 1 < 4,1 < j, has nonzero support on the zero

pattern of Ay r,. Clearly, A;; is valued on the tuples of the form (I, +p-l} ;, l; +p-1; ;)
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and

(In +p- l;f,h li+p- l;b,j>H = (I, lt)H +p(<l;c,i7 lt>H + (It li/i,j>H)
+p2 <l;c,i7 l;,j>H
= <lk’7lt>H

"’p((l;c,ia lt>H + (s, l;,j>H) mod p?.

Hence, if A; j(lx +p -l L +p- 1 ;) # 0, then (I +p -, le +p- 1), = pf mod p?
where f € {1,...,p—1}. Thus,

pf = (lu+p- l;mwlt +D- lz/t,j>H

= <lkalt>H +p(<l;c,zalt>H+ <lt7l7/§,]>H) mod p27

hence, (I, ;) ; = 0 mod p. But (I, ;) ; = (E,E)L mod p. Thus, if A; ;(lk+p-1} ;i +
p-li;) # 0, then (Ig, It); = 0 mod p. That is, A;; is nonzero on a subset of the zero
pattern of Ay 1. O

Corollary 3.4.10. Let H and Ap g, be given as they are in corollary 3.4.9. Let

Jain JH 1 pa—1
/ . .
BH = : “ e : s

Jrpe11 - JHpa-igat
and By = pBYy;. Then,
1. The matriz By has zero row sums, i.e., ByJ = 0; and, Zf:l Jri; =0.
2. The matriz By, has zero column sums, i.e., JBy = 0; and, Zf:l Juij = 0.
3. The matriz By satisfies B3, = H:T‘BH = p?*~ 1 By.

4. The matriz By satisfies B3 = p** '] — p® Jya-1 po-1 @ L.
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Proof. This is a consequence of A% ;= p**~'I. Consider:
p2a—1[ —
0 PAL L, PAL L, 0 PAL L,
pJHJ pa—l

AL,Ll pJH,1,1

AL,L1 p‘]H,po‘*l,l

Equation (3.16) gives:

pJH,1,1

pJH7pa71 pafl AL7L1 pJH7pa7171
pa—l
p(ZJH”)ALLl = 0,
j=1
pa—l
pALL, (> Jui) = 0.
i=1

From which parts 1 and 2 follow.

Note that Equation (3.16) also gives the following equation.

pA%le + Z(p‘]Hvi,k)(pJH,k,j) = 5i7jp20‘_1],

a—1

p

k=1

Since A7 ; = p* ', we get that

a—1

p

Z(pJH,i,k)(pJH,k,j) = G ;p?* ' —p°L.

k=1

From which part 3 follows.

(3.16)

pAL,L1
pJH,l,po‘_1

pJH7pa717po¢71

(3.17)
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To show part 4, apply By to Equation (3.17),

a—1 a—1

p p

> Win) 0Tankg)0Tu) = D (60" = p ) (p T )
k=1,j=1 j=1

a—1 a—1

p p

= > 0 0 Tug) = 0 Y (0T 0)
j=1 Jj=1

a—1

P

= Z 80”0 T 1)

J=1

— p2a71(

pJH,i,l),

from which part 4 follows. O

Corollary 3.4.11. Let D C H = (Z/p*Z)* be a QRS, such thatd = (dg,dy, ..., d}, 1)
s the representation of D with respect to the choice of Hy orbit representatives of
corollary 3.4.9. Let L =p-H ~ (Z/pZ)®. Assume that Ay py,d = p*td, where p*~'d
1s the difference coefficient vector of D. Then,

1. The following holds for d, AH7H1J = p°d.

2. The following holds, Ay, 1,do +p2§:1 Jiiid; = i where 1 <4 < po L.
3. The following holds, Ay 1, dg +p2§:1 Jiijd; = p¥di; where 1 < i < p* 1.
4. All the entries of Ar r,do are divisible by p.

5. All the entries of AL,LIJO are divisible by p.

1

6. The difference coefficients of dy in L satisfy Ap 1, do = ZPW d;.

i=1
. ~ ~ a—1
7. The following holds for dy, Apr,do =p> 1, d;.

Proof. Part 1 is a consequence of the equation A}y = %[ . Parts 2 and 3 are
consequences of the equations Ay g, d = p*td and A H, chZ = p®d. Parts 4 and 5 are
consequences of parts 2 and 3. To conclude part 6, sum the equation of part 2 over

the distinct values of ¢ and use the identity Zg’:l Ju,i; = 0 from corollary 3.4.10
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part 1. To conclude part 7, sum the equation of part 3 over the distinct values of ¢

and use the identity Z?:l Ju,ij = 0 from corollary 3.4.10 part 2. |
Now we prove some results for the group G = (Z/pZ) x (Z/p*Z)*.

Proposition 3.4.12. Let G = (Z/pZ) x (Z/p*Z)* and D C G a GSHDS. Let H =
{0} x (Z/p*Z)* C G and L=p-H ~ (Z/pZ)*. Let D' = HND and D" = LN D.
Let d' be the vector of £1s representing D' using the orbit representatives of H in
corollary 8.4.9. Hence, d' = (dj ,d{,. .. ,dﬁ;,l) where d is a (p* P+ +p+1) x 1
vector of £1s. Also, let ciz-/ be the difference coefficients corresponding to Hy classes

in d}. Then,
1. The following holds, Ay p,d = pLd" and AH7H1J/ = p*d'.

2. The following holds, App,dy+p Y, Juigd, = p*~'d; ; where 1 <i < p*~.

3. The following holds, ALJJlazO/ +p2§:1 JHJ-JCZJ.I = pd}; where 1 <1i < p*~1.
4. All the entries of Ap 1, dj, are divisible by p.

5. All the entries of ALLlcio/ are divisible by p.

a—1 ~/

6. The difference coefficients of dyy in L satisfy Apr,dy = 5, d; .

i=1
7. The following holds, AL,LchO, = piiIl d..

Proof. We use the same technique as in proposition 3.2.7. Let x’ be any nonprincipal
character of H; let y; be an extension of X’ from H to G. Let D be a GSHDS of G.
By corollary 3.2.2,

(204+1)—1
p 2 - —~(no)
du(X',D") = mﬂDﬂXlHTl—W “NxHT|}

- %{@m i HT| = D™ oy H [}

= YDy H"| - D" Ny HT)},

hence, all difference coefficients of D’ are divisible by p®~!. Thus, parts 1 through 7
follow by corollary 3.4.11. O
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Proposition 3.4.13. Under the assumptions of proposition 3.4.12, let o = 3; then,

1. The set D" s a GSHDS in L.

2. Let p, : G — G be defined as py(x) = p-x. Clearly, u,(G) = L. Let H =
ker(u,). Clearly, H = {x € G | p-x = 0}. Let dpnr be the QRS space
representation of £1 of D" = DN L in L. Let vg g be the vector of difference

intersection numbers of D with respect to H' in G. Then,
)
Vg = P dpnr.

3. The difference coefficients of djy, in L are divisible by p. That is, Ay 1, dy = pd_ol,
where d_ol is a p® +p+ 1 x 1 vector of £1s.

4. The difference coefficients of d' in H are divisible by p*. That is, Ay g, d = p*d

for some integral vector d.
~ — —/
5. The following holds, AL,leO/ = pdy for some integral vector d .

—
6. The following holds, dy = 37", d;.

=1

2 ~/

7. The following holds, pdy = S d; .

=1

Proof. Clearly, dj, is a representation of D”. Hence, by part 4 of proposition 3.4.12

Ap 1, djy a multiple of p at least. That is, all the difference coefficients of D" in L are

multiples of p. By proposition 3.1.10 part 4, we conclude that D” must be a GSHDS.
Now we proceed to show the second part. Clearly, by proposition 3.2.8,

3
pdﬁmL = AL,Lll/G,H’-



119

Consider,

P = AL, vem
= p* AL dpny
= p3pdDmL because D N L is a GSHDS

= p4dDﬂL7

hence, the second part follows.
The remaining parts follow from parts 1, 2, 3, 4, 5, 6, and 7 of proposition 3.4.12.
O

3.4.3 Results for Os Induced by (Galois Group Structures

In the following we will let G = (Z/pZ) x (Z/p*Z)***' = (Z/pZ) x H, where H =
(Z/p*Z)?* and L = pH ~ (Z/pZ)**!.
In the construction of the H; orbit representatives of proposition 3.4.2, we will pick

2
ue_ .. . .
M% L consisting of Quadratic Residues of

p—1

the set {ly,...,l} C py—1 to be any slice of
tq—1. We will do this to deduce group algebra equations. The following proposition
justifies the choice of the I;s.

2

Proposition 3.4.14. Let g = p***! then any slice of Zg*l is also an slice o %
p—1 P—
2

Proof. Clearly, the number representatives in a slice of Zg—l is the same as the number
p—1

of representatives in a slice of % It suffices to show that: if x,y € ,ug_l are inequiv-
o
alent mod M;Q;—p then they are inequivalent mod p,_;.'° Thus, suppose otherwise;

i.e., x,y are inequivalent mod ,uf,_l but they are equivalent mod p,_1. Let z = y1,

where ¢ € up_l\,uf,,l. Clearly, the quadratic residue symbol (5) is a multiplicative

10in the multiplicative sense.
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character of 11,_;. Hence,

Therefore, 1 is a quadratic residue in 4. Thus, p,—1 C ug_l. The following claim

will give us a contradiction.

Claim 3.4.15. Let p be a prime and q = p°, then: F; C (F:)? if and only if ¢ = p*®

s an even power of p.

Proof. (=) If ¢ € (F;)\(F})?, then the splitting field of ¢ over F, must be contained
in F,; Hence, Z/27Z must be a subgroup of G(FF, | F,), the Galois Group of F, over
F,. Note that G(F,,F,) = (Z/BZ); thus, 2 must divide § since (Z/2Z) C (Z/5Z).
(<) Let 4 € (F;)\(F3)?, then the splitting field of ¥ over F, has degree 2; hence,
it has Galois Group (Z/2Z) and order p?. Note that the Galois Group of F, over F, is
(Z/2aZ). Hence, F, has a subfield F with Galois Group (Z/2Z) and order p*. Since,
the field of p? elements is unique modulo field isomorphisms, it must follow that I is

the splitting field of ¢. Thus, ¢ € (F})* and the conclusion follows. O

By the previous claim, we arrive at a contradiction. |

2
Hg—1

2
Hp—1

We note that our choice of ;s is also a multiplicative group since is naturally
a multiplicative group. This property will prove useful. Also, instead of using the
pairing 6 of corollary 3.4.5 to calculate Ay p,, we will use another pairing that is
induced by the Galois Ring structure of H = GR(p?,23 + 1). The pairing 6 that we

will use is:

Tr(g'
og)g) = R,
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where T is the trace map of the Galois Ring GR(p? 23 + 1) = H, * is the product
operation of the Galois Ring, and fy() is defined in definition 3.1.18.
Under the choice of the [;s and 0, we can prove similar results as those deduced

for the case when 6 is induced by (,) -

Proposition 3.4.16. Let H = (Z/p*Z)***' and L = p- H ~ (Z/pZ)***'. Then,
there is an ordering of the orbits of the action of Hy on H\{0}, such that:

0 pAL,Ll e pALle
mop+1
AL,L1 pJH,l,l e pJH,l,piB } 6+1,p
Agm, = _ ) . 2 ’
p Bm26+17p
Apny plapsa 0 DImgpee s

where magi1p, = + 1+ p+ 1L
Proof. The same proof of corollary 3.4.9 will hold since T'r is a bilinear function. [

Proposition 3.4.17. Let H and Ap g, be given as they are in proposition 3.4.16.
Let

Juan o Jwgpes
/ . .
BH — : e : s

Japesn o Jppes 8
and By = pBYy. Then,
1. The matriz B}y has zero row sums, i.e., By J = 0; and, Zf:l Juij = 0.
2. The matriz By has zero column sums, i.e., JBy = 0; and, Zf:l Juqj = 0.
3. The matriz By satisfies B3, = %BH = p?*~1By.
4. The matriz By satisfies By = p** ' — p® Jya-1 po1 @ L.

Proof. The proof is similar to corollary 3.4.10. OJ
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Proposition 3.4.18. Let j be the vector all 1s. Using the assumptions on the l;s and
the results and notation of propositions 3.4.16 and 3.4.17, where H = (Z/pZ)***!
and L =p- H ~ (Z/pZ)**L, the following hold:

1. The matriz Jg s+ has constant row sum. That is, Jg 5] = AstJ for some integer

st More percisely,

p*’
Tr' (1 + p(s + lé))))
)\s,t = ( . )
s
where Tr'(x) : GR(p*,26 + 1) — (Z/pZ) is given by fo(Tr(x)).

2. The matriz Ar 1, has constant row sum. That is, AL,LLZ = eopﬁi where ¢y €
{1,-1}.

3. Let L = [[As4]], the matriz formed by the As¢s. Then,

L2 — pQﬂ—l(pQBI o J)

4. The matriz L of part 3 is self transposed. That is, LT = L.

Proof. Part 1 is a direct consequence of our choice of [;s, they form a group under
Galois Ring multiplication, and the choice of 6(g)(g’). Clearly, Jy s+ is a matrix on
the tuples (/;(1 + pl}),[;(1 + pl})); hence, the ith coordinate of Jy 4 ,j is equal to:

§ (Tr’(li(l + ply)l; (1 +pl£))) _ § (Tr’(lilj(l +p(l + l;)))> |

D D

7j=1 t=1

Note that (1+p(l}+1})) is fixed in the above sum. Also, l;l; = l5(jy0; j where: o is the

1

2
. . . we . . .
induced permutation action of I; on PR and o;; € ,ug_l is some quadratic residue

2
p—1
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mod p. Clearly,

(Tr’(zizj(l +p(l, + lé))))

Tr' (o) 1+p(l’ +l’)))>
b

_ é%) < a)(l ;p(l’ + l’))))

(Lo (1 + p(U +l’)))>

where [, = 1+ p(l; +1}). Hence, the ith coordinate of Jy ,j is equal to:

;’i (TT/(lilj(l —Z)p(l; +z;)))> _ ZB: (Tr (zp(j)z;gt))
SC

which is a value that is independent of ¢ but dependent on s,¢. This shows part 1.
Now, we proceed to show part 2. Note that by the choice of the [;s, the vector

of all 1s ,j, represents the Quadratic Residues (IF;%H)? of L ~ (F,26+1,+). Hence

Apr,j = p?d for some vector d of +1s, since J is a GSHDS in L. Clearly, the ith

coordinate of Ay, r,j is given by:

()

)2
25+
IF*)Q

where I; = [; mod p and I; = I; mod p. Clearly, {l, -+ ,l.} = is a group;

and, by using a similar reasoning as part 1, we can deduce that the ith coordinate of
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Ap,r,J is given by:

j=1 j=1
_ TZ'(TT'@)
- (5
= €0pﬁ7

where ¢y = £1. Thus, the ith coordinate A 1, j is independent of i and the second
part follows.
To show part 3, consider the following equation from proposition 3.4.17.

p?°

Z(pJH,i,k)(pJH,k,j) = (5i,jp4ﬁ+1[_p2ﬂ+1[ (3-18>

k=1

By multiplying(3.18) by j and simplyfing, we get part 3.

Part 4 follows from Jy st = Jus. O

We will identify each block Jp ; ; of Ay g, with the element I, € ZZjBig{ r~ gzig ~
(Z/pZ)?. Under this identification, the matrix L of proposition 3.4.18 can be thought
as a matrix over entries indexed by the elements of (F,2s+1,4) mod (F,,+). Hence,
the matrix L can be viewed as indexed by elements in (Fj2s,+) ~ (Z/pZ)*’ = K.
Thus, for each [ denote k; the corresponding element in K. We will assume an

ordering of the I}s such that [; corresponds to the 0 element of K.

Let us introduce the following element of Z[K].

LO = Z /\Lil'ki

k,eK

We will show some properties of Ly, and we will use Ly to stablish an existence

condition for GSHDS in G.

Proposition 3.4.19. Let px be the reqular representation of K with action on Z =

@fz Cey,. Then,
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1. Forge K, px(9~")L = Lpk(g), as matrices.

2. Forx € K, Le, = X(Lo)ex where:

1 _
ex = TBZX(k)e’f'
p keK

3. For x € K, x non principal. xX(Lo)xX(Lo) = p*~1L.
4. Let xq be the principal character of K, then xo(Lo) = 0.

5. The following holds for Lq in the group algebra of K,

Lo * L(()_l) _ p4ﬂ—1[x0] _p2ﬁ—1K(x).

Proof. We proceed to show part 1. Let k; € K and [} the corresponding element to

k;. Consider o = 1+ pl’; € H, clearly, (0)* = o3 since,

Tr(go(g')) = Tr(g(1+pl))g)

= Tr((1+plj)gg’)

= Tr(a(g)g)-
Hence, ((0)*)~' = (0)~" =1 — plj,.
By proposition 3.1.21, it follows that:
px(1=pl)Aga, = Ammpx(1+0pl)). (3.19)

We note that px (1+pl}) permutes the blocks Jy ¢, and it acts like pg (k;) when we
identify the blocks Jp s with their corresponding elements of K. Similarly, px (1—pl’)
acts like pK(kj’l) on the blocks Jy s 4.

We will show

ok = Lox(ky), (3.20)



126
by showing that the columns of the left-hand side equal the columns of the right-
hand side. Thus, consider the column of the left-hand side of Equation (3.20) that

corresponds to ks. Clearly, this equals to

>\1,s
pr (k)

Ap268 5

Clearly, this is equal to the left-hand side of Equation (3.19) after we multiply it on
the right with the vector:

€L - . 9

s

where the 1s corresponds to the block {l;(1+ pl.), ..., L.(1+ pl.)}.

Note that when we multiply the right-hand side of Equation (3.19) by e, on the
right, we get the column that corresponds to k, in the right-hand side of Equation
(3.20). This establishes part 1.

For part 2, consider the matrices:

P = =5 S WRox(h)

keK

where y € K. Clearly, the set of P, forms a complete set of orthogonal projections.



127

That is, Y .7 P, =1 and P, P,y = 0, ,P. Also, one can calculate P e, = d, /€.

xek

By part 1, we can show P7L = LPy/ for all x'. Hence,

PyLe, = LPye,
Le, if X' =Y,

0 else.

Thus, Le, belongs to Im(Px) = (eg). Hence,
Le, = aey,

for some complex number o € C. We can calculate the number o by considering the

first row of Le,. Clearly, this row has value:

LOTGX = <L07€Y>

X(Lo)
p¥

On the other hand the first row of aey has value ﬁ. Thus, a = X(Lo). Hence, part
2 follows.

Now, we proceed to show part 3. Note that by part 2:

Le, = X(Lo)ex,

Lex = x(Lo)ey,
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hence,

X(Lo)X(Lo) = X(LO)Y(LO)%@Y
= (Lep)" (Ley)
= e%LTLeX
= e%LQeX
= (P (PPT — ))ey
= pw’le%ex
— M
Thus, part 3 follows.
Clearly, part 4 follows from proposition 3.4.17, since the row sums of B}, are zero.
This forces the row sums of L to be zero. In particular, the sum of all the entries of
Ly are zero.

Part 5 follows from parts 3 and 4 by using Fourier inversion. |

The next result, gives a solution to an equation in the group algebra of K whenever

there is a GSHDS in (Z/pZ) x H.

Proposition 3.4.20. Let D be a GSHDS in (Z/pZ) x (Z/p*Z)*’*L. Then, there are
elements A and B in Z|K| such that:

1. The following holds, p*’ A = xo(A)K (x) + Lo * BV ; where xq is the principal
character of K.

2. The following holds, p*® B = xo(B)K (x) +pLo* AV ; where xq is the principal
character of K.

3. The principal character of A is given by xo(A) = p®Legby, where ¢ is £1 and

by is an integer.

4. The principal character of B is given by xo(B) = p°epag; where ey is £1, and

equal to the ey of part 3; and, ag is an integer.
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5. All the coefficients of A are odd, and xo(A) is odd.

6. All the coefficients of B are odd, and xo(B) is odd.
7. The integers ag and by are odd integers.

Proof. We will proceed using the same analysis as proposition 3.4.11 and proposition
3.4.12. Let us assume that there is a GSHDS D in G = (Z/pZ) x (Z/p*Z)*°+1. Let
H = {0} x (Z/pZ)***', L=p-H and K = 777 Let D' = HND and D" = LND.
Let d’' be the vector of £1s representing D’ using the H; orbit representatives of H in
proposition 3.4.16. Clearly, d' = (df ,d{", ..., d%;;), where dj is a (p*" +---+p+1) x 1
vector of £1s. Also, let cZ/ be the difference coefficients corresponding to the H; classes

in d;. Using the same technique as in proposition 3.2.7, for y’ € Ha nonprincipal

character, and x; any extension of x’ to GG, we have by corollary 3.2.2:
du(x, D) = p{[Drad”| - [D" Ny H"]), (3.21)
where HT = (Z/pZ) x {0}. Thus, we have:

AH7 Hy dl — pQﬁyl

Y

where v/ = (5", /", ..., v/,) is a vector of odd integers between —p and p whose

entries are defined by the right-hand side of Equation (3.21).
Using the form of Ay y, given by proposition 3.4.16, we get the following equa-

tions:
pZALle; = Py, (3.22)

AL,L1d6+pZ JHJ'J'CZ; = pzﬂl/;. (323)

j=1

By taking the inner product of Equation (3.22) with j and using the fact that Ag L, =
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Arr,, we get

thus,

Z <d;71> = pﬁ_1€0<l/(/)71>'

Let a = (a1,...,a,0s)", where a; = (di,j), and let b = (b, ..., bys)", where b; =

<I/Z,,l> Also, let ag = ( 6,1} and by = (V(’),l').
We have shown that

<a,l> = pﬂ71€0b0.

Now, we will take the inner product of Equation (3.23) with j, we get:

p*°
(Aps,dy, §) + 0> Tnagds, j) = (v}, 5),
j=1

where we used J};,i,j = Ju,i ;. Hence, we have the following simplification:

p2s
Eopﬁ<d6,l>+p2)\%]<d2,l> = p25<1/£7j>’
j=1

or,

p*’
eop’ao +p Z Nija; = pPb;,
j=1

thus, we can deduce the following matrix equation:

p?ty = pﬁ_leoaoi+La.

(3.24)

(3.25)
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Performing the same analysis but starting with the equation Agy g1/ = p*?d,

we get the following equations:

<b’j> = pBEOCLOa

pPa = €0p’8_1bol+Lb.

(3.26)
(3.27)

Let A be the element of Z[K]| that has value a; at k;, and B be the element of

Z[K] that has value b; at k;. We will use Equation (3.25) to establish a condition on

the character values of A and B.

Let x be a nonprincipal character of K. Equation (3.25) gives:

PP Hbey) = eaop’ ' (j,ex) + (La,ey).

Since x is nonprincipal, we have (j, e, ) = 0. Thus,

pmil(eva) = <€X7La’>
= (Lex,a>

= (X(Lo)ex, a)

= Y(LO) <6Y7 a>'

Since, for any a, (e,,a) = ﬁy(a), we have:

p*7IX(B) = X(Lo)x(A),
p7IX(B) = x(Lo)X(A).

Similarly, using Equation (3.27), we get:

p*x(4) = x(Lo)X(B).

(3.28)

(3.29)

To show part 1, suffices to show that the left-hand side of part 1 and right-hand

side of part 1 have the same character values; the equation will follow by Fourier
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inversion in K. Note that for any nonprincipal character, Equation (3.29) shows that
the left-hand side of part 1 and the right-hand side of part 1, do indeed, have the same
character values. It suffices to show that the same holds for the principal character.
The principal character of the left-hand side of part 1 is p**yo(A). On the other

hand, the principal character of the right-hand side is:

XO(XO(A)K(x) + Lo * B(_l)) = XO(A)I?% + XO(LO)Y(B)

= Xo (A)ngv

where we used xo(Lo) = 0. This shows that part 1, does indeed, agree on both sides
at the principal character. Thus, part 1 follows.

To show part 2, we use a similar analysis. By using Equation (3.28), we can deduce
that the left-hand side of part 2 has the same character value as the right-hand side
whenever the character used is nonprincipal. Thus, it suffices to show the same for
the principal character yo. Clearly, the principal character of the left-hand side of
part 2 is p*’xo(B). On the other hand, the principal character of the right-hand side

18:

Xo(xo(B)K (2) + pLo * ATY) = xo(B)p* + pxo(Lo)X(A)

= XO(B)pQﬁ-

Thus, part 2 follows.

Clearly, part 3 is Equation (3.24) and part 4 is Equation (3.26).

We will show parts 5, 6, and 7 together. First, we will show that a; is odd for
i =0,...,r". This will show that: all the coefficients of A are odd; ay is odd; xo(B)
is odd, by part 4; xo(A) is odd, since it is the sum of an odd number of odd numbers;
and by is odd, by part 3. Finally, we will show that b; is odd for i =1,...,7".

Consider a; = (dj, j). Clearly, d} is a vector of £1s of length 1" = p* +--- +p+1.

Let x be the number of entries in d; that are +1, and let y be the number of entries
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of d} that are —1. Clearly,

r—Y = a,,

r+y = 1.

Note that " = 1 mod 2. Hence, the above equations mod 2 give a; =z —y=x+y =
r’ = 1. Thus, a; is odd.

/

It suffices to show b; is odd for i = 1,...,7. By manipulating Equation (3.27)

algebraically we can deduce:

pwa—eopﬁflbgl’ = Lb.
By multiplying the above equation by L on both sides, and simplyfing L? by using

proposition 3.4.18; we deduce.

L(p”Pa — eop” 'boj) = p” ' (p*’I — J)b. (3.30)
Note that mod 2,
p*Pa— EOPﬁ_lboi = J—J
p— O’

hence, Equation (3.30) mod 2 implies:

0 = (I-J)b
= b— XO(B)l
Thus, all the entries of b are odd. |

We leave as open problem to determine the feasibility of the elements A, B € Z[K]|

derived in proposition 3.4.20. We note that the element Ly can be nontrivial to
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calculate.

3.5 Results for General G

We close this chapter by showing two existence conditions for a general abelian p-
group G. The first result, due to Johnsen in [11], is the first exponent bound known
for Skew Hadamard Difference Sets. The second result is a relation between the
difference intersection numbers vg g (D, h) and the difference coeflicients dg(x, D),

where we use a special subgroup H C G.

3.5.1 Johnsen’s Exponent Bound

We show Johnsen’s exponent bound, which is a special case of Xiang’s exponent

bound, to demonstrate the usefulness of the incidence structures A¢ g, .

Proposition 3.5.1. Let D C D be a GSHDS, where |G| = v = p***! and exp(G) =
p°. Then, s < a+1.

Proof. Let,

G = (Z/p°Z) x (Z/p™ZL) X --- x (L[p"Z)
= (Z/p°Z) x L,

where s > ag > - -+ > a,. Consider the projection:

7:G— (Z/p°Z) = H,

where, ker(m) = L. By proposition 3.2.8, we have:

Apmver(D) = dg(D,H),

where v (D) are the difference intersection numbers of D with respect to L in G,

and dg(D, H) are the difference coefficients of D with respect to the characters of H
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extended to G. Since D is a GSHDS, we must have:

Agmver(D) = p*ds.g

where H — G by mapping x € H — xXomeE G. By multiplying by Ay g, on both

sides and using proposition 3.1.22, we have

P ver(D) = p*Anmdpag,
hence,

P (D) = Apmdpag-

By proposition 3.3.7, we deduce

o0 0 --- 0 pt

00 0 --- p2 0

00 L2 0 0 dﬁnﬁ = ps_l_aVG,L(D)'
p « .

0Op 0 --- 0 0

10 0 --- 0 0

By looking at the last row of the previous matrix equation, we deduce

+1 = p" " uer(D, x1),

1+a—s

hence, p is integral and the conclusion follows. O

3.5.2 A Special Condition

We will assume a general abelian p-group G that admits a GSHDS D. We will
consider the map p, : G — p-G = H C G given by pu,(x) = p-x. We will denote the
ker(u,) by L.
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We will work toward showing the following proposition:

Proposition 3.5.2. Let dpng be the QRS representation of £1s of DNH and vg 1, be
the difference intersection numbers of D with respect to L in G. There is an integral

vector ¢ such that:

pc = (a'p - bp)dDmH —Vag,L,

where ay, b, are integer constants depending on p and o

We start by introducing the definition of the constants ay,b,. For this, we will
need the algebra Ap induced by D in Z[G].
3.5.2.1 The Algebra Induced by D

Proposition 3.5.3. Let D C G be a GSHDS. Then, Ap = (D, D) [1]) C Z[G] is

a three-dimensional subalgebra of the group algebra.

Proof. The GSHDS conditions give:

DD™) = ky[1] + AD + AD™)
DD = (k—ko)[1]+ (k—=X—1)D + (k — \)D"),
DmIDM) = (k — ko)[1] + (k — A — 1)D™) + (k — \)D,
hence, the algebra (D, D) [0]) is three-dimensional. O
Definition 3.5.4. Let D C G be a GSHDS. The constants a,(G),b,(G) are defined
by:

DP = (G)1] + a)(G)D + b, (G)D".

The next proposition shows that the constants a,(G), b,(G) do not depend on the

structure of G; but, rather on the order of G.
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Proposition 3.5.5. Let G, G’ be an abelian groups such that |G| = p**™' = |G'|. If
there are GSHDS D C G and D' C G', then:

ay(G) = ay(G),
bp(G) = by(G).

Proof. Tt is sufficient to show that the algebras Ap and Aps are isomorphic. Clearly,
the structures of these algebras depend on the parameters of D and D’; hence, it
suffices to show that D and D’ have the same parameters. Note that D and D’

indeed have the same parameters since |G| = |G’|. O

By proposition 3.5.5, we can drop the G in the notation of the structure constants

a,(G),b,(G). The simplest example of the structure constants a,, b, is for the prime

= i — v=3v—1 — v=3uvtl
p = 3. For this case, a3 = “72*5~ and b3 = “ ==,

By considering G = (Fj2a+1,+), we can show a divisibility property of the struc-

tures constants a,, b,.
Proposition 3.5.6. Let D C G be a GSHDS, where G is a p-group. Then,
p | (ap—by).

Proof. Let G = (Fjp2a+1,4), D be the GSHDS given by the Quadratic Residues of
F 2041, By definition,

DP = ¢,[1] +a,D +b,D")

(D™ = ¢,[1] + a,D™ +b,D,
hence,

DP — (DY = (g, —b,)(D — D). (3.31)
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Also, by using the binomial theorem, there is C' € Z[G] such that:

D? = p,-D+pC,

(DT =, - D) 4 pC).

Since, G is elementary p-abelian, we must have u, - D = k[1] and g, - D) = K[1].

Hence,
DP — (DM = p(C — O, (3.32)
By equating equations (3.32) and (3.31), we deduce
(ap = b)(D = D)) = p(C =),
hence, the conclusion follows. |

3.5.2.2 The Result

Proposition 3.5.7. Let dpnm be the QRS representation of £1s of DNH and vg 1, be
the difference intersection numbers of D with respect to L in G. There is an integral

vector ¢ such that:

pc = (a, —by)dpnn — var,

where ay, b, are integer constants depending on p and o

Proof. We apply the same technique of proposition 3.5.6. Let H = p, - G C G, and

L = ker(p,). Clearly, a similar reasoning as proposition 3.5.6 gives:

(ay —b,)(D = DI")) = DP — (DO

= pp- (D= D) 4 p(C = C™)),
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We restrict the previous equation to H. Thus, we deduce a similar equation in Z[H]:
(ap = b)) (D = DY) = iy (D= D)+ p(Cr = Cf).
We view the previous equation as an equation of Compact QRSs. Hence, we deduce:
(ap — by)dunp = ver(D)+ pe,

where c is the integral vector corresponding to the Compact QRS: C'y —C’gO). Clearly,

the conclusion follows from the previous equation. |
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Chapter 4

Equivariant Incidence Structures

In this chapter, we will study the inclusion matrices W,y of t-subsets vs. k-subsets
and their corresponding versions when the action of a permutation group is present.

In the first section, we will go over preliminary material about the space:
Homg(N,M) = {T|T:N — M ,TisaG-map},

where N, M are G-modules; also, the Smith Group of integral matrices, and the
Johnson Scheme J(v, k). These results will provide background for the sections that
will follow.

In the second section, we will consider G-modules N, M when the G-action is
given by a permutation action. We will study the Johnson Scheme that arises from
the action of G, and we will show results analogous to the results given for the Johnson
Scheme J(v, k) in the section of preliminaries.

In the third section, we study the analogous matrices, My and My, of W when
the G-action is given by a permutation action. We show bounds on the exponent of
the Smith Group of My, and My, and we demonstrate that M, and My, have full
rank. Also, we give a partial answer to the integral preimage problem for M, and
My, and we give a brief study of the kernel of M;; and M.

In the fourth section, we introduce the concept of a “positive equivariant G-
signing,” and give some conditions on the existence of such signings.

In the fifth section, we consider the case when G' = Stab(2), where €2 is a partition



141

of {1,...,v}. We give examples of (¢, k)-bases that admit a stabilizer group of the
form Stab(£2). We provide reduction results for showing that sets (3 of columns of
Wi, form a (¢, k)-basis, and admit a positive equivariant G-signing. We formulate a
conjecture about positive equivariant G-signings for special (t, k)-bases.

In the sixth section, we study the case when G = (Z/nZ). We find a (2,3) and
(2,4)-basis by introducing a partition of the orbits of G on the k-subsets. We use
these bases to calculate the Smith Groups of My 3, M; 5, My 4, M, 4, and we give some

partial results for the case (3,4).

4.1 Preliminaries

4.1.1 G-maps and (G-spaces

Most of the results of this section are elemental, however, we include them for com-
pleteness. We will assume that T : V — W is a G-map of G-spaces where the
vector spaces are taken over the complex numbers C. We will also assume that G
has r 4+ 1 irreducible representations My, M, ..., M, over the complex numbers, and
X0, X1, - -+, Xr are their corresponding irreducible characters; where Y, is the trivial
character and M is the trivial representation.

We will build machinery toward:

1. understanding the spaces Homg(N, L) and Homg(N, N), where N and L are

G-spaces,
2. providing for a canonical form for T' € Homg(N, L),

3. proving necessary and sufficient conditions when T € Homg(N, L) has full rank.

Our first result is well-known in the theory of finite group representations as

“Masche’s theorem.”
Proposition 4.1.1. Let

1. The space V' be a G-module with representation py : G — GL(V).
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2. The subspace W C V' be a G-submodule.

3. Define (v,w) be defined as,

1
<U7 w>G = @ Z <PV(9)U: PV(Q)w>
geG
= ETAGw,
——t
where Ag = W and (,) is the standard Hermitian inner product.

Then,

1. The space V decomposes as V.= W @ W7, where WT = {v € V|[{v,w), =
0 Vw € W} is a G-module.

—_—t
2. For all go € G, Acvp(go) = p(g5") Ac-

Proof. Note that,

Y
o

is positive definite Hermitian as it is the sum of positive semidefinite Hermitian ma-

trices and a positive definite Hermitian matrix, namely A; = ﬁ] . Thus,

<U7w>G - 5TAGw7
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is a positive definite Hermitian inner product.
By looking at a basis of W extended to a basis of V' and then applying Gram-
Schmidt, one can show that V. =W @ W*.! where W’ = {v € V|(v,w), =0Vw €
It suffices to show that W7 is G-invariant. Note that (,), is G-invariant in the

following sense:
(v,w)g = (pv(g)v, pv(g)w) Yv,w €V Vg € G.

Let w € W and w' € W7 as W is G-invariant, p(g~!)w € W, hence:

= (w,p(g)w')g.

therefore, p(g)w’ € WT. Thus, W' is G-invariant.

We leave part 2 as an exercise. [

As a direct corrollary, we deduce that V is completely reducible. That is, if
W C V is G-submodule, then W “splits”; more precisely, there is a G-invariant
submodule Wy, say W7 from above, such that V = W @ W;. Applying the splitting
procedure, we get that V is the direct sum of irreducible G-modules. Hence, V =
N1 NoP - - - P Ny, where each Ny cannot be decomposed further and has no proper
G-submodule. Under this decomposition of V', we will get some of the Nis isomorphic
to each other. Thus, we can group the N, according to their isomorphism class. Let
Vi = ®Nk§Mi Ny ~ M;@--- P M; ~ a;M;, where a; = number of Nis in the
decomposition of V' that are isomorphic to M;. The next proposition tells us how to

calculate these V.

1Since (, )¢ is a positive definite Hermitian inner product, Gram-Schmidt works. If we did not
show (,) is positive definite, we could have an “isotropic” inner product that may cause Gram-
Schmidt to fail.
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Proposition 4.1.2. Let V' be a C|G| space with py : G — GL,(C) its representation,

where v = dimc (V). Also, let Py = Xi((;l‘) >gec Xi(9)pv(g), where x; is the ith

wrreducible complex character of G. Then,

1. The maps P,y are G-maps.

2. The maps P,y form a system of orthogonal projections. That is,

PPy = 0;;Pv,

> Pwv = Iv.
=0

3. The space V' decomposes into V = @_,Im(P;v) as G-spaces.

4. The space Im(P,y) decomposes into Im(P;yv) ~ M; @ - -- @ M,; ~ a,M;; where
a; 1s the multiplicity of the ith irreducible in V', and xy is the character of V.

We will denote the spaces Im(P;y) as the distinct “Isotypes” of G in V.

Proof. This is a consequence of a result that can be found in [7] in Chapter 18,

Proposition 13. [

As a remark, we note that a, = (xv, xi); where (, ) is the inner product on the

“class function” space defined by:

vxde = %'Zx—v(g)xi(g»

geG

Proposition 4.1.3. Let e; € C[G],

e = X > xil9)g-

geG
Then, the e;s are the central primitive idempotents of C[G]. Also, eg+---+ €, =1,
€i€j = 51'7]'61‘.

Proof. This follows as py(e;) = P,y acts as identity on isomorphic copies of M; in V

and it acts as zero on isomorphic copies of M;, ¢ # 7, in V. |
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Using the inner product (, ), one can define the adjoin of a G-map. Let T: V' —
W be a G-map between the G spaces V and W. Let () be the G-invariant inner
product of W of proposition 4.1.1 constructed using the standard euclidean inner
product of W. Similarly, define (, ). Then, the Adjoin 7" of T" is defined via the

relation:

(Tv,w)ygw = ©,TW)gy-

Clearly, a consequence of the definition is 7% : W — V. We will proceed to

calculate T™.
Proposition 4.1.4. Let T :V — W be a G-map. Then,
1. T* = Aé}VTTAGW 1s a G-map.
2a. Im(T*) = (Ker(T))T.
2b. Im(T*)" = Ker(T).
3.V =Ker(T)P Im(T*).
4. W= Ker(T*) P Im(T).
5 (TH*=T.

Where the orthogonal complement (-)" is taken using the inner products (), and
(Daw:

Proof. We show part 1. A direct calculation shows T* = Aa}VTtAG,W. We proceed

to show that 7™ is a G-map using this formula. In what follows, we will be using:

-7

AG,VPV(Q) = Pv(g_l) Aqv,

_ 1 ———T

pv(9Asy = Achov(ie™)
S

Acwpw(g) = pw(g™) Acw,

_ _ ——T
pw(9)Acw = Agwew(g™)
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which are consequences of proposition 4.1.1. Consider,

T ow(g) = AE;}VTTAG,WPW (9)
= AAT (e D) Acw
- Ag}vaAGw
— A{;}VWTAG,W
— Aa}vaTTAG,W
= pviyg )Aé,lvTTAGW

= pv(g)T™.

Hence, part 1 follows.
Now we show parts 2a and 2b. We will show Im(T*) C (Ker(T))". Let v €
Ker(T) and w € W, then:
(v, T"wW)gy = <Tv,w)G7w
= <0,w>G7W

= 0,

thus, T*w € (Ker(T))T. Therefore, Im(T*) C (Ker(T))".
Similarly, we will show Im/(T)T C Ker(T*). Let w € Im(T)T and v € V, then

0 = (w, Tv)G,W

= (T"w, v)Gy.

Since, (T™w,v)q = 0 for arbitrary v € V, and (, )4 is positive definite, we must
have T*w = 0. Thus, w € Ker(T*).

Note that T* is also a G-map and (7*)* = T. By letting T = T* in the
above argument, we can deduce Im(T*)T C Ker(T). Thus, using the contain-
ments Im(T*)T C Ker(T) and Im(T*) C (Ker(T))" and proposition 4.1.1, we have
V= Im(T*)@ Im(T*)T C Ker(T)@ Ker(T)" = V. Therefore, by applying a di-
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mension argument we must have Im(T*)T = Ker(T) and Im(T*) = Ker(T)T. This
shows part 2.
Parts 3 and 4 are a consequence of part 2 and proposition 4.1.1.

Part 5 follows from part 1 by a direct calculation. O
Corollary 4.1.5. The following are consequences of proposition 4.1.4.

1. T is injective if and only if T™ is surjective.

2. T is surjective if and only if T™ s injective.

3. T is an isomorphism if and only if T* is an isomorphism.

Proof. Clearly, part 3 is a consequence of parts 2 and 3. Also, part 1 is a consequence

of proposition 4.1.4 part 3. Part 2 is a consequence of proposition 4.1.4 part 4. ]

We will state a result that gives a description of G-maps between two G-spaces.
The five results that follow are standard facts taught in a Graduate Course on Algebra,
however, we include them for completeness. The following result, known as Schur’s

theorem, will prove to be essential for the next propositions.

Proposition 4.1.6. Let M and N be two complex irreducible complex G spaces, and

let T € Homg (M, N) be a G-map. Then,

1. If M is G-isomorphic to N, then Homg(M,N) = Cly N, where, Iy n is any
fized G-space isomorphism between M and N. That is, if T € Homg(M,N),
then T = AN, where X € C. Also, if we choose a different vector space
isomorphism, say Iy, n, the A changes accordingly to X by finding v such that
Iyn=7IuN and T = XIMN = Nylyn = Myn. Hence, X = N7.

2. If M is nonisomorphic to N, then Homg(M,N) = 0.

Proof. Let us consider the first case and assume M and N be G-isomorphic. Let
Iy : M — N a fixed G-isomorphism between M and N. Consider, T Iy : N —
N. It is clearly a G-map of N to N. Consider E) =T x IA}}N — My, is clearly again
a G-map, where [y is the identity map of N. By noting that det(FE)) is a polynomial
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of degree dimc(N), there is a A for which F) is singular. That is, E\ has nontrivial
kernel Ker(FE)). Clearly, the kernel of F) is a G-submodule of N. Hence, by using
the irreducibility and idecomposability of N, either: ker(E,) = N, or ker(E)) = 0.
Since we assume ker(FE)) # 0, we deduce E) = 0. Thus, T x* IA}}N — My =0 and
therefore T' = AIj; y. This, shows the first assertion.

To show the second assertion, let us assume otherwise. That is, there is a nonzero
T € Homg(M, N). Since M is irreducible and idecomposable, we deduce ker(T') = 0.
Therefore, T is an injection, and 7T'(M) is a nontrivial G-submodule of N. By the
irreducibility and idecomposability of N, we deduce T(M) = N. Therefore, T is a

G-isomorphism between M and N. This is a contradiction. |

Proposition 4.1.7. Let N, M be G-spaces that decompose into irreducibles as N =
Viep--- @ Viand M =W, @ --- @ W, where all V;s and W;s are G-isomorphic. Let
T € Homg(N, M), and U;; : V; — W, be a fized set of G-isomorphisms. Let v € N
and Tv = w € M. Clearly, these vectors decompose uniquely into v = vy + - -+ + v
and w = wy + - - - +wy, where v; € V; and w; € W;. Using this decomposition, we can

describe T as:

MaUip MU oo AUy
MUz AooUszs -+ AgiUsy

= b
AU N2Us -0 ApUig

where the A; js depend on T' and the choice of U, ;s.

Proof. Let P; be a projection on V; and (); a projection on W;. Without loss of
generality, we can assume P; and Q; are G-maps by substituting P; by P and Q; by

¢ where in general T¢ is defined as:

T¢ = |—C1;|Zp(g)Tp(gl)-

geG
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By construction,

P+ +P = Iy,

Qt-+Q = I,

where Iy is the identity on N and I, the identity on M. Consider,

k

T = (CRITY )

Jj=1
i=l,j=k

= ) QTP

i=1,j=1
i=l,j=k

= > Ty
i=1,j=1
where the map T; ; = Q;TF; takes N — W, and has kernel Zizo Vs. Essentially, it
is a G-map from V; — W,;. By Schur’s theorem, T; ; = \; ;U; ; when T; ; is restricted
to V;. If we extend U, ; to all of N, by letting U; ; be zero on V; for s # j, we get the

following decomposition of T

i=1,j=k

T = Z )\i,jUi,j-

i=1,j=1
The result follows. O

Now, we consider the case when the W;s are not G-isomorphic to the V;s.

Proposition 4.1.8. Let N and M be G-spaces where N =V @ --- @V and M =
Wi --- @ W, are the corresponding decompositions into irreducibles, and V; ~ V;,
W; ~ W; as G-spaces. Suppose that V;22W;, i.e., they are nonisomorphic G-spaces.
Then, Homg(N, M) = 0.

Proof. We proceed similarly to proposition 4.1.7. Let P; be a projection on V;, and
Q); a projection on W;. Without loss of generality, assume P; and (); are G-maps. By
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construction,

P+ +P = Iy,

Qi+ +Q = I,

where [y is the identity on N, and Ij; the identity on M. Also, one has:

k

T = (CRIT )

J=1
i=l,j=k

= ) QTP

i=1,j=1
i=l,j=k

= > Ty
i=1,j=1
where the map T; ; = Q;TF; takes N — W; and has kernel Zizo Vs. Essentially, it
is a G-map from V; — W;. By Schur’s theorem, 7T; ; = 0 when T; ; is restricted to V.
In particular, T; ; = 0 on all of N. The result follows. O

Corollary 4.1.9. Let N be a G-space that decomposes into irreducibles of the same
isomorphism type. Thatis, N =V, @ --- @ Vi where V; = V; as G-spaces. Any basis
of Vi can be extended to a basis of N so that for any map T € Homg(N, N) the U, ;s
in proposition 4.1.7 become the identity. That s,

Aal Mol o Al
T o Ml oo oo Aol
Mead Mgl oo Al
A1l Az ot Ak
_ Aol A2 ot Ao .
Al k2 o Ak

= M ®1,
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where I is the s X s identity matriz and s = dimc (V7).

Proof. Let {vi,... v} be a basis of V;. Choose G-isomorphisms,

ULIZIV1 : ‘/1_>‘/17
Uy Vi— Vs,

Ukl . ‘/1_>Vk7

where U;; is the identity map. Define, U;; = U;; * Ujjll, and choose the basis
{vi =Uiqvi,... 0L =U; ot} for V. Clearly,

Uigvi = (Uix = U; ) (Uj1v})
= Ui,lvll
-3
Therefore, with respect to the basis {v1,...,v7} of V; and the basis {vi,...,vl} of V,
the G-isomorphism U, ; has matrix representation the identity matrix.

Note that each of the U; js are G-maps. Thus, under the bases {vj}5_,,. .., {vf}i_;
and our chosen G-isomorphisms U, ;, the map 7" has the desired representation via
an application of proposition 4.1.7.

We note that the choice of the bases {v}},...,{vF} depend on the V;s chosen, the
G-structure of N, and the particular choice of {v}}. Hence, it suffices pick a basis

{v}} to decompose any T' € Homg(N, N) into My, @ I, for some k x k matrix of

complex numbers My, . O
Using a similar proof, we can generalize the previous corollary.

Corollary 4.1.10. Let N and M be G-spaces that decompose into irreducibles of the
same isomorphism type. That is, N =V, @ --- @ Vi where V; ~ V; as G-spaces, and
M =W, Q- @ M, where W; ~ W; as G-spaces. Choose a G-isomorphism Uy, :
Vi — Wh. Let = {vi,...,vs} be a basis of V. Define v = {w,...,ws} = U118
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as a basis of Wy. Then, one can extended [3 to a basis of N, v to a basis of M, and
choose U, ;s in proposition 4.1.7 such that for any map T € Homg(N, M) the U, s
i proposition 4.1.7 become the identity. That is,

Al Mol oo Mgl
o Aol Ao oo Aol
Al Nl - N
Al Az o Ak
Aol Azo ot Agg
Al A2 o Ak
= M,®I1,

where I is the s x s identity matriz and s = dimc(V7).

Let N, M, L be G-spaces where

N ~ N1®@Nn, NlﬁN],
M ~ Ml@"'@Mn” MZ'ZMJ‘,

L ~ Ll@"'@Ll, LiELj,

and N; ~ M; ~ L;. As a remark, we observe that the proof of corollary 4.1.10 gives
bases of N, M, L such that for any T'€ Homg(N, M), K € Homg(M, L),

T = Mm,n®jsa
- Ml,m®]sy

KT = (Ml,mMm,n>®Is;

where s = dimg(Ny).

We proceed to find a canonical form for '€ Homg(N, L), however, we introduce
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some notation before we state our result. Let,

N = Rl@"'®Rm
I — 51@‘“@55,

be the decomposition of N and L into irreducible G-modules. Let

X1 = {i[3> 85 =R},
Xy = {1,...,r}\ Xy,
Vi = {j[3i>58 >R}
YV, = {1,...,s}\Yi.

Clearly, X; and Y7 constitute up to G-isomorphism the irreducible components that
are common to N and L, and X5, Y5 constitute up to G-isomorphism the irreducible

components that are not common to both N and L. Let

N{ = @Ri,

i€X1

Né = @ij

JjeX2

Ly = s

1S4

L, = @s;
JEY?2
Let {M;,, ..., M, } be the distinct isomorphism classes of irreducibles among { R;|i €
X1}, let {M,,,..., M, } be the distinct isomorphism classes of irreducibles among
{R;|lj € X5}, and let {M,,,..., My} be the distinct isomorphism classes of irre-
ducibles among {S;|j € Y2}. Clearly, by construction, the distinct isomorphism
classes of irreducibles among the {S;|i € X3} is given by {M,,,..., M, }. Also, by
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construction,
{Mtlw'-;Mtk}ﬂ{Mma”-aMrn} — d),
{th'"JMtk}m{M817"'7Msl} = ¢7
{M,,,....M, }N{M,,....M;,} = ¢.
and
L = LiPL,
N = N PN
Let
N = No@D- D N
N, = NP PN
Nti,j =~ th
and let

Lll = Ltl@"'@[’tk?
Ly, = L@@ P L

Li; ~ M,

(3

12

Using the notation introduced above, we find a canonical for any ' € Homg(N, L).

Proposition 4.1.11. Let N and L be defined as above. Given a basis of,
Niyay Nig 1y ooy Niy 1,

one can extend these bases to a basis of N, and choose a basis of L such that for any

T € Homg(N, L),
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1. Ly C coker(T).

2. Ny C Ker(T).

3. T has matriz representation:

Mbhal ® Istl T 0 /
0 R Mbk,ak ® ISzk 0
0 . 0 Odime (L) dime (V)

Where,

1. The matrices My, o, are complex b; X a; matrices that depend on T and the chosen

basis of N and L.
2. The matriz Ogime(Ly).dime(ny) 18 the dime(Ly) x dime(Ny) zero matriz.
3. The dimension of My, is given by s;, = dimg(My,).
4. The matriz I, 1is the sy, X sy, identity matriz.

5. The cokernel of T is the orthogonal complement of Im(T') by using the inner
product {,)q . That is, coker(T) = Im(T)".

Proof. Let T € Homg(N, L) and fix a basis for the spaces NV;, and L;,. We begin
by recalling proposition 4.1.2 from which we deduce that L, = Im(P; 1) and NV; =
Im(P; ). Clearly, Ps y = 0 when M, does not occur in N. Similary, Ps = 0 when
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M, does not occur in L. Therefore,
Iy = > P (4.1)
i=0
k n
== Zpti,N—i_ZPT‘j,N?
i=1 j=1
I, = Y Py
i=0
k 1
= Zpt17L+ZPSJ7L
i=1 j=1

Consider,

T = Q_PuTQ_ Pin)

J=0

i=r,j=r

= Y PuTPy
i=0,j=0

i=r,j=r

= Z 7_'i,j7

i=0,5=0

where T; ; = P, ;T P; y. Note that T} ; is a map from N — L; that is zero on N,s for
s # j. Therefore, T; ; can be viewed as a G-map from N; — L;. By proposition 4.1.8,

T;; = 0 whenever N; and L; are not of the same isomorphism type. Thus,

T = zi;ﬂ,h

where the above sum is over all irreducible representations of G. Using Equation
(4.1), we deduce Py = 0, whenever s # ty,...,t; and s # ry,...,r,. Similarly,

P, =0, whenever s # ty,...,1; and s # s, ..., ;. Therefore,

k n l
T = ZT‘ti,ti + Z TT]',T]' + Z Tsl,sl~
i=1 j=1 =1
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Note that Py, y =0 and P, = 0. Thus,

k
T = ZTti,tm (4'2>
=1

hence, we deduce that T'(N) C L} by considering,

k

PyiT = Y PyiTye
=1
0.

Since, L = L)@ L, L), = (L))", and T(N) C L}; we deduce L, = (L})T C
(T(N))* = coker(T).
Also, we deduce that Nj C Ker(T') by considering

k
TP?”]',N = E ﬂi,tiprj,N
=1

= 0.

Equation (4.2), shows that T'(N;,) C Ly, and T(N}) = 0. Thus, with respect to
the decomposition of N = N, @--- PN, BN, and L =L, P --- P L, P L, we

conclude that 7" has the matrix representation:

Ttl,tl 0 ... 0 0
0 Tt27t2 . 0 0
0 e )
0 0 ce Ekik 0
0 0 - 0 OdimC(L;),dimc(Né)

where T}, ;, is the matrix representation of the map 7}, ;, with the domain restricted
to N;, and the range restricted to L,,.
In general, we cannot deduce that the matrices 7}, ;, have matrix representation

My, 4; @ Laime(11,,)- However, by applying Corrollary(4.1.10) to Ty, ,, we can choose
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a basis of Ny, and Ly, such that T}, ;, has matrix representation My, o, @ Laime(a;,)-

Hence, the result follows by choosing the bases provided by corollary 4.1.10. |

Using the notation of the previous proposition, we can show that the maps T3, 4,

inherit some of the properties of the map 7. This is illustrated by the next proposition.

Proposition 4.1.12. Let T', N, and L be given as in proposition 4.1.11, so that:

k
T = Y T
=1

Then,

1. T is injective if and only if Ny = 0 and for all t = 1,...,k, T}, 4, is injective

when restricted to Ny,.

2. T is surjective if and only if L, = 0 and for alli =1,...,k, Ty, 4, is surjective

when its 1tmage 1is restricted to Ly, .

Proof. Part 1. (=) We show the contrapositive. Suppose that there is v € Ny, such
that T3, +,,v = 0 for some ¢,,, and v # 0. By assumption, v = P, yv, and P, yv =0

for t; # t,,. Consider,

k
Tv = E:EhtiU
=1

k
= § :PtmLTPti,NU
i1
= P, TP, ~v
= T, 1,0

= 0,

hence, T' is not injective.
(<) Conversely, suppose there was v € N such that Tv = 0. By supposition, we

can assume v € Nj. Hence, v decomposes as v = vy, + - -+ + vy, where v, € Ny,.
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Clearly,

(3

Tv, = TP, nuy
= TP, NPy nvy,
= ]DtivLTPti,N/Uti

= Eiﬂfivti'
Let wy, = T3, 4,v,. Clearly, wy, € Ly,. Consider

0 = Tv

k

= E TrUti
=1
k

= E:Tpti,Nvti
=1
k

= § :Ei,tivti
i=1
k

= E Wy, -
=1

Since L = Ly, @ --- @ Ly, P L}, the previous equation above forces wy, = 0 for all i.
Therefore, T}, 4, v¢, = wy, = 0 for all ¢. By the injectivity of T}, ;,, we deduce v;; = 0.
Clearly, this forces v = 0. Thus, we have shown that 7' is injective.
Part 2. (=) Without loss of generality, it suffices to show T3, 4, is surjective. Let
wy, € Ly, . Since T is surjective, there is a v € N such that Tv = wy,. Let v, = P, nv

and consider,

wtl - -Ptl,Lwtl
= Ptl,LTUtl
= PthLTPIfLNPthNU

- Tt1,t1 vt1 )
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hence, wy, has a preimage under 7, 4, .
(<) Conversely, let w € L. By supposition, we can assume w € L}. Hence,
w= Zle wy, where wy, = P, pw. Since each Ty, 4, is surjective, we can find v, € Ny,
such that w;, = T}, ;,v;,. Define v = Zle vy, a direct calculation shows w = T'v.

Hence, T' is surjective. |

The next proposition shows that the operation (-),;, preserves algebraic opera-

tions.

Proposition 4.1.13. Let N, L and K be G spaces. LetT; : N — L, S; : L — K,
and R: N — K be G-maps. Define Ry, s, = Pry k RPiy n, (Ti)iy 1, = Py 2 Ti Py N, and
(Si)tr,en = Poy kTiPyy 1. Then, if

R = Zm:Sle (4.3)
i=1
Then,
Ryu = i(si)tl,tl(Ti)tl,ty
i=1
Proof. Consider
RP,, n = RP, nP;, n because P, y is a projection,

= P, kRP, 1 because R is a G-map,
= Rt1,t1'

Similarly, we can show that S;T; Py, v = (S:i)t,.41 (13t 11 -
We can deduce the conclusion by multiply Equation (4.3) on the right by P, n

and substituting the previous deductions. |

Definition 4.1.14. Let T' € Homg(N, L). Denote Ty, 1, by,

Ehtl - Ptl,LTPtl,L‘
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We will refer to T;, 4, as the projection of 1" on the M;, type of N and L.

Proposition 4.1.15. Let:

1. The function f(x1,xq,...,2,) be a multivariable complex polynomial of n vari-

ables.
2. The maps Ty, ...,T, be G-maps from N to L.
3. Assume f(T1,...,T,) =0.
4. Define S; as S; = (T})4, 4, -
Then, f(S1,...,5,) =0.
Proof. This is a consequence of proposition 4.1.13. |

We close this section with a structure result about the spaces Homg(N, N) that
will be of importance in later sections. We will view Homg(N, N) as a ring with
multiplication given by function composition. The spaces Homg(N, N) are known in

the literature as the Hecke Rings, and we will denote them by H(G, N).

Proposition 4.1.16. Let N be G-space over the complexr numbers C. Let N ~
aoMo @ - - - @ a, M,., where the M;s are the irreducible complex representations of G.
Then,

1. The space H(G,N) decomposes as H(G,N) = My, 4,(C) X -+ x M,, o.(C).
2. The space H(G, N) is a semisimple ring.

3. The space H(G, N) is commutative if and only if all a; =1 or 0. That is, N is

“multiplicity free.”

Proof. Part 1 is a consequence of proposition 4.1.11. Part 2 is a consequence of
part 1 and the Artin-Weddenburn theorem for semisimple rings. Part 3 is a clear

consequence of part 1. O



162
4.1.2 General Results for Smith Groups

In this section, we will first study short exact sequences of Z-modules to provide
necessary background, then we will prove general results about smith groups.

We start with a few definitions.
Definition 4.1.17. Given an integral matriz M : Q" — Q™.

1. The general smith group S(M) is defined as #TM)'

2. The finite part or torsion part of the smith group of M is denoted as S(M) =

Colo(M)NZ™
Colz(M)

3. The free part of S(M) is denoted as F(M) = 240D

4. The abelian rank r(M) of M is the rank of F(M) as a free Z-module. In general
r(M) = null(M) + cork(M), where:

m—n ifm>n,
cork(M) =
0 else.

5. The rank of M is defined as rk(M) = dimg(Colg(A)) = dimg(Rowg(A)).

Definition 4.1.18. In general, given a finitely generated abelian group H, the torsion
part will be denoted as H and the free part as F(H). All abelian groups will be assumed
to be finitely generated.

Definition 4.1.19. Given a finite abelian group A, we will define by A, its p-sylow
subgroup. Assume A, = (Z/p'Z2)% @& -+ ® (Z/pZ)™, where a; > 0 and p/ = exp(A,).
Then,

1. Define (A)®) = Ker(A, e Ap) where p(g) = p* - g in additive notation. It

can be shown that:

(W) = (@D &8 (@/HT) & @D @@ (Z/pL)".
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2. Define f, by 25:1 a;. That s, f, is the number of idecomposable cyclic compo-
nents of A,.

3. Define awy, and by, such that by, = p¥» = |(A,)®9)]. Note that,

k—1 f
agp = Ziaiqu:(Zai).
i—k

=1 )

4. Define fi,, as the number of idecomposible cyclic components that contain (Z/p*Z).

Note that f1,, = fj,.

5. Define gy, = f, — fxy1, as the number of idemcomposable componets of order

<p*.

Definition 4.1.20. Given an integral matrix M, we will denote the order of the
torsion part of the smith group of M by |[M|. That is, |M| = |S(M)|. Also, by
M|, = p»MD we will denote the p-norm of |M|, where v,(-) is the p-valuation

function.

4.1.2.1 Short Exact Sequences of Z-Modules

We will use the standard algebraic operations of the Torsion functor, Tensor functor,
Ext functor and Hom functor to generate exact sequences of Z-modules from known
short exact sequences of Z-modules. We will do this to deduce results about short
exact sequences of Z-modules that will be used in our study of the smith group of
integral matrices. We note that results concerning the quantities defined in definition
4.1.19 will not be used in later sections; however, we include them to provide a
complete study of short exact sequence of Z-modules.

We start with a result about finitely generated abelian groups.

Proposition 4.1.21. Let A be a free abelian group and B a subgroup. Then T(%) =
r(A) —r(B).
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Proof. Since A is free abelian, B is also free abelian and r(A) > r(B). Clearly, there

is a Z-isomorphism ¢ such that:

A L 7!
U U,
B 4 I

where L is a free submodule of Z"*) isomorphic to B and of abelian rank r(B).

Let vq,...,v.(p) be aZ-basis of L. Define M = [vq,...,v.(p)]. Clearly, since the v;s
form a Z-basis, M must have full rank. Thus, rk(M) = r(B) and r(M) = r(A)—r(B).
Note that, 4 ~ S(M). Hence, r(4) = r(M) = r(A4) — r(B). O

We recall two results can be found in Munkres’ book in [19].

Proposition 4.1.22. Let Ay, Ay, A3 and D be finitely generated Z-modules or abelian

groups. Assume,

0—>A1—>A2—>A3—>0.

And,
1. Let % be the Torsion product of Z-modules.
2. Let ® be the tensor product of Z-modules.
3. Let Hom(A, B) the space of all Z-maps from A to B.

4. Let Ext(A,B) = Ext'(A, B) be the first chain group that arises from a Z-

projective resolution of A and of B.

Then, there are exact sequences such that:

0 — Al*D — AQ*D — Ag*D —
A1®D — A2®D — A3®D — 0,

(4.4)
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0 — Hom(D,A;) — Hom(D,A;) — Hom(D,A3) —
Ext(D,A;) — FExt(D,A;) — FExt(D,A3) — 0,

0 — Hom(A3,D) — Hom(As,D) — Hom(A;,D) —

(4.5)

Proposition 4.1.23. Let G be a finitely generated Z-module. Then,
1. The isomorphisms of figure 4.1 hold.

2. The following are isomorphic:

(Z)mZ) @ (Z/nZ) =~ (Z/mZ)* (Z/nZ)

12

(2/dZ),
Hom((Z/mZ),(Z/nZ)) ~ Eaxt(Z/mZ),(Z/nL))

12

(Z/dZ),

where d = ged(n, m).
As a corollary, we show:

Corollary 4.1.24. Let A be finitely generated abelian group, i.e., Z-module, and let
p be a prime. Then,

1. Hom(Z,A) ~ AR Z ~ A.
2. Hom(A,Z) ~F(A).

3. Ext(A,Z) ~ A.

4. Ext(Z,A) ~ AxZ ~ 0.
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72G~G
(Z/mZ) ® G ~ =
Z%G~0
(Z/mZ) * G ~ ker(G ™3 G)
(Z)mZ) @ 7 ~ (Z/mZ)
Ext((Z/mZ),Z) ~ (Z]/mZ)
Hom(®4;, B) ~ &Hom(A;, B)
Eat(©A;, B) ~ ®Ext(A;, B)
(®4;) ® B ~ &(A; ® B)

(BA;) *x B~ ®(A; x B)

Hom(Z,G) ~ G
Hom((Z/mZ),G) ~ ker(G 2 G)
Ext(Z,G) ~ 0
Ext((Z/mZ),G) ~ ;%
(Z/mZ) * 7 ~ 0
Hom((Z/mZ),7.) ~ 0
Hom(B,®A;) ~ @Hom(B, A;)
Ext(B,®A;) ~ ®@FExt(B, A;)
B® (®A;) ~®(B® A;)

Bx (®A4;) ~ &(B=x* A))

Figure 4.1. Algebraic isomorphisms.

5. The following are isomorphic,

Hom((Z/p*Z), A) ~ Ext(A, (Z/p*7)) ~
Hom(A, (Z)p*7)) ~ Ext((Z/p*Z), A)
A® (Z/p"7) ~

Ax (Z[p*T) = (A4,)""),

12

(A)®) @ (Z/p"z) ™,

6. Let exp(A) divide d, then the following are isomorphic,

Hom((Z/dZ),A) ~ Ext(A,(Z/dZ)) ~ A x (Z/dZ)
Hom(A,(Z/dZ)) ~ Ext((Z/dZ),A) ~ A® (Z/dZ) ~

A,

12

Z

As a corollary to the previously shown algebraic isomorphisms, we have:

A (2)dZ)™™,
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Corollary 4.1.25. Let A,B,C be Z-modules such that,

0—-A—-B—-C-—0.

Then,
1. The abelian rank of B is given by r(B) = r(A) +r(C).

2. If r(A) = 0, then there is an exact sequence such that,

0—-—C—-B—A—0.

Proof. We proceed to show part 2. Choose D = Z in the exact sequence 4.5 of
proposition 4.1.22. We have,

O—>]F(C)—>IF(B)—>IF(A)HéHEHZHO.

Hence, we can deduce part 2 whenever r(A) = 0 since F(A) = 0.

We show part 1. Note that the previous exact sequence gives BB ~ H ¢ F(A),

F(C)
where H is also free. By proposition 4.1.21, r(H) = r(B) — r(C). Also, note that
% ~ K C O, where K is a torsion. Hence, r(K) = 0. By proposition 4.1.21,
r(K)=r(A) —r(H)=1r(A) —r(B) +r(C) and the result follows. O

In general, when given an exact sequence of finitely generated abelian groups:

0— A — Ay — A3 — 0.

We cannot deduce the same about the torsion part of the A;s. That is, we cannot

deduce that:

O—>A_1—>A_2—>A_3—>O_

However, we can whenever A; has zero abelian rank.
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Proposition 4.1.26. Let A, B, C be Z-modules such that,

0—>Ai>B£>C—>O.

Then, there is a Z-module H such that:

1. The following holds:

®HoFH) ~ CaF0).

|| Sl

2. The following are isomorphic:

=
=
12
=
8

|
©®
]
12
Q

where Cy is a subgroup of C.

3. If B is injected to C by v, then A = {0} and,

@ﬁzé.

oy

4. If r(A) = 0, then H is trivial and there is an evact sequence such that:

0—-A—-B—-C-—0.

Proof. We show part 1. Since A is injected into B, we must have:

B _F(B) _ B®F(B)
A9F@) T AeF@Q)
B
T A
~ (O
~ CoF )



169

Let H = %. Clearly, proposition 4.1.21 and corollary 4.1.25, we have r(H) =
r(B) —r(A) = r(C). Clearly, we can decompose H as H @ F(H) to get the desired
isomorphism.

Part 2 follows from the isomorphism of part 1.

We show part 3. We will show that A = 0. Let g € ¢(4) C B. Clearly, ¥(g) = 0
by exactness. Since B is injected into C, it follows that g = 0. Hence, ¢(A) = 0.
Since ¢ is an injection, it follows that A = {0} and the result follows from part 2.

We show part 4. Since r(A) = 0, A = A is a torsion group. Thus, F(A) = {0}.

~ C. Consider the following exact sequence:

B[]

By part 2, we have
0—-AS5B5SC—0,
where 7 is the canonical projection and ¢ is the inclusion. Hence, the result follows.

O]

Corollary 4.1.27. Let A,B, C be finitely generated Z-modules. Assume, r(A) =0

and
0—A—B—=C-—0.

Then, there are exact sequences:

Proof. The first exact sequence is given in proposition 4.1.26. The second exact

sequence is given by corollary 4.1.25. O
The previous corollary gives a result that is not true for finite nonabelian groups.

Corollary 4.1.28. Let A,B, and C be finite abelian groups such that 4 ~ C, then
there is a subgroup C7 C A such that Cil ~ B and C; ~ C.
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Proof. Since 4 ~ (', we can construct the following exact sequence of Z-modules,
0—A—-B—C—0.

Since all groups are torsion, corollary 4.1.27 applies and there is an exact sequence

such that:
0—-C—B—A—0.
Let C} be the injected image of C' in the above sequence. Clearly, C'; satisfies the

conclusion. ]

We close this section with two results on divisibility conditions of short exact
sequence of Z-modules. We will use the exact sequences of proposition 4.1.22, when

D = (Z/p*7Z) and D = (Z/dZ), to deduce these conditions.

Proposition 4.1.29. Let Ay, As, and As be finitely generated abelian groups such
that:

0— A — Ay — A3 — 0.

Let p* be a prime power , d = lem(exp(Ay), exp(As), exp(As)) and a; = |A;|. Then,
1. The number by.,(A1) divides by.p(As).
2. The number by, (As) divides bk;p(Ag)p’"(Al).
3. The number by.,(As) divides by.,(A1)bgp(As).
4. The number a, divides as.
5. The number as divides asd™ A1),

6. The number ay divides ajas.
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Proof. Consider the exact sequence 4.4 of proposition 4.1.22 when D = (Z/p*Z),

((As),)®) 2

((A2),)®) @ (Z/pF)r @ & ...

0= ((A4),) ") 2 ((A2)) =

((Al)p)(pk) ® (Z/pk)r(Al) %

We show parts 1, 2, and 3. By using the exactness condition, we construct a table of

integral conditions shown in figure 4.2.

oi | |[Domain(e;)| | Range(p;) |Ker(e;)] \Tm(e,)]
1 brip(A1) brp(Az2) 1 Zzzggi;
2] bwld) | b | R | MeRimn
3 brip(As) | brgp(Ap)pFridt) bk;p(b’: ?p)(bjz’)(’%) bk;péﬁz)&’;@“l)

Figure 4.2. Exact sequence integral conditions.

Clearly, parts 1, 2, and 3 follow from the integral conditions of figure 4.2.
We show parts 4, 5, and 6. Consider the exact sequence 4.4 of proposition 4.1.22
when D = (Z/dZ) and d is the lem(exp(AL), exp(Ay), exp(Ay)).

04 848484 0 @Z/d™ A4, 0 (2z/d @ %5 ...

By using the exactness condition, we construct the table of integral conditions shown
in figure 4.3.
Clearly, parts 4, 5, and 6 follow from the integral conditions of figure 4.3. |

4.1.2.2 The Results

We will start with a proposition that we will generalize later.

Proposition 4.1.30. Let C = AB where Ker(A)NIm(B) = {0}, then S(B) c S(C).
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¢i | [Domain(¢;)| | [Range(¢;) | [Ker(¢:)| | [Im(¢:)]
1 aq a9 1 Z—?
2 a9 as Z—i %
3 as aydr4n) % a2d;:A1)

Figure 4.3. Exact sequence integral conditions.

Proof. Assume, B is k x n matrix. Let ey, ..., e, €xi1,..., €, be a primitive integral

basis of the domain of B such that,

dlfl forizl,...,k,
0 fori=k+1,...,n.

Bei =

where fi,..., fi is a primitive integral basis of the range of B, and the invariant
factors of B are given by {d;}.

Clearly Ce; = ABe; = d;Af;. Thus, v; = Af; = C’(Z—) is in Img(C). We claim
that Afi,..., Af, forms a subgroup of S(C) that is isomorphic to S(B).

It suffices to show that whenever Zle n;Af; = Cz for some z € Z, then d;|n;. Be-

cause {e;} is a primitive integral basis, there are integral z; such that z = Zle zie; +

n
> i Zici- Hence,

k

i=1
k
i=1
Thus,

> (zdi —ni)fi € Ker(A)nIm(B)={0}.

=1

Because the f;s are linearly independent, we must have z;d; = n;. O
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We generalize proposition 4.1.30 in the next proposition.

Proposition 4.1.31. Let C = AB, where Aisn xr, B isr x k. Assume Ker(A)N
Im(B) ={0}. Then,

1. There is a finitely generated abelian group H such that:

0—H—S(C)— S(A) — 0.

2. The abelian rank r(H) of H is rk(A) —rk(C).

3. The torsion part of the Smith Group of B is contained in H, i.e. ,S(B) C H.
Hence, S(B) C H.

4. There is a finitely generated abelian group K such that:
0—K—SB)—H—0,

where r(K) =r(B) —r(H).

5 Ifr(H) =0, i.e., rk(A) = rk(C), then there is a finite abelian group H, such
that H ~ S(B) ® H,.

Proof. Consider the following inclusion of free abelian groups:
Colz(AB) C Colz(A) C Z".

We can deduce the following short exact sequence of Z-modules.

COlZ (A) 7" 7"
— — —
COlz(AB) COlz(AB) COlz(A)

— 0,

Therefore,

0—H— S(AB) — S(A) — 0,
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where H = CC;;Z(;A;). Clearly, as H is the quotient of free abelian groups, we have

r(H) =rk(A) — rk(AB). Hence, parts 1 and 2 follow.

Clearly, we can view A as a map of Z-modules. Consider,

o
U

A 4 Coly(A)
U U
Colg(B)NZ" 2 L
U U

Colz(B) 2 Coly(AB),

where A restricted to Colz(B) and Colg(B)NZ" is injective since Ker(A)NIm(B) =

{0}. Thus, A factors through Colz(B) to give a surjective map:

7" i COlz(A)
COlz<B) COlz(AB>

— 0,

and an injective map:

COlQ(B)ﬂZT A COlz<A)

O T Col(B)  Coly(AB)

Thus,

S(B) & H — 0,

0— S(B) S H.
Let K denote the kernel of the map induced by A, then clearly:
0—K—SB)AH =0, (4.6)

where r(H) = r(%B)) =r(B) —r(K). Thus, r(K) = r(B) — r(H). Hence, parts 3
and 4 follow.
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We show part 5. Clearly, S(B) is injected into H in the exact sequence 4.6.
Therefore, by proposition 4.1.26, H ~ S(B) @ H, for some finite abelian group H;.

Hence, part 5 follows.

We can deduce more in proposition 4.1.31 when A is injective.

Proposition 4.1.32. Let C' = AB, where A is an n X r matriz and B is an r X k

matriz.

1. If A is injective, then there is an exact sequence such that:

0— S(B)— S(C)— S(A) — 0.

2. If B s onto, then there is an exact sequence such that:

0— S(AT) — S(C") — S(BT) — 0.

Proof. We show part 1. Consider the following inclusions of free abelian groups:
COlz(AB) C COlz(A) czZ".

We can conclude the following exact sequence:

COlz(A) 7" 7"
— — —
COlz(AB) OOlz(AB) COlz(A)

— 0.

Thus,
0— M — S(AB) — S(A) — 0,

where M = CCO;’;Z(;A;). It suffices to show that M ~ S(B).
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Because A is injective, we can view A as an injective map of Z-modules. Consider,

7
U

Zr A Coly(A)

U U

Colz(B) 2 Coly(AB)

Coly(A)
Colz(AB)

hence, S(B) = #}B) is isomorphic to = M via the map A.
We show part 2. By using the trivial action in proposition 4.1.4 parts 2a and
2b, B is onto if and only if B” is injective. Part 2 will follow by applyng part 1 to

CT = BTAT, O
As a corollary, we deduce the following.

Corollary 4.1.33. Let C = AB where A is injective, then S(B) C S(C).

Proof. This can be viewed as a corollary to proposition 4.1.30 or proposition 4.1.31.

O

We close the section with a result that can be found partly as theorem 2 in the

work of Pless and Rushanan in [24], and in several sections of Rushanan’s paper in

22].
Proposition 4.1.34. (Rushanan) Let C' be a nonsingular matriz with eigenvalues
A1, ..., A, with respective multiplicities mq, ..., m,. Then,

1. If \; is an integer, then \; divides exp(S(C)).

2. If all \is are integral, then lem(\y, ..., \,) divides S(C).

3. If C' diagonalizes with respect to \; € Z. That s, the algebraic multiplicity
equals the geometric multiplicity. Then, (Z/\Z)™ is a subgroup of S(C).
4. If C' 1s diagonalizable with all eigenvalues integral. That is, every eigenvalue

has its geometric multiplicity equal its algebraic multiplicity. Then, exp(S(C))
divides A\ -+ Ag.
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4.1.3 The Johnson Scheme J(v,k)

We will show results that are well-known for the Johnson Scheme J(v, k). We start
with a few general definitions about permutation actions that will be used for the

rest of the chapter.

Definition 4.1.35. Let G C S,, where S, is the symmetric group on v letters. As-
sume that S, acts on X = {1,...,v}.

1. Define C(X) = @xcex kj=x Cex. That is, the vector space of all k-subsets of
X.

2. We view Cx(X) as a G-module with action given by,
p(0)ex = eqx) 0 € G CS,,

where o(K) = o({ay,...,ax}) = {o(a1),...,0(a)}.
Definition 4.1.36. The Johnson Scheme J(v, k) is the Hecke Ring H(S,, Cr(X)).

For the rest of the section, we will define for ko, k; as kg = min(k,v — k) and

k1 = max(k,v — k) where 0 < kv.

Proposition 4.1.37. The Johnson Scheme J(v, k) admits a canonical basis given by

the matrices A; defined as,

1 if [ KGN Ky =k —1,
A§(6K17€K2) =
0 else,

where i = 0,...,ko. In particular, dimc(J (v, k)) = ko + 1.

Proof. Clearly, if A € Homg(N, N), then p(c0)A = Ap(o). Hence, for all 0 € G, we

have

plo)Ap(c™) = A
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The previous equation forces A to be constant on the orbits of G on the set Cj(X) x
Cr(X). Thus, we can assume A to be a linear combination of A;s where the A;s
are the characteristic functions of the orbits of G on Ci(X) x Cr(X). It suffices to
calculate these A;s for G = S,. Clearly, each orbit Q of S, on Ck(X) x Ck(X) has
a unique value for |K; U Ks|. That is, for any (eg,, ex,) € 0, the value |K; U K| is
constant. It suffices to show that possible values of |[K; N Ky| are k. k—1,..., k — ko.
We will do this by cases.

Case 2k < v. Clearly, k = kq. Also, |K; N K| > k — ko = 0 since one can find
disjoint K73, Ky. Obviously, 0 < |K; N Ks| < k and |K; N Ks| takes on the values
0,... k.

Case 2k > v. Clearly, k = k;. Also, one cannot longer find K, K, that are
disjoint. However, one can find K;, Ky such that |K; U K| = v. Therefore, |K; U
Ky < wvand |[KyN K| =2k — |Ky UKy > 2k—v =k — kyg. Thus, clearly,
k > |Ki N Ks| > k — k. Obviously, |[K; N Ks| takes on every value between k and
k — ko. O

Proposition 4.1.38. Let Cyx(X) be viewed as an S,-module. Then, Ci(X) has de-
composition into irreducibles Cyx(X) = Nox @ N1p @ - - - @D Nk, where Ny is the

irreducible S,-module with character

i —mi1 for0<i< g,

X0 fori=0,

where xo is the trivial character, and 7; is the permutation character of Ci(X). In

particular, T, = Xo + -+ + Xk, where each x; is an irreducible complex character of

Sy.

Proof. We proceed by cases.

Case k < ¥. The result can be found in [2] in chapter III, section 2, theorem 2.5.

. Consider the S,-map Py : Cy(X) — C,_(X) defined by Py(ex) =

2
Case k > 3
P,_y(e~k). Clearly, by using Py, we can show that C(X) and C,_;(X) are isomorphic

S,-modules. Hence, the result follows by the previous case. |
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Corollary 4.1.39. Let W € J(v, k) and P; n,, € J(v,k) be the ith projection on the
N, i irreducible component of Cy(X). Then,

~

. The following holds, Ic,(x) = FPong, + -+ Pk01Nk0,k'

2. The map W decomposes as W = APy n,, + -+ )\kOPkO,NkO,k'
3. The space N;j, is an eigenspace of W with eigenvalue \;.

4. The matrices Pony s - - Pro,Ny, . form another basis of J(v, k).

Proof. Clearly, part 1 is a consequence of proposition 4.1.2.

We show part 2. By proposition 4.1.12, W = Zfio Wi where Wy ; = P, N, , WP N, , -
By proposition 4.1.9, W; ; = M,, 4, @ In,, when restricted to N, x; where q; is the mul-
tiplicity of Nj in Ck(X). Since N;j has multiplicity 1, we must have W;; = A\ily, ,
when W;; is restricted to N;j. Since W;; is zero on N, for ¢ # j, we must have
Wii = AP N, - Therefore, part 2 follows.

Clearly, part 3 follows from part 2 by recalling that the P;y,, are projection
operators.

Finally, part 2 shows that the matrices P, v, , span J(v, k). Hence, {Pi y, , }i2 is a
spanning set for .J(v, k). Since J(v, k) has dimension ko +1, it follows that {P; x, , }1%

form a basis. Hence, part 4 follows. |

We will denote the S, projections P, N, DY FEsp as short-hand notation. Now,
we proceed to define another basis H;y = W, W for the Johnson Scheme J(v, k).

First, we quote a result that is theorem 1 in [14].
Proposition 4.1.40. Let 0 <i < kg = min(k,v — k). Then,
Mo k—s\[v—i—s
H = Eg .
o 20(@—5)( k— i ) .

Corollary 4.1.41. The matrices {H; ) = ngWi,k}fio form a basis of J(v, k).
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Proof. Clearly, by proposition 4.1.40, the matrix M = [[m,;]] = [[(’::j) (")) is a
change of coordinates between the H; ;s and the E;;s. It suffices to show that M is
nonsingular since this will show that M is a change of basis.

v—21

Note that M is lower triangular with diagonal entries of the form ( kﬂ.). Since

k41 < k+ky < v, we must have k—i < v—21. Thus, (Ukji) = (. Since the determinant
of an lower triangular matrix is the multiplication of the diagonal entries, and none
of the diagonal entries of M are zero; we must have the determinant of M nonzero.

Hence, M is nonsingular. |

Clearly, H;j has nontrivial kernel when ¢ < k as the coefficients of F; for i <

s < k are zero. However, for the matrices I; ;, = WszlTk, we will see otherwise.

Proposition 4.1.42. Let 0 < i < kg = min(k,v — k) and iy = min(i,v —i). Then,

O (k—s\ [v—i—s
Ii - Esi'
* Zo(z—s)( k—i ) :

Proof. Clearly, I, € J(v,i). Thus, I, = Z?:O AsEs ; for some A\gs. Let H, . € J(v, k)
have expansion H;j = Zi‘;o BsEs, where 35 is given by proposition 4.1.40. We will
show A\, = ;.

Consider,
10 10 10

Y BEu = O _BE_ BEw)

s=0 s=0 s=0
= HipHig

10
= WL AE) Wik
s=0
10
= O MEp)WhE Wik
s=0
20 20
= (Z )\SES,IC) (Z ﬁsEs,k)
5=0 s=0

0
= Z AsﬁsEs,kv
s=0
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where we have used the property W/, E,, = E, W/, which is justified since Ej} is
the projection onto the sth isotopic S,-irreducible and W, is an S,-map.

Thus, by the above equations, we must have 3\, = 2. As 3, # 0, we deduce
that A\, = fs. O

As a corollary, we calculate the determinant of I, .

Corollary 4.1.43. Let t < min(k,v — k) = ko and to = min(t,v —t). Then,

det(I,,) = I, ((7;:;5) (v ;i; 5)) (0)-(2) |

Proof. Recall that the determinant of a square matrix is the multiplication of all its
eigenvalues, counting multiplicities; the formula will follow by showing that (’tt‘:) (”;:S)

is an eigenvalue with multiplicity (:) — (331)' Clearly, this follows since (];:SS) (02:5)

is the eigenvalue corresponding to the eigenspace N, j by proposition 4.1.40, and N,

has dimension (z) — (531) by proposition 4.1.38. O

We proceed to calculate the eigenspace decomposition Wy ,_y.

Proposition 4.1.44. Let 2t < v, and P, : Ci(X) — C,_(X) defined by P,(er) =

e~r. Let Ay = Wyt P,. Then, A, has eigenspace decomposition:
! v—t—s
4 = zms( o )E
s=0
where kg € {£1}.

Proof. Clearly, A; : Ci(X) — Cy(X) is an S,-map. Hence, A; € J(v,t). By corollary

4.1.39, A; must have an Eigenspace decomposition:

t
At = Z/}/SES,t)
s=0

for some constants 7gs. Note that any 7" € J(v,k) is symmetric since the basis

of proposition 4.1.37 consists of symmentric matrices. Hence, A; is symmetric and

Ag - At'
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Consider the product,

t
Z ’752 Eg = AtAtT
s=0
- Wt,v—tpt(Wt,v—tPt)T
- Wt,v—tPtPtTWg;_t

= Wit W/,
t 2
v—t—s
= E E
< s > sty
s=0

where we have used P! = P;, P,P, = I and proposition 4.1.42.
Therefore, 2 = (“;:S)Q and the result follows. O
We will show some identities for the matrices A;. But first, we will introduce the

matrices Wy ;.

Definition 4.1.45. Let Wy; : C;(X) — Ci(X) be defined by,

1 if|KNI|=0,

Wiilex,er) =
0 else.

Proposition 4.1.46. Assume t <k <v—k. Let Ay = Wy 1Py, and M\, = (”;t__tk)
Then,

1. At - W—t,t
2. WiwtPy = Wiy
3. Wi Wiy = A Ay

Proof. By direct calculation, one can show

At(eT) = Wt,vftpt (eT)
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Hence, part 1 follows.

Also, one can show

WivtPiler) = Z ex

K'c~T

= W—M(QT).

Hence, part 2 follows.

By considering the identity,
WeiWio—t = MaWio—t,
we deduce
WeiWho—tPr = AepWiowtPr.

Hence, part 3 follows. O
Now, we proceed to study the more general function space J(v, k,t).
Proposition 4.1.47. Let W be a linear map of the vector space J(v,k,t) where
J(v,k,t) is defined by
J(v,k,t) = Homg,(Cp(X),Ci(X)).

Let W' € J(v, k,t) and be defined as

' 0 else.

Let to = min(t,v —t), and ko = min(k,v — k). Then,
1. The space J(v, k,t) decomposes into J(v,k,t) = CWIF @ - @CW;;I;(

ko,to) "

2. Using the notation of proposition 4.1.38, if to < kg, then the S,-submodule
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Stk = Nigr1£ P P Ny C Cr(X) is in the ker(W) for any W € J(v, k,t).

3. Using the notation of proposition 4.1.38, if kg < tg, then the S,-submodule
Stk = N1t D -+ - D Niyt C Co(X) is in the coker(W) for any W € J(v, k,t).

4. The dimension of J(v,k,t) is dimc(J (v, k,t)) = min(to, ko).

5 IfW € J(v,k,t) has full rank, then the ker(W) = S; and the coker(W) = T,k,,

where:

- 0 ]f ]{?0 < to,
Sik =

Stk else,

0 If ty < ko,
Smk/ _ f 0 0

St else.

Proof. We show part 1. We will proceed as in the proof of proposition 4.1.37. It
suffices to calculate the orbits of S, on Cy(X) x Cyx(X). That is, the orbits Q of S,
on the set of pairs (T, K'), where T is a t-subset and K is a k-subset.

We proceed to show that for a fixed orbit {2 and arbitrary (7, K) the quantity
|7 N K| is constant. Let (T, K),(T",K') € Q. Consider the following partions of
X ={1,...,v} that are induced by (T, K) and by (7', K'):

TNK, TNn~K, ~TNK, ~TN~K,
TNK', TN~K', ~T'NK', ~TN~ K

Clearly, one can find at least one permutation o € S, that takes the subset TN K into
T'NK’, the subset TN ~ K into T'N ~ K’, the subset ~ TN K into ~ T'NK’, and the
subset ~ TN ~ K into ~ T'N ~ K'. This permutation will map the pair (T, K') into
(T", K') under the action of S,. Clearly, this permutation will show |TNK| = |[T"NK"|.

It remains to calculate the possible values of |TNK|. Clearly, |7N K| < min(t, k).
We will leave as an exercise to show that |7'N K| > min(¢, k) — min(to, ko), and that
|T' N K| takes on the values between min(¢, k) and min(¢, k) — min(¢o, ko).

Clearly, parts 2 and 3 follow from part 1 and propositions 4.1.38 and 4.1.11.
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Part 4 is a consequence of part 1.
Part 5 is a consequence of parts 2 and 3. |

4.1.3.1 The Matrices W§*, W&

min(to,ko)

We will study the matrices Wé’k and W"F

min(to ,ko)

where t < k, to = min(t,v — t) and
ko = min(k,v—k). These matrices are already known to us, since a direct calculation

shows for t < k < v —k,

tk
Wy" = Wiy,

)

t.k
W = W

min(to,ko)

We will determine when the matrices Wé’k, whr

min(to,ko) € Injective, surjective, or

both. We will answer these questions by showing them directly, and by providing for
a left inverse or a right inverse.
We will use the following lemma to reduce a surjectivity question to an injectivity

question, and an injectivity question to a surjectivity question.
Lemma 4.1.48. Let T € J(v,k,t). Then,

1. T is injective if and only if 7" is surjective.

2. T is surjective if and only if T is injective.

Proof. We apply proposition 4.1.4, and proposition 4.1.4 parts 2a, 2b; where we use
G=25,,V==CX),and W = Cy(X). It suffices to show that T =1

Clearly, because S, is a permutation action, the inner product matrices Ag, ¢, (x) =
Ic,(x) and Ag, ¢,(x) = Io,(x). Hence, by proposition 4.1.4 part 1, T™ = T" . There-

fore, the result follows. L]
Proposition 4.1.49. Ift < k and (;’) < (Z), then ng is injective.

Proof. Our assumptions are equivalent tot < k <v—tandt<v—k <v—t. We
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invoke an identity that can be found in [8] in chapter 15, section 8, lemma 8.4.

t
v — 2t
WnkWtj’ﬂk - Z (U . k} . Z) le’;m,t

=0

Let Gy = Wt,kWt,Tk. By the previous equation, Gy is a sum of positive semidefinite
matrices where one of the summands is positive definite, namely WgtWt,t = [. Thus,
G, is positive definite and hence invertible.

The injectivity of ng is an easy deduction from the nonsingularity of G;;. [

By applying lemma 4.1.48 to the previous proposition, we deduce the following.
Corollary 4.1.50. If (:) < (Z), then Wy is surjective.

Also,

Corollary 4.1.51. Let ko = min(k,v — k), k; = max(k,v — k), where 0 < k < v.

Then, Wiy, k, 45 an isomorphism.

Proof. By letting k = ky, t = kg in proposition 4.1.49, we conclude that Wkkal is
injective. Since Cj,(X) and Cj, (X) have the same dimension, it follows that W[ .

is an isomorphism. Hence, Wy, j, is an isomorphism. O]
Proposition 4.1.52. Ift < k and (Z) < (7;), then Wy is injective.

Proof. Note that our assumptions are equivalent to ¢ > min(k,v — k). Hence, v —k <
t<k, 2k>wv,and k+t>w.
Suppose = € Ci(X) such that W, yx = 0. Consider

0 = Wv—k,tWt,kx
k—(v—Fk
= ( t—((:j—k‘)) )vakakm

= (A )Wk,

hence, v € Ker(W,_jx). By corollary 4.1.51, W,_ j is an isomorphism. Hence, we

must have x = 0. Thus, W, is injective. O
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: : tk 1tk
We proceed to showing the matrices W™, Wmin(tm ko

) have full rank. The following

result is due to my advisor through a private comunication.

Proposition 4.1.53. Let (;’) < (Z), then Wy has a right inverse Uy, given by:

t .
—1)i
Ut = Y i_t}i WiiWis. (4.7)
= ()
Proof. Our assumption gives t < k <wv—t. Thus, k—t <v—t—t<v—t—(t—1) <
--- <v—t. Therefore, k—t <wv—t—ifori=0,...,¢t. Thus, the binomial coefficients

of Equation (4.7) are nonzero. Therefore, Uy, is well defined.

Consider,
— V—1— 1\
Wi Wi P |44 79
= (T
t
S (—)WWwi, = 1.
i=0
Using the previous equations, we can show W, U}, = I; by direct calculation. O

In the following, we will need the following identities:

PooiWoky = Wipifv—k <t,
WiviPe = Wipiti <ov—k.

We proceed to calculate the left inverse for W*

min(to ko
(1)< ()

Proposition 4.1.54. Let (Z) < (:) andt < k. Then, th_kk has a left inverse and is

) = Wifk when ¢t < k and

gien by:

Vie = Eif CY o,
kit — ( k—i ) kiVVigt-
i=0 \t+k—v

Proof. Our assumptions givev—k <t < kandv—k <v—t < k. Therefore, v—k <t

and (vfk) = (Z) < (:) Hence, by proposition 4.1.53, W,_j, has a right inverse given
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Ut,vfk = - Wt,iWi,vfk- (48>
Since Wy_1Upy—i, = I—j, we have,

Py iWyk iU v Py = Py_ply_1p Py

also, since P,_yWy_j+ = Wffk, we have,
W (Ui By) = I

By taking the transpose of the previous equation, we have,
(UpoiP)"WHE = 1.

Thus, Vi = (Upe_iPr)" is a left inverse for Wi_kk By using the identity W, ,_x Py =

W i, the formula for V}; follows readily from Equation (4.8). O

We proceed to calculating a right inverse of Wéfn( to.ko

)= W—tk whenever (:) < (Z)

Proposition 4.1.55. Let t < k and (:) < (Z) Then, Wy has a right inverse and is

gen by:

t .
—1)¢
Tk,t - Z ( ) VVZ;WM

Proof. Our assumptions give t < k <v—tand t < v —k < v —t. By proposition

4.1.53, Wy ,_i, has a right inverse given by:
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Consider,

It - Wt,v—kUv—k,t
= (Wt,vfkpk)(Pvkavfk,t»

Using the identities: Wy, Py = Wik, PooiWogi = VVg;_k, and (;’:,i:’;) = (”g:z),

we get the formula for the right inverse of W, . [

We calculate a left inverse of W, ; when (Z) < (:)

Proposition 4.1.56. Let t < k and (Z) < (1’) Then, Wy has a left inverse given

by:

v—k ;
—1)
Sk,t = ( ) ”k,i”i,t-

= (%)

Proof. Our assumptions give v — k <t < k and v — k < v —t < k. By proposition

4.1.55, W,,_+ has a right inverse given by:

Consider,

(PoeiWo—kot)(Thw—iPr) = Po—klo—kPs

Using the identity P,_xWy_r, = W/, we get,
ng(Tt,v—kPk> = .

Thus, by taking the transpose of the previous equation, we deduce a formula for a
left inverse of W, given by Si; = (T}, P%)”. Using the identity W; 1B = Wiy,

the formula for Sy, follows. O
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Corollary 4.1.57. Let t < k. The matrices WS* and W5

min(to,ko)

have full rank.

Proof. The previous propositions show that: if (1’) < (Z), then Wé’k = W, and
Wrﬁfn(tmko) = ﬁk are surjective. That is, their rank is (1’) = min((:), (Z)) Hence,

these matrices have full rank.

The previous propositions also show that: if (Z) < (:), then Wé’k = Wy and

Wrifn(tmko) = W, are injective. That is, their rank is (Z) = min((qt’), (Z)) Hence,
these matrices have full rank. O

We close the subsection with some results about W; ;. The following result can

be found in [26]. It gives a diagonal form for the matrices W .

Proposition 4.1.58. Let t < min(k,v — k), the matriz Wiy has as a diagonal form

the (”) X (Z) diagonal matriz D with diagonal entries

t
k—1 ‘ o v v .
) with multiplicity | . | — | . , where 1 =10,...,t.
t—1 1 1—1

As a corrollary, we deduce a formula for the determinant of W, ;, whenever k+¢ = v.

Corollary 4.1.59. Let v —k < k, then

Qet( W) = Tk ((U f ;)i_ Z> (?)—(ifl)'

Alternatively, via a change of notation we deduce the following.

Corollary 4.1.60. Let k < v —k, then

—1

det(Wyyp) = TIE, (v - k- z) (’2)—(1-11)'

4.2 General Equivariant Results

In this section, we will consider a group G C S, to act on X = {1,...,v} as a

permutation action. We will provide results analogous to the ones in section 4.1.3.1.
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Clearly, as it was shown in the section of preliminaries, C(X) decomposes into
ko = min(k,v — k) S,-irreducibles. We will denote the S,-projections PN, by Esk.

We will assume that ¢g, ¢1, ..., ¢; are the irreducible characters of G, where ¢q
is the trivial character. Since G C S, Cx(X) is a G-module by restriction. Hence,
Ci(X) decomposes into G-irreducibles. We will denote the G-projections P; ¢, (x),¢
of proposition 4.1.2 that correspond to the irreducible character ¢; by P, .

For W € Homg(Cy(X), Ci(X)), we will use the notation (W); for the map:

WPy = PuW
= PLWP,.

The map (WW); will be called the ith projection of W onto the ith isotype of G in
Cr(X). We will denote Im(P; ) by (Ci(X));, and we will make no distinction between
(W); as a map from Cy(X) to Cy(X), and (W); as a map from (Cr(X)); to (Cy(X));
— unless ambiguity leads to conflict. Also, we will denote Ps 1 (N; ) by (Ni)s-

We start our study of the spaces (Ci(X))o and the maps (7")oo where T' €
Homg(Cr(X),Ci(X)). The sections that will follow will make use the results that

we present here.

Proposition 4.2.1. Let QKU'-‘?QK%(G) be the distinct orbits of the action of G
on the k-subsets, where r(G) is the number of orbits under the action of G on the

k-subsets. Then,

Im(Poc,x)) = CQKl@'“@CQKﬁC@)-

We will denote {Q,, ..., Qk, o} as the Canonical basis of (Ci(X))o.
Proof. Clearly,

1
@ Z PC(x)(9)-

geG

Po.cy(x)
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Consider the image of basis element ex € Cy(X),

1
Pocyxyex = @chk(x)(g)ef(
geG

1
— e

geG

|Gk
_ BKig
G| "

1
—Q ,
Qx|

where G g is the stabilizer of K under the action of GG, and 2 is the orbit of K under
the action of G. We note that we are using the symbol €2k to represent the collection
of k-subsets that belong to the orbit of K and also to represent > . ca, €k~ Hence,
we have that Py o, (x)Qx = k. Therefore, Qx € Im(FP o, (x))-

Since the egs span Cj(X), we must have the Qs span the Im(Fy ¢, (x)). Clearly,
the Qs are linearly independent since they are disjoint sums of linearly independent

vectors. Thus, {Qx} form a basis of (Cy(X))o = Im(FPc,(x))- O

Using the canonical basis of (Ck(X))o and (Cy(X))o, we introduce the matrices
(W)o, (W) defined using an arbitrary map W € Homg(Cr(X),Cy(X)). We will
study in great detail the matrices (W)g, (W), that arise when W = W .

Definition 4.2.2. Let W be G-map W : Ci(X) — Cy{(X). By (W)o, we will denote
the matriz of W calculated using the canonical basis of (Cx(X))o and of (Ci(X))o-

That is, a matriz whose entries are given by:

(W)O(QTi7QKj) = Z Wer;, ex).

KEQKj

We will refer to (W) as the “row sum equivariant projection of W.”

Also, we will denote the matriz (W*)o)T = ((WT)O)T by (W)y. That is, a matrix
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whose entries are given by:
(W)6<QTi7QKj) = Z W(eT,eKj).
TeQr,

where (*) denotes complex conjugation. We will refer to (W){, as the “column sum

equivariant projection of W.”

We establish a relationhip between (1¥), and (W) by using special inner products
on (Cr(X))o and (Cy(X))o.

Proposition 4.2.3. Let W : Cy(X) — Cy(X) be an S,-map. Let (,), be the standard
Hermitian inner product on Cy(X) and (,), be the standard Hermitian inner product

on Cx(X). Let Dy be the diagonal map on (Cx(X))o defined as:

Qx| if Qx = Qg
Di(Qk, Q) =
0 else.

Let l/); be the diagonal map on Ci(X) defined as:

_ Qx| if K=K,
Dk(GK,BK/) -
0 else.

Then,
1. Using the standard basis of (Cx(X))o, (z,y), = x' Dyy whenever z,y € (C(X))o.
2. Using the standard basis of (Cy(X))o, (z,y), = 2T Dyy whenever z,y € (Cy(X))o.
3. Let (,), and (,), be the inner products of parts 1 and 2. Using the standard

basis of (Cy(X))o and (Cr(X))o,

(x,(W)oy), = (W) z,9)y,
Dy(W)oDyt = (W),

whenever x € (Cy(X))o and y € (Cr(X))o-
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4. The following holds, (M), = (I):Ml/);_l)o.
Proof. Parts 1 and 2 are clear since (Qx, Qg7), = 0o, .0, Qx|
We show part 3. Consider, (W*z,y), = (z, Wy), where x € Cy(X) and y € Cy(X).

When we restrict this identity to the standard basis of (Cy(X))o and (Ck(X))o we

deduce,

(W)o(Qr, Qx)|Qk| = (W Qr, Qk), (4.6)
— <QT7 WQK>t
= [Qp|(W)o(Qr, Q).

Hence, we deduce (W), Dy = D;(W ). Therefore, (W)i = D;(W)oD; "
We proceed to show (z, (W)oy), = ((W)g) z,y),. Consider,

(x, W)oy), = =" D(W)oy
= 2"D;(W)oD; ' Dyy
= 2" (W);Dyy
= ((W)p)" )y
= (W)o) 2,9},

Hence, part 2 follows.

Part 4 follows by direct calculation using Equation (4.6). O

Definition 4.2.4. The inner products given by Dy, and D; will be called the G-induced
standard Hermitian inner products on (Cy(X))o and (Ci(X))o.

We proceed to show the operators (-)o, (+), preserve algebraic operations.

Proposition 4.2.5. 1. Let f(z1, 2, ...,2,) be a multivariable complex polynomial

of n variables.

2. Let T,...,T,, be G-maps from Cy(X) to C¢y(X). For example, they could be

Sy-maps.
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3. Let f(Ty,...,T,) = 0.

4. Let S; = (T;)o0 be maps from (Cy(X))o to (Ci(X))o having matriz representa-
tion with respect to the Canonical Basis of (Cx(X))o and (Cy(X))o.
Then, f(Si,...,S,) =0.

Proof. By proposition 4.1.15, f(Si,...,5,) = 0 as maps. By using the Canonical

Basis, we deduce the result. |

Proposition 4.2.6. Let V € Homg(Cr(X),Cy(X)), W € Homg(C.(X), Cr(X)),
X € Homg(C(X),Ci(X)), and o € C. Then,

(VW + OéX)(] = (V)O(W)o + Oé(X)O,
(VW +aX)y = (V)W) + a(X)p.

Proof. The first equation follows from proposition 4.2.5 by restricting the ()oo maps
to the Canonical Basis of (C,(X))o.

To show the second equation, consider the map:

o~ o~

_ —~-1— —~—1 e | -
D\VD, DWD, +aDXD, = D(VW +aX)D,

by taking the row sum equivariant projection operator of both sides, and using propo-

sition 4.2.3 part 4, we can deduce,
V)W) +a(X)g = (VIV +aX)y.

Hence, the result follows. |
The following result shows that (7)o, (7"); have full rank whenever T has full rank.
Proposition 4.2.7. Let T' € Homg(Ci(X), Ct(X)) have full rank. Then,
1. The map (T)o has full rank.

2. The map (T')y has full rank.
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Proof. Part 1 is a consequence of proposition 4.1.12.
We show part 2. Consider S = T7, clearly S has full rank as 7" has full rank.
Hence, (S)o has full rank by part 1. Therefore, (T'); = (S){ also has full rank. [

We proceed to study the analogous version of Ejj in the equivariant case.
Definition 4.2.8. Let G C S, be a permutation action. We will denote by,

1. The map Gsx = (Esx)o as the row sum equivariant projection of the sth S,-

irreducible projection of Ci(X).

2. The map G, = (Esx)y as the column sum equivariant projection of the sth

S, -irreducible projection of Ci(X).
We note that the subscript s indezes the S,-irreducibles of Ci(X).
Using the operators (-)o, (+)y, we deduce a few properties of Gy, G, ;-

Corollary 4.2.9. The Row Sum and column sum equivariant projections of the family

of maps Esy, form an orthogonal family of idempotents maps on (Ci(X))o. That is,
1. Gop+ -+ Grp = 1.
2. 6,k+...+G;€,]€:I'

3. Gi,ij,k: - 5i,jGj,k-

B

/ ! _ !

©r

! _ T
i,k_Gi,k'

D

. G 15 a projection operator to the space (N;x)o-
7. Gi,, is a projection operator to the space Dy(Nix)o-
Proof. By the results of the preliminary section on the Johnson Scheme, we have,

Eop+-+ Epr = 1,
EixEjx = 0i;Eiy.
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Using proposition 4.2.6, we can deduce the same for the Row Sum Equivariant pro-
jections. Hence, parts 1, 2, 3, and 4 follow.

We show part 5. Consider,

;',k = ((E;‘,Fk)o)T
= ((Bix)o)"

_ T
- Gi,k’

hence, part 5 follows.

Part 6 is obvious.

We show part 7. Since G7, = GZ,C, G, must be a projection operator. By
proposition 4.2.3, G, Dy = DyGix. Choose z € (Ce(X))o, and let z; = G;pz. We
can deduce that G, Dyr = Dyw;. Hence, Gf, acts as a projection operator on the
space Dy(N;x)o-

O

Corollary 4.2.10. Assume k = ko = min(v — k, k). Let A : Cip(X) — Cr(X) be
an S,-map that decomposes into eigenspaces as A = Zi:o apEs . where ays are the

corresponding eigenvalues. Then,

1. The map (A)o decomposes into eigenspaces using the the row sum equivariant

projections as:
k
(Ao = > @Gy
s=0

2. The map (A), decomposes into eigenspaces using the column sum equivariant

projections as:
k
(A)y = Z@kGls,k~
s=0

Proof. This is an obvious consequence of corollary 4.2.9. Alternatively, we can apply
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the ()¢ operator to the equation A = Z];:o apEs i, to deduce the first part. Similarly,
we can apply the (-); operator to the equation A = Z];:O aiEs i to deduce the second
part. O]

Proposition 4.2.11. Let T = VW where W € J(v,k,t) and V € J(v,t, k). If T is

nonsingular, then,

ker(V)NIm(W) = {0},
ker((V)o) N Im((W)e) = {0},
ker((V)o) N Im((W)p) = {0}.

Proof. Let x € Ker(V)NIm(W). Clearly, there is z such that + = Wz and Vo = 0.
Thus, VWz = Vo = 0. Since T is nonsingular, we must have x = 0. Therefore,
Ker(V)NIm(W) = {0}. Thus, part 1 follows.

To show the remainder parts, it suffices to show that (VIW), and (VW) are
nonsingular. Note that T" = Zizo asEs;, where as # 0 are the eigenvalues. By
corollary 4.2.10, (T")o and (7'); are both nonsingular. O

The following result will prove useful in later sections.

Proposition 4.2.12. Let W € J(v, k) have eigenspace decomposition 250:0 AsEs k.
Using the notation of definition 4.1.14, we have,

a. The map (W); has eigenvalue \s with eigenspace (N );.

b. The dimension of the space (Ngy); is given by

dime((Nsg)i) = (Xss Pi)aSis

where s; is the dimension of the irreducible representation corresponding to ¢;,
(,)¢ is the “class function” inner product of character theory, and the character

Xs s defined in proposition 4.1.38.

c. The map (W); decomposes as (W); = Z’;OZO As(Es k)i



199
d. The determinant of (W); is given by,

d€t((W)Z> = HgOZOAng,(bi)Gsi’

where (W), is viewed as a map from (Cr(X)); to (Cr(X));.

Proof. Clearly, the spaces N, are S,-spaces, hence they are G-spaces. Also, by
assumption, N, is an eigenspace of W with eigenvalue A;. Consider the application

of the (-);; = (-); operator using using proposition 4.1.15 to the equation:

ko
W= Y AEg.
s=0

we deduce,

(W)Z = Z)\S(Es,k)i~

This establishes part c.

By proposition 4.1.15, we deduce that the operators (E; j); are a complete orthog-
onal set of maps from (Cy(X)); to the space (Cx(X));. Hence, (Nyx)i = Im((Esx):)
are eigenspaces of (W), with eigenvalue \,. Hence, part a follows.

We proceed to show part b. Clearly, Ny is an S,-irreducible with character .
By restriction, we can view x, as a character of G, not necessarily G-irreducible.
Also, by a standard result in character theory, N;; decomposes into G-irreducibles

as,

N ~ EB (Xss @i) M,

where, ¢;s are the G-irreducible characters of the G-irreducible spaces M;, and (x5, ¢i)
is the multiplicity of M; in N, . Clearly, (Nsx); =~ (Xs, ¢i)oM;. Hence, part b follows.
Part d is a trivial application of the formula of the determinant of a linear map

T in terms of its eigenvalues. |
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In general a projection to NV, that is a G-map is not necessarily integral. However,
the projections Ej; can be shown to be rational. This is because the irreducible
characters that arise from the action of S, on the t-subsets are integer valued, a

consequence that every irreducible character of 9, is integer valued. Hence,

1
By = |SU|ZE<°'W">»

UESU

has rational entries.

We will show that we can choose projections to N, that are G-maps and are
almost integral up to a factor of v; = |G|. We will do this with the aid of a right
inverse of W, found by Wilson in [26],

Proposition 4.2.13. (Wilson) Let t < k < v —t. There exist (Z) by (q;) matrices
A; , wherei=0,...,t, such that:
|
Ui = Y 7 AW
i=0 (tfi)

Is a right inverse for Wy y.

Corollary 4.2.14. Let G C S,, where vy = |G|. There are projections Qs :
Cr(X) — Ngy, such that:

1. The matriz Qs has rational entries.
2. The matriz v1Qs, 1s integral.

3. The matriz Qs is a G-map.

Proof. By using the right inverse provided by proposition 4.2.13, one can show that:
WulUs, = wl,

where

Ug, = Y ml9)Ukimilg ™),

geG
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Clearly, iU,ft is a right inverse of Wy, and in particular rk(Ug) = (7). Define
Tl T
Dy = Wt,k(U_Uk,t) :
1

A direct calculation shows that D7, = Dy and Dy W/, = W[, Hence, Dy is a
projection operator that is a G-map, has rational entries, v; D, is integral, and leaves
the rows of Wy, invariant. Also, rk(Dyy) = rk((US,)T) = rk(US,) = (}) as W[, and
U, ,gt are injective.

Clearly, rk(W},) = (}) as W/, is injective. Hence, it follows that Dy, is a projec-
tion onto the column space of W/,.

Note that the column space of C’olQ(WEk) =Nop ®N1 @D Ny

Define Qs = D5 — Ds_1 where D_; , = 0. Clearly, (), satisfies the conditions

of the conclusion. O

Corollary 4.2.15. Let G C S, where |G| = v1. Define Kyj = (Ngp)oNZ™S) where
ri(G) is the dimension of (Cy(X))o. Then,

1. The space Ky, is a finitely generated free abelian group of abelian rank rgj =
dimg((Nsk)o) = (Xs, X0)g = 7s(G) — rs-1(G), where we make the convention

r_1(G) =0 and xo is the trivial character.

2. Let {BI};2 a Z-basis of K,y Set § = Us_o{BI}.2). Let M € J(v,k) with
eigenspace decomposition M = Z]::o AsEs .. Using the basis 3, (M)o diagonal-

izes to (M)oB = BD,, where,

(a) The matriz B = [[(]] is the matriz having  as its columns.

(b) The matriz Dy is the diagonal matriz of eigenvalues of (M )g.

Proof. By corollary 4.2.14, there is a projection () to N, such that: it is a G-map,
and v1 Qs is integral. Clearly, (Qsx)o is a projection to (Nsg)o such that (v1Qsk)o
is integral. Let L be any subset of columns of (Qs)o that is linearly independent
over Q. Consider the Z-module L’ generated by the columns of L. Clearly, v{L’ is

a submodule of integral vectors, and v; L' C (Ns)o by construction. Hence, v L/ C
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(Nyp)o NZE) = K, . Thus, K}, has a finitely generated free abelian subgroup of

maximal possible rank, i.e., dimc((Nsx)o). It suffices to show,

dimc((Nsk)o) = (Xs) Xo0)g
— Ts(G)_TS(G)'

By proposition 4.2.12 part b, the first equation follows. We proceed to show the

second equation. Consider,

<XsaXO>G' = <7Ts_7rs—17X0>G

= (T, Xo0) — <7T5—17X0>G7

where 74 is the character of the permutation action induced by G on the s-subsets.
We note that by Burnside’s theorem for group actions, (7, xo) = 75(G). Hence, the
second equation follows.

Part 2 is obvious. O

We remark that the projections of corollary 4.2.14 are not the same projections
that arise from the representation of S,. That is, ()5, may not equal Ej ;. However,

it is true that,

Qs,kEs,k - Es,ka Es,st,k = Qs,k-

But, Q1 E; may not equal 0 since () is not necessarily an S,-map.

4.3 The Mk and Mfc’k Incidence Structures

In the following, we will study the matrices M, and My, defined in the introduction.
We will look at their Smith Groups; we will consider the integral preimage problem:;
we will provide consequence of the existence of (t, k)-basis; and we will close the

subsection with a brief study of the kernel of M, and Mt’k
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Clearly, by definition, My, = (W;x)o and M{, = (Wi ). Consider the equation,

r—t
Wt,ka,r = < )Wt,m (47)

which we call the “cocycle conditions.”

By applying the (+)o, (+)g, we can deduce the same for M, and M, .
Corollary 4.3.1. Lett < k <r. Then,

1. MypMy, = (373) My,

8. MM, = ()M,

Proof. We prove part 1 by applying the (-) operatory to Equation (4.7) via the use of
proposition 4.2.5. Part 2 follows simililarly but instead we apply the (-); operator. [

As short-hand notation, we will denote M, (21, Qx) by mr k, and M£7k(QT, Q)

by m7 g The following proposition lists some properties for mr xc, M7, g

Proposition 4.3.2. The following are true:

1. If Gy G or GG, then mp g = 5T,K‘G‘TG$KV where Brx € {0,. .., ‘<G7|“7GG|K>|}.
2. If Gg>G or Gr>G, then myp i = CYT,K—|GL$~|KG|'K|; where ar i € {0,. .., —‘<GT|G(|;K>|}-

3. If GG or Gr>G, then m/TK = /8T7K‘G|G—K| and mr g = ﬁT,KlGlGiTl where

TNGK] NG|’
e
Brre €40, et

4. If Gp>G or Gx> G, and (Gr,Ggk) = G. Then,

(a) The constant mrp i = |Qk| whenever T C K.
(b) The constant my g = 0 whenever T\K # ¢.
(¢c) The constant my, ;= |Qr| whenever T C K.

(d) The constant m7p x = 0 whenever T\K # ¢.

5. The following holds, |Qr|my x = mip | Qk|.
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Proof. Clearly, part 5 follows by proposition 4.2.3 part 4.
We show part 1. Let Qp and Qg be orbits of 7" and K under the action of G.
Consider f : Qp x Qg — {0,1} defined by,
HTK) = 1 ifT' Cc K,
0 else.
Clearly, f is a G-invariant function. Since f is either 0 or 1, f is the characteristic
function of some of the orbits of G on Q7 x Q.

Consider the quantity g(T) = > picq, f(T, K'). Clearly, myx = g(T). Let Gr
be the stabilizer of T'. Clearly, if g - (T, K’) = (T, K"), then g € Gr. Hence, g(T) is
the sum of the sizes of some of the orbits of G on Q.

Consider the action of G on Q. Clearly, if K’ € Qg, then (Gr)g = Gr N Gk,
where (Gr)k- is the stabilizer of K’ in the group Gr. Hence, the size of the orbit O x/

of K" under the action of G on Qg is,

|G|

Or| = ——
O] Gr N Gyl

Since K’ = ¢ - K for some g € G, and Gg.K = Gg; we must have Ggr = (GK)Q_l,

where the operator ()¢ is taken as conjugation by ¢g. Hence, if Gr> G or Gk > G,

then
Gr NG| = |Grn(Gr)’ |
= [(Gr)! NGkl
Therefore, all orbits of G on the k-sets of {2k have the same size given by | GlT(’%TG|K|.

Hence,

mrg = g (T)
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where fr € {0,...,2(T, K)}. It suffices to calculate (7, K).
Clearly,

G|

0

|GK’ | K|

|Gl

= 2(T'K)———F—,
( NGTHGK\

where (T, K) is the number of orbits of Gr on Q. The previous equations give a

formula for z(T, K) as

|Gl|Gr N Gk|
|Grl|GK|
G
(Gr,GK)|’

(T, K)

where (G, Gk) is the group generated by Gy and Gk in G. Hence, part 1 follows.
We proceed to prove part 2. The proof is similar to part 1. However, we consider

the following function instead:

WE) = Y f(T'.K).

T’EQT

Clearly, h is the sum of the sizes of some of the orbits of G'jc on Qr, and m7, ;r = h(K).

Using a similar analysis as part 1, we can show that all orbits of Gx on Q27 have the

1G]
KGr,Gk)l

|Gkl
|GTNGK|"

size equal to Also, we can show there are exactly orbits of Gk on

Qr. Hence,

m/T,K = h(K)
OCTK7|GK|
TGr NG|’

where ar i € {0, ..., I il

NGr,.Gr)| Hence, part 2 follows.
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We proceed to prove part 3. From the analysis of parts 1 and 2, we have that

|G|
Q = Qp| ————F—
| T|mT,K 5T,K| T| |GT A GK|
_ gy SrllGrl
| Gr NGk
_ G|
= Prx IGr 0 Gr|
Similarly,
Gkl
Q ' = Q ’7
|k |m ar K| K‘|GTQGK’
_ . Q|| G|
= QT KT~~~ 7
G NGkl
R <
| Gr NGkl
Hence, by using part 5, we have,
G| :
— Q
= mT,K|QT|
|G|
Thus, ar x = Br x and part 3 follows.
Part 4 is a consequence of part 3. [

Corollary 4.3.3. DM, = Mt,,ka'

Proof. This can be viewed as consequence of proposition 4.3.2 part 3; or it can be

viewed as a deduction from proposition 4.2.3 part 4. [

Using proposition 4.2.12, we deduce the eigenspace decomposition of the matrices

Corollary 4.3.4. Let (1’) < (Z) The following hold:

1. The matriz Mt,k(Mf:k)T has eigenvalue Ay = (’;:j) (U;:s) with eigenspace (Ng4)o-
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2. The dimension of (Nst)o is given by,

dime((Nsi)o) = (Xs) X0) e

where x5 is the irreducible S,-character that corresponds to Ns,, and xo 15 the

trivial character.

3. The quantity (xs, Xo)q of the previous part is given by,

<Xs: XO)G = Ts(G) - Ts—l(G)y

where rs(GQ) is the number of orbits of G on the s-subsets, and r_1(G) = 0.

4. The map Mt,k(M{7k)T decomposes into eigenspaces as,
to

Mt,k(Mtl,k)T - Z/\S(Es,t)o-

s=0

5. The map My (M ;)" has determinant given by,

det(Myp(My,)") = H?;o((’“_s> (“;tf>><x»xo>c.

t—s

Proof. By proposition 4.1.42, we have,
L lk—s\[v—t—s
WWl = Eq;. 4.8

By corollaries 4.2.10 and 4.2.9, My, (M{,)" = (W s W/, )o has (N, )o as eigenspaces

with eigenvalue ('::) (”;:S) Hence, part 1 follows.

We proceed to show part 3. Consider,

<XS7XO>G = <7T87X0>G_ <7T8*17XU>G'

Note that by Burnside’s theorem for group actions, (7, x0); = rs(G). Hence, the
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result follows.

The rest of the conclusions follow from applying proposition 4.2.12 to Equation

(4.8) with i = 0. 0

Corollary 4.3.5. Lett < v —t. Then,

(xs:X0) &
v—t—38
det(Mt’v_t) = Hl;:O < ) 3

(Xs:X0) &
v—t—3s
g, = (M)

where xo s the trivial character.

Proof. By Corrollary(4.3.4), we have,

2<X571>G
v—t—3s
det(Myp—o(M{,4)") = Hi:o( - ) '

It suffices to show det(M,, ;) = det(M], ;). By corollary 4.3.3, D;M;, ; =
M, Dy Also note that [Qr| = [Q.p| since Gr = G.or. Hence, det(D;) =
det(Dy—). Thus, det(M;,_;) = det(M], ;) and the result follows. O

We remark that the above equation comes from the eigenspace decomposition
of Wt,ngk, and in no way gives a diagonal form for M,;,_,. However, computer

computations with several nontrivial groups seem to verify the following conjecture.

Conjecture 4.3.6. Lett < v —t. Then, the matriz M, ,_, has diagonal form D with

v—t—s

s ) with multiplicity (xs, Xo)q, where s =0,...,t and Xo is

diagonal entries \s = (

the trivial character.

Also, direct calculations verify that the diagonal form conjectured above does not

generalize to the nonsquared case, i.e., when k +t < v.

4.3.1 Full Rank Results

We start with consequences of W; ;, having full rank.
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Proposition 4.3.7. Let m; be the character of the induced action of G the t-subsets.

Let ¢; be an irreducible complex character of G. The following are true:

LIf(5) < (7)), then (mi, ¢i) g < (T, di) -

2. [f (1];) < (:)7 then <7Tk7¢i>G < <Wt7¢i>g-
Where (, ) 1is the class function inner product of character theory.

Proof. We show part 1. By proposition 4.1.53, Wy ;, is surjective whenever (?) < (Z)

Thus, (W;); is surjective by proposition 4.1.12. Hence,
dimc((Ci(X))i) < dime((Cu(X))s).
Clearly, (Cr(X))i = (Nox)i ® (N1x)i ® -+ - @ (Ngx);. Also, by proposition 4.2.12,

dime((Nyg)i) = (Xs: @i) g 5i-

Hence,

E

dimc((Cr(X));) = dime((Nsx)i)

s=0

> |

= (Xss Pi) S
=0

= <7Tka ¢i>Gsi-

where s; is the dimension of the irreducible G-space corresponding to ¢;. Similarly,

we can show dimc((Cy(X));) = (74, i) osi- Thus, we deduce,

(e, 0i)gsi = dime((C(X))s)
< dime((Cr(X))i)

= (m, ¢z’>05i-

Hence, the conclusion follows.

Part 2 is a similar argument. ]
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Corollary 4.3.8. Let r(G) be the number of orbits of G on the t-subsets. Let r(G)
be the number of orbits of G on the k-subsets. Then,

1.1If (3) < (}), then ri(G) < ri(G).

2. If (7) < (3), then r.(G) < 14(G).
Proof. Apply proposition 4.3.7 to the trivial character yo of G and use the fact that
(e, x0) = 1e(G). O]
Corollary 4.3.9. The following hold.

1. If r(G) < 1(G), then () < (7).

2. If ri(G) < ry(G), then (}) < (5)-

Proof. We show part 1. Suppose otherwise, that is, 7,(G) < r(G) and (zt’) > (Z) By
corollary 4.3.8 part 2, we must have ry(G) < r(G). Thus, r(G) < r:(G) < 1(G).
Clearly, this is a contradiction.

Part 2 follows similarly. |

Clearly, by proposition 4.2.7, it follows that the matrices My and My, have full

rank.

Definition 4.3.10. We define My as (W, 1)o.> Hence, the entries of My, are given

by,

M y(Qr,Qx) = Mrg
= H{K' € Qx|TNK' = ¢}
Similary, we define Muk/ as (Wik)p-
We proceed to show the full rank results.

Proposition 4.3.11. Let (;’) < (Z) The following hold,

2We warn the reader that the (-) notation in M, ; does not mean complex conjugation.
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1. The matrices My, have full rank.
2. The matrices MY, have full rank.
3. The matrices M—tk have full rank.
4. The matrices M—t,k, have full rank.

Proof. By corollary 4.1.57, the matrices W, and W, have full rank. The result
follows by applying proposition 4.2.7. |

We note that part 1 of proposition 4.3.11 has been shown by Kreher in theorem
11 of [16], but by using a different method.

We close this subsection by providing left and right inverses for M, and m/
whenever possible. We note that the same technique can be used to show similar

results for M, and Mt7k/.
Proposition 4.3.12. Lett < k. Then,

1. If (Tz) < (Z), then M, 1s surjective and has a right inverse given by,

2. If (Z) < (:), then My, is injective and has a left inverse given by,

vk

(Skt)o Z 1

3. If re(G) = r(G), then M,y is invertible.

Proof. We will show the details for part 1, a similar argument will follow for part 2.

By proposition 4.1.53, there is a right inverse Uy, of W, given by,

Urs = Et: U
kt — (U t— ’L) kaVVit
i=0 \ k—t
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We can deduce that Uy, is an S,-map since Wy, ; and W, are S,-maps. By applying

the (-)o operator to the derived equation,
Wi U —1 = 0,
we deduce,
M,y (Ugt)o—1 = 0.

Hence, (Uk:)o is a right inverse. Clearly, part 1 follows by using the substitutions
(Wi)o = My, (Win)o = Miy.

We show part 2. We use the left inverse provided by proposition 4.1.56 and follow
a similar argument as part 1.

We show part 3 by splitting it into two cases.

Case (:) < (E) By part 1, M, is surjective. Since the range and the domain of
M, , have the same dimension, it follows that M, is an isomorphism.

Case (‘1:) < (:) By part 2, M, is injective. Since the range and the domain of

M, i, have the same dimension, it follows that M, ; is an isomorphism. ]
The following is the analogous result for Mj,.

Proposition 4.3.13. Lett < k. Then,

1. If (Tz) < (Z), then My, is surjective and has a right inverse given by,

t .
1) ——
Voo = S W amm,

2. If (Z) < (:), then My, is injective and has a left inverse given by,

v—k i
S,
=0 (t—z’ )

3. If re(G) = 1(G), then My, is invertible.
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Proof. We will show the details for part 1, a similar argument will follow for part 2.

By proposition 4.1.53, there is a right inverse Uy, of Wy, given by,

U., = Zt: (-1 W W,
kt — (vftfi) kaVVat-

=0 k—t

We can deduce that Uy, is an S,-map since Wy, ; and W;; are S,-maps. By applying

the (-){ operator to the derived equation,
WUt — 1 = 0,
we deduce,
My (Ur)o—1 = 0.

Hence, (Uk.); is a right inverse. Clearly, part 1 follows by using the substitutions
(Wely = Mai, (Wil = M.

We show part 2. We use the left inverse provided by proposition 4.1.56 and follow
a similar argument as part 1.

We show part 3 by splitting it into two cases.

Case (;’) < (K) By part 1, M, is surjective. Since the range and the domain of
M; ), have the same dimension, it follows that M, is an isomorphism.

Case (‘1:) < (‘t’) By part 2, My, is injective. Since the range and the domain of

i » have the same dimension, it follows that M, is an isomorphism. O

4.3.2 The Smith Group of My and M;,k

In this section, we will prove results that will bound the order of Smith Group of M,

/
and M.
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4.3.2.1 Bounds on [Mg||M,]|

We will begin by showing an identity involving |M; .| and [M],| by exploiting the
equation Mt,,ka = DM, .

Proposition 4.3.14. The following are true:

1. There is an ezxact sequence such that,

0 — S(Myy) — S(DiMyy) — S(Dy) — 0.

2. The following holds, | DMy k| = | Dy|| My ).
Proof. By considering D; M, ., we note that D, is injective. Hence, proposition 4.1.32
applies, and we deduce the exact sequence:

0— S(Mt,k) — S(DtMt,k) — S(Dt> — 0.

Since the matrices M;y, D;, and DM, have full rank and r(G) < ri(G), these

matrices must have zero abelian rank. Thus, S(M,; ) = S(My), S(Dy) = S(D;), and

S(D¢My) = S(DyMyy). Therefore, the first part follows.
The second part is a corollary to part 1. |

Proposition 4.3.15. The following are true:

1. There 1s an exact sequence such that,

0— S(M,) ® (Z)+(D=re(G) S(M{,Dy) ® (z)+(D=r&) L §(Dy) — 0.

2. There is a finite abelian group Hs such that,

S(M{yDx)  — =
S(M)
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3. There is an integer hs dividing |Dg| such that,

hs| M Di| = [Mj || Dil.

Proof. Consider the product M{, Dy. Clearly, Dy is onto. Hence, proposition 4.1.32

applies, and we can deduce,
0 — S((M{)") = S(M;,Di)") — S(Dy;) — 0.
Because M/, and Dy have full rank and r,(G) < 7(G), we have,

S((Mt/,k)T) = §<Mt,k>@]F‘((M£k)T)7
S((M{,Dy)") = S(M{,Dy) & F((M],Di)"),

(Dk)>

=z
-
>4
I
0l

where r((M;,)") = r(G) — r(G) and r((M{,Dy)") = m(G) — r:(G). Hence, part 1
follows.

Part 2 is an application of proposition 4.1.26. Part 3 follows from part 2. [
Corollary 4.3.16. Lett < k < v—k. There is an integer hs dividing | Dy| such that,
hs|Di|[Myg| = ha|DiMyy|

hs| My D|

= M} 4]| Dyl

Proof. This is a consequence of the previous propositions and the identity M;, Dy =

DyM;,. ]

By recalling a few identities involving W, ;, and ng we will show some conditions

on the product [M||M],|.

Proposition 4.3.17. (First Bound) Lett < k < v — k.
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1. Let Jyj, = Mtk(Mt’k)T There are exact sequences and finite abelian groups H,

6.

HY such that,

0— S(M{;)®Hy — S(Jix) = S(Myx) — 0,
0— S(Myy) ® H] — S(Jii) — S(My,) — 0,

where |H,| = |H]|.

There is an integer hy such that,

[ ekl = ha| My ][ My |-

Let r;(G) = (m;, X0) be the number of orbits of G on the i-subsets, and define
r_1(G) = 0. Then,

[ Jekl = 1T
k—s\/v—t—s
= TIIt_ rs(G)=rs-1(G)
80((15—3)( k—t ))

The exp(Jyx) divides TIE_o((57%) (*1,%))@), where,

t—s k—t

1 Zf TS(G> - T371<G) 7& 07

0 else.

e(G) =

The exp(Myy) divides ngo((k*‘*) ("0)e@.

t—s k—t

The exp(M],) divides II'_o((5=%) (".55°))=(@.

t—s k—t

Proof. Consider the map I, = thkWEk. Clearly, (I;1)0 = (Wt,kWt,Tk)O = (Wt,k)o(ng)o =
]\/[tkMt’T,C = Jix. By proposition 4.2.11, Ker(M;x) N Mﬂ = {0}.

We deduce the first exact sequence by applying proposition 4.1.31 to the product

M, (Mj,)". Hence, we have the exact sequence:

0— H — S(My(M{,;)") — S(Myx) — 0,



217
where 7(H) = rk(Mx) — rk(MxM]}) = 7(G) — (G) = 0. By proposition 4.1.31
again, we can deduce that H ~ §(Mt'k) ® H, for some finite abelian group H;.
Since J; j, and M, have full rank, it follows that S(J;x) = S(J;x) and S(M; ) =

S(M, ). Thus the exact sequence of proposition 4.1.31 becomes:
0— S(M,)® Hy — S(Ji) — S(Myx) — 0.

Hence, the first exact sequence follows.

We show the second exact sequence. Consider, (1)l = (Wi W/ )o = (Wi )o (Wi )b =
M|, M/, = J[,. By proposition 4.2.11, Ker(Mj,) N Im(M],) = {0}. By using a sim-
ilar analysis that was used to deduce the first exact sequence, we can deduce the
second. Hence, part 1 follows.

Part 2 is clear consequence of the exact sequences found in part 1.

By corollary 4.3.4 or by corollary 4.2.10, we can deduce that (I; ;)0 is nonsingular
with eigenvalues (’::j) (;’:}:‘Z) of multiplicity (xs, 1) = r5(G) — rs-1(G). Thus, part
3 follows.

Part 4 is an application of proposition 4.1.34 (Rushanan’s result).

Since S(M,x) and S(M;,) are homeomorphic images of S(Jyy), it must be the
case that exp(J; ) divides exp(M; ) and exp(Jyx) divides exp(M{,). Hence, parts 5
and 6 follow from part 4. |

Proposition 4.3.18. (Second Bound) Let t < k < v — k. Define Ay = (7).
Then,

1. There are abelian groups Hy and H} such that

0 — Hy ® S(My,) — S(M\pM;) — S(M,y) — 0,

2. The exp(M,,) divides TT'_, (v—t—s)es(G)‘

t—s

3. The exp(M,;, ) divides II_, (”_t_S)GS(G).

t—s
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4. The exp(M,y) divides A p 11, (”_t—S)ES(G),

t—s

5. The exp(Myj,,) divides A IT!_, (’U*tfs)ﬁs(G)'

t—s

Proof. We show part 1. Consider the product from proposition 4.1.46,

WeiWiee = MaWis,

v—t—k

where A\, = ( ot

). By applying (-)o operator, we have

MgpMie = (AepWir)o
= (WerWis)o
= (Wer)o(Wi)o
= M, My,.

By proposition 4.3.11, M, Mm, have full rank. Hence, M, ,, Mt,t/ are nonsingular.
By proposition 4.2.11, Ker(My) N Im(My,) = {0} since My My = NepMyy is
nonsingular. We apply proposition 4.1.31 to the product M, ;M. Thus, we get the

exact sequences:

0 — H — S(Mt,kMk,t> — S(Mt,k) — O,
0 — K —  SMgy) — H — 0,

where r(H) = rk(M, ) — rk(M,; 1My ;) = ny(G) — ny(G) = 0, and S(My,) is injected
into H in the second exact sequence. By proposition 4.1.31 again, we deduce that
H ~ Hy & S(My,) for some finite abelian group H,. Thus, the first exact sequence
follows.

We show the second exact sequence of part 1. Consider the product W, ;W =
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A xWi s again. By taking the (-)), we have

/\t,kM_t,t/ = (AeeWie)g
= (WixWet)o

= (Weir)o(Wrt)o
= MM, .

By proposition 4.2.11, Ker(M{;) N Im(Mkyt/) = {0} since M{’ka, = )\t,ka/ is
nonsingular. We apply proposition 4.1.31 to the product Mt,,kMk,t,' Thus, we get the

exact sequences:

0 — H — S(M M) — S(M,) — 0,
0 - K — S(MM,) — H — 0,

where r(H) = rk(M},) — rk(M], M) = n(G) —ny(G) = 0, and S(Mj,, ) is injected
into H in the second exact sequence. By proposition 4.1.26, there is a finite abelian

group H} such that,

H ~ H, o S(M,).

It suffices to show that S(A.x M) ~ S(A My ).
Note that M,, = ((Wt,tT)o)T = (Wi)o)T = M—MT. Also, for any matrix A,

S(A) ~ S(AT). Hence, the second exact sequence of part 1 follows and therefore part
1 follows.

We show part 2. We recall that the matrix A; of proposition 4.1.44 is the matrix
W, as it is shown in proposition 4.1.46. By applying corollary 4.2.10 to proposition

4.1.44, we deduce that M;; = (W;)o is nonsingular with eigenspace decomposition:

t

- v—t—3s

o = (7)o
s=0

where 7, € {£1}. By Rushanan’s results, i.e., proposition 4.1.34, it follows that
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AT st t v—t—s\€s(G) f
exp(Myy) divides IIE_ ( )™, Hence, part 2 follows.

t—s

Part 3 follows from part 2 since M_t,t/ = M_MT, hence they have the same exponent.
We show parts 4 and 5. Clearly, by part 1, S(M; ) and E(Mt’k) are homeomorphic
images of S(AxMyy). Thus, exp(M, ;) and exp(M],) each divide the exp(Ayx M) =

)\mexp(M—m). Therefore, they each divide the bounds given by parts 2 and 3. 1

Corollary 4.3.19. Let v; = |G|, and suppose that every prime that divides vy also
divides v. Let ged(v,t) = ged(v,t +1) =--- = ged(v,k+t — 1) = 1. That is,

(k+t—1)!
d(v, ———) = L
Lett <k <v—k. Then, vy is relatively prime to |M; | and [Mj,].

Proof. Tt suffices to show that v, is relatively prime to exp(M; ) and to exp(M] ).

By proposition 4.3.18, it suffices to show that v; is relatively prime to

v—2t o (vt «(G)
k—t) "\ t—s '

Consider,

v—2t\  (v=2t)(v—-2t—1)---(v—(k+t—1))
<k—t) B (k —1t)!

Since ged(v — a,v) = ged(a, v) and
ged(v,t) = - =ged(v,2t) = -+ = ged(v,k+t—1) =1,

it follows that v is relatively prime to (”kjt).

Also, consider,

v—t—s (0—t—s)v—t—s—1)(v—2t+1)
() |

t—s B (t —s)!
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Because,
ged(v,t) = -+ = ged(v,t + 8) = ged(v,t + s+ 1) =+ = ged(v, 2t — 1) = 1,

it follows that v is relatively prime to (”;:5)

Because v; and v have the same prime factors, it follows that v, is relatively prime

to (vk—jt) Im_, (”;_t;s)es(G) and the result follows. U

4.3.3 The Integral Preimage Problem

The integral preimage problem for an integral matrix M : V' — W involves deter-
mining when an integral z € W has an integral preimage in V. For the matrices
Wik, the integral preimage problem is solved in [26] and is summarized by the next

proposition.
Proposition 4.3.20. Let z € Ci(X) be integral. Then,

1. If there is an integral w € Cx(X) such that Wy yw = z, then (kf.i) divides W1z

t—1

fori=20,...,t.

2. If (];:Z) divides Wi,z for i =0,...,t, then there is an integral w € Cy(X) such
that Wy pw = 2.

We note that the above proposition makes use the suitable right inverse of W,

given in proposition 4.2.13.

Definition 4.3.21. When the matrixz L = M, or Mt’k has the same solution for

its integral preimage problem as Wiy, i.e.,

1. If there is an integral w € (Cr(X))o and z € (Cy(X))o such that Ly yw = z, then
(571) divides Lz fori=0,....t.

2. If for given z € (Cy(X))o, (k:f) divides Lz for i =0,....t, then there in an

¢
integral w € (C(X))o such that L;pw = z.

We will say that L, has a “trivial” solution for its integral preimage problem.
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A trivial solution to the integral preimage problems has some implications on the

exponent of the smith group. The next propositions shows this result.

Proposition 4.3.22. Let t < k < v —k and Ly), = My, or M{; have a “trivial”

solution for its integral preimage problem, then exp(Lyy) divides IT%_, (l::j)

Proof. Since L. is a surjective map, the Smith Group of L, is torsion. Thus,

Colg(Ly 1)NZ

consider z € E(Lt,k) — " Coly(Liy)

such that for some w € Q, L;yw = 2. Let
2 =T, (];:j)z Clearly, (]::Z) divides L; ;%' fori = 0,...,t. Hence, 2’ has an integral
preimage. Thus, IT¢_, (’lf:j)z =z = Lypw' where w' € Z. Therefore, (IT%,_, (f:s))z =

S

0 € S(Lsy). Hence, the result follows. O

We will see that under certain conditions on the order of the group GG, the matrices
M, and My will have a trivial solution to their integral preimage problem; but,

before that we introduce a major reduction for a general G.

Proposition 4.3.23. Let G C S,, t+k <v and Ly = My, or M{k If (;“:Z) divides

Lic fori=0,...,t, then there is integral x such that Ly x = vic, where vy = |G|.

Proof. Will show the result for M, ;, first. By proposition 4.2.13, it is shown that W,

has a right inverse given by

~ (-1)
Ui = Y. ) AW,
i=0 \t—1

where the A;s are integral matrices from the C;(X) to Cx(X). We note that Uy may

not be an S,-map, but W;, and W, are. Hence,
Wenp(9)Ukip(g™") = 1,
for all g € GG. Therefore,

WuUs, = wl, (4.9)
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where,

~ (-1)°
Udy = > S AWy,

= ()
AG = > plg)Aiplg™).

geG

Clearly, p(9)AYz = ASp(g)x for all g € G. Hence, AY is a G-map. Thus, U,St is a

integral G-map. Also, an application of the (-)o operator gives
Mt,k(U]ft)O == 1}1[.

We show that vic has an integral preimage under M, ;. It suffices to show that:
if y is a rational vector such that y” M, is integral, then y” (v c) is also integral.

Suppose ¥ is rational, such that y” M, is integral, then

y (vic) = y"(ul)c
= yTMt,k(Uk,t)OC

t

= DU M

:;‘) divides M;c for i = 0,...,t, and (AY), is integral

).

k

Hence, y” (vic) is integral as: (]

by construction.
We show the result for M, . We apply the (-); operateor to Equation (4.9) instead,

and we use an argument similar to the previous case. |

As a corollary, we deduce the integral preimage problem has trivial solution when-

ever the Smith Group is relatively prime to |G|.
Corollary 4.3.24. Assume,
1. Let G be a permutation group in S,, where v; = |G|.
2. Let ged(|Lex|,v1) = 1, where Lyy = My, or My,

Then,
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1. If (]t’c;’) divides L,z for an integral z € (Cy(X))o, then there is integral w &
(Ck(X))o such that Ly jw = z.

2. The map L.y, has a trivial solution to the integral preimage problem.

Proof. By proposition 4.3.23, we find a w’ such that M, w" = vyz, where v; = |G|.
Let e, ..., e, (c) be an integral modular basis of (Cy (X))o, and let fi,..., f, () be an
integral modular basis of (Cy(X))o. Let the bases {e;}, {f;} give the Smith Normal
Form of L,;. That is, Lyye; = d;f; for i = 1,...,17(G), and Ly ze; = 0 for i =
r(G) 4+ 1,...,rx(G). Where d; are the invariant factors of L, .

¢(G) i (G) /

Clearly, since w' is integral, w' = (32357 cie) + (32,5, (@) 41 Ciei), where all ¢;s

Zi(f()c) L1 Gé€i), clearly w is integral and

and c;s are integral. Consider w = w' — (D
Liyw = L pw' = v 2.
a . .
Let z = Z:tz(l )gifi, where g;s are integral as z is integral. Because L w = 2, we

must have:

r¢(G)
Z('Ulgi)fi = vz
1=1
= Ltykw
re(G)
= ZCiLt,kei
i—1
re(G)

= Z(dzcz)fz

i=1

By the Z-linearly independence of the f;s, we must have d;c; = wvyg; for all i =

1,...,7(G). By assumption, each d; is relatively prime to v;; hence, v; divides each
¢;. Thus, wg = % = ZZL g—jei is an integral vector, and L; ywy = z. Hence, the result
follows. [

Proposition 4.3.25. Let,
1. The group G C S,.

2. If p divides vy = |G|, then p divides v.
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8. Lett<k<wv-—k.

4. Let ged(v, (k(j_tz)l!)!) =1.

Then,
1. The |G| = vy is relatively prime to [My| and |Mj,|.
2. The maps My and M, have trivial solution for the integral preimage problem.
3. The exp(M,y) divides TIt_o(¥~%).

4. The exp(M{,) divides 11,_ (579).

t—s

Proof. Part 1 follows by corollary 4.3.19. Part 2 follows by corollary 4.3.24. Parts 3
and 4 follow by proposition 4.3.22. |

We close this subsection with results about the Smith Group of M/, whenever

the integral preimage problem of M, has trivial solution.

Proposition 4.3.26. Let M, 3 have a trivial solution to the integral preimage prob-

lem. Then,

1. If G is not 1-transitive then,
2-S(M33) = (Z/3Z) orO0.

2. If G is 1-transitive then,

S(Mys) = (Z/3Z) or 0.
Proof. Suppose G is not 1-transitive. Then, z € Z"(%) has an integral preimage under
Mj 4, ie., z=01in S(Myg) if and only if:
1. 3 divides M,z = j"=.

2. 2 divides Mj ,z.
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Clearly, the standard basis of Z™(@ {e;, ..., ery(c) }> forms a set of not necessarily
Z-independent generators for S(M; 3) because M, 5 is onto.

Clearly, 2(e; — e;) satisfies the conditions of the solution of the integral preimage
problem. Hence, 2(e; — ¢;) has in integral preimage and 2(e; — e;) = 0 in S(Mj3).
Therefore 2 - S(Mj3) = (2e1,. .., 2er@)) = (2€1).

Clearly, 6e; satisfies the conditions of the solution of the integral preimage prob-
lem. Hence, 6e; = 0 in S(M; ;). Therefore, 2¢; has order 3 or 1 in S(Mj ). Part 1
follows.

Now, suppose that GG is 1-transitive. Then, z has an integral preimage if and only
if:

1. 3 divides M,z = j" .

2. 2 divides M{,z = 25" 2.

Thus, it is only necessary to check that 3 divides 57z because the second condition is
checked trivially.

By using the standard basis ey, . . ., €,,(g) as a set of not necessarily Z-independent
generators of S(Mj 3), we can show that (e; —e;) has an integral preimage by checking

the above conditions. Thus, (e; — e;) = 0 in S(M, 3). Hence,

S(Mé,?;) = <€l> s 76T2(G)>
= (e1).

Consider, 3e;. It has an integral preimage by checking the above conditions. Thus,

er has order 3 or 1 in S(Mj ;). Hence, part 2 follows. O

The next two results follow similar proofs that we exclude.

Proposition 4.3.27. Let M, , have a trivial solution to the integral preimage prob-

lem. Then,

1. If G is not 1-transitive then,

3-S(My,) = (Z/2Z) or 0.
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2. If G is 1-transitive then,

S(My,) = (Z/6Z) orO0.

Proposition 4.3.28. Let M;, have a trivial solution to the integral preimage prob-

lem. Then,

1. If G is not 1-transitive then,

6-S(Mi,) = (Z/2Z) orO0.

2. If G is 1-transitive then,

2-S(Ms,) = (Z/2Z) or 0.

4.3.4 Integral (t,k)-Bases

Given an matrix M : (Ck(X))o — (Ci(X))o. In general, the free Z-module Coly (M)
may not be generated by a Z-basis consisting of a subset of the columns of M.
However, when it is possible to find a Z-basis for Colyz (M) consisting columns of M,

we call the Z-basis a “column basis.”

Definition 4.3.29. A (¢, k)-basis is a column basis for the matriz My, or the matriz

/
My,

The notion of a (¢, k)-basis can prove useful when calculating Smith Groups. This
has been shown by Wilson in [26], where he used the existence of a (t, k)-basis to
device an recursive algorithm to calculate the Smith Groups of the matrices W, . In
this section we will show a similar algorithm to calculate the Smith Groups of the
matrices M, whenever an (i,7+ 1)-basis exists and the matrices M, have a trivial
solution to the integral preimage problem for ¢ = 0,...,t.

We start with a general result about (¢, k)-basis.
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Proposition 4.3.30. Let 5:) be a (t,k)-basis for Wy that is invariant under the
action of G C S,. Define ﬁfk to be the orbits of G in 3. Then,

1. The columns given by 5 is a (t, k)-basis for the matriz M.
2. The columns given by ka forms a column basis for the matriz M, D, "

Proof. Let eq «, b€ an orbit in ~ ﬁffk. By assumption, there is a ¢ such that W, yex, =
Wy ke, where ¢ = ZKeﬂt,k crex has support ;. By applying the Py = Py, x).a

projection operator to the equation W; yex, = Wi rc, we deduce
WirPorex = Wb c.

By direct calculation,

1
Porer, = @ZPk(Q)eKo
geG
_ |GKO|€Q
G|
_ 6QKO
‘QKOI.
Also,
Pyre = Z cxPorer
Kep, i,
= ) CK|(§;IK|
KeBy K

(ZK’EQKCK’)
— Z AR

€Q -
Q K
Qreess, €2k |

Thus, we can deduce that there is a ¢ € (Ck (X))o given by

¢ = Z (Z CK'>€QK7

QKegfk K'eQg
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where,

(o)
M7k = M7k Z —K€Q .
| ' Qx| "

Qi €PBk

Thus,
—1 —1
Mix Dy eq,, = MypDy c

Hence, we deduce that 6% forms a Column basis for M;;D;'. By multiplying the

previous equation by D, on the left, we deduce,

/ -1
Mt,kBQKO = DtMt,ka GQKO
= DM Dy 'c

_ /
= M;,c

Hence, ¢, forms a column basis for M/, . O

We proceed with a calculation of the Smith Normal form of M/, that depends on
on the existence of an (7,74 1)-basis. Before we start, we state a few results that will
be useful in our proof.

The following proposition can be found in Wilson’s paper in [27].

Proposition 4.3.31. Let A be an integral matrix and E an unimodular matriz such
that Ax = b has integral solution if and only if Eb = Dy for a fixed diagonal matriz
D and some integral y. Then, A has diagonal form given by D.

The next proposition, which will use the concept of indexes of Z-modules, can be

found in an earlier work of Wilson in [26].

Definition 4.3.32. Let M C Z™ be a Z-module. Define,

M = {2€Z"|cx €M, for some c € Z,c#0}.
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Clearly, M has the same abelian rank as M. Hence, % 1s a torsion group. The index

of M is given by [M : M). That is, the order of %

Proposition 4.3.33. Let eq, ..., e, be the Z-basis for a module M C Z" of index 1,

then the matriz with rows dieq, ..., d.e, has diagonal form:
d 0 -+ 0 0 --- 0
0 dy -~ 0 0 -+ 0
d. 0 - 0

Lemma 4.3.34. Let,

1. The matriz U be unimodular.

2. The matrix F' be surjective.

3. The matriz D be injective.

4. The following holds, UM = DF".
Then,

1. There 1s an exact sequence:

2. The following holds, |S(M)| = |S(D)||S(F)].

Proof. It suffices to show the exact sequence of part 1. Consider the product MTU7T =
(UM)T = (DF)" = FTDT. Clearly, U" is unimodular. Also, because F is surjective,
FT must be injective. Similarly, because D is injective, DT must be surjective. By

proposition 4.1.32, we have the exact sequence,

0 — S(D') — S(F'D") — S(F) — 0.
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Clearly, S(FTDT) = S(MTUT) = S(MT) since U is unimodular. Also, S(D7) =
S(DT) because DT is surjective. Hence, S(DT) has abelian rank 0. By corollary

4.1.27, there is an exact sequence:
0— S(D") - S(MT) - S(FT) — 0.

Since S(A) ~ S(AT) for any integral matrix A, it follows that

0— S(D) —>S(M)—>§(F) — 0.

The result follows. [

The next result reduces the calculation of the Smith Group of Mj; to the existence

of an (i, 4 1)-basis.
Proposition 4.3.35. Lett < k < v — k. We will assume that:

1. The matrices M!

1—1,2

afford an (i — 1,1)-basis fori =1,... k.

2. The matrices M’

{_1; have a trivial solution to the integral preimage problem, for
i=1,...,k

Let E . be the rows of MY, after deleting the rows that correspond to an (t—1,1)-basis,

where we allow Eyy, to be the empty matriz. That is,



232
where Cyy are the rows that correspond to a (t — 1,t)-basis. Let Fyy, be defined as,

(1)i"

= Dt,kFt,ka

where Dy, is the appropriate diagonal matriz. The following must be the case,

1. The matrices Fyy are primitive of full rank. That is, they have trivial Smith

group.
2. The matrices m = Fy; are unimodular.
3. The Rowz(M{;) = Rowz(Fix).

4. The matriz M, admits a diagonal form given by (IZ::) with multiplicity r;(G) —
ri—1(G), where i =0,...,t and r_;(G) = 0.

5. The S(Mj,,) is given by,

(z/ (l;) 7)) x (2 <’f - 1) 7)1 @10 ... (7, (k - t) 2)r(@) (@),

t—1 t—1

Proof. A similar proof to that of lemma 2 of [27] will be given. The proof is by

induction on k.
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Note that for k = 0, the result is clearly true since Mg, = 1. Suppose G is to-
transitive. That is, G acts transitivily on the 1-sets, 2-sets, - - -, to-sets. Then, for
t<k <ty M{), = (]z)l Since Fy; =1 and Fy;, = (];)1, the result follows trivially.

Let k = tg be the base case of our inductive proof. Assume the claim is true for
to < k' < k, we will show the claim for £’ = k 4+ 1. We will start by showing that
the S(M,’g’kﬂ) is given as it is in part 5 by using proposition 4.3.31. The candidate
matrix that we will use for £ in proposition 4.3.31 is m Hence, proposition 4.3.31

will apply, if we show:

Lemma 4.3.36.
Mé7k+lz = b for some integral z <= F}, ;b = Dy, 11y for some integral y.

Proof. The = part is clear. Suppose that for a given integral b, there is an integral y

such that mb = Dy k+1y. Since My, 11 has trivial solution to the integral preimage

problem, it suffices to show that (k:il_l) =k +1—idivides M, b for i =0,... k.
Clearly, k + 1 divides j7b since this is the first row of Fj b = Dy x1y. Also, note

(2)m

_ (’;) (k+1) 2

that for ¢ < ¢,

M. b

2

k+1
_ . k+1\ j7b
= (k;—z—l—l)( ; >k:+1'

Hence, (k + 1 — i) divides M;,b. Therefore, assume t, < i.
: Cik o
Consider, M;, = , where C; ;, are the rows that correspond to an (i —1, 7)-
Ei
basis, and E;; corresponds to the remaining rows. It suffices to show that C; b is
divisible by £+ 1 —i for ¢ = 2,..., k. We will show this by induction on .

Let Fi_y; = [ Fr ., Fr*, |, where Fi,u* are the columns of F;_;, that corre-

spond to the (i — 1,7)-basis.
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Claim 4.3.37. We have: Coly(F} ) = Coly(F;_1;). In particular, as F;_1,; has

trivial Smith group and full rank, Fitl,i 15 unimodular.

Proof. Let M, ; = [ A B } , where A consists of the columns that correspond to an
(2—1, i)—basis. Clearly, Di—l iE—li = I';_1 i—lMi/—l i ThUS, Fi—l Ji Dz 1ZF 1,i— 1M 1,

In particular, we have Fy ;= D}, /F;_1; 1 A. Since A consists of the columns that
correspond to an (i — 1,4)-basis, we have that for every integral z, there is integral y
such that M; ;2 = Ay.

Let x = F;_; ;2 for some integral z. Then,

r = Fiz
= Dz 17,F 1,i— 1M Z
= DZ 1ZF 10— 1Ay

_ *
= erl,i?/a

hence, Colz(Fi—1;) C Colz(F; ;) and the claim follows. O

Resuming the proof of lemma 4.3.36. Clearly,

(54"

- FOE
Efl,iMi/’k = (1_1? b

i (lf:((fjll))) Eiak |

— DTy (4.10)

where D], is the matrix D;, after erasing the rows that have diagonal entry equal to

1. By Equation (4.10), we have,

v T /
F;*_Lici,t + F;fl’iEi,t = D kE 1,k»
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hence,

1 1 1 -
—F Cy+ N (———FEy) = ——— D, F,_
Frl—g it “(k;+1—i 2 b 1—q ok

Note that —— D, equals:
[ (k—0)+1 11 2 i
(((k—i))+1) 0 0 k1 0 U 0
k—1)+1
0 (((kfz))il) 0 0 k—il 0 0
1
0 0 0 0 0 = 0 ;
k—(i—1))+1 1
|0 0 o (PRI L0 00
thus, k+1 zDszl 1.xb equals:
[ ((k—0)+1 1T i
(((k—i))+1) 0 0 k-‘rlj b
k—1)+1
0 (((k—i))-H) e 0 mEZkb
0 0 0 =5 Es b ;
k—(i—1))+1 1
|0 0 (A ] | m=drm Bt

where, the right-hand side is integral by assumption. Thus, ¢ +1 ZD; wFi—11b is inte-

gral.
Consider,
L F Ciib+ F L E;b) = L D’F b.
I 1= " 7 ky1- b
Since ﬁELtb is integral and the right-hand side is integral, we must have,

1 -
— 7, Cish,
k+1—q W

be integral. As F;",; is unimodular, we have that ﬁ@,tb is integral. The result

follows. N
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Resuming to the proof of the proposition 4.3.35, lemma 4.3.36 shows that the
S(Mjy 1.41) is given by part 5. That is, S(Mj ;) = S(Dyx41). Hence,

Smith(M )l = |Smith(Dien)l,
and by lemma 4.3.34 applied to the following equation:
Dips1Frper = FrpMy iy,

we deduce that [Smith(Mj ;)| = [Smith(Dyy1)||Smith(Fype1)|. Hence, Fpi1
has trivial Smith group.
Let Fy 41 = [UV], where U are the rows that correspond to a (k, k+ 1)-basis. By

a similar argument as the one given in claim 4.3.37, we can show that,
OOZZ(Fk,k—i-l) = COlz(U)

Thus, U is unimodular.

Consider,

— Fy k1
Friipn =

i Eit1 k41
U Vv
0 I

where, we used for Ej 51 the resulting rows of M, ., = I, the identity matrix,
after deleting those rows that correspond to the chosen (k,k + 1)-basis. Clearly,
det(Fyi141) = det(U) = £1. Hence, Fj 11111 is unimodular. Hence, part 2 follows.
Part 1 follows from the unimodularity of Fyy1 1.
We show part 3. Clearly, th/,kH = Fip1. Also, Fy; is unimodular for ¢ < k
by the Inductive Hypothesis, and is is unidmodular for ¢ = k£ + 1 by part 2. Hence,
Rowg (M., ,) = Rowz(F}11) and part 3 follows.
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To show the remaining parts, let t < k£ 4 1. Consider the equation,

Firr1 = DigpprFrp

_ !
= Ft,tMt,kH-

Since Fj41 k41 is unimodular, it follows that Fj ;i is primitive, i.e., it has trivial
Smith Group. By lemma 4.3.34, S(Dyg41) ~ S(FeM,.,) ~ S(M{,,). Thus parts
4 and 5 follow. OJ

The following proposition shows a criterion for finding a (¢, k)-basis.
Proposition 4.3.38. Suppose thatt < k < v — k, and the following,

1. The matriz M!

14 admits an (i — 1,4)-basis fori=1,...,t.

2. The matriz M!

{1 has trivial solution to the integral preimage problem for i =

1,...,t.

3. The set (3 be a set of Q-linearly independent columns of M.
Then,

1. The matriz F;; is unimodular fori=0,...,t.

2. There is an exact sequence,

0— S(Dyy) — g(Mt/k) — S(Fyx) — 0.

3. There is a finite abelian group Hg such that:

0 — Hg — S(Mp) — S(M;,) — 0.

4. The following divisibility conditions holds, |Dy x| divides |M{ | divides |Mp]|.

5. If M| = [ Dy, then 3 is a (t, k)-basis.
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Proof. The same proof of proposition 4.3.35 can be used to show that m is unimod-
ular for ¢ =0,...,t.
Part 2 is an application of lemma 4.3.34 to the equation Fy,M;, = Dy F.

We show part 3. Consider the following inclusion of free Z-modules,
Colz(M}) C Colz(M,,) C 2™,
Thus, there is an exact sequence,

0 — Hy — S(Mj) — S(M{;) — 0,

Colz(M] )

where Hg = Colo (01 - Clearly, r(Hpg) = r(Mp) — r(M{,) = 0 — 0 since the matrices

Mj and My, are onto. Thus, Hp is a torsion group and by corollary 4.1.27 there is

an exact sequence:
0— Hg — S(Mp) — S(M;,) — 0.
Hence, part 3 follows.

Parts 4 and 5 are obvious consequences of parts 2 and 3. |

We close this subsection with a proposition that shows how one can use a (t—1, t)-

basis in the calculation of the Smith Group of M or M.

Proposition 4.3.39. Let Lyy = M.y or M,. Assume,
1. The Z-module Z%) N Ker(L;_1,) is contained in the Z-module Imz(Ly},).
2. The set Bi_14 is a (t — 1,t)-basis for Li_1+.

Then,

1. The set Bi_1, is a generating set for E(Lnk) but not necessarily Z-independent.

That iS, <6t—1,t> = S(Lt’k)
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2. If ged(|Li—14], k —t + 1) = 1, then Bi_14 is Z-independent. That is,

(L) = @) - X (Zfar @),
where Bi—1p = {Qry, ..., Q1 o} and (Qn) = (Z/a;Z) is a nontrivial sub-
group of S(Lyx).

Proof. Let Qp € (Cy(X))o. Since, B;—14 is a (t—1,t)-basis for L;_; 4, there are integral

cq,, with support in 3;_; such that:

0 = Liq14(Qr — Z ca. Q).

Qrrefr—1t

By assumption, there is a z € Z™() such that:

Lt,kZ = Q- Z CQT,QT/-

Qrr€Bi—1,t

Since S(Lyy) = %, it follows that Qp € (B:_1,) in S(L;x). Since,

(Qr | Qr € (Ch(X))o) = S(Ly),

part 1 follows.

We show part 2. Suppose otherwise. That is, there is some Qp, € 3,_1, can be
expressed as an integral linear combination of the other elements of 3;_;; in g(Lt,k).
Paraphrasing this condition, there is an integral vector ¢ with at least one entry equal

to 1, i.e., the entry corresponding to {27, and with support 3, such that:
c = Lz,

where z is also integral. If we multiply the above equation by L;_1,; on the left, we

deduce,

L@C = (k‘ —t+ 1)Lt_17kZ,
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where Lg are the columns of L, that correspond to §;_1;. Clearly, |Li—1:| = |Lg|
since (;_1, is a (t—1,t)-basis. Because ged(|Lg|, k—t+1) = ged(|Li—14|, k—t+1) = 1,
we can deduce that £ — ¢t + 1 divides ¢. In particular, this means that the coefficient
that corresponds to €, in c is divisible by & — ¢ + 1. That is, & — ¢ + 1 divides 1.

This is a contradiction. O

We give the remark that the first condition of proposition 4.3.39 is satisfied when-

ever L;_;, has a trivial solution to the integral preimage problem.

4.3.5 The Kernel of M}, and M

The kernel of the matrix W;; has been shown by Graver and Jurkat in [9] to be

generated by elements of the form:

H(A7 B) = (mm - CUbl)(“"(m - xb2) T (xat+1 - xbt+l)xat+2 “ o Lay,

where A ={ay,...,a441,...,ar} and B = {by,...,b,y1} are disjoint sets of {1,..., v},
and II(A, B) is understood to be a formal sum of k-subsets of {1,...,v} where the
monomial terms z,, - - - z., are identified with their corresponding k-subsets {cy, ..., cx}.
The elements I1(A, B) are known as (¢, k)-pods in the literature.

An effective way to calculate the (¢, k)-pods, when the sets A and B are specified,
is to think of every monomial +z,, ---z. — £{c1,...,¢} = C in the summation
expansion of II(A, B) as a set C, with corresponding term (—1)I®leq, where C) =

CNA and Cy = C N B have the properties:

{at+27"'7ak} C Cl?

NG, = o

Hence, one could think of every term in the summation expansion of II(A, B) as
corresponding to a set Co C {1,...,t + 1}. Thus, one can formulate an equivalent

definition as it is given by the following proposition.
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Proposition 4.3.40. Let A = {ay,...,ar} and B = {by,..., b1} be such that
ANB=¢. Forevery T C{1,...,t+ 1} define fr:{1,...;t+1} = {1,...,v} as:

‘ bi ifieT,
fr(i) =
a; else.
Then,
(4, B) = Z (_1)|T‘e{fT(1) 77777 fr(t+1),ae42,....ax}
TC{l,...,t+1}

As a remark, we note that II(A, B) depends not only on A and B but also on
the indexing of the elements of A and B. That is, if we consider a (2,3)-pod where
A = {ay,a9,a3} = {a},dy,as} and o) = as, a) = as, a = ay, then in general each
indexing will provide distinct I1(A, B)s.

We proceed to find corresponding generators of the Ker(Mj,) and Ker(M;) by
projecting II(A, B) to the equivariant case. The following proposition summarizes

this result.

Proposition 4.3.41. Let A be a (t+1)-subset and B a k-subset such that ANB = ¢.
Let,

H<A7B> = €K, +”'+6Kr7

where summation allows for repetition. Let II(A, B)Y be the equivariant projection

given by:
H(A, B)G = GQKl + -+ GQKT.

Then,

1. The element D, 'TI(A, B)® € Ker(M,y), and the set of all D, 'TI(A, B)¢ gen-
erate Ker(Myy).

2. The element 1I(A,B)¢ € Ker(Mj,), and the set of all II(A, B)Y generate
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Ker(Mj,).

Proof. We show part 1. Let A and B be given. Clearly, W, ,II(A, B) = 0. By use of
the operator Py o = |—é| >_gec Pir(g), we deduce,

Wik PorcIl(A,B) = 0.

It is a quick exercise to show,

—~—1
Poicll(A,B) = D, II(A,B) ,

where,

r

I(A,B) = D éa,
=1
D S0

K;GQKZ.

Hence, W, Dy 1I(A,B) = 0. By using the canonical basis of (Cy(X))o and

(Ce(X))o, we deduce

M, D' TI(A, B)Y = 0,

G
where, we have identified TI(A, B) = eq, +---+¢€qy, in Cyx(X) with its counterpart
II(A, B)Y = eq,, + -+ €q,, in (Cy(X))o. Hence, D 'TI(A, B)Y € Ker(M,y,).

We show that the elements of the form D, 'TI(A, B)¥ generate the kernel. Con-

sider % € (C(X))o such that M,;;z¢ = 0. Let 2¢ = Y cq.eq, and x its lift

to Cr(X) given by © = > cq.ex. Clearly, Wipx = 0 and Pyrer = z. Hence,
x =Y ¢lI(A;, B;), for constants ¢; and sets A; and B;. Consider,

r = P07k7giL‘

= PO,k,G(Z ¢;11(4;, B;))

—~—1
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Using the canonical basis of (Cy(X))o and (Cy(X))o, we deduce,

.TG = Z Cka_lH(AZ', BZ>G

Thus, part 1 follows.

We show part 2. Because M, D; 'TI(A, B)¢ = 0, we have that M, II(A, B)¢ =
DM, D 'TI(A, B) = 0. Hence, I1(A, B)Y € Ker(M;,).

We show that II(A, B)“ generate the Ker(M/,). Let 2% be such that M/, 2% =
0. Clearly, DtMtka,zle = 0. Thus, Mt7ka_1xG = 0. By part 1, D,;le =
> eiD; MI(A;, B;)€. Hence, by multiplying by Dy, we deduce 2 = 3" ¢;I1(A;, B;)“.

The conclusion follows. ]

We close this subsection with a summary of a property of G-projections among

images of W, that was used in proposition 4.3.41.

Proposition 4.3.42. Let,

Wirex = E er.

TCK

Assume that G C S, is a permutation action. Then,
1. The following holds, M; D, 'Qx = > Tck D Q.
2. The following holds, My, Qx =Y 5y Q.

Proof. The proof uses the same procedure as proposition 4.3.41. Simply apply Py
to both sides of the equation W} rex = > ;- x er and proceed to simplify by using:

1
Porger = Dy (Z er),

T'eQr

—~—1
Poraex = Dy (Z exr).

K'eQy

Using the canonical basis of (Cy(X))o and (Ck(X))o, we can deduce the first part.
Part 2 follows by multiplying both sides of part 1 by D;. O
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4.4 Positive Equivariant G-Signings

We will formalize a signing property about special (t, k)-basis of W, that has been
observed by researchers through heuristics. We will do this by introducing the concept

of a positive equivariant G-signing.

Definition 4.4.1. Assume,
1. Let B be a set of Q-linearly independent colums of W : Ci(X) — Cy(X).
2. Let W be a G-map and not necessarily an S,-map.
3. Assume that 3 is G-invariant, i.e., g- K € (3 for all g € G and K € (3.

4. Let e : B — {£1} be a signing of the elements of (5 that is G-invariant. That
is, €(g- K) = €(K) forall g € G and K € (3.

5. Define Wg = [Weg,, ..., Wek,] and W} = [e(K;)Wek,, . .., e(K;)Weg,|, where
/6 = {€K17 . 'JeKr}'

Then,

1. The map € is a “positive equivariant G-signing” for (W, ) if and only if for all
e €~ 6

WP kcex = Wit ¢ CL(W3),
Qx|

where C(Wj5) = {Wjc | ¢ > 0} is the positive cone spanned by W}, and,

o = e

K'eQg

2. If the pair (W, 3) admits a “positive equivariant G-signing” when G = {1}, then

we say that (W, 3) admits a “trivial positive equivariant signing.”

A well-known result about positive cones of matrices, which we will use shortly,

is the Minkowski-Farkas Lemma.
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Lemma 4.4.2. (Minkowski-Farkas) Let W be a real matriz, and z € R a vector

of real numbers. The following are equivalent,
1. The element z € C.(W).
2. If y € R is a vector of real numbers such that y'W >0, then yTz > 0.

The following proposition reduces the concept of positive equivariant G-signings

to the concept of trivial positive equivariant signings.

Proposition 4.4.3. Let W : C,(X) — Cy(X) be matrixz of rational entries that is a
G-map but not necessarily an S, map. Let 3 be a set of columns that is Q-linearly

independent, and let B be G-invariant. Then, the following are equivalent,
1. The pair (W, 3) affords a positive equivariant G-signing.

2. The pair (M',3%) affords a trivial positive equivariant signing, where M' =
(W), and B39 is the set of G orbits in (3.

Proof. We proceed to show the equivalence in two separate cases.
Part 1 — part 2. Let € be a positive equivariant G-signing of (W, ). Note
that,

1. The map W} is a G-map.
2. Given K €~ (3, there is ¢ > 0 such that W —& = Wie.

[k |

Consider,

GQK

Qx|

W WPo’tygeK

= PoreWhcex

= PoeWs—
sby ‘QK‘

== P()’k’(;Wﬁ*C

== WEPO,t,GC

= WEQ?
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where ¢ = ZQKG(Ck(X))O(ZK/GQK cxr)(eq, ). Thus, WFS—AI’}' = Wjc, where Pygc = c.
Clearly, this implies that Mt,kafleQK =M ;GD,glg. By multiplying both sides by
Dy, we deduce that M, eq, = (M’)ZGQ. Hence, (M’, 3%) affords a trivial positive
equivariant signing, where the signing is given by ¢“(Qx) = €(K).

Part 2 = part 1. Let €“ be the trivial signing for (M’, 3%). Lift this signing
to a of (W, 3) by e(K) = €“(Qg).

Let K e~ (3. By the Minkowski-Farkas Lemma, it suffices to show that for every
y € R, a vector of real numbers, such that 3" Wj; > 0, then yTW% > 0.

So, assume that yTWﬁ* > 0. Consider,

0 < yTWE
= v pu(9) pe(9)W
= (p(9)y)" Wjpi(9)

= (o))" W5)pr(9),

hence, 0 < (pi(g)y)"Wj since py(g) is a permutation action. Therefore, it follows
that QTWB* > (0 where:

P 0,GY

(S
I

C oy Erew

€O -
9 T
Qre(Ci(X))o ‘ T’

Clearly, Poycy = y. Hence, 0 < y"Wj = y"Py;¢Wj. Thus, we can conclude
0 < (y)"(M")5, where yo, = y,..

By assumption, M'eq, € C((M')5). Hence, it follows by the Minkowski-Farkas
Lemma that (y')" (M] ,eq,) > 0. We can lift this equation to Cy,(X) as QTWFS—;K' > 0.
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Consider,

—

0 < Wi

oy
Qx|
T CQx
= Py oW —=
Yy roea ’QK|

6/\
= Yy W(Popos)
€2k ]
“ax

Qx|

= (Po,t,Gy)TW

hence, by the Minkowski-Farkas Lemma, it follows that Wk e Cy(W}). The
Qx| B

conclusion follows. O

Definition 4.4.4. Sometimes a positive equivariant G-signing for (M, 3) is also a
trivial positive equivariant signing for (M, [3). When this happens, we will call the

signing a “trivial positive equivariant G-signing” for (M, f3).

In the next section, we will show examples of G-trivially positive equivariant
signings where G is nontrivial.
We close this section with an algorithmic criterion that helps determine when a

pair (M, 3) affords a trivial positive equivariant signing.

Proposition 4.4.5. (Reduced Row Echelon Property). Let M be an n x m
matrix and 3 a subset of columns that is linearly independent and generate the column
space of M. Let N = [Mg, M.s] be a reordering of the columns of M such that the

columns in 3 are listed first. Assume that N has Reduced Row Echelon Form given

by:

1

T2

Tn
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The following are equivalent,
1. The pair (M, 3) affords a trivial positive equivariant signing.

2. (Reduced Row Echelon Property). The r;s in the row reduced echelon form

of N are either nonpositive or nonnegative.

Proof. We proceed to show the equivalence in two separate cases.
Part 1 — part 2. Let (M, 3) afford a trivial positive equivariant signing e. Let
Mg = [M, ..., M,]. Let M, €~ 3 correspond to the sth column in N. Then,

where ¢; ; > 0.

Note that €(M;)c; s is the (i,s) entry in the Row Reduced Echelon Form of N.
Thus, the signing of (4, s) in the Row Reduced Echelon Form of N only depends on
1. Hence, r; is either nonnegative or nonpositive.

Part 2 = part 1. Assume that N has the Reduced Row Echelon Property. By

reversing the argument above, we can conclude that for,

Ms = zn: Ci,sMi7

1=1

the signing of ¢; ; only depends on ¢ not s. From this, we can construct the desired

signing e. ]

4.5 The Case G = Stab((2)

In this section, we consider actions given by permutation groups G that are stabilizer

groups of partitions of {1,...,v}.

Definition 4.5.1. Let Q be partition of {1,... v} given by:

QO = QUBU---UQ,
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where || = v; and vy + -+ - 4+ vg = v. The stabilizer group Stab()) C S, of Q is the
set of all permutations that leave S invariant. That is, o € Stab(Q?) if and only if as

sets we have o -€); =8, fori=1,...,d.

We consider a family of partitions {Q(v)}52,. For each member of the family, we
consider the action of the group G, = Stab(€2(v)) on the k-subsets and t-subsets of
{1,...,v}. We also consider a family of sets of k-subsets {3;x(v)}22,, and we study

the following questions:
1. How can we show f;x(v) is a (¢, k)-basis for W, x(v)?

2. How can we show f3;4(v)% is a (t,k)-basis for M, (v)? Where ﬁg,;’ are the

k-subsets’ orbits in 3, under the action of G,,.
3. How can we find a trivial positive equivariant signing for (G;x(v), Wik (v))?
4. How can we find a trivial positive equivariant signing for (3, (v)%, M (v))?

We provide a partial answer to these questions.

We give examples of families {2(v)}52, for which there exist {3, x(v)}32, that are
(t, k)-basis of W, (v), and admit a trivial positive equivariant signing when (¢, k) =
(1,2),(2,3),(3,4),(4,5). We conjecture the existence of trivial positive equivariant
signings for these examples.

We start with a study of the spaces (Cy(X))o when G = Stab(2(v)). We assume

for now that v is fixed.
Proposition 4.5.2. The orbits under the action of G = Stab(2) on the k-subsets
are in one to one correspondence with the set H(k) defined as:

HYE) = {[z1,...,2q] |21+ 24 =k and 0 < z; < v;}.

Proof. Clearly, for every Qx € (Cr(X))o, one can construct a partition [xy,...,z4] €
H (k). Namely, the parition where z; = |K N €.

It suffices to show,
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1. If K' € Qg, then K’ induces the same partition in H%(k) as K.

2. If Qx and Qg induce the same partition in H?(k), then Qg = Q.

Clealry, G ~ S, x --- x S,, where S,, acts on {2; as the Symmetric Group. Note
that S,, acts transitively on (SZ) Hence, if |K N Q;| = |K' N, then one can find a
o; € Sy, such that o;(K N Q) = K'NQ,.

Let K’ € Q. Clearly, there is 0 = (071, ...,04) € Stab()) such that o(K) = K.
Thus, |K' N Q| = o (K N Q)| = |K NQ;|. Therefore, K’ induces the same partition
as K.

If K and K’ induce the same partition then |K N Q;| = |K' N Q;|. Thus, one can
construct a o = (0yq,...,04) where 0;(KNQ;) = K'NQ;. Clearly, o(K) = K'. Hence,
o € Stab(Y). Therefore, Qx = Q). O

Definition 4.5.3. Let K be k-subset, and 2 = Q;U---UQy, a partition of {1,...,v}.
We will denote the vector [|[K 0N Q4|,...,|K NQq|] by [[KNQ|]. We will define w =
12N Q] as the vector [vy, ..., v4] where v; = |§;].

Proposition 4.5.4. Lett < k < v —k and G = Stab(Q?). Let w = [|2|]. Choose a
k-subset K, and a t-subset T. Define ¢ = [|[K N Q|| and ¢ = [|[T NQ|]. Then,

1. The sizes of the orbits Qg , Qr are given by:

Qx|

o1 - )

2. The (Qr, Q) entry of M, is given by:

I
PR
© €
N

M, (Qr,Qx) = (gb),

where,

(o) = (i)
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3. The (7, Q) entry of My is given by:

M,k (Qr, Qx) = (Z:l/})

where,

60 - )
= g .
o= ¢i — i
Proof. Part 1 follows from the decomposition of G >~ S, X -+ X S,,.

We show part 2. Let ¢ = [¢1,..., ¢4 = [[KNQ|] and ¥ = [, ..., 104 = [|T N
Define K; = KN Q; and T; = T N €;. We wish to find all t-subsets 7" € Qr for
which 77" € K. Clearly, any 7" € Q¢ has decomposition 7" = T{ U - - - U T}, where
T! = T' N Q,;. The condition that 7" C K is warranted exactly when 7} C K; for
i =1,...,d. Thus, we wish to find all subsets 7} of K; that have size 1;. Clearly,
there are (i’) choices for T!. Hence, there are IT,_ (is) = (i) choices for 7" € Qr
that satisfy 7" C K. Therefore, M{, (¢, ¢) = (z)

Part 3 uses a similar argument. ]

Now, we consider a family of partitions {Q(v)}22,, where each Q(v) is a partition

v=1»
of {1,...,v}.

Definition 4.5.5. Let {Q(v)}52, be a family of partitions where fi(v) = |(v)| is
monotonically increasing with respect to v. That is, if v < V', then fi(v) < f;(v"). We
will call {Q(v)}22, a “monotone family.” We will denote [f1(v),..., fa(v)] by w(v),

the numeric partition of v generated by Q(v).

Proposition 4.5.6. Let {Q(v)}32, be monotone family. Then,
1. If v </, then w(v) < w(V').
2. If w(v) <w(V'), then v < v'.

Proof. Part 1 follows by the definition of a monotone family.
We show part 2. Suppose w(v) < w(v'). If v < v, then by part 1 w(v') < w(v).

Hence, w(v) = w(v’) and this forces v = v’. This is a contradiction. O
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Definition 4.5.7. Given a monotone family {Q2(v)}2,, an “inclusion map” ¢ is
defined as a family of inclusion maps Ly, = Qv) — Qv'), where v < V', with the

property that for allt=1,...,d:

Lo Qi(v) — Q(v),

that is, i, injects Q;(v) into Q;(v"). We will drop the subscripts v, v’ in the notation

of Ly unless it brings ambiguity.

In principle, for fixed v < v/, there are (“:J((Z)’))) possible inclusion maps. Since Q(v)
is a Monotone Family, w(v) < w(v'). Hence, there is at least 1 < (‘:((1;,))) possible

inclusion map from Q(v) into Q(v’). However, depending on the structure of €, this

inclusion map may not be unique.

Proposition 4.5.8. Let {Q(v)}52, be a monotone family, and v an inclusion map

Jor {Qv)}52,. Denote by (V) the set of all s-subsets of {1,...,v}. Then,

1. Let s <v—s<v' —sandv <, then v induces an injection from the s-subsets

/

of {1,...,v} to the s-subsets of {1,...,v'}. Thatis, v: (%) — (%).

2. Let s <v—s5<v —sandv <, then v induces an injection ¢ : H?®)(s) —

HQ(”/)(S). More precisely, given ¢ = [¢1,...,04] € HQ(”)(S), [p1,. .. 0d)) =

(1, ..., P4] is the desired injection.

3. Let v < V', then ¢ induces an injection v : Stab(Q(v)) — Stab(2(v')) given by
o — (o), where 1(o) is defined as:
Low 000ty () if z € u(Qv)),

o)(z) =

T otherwise.

/

4. Letv<v'and S € (“). If [|SNQW)|] <w(v), then there is a o € Stab(Q(v"))
such that o(S) € ¢((Y)).

5 Letv<v,r<s<v—s<v —s, o€ Stab(Qv)) and S € (Z) Then,
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(a) The map vy, satisfies by (0 - S) =ty (0) - Ly (S).
(b) The map vy, satisfies vy (W s(v)es) = Wes(v')e, (s)-

(c) Let ¢ = [|SNQv)]] € H¥)(s). Then,
Lv,v’(Mqi,s(U)efb) = Mqi,s(vl)ebv,v/(qﬁ)'

Proof. Since ¢ is indeed an injection, part 1 is clear.

We show part 2. Consider ¢ € H™")(s). Choose S € ¢. Clearly, [|S N Q(v)]] = ¢.
Note that [S N Qi(v)| = |tpw (S) N Qi(V)], since ¢y, is an injection. Define ¢, :
H2)(5) — HY)(5) by tyu(d) = [[tow(S) N Q)[]. Clearly, 1, is well defined,
and ¢, (¢) = ¢ as numeric partitions of s. It suffices to show that ¢, is injective.

Suppose that,

[leowr (S) NQOW)] = tow(9)
= Lv,v’(¢/)
= [l (8)NQE)],

where S € ¢ and S’ € ¢'. Note that,

SO = [, (S) N Q)]
= |Lv,v’(Sl) N Q;(v)]
= 15" NQ;(v)].

Hence, S and S’ belong to the same orbit in H®(")(s). That is, ¢ = ¢’. The result
follows.

We show part 3. Note that, we can partition ;(v") into ¢(€2;(v))U;(v"). The in-
jection that ¢ : Stab(2(v)) — Stab((v’)) induces essentially maps o = (01,...,04) €
Stab(w(v)) = Sa,w) X ==+ X S, to a (o) = ((o1),...,t(cq)), where ¢(o;) acts op
Q;(v") via pullback on the image ¢(€2;(v)), and as identity on the remaing part ;(v’)".

Clearly, this is an injection of groups. Hence, part 3 follows.
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We show part 4. By assumption, S; = S N§;(v') has size < |Q;(v)]. Let s; = |S;].
Since Sq,(y acts transitively on the s;-subsets of 2;(v'), we can find a o; € Sq,
that maps S; to a subset of ¢(€2;(v)). This is possible since s; < [Q;(v)]. Hence,
for each ¢ = 1,...,d, we can find 0; € Sq,(y such that o;(S;) C ¢(Q(v)). Clearly,
o= (01,...,04) € Stab(Q(v")) is a map such that o(S) € ¢((?)).
We show part 5. To show part a, note that ¢y, (S) C ¢y (€2(v)). Hence, by

definition of ¢, (o),

Ly (0) by (S) = typ000 L;}),(LU,U/(S))
= Ly (0(S))
= Lyw(o-5).

Hence, part a follows.
Part b follows because ¢, . preserves inclusions since it is an injection. That is, if
R C S, then iy, (R) C ty(S).

For part c, it suffices to show:

P

o (Wrs(v)eas) = Wrs(ve,, (),

v,V

where eqg = ) g, €s- Clearly, this follows by part b. O

Proposition 4.5.8 shows that we can think of the spaces H®(")(s) as an ascending
chain of vector spaces or Z-modules. The next proposition shows that this chain

stabilizes.

Proposition 4.5.9. Let v;(c0) = max, fi(v), where we allow v;(c0) = co. Define
7i(s) = min(v;(c0), ), where we assume 0o > s for all s. Let v{°(s) be defined as the

first value of v for which f;(v) = ~;(s). Define:

vo(s) = nlaialx v°(s).

Then,
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1. If vy(s) < w, then ¢ : H¥W0G) (s) — HE)(s) is onto.

2. If v < vo(s), then ¢ : HW)(s) — H¥ () (s) is not onto.
Proof. We show part 1, Let S € (V) be an s-subset, and ¢ = [|S N Q(v)|]. Note that

o =15 NQv)| < fi(v) and ¢; = |S N Q;(v)] < s. Consider,

i

IA

min(f;(v), s)

< min(f;(vi(0)), )
fi(vi*(s))
fi(vo(s)),

IN

hence, ¢ < w(vg(s)). By proposition 4.5.8 part 4, it follows that there is o €
Stab(2(v)) such that o(S) € L((”OS(S))). Thus, ¢ has a preimage under (. Because
¢ was arbitrary, it follows that ¢ is onto.

We show part 2. It suffices to construct a ¢ € H?"()(s) that does not have a
preimage under ¢. Since v < vy(s), it must be the case that for some ¢, min( f;, (v), s) <

Vio (8). If this is not possible, then v{°(s) < v for all i and this forces vy(s) < v. Hence,

we assume that there is an i is such that min(f;,(v),s) < 7, (s). Consider,

min(f;,(v),s) < i, ($)
= min(fy (v (s)),s)
= min(f;,(vo(s)), s),

hence, there is an ig such that min(f;,(v), s) < min(fi, (vo(s)), s).
Consider any partition ¢ € H¥"())(s) for which ¢;, = min(f;,(vo(s)), s). Clearly,

this ¢ will not have a preimage under ¢. |

The quantities vg(s) will be important later. The next proposition shows that

vo(s) is a strictly monotonic function of s.

Proposition 4.5.10. If s < &', then vy(s) < vo(s).
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Proof. Let s < . Using the monotonicity of {Q(v)}>,, we can show that there
is an ¢ for which v;(s) = min(v;(c0),s) < min(v;(c0),s") = 7;(s"). Since the f;(v)s
are monotonically increasing, it follows that v{°(s) < v{°(s’) for some i. Thus, we

conclude vy(s) < vo(s'). O

We introduce a few definitions that will be used in the reduction results of the

next subsection.

Definition 4.5.11. Let {Q(v)}52, be a monotone family, and v an inclusion map for

{Qv)}2,. A “compatible set for {Q2}2°,” is a family of sets of k-subsets { B x(v)}52,

v=1

such that,
1. The set By (v) C (Z), where we use (Z) to denote the set of all k-subsets.
2. The size of By (v) is (7).

3. The set B x(v) is invariant under the action of Stab(2(v)).

4. If v </, then,

U(Bri(v)) C Berlv).

Similarly, we can introduce the notion of equivariant compatible sets.

Definition 4.5.12. Let {Q(v)}52, be a monotone family, and ¢ an inclusion map for

oo » )

v=1

orbits {87, (v)}o2, under the action of G = Stab(Q(v)) such that:

Q(v). An “equivariant compatible set for {Q(v) is a family of sets of k-subsets

1. The set B, (v) € HY®)(k).
2. The size of B, (v) is ra(t).

3. Ifv <1, then,

L(ﬁtGk(U)) C ﬂfk(v/)
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Definition 4.5.13. Let € be a trivial positive equivariant signing for (M, [3), where
M: (}) — (}) is a G-map. We say that € is G-invariant if and only if e(c- K) = ¢(K)
for all o € G and all K € 3.

4.5.1 Reduction Results

In this subsection, we consider a monotone family {Q(v)}32, with inclusion map
1, a compatible set {fx(v)}32,, and an equivariant compatible set {37 (v)}52, for
{Q(v)}32, such that the columns of 3, ;(v) in Wy x(v) are Q-linearly independent and

the columns of 5 (v) in M, (v) are Q-linearly independent. We show,

1. The set By x(v) is a (¢, k)-basis of Wy x(v) for v > k + ¢+ 1 if and only if the set
Bri(v) is a (¢, k)-basis of Wy i (v) for v = vg(k).

2. The pair (B x(v), Wix(v)) admits a trivial positive equivariant signing that is
Gy = Stab(Q(v))-invariant for v > k+t+1 if and only if the pair (5 x(v), Wik (v))
admits a trivial positive equivariant signing that is G, = Stab(£2(v))-invariant

for v = wvg(k).

3. The set 37 (v) is a (t, k)-basis of M/, (v) for v > k+t+ 1 if and only if the set
B (v) is a (t, k)-basis of Mj,(v) for v = vy(k).

4. The pair (85 (v), M, (v)) admits a trivial positive equivariant signing for v >
k+t+1if and only if the pair (35, (v), M{,(v)) admits a trivial positive equiv-

ariant signing for v = vy (k).

Proposition 4.5.14. (First Reduction). Let {Q(v)}>2, be a Monotone Family,
and v an inclusion map for {Q(v)}2,. Assume that {Br(v)}o, is Compatible Set
Jor {Q(v)}2, such that the corresponding columns of By (v) in Wi (v) are Q-linearly

v=1

independent. The following are equivalent,
1. The set By x(v) is a (t,k)-basis of Wy i(v) forv>k+1t+ 1.

2. The set By x(vo) is a (t, k)-basis of Wyx(v) for v =wvo(k).
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Proof. 1t suffices to show part 2 implies part 1. We proceed to show this by considering
two separate cases.

Case vg <v. Let K € (Z) be a k-subset. By using the same argument of propo-
sition 4.5.9, we can show that there is o € Stab(2(v)) such that o(K) € ¢(2(vo)).
Hence, o(K) = ((K') for some K’ € (). Therefore, K = ¢~ o ((K’) for some
K7€ (3).

Since Bk (vo) is a (¢, k)-basis for W; i (vg), there is an integral vector ¢ with support
in B x(vo) such that Wi g (vo)exr = Wig(vo)e. By applying iy, to this equation, we

deduce,

Wik()ewrxy = t(Wir(vo)exr)
= (Wik(vo)c)
= Wix(v)d,

where ¢ is an integral vector with support in ¢(3;x(vo)) C Bix(v). By applying o~

to both sides of the above equation, we can deduce,

Wik(lex = Wik(v)es—1(.(xry)
= o (Wik(v)eqxr))
= o (Wir(v)d)
= Wir(v)”,

where ¢ is an integral vector with support in o= (¢(8;x(v0))) C Bik(v). Hence, the

result follows.

v

Case v < vg. Let K € (k

) be a k-subset. Clearly, because the corresponding
columns of B ;(v) in Wy k(v) are Q-linearly independent, there is a rational vector
¢ with support in f;;(v) such that W, (v)ex = Wi i(v)e. Hence, by applying ty v,
we get that Wi .(vo)ex)y = Wik(vo)c where ¢ is a rational vector with support
L(Bur(v)) C Ber(vg). Since Bix(vg) is a (t, k)-basis, it follows that ¢’ is integral and

this forces ¢ to be integral as well. |
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Proposition 4.5.15. (Second Reduction). Let {Q(v)}22, be a Monotone Family
and v an inclusion map for {Q(v)}52,. Assume that B;r(v) is Compatible Set for
{Qv)}22, such that the corresponding columns of Byx(v) in Wig(v) are Q-linearly

independent. The following are equivalent,

1. The pair (Wyk(v), Bex(v)) affords a trivial positive equivariant signing that is
G = Stab(Q2(v))-invariant for v >k +t + 1.

2. The pair (Wi (vo), Bri(v)) affords a trivial positive equivariant signing that is
G = Stab(Q(v))-invariant. for v = vy(k).

Proof. 1t suffices to show part 2 implies part 1. Let vy = wvo(k). Let €, be a
trivial positive equivariant signing for (W; x(vo), Bix(vo)) that is G,, = Stab(Q(vp))-
invariant. We will extend this signing to a signing €, for (W;x(v), Bri(v)) that is
G, = Stab(§)(v))-invariant by considering two separate cases.

Case vog < v. Let K € (Z) be a k-subset. By using a similar argument as
in proposition 4.5.9, we can show that there is 0 € Stab(€2(v)) such that o(K) €
1(Q(vo)). Hence, o(K) = ¢(K') for some K’ € (). Define €,(K) = €,,(K’). Clearly,
€, is well defined since €,, is G,,-invariant. Also, by construction, €, is G,-invariant,
and €,(t(K")) = €,,(K").

We show that €, is a trivial positive equivariant signing. Consider K €~ 3, ;(v).
Choose o € Stab(Q(v)) such that o(K) = «(K’) where K’ € (). By assump-
tion, there is a rational ¢ with support [;x(vo) and signing given by €,, such that

Wik (vo)erxr = Wik (vo)c. By applying ¢ to both sides of this equation, we deduce,

Wie()eoxy = Win(v)e xn
= Wir(v)d,

where ¢ is a rational vector with support ¢(5;x(vo)) C Bix(v). Note that the signing
of ¢ is given by ¢, since: if K’ has sign given by €,,(K’) in the summation expansion
of ¢, then «(K") has sign given by €,,(K’) = €,(¢(K’)) in the summation expansion of

c.
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Because €, is G,-invariant, by applying ¢~! to both sides of the above equation,
we deduce Wy i (v)ex = Wy c” where ¢” has support f;x(v) and signing given by e,.
Hence, ¢, is indeed a trivial positive equivariant signing.
Case v < vp. It suffices to construct a signing for (W, (v), Bk(v)). Let K € (3),
consider the signing given by €,(K) = €,,(¢(K)). Clearly, this signing is well defined.

We show that ¢, is GG,-invariant. Consider,

(oK) = ¢€,(lo-K))
= €y(t(0) - L(K))

= € (U(K))
= &(K).

where, we have used the fact that ¢(Stab(2(v))) C Stab(2(vy)).

We show that ¢, is a trivial positive equivariant signing. Consider K €~ G;x(v).
Clearly, there is a rational ¢ with support in (3, x(v) such that W, x(v)ex = Wi (v)e.
After applying ¢ to both sides of this equation, we deduce W; i (vo)e, (k) = Wik (vo)c
where ¢ has support in ¢(Gx(v)) C Ber(vo). Since €, is a trivial positive equivariant
signing, it follows that ¢’ has signing given by €,,. Hence, ¢ has signing given by

€py O L = €y. L]

Proposition 4.5.16. (Third Reduction). Let {Q(v)}2; be a Monotone Family,
and v an inclusion map for {Q(v)}o2,. Assume that By (v) is an equivariant compat-
ible set for {Q(v)}32, such that the corresponding columns of 35 (v) in M, (v) are

Q-linearly independent. The following are equivalent,
1. The set B (v) is a (t,k)-basis for v >k +t+1.
2. The set B (v) is a (t, k)-basis for v =vo(k).

Proof. 1t suffices to show part 2 implies part 1. We show this by considering two
separate cases.

Case v < v. Note that vy(t) < vo(k). Hence, by proposition 4.5.9, the spaces
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H) (k) = H0) (k) and H*") () = H*")(t). Thus, by proposition 4.5.4, M/, (v) =
M; ). (vo). Hence, the result follows.

Case v < vqg. Let ¢ € HQ(”)(k). Clearly, since the corresponding columns
of A7 (v) in M{,(v) are Q-linearly independent, there is a rational vector ¢ with
support in 37 (v) such that M;(v)'¢ = Myi(v)'c. Hence, by applying tyy,, we
deduce that My, (vo)c(¢) = M, (vo)'¢ where ¢ is a rational vector with support
WBur(0)) C B (vo). Since Byp(vg) is a (t,k)-basis, it follows that ¢’ is integral.

Hence, c is integral as well. |

Proposition 4.5.17. (Fourth Reduction). Let {Q(v)}2, be a Monotone Family
and ¢ an inclusion map for {Qv)}32,. Assume that {65,(v)}52, is an equivariant
compatible set for {Q(v)}52, such that the corresponding columns of B (v) in M, (v)

are Q-linearly independent. The following are equivalent,

1. The pair (M, (v), B5.(v)) affords a trivial positive equivariant signing for v >

E+t+1.

2. The pair (M, (v), ﬁfk(v)) affords a trivial positive equivariant signing for v =
Uo<k).

Proof. 1t suffices to show part 2 implies part 1. Let vy = vo(k), and let €,, be a trivial
positive equivariant signing for (M;,(vo), 55 (vo)). Consider the following two cases.

Case v < v. Note that vy(t) < vo(k). Hence, by proposition 4.5.9, the spaces
H) (k) = HY™) (k) and H*") () = H*")(t). Thus, by proposition 4.5.4, M/, (v) =
M; ;. (vo). Hence, the result follows.

Case v < vo. It suffices to construct a signing €, for (M, 55.(v)). Let ¢ €
H®®) (k). Consider the signing e, given by €,(¢) = €, (t(¢)). Clearly, this signing is
well defined since it is just the restriction of €,, to H*®) (k).

We show that €, is a trivial positive equivariant signing. Consider ¢ €~ ﬁgk(v).
Clearly there is a rational ¢ with support in 5} (v) such that M/, (v)¢ = M/, (v)c.
After applying ¢« to both sides, we deduce M, (vo)i(¢) = M, (vo)c" where ¢’ has
support in ¢(5{,(v)) C B (vo). Since €, is a trivial positive equivariant signing, it

follows that ¢’ has signing given by €,,. Hence, ¢ has signing given by €,, 0t =¢€,. [
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4.5.2 Monotone Families {2}, Induced by (t, k)-Bases

We provide examples of (¢, k)-bases {3, x(v)}22, which admit stabilizer groups of the
form Stab(2(v)).

Our first example is the Khosrovshahi-Ajoodani basis, which was introduced
Ajoodani-Namini and Khosrovshahi in [1]. One defines this basis by introducing

the concept of a “starting block.”

Definition 4.5.18. Let K = {by < --- < by} be a k-subset of {1,...,v}. Let
t <k<wv—k. K isa ‘“starting (¢, k)-block” if and only if all the following inequalities
hold,

h<v—k—t+20—2 1<I<t+1,
b <v—k+1 t+2<I1<k.

We call K a ‘“nonstarting (t, k)-block,” if it is not a (t, k)-starting block.

Definition 4.5.19. The Khosrovshahi-Ajoodani (K-Aj) (t, k)-basis is defined to be
the set of all nonstarting (t, k)-blocks.

Proposition 4.5.20. The Khosrovshahi-Ajoodani (t,k)-basis is indeed a (t, k)-basis
for Wi .

Our second example is the Bier-Frankl basis, which can be deduced indirectly to
be a (t, k)-basis from the work of Bier in [3]. However, because this basis has not
been shown to be a (t, k)-basis in the literature, we will provide a proof showing that
it is a (t, k)-basis by using the K-Aj basis. For now, we will call the Bier-Frankl basis,
the Bier-Frankl set.

One needs to introduce the concept of the Frankl rank to define the Bier-Frankl

set.

Definition 4.5.21. Let K be a k-subset in {1,...,v}. The Frankl-Graham density
of K is defined as:

fgd(K) = max {|[1,....s] VK| = |[L,....s] N (1. KN}

-----
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The Frankl rank of K is given by r(K) =k — fgd(K).

A geometrical interpretation of the Frankl rank uses the mapping of a k-subset
K to a walk w(K) on the lattice Z x Z. Given K, define the walk induced by K on
Z x 7, by starting from the origin (0,0) and ending in (v — k, k) by steps of length 1
where: the ith step is to the right, if i ¢ K; or, up, if i € K. The Frankl rank can
now be defined as k — f where f is the y-intercept of the unique line with slope 1
that touches w(K) from above.

Let us consider the following example. Let K = {1,3,4} C {1,...,7}. Figure 4.4
shows the graphical representation of the walk induced by K and the y-intercept of
the unique line with slope 1 that touches w(K) from above. For this example, the

y-intercept is 2. Hence, r(K) =3 -2 = 1.

Figure 4.4. Calculating the Frankl rank for the 3-subset {1,3,4} C {1,...,7}.

One can also give an inequality definition of the Frankl rank.

Proposition 4.5.22. Let K = {a; < --- < a3} be a k-subset in {1,...,v}. K has
Frankl rank r if and only if the following hold,

1. The following inequality holds, a; + (k —r) > 2i fori=1,... k.
2. There is an ig such that a;, + (k — 1) = 2i.

Proof. Let K = {a; < -+ < ai} be a k-subset. Let f = fgd(K). Then, y = x + f
bounds w(K) tightly from above. That is, y(i) > w;, where (i, w;) is a lattice point
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on w(K). Clearly, if (i,w;) € w(K), then (i, w;) is the end of the i + w; = sth edge of
w(K') where the 1st edge starts at the origin. Also, if i+w; = s € K, then s = ay, for

some sg. By construction, it is clear that sop must equal w;. Hence, 7 +w; = a,,, € K.

By choice of f,

1. The following inequality holds, y(i) =i+ f > w;. Thus, ay, + f =w; +i+ f >

2w;. Hence, as + f > 2s.

2. There is an ig such that y(io) = io + f = wi,. Thus, ay, + f = wi, +io+ f =

w;, + w;, = 2w;,. Hence, there is an sy = w;, such that a,, + f = 2s.
Since f 4+ r = k, the result follows. O

Definition 4.5.23. The Bier-Frankl (B-F) (¢, k)-set is defined to be the set of all
K -subsets with 0 < r(K) < t.

The next result shows that the K-Aj basis is equivalent to the B-F set.

Proposition 4.5.24. Let ;) be the K-Aj basis, and (3, the B-F set. Let 0 :
{1,...,v} = A{1,...,v} be defined as 0(s) = v — s+ 1. Then, 0(B;x) = B,

Proof. Tt suffices to show that 0(~ ;) =~ ;. Clearly,
K = {b1<<bk} ENﬁt,k,

if and only if the following hold:

h<v—k—t+20-2=0k+t+1-20—-1) 1<I<t+1,
bh<v—k+1=0k—1+1) t+2<1<k

Since, #(a) < 0(b) if and only if a > b, and 0(0(a)) = a; it follows that:

Ob) >k+t+1-2(1-1) 1<I<t+1,
Ob) >k —1+1 t+2<I1<k.

Note that, 0(by) > -+ > 0(by). Let ay = 0(by_s11). Clearly 0(K) = {a1 < -+ < ax}.
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It suffices to show that,

a;+(k—t—1) > 2ifori=1,... k.

Because, this will imply that r(6(K)) > t 4+ 1 by proposition 4.5.22. Let us consider
the first (¢ + 1) inequalities:

Qg Z k?+t+1,

Ap—1 Z k+t—1,
ag_o > k+t—3,
Qpe—t Z k—t+1

By adding £ —t — 1 to all the inequalities, we deduce:

ak+k—t—1 Z 2]67
ak_1+k—t—1 Z 2(]{3—1),
a2 t+k—t—1 > 2<k—2),
ap—++k—t—1 > 2(k—1).

Now, let us consider the last (k —t — 1) inequalities:
as > swhere 1 <s<k—t—1.
Note that, a, +k—t—1>s+k—t—1>s+s=2s. Thus,a, +k—t—1> 2s for

s=1,...,k. The result follows. |

Corollary 4.5.25. The B-F (t, k)-set is indeed a (t,k)-basis. We will refer to the
B-F (t, k)-set as the B-F (t, k)-basis.

Proof. This is a clear consequence of 0(53; ;) = 3 ;, and the fact that Wy is an S,-map
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hence commuting with 6. |
Using the definition of the K-Aj basis, one can deduce a stabilizer group.

Proposition 4.5.26. Let 3, be the K-Aj basis. Let,

Qt,k - QlLJ"'UQH_Q
= {l,...,.v—k—t}U{v—k—t+1Lv—k—t+2}U

U--U{v—k+t—1Lv—k+tju{v—Fk+t+1,... v}

Then, G = Stab(2y ) is a stabilizer group of By .
Proof. 1t suffices to show that G stabilizes ~ ;. Let K = {b; < --- < by} €~ [,

then the following must hold:

by<v—k—t+20—2 1<I<t+1,
by <v—Fk+1 t+2<1<k.

Clearly, if we show the first (¢t 4+ 1) inequalities, then the remaining follow by the

monotonicity of the b;s.

It is a clear exercise that the G preserves the first (¢ 4 1) inequalites. O

Corollary 4.5.27. Let 3{; be the B-F basis. Let,

= {v,...,k+t+1}U{k+t,k+t—-1}U

UUfk—t+2k—t+1}U{k—t,... 1}

Then, G = Stab(SY; ) is a stabilizer group of B3,

Proof. Because (3}, = 6(0,), it must be necessary that .5tab(Qq )0~ = Stab(6())
is a stabilizer group of 0(8; ) = ;. Since Q} , = 0(€2 1) the result follows. O

For the K-Aj basis [, one can characterize the orbits in (Cx(X))o that belong

to B . We summarize this in the next proposition.
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Proposition 4.5.28. Let (B, be the K-Aj basis, and G = Stab(Qx). Then,

HQt,k(k‘)ﬂNﬁgk = {[¢17--'a¢t+17¢t+2]|T§Z¢87T:17"'at+1}'
s=1

Proof. Let K = {b; < --- <by} €~ Biy. The following must hold:

bh<v—k—t+20—2 1<I<t+1,
by <v—Fk+1 t+2<1<k.

Consider [¢1, ..., Prr1, r2] = [|[K N x|]. Clearly, the first (¢4 1) inequalities trans-

late to:
r<> ¢, wherer=1,... t+1. (4.11)
s=1

Because the remaining inequalites follow from the first (£ 4+ 1) inequalites by using
the assumption that the b;s are monotonic, it must follow that Equation (4.11) is

necessary and sufficient. O

4.5.3 The Equivariant Sign Conjecture

Let (s be the K-Aj basis or the B-F basis. Given the triple (Wi, Bix, G), where
Stab(€x)); one can ask whether (M/,, ;) affords a trivial positive equivariant

signing that is G-invariant. We will conjecture that these signing exist.

Conjecture 4.5.29. The Equivariant Sign Conjecture for the K-Aj basis. Let
t <k<wv—k, B be the K-Aj basis, and G = Stab(Q ). Then, the pair (Wi, Bex)

affords a trivial positive equivariant signing that is G-invariant.

Because the K-Aj basis is equivalent to the B-F basis, one can formulate an anal-

ogous conjecture for the B-F basis.

Conjecture 4.5.30. The Equivariant Sign Conjecture for the B-F basis. Let
t<k<wv—k, B, be the B-F basis, and G' = Stab($; ). Then, the pair (Wi, 5},

affords a trivial positive equivariant signing that is G-invariant.
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Using the results of the previous subsection, one can reduce the Equivariant Sign

Conjecture for the B-F basis.

Proposition 4.5.31. Let t < k < v — k, f;,(v) be the B-F basis, and G' =

Stab($2; ,(v)) its Stabilizer group. Then, the following are equivalent,

1. The pair (Wix(v), B, (v)) affords a trivial positive equivariant signing that is

G-invariant where v >k +t+ 1.

2. The pair (Wi x(vo), B x(vo)) affords a trivial positive equivariant signing that is

G-invariant where vg = 2k +t.

Proof. We will use the Second Reduction of the last subsection. Clearly, {€2} , (v)}52,

is a Monotone Family. Also, we can use the natural inclusion ¢ : {1,...,v} <
{1,...,} to extend to an inclusion map for {€2,(v)}52,. By construction, the B-
F basis is a Compatible Set for {2, (v)}32,. This is because f;x(v)" C Bix(v')

naturally. Clearly, the columns that corresponds to (3 (v)" in Wy (v) are Q-linearly
independent since f;x(v)" is a (¢, k)-basis. Thus, the Second Reduction applies, and
it suffices to calculate vo (k).

Clearly, fi(v) = k—t, fo(v) =2,..., fiz1(v) =2, and f;11 = f where v = k+t+f.
Hence, v1(k) =k —t, v2(k) = 2,...,%41(k) = 2, and ~y12(k) = k. Thus, v = v =
=%, =k+t+1, and vy, = k+t+k =2k +t. Therefore, vo(k) =2k +¢t. O

As a corollary, we formulate a similar reduction for the K-Aj basis.

Corollary 4.5.32. Lett < k < v—k, B 1(v) be the K-Aj basis, and G = Stab(£2 ;(v)).

Then, the following are equivalent,

1. The pair (Wyk(v), Bex(v)) affords a trivial positive equivariant signing that is

G-invariant where v >k +t+ 1.

2. The pair (Wyr(vo), Bri(vo)) affords a trivial positive equivariant signing that is

G-invariant where vg = 2k +t.
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Proof. 1t suffices to show part 2 implies part 1. Let €,, be a trivial positive equiv-
ariant signing for (Wi x(vo), Brx(vo)) that is G-invariant. Since 3, (vo) = 0(B¢x(vo)),
€,, = 00 €y, 007" is a trivial positive equivariant signing for (Wi (vo), 0 x(vo)) that
is Stab( x(vp)')-invariant. Hence, by proposition 4.5.31, there is a trivial posi-
tive equivariant signing €, of §;;(v)" that is Stab(Q(v)')-invariant. By defining,
€, = 071 o€ o6, one can check that €, is a trivial positive equivariant signing for

(Bri(v), Wik (v)) that is Stab( x(v))-invariant. O

We proceed to check the conjectures for the cases (¢t,k) = (1,2) and (2,3). By
using the Second Reduction, it suffices to check the conjecture for the case v = 2k +t.
In the following proposition we will show a much stronger result than the Equivariant
Sign Conjecture. We will show the existence of trivial positive equivariant G-signing

for v =2k + 1.

Proposition 4.5.33. Let 31 5 be the K-Aj basis, and G = Stab()y2). Let v = 1y(2) =
1+2%x2=5. Then,

1. A basis for H*2(1) is given by:
{[0,0,1],[0,1,0],[1,0,0]}.
2. A basis for H12(2) is given by:

51,2 U (N ﬁl,Z) = {[L 07 1]a [07 17 1]7 [Oa 270]} U {[2’070]7 [17 170]}'

3. The pair (M ,, ﬁlGQ) affords a trivial positive equivariant signing.
4. The pair (Wi, B12) affords a trivial positive equivariant G-signing.

Proof. Parts 1 and 2 follow by direct computation, and by proposition 4.5.28.
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We show part 3. Using the basis of parts 1 and 2, M] , has matrix representation:

100 21
01201
1 1000

Note that M7, has Reduced Row Echelon Form:

100 2 1
010 -2 -1
001 1 1

Hence, we deduce that (M7 ,, 552) has a trivial positive equivariant signing by propo-

sition 4.4.5. This signing is given by,
e“([1,0,1]) =1, €9([0,1,1]) = -1, €9([0,2,0]) = 1.

We show that (W 2, £12) affords a trivial positive equivariant G-signing, We will use
the signing inhereted from (Mj ,, 3(;). That is, e(K) = e“([|K N Qy[]).

Define e = v —e, and 1* = 2, 2* = 1. Let a,b € {1,...,v — 3}. We will consider
each orbit of ~ f3; 5 as a case. Hence, giving a total of two cases. We proceed to show
these cases.

Case [2,0,0]. Let {a,b} € [2,0,0]. Let:
V2,00 = {CL, (_)} + {b7 (_)} + {17 i*} o {17 6} - {1*7 6}

Clearly, vpg0 € Colz(Wg,,), and affords the same signing as €“. Also, a direct
calculation shows that Wi 2{a,b} = W 2010,
Case [1,1,0]. Let {a,e} € [1,1,0], where e = 1 or 2. Let:

v = {a,0}+{e e} —{e*,0}.
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Clearly, vp10 € Colz(Wg,,), and affords the same signing as €. Also, a direct
calculation shows that Wi o{a,é} = Wi 2vp11,0)- O

Proposition 4.5.34. Let (53 be the K-Aj basis, and G = Stab(ly3). Let v = vy(d) =
24+ 3%x2=28. Then,

1. A basis for H®23(2) is given by:

{[0,1,1,0],[1,0,1,0],[1,1,0,0],[0,1,0,1],[1,0,0,1],[0,0,1,1],

0,2,0,0],[0,0,2,0],[2,0,0,0]}.

2. A basis for H3(3) is given by Ba3U ~ (a3 where:

ﬁ2,3 = {[0727 170]7 [1a 1a07 ]-]7 [1707 17 1]7 [Oa 17270]a [1707 2a0}7
2,0,0,1],[0,1,1,1],[0,0,2,1],[0,2,0,1]},

~ /62,3 = {[3707070]7 [1727070]7 [17 17 9 170]7 [27 17070]7 [2707 170]}

3. The pair (M§73, 52073) affords a trivial positive equivariant signing.
4. The pair (Wa s, B23) affords a trivial positive equivariant G-signing.

Proof. Parts 1 and 2 follow by direct computation, and by proposition 4.5.28.

We show part 3. Using the basis of parts 1 and 2, M, ; has matrix representation:

= o O

—_

o O B O O © o O W
oo o O R =B O O = o
o B O O O ©o o o N
o R, O O o ©o o N o
_ O O O N O O o o
o O O R O R O O &
o = O N O O O o o
o O =R O ©O N O o o
w O O o o o o o o
o o B O o o N o o
O O O O O O Rk Rk R
_ O O o o o N o o
- O O o o o o N o

o o o o =
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A calculation of the Reduced Row Echelon Form gives:

10000O0OO0OO0OCO0C 2 2 1 2 1
co1o0o00000O0O0 2 1 2 0
0600100O0O0O0O0-6 -2 -1 —4 -2
000100000 -4 -2 -1 -3 -2
coooo061o0oo000 3 1 1 2 2
coooo0oo0o1000 3 0 0 1 1
cooo0oo0o00100 4 0 1 2 2
coooo0o00010 1 1 0 1 0
oooo0oo0o0o001 -2 -1 -1 -2 -1

Hence, we can deduce that (M, 52%) affords a trivial positive equivariant signing

by proposition 4.4.5. This signing is given by:

€“([0,2,1,0]) =1, €%([1,1,0,1]) =1, €“([1,0,1,1]) = —1,
¢9([0,1,2,0]) = =1, €%([1,0,2,0])) =1, €9(][2,0,0,1]) =1,
e“([0,1,1,1]) =1, €5([0,0,2,1]) =1, €“([0,2,0,1]) = —1.

We show part 4. We will use the signing inhereted from (Mj 5, 355). Define e(K),
for K € (3, by lettting €(K) = €% ([|K N Qa3]).
Define € = v — e. Define 1* = 2, 2* = 1, 3* = 4, and 4* = 3. Let a,b,c €

{1,...,v —5}. Consider the following parametrization for the orbits of ~ 3.
e {a,3,3"} be a representative of the orbit [1,2,0,0].
o {a,& f} (where e = 3,4 and f = 1,2) be a representative of the orbit [1,1,1,0].
e {a,b,e} (where e = 3,4) be a representative of the orbit [2,1,0,0].
e {a,b, f} (where f = 1,2) be a representative of the orbit [2,0, 1, 0].

e {a,b,c} be a representative of the orbit [3,0,0,0].
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We will consider each orbit of ~ (353 as a case. Thus, giving a total of five cases.
Case [3,0,0,0]. This case can be solved by considering the following calculation.

Let,

vsoo0 = {1,170} +{3,1,0} +{3,1*,0} + {3%,1,0} + {3*,1*,0}
—2{3, 1,1} — 2{3*,1,1"} — 2{3,3%,0} + {3,3", 1} + {3,3", 1"}
—{a,1,0} — {a,1%,0} — {b,1,0} — {b,1*,0}
—{¢, 1,0} = {c, 1,0} + {a, 1,1} + {b,1,17}

+{c,1,1"} + {a,b,0} + {b,¢,0} + {a,c,0}.

It can be shown by direct calculation that Wy s{a, b, c} = Wasvi30.0,0. Clearly, viz .00
has the signing given by e.
Case [2,0,1,0]. This case can be solved by considering,

It can be shown by direct calculation that Wa3{a,b, f} = Wa3vp1,9 where f = 1,2.
Clearly, vjg0,1,0) has the signing given by e.
Case [2,1,0,0]. Let,

vpaoo = {1,170} +{e*, 1,0} + {e*,1*,0} — 2{e*,1,1"}
_{éa L 1*} - 2{37 3*7 6} + {37 3*7 i} + {37 3*7 1*}
+{a,1,1°} + {b,1,1"} + {a,&,0} + {b,&,0}

+{a,b,0}.

As the previous cases, it can be shown by direct calculation that: Wss{a,b,e} =

Wa 302,100 Where e = 3,4. Clearly, vj1,0,0 has the signing given by e.
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Case [1,2,0,0]. Let,

U[LQ,O,O] = {17 1*7 ()} - {37 17 1*} - {3*7 17 1*} - {37 3*7 6}
+{3,3*, 1} + {3,3", 1"} — {a, 1,0} — {a, 1%, 0}

+{a,1,1"} + {a, 3,0} + {a, 3*,0}.

As the previous cases, it can be shown by direct calculation that: W53{a,3,3*} =
W2,3'U[1’2’070]. Clearly, U[1,270’0} has the Signing given by €.

Case [1,1,1,0]. Let,

vt = €, 5,0} —{er,1,1*} — {3,3*,0} + {3,3*, f}
—{a, f*,0} +{a,1,1*} + {a,e,0}.

As the previous cases, it can be shown that: Wa3{a, €, f} = Wasvp,1,1,9 where e = 3,4
and f =1,2. Clearly, v 1,10 has the signing given by e.
O

We note that we have checked the Equivariant Sign Conjecture for the cases
(t,k) = (3,4),(4,5) and (5,6) by using a computer program. We do not include the

proofs of these cases since they involve a large number of cases.

4.6 The Case G = (Z/nZ)

In what follows, we will define s* as n — s. We consider the matrices M, and Ml{k
when the action is given by G = (Z/nZ), the cyclic group of order n, and v = n.

We propose the following conjectures:

Conjecture 4.6.1. The (t,k)-basis conjecture. Weak version. Lett < k <
n—k<n-—t. Ifged(tk,n) =1, then,

1. The matriz M{,(n) affords a (t, k)-basis.

2. The matriz My (n) affords a (t, k)-basis.
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Conjecture 4.6.2. The (t,k)-basis conjecture. Strong version. Lett < k <
n—k<n—tthen M{,(n) affords a (t,k)-basis.

We will show under the assumption ged(tk,n) = 1 that M;x(n) = M;,(n). Thus,
the weak (t,k)-basis conjecture is really a conjecture about the matrices M, (n).
We will check the these conjectures by finding a (t, k)-basis for the cases (t,k) =
(2,3),(2,4), and show some progress for the case (3,4). Using the found (¢, k)-basis,
we will calculate the Smith Group of My 3, M; 3, My 4, My 4. Also, we will show the

following consequence of the (¢, k)-basis conjecture:

Proposition 4.6.3. Let ged(n, (2(k—1))!) =1, andt <k <n—k <n—t. Assume
the (t, k)-basis conjecture holds for n and all t,k where t <k <n—*k. Then, M{,(n)
has Smith Group given by:

(e o e Jar s

S Gl )

where 1;(n) = Q is the number of orbits of (Z/nZ) on the i-subsets fori=2,... t.

We close the section with some ideas on how to find a (¢, k)-basis for M, ;(n)".

4.6.1 The Orbits of (Z/nZ) On the k-subsets

We will propose a method for counting the orbits of k-subsets under the action of
(Z/nZ) by partitioning the k-subsets’ orbits into classes corresponding to partitions
of k. We will use the results of this subsection in the (¢, k)-basis results.

Let us introduce the notion of a “cyclic ordered partition” to algebraically manip-

ulate the orbits of (Z/nZ).

Definition 4.6.4. Let n = a; + --- + ax be a partition of n with exactly k parts
where the order of the a;s matter. Denote this partition by |aq,...,a]. We will call

lai,...,ax] an ordered partition of n with k parts.
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Let G = Z/KZ act on the ordered partitions by t - [ay,...,ax] = [a144, -+, Gpid],
where the subscripts are taken modulo k.
An orbit of the action of Z/kZ on the ordered partitions of n with exactly k parts

will be called a “cyclic ordered partition” of n with k parts.
The following proposition motivates our defintion.

Proposition 4.6.5. There is a one to one correspondence between the orbits of G on

the k-subsets and the set of cyclic ordered partitions of n with k parts.

Proof. We will show the proposition by example. Take for instance n = 7 and consider
the 3-subset K = {1,3,7}. Let us think of the set {1,...,7} as 7 points evenly spaced
on the unit circle, where we number the points in increasing order using the clockwise
direction. Label the points of K with a circle. figure 4.5 shows the set K, and all
the other sets K + ¢ that are in the orbit of K under the action of (Z/7Z). As

0 7 0 7 6 7 0 7
5 5 5 5
1 1 1 1
4 4 4 4
3 2 3 2 3 2 3 2
0 7 G 7 g 7
S ) 5
1 1 1
4 4 4
3 2 3 2 3 2

Figure 4.5. The orbits of {1, 3,7} under the action of (Z/7Z).

it is shown by the pictures of figure 4.5, the circular distances between consecutive
points of K are the same to the circular distances between consecutive points of
K’ € Qg. Hence, the circular distances and their order in the clockwise direction
are an invariant of the action of (Z/7Z) on the orbit Q2 56y. Clearly, this invariant

information is represented by the cyclic ordered partition [1,2, 4] using the clockwise
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direction. Similary, we can generate a cyclic ordered partition of n of size 3 for every
3-subsets’ orbit Q. It is a clear exercise to show that if two orbits generate the same
cyclic ordered partition of n of size three then they must be the same.

One can define the following map,

w(Q{x1<x2<z3}) = [I2—$1,$3—I277—$3+$1]7

clearly an injection between the orbits of (Z/7Z) on the 3-subsets and the cyclic

ordered partitions of 7 of size 3. Conversely, one can define an inverse of ¥ given by

¢ as:

¢([a1>a2>a3]> = Q{O,ahaﬁraz}a

It is an easy exercise to show that ¢ and 1 are inverses of one another. Hence, the
result follows for (Z/77) and the 3-subsets.

For the general case, ¢ and v are given by:

w(Q{z1<~-<xk}) = [fz —21,T3 —T2,..., Tk —xk—l,n—l‘k-i-m],
(b([alv S 7ak]) = Q{Oﬂl,a1+a2,-..,a1+-~~+ak71}'
L]

For the rest of the section, we will use the language of cyclic ordered partitions
of n of size k to refer to the orbits of (Z/nZ) on the k-subsets. We will also use
the functions ,¢ of proposition 4.6.5 whenever needed. The following Propsition

characterizes the k-subsets’ orbits.
Proposition 4.6.6. Let K C {0,...,n— 1} be a k-subset, and G = (Z/nZ). Then,
1. If0e K, and g+ K = K, theng € K.

2. Let Gk be the stabilizer of K in G, then there are gq,...,g, with 0 <r <|[G :
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Gk such that:
K = (Gk+q)U(Gg+¢g2)U---U(Gg + g,),

where the above equation is viewed as an equation of sets.
3. For some integer r, k = |G|r.
4. The ged(k,n) divides |G k|-

5. Let a = |G : Gk, and r = GTK‘ Let 1) be the function defined in the proof of

proposition 4.6.5. The cyclic ordered partition of Qg is given by:
’l/J(QK) - [bh'--7b7“7b17"-;bT7"-7b17'--7bT]7

where the expansion by, ..., b. is a partition of a, i.e., by + --- + b, = a where

the order of the b;s is not important, and repeats itself |G| times.

6. The following holds, |Qk| = G = o

Proof. Part 1 is clear.

We show part 2. It suffices to show the claim when 0 € K. Hence, we can assume
that G C K. By considering the set %, we will be able to deduce the claim as long
as we show that: if (Gxg + g) N K # ¢, then (G + g) C K. Thus, let g+ ¢ € K,
where ¢’ € Gg. Let ¢" € Gk, then g+ ¢ + ¢” € (K + ¢”") = K. Hence, the claim
follows since ¢” € Gk is arbitrary.

Part 3 is a clear consequence of part 2. Part 4 is a clear consequence of part 3.

|G

We show part 5. Assume that K € Qg, where 0 € K. Let s = |Gg|, r = TK‘,

and a = [G : Gk]. By part 2, there are gs, ..., g, such that:
K = GrU(Gr+g)U---U(Gk+g),

In particular, Gx C K. Since G is cyclic, Gk is also cyclic. Thus, Gg = (%) = (a).

As K is a the union of cosets of G, we can choose the g;s in the decomposition of
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part 2 to be such that 0 < ¢g; < a. Let Ky = {0,92,...,9-} C {0,...,a}. Define,
by = go,bo = g3 — g2, b1 = g — gr_1,b, = a — g,. Clearly, the b;s denote the
consecutive circular distances of the points of K in {0, ...,a}. Because G translates
these circular distances to the set {a,...,2a}, and then to {2a,...,3a}, and so on; it

follows that the cyclic ordered partition for K has form:
V() = [b1,..., by by, by by, D
Hence, the result follows.
Part 6 is clear. O

As Corollaries, we calculate the sizes of orbits for small cases.

Corollary 4.6.7. (2-subsets). Let (Z/nZ) act on the 2-subsets, and let K be a
2-subset. Then,

1. If ged(n,2) =1, then |Qk| =n for all K.

2. Assume ged(n,2) = 2. Then,

N3

if Y(Qk) =[5, 5],

n else.

Q| =

Corollary 4.6.8. (3-subsets). Let (Z/nZ) act on the 3-subsets, and let K be a
3-subset. Then,

1. If ged(n,3) =1, then |Qk| =n for all K.

2. Assume ged(n,3) = 3. Then,

w3
w3

if p(Qx) =[5, 5 5],

n else.

Qx| =

Corollary 4.6.9. (4-subsets). Let (Z/nZ) act on the 4-subsets, and let K be a
4-subset. Then,
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1. If ged(n,4) =1, then |Qg| =n for all K.

2. Assume ged(n,4) = 2. Then,

if Y(Qk) = |a,b,a,b] where a +b= %,

N3

Q| =

n else.

3. Assume ged(n,4) = 4. Then,

Okl = {2 if (Qx) = [a,b,a,b] where a+b="a#b,
n else.

Definition 4.6.10. Let {x} be a partition of n given by fiaq + - -+ f.a, where part
ay repeats fi times, part as repeats fo times, ... , and part a, repeats f. times. We

will denote {x} by al ---afr.

Given a partition {z} = af'---af

T

one can ask how many cyclic ordered par-
titions with & = f; + --- + f, parts of n afford the partition {z}. An effective
answer to this question will help us find (2,3)-bases and (2,4)-bases. One can
find the number of such cyclic ordered partitions by using Burnside’s Formula for
Group Actions applied to the group (Z/kZ) acting on the set of Ordered Parti-
tions X = {[ag,...,ax_1] | [ao,...,ax_1] affords {x}} where the action is defined
by r - [ag,...,ax_1] = [aosr, - -@g_14,] With the subscripts taken modulo k. The

following proposition summarizes the calculation.

Proposition 4.6.11. Let {z} = af'---al" be a partition of n with k parts. The

number of cyclic ordered partitions affording {x} is given by the sum:

% > (),

teZ/kZ
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where,
(55! ‘ » .
ESTE AT if o(t) divides f; for all i,
X(t) = o(t)/ No(t) /" o(t)
0 else,
and o(t) = ——.
ged(k,t)

As a corrollary, when ged(n, k) = 1, we can tell how many cyclic ordered partitions

are afforded by a fixed partition of n with exactly k parts.

Corollary 4.6.12. Let {x} = al'---alr be a partition of n with k parts, and let
ged(n, k) = 1. The number of cyclic ordered partitions affording {x} is:

(k —1)!
(f)b--- ()l

Proof. 1t suffices to show in the formula of proposition 4.6.11 that x(¢) = 0 whenever
t # 0.

If o(t) divides all f;, then o(t) divides f; + ---+ f. = k, and o(t) divides fia; +
-+ + fra, = n. Hence, o(t) divides ged(n, k) = 1. Thus, o(t) = 1. That is, t = 0. We
have shown: if x(¢) # 0 then ¢t = 0. The result follows. O

We close this subsection with a calculation of the number of k-subsets’ orbits when

ged(n, k) = 1.

Proposition 4.6.13. Let ged(n, k) = 1, then number of orbits of Z/nZ on the k-

(&)

n -

subsets is

Proof. By using Burnside’s formula, it suffices to calculate the number ri(n) given

by:

where m;(i) = |{K € (}) | i + K = K}|. By assumption and proposition 4.6.6, it
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follows that:

" if 1 =0
ﬂ_k(z) _ (k) 1L ’
0 else.

Hence, the result follows. |

4.6.2 A Partition of the k-subsets’ Orbits of (Z/nZ)

We will propose a partition of the orbits of (Z/nZ) on the k-subsets by using the
partitions of k. This partition will prove instrumental when showing the existence of
a (2,3)-basis and (2, 4)-basis.

We will denote the number of partitions of n with r parts by p,(n). The partition
of the k-orbits is motivated by the following result.

Proposition 4.6.14. If n > 2k, then p, x(n) = p(k). That is, the number of

partitions of n with exactly n — k parts is equal to the number of partitions of k.

Proof. Define,

T, = {{z}|{x} is a partition of n with n — k parts},

Sy = {{p} | {p} is a partition of k}.

It suffices to show a bijection n : T, — Sk.
Consider a partition {z} = al'al? - - - alr of n with n—k parts, i.e., fi+---+ f, =

n—kand1=a; <ay <---<a,. Clearly,

no= fitafot--+aa
> h+2fa+--+2f
= 2(n—k)—f1,
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hence, f; > n — 2k > 0. Consider,

(i = (n—2k))+ foag + -+ fra, = n—(n—2k)
= 2k,

hence, we get a partition of 2k with (f; — (n — 2k)) + fo + -+ + f, = k parts. By
substracting 1 from each of the parts, we get a partition of k = fo(ag — 1) + -+ +
fr(a, —1). Thus, {p} = (ay — 1)2---(a, — 1)/ is a partition of k. We use this
construction to define 7).

Define n : T, — S}, as:
naf-af) = (o= 1o~ 1)

Clearly, n is well-defined. We show that n has an inverse.

Consider a partition {p} = (a})%---(a’)/* of k, where s = f} +--- + f/ is the
number of parts. Let f{ = k —s. Clearly, f{ +---+ f/ = k. Note that, 2k =
fi+ filay+1)+-- -+ fl(al. +1). Clearly, this is a partition of 2k having k parts where
f1 may equal 0. Let f{" =n — 2k + f{. Note that f/’ > 0 since n — 2k > 0. Clearly,

= fi'+ fi(ay, + 1)+ ---+ fl(al + 1) is a partition of n having f + fo5 +---+ f/ =
n—2k+ fi +---+ fl =n — k parts. Define v : Sy — T} by,

7((@’2)f5 e (a;)ﬂ) — 1f{’(a/2 + 1)f§ o (d + 1),

where f' =n—k—(f5+---+ f/). Clearly, v is a well defined map.

It is an easy exercise to show that v = n~!. |

We proceed to describe the partition of the k-subsets’ orbits of (Z/nZ).

Definition 4.6.15. Let 2k < n, and let K a k-subset of {0,...,n—1}. Let,

[al, Ce ,an_k] = IZJ(QNK)

Let {x} = 11082 - .- b be the partition of n with (n—k) parts afforded by [ay, . . ., an_y].
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Using the map of proposition 4.6.14, define the partition of k corresponding to the
orbit Qg by:

P} = (b= D" (b=

Alternatively, the partition of k corresponding to the orbit Qk is n(¥(Qx)), where n
1s defined in the proof of proposition 4.6.14.

Let us illustrate map given by definition 4.6.15. Let n = 7 and k = 3. Figure 4.6
shows the correspondence between the partitions of 3 and the orbits of (Z/7Z) on the

3-subsets.

K| y(K) ~ K| 9~ K) | p(k)
{0,1,2} [[1,1,5] | {3,4,5,6} | [1,1,1,4] | 3!

{0,1,3} | [1,2,4] | {2,4,5,6} | [2,1,1,3] | 112
{0,1,5} | [1,4,2] | {2,3,4,6} | [1,1,2,3] | 112!

{0,2,5} | [2,3,2] | {1,3,4,6} | [2,1,2,2] 13

{0,1,4} | [1,3,3] | {2,3,5,6} | [1,2,2,2] 13

Figure 4.6. Correspondence between the 3-subsets’ orbits of (Z/7Z) and the parti-
tions of 3.

From the table of figure 4.6, we deduce that the number of 3-subsets’ orbits that
correspond to the partition 3! is 1, to the partition 1'2! is 2, and to the partition 13
1s 2.

In general, we can calculate the exact number f({p}) of k-subsets’ orbits that
correspond to a fixed partition {p} = b/ ---bfr of k with s = f, +--- + f, parts by
using proposition 4.6.11. That is, we calculate the number of cyclic ordered partitions
of n with (n — k)-parts that afford the partition {g(p)} = v({p}) = 1" *=3(by +
1)f1 < (b + 1)]07"'

The tables in figures 4.9, 4.10, 4.7, and 4.8 summarize the values of f({p}) for the
cases k = 2,3,4,5.
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{r} | {9(0)} f({p}) | ged(n, 4)
14 1n—824 (n— 5)(”4 6)(n—7) 1
1221 1n—72231 (n— 5)2(!n 6) 1
1131 | 1762141 (n —5) 1
22 1n—632 (n2'5 1

41 1"—551 1 1
14 1n—824 (n=6)((n j)(n 7)+3) 2
1221 1n772231 (n—5)2(!n—6) 92
1131 | 1n-62141 (n—5) 2
22 1n7632 (”;4) 2

41 17551 1 2
14 1n7824 (n—5)(n— 6)(; 7)+3(n—2) 4
1291 | 1n—79231 (n75)2(!n76) 4
1131 | 1n=62141 (n—5) 4
22 1n—632 (n;4) 4

41 17551 1 4

Figure 4.7. f({p}) for k = 4.

{p} | {9)} f({p}) | ged(n,5)
15 1n—1025 (”*6)(”*75”*8)("*9) 1
1391 | {n—99331 (nfﬁ)(n*'?)(n*S) 1
1231 1n—82241 (”;6)25"_7) 1
1141 | 172151 (n—6) 1
1122 1n782132 (n—6)2§n—7) 1
2131 | 173141 (n — 6) 1
5! 166! 1 1
15 1n—1025 (n—ﬁ)(n—?)(n5—'8)(n—9)+4~4! 5
1321 1n792331 (n—.G)(n?;ﬂ(n—S) 5
1231 | n—89241 (n*6)2§n*7) 5
1141 | 1n=7215! (n—6) 5
1192 | n—89132 (n*6)25n77) 5
2131 | 1n-7314! (n—6) 5
5t 17661 1 5)

Figure 4.8. f({p}) for k = 5.




{r} [ {9()} | f({p}) | ged(n,2)
12 1n—422 nT—3 1
2t | 17331 1 1
12 1n—422 nT—Q )
2t | 17331 1 2

Figure 4.9. f({p}) for k = 2.

i} | {9(p)} f({pr}) | ged(n,3)

13 1n—623 (n*4)5"*5) 1
3!

1191 | 1n—59131 (n— 4) 1
31| gt 1 1
13| 17623 | 229 4y 3

1191 | 1759131 (n—4) 3
31| iyl 1 3

Figure 4.10. f({p}) for k = 3.

Using the partition of the k-subsets’ orbits given by definition 4.6.15, we introduce

some notation that will prove useful later.

Definition 4.6.16. Lett < k <n —k. Let {p1},...,{p,} be the distinct partitions
of k. Let x and y, be linear combination of cyclic ordered partitions of n of size k.

Then,

1. We say that x =y mod 0 using M{,, whenever x —y € Ker(Mj,).

2. We say that x = y mod {pj, },...,{pi.} using M;,, whenever M{,(x —y) =

Mz where z has support on cyclic ordered partitions corresponding to classes

{pi1}7 te {pis}‘

4.6.3 The Ker(M,)

Proposition 4.3.41 shows a set the generators of Ker(Mj,) using the equivariant

projections of the (t,k)-pods. In this section, we will illustrate a calculation of a
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projected (¢, k)-pod II(A, B)® by defining B “relative” to A. We will do this to help

the reader understand the details. In later subsections, we will skip these details.

Definition 4.6.17. (Relative (t,k)-pods). A (t,k)-pod given by 11(A, B) is called
a relative (t, k)-pod whenever B is specified relative to A. That is, if

A = {ala"-7at+1v"'a’/€}a

then B = {by,...,bys1} where b; = fi(ay,...,a;) and f; is the ratio of two multi-

variable polynomials mod n.

In the calculations that will follow, we will specify f; as linear functions. The

following proposition illustrates the calculation of a projected relative (2, 3)-pod.

Proposition 4.6.18. Let [ay, ay,a3] be a cyclic ordered partition of n with three parts
where the a; > 2. The following expresion is a projected relative (2,3)-pod, i.e., an

element of the Ker(Mj ),

[ai, ag,a3] — [1,a9,a5 — 1] — [1,a3, a3 — 1] — [a1, 1,a] — 1]

+lay, a0+ 1,a3 — 1]+ [1,1,2*] + [1,a1 + 1,a] — 2] — [a1, 2, a] — 2],

where a* =n — a.

Proof. Let A = {x1 < x3 < 23} € Q4 ,00,04], Where magnitudes are taken in the
clockwise direction. For instance, A = {0, a;,a; + as} is a possible choice. We will

define B relative to A as B = {y1, Y2, Y3}, where,

1. The element y, is one unit before x5 in the counter clockwise direction. That

is, y1 = x5 — 1 mod n.

2. The element y, is one unit before z; in the counter clockwise direction. That

is, yo = x1 — 1 mod n.

3. The element y3 is one unit after x5 in the clockwise direction. That is, y3 = xo+1

mod n.
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We know that yq,ys, y3 exist since each a; > 2. Also, by construction AN B = ¢.
Hence, we can construct a (2,3)-pod. Figure 4.11 shows a graphical representation

of A and B using relative distances.

a2

Figure 4.11. Relative (2, 3)-pod.

Using the notation of proposition 4.3.40, we calculate II(A, B). Let us take for
instance the set T'= {} C {1,...,3}. This set corresponds to the term {x1, zs, 23} =
A with sign (—1)° = +1. Also, K = {x1, 73, 23} has cyclic ordered partition (K ) =
la1, as, as], by assumption.

Let us consider the set 7' = {1}. This set corresponds to the term K = {y;, zo, x3}
having sign (—1)! = —1. By using the assumption on the relative distances of y1, yo, ¥3
with respect to 1, xe, x3, we can calculate ¢(K) as [1, as, aj — 1]. Similarly, using the
relative distance conditions one can calculate ¢ (K) for each term K in the expansion
of II(A, B).

Figure 4.12 shows the calculations of ¢(K) for each term K in the expansion of
II(A, B) using the notation of proposition 4.3.40, and using the relative distances of
r1,...,x3 and yi,...,ys.

We note that in figure 4.12, we have represented 7' using binary notation. For

example, 101 corresponds to T' = {1, 3}.
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T (=" K (K
000 +1 | {x1, 29, 23} [ay, as, as)
100 —1 | {y1, 22,23} 1, as,ay — 1]
010 —1 | {z1,y2, 23} 1, a3, a3 — 1]
001 —1 | {z1,29,y3} lai,1, a7 — 1]
110 +1 | {y1, g, 23} | [ar, a2 + Loag — 1]
011 +1 | {z1, 92,93} | [L,a1 4+ 1,af — 2]
101 +1 | {y1, 29,93} 1,1,2%]
111 —1 | {y1, 92,93} la1,2,a] — 2]

Figure 4.12. Projected relative (2, 3)-pod.

Clearly, it follows that,

(A, B)Y = [a,a,a3] —[1,a0,a5 — 1] —[1,a3, a3 — 1] — [a1,1,a} — 1]

+lay, a0+ 1,a3 — 1]+ [1,1,2*] + [1,a1 + 1,a] — 2] — [a1, 2, a] — 2].

By proposition 4.3.41, it follows that II(A, B)Y € Ker(M} ). O

In the next subsections, we will construct relative (¢, k)-pods by specifying relative
distances using diagrams similar to figure 4.11. From these relative (t, k)-pods, we
will calculate their corresponding projections by showing explicit calculations similar

to figure 4.12.

4.6.4 The (2,3) Case

In this subsection, we will calculate a (2, 3)-basis for M, 3, for general n, with the aid
of special relative projected (2, 3)-pods. From the basis calculation, we will deduce

the Smith Group of M; 3 and My 3.
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4.6.4.1 The Space (C3(X))o

Using the classification of definition 4.6.15, we divide the cyclic ordered partitions of
n of size 3 into classes, where each class corresponds to a partition of 3. Since there

are 3 partitions of 3, the possible classes are:

{pl} = 31,
{p2} = 21117
{p3} = 17

Each class {p;} imposes conditions on the a;s of [ay, az, as] whenever [ay, aq, as] € {p;}.

Figure 4.13 shows these conditions.

{p} Y(K)
13

la1, as, as] where a; > 2

2111 | [1, ag, as] where a; > 2

31 1,1,27]

Figure 4.13. Classes of 3-subsets’ orbits.

The (2, 3)-basis calculation, and similarly the (2, 4)-basis calculation, will follow
by steps. First, we start by showing that any cyclic ordered partition [a, as, as] in
the class corresponding to {ps} reduces to zero mod {p:},{p2} using M; ;. Second,
we use properties of Mj 5 to find a minimal possible generating set for the column
space of M, 5 among the cyclic ordered partitions in the classes {p:} and {p,}. We
will be able to tell that we have a minimal generating set, hence a basis, with the
aid of the calculations of r9(n) given in figure 4.9. This will show the existence of a

(2, 3)-basis.

4.6.4.2 Projected Relative (2,3)-Pods

The following projected relative (2,3)-pod will be used in later calculations.
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Proposition 4.6.19. Let a; < 5* =n — 5, i.e., af —2 > 3. Then, the following

expression is a projected relative (2,3)-pod.

[270'17@){ - 2] - [alv]-?a){ - 1] - [1,0,1 +27a>{ - 3]

+[1,a] —4,a1 + 3|+ [1,a1 + 1,a] — 2] — [2,a1 + 2,a] — 4].

Proof. Let A = {x1, 72,23} € Q2,4,,0:-2- For instance, A = {0,2,2+as} is a possible
choice. Consider the following relative (2, 3)-pod,

Figure 4.14. Relative (2, 3)-pod.

We calculate the corresponding projected relative (2, 3)-pod as it is show in figure
4.15.
Thus, the result follows. O

4.6.4.3 Finding a (2, 3)-Basis

Using the relative projected (2, 3)-pods of propositions 4.6.19 and 4.6.18, we proceed

to find a generating set of the column space of M, 3(n) over Z.

Proposition 4.6.20. The following are true:

1. If [ay, as, ag] is such that a; > 2. Then,

lar,a2,a3] = |ar,a2 +1,a3 — 1] — [a1,2,a] — 2] mod {p1},{p2}-
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T (=D K Y(K)
000 +1 | {x1, 29, 23} 2, aq, a3 — 2]
100 —1 | {y1,x2, 23} lag, 1, a3 — 1]
010 =1 | {z1,y2, 23} | [1, a9 + 2,05 — 3]
001 1| {1, 22,95} 1,1,27]
110 +1 | {y1, 92,23} | [a2 +3,1,a5 — 4]
011 +1 | {z1,92, 93} [1,1,27]
101 +1 | {y1, 20,93} | [1,a2 + 1,05 — 2]
111 =11 {y1,92,y3} | [2,a2 + 2,a5 — 4]

Figure 4.15. Projected relative (2, 3)-pod.

2. If ao <n—>5. Then,

[2,a9,a5 — 2] = [2,as 4+ 2,a5 — 4] mod {p1},{p2}.

3. If2<ay <n—4. Then,

[2,@2,(13 - 2] = [2,@2 + 170’; - 3] + [27274*] mod {p1}7 {p2}

Proof. Parts 1 and 2 are clear applications of proposition 4.6.19 and proposition

4.6.18. It suffices to show part 3. Clearly, part 3 is an application of part 1. O

Our first objective will to show that: if [a;, aq, az] € {p3}, then [ay, as, az] = 0 mod
{p1,p2}. That is, for any cyclic order partition [a, as, as] of size three in the class {ps},
there is « with support in the classes {p1}, {p2} such that M; jla, as,as] = M.
Hence, reducing a possible generating set of the column space of M2’73 to the classes

{p1}, {p2}-

We will start by reducing the cyclic ordered partitions of the form [2, as, aj — 2].
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Proposition 4.6.21. The following are true:

1. Let 1 < ag < 3*. Then,

0 mod {p1},{p2} if n is odd,
2,a2,a5 — 2] = 0 mod {p1},{p=} if 2|n and ay is odd,
—1[2,2,4*] mod {p:1},{p=} if 2|n and 2|as.

2. If n is odd, then,

[2,2,4*] = 0 mod {p1},{p2}

3. If n is even, then,

2(2,2,4%] = 0 mod {p1}, {p2}

Proof. The proposition is clear whenever ay = 1,3*. If ay = 4*, then [2, ay, al — 2] =
2,4*,2] = [2,2,4%]. Hence, ay = 4* reduces to the case as = 2. Thus, without loss
of generality, assume 2 < ay < n —5 = 5*. We will show part 1 by considering two
cases; within each case, we will also show the remainder parts.

Case n is odd. Let as be even, and let n — ay = 2] + 1. By proposition 4.6.20,

2,a9,a5 — 2] = [2,a2 4+ 2,a5 — 4] mod {p1}, {p2}.
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We apply the above congruence (I — 1) times to deduce,

[2,a2,a§ - 2] = [2,a2 + 2,a§ - 4] mod {p1}7 {p2}

= [2, as + 2, OJ; - 4] mod {p1}7 {pQ}

= [2,a2 +2(l —1),a5 — 2] mod {p1},{p=}
= [2,3%,1] mod {p1},{p2}
= 0mod {p1},{p2}

In particular, we have shown that [2,2,4*] = 0 mod {p:}, {p2}. Hence, part 2 follows.
Let as be odd. By proposition 4.6.20, we have

2,a9,a5 — 2] = [2,as 4+ 1,a5 — 3] —[2,2,4"] mod {p1}, {p2}

= [2,&2 + 1,@; - 3] mod {p1}7 {p2}

Hence, the above congruence reduces to the case a} = a; + 1, where a] is even.

In particular, we have shown that [2, as,al — 4] = 0 mod {p1}, {p2} whenever n is
odd.

Case n is even. Assume ay is odd. Clearly, a3 is odd since n is even. Let
a; =214+ 1 and a} = 2s+ 1. Clearly, n = 2(I + s + 1). We apply proposition 4.6.20
to itself 2(s — 1) times,

2,a0,a5 —2] = [2,a3+2,a5 — 4] mod {p1}, {p2}

= [2,a2+2(s — 1),a5 — 2s] mod {p1}, {p2}

= [2,3",1] mod {p1},{p2}

= 0 mod {p1}, {pa}.

Thus, we have shown that [2,as,a3 — 2] = 0 mod {p;}, {p2} whenever n is even and

as 1s odd.
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Assume as is even. Clearly, as + 1 is odd. By proposition 4.6.20,

2,a9,a5 —4] = [2,as 4+ 1,a5 — 3] — [2,2,4"] mod {p1}, {p2}

= —[2,2,4*] mod {p1}, {p2},

where we have used [2,as + 1, a5 — 3] = 0 mod {p1}, {p2} by the previous deductions.
In particular, we have shown that [2,2,4*] = —[2,2,4*] mod {p1},{p2}. Hence,
2[2,2,4*] = 0 mod {p1}, {p2} and part 3 follows. Also, we have shown that [2, as, a3 —
2] = —[2,2,4*] mod {p1}, {p2} whenever both n and ay are even.
Clearly, part 1 follows by the previous deductions. O

We reduce the remaining elements of the class {p3} by making use of the following

lemma.
Lemma 4.6.22. Let o be any permutation of {1,2,3}. Then,

1. The following holds,
My 3lay, az, as] = [ay, ai] + [ag, a5] + [as, a3).
2. The following invariance holds,
M;slar,a,a3] = M;s[a(1), Go2), Go3))-
Proof. Let A = {x1,x9,23} € [a1,as,as]. For example, A = {0, a1, a;+as}. By calcu-
lating the cicular distances in the clockwise direction, part 1 follows from proposition

4.3.40 applied to:

W2,3€{x1,x2,x3} = €23} + €{z1,20} + €{zo,23}-

Part 2 is a clear consequence of part 1. |

We proceed to reduce the other elements of the class {ps}.
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Proposition 4.6.23. Let [a1, as, as] be such that a; > 2, i.e., [a1, as, ag] is in the class

of {ps}. Then,
1. If n is odd, then |ay,as,as] =0 mod {p1},{p2}.
2. If n is even, then [ay,as, as] = «[2,2,4%] mod {p1},{p2} for some integer a.

Proof. We show part 1. Thus, assume n is odd. By proposition 4.6.19, we know that
la1, az, a3) = [a1,a2+ 1, a3 — 1] — [a1, 2, a7 — 2] mod {p1}, {p2}. By proposition 4.6.21,
la1,2,a] — 2] = [2,a] — 2,a;] =0 mod {p1}, {p2}. Hence,

lar,a2,a3] = |ai,as+1,a3 — 1] mod {p1}, {p2} (4.12)

By lemma 4.6.22, we can always rearrange the a;s such that as is the minimum
of all the a;s in [ay, as,az]. Thus, by repeated applications of Equation (4.12), we

deduce,

la1,a,a3] =[x *,1] mod {p1}, {p2}
= 0mod {p1},{p2}

We proceed to show part 2. Thus, assume n is even. By proposition 4.6.19,
we know that [aq,as,as] = [a1,as + 1,a3 — 1] — [ay,2,a] — 2] mod {p1},{p2}. By
proposition 4.6.21, [a1,2,a] — 2] = [2,a] —2,a1] = &/[2,2,4*] mod {p1}, {p2} for some

integral o/. Hence,

la1,a2,a3) = a1, a2+ 1,a3 — 1] + /[2,2,4*] mod {p1}, {p2}- (4.13)

By lemma 4.6.22, we can always re-arrange the a;s such that as is the minimum of all
the a;s in [ay, ag, as]. Thus, by repeated applications of Equation (4.13) we can find

an integral o such that:

[ar, az,a3] = [+, %,1] + [2,2,4"] mod {p1}, {p2}

= &[2,2,4*] mod {p1}7{p2}'
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The previous results are sufficient to deduce a (2, 3)-basis.

Proposition 4.6.24. The following are true:

1. Let n be odd. Then, Bos = {[1,a,a* — 1]la = 1,..., 251} is a (2,3)-basis for
Mé73.

2. Let n be even. Then, B3 = {[1,a,a* — 1]ja = 1,..., 22} U {[2,2,4*]} is a
(2, 3)-basis for M 5.

Proof. We show part 1. Assume n is odd. Clearly, o(n) = “5*. It suffices to find a
set of columns of M; ; that has size ”T_l and generates the integral column space of
My 5.

By proposition 4.6.23, the column space of M, is generated by cyclic ordered
partitions of classes {p1}, {p2}. By using lemma 4.6.22, [1, as, as] = [1, as, as] mod 0.
Hence, it suffices to pick [1,a,b] € {p2} with a < b to generate all the columns of
class {po}. Thus, Bo3 = {[1,a,a* — 1]la = 1,..., %} generates all the columns of
class {p:} and {p»}. Since B3 has size 25, it must follow that it is a column basis.

Part 2 follows similarly. By using a similar argument as part 1, one can show

that 3,3 generates the column space of M; 5 and has size §. Since r3(n) = 3, it must

follow that (353 is a column basis. O

4.6.4.4 The Smith Group of Mj5; and My 3

By using the (2, 3)-basis for M; 5 of proposition 4.6.24, we calculate the Smith Group
of M .

Proposition 4.6.25. The following are true:
1. If n > 7 is odd, then My 4(n) has Smith Group (Z/3Z).
2. If n > 8 is even, then M;4(n) has Smith Group (Z/67Z).

Proof. We will show that:
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1. If n > 7 is odd, then Mj has determinant 3.
2. If n > 8 is even, then Mj has determinant 6.

where 3 is the (2,3)-basis of proposition 4.6.24, and M} is the matrix consisting
columns of M, ; that correspond to (y3. Because the abelian groups of order 3 and
6 are unique, the result will follow.

In the following calculations, we will use 32 = {[1,1%],..., [no,ny]} as a basis of

the 2-subsets’ orbits, where,

”T_l if n is odd,
% if n is even.

Also, we will use the following consequence of lemma 4.6.22.
M§73[1,a,a* -1 = [1,1"]+[a,a*]+[a+1,(a+1)"].

Case n is odd. Using the basis (3, and (3, M} has matrix representation:

211 11
1 10 0 0
011 0 0
001 0 01,
o000 --- 10
_0 00 -1 2_

where the above matrix is m x m with m = ”T_l Define f,, as the determinant of the

above matrix. By using the minor expansion along the last column, we calculate:

Jfm = 29m71+(_1)m+17
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where g,, is the determinant of the following m x m matrix:

211 .- 11
1 10 0 0
011 0 0
001 0 0
000 --- 10
_0 00 -1 1_

Note that g,, can also be calculated recursively, by doing a determinant expansion

along the last column. Hence, we deduce:

gn = (=)™ 4 gm.
Therefore, for m > 2,

1 if2]n,
2 if nis odd.

From the value of g,,, we deduce that f,, = 3 for m > 3. Therefore, Mj has
determinant 3.

Case n is even. Using the basis 3, and (3,3, M} has matrix representation:

(211 11 0]
110 00 2
01 1 00 0
00 1 001/,
000 .- 110
(000 - 010
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where the above matrix is m X m with m = §. Define f,, as the determinant of the

above matrix. By using the minor expansion along the last row, we calculate:

fm = _fm—l-

Hence f,, = £ f4. Also, by direct calculation f; = 6. Hence, the result follows. |

We will calculate the Smith Group of the matrices My 3(n). Figure 4.16 summa-

rizes the results.

ged(2,n) | ged(3,n) S(My3(n))
1 1 (Z/3Z)
1 3 {1} (primitive)
2 1| (2/12Z) or (Z/2Z) x (Z,/61Z)
2 3| (2/22) x (Z/2Z) or (/A7)

Figure 4.16. The Smith Group of Mj3(n).

Figure 4.17 shows the values calculated for the Smith Group of M3 with the aid
of a computer program.

We proceed with the Smith Group calculations.
Proposition 4.6.26. Let gcd(n,2) = 1 = ged(n, 3), then S(Myz(n)) = (Z/37).

Proof. Because ged(n,2) = 1 = ged(n,3), we must have Dy = nl and D3 = nl.
Thus, My 3D3 = DyMs 3 implies My 3 = Msz. The result follows from proposition
4.6.25. ]

Proposition 4.6.27. Let gcd(2,n) = 1 and ged(3,n) = 1. Then, Ms3(n) has trivial
Smith Group. That is, Ms3(n) is primitive.
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n 5(Mys(n)) | S(Mys(n)) | n 5(My5(n))
7 (Z/3Z) | 8| (Z/22) x (2/6Z) | 9 {1}
10 (Z/122) | 11 (Z/3Z) | 12 | (Z/22) x (Z/2Z)
13 (Z/3Z) | 14 (Z/12Z) | 15 (Z/15Z)
16 | (2/2Z) x (Z/6Z) | 17 (Z/3Z) | 18 (Z/AZ)
19 (Z/3Z) | 20 | (2/22) x (2/6Z) | 21 {1}
22 (Z/12Z) | 23 (Z/3Z) | 24 | (Z/2Z) x (Z/21)
25 (Z/3Z) | 26 (Z)12Z) | 27 {1}
28 | (Z/2Z) x (Z/6Z) | 29 (Z/3Z) | 30 (Z/AZ)
31 (Z/3Z) | 32 | (Z/22) x (2/6Z) | 33 {1}
34 (Z/12Z) | 35 (Z/3Z)

Figure 4.17. The Smith Group of Mj3(n).
Proof. Under the assumptions for n, we have that Dy = nl and:

nl 0
D3: ’
[0 3]

where the last column of D3 corresponds to the orbit ay = [%, 2, %] Thus, we deduce

from Mj; ;D3 = Dy My 3 that:

, [0
M2’3 - M2’3 .
0 3

Therefore,

COlz(Mi?)) C OOZZ(MQ;;) CZT2(n).
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Clearly, r(Colz(My3)) = r(Colz(My3)) = 0 since these matrices have full rank.
Hence, H = % has abelian rank 0 by proposition 4.1.21. Thus, one can
2,3

construct the following exact sequence of torsion groups:

72 (n) 72 (n)

- L S(Myy) = 0,
Cor(1155)  *M0) -0

0— H — S(Mjys) ~ Coly(Myys)

By proposition 4.6.25, [M; 4| = 3. Hence, it suffices to show that [H| = 3 to show
that | My ] is trivial.

Note that M,z and M, 4 differ at only one column, namely the column given by
ap. Let (a3 be the (2, 3)-basis of proposition 4.6.24. Since o does not belong to (s 3,

clearly:

Mz = M[';,
COlz(ngg) = COlz([Mg, MQ}BO{O]),
COlz(Mig) = COlz([Mg, 3M273(10]).

Hence, H = (M 30y) has order either 3 or 1. We will show that M 3cq has order 3
in H.
Suppose that (Ms30p) is the trivial group, then there is an integral vector ¢ and

an integer d such that:
M2730é() = MﬁC + 3dM273Q0.

Hence, (1 + 3d)Mszag = Mge. Since Mg = Mj , Mj has Smith Group with order 3,
and (1 + 3d) is relatively prime to 3; we conclude that (1 4 3d) divides c¢. Therefore,

_ /o 1 /I ¢ il
Mss00 = Mgc" = M, where ¢’ = 55 s integral.

Note that Mjsao = 3[4, 2*]. Hence, Mazag = [%, %] and j7 M 300 = 1. On the

other hand, j* Mjc = 357¢. This is a contradiction.

Therefore, H has order 3 and the result follows. |
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Proposition 4.6.28. Let gcd(2,n) = 2 and ged(3,n) = 1. Then,

S(Mas(n)) = (Z/2Z) x (Z/6Z) or (Z/12Z).

Proof. Based on the assumptions for n, we can deduce that D3 = nl and,

nl
D2 - )
0

o

]

where the last column of D, corresponds to the orbit ag = [5, 5]. Therefore, by using

M§73D3 = Dy M, 3, we deduce,

I

M£73 - M2’3.
0 2

Hence, the following inclusion of free Z-modules holds,
RO’LUZ(M273) C Rsz(Mig) C ng(n)

Therefore, we deduce:

R M! r3(n) r3(n)
0— H — owz( 2,3) Z Z 0

= — — ;
RO’LUz(Mzg) RO’LUZ(MZ?,) ROU}Z(MZ?))

Note that H is the factor of two free Z-modules of the same abelian rank. Hence,

H is torsion. Also, note that the torsion part of #3\23) is S(My3), and the torsion

part of Zst) ) is E(Mig,). Hence, we can deduce by proposition 4.1.26 that:

owsz (M 5

0— H — S(Myz) — S(Mjs) — 0.

By proposition 4.6.25, S(M}4) = (Z/6Z). We will show that H = (Z/2Z). From

these calculations, we will deduce:

0 — (Z/2Z) — S(Ma3) — (Z/6Z) — 0.
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Which gives the possible solutions S(Ms3) = (Z/127Z) or S(My3) = (Z/27) x (Z,/67Z).
Therefore, it suffices to show that H = (Z/2Z). Clearly, the rows of M, 3 are
linearly independent. Also, M3 and M, 5 different at the row corresponding to ay.
Let M’ be M, 5 without the row corresponding to ap and m’ be the row of M, ,

corresponding to ag. Clearly,

_M/
Rowz(My3) = Rowg( / ),
m
- »
Rowz(Ms3) = Rowg( ).
2m/’

Rowz(Mj 3)
Rowgz,(M3,3)

Hence, H = = (m/) has order 2 or 1. Suppose H has order 1. Then, there

are integral ¢ and d such that:
m = M +2dm'.

Hence 0 = ¢" M’ 4 (2d 4 1)m’. Since the rows Mj 4 are linearly independent, it must
be the case that ¢ = 0 and (2d + 1) = 0. Therefore, d = § giving a contradiction to
the assumption that it was integral.

Hence, H has order 2 and the result follows. |

Proposition 4.6.29. Let ged(2,n) = 2 and ged(3,n) = 3. Then,

S(Msys(n)) = (Z/2Z) x (Z)2Z) or (Z/AZ).

Proof. Based on the assumptions for n, we deduce that:

nl 0
D2 = )
0 3
nl 0
-D3 - )
0 3
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where the last column of D, corresponds to the orbit ay = [, 5], and the last column
of Dy corresponds to the orbit §y = [%, 5, 5.
Because M273D3 = Dy M> 3, we deduce that:

N O

S N

Therefore, we can consider,
Rowz(F) C Rowz (M} 4) C ™.

Using the same analysis in the proof of proposition 4.6.28, we deduce an exact se-

quence:
0 — (Z/27) — S(F) — (Z/6Z) — 0.
Hence, S(F) = (Z/127) or (Z/27) x (Z/6Z). Consider,
Coly(F) C Coly(Mys) C 7™,

Using the same analysis in the proof of proposition 4.6.27, we deduce an exact se-

quence:
0— (Z/3Z) — S(F) — S(My3) — 0.

If S(F) = (Z/127Z), then S(My3) = (Z/4Z). Also, if S(F) = (Z/2Z) x (Z/6Z), then
S(Msy3) = (Z/27) x (Z/2Z). Hence, the result follows. O
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4.6.5 The (2,4) Case

We will proceed in a similar fashion as the (2,3) case. First, we will introduce
contrived projected relative (2,4)-pods to help us find a (2,4)-basis. Then, we will
proceed to calculate the Smith Groups of M, and My 4.

4.6.5.1 The Space (C4(X))o

By using the map of definition 4.6.15, we can partition all the 4-subsets’ orbits into
classes corresponding to the partitions of 4. Figure 4.18 shows theses classes along

with the the membership conditions on the cyclic ordered partitions [a1, as, as, a).

Id | {p} | ¥(K) where a; > 2
{ps} | 1 a1, a2, as, a4
{ps} | 2112 1, a1, as, as]
{ps3} | 311! (1,1, a4, as]
{p} | 22 (1,a1,1, as]
{p1} 41 [1,1,1,3%]

Figure 4.18. Classes of 4-subsets’ orbits.

4.6.5.2 Projected Relative (2,4)-Pods

The following projected relative (2,4)-pods will be used in the calculation of the
(2, 4)-basis.

Proposition 4.6.30. Let ai,as,a4 > 2 and az > 1. Then,
[a'17a27a37a4] = [170’27a37a4+a'1 - 1]+[1,a1+a2,a3,a4— 1} + [17a2+a3_ 1,@4,@1]

—[al,a2+1,a3,a4—1}—[1,a1+1,a2+a3—1,a4—1]

—[1,1,a2 + a3 — 1, (az + a3)* — 1] + [a1,2,a2 + a3 — 1, a4 — 1] mod 0.
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Proof. Let A = {x1, 19, 23,24} € [a1,az,as, ay], and choose B = {y1,ys2,y3} as shown

in figure 4.19.

az

Figure 4.19. Relative (2,4)-pod.

The result follows from the projected relative (2,4)-pod that results from the
relative (2,4)-pod of figure 4.19. The calculation is shown in the table of figure 4.20.

=" K Y(K)
000 +1 | {x1, x0, w3, 24} [a1, as, as, ay)
100 —1 | {y1, e, x3, 24} [1,a9,a3,a4 + a; — 1]
010 —1 | {z1,y2, 23,24} [1,a1 + ag,as, a4 — 1]
001 —1 | {z1,29,y3, 24} [1,as + az — 1, a4, a4]
110 +1 | {1, y2, 23, 24} [ay,as + 1, a3, a4 — 1]
011 +1 | {z1,vy2,y3, 24} 1,a1 +1,a0 + a3 — 1,a4 — 1]
101 +1 | {y1, 22, y3, 24} | [1, 1,00 + a3 — 1, (az + a3)* — 1]
111 —1 | {y1,¥2,¥3, 4} [a1,2,a9 + a3 — 1, a4 — 1]

Figure 4.20. Projected relative (2,4)-pod.
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Proposition 4.6.31. Let 2 < a <n—>5. Then,

0 = [,L,a,a"=2]—[1l,a—1,1,a" — 1] = [1,1,1,3"] = [1,a+ 1,1,a" — 3]
+2,1,a—1,a" = 2]+ [1,1,a+2,a" — 4] + [a,1,1,a" — 2]

—[2,a,2,a" — 4] mod 0.

Proof. Let A = {xy, 29, x3,24} € [1,1,a,a*—2], and choose B = {y1, y2,y3} as shown
in the relative (2,4)-pod of figure 4.21.

Figure 4.21. Relative (2,4)-pod.

The result follows from the projected relative (2,4)-pod that results from the
relative (2,4)-pod of figure 4.21. The calculation is shown in the table of figure 4.22.
O

Proposition 4.6.32. Let 3 < a <n—4. Then,
0 = [,1,a,a"—2]—[1,a,1,a" —2] —[1,1,1,3"] — [1,a,1,a" — 2]

+[1,1,a,a" — 2|+ [1,2,a — 2,a* — 1] + [1,1,a" — 2, d]

—[2,a—2,2,a" — 2] mod 0.

Proof. Let A = {x1, 9,253,224} € [1,1,a,a*—2], and choose B = {y1, y2,y3} as shown
in the relative (2,4)-pod of figure 4.21.
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T K Y(K)
000 +1 | {x1, 29, 23, 24} 1,1,a,a" — 2]
100 —1 | {y1, 29, 23,24} | [1,a—1,1,a* — 1]
010 —1 | {z1,y2, 23,24} [1,1,1,3%]
001 —1 | {z1,29,y3, 24} | [L,a+1,1,a* — 3]
110 +1 | {1, 92, 23,24} | [2,1,a—1,a* — 2]
011 +1 | {z1,92,93, 24} | [1,1,a + 2,a" — 4]
101 +1 | {y1, 22, y3, 24} [a,1,1,a* — 2]
111 —1 | {y1,92,¥3, 04} 2,a,2,a" — 4]

Figure 4.22. Projected relative (2,4)-pod.

Figure 4.23. Relative (2,4)-pod.




310
The result follows from the projected relative (2,4)-pod that results from the
relative (2,4)-pod of figure 4.23. The calculation is shown in the table of figure 4.24.

T K Y(K)
000 +1 | {1, 2, 3,24} [1,1,a,a* — 2]
100 —1 | {1, 29, 23,24} [1,a,1,a" — 2]
010 —1 | {z1,y2, 23,24} [1,1,1,3*]
001 —1 | {z1,29,y3, 24} [1,a,1,a" — 2]
110 +1 | {vy1,y2, 23, 24} 1,1,a,a* — 2]
011 +1 | {z1, 92,93, 24} | [1,2,a — 2,a* — 1]
101 +1 | {y1, 2, y3, 24} [1,1,a* — 2,d]
111 —1 | {y1,92,y3, 24} | [2,0a—2,2,a* — 2]

Figure 4.24. Projected relative (2, 4)-pod.

4.6.5.3 Finding a (2,4)-Basis

The technique that we will use is the same as the one used for finding a (2, 3)-basis.
Using the classification of 4-subsets’ orbits of figure 4.18, we will reduce any cyclic
ordered partition of class {ps} to 0 mod {p1},...,{ps}. Then, we will proceed to
reduce every cyclic ordered partition of class {ps} to 0 mod {p:},...,{ps}. From the
classes {p1},...,{ps}, we will find a (2,4)-basis.

Before we start the reductions, we will state a lemma that will help us with our

calculations.

Lemma 4.6.33. Let [ay,as, a3, a4] be cyclic ordered partition. Then,
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1. The value of My, is

M2”4[a1, as,az,a4] = [ay,ai] + [ag, a3] + [as, a3] + [aq, ay]

+lay + ag, (a1 + a)*] + a1 + a4, (a1 + a4)"].

2. The following symmetries hold:

M£74[a1?a27a37a4] = Mé,4[a17a47a37a2]

= Mé,4[a'37a/27a17a4]-

Proof. Clearly, part 2 is an application of part 1. Hence, it suffices to show part 1.
Let {x1, 29, 23,24} € [a1,az, a3, as] be such that: a1 = xs — 21,09 = x3 — 19,03 =

Ty — x3,a4 =n — x4 + 1. Clearly,

Wou{zy, o, 25,04} = {21, 20} + {22, 23} + {23, 24} + {24, 21}

—F{l’h {['3} + {Ig, [L’4}.

Part 1 follows by applying proposition 4.3.40 to the above equation. O

Our first goal is to reduce the elements of the class {ps}. The next proposition

shows the reduction.

Proposition 4.6.34. Let [a1, as,as,a4] € {ps}, i.e., a; > 2. Then,
la1,a9,a3,as) = 0 mod {p1},...,{ps}
Proof. By applying proposition 4.6.30 to [a1, ag, as, a4], we deduce:

la1,a2,a3,a4] = [a1,2,(az+a3) —1,aq4 — 1] (4.14)

_[aba? + 1,@3,@4 - 1] mod {p1}7 e {p4}

If ay — 1 =1, then were are done. Suppose that ay — 1 > 2. By applying Equation
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(4.14) to [ay1,2, (as + a3) — 1,a4 — 1] = [ag + a3 — 1,a4 — 1, a4, 2], we deduce:

[CL2+CL3—1,CL4—1,CL1,2] = [a2+a3—1,2,a1+a4—2,1] —[CL2+CL3—1,CL4,CL1,1]

= Omod {p1},...,{ps}

Hence, Equation (4.14) reduces to:

la1,a2,a3,a4] = —la1,a2+1,a3,as — 1) mod {p1},---{pa}.

Clearly, one can apply the above equation to itself (a4 — 1) times to deduce:

[al7a27a3ua’4] == :l:[a’17a2+a4_ 170’371]

0 mod {p1},- - {pa}.

Hence, the result follows. |
We proceed to reduce cyclic ordered partitions in the class {p4}.

Proposition 4.6.35. Let a1, az,a4 > 2, and [a1,as,1,a4] € {ps}. Then,

la1,a2,1,a4] = 0 mod {p1},...,{p3}.

Proof. When we apply proposition 4.6.30 to [a1, as, 1, a4, we deduce:

[a17a27 1,@4] - [1,a2,a4,a1] (4]-5>
—lar, a2 + 1,104 — 1] = [1,a1 + 1, a2,a4 — 1]

+la1,2,a2,a4 — 1] mod {p1},...,{ps}

Without loss of generality, assume that as—1 > 2. By applying the above congruence
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to [ag,aq — 1, ay,2] = [a1,2, as, a4 — 1], we deduce:

[az,a4—1,a1,2] = [1,a4—1,a1,a2+1] (416)
+[1, a4 + a1 — 2,2, az] — [az, a4, a1, 1]

+lag, 2,a4 + a3 — 2,1 mod {p1},...,{ps}.

By substituting congruence 4.16 into congruence 4.15, we deduce that if ay > 3, then:

lai,a2,1,a4] = 2[1,a9,2,a4 + a; — 2] (4.17)

—[1,a1 + 1,a9,a4 — 1] mod {p1},...,{p3}

We proceed by cases that depend on the size of ay.

Case a4 = 2. By use of lemma 4.6.33, we can assume that both ay = 2 and
ay = 2. Otherwise, we can reduce to the case as > 3. Hence, it suffices to reduce
[5%,2,1,2].

By applying congruence 4.15 to [5*,2, 1, 2|, we deduce that:

5*,2,1,2] = [1,2,2,5%] = [5*,3,1,1] — [1,4%,2,1] + [5",2,2,1]

= [1,2,2,5"] + [5%,2,2,1] mod {p1},...,{ps}

By application of lemma 4.6.33, [1,2,2,5*] = [2,2,1,5%] = [5*,2,2,1] mod 0. Hence,
the above congruence yields [5*,2,1,2] = 2[1,2,2,5*| mod {p1},...,{ps}.

We proceed to reduce [1,2,2,5*] by applying congruence 4.13 to [2,5*, 1, 2].

2,5%,1,2] = [1,5%,2,2] — [2,4%,1,1] — [1,3,5", 1] + [2,2, 5%, 1]

= [1,5%,2,2] +[1,2,2,5"] mod {p1},...,{ps}

Note that [1,5%,2,2] = [1,2,2,5%] mod {p1},...,{ps} by lemma 4.6.33. Hence, it
follows that [2,5% 1,2] = 2[1,2,2,5*] mod {p:1},...,{ps}

Note that [1,2,2,5*] = [2,5% 1,2] mod 0 by lemma 4.6.33. Thus, [1,2,2,5"] =
2[1,2,2,5*] mod {p1},...,{p3} and therefore [1,2,2,5*] = 0 mod {p1},...,{ps}.
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Hence, [2,5% 1,2] = 0 mod {p1},...,{p3}, and the result follows.

Case a4 > 3. Suppose that in congruence 4.17, we have shown that [1, as, 2, a4 +

a; — 2] =0mod {p1},...,{ps}. Then, it will follow that:

lai,a2,1,a4] = —[l,a1 4+ 1,a2,a4 — 1] mod {p1},...,{ps}.

By applying the above congruence (a4 — 1) times to itself, we deduce that:

[al,ag,l,a4] = j:[l,&1+a4—1,a2,1]

= Omod {p1},...,{p3}

Therefore, it suffices to show that [1,as,2,a4 + a3 — 2] = 0 mod {p1},...,{p3}
We will show this in lemma 4.6.36. ]

Lemma 4.6.36. Let a,b > 2. Then,

1,a,2,0) = 0 mod {p1},...,{ps}

Proof. Clearly, because [1,a,2,b] is a cyclic ordered partition, we have [1,a,2,b] =

2,0,1,a]. By applying congruence 4.15 to [2,b, 1, a], we deduce:

2,0,1,a] = 2[1,b,2,a] —[1,3,b,a — 1] mod {p1},...,{p3}.

By lemma 4.6.33, [1,b,2,a] = [2,b,1,a] mod 0, and hence mod {p1},...,{ps}. Thus,

the above congruence yields:

[2,b,1,a] = [1,3,b,a— 1] mod {p1},...,{ps}

It suffices to reduce [1,3,b,a — 1] to 0 mod {p1},...,{ps}

Clearly, [1,3,b,a — 1] = [b,a — 1,1, 3]. Without loss of generality, we can assume
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that a — 1 > 2. Hence, we can apply congruence 4.15 to [b,a — 1,1, 3] to deduce:

b,a—1,1,3] = 2[l,a—1,2,b+1] —[1,b+1,a—1,2] mod {p1},...,{ps}

We will show that 2[1,a — 1,2,b+ 1] = [1,b+ 1,a — 1,2] mod {p1},...,{ps}. This
will give the result.
By lemma 4.6.33, [1,b+ 1,a — 1,2] = [a — 1,b+ 1,1,2] mod {p1},...,{ps}. By

applying congruence 4.15 to [a — 1,b+ 1,1, 2], we deduce that:

[a—1,0+1,1,2] = 2[1,b+1,2,a—1]+[1,a,b+1,1]

= 2[1,b+1,2,a—1] mod {pi},...,{ps}.

By lemma 4.6.33, [1,b0+ 1,2,a — 1] = [1,a — 1,2,b+ 1] mod {p1},...,{ps}. Hence,
1,b+1,a—1,2|=]a—1,b4+1,1,2] =2[1,a — 1,2,b+ 1] mod {p1},...,{ps}
Thus, the result follows. O

Having shown that any cyclic ordered partition of class {p,} is reduced to 0 mod
{p1},...,{ps}; we will proceed to find a (2, 4)-basis.

We will first establish a congruence equation, given by lemma 4.6.37, among the
cyclic ordered partitions of class {p3}. By using lemma 4.6.37, we will be able to

calculate a (2, 4)-basis.

Lemma 4.6.37. Let 5 < a <n —4. Then, the following holds mod {p1}, {p2},

1,1,a,a" =2] = 2[1,1,a—2,a"] —[1,1,a —4,a" + 2].

Proof. This will be a long argument, so we will summarize the first step. By using the
projected relative (2,4)-pods found in propositions 4.6.35 and 4.6.32), we will deduce

the following congruence mod {p1}, {p2} for 4 < a <n — 4:

2([1,1,a,a" = 2] = [1,1,a — 2,a"]) = [2,1,a — 3,a"] — [1,2,a — 2,a" — 1]. (4.18)

We will proceed to reduce the right-hand side of the above congruence.
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By using the explicit definition of M; 4, or by applying lemma 4.6.33; we calculate,
M£74([2, l,a—3,a"]—[1,2,a—2,a"—1]) = [a—3,(a—3)"]

“a+L(a+1)],  (419)

MéA([l, lya,a* —2]—[1,a,1,a" =2]) = [2,2"] —[a+1,(a+1)"]. (4.20)

Clearly, a — 4 > 1, since a > 5. By substituting a = a — 4 in Equation (4.20), we

deduce:
My (1,1,a—4,0" +2] = [1,a—4,1,a" +2]) = [2,2"] = [a — 3, (a — 3)"]. (4.21)

Clearly, Equation (4.20) minus Equation (4.19) yields [2,2*] — [a — 3, (a — 3)*] on
the right-hand side. Hence, Equation (4.20) minus Equation (4.19) must equal the

left-hand side of Equation (4.21). Summarizing, we have shown that,
MQA([I, La—4,a"+2]—[1l,a—4,1,a"+2]) = [2,2"] —]a—3,(a—3)7],
and, we have shown,

2,27] = [a—3,(a—3)"] = My,([1,1,a,a" —2] = [1,a,1,a" — 2])

- M£,4([27 lL,a—3, a*] - [17 2,a -2, a* — 1])
Hence, we can show mod 0,

2,1,a —3,a"] —[1,2,a —2,a" — 1] = [1,1,a,a" —2]—[l,a,1,a" — 2]

—([L,L,a—4,a"+2]—[1,a—4,1,a" + 2]).
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Thus, we deduce mod {p;}, {p=} that,

2([1,1,a,a" = 2] = [1,1,a—2,a"]) = [2,1,a—3,a"]—1[1,2,a—2,a" — 1]

= [1,1,a,a" =2] —[1,1,a — 4,a" + 2].

Clearly, the result follows by an algebraic manipulation of the above congruence.
Therefore, it suffices to show congruence 4.18. Clearly, by lemma 4.6.33, [1,1, a, a*—
2] =[1,1,a* — 2,a]. Hence, proposition 4.6.31 yields the following congruence mod 0

whenever 3 <a <n —4:

3[1,1,a,a* —2] —2[1,a,1,a" — 2] — [1,1,1,3"] (4.22)

+[1,2,a —2,a" — 1] = [2,a —2,2,a" = 2] = 0.

Similarly, proposition 4.6.32 yields the following mod 0, whenever 2 < a < n — 5:

o[, 1,a" —2,a] — [l,a—1,1,a" — 1] — [1,1,1,3'] (4.23)
—[La+1,1,a* =3]+[2,1,a—1,a" = 2|+ [1,1,a + 2,a" — 4]

—[2,a,2,a* —4] = 0.

By letting a = a — 2 in congruence 4.23, we deduce the following mod 0, whenever

4<a<n-—3:

o, 1,a"a—2 —[1,a—3,1,a* + 1] —[1,1,1,3"] (4.24)
—[La—1,1,a" = 1]+[2,1,a —3,a"] +[1,1,a,a" — 2]

—[2,a—2,2,a" 2] = 0.

By setting the left-hand side of congruence 4.24 equal to the left-hand side of con-



318

gruence 4.22, we deduce the following mod 0, whenever 4 < a < n — 4:

2[1,1,a,a* — 2] = 2[1,a,1,a" = 2] + [1,2,a — 2,a" — 1]
—2[1,1,a",a — 2]+ [l,a—3,1,a"+ 1]+ [1,a —1,1,a" — 1]

—[2,1,a—3,a"] = 0.

Hence, we deduce the following mod {p;}, {p2}, whenever 4 < a <n —4:

2[1,1,a,a" — 2] +[1,2,a — 2,0 — 1] — 2[1,1,a",a — 2]

—[2,1,a—3,a"] = 0.
The above congruence is clearly equivalent to congruence 4.18. [
Corollary 4.6.38. Let n > 7. Define,
n—2

Go = {[,L,a,a" =2]la=1,...,

5}
U{[1,1,2,4%],[1,1,3,5%],[1,1,4,6"]},
n—3
5}
U{[1,1,2,4%],[1,1,3,5%],[1,1,4,6"]}.

6 = {[1,La,a"=2]la=1,...,

Then,
1. If n is odd, then By is a generating set for the column space of M 4.
2. If n is even, then By is a generating set for the column space of My ,.

Proof. Tt suffices to reduce the cyclic ordered partitions of class {ps}.
Clearly, by repeated applications of lemma 4.6.37, we can deduce for a an odd

integer, with 5 < a < n — 4, there is an integer m such that:

1,1,a,a" —2] = m[l,1,5,7"
= m(21,1,3,57 — [1,1,1,3])

= 2m[1,1,3,5%] mod {p:1}, {p=}-
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Similarly, by repeated applications of lemma 4.6.37, we can deduce for a an even

integer, with 5 < a < n — 4, there is an integer m’ such that:

1,1,a,a* —2] = m'[1,1,6,7"]

= m'(2[1,1,4,6"] — [1,1,2,4"]) mod {p1}, {p2}.

Hence, we have reduced all cyclic ordered partitions of the form [1,1,a,a* — 2],
with 5 < a < n — 4, to the generating set 3, or 3; — depending on the parity of n.
It suffices to reduce the cyclic ordered partition [1,1,3*, 1]. Clearly, this is 0 mod

{pl}a{p2}~ U

We proceeed to calculate a (2,4)-basis.
Proposition 4.6.39. Letn > 7. Then,
1. Let n be odd, and P24 be defined as:

n—3
2

fBoa = {[l,a,1,a" =2]la=1,...,

ki
U{[1, 1, 3,5"]}.
Then, P24 is a (2,4)-basis for M 4.
2. Let n be even, and 354 be defined as:

n—2

ﬁ274 = {[17(1717@*_2”@:1,..., 5

}
u{[1,1,2,4*]}.

Then, P24 is a (2,4)-basis for My 4.

Proof. By using the generating sets provided by corollary 4.6.38, we will give a (2, 4)-
basis by reducing these sets to sets of minimal size, i.e., of size ro(n). This will force
the reduced generating set to be a (2,4)-basis. We proceed by considering cases that

depend on the parity of n.
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Case n is odd. Clearly, by lemma 4.6.33, [1,1,2,4*] = [1,1,4%,2] and [1, 1,4, 6*] =
[1,1,6%, 4] mod 0. Because n is odd, 4* = n — 4 and 6* = n — 6 are also odd. Hence,
using a similar reasoning as corollary 4.6.38, we can apply lemma 4.6.37 repeatedly

to deduce the existence of integral m; and ms such that mod {p:}, {p2}:

[1,1,2,4*] = [1,1,4%,2]

= 2my[1,1,3,5%],
[1,1,4,6] = [1,1,6% 4]

= 2my[l,1,3,5%.

Thus, B354 is indeed a generating set for the Column Space of Mj;,. Since (24 has
minimal size, it must be a (2, 4)-basis.

Case n is even. It suffices to reduce [1,1,3,5%] and [1, 1,4, 6*] to show that (354
is a generating set for the column space of M;,. Because (3,4 has minimal size, i.e.,
has size ro(n); it will follow that 324 is a (2, 4)-basis.

Consider the following equations that will be proven in lemma 4.6.40.

n-2
[1,1,3,5] = [1,2,1,4"] +2Z “,a,1,(a+2)"] (4.25)
~[1,3,1,5%] + (—1)5—1[1, 5L g — 1] mod 0,
[1,1,4,6] = [1,1,2,4" -1, 2,1,4*] [1,3,1,5"] (4.26)
—[1,4,1,6*] +QZ )1, a,1, (a+2)"

n

DL 2 11,2 — 1) mod 0.

2 2
where Equation (4.25) holds for n > 16, and Equation (4.26) holds for n > 18.

Equation (4.25) shows that [1,1,3,5%] = 0 mod {p1}, {p2} for n > 16. We leave it
as an exercise to check this congruence for 8 < n < 14.

Similary, Equation (4.26) shows that [1,1,4,6*] = [1,1,2,4*] mod {p:1}, {p2} for

n > 18. We leave it as an exercise to check this congruence for 8 < n < 16.
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Hence, it follows that (54 is indeed a generating set. Therefore the conclusion

follows. O
Lemma 4.6.40. The following hold mod 0 using Mj ;.

1. Letn > 16. Then,

n_o
[1,1,3,57 = [1,2,1,4]+2) (-1)"[L,a,1,(a+2)] (4.27)
a=4
—[1,3,1,57] + (—1)%*1[1,3 ~ 1.1, g — 1] mod 0.
2. Let n > 8. Then,
[1,1,4,6*] = [1,1,2,4"] —[1,2,1,4] +[1,3,1,5"] (4.28)
L)
—[1,4,1,6] +QZ )1, a,1, (a+2)*
——12*11——11—— .
( )2[,2 13 1] mod 0

Proof. We show part 1. It suffices to show that both sides of Equation (4.27) are the
same when we apply M, ,.

By direct application of lemma 4.6.33, we deduce for § —2 > 4 that:

D (=1)"My[1,a,1, (e +2)"] =
+i a’]+2[a+1,(a+ 1)+ [a+2, (a+2)7)),
where,

0 if n =2 mod 4,
1 ifn=0mod 4.
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Also, a direct calculation yields:

> (-D)%([a,a" ]+ 2la+ 1 (a+ 1)+ [a+2,(a+2)"]) =
4,47+ 5,5+ (-DF X5 - LG - U1+ 5. (5T

whenever § — 2 > 6, i.e., n > 16. Thus,

oo

(DML T 11,5 -1 + 22 1Mzl a1, (o +2)]

= {4f() 2(=1)22}[1, 1] + 2[4,4"] + 2[5, 5"]
= 2[1,1%] + 2[4, 4*] + 2[5, 5], (4.29)

where, we have used 4f(n) — 2(—1)272 = 2 whenever n is even.

Independently of the above, by using lemma 4.6.33, we can calculate:
M, 4([1,1,3,5"] = [1,2,1,4"] + [1,3,1,5%]) = 2[1,1"] + 2[4,4"] + 2[5,5"].  (4.30)

By setting Equation (4.30) equal to Equation (4.29), we deduce the conclusion.
We show part 2. We will show that both sides of Equation (4.28) are the same.
Clearly, for § —2 > 7, i.e., n > 18; we deduce by using lemma 4.6.33 that:

D (=1)"M,[1,a,1, (e +2)"] =
—[5.5] = 6,67+ (~D)F (5 — L(5 — )]+ 5. (5) ]} + 9(m)[1.17],
where,

—1 if n =2 mod 4,
g(n) =
0 if n=0mod 4.
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Consider,
52
n n n
<_1)§71M£,4[17 5 - 17 17 5 - 1] + 2(2(_1)GM£,4[17 a, 17 (Cl + 2>*])
a=>

= —2[5,5"] = 2[6,6"] + {2(—=1)37! 4 4g(n)}[1,17]

= —2[5,5%] — 2[6,6"] — 2[1,1"], (4.31)

where, we have used 2(—1)2 7! + 4g(n) = —2 whenever n is even.

Independently of the above, by using lemma 4.6.33, we can calculate:

My 4([1,1,4,6"] — [1,2,1,4"] 4+ [1,3,1,5"]) + M5 ,(—[1,4,1,6"] + [1,1,2,4"])

= —2[5,5%] — 2[6,67] — 2[1,1"]. (4.32)
By setting Equation (4.31) equal to Equation (4.32), we deduce the conclusion. [

4.6.5.4 The Smith Group of M3, and M3 4

The (2,4)-basis of proposition 4.6.39 can be used to calculate the Smith Group of

M . The following proposition shows this result.
Proposition 4.6.41. Let n > 7. Then, S(Ms4(n)') = (Z/6Z).

Proof. We will proceed by cases. In each case, we will calculate the determinant
of Mj, where Mj is the matrix consisting columns of M, , that correspond to By 4.
Because there is a unique abelian group of order 6, the result will follow.

Case n is odd. We will assume that n > 11, i.e., ”T’l > 5. The cases forn =7,9
will follow by direct calculation.

Order the members of 354 in the following manner,

{[1,1,3,5" ]} u{[l,a,1,(a+2)"] |a=1,..., 5 s
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and order the 2-subsets’ orbits canonical basis in the following manner,

n—1
2

{la,a*]la=1,...,

).

With respect to these orderings, M é has matrix representation:

2 3 2 2 2 2 2
1210 000
1121 000
1 01 2 000
1 001 000
An = 0000 00 0,
0000 1 00
0000 210
0000 1 21
| 0000 0 1 3 ]

where m = "T_l
Because we are calculating the det(A,,) = a,, we can perform elementary row and
column operations without modifying the answer. Consider the following elementar

column operation:

01—02+03—C4 — Ol.

That is, Column 1 minus Column 2 plus Column 3 minus Column 4 store the result

in Column 1. The resulting matrix A; , shown below, will have the same determinant
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as A,,.
(23 2 9 2 2 2|
2210 000
2121 000
001 2 000
0001 000
A, = 10000 00 0
0000 100
0000 210
0000 121
(0000 0 1 3|

Clearly, a,, = det(A,,) = det(A],) = 2det(B.,), where B! is given by:

(13 2 9 2 2 2|
1210 000
1121 00 0
00 1 2 00 0
0001 00 0
B, = 10000 000
0000 -~ 100
0000 -~ 210
0000 -~ 121
(0000 0 1 3|

We apply the following Elementary Column operation to B/, :

01—02 — Cl-
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We get the following matrix B,, with the same determinant as B, .

-2322 222-
1210 000
0121 0 0O
001 2 000
0 001 000
B, = 0000 0 0O
0 00O - 1 00
0 00O - 210
0 0O0O0 - 1 21
| 0000 0 1 3]

Summarizing, a,, = det(A,,) = 2det(B,,). Thus, it suffices to calculate b,, =
det(By,).
Clearly, b,, can be calculated by performing a determinant minor expansion along

the first row of B,,,. Hence, we have:

by = 2¢m_1 — 3Cp_o+ -+ 2(_1)(m—2)+102

+2(=1)m= D+ poo(—1)m
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where ¢, = det(C,,), and C,, is given as the following m x m matrix:

(210 0 000
1210 00 0
0121 00 0
00 12 00 0
o _ o000 00 0
0000 - 100
0000 - 210
0000 -—- 121
10000 01 3|

By performing a determinant minor expansion along the first row of C,,, we deduce

the following recursive formula:

Cm = 2Cm—l_crrL—2>

where ¢; = 3 and ¢, = 5. It can be shown by induction that with these initial
conditions, ¢,, = 2m + 1 for general m. By substituting this value of ¢,, into the

previous formula for b,,, we deduce:

b = 2(=1)"{c1 —ca+ -+ (=1)"Cmor } +2(=1)™ — s
= 2(—1)m{n§(—1)i+1(2¢ + D)} +2(-1)" —2(m—2) -1
= 2(_1)7”{1@-:_1 (=)™ 'm} +2(=1)"" —2(m —2) — 1
= 2m—2(m—2)—1

= 3.

Therefore, a,, = 2b,, = 6.
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Case n is even. Order the members of 34 in the following manner,

n—2

L1247 UflLa L (@+2)la=1,...,—

2

and order the canonical basis of the 2-subsets’ orbits in the following manner,

With respect to these orderings, M é has matrix representation:

2 3 2 2 2 2 2
2210 000
1121 000
1 01 2 000
0001 000
An = 0000 00 0,
0000 1 00
0000 210
0000 1 2 2
| 0000 0 1 2]

where m = 7. Consider the following column operation:

Cl+CQ—Cg — Cl.

That is, Column 1 plus Column 2 minus Column 3 store the result in Column 1. The
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resulting matrix A’ , shown below, will have the same determinant as A,,.

(33 2 9 2 2 2|
3210 000
0121 000
0012 000
0001 000
A= 1000 0 000
0000 100
0000 2 10
0000 122
(0000 01 2|

Clearly, a,, = det(A,,) = det(A],) = 3det(B},), where B! is given by:

(13 2 9 22 2|
1210 00 0
0121 000
001 2 000
0001 000
B, = 10000 000
0000 100
0000 2 10
0000 12 2
0000 01 2

Summarizing, a,, = det(A,,) = 3det(B],). Thus, it suffices to calculate t], = det(B,).

Clearly, b/, can be calculated by performing a determinant minor expansion along
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the first row of B/ . Hence, we have:

b, = dp1—3dp o+ +2(=1)mDHg,

+2(_1)(m71)+1d1 + 2(_1)m+1’

where d,,, = det(D,,), and D,, is given as the following m x m matrix:

(2100 00 0]
1210 00 0
0121 00 0
00 1 2 00 0
P 00 0
0000 100
0000 210
0000 12 2
(0000 01 2

By performing a determinant minor expansion along the first row of D,,,, we deduce

the following recursive formula:
dy = 2dp_q — dm727

where d; = 2 and dy = 2. It can be shown by induction that with these initial
conditions, d,, = 2 for general m. By substituting this value of d,, into the previous

formula for b, we deduce:

b = 2(=1)"{di —do+ -+ (=1)"dp1} + 2(=1)"" — dpyz — dis
= {Z 1)1} 4 2(=1)" =2 — 2
= 4(-1 )mf( ) 2(=1)"* — 4,
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where,

1 if m is even,
f(m) =
0 else.

Clearly, by using the value of f(m), we can deduce that b/, = —2 for all m. Hence,
a,, = 3b,, = —6 and the result follows. O

We proceed to calculate the Smith Group of M 4. The following table summarizes

the result.

ged(4,n) | S(Maa(n))

1| (z/62)
2| (z2/62)
4| (z/32)

Figure 4.25. The Smith Group of Mj4(n).

Proposition 4.6.42. Let gcd(n,4) = 1. Then, S(My4(n)) = (Z/67Z).

Proof. Because ged(n,2) = 1 = ged(n,4), we must have Dy = nl, and Dy = nl. By
considering M§’4D4 = Dy My 4, and the previous equations for Dy and D,, we must

have My, = M 4. The result follows from proposition 4.6.41. OJ
Proposition 4.6.43. Let gcd(n,4) = 2. Then,
1. The set B4 is a (2,4)-basis for Ms4 as well.

2. The following holds, S(Ms4) = (Z/6Z).
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Proof. Under the assumption for n, we can calculate:

nl 0
Dy = ,
| 05
nl 0
D4 = )
I 0 51
where the last column of D, corresponds to ay = [5,%5], and the last columns of

D, corresponds to orbits of the form 3y = [a,b,a,b] with a +b = . Define X,, =
{la,b,a,b] | a+b= 5} Because My, Dy = DyMy 4, we can deduce:

, I 0
M274 = M2,4
0 2 0 21

Hence, we can partition the columns and rows of M4 and M;, such that:

v A 2B
24 = ’
a 257
A B
M2,4 = )
2a 257
where the columns corresponding to of Mj 4 are the columns corresponding to

257
orbits in X,,, and the row corresponding to [ a 257 ] of M , is the row corresponding
to the orbit [%, F].
Clearly, f24N X, = {[1, ”772, 1, ”T’Q]} Let Mg be the columns of Ms 4 correspond-

ing to B4, and let M['g be the columns of M, 4 corresponding to 324. By the previous
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decompositions of My 4, M; ,, we have the following decompositions of Mg, Mp.

Mg _ Al Bl ’
2@1 2
A1 281
My =
aq 2

Claim 4.6.44. (54 is a (2,4)-basis for Mo 4.

Proof. Let

B,
M2,4QK - 9 )

be a column of Mj 4 corresponding to an element of X\ 4.

x
Clearly, since 354 is a (2,4)-basis for M; ,, there is an integral vector " | such
T2
that:
A 2B x 2B
b = e (4.33)
aq 2 ) 2

We can manipulate the previous equation algebraically to deduce:

A B 3 By

20/1 2 ) 2

It suffices to show that % is integral to reduce 2k to the column space of (4.

Let us consider Equation (4.33) mod 2:

T Al 0 T
M =
To ap 0 )
0
0
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x _
Hence, " | is in the kernel of M 5 over [Fy. Because S(Mj) = (Z/6Z), it follows
4]

that rk(Mp) = ro(n) — 1 when Mj is viewed as a map of Fp-vector spaces. Therefore,

the kernel of Mj is one dimensional. Clearly, is also in the kernel of M. Hence,
1

mod 2, we must have:

T 0

) 1

Therefore, 2 divides x;.
It remains to show that for any Qi €~ X, M 4{ is in the column span of 3 4.

Consider Qi €~ X,,. Clearly,

Ap
M2,4QK = )
2(12

. . . : Y
Because (354 is a (2,4)-basis for M, 4, there is an integral vector " | such that:
Y2

A 2B Y1 Ay

ai 2 Y2 45)
The previous equation is equivalent to:

Ay By Y1 Ay
aq 1 2y2 (05}

By multiplying the previous equation by 2 on the last row, we deduce:

A B W Ay
2&1 2 2y2 2&2

Hence, M; 4k is in the column span of 35 4. This proves claim 4.6.44. O
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We resume to the proof of proposition 4.6.43. We show the second assertion.
We will calculate the det(Mp) as 6. The result will follow because there is only one

abelian group of order 6.

Consider,
A By
det(Mg) = 2det
aq 1
Similarly,
6 = det(Mp)
A B
= 2det b
ap 1
Hence, det(Mgz) = 6 and the result follows. O

Proposition 4.6.45. Let ged(n,4) = 4. Then, S(Mys(n)) = (Z/37Z).

Proof. Under the assumption for n, we can calculate:

nl 0
D2 = )
| 0 2
nl 0 0
D4 == 0 %I 0 )
0 0 -
where the last column of D, corresponds to ag = [, 5], the middle columns of D

2
corresponds to orbits of the form Gy = [a,b,a,b] with a +b = §,a # b, and the last
column of Dy corresponds to the orbit vo = [§,%, %, %]. Define X, = {[a,b,a,b] |

a+b= %, a#b}.
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Because M} Dy = Dy M, 4, we can deduce:

I 0 0

I 0 ,
My, = Moy | 0 21 0

0 2
0 0 4

Using the equations above, we can partition the columns and rows of M4 and M;,

such that:

[ A 2B 4C

Mé4 = )
’ a 257 2
A B C
My =
2a 257 1
where the columns corresponding to of M4 are the columns corresponding
257
to orbits in X,,, the column corresponding to of My, is the column corre-
1

sponding to the orbit vy, and the row corresponding to [ a 257 2 ] of M;, is the
row corresponding to the orbit [, 7].

Clearly, B4 N X,, = {[1,%52,1,%2]}, and 7o ¢ (24. Let Mgz be the columns of
M 4 corresponding to (2.4, and let My be the columns of M, , corresponding to Bz 4.

We have the decompositions:

Mﬁ _ Al Bl ’
2CL1 2
A1 281
My =
aq 2
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Claim 4.6.46. Let,

A B 20
2a 25T 2

Then, Colz(Mpg) = Colz(F).

Proof. The same proof of claim 4.6.44 can be used to show that for any Qx €~ {7},

FQg = My4Qk is in the column space of Mz. Hence, it suffices to show that

Fry = 2M; 47 is in the column span of Mjg.

Because (3 4 is a (2,4)-basis for M; ,, there is an integral vector such that:
o)

Al 231 T 46’1
ay 2 i) 2

Using the same argument that we used in claim 4.6.44, we can show that 2 divides

x1. Also, we can manipulate the above equation algebraically to deduce:

A, B 3 20
200 2 To 2
= 2M>s 4.

Thus, the result follows. This finishes the proof of claim 4.6.46. O

We resume to the proof of proposition 4.6.45. Consider the following inclusion of

free Z-modules.

OOlz(F) C OOlz(MQA) - ZTQ(TZ)

Hence, we deduce the following exact sequence:

0— H — S(F)— S(My,) — 0,
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_ Colyz(Ma,4)
where H = #(F)’
Suppose that H has order 2. From claim 4.6.46, we know that S(F) = S(Mjg).
Also, we know that S(Mjy) = (Z/6Z) by using a similar reasoning as in the proof of
proposition 4.6.43. Therefore, from the above exact sequence, we can deduce that

S(Ms4) has order 3, and therefore it must be (Z/3Z). Thus, it suffices to show that
H has order 2.

Clearly,

A B C

OOZZ
2a 257 1

H pum

A B 2C

COZZ
2a 2T 2

C

= )
1

Hence, H has order 2 or 1. Suppose that H is trivial. Clearly,

H — COlz(MQA)
COlz<F)
COlz(MQA)
COlz(M/@)
A B C
COZZ
2a 257 1
B COlz(Mg)

Using a proof similar to the proof of claim 4.6.44, we can deduce:

A B
COlZ = COlz(Mﬁ)
2a 25T
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x
Hence, there is integral | such that:

T2
Al B X B C
201 2 T B 1
Clearly, this implies:
2({ay, z1) + ) = 1,
which is a contradiction. |

4.6.6 The (3,4) Case

We show partial results toward finding a (3,4)-basis, and we show partial results

toward calculating the Smith Group of Mg ,.

4.6.6.1 Projected Relative (3,4)-Pods

We will calculate 3 relative projected (3,4)-pods to show a reduction result for the
(3,4) case.

Using the classification given by figure 4.18, we can partition the cyclic ordered
partitions of size 4 into 5 classes, where each class corresponds to a partition of 4.
The following propositions will use the notation of figure 4.18. All congruences will

/
use Mj .

Proposition 4.6.47. Let [a1, az,as,a4] € {ps}, i.e., a; > 2. Then,

2[ay, as,a3,a4] = 0 mod {p1},...,{pa}.

Proof. Let A = {21, 22,23, 74} € [a1,a2,a3,a4], and choose B = {y1,y2,y3,ya} as
shown in the relative (3,4)-pod of figure 4.26.



Figure 4.26. Relative (3,4)-pod.

The result follows from the projected relative (3, 4)-pod, shown in figure 4.27, that
results from the relative (3,4)-pod of figure 4.26.

Proposition 4.6.48. Let [a1,as,a3,a4] € {ps}, i.e., a; > 2. Then,

[a17a2+]—7a/3_17a4] - [a17a2_17a3+]—7a4] mOd {pl}a"'7{p4}‘

Proof. Let A = {x1,x9,23,24} € [ai,a2,a3,a4], and choose B = {y1,y2,ys,ys} as
shown in the Relative (3,4)-pod of figure 4.26.

The projected relative (3,4)-pod that corresponds to the relative (3,4)-pod of
figure 4.28 is shown in figure 4.29.

From the projected relative (3,4)-pod of figure 4.29, we deduce mod {p1},...,{ps}
that:

2[ay, as, az,aq4] — [a1,a0 + 1,a3 — 1, a4) — [a1,a0 — 1,a3+ 1,a4] = 0.

By proposition 4.6.47, 2[ay, as, az,as] = 0 mod {p1},...,{ps}. Hence, we have:

[a1,a0 + 1,a3 — 1 a4) = —[ag,a2 — 1,a3+ 1, a4),
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T| (=" K V(K)
0000 +1 | {21, 22, 3,24} (a1, as, ag, a4
1000 —1 | {1, 2, 23,24} las, 1,a3 — 1, a1 + a4
0100 —1 | {z1,v2, 23,24} la1 + az, a3,1,a4 — 1]
0010 —1 | {z1,29,y3, 24} la1,1, a9 + a3 — 1, a4]
0001 —1 | {21, 29,23, Y4} [1,a1 — 1,a9,a3 + a4]
1100 +1 | {y1,y2, 23,24} | [L,az — 1,1,a1 + as + a4 — 1]
1010 +1 | {y1, 22, Y3, 24} [1,a9,a3 — 1, a1 + a4
1001 +1 | {1, 22,23, U1} a1 — 1, a9, 1, a3 + a4]
0110 +1 | {x1,92,y3, 24} | [a1 + 1,00+ a3 —1,1,a4 — 1]
0101 +1 | {z1,y2, 23,94} | [L,a1 +as — 1,a3+ 1,a4 — 1]
0011 +1 | {z1,20,y3,y2} | [L,a1 — 1,1, a0 + ag + a4 — 1]
1110 =1 | {y1, 2,3, 74} [az, a3 — 1,1, a1 + a4]
1101 —1 | {y1,92,23, 94} l[a1 + az — 1,1, as, a4]
1011 —1 | {y1, 22,3, Y4} [a1 — 1,1, a9, a3 + a4]
0111 =1 | {21,92,93,9a} [1,a1,a2 + az, aq — 1]
1111 +1 | {192,935, ya} a1, as, as, a4]

Figure 4.27. Projected relative (3, 4)-pod.




Figure 4.28. Relative (3,4)-pod.

mod {p1}7 cey {p4}
If ay > 3, then by proposition 4.6.47 we deduce [a1,as — 1,a3+ 1, a4] = —[ay, as —
1,a3 + 1,a4] mod {p1},...,{ps}. Hence, the result follows for as > 3.

For as; = 2, the result is trivial since

la1,2+ 1,a3 — 1,a4] = |a1,a0+ 1,a3 — 1, a4]
= —laj,a2 — 1,a3 + 1, a4
= —la1,2—1,a3+ 1, a4]
=0

= [a172 - 1,@3 + 1,@4],

mod {p1},...,{ps} O

4.6.6.2 Partial Reduction for a (3,4)-Basis

Our research efforts on projected relative (3,4)-pods did not yield a (3, 4)-basis. How-

ever, the following result was the best concise reduction.
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T| (=" K V(K)
0000 +1 | {21, 22, 3,24} (a1, as, ag, a4
1000 —1 | {1, 2, 23,24} [1,a9 — 1,a3,a1 + a4
0100 —1 | {z1,v2, 23,24} la1 + az, a3,1,a4 — 1]
0010 —1 | {z1,29,y3, 24} la1, a2 + 1,a3 — 1, a4]
0001 —1 | {21, 29,23, Y4} [1,a1 — 1,a9,a3 + a4]
1100 +1 | {y1,y2, 73,4} l[az — 1, a3, 1, a1 + a4]
1010 +1 | {y1, 22, Y3, 24} [1,a9,a3 — 1, a1 + a4
1001 +1 | {y1, 22, 23,92} | [a1 — 1,1,a0 — 1,1 + a3 + a4]
0110 +1 | {z1,¥2,y3, 24} | [a1 + a2+ 1,a5 — 1,1,a4 — 1]
0101 +1 | {z1,y2, 23,94} | [L,a1 +as — 1,a3+ 1,a4 — 1]
0011 +1 | {z1, 20, y3,ua} | [L,a1 — 1 a0+ 1,a3 + a4 — 1]
1110 =1 | {y1, 2,3, 74} [az, a3 — 1,1, a1 + a4]
1101 —1 | {y1,92,23, 94} la1, a2 — 1,a3 + 1, a4]
1011 —1 | {y1, 22,3, Y4} [a1 — 1,1, a9, a3 + a4]
0111 =1 | {21,92,93,9a} [1,a1 + az, a3, aq — 1]
1111 +1 | {192,935, ya} a1, as, as, a4]

Figure 4.29. Projected relative (3, 4)-pod.
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Proposition 4.6.49. Let [a1,as, a3, a4] € {ps}, i.c., a; > 2. Then, using My ,:

12,2,2,6%] mod {p1},...,{ps} if all a;s are even,

[ay, az, a3, a4] =
0 mod {p1},...,{ps} else.

Proof. Suppose that some a; > 3 is odd. Without loss of generality, asssume a3 > 3.
Clearly, proposition 4.6.48 applies and it implies that for aqy > 2,a2 > 1,a3 > 3, a4 >
2:

la1,a9,a3,a4] = [a1,as + 2,a3 —2,a4] mod {p1},...,{ps} (4.34)
Let a3 = 2s + 1. We can apply the congruence 4.34 to itself s times to deduce:

[a17a27a37a4] — [alaa'2 +27a3 - 2;0'4]

- [alaa/Q +47(l3 - 4,@4]

[alaaﬁ +ag — 17 1,(1,4]

= O0mod {p1},...,{ps}

Hence, the result follows, and it suffices to show the proposition when all the a;s are
even.

Let ag = 2s. After applying congruence 4.34 to itself (s — 1) times, we can deduce

mod {pl}a ) {p4}:

[a17a27a’37a4] — [alaa/Q +27a3 - 2;0/4]

[al, (05} + as — 2, 2, G4].
Now, we apply the previous argument to [ay, a1, as+az—2,2] to deduce mod {p1 }, ..., {ps}:

lag,a1,a2 +az —2,2] = |ag, a1+ ap +az —4,2,2].
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And, we proceed to do the same argument to [2, a4, a3 + as +az — 4, 2] to deduce mod

o} Apal:

[2,a4,a1 + ag + a3 —4,2] = [2,a4+ a1+ as + a3 — 6,2,2]
= [2,6,2,2].

Hence, the result follows. |
As a corollary, we deduce the following.
Corollary 4.6.50. Let [ay,a0,a3,a4] € {ps}, i .e . a; > 2. Then, using My ,:

(
2,2,2,6%] mod {p1},...,{ps} if n is even and

all a;s are even,

[a1, as,a3,a4] = 0 mod {p1},...,{ps} if n is even and

at least one a; is odd,

0 mod {p1},...,{ps} if n is odd.

4.6.6.3 Partial Results for S(Mj ,)

We calculate the Smith Group of Mj, whenever the integral preimage problem has

trivial solution. The following proposition summarizes the result.

Proposition 4.6.51. Let M!

i—1,2

fori=1,2,3,4. Assume that n is odd, and n > 9. Then,

have trivial solution to the integral preimage problem

S(M:QA) = (Z/AZ) x (Z/QZ)Tz(n)—l‘
Proof. By proposition 4.3.38, we deduce:

(ZJAZ) x (2/22)*™~" = T(Ds.) (4.35)
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By proposition 4.6.25, |Mj ;| = 3. Hence, ged(|Mj3|,4 —3 + 1) = ged(3,2) = 1.
Thus, by proposition 4.3.39, we deduce that:

(B23) = S(Ms,),

where (3 is Z-linearly independent in S(Mj,). Hence, S(Mj,) decomposes into

2(n) nontrivial cyclic groups. By proposition 4.3.28 and Equation (4.35), S(Mj )
has exponent dividing 4. Therefore, by Equation (4.35),

S(Mz,) = (Z)arZ) x -+ X (L] anym)Z),

where a; = 2 or 4, and at least one a; is 4. It suffices to show that §(M§74) has exactly
one cyclic factor of size 4.
Suppose S(Mj ) has two invariant factors of size 4. There are Q7 and Qg, be

two orbits in (353 such that there are integral z;, 2, satisfying:

/
4QT1 = M37421,

4QT2 = MéAZQ.
By multiplying the previous equations by M; 4 on the left, we deduce:

4M£739Tl — 2M£74Zl,

4M£’39T2 - 2Mé’4z2.
Let 824 be a (2,4)-basis of M, ,. The previous equations give,

/ _ /
o /
— M/B2y4w1,
/ _ !
2My 3Qr, = My 29

!
- Mﬂ214U)2,
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for some integral vectores w; and w,. In particular, M; ;Q7, and M, 3Q7, have order

2 in S(Mp, ,).

Clearly, S(Mj;,) = (Z/6Z) has a unique element of order 2. Thus, there is an

integral w3 such that:
M 3Qr, = My ,Qr, + Mp, ws.
Therefore,
0 = Mys(2Qp, — 207, — My 4ws),

where w3 has support in s 4.
Since M3, has trivial solution to the integral preimage problem, it follows that

Ker(M,z) N 7 Img(Msy,). Hence,
207, — 207, — M3 w3 = M;  wy
for some integral wy. Therefore, 2Q7, = 2Q7, in S(Mj,). Thus, in E(MgA),
Qr, = Qp + 2 (4.36)

where 2, is some element of order 2 of S(Mj,).

We show that Equation (4.36) gives a contradiction. We will contradict the Z-
linear independence of (32 5. Clearly, since 2z has order 2, zo = >~ Qr,. Where Qr, are
clements of order 2 when viewed as elements of S(M{,), and Qr, € B23\{Qr,, Q1 }-
Thus, in S(Mj,):

Or, = Qn+> Q.

This contradicts the Z-linear independence of B33 in S(Mj ). O
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Corollary 4.6.52. Let ged(n,6!) = 1. Then,

S(Msy) = (Z/AZ) x (Z)22)"™".

Proof. By proposition 4.3.25, the matrices M;_, ; have trivial solution to the integral
preimage problem whenever ¢+ = 1,2,3,4. Hence, the result follows by proposition

4.6.51. [

4.6.7 Conjectures, Consequences, and Observations

We close this chapter with a conjecture related to the (¢, k)-basis conjectures, and a
proposition that shows how to calculate the Smith Group of M/, (n) whenever the
(t, k)-basis conjecture holds.

We start with an observation about the integral preimage problem.

Proposition 4.6.53. Lett < k <n —k, and let n be a prime. Then, Mt’k and My,

have trivial solution to the integral preimage problem.

Proof. Note that the hypotheses of proposition 4.3.25 are satisfied whenever n is a
prime. Hence, the result follows by applying proposition 4.3.25. |

We proceed to show a consequence of the weak (¢, k)-basis conjecture.

Proposition 4.6.54. Let ged(n,(2(k— 1)) =1, and 1 <t <k <n—k<n-—t
Assume the (t, k)-basis conjecture holds for n, and for all (i —1,4) where i =1,...,k.

Then, M{,(n) has Smith Group given by:

(z/ (lz) Z) x (%) (lz:s) 7)™t (Z/ (?:;’) Z)rsm=ra(n) o

k — (t - 1) re—1(n)—ri_2(n
X(Z/(t—(t—1)>z) (n) (),

_ @)

where ri(n) = = is the number of orbits on the i-subsets for i =2,...,t.
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Proof. Under the assumption of n, we can deduce that M; , ; has trivial solution to
the integral preimage problem for ¢+ = 1,...,k by using proposition 4.3.25. Hence,
proposition 4.3.35 applies and the result follows. |

Remark: The conclusion of proposition 4.6.54 has been verified for n a prime, and
n < 19 with the aid of a computer program.
We close this chapter with another conjecture that has been verified by the work

of the previous sections for the cases (2,3), (2,4), and partly for the case (3,4).

Conjecture 4.6.55. Let ged(tk,n) =1,t <k <n—k, and let {p1},...,{p.} be the
distinct partitions of k. Gien {p;} = al* ---al', define s({p;}) = fi +--- + fi as the
number of parts of {p;}. Let,

Xs = {Qk | Qk affords {p;} where {p;} satisfies s({p;}) < s},
Yo = {{pi} | s({pi}) < s}
Then,
1. The set X; contains a (1, k)-basis of M.

2. If Qg €~ Xy, then Qg =0 mod Yy using Mt’k
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