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Abstract

Adviser: Richard Wilson.

This thesis consists of an introductory chapter and three independent chapters. In

the first chapter, we give a brief description of the three independent chapters: abelian

n-adic codes; generalized skew hadamard difference sets; and equivariant incidence

structures.

In the second chapter, we introduce n-adic codes, a generalization of the Duadic

Codes studied by Pless and Rushanan, and we solve the corresponding existence

problem. We introduce n-adic groups, canonical pplitters, and Margarita Codes to

generalize the “self-dual” codes of Rushanan and Pless, and we solve the correspond-

ing existence problem.

In the third chapter, we consider the generalized skew hadamard difference set

(GSHDS) existence problem. We introduce the combinatorial matrices AG,G1 , where

G1 = (Z/exp(G)Z)∗ and G is a group, to reduce the existence problem to an integral

equation. Using a special finite-dimensional algebra or Association Scheme, we show

A2
G,G1

= |G|
p
I for general G. With the aid of AG,G1 , we show some necessary conditions

for the existence of a GSHDS D in the group (Z/pZ) × (Z/p2Z)2α+1, we provide a

proof of Johnsen’s exponent bound, we provide a proof of Xiang’s exponent bound,

and we show a necessary existence condition for general G.

In the fourth chapter, we study the incidence matrices Wt,k(v) of t-subsets of

{1, . . . , v} vs. k-subsets of {1, . . . , v}. Also, given a group G acting on {1, . . . , v},
we define analogous incidence matrices Mt,k and M ′

t,k of k-subsets’ orbits vs. t-

subsets’ orbits. For general G, we show that Mt,k and M ′
t,k have full rank over Q,

we give a bound on the exponent of the Smith Group of Mt,k and M ′
t,k, and we give

a partial answer to the integral preimage problem for Mt,k and M ′
t,k. We propose
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the Equivariant Sign Conjecture for the matrices Wt,k(v) using a special basis of the

column module of Wt,k consisting of columns of Wt,k; we verify the Equivariant Sign

Conjecture for small cases; and we reduce this conjecture to the case v = 2k + t. For

the caseG = (Z/nZ), we conjecture thatM ′
t,k has a basis of the column module ofM ′

t,k

that consists of columns of M ′
t,k. We prove this conjecture for (t, k) = (2, 3), (2, 4),

and we use these results to calculate the Smith Group of M2,4, M
′
2,4, M2,3, and M ′

2,3

for general n.
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Chapter 1

Introduction

1.1 Abelian n-adic Codes

In [21], Pless and Rushanan introduced a family of cyclic binary codes called the

Duadic Codes to generalize the cyclic binary Quadratic Residue Codes. Using the

language of primitive idempotents1 in Fq[G], where Fq is the finite field of q elements

and G is an abelian group, Duadic Codes were introduced as in definition 1.1.1.

Definition 1.1.1. Let µ ∈ Aut(G), and let e =
∑

g∈G eg[g] be a primitive idempotent

in Fq[G]. Define µ · e as
∑

g∈G eg[σ(g)]. Let e1 = e and e2 = µ · e. If

e1 + e2 = 1 − 1

|G|
∑

g∈G
[g],

then we say that e1, e2, µ forms a Duadic Code and we call µ the splitting of the code.

Duadic Codes were of special importance since they provided a construction for

Finite Projective Planes. This link is sumarized in the following result that is found

in [23] in its most general form.

Theorem 1.1.2. Let C be a duadic code with splitting given by µ−1 then the minimum

distance for oddlike2 code words, d0, satisfies

d2
0 − d0 + 1 ≥ v.

1An idempotent is primitive, if for every other idempotent f , ef = fe = f 6= 0 ⇒ e = f .
2A word w =

∑
g∈G cg[g] is oddlike, if

∑
g∈G cg 6= 0.
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If equality holds then the supports of the minimum-weight oddlike codewords of weight

d0 are the blocks of a projective plane of order (d0 − 1). Furthermore, d0 is the mini-

mum distance of C, and the minimum weight codewords are precisely those codewords

that are constant on the supports of the blocks of the finite projective plane.

Originally, Duadic Codes were introduced in the cyclic binary case. Since their

introduction, there has been various generalizations with respect to:

1. Parity of the characteristic of the field,

2. Number of idempotents used, and

3. The cyclic and noncyclic abelian case.

The following is a history of these generalizations:

1. The family of Duadics in even characteristic, by Rushanan in [22]. These

are codes in Fq[G] where G is an arbitrary abelian group, q is even, and 2

idempotents are used in its definition. The existence problem is solved.

2. The family of Duadics in odd characteristic, by Smid in [25]. These are

codes in Fq[Z/nZ] where q is odd and 2 idempotents are used in its definition.

The existence problem is solved.

3. The family of Triadic Codes, by Pless and Rushanan in [21]. These are

codes in Fq[Z/nZ] where q is even and 3 idempotents are used in its definition.

The existence problem is solved.

4. The family of Polyadic Codes, by Brualdi and Pless in [4]. These are codes

in Fq[Z/nZ] andm idempotents are used in its definition. The existence problem

is solved.

5. The family of m-adic Polyadic Codes, by Ling and Xing in [18]. These are

codes in Fq[G] where G is a general abelian group, and m idempotents are used

in its definition. The existence problem is solved for the “nondegenerate” case.
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We will provide for a different generalization of Duadic Codes that will parallel

the family of m-adic Polyadic Codes of San Ling, and the Duadic Codes of Rushanan.

This will be the family of n-adic codes defined by:

Definition 1.1.3. Let n be a prime and G be an abelian group. An n-adic code is a

pair e, µ where e is an idempotent and µ ∈ Aut(G) satisfying Stab〈µ〉(e) = {µk|µk ·e =

e} = 〈µn〉, under the action of Aut(G) on the primitive idempotents of Fq[G], and

〈e1, . . . , en〉 = Fq[G],

〈e1〉 ∩ 〈e2〉 ∩ · · · ∩ 〈en〉 = 〈dg0〉

= 〈 1

|G|
∑

g∈G
[g]〉,

where ei = µi−1 · e.

Remark: The term n-adic, introduced in definition 1.1.3, is not related to p-adic

numbers.

We will solve the existence problem for n-adic codes as it is given by the next

theorem.

Theorem 1.1.4. Let n be a prime, then the following are true:

1. There is an n-adic code in Fq[G] if and only if there is an n-adic code in Fq[S]

for every sylow subgroup S of G.

2. There are no n-adic codes in Fq[G] when G is an n-group.

3. Let G be an s-group where (s, n) = 1. Let ts(k) = |µk| in Aut(Z/sZ). Then,

(a) Let s be an odd prime and assume n divides s−1
tq(s)

, then there is an n-adic

code in Fq[G].

(b) Let s be an odd prime, assume n does not divide s−1
tq(s)

, and G = (Z/sZ)π1 ×
(Z/s2Z)π2 × · · · × (Z/srZ)πr . Then,

i. If s = 1 modulo n there is an n-adic code in Fq[G] if and only if πi = 0

modulo n for all i.
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ii. If s 6= 1 modulo n there is an n-adic code in Fq[G] if and only if ts(n)

divides πi for all i.

(c) Let s = 2 be such that (2, n) = 1. Let G = (Z/sZ)π1 × (Z/s2Z)π2 × · · · ×
(Z/srZ)πr . There is an n-adic code in Fq[G] if and only if tn(2) divides πi

for all i.

We will continue our study of n-adic codes by providing conditions under which n-

adic codes become Triadic Codes, Polyadic Codes, and m-adic Polyadic Codes. This

will put the concept of n-adic codes into perspective with the current generalizations

of duadic codes.

We will also provide a generalization of proposition 1.1.2, given as proposition

1.1.5 below, by introducing the concept of n-adic groups for which there will always

be a canonical splitter of order n, and by calling the analogous “self-dual” codes

Margarita codes.

Theorem 1.1.5. Let e, µl give a Margarita code in Fq[G] where G is an n-adic group

and µl a canonical splitter of order n. Let d0 be the minimum weight of all oddlike

vectors of 〈e〉. Let w ∈ 〈e〉 be an oddlike vector of weight d0. Let w =
∑

g∈B βg[g]

where B ⊂ G is the support of w. Let B̃ =
∑

g∈B[g] be the characteristic function of

the support of w. Define rn,µl,G : G→ Z as,

rn,µl,G(g) = |Hg ∩ (B × . . .×B)|,

where

Hg = {(g1, . . . , gn) ∈ G× · · · ×G|g1 + µl(g2) + · · · + µln−1(gn) = g}.

Then,

1. The constant d0 satisfies dn0 − rn,µl,G(1) + 1 ≥ |G|,

2. If dn0 − rn,µl,G(1) + 1 = |G|, then:

(a) The oddlike word satisfies w = α ∗ B̃ for some α ∈ Fq,
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(b) The characteristic function of the support of w satisfies,

B̃ ∗ (µl · B̃) ∗ · · · ∗ (µn−1
l · B̃) = (rn,µl,G(1) − 1)[1] +

∑

g∈G
[g].

3. The constant rn,µl,G(1) satisfies rn,µl,G(1) = d0 modulo n.

1.2 Generalized Skew Hadamard Difference Sets

We will assume that the reader is familiar with the theory of Difference Sets as it

can be found in Jungnickel’s book in [12], and in Lander’s book in [17]. Also, we will

assume that G is an abelian group, and we will use the additive notation for its group

operation.

Skew Hadamard Difference Sets (SHDS) are subsets D of an abelian group G such

that in the group algebra Z[G]:

D(x)D(x−1) = (k − λ)[0] + λG(x),

D(x) +D(x−1) = G(x) − 1.

The following is what is known about the existence problem for SHDSs. This can

be found in Chen, Sehgal, and Xiang’s paper in [6].

Theorem 1.2.1. A SHDS has parameters (v, k, λ) = (v, v−1
2
, v−3

4
). Also, if D ⊂ G

is a SHDS, and G is abelian, then:

1. The order of the group v has the form v = p2α+1, where p = 3 mod 4,

2. If χ is any nonprincipal character, then:

χ(D) =
−1 + εχ

√
−v

2
,

where εχ ∈ {+1,−1},
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3. If G = Z/pa1Z× Z/pa2Z× · · · × Z/parZ where: a1 ≥ a2 ≥ · · · ≥ ar and a1 ≥ 2,

then:

(a) The exponents a1 and a2 are the same, i.e. , a1 = a2,

(b) The exponents ais satisfy,

a1 ≤ a1 + · · · + ar + 1

4
.

This is Xiang’s exponent bound.

We introduce the concept of a Generalized Skew Hadamard Difference Set (GSHDS),

given by:

Definition 1.2.2. A generalized skew hadamard difference set (GSHDS) is an ele-

ment of the group algebra D(x) ∈ Z[G] such that:

D(x)D(xno) = (ko − λ)[1] + λG(x),

D(x) +D(xno) = G(x) − [1],

where [1] = x0 is the multiplicative unit of Z[G], ko = |D(x) ∩D(x−no)|, and no is a

Non-Quadratic Residue of (Z/exp(G)Z)∗.

In our study of GSHDSs, we introduce the concept of Quadratic Residue Slices

(QRS) defined by:

Definition 1.2.3. Let G be an abelian p-group, and G1 = (Z/exp(G)Z)∗ be the

numerical multipliers of G. Let Ωg1 , . . . ,Ωgr
be the distinct orbits of the action of G1

on G̃ = G\{0}. A Quadratic Residue Slice (QRS) is any formal sum of the form:

r∑

i=1

εΩgi
Ωgi

,

where εΩgi
∈ {±1}.

Using the language of QRSs, we extend the existence conjecture of SHDS to

GSHDS.
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Conjecture 1.2.4. If G is an abelian group that affords a GSHDS, then G is ele-

mentary abelian.

We prove the analog of proposition 1.2.1 for GSHDS using a unified framework in

the language of Quadratic Residue Slices (QRS).

We introduce a combinatorial matrix AG,G1 that is well defined in any abelian

p-group and depends on the choice of a set of representatives of the action of G1 on

G\{0}.

Definition 1.2.5. Let G be an abelian p-group with exponent pa1. Let θ : G → Ĝ

be an noncanonical isomorphism such that θ(g)(g ′) = θ(g′)(g). Let Ωg be an orbit

of G1 = (Z/exp(G)Z)∗ on G̃ = G\{0} and Ωχ an orbit of G1 = (Z/exp(G)Z)∗ on

˜̂
G = Ĝ\{χ0}. Then, AG,G1 is defined on the set of orbits of G1 on G̃ versus the set

of orbits of G1 on
˜̂
G using θ by:

AG,G1(Ωθ(g′),Ωg) =





(n
p
)o(p · g) if θ(g′)(g) = ηnp ,

0 else,

where (n
p
) is the quadratic residue symbol, o(g) is the order of g in the group G, χ0

is the principal character, ηp is a fixed primitive pth root of unity, and p · g = p · g =

g + g + · · · + g is g added to itself p times.

Using the matrix AG,G1 , we introduce the concept of difference coefficients as:

Definition 1.2.6. Let d be the vector representation of a QRS D ⊂ G, i.e., a vector

of ±1. The difference coefficients of D are given by the vector AG,G1d.

We show the following properties of AG,G1 :

Theorem 1.2.7. The following hold:

1. The incidence matrix AG,G1 satisfies,

A2
G,G1

=
|G|
p
Ir,r,

where Ir,r is the identity matrix.
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2. There is a GSHDS D in G if and only if there is a vector d of ±1s such that

AG,G1d =
√

|G|
p
d̄ for some integral vector d̄.

We proceed to study difference coefficients, and we show integral formulas involv-

ing them. In our study of difference coefficients, we prove Xiang’s exponent bound

for GSHDS, and we introduce the concept of difference intersection numbers.

Definition 1.2.8. Let D be a QRS in G, and let L ⊂ G be a subgroup with G
L

=

{g′1L, . . . , g′sL}. The difference intersection numbers of D with respect to L in G are

defined as:

νG,L(D, g′i) = |D ∩ g′iL| − |D(n0) ∩ g′iL|.

Using part 1 of theorem 1.2.7 and the structure of Galois Rings, we find necessary

conditions for the existence of a GSHDS in the family of groups (Z/pZ)×(Z/p2Z)2α+1.

We achieve this by first using the multiplicative structure of the Galois RingGR(p2, α)

to deduce a “Canonical Form” forAH,H1 , whereH = (Z/p2Z)2α. Using the “Canonical

Form” of AH,H1 , we deduce the following existence conditions:

Theorem 1.2.9. Let G = (Z/pZ) × (Z/p2Z)3, and D ⊂ G a GSHDS. Let H =

{0} × (Z/p2Z)3 ⊂ G and L = p ·H ' (Z/pZ)3. Let D′ = H ∩D, and D′′ = L ∩D.

Let,

1. The vector of ±1s representing D′ be d′.

2. Decompose d′ by d′ = (d′T0 , d
′T
1 , . . . , d

′T
p2) where d′i is a (p2 + p + 1) × 1 vector of

±1s representing disjoint H1 classes of D′.

3. The vector of difference coefficients of the H1 classes of d′i be d̃i
′
.

Then, there is a ordering of the H1 classes of H and a set of H1-orbit representatives

such that:

1. The set D′′ is a GSHDS in L.
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2. The image of d0 under AL,L1 has form AL,L1d0 = pd̄0 where d̄0 is a p2 +p+1×1

vector of ±1s. Define d̄0 the ”dual” of D′′.

3. The image of d̃0 under AL,L1 has form AL,L1 d̃0 = p
¯̃
d0, for some integral

¯̃
d0.

4. The vector
¯̃
d0 of the previous part satisfies

¯̃
d0 =

∑p2

i=1 di.

5. The vector of ±1s of part 2 satifies pd̄0 =
∑p2

i=1 d̃i.

Theorem 1.2.10. Let D be a GSHDS in G = (Z/pZ) × (Z/p2Z)2β+1, and let K =

(Z/pZ)2β. Then, there are elements A,B ∈ Z[K] that depend on D, and there is an

element L0 ∈ Z[K] that depends on the structure of G such that:

1. The elements A and B satisfy p2βA = χ0(A)K(x) +L0 ∗B(−1), where χ0 is the

principal character of K.

2. The elements A and B satisfy p2βB = χ0(B)K(x) + pL0 ∗ A(−1), where χ0 is

the principal character of K.

3. All the coefficients of A are odd, and χ0(A) is odd.

4. All the coefficients of B are odd, and χ0(B) is odd.

5. The principal character of A has value χ0(A) = pβ−1ε0b0; where ε0 is ±1, and

b0 is an odd integer.

6. The principal character of B has value χ0(B) = pβε0a0; where ε0 is ±1 and

equal to the ε0 of part 5, and a0 is an odd integer.

We close the chapter with a proof of Johnsen’s exponent bound using the matrix

AG,G1 , and with a necessary existence condition between the Difference Coefficients

and the difference intersection numbers of a GSHDS D in a general abelian p-group

G.
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1.3 Equivariant Incidence Structures

We consider the incidence matrices Wt,k defined on the t-subsets vs. k-subsets of

{1, . . . , v} by:

Wt,k(eT , eK) =





1 if T ⊂ K,

0 else.

The following problems concerning the matrices Wt,k have been solved in the

literature:

1. What is the rank of Wt,k? When is Wt,k onto? When is Wt,k injective?

2. How can the kernel of Wt,k be characterized? Do we know a canonical basis for

the kernel?

3. Does Wt,k allow for a column Z-basis? That is, is there a subset of the columns

of Wt,k that is a basis for the column space of Wt,k over Z? This is the concept

of a (t, k)-basis.

4. What is the Smith Normal Form of Wt,k?

5. What is a left inverse of Wt,k when Wt,k is injective?

6. What is a right inverse of Wt,k when Wt,k is surjective?

7. When does an integral vector have an integral preimage under Wt,k?

Questions 1, 5, and 6 have been answered by Kramer in [13, 14, 15]. Questions

3, 4, and 7 have been answered by Wilson in [26]. Question 2 has been answered by

Ajoodani-Namini and Khosrovshahi in [1], and by Bier in [3].

We consider these questions when there is an action of a group G. That is, we

ask the same questions for Mt,k = (Wt,k)0, and for M ′
t,k = ((W T

t,k)0)
T ; where Mt,k is

defined by

Mt,k(eΩT
, eΩK

) = |{K ′ ∈ ΩK |T ⊂ K ′}|,
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and M ′
t,k is defined by

M ′
t,k(eΩT

, eΩK
) = |{T ′ ∈ ΩT |T ′ ⊂ K}|,

where ΩT is an orbit of G on the t-subsets, and ΩK is an orbit of G on the k-subsets.

1.3.1 General G

For general G:

1. We show Mt,k and M ′
t,k have full rank.

2. We provide a partial answer to the integral preimage problem of Mt,k for arbi-

trary G.

3. We provide some bounds on the exponent of the Smith Group of Mt,k and M ′
t,k

for arbitrary G.

4. We provide a left inverse of Mt,k when Mt,k is injective.

5. We provide a right inverse of Mt,k when Mt,k is surjective.

6. We provide a left inverse of M ′
t,k when M ′

t,k is injective.

7. We provide a right inverse of M ′
t,k when M ′

t,k is surjective.

8. We solve for the Smith Group of M ′
t,k provided that for t < k:

(a) The matrix M ′
t,t+1(n) affords a (t, t+ 1)-basis.

(b) A vector z has an integral preimage under M ′
t,t+1 if and only if

(
t+1−i
t−i
)

divides M ′
i,tz for i = 1, . . . , t.

1.3.2 Case G = Stab(Ω)

We propose the following property of Lt,k = Wt,k,Mt,k,M
′
t,k that we call “trivial

positive equivariant signing.”
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Definition 1.3.1. Let β be a (t, k)-basis of L′
t,k. We say that ε is a trivial positive

equivariant signing for (Lt,k, β), if for every K ′ ∈∼ β,

Lt,keK′ =
∑

K∈β
C(K ′, K)ε(K)Lt,keK ,

we have ε ∈ {−1, 0, 1} and C(K ′, K) ≥ 0.

We say the signing ε is G-invariant, where G ⊂ Sv, whenever ε(σ ·K) = ε(K) for

all σ ∈ G and K ∈ βt,k.

We consider the action of the group G = Stab(Ω), where Ω is a partition of

{1, . . . , v}. By introducing the concepts of: monotone families, compatible sets, equiv-

ariant compatible sets, and inclusion maps; we give reduction criteria to show for a

given G-invariant family βt,k of columns of Wt,k(v):

1. When βt,k is a (t, k)-basis of Wt,k(v).

2. When the set of G-orbits in β, i.e., βGt,k, is a (t, k)-basis for M ′
t,k.

3. When the set βt,k admits a trivial positive equivariant signing for Wt,k that is

G-invariant.

4. When the set βGt,k admits a trivial positive equivariant signing for M ′
t,k.

We show the Bier-Frankl (B-F) basis and the Khosorovshahi-Ajoodani (KAj) basis

allow a stabilizer group G of the form Stab(Ωt,k) where

Ωt,k = {1, . . . , v − k − t} ∪ {v − k − t+ 1, v − k − t+ 2} ∪ · · ·

∪ {v − k + t− 1, v − k + t} ∪ {v − k + t+ 1, . . . , v},

for the KAj basis, and

Ωt,k = {v, . . . , k + t+ 1} ∪ {k + t, k + t− 1} ∪ · · ·

∪ {k − t+ 2, k − t+ 1} ∪ {k − t, . . . , 1},
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for the B-F basis. We also show that these bases are equivalent.

Using the reduction results, we prove that these bases admit a trivial positive

equivariant signing that is G-invariant for the cases: (1, 2), (2, 3), by providing a

proof; (3, 4), (5, 6), via a computer program. We also show:

Proposition 1.3.2. Let βt,k be the KAj (t, k)-basis or the B-F (t, k)-basis, then:

βt,k(v) admits a trivial positive equivariant signing that is G = Stab(Ωt,k(v))-invariant

for all v ≥ k+ t+1 if and only if βt,k(v) admits a trivially positive equivariant signing

that is G = Stab(Ωt,k(2k + t))-invariant for v = 2k + t.

We propose the following conjecture that we call the “Equivariant Sign Conjec-

ture.”

Conjecture 1.3.3. Let βt,k be the KAj (t, k)-basis or the B-F (t, k)-basis, then βt,k

admits a trivial positive equivariant signing that is G = Stab(Ωt,k)-invariant.

1.3.3 Case G = (Z/nZ)

For the group G = (Z/nZ):

1. We solve the integral preimage problem for Mt,k when G = Z/nZ and n is a

prime.

2. We calculate the Smith Group of M ′
2,3 and of M2,3 for arbitrary n by solving

for a (2, 3)-basis.

3. We calculate the Smith Group of M ′
2,4 and of M2,4 for arbitrary n by solving

for a (2, 4)-basis.

4. We give some partial results for a generating set of the column space of M ′
3,4.

We also propose the following conjectures that we call the “(t, k)-basis Conjec-

tures.”

Conjecture 1.3.4. (Weak version) Let gcd(tk, n) = 1, and let t < k ≤ n − k.

Then, M ′
t,k admits a (t, k)-basis.
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Conjecture 1.3.5. (Strong version) Let t < k ≤ n − k. Then, M ′
t,k admits a

(t, k)-basis.

We close the chapter by showing how the (t, k)-basis conjectures can be used to

calculate the Smith Group of M ′
t,k.

Proposition 1.3.6. Let gcd(n, (2(k − 1))!) = 1, and 1 ≤ t < k ≤ n − k ≤ n − t.

Assume the (t, k)-basis conjecture holds for n, and for all (i−1, i) where i = 1, . . . , k.

Then, M ′
t,k(n) has Smith Group given by:

(Z/

(
k

t

)
Z) × (Z/

(
k − 2

t− 2

)
Z)r2(n)−1 × (Z/

(
k − 3

t− 3

)
Z)r3(n)−r2(n) × · · ·

×(Z/

(
k − (t− 1)

t− (t− 1)

)
Z)rt−1(n)−rt−2(n),

where ri(n) =
(n

i)
n

is the number of orbits on the i-subsets for i = 2, . . . , t.
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Chapter 2

Abelian n-adic Codes

2.1 Preliminaries

We will consider abelian group codes that are given by ideals in Fq[G] and are also

known as G-codes. We will assume that (q, |G|) = 1, where q is a prime power, and

that G is abelian. This will make Fq[G] a semisimple algebra and all ideals in Fq[G]

principal (generated by idempotents, unique up to units).

We will assume the natural action of Aut(G) on the idempotents e of G defined

for any σ ∈ Aut(G) as:

µ · e =
∑

g∈G
eg[σ(g)],

where e =
∑

g∈G eg[g].

We will also assume the natural action of Aut(G) on Ĝ defined for any σ ∈ Aut(G)

and χ ∈ Ĝ as σ · χ = χ ◦ σ−1.

As Fq[G] is semisimple, every G-invariant subspace I1 splits. That is, there is a

G-invariant subspace I2 such that Fq[G] = I1 ⊕ I2. In particular, if I1 = 〈e〉, then

I2 = 〈1 − e〉 and Fq[G] = 〈e〉 ⊕ 〈1 − e〉. Hence, Fq[G] = 〈e1〉 ⊕ · · · ⊕ 〈er〉; where

〈ei〉 are ideals that cannot be written as the sum of 2 proper ideals, i.e., irreducible.

The idempotents e1, . . . , er are called primitive idempotents. We note that it can be

shown that any idempotent of Fq[G] is the sum of some irreducible idempotents, that

is, e = ei1 + · · · + eik .
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By considering a splitting field for G, i.e., Fqr where F∗
qr has all exp(G)th roots

of unity, one can show that in Fqr [G] ⊇ Fq[G] there are |G| irreducible idempotents

given by the irreducible characters of G into F∗
qr ; where the idempotent corresponding

to the character χ is given by:

eχ =
1

|G|
∑

g∈G
χ(g−1)[g].

One can show that the Galois group of Fqr over Fq is generated by the Frobenious

Map x 7→ xq. We will denote the Frobenious Map by σq. We note that, one can show

that if χ(g) is an irreducible character, then σq(χ(g)) is another irreducible character.

Thus, σq induces an action on the irreducible characters of G.

The following is a well-known result in Character Theory, and it can be found in

Isaacs’ book in [10], chapter 9.

Theorem 2.1.1. Let e be the an irreducible idempotent in Fq[G], let Fqr be a splitting

field of G. Then, in Fqr [G], e = eχ1 + · · · + eχl
where χ1, . . . , χl forms an orbit of σq

acting on the irreducible characters of G.

By using theorem 2.1.1, we will proceed to calculate the irreducible idempotents

of Fq[G] by introducing the concept of cyclotomic cosets.

Note that σq(χ(g)) = (χ(g))q = χq(g). Hence, in Ĝ, σq acts like raising to the qth

power. This map g 7→ gq, a numerical multiplier, is clearly in Aut(Ĝ) as (q, |G|) = 1.

By using any noncanonical isomorphism η : G 7→ Ĝ, where Ĝ is the group of

characters, we can identify any χ = χg ∈ Ĝ with a η(g). By using this identification,

we can identify the orbit of χ = χg1 under σq in Ĝ with the orbit of g1 under µq in G.

Thus, by theorem 2.1.1, if e is an irreducible idempotent in Fq[G], then there is

some orbit of µq acting on G, say Cgo
, such that

e =
∑

g∈Cgo

eχg
,

where the above equation is taken in Fqr [G]. The orbits of µq on G are called the qth
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cyclotomic cosets of G.

We will call the irreducible idempotent dg0 =
∑

g′∈C1
eχ1 = 1

|G|
∑

g∈G[g] which cor-

responds to the trivial cyclotomic coset C1 = {1} the trivial irreducible idempotent,

clearly a primitive idempotent in Fq[G].

It can be shown that if X = {Cgo
, . . . , Cgr

} are all the distinct µq orbits of G,

then X forms an Association Scheme. That is, if in Z[G] we let C ′
gi

=
∑

g∈Cgi
g, then

there are pki,j ∈ Z such that:

C ′
gi
∗ C ′

gj
=

r∑

k=0

pki,jC
′
gk
.

Thus, the algebra generated by X ′ = {C ′
go
, . . . , C ′

gr
} in Fq[G] is finite dimensional

of dimension r + 1. One can show that this subalgebra is also semisimple and has

as idempotents the primitive idempotents of Fq[G]. In particular, this shows that

primitive idempotents, and for that matter any idempotent, are constant on the qth

cyclotomic cosets of G. However, there is an easy way of seeing this. Let e be an

idempotent, then:

e = eq

= (
∑

g∈G
cg[g])

q

=
∑

g∈G
(cg)

q[gq]

=
∑

g∈G
cg[g

q]

= µq · e,

which says that µq is a multiplier of e. Thus, the coefficients of e are µq invariant; that

is, they are constant on the qth cyclotomic classes. Note also that Aut(G) induces

an action on the primitive idempotents of Fq[G]. We can show this by considering

a primitive idempotent dgi
=
∑

g∈Cgi
eχg

of Fq[G] ⊆ Fqr [G], where Fqr is a splitting

field for G. Consider:
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µ · dgi
= (

∑

g∈Cgi

µ · eχg
)

=
∑

g∈Cgi

(µ · eχg
),

where, eχg
= 1

|G|
∑

g′∈G χg((g
′)−1)[g′]. Thus,

µ · eχg
=

1

|G|
∑

g′∈G
χg((g

′)−1)[µ(g′)]

=
1

|G|
∑

g′∈G
χg((µ

−1(g′))−1)[g′]

=
1

|G|
∑

g′∈G
χg(µ

−1((g′)−1))[g′]

=
1

|G|
∑

g′∈G
(µ · χg)((g′)−1)[g′].

Define µ∗(χ)(g′) = (µ · χ)(g′). Note that µ∗(χ) is again an irreducible character

since µ ∈ Aut(G). One can show that µ∗ is an automorphism of the group of irre-

ducible characters, i.e., µ∗ ∈ Aut(Ĝ), and that the map µ→ µ∗ is an anti-isomorphism

from Aut(G) to Aut(Ĝ).

Clearly, µ · eχg
= eµ∗(χg), and

µ · dgi
=

∑

g∈Cgi

eµ∗(χg)

=
∑

g∈µ∗(Cgi
)

eχg
,

where µ∗(Cgi
) is defined in the following way: since µ∗ ∈ Aut(Ĝ), and {χg|g ∈ Cgi

}
form a cyclotomic coset in Ĝ, µ∗(Cgi

) denotes the cyclotomic coset in G corresponding

to the cyclotomic coset {µ∗(χg)|g ∈ Cgi
} in Ĝ.

We can be more precise on the definition of µ∗(Cgi
) by using the isomorphism
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η : G → Ĝ. Define µ̄ : G → G such that µ∗(χg) = χµ̄(g).
1 More precisely, µ̄ is

defined such that µ∗(η(g)) = η(µ̄(g)). Hence, µ̄(g) = η−1(µ∗(η(g))). Clearly, µ∗(Cgi
)

is µ̄(Cgi
) = Cµ̄(gi) by definition, therefore, µ · dgi

= dµ̄(gi).

Thus, µ · dgi
= dµ̄(gi) is a primitive idempotent and this shows that µ acts on

the primitive idempotents the same way µ̄ acts on the cyclotomic cosets. One can

show that the map µ → µ̄ is an isomorphism of Aut(G) of order two. So, given

σ ∈ Aut(G), there is a unique τ ∈ Aut(G) such that σ = τ̄ . Also, the action of µ on

the primitive idempotents is the same as the action of µ̄ on the cyclotomic cosets via

the correspondence established by η.

We will define X = {dg0 , dg1 , . . . , dgr
} as the set of all the primitive idempotents

of Fq[G]. Also, for given Y ⊂ X, we will define eY =
∑

dg∈Y dg as the idempotent

of Fq[G] that corresponds to Y . We note that the previous definition is exhaustive.

That is, given an idempotent e of Fq[G] there is Y ⊂ X such that e = eY .

Using the previous notation, one can show:

eX = 1,

e∅ = 0,

eX1 ∗ eX2 = eX1∩X2 , (2.1)

〈eX1 , eX2〉 = 〈eX1∪X2〉, (2.2)

µ · eX1 = eµ(X1), (2.3)

where X1 ⊂ X, X2 ⊂ X, and µ(X1) = {µ · dg = dµ̄(g) | dg ∈ X1}.

2.2 Abelian n-adic Codes

Definition 2.2.1. We will assume that n is a prime. An n-adic code is a pair e, µ

where e is an idempotent and µ ∈ Aut(G) satisfying Stab〈µ〉(e) = {µk|µk · e = e} =

1Clearly, µ̄ ∈ Aut(G).
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〈µn〉 and

〈e1, . . . , en〉 = Fq[G], (2.4)

〈e1〉 ∩ 〈e2〉 ∩ · · · ∩ 〈en〉 = 〈dg0〉 (2.5)

= 〈 1

|G|
∑

g∈G
[g]〉,

where ei = µi−1 · e. We will call µ the splitter of the code.

Definition 2.2.2. We will say that an n-adic code µ, e is “reduced” if 〈ei〉∩〈ej〉 = dg0

for all i, j.

Examples of n-adic codes are given by the Q-codes of Rushanan in [22], which are

n-adic codes where n = 2.

The main objective of this section is to solve the existence problem for abelian

n-adic codes in Fq[G]. This is is summarized by theorem 2.2.3.

Theorem 2.2.3. The following are true:

1. There is an n-adic code in Fq[G] if and only if there is an n-adic code in Fq[S]

for every sylow subgroup S of G.

2. There are no n-adic codes in Fq[G] when G is an n-group,

3. Let G be an s-group where (s, n) = 1. Let ts(k) = |µk| in Aut(Z/sZ). Then,

(a) Let s be an odd prime. Assume n divides s−1
tq(s)

, then there is an n-adic code

in Fq[G].

(b) Let s be an odd prime. Assume n does not divide s−1
tq(s)

, and G = (Z/sZ)π1×
(Z/s2Z)π2 × · · · × (Z/srZ)πr . Then,

i. If s = 1 modulo n there is an n-adic code in Fq[G] if and only if πi = 0

modulo n for all i.

ii. If s 6= 1 modulo n there is an n-adic code in Fq[G] if and only if ts(n)

divides πi for all i.
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(c) Let s = 2 be such that (2, n) = 1. Let G = (Z/sZ)π1 × (Z/s2Z)π2 × · · · ×
(Z/srZ)πr . There is an n-adic code in Fq[G] if and only if tn(2) divides πi

for all i.

We proceed to show existence conditions for n-adic codes. The next subsections

will take care of the individual cases of theorem 2.2.3.

2.2.1 Existence Criteria

We will show criteria for existence of n-adic codes that will be used in the proof of

theorem 2.2.3.

A direct consequence of the n-adic code definition is that the order of the splitter

|µ| in Aut(G) is divisible by n. We can show this by contradiction. If |µ| = n ∗ n′ + l

where l ∈ {1, . . . , n− 1}, then

e = µ|µ| · e

= µn∗n
′+l · e

= µl · e,

which contradicts the choice of n as the smallest power of µ such that µk · e = e.

Using equations (2.1) and (2.3), and the n-adic code definition, we can force

set conditions. Let e = eY for some Y ⊂ X where e, µ give an n-adic code, then

ei = µi−1 · e = eµi−1(Y ). Equations (2.1), (2.3), and (2.5) give the following:

dg0 = e1 ∗ · · · ∗ en

= eY ∗ eµ(Y ) ∗ · · · ∗ eµn−1(Y )

= eY ∩µ(Y )∩···∩µn−1(Y ).

Thus,

Y ∩ µ(Y ) ∩ · · · ∩ µn−1(Y ) = {dg0}. (2.6)
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Similarly, equations (2.2) and (2.4) give:

Y ∪ µ(Y ) ∪ · · · ∪ µn−1(Y ) = X. (2.7)

We can use the previous set conditions to deduce properties of the splitter µ.

Corollary 2.2.4. Let, e, µ give an n-adic code in Fq[G], then:

1. If there is a primitive idempotent d such that d ∗ µ = d then d = dg0 =

1
|G|
∑

g∈G[g].

2. If there is a cyclotomic coset such that µ̄(Cg) = Cg then Cg = {1}.

Proof. Both conclusions are equivalent, as the action of µ on the primitive idempo-

tents is the same as the action of µ̄ on the cyclotomic cosets and dg0 corresponds to

C1 = {1}. Only the first statement will be shown.

Let d be a primitive idempotent; then Equation (2.7) says that d ∈ µk(Y ) for

some k. That is, d = µk · d′ for some d′ ∈ Y . Suppose µ · d = d. Note that

µk+l · d′ = µl · (µk · d′) = µl · d = d which shows that d ∈ µk+l(Y ) for all l. That is,

d ∈ µl(Y ) for all l. Equation (2.6) forces d = dg0 .

We define mq(G) as the number of cyclotomic q cosets of G̃ = G\{1}.

Theorem 2.2.5. Let e, µ give an n-adic code in Fq[G] then:

1. The orbits of the action of µ̄ on the cyclotomic cosets of G̃ have length divisible

by n.

2. The number of cyclotomic q-cosets of G̃ is divisible by n. That is, mq(G) = 0

modulo n.

Proof. Clearly, part 2 is a consequence of part 1. Let e, µ give an n-adic code in

Fq[G]. Let Ω be an orbit of µ̄ on the cyclotomic cosets of G̃. Let |µ| = nl ∗ n1 where

(n, n1) = 1.2 Note that µ′ = µn1 has order nl. Clearly, (̄.) is an isomorphism of

2This is possible since n is prime.
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Aut(G), and |µ̄′| = |µ′| = nl. Since |µ̄′| = nl, all orbits of µ′ on Ω have size a power

of n.

It suffices to show that µ′ has no fixed points in Ω because then all orbits of µ′ on

Ω have size nl”, where l ≥ 1; that is, their length is divisible by n. Hence, Ω must

have size divisible by n.

Suppose µ′ has a fixed point in Ω, that is µ̄′(Cg) = Cg. We will show that e, µ′

gives another n-adic code. Clearly, (n, n1) = 1 implies

{0, 1, . . . , n− 1} = {0, n1, 2 ∗ n1, . . . , (n− 1) ∗ n1},

where the above equation is modulo n. Therefore,

{e, µ · e, . . . , µn−1 · e} = {e, µn1 · e, . . . , µn1∗(n−1) · e}. (2.8)

By using an arithmetic argument, we can show that n is the smallest power of µ′ such

that (µ′)n · e = e. Therefore,

Stab〈µ′〉(e) = 〈(µ′)n〉.

Equation (2.8) shows that

Fq[G] = 〈e, µ · e, . . . , µn−1 · e〉

= 〈e, µ′ · e, . . . , (µ′)n−1 · e〉,

〈dg0〉 = 〈e〉 ∩ 〈µ · e〉 ∩ · · · ∩ 〈µn−1 · e〉

= 〈e〉 ∩ 〈µ′ · e〉 ∩ · · · ∩ 〈(µ′)n−1 · e〉.

Hence, e, µ′ gives an n-adic code.

By corollary 2.2.4, Cg = C1 = {1}; however, this contradicts our choice of Ω which

is made of cyclotomic cosets of G̃ and 1 /∈ G̃.

Theorem 2.2.6. There is an n-adic code in Fq[G] if and only if there is σ ∈ Aut(G)

such that the orbits of σ on the cyclotomic cosets of G̃ have length divisible by n.
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Proof. Suppose there is an n-adic code in Fq[G] given by e, µ. By the proof of theorem

2.2.5, σ = µ̄′ has order nl and the orbits of σ on the cyclotomic cosets of G̃ have length

divisible by n.

Conversely, let σ be such that the orbits of σ on the cyclotomic cosets of G̃ have

length divisible by n. Let Ω1, . . . ,ΩN be the orbits of σ on the cyclotomic cosets of

G̃. Let Ωi = {Cgji,1
, . . . , Cgji,Ni

} where Ni is divisible by n and σ(Cgji,k
) = Cgji,k+1

where k is taken modulo Ni. Let

Ωj,k = {Cj,k, Cj,k+n, . . . , Cj,k+l∗n, . . . , Cj,k+(
Nj
n

−1)∗n}

where k + l ∗ n is taken modulo Nj and k ∈ {1, . . . , n}. Note that σ(Ωj,k) = Ωj,k+1

by construction, where k is taken modulo n.

Let dgi
=
∑

g∈Cgi
eχg

be the primitive idempotent corresponding to the cyclotomic

coset Cgi
. Choose µ ∈ Aut(G) such that µ̄ = σ. Define dj,k =

∑
Cg∈Ωj,k

dg. Since

the action of µ on the primitive idempotents is the same as the action of σ on the

cyclotomic cosets, and σ(Ωj,k) = Ωj,k+1, we have µ · dj,k = dj,k+1. Define ek =

dg0 + d1,k + d2,k,+ · · · + dN,k, then µ · ek = ek+1 and all {e1, . . . , en} are distinct by

construction.

Note that dj,k ∗ dj′,k′ = 0, unless j = j ′ and k = k′. Also, dj,k ∗ dg0 = 0. Hence,

e1 ∗ e2 ∗ · · · ∗ en = dg0 .

Also note that e1+· · ·+en−(n−1)e1∗· · ·∗en = 1. Thus, 〈e1, . . . , en〉 = 〈1〉 = Fq[G],

and 〈e1〉 ∩ · · · ∩ 〈en〉 = 〈dg0〉; therefore, e1, µ gives an n-adic code.

We observe that the constructed n-adic code e1, µ is also “reduced.”

As a corollary, we deduce that the “reduced” condition does not modify the solu-

tion to the existence problem for n-adic codes.

Corollary 2.2.7. Fq[G] allows an n-adic code if and only if Fq[G] allows a “reduced”

n-adic code.

Proof. (⇒). Let there be an n-adic code in Fq[G]; then by theorem 2.2.6, there is

σ ∈ Aut(G) such that the orbits of σ on the cyclotomic cosets of G̃ have length
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divisible by n. Applying theorem 2.2.6, once again, we can construct an n-adic code

in Fq[G] that is reduced.

(⇐) This is clear.

Theorem 2.2.8. There is an n-adic code in Fq[G] if and only if there is σ ∈ Aut(G)

such that |σ| = nl and σ fixes no cyclotomic coset of G̃.

Proof. Suppose there is an n-adic code in Fq[G] given by e, µ. Then by the proof of

theorem 2.2.5, σ = µ̄′ has order nl and σ fixes no cyclotomic coset of G̃.

Conversely, suppose σ ∈ Aut(G) such that |σ| = nl and σ fixes no cyclotomic

coset of G̃. Then, the orbits of σ on the cyclotomic cosets of G̃ have length divisible

by n. Using the same construction of the second part of the proof of theorem 2.2.6,

one can construct an n-adic code in Fq[G].

For the next sections, tk′(k) = |µk| in Aut((Z/k′Z)), will denote the multiplicative

order of k modulo k′.

Corollary 2.2.9. Let G = (Z/sZ) × · · · × (Z/sZ) ' (Z/sZ)r. If there is an n-adic

code in Fq[G], then mq(G) = sr−1
ts(q)

= 0 modulo n.

Proof. By theorem 2.2.5, it suffices to show that mq(G) = sr−1
ts(q)

. This will be done by

using the fundamental counting principle.

Define Ni = |{g ∈ G̃|µqi(g) = µiq(g) = g}|. Let t = ts(q), then

mq(G) =
1

t

t−1∑

i=0

Ni.

Clearly, N0 = sr−1. Note that Ni = 0 for i ∈ {1, . . . , t−1}; because, if µqi(g) = g

then (qi − 1) ∗ g = 0 in G. Thus qi − 1 = 0 modulo |g| = s. This contradicts the

choice of i. Thus, no g exists such that µqi(g) = g. Therefore,

mq(G) =
1

t
{(sr − 1) + 0 + · · · + 0}.
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Theorem 2.2.10. If there is an n-adic code in Fq[K] and in Fq[L] then there is an

n-adic code in Fq[K × L].

Proof. By theorem 2.2.8, it suffices to show that there is γ ∈ Aut(K × L) of order

|γ| = nl, and γ fixes no cyclotomic coset of K̃ × L. By theorem 2.2.8, there are σ ∈
Aut(K) and τ ∈ Aut(L) of orders |σ| = nl1 and |τ | = nl2 , where σ fixes no cyclotomic

coset of K̃ and τ fixes no cyclotomic coset of L̃. Consider γ(k, l) = (σ(k), τ(l)).

Clearly, |γ| = lcm(|σ|, |τ |) = lcm(nl1 , nl2) = nl. Let C(k,l) denote the cyclotomic coset

of K×L containing (k, l). Now, suppose γ(C(k,l)) = C(k,l) where C(k,l) is a cyclotomic

coset of K̃ × L; then, (σ(k), τ(l)) = γ(k, l) = µiq(k, l) = µqi(k, l) = (µqi(k), µqi(l)).

Thus, σ(k) = µqi(k) and τ(l) = µqi(l). Therefore, σ(Ck) = Ck and τ(Cl) = Cl. By

the choice of σ and τ , Ck = C1 and Cl = C1. Thus, C(k,l) = C(1,1) and this contradicts

the choice of C(k,l) since C(1,1) is not a cyclotomic coset of K̃ × L. Therefore, γ fixes

no cyclotomic coset of K̃ × L.

Theorem 2.2.11. Let e, µ give an n-adic code in Fq[G]. Suppose K ⊂ G is a subgroup

such that µ(K) = K. Then, there is an n-adic code in Fq[K] and Fq[G/K].

Proof. By theorem 2.2.5, the orbits of σ = µ̄ on the cyclotomic cosets of G̃ have

length divisible by n. Consider the restriction of σ to K. Since µ(K) = K, it can

be shown that µ̄(K) = K. Thus, σ ∈ Aut(K). Since σ(K) = K, the orbit of a

cyclotomic coset Ck of K is made up of cyclotomic cosets of K. By assumption of σ,

all orbits of σ on the cyclotomic cosets of K̃ have length divisible by n. By theorem

2.2.6, there is an n-adic code in Fq[K].

To show the other result, consider the epimorphism ρ : G → G/K which can be

extended to an algebra epimorphism ρ : Fq[G] → Fq[G/K]. As µ(K) = K, µ factors

through K to give φ ∈ Aut(G/K) defined by φ(gK) = µ(g)K. Note that φ has the

property ρ(µ · e) = φ · ρ(e) . Consider the pair e′ = ρ(e), φ; it will be shown that they

give an n-adic code in Fq[G/K]. As ρ is an epimorphisms of algebras, e′ = ρ(e) is
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clearly an idempotent. Since ρ(µi · e) = φi · ρ(e),

Fq[G/K] = 〈1〉

= 〈ρ(e), ρ(µ · e), . . . , ρ(µn−1 · e)〉

= 〈e′, φ · e′, . . . , φn−1 · e′〉.

Also, note that:

e′ ∗ (φ · e′) ∗ · · · ∗ (φn−1 · e′) = ρ(e) ∗ (ρ(µ · e)) ∗ · · · ∗ (ρ(µn−1 · e))

= ρ(e ∗ (µ · e) ∗ · · · ∗ (µn−1 · e))

= ρ(dg0)

= dg0 .

Thus, 〈e′〉 ∩ 〈φ · e′〉 ∩ · · · ∩ 〈φn−1 · e′〉 = 〈dg0〉.
It suffices to show that the smallest power of φ that fixes e′ is n. Clearly, µn ·e = e,

since φn ·e′ = φn ·ρ(e) = ρ(µn ·e) = ρ(e) = e′. Suppose that there is 1 ≤ k ≤ n−1 such

that φk · e′ = e′. Note that, since n is prime, (k, n) = 1; thus by choosing k ′ such that

k ∗k′ = n∗n1 +1, we have that e′ = φk∗k
′ ·e′ = φn∗n1+1 ·e′ = φ ·e′. In particular 〈e′〉 =

〈e′, φ · e′, . . . , φn−1 · e′〉 = 〈1〉 = Fq[G/K]. By uniqueness of idempotents generating

ideals in Fq[G/K], we have that e′ = 1 in Fq[G/K]. Thus, ρ(e) = 1 in Fq[G/K]

which forces e to be an idempotent of Fq[K] alone. Note that since µ(K) = K,

{e, µ · e, . . . , µn−1 · e} are idempotents of Fq[K]. Thus Fq[G] = 〈e, µ · e, . . . , µn−1 · e〉
is a subideal of Fq[K]. This is a contradiction; therefore, φ · e′ cannot equal e′. Thus,

no such k exists. Therefore, n is the smallest power of φ that fixes e′.

Theorem 2.2.11 can be applied to any characteristic subgroup. In particular, it

can be applied to the sylow subgroups of G, since these are characteristic as G is

abelian. Thus, theorems 2.2.10 and 2.2.11 yield the following corollary.

Corollary 2.2.12. There is an n-adic code in Fq[G] if and only if there is an n-adic

code in Fq[S] for every sylow subgroup S of G.
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And also,

Corollary 2.2.13. Let s be a prime and let (s, q) = 1. If there is an n-adic code in

Fq[Z/srZ], then there is an n-adic code in Fq[Z/sZ].

Proof. Let G(1) = 〈s〉 ⊂ (Z/srZ). Clearly, G(1) is a characteristic subgroup of Z/srZ.

By applying theorem 2.2.10 to L = (Z/srZ)/G(1) ' Z/sZ, the conclusion follows.

Corollary 2.2.12 reduces the existence problem to s-groups, where s is a prime.

We will see that the existence problem in s-groups has different answers depending

on s.

2.2.2 Existence in n-groups

For this section, we will let G = (Z/nZ)π1 × · · · × (Z/nrZ)πr be an n-group. We will

show that there are no n-adic codes in Fq[G].

Lemma 2.2.14. If G = (Z/nZ)π1, then there are no n-adic codes in Fq[G].

Proof. By corollary 2.2.9, mq(G) = nπ1−1
tn(q)

= 0 modulo n. Note that modulo n we

have:

nπ1 − 1

tn(q)
=

n− 1

tn(q)
{1 + n+ · · · + nπ1−1}

=
n− 1

tn(q)

6= 0.

This is a contradiction. Thus, there cannot be an n-adic code in Fq[G].

Theorem 2.2.15. Let G = (Z/nZ)π1 × · · · × (Z/nrZ)πr be an abelian n-group, then

there are no n-adic codes in Fq[G].

Proof. Define G(i) = {g ∈ G | |g| divides ni}. Clearly, G(i) is a characteristic sub-

group of G. Suppose there is an n-adic code in Fq[G]. Consider L = G/G(r−1) '
(Z/nZ)πr . By theorem 2.2.11, there is an n-adic code in Fq[L]. This contradicts

lemma 2.2.14.
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2.2.3 Existence in s-groups with (s,n) = 1

The existence problem depends on the value of s modulo n and on the parity of s

modulo 2. The parity of s modulo 2 is important, since (Z/srZ)∗ is not cyclic when

s = 2, whereas it is when s is an odd prime. Because of this, the proofs have to be

modified. We note that by the previous section, we can assume that s 6= n.

2.2.3.1 Existence in s-groups, (s,2) = 1

First, we will consider G = Z/sZ. Let t = ts(q).

Theorem 2.2.16. There is an n-adic code in Fq[Z/sZ] if and only if s−1
t

= mq(Z/sZ) =

0 modulo n.

Proof. Suppose there is an n-adic code in Fq[Z/sZ], then by theorem 2.2.5 we have

mq(Z/sZ) = 0 modulo n. Note that by corollary 2.2.9 we have s−1
t

= mq(Z/sZ).

Conversely, suppose N = s−1
t

= n ∗ n1 is divisible by n. Let {Cg1 , . . . , CgN
} be

all the cyclotomic cosets of G̃. By theorem 2.2.6, it suffices to find σ ∈ Aut(G) such

that the orbits of σ on the cyclotomic cosets of G̃ have length divisible by n. It will

be shown that σ = µl, where Aut(Z/sZ) = (Z/sZ)∗ = 〈µl〉 will do the job.

Consider, H = 〈µl〉
〈µq〉 = (Z/sZ)∗

〈q〉 = 〈l〉
〈q〉 . Note that every coset of H is a cyclotomic

coset. This can be seen by considering,3

Cg = {[g], [g ∗ q], . . . , [g ∗ qt−1]}

= µg({[1], [q], . . . , [qt−1]})

= µg(〈µq〉).

Since H is cyclic and generated by µl, this shows that µl acts transitively on the

cosets of H. Thus, µl acts transitively on the cyclotomic cosets of G̃. Therefore, the

action of µl on the cyclotomic cosets of G̃ is one orbit of length N . Since N = 0

modulo n, the conclusion follows.

Now, we consider G = Z/srZ.

3We remind the reader that in G = Z/sZ, 1 = [0] since G is written additively and 1 6= [1].
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Theorem 2.2.17. There is an n-adic code in Fq[Z/srZ] if and only if there is an

n-adic code in Fq[Z/sZ].

Proof. Suppose there is an n-adic code in Fq[Z/srZ], then by corollary 2.2.13 there

is an n-adic code in Fq[Z/sZ].

Conversely, suppose there is an n-adic code in Fq[Z/sZ]. Let G = Z/srZ. Since

s 6= 2, Aut(G) = 〈µl〉 is cyclic. Following the same construction as in the proof of

theorem 2.2.16, we will show that the action of µl on the cyclotomic cosets of G̃ has

orbits of length divisible by n.

Define Si = {g ∈ G̃ | g = sr−i ∗ g1, (g1, s) = 1}. Clearly, Si is a characteristic

subset of G. Thus, Si is the union of cyclotomic cosets of G̃. Also, G̃ = S1 ∪ · · · ∪Sr.
Define Ni to be the number of cyclotomic cosets of Si. First, we will calculate

Ni = si−1(s−1)
t
si (q)

. Second, we will show that µl acts transitively on the cyclotomic cosets

of Si and that Ni is divisible by n if and only if N1 is divisible by n. By theorem

2.2.16, N1 = s−1
ts(q)

is divisible by n. Hence, this will show that the action of µl on the

cyclotomic cosets G̃ is made up of r orbits, each orbit of length Ni where all Nis are

divisible by n. By theorem 2.2.6, the conclusion will follow.

Let Aut(Zsi) = (Z/siZ)∗ be the units of the ring Z/siZ. Define Hi = (Z/siZ)∗

〈µq〉 and

Ki = (Z/siZ)∗. Consider Cg a cyclotomic coset of Si. Then, g = sr−i ∗ g1, where

(g1, s) = 1. Note that we think of g1 as a unit in Z/siZ. Consider,

Cg = {[sr−i ∗ g1], [s
r−i ∗ g1 ∗ q], . . . , [sr−i ∗ g1 ∗ qtsi (q)−1]}

= µsr−i(µg1({[1], [q], . . . , [qtsi (q)−1]}))

= µsr−i(µg1〈µq〉).

The above implies that Cg is the image under µsr−i of a coset of Hi. This shows

that the number of cyclotomic cosets of Si is the order of Hi. The order of Hi can be
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calculated directly as:

|Hi| =
|(Z/siZ)∗|
|〈µq〉|

=
si−1(s− 1)

tsi(q)
.

Since µl generates (Z/srZ)∗, it also generates (Z/siZ)∗ for every 1 ≤ i ≤ r.4 Thus,

µl acts transitively on the cosets of Hi and therefore on the cyclotomic cosets of Si.

Now we show that |Hi| is divisible by n if and only if |H1| is divisible by n. This

will show that Ni is divisible by n if and only if N1 is divisible by n, and the proof

will be finished.

Lemma 2.2.18. q is an n-adic residue modulo s if and only if q is an n-adic residue

modulo si for every i.5

Proof. This is a result from Number Theory and can be shown in the following way.

Clearly, if q is an n-adic residue modulo si, then it is an n-adic residue modulo s.

Conversely, suppose q is an n-adic residue modulo s. Consider the equation:

Xn − q = 0, (2.9)

in the s-adic numbers Qs, where s is a prime. Since q is an n-adic residue modulo

s, Equation (2.9) has a solution in the residue field Zs/(sZs) = Fs of Qs.
6 Note that

f(x) = xn − q has no double roots in Fs as f ′(x) = n ∗ xn−1 and (f(x), f ′(x)) = 1

in Fs[x]. Thus, f(x) = (x − xo)g(x), where xo ∈ Fs; and g(x) ∈ Fs[x], where

(g(x), x − xo) = 1 in Fs[x]. By Hensel’s lemma, this factorization can be lifted to

a factorization in Zs[x]. That is, there is Xo ∈ Zs and h(x) ∈ Zs[x] such that:

f(x) = (x −X0)h(x), x −Xo = x − xo mod sZs[x]; where, h(x) = g(x) mod sZs[x].

Thus, Xn = q has a solution in the s-adic integers, namely Xo. Through the canonical

projection from Zs → Zs/(s
iZs) = Z/siZ, we find a solution of Xn = q in Z/siZ.

4µl when viewed as an element of (Z/siZ)∗ is basically µlo where l = lo modulo si (1 ≤ lo ≤ si−1).
5q is an n-adic residue modulo si if and only if there is x ∈ Z/siZ such that xn = q mod si.
6Here, Zs denotes the s-adic integers.
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Thus, q is an n-adic residue modulo si.

Let Ki = (Z/siZ)∗. Suppose that |Hi| = si−1(s−1)
t
si (q)

is divisible by n. Note that,

since (s, n) = 1 and n divides |Hi| = si−1(s−1)
t
si (q)

, we have that n divides s−1
t
si (q)

. In

particular, n divides s− 1; therefore, n divides |Kj| = sj−1(s− 1) for all j.

Since Kj is cyclic and n divides |Kj|, we have that
Kj

Kn
j

= Z/nZ, where Kn
j = {g ∈

Kj | xn = g, for some x ∈ Kj}.7 Therefore, we have the following lemma.

Lemma 2.2.19. If n divides |Hi| for some i, then n divides |Kj| for all j and Ki

Kn
i

=

Z/nZ.

Now we are ready to prove our final claim.

Lemma 2.2.20. The order of Hi is divisible by n if and only if the order of H1 is

divisible by n.

Proof. Suppose |Hi| is divisible by n. By lemma 2.2.19, n divides |Kj| and
Kj

Kn
j

= Z/nZ

for all j.

Since Ki is cyclic, we can apply the following claim to Ki that we include without

proof.

Claim 2.2.21. Suppose H,K are subgroups of a cyclic group G. If |H| divides |K|
then H ⊂ K.

Consider,

|〈µq〉| ∗ |Hi| = |Ki|

=

∣∣∣∣
Ki

Kn
i

∣∣∣∣ ∗ |Kn
i |

= n ∗ |Kn
i |.

Since n divides |Hi|, this forces |〈µq〉| to divide |Kn
i |. By claim 2.2.21, we have that

〈µq〉 ⊂ Kn
i . In particular, q is an n-adic residue modulo si.

7In general, if G is cyclic of order m, then G/Gn = Z/(n,m)Z.
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By lemma 2.2.18, q is an n-adic residue modulo s. Thus µq ∈ Kn
1 . Consider:

|H1| =

∣∣∣∣
K1

〈µq〉

∣∣∣∣

=

∣∣∣∣
K1

Kn
1

∣∣∣∣ ∗
∣∣∣∣
Kn

1

〈µq〉

∣∣∣∣

= n ∗
∣∣∣∣
Kn

1

〈µq〉

∣∣∣∣ .

Thus, n divides |H1|.
Conversely, suppose n divides |H1|. By lemma 2.2.19, we have that n divides Kj

and
Kj

Kn
j

= (Z/nZ) for all j. By considering,

|〈µq〉| ∗ |H1| = |K1|

=

∣∣∣∣
K1

Kn
1

∣∣∣∣ ∗ |Kn
1 |

= n ∗ |Kn
1 |,

one can conclude that |〈µq〉| divides |Kn
1 | since n divides |H1|. Thus, q is an n-adic

residue modulo s by claim 2.2.21 about cyclic groups. By lemma 2.2.18, q is an n-adic

residue modulo si. Using the same argument as above, by considering the equation:

|Hi| =

∣∣∣∣
Ki

〈µq〉

∣∣∣∣

=

∣∣∣∣
Ki

Kn
i

∣∣∣∣ ∗
∣∣∣∣
Kn
i

〈µq〉

∣∣∣∣

= n ∗
∣∣∣∣
Kn
i

〈µq〉

∣∣∣∣ ,

we conclude that n divides Hi.

Now we consider general s-groups. Let G = (Z/sZ)π1 × · · · × (Z/srZ)πr . Note

that if mq(Z/sZ) = s−1
ts(q)

= 0 modulo n, then by theorem 2.2.16 there is an n-adic

code in Fq[Z/sZ]. By theorem 2.2.17, there is an n-adic code in Fq[Z/srZ], for all r.

By theorem 2.2.10, there is an n-adic code in Fq[G]. Thus we have:
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Corollary 2.2.22. If mq(Z/sZ) = 0 modulo n and G = (Z/sZ)π1 × · · · × (Z/srZ)πr

is an s-group with (s, n) = 1, s odd, then there is an n-adic code in Fq[G].

However, what happens whenmq(Z/sZ) 6= 0 modulo n? This is answered partially

by the following theorem.

Theorem 2.2.23. Suppose mq(Z/sZ) 6= 0 modulo n, (s, n) = 1, and s an odd prime.

If there is an n-adic code in G = (Z/sZ)π1 × · · · × (Z/srZ)πr , then either:

1. If s = 1 modulo n, then πk = 0 modulo n for all k,

2. If s 6= 1 modulo n, then tn(s) divides πk for all k.

Proof. Consider the case G = (Z/sZ)π1 . Suppose there is an n-adic code in Fq[G].

By theorem 2.2.5, sπ1−1
ts(q)

= mq(G) = 0 modulo n. Thus, s−1
ts(q)

{1 + s + · · · + sπ1−1} =

sπ1−1
ts(q)

= 0 modulo n. Since s−1
ts(q)

6= 0 modulo n and n is a prime, we can divide by

s−1
ts(q)

in the previous equation to get 1 + s+ · · · + sπ1−1 = 0 modulo n. Thus, if s = 1

modulo n, this implies π1 = 0 modulo n. If s 6= 1 modulo n, this implies sπ1−1
s−1

= 0

modulo n forcing sπ1 = 1 modulo n. That is, tn(s) divides π1.

Now consider the general case G = (Z/sZ)π1 ×· · ·× (Z/srZ)πr , and suppose there

is an n-adic code in Fq[G]. Define the following groups:

G(i) = {g ∈ G | | |g| divides si},

G(i) = {si ∗ g | |g ∈ G}.

Clearly, G(i), G
(i) are characteristic subgroups of G. Note that L = G

G(n−1)
'

(Z/sZ)πr . By theorem 2.2.11, Fq[L] has an n-adic code. Thus, πr satisfies one of the

conclusions of the previous case.

Suppose that: πi+1, . . . , πr are known to be divisible by n, if s = 1 modulo n; or

they are known to be divisible by tn(s), if s 6= 1 modulo n. Consider K = G
G(i−1)

=

(Z/sZ)πi × · · · × (Z/sr−i+1Z)πr . By theorem 2.2.11, there is an n-adic code in Fq[K].

Consider H = K
K(1) = (Z/sZ)πi+···+πr , by theorem 2.2.11, Fq[H] has an n-adic code.

Thus, πi + · · · + πr is divisible by n, if s = 1 modulo n; or, it is divisible by tn(s), if
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s 6= 1 modulo n. Clearly, this forces πi to be divisible by n, if s = 1 modulo n; or, to

be divisible by tn(s), if s 6= 1 modulo n.

Inductively, all πi are divisible by n, if s = 1 modulo n; or, they are all divisible

by tn(s), if s 6= 1 modulo n.

The following results are the converse to the above.

Theorem 2.2.24. Suppose mq(Z/sZ) 6= 0 modulo n, (s, n) = 1, and s is an odd

prime. Let G = (Z/sZ)π1 × · · · × (Z/srZ)πr where πk is divisible by n for all k, and

s = 1 modulo n. Then, there is an n-adic code in Fq[G].

Proof. It suffices to show that: there is an n-adic code in Fq[G] where G = (Z/srZ)×
· · · × (Z/srZ) = (Z/srZ)n, and r is arbitrary. The conclusion will follow by theorem

2.2.10.

So, let G = (Z/srZ)n. Consider τ ∈ Aut(G) defined by τ(a1, . . . , an) = (q ∗
an, a1, . . . , an−1). Note that τn = µq in Aut(G). It will be shown that the orbits of τ

on the cyclotomic cosets of G̃ have length n. The result will follow by theorem 2.2.6.

Since τn = µq, we have that for any cyclotomic coset C(a1,...,an):

τn(C(a1,...,an)) = C(a1,...,an).

If there is a cyclotomic coset C(a1,...,an) of G̃ whose orbit under τ has length less

than n, then there is 1 ≤ k ≤ n − 1 such that τ k(C(a1,...,an)) = C(a1,...,an). Since n is

prime, we can find 1 ≤ k1 ≤ n− 1 such that k ∗ k1 = 1 +n ∗n1. Thus, τ(C(a1,...,an)) =

τn∗n1+1(C(a1,...,an)) = τ k∗k1(C(a1,...,an)) = C(a1,...,an). Therefore, τ fixes C(a1,...,an). Hence,

there is l such that (q ∗an, a1, . . . , an−1) = τ(a1, . . . , an) = µql(a1, . . . , an). This forces

the equations modulo sr:

q ∗ a1 = ql ∗ an,

a2 = ql ∗ a1,

...

an = ql ∗ an−1.
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From these, we can deduce an = ql∗n−1 ∗ an modulo sr. Note that if an = 0 modulo

sr, then by the above equations ai = 0 modulo sr for all i. Thus, we can assume

an = sr−i∗a′n, where (a′n, s) = 1. Hence, we can deduce that a′n = ql∗n−1∗a′n modulo si

which gives 1 = ql∗n−1 modulo si. Thus, tsi(q) divides l ∗n− 1 which forces tsi(q) 6= 0

modulo n.

However, we will deduce that tsi(q) = 0 modulo n, for all i, from our assumptions.

This will show a contradiction and will show that n is the smallest power of τ that

fixes C(a1,...,an). Therefore, the conclusion will follow.

Using the notation of the proof of theorem 2.2.17, |H1| = | (Z/sZ)∗

〈µq〉 | = s−1
ts(q)

6= 0

modulo n. The proof of theorem 2.2.17 shows that |H1| 6= 0 modulo n if and only if

|Hi| 6= 0 modulo n. Thus |Hi| = si−1(s−1)
t
si (q)

6= 0 modulo n. Since s = 1 modulo n, the

following equation modulo n:

0 = si−1(s− 1)

=
si−1(s− 1)

tsi(q)
tsi(q)

= |Hi|tsi(q),

forces tsi(q) = 0 modulo n.

Theorem 2.2.25. Suppose mq(Z/sZ) 6= 0 modulo n, (s, n) = 1, and s is an odd

prime. Let G = (Z/sZ)π1 × · · · × (Z/srZ)πr , where πk is divisible by tn(s) for all k

and s 6= 1 modulo n. Then, there is an n-adic code in Fq[G].

Proof. It suffices to show that there is an n-adic code in Fq[G] where G = (Z/srZ)×
· · ·×(Z/srZ) = (Z/srZ)tn(s), and r is arbitrary. The conclusion will follow by theorem

2.2.10.

Let k = tn(s). Consider an unramified extension K = Qs(β) of Qs of degree k.8

Let OK be the ring of integers of K. As K is unramified, s is the uniformizer of OK .

By Hensel’s Lemma, OK has all the (sk−1)th roots of unity. In particular, OK has an

8Qs are the s-adic numbers.
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nth root of unity, call it α ∈ OK . Note that OK/s
rOK = (Z/srZ)×· · ·×(Z/srZ) = G

as abelian groups under addition. If µq is a numerical multiplier of G, then µq acting

on OK/s
rOK is given by µq(x + srOK) = qx + srOK . Thus, a q-cyclotomic coset in

OK/s
rOK is a set of the form {x+ srOK , qx+ srOK , q

2x+ srOK , . . . , q
lx+ srOK}.

Consider the map µ(x + srOK) = αx + srOK , µ lifts to an automorphism of G.

Note that µ has order n as α is an nth root of unity. We claim that µ fixes no

cyclotomic coset of (OK/s
rOK)\srOK = G̃. Since µ has prime order, it will follow

that all orbits of µ on the cyclotomic cosets of G̃ have length n. Hence, by theorem

2.2.6, there is an n-adic code in Fq[G].

Suppose there was x + srOK such that µ(x + srOK) = qlx + srOK . Then, αx =

qlx+ sry for some x, y ∈ OK . As x+ srOK is non trivial, the s-valuation of x is 0 ≤
vs(x) ≤ r−1. Thus, x = svs(x)x′, where x′ is a unit. Therefore, α = ql+sr−vs(x)y(x′)−1.

Since 1 ≤ r − vs(x), we have α = ql mod sOK . Since α maps to a nontrivial nth

root of unity in the residue field, we have that ts(q) does not divide l. However,

1 = αn = qln mod sOK . Thus, ts(q) divides ln. This forces n to divide ts(q).

Consider: s − 1 = ts(q)
s−1
ts(q)

= 0 mod n. This contradicts the assumption that

s 6= 1 mod n.

2.2.3.2 Existence in 2-groups with (2,n) = 1

Theorem 2.2.26. There are no n-adic codes in Fq[Z/2rZ].

Proof. Note that C = {2r−1} is fixed by all µ ∈ Aut(Z/2rZ).9 In particular, C is a

cyclotomic coset of Z̃/2rZ that is fixed by all µ ∈ Aut(Z/2rZ). Thus, for any µ, the

orbit of C under µ has length 1. In particular, the length of the orbit of C under µ

cannot be divisible by n, where n is an odd prime. This contradicts theorem 2.2.5.

Theorem 2.2.27. If there is an n-adic code in G = (Z/2Z)π1 ×· · ·× (Z/2rZ)πr , then

tn(2) divides πk for all k.

Proof. This proof is similar to the proof of theorem 2.2.23.

9µ ∈ Aut(Z/2rZ) if and only if µ = µl where l is odd. That C is fixed by µl is a trivial calculation.
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Theorem 2.2.28. Let G = (Z/2Z)π1 × · · · × (Z/2rZ)πr where πk is divisible by tn(2)

for all k. Then, there is an n-adic code in Fq[G].

Proof. Proceed as in theorem 2.2.25. It suffices to show the theorem for G =

(Z/2rZ) × · · · × (Z/2rZ) = (Z/2rZ)tn(2), where r is arbitrary. The result will fol-

low by theorem 2.2.10.

Let k = tn(2), and consider an unramified extension K = Q2(β) of Q2 of degree

k.10 Let OK be the ring of integers of K. As K is unramified, 2 is the uniformizer

of OK . By Hensel’s Lemma, OK has all the (2k − 1)th roots of unity. In particular,

OK has an nth root of unity, call it α ∈ OK . Note that OK/2
rOK = (Z/2rZ) ×

· · · × (Z/2rZ) ' G as abelian groups under addition. If µq is a numerical multiplier

of G, then µq acting on OK/s
rOK is given by µq(x + 2rOK) = qx + 2rOK . Thus,

a q-cyclotomic coset in OK/2
rOK is a set of the form {x + 2rOK , qx + 2rOK , q

2x +

2rOK , . . . , q
lx+ 2rOK}.

Consider the map µ(x + 2rOK) = αx + 2rOK , µ lifts to an automorphism of G.

Note that µ has order n, as α is an nth root of unity. We claim that µ fixes no

cyclotomic coset of (OK/2
rOK)\2rOK = G̃. Since µ has prime order, it will follow

that all orbits of µ on the cyclotomic cosets of G̃ have length n. Hence, by theorem

2.2.6, there is an n-adic code in Fq[G].

Suppose there was x+ 2rOK such that αx+ 2rOK = µ(x+ 2rOK) = qlx+ 2rOK .

Thus, there is y ∈ OK such that αx = qlx + 2ry. Since x + OK is a nontrivial class,

the 2 valuation of x is 0 ≤ v2(x) ≤ r − 1. Note that there is a unit xo such that

x = 2v2(x)xo. Thus, α = ql + 2r−v2(x)yx−1
o . Since 1 ≤ r − v2(x), we have that α = ql

mod 2OK . Thus, α = ql in the residue field. As q is an odd prime ((q, |G|) = 1), we

have that q = 1 in F2k . Thus, α = 1 in the residue field. This is a contradiction since

α maps to a nontrivial nth root of unity in the residue field.

10Q2 is the 2-adic numbers.
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2.3 Duadic Code Generalizations and n-adic Codes

We will recall the definitions of the generalizations of Duadic Codes by previous

authors and then show equivalence results between these and n-adic codes.

The history of Duadic Codes starts with a generalization of the cyclic Quadratic

Residue Codes by Rushanan in [22], and by Pless and Rushanan in [21]; whom,

introduced the notion of Generalized Q-Codes given by:

Definition 2.3.1. Let e1 and e2 be two idempotents of Fq[G] and µ ∈ Aut(G) such

that the following two equations hold:

e2 = µ · e1,

e1 + e2 − 1 =
1

|G|
∑

g∈G
g.

The four codes: C1 = 〈e1〉, C ′
1 = 〈1 − e2〉, C2 = 〈e2〉, C ′

2 = 〈1 − e1〉 are the Generalized

Q-Codes defined by e1, e2, and µ.

GeneralizedQ-codes then became known as Duadic Codes in the literature. Duadic

Codes were first studied in the cyclic binary case. Since their introduction there have

been various generalizations with respect to:

1. parity of the characteristic of the field,

2. number of idempotents used,

3. the cyclic and noncyclic abelian case.

The following is a history of these generalizations:

The Duadic Even Characteristic, by Rushanan in [22]. These are codes in

Fq[G] where G is an arbitrary abelian group, q is even, and 2 idempotents are used

in its definition.

The Duadic Odd Characteristic, by Smid in [25]. These are codes in Fq[Z/nZ]

where q is odd and 2 idempotents are used in its definition.
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The Triadic Codes, by Pless and Rushanan in [21]. These are codes in Fq[Z/nZ]

where q is even and 3 idempotents are used in its definition.

The Polyadic Codes, by Brualdi and Pless in [4]. These are codes in Fq[Z/nZ]

and m idempotents are used in its definition.

The m-adic Polyadic Codes, by Ling and Xing in [18]. These are codes in Fq[G]

where G is a general abelian group and m idempotents are used in its definition.

Cyclic Triadic Codes were introduced by Pless and Rushanan in [21] to generalize

Duadic Codes with respect to the number of idempotents. The following is their

definition.

Definition 2.3.2. Let e1, e2, e3 be three even-like idempotents in Fq[Z/nZ] where

(n, q) = 1 and:

1. There is a coordinate permutation µb, where µb ∈ Aut(G), such that: µb · e1 =

e2, µb · e2 = e3, µb · e3 = e1.

2. The idempotents satisfy

e1 + e2 + e3 − 2e1e2e3 = 1 − 1

n

∑

g∈G
g.

Then, e1, e2 are called even-like Triadic Codes.

Definition 2.3.3. A Triadic Code is called “reduced” if eiej = 0 whenever i 6= j.

Cyclic Triadic Codes were later generalized further by Brualdi and Pless in [4] by

introducing the concept of Cyclic Polyadic Codes.

Definition 2.3.4. Let m be an integer with m ≥ 2. A Cyclic Polyadic Code or

an m-adic family of even-like codes of class I (over GF (q) of length n) is a family

C0, C1, . . . , Cm−1 of distinct cyclic even-like codes satisfying:

1. There exist an integer a, where gcd(a, n) = 1, such that µa cyclically permutes:

C0, C1, . . . , Cm−1.
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2. There exist a cyclic code F of V = (GF (q))n such that Ci ∩ Cj = F , for all

i 6= j.

3. 〈C0, C1, . . . , Cm−1〉 = 〈dg0〉, where dg0 = 1
|G|
∑

g∈G ρ(g), G = (Z/nZ), and ρ is

the left regular representation of G onto GL(V ) with V = (GF (q))n.

Definition 2.3.5. If C0, . . . , Cm−1 is an m-adic polyadic family of even-like cyclic

codes of class I, then we will call this family “reduced” if Ci ∩ Cj = {0} for all i, j.

Just recently, Ling and Xing in [18] have introduced a generalization of Cyclic

Polyadic Codes from the cyclic case to the case of an arbitrary abelian group G.

These new codes, called m-adic Polyadic Codes, are defined by first introducing the

notion of an m-splitting.

Definition 2.3.6. Let G be an abelian group and X∞ 6= φ a subset of G. An m-

splitting of G over X∞ is an (m+ 1)-tuple (X∞, X0, . . . , Xm−1) such that:

1. Each Xi is a the union of q-cyclotomic cosets of G, where q is a power of a

prime.

2. The sets X∞, X0, . . . , Xm−1 form a partition of G, i.e.,

G = X∞ ∪X0 ∪ · · · ∪Xm−1.

3. There exists µs ∈ Aut(G), i.e., there is an s with gcd(s, exp(G)) = 1, such that

µs(X∞) = X∞ and µs(Xi) = Xi+1 for all 0 ≤ i ≤ m − 1, where the subscripts

are taken modulo m.

Definition 2.3.7. Let (X∞, X0, . . . , Xm−1) be an m-splitting of G over X∞ and X ′
∞ =

X∞\{0}. For any subset of X of G, define the ideal in Fq[G] induced by X as

IX = {c ∈ Fq[G] | ĉx = 0,∀x ∈ X},
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where

ĉx =
∑

g∈G
χx(g)cg,

χx = θ(x) where θ : G→ Ĝ,

for some noncanonical isomorphism θ. Alternatively, using the language of primitive

idempotents, we define IX as

IX = 〈e∼X〉.

Any of the following four families of codes given by the m-splitting are referred as an

m-adic Polyadic Code in Fq[G]:

1. (Class I). C1, . . . , Cm−1 where Ci = I∼(X′
∞∪Xi),

2. (Class II). Ĉ1, . . . , Ĉm−1 where Ĉi = IX′
∞∪Xi

,

3. (Class III). D1, . . . , Dm−1 where Di = IX∞∪Xi
,

4. (Class IV). D̂1, . . . , D̂m−1 where D̂i = I∼(X∞∪Xi).

Definition 2.3.8. We will call any m-adic Polyadic Code “reduced” if X∞ = {0}.

We proceed to show that the codes of Ling and Xing generalize all Duadic gener-

alizations done by Brualdi, Rushanan and Pless.

Proposition 2.3.9. The following hold:

1. A Cyclic Triadic Code is a 3-adic Polyadic Code of Class I in the sense of Ling

and Xing.

2. A Cyclic Polyadic Code given by an m-adic family of even-like codes is an m-

adic Polyadic Code of Class I in the sense of Ling and Xing.

Proof. We recall a fact that can be found in the work of Pless and Rushanan in [21].

to prove the first assertion.
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Claim 2.3.10. If e1, e2, e3 is a Triadic Code then eiej = e1e2e3 for all i, j.

Using the notation of primitive idempotents, let ei = eYi
. The equation eiej =

e1e2e3 reduces to:

Yi ∩ Yj = X ′
∞,

where X ′
∞ is some fixed subset of G.

Let Xi = Yi\X ′
∞ and X∞ = X ′

∞ ∪ {0}, then clearly

(X∞, X1, X2, X3),

is a 3-splitting of G and the codes given by I∼(X′
∞∪Xi) = 〈eX′

∞∪Xi
〉 = 〈eYi

〉 are a family

of 3-adic Polyadic Codes of Class I in the sense of Ling and Xing.

The second assertion uses a similar construction.

We will show that Abelian n-adic Codes generalize Duadic Codes and intersect

the other Duadic Generalizations under the “reduced” condition. Before we state the

equivalence result: we note that for an n-adic code e, µ to exist, it is necessary to

assume that e be an oddlike idempotent. Otherwise, if dg0e = 0, we would have

0 = dg0e(µ · e)(µ2 · e) · · · (µn−1 · e)

= dg0dg0

= dg0 ,

which is a contradiction. Thus, we assume that all n-adic codes are given by oddlike

idempotents.

Proposition 2.3.11. The following equivalences are true:

1. An oddlike Duadic code is a 2-adic code.

2. A 2-adic code is an oddlike Duadic code.

3. If (µ, e) is a “reduced” Triadic Code, then (µ, e+dg0) is a “reduced” 3-adic code.
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4. If (µ, e) is a “reduced” 3-adic code, then (µ, e−dg0) is a “reduced” Triadic Code.

5. If (µ, 〈e0〉, . . . , 〈em−1〉) is a “reduced” Cyclic Polyadic Code in the sense of

Brualdi and Pless and m is a prime, then (µ, 〈e0 + dg0〉) is a “reduced” m-adic

code.

6. If (µ, e0) is a “reduced” n-adic code and G = (Z/nZ) is cyclic, then

(µ, 〈e0 − dg0〉, . . . , 〈en−1 − dg0〉)

is a “reduced” Cyclic Polyadic Code in the sense of Brualdi and Pless.

7. If (µ,C0 = 〈e0〉, . . . , Cm−1 = 〈em−1〉) is a “reduced” m-adic Polyadic Code of

Class IV and m is a prime, then (µ, 〈e0〉, . . . , 〈em−1〉) is a “reduced” m-adic

code.

8. If (µ, e0) is a “reduced” m-adic code, where is m a prime, then (µ, e0) is a

“reduced” m-adic Polyadic Code of Class IV.

Proof. We proceed to show each part separately.

Part 1. Let e1, e2 = µ · e1, µ be a Duadic Code in Fq[G]. Clearly, the following

equations hold:

e2 = µ · e1,

e1 + e2 − 1 = dg0 .

To show that e1, e2, µ forms a 2-adic code, we must show that:

〈e1, e2〉 = Fq[G],

〈e1〉 ∩ 〈e2〉 = 〈dg0〉.
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Suppose that Fq has odd characteristic. Consider:

1 + 3dg0 = (1 + dg0)
2

= (e1 + e2)
2

= e1 + e2 + 2e1e2

= (e1 + e2 − 1) + 1 + 2e1e2

= dg0 + 1 + 2e1e2.

Thus 2dg0 = 2e1e2. Hence, e1e2 = dg0 . Therefore, it follows that e1, e2, µ is a

2-adic code.

Now, suppose that Fq has even characteristic. Let e1 = eX1 , e2 = eX2 and dg0 =

e{0}. Clearly, because the characteristic is even, eX1 + eX2 = eX14X2 . Thus:

eX14X2 = eX1 + eX2

= 1 + dg0

= eX + e{0}.

Therefore, X14X2 = X4{0}. Hence, X1 ∩ X2 = {0}; or, X1 ∩ X2 = {} and

{0} ⊂∼ (X1 ∪X2).

If X1 ∩X2 = {0} then e1e2 = eX1eX2 = e{0} = dg0 ; thus, it follows that e1, e2 form

a 2-adic code.

If {0} ⊂∼ (X1 ∪ X2); then, dg0e1 = 0 and dg0e2 = 0. Thus, contradicting the

assumption that e1 and e2 are oddlike idempotents.

Part 2. Suppose that e1, e2, µ forms a 2-adic code, then:

e1 + e2 − e1e2 = 1,

e1e2 = dg0 .

Thus, e1 + e2 = 1 + dg0 . Hence, e1, e2 forms a Duadic Code.

Part 3. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.
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Part 4. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.

Part 5. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.

Part 6. This is a clear consequence of parts 7 and 8, and proposition 2.3.9.

Part 7. Suppose (µ, 〈e0〉, . . . , 〈em−1〉) is a “reduced” m-adic Polyadic Code of

Class IV and m is a prime. Define Yi such that ei = eYi
. Clearly, since eiej = dg0 , we

have:

Yi ∩ Yj = {0}.

By letting Xi = Yi\{0} and X∞ = {0}, the partition (X∞, X0, . . . , Xm−1) forms

an m-splitting. Thus, Y0 ∪ · · ·∪Ym−1 = G and Y0 ∩ · · ·∩Ym−1 = Yi∩Yj = {0}. These

equations guarantee that the idempotents ei form a “reduced” m-adic code.

Part 8. Suppose (µ, e0) is a “reduced” m-adic code, where m a prime. Let Xi be

defined by ei = eXi
, where ei = µi · e0. By the reduced condition,

d{0} = dg0

= eiej

= eXi
eXj

= eXi∩Xj
.

Thus, Xi ∩Xj = {0} for all i, j. Since 〈e0, . . . , em−1〉 = Fq[G] = 〈1〉, we must have:

X∞ ∪X0 ∪ · · · ∪Xm−1 = G.

Note that, by letting Yi = Xi\{0} for 0 ≤ i ≤ m − 1, and Y∞ = {0}, we can

construct the m-splitting (Y∞, Y0, . . . , Ym−1) of G. Using this m-splitting, the n-adic

code becomes a “reduced” m-adic Polyadic Code of Class IV.
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2.4 Abelian n-adic Groups

We will prove an analogous result to proposition 1.1.2 for abelian n-adic codes by

introducing the concept of abelian n-adic groups.

The case when the splitter µ = µl is a numerical multiplier, where (l, |G|) = 1, will

be of interest to us. Since Stab〈µ〉(e) = 〈µn〉, it will be required that |µ| be divisible

by n. Hence, we will consider numerical multipliers of order n; that is, nontrivial

solutions to the equation xn = 1 modulo exp(G).

Because, the equation xn = 1 modulo m will not always have nontrivial solutions,

we will impose some conditions on G to guarantee a nontrivial solution. This is shown

by the following theorem.

Proposition 2.4.1. Let m = pα0
0 ∗ pα1

1 ∗ · · · ∗ pαr
r where (pi, pj) = 1 for i 6= j, αi ≥ 1

for i ≥ 1, α0 ≥ 0, and p0 = n. The equation xn = 1 modulo m has a nontrivial

solution modulo pαi

i for all 1 ≤ i ≤ r if and only if pi = 1 modulo n for all 1 ≤ i ≤ r

and either: α0 = 0; or, α0 ≥ 2.

Proof. This is a consequence of the fact that xn = 1 has a nontrivial solution modulo

pα if and only if n divides φ(pα) = pα−1(p− 1).

Proposition 2.4.2. Let m = pα1
1 ∗ · · · ∗ pαr

r , where n does not divide m.

1. If pi = 1 mod n for all 1 ≤ i ≤ r, then there is a nontrivial solution to ln = 1

mod pαi

i for all 1 ≤ i ≤ r where:

(a) The solution l satisfies l 6= 1 mod pi for all i = 1, . . . , r,

(b) The solution l satisfies l 6= 1 mod pfi for all 1 ≤ f ≤ αi and for all

1 ≤ i ≤ r.

2. If there is a nontrivial solution to xn = 1 mod pαi

i where x 6= 1 mod pi for all

1 ≤ i ≤ r, then pi = 1 mod n for all 1 ≤ i ≤ r.

Proof. We proceed to show each part separately.

Part 1. This is an application of the Chinese Remainder Theorem. As n divides

pi − 1, there is a nontrivial solution li to xn = 1 mod pi. Lift this solution to a
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solution Li of xn = 1 in Qpi
using Hensel’s Lemma. Define l′i = Li mod pαi

i Zpi
as the

projection onto Zpi
/pαi

i Zpi
.

Note that this choice of l′i has the property:

l′i 6= 1 mod pfi ,

for every 1 ≤ f ≤ αi. We can deduce this by contradiction. If it l′i = 1 mod pfi , then

l′i = 1 mod pfi and Li = l′i = 1 mod pi; but, Li = li mod pi by construction, thus

li = Li = l′i = 1 mod pi. Hence, contradicting the choice of li.

Thus, we have a set of solutions (l′1, . . . , l
′
r) to xn = 1 mod (pα1

1 , . . . , p
αr
r ). By the

Chinese Remainder Theorem, we can find a solution to xn = 1 mod m = pα1
1 ∗ · · · pαr

r

with the desired properties.

Part 2. Under the assumptions, we must have n divide φ(pαi

i ) = pαi−1(pi− 1) for

all 1 ≤ i ≤ r. Since n does not divide m, we must have n divide pi − 1. Hence, the

result follows.

Thus, by proposition 2.4.2, it suffices to assume that all primes s that divide

|G| have the property s = 1 modulo n to guarantee the existence of a nontrivial

µl ∈ Aut(G), numerical multiplier, with the properties: µnl = 1, and l 6= 1 mod si

for every prime power s dividing exp(G); i.e., µl−1 is a numerical multiplier of G. In

this subsection, we will assume that G always has this property and call G an n-adic

group.

Definition 2.4.3. If G is an abelian group such that s = 1 mod n for every prime s

dividing exp(G), then G is an n-adic group.

Corollary 2.4.4. If G is an n-adic group, then there is a numerical multiplier µl

such that:

1. The multiplier l satisfies ln = 1 mod exp(G),

2. The multiplier l satisfies l 6= 1 mod si for every prime power si dividing the

exp(G),
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3. The map µl−1 is a numerical multiplier of G; that is, (l − 1, exp(G)) = 1,

4. The following holds ln−1 + ln−2 + · · · + l + 1 = 0 mod exp(G).

Proof. Parts 1 and 2 are consequences of proposition 2.4.2. We show part 3 by

noting: if s divides exp(G) and l − 1, then the choice of l in proposition 2.4.2 gives

us a contradiction. Part 4 follows from the following identity modulo exp(G):

0 = ln − 1,

= (l − 1)(ln−1 + ln−2 + · · · + l + 1).

Hence, by part 3, (l − 1) is invertible modulo exp(G). Therefore, part 4 follows.

Definition 2.4.5. We will define a splitter µl in G such that:

1. The splitter l is an nth root of unity, i.e. , ln = 1 mod exp(G),

2. The splitter satisfies l 6= 1 mod si for every prime power si dividing exp(G),

a canonical splitter.

As a consequence we have the following.

Proposition 2.4.6. An abelian group G allows a canonical splitter if and only if G

is an n-adic group.

Proof. This is a consequence of proposition 2.4.2.

2.4.1 Canonical Splitters for n-adic Groups

Theorem 2.4.7. Let G be an n-adic group. Let µl be a canonical splitter of order n

in Aut(G). Then, µl fixes a cyclotomic coset of G̃ = G\{0} if and only if ts(q) = 0

modulo n for some prime s dividing |G|.

Proof. (⇒). Let G = Ss1 × · · · × Ssr
be an n-adic group; where each si = 1 modulo

n, and Ssi
are the si-sylow groups of G.
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Suppose Cg, a cyclotomic coset of G̃, is fixed by µl. Hence, µl(Cg) = Cg; thus,

l ∗ g = qf ∗ g. In other words, l = qf modulo |g|. Without loss of generality, assume

si1 is the highest power of s1 that divides |g|. Thus, we have l = qf modulo si1. Let

s = s1. Since ln = 1 modulo exp(G) and |g| divides exp(G), we have 1 = ln = qfn

modulo si. In particular, tsi(q) divides fn. Thus,

tsi(q)e = fn.

Since l is a canonical splitter, l 6= 1 modulo si. If n does not divide tsi(q), then

tsi(q) divides f . Hence, modulo si:

l = qf

= (qtsi (q))
f

t
si (q)

= 1
f

t
si (q)

= 1,

which is a contradiction. Thus, tsi(q) does not divide f and therefore n divides tsi(q).

Since ts(q)|tsi(q)|si−1ts(q) and (s, n) = 1, we have that n divides ts(q) if and only

if n divides tsi(q). Thus, n divides ts(q) and the conclusion follows.

(⇐). Conversely, suppose n divides ts(q) for some s dividing |G|. Then, n divides

tsi(q) for all i. Without loss of generality, assume s = s1. Let Ss1 = (Z/sZ)π1 × · · · ×
(Z/stZ)πt , where st is the highest power of s that divides exp(G). Consider,

g = (0, . . . , 0) × · · · × (sπt−1, 0, . . . , 0) ∈ Ss1 ⊂ G.

Clearly, g has order s. Let f = ts(q)
n

, then (qf )n = 1 modulo s. Note that, ln = 1

modulo s. Since all the nontrivial solutions of xn = 1 modulo s are powers of one

another, because n is a prime and (Z/sZ)∗ is cyclic; we have ln0 = qf modulo s, where

1 ≤ n0 ≤ n−1. Thus, we have µn0
l (Cg) = Cg, where 1 ≤ n0 ≤ n−1. Since n is prime

and µnl = 1, this implies µl(Cg) = Cg. Hence, the conclusion follows.



51

Corollary 2.4.8. Let G be an n-adic group. Let µl be a canonical splitter of order

n in Aut(G). Then, Fq[G] has an n-adic code with splitter given by µl if and only if

ts(q) 6= 0 modulo n, for every prime s dividing |G|.

Proof. By theorem 2.2.10, µl is a splitter for an n-adic code in Fq[G] if and only if

all orbits of µ̄l on the cyclotomic cosets of G̃ have length divisible by n. Since µl

has order n and n is a prime, this is equivalent to saying that µ̄l fixes no cyclotomic

coset of G̃. Note that µ̄l = µn−1
l = µl′ , where (l′)n = 1 modulo exp(G). It can be

shown that l′ = ln−1 = l−1 is also a canonical splitter. By theorem 2.2.5, µl′ fixes

no cyclotomic coset of G̃ if and only if ts(q) 6= 0 modulo n for every s dividing |G|.
Hence, the result follows.

We note that, if µl is a canonical splitter and e, µ give an n-adic code, then e, µn0 ,

1 ≤ n0 ≤ n−1 gives the same n-adic code. Also, for the case n = 2, there is a unique

canonical splitter given by µ−1.

Definition 2.4.9. In an n-adic Group, we call the n-adic codes e, µl given by canon-

ical splitters Margarita Codes.

For n = 2, Margarita codes are the almost self dual codes of Rushanan in [22] and

Pless in [20].

2.4.2 Margarita Codes

A quick calculation using Equation (2.5) shows that the minimum distance d0 of

oddlike words11 in an n-adic code satisfies the bound dn0 ≥ |G|. One can do better for

Margarita codes; however, we will introduce some preliminaries before we show this

result.

Proposition 2.4.10. Let µl be a canonical splitter in the n-adic group G. Then,

(l − 1, exp(G)) = 1; that is, µl−1 is a numerical multiplier.

11an oddlike word is w =
∑

g∈G wg[g] where
∑

g∈G wg 6= 0 in Fq.
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Proof. Let µl give a canonical splitter in Fq[G] and assume e, µl gives an n-adic code.

Note that since G is an n-adic group, we have that for every prime si dividing |G|,
si = 1 mod n. Also, since µl has order n, we must have ln = 1 mod exp(G).

Let s be a prime dividing exp(G),12 and l− 1. Since s− 1 = cn for some positive

constant c, we must have n ≤ cn = s − 1. Thus, n − 1 ≤ s and we deduce that

n ≤ cn = s− 1. Therefore, n does not divide s− 1.

Theorem 2.4.11. Let e, µl give a Margarita code in Fq[G] where G is an n-adic group

and µl a canonical splitter of order n. Let d0 be the minimum weight of all oddlike

vectors of 〈e〉. Let w ∈ 〈e〉 be an oddlike vector of weight d0. Let w =
∑

g∈B βg[g]

where B ⊂ G is the support of w. Let B̃ =
∑

g∈B[g] be the characteristic function of

the support of w. Define rn,µl,G : G→ Z as,

rn,µl,G(g) = |Hg ∩ (B × . . .×B)|,

where

Hg = {(g1, . . . , gn) ∈ G× · · · ×G|g1 + µl(g2) + · · · + µln−1(gn) = g}.

Then,

1. The constant d0 satisfies dn0 − rn,µl,G(1) + 1 ≥ |G|,

2. If dn0 − rn,µl,G(1) + 1 = |G|, then:

(a) The oddlike word satisfies w = α ∗ B̃ for some α ∈ Fq,

(b) The characteristic function of the support of w satisfies,

B̃ ∗ (µl · B̃) ∗ · · · ∗ (µn−1
l · B̃) = (rn,µl,G(1) − 1)[1] +

∑

g∈G
[g].

3. The constant rn,µl,G(1) satisfies rn,µl,G(1) = d0 modulo n,

4. The constant rn,µl,G(1) satisfies rn,µl,G(1) ≥ d0.

12and therefore |G|.
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Proof. We proceed to show each part separately.

Part 1. Define Fl(x1, . . . , xn) = x1 + l ∗ x2 + · · · + ln−1 ∗ xn where: xi ∈ G, li ∗ x
means µil(x), and + is the group addition of G. Clearly, Fl is a group homeomorphism

from G× · · · ×G = Gn → G. We will show that this map is onto.

Let d0 be the minimum weight among all oddlike words of 〈e〉. Let w be an oddlike

vector of 〈e〉 of weight d0. Define B ⊂ G such that w =
∑

g∈B βg[g], βg 6= 0. Let

B(x) =
∑

g∈B[g]. By Equation (2.5), we conclude that there is an α ∈ Fq such that:

α ∗
∑

g∈G
[g] =

∑

(g1,...,gn)∈B×···×B
βg1βg2 · · · βgn

[Fl(g1, . . . , gn)] (2.10)

= (
∑

g∈B
βg[g]) ∗ (

∑

g∈B
βg[µl(g)]) ∗ · · · ∗ (

∑

g∈G
βg[µ

n−1
l (g)])

= w ∗ (µl · w) ∗ · · · ∗ (µn−1
l · w).

In particular, this shows that Fl is onto.

For the moment define,

Hg = {(g1, . . . , gn) ∈ G× · · · ×G | Fl(g1, . . . , gn) = g},

Lg = Hg ∩ (B × · · · ×B),

rn,µl,G(g) = |Lg|.

Clearly, |Lg| ≥ 1.

Let 1 be the identity of G, a direct calculation shows that rn,µl,G(1) ≥ d0. This

is because: Fl(g, . . . , g) = (1 + l + · · · + ln−1) ∗ g = 0 ∗ g = 1, since l is a canonical

splitter. Thus, {(g, . . . , g)|g ∈ G} ⊂ H1 and {(g, . . . , g)|g ∈ B} ⊂ L1. Therefore,

d0 = |B| ≤ |L1| = rn,µl,G(1).

We note that for n = 2 we can calculate r2,µl,G(1) = d0; however, we leave it as

an exercise.

By considering Equation (2.10), we can deduce the bound

dn0 − rn,µl,G(1) + 1 ≥ |G|,
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because,

dn0 = |L1| +
∑

g 6=1

|Lg|

= rn,µl,G(1) +
∑

g 6=1

|Lg|

≥ rn,µl,G(1) +
∑

g 6=1

1

= rn,µl,G(1) + |G| − 1.

Part 2. Assume for now the following result that will be shown later.

Claim 2.4.12. |Lg| = 1 for all g 6= 1 if and only if dn0 − rn,µl,G(1) + 1 = |G|.

Consider the subcases:

(a) Equation (2.10) shows that: if Fl(g1, . . . , gn) 6= 1, then βg1 · · · βgn
= α, where α

is defined by Equation (2.10).

Let g, g′ ∈ G and g 6= g′, consider Fl(g, g
′, . . . , g′) = g(g′)l+l

2+···+ln−1
= g(g′)−1 6=

1; we must have βg(βg′)
n−1 = α for all g, g′ ∈ G, where g 6= g′. Hence, βg = βg′′

for all g, g′′ ∈ B. Thus (2a) follows.

(b) Without loss of generality, we can assume that βg = 1, then w = B̃. Equation

(2.10) gives:

B̃ ∗ (µl · B̃) ∗ · · · ∗ (µn−1
l · B̃) =

∑

g∈G
|Lg|[g]

= (rn,µl,G(1) − 1)[1] +
∑

g∈G
[g].

Thus, it suffices to show claim 2.4.12. Assume that |Lg| = 1 for g 6= 1, consider:

dn0 = |L1| +
∑

g∈G,g 6=1

|Lg|

= rn,µl,G(1) + |G| − 1.
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Conversely, if dn0 − rn,µl,G(1) + 1 = |G|, then

∑

g∈G,g 6=1

|Lg| = dn0 − |L1| = dn0 − rn,µl,G(1) = |G| − 1.

Thus, |Lg| = 1 for all g 6= 1.

Part 3. Note that, if (g1, . . . , gn) ∈ H1, then (gn, g1, . . . , gn−1) ∈ H1; because, if

g1(g2)
l · · · (gn)l

n−1

= 1,

then,

1 = (1)l

= (g1(g2)
l · · · (gn)l

n−1

)l

= (g1)
l(g2)

l2 · · · (gn−1)
ln−1

(gn)
ln

= gn(g1)
l · · · (gn−1)

ln−1

.

Hence, (gn, g1, . . . , gn−1) ∈ H1. Thus, we have shown that H1 is invariant under

the action of Z/nZ, where [1] ∈ Z/nZ acts like [1]∗(g1, g2, . . . , gn) = (gn, g1, . . . , gn−1).

Note that since n is prime, all orbits of this action have length 1 or n. Also, note

that: if [1] ∗ (g1, . . . , gn) = (g1, . . . , gn), then (g1, . . . , gn) = (g1, . . . , g1). In addition,

note that B × · · · × B, where B ⊂ G, is also invariant under the action of Z/nZ.

Thus, L1 = H1 ∩ B × · · · × B is invariant under the action of Z/nZ, and the only

fixed points of L1 are points of the form (g, . . . , g) where g ∈ B. In particular, this

shows that rn,µl,G(1) = |L1| = |B|+ n ∗ k = d0 + n ∗ k. Hence, the conclusion follows.

Part 4. This is a clear consequence of part 3.

Since for 2-adic codes the canonical splitter is given by µ−1, and r2,µ−1,G can be

computed to be d0; theorem 2.4.11 gives theorem 1.1.2 as a corollary.

Corollary 2.4.13. Let e, µl give a 2-adic Margarita code in Fq[G]. Let d0 be the

minimum weight of all oddlike vectors of 〈e〉. Let w ∈ 〈e〉 be an oddlike vector of



56

weight d0. Let w =
∑

g∈B βg[g] where B ⊂ G is the support of w. Let B̃ =
∑

g∈B[g].

Then,

1. The minimum oddlike weight satisfies d2
0 − d0 + 1 ≥ |G|.

2. If d2
0 − d0 + 1 = |G|, then,

(a) The oddlike vector w is constant, i.e. , w = α ∗ B̃ for some α ∈ Fq,

(b) The shifts of B̃ form the blocks of a projective plane of order (d0−1). That

is, B̃ ∗ (B̃−1) = (d0 − 1)[1] +
∑

g∈G[g].

2.5 Conclusion

We have introduced the concept of n-adic codes and solved their existence problem.

Additionally, we have introduced the concept of canonical splitters to define Margarita

Codes, which are generalizations of Rushanan’s Self-Dual Codes; and, we have shown

the generalized minimal oddlike weight support theorem, theorem 1.1.5, for Margarita

Codes.

We close this chapter with a few observations about n-adic codes:

1. We note that for Margarita n-adic codes with n 6= 2, rn,µl,G depends also on the

idempotent e and the oddlike word of minimal length.

This is shown by the 3-adic code in F29[Z/7Z] given by the canonical splitter

µ = µ2 and the idempotent e = 9[0]+5[1]+2[2]+8[3]+18[4]+11[5]+6[6]. This

pair µ, e gives a code of minimal oddlike weight 3. Consider the two oddlike

words of weight 3 given by w1 = 26[2]+9[3]+8[5] and w2 = 21[4]+10[5]+3[6].

The values of r3,µ2,G that arise from w1 is 6 and from w2 is 3.

2. Theorem 2.2.16 has been proven for Duadic Codes by Pless and Rushanan in

[21] for even Characteristic, and by Smid in [25] for odd characteristic.

3. Corollary 2.4.8 for the case n = 2, q = 2m, and G = Z/sZ where s is an odd

prime has been proven by Rushanan in [22] in page 102; and also by Pless in

[20] in theorem 2 of the cited paper.
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4. Corollary 2.4.13 for the case q = 2 has been proven by Pless in [20] in theorem

4 and corollary 1 of the cited paper.

5. Theorem 1.1.5 has also been generalized to m-adic Polyadic Codes by Ling and

Xing in [18]. This is given by theorem 2.5.1.

Theorem 2.5.1. Let C ∈ {C0, . . . , Cm−1, . . . , D̂0, . . . , D̂m−1} be an m-adic

Polyadic Code over Fq associated with the m-splitting

(X∞, X0, . . . , Xm−1),

of the finite abelian group G given by µs.

Let n′ = [G : 〈X∞〉]. Suppose that µs(X∞) = µqr(X∞), where r ≥ 1. Then, for

p > 1 dividing m the minimum weight d of the codewords in C\C̃, also known

as the oddlike words, satisfies:

n′ ≤





dm − dm/p + 1 if sm,p = 0 mod exp(G),

dm otherwise,

where

sm,p = s
m(p−1)

p + s
m(p−2)

p + · · · + s
2m
p + s

m
p + 1,

C̃ = IX∞
· C.

The analogous result for m-adic Polyadic Codes, by Ling and Xing, gives a more

general bound on the minimum distance of oddlike words. For the case when:

m is a prime, s is given by a splitter of order m, and the additional assumption

that the m-adic Polyadic Code is “reduced”; Ling and Xing’s result reduces to a

result about Margarita Codes by choosing r = 1 and p = m. This is illustrated

by the following theorem.

Theorem 2.5.2. Let m be a prime. Let C be a “reduced” Class IV m-adic

Polyadic Code, i.e., X∞ = {0}, in an m-adic group G where the splitting is
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given by a canonical splitter µs of order m. Then, n′ = [G : 〈X∞〉] = |G| = n

and the minimum weight d of the codewords in C\C̃, i.e., oddlike words, satisfy:

n ≤





dm − d+ 1 if sm,m = 0 mod exp(G),

dm otherwise,

where:

sm,m = s
m(m−1)

m + s
m(m−2)

m + · · · + s
2m
m + s

m
m + 1

= sm−1 + sm−2 + · · · + s2 + s+ 1.

Since s is a canonical splitter, we always have sm,m = 0 mod exp(G); hence, we

get a similar bound to that of theorem 1.1.5.



59

Chapter 3

Generalized Skew Hadamard
Difference Sets

We will assume that G is an abelian group, and we will use the additive notation for

its group operation. We will begin with the definition of generalized skew hadamard

difference Sets, and then construct towards a generalization of proposition 1.2.1.

Definition 3.0.3. A generalized skew hadamard difference set (GSHDS) is an ele-

ment of the group algebra D(x) ∈ Z[G] such that:

D(x)D(xno) = (ko − λ)[1] + λG(x), (3.1)

D(x) +D(xno) = G(x) − [1], (3.2)

where [1] = x0 is the multiplicative unit of Z[G], ko = |D(x) ∩D(x−no)|, and no is a

Non-Quadratic Residue of (Z/exp(G)Z)∗.

We will assume that n0 is a Non-Quadratic Residue of (Z/exp(G)Z)∗, and χ0 is

the principal character of G.

Lemma 3.0.4. Let G admit a GSHDS, then ko = 0 or ko = k. Also:

1. If ko = 0, then k = v−1
2

, λ = v−1
4

, and for any nonprincipal character χ

χ(D) =
−1 + εχ

√
v

2
,
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2. If ko = k, then k = v−1
2

, λ = v−3
4

, and for any nonprincipal character χ

χ(D) =
−1 + εχ

√
−v

2
,

where in the above, εχ ∈ {1,−1}.

Proof. Let χ be a nonprincipal character of G. Equation (3.2) forces k = |D(x)| =

v−1
2

. Also, Equation (3.1) forces:

ko + λ(v − 1) = k2,

hence,

ko =
v − 1

2
(
v − 1

2
− 2λ), (3.3)

thus, k = v−1
2

divides ko.

By definition ko ≤ k. Therefore, either ko = 0 or ko = k. Clearly, by Equation

(3.3), if k0 = 0 then λ = v−1
4

. Similarly, we can show: if ko = k then λ = v−3
4

.

Note that equations (3.1) and (3.2) yield:

D(x)2 +D(x) + [1](ko − λ) = (k − λ)G(x). (3.4)

Let us suppose that ko = 0 and apply χ to Equation (3.4), we get:

χ(D)2 + χ(D) − v − 1

4
= 0,

hence,

χ(D) =
−1 + εχ

√
v

2
,

where εχ ∈ {1,−1}.
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Similarly, one can show that if ko = k, then

χ(D) =
−1 + εχ

√
−v

2
.

The proposition follows.

Proposition 3.0.5. Let G admit a GSHDS D, then |G| = p2α+1 and,

(a) If ko = 0, then |G| = p2α+1 = 1 mod 4,

(b) If ko = k, then |G| = p2α+1 = 3 mod 4.

Proof. We proceed to show each part separately.

Part a. Let us assume ko = 0. Also that, v = |G| is composite and divisible by

two distinct primes p and s. Let χ be a character of order p and ψ a character of order

s. Lemma 3.0.4 shows that χ(D) = −1+εχ
√
v

2
. Since χ(D) is an algebraic integer in

Q(ηp), where ηp a primitive pth root of unity, this shows that
√
v ∈ Q(ηp). Similarly,

using ψ instead of χ one can show that
√
v ∈ Q(ηs). Thus,

√
v ∈ Q(ηp)∩Q(ηs) = Q.

Hence, forcing v to be a square.

We claim that v cannot be square by showing a contradiction using Fourier inver-

sion. So let us suppose v is a square and let χ be an arbitrary nonprincipal character.

By lemma 3.0.4, χ(D) is a rational integer. Thus, it remains invariant under the

action of any Galois automorphism of Q(ηexp(G)). Since the Gal(Q(ηexp(G))|Q) =

(Z/exp(G)Z)∗, we can choose the Galois automorphism µno
∈ Gal(Q(ηexp(G))|Q)1 to

conclude that χ(D(xno)) = µno
(χ(D(x))) = χ(D(x)). Thus,

χ(D(x)D(xno)) = χ(D(x))χ(D(xno))

= χ(D)2,

hence, χ(D(x)D(xno)) = χ(D)2 is always a nonnegative integer.

1n0 is a Non-Quadratic Residue.
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By calculating D(x)D(xno) at [1] using Fourier inversion and applying the above

equation we conclude:

D(x)D(xno)([1]) =
k2 +

∑
χ6=1 χ(D)2χ([1])

v
.

However, from Equation (3.1) and ko = 0, we know D(x)D(xno)([1]) = 0. Thus,

the previous equation gives:

0 =
k2 +

∑
χ6=1 χ(D)2

v
,

forcing k to be zero. Hence, D(x) = 0; giving a contradiction.

Therefore, v cannot be a square. Thus, v must be a prime power. Since λ = v−1
4

,

for this case, we have that |G| = pr = v = 1 mod 4.

Similarly, we can show v is an odd prime power by using a similar argument as

the one used to show that v cannot be a square. Hence, the conclusion follows

Part b. This case is very similar to the previous case. Let us suppose v is

composite and divisible by at least two distinct primes p and s. Let χ be a character

of order p and ψ a character of order s. By lemma 3.0.4, χ(D) = −1+εχ
√−v

2
is an

algebraic integer in Q(ηp). Hence,
√
−v ∈ Q(ηp). Similarly, by using ψ instead of

χ, we can show that
√
−v ∈ Q(ηs). Thus

√
−v ∈ Q(ηp) ∩ Q(ηs) = Q. This is a

contradiction as v > 1. Hence, v is divisible by only one prime.

Since v = 3 mod 4 as λ = v−3
4

, this forces v to an odd prime power. The conclusion

follows.

As a consequence of proposition 3.0.5, we will assume that G is an an abelian p-

group, where p ≥ 3 and exp(G) = ps. We will also assume that |G| = v = p2α+1 = pm,

where m = 2α + 1, when G contains a GSHDS. We get the following result as a

corollary to the the above results.

Corollary 3.0.6. Let G be a p-group and D be a GSHDS. Let ps = exp(G), n be a

Quadratic Residue mod ps, and m a Non-Quadratic Residue mod ps. Then,

1. |G| = v = p2α+1,
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2. D(xn) = D(x),

3. ko = |D(x) ∩D(x−m)|.

Proof. Clearly, part 1 is a consequence of proposition 3.0.5. We proceed to show

part 2. Clearly, if µn ∈ Gal(Q(ηps)|Q) is the Galois automorphism corresponding to

n ∈ (Z/psZ)∗ and χ ∈ Ĝ, then

χ(D(xn)) = µn(χ(D(x)))

= µn(χ(D)).

Note that,

χ(D) =
−1 + εχ

√
(−1
p

)v

2

=
pαεχ − 1

2
+ pαεχω,

where ω =
−1+

q
(−1

p
)p

2
. Hence, χ(D) ∈ Q(ω) ⊂ Q(ηps).

Note that Q(ω) is the fixed field of the quadratic residues subgroup (Z/psZ)∗2 ⊂
(Z/psZ)∗ = Gal(Q(ηps)|Q). Thus, µn(χ(D)) = χ(D), since n is a quadratic residue

mod ps. Hence, χ(D(xn)) = χ(D) = χ(D(x)) for any arbitrary character χ ∈ Ĝ. By

Fourier inversion, we must have D(xn) = D(x).

Now we show part 3. Clearly, there is n′ such that m = non
′ mod ps and n′ is

a quadratic residue mod ps. Let φn′ be the induced algebra isomorphism of Z[G] by

the numerical multiplier µn′ ∈ Aut(G) (µn′(g) = g+ · · ·+ g = n′g).2 By applying φn′

to Equation (3.1) of the GSHDS condition, we get:

φn′(D(x)D(xno)) = (ko − λ)φn′([1]) + λφn′(G(x)). (3.5)

Note that φn′(D(x)) = D(xn
′

) = D(x) by part 2. Also, φn′(D(xno)) = D(xn
′no) =

2The algebra isomorphism is given by φn′(
∑

g∈G cg[g]) =
∑

g∈G cg[µn′(g)] =
∑

g∈G cg[n
′g].
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D(xm) and φn′(G(x)) = G(xn
′

) = G(x). Hence, Equation (3.5) simplifies to:

D(x)D(xm) = (ko − λ)[1] + λG(x).

Note that the value at [1] of the left-hand side of the above equation gives |D(x)∩
D(x−m)|, and the value of the right-hand side at [1] is ko. Hence, ko = |D(x)∩D(x−m)|
and the result follows.

The next lemma will be used in proposition 3.0.8.

Lemma 3.0.7. Let G admit a GSHDS D. Then, a nonzero (nonidentity) element g

can be at most v−1
4

times the difference of two elements of D.

Proof. We will proceed by cases depending on the value of k0.

Case k0 = 0. By using the GSHDS equations, we conclude:

D(x)D(x) =
v − 1

2
[1] +

v − 5

4
D(x) +

v − 1

4
D(xno).

Since in this case v = p2α+1 = 1(4), we must have that −1 is a quadratic residue mod

ps. Hence, D(x−1) = D(x) and:

D(x)D(x−1) =
v − 1

2
[1] +

v − 5

4
D(x) +

v − 1

4
D(xno).

Thus, a nonzero element g ∈ G is the difference of two elements of D: v−5
4

times, if

g ∈ D; and v−1
4

times, if g ∈ D(xno). In particular, g can be the difference of two

elements of D at most v−1
4

times.

Case k0 = k. In this case, −1 is a nonquadratic residue mod ps. Hence, D(x−1) =

D(xno). Also, the GSHDS equations give the following:

D(x)D(xno) =
v − 1

2
[1] +

v − 3

4
D(x) +

v − 3

4
D(xno),

hence,

D(x)D(x−1) =
v − 1

2
[1] +

v − 3

4
D(x) +

v − 3

4
D(x−1).
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Thus, a nonzero element of g ∈ G is the is the difference of two elements of D

exactly v−3
4

times. Since v−3
4
< v−1

4
, we can say that g is the difference of two elements

of D at most v−1
4

times.

The following result, shown for Skew Hadamard Difference Sets in [5], is due to

Camion and Mann.

Proposition 3.0.8. Let G admit a GSHDS D. Then, G = Z/psZ×Z/psZ×Z/pa3Z×
· · · × Z/palZ where s ≥ a3 ≥ · · · ≥ al.

Proof. Assume that G = Z/psZ × Z/pa2Z × Z/pa3Z × · · · × Z/palZ, where s > a2 ≥
· · · ≥ al. Let S = {(a1, a2, . . . , al) ∈ G | a1 is a unit in Z/psZ}. Clearly, |S| = v − v

p
.

Also, by choosing b = a−1
1 mod p, 1 + bps−1 is a quadratic residue mod ps. Note that

if g ∈ S then g − (1 + bps−1)g = (ps−1, 0, . . . , 0).

Consider S∩D, clearly this set is closed under the action of the quadratic residues

mod ps. Hence, the element (ps−1, 0, . . . , 0) can be written as the difference of two

elements S ∩D at least |S ∩D| times.

We proceed to calculate |S ∩D| by observing that S is closed under the action of

G1 = (Z/psZ)∗. Let G2 = (Z/psZ)∗2, then every G1 orbit of S splits into two equally

sized orbits of G2. Since D is the sum of G2 orbits where each G2 orbit is picked from

exactly one G1 orbit;3 we must have |S ∩D| = |S|
2

=
v− v

p

2
.

Thus, the element (ps−1, 0, . . . , 0) can be written as the difference of two elements

of S ∩D ⊂ D at least
v− v

p

2
times. By the previous lemma, this number cannot exceed

v−1
4

. Therefore, we must have:

v − v
p

2
≤ v − 1

4
.

Hence, we deduce v(1 − 2
p
) ≤ −1. Thus, 1 − 2

p
< 0, implying p < 2. Clearly a

contradiction.

In the next sections, we will build the necessary concepts to prove proposition

1.2.1 part 3b, which is known as Xiang’s exponent bound.

3This deduction follows from the fact that D is invariant under the action of G2, the quadratic
residues, and the fact that D(x) + D(xno) = G(x) − [1].
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3.1 Quadratic Residue Slices (QRS)

For the rest of the chapter, we will assume that G is an abelian p-group, and has

exp(G) = ps with |G| = v = pm = p2α+1. We will embed G1 = (Z/psZ)∗ ⊂ Aut(G)

and G2 = (Z/psZ)∗2 ⊂ Aut(G); where, a ∈ G1 → µa ∈ Aut(G) and µa(g) =

g + · · · + g = a ∗ g. We will also assume a natural action of: µ ∈ Aut(G) on g ∈ G

given by µ · g = µ(g); and of µ ∈ Aut(G) on χ ∈ Ĝ given by µ · χ = χ ◦ µ−1.

The results of the last section showed that: if G admits a GSHDS D, then G2 =

(Z/psZ)∗2 are numerical multipliers of D. We will introduce the concept of Quadratic

Residue Slices to simplify the study of GSHDSs.

Definition 3.1.1. Let D be a subset of G such that:

1. D(xn) = D(x), for all n ∈ G2,

2. D(x) +D(xno) = G(x) − [1], where no is a nonquadratic residue mod ps,

then, we say D is a Quadratic Residue Slice (QRS).

We will also assume that {g1, . . . , gr} is a full set of orbit representatives of the

action of G1 on G̃ = G\{0}, and similarly, {χ1, . . . , χr} as a full set of representatives

of the action of G1 on Ĝ\{1}. Hence, will assume that r = r(G) is the number of

orbits of G1 = (Z/exp(G)Z)∗ on G\{0}.
We will denote by Ogi

as the G2 class of gi and by Ωgi
as the G1 class of gi. Clearly,

Ωgi
= Ogi

+O(n0)
gi

.

We will define Ωχi
and Oχi

similarly.

We will represent QRSs in 4 useful ways:

1. Define X =
⊕r

i=1 CΩgi
as the space of G1 classes on G\{0}. A QRS D of G is

any vector d =
∑r

i=1 diΩgi
of ±1s of X where:

D ∩ Ωgi
=





Ogi
if di = 1,

O
(n0)
gi if di = −1.
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As short-hand notation, we will write sometimes D =
∑r

i=1Oβi·gi
where βi ∈

(Z/psZ)∗ and:

D ∩ Ωgi
=





Ogi
if
(
βi

p

)
= 1,

O
(n0)
gi if

(
βi

p

)
= −1.

2. Define Y =
⊕r

i=1 CΩχi
as the space of G1 classes on Ĝ\{1}. A QRS D of Ĝ is

any vector d =
∑r

i=1 diΩχi
of ±1s of X where:

D ∩ Ωχi
=





Oχi
if di = 1,

O
(n0)
χi if di = −1.

3. Define W =
⊕r

i=1 C(Ogi
−O

(n0)
gi ) as the space of Compact QRSs of G. A QRS

D of G is any vector of d =
∑r

i=1 di(Ogi
−O

(n0)
gi ) of ±1s where:

D ∩ Ωgi
=





Ogi
if di = 1,

O
(n0)
gi if di = −1.

4. Define V =
⊕r

i=1 C(Ωχi
− Ω

(n0)
χi ) as the space of Compact QRSs of Ĝ. A QRS

D of Ĝ is any vector of d =
∑r

i=1 di(Oχi
−O

(n0)
χi ) of ±1s where:

D ∩ Ωχi
=





Oχi
if di = 1,

O
(n0)
χi if di = −1.

3.1.1 The Aut(G) Action

We will introduce an action of Aut(G) on the set of QRSs of G and on the set of

QRSs of Ĝ. Before we proceed to show this action, we will introduce the spaces where

the actions will be defined.

Definition 3.1.2. (Action of G on QRSs). Let X =
⊕r

i=1 CΩgi
be the space of

G1 classes in G\{0}. Clearly, a QRS of G is a vector of ±1s in X. The action of
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Aut(G) on X is defined as:

ρX(σ)Ωgi
=

(
n

p

)
Ωgj

,

where n ∈ (Z/psZ)∗ such that σ(gi) = µn · gj.

Definition 3.1.3. (Action of Ĝ on QRSs). Let Y =
⊕r

i=1 CΩχi
be the space of

G1 classes in Ĝ\{1} Clearly, a QRS of Ĝ is a vector of ±1s in Y . The action of

Aut(G) on Y is defined as:

ρY(σ)Ωχi
=

(
n

p

)
Ωχj

,

where n ∈ (Z/psZ)∗ such that σ · χi = µn · χj.

For technical reasons that will be clear later, we will require the notion of a

“commutative” pairing.

Definition 3.1.4. A bijection θ : G→ Ĝ is a commutative pairing if:

1. θ is an isomorphism of abelian groups.

2. θ(g)(g′) = θ(g′)(g) for all g, g′ ∈ G.

We will use θ to relate the χis to the gis by χi = θ(gi).

From the definition of a commutative pairing, we can construct a “bilinear” map

α as it is shown in the following proposition.

Proposition 3.1.5. Let θ : G → Ĝ be a commutative pairing and µn ∈ (Z/psZ)∗ ⊂
Aut(G). Fix a psth primitive root of unity ηps. Define α(g, g′) such that θ(g)(g′) =

(ηps)α(g,g′). Then:

1. α(g, g′) = α(g′, g) mod ps.

2. nα(g, g′) = α(µn · g, g′) mod ps.

3. α(µn · g, g′) = α(g, µn · g′) mod ps.
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4. α(g1 + g2, g
′) = α(g1, g

′) + α(g2, g
′) mod ps.

5. α(g, g′1 + g′2) = α(g, g′1) + α(g, g′2) mod ps.

Proof. We will show part 2 and 3. The remaining parts are trivial calculations.

To show part 2, consider:

(ηps)α(µn·g,g′) = θ(µn · g)(g′)

= (θ(g)(g′))n

= ((ηps)α(g,g′))n

= (ηps)nα(g,g′).

Clearly, part 2 follows from the above equations.

To show part 3, consider the following mod ps:

α(µn · g, g′) = nα(g, g′)

= nα(g′, g)

= α(µn · g′, g)

= α(g, µn · g′).

We note that θ induces an involution (·)∗ : Aut(G) → Aut(G). The following

proposition constructs (·)∗.

Proposition 3.1.6. Let σ ∈ Aut(G) and θ a commutative pairing, then there is a

unique γ ∈ Aut(G) such that:

θ(γ(g))(g′) = θ(g)(σ(g)).

Proof. Let g ∈ G, clearly θ(g) ◦ σ ∈ Ĝ. Since θ is an isomorphism, there is g′′ such

that θ(g′′) = θ(g) ◦ σ. Define γ(g) = g′′.
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We proceed to show γ(g) is a bijection. It suffices to show γ(g) is injective,

surjectivity will follow from G being finite. Let g1, g2 ∈ G such that γ(g1) = γ(g2).

That is,

θ(g1) ◦ σ = γ(g1)

= γ(g2)

= θ(g2) ◦ σ.

Clearly, since θ is an isomorphism of abelian groups, θ(g1 − g2) ◦ σ = χ0. Thus,

G = Im(σ) ⊂ Ker(θ(g1 − g2)). Therefore, θ(g1 − g2) = χ0. Hence, g1 − g2 = 0, since

θ has trivial kernel. Therefore, γ is injective.

Now, we proceed to show Z-linearity and uniqueness. It suffices to show Z-linearly

for γ, since uniqueness follows from θ having trivial kernel.

Note that γ(g1 + g2) is defined as the unique g′3 such that θ(g′3) = θ(g1 + g2) ◦ σ.

Consider,

θ(γ(g1 + g2)) = θ(g′3)

= θ(g1 + g2) ◦ σ

= (θ(g1) ◦ σ)(θ(g2) ◦ σ)

= (θ(γ(g1)))(θ(γ(g2)))

= θ(γ(g1) + γ(g2)).

Thus, γ(g1 + g2) = γ(g1) + γ(g2).

Definition 3.1.7. Let σ ∈ Aut(G) and θ a commutative pairing, then (σ)∗ is defined

as the unique γ ∈ Aut(G) such that for all g, g′ ∈ G:

θ(γ(g))(g′) = θ(g)(σ(g)).

We note some properties of the (·)∗ operation that we leave as exercises.

Proposition 3.1.8. Let σ, β ∈ Aut(G).
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1. (σβ)∗ = (β)∗(σ)∗.

2. ((σ)∗)∗ = σ.

3. (σ−1)∗ = (σ∗)−1.

We can calculate the action of Aut(G) on Y in terms of the action of Aut(G) on

X when the pairing θ is used. Proposition 3.1.9 shows this result.

Proposition 3.1.9. Identify each χi with gi via a commutative pairing θ. The action

of ρY on Y is given by:

ρY (σ) = ρX((σ−1)∗).

Proof. Clearly,

ρY (σ)(Ωχi
) =

(
n

p

)
Ωχj

,

where σ · χi = µn · χj and n ∈ (Z/psZ)∗. By using the pairing θ we can deduce:

θ((σ−1)∗(gi))(g) = θ(gi)(σ
−1(g))

= σ · χi

= n · χj

= n · θ(gj)(g)

= θ(gj)(n
−1 · g)

= θ(n−1 · gj)(g).

Thus, (σ−1)∗(gi) = n−1 · gj. Clearly this shows that ρY (σ) = ρX((σ−1)∗).

3.1.2 Character Values of QRS

Quadratic Residue Slices have special character values; these are given by the follow-

ing proposition, which was originally drafted by Chen, Sehgal, and Xiang in [6].
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Proposition 3.1.10. Let D be a QRS in G, |G| = pm, χ ∈ Ĝ, and let ω =
−1+

q
(−1

p
)p

2
.

Then, the following are true:

1. χ(D) = aχ + (2aχ + 1)ω, for some integer aχ.

2. If m = 2α, then ∃χ 3 pα 6 |(2aχ + 1).

3. If m = 2α + 1, then ∃χ 3 pα+1 6 |(2aχ + 1).

4. If m = 2α + 1 and ∀χ ∈ Ĝ pα|(2aχ + 1), then D is a GSHDS.

Proof. Note that, if D is a QRS, then D(xn) = D(x) for all n ∈ (Z/psZ)∗2 = G2.

Since χ(D(xn)) = µn(χ(D)), where µn ∈ Gal(Qηps |Q) = (Z/psZ)∗ = G1 is the Galois

Automorphism corresponding to n, we must have µn(χ(D)) = χ(D) for all µn ∈ G2.

Thus, χ(D) belongs to the fixed field of G2 in Q(ηps). Since this fixed field is Q(ω),

we must have χ(D) ∈ Q(ω). Also, note that χ(D) is an algebraic integer, hence,

χ(D) belongs to OQ(ω) = Z
⊕

Zω. Thus, χ(D) = aχ + bχω.

Since D(x) +D(xno) = G(x)− [1], we deduce that χ(D) +µno
(χ(D)) = −1. Note

that µno
(χ(D)) = µno

(aχ + bχω) = aχ + bχµno
(ω). Since no is a nonquadratic residue,

it is a nontrivial coset of G1/G2 = Gal(Q(ω)|Q) = Z/2Z. Thus, µno
is the nontrivial

Galois automorphism of Q(ω), i.e., conjugation. Hence, µn0(ω) = ω =
−1−

q
(−1

p
)p

2
=

−1 − ω.

Thus, µno
(χ(D)) = aχ + bχ(−1 − ω) = (aχ − bχ) − bχω. Hence,

−1 = χ(D) + µno
(χ(D))

= aχ + bχω + (aχ − bχ) − bχω

= 2aχ − bχ.

Thus, we deduce that bχ = 2aχ + 1. This shows part 1.

Now, we show part 2. Let n0 be a fixed nonquadratic residue, first note that

χ(D) = aχ + (2aχ + 1)ω =
−1+(2aχ+1)

q
(−1

p
)p

2
and µno

(χ(D)) = aχ + (2aχ + 1)ω =
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−1−(2aχ+1)
q

(−1
p

)p

2
. Hence,

χ(D(x)D(xno)) =
1 − (2aχ + 1)2(−1

p
)p

4
.

Let us assume otherwise, that is, ∀χ ∈ Ĝ, pα | 2aχ + 1. Let, 2aχ + 1 = pαcχ for

some integer cχ. The previous analysis calculates the nontrivial character values of

the element D(x)D(xno) in C[G]. These character values are given by:

χ(D(x)D(xno)) =
1 − p2α+1(−1

p
)

4
c2χ.

Now we proceed by cases. First assume that p = 1 mod 4. Then −1 is a quadratic

residue mod ps. Hence D(x−1) = D(x) and

D(x−no) = φno
(φ−1(D(x)))

= φno
(D(x−1))

= φno
(D(x))

= D(xno).

Note that D(x)D(xno) evaluated at [1] is |D(x) ∩ D(x−no)| = |D(x) ∩ D(xno)| = 0,

since D(x) + D(xno) = G(x) − [1]. Now, we proceed to calculate D(x)D(xno) at [1]

using Fourier inversion:

D(x)D(xno)([1]) =
1

v

∑

g∈G
χ(D(x)D(xno))χ([1]).

Hence,

0 =
1

p2α
{(p2α − 1)2

4
+
∑

χ6=χ0

1 − p2α+1c2χ
4

},
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where χ0 is the trivial character of G. From the above equation we deduce that:

p2α(p2α − 1) = p2α+1
∑

χ6=χ0

c2χ,

which implies that p | (p2α − 1). Clearly a contradiction.

Now, we assume that p = 3 mod 4. Under this assumption −1 is nonquadratic

residue, hence −no is a quadratic residue. Thus, D(x−no) = D(x) and |D(x) ∩
D(x−no)| = |D(x)| = v−1

2
. Clearly, D(x)D(xno) evaluated at [1] is |D(x) ∩D(xno)| =

v−1
2

. We proceed as the previous case and we calculate D(x)D(xno) at [1] using

Fourier inversion to get:

p2α − 1

2
=

1

p2α
{(p2α − 1)2

4
+
∑

χ6=χ0

1 + p2α+1c2χ
4

}.

From the above equation we deduce once again:

p2α(p2α − 1) = p2α+1
∑

χ6=χ0

c2χ

Hence, p | (p2α − 1), clearly a contradiction.

For part 3, we can use similar proof to one used in part 2.

We proceed to show part 4. We assume that |G| = v = p2α+1 and 2aχ + 1 = pαcχ

for some integer cχ. If we perform a similar analysis as in the proof of parts 2 and 3,

that is we calculate the value of D(x)D(xno) at [1] using Fourier inversion; we get an

equation that simplifies in both cases p = 1 or p = 3 mod 4 to:

p2α+1(p2α+1 − 1) = p2α+1
∑

χ6=χ0

c2χ.

Hence,
∑

χ6=χ0
c2χ = p2α+1−1. Thus, c2χ = 1, since we have a sum of p2α+1−1 nonneg-

ative integers adding up to p2α+1−1. Therefore, 2aχ+1 = ±pα and χ(D(x)D(xno)) =
1−(−1

p
)p2α+1

4
.

Using Fourier inversion once again, one can show that D(x)D(xno) = (ko−λ)[1]+
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λG(x).4 We proceed and show this. Let g ∈ G be nonzero, then

D(x)D(xno)([g]) =
1

v
{(v − 1

2
)2 +

∑

χ6=χ0

χ(D(x)D(xno))χ(g)}

=
1

v
{(v − 1)2

4
+

1 − v(−1
p

)

4

∑

χ 6=χ0

χ(g)}

=
1

4v
{(v − 1)2 − (1 − v(

−1

p
)}

=
v − 2 + (−1

p
)

4

= λ.

Definition 3.1.11. Let D be a QRS in G and χ ∈ Ĝ. By the previous proposition,

χ(D) = aχ + (2aχ + 1)ω. We will call dG(χ,D) = 2aχ + 1 the difference coefficient of

D in G at χ.

Definition 3.1.12. Let D be a QRS. The dual of D, denoted by D is defined in Ĝ

as

D = {χ ∈ Ĝ\{1} | dG(χ,D) > 0}.

Note that D is a QRS whenever D is a QRS. This is nontrivial to show, but it

follows from the definition of QRSs and the following equation that we leave as an

exercise.

dG(µn · χ,D) = (
n−1

p
)dG(χ,D) when n ∈ G1.

Also, direct calculations show that in general D 6= D; however, this is true when D

is a GSHDS, we will show this later.

We will prove proposition 3.1.15 as a start at calculating the character value of a

general QRS D; we first prove a few lemmas that will aid in its proof.

4This equation will be different depending on the parity of p mod 4.
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Lemma 3.1.13. Let τ =
∑p−1

i=1 ( i
p
)ηip, where ηp is any primitive pth root of unity,

then τ 2 = (−1
p

)p.

Proof. This is a straight-forward calculation. Consider

τ 2 =
∑

a,b=1,...,p−1

(
ab

p

)
ηa+bp

=
∑

a,b=1,...,p−1

(−ab
p

)
ηa−bp

=
∑

a,b=1,...,p−1

(−ab−1

p

)(
b2

p

)
ηa−bp

=
∑

a,b=1,...,p−1

(−ab−1

p

)
ηa−bp ,

where in the above, b−1 is the multiplicative inverse of b mod p. In the last equation,

let c = ab−1 and a = bc; these substitutions give:

τ 2 =
∑

b,c=1,...,p−1

(−c
p

)
ηb(c−1)
p

=

p−1∑

c=2

{
(−c
p

) p−1∑

b=1

ηb(c−1)
p } +

p−1∑

b=1

(−1

p

)
.

Note that η′p = ηc−1
p is again a primitive pth root of unity and thus a conjugate

of ηp. Therefore, both ηp and η′p are roots of the same irreducible polynomial φp(x)

over the Q. Hence, 1 + η′p + η′2p + · · · η′p−1
p = 0 since φp(x) = 1 + x+ · · ·+ xp−1. Thus,

∑p−1
b=1(η

c−1
p )b =

∑p−1
b=1(η

′
p)
b = −1. Therefore, our calculation of τ 2 simplifies to:

τ 2 = −
p−1∑

c=2

(−c
p

)
+ (p− 1)

(−1

p

)

= p

(−1

p

)
−

p−1∑

c=1

(−c
p

)

= p

(−1

p

)
−
(−1

p

) p−1∑

c=1

(
c

p

)
.
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Consider,

p−1∑

c=1

(
c

p

)
=

∑

c∈(Z/pZ)∗

ψ(c)

= ψ((Z/pZ)∗),

where ψ is a the Quadratic Residue symbol that is viewed as a multiplicative character

of the group (Z/pZ)∗. Since ψ is nontrivial on (Z/pZ)∗, we must have ψ((Z/pZ)∗) = 0.

Thus, the calculation of τ 2 simplifies to:

τ 2 =

(−1

p

)
p−

(−1

p

) p−1∑

c=1

(
c

p

)

=

(−1

p

)
p−

(−1

p

)
ψ((Z/pZ)∗)

=

(−1

p

)
p,

hence, the result follows.

Lemma 3.1.14. Let p be an odd prime and ηp a pth root of unity. Let ω =
∑

{ηnp |(
n
p

)
= 1 and 1 ≤ n ≤ p− 1} and ω =

∑{ηnp |
(
n
p

)
= −1 and 1 ≤ n ≤ p− 1}. Then,

1. ω + ω = −1,

2. ω =
−1±

q
(−1

p
)p

2
,

3. ω =
−1∓

q
(−1

p
)p

2
.

Proof. Note that, the irreducible polynomial φp(x) of ηp over the rationals Q is

φp(x) = 1 + x + · · · + xp−1. Hence, 0 = 1 +
∑p−1

i=1 η
i
p = 1 + ω + ω. This shows

part 1.

To show part 2 and part 3, we will make use of the Gauss sum τ =
∑p−1

i=1 ( i
p
)ηip.

For the following, let ω0 = ω and ω1 = ω. Note that τ = ω0 −ω1 = 1+2ω0. Thus, by

lemma 3.1.13, we have (−1
p

)p = (1 + 2ω0)
2. Hence, ω0 =

−1±
q

(−1
p

)p

2
and parts 2 and 3

follow.
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For the rest of the chapter, we will choose ηp such that ω =
−1+

q
(−1

p
)p

2
and

ω =
−1−

q
(−1

p
)p

2
.

Proposition 3.1.15. Let Og be the G2 orbit of g ∈ G and χ ∈ Ĝ. Then

χ(Og) =





ωo(p · g) if χ(g) = ηnp , (
n
p
) = 1,

ωo(p · g) if χ(g) = ηnp , (
n
p
) = −1,

|Og| if χ(g) = 1,

0 else,

where o(p · g) is the order of the element p · g = g + · · · + g, i.e., g summed p times,

ω =
−1+

q
(−1

p
)p

2
and ω =

−1−
q

(−1
p

)p

2
.

Proof. Note that G1 = K × H = (Z/(p − 1)Z) × (Z/ps−1Z) via the decomposition

n = n0(1 + pb1 + p2b2 + · · · + ps−1bs−1), where n0 ∈ (Z/pZ)∗ = Z/(p − 1)Z = K

and 1 + pb1 + · · · + ps−1bs−1 ∈ H with bi ∈ {0, . . . , p − 1}. Another form of H is

{n ∈ G1|n = 1 mod p}. From this decomposition of G1, a decomposition of G2

follows as G2 = K2 × H = (Z/pZ)∗2 × H. Hence, Og =
∑

1≤i≤p−1,( i
p)=1[i · g]〈p · g〉

where: i · g = g + · · · + g, g summed i times; p · g = g + · · · + g, g summed p times;

and 〈p · g〉 is the group generated by p · g. Thus,

χ(Og) =
∑

1≤i≤p−1,( i
p)=1

χ(i · g))χ(〈p · g〉).

Since G is an abelian group, χ(〈p · g〉) changes values depending on the restriction

of χ to 〈p · g〉. That is,

χ(〈p · g〉) =





o(p · g) if χ(p · g) = 1,

0 if χ(p · g) 6= 1.

Also note that when χ(p ·g) = 1, we must have χ(g) = ηnp for some n ∈ {0, . . . , p−
1} depending on g and χ. Let us assume, n 6= 0, then
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∑

1≤i≤p−1,( i
p)=1

χ(i · g) =
∑

1≤i≤p−1,( i
p)=1

ηinp

=





ω0 = ω if
(
n
p

)
= 1,

ω1 = ω if
(
n
p

)
= −1,

where we use the notation and results of lemma 3.1.14 in the above equation.

Combining the deductions of the above paragraphs gives the conclusion of the

proposition.

Corollary 3.1.16. Let m ∈ G1, then

χ(Om·g) =





ωo(p · g) if χ(g) = ηnp ,
(
mn
p

)
= 1,

ωo(p · g) if χ(g) = ηnp ,
(
mn
p

)
= −1,

|Og| χ(g) = 1,

0 else.

Proof. This is a consequence of the previous proposition and the fact that: if χ(g) =

ηnp , then χ(m · g) = ηmnp .

Now, we are ready to calculate the character value an arbitrary QRS D.

Proposition 3.1.17. Let D =
∑r

i=1Oβi·gi
be a general QRS, where βi ∈ {1, n0}. Let

χ ∈ Ĝ, then χ(D) = aχ + dG(χ,D)ω where:

dG(χ,D) =
∑{(

nβi
p

)
o(p · gi) | χ(gi) = ηnp

}
,

aχ =
∑

{|Ogi
| | χ(gi) = 1} −

∑{
o(p · gi) | χ(gi) = ηnp ,

(
nβi
p

)
= −1

}
,

aχ =
dG(χ,D) − 1

2
,
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where ηp is a fixed primitive pth root of unity such that,

ω =
∑{

ηnp |
(
n

p

)
= 1, 1 ≤ n ≤ p− 1

}

=

−1 +

√(
−1
p

)
p

2
.

Proof. From corollary 3.1.16, we have:

χ(D) =
r∑

i=1

χ(Oβi·gi
)

= fχ + gχω + hχω

= (fχ − hχ) + (gχ − hχ)ω,

where,

fχ =
∑

{|Ogi
| | χ(gi) = 1} ,

gχ =
∑{

o(p · gi) | χ(gi) = ηnp ,

(
nβi
p

)
= 1

}
,

hχ =
∑{

o(p · gi) | χ(gi) = ηnp ,

(
nβi
p

)
= −1

}
.

The result follows from the above equations.

3.1.3 The QRS Incidence Structure AG,G1

Proposition 3.1.17 motivates the definition of an incidence structure that will prove

helpful when determining the character values of a general QRS D.

Definition 3.1.18. Let g1, . . . , gr be the orbit representatives of the action of G1

on G\{0}. Let θ : G → Ĝ be any commutative pairing. Let χi = θ(gi). Clearly,

χ1, . . . , χr are orbit representatives of the action of G1 on Ĝ\{1}. The G1 QRS

incidence structure on G, called AG,G1, is defined by:

AG,G1(Ωχi
,Ωgj

) =

(
f0(α(gi, gj))

p

)
o(p · gj),
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where α(gi, gj) is defined by proposition 3.1.5 by:

θ(gi)(gj) = η
α(gi,gj)
ps ,

where ηp = (ηps)p
s−1

satisfies the assumptions of proposition 3.1.17; and, f0(x) :

(Z/psZ) → (Z/pZ) is a function defined by:

f0(x) =





y if x = ps−1y mod ps,

0 else.

For the rest of the chapter, we will assume that gis and χis are chosen as in

definition 3.1.18. That is, they are paired via a noncanonical isomorphism θ : G→ Ĝ

such that θ(g)(g′) = θ(g′)(g).

The definition of AG,G1 motivates the introduction of the function α′(g, g′) =

f0(α(g, g′)) that is understood as a function α′ : G × G → (Z/pZ). Clearly, α′ is no

longer “bilinear,” however, α′ inherets some properties of α. This is summarized by

the following proposition.

Proposition 3.1.19. Let g, g′ ∈ G, σ ∈ Aut(G), and n ∈ (Z/nZ)∗, then modulo p:

1. α′(g, g′) = α′(g′, g),

2. nα′(g, g′) = α′(µn · g, g′),

3. α′(µn · g, g′) = α′(g, µn · g′),

4. α′((σ)∗ · g, g′) = α′(g, σ · g′).

Proof. Clearly, these are trivial calculations.

The following result on AG,G1 and the difference coefficients of an arbitrary QRS

D paraphrases proposition 3.1.17.

Proposition 3.1.20. If D is a QRS such that D =
∑r

i=1Oβi·gi
, then the difference
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coefficients of D are given by:

AG,G1




d1

...

dr


 =




dG(χ1, D)
...

dG(χr, D)


,

where di =
(
βi

p

)
.

The following proposition shows that AG,G1 is indeed an Aut(G) map from X, the

QRS space of G, to Y ,the QRS space of Ĝ.

Proposition 3.1.21. The matrix AG,G1 is an Aut(G) map from X to Y . More

precisely, for any σ ∈ Aut(G):

ρX(((σ)∗)−1)AG,G1 = AG,G1ρX(σ),

where we view AG,G1 as a matrix on X ×X by defining it as:

AG,G1(Ωgi
,Ωgj

) = AG,G1(Ωθ(gi),Ωgj
).

Proof. Let A = AG,G1 and σ ∈ Aut(G). Clearly,

A(Ωgi
,Ωgj

) = A(Ωχi
,Ωgj

)

=

(
α′(gi, gj)

p

)
o(p · gj).

Note that,

A(Ωχi
,Ωσ(gj)) =

(
α′(gi, σ(gj))

p

)
o(p · gj)

=

(
α′((σ)∗(gi), gj)

p

)
o(p · gj).
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Let σ(gj) = µn · g′j, where n ∈ (Z/psZ)∗. Identify Ωσ(gj) with Ωg′j
. Consider:

AρX(σ)Ωgj
=

(
n

p

)
AΩg′j

=

(
n

p

) r∑

i=1

A(Ωgi
,Ωg′j

)Ωgi

=

(
n

p

) r∑

i=1

(
α′(gi, g′j)

p

)
o(p · g′j)Ωgi

=
r∑

i=1

(
nα′(gi, g′j)

p

)
o(p · g′j)Ωgi

=
r∑

i=1

(
α′(gi, µn · g′j)

p

)
o(p · g′j)Ωgi

=
r∑

i=1

(
α′(gi, σ(gj))

p

)
o(p · g′j)Ωgi

=
r∑

i=1

(
α′((σ)∗(gi), gj)

p

)
o(p · gj)Ωgi

.

Define ni ∈ (Z/psZ)∗ be such that (σ)∗ · gi = µni
· g′i then:

AρX(σ)Ωgj
=

r∑

i=1

(
α′((σ)∗(gi), gj)

p

)
o(p · gj)Ωgi

=
r∑

i=1

(
α′(µni

· g′i, gj)
p

)
o(p · gj)Ωgi

=
r∑

i=1

(
ni
p

)(
α′(g′i, gj)

p

)
o(p · gj)Ωgi

=
r∑

i=1

(
α′(g′i, gj)

p

)
o(p · gj)

(
ni
p

)
Ωgi

=
r∑

i=1

(
α′(g′i, gj)

p

)
o(p · gj)

(
n−1
i

p

)
Ωgi

=
r∑

i=1

(
α′(g′i, gj)

p

)
o(p · gj)ρX(((σ)∗)−1)Ωg′i

= ρX(((σ)∗)−1)AΩgj
.
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In addition to being an Aut(G)-map, the matrix AG,G1 also satisfies a simple

equation that will be shown later.

Proposition 3.1.22. The matrix AG,G1 satisfies:

A2
G,G1

=
|G|
p
I.

The equation of proposition 3.1.22 will prove to be an useful tool in studying

GSHDS. The following corollary is an example of its usefulness.

Corollary 3.1.23. Let D be a GSHDS and D its dual. Then,

1. D is a GSHDS.

2. D = D.

Proof. Let |G| = v = p2α+1. Let D =
∑r

i=1Oβi·gi
and d be the r × 1 vector in the

QRS space X, where di = (βi

p
). Clearly, AG,G1d = (dG(χ1, D), . . . , dG(χr, D))T is the

vector of distinct difference coefficients of D. Since D is a GSHDS, by proposition

3.1.10 part 4 we have dG(χi, D) = pαεi, where εi ∈ {1,−1}. Hence,

AG,G1d = pαd,

where d is the r × 1 vector given by

di =





1 if dG(χi, D) > 0,

−1 if dG(χi, D) < 0.

Clearly, if the dual of D is given by D =
∑r

i=1Oγi·χi
, where γi ∈ {1, n0}; then(

γi

p

)
= di by construction. Hence, d is a representation of D.

Multiplying the above equation by AG,G1 and using proposition 3.1.22, we deduce:

AG,G1d = pαd,
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hence, D is a GSHDS by proposition 3.1.10 part 4. In particular, we also deduce

d = d.

Since d is the representation of D and d = d, we must have D = D.

As a closing remark, we note that AG,G1 appears in the calculation of the character

values of elements of the space of Compact QRSs of G.

Proposition 3.1.24. Let W =
⊕r

i=1 C(Ogi
− O

(n0)
gi ) and a =

∑r
i=1 ai(Ogi

− O
(n0)
gi )

where ai ∈ C, then:

1. Let χj = θ(gj) ∈ Ĝ, then:

χj(Ogi
−O(n0)

gi
) =

(
α′(gj, gi)

p

)
o(p · gi)

√(−1

p

)
p

= AG,G1(Oχj
, Ogi

)

√(−1

p

)
p.

2. Let χj = θ(gj) ∈ Ĝ, then:

χj(a) = (
r∑

i=1

AG,G1(Oχj
, Ogi

)ai)

√(−1

p

)
p.

Proof. Part 1 is a clear application of proposition 3.1.15 and the definition of AG,G1 .

Part 2 is an application of part 1.

3.2 Difference Coefficients

In this section, we will study properties of the difference coefficients that arise from

an arbitrary QRS D in an abelian p-group G. We will work toward stablishing the

generalized version of Xiang’s exponent bound, i.e., proposition 1.2.1 part 4b. We

will use the notation and assumptions of the previous sections.

We start with a reduction formula that is due to Chen, Sehgal, and Xiang in the

language of Skew Hadamard Differenc Sets.
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Proposition 3.2.1. Let D be a QRS in G, G′ ⊂ G, and D′ = G′ ∩D. Let χ′ ∈ Ĝ′

and LGG′(χ′) = {χ ∈ Ĝ | χ|G′ = χ′}. Then:

1. G′T ' (̂ G
G′ ), where G′T = {χ ∈ Ĝ | χ|G′ = 1}.

2. Every character χ′ ∈ Ĝ′ can be extended into a character χ1 of G exactly |G′T | =

[G : G′] times. That is, the set LGG′(χ′) = χ1G
′T where χ1 is any extension of

χ′ from G′ to G.

3. The difference coefficients obey the formula:

dG′(χ′, D′) =
1

[G : G′]

∑

χ∈LG
G′ (χ

′)

dG(χ,D).

Proof. To show part 1, note that one can define a map κ : G′T → (̂ G
G′ ) by κ(χ)(gG′) =

χ(g) for a given χ ∈ G′T . If g = g1g
′ for some g′ ∈ G′, then χ(g) = χ(g1g

′) =

χ(g1)χ(g′) = χ(g1). Thus, κ(χ) ∈ (̂ G
G′ ) is well defined. Note that, if κ(χ1) = κ(χ2),

then χ1 = χ2 by definition. Hence, κ is injective. To show surjectivity, let χ̂ ∈ (̂ G
G′ ).

Consider the character χ = χ̂ ◦ π, where π : G→ G
G′ is the canonical projection of G

onto the factor group G
G′ . Clearly, κ(χ) = χ̂. This shows part 1.

To show part 2, consider the restriction map θ : Ĝ→ Ĝ′ by θ(χ) = χ |G′ . We show

that θ is onto. Let ker(θ) = G′T = {χ ∈ Ĝ | χ |G′= 1}. Note that χ ∈ Ker(θ) if and

only if χ̂ ∈ (̂ G
G′ ).

5 Hence, |Ker(θ)| = |G|
|G′| . Thus, the image of θ, which is isomorphic

to
bG

Ker(θ)
, has order | bG|

|Ker(θ)| = |G′| and must be all of G′. Thus, θ is onto.

Note that LGG′(χ′) = θ−1(χ′) = χ1G
′T , where χ1 is any fixed extension of χ′ to all

of G. By the above, |LGG′(χ′)| = |Ker(θ)| = [G : G′]. This shows part 2.

To show part 3, let G = (g1 +G′) ∪ (g2 +G′) ∪ · · · ∪ (gr +G′), where g1 = 0 and

r = [G : G′]. Note that D = D′ ∪ (g2 + D2) ∪ · · · ∪ (gr + Dr), where Di ⊂ G′ such

that D ∩ (gi +G′) = gi +Di.

5where χ̂(gG′) = χ(g).
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Consider the sum:

∑

χ∈LG
G′ (χ

′)

χ(D) =
∑

χ∈G′T

(χ1χ)(D)

=
∑

χ∈G′T

{(χ1χ)(D′) + (χχ1)(g2 +D2) + · · · + (χχ1)(gr +Dr)}

=
∑

χ∈G′T

{χ1(D
′) + χ(g2)χ1(g2)χ1(D2) + · · · + χ(gr)χ1(gr)χ1(Dr)}

= [G : G′]χ′(D′) + χ1(g2)χ1(D2)
∑

χ∈G′T

χ(g2) + · · · +

+χ1(gr)χ1(Dr)
∑

χ∈G′T

χ(gr).

Since G′T ' Ĝ
G′ via the pairing χ ∈ G′T with χ̂ ∈ (̂ G

G′ ); we have, whenever gi /∈ G′,

by the second orthogonality relation:

∑

χ∈G′T

χ(gi) =
∑

bχ∈ d( G
G′ )

χ̂(giG
′)

= 0.

Hence,

∑

χ∈LG
G′ (χ

′)

χ(D) = [G : G′]χ′(D′).

Clearly, D′ is a QRS as D is a QRS. Thus,

[G : G′](aχ′ + dG′(χ′, D′)ω) =
∑

χ∈LG
G′ (χ

′)

{aχ + dG(χ,D)ω}.

By equating the ω-coordinate on both sides of the above equation we get the conclu-

sion.

The next result is an application of the previous proposition.

Corollary 3.2.2. Let D be GSHDS in G and G′ ⊂ G a subgroup with D′ = D ∩G′.
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Let p2α+1 = |G| and χ′ ∈ Ĝ′. Then,

dG′(χ′, D′) =
|G′|
pα+1

{|D ∩ χ1G
′T | − |D(n0) ∩ χ1G

′T |},

where n0 is a Non-Quadratic Residue in (Z/psZ)∗, ps = exp(G); and D is the dual

QRS of D in G.

Proof. Clearly, since D is a GSHDS, dG(χ,D) = pαεχ; where εχ ∈ {1,−1}. Hence,

by proposition 3.2.1 part 3, we have:

dG′(χ′, D′) =
|G′|
pα+1

∑

χ∈χ1G′T

εχ,

where we have chosen a fixed arbitrary extension χ1 of χ′ to G. Note that by definition

of D,

∑

χ∈χ1G′T

εχ = |D ∩ χ1G
′T | − |D(n0) ∩ χ1G

′T |.

Thus, the result follows.

The right-hand side of corollary 3.2.2 motivates the definition of the difference

intersection numbers.

Definition 3.2.3. Let D be a QRS in G, L ⊂ G be a subgroup, G
L

= {g′1L, . . . , g′sL}.
The difference intersection numbers of D with respect to L in G are defined as:

νG,L(D, g′i) = |D ∩ g′iL| − |D(n0) ∩ g′iL|.

The difference intersection numbers will occur in some calculations that will follow.

We will show a relationship of the difference intersection numbers to the difference

coefficients at the end of the section. For now, we point out the the G2-invariance of

the νG,L(D, g′)s.
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Proposition 3.2.4. Let l ∈ G and L ⊂ G a subgroup. Assume n ∈ (Z/psZ)∗ = G1,

then:

νG,L(D,µn · li) =

(
n

p

)
νG,L(D, li).

Proof. Clearly, µn is a bijection of G and hence of G
L
. Also, since D is a QRS,

µn ·D =





D if
(
n
p

)
= 1,

D(n0) if
(
n
p

)
= −1,

µn ·D(n0) =





D if
(
n
p

)
= −1,

D(n0) if
(
n
p

)
= 1.

Consider,

νG,L(D,µn · li) = |D ∩ (µn · liL)| − |D(n0) ∩ (µn · liL)|

= |(µ−1
n ·D) ∩ liL| − |(µ−1

n ·D(n0)) ∩ liL|

=





νG,L(D, li) if
(
n
p

)
= 1,

−νG,L(D, li) if
(
n
p

)
= −1.

Hence, the conclusion follows.

The next result has been shown by Chen, Sehgal, and Xiang for Skew Hadamard

Difference Sets [6]. This result will be used in the proof Xiang’s exponent bound.

Proposition 3.2.5. Let G be an abelian p-group and |G| = pm. Let Kl = {g | pl ·g =

0}, D be a QRS, and |Kl| = pl
′

. If l ≥ b l′+1
2
c, then there are at least |KT

l | = pm−l′

characters χ such that pl 6 |dG(χ,D).

Proof. Define φ : G → G by φ(g) = pl · g. Let K = Ker(φ) = Kl and DKl
=

D∩Kl, D0 = D\DKl
. Clearly, both DKl

and D0 are invariant under the action of the

quadratic residues. Also, note that if D =
∑r

i=1Oβi·gi
, then D0 =

∑{Oβi·gi
| o(gi) >

pl} and DKl
=
∑{Oβi·gi

| o(gi) ≤ pl}.
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Consider,

dG(χ,D) =
∑{(

nβi
p

)
o(p · gi) | χ(gi) = ηnp

}
(3.6)

=
∑{(

nβi
p

)
o(p · gi) | χ(gi) = ηnp , o(gi) ≤ pl

}

+
∑{(

nβi
p

)
o(p · gi) | χ(gi) = ηnp , o(gi) > pl

}

=
∑{(

nβi
p

)
o(p · gi) | χ(gi) = ηnp , o(gi) ≤ pl

}
mod pl

= dKl
(χ|Kl

, DKl
) mod pl.

By proposition 3.1.10 parts 2 and 3, there is χ′ ∈ K̂l such that pb
l′+1

2
c does not

divide dKl
(χ′, DKl

). Since b l′+1
2
c ≤ l, we must have pl does not divide dKl

(χ′, DKl
).

By Equation (3.6), we have that any extension of χ of χ′ to G has the property

dG(χ,D) = dKl
(χ′, DKl

) mod pl. Since pl does not divide dKl
(χ′, DKl

), we must have

pl not divide dG(χ,D). Since there are |KT
l | = [G : Kl] = pm−l′ extensions of χ′ to

a character χ of G, we must have at least pm−l′ characters χ such that pl does not

divide dG(χ,D).

Corollary 3.2.6. Let G = Z/psZ×Z/psZ, then for any D, a QRS, there are at least

p2(s−1) characters χ ∈ Ĝ such that p does not divide dG(χ,D).

Proof. We will use proposition 3.2.5 by letting l = 1. A direct calculation gives

K1 = 〈(ps−1, 0), (0, ps−1)〉. Thus, |K1| = p2 and |KT
1 | = p2(s−1). Since 1 ≥ b2+1

2
c = 1,

we can apply proposition 3.2.5 and conclude that there p2(s−1) characters χ ∈ Ĝ such

that p does not divide dG(χ,D).

The next result is the generalization of Xiang’s exponent bound. It can be found

in [6] in the context for Skew Hadamard Difference Sets.

Proposition 3.2.7. Let D be GSHDS in G where |G| = p2α+1 and ps = exp(G).

Then,

s ≤ α + 1

2
.
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Proof. Note that, if G is elementary abelian, then the result follows. So let us assume

that G is not elementary abelian. By proposition 3.0.8, we have that G = Z/psZ ×
Z/psZ×Z/pa3Z×· · ·×Z/palZ where s ≥ a3 ≥ · · · ≥ al. Let G′ = Z/psZ×Z/psZ ⊂ G

and D′ = D ∩ G′. By corollary 3.2.6, there is χ′ ∈ Ĝ′ such that p does not divide

dG′(χ′, D′). Let χ1 be an extension of χ′ from G′ to G. By corollary 3.2.2, we deduce

the following.

dG′(χ′, D′) =
|G′|
pα+1

{|D ∩ χ1G
′T | − |D(n0) ∩ χ1G

′T |}

= p2s−(α+1){|D ∩ χ1G
′T | − |D(n0) ∩ χ1G

′T |}.

By the choice of χ′, we must have p not dividing dG′(χ′, D′). This forces the exponent

of p in the above equation to be negative. Hence, giving the result.

We close this section with a result that shows a relationship between the difference

intersection numbers and the difference coefficients.

Proposition 3.2.8. Let π : G→ H be a group homeomorphsim that is surjective with

kernel Ker(π) = L. Let θG be a commutative pairing of G and choose the restriction

of θ to H as the commutative pairing of H. That is, θH = θG |H .

Let h1, . . . , hs be a complete set of H1-representatives of H\{0} and define χi =

θH(hi) as the corresponding complete set of H1-representatives of Ĥ\{1}. Choose g′i

to be any lift of hi under π, i.e., g′i is chosen so that π(g′i) = hi. Extend each χi to a

character of G by letting χ′
i = χi ◦ π. Then,

AH,H1




νG,L(D, g′1)
...

νG,L(D, g′s)


 =




dG(D,χ′
1)

...

dG(D,χ′
s)


.

Proof. We will consider D(x) − D(xn0) in Z[G]. By applying the projection π, we
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will deduce:

π(D −D(n0)) =
s∑

i=1

νG,L(D, g′i)(Ohi
−O

(n0)
hi

). (3.7)

By applying χj to Equation (3.7), we can deduce by use of proposition 3.1.24:

dG(D,χ′
j)

√(−1

p

)
p =

s∑

i=1

νG,L(D, g′i)AH,H1(Oχj
, Ohi

)

√(−1

p

)
p.

From the above equation, the conclusion follows.

Thus, it suffices to show Equation (3.7). Let G decompose into:

G = ∪ti=1(liL).

Clearly, as sets:

D = ∪ti=1(D ∩ liL),

D(n0) = ∪ti=1(D
(n0) ∩ liL).

Hence, as elements in Z[G]:

π(D) =
t∑

i=1

|D ∩ liL|hi,

π(D(n0)) =
t∑

i=1

|D(n0) ∩ liL|hi.

Thus,

π(D −D(n0)) =
t∑

i=1

νG,L(D, li)hi (3.8)

=
∑

h∈H
νG,L(D, π−1(h))h,

where π−1(h) is any preimage in G of h under π.
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We can deduce Equation (3.7) by applying the G2-invariance property of the

difference intersection numbers to Equation (3.8), i.e., proposition 3.2.4.

3.3 The G2 Association Scheme

In this section, we will prove proposition 3.1.22 by using the character table of a

special Association Scheme.

We will assume a noncanonical isomorphism θ : G → Ĝ such that θ(g)(g′) =

θ(g′)(g). We will let g1, . . . , gr be the G1-orbit representatives of the action of G1 on

G\{0}. From the representatives g1, . . . , gr and θ, we will get χi = θ(gi) that will be

the corresponding G1-orbit representatives of the action of G1 on Ĝ\{1}.
First, we introduce the algebra H(G,K) where K ⊂ Aut(G), which we will call

the S-ring algebra of G with respect to K.

Definition 3.3.1. Let K ⊂ Aut(G) and define the action of K on C[G] by σ · [xg] =

[xσ(g)]. Let H(G,K) = C[G]H = {z ∈ C[G] | σ · z = z,∀σ ∈ K}. H(G,K) will be

called the S-ring algebra of G with respect to K.

Proposition 3.3.2. The set H(G,K) is a subalgebra of C[G].

Proof. It suffices to show H(G,K) is closed under the convolution product of C[G].

Note that for general z, z′ ∈ C[G] and σ ∈ Aut(G), σ · (z ∗ z ′) = (σ · z) ∗ (σ · z′),6

because G is abelian and σ is an autormorphism of G.

Let z, z′ ∈ H(G,K) and σ ∈ K, then σ · (z ∗ z ′) = (σ · z) ∗ (σ · z′) = z ∗ z′. Hence,

z ∗ z′ ∈ H(G,K).

The algebras H(G,K) are examples of S-rings, and are studied in detail by Bannai

and Ito in [2]. In the following, we will show that H(G,K) has a character table, and

we will calculate it for general K.

Standard character theory shows that the primitive idempotents of C[G] are given

6where ∗ is the convolution product of C[G].
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by:

eχ =
1

|G|
∑

g∈G
χ(g)[xg].

Note that if σ ∈ Aut(G), then one can define an action on the primitive idempotents

of C[G] by:

σ · eχ =
1

|G|
∑

g∈G
χ(g)[xσ(g)]

=
1

|G|
∑

g∈G
χ(σ−1(g))[xg]

=
1

|G|
∑

g∈G
(σ · χ)(g)[xg]

= eσ·χ,

where we have defined the action of σ ∈ Aut(G) on χ ∈ Ĝ by (σ · χ)(g) = χ(σ−1(g)).

The action of K ⊂ Aut(G) on the primitive idempotents of C[G] give us a formula

for the linearly independent idempotents of H(G,K).

In the following, we will assume that h0 = 0, h1, . . . , hl are the distinct orbit repre-

sentatives of the action of K on G; and we will let χ′
0 = θ(h0), , χ1 = θ(h1), . . . , χ

′
l =

θ(hl) be the distinct orbit representatives of the action of K on Ĝ, where χ′
0 is the

trivial character. We will also let l be the number of orbits of the action of K on G.

Proposition 3.3.3. Let Oχ′

i
be the orbit of χ′

i under the action of K on Ĝ. Let Ohi

be the orbit of hi under the action of K on G. Let dχ′

i
=
∑

χ∈Oχ′

i

eχ. Then,

1. The dimension of H(G,K) is given by dimC(H(G,K)) = l + 1.

2. The set {Oh′0
, Oh′1

, . . . , Oh′
l
} is a basis of H(G,K).

3. The set {dχ′

0
, dχ′

1
, . . . , dχ′

l
} is a basis of idempotents of H(G,K).
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4. Given z ∈ H(G,K),

z =
l∑

i=0

χ′
i(z)dχ′

i
,

z =
l∑

i=0

zhi
Ohi

,

where zhi
is the value of z on [xhi ].

5. The basis change from {dχi
} to {Ohi

} is given by Ohi
=
∑l

j=0 χ
′
j(Ohi

)dχi
.

6. The basis change from {Ohi
} to {dχi

} is given by dχ′

i
= 1

|G|
∑l

j=0Oχ′

i
(hj)Ohj

,

where Oχ′

i
(hj) =

∑
χ∈Oχ′

i

χ(hj).

7. Let CG,K be the (l + 1) × (l + 1) matrix given by CG,K(χ′
i, hj) = χ′

i(Ohj
), and

BG,K be the (l + 1) × (l + 1) matrix given by BG,K(hi, χ
′
j) = Oχ′

j
(hi). Then,

BG,KCG,K = |G|Il+1,l+1,

CG,KBG,K = |G|Il+1,l+1,

BG,K = CG,K ,

where Il+1,l+1 is the (l + 1) × (l + 1) identity matrix.

Proof. First, we will show part 1 and part 2. Note that if z ∈ H(G,K) then z =
∑

g∈G zg[x
g]; and given σ ∈ K,

z = σ · z

=
∑

g∈G
zg[x

σ(g)]

=
∑

g∈G
zσ−1(g)[x

g].

Hence, zg = zσ−1(g), i.e., z is constant on the orbits of K on G. This shows part 1

and 2.

Clearly, the number of orbits of the action of K on G is the same as the number
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of orbits of the action of K on Ĝ. To show part 3, it suffices to show that: the vectors

dχ′

i
are linearly independent, they belong to H(G,K), and they are idempotents

themselves. Clearly, each dχ′

i
is an idempotent, as each dχ′

i
is a sum of distinct

orthogonal primitive idempotents. Consider,

0 =
l∑

j=0

cjdχ′

j

=
l∑

j=0

cj{
∑

χ∈Oχ′

j

eχ}

=
∑

χ∈ bG

c′χeχ,

where in the last equation, c′χs are paired with the cjs. Since, the eχ are linearly

independent as they form another basis of C[G] because G is abelian; we must have

cj = c′χ = 0. This shows linearly independence of the dχ′

i
.

To show that each dχ′

i
∈ H(G,K), suffices to show that σ · dχ′

i
= dχ′

i
for σ ∈ K.

Consider,

σ · dχ′

i
=

∑

χ∈Oχ′

i

σ · eχ

=
∑

χ∈Oχ′

i

eσ·χ

=
∑

χ∈Oχ′

i

eχ

= dχ′

i
.

This shows part 3.

Now we show part 4. Clearly, if z ∈ H(G,K), then z is constant on the orbits of

the action of K on G. That is, z =
∑l

i=0 zhi
Ohi

. Also, note that z ∗ eχ = χ(z)eχ;
7

7We are using G is abelian.
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hence, for σ ∈ K:

χ(z)eχ = z ∗ eχ

= (σ · z) ∗ eχ

= σ · (z ∗ (σ−1 · eχ))

= σ · (z ∗ eσ−1·χ)

= σ · ((σ−1 · χ)(z)eσ−1·χ)

= (σ−1 · χ)(z)eχ

= χ(σ(z))eχ.

Hence, for σ ∈ K, χ ∈ Ĝ and z ∈ H(G,K), χ(z) = χ(σ(z)). In particular, we have

that:

z ∗ dχ′

j
=

∑

χ∈Oχ′

j

z ∗ eχ

=
∑

χ∈Oχ′

j

χ(z)eχ

= χ′
j(z)

∑

χ∈Oχ′

j

eχ

= χ′
j(z)dχ′

j
.

Since

[1] = [x0]

=
∑

χ∈ bG

eχ

=
l∑

j=0

dχ′

j
,

we have that z =
∑l

j=0 z ∗ dχ′

j
=
∑l

j=0 χ
′
j(z)dχ′

j
. This shows part 4.

To show part 5, note that [xg] =
∑

χ∈ bG χ(g)eχ. Hence, Ohi
=
∑

χ∈ bG χ(Ohi
)eχ.



98

Note that, if σ ∈ K, then

(σ · χ)(Ohi
) = (σ · χ)(

∑

g∈Ohi

[xg])

=
∑

g∈Ohi

(σ · χ)(g)

=
∑

g∈Ohi

χ(σ−1(g))

=
∑

g∈Ohi

χ(g)

= χ(Ohi
).

Thus, χ(Ohi
) = χ′(Ohi

) whenever χ, χ′ ∈ Oχ. Therefore,

Ohi
=

∑

χ∈ bG

χ(Ohi
)eχ

=
l∑

j=0

χ′
j(Ohi

)dχ′

j
.

This shows part 5.

Part 6 is shown similarly. Note that eχ = 1
|G|
∑

g∈G χ(g)[xg], hence

dχ′

i
=

1

|G|
∑

g∈G
{
∑

χ∈Oχ′

i

χ(g)}[xg]

=
1

|G|
∑

g∈G
Oχ′

i
(g)[xg].
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Similarly as in the previous part, we can show that:

Oχ′

i
(g) =

∑

χ∈Oχ′

i

χ(g)

=
∑

χ∈Oχ′

i

(σ−1 · χ)(g)

=
∑

χ∈Oχ′

i

χ(σ(g))

= Oχ′

i
(σ(g)).

Thus,

dχ′

i
=

1

|G|
∑

g∈G
Oχ′

i
(g)[xg]

=
1

|G|

l∑

j=0

Oχ′

i
(hj)Ohj

,

hence showing part 6.

Part 7’s first two equations are clearly a consequence of parts 5 and 6. We show

the last equation. Note that, Oχ′

i
= θ(Ohi

) by the choice of θ and χ′
i. Thus,

Oχ′

i
(hj) =

∑

χ∈Oχ′

i

χ(hj)

=
∑

h∈Ohi

θ(h)(hj)

=
∑

h∈Ohi

θ(hj)(h)

=
∑

h∈Ohi

χ′
j(h)

= χ′
j(Ohi

).
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Thus, by the choice of θ and χ′
i, we have that

BG,K(hi, χ
′
j) = Oχ′

j
(hi)

= χ′
i(Ohj

)

= CG,K(χ′
i, hj).

Therefore, B(G,K) = CG,K .

Parts 5 and 6 of proposition 3.3.3 gives the basis change between two basis of

H(G,K). Although not needed here, one can show that the dχ′

i
s are the primitive

idempotents of H(G,K), and that H(G,K) is a semisimple algebra. Thus, parts 5

and 6 of proposition 3.3.3 gives the character table and the inverse character table of

H(G,K). Also, one can show that H(G,K) is itself an Association Scheme, as it is

an S-ring in the sense of Bannai and Ito in [2]; and also a Hecke Algebra. However,

we will not use this structure.

To prove proposition 3.1.22, we will consider the case when G is an abelian p-group

with K = G2, and we will exploit the identity of part 7 of proposition 3.3.3.

Proposition 3.3.4. Let G be a an abelian p-group. Then,

A2
G,G1

=
|G|
p
Ir,r,

where r is the number of G1 orbits in G\{0}, Ir,r is the identity r × r matrix, and

r = r(G) is the number of G1 orbits of G̃ = G\{0}.

Proof. Let g1, . . . , gr be the distinct orbit representatives of the action ofG1 onG\{0}.
Let g0 = 0, and gr+i = n0 · gi for i = 1, . . . , r; where n0 is a Non-Quadratic Residue

mod ps = exp(G). Clearly, g0, g1, . . . , gr, gr+1, . . . , g2r are orbit representatives of the

action of G2 on G. Let χi = θ(gi). With the choices of gi and χi and using proposition
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3.3.3 and corollary 3.1.16, we have that a matrix representation of CG,G2 is:




1 |Og1| · · · |Ogr
| |Og1| · · · |Ogr

|
1 A0 Ã0

1 Ã0 A0


 ,

where A0 = B1 + ωAG,G1 , Ã0 = B1 + ωAG,G1 ,
8 1 is the r × 1 vector of all 1s, and B1

is given by:

B1(χi, gj) =





|Ogj
| if χi(gj) = 1,

−o(p · gj) if χi(gj) = ηnp and (n
p
) = −1,

0 else.

Now, we proceed by cases. First let p = 3 mod 4. Clearly, −1 is a Non-Quadratic

Residue mod ps = exp(G). Also, ω is the complex conjugate of ω, thus:

CG,G2 =




1 |Og1| · · · |Ogr
| |Og1| · · · |Ogr

|
1 A0 A0

1 A0 A0


 .

By proposition 3.3.3 part 7, we get that CG,G2CG,G2 = |G|I. Thus:




1 |Og1| · · · |Ogr
| |Og1| · · · |Ogr

|
1 A0 A0

1 A0 A0







1 |Og1| · · · |Ogr
| |Og1| · · · |Ogr

|
1 A0 A0

1 A0 A0




= |G|I.
8Note that ω is not necessarily the complex conjugate of ω but it is instead the Galois conjugate

of ω in Q(ω).
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From the above equation, we can deduce the following equations:

J0 + A0A0 + A0A0 = |G|I, (3.9)

J0 + A2
0 + A0

2
= 0, (3.10)

where J0 = JDiag(|Og1|, . . . , |Ogr
|) and J is the r × r matrix of all 1s. Substracting

Equation (3.10) from Equation (3.9), we get:

|G|I = A0A0 + A0A0 − A2
0 − A0

2

= −(A0 − A0)(A0 − A0).

Note that A0 − A0 = (ω − ω)AG,G1 =
√−pAG,G1 . Thus,

|G|I = −(
√−pAG,G1)(

√−pAG,G1)

= pA2
G,G1

,

hence, the result follows.

Now, we proceed to prove the case when p = 1 mod 4. Under this case, −1 is a

Quadratic Residue and ω is a real number; thus, A0 is a real matrix and A0 = A0,

Ã0 = Ã0. Therefore, the equation CG,G2CG,G2 = |G|I reduces to:




1 |Og1| · · · |Ogr
| |Og1| · · · |Ogr

|
1 A0 Ã0

1 Ã0 A0







1 |Og1| · · · |Ogr
| |Og1| · · · |Ogr

|
1 A0 Ã0

1 Ã0 A0




= |G|I.

Hence, we deduce the following equations:

|G|I = A2
0 + Ã0

2
+ J0, (3.11)

0 = A0Ã0 + Ã0A0 + J0. (3.12)
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Substracting Equation (3.12) from Equation (3.11), we get:

|G|I = A2
0 + Ã0

2 − A0Ã0 − Ã0A0

= (A0 − Ã0)(A0 − Ã0).

Under the assumption that p = 1 mod 4, A0 − Ã0 =
√
pAG,G1 . Thus,

|G|I = (
√
pAG,G1)(

√
pAG,G1)

= pA2
G,G1

.

Hence, the result follows.

As a corollary we get a relationship in the Smith Normal Form of AG,G1 .

Corollary 3.3.5. Let SG be the Smith Normal Form of AG,G1 and |G| = pm. Then

1. The matrix AG,G1 has Smith Normal Form,

SG = Diag((1)a0 , (p)a1 , . . . , (pm−1)am−1).

2. The exponents of part 1 satisfy am−1−i = ai for all i ∈ {0, . . . ,m− 1}.

Proof. Let S = SG be the SNF of A = AG,G1 , then there are unimodular matrices

E,F such that EAF = S. Thus, A−1 = FS−1E. Since A2 = pm−1I, we must have

A = pm−1A−1 ∈ Mr(Z) is an r × r matrix of integers. Therefore, as A = pm−1A−1 =

pm−1FS−1E, we have that pm−1S−1 = F−1AE−1 must be integral since E,F are

unimodular. Let S = Diag(s1, . . . , sr), then:

pm−1S−1 = pm−1




s−1
1 0 · · · 0

0 s−1
2 · · · 0

0
... · · · 0

0 0 0 s−1
r ,



.
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Hence, pm−1 is divisible by si. Thus, si must be a pth power. Therefore, all invariant

factors of A are powers of p.

If sr < pm−1, then srA
−1 = F (srS

−1)E ∈ Mr(Z) is an integral matrix; but,

srA
−1 = sr

pm−1A /∈ Mr(Z) as A has entries that are ±1 given by columns that corre-

spond to Ωgi
where gi has order ps−1. Thus, sr ≥ pm−1. By using a similar argument,

we can show that sr > pm−1 gives a contradiction. Hence, sr = pm−1 and part 1

follows.

To show part 2, note that A = pm−1A−1 = pm−1FS−1E. Thus, if,

S = Diag((1)a0 , . . . , (pm−1)am−1),

then

A = FDiag((pm−1)a0 , . . . , (1)am−1)E

= F ′Diag((1)am−1 , . . . , (pm−1)a0)E ′,

where F ′ = FP0 and E = E ′P0, for some permutation matrix P0. By uniqueness

of the SNF, we have that a0 = am−1, a1 = am−2, . . . , am−1 = a0. Hence, the result

follows.

Corollary 3.3.6. Let G = Z/pZ × Z/pZ, then AG,G1 has SNF Diag((1)
p+1
2 , (p)

p+1
2 ).

Proof. By the previous corollary, S = Diag((1)a0 , (p)a1) and a0 = a1. Since a0 +a1 =

r = p+ 1, the result follows.

We calculate AG,G1 for G = (Z/psZ) as an illustrative example and leave the proof

as an exercise.

Proposition 3.3.7. Let G = (Z/psZ), then:

1. A full set of G1 orbit representatives of G̃ is given by X1 = {1, p, ·, ps−1}.

2. A commutative pairing for G is given by:

θ(a)(b) = ηabps .
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3. By using,

X = CΩps−1 ⊕ CΩps−2 ⊕ · · · ⊕ Ω1,

Y = CΩχ
ps−1 ⊕ CΩχ

ps−2 ⊕ · · · ⊕ Ωχ1 ,

where χpi = θ(pi), we can calculate AG,G1 as:

AG,G1 =




0 0 0 · · · 0 ps−1

0 0 0 · · · ps−2 0
...

...
... · · · ...

...

0 0 p2 · · · 0 0

0 p 0 · · · 0 0

1 0 0 · · · 0 0




.

3.4 Results for Special Groups

We will give two examples of the map θ : G → Ĝ such that θ(g)(g′) = θ(g′)(g);

then, we will use these θs to state GSHDS existence conditions for the special groups

(Z/pZ) × (Z/p2Z)α.

Our results will make use of Galois Rings, which are defined in proposition 3.4.1.

Proposition 3.4.1 can be shown using standard local algebraic number theory.

Proposition 3.4.1. Let K = Qp(η) be an umramified extension of Qp of degree α.

Let OK be the ring of integers of K. Define R(pk, α) = OK

pkOK
. Let q = pα, then:

1. R(pk, α) = (Z/pkZ)(η) is the Galois extension of the ring (Z/pkZ) of degree α

and exponent pk.

2. There is a set of “Teichmüller Units,” τ = {1, η, . . . , ηq−2} ⊂ (OK)∗, of (q−1)th

primitive roots of unity in OK that are distinct mod pOK.

3. Every element γ ∈ R(pk, α) decomposes into:

γ = r0(γ) + r1(γ)p+ · · · + rk−1(γ)p
k−1,
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where the ri(γ) ∈ τ ∪ {0} are unique.

4. The Gal(K | Qp) = 〈Fr〉; where Fr, the “Frobenious” map, is defined by

Fr(η) = ηp.

5. The Gal(K | Qp) induces a group of automorphisms of R(pk, α) that leaves

(Z/pkZ) invariant and is defined by Fr(γ) = r0(γ)
p+r1(γ)

pp+· · ·+rk−1(γ)
ppk−1.

6. The Trace map Tr : K → Qp defined by:

Tr(x) =
n−1∑

j=0

Fri(x),

induces a Trace map Tr : R(pk, α) → (Z/pkZ).

By using Galois Rings, we give a list of H1 orbit representatives for H = (Z/p2Z)α

that will prove useful.

Proposition 3.4.2. Let H = (Z/p2Z)α and L = {g ∈ H | o(g) = p} = p ·H.

1. H can be viewed as Galois Ring R(p2, α) by using any isomorphism of additive

groups κ : H → R(p2, α). That is, we can define the corresponding multiplica-

tion on H as:

g ∗ g′ = κ−1(κ(g) ∗ κ(g′)).

2. Let r′ be number of orbits of the action of L1 = (Z/pZ)∗ on L\{0}, then r′ =

pα−1 + pα−2 + · · · + p+ 1.

3. Let q = pα. There is a set µq−1 = {k1, . . . , kq−1} of elements of H of order p2,

called the “Teichmüller Units,” such that:

p · µq−1 = {p · k1, . . . , p · kpα−1}

= L\{0}.
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4. There are sets {l1, . . . , lr′} ⊂ µq−1 and {l′1, . . . , l′pα−1} ⊂ µq−1 ∪ {0}, such that,

(a) The elements {p · l1, . . . , p · lr′} are orbit representatives of the action of L1

on L̃ = L\{0}.

(b) The elements {p · l′1, . . . , p · l′pα−1} are orbit representatives of the action of

((Z/pZ),+) on (L,+).

(c) The elements hi,j = li + p · l′i,j = li ∗ (1 + pl′j) , where i = 1, . . . , r′ and

j = 1, . . . , pα−1, form a set of orbit representatives of the action of H1 on

the elements of order p2 in H.

Proof. Part 1 is clear. We show part 2 by observing that L1 has order p − 1 and

is acting on, L\{0}, a set of size pα − 1. Since this action has no fixed points,

a direct use of Burnside’s formula for group actions gives the number of orbits as

pα−1
p−1

= pα−1 + pα−2 + · · · + p+ 1. Hence, part 2 follows.

To show parts 3 and 4, we will view H as a Galois Ring; the extra operation of

multiplication will help us construct the desired H1 orbit representatives.

Let K = Qp(β) be an unramified extension of Qp, the p-adic numbers, of degree α.

Denote by OK the ring of integers in K. Let τ be the Teichmüller Units of proposition

3.4.1.

Define µq−1 = τ mod p2OK . Since R(p2, α) is a local ring with maximal ideal

given by pR(p2, α), it follows that all units have order p2. Hence, every element of

µq−1 has order p2. To show part 3, let k1 6= k2 both in µq−1 such that p · k1 = p · k2

in L ⊂ H. By construction, there are η1 6= η2 both in τ such that p · η1 = p · η2

mod p2OK . Thus, p · (η1 − η2) = 0 mod p2OK . Since K is an unramified discrete

valuation ring with prime p, it follows that p divides η1 − η2, i.e., η1 = η2 mod pOK .

This contradicts proposition 3.4.1 part 2. Hence, p ·µq−1 ⊂ L\{0} has q−1 elements.

Since |L\{0}| = q − 1, it must be the case that p · µq−1 = L\{0}.
Now, we proceed to show part 4. By using standard local algebraic number theory,

we know that K∗ = 〈p〉 × µq−1 ×U (1); where 〈p〉 = {pi | i ∈ Z} and U (1) = {x ∈ OK |
x = 1+pz where z ∈ OK}. Thus, we can deduce that R(p2, α)∗ can be parameterized
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by tuples in the following form:

R(p2, α)∗ = {(a0, a1) | a0 ∈ µq−1, a1 ∈ µq−1 ∪ {0}}, (3.13)

where (a0, a1) = a0(1+pa1) ∈ Rp(2, α). We note that the parametrization in Equation

(3.13) is more of a multiplicative decomposition instead of an additive decomposition.

That is, (a0, 0)(0, a1) = (a0, a1) but (a0, 0) + (0, a1) 6= (a0, a1).

Note that (Z/p2Z) = Zp/p
2Zp ⊂ OK/p

2OK = Rp(2, α). A direct calculation shows

that:

(Z/p2Z)∗ = {(b0, b1) | b0 ∈ µp−1, b1 ∈ µp−1 ∪ {0}},

where µp−1 is the subset of µq−1 consisting of the (p− 1)th roots of unity. Note that

the action of (Z/p2Z)∗ on H is given by multiplication of (Z/p2Z) on Rp(2, α). Also,

note that multiplication of tuples has a nice formula since:

(b0, b1)(a0, a1) = b0(1 + pb1)a0(1 + pa1) (3.14)

= b0a0(1 + p(b1 + a1)) mod p2OK

= (b0a0, b1 + a1),

where the addition in the second coordinate is taken as addition in Fq, and multipli-

cation in the first coordinate is taken as multiplication in (Fq)∗.

Clearly, if we are considering elements of order p2, then we are considering the

elements of R(p2, α)∗. Also, the action of (Z/p2Z)∗ = H1 on R(p2, α)∗ = H “de-

composes” via the use of Equation (3.14) onto the action of F∗
p on F∗

q on the first

coordinate and the action of (Fp,+) on (Fq,+) on the second coordinate.

Let m1, . . . ,mr′ be orbit representatives of the action of µp−1 on µq−1. Also,

let n1, . . . , npα−1 be orbit representatives of the action of (Fp,+) = µp−1 ∪ {0} on

(Fq,+) = µq−1 ∪ {0}.
We claim that the set of tuples (mi, nj) = mi(1 + pnj) form a set of orbit repre-

sentatives of the action of (Z/p2Z)∗ on R(p2, α)∗. This will show part 4.
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Let (m,n) ∈ R(p2, α)∗. Clearly, m belongs to the orbit of some mi0 . That is,

there is b0 ∈ µp−1 such that m = b0mi0 . Also, n belongs to the orbit of some nj0 .

That is, there is b1 ∈ (Fp,+) = µp−1 ∪ {0} such that n = b1 + nj0 . Note that this

means (m,n) = (b0, b1)(mi0 , nj0), where (b0, b1) ∈ (Z/p2Z)∗. Hence, the list (mi, nj)

is exahustive.

It suffices to show that each orbit is represented by at most one (mi, nj). Suppose

that (mi, nj) and (mi′ , nj′) represent the same orbit H1 orbit of H\{0}. Clearly, there

is b ∈ H1 = (Z/p2Z)∗ such that:

mi(1 + pnj) = b ∗mi′(1 + pnj′).

Since, we can decompose b into (b0, b1), clearly, (mi′ , nj′) = (b0, b1)(mi, nj) =

(b0mi, b1 + nj). Thus mi′ = b0mi and nj′ = b1 + nj. Hence, forcing i = i′ and j = j ′

by the choice of the mis and njs.

We note that the l′i,js of proposition 3.4.2 may repeat themselves; but, the lis and

l′js do not.

3.4.1 Examples of Θ : G → Ĝ

Our first example are θs induced by Invariant Factor Inner Products.

Definition 3.4.3. Let G be an abelian p-group with invariant factor decomposition

G = (Z/pa1Z) × (Z/pa2Z) × · · · × (Z/parZ), where a1 ≥ a2 ≥ · · · ≥ ar ≥ 1. Given

g, g′ ∈ G, let g = (g1, . . . , gr), g
′ = (g′1, · · · , g′r), where gi, g

′
i ∈ Z/paiZ. The invariant

factor inner product is defined as:

〈g′, g〉G =
r∑

i=1

g′igip
a1−ai mod pa1 .

The following proposition justifies the definition of 〈g ′, g〉G.

Proposition 3.4.4. Let χ ∈ Ĝ, there is a unique g′ = (b1, . . . , br) ∈ G such that for
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any g = (c1, . . . , cr) ∈ G,

χ(g) = η
〈g′,g〉G
pa1 ,

where 〈g′, g〉G =
∑r

i=1 bicip
a1−ai mod pa1, and ηpa1 is a fixed primitive pa1th root of

unity.

Proof. Clearly, to know the values of χ on G, we only need to know χ on a set of

minimal generators of G. Using the notation of definition 3.4.3, f1 = (1, 0, . . . , 0), f2 =

(0, 1, . . . , 0), . . . , fr = (0, 0, . . . , 1) are canonical generators of G; hence, it suffices to

know χ at the fis.

Let χ(fi) = ηbipai . Since ηpai = ηp
a1−ai

pa1 , we have that χ(fi) = ηp
a1−aibi
pa1 . Given

g = (c1, . . . , cr) = c1 · f1 + · · · + cr · fr, we have that:

χ(g) = χ(c1 · f1 + · · · + cr · fr)

= χ(f1)
c1 · · ·χ(fr)

cr

= ηp
a1−a1b1c1
pa1 · · · ηpa1−ar brcr

pa1

= ηp
a1−a1b1c1+···+pa1−ar brcr
pa1

= η
〈g′,g〉G
pa1 .

It suffices to show that g′ = (b1, . . . , br) is unique when χ is fixed. This follows by

construction, as the bis determine χ once we fix the basis fis.

Note that in the above proof, the choice of g′ = (b1, . . . , br) depends on the choice

of the fis and of the root ηpa1 . Thus, the choice of g′ is noncanonical. However, the

above proposition gives a way of defining θ.

Corollary 3.4.5. Let θ(g′)(g) = η
〈g′,g〉G
pa1 , then θ : G → Ĝ is an isomorphism and

θ(g′)(g) = θ(g)(g′).
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Hence, we can define AG,G1 in terms of 〈g′, g〉G by:

AG,G1(Oθ(g′), Og) =





(
n
p

)
o(p · g) if 〈g′, g〉G = npa1−1 mod pa1 ,

0 else.
(3.15)

Definition 3.4.6. When AG,G1 is defined using an invariant factor inner product

〈, 〉G, we will say that AG,G1 is induced by an invariant factor inner product.

The second example for θ is uses the multiplication and trace function in a Galois

Ring. The following proposition will justify our example for θ.

Proposition 3.4.7. Let H = R(pk, α) ' (Z/pkZ)α be a Galois Ring of degree α and

exponent pk. Let Tr : R(pk, α) → (Z/pkZ) be the trace function of proposition 3.4.1,

then the following map θ : H → Ĥ is a commutative pairing:9

θ(g′)(g) = η
Tr(g′∗g)
pk ,

where ηpk is a fixed pkth primitive root of unity in C, and g, g′ ∈ H.

Definition 3.4.8. Let G = (Z/pkZ)α. We will say that AG,G1 is induced by a Galois

ring structure when AG,G1 is of the form:

θ(g′)(g) = η
Tr(g′∗g)
pk ,

where ∗ is multiplication in the Galois Ring G = R(pk, α), and Tr is the trace function

of proposition 3.4.1.

We note that the choice of Tr() depends on the embedding of H = (Z/pkZ)α in

the Galois Group R(pk, α), and the choice of ηpk .

9where H is viewed as an abelian group under +.
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3.4.2 Results for Θs Induced by Invariant Factor Inner Prod-

ucts

As an application of AG,G1 , using 〈g′, g〉G, we will show a result that gives some

algebraic conditions whenever there is a GSHDS in G = Z/pZ × (Z/p2Z)3.

Corollary 3.4.9. Let H = (Z/p2Z)α and L = p · H = (Z/pZ)α. Then, there is an

ordering of the orbits of the action of H1 on H\{0}, such that:

AH,H1 =




0 pAL,L1 · · · pAL,L1

AL,L1 pJH,1,1 · · · pJH,1,pα−1

...
... · · · ...

AL,L1 pJH,pα−1,1 · · · pJH,pα−1,pα−1




} mα,p}
pα−1mα,p

,

where JH,i,j has nonzero support on the zero pattern of AL,L1, and mα,p = pα−1 +

pα−1 + · · · + p+ 1.

Proof. We will organize the orbitH1 orbit representatives according to the parametriza-

tion of proposition 3.4.2. Using the notation of proposition 3.4.2, consider the follow-

ing enumeration of the orbits:

{p · l1, . . . , p · lr′} for elements of order p,

{l1 + p · l′1,1, . . . , lr′ + p · lr′,1, l1 + p · l′1,2, . . . , for elements of order p2.

lr′ + p · lr′,2, . . . , l1 + p · l′1,pα−1 , . . . , lr′ + p · lr′,pα−1}

Using the above enumeration, we can calculate AH,H1 as the following:

AH,H1 =




A0,0 pA0,1 · · · pA0,pα−1

A1,0 pA1,1 · · · pA1,pα−1

...
... · · · ...

Apα−1,0 pApα−1,1 · · · pApα−1,pα−1



,

where the Ai,js are all r′ × r′ matrices; A0,j , where 1 ≤ j, is defined on tuples of the
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form (p · lk, lt+p · l′t,j); Ai,0, where 1 ≤ i, is defined on tuples of the form (lk+p · l′k,i, lt);
A0,0 is defined on tuples of the form (p · lk, p · lt); and Ai,j, where 1 ≤ i, 1 ≤ j, is

defined on tuples of the form (lk + p · l′k,i, lt + p · l′t,j).
We proceed to calculate the Ai,js using Equation (3.15). First note that:

〈(a1, . . . , aα), (b1, . . . , bα)〉H =
α∑

i=1

aibi,

hence, 〈g, g′〉H is the regular inner product.

We calculate A0,0. Since A0,0 is valued on tuples of the form (p · lk, p · lt) and

〈p · lk, p · lt〉H = p2〈lk, lt〉H
= 0 mod p2.

By Equation (3.15), A0,0 = 0.

Now, we calculate Ai,0 (1 ≤ i). Since Ai,0 is valued on tuples of the form (lk + p ·
l′k,i, p · lt) and

〈lk + p · l′k,i, p · lt〉H = p〈lk, lt〉H + p2〈l′k,i, lt〉H
= p〈lk, lt〉H mod p2

= p〈lk, lt〉L mod p2,

where lk is the result of taking all the coordinates of lk mod p. Hence, by using

Equation (3.15), we have Ai,0 = AL,L1 . The proof that A0,j = AL,L1 is similar to this

case.

It suffices to show that Ai,j, where 1 ≤ i, 1 ≤ j, has nonzero support on the zero

pattern of AL,L1 . Clearly, Ai,j is valued on the tuples of the form (lk+p · l′k,i, lt+p · l′t,j)
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and

〈lk + p · l′k,i, lt + p · l′t,j〉H = 〈lk, lt〉H + p(〈l′k,i, lt〉H + 〈lt, l′t,j〉H)

+p2〈l′k,i, l′t,j〉H
= 〈lk, lt〉H

+p(〈l′k,i, lt〉H + 〈lt, l′t,j〉H) mod p2.

Hence, if Ai,j(lk + p · l′k,i, lt + p · l′t,j) 6= 0, then 〈lk + p · l′k,i, lt + p · l′t,j〉H = pf mod p2

where f ∈ {1, . . . , p− 1}. Thus,

pf = 〈lk + p · l′k,i, lt + p · l′t,j〉H
= 〈lk, lt〉H + p(〈l′k,i, lt〉H + 〈lt, l′t,j〉H) mod p2,

hence, 〈lk, lt〉H = 0 mod p. But 〈lk, lt〉H = 〈lk, lt〉L mod p. Thus, if Ai,j(lk +p · l′k,i, lt+
p · l′t,j) 6= 0, then 〈lk, lt〉L = 0 mod p. That is, Ai,j is nonzero on a subset of the zero

pattern of AL,L1 .

Corollary 3.4.10. Let H and AH,H1 be given as they are in corollary 3.4.9. Let

B′
H =




JH,1,1 · · · JH,1,pα−1

... · · · ...

JH,pα−1,1 · · · JH,pα−1,pα−1


 ,

and BH = pB′
H . Then,

1. The matrix B′
H has zero row sums, i.e., B ′

HJ = 0; and,
∑pα−1

j=1 JH,i,j = 0.

2. The matrix B′
H has zero column sums, i.e., JB ′

H = 0; and,
∑pα−1

i=1 JH,i,j = 0.

3. The matrix BH satisfies B3
H = |H|

p
BH = p2α−1BH .

4. The matrix BH satisfies B2
H = p2α−1I − pαJpα−1,pα−1 ⊗ Ir′.
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Proof. This is a consequence of A2
H,H1

= p2α−1I. Consider:

p2α−1I = (3.16)




0 pAL,L1 · · · pAL,L1

AL,L1 pJH,1,1 · · · pJH,1,pα−1

...
... · · · ...

AL,L1 pJH,pα−1,1 · · · pJH,pα−1,pα−1







0 pAL,L1 · · · pAL,L1

AL,L1 pJH,1,1 · · · pJH,1,pα−1

...
... · · · ...

AL,L1 pJH,pα−1,1 · · · pJH,pα−1,pα−1



,

Equation (3.16) gives:

p(

pα−1∑

j=1

JH,i,j)AL,L1 = 0,

pAL,L1(

pα−1∑

i=1

JH,i,j) = 0.

From which parts 1 and 2 follow.

Note that Equation (3.16) also gives the following equation.

pA2
L,L1

+

pα−1∑

k=1

(pJH,i,k)(pJH,k,j) = δi,jp
2α−1I.

Since A2
L,L1

= pα−1I, we get that

pα−1∑

k=1

(pJH,i,k)(pJH,k,j) = δi,jp
2α−1I − pαI. (3.17)

From which part 3 follows.
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To show part 4, apply BH to Equation (3.17),

pα−1∑

k=1,j=1

(pJH,i,k)(pJH,k,j)(pJH,j,l) =

pα−1∑

j=1

(δi,jp
2α−1I − pαI)(pJH,j,l)

=

pα−1∑

j=1

δi,jp
2α−1(pJH,j,l) − pα

pα−1∑

j=1

(pJH,j,l)

=

pα−1∑

j=1

δi,jp
2α−1(pJH,j,l)

= p2α−1(pJH,i,l),

from which part 4 follows.

Corollary 3.4.11. Let D ⊂ H = (Z/p2Z)α be a QRS, such that d = (dT0 , d
T
1 , . . . , d

T
pα−1)

is the representation of D with respect to the choice of H1 orbit representatives of

corollary 3.4.9. Let L = p ·H ' (Z/pZ)α. Assume that AH,H1d = pα−1d̃, where pα−1d̃

is the difference coefficient vector of D. Then,

1. The following holds for d̃, AH,H1 d̃ = pαd.

2. The following holds, AL,L1d0 + p
∑pα−1

j=1 JH,i,jdj = pα−1d̃i; where 1 ≤ i ≤ pα−1.

3. The following holds, AL,L1 d̃0 + p
∑pα−1

j=1 JH,i,j d̃j = pαdi; where 1 ≤ i ≤ pα−1.

4. All the entries of AL,L1d0 are divisible by p.

5. All the entries of AL,L1 d̃0 are divisible by p.

6. The difference coefficients of d0 in L satisfy AL,L1d0 =
∑pα−1

i=1 d̃i.

7. The following holds for d̃0, AL,L1 d̃0 = p
∑pα−1

i=1 di.

Proof. Part 1 is a consequence of the equation A2
H,H1

= |H|
p
I. Parts 2 and 3 are

consequences of the equations AH,H1d = pα−1d̃ and AH,H1 d̃ = pαd. Parts 4 and 5 are

consequences of parts 2 and 3. To conclude part 6, sum the equation of part 2 over

the distinct values of i and use the identity
∑pα−1

j=1 JH,i,j = 0 from corollary 3.4.10
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part 1. To conclude part 7, sum the equation of part 3 over the distinct values of i

and use the identity
∑pα−1

j=1 JH,i,j = 0 from corollary 3.4.10 part 2.

Now we prove some results for the group G = (Z/pZ) × (Z/p2Z)α.

Proposition 3.4.12. Let G = (Z/pZ) × (Z/p2Z)α and D ⊂ G a GSHDS. Let H =

{0} × (Z/p2Z)α ⊂ G and L = p ·H ' (Z/pZ)α. Let D′ = H ∩D and D′′ = L ∩D.

Let d′ be the vector of ±1s representing D′ using the orbit representatives of H in

corollary 3.4.9. Hence, d′ = (d′T0 , d
′T
1 , . . . , d

′T
pα−1) where d′i is a (pα−1 + · · ·+ p+ 1)× 1

vector of ±1s. Also, let d̃i
′
be the difference coefficients corresponding to H1 classes

in d′i. Then,

1. The following holds, AH,H1d
′ = pα−1d̃′ and AH,H1 d̃

′ = pαd′.

2. The following holds, AL,L1d
′
0 + p

∑pα−1

j=1 JH,i,jd
′
j = pα−1d̃i

′
; where 1 ≤ i ≤ pα−1.

3. The following holds, AL,L1 d̃0
′
+ p

∑pα−1

j=1 JH,i,j d̃j
′
= pαd′i; where 1 ≤ i ≤ pα−1.

4. All the entries of AL,L1d
′
0 are divisible by p.

5. All the entries of AL,L1 d̃0
′
are divisible by p.

6. The difference coefficients of d′0 in L satisfy AL,L1d
′
0 =

∑pα−1

i=1 d̃i
′
.

7. The following holds, AL,L1 d̃0
′
= p

∑pα−1

i=1 d′i.

Proof. We use the same technique as in proposition 3.2.7. Let χ′ be any nonprincipal

character of H; let χ1 be an extension of χ′ from H to G. Let D be a GSHDS of G.

By corollary 3.2.2,

dH(χ′, D′) =
p

(2α+1)−1
2

[G : H]
{|D ∩ χ1H

T | − |D(n0) ∩ χ1H
T |}

=
pα

p
{|D ∩ χ1H

T | − |D(n0) ∩ χ1H
T |}

= pα−1{|D ∩ χ1H
T | − |D(n0) ∩ χ1H

T |},

hence, all difference coefficients of D′ are divisible by pα−1. Thus, parts 1 through 7

follow by corollary 3.4.11.
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Proposition 3.4.13. Under the assumptions of proposition 3.4.12, let α = 3; then,

1. The set D′′ is a GSHDS in L.

2. Let µp : G → G be defined as µp(x) = p · x. Clearly, µp(G) = L. Let H ′ =

ker(µp). Clearly, H ′ = {x ∈ G | p · x = 0}. Let dD∩L be the QRS space

representation of ±1 of D′′ = D ∩ L in L. Let νG,H′ be the vector of difference

intersection numbers of D with respect to H ′ in G. Then,

νG,H′ = p2dD∩L.

3. The difference coefficients of d′0 in L are divisible by p. That is, AL,L1d
′
0 = pd0

′
,

where d0
′
is a p2 + p+ 1 × 1 vector of ±1s.

4. The difference coefficients of d′ in H are divisible by p2. That is, AH,H1d
′ = p2d̃′

for some integral vector d̃′.

5. The following holds, AL,L1 d̃0
′
= pd̃0

′
for some integral vector d̃0

′
.

6. The following holds, d̃0

′
=
∑p2

i=1 di.

7. The following holds, pd0
′
=
∑p2

i=1 d̃i
′
.

Proof. Clearly, d′0 is a representation of D′′. Hence, by part 4 of proposition 3.4.12

AL,L1d
′
0 a multiple of p at least. That is, all the difference coefficients of D′′ in L are

multiples of p. By proposition 3.1.10 part 4, we conclude that D′′ must be a GSHDS.

Now we proceed to show the second part. Clearly, by proposition 3.2.8,

p3dD∩L = AL,L1νG,H′ .
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Consider,

p2νG,H′ = A2
L,L1

νG,H′

= p3AL,L1dD∩L

= p3pdD∩L because D ∩ L is a GSHDS

= p4dD∩L,

hence, the second part follows.

The remaining parts follow from parts 1, 2, 3, 4, 5, 6, and 7 of proposition 3.4.12.

3.4.3 Results for Θs Induced by Galois Group Structures

In the following we will let G = (Z/pZ) × (Z/p2Z)2β+1 = (Z/pZ) × H, where H =

(Z/p2Z)2β+1 and L = pH ' (Z/pZ)2β+1.

In the construction of theH1 orbit representatives of proposition 3.4.2, we will pick

the set {l1, . . . , lr′} ⊂ µq−1 to be any slice of
µ2

q−1

µ2
p−1

consisting of Quadratic Residues of

µq−1. We will do this to deduce group algebra equations. The following proposition

justifies the choice of the lis.

Proposition 3.4.14. Let q = p2β+1 then any slice of
µ2

q−1

µ2
p−1

is also an slice of µq−1

µp−1
.

Proof. Clearly, the number representatives in a slice of
µ2

q−1

µ2
p−1

is the same as the number

of representatives in a slice of µq−1

µp−1
. It suffices to show that: if x, y ∈ µ2

q−1 are inequiv-

alent mod µ2
p−1, then they are inequivalent mod µp−1.

10 Thus, suppose otherwise;

i.e., x, y are inequivalent mod µ2
p−1 but they are equivalent mod µp−1. Let x = yψ,

where ψ ∈ µp−1\µ2
p−1. Clearly, the quadratic residue symbol

(
·
p

)
is a multiplicative

10in the multiplicative sense.
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character of µq−1. Hence,

1 =

(
x

p

)

=

(
y

p

)(
ψ

p

)

=

(
ψ

p

)
.

Therefore, ψ is a quadratic residue in µq−1. Thus, µp−1 ⊂ µ2
q−1. The following claim

will give us a contradiction.

Claim 3.4.15. Let p be a prime and q = pβ, then: F∗
p ⊂ (F∗

q)
2 if and only if q = p2α

is an even power of p.

Proof. (⇒) If ψ ∈ (F∗
p)\(F∗

p)
2, then the splitting field of ψ over Fp must be contained

in Fq; Hence, Z/2Z must be a subgroup of G(Fq | Fp), the Galois Group of Fq over

Fp. Note that G(Fq,Fp) = (Z/βZ); thus, 2 must divide β since (Z/2Z) ⊂ (Z/βZ).

(⇐) Let ψ ∈ (F∗
p)\(F∗

p)
2, then the splitting field of ψ over Fp has degree 2; hence,

it has Galois Group (Z/2Z) and order p2. Note that the Galois Group of Fq over Fp is

(Z/2αZ). Hence, Fq has a subfield F with Galois Group (Z/2Z) and order p2. Since,

the field of p2 elements is unique modulo field isomorphisms, it must follow that F is

the splitting field of ψ. Thus, ψ ∈ (F∗
q)

2 and the conclusion follows.

By the previous claim, we arrive at a contradiction.

We note that our choice of lis is also a multiplicative group since
µ2

q−1

µ2
p−1

is naturally

a multiplicative group. This property will prove useful. Also, instead of using the

pairing θ of corollary 3.4.5 to calculate AH,H1 , we will use another pairing that is

induced by the Galois Ring structure of H = GR(p2, 2β + 1). The pairing θ that we

will use is:

θ(g′)(g) = η
f0(Tr(g′∗g))
p2 ,
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where Tr is the trace map of the Galois Ring GR(p2, 2β + 1) = H, ∗ is the product

operation of the Galois Ring, and f0() is defined in definition 3.1.18.

Under the choice of the lis and θ, we can prove similar results as those deduced

for the case when θ is induced by 〈, 〉H .

Proposition 3.4.16. Let H = (Z/p2Z)2β+1 and L = p · H ' (Z/pZ)2β+1. Then,

there is an ordering of the orbits of the action of H1 on H\{0}, such that:

AH,H1 =




0 pAL,L1 · · · pAL,L1

AL,L1 pJH,1,1 · · · pJH,1,p2β

...
... · · · ...

AL,L1 pJH,p2β ,1 · · · pJH,p2β ,p2β




} m2β+1,p}
p2βm2β+1,p

,

where m2β+1,p = p2β + p2β−1 + · · · + p+ 1.

Proof. The same proof of corollary 3.4.9 will hold since Tr is a bilinear function.

Proposition 3.4.17. Let H and AH,H1 be given as they are in proposition 3.4.16.

Let

B′
H =




JH,1,1 · · · JH,1,p2β

... · · · ...

JH,p2β ,1 · · · JH,p2β ,p2β


 ,

and BH = pB′
H . Then,

1. The matrix B′
H has zero row sums, i.e., B ′

HJ = 0; and,
∑pα−1

j=1 JH,i,j = 0.

2. The matrix B′
H has zero column sums, i.e., JB ′

H = 0; and,
∑pα−1

i=1 JH,i,j = 0.

3. The matrix BH satisfies B3
H = |H|

p
BH = p2α−1BH .

4. The matrix BH satisfies B2
H = p2α−1I − pαJpα−1,pα−1 ⊗ Ir′.

Proof. The proof is similar to corollary 3.4.10.
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Proposition 3.4.18. Let j be the vector all 1s. Using the assumptions on the lis and

the results and notation of propositions 3.4.16 and 3.4.17, where H = (Z/pZ)2β+1

and L = p ·H ' (Z/pZ)2β+1, the following hold:

1. The matrix JH,s,t has constant row sum. That is, JH,s,tj = λs,tj for some integer

λs,t. More percisely,

λs,t =

p2β∑

j=1

(
Tr′(lj(1 + p(l′s + l′t)))

p

)
,

where Tr′(x) : GR(p2, 2β + 1) → (Z/pZ) is given by f0(Tr(x)).

2. The matrix AL,L1 has constant row sum. That is, AL,L1j = ε0p
βj where ε0 ∈

{1,−1}.

3. Let L = [[λs,t]], the matrix formed by the λs,ts. Then,

L2 = p2β−1(p2βI − J).

4. The matrix L of part 3 is self transposed. That is, LT = L.

Proof. Part 1 is a direct consequence of our choice of lis, they form a group under

Galois Ring multiplication, and the choice of θ(g)(g′). Clearly, JH,s,t is a matrix on

the tuples (li(1 + pl′s), lj(1 + pl′t)); hence, the ith coordinate of JH,s,tj is equal to:

p2β∑

j=1

(
Tr′(li(1 + pl′s)lj(1 + pl′t))

p

)
=

p2β∑

t=1

(
Tr′(lilj(1 + p(l′s + l′t)))

p

)
.

Note that (1+p(l′s+ l
′
t)) is fixed in the above sum. Also, lilj = lσ(j)αi,j where: σ is the

induced permutation action of li on
µ2

q−1

µ2
p−1

, and αi,j ∈ µ2
p−1 is some quadratic residue



123

mod p. Clearly,

(
Tr′(lilj(1 + p(l′s + l′t)))

p

)
=

(
Tr′(lσ(j)αi,j(1 + p(l′s + l′t)))

p

)

=

(
αi,j
p

)(
Tr′(lσ(j)(1 + p(l′s + l′t)))

p

)

=

(
Tr′(lσ(j)(1 + p(l′s + l′t)))

p

)

=

(
Tr′(lσ(j)l

′′
s,t)

p

)
,

where l′′s,t = 1 + p(l′s + l′t). Hence, the ith coordinate of JH,s,tj is equal to:

p2β∑

j=1

(
Tr′(lilj(1 + p(l′s + l′t)))

p

)
=

p2β∑

j=1

(
Tr′(lσ(j)l

′′
s,t)

p

)

=

p2β∑

j=1

(
Tr′(ljl′′s,t)

p

)
,

which is a value that is independent of i but dependent on s, t. This shows part 1.

Now, we proceed to show part 2. Note that by the choice of the lis, the vector

of all 1s ,j, represents the Quadratic Residues (F∗
p2β+1)

2 of L ' (Fp2β+1 ,+). Hence

AL,L1j = pβd for some vector d of ±1s, since j is a GSHDS in L. Clearly, the ith

coordinate of AL,L1j is given by:

r′∑

j=1

(
Tr′(lilj)

p

)
,

where li = li mod p and lj = lj mod p. Clearly, {l1, · · · , lr′} =
(F∗

p2β+1 )2

(F∗
p)2

is a group;

and, by using a similar reasoning as part 1, we can deduce that the ith coordinate of
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AL,L1j is given by:

r′∑

j=1

(
Tr′(lilj)

p

)
=

r′∑

j=1

(
Tr′(lσ(j))

p

)

=
r′∑

j=1

(
Tr′(lj)

p

)

= ε0p
β,

where ε0 = ±1. Thus, the ith coordinate AL,L1j is independent of i and the second

part follows.

To show part 3, consider the following equation from proposition 3.4.17.

p2β∑

k=1

(pJH,i,k)(pJH,k,j) = δi,jp
4β+1I − p2β+1I (3.18)

By multiplying(3.18) by j and simplyfing, we get part 3.

Part 4 follows from JH,s,t = JH,t,s.

We will identify each block JH,i,j of AH,H1 with the element l′j ∈ µq−1∪{0}
µp−1∪{0} ' (Fq ,+)

(Fp,+)
'

(Z/pZ)2β. Under this identification, the matrix L of proposition 3.4.18 can be thought

as a matrix over entries indexed by the elements of (Fp2β+1 ,+) mod (Fp,+). Hence,

the matrix L can be viewed as indexed by elements in (Fp2β ,+) ' (Z/pZ)2β = K.

Thus, for each l′j denote kj the corresponding element in K. We will assume an

ordering of the l′js such that l1 corresponds to the 0 element of K.

Let us introduce the following element of Z[K].

L0 =
∑

ki∈K
λ1,ix

ki

We will show some properties of L0, and we will use L0 to stablish an existence

condition for GSHDS in G.

Proposition 3.4.19. Let ρK be the regular representation of K with action on Z =
⊕p2β

i=1 Ceki
. Then,
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1. For g ∈ K, ρK(g−1)L = LρK(g), as matrices.

2. For χ ∈ K̂, Leχ = χ(L0)eχ where:

eχ =
1

p2β

∑

k∈K
χ(k)ek.

3. For χ ∈ K̂, χ non principal. χ(L0)χ(L0) = p4β−1.

4. Let χ0 be the principal character of K, then χ0(L0) = 0.

5. The following holds for L0 in the group algebra of K,

L0 ∗ L(−1)
0 = p4β−1[x0] − p2β−1K(x).

Proof. We proceed to show part 1. Let kj ∈ K and l′j the corresponding element to

kj. Consider σ = 1 + pl′j ∈ H, clearly, (σ)∗ = σ; since,

Tr(gσ(g′)) = Tr(g(1 + pl′j)g
′)

= Tr((1 + pl′j)gg
′)

= Tr(σ(g)g′).

Hence, ((σ)∗)−1 = (σ)−1 = 1 − pl′j.

By proposition 3.1.21, it follows that:

ρX(1 − pl′j)AH,H1 = AH,H1ρX(1 + pl′j). (3.19)

We note that ρX(1+pl′j) permutes the blocks JH,s,t, and it acts like ρK(kj) when we

identify the blocks JH,s,t with their corresponding elements ofK. Similarly, ρX(1−pl′j)
acts like ρK(k−1

j ) on the blocks JH,s,t.

We will show

ρK(k−1
j )L = LρK(kj), (3.20)
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by showing that the columns of the left-hand side equal the columns of the right-

hand side. Thus, consider the column of the left-hand side of Equation (3.20) that

corresponds to ks. Clearly, this equals to

ρK(k−1
j )




λ1,s

...

λp2β ,s


.

Clearly, this is equal to the left-hand side of Equation (3.19) after we multiply it on

the right with the vector:

eks
=




0
...

0

1

1
...

1

0
...

0




,

where the 1s corresponds to the block {l1(1 + pl′s), . . . , lr′(1 + pl′s)}.
Note that when we multiply the right-hand side of Equation (3.19) by eks

on the

right, we get the column that corresponds to ks in the right-hand side of Equation

(3.20). This establishes part 1.

For part 2, consider the matrices:

Pχ =
1

p2β

∑

k∈K
χ(k)ρK(k),

where χ ∈ K̂. Clearly, the set of Pχ forms a complete set of orthogonal projections.
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That is,
∑

χ∈ bK Pχ = I and PχPχ′ = δχ,χ′Pχ′ . Also, one can calculate Pχeχ′ = δχ,χ′eχ′ .

By part 1, we can show Pχ′L = LPχ′ for all χ′. Hence,

Pχ′Leχ = LPχ′eχ

=





Leχ if χ′ = χ,

0 else.

Thus, Leχ belongs to Im(Pχ) = 〈eχ〉. Hence,

Leχ = αeχ,

for some complex number α ∈ C. We can calculate the number α by considering the

first row of Leχ. Clearly, this row has value:

LT0 eχ = 〈L0, eχ〉

=
χ(L0)

p2β
.

On the other hand the first row of αeχ has value α
p2β . Thus, α = χ(L0). Hence, part

2 follows.

Now, we proceed to show part 3. Note that by part 2:

Leχ = χ(L0)eχ,

Leχ = χ(L0)eχ,
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hence,

χ(L0)χ(L0) = χ(L0)χ(L0)e
T
χeχ

= (Leχ)
T (Leχ)

= eTχL
TLeχ

= eTχL
2eχ

= eTχ(p2β−1(p2βI − J))eχ

= p4β−1eTχeχ

= p4β−1.

Thus, part 3 follows.

Clearly, part 4 follows from proposition 3.4.17, since the row sums of B ′
H are zero.

This forces the row sums of L to be zero. In particular, the sum of all the entries of

L0 are zero.

Part 5 follows from parts 3 and 4 by using Fourier inversion.

The next result, gives a solution to an equation in the group algebra ofK whenever

there is a GSHDS in (Z/pZ) ×H.

Proposition 3.4.20. Let D be a GSHDS in (Z/pZ)× (Z/p2Z)2β+1. Then, there are

elements A and B in Z[K] such that:

1. The following holds, p2βA = χ0(A)K(x) + L0 ∗B(−1); where χ0 is the principal

character of K.

2. The following holds, p2βB = χ0(B)K(x)+pL0 ∗A(−1); where χ0 is the principal

character of K.

3. The principal character of A is given by χ0(A) = pβ−1ε0b0, where ε0 is ±1 and

b0 is an integer.

4. The principal character of B is given by χ0(B) = pβε0a0; where ε0 is ±1, and

equal to the ε0 of part 3; and, a0 is an integer.
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5. All the coefficients of A are odd, and χ0(A) is odd.

6. All the coefficients of B are odd, and χ0(B) is odd.

7. The integers a0 and b0 are odd integers.

Proof. We will proceed using the same analysis as proposition 3.4.11 and proposition

3.4.12. Let us assume that there is a GSHDS D in G = (Z/pZ) × (Z/p2Z)2β+1. Let

H = {0}× (Z/p2Z)2β+1, L = p ·H and K = L
(Z/pZ)

. Let D′ = H ∩D and D′′ = L∩D.

Let d′ be the vector of ±1s representing D′ using the H1 orbit representatives of H̃ in

proposition 3.4.16. Clearly, d′ = (d′T0 , d
′T
1 , . . . , d

′T
p2β), where d′i is a (p2β+ · · ·+p+1)×1

vector of ±1s. Also, let d̃i
′
be the difference coefficients corresponding to theH1 classes

in d′i. Using the same technique as in proposition 3.2.7, for χ′ ∈ Ĥ a nonprincipal

character, and χ1 any extension of χ′ to G, we have by corollary 3.2.2:

dH(χ′, D′) = p2β{|D ∩ χ1H
T | − |D(n0) ∩ χ1H

T |}, (3.21)

where HT = (Z/pZ) × {0}. Thus, we have:

AH,H1d
′ = p2βν ′,

where ν ′ = (ν ′T0 , ν
′T
1 , . . . , ν

′T
p2β) is a vector of odd integers between −p and p whose

entries are defined by the right-hand side of Equation (3.21).

Using the form of AH,H1 given by proposition 3.4.16, we get the following equa-

tions:

p

p2β∑

j=1

AL,L1d
′
j = p2βν ′0, (3.22)

AL,L1d
′
0 + p

p2β∑

j=1

JH,i,jd
′
j = p2βν ′i. (3.23)

By taking the inner product of Equation (3.22) with j and using the fact that AT
L,L1

=
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AL,L1 , we get

p2β∑

j=1

pβ+1ε0〈d′j, j〉 = p2β〈ν ′0, j〉,

thus,

p2β∑

j=1

〈d′j, j〉 = pβ−1ε0〈ν ′0, j〉.

Let a = (a1, . . . , ap2β)T , where ai = 〈d′i, j〉, and let b = (b1, . . . , bp2β)T , where bi =

〈ν ′i, j〉. Also, let a0 = 〈d′0, j〉 and b0 = 〈ν ′0, j〉.
We have shown that

〈a, j〉 = pβ−1ε0b0. (3.24)

Now, we will take the inner product of Equation (3.23) with j, we get:

〈AL,L1d
′
0, j〉 + p

p2β∑

j=1

〈JH,i,jd′j, j〉 = p2β〈ν ′i, j〉,

where we used JTH,i,j = JH,i,j . Hence, we have the following simplification:

ε0p
β〈d′0, j〉 + p

p2β∑

j=1

λi,j〈d′j, j〉 = p2β〈ν ′i, j〉,

or,

ε0p
βa0 + p

p2β∑

j=1

λi,jaj = p2βbi,

thus, we can deduce the following matrix equation:

p2β−1b = pβ−1ε0a0j + La. (3.25)
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Performing the same analysis but starting with the equation AH,H1ν
′ = p2β+1d′,

we get the following equations:

〈b, j〉 = pβε0a0, (3.26)

p2βa = ε0p
β−1b0j + Lb. (3.27)

Let A be the element of Z[K] that has value ai at ki, and B be the element of

Z[K] that has value bi at ki. We will use Equation (3.25) to establish a condition on

the character values of A and B.

Let χ be a nonprincipal character of K. Equation (3.25) gives:

p2β−1〈b, eχ〉 = ε0a0p
β−1〈j, eχ〉 + 〈La, eχ〉.

Since χ is nonprincipal, we have 〈j, eχ〉 = 0. Thus,

p2β−1〈eχ, b〉 = 〈eχ, La〉

= 〈Leχ, a〉

= 〈χ(L0)eχ, a〉

= χ(L0)〈eχ, a〉.

Since, for any a, 〈eχ, a〉 = 1
p2βχ(a), we have:

p2β−1χ(B) = χ(L0)χ(A),

p2β−1χ(B) = χ(L0)χ(A). (3.28)

Similarly, using Equation (3.27), we get:

p2βχ(A) = χ(L0)χ(B). (3.29)

To show part 1, suffices to show that the left-hand side of part 1 and right-hand

side of part 1 have the same character values; the equation will follow by Fourier
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inversion in K. Note that for any nonprincipal character, Equation (3.29) shows that

the left-hand side of part 1 and the right-hand side of part 1, do indeed, have the same

character values. It suffices to show that the same holds for the principal character.

The principal character of the left-hand side of part 1 is p2βχ0(A). On the other

hand, the principal character of the right-hand side is:

χ0(χ0(A)K(x) + L0 ∗B(−1)) = χ0(A)p2β + χ0(L0)χ(B)

= χ0(A)p2β,

where we used χ0(L0) = 0. This shows that part 1, does indeed, agree on both sides

at the principal character. Thus, part 1 follows.

To show part 2, we use a similar analysis. By using Equation (3.28), we can deduce

that the left-hand side of part 2 has the same character value as the right-hand side

whenever the character used is nonprincipal. Thus, it suffices to show the same for

the principal character χ0. Clearly, the principal character of the left-hand side of

part 2 is p2βχ0(B). On the other hand, the principal character of the right-hand side

is:

χ0(χ0(B)K(x) + pL0 ∗ A(−1)) = χ0(B)p2β + pχ0(L0)χ(A)

= χ0(B)p2β.

Thus, part 2 follows.

Clearly, part 3 is Equation (3.24) and part 4 is Equation (3.26).

We will show parts 5, 6, and 7 together. First, we will show that ai is odd for

i = 0, . . . , r′. This will show that: all the coefficients of A are odd; a0 is odd; χ0(B)

is odd, by part 4; χ0(A) is odd, since it is the sum of an odd number of odd numbers;

and b0 is odd, by part 3. Finally, we will show that bi is odd for i = 1, . . . , r′.

Consider ai = 〈d′i, j〉. Clearly, d′i is a vector of ±1s of length r′ = p2β + · · ·+ p+1.

Let x be the number of entries in d′i that are +1, and let y be the number of entries



133

of d′i that are −1. Clearly,

x− y = ai,

x+ y = r′.

Note that r′ = 1 mod 2. Hence, the above equations mod 2 give ai = x− y = x+ y =

r′ = 1. Thus, ai is odd.

It suffices to show bi is odd for i = 1, . . . , r′. By manipulating Equation (3.27)

algebraically we can deduce:

p2βa− ε0p
β−1b0j = Lb.

By multiplying the above equation by L on both sides, and simplyfing L2 by using

proposition 3.4.18; we deduce.

L(p2βa− ε0p
β−1b0j) = p2β−1(p2βI − J)b. (3.30)

Note that mod 2,

p2βa− ε0p
β−1b0j = j − j

= 0,

hence, Equation (3.30) mod 2 implies:

0 = (I − J)b

= b− χ0(B)j

= b− j.

Thus, all the entries of b are odd.

We leave as open problem to determine the feasibility of the elements A,B ∈ Z[K]

derived in proposition 3.4.20. We note that the element L0 can be nontrivial to
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calculate.

3.5 Results for General G

We close this chapter by showing two existence conditions for a general abelian p-

group G. The first result, due to Johnsen in [11], is the first exponent bound known

for Skew Hadamard Difference Sets. The second result is a relation between the

difference intersection numbers νG,H(D, h) and the difference coefficients dG(χ,D),

where we use a special subgroup H ⊂ G.

3.5.1 Johnsen’s Exponent Bound

We show Johnsen’s exponent bound, which is a special case of Xiang’s exponent

bound, to demonstrate the usefulness of the incidence structures AG,G1 .

Proposition 3.5.1. Let D ⊂ D be a GSHDS, where |G| = v = p2α+1 and exp(G) =

ps. Then, s ≤ α + 1.

Proof. Let,

G = (Z/psZ) × (Z/pa2Z) × · · · × (Z/parZ)

= (Z/psZ) × L,

where s ≥ a2 ≥ · · · ≥ ar. Consider the projection:

π : G→ (Z/psZ) = H,

where, ker(π) = L. By proposition 3.2.8, we have:

AH,H1νG,L(D) = dG(D,H),

where νG,L(D) are the difference intersection numbers of D with respect to L in G,

and dG(D,H) are the difference coefficients of D with respect to the characters of H
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extended to G. Since D is a GSHDS, we must have:

AH,H1νG,L(D) = pαdD∩ bH ,

where Ĥ ↪→ Ĝ by mapping χ ∈ Ĥ → χ ◦ π ∈ Ĝ. By multiplying by AH,H1 on both

sides and using proposition 3.1.22, we have

ps−1νG,L(D) = pαAH,H1dD∩ bH ,

hence,

ps−1−ανG,L(D) = AH,H1dD∩ bH .

By proposition 3.3.7, we deduce




0 0 0 · · · 0 ps−1

0 0 0 · · · ps−2 0
...

...
... · · · ...

...

0 0 p2 · · · 0 0

0 p 0 · · · 0 0

1 0 0 · · · 0 0




dD∩ bH = ps−1−ανG,L(D).

By looking at the last row of the previous matrix equation, we deduce

±1 = ps−1−ανG,L(D,χ1),

hence, p1+α−s is integral and the conclusion follows.

3.5.2 A Special Condition

We will assume a general abelian p-group G that admits a GSHDS D. We will

consider the map µp : G→ p ·G = H ⊂ G given by µp(x) = p · x. We will denote the

ker(µp) by L.
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We will work toward showing the following proposition:

Proposition 3.5.2. Let dD∩H be the QRS representation of ±1s of D∩H and νG,L be

the difference intersection numbers of D with respect to L in G. There is an integral

vector c such that:

pc = (ap − bp)dD∩H − νG,L,

where ap, bp are integer constants depending on p and α.

We start by introducing the definition of the constants ap, bp. For this, we will

need the algebra AD induced by D in Z[G].

3.5.2.1 The Algebra Induced by D

Proposition 3.5.3. Let D ⊂ G be a GSHDS. Then, AD = 〈D,D(n0), [1]〉 ⊂ Z[G] is

a three-dimensional subalgebra of the group algebra.

Proof. The GSHDS conditions give:

DD(n0) = k0[1] + λD + λD(n0),

DD = (k − k0)[1] + (k − λ− 1)D + (k − λ)D(n0),

D(n0)D(n0) = (k − k0)[1] + (k − λ− 1)D(n0) + (k − λ)D,

hence, the algebra 〈D,D(n0), [0]〉 is three-dimensional.

Definition 3.5.4. Let D ⊂ G be a GSHDS. The constants ap(G), bp(G) are defined

by:

Dp = cp(G)[1] + ap(G)D + bp(G)D(n0).

The next proposition shows that the constants ap(G), bp(G) do not depend on the

structure of G; but, rather on the order of G.
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Proposition 3.5.5. Let G,G′ be an abelian groups such that |G| = p2α+1 = |G′|. If

there are GSHDS D ⊂ G and D′ ⊂ G′, then:

ap(G) = ap(G
′),

bp(G) = bp(G
′).

Proof. It is sufficient to show that the algebras AD and AD′ are isomorphic. Clearly,

the structures of these algebras depend on the parameters of D and D′; hence, it

suffices to show that D and D′ have the same parameters. Note that D and D′

indeed have the same parameters since |G| = |G′|.

By proposition 3.5.5, we can drop the G in the notation of the structure constants

ap(G), bp(G). The simplest example of the structure constants ap, bp is for the prime

p = 3. For this case, a3 = v−3
4

v−1
2

and b3 = v−3
4

v+1
2

.

By considering G = (Fp2α+1 ,+), we can show a divisibility property of the struc-

tures constants ap, bp.

Proposition 3.5.6. Let D ⊂ G be a GSHDS, where G is a p-group. Then,

p | (ap − bp).

Proof. Let G = (Fp2α+1 ,+), D be the GSHDS given by the Quadratic Residues of

Fp2α+1 . By definition,

Dp = cp[1] + apD + bpD
(n0),

(D(n0))p = cp[1] + apD
(n0) + bpD,

hence,

Dp − (D(n0))p = (ap − bp)(D −D(n0)). (3.31)
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Also, by using the binomial theorem, there is C ∈ Z[G] such that:

Dp = µp ·D + pC,

(D(n0))p = µp ·D(n0) + pC(n0).

Since, G is elementary p-abelian, we must have µp · D = k[1] and µp · D(n0) = k[1].

Hence,

Dp − (D(n0))p = p(C − C(n0)). (3.32)

By equating equations (3.32) and (3.31), we deduce

(ap − bp)(D −D(n0)) = p(C − C(n0)),

hence, the conclusion follows.

3.5.2.2 The Result

Proposition 3.5.7. Let dD∩H be the QRS representation of ±1s of D∩H and νG,L be

the difference intersection numbers of D with respect to L in G. There is an integral

vector c such that:

pc = (ap − bp)dD∩H − νG,L,

where ap, bp are integer constants depending on p and α.

Proof. We apply the same technique of proposition 3.5.6. Let H = µp · G ⊂ G, and

L = ker(µp). Clearly, a similar reasoning as proposition 3.5.6 gives:

(ap − bp)(D −D(n0)) = Dp − (D(n0))p

= µp · (D −D(n0)) + p(C − C(n0)).
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We restrict the previous equation to H. Thus, we deduce a similar equation in Z[H]:

(ap − bp)(DH −D
(n0)
H ) = µp · (D −D(n0)) + p(CH − C

(n0)
H ).

We view the previous equation as an equation of Compact QRSs. Hence, we deduce:

(ap − bp)dH∩D = νG,L(D) + pc,

where c is the integral vector corresponding to the Compact QRS: CH−C(n0)
H . Clearly,

the conclusion follows from the previous equation.
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Chapter 4

Equivariant Incidence Structures

In this chapter, we will study the inclusion matrices Wt,k of t-subsets vs. k-subsets

and their corresponding versions when the action of a permutation group is present.

In the first section, we will go over preliminary material about the space:

HomG(N,M) = {T | T : N →M , T is a G-map},

where N,M are G-modules; also, the Smith Group of integral matrices, and the

Johnson Scheme J(v, k). These results will provide background for the sections that

will follow.

In the second section, we will consider G-modules N,M when the G-action is

given by a permutation action. We will study the Johnson Scheme that arises from

the action of G, and we will show results analogous to the results given for the Johnson

Scheme J(v, k) in the section of preliminaries.

In the third section, we study the analogous matrices, Mt,k and M ′
t,k, of Wt,k when

the G-action is given by a permutation action. We show bounds on the exponent of

the Smith Group of Mt,k and M ′
t,k, and we demonstrate that Mt,k and M ′

t,k have full

rank. Also, we give a partial answer to the integral preimage problem for Mt,k and

M ′
t,k, and we give a brief study of the kernel of Mt,k and M ′

t,k.

In the fourth section, we introduce the concept of a “positive equivariant G-

signing,” and give some conditions on the existence of such signings.

In the fifth section, we consider the case when G = Stab(Ω), where Ω is a partition
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of {1, . . . , v}. We give examples of (t, k)-bases that admit a stabilizer group of the

form Stab(Ω). We provide reduction results for showing that sets βt,k of columns of

Wt,k form a (t, k)-basis, and admit a positive equivariant G-signing. We formulate a

conjecture about positive equivariant G-signings for special (t, k)-bases.

In the sixth section, we study the case when G = (Z/nZ). We find a (2, 3) and

(2, 4)-basis by introducing a partition of the orbits of G on the k-subsets. We use

these bases to calculate the Smith Groups of M2,3,M
′
2,3,M2,4,M

′
2,4, and we give some

partial results for the case (3, 4).

4.1 Preliminaries

4.1.1 G-maps and G-spaces

Most of the results of this section are elemental, however, we include them for com-

pleteness. We will assume that T : V → W is a G-map of G-spaces where the

vector spaces are taken over the complex numbers C. We will also assume that G

has r + 1 irreducible representations M0,M1, . . . ,Mr over the complex numbers, and

χ0, χ1, . . . , χr are their corresponding irreducible characters; where χ0 is the trivial

character and M0 is the trivial representation.

We will build machinery toward:

1. understanding the spaces HomG(N,L) and HomG(N,N), where N and L are

G-spaces,

2. providing for a canonical form for T ∈ HomG(N,L),

3. proving necessary and sufficient conditions when T ∈ HomG(N,L) has full rank.

Our first result is well-known in the theory of finite group representations as

“Masche’s theorem.”

Proposition 4.1.1. Let

1. The space V be a G-module with representation ρV : G→ GL(V ).
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2. The subspace W ⊂ V be a G-submodule.

3. Define 〈v, w〉G be defined as,

〈v, w〉G =
1

|G|
∑

g∈G
〈ρV (g)v, ρV (g)w〉

= vTAGw,

where AG =
P

g∈G ρ(g)
t
ρ(g)

|G| and 〈, 〉 is the standard Hermitian inner product.

Then,

1. The space V decomposes as V = W
⊕

W T , where W T = {v ∈ V |〈v, w〉G =

0 ∀w ∈ W} is a G-module.

2. For all g0 ∈ G, AG,V ρ(g0) = ρ(g−1
0 )

t
AG.

Proof. Note that,

〈v, v〉g = vTρ(g)
T
ρ(g)v

= 〈ρV (g)v, ρV (g)v〉

≥ 0,

is a positive semidefinite inner product. Thus,

Ag = ρ(g)
T
ρ(g),

is a positive semidefinite Hermitian matrix. Therefore,

AG =
1

|G|
∑

g∈G
ρ(g)

T
ρ(g),

is positive definite Hermitian as it is the sum of positive semidefinite Hermitian ma-

trices and a positive definite Hermitian matrix, namely A1 = 1
|G|I. Thus,

〈v, w〉G = vTAGw,
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is a positive definite Hermitian inner product.

By looking at a basis of W extended to a basis of V and then applying Gram-

Schmidt, one can show that V = W
⊕

W T ,1 where W T = {v ∈ V |〈v, w〉G = 0 ∀w ∈
W}.

It suffices to show that W T is G-invariant. Note that 〈, 〉G is G-invariant in the

following sense:

〈v, w〉G = 〈ρV (g)v, ρV (g)w〉G ∀v, w ∈ V , ∀g ∈ G.

Let w ∈W and w′ ∈ W T , as W is G-invariant, ρ(g−1)w ∈W , hence:

0 = 〈ρ(g−1)w,w′〉G
= 〈ρ(g)ρ(g−1)w, ρ(g)w′〉G
= 〈w, ρ(g)w′〉G,

therefore, ρ(g)w′ ∈W T . Thus, W T is G-invariant.

We leave part 2 as an exercise.

As a direct corrollary, we deduce that V is completely reducible. That is, if

W ⊂ V is G-submodule, then W “splits”; more precisely, there is a G-invariant

submodule W1, say W T from above, such that V = W
⊕

W1. Applying the splitting

procedure, we get that V is the direct sum of irreducible G-modules. Hence, V =

N1

⊕
N2

⊕ · · ·⊕Nk where each Nk cannot be decomposed further and has no proper

G-submodule. Under this decomposition of V , we will get some of the Nks isomorphic

to each other. Thus, we can group the Nk according to their isomorphism class. Let

Vi =
⊕

Nk'Mi
Nk ' Mi

⊕ · · ·⊕Mi ' aiMi, where ai = number of Nks in the

decomposition of V that are isomorphic to Mi. The next proposition tells us how to

calculate these Vi.

1Since 〈, 〉G is a positive definite Hermitian inner product, Gram-Schmidt works. If we did not
show 〈, 〉G is positive definite, we could have an “isotropic” inner product that may cause Gram-
Schmidt to fail.
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Proposition 4.1.2. Let V be a C[G] space with ρV : G→ GLv(C) its representation,

where v = dimC(V ). Also, let Pi,V = χi(1)
|G|
∑

g∈G χi(g)ρV (g), where χi is the ith

irreducible complex character of G. Then,

1. The maps Pi,V are G-maps.

2. The maps Pi,V form a system of orthogonal projections. That is,

Pi,V Pj,V = δi,jPi,V ,
r∑

i=0

Pi,V = IV .

3. The space V decomposes into V =
⊕r

i=0 Im(Pi,V ) as G-spaces.

4. The space Im(Pi,V ) decomposes into Im(Pi,V ) 'Mi

⊕ · · ·⊕Mi ' aiMi; where

ai is the multiplicity of the ith irreducible in V , and χV is the character of V .

We will denote the spaces Im(Pi,V ) as the distinct “Isotypes” of G in V .

Proof. This is a consequence of a result that can be found in [7] in Chapter 18,

Proposition 13.

As a remark, we note that ai = 〈χV , χi〉G where 〈, 〉G is the inner product on the

“class function” space defined by:

〈χV , χi〉G =
1

|G|
∑

g∈G
χV (g)χi(g).

Proposition 4.1.3. Let ei ∈ C[G],

ei =
χi(1)

|G|
∑

g∈G
χi(g)g.

Then, the eis are the central primitive idempotents of C[G]. Also, e0 + · · · + er = 1,

eiej = δi,jei.

Proof. This follows as ρV (ei) = Pi,V acts as identity on isomorphic copies of Mi in V

and it acts as zero on isomorphic copies of Mj, i 6= j, in V .
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Using the inner product 〈, 〉G, one can define the adjoin of a G-map. Let T : V →
W be a G-map between the G spaces V and W . Let 〈, 〉G,W be the G-invariant inner

product of W of proposition 4.1.1 constructed using the standard euclidean inner

product of W . Similarly, define 〈, 〉G,V . Then, the Adjoin T ∗ of T is defined via the

relation:

〈Tv, w〉G,W = 〈v, T ∗w〉G,V .

Clearly, a consequence of the definition is T ∗ : W → V . We will proceed to

calculate T ∗.

Proposition 4.1.4. Let T : V → W be a G-map. Then,

1. T ∗ = A−1
G,V T

T
AG,W is a G-map.

2a. Im(T ∗) = (Ker(T ))T .

2b. Im(T ∗)T = Ker(T ).

3. V = Ker(T )
⊕

Im(T ∗).

4. W = Ker(T ∗)
⊕

Im(T ).

5. (T ∗)∗ = T .

Where the orthogonal complement (·)T is taken using the inner products 〈, 〉G,V and

〈, 〉G,W .

Proof. We show part 1. A direct calculation shows T ∗ = A−1
G,V T

t
AG,W . We proceed

to show that T ∗ is a G-map using this formula. In what follows, we will be using:

AG,V ρV (g) = ρV (g−1)
T
AG,V ,

ρV (g)A−1
G,V = A−1

G,V ρV (g−1)
T
,

AG,WρW (g) = ρW (g−1)
T
AG,W ,

ρW (g)A−1
G,W = A−1

G,WρW (g−1)
T
,
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which are consequences of proposition 4.1.1. Consider,

T ∗ρW (g) = A−1
G,V T

T
AG,WρW (g)

= A−1
G,V T

T
ρW (g−1)

T
AG,W

= A−1
G,V ρW (g−1)T

T
AG,W

= A−1
G,V TρV (g−1)

T
AG,W

= A−1
G,V ρV (g−1)

T
T
T
AG,W

= ρV (g)A−1
G,V T

T
AG,W

= ρV (g)T ∗.

Hence, part 1 follows.

Now we show parts 2a and 2b. We will show Im(T ∗) ⊂ (Ker(T ))T . Let v ∈
Ker(T ) and w ∈W , then:

〈v, T ∗w〉G,V = 〈Tv, w〉G,w
= 〈0, w〉G,W
= 0,

thus, T ∗w ∈ (Ker(T ))T . Therefore, Im(T ∗) ⊂ (Ker(T ))T .

Similarly, we will show Im(T )T ⊂ Ker(T ∗). Let w ∈ Im(T )T and v ∈ V , then

0 = 〈w, Tv〉G,W
= 〈T ∗w, v〉G,V .

Since, 〈T ∗w, v〉G,V = 0 for arbitrary v ∈ V , and 〈, 〉G,V is positive definite, we must

have T ∗w = 0. Thus, w ∈ Ker(T ∗).

Note that T ∗ is also a G-map and (T ∗)∗ = T . By letting T = T ∗ in the

above argument, we can deduce Im(T ∗)T ⊂ Ker(T ). Thus, using the contain-

ments Im(T ∗)T ⊂ Ker(T ) and Im(T ∗) ⊂ (Ker(T ))T and proposition 4.1.1, we have

V = Im(T ∗)
⊕

Im(T ∗)T ⊂ Ker(T )
⊕

Ker(T )T = V . Therefore, by applying a di-
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mension argument we must have Im(T ∗)T = Ker(T ) and Im(T ∗) = Ker(T )T . This

shows part 2.

Parts 3 and 4 are a consequence of part 2 and proposition 4.1.1.

Part 5 follows from part 1 by a direct calculation.

Corollary 4.1.5. The following are consequences of proposition 4.1.4.

1. T is injective if and only if T ∗ is surjective.

2. T is surjective if and only if T ∗ is injective.

3. T is an isomorphism if and only if T ∗ is an isomorphism.

Proof. Clearly, part 3 is a consequence of parts 2 and 3. Also, part 1 is a consequence

of proposition 4.1.4 part 3. Part 2 is a consequence of proposition 4.1.4 part 4.

We will state a result that gives a description of G-maps between two G-spaces.

The five results that follow are standard facts taught in a Graduate Course on Algebra,

however, we include them for completeness. The following result, known as Schur’s

theorem, will prove to be essential for the next propositions.

Proposition 4.1.6. Let M and N be two complex irreducible complex G spaces, and

let T ∈ HomG(M,N) be a G-map. Then,

1. If M is G-isomorphic to N , then HomG(M,N) = CIM,N , where, IM,N is any

fixed G-space isomorphism between M and N . That is, if T ∈ HomG(M,N),

then T = λIM,N , where λ ∈ C. Also, if we choose a different vector space

isomorphism, say I ′M,N , the λ changes accordingly to λ′ by finding γ such that

I ′M,N = γIM,N and T = λ′I ′M,N = λ′γIM,N = λIM,N . Hence, λ = λ′γ.

2. If M is nonisomorphic to N , then HomG(M,N) = 0.

Proof. Let us consider the first case and assume M and N be G-isomorphic. Let

IM,N : M → N a fixed G-isomorphism between M and N . Consider, T ∗ I−1
M,N : N →

N . It is clearly a G-map of N to N . Consider Eλ = T ∗ I−1
M,N − λIN , is clearly again

a G-map, where IN is the identity map of N . By noting that det(Eλ) is a polynomial
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of degree dimC(N), there is a λ for which Eλ is singular. That is, Eλ has nontrivial

kernel Ker(Eλ). Clearly, the kernel of Eλ is a G-submodule of N . Hence, by using

the irreducibility and idecomposability of N , either: ker(Eλ) = N , or ker(Eλ) = 0.

Since we assume ker(Eλ) 6= 0, we deduce Eλ = 0. Thus, T ∗ I−1
M,N − λIN = 0 and

therefore T = λIM,N . This, shows the first assertion.

To show the second assertion, let us assume otherwise. That is, there is a nonzero

T ∈ HomG(M,N). Since M is irreducible and idecomposable, we deduce ker(T ) = 0.

Therefore, T is an injection, and T (M) is a nontrivial G-submodule of N . By the

irreducibility and idecomposability of N , we deduce T (M) = N . Therefore, T is a

G-isomorphism between M and N . This is a contradiction.

Proposition 4.1.7. Let N , M be G-spaces that decompose into irreducibles as N =

V1

⊕
· · ·
⊕

Vk and M = W1

⊕
· · ·
⊕

Wl, where all Vis and Wis are G-isomorphic. Let

T ∈ HomG(N,M), and Ui,j : Vj → Wi be a fixed set of G-isomorphisms. Let v ∈ N

and Tv = w ∈ M . Clearly, these vectors decompose uniquely into v = v1 + · · · + vk

and w = w1 + · · ·+wl, where vi ∈ Vi and wi ∈ Wi. Using this decomposition, we can

describe T as:

T =




λ1,1U1,1 λ1,2U1,2 · · · λ1,kU1,k

λ2,1U2,1 λ2,2U2,2 · · · λ2,kU2,k

· · · · · · · · · · · ·
λl,1Ul,1 λl,2Ul,2 · · · λl,kUl,k



,

where the λi,js depend on T and the choice of Ui,js.

Proof. Let Pi be a projection on Vi and Qi a projection on Wi. Without loss of

generality, we can assume Pi and Qi are G-maps by substituting Pi by PG
i and Qi by

QG
i , where in general TG is defined as:

TG =
1

|G|
∑

g∈G
ρ(g)Tρ(g−1).
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By construction,

P1 + · · · + Pk = IN ,

Q1 + · · · +Ql = IM ,

where IN is the identity on N and IM the identity on M . Consider,

T = (
l∑

i=1

Qi)T (
k∑

j=1

Pj)

=

i=l,j=k∑

i=1,j=1

QiTPj

=

i=l,j=k∑

i=1,j=1

Ti,j ,

where the map Ti,j = QiTPj takes N → Wi and has kernel
∑j

s=0 Vs. Essentially, it

is a G-map from Vj → Wi. By Schur’s theorem, Ti,j = λi,jUi,j when Ti,j is restricted

to Vj. If we extend Ui,j to all of N , by letting Ui,j be zero on Vs for s 6= j, we get the

following decomposition of T :

T =

i=1,j=k∑

i=1,j=1

λi,jUi,j .

The result follows.

Now, we consider the case when the Wis are not G-isomorphic to the Vis.

Proposition 4.1.8. Let N and M be G-spaces where N = V1

⊕ · · ·⊕Vk and M =

W1

⊕
· · ·
⊕

Wl are the corresponding decompositions into irreducibles, and Vi ' Vj,

Wi ' Wj as G-spaces. Suppose that Vi 6'Wj, i.e., they are nonisomorphic G-spaces.

Then, HomG(N,M) = 0.

Proof. We proceed similarly to proposition 4.1.7. Let Pi be a projection on Vi, and

Qi a projection on Wi. Without loss of generality, assume Pi and Qi are G-maps. By
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construction,

P1 + · · · + Pk = IN ,

Q1 + · · · +Ql = IM ,

where IN is the identity on N , and IM the identity on M . Also, one has:

T = (
l∑

i=1

Qi)T (
k∑

j=1

Pj)

=

i=l,j=k∑

i=1,j=1

QiTPj

=

i=l,j=k∑

i=1,j=1

Ti,j ,

where the map Ti,j = QiTPj takes N → Wi and has kernel
∑j

s=0 Vs. Essentially, it

is a G-map from Vj → Wi. By Schur’s theorem, Ti,j = 0 when Ti,j is restricted to Vj.

In particular, Ti,j = 0 on all of N . The result follows.

Corollary 4.1.9. Let N be a G-space that decomposes into irreducibles of the same

isomorphism type. That is, N = V1

⊕ · · ·⊕Vk where Vi ' Vj as G-spaces. Any basis

of V1 can be extended to a basis of N so that for any map T ∈ HomG(N,N) the Ui,js

in proposition 4.1.7 become the identity. That is,

T =




λ1,1I λ1,2I · · · λ1,kI

λ2,1I λ2,2 · · · λ2,kI

· · · · · · · · · · · ·
λk,1I λk,2I · · · λk,kI




=




λ1,1 λ1,2 · · · λ1,k

λ2,1 λ2,2 · · · λ2,k

· · · · · · · · · · · ·
λk,1 λk,2 · · · λk,k




⊗ I

= Mk,k ⊗ I,
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where I is the s× s identity matrix and s = dimC(V1).

Proof. Let {v1
1, . . . , v

1
s} be a basis of V1. Choose G-isomorphisms,

U1,1 = IV1 : V1 → V1,

U2,1 : V1 → V2,

· · ·

Uk,1 : V1 → Vk,

where U1,1 is the identity map. Define, Ui,j = Ui,1 ∗ U−1
j,1 , and choose the basis

{vi1 = Ui,1v
1
1, . . . , v

i
s = Ui,1v

1
s} for Vi. Clearly,

Ui,jv
j
l = (Ui,1 ∗ U−1

j,1 )(Uj,1v
1
l )

= Ui,1v
1
l

= vil .

Therefore, with respect to the basis {vj1, . . . , vjs} of Vj and the basis {vi1, . . . , vis} of Vi,

the G-isomorphism Ui,j has matrix representation the identity matrix.

Note that each of the Ui,js are G-maps. Thus, under the bases {v1
j}sj=1, . . . , {vkj }sj=1

and our chosen G-isomorphisms Ui,j , the map T has the desired representation via

an application of proposition 4.1.7.

We note that the choice of the bases {v1
i }, . . . , {vki } depend on the Vis chosen, the

G-structure of N , and the particular choice of {v1
i }. Hence, it suffices pick a basis

{v1
i } to decompose any T ∈ HomG(N,N) into Mk,k ⊗ Is, for some k × k matrix of

complex numbers Mk,k.

Using a similar proof, we can generalize the previous corollary.

Corollary 4.1.10. Let N and M be G-spaces that decompose into irreducibles of the

same isomorphism type. That is, N = V1

⊕ · · ·⊕Vk where Vi ' Vj as G-spaces, and

M = W1

⊕ · · ·⊕Ml where Wi ' Wj as G-spaces. Choose a G-isomorphism U1,1 :

V1 → W1. Let β = {v1, . . . , vs} be a basis of V1. Define γ = {w1, . . . , ws} = U1,1β
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as a basis of W1. Then, one can extended β to a basis of N , γ to a basis of M , and

choose Ui,js in proposition 4.1.7 such that for any map T ∈ HomG(N,M) the Ui,js

in proposition 4.1.7 become the identity. That is,

T =




λ1,1I λ1,2I · · · λ1,kI

λ2,1I λ2,2 · · · λ2,kI

· · · · · · · · · · · ·
λl,1I λl,2I · · · λl,kI




=




λ1,1 λ1,2 · · · λ1,k

λ2,1 λ2,2 · · · λ2,k

· · · · · · · · · · · ·
λl,1 λk,2 · · · λl,k




⊗ I

= Ml,k ⊗ I,

where I is the s× s identity matrix and s = dimC(V1).

Let N,M,L be G-spaces where

N ' N1 ⊕ · · · ⊕Nn, Ni ' Nj,

M ' M1 ⊕ · · · ⊕Mm, Mi 'Mj,

L ' L1 ⊕ · · · ⊕ Ll, Li ' Lj,

and Ni ' Mi ' Li. As a remark, we observe that the proof of corollary 4.1.10 gives

bases of N,M,L such that for any T ∈ HomG(N,M), K ∈ HomG(M,L),

T = Mm,n ⊗ Is,

K = Ml,m ⊗ Is,

KT = (Ml,mMm,n) ⊗ Is,

where s = dimC(N1).

We proceed to find a canonical form for T ∈ HomG(N,L), however, we introduce
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some notation before we state our result. Let,

N = R1

⊕
· · ·
⊕

Rr,

L = S1

⊕
· · ·
⊕

Ss,

be the decomposition of N and L into irreducible G-modules. Let

X1 = {i | ∃j 3 Sj ' Ri},

X2 = {1, . . . , r}\X1,

Y1 = {j | ∃i 3 Sj ' Ri},

Y2 = {1, . . . , s}\Y1.

Clearly, X1 and Y1 constitute up to G-isomorphism the irreducible components that

are common to N and L, and X2, Y2 constitute up to G-isomorphism the irreducible

components that are not common to both N and L. Let

N ′
1 =

⊕

i∈X1

Ri,

N ′
2 =

⊕

j∈X2

Rj,

L′
1 =

⊕

i∈Y1

Si,

L′
2 =

⊕

j∈Y2

Sj.

Let {Mt1 , . . . ,Mtk} be the distinct isomorphism classes of irreducibles among {Ri|i ∈
X1}, let {Mr1 , . . . ,Mrn} be the distinct isomorphism classes of irreducibles among

{Rj|j ∈ X2}, and let {Ms1 , . . . ,Msl
} be the distinct isomorphism classes of irre-

ducibles among {Sj|j ∈ Y2}. Clearly, by construction, the distinct isomorphism

classes of irreducibles among the {Si|i ∈ X1} is given by {Mt1 , . . . ,Mtk}. Also, by
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construction,

{Mt1 , . . . ,Mtk} ∩ {Mr1 , . . . ,Mrn} = φ,

{Mt1 , . . . ,Mtk} ∩ {Ms1 , . . . ,Msl
} = φ,

{Mr1 , . . . ,Mrn} ∩ {Ms1 , . . . ,Msl
} = φ.

and

L = L′
1

⊕
L′

2,

N = N ′
1

⊕
N ′

2.

Let

N ′
1 = Nt1

⊕
· · ·
⊕

Ntk ,

Nti = Nti,1

⊕
· · ·
⊕

Nti,ai
,

Nti,j ' Mti ,

and let

L′
1 = Lt1

⊕
· · ·
⊕

Ltk ,

Lti = Lti,1
⊕

· · ·
⊕

Lti,bi ,

Lti,j ' Mti .

Using the notation introduced above, we find a canonical for any T ∈ HomG(N,L).

Proposition 4.1.11. Let N and L be defined as above. Given a basis of,

Nt1,1, Nt2,1, . . . , Ntk,1,

one can extend these bases to a basis of N , and choose a basis of L such that for any

T ∈ HomG(N,L),
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1. L′
2 ⊂ coker(T ).

2. N ′
2 ⊂ Ker(T ).

3. T has matrix representation:




Mb1,a1

⊗
Ist1

· · · 0 0

· · · · · · · · · · · ·
0 · · · Mbk,ak

⊗
Istk

0

0 · · · 0 0dimC(L′

2),dimC(N ′

2)



.

Where,

1. The matrices Mbi,ai
are complex bi×ai matrices that depend on T and the chosen

basis of N and L.

2. The matrix 0dimC(L′

2),dimC(N ′

2) is the dimC(L′
2) × dimC(N ′

2) zero matrix.

3. The dimension of Mti is given by sti = dimC(Mti).

4. The matrix Isti
is the sti × sti identity matrix.

5. The cokernel of T is the orthogonal complement of Im(T ) by using the inner

product 〈, 〉G,L. That is, coker(T ) = Im(T )T .

Proof. Let T ∈ HomG(N,L) and fix a basis for the spaces Nti and Lti . We begin

by recalling proposition 4.1.2 from which we deduce that Li = Im(Pi,L) and Ni =

Im(Pi,N). Clearly, Ps,N = 0 when Ms does not occur in N . Similary, Ps,L = 0 when
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Ms does not occur in L. Therefore,

IN =
r∑

i=0

Pi,N (4.1)

=
k∑

i=1

Pti,N +
n∑

j=1

Prj ,N ,

IL =
r∑

i=0

Pi,L

=
k∑

i=1

Pti,L +
l∑

j=1

Psj ,L.

Consider,

T = (
r∑

i=0

Pi,L)T (
r∑

j=0

Pj,N)

=

i=r,j=r∑

i=0,j=0

Pi,LTPj,N

=

i=r,j=r∑

i=0,j=0

Ti,j ,

where Ti,j = Pi,LTPj,N . Note that Ti,j is a map from N → Li that is zero on Nss for

s 6= j. Therefore, Ti,j can be viewed as a G-map from Nj → Li. By proposition 4.1.8,

Ti,j = 0 whenever Nj and Li are not of the same isomorphism type. Thus,

T =
r∑

i=0

Ti,i,

where the above sum is over all irreducible representations of G. Using Equation

(4.1), we deduce Ps,N = 0, whenever s 6= t1, . . . , tk and s 6= r1, . . . , rn. Similarly,

Ps,L = 0, whenever s 6= t1, . . . , tk and s 6= s1, . . . , sl. Therefore,

T =
k∑

i=1

Tti,ti +
n∑

j=1

Trj ,rj +
l∑

l=1

Tsl,sl
.
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Note that Psl,N = 0 and Prj ,L = 0. Thus,

T =
k∑

i=1

Tti,ti , (4.2)

hence, we deduce that T (N) ⊂ L′
1 by considering,

Psj ,LT =
k∑

i=1

Psj ,LTti,ti

= 0.

Since, L = L′
1

⊕
L′

2, L
′
2 = (L′

1)
T , and T (N) ⊂ L′

1; we deduce L′
2 = (L′

1)
T ⊂

(T (N))T = coker(T ).

Also, we deduce that N ′
2 ⊂ Ker(T ) by considering

TPrj ,N =
k∑

i=1

Tti,tiPrj ,N

= 0.

Equation (4.2), shows that T (Nti) ⊂ Lti and T (N ′
2) = 0. Thus, with respect to

the decomposition of N = Nt1

⊕ · · ·⊕Ntk

⊕
N ′

2 and L = Lt1
⊕ · · ·⊕Ltk

⊕
L′

2, we

conclude that T has the matrix representation:




Tt1,t1 0 · · · 0 0

0 Tt2,t2 · · · 0 0

· · · · · · · · · 0 · · ·
0 0 · · · Ttk,tk 0

0 0 · · · 0 0dimC(L′

2),dimC(N ′

2)




,

where Tti,ti is the matrix representation of the map Tti,ti with the domain restricted

to Nti and the range restricted to Lti .

In general, we cannot deduce that the matrices Tti,ti have matrix representation

Mbi,ai

⊗
IdimC(Mti

). However, by applying Corrollary(4.1.10) to Tti,ti , we can choose
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a basis of Nti and Lti such that Tti,ti has matrix representation Mbi,ai

⊗
IdimC(Mti

).

Hence, the result follows by choosing the bases provided by corollary 4.1.10.

Using the notation of the previous proposition, we can show that the maps Tti,ti

inherit some of the properties of the map T . This is illustrated by the next proposition.

Proposition 4.1.12. Let T , N , and L be given as in proposition 4.1.11, so that:

T =
k∑

i=1

Tti,ti .

Then,

1. T is injective if and only if N ′
2 = 0 and for all i = 1, . . . , k, Tti,ti is injective

when restricted to Nti.

2. T is surjective if and only if L′
2 = 0 and for all i = 1, . . . , k, Tti,ti is surjective

when its image is restricted to Lti.

Proof. Part 1. (⇒) We show the contrapositive. Suppose that there is v ∈ Ntm such

that Ttm,tmv = 0 for some tm, and v 6= 0. By assumption, v = Ptm,Nv, and Pti,Nv = 0

for ti 6= tm. Consider,

Tv =
k∑

i=1

Tti,tiv

=
k∑

i=1

Pti,LTPti,Nv

= Ptm,LTPtm,Nv

= Ttm,tmv

= 0,

hence, T is not injective.

(⇐) Conversely, suppose there was v ∈ N such that Tv = 0. By supposition, we

can assume v ∈ N ′
1. Hence, v decomposes as v = vt1 + · · · + vtk , where vti ∈ Nti .
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Clearly,

Tvti = TPti,Nvti

= TPti,NPti,Nvti

= Pti,LTPti,Nvti

= Tti,tivti .

Let wti = Tti,tivti . Clearly, wti ∈ Lti . Consider

0 = Tv

=
k∑

i=1

Tvti

=
k∑

i=1

TPti,Nvti

=
k∑

i=1

Tti,tivti

=
k∑

i=1

wti .

Since L = Lt1
⊕ · · ·⊕Ltk

⊕
L′

2, the previous equation above forces wti = 0 for all i.

Therefore, Tti,tivti = wti = 0 for all i. By the injectivity of Tti,ti , we deduce vti = 0.

Clearly, this forces v = 0. Thus, we have shown that T is injective.

Part 2. (⇒) Without loss of generality, it suffices to show Tt1,t1 is surjective. Let

wt1 ∈ Lt1 . Since T is surjective, there is a v ∈ N such that Tv = wt1 . Let vt1 = Pt1,Nv

and consider,

wt1 = Pt1,Lwt1

= Pt1,LTvt1

= Pt1,LTPt1,NPt1,Nv

= Tt1,t1vt1 ,
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hence, wt1 has a preimage under Tt1,t1 .

(⇐) Conversely, let w ∈ L. By supposition, we can assume w ∈ L′
1. Hence,

w =
∑k

i=1 wti where wti = Pti,Lw. Since each Tti,ti is surjective, we can find vti ∈ Nti

such that wti = Tti,tivti . Define v =
∑k

i=1 vti , a direct calculation shows w = Tv.

Hence, T is surjective.

The next proposition shows that the operation (·)ti,ti preserves algebraic opera-

tions.

Proposition 4.1.13. Let N , L and K be G spaces. Let Ti : N → L, Si : L → K,

and R : N → K be G-maps. Define Rt1,t1 = Pt1,KRPt1,N , (Ti)t1,t1 = Pt1,LTiPt1,N , and

(Si)t1,t1 = Pt1,KTiPt1,L. Then, if

R =
m∑

i=1

SiTi. (4.3)

Then,

Rt1,t1 =
m∑

i=1

(Si)t1,t1(Ti)t1,t1 .

Proof. Consider

RPt1,N = RPt1,NPt1,N because Pt1,N is a projection,

= Pt1,KRPt1,L because R is a G-map,

= Rt1,t1 .

Similarly, we can show that SiTiPt1,N = (Si)t1,t1(Ti)t1,t1 .

We can deduce the conclusion by multiply Equation (4.3) on the right by Pt1,N

and substituting the previous deductions.

Definition 4.1.14. Let T ∈ HomG(N,L). Denote Tt1,t1 by,

Tt1,t1 = Pt1,LTPt1,L.
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We will refer to Tt1,t1 as the projection of T on the Mt1 type of N and L.

Proposition 4.1.15. Let:

1. The function f(x1, x2, . . . , xn) be a multivariable complex polynomial of n vari-

ables.

2. The maps T1, . . . , Tn be G-maps from N to L.

3. Assume f(T1, . . . , Tn) = 0.

4. Define Si as Si = (Ti)t1,t1.

Then, f(S1, . . . , Sn) = 0.

Proof. This is a consequence of proposition 4.1.13.

We close this section with a structure result about the spaces HomG(N,N) that

will be of importance in later sections. We will view HomG(N,N) as a ring with

multiplication given by function composition. The spaces HomG(N,N) are known in

the literature as the Hecke Rings, and we will denote them by H(G,N).

Proposition 4.1.16. Let N be G-space over the complex numbers C. Let N '
a0M0

⊕
· · ·
⊕

arMr, where the Mis are the irreducible complex representations of G.

Then,

1. The space H(G,N) decomposes as H(G,N) = Ma0,a0(C) × · · · ×Mar,ar
(C).

2. The space H(G,N) is a semisimple ring.

3. The space H(G,N) is commutative if and only if all ai = 1 or 0. That is, N is

“multiplicity free.”

Proof. Part 1 is a consequence of proposition 4.1.11. Part 2 is a consequence of

part 1 and the Artin-Weddenburn theorem for semisimple rings. Part 3 is a clear

consequence of part 1.
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4.1.2 General Results for Smith Groups

In this section, we will first study short exact sequences of Z-modules to provide

necessary background, then we will prove general results about smith groups.

We start with a few definitions.

Definition 4.1.17. Given an integral matrix M : Qn → Qm.

1. The general smith group S(M) is defined as Zm

ColZ(M)
.

2. The finite part or torsion part of the smith group of M is denoted as S(M) =

ColQ(M)∩Zm

ColZ(M)
.

3. The free part of S(M) is denoted as F(M) = S(M)

S(M)
.

4. The abelian rank r(M) of M is the rank of F(M) as a free Z-module. In general

r(M) = null(M) + cork(M), where:

cork(M) =





m− n if m > n,

0 else.

5. The rank of M is defined as rk(M) = dimQ(ColQ(A)) = dimQ(RowQ(A)).

Definition 4.1.18. In general, given a finitely generated abelian group H, the torsion

part will be denoted as H and the free part as F(H). All abelian groups will be assumed

to be finitely generated.

Definition 4.1.19. Given a finite abelian group A, we will define by Ap its p-sylow

subgroup. Assume Ap = (Z/pfZ)af ⊕· · ·⊕ (Z/pZ)a1, where ai ≥ 0 and pf = exp(Ap).

Then,

1. Define (A)(pk) = Ker(Ap

µ
pk→ Ap) where µpk(g) = pk · g in additive notation. It

can be shown that:

(A)(pk) = (Z/pkZ)af ⊕ · · · ⊕ (Z/pkZ)ak ⊕ (Z/pk−1Z)ak−1 ⊕ · · · ⊕ (Z/pZ)a1 .
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2. Define fp by
∑f

i=1 ai. That is, fp is the number of idecomposable cyclic compo-

nents of Ap.

3. Define ak;p and bk;p such that bk;p = pak;p = |(Ap)
(pk)|. Note that,

ak:p =
k−1∑

i=1

iai + k(

f∑

i=k

ai).

4. Define fk;p as the number of idecomposible cyclic components that contain (Z/pkZ).

Note that f1;p = fp.

5. Define gk;p = fp − fk+1,p as the number of idemcomposable componets of order

≤ pk.

Definition 4.1.20. Given an integral matrix M , we will denote the order of the

torsion part of the smith group of M by |M|. That is, |M| = |S(M)|. Also, by

|M|p = pvp(|M|), we will denote the p-norm of |M |, where vp(·) is the p-valuation

function.

4.1.2.1 Short Exact Sequences of Z-Modules

We will use the standard algebraic operations of the Torsion functor, Tensor functor,

Ext functor and Hom functor to generate exact sequences of Z-modules from known

short exact sequences of Z-modules. We will do this to deduce results about short

exact sequences of Z-modules that will be used in our study of the smith group of

integral matrices. We note that results concerning the quantities defined in definition

4.1.19 will not be used in later sections; however, we include them to provide a

complete study of short exact sequence of Z-modules.

We start with a result about finitely generated abelian groups.

Proposition 4.1.21. Let A be a free abelian group and B a subgroup. Then r(A
B

) =

r(A) − r(B).
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Proof. Since A is free abelian, B is also free abelian and r(A) ≥ r(B). Clearly, there

is a Z-isomorphism φ such that:

A
φ→ Zr(A)

∪ ∪
B

φ→ L

,

where L is a free submodule of Zr(A) isomorphic to B and of abelian rank r(B).

Let v1, . . . , vr(B) be a Z-basis of L. DefineM = [v1, . . . , vr(B)]. Clearly, since the vis

form a Z-basis, M must have full rank. Thus, rk(M) = r(B) and r(M) = r(A)−r(B).

Note that, A
B
' S(M). Hence, r(A

B
) = r(M) = r(A) − r(B).

We recall two results can be found in Munkres’ book in [19].

Proposition 4.1.22. Let A1, A2, A3 and D be finitely generated Z-modules or abelian

groups. Assume,

0 → A1 → A2 → A3 → 0.

And,

1. Let ∗ be the Torsion product of Z-modules.

2. Let ⊗ be the tensor product of Z-modules.

3. Let Hom(A,B) the space of all Z-maps from A to B.

4. Let Ext(A,B) = Ext1(A,B) be the first chain group that arises from a Z-

projective resolution of A and of B.

Then, there are exact sequences such that:

0 → A1 ∗D → A2 ∗D → A3 ∗D →
A1 ⊗D → A2 ⊗D → A3 ⊗D → 0,

(4.4)
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0 → Hom(D,A1) → Hom(D,A2) → Hom(D,A3) →
Ext(D,A1) → Ext(D,A2) → Ext(D,A3) → 0,

0 → Hom(A3, D) → Hom(A2, D) → Hom(A1, D) →
Ext(A3, D) → Ext(A2, D) → Ext(A1, D) → 0.

(4.5)

Proposition 4.1.23. Let G be a finitely generated Z-module. Then,

1. The isomorphisms of figure 4.1 hold.

2. The following are isomorphic:

(Z/mZ) ⊗ (Z/nZ) ' (Z/mZ) ∗ (Z/nZ)

' (Z/dZ),

Hom((Z/mZ), (Z/nZ)) ' Ext((Z/mZ), (Z/nZ))

' (Z/dZ),

where d = gcd(n,m).

As a corollary, we show:

Corollary 4.1.24. Let A be finitely generated abelian group, i.e., Z-module, and let

p be a prime. Then,

1. Hom(Z, A) ' A⊗ Z ' A.

2. Hom(A,Z) ' F(A).

3. Ext(A,Z) ' A.

4. Ext(Z, A) ' A ∗ Z ' 0.



166

Z ⊗G ' G Hom(Z, G) ' G

(Z/mZ) ⊗G ' G
mG

Hom((Z/mZ), G) ' ker(G
µm→ G)

Z ∗G ' 0 Ext(Z, G) ' 0

(Z/mZ) ∗G ' ker(G
µm→ G) Ext((Z/mZ), G) ' G

mG

(Z/mZ) ⊗ Z ' (Z/mZ) (Z/mZ) ∗ Z ' 0

Ext((Z/mZ),Z) ' (Z/mZ) Hom((Z/mZ),Z) ' 0

Hom(⊕Ai, B) ' ⊕Hom(Ai, B) Hom(B,⊕Ai) ' ⊕Hom(B,Ai)

Ext(⊕Ai, B) ' ⊕Ext(Ai, B) Ext(B,⊕Ai) ' ⊕Ext(B,Ai)

(⊕Ai) ⊗B ' ⊕(Ai ⊗B) B ⊗ (⊕Ai) ' ⊕(B ⊗ Ai)

(⊕Ai) ∗B ' ⊕(Ai ∗B) B ∗ (⊕Ai) ' ⊕(B ∗ Ai)

Figure 4.1. Algebraic isomorphisms.

5. The following are isomorphic,

Hom((Z/pkZ), A) ' Ext(A, (Z/pkZ)) ' A ∗ (Z/pkZ) ' (Ap)
(pk),

Hom(A, (Z/pkZ)) ' Ext((Z/pkZ), A) '

A⊗ (Z/pkZ) ' (Ap)
(pk) ⊕ (Z/pkZ)r(A).

6. Let exp(A) divide d, then the following are isomorphic,

Hom((Z/dZ), A) ' Ext(A, (Z/dZ)) ' A ∗ (Z/dZ) ' A,

Hom(A, (Z/dZ)) ' Ext((Z/dZ), A) ' A⊗ (Z/dZ) ' A⊕ (Z/dZ)r(A).

As a corollary to the previously shown algebraic isomorphisms, we have:



167

Corollary 4.1.25. Let A,B,C be Z-modules such that,

0 → A→ B → C → 0.

Then,

1. The abelian rank of B is given by r(B) = r(A) + r(C).

2. If r(A) = 0, then there is an exact sequence such that,

0 → C → B → A→ 0.

Proof. We proceed to show part 2. Choose D = Z in the exact sequence 4.5 of

proposition 4.1.22. We have,

0 → F(C) → F(B) → F(A) → C → B → A→ 0.

Hence, we can deduce part 2 whenever r(A) = 0 since F(A) = 0.

We show part 1. Note that the previous exact sequence gives F(B)
F(C)

' H ⊂ F(A),

where H is also free. By proposition 4.1.21, r(H) = r(B) − r(C). Also, note that

F(A)
H

' K ⊂ C, where K is a torsion. Hence, r(K) = 0. By proposition 4.1.21,

r(K) = r(A) − r(H) = r(A) − r(B) + r(C) and the result follows.

In general, when given an exact sequence of finitely generated abelian groups:

0 → A1 → A2 → A3 → 0.

We cannot deduce the same about the torsion part of the Ais. That is, we cannot

deduce that:

0 → A1 → A2 → A3 → 0.

However, we can whenever A1 has zero abelian rank.
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Proposition 4.1.26. Let A, B, C be Z-modules such that,

0 → A
φ→ B

ψ→ C → 0.

Then, there is a Z-module H such that:

1. The following holds:

B

A
⊕H ⊕ F(H) ' C ⊕ F(C).

2. The following are isomorphic:

F(H) ' F(C),

H ' C1 ⊂ C,

B

A
⊕H ' C,

where C1 is a subgroup of C.

3. If B is injected to C by ψ, then A = {0} and,

B ⊕H ' C.

4. If r(A) = 0, then H is trivial and there is an exact sequence such that:

0 → A→ B → C → 0.

Proof. We show part 1. Since A is injected into B, we must have:

B

A
⊕ F(B)

F(A)
' B ⊕ F(B)

A⊕ F(A)

' B

A

' C

' C ⊕ F(C).
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Let H = F(B)
F(A)

. Clearly, proposition 4.1.21 and corollary 4.1.25, we have r(H) =

r(B) − r(A) = r(C). Clearly, we can decompose H as H ⊕ F(H) to get the desired

isomorphism.

Part 2 follows from the isomorphism of part 1.

We show part 3. We will show that A = 0. Let g ∈ φ(A) ⊂ B. Clearly, ψ(g) = 0

by exactness. Since B is injected into C, it follows that g = 0. Hence, φ(A) = 0.

Since φ is an injection, it follows that A = {0} and the result follows from part 2.

We show part 4. Since r(A) = 0, A = A is a torsion group. Thus, F(A) = {0}.
By part 2, we have B

A
' C. Consider the following exact sequence:

0 → A
ι→ B

π→ C → 0,

where π is the canonical projection and ι is the inclusion. Hence, the result follows.

Corollary 4.1.27. Let A,B, C be finitely generated Z-modules. Assume, r(A) = 0

and

0 → A→ B → C → 0.

Then, there are exact sequences:

0 → A→ B → C → 0,

0 → C → B → A→ 0.

Proof. The first exact sequence is given in proposition 4.1.26. The second exact

sequence is given by corollary 4.1.25.

The previous corollary gives a result that is not true for finite nonabelian groups.

Corollary 4.1.28. Let A,B, and C be finite abelian groups such that A
B

' C, then

there is a subgroup C1 ⊂ A such that A
C1

' B and C1 ' C.
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Proof. Since A
B
' C, we can construct the following exact sequence of Z-modules,

0 → A→ B → C → 0.

Since all groups are torsion, corollary 4.1.27 applies and there is an exact sequence

such that:

0 → C → B → A→ 0.

Let C1 be the injected image of C in the above sequence. Clearly, C1 satisfies the

conclusion.

We close this section with two results on divisibility conditions of short exact

sequence of Z-modules. We will use the exact sequences of proposition 4.1.22, when

D = (Z/pkZ) and D = (Z/dZ), to deduce these conditions.

Proposition 4.1.29. Let A1, A2, and A3 be finitely generated abelian groups such

that:

0 → A1 → A2 → A3 → 0.

Let pk be a prime power , d = lcm(exp(A1), exp(A2), exp(A3)) and ai = |Ai|. Then,

1. The number bk;p(A1) divides bk;p(A2).

2. The number bk;p(A3) divides bk;p(A2)p
kr(A1).

3. The number bk;p(A2) divides bk;p(A1)bk;p(A3).

4. The number a1 divides a2.

5. The number a3 divides a2d
r(A1).

6. The number a2 divides a1a3.
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Proof. Consider the exact sequence 4.4 of proposition 4.1.22 when D = (Z/pkZ),

0 → ((A1)p)
(pk) φ1→ ((A2)p)

(pk) φ2→ ((A3)p)
(pk) φ3→

((A1)p)
(pk) ⊕ (Z/pk)r(A1) φ4→ ((A2)p)

(pk) ⊕ (Z/pk)r(A2) φ5→ · · · .

We show parts 1, 2, and 3. By using the exactness condition, we construct a table of

integral conditions shown in figure 4.2.

φi |Domain(φi)| |Range(φi) |Ker(φi)| |Im(φi)|

1 bk;p(A1) bk;p(A2) 1
bk;p(A2)

bk;p(A1)

2 bk;p(A2) bk;p(A3)
bk;p(A2)

bk;p(A1)

bk;p(A1)bk;p(A3)

bk;p(A2)

3 bk;p(A3) bk;p(A1)p
kr(A1) bk;p(A1)bk;p(A3)

bk;p(A2)

bk;p(A2)pkr(A1)

bk;p(A3)

Figure 4.2. Exact sequence integral conditions.

Clearly, parts 1, 2, and 3 follow from the integral conditions of figure 4.2.

We show parts 4, 5, and 6. Consider the exact sequence 4.4 of proposition 4.1.22

when D = (Z/dZ) and d is the lcm(exp(A1), exp(A1), exp(A2)).

0 → A1
φ1→ A2

φ2→ A3
φ3→ A1 ⊕ (Z/d)r(A1) φ4→ A2 ⊕ (Z/d)r(A2) φ5→ · · · .

By using the exactness condition, we construct the table of integral conditions shown

in figure 4.3.

Clearly, parts 4, 5, and 6 follow from the integral conditions of figure 4.3.

4.1.2.2 The Results

We will start with a proposition that we will generalize later.

Proposition 4.1.30. Let C = AB where Ker(A)∩Im(B) = {0}, then S(B) ⊂ S(C).
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φi |Domain(φi)| |Range(φi) |Ker(φi)| |Im(φi)|

1 a1 a2 1 a2

a1

2 a2 a3
a2

a1

a1a3

a2

3 a3 a1d
r(A1) a1a3

a2

a2dr(A1)

a3

Figure 4.3. Exact sequence integral conditions.

Proof. Assume, B is k × n matrix. Let e1, . . . , ek, ek+1, . . . , en be a primitive integral

basis of the domain of B such that,

Bei =





difi for i = 1, . . . , k,

0 for i = k + 1, . . . , n.

where f1, . . . , fk is a primitive integral basis of the range of B, and the invariant

factors of B are given by {di}.
Clearly Cei = ABei = diAfi. Thus, vi = Afi = C( ei

di
) is in ImQ(C). We claim

that Af1, . . . , Afk forms a subgroup of S(C) that is isomorphic to S(B).

It suffices to show that whenever
∑k

i=1 niAfi = Cz for some z ∈ Z, then di|ni. Be-

cause {ei} is a primitive integral basis, there are integral zi such that z =
∑k

i=1 ziei+∑n
i=k+1 ziei. Hence,

k∑

i=1

zidiAfi = Cz

=
k∑

i=1

niAfi.

Thus,

∑

i=1

(zidi − ni)fi ∈ Ker(A) ∩ Im(B) = {0}.

Because the fis are linearly independent, we must have zidi = ni.
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We generalize proposition 4.1.30 in the next proposition.

Proposition 4.1.31. Let C = AB, where A is n× r, B is r× k. Assume Ker(A)∩
Im(B) = {0}. Then,

1. There is a finitely generated abelian group H such that:

0 → H → S(C) → S(A) → 0.

2. The abelian rank r(H) of H is rk(A) − rk(C).

3. The torsion part of the Smith Group of B is contained in H, i.e. ,S(B) ⊂ H.

Hence, S(B) ⊂ H.

4. There is a finitely generated abelian group K such that:

0 → K → S(B) → H → 0,

where r(K) = r(B) − r(H).

5. If r(H) = 0, i.e., rk(A) = rk(C), then there is a finite abelian group H1 such

that H ' S(B) ⊕H1.

Proof. Consider the following inclusion of free abelian groups:

ColZ(AB) ⊂ ColZ(A) ⊂ Zn.

We can deduce the following short exact sequence of Z-modules.

0 → ColZ(A)

ColZ(AB)
→ Zn

ColZ(AB)
→ Zn

ColZ(A)
→ 0,

Therefore,

0 → H → S(AB) → S(A) → 0,



174

where H = ColZ(A)
ColZ(AB)

. Clearly, as H is the quotient of free abelian groups, we have

r(H) = rk(A) − rk(AB). Hence, parts 1 and 2 follow.

Clearly, we can view A as a map of Z-modules. Consider,

Zn

∪
Zr A→ ColZ(A)

∪ ∪
ColQ(B) ∩ Zr A→ L

∪ ∪
ColZ(B)

A→ ColZ(AB) ,

where A restricted to ColZ(B) and ColQ(B)∩Zr is injective since Ker(A)∩Im(B) =

{0}. Thus, A factors through ColZ(B) to give a surjective map:

Zr

ColZ(B)

A→ ColZ(A)

ColZ(AB)
→ 0,

and an injective map:

0 → ColQ(B) ∩ Zr

ColZ(B)

A→ ColZ(A)

ColZ(AB)
.

Thus,

S(B)
A→ H → 0,

0 → S(B)
A→ H.

Let K denote the kernel of the map induced by A, then clearly:

0 → K → S(B)
A→ H → 0, (4.6)

where r(H) = r(S(B)
K

) = r(B) − r(K). Thus, r(K) = r(B) − r(H). Hence, parts 3

and 4 follow.
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We show part 5. Clearly, S(B) is injected into H in the exact sequence 4.6.

Therefore, by proposition 4.1.26, H ' S(B) ⊕ H1 for some finite abelian group H1.

Hence, part 5 follows.

We can deduce more in proposition 4.1.31 when A is injective.

Proposition 4.1.32. Let C = AB, where A is an n × r matrix and B is an r × k

matrix.

1. If A is injective, then there is an exact sequence such that:

0 → S(B) → S(C) → S(A) → 0.

2. If B is onto, then there is an exact sequence such that:

0 → S(AT ) → S(CT ) → S(BT ) → 0.

Proof. We show part 1. Consider the following inclusions of free abelian groups:

ColZ(AB) ⊂ ColZ(A) ⊂ Zn.

We can conclude the following exact sequence:

0 → ColZ(A)

ColZ(AB)
→ Zn

ColZ(AB)
→ Zn

ColZ(A)
→ 0.

Thus,

0 →M → S(AB) → S(A) → 0,

where M = ColZ(A)
ColZ(AB)

. It suffices to show that M ' S(B).
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Because A is injective, we can view A as an injective map of Z-modules. Consider,

Zn

∪
Zr A→ ColZ(A)

∪ ∪
ColZ(B)

A→ ColZ(AB) ,

hence, S(B) = Zr

ColZ(B)
is isomorphic to ColZ(A)

ColZ(AB)
= M via the map A.

We show part 2. By using the trivial action in proposition 4.1.4 parts 2a and

2b, B is onto if and only if BT is injective. Part 2 will follow by applyng part 1 to

CT = BTAT .

As a corollary, we deduce the following.

Corollary 4.1.33. Let C = AB where A is injective, then S(B) ⊂ S(C).

Proof. This can be viewed as a corollary to proposition 4.1.30 or proposition 4.1.31.

We close the section with a result that can be found partly as theorem 2 in the

work of Pless and Rushanan in [24], and in several sections of Rushanan’s paper in

[22].

Proposition 4.1.34. (Rushanan) Let C be a nonsingular matrix with eigenvalues

λ1, . . . , λr with respective multiplicities m1, . . . ,mr. Then,

1. If λi is an integer, then λi divides exp(S(C)).

2. If all λis are integral, then lcm(λ1, . . . , λr) divides S(C).

3. If C diagonalizes with respect to λi ∈ Z. That is, the algebraic multiplicity

equals the geometric multiplicity. Then, (Z/λiZ)mi is a subgroup of S(C).

4. If C is diagonalizable with all eigenvalues integral. That is, every eigenvalue

has its geometric multiplicity equal its algebraic multiplicity. Then, exp(S(C))

divides λ1λ2 · · ·λs.



177

4.1.3 The Johnson Scheme J(v,k)

We will show results that are well-known for the Johnson Scheme J(v, k). We start

with a few general definitions about permutation actions that will be used for the

rest of the chapter.

Definition 4.1.35. Let G ⊂ Sv, where Sv is the symmetric group on v letters. As-

sume that Sv acts on X = {1, . . . , v}.

1. Define Ck(X) =
⊕

K⊂X,|K|=k CeK. That is, the vector space of all k-subsets of

X.

2. We view Ck(X) as a G-module with action given by,

ρ(σ)eK = eσ(K) σ ∈ G ⊂ Sv,

where σ(K) = σ({a1, . . . , ak}) = {σ(a1), . . . , σ(ak)}.

Definition 4.1.36. The Johnson Scheme J(v, k) is the Hecke Ring H(Sv, Ck(X)).

For the rest of the section, we will define for k0, k1 as k0 = min(k, v − k) and

k1 = max(k, v − k) where 0 ≤ kv.

Proposition 4.1.37. The Johnson Scheme J(v, k) admits a canonical basis given by

the matrices Ai defined as,

Aki (eK1 , eK2) =





1 if |K1 ∩K2| = k − i,

0 else,

where i = 0, . . . , k0. In particular, dimC(J(v, k)) = k0 + 1.

Proof. Clearly, if A ∈ HomG(N,N), then ρ(σ)A = Aρ(σ). Hence, for all σ ∈ G, we

have

ρ(σ)Aρ(σ−1) = A.
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The previous equation forces A to be constant on the orbits of G on the set Ck(X)×
Ck(X). Thus, we can assume A to be a linear combination of Ais where the Ais

are the characteristic functions of the orbits of G on Ck(X) × Ck(X). It suffices to

calculate these Ais for G = Sv. Clearly, each orbit Ω of Sv on Ck(X) × Ck(X) has

a unique value for |K1 ∪K2|. That is, for any (eK1 , eK2) ∈ Ω, the value |K1 ∪K2| is

constant. It suffices to show that possible values of |K1 ∩K2| are k, k− 1, . . . , k− k0.

We will do this by cases.

Case 2k ≤ v. Clearly, k = k0. Also, |K1 ∩K2| ≥ k − k0 = 0 since one can find

disjoint K1, K2. Obviously, 0 ≤ |K1 ∩ K2| ≤ k and |K1 ∩ K2| takes on the values

0, . . . , k.

Case 2k > v. Clearly, k = k1. Also, one cannot longer find K1, K2 that are

disjoint. However, one can find K1, K2 such that |K1 ∪ K2| = v. Therefore, |K1 ∪
K2| ≤ v and |K1 ∩ K2| = 2k − |K1 ∪ K2| ≥ 2k − v = k − k0. Thus, clearly,

k ≥ |K1 ∩ K2| ≥ k − k0. Obviously, |K1 ∩ K2| takes on every value between k and

k − k0.

Proposition 4.1.38. Let Ck(X) be viewed as an Sv-module. Then, Ck(X) has de-

composition into irreducibles Ck(X) = N0,k

⊕
N1,k

⊕ · · ·⊕Nk0,k, where Ni,k is the

irreducible Sv-module with character

χi =





πi − πi−1 for 0 < i ≤ v
2
,

χ0 for i = 0,

where χ0 is the trivial character, and πi is the permutation character of Ci(X). In

particular, πk = χ0 + · · · + χk, where each χi is an irreducible complex character of

Sv.

Proof. We proceed by cases.

Case k ≤ v

2
. The result can be found in [2] in chapter III, section 2, theorem 2.5.

Case k > v

2
. Consider the Sv-map Pk : Ck(X) → Cv−k(X) defined by Pk(eK) =

Pv−k(e∼K). Clearly, by using Pk, we can show that Ck(X) and Cv−k(X) are isomorphic

Sv-modules. Hence, the result follows by the previous case.
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Corollary 4.1.39. Let W ∈ J(v, k) and Pi,Ni,k
∈ J(v, k) be the ith projection on the

Ni,k irreducible component of Ck(X). Then,

1. The following holds, ICk(X) = P0,N0,k
+ · · · + Pk0,Nk0,k

.

2. The map W decomposes as W = λ0P0,N0,k
+ · · · + λk0Pk0,Nk0,k

.

3. The space Ni,k is an eigenspace of W with eigenvalue λi.

4. The matrices P0,N0,k
, . . . , Pk0,Nk0,k

form another basis of J(v, k).

Proof. Clearly, part 1 is a consequence of proposition 4.1.2.

We show part 2. By proposition 4.1.12, W =
∑k0

i=0Wi,i whereWi,i = Pi,Ni,k
WPi,Ni,k

.

By proposition 4.1.9, Wi,i = Mai,ai
⊗INi,k

when restricted to Ni,k; where ai is the mul-

tiplicity of Ni,k in Ck(X). Since Ni,k has multiplicity 1, we must have Wi,i = λiINi,k

when Wi,i is restricted to Ni,k. Since Wi,i is zero on Nj,k for i 6= j, we must have

Wi,i = λiPi,Ni,k
. Therefore, part 2 follows.

Clearly, part 3 follows from part 2 by recalling that the Pi,Ni,k
are projection

operators.

Finally, part 2 shows that the matrices Pi,Ni,k
span J(v, k). Hence, {Pi,Ni,k

}k0i=0 is a

spanning set for J(v, k). Since J(v, k) has dimension k0+1, it follows that {Pi,Ni,k
}k0i=0

form a basis. Hence, part 4 follows.

We will denote the Sv projections Ps,Ns,k
by Es,k as short-hand notation. Now,

we proceed to define another basis Hi,k = W T
i,kWi,k for the Johnson Scheme J(v, k).

First, we quote a result that is theorem 1 in [14].

Proposition 4.1.40. Let 0 ≤ i ≤ k0 = min(k, v − k). Then,

Hi,k =

k0∑

s=0

(
k − s

i− s

)(
v − i− s

k − i

)
Es,k.

Corollary 4.1.41. The matrices {Hi,k = W T
i,kWi,k}k0i=0 form a basis of J(v, k).
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Proof. Clearly, by proposition 4.1.40, the matrix M = [[mi,s]] = [[
(
k−s
i−s
)(
v−i−s
k−i

)
]] is a

change of coordinates between the Hi,ks and the Es,ks. It suffices to show that M is

nonsingular since this will show that M is a change of basis.

Note that M is lower triangular with diagonal entries of the form
(
v−2i
k−i
)
. Since

k+i ≤ k+k0 ≤ v, we must have k−i ≤ v−2i. Thus,
(
v−2i
k−i
)
6= 0. Since the determinant

of an lower triangular matrix is the multiplication of the diagonal entries, and none

of the diagonal entries of M are zero; we must have the determinant of M nonzero.

Hence, M is nonsingular.

Clearly, Hi,k has nontrivial kernel when i < k as the coefficients of Es,k for i <

s ≤ k are zero. However, for the matrices Ii,k = Wi,kW
T
i,k, we will see otherwise.

Proposition 4.1.42. Let 0 ≤ i ≤ k0 = min(k, v − k) and i0 = min(i, v − i). Then,

Ii,k =

i0∑

s=0

(
k − s

i− s

)(
v − i− s

k − i

)
Es,i.

Proof. Clearly, Ii,k ∈ J(v, i). Thus, Ii,k =
∑i0

s=0 λsEs,i for some λss. LetHi,k ∈ J(v, k)

have expansion Hi,k =
∑i0

s=0 βsEs,k where βs is given by proposition 4.1.40. We will

show λs = βs.

Consider,

i0∑

s=0

β2
sEs,k = (

i0∑

s=0

β2
sEs,k)(

i0∑

s=0

β2
sEs,k)

= Hi,kHi,k

= W T
i,k(Wi,kW

T
i,k)Wi,k

= W T
i,k(

i0∑

s=0

λsEs,i)Wi,k

= (

i0∑

s=0

λsEs,k)W
T
i,kWi,k

= (

i0∑

s=0

λsEs,k)(

i0∑

s=0

βsEs,k)

=

i0∑

s=0

λsβsEs,k,
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where we have used the property W T
t,kEs,t = Es,kW

T
t,k, which is justified since Es,k is

the projection onto the sth isotopic Sv-irreducible and Wt,k is an Sv-map.

Thus, by the above equations, we must have βsλs = β2
s . As βs 6= 0, we deduce

that λs = βs.

As a corollary, we calculate the determinant of Ii,k.

Corollary 4.1.43. Let t ≤ min(k, v − k) = k0 and t0 = min(t, v − t). Then,

det(It,k) = Πt0
s=0

((
k − s

t− s

)(
v − t− s

k − t

))(v
s)−( v

s−1)
.

Proof. Recall that the determinant of a square matrix is the multiplication of all its

eigenvalues, counting multiplicities; the formula will follow by showing that
(
k−s
t−s
)(
v−t−s
k−t

)

is an eigenvalue with multiplicity
(
v
s

)
−
(
v
s−1

)
. Clearly, this follows since

(
k−s
t−s
)(
v−t−s
k−t

)

is the eigenvalue corresponding to the eigenspace Ns,k by proposition 4.1.40, and Ns,k

has dimension
(
v
s

)
−
(
v
s−1

)
by proposition 4.1.38.

We proceed to calculate the eigenspace decomposition Wt,v−k.

Proposition 4.1.44. Let 2t ≤ v, and Pt : Ct(X) → Cv−t(X) defined by Pt(eT ) =

e∼T . Let At = Wt,v−tPt. Then, At has eigenspace decomposition:

At =
t∑

s=0

κs

(
v − t− s

t− s

)
Es,t,

where κs ∈ {±1}.

Proof. Clearly, At : Ct(X) → Ct(X) is an Sv-map. Hence, At ∈ J(v, t). By corollary

4.1.39, At must have an Eigenspace decomposition:

At =
t∑

s=0

γsEs,t,

for some constants γss. Note that any T ∈ J(v, k) is symmetric since the basis

of proposition 4.1.37 consists of symmentric matrices. Hence, At is symmetric and

ATt = At.
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Consider the product,

t∑

s=0

γ2
sEs,t = AtA

T
t

= Wt,v−tPt(Wt,v−tPt)
T

= Wt,v−tPtP
T
t W

T
t,v−t

= Wt,v−tW
T
t,v−t

=
t∑

s=0

(
v − t− s

t− s

)2

Es,t,

where we have used P T
t = Pt, PtPt = I and proposition 4.1.42.

Therefore, γ2
s =

(
v−t−s
t−s

)2
and the result follows.

We will show some identities for the matrices At. But first, we will introduce the

matrices Wk,i.

Definition 4.1.45. Let Wk,i : Ci(X) → Ck(X) be defined by,

Wk,i(eK , eI) =





1 if |K ∩ I| = 0,

0 else.

Proposition 4.1.46. Assume t ≤ k ≤ v − k. Let At = Wt,v−tPt, and λt,k =
(
v−t−k
k−t

)
.

Then,

1. At = Wt,t.

2. Wk,v−tPt = Wk,t.

3. Wt,kWk,t = λt,kAt.

Proof. By direct calculation, one can show

At(eT ) = Wt,v−tPt(eT )

=
∑

T ′⊂∼T
eT ′

= Wt,t(eT ).
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Hence, part 1 follows.

Also, one can show

Wk,v−tPt(eT ) =
∑

K′⊂∼T
eK′

= Wk,t(eT ).

Hence, part 2 follows.

By considering the identity,

Wt,kWk,v−t = λt,kWt,v−t,

we deduce

Wt,kWk,v−tPt = λt,kWt,v−tPt.

Hence, part 3 follows.

Now, we proceed to study the more general function space J(v, k, t).

Proposition 4.1.47. Let W be a linear map of the vector space J(v, k, t) where

J(v, k, t) is defined by

J(v, k, t) = HomSv
(Ck(X), Ct(X)).

Let W t,k
i ∈ J(v, k, t) and be defined as

W t,k
i (eT , eK) =





1 if |T ∩K| = min(t, k) − i,

0 else.

Let t0 = min(t, v − t), and k0 = min(k, v − k). Then,

1. The space J(v, k, t) decomposes into J(v, k, t) = CW t,k
0

⊕ · · ·⊕CW t,k
min(k0,t0).

2. Using the notation of proposition 4.1.38, if t0 ≤ k0, then the Sv-submodule
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St,k = Nt0+1,k

⊕
· · ·
⊕

Nt0,k ⊂ Ck(X) is in the ker(W ) for any W ∈ J(v, k, t).

3. Using the notation of proposition 4.1.38, if k0 ≤ t0, then the Sv-submodule

S ′
t,k = Nk0+1,t

⊕ · · ·⊕Nk0,t ⊂ Ct(X) is in the coker(W ) for any W ∈ J(v, k, t).

4. The dimension of J(v, k, t) is dimC(J(v, k, t)) = min(t0, k0).

5. If W ∈ J(v, k, t) has full rank, then the ker(W ) = St,k and the coker(W ) = St,k
′
,

where:

St,k =





0 If k0 < t0,

St,k else,

St,k
′

=





0 If t0 < k0,

S ′
t,k else.

Proof. We show part 1. We will proceed as in the proof of proposition 4.1.37. It

suffices to calculate the orbits of Sv on Ct(X) × Ck(X). That is, the orbits Ω of Sv

on the set of pairs (T,K), where T is a t-subset and K is a k-subset.

We proceed to show that for a fixed orbit Ω and arbitrary (T,K) the quantity

|T ∩ K| is constant. Let (T,K), (T ′, K ′) ∈ Ω. Consider the following partions of

X = {1, . . . , v} that are induced by (T,K) and by (T ′, K ′):

T ∩K, T∩ ∼ K, ∼ T ∩K, ∼ T∩ ∼ K,

T ′ ∩K ′, T ′∩ ∼ K ′, ∼ T ′ ∩K ′, ∼ T ′∩ ∼ K ′.

Clearly, one can find at least one permutation σ ∈ Sv that takes the subset T ∩K into

T ′∩K ′, the subset T∩ ∼ K into T ′∩ ∼ K ′, the subset ∼ T∩K into ∼ T ′∩K ′, and the

subset ∼ T∩ ∼ K into ∼ T ′∩ ∼ K ′. This permutation will map the pair (T,K) into

(T ′, K ′) under the action of Sv. Clearly, this permutation will show |T∩K| = |T ′∩K ′|.
It remains to calculate the possible values of |T ∩K|. Clearly, |T ∩K| ≤ min(t, k).

We will leave as an exercise to show that |T ∩K| ≥ min(t, k) − min(t0, k0), and that

|T ∩K| takes on the values between min(t, k) and min(t, k) − min(t0, k0).

Clearly, parts 2 and 3 follow from part 1 and propositions 4.1.38 and 4.1.11.
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Part 4 is a consequence of part 1.

Part 5 is a consequence of parts 2 and 3.

4.1.3.1 The Matrices Wt,k
0
,Wt,k

min(t0,k0)

We will study the matrices W t,k
0 and W t,k

min(t0,k0) where t ≤ k, t0 = min(t, v − t) and

k0 = min(k, v−k). These matrices are already known to us, since a direct calculation

shows for t < k ≤ v − k,

W t,k
0 = Wt,k,

W t,k
min(t0,k0) = Wt,k.

We will determine when the matrices W t,k
0 ,W t,k

min(t0,k0) are injective, surjective, or

both. We will answer these questions by showing them directly, and by providing for

a left inverse or a right inverse.

We will use the following lemma to reduce a surjectivity question to an injectivity

question, and an injectivity question to a surjectivity question.

Lemma 4.1.48. Let T ∈ J(v, k, t). Then,

1. T is injective if and only if T
T

is surjective.

2. T is surjective if and only if T
T

is injective.

Proof. We apply proposition 4.1.4, and proposition 4.1.4 parts 2a, 2b; where we use

G = Sv, V = Ck(X), and W = Ct(X). It suffices to show that T
T

= T ∗.

Clearly, because Sv is a permutation action, the inner product matricesASv ,Ck(X) =

ICk(X) and ASv ,Ct(X) = ICt(X). Hence, by proposition 4.1.4 part 1, T ∗ = T
T
. There-

fore, the result follows.

Proposition 4.1.49. If t ≤ k and
(
v
t

)
≤
(
v
k

)
, then W T

t,k is injective.

Proof. Our assumptions are equivalent to t ≤ k ≤ v − t and t ≤ v − k ≤ v − t. We
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invoke an identity that can be found in [8] in chapter 15, section 8, lemma 8.4.

Wt,kW
T
t,k =

t∑

i=0

(
v − 2t

v − k − i

)
W T
i,tWi,t.

Let Gt,k = Wt,kW
T
t,k. By the previous equation, Gt,k is a sum of positive semidefinite

matrices where one of the summands is positive definite, namely W T
t,tWt,t = I. Thus,

Gt,k is positive definite and hence invertible.

The injectivity of W T
t,k is an easy deduction from the nonsingularity of Gt,k.

By applying lemma 4.1.48 to the previous proposition, we deduce the following.

Corollary 4.1.50. If
(
v
t

)
≤
(
v
k

)
, then Wt,k is surjective.

Also,

Corollary 4.1.51. Let k0 = min(k, v − k), k1 = max(k, v − k), where 0 ≤ k ≤ v.

Then, Wk0,k1 is an isomorphism.

Proof. By letting k = k1, t = k0 in proposition 4.1.49, we conclude that W T
k0,k1

is

injective. Since Ck0(X) and Ck1(X) have the same dimension, it follows that W T
k0,k1

is an isomorphism. Hence, Wk0,k1 is an isomorphism.

Proposition 4.1.52. If t ≤ k and
(
v
k

)
≤
(
v
t

)
, then Wt,k is injective.

Proof. Note that our assumptions are equivalent to t ≥ min(k, v−k). Hence, v−k ≤
t ≤ k, 2k > v, and k + t ≥ v.

Suppose x ∈ Ck(X) such that Wt,kx = 0. Consider

0 = Wv−k,tWt,kx

= ( k−(v−k)
t−(v−k) )Wv−k,kx

= ( 2k−v
k+t−v )Wv−k,kx,

hence, x ∈ Ker(Wv−k,k). By corollary 4.1.51, Wv−k,k is an isomorphism. Hence, we

must have x = 0. Thus, Wt,k is injective.



187

We proceed to showing the matrices W t,k
0 ,W t,k

min(t0,k0) have full rank. The following

result is due to my advisor through a private comunication.

Proposition 4.1.53. Let
(
v
t

)
≤
(
v
k

)
, then Wt,k has a right inverse Uk,t given by:

Uk,t =
t∑

i=0

(−1)i(
v−t−i
k−t
)Wk,iWi,t. (4.7)

Proof. Our assumption gives t ≤ k ≤ v− t. Thus, k− t ≤ v− t− t ≤ v− t− (t−1) ≤
· · · ≤ v− t. Therefore, k− t ≤ v− t− i for i = 0, . . . , t. Thus, the binomial coefficients

of Equation (4.7) are nonzero. Therefore, Uk,t is well defined.

Consider,

Wt,kWk,i =

(
v − t− i

k − t

)
Wt,i,

t∑

i=0

(−1)iWt,iWi,t = I.

Using the previous equations, we can show Wt,kUk,t = It by direct calculation.

In the following, we will need the following identities:

Pv−kWv−k,t = Wk,t if v − k ≤ t,

Wi,v−kPk = Wi,k if i ≤ v − k.

We proceed to calculate the left inverse for W t,k
min(t0,k0) = W t,k

v−k when t ≤ k and
(
v
k

)
≤
(
v
t

)
.

Proposition 4.1.54. Let
(
v
k

)
≤
(
v
t

)
and t ≤ k. Then, W t,k

v−k has a left inverse and is

given by:

Vk,t =
v−k∑

i=0

(−1)i(
k−i

t+k−v
)Wk,iWi,t.

Proof. Our assumptions give v−k ≤ t ≤ k and v−k ≤ v−t ≤ k. Therefore, v−k ≤ t

and
(

v
v−k
)

=
(
v
k

)
≤
(
v
t

)
. Hence, by proposition 4.1.53, Wv−k,t has a right inverse given
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by:

Ut,v−k =
v−k∑

i=0

(−1)i(
k−i

t+k−v
)Wt,iWi,v−k. (4.8)

Since Wv−k,tUt,v−k = Iv−k, we have,

Pv−kWv−k,tUt,v−kPk = Pv−kIv−kPk

= Ik,

also, since Pv−kWv−k,t = W k,t
v−k, we have,

W k,t
v−k(Ut,v−kPk) = Ik.

By taking the transpose of the previous equation, we have,

(Ut,v−kPk)
TW t,k

v−k = Ik.

Thus, Vk,t = (Ut,v−kPk)T is a left inverse for W t,k
v−k. By using the identity Wi,v−kPk =

Wi,k, the formula for Vk,t follows readily from Equation (4.8).

We proceed to calculating a right inverse of W t,k
min(t0,k0) = Wt,k whenever

(
v
t

)
≤
(
v
k

)
.

Proposition 4.1.55. Let t ≤ k and
(
v
t

)
≤
(
v
k

)
. Then, Wt,k has a right inverse and is

given by:

Tk,t =
t∑

i=0

(−1)i(
v−t−i
k−i
)W T

i,kWi,t.

Proof. Our assumptions give t ≤ k ≤ v − t and t ≤ v − k ≤ v − t. By proposition

4.1.53, Wt,v−k has a right inverse given by:

Uv−k,t =
t∑

i=0

(−1)i(
v−t−i
v−t−k

)Wv−k,iWi,t.
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Consider,

It = Wt,v−kUv−k,t

= (Wt,v−kPk)(Pv−kUv−k,t).

Using the identities: Wt,v−kPk = Wt,k, Pv−kWv−k,i = W T
i,v−k, and

(
v−t−i
v−k−t

)
=
(
v−t−i
k−i
)
;

we get the formula for the right inverse of Wt,k.

We calculate a left inverse of Wt,k when
(
v
k

)
≤
(
v
t

)
.

Proposition 4.1.56. Let t ≤ k and
(
v
k

)
≤
(
v
t

)
. Then, Wt,k has a left inverse given

by:

Sk,t =
v−k∑

i=0

(−1)i(
k−i
t−i
)Wk,iWi,t.

Proof. Our assumptions give v − k ≤ t ≤ k and v − k ≤ v − t ≤ k. By proposition

4.1.55, Wv−k,t has a right inverse given by:

Tt,v−k =
v−k∑

i=0

(−1)i(
k−i
t−i
)W T

i,tWi,v−k.

Consider,

(Pv−kWv−k,t)(Tt,v−kPk) = Pv−kIv−kPk

= Ik.

Using the identity Pv−kWv−k,t = W T
t,k, we get,

W T
t,k(Tt,v−kPk) = Ik.

Thus, by taking the transpose of the previous equation, we deduce a formula for a

left inverse of Wt,k given by Sk,t = (Tt,v−kPk)T . Using the identity Wi,v−kPk = Wi,k,

the formula for Sk,t follows.
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Corollary 4.1.57. Let t ≤ k. The matrices W t,k
0 and W t,k

min(t0,k0) have full rank.

Proof. The previous propositions show that: if
(
v
t

)
≤
(
v
k

)
, then W t,k

0 = Wt,k and

W t,k
min(t0,k0) = W t,k

v−k are surjective. That is, their rank is
(
v
t

)
= min(

(
v
t

)
,
(
v
k

)
). Hence,

these matrices have full rank.

The previous propositions also show that: if
(
v
k

)
≤
(
v
t

)
, then W t,k

0 = Wt,k and

W t,k
min(t0,k0) = Wt,k are injective. That is, their rank is

(
v
k

)
= min(

(
v
t

)
,
(
v
k

)
). Hence,

these matrices have full rank.

We close the subsection with some results about Wt,k. The following result can

be found in [26]. It gives a diagonal form for the matrices Wt,k.

Proposition 4.1.58. Let t ≤ min(k, v − k), the matrix Wt,k has as a diagonal form

the
(
v
t

)
×
(
v
k

)
diagonal matrix D with diagonal entries

(
k − i

t− i

)
with multiplicity

(
v

i

)
−
(

v

i− 1

)
, where i = 0, . . . , t.

As a corrollary, we deduce a formula for the determinant ofWt,k whenever k+t = v.

Corollary 4.1.59. Let v − k ≤ k, then

det(Wv−k,k) = Πv−k
i=0

(
k − i

(v − k) − i

)(v
i)−( v

i−1)
.

Alternatively, via a change of notation we deduce the following.

Corollary 4.1.60. Let k ≤ v − k, then

det(Wk,v−k) = Πk
i=0

(
v − k − i

k − i

)(v
i)−( v

i−1)
.

4.2 General Equivariant Results

In this section, we will consider a group G ⊂ Sv to act on X = {1, . . . , v} as a

permutation action. We will provide results analogous to the ones in section 4.1.3.1.



191

Clearly, as it was shown in the section of preliminaries, Ck(X) decomposes into

k0 = min(k, v − k) Sv-irreducibles. We will denote the Sv-projections Ps,Ns,k
by Es,k.

We will assume that φ0, φ1, . . . , φl are the irreducible characters of G, where φ0

is the trivial character. Since G ⊂ Sv, Ck(X) is a G-module by restriction. Hence,

Ck(X) decomposes into G-irreducibles. We will denote the G-projections Pi,Ck(X),G

of proposition 4.1.2 that correspond to the irreducible character φi by Pi,k.

For W ∈ HomG(Ck(X), Ct(X)), we will use the notation (W )i for the map:

WPi,k = Pi,tW

= Pi,tWPi,k.

The map (W )i will be called the ith projection of W onto the ith isotype of G in

Ck(X). We will denote Im(Pi,k) by (Ck(X))i, and we will make no distinction between

(W )i as a map from Ck(X) to Ct(X), and (W )i as a map from (Ck(X))i to (Ct(X))i

— unless ambiguity leads to conflict. Also, we will denote Ps,k(Ni,k) by (Ni,k)s.

We start our study of the spaces (Ck(X))0 and the maps (T )0,0 where T ∈
HomG(Ck(X), Ct(X)). The sections that will follow will make use the results that

we present here.

Proposition 4.2.1. Let ΩK1 , . . . ,ΩKrk(G)
be the distinct orbits of the action of G

on the k-subsets, where rk(G) is the number of orbits under the action of G on the

k-subsets. Then,

Im(P0,Ck(X)) = CΩK1

⊕
· · ·
⊕

CΩKrk(G)
.

We will denote {ΩK1 , . . . ,ΩKrk(G)
} as the Canonical basis of (Ck(X))0.

Proof. Clearly,

P0,Ck(X) =
1

|G|
∑

g∈G
ρCk(X)(g).
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Consider the image of basis element eK ∈ Ck(X),

P0,Ck(X)eK =
1

|G|
∑

g∈G
ρCk(X)(g)eK

=
1

|G|
∑

g∈G
eg·K

=
|GK |
|G| ΩK

=
1

|ΩK |
ΩK ,

where GK is the stabilizer of K under the action of G, and ΩK is the orbit of K under

the action of G. We note that we are using the symbol ΩK to represent the collection

of k-subsets that belong to the orbit of K and also to represent
∑

K′∈ΩK
eK′ . Hence,

we have that P0,Ck(X)ΩK = ΩK . Therefore, ΩK ∈ Im(P0,Ck(X)).

Since the eKs span Ck(X), we must have the ΩKs span the Im(P0,Ck(X)). Clearly,

the ΩKs are linearly independent since they are disjoint sums of linearly independent

vectors. Thus, {ΩK} form a basis of (Ck(X))0 = Im(P0,Ck(X)).

Using the canonical basis of (Ck(X))0 and (Ct(X))0, we introduce the matrices

(W )0, (W )′0 defined using an arbitrary map W ∈ HomG(Ck(X), Ct(X)). We will

study in great detail the matrices (W )0, (W )′0 that arise when W = Wt,k.

Definition 4.2.2. Let W be G-map W : Ck(X) → Ct(X). By (W )0, we will denote

the matrix of W calculated using the canonical basis of (Ck(X))0 and of (Ct(X))0.

That is, a matrix whose entries are given by:

(W )0(ΩTi
,ΩKj

) =
∑

K∈ΩKj

W (eTi
, eK).

We will refer to (W )0 as the “row sum equivariant projection of W .”

Also, we will denote the matrix ((W ∗)0)
T = ((W

T
)0)

T by (W )′0. That is, a matrix
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whose entries are given by:

(W )′0(ΩTi
,ΩKj

) =
∑

T∈ΩTi

W (eT , eKj
).

where (·) denotes complex conjugation. We will refer to (W )′0 as the “column sum

equivariant projection of W .”

We establish a relationhip between (W )0 and (W )′0 by using special inner products

on (Ck(X))0 and (Ct(X))0.

Proposition 4.2.3. Let W : Ck(X) → Ct(X) be an Sv-map. Let 〈, 〉t be the standard

Hermitian inner product on Ct(X) and 〈, 〉k be the standard Hermitian inner product

on Ck(X). Let Dk be the diagonal map on (Ck(X))0 defined as:

Dk(ΩK ,ΩK′) =





|ΩK | if ΩK = ΩK′ ,

0 else.

Let D̂k be the diagonal map on Ck(X) defined as:

D̂k(eK , eK′) =





|ΩK | if K = K ′,

0 else.

Then,

1. Using the standard basis of (Ck(X))0, 〈x, y〉k = xTDky whenever x, y ∈ (Ck(X))0.

2. Using the standard basis of (Ct(X))0, 〈x, y〉t = xTDty whenever x, y ∈ (Ct(X))0.

3. Let 〈, 〉k and 〈, 〉t be the inner products of parts 1 and 2. Using the standard

basis of (Ct(X))0 and (Ck(X))0,

〈x, (W )0y〉t = 〈((W )′0)
Tx, y〉k,

Dt(W )0D
−1
k = (W )′0,

whenever x ∈ (Ct(X))0 and y ∈ (Ck(X))0.
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4. The following holds, (M)′0 = (D̂tMD̂k

−1
)0.

Proof. Parts 1 and 2 are clear since 〈ΩK ,ΩK′〉k = δΩK ,ΩK′
|ΩK |.

We show part 3. Consider, 〈W ∗x, y〉k = 〈x,Wy〉t where x ∈ Ct(X) and y ∈ Ck(X).

When we restrict this identity to the standard basis of (Ct(X))0 and (Ck(X))0 we

deduce,

(W )′0(ΩT ,ΩK)|ΩK | = 〈W ∗ΩT ,ΩK〉k (4.6)

= 〈ΩT ,WΩK〉t
= |ΩT |(W )0(ΩT ,ΩK).

Hence, we deduce (W )′0Dk = Dt(W )0. Therefore, (W )′0 = Dt(W )0D
−1
k .

We proceed to show 〈x, (W )0y〉t = 〈((W )′0)
Tx, y〉k. Consider,

〈x, (W )0y〉t = xTDt(W )0y

= xTDt(W )0D
−1
k Dky

= xT (W )′0Dky

= (((W )′0)
Tx)Ty

= 〈((W )′0)
Tx, y〉k.

Hence, part 2 follows.

Part 4 follows by direct calculation using Equation (4.6).

Definition 4.2.4. The inner products given by Dk and Dt will be called the G-induced

standard Hermitian inner products on (Ct(X))0 and (Ck(X))0.

We proceed to show the operators (·)0, (·)′0 preserve algebraic operations.

Proposition 4.2.5. 1. Let f(x1, x2, . . . , xn) be a multivariable complex polynomial

of n variables.

2. Let T1, . . . , Tn be G-maps from Ck(X) to Ct(X). For example, they could be

Sv-maps.
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3. Let f(T1, . . . , Tn) = 0.

4. Let Si = (Ti)0,0 be maps from (Ck(X))0 to (Ct(X))0 having matrix representa-

tion with respect to the Canonical Basis of (Ck(X))0 and (Ct(X))0.

Then, f(S1, . . . , Sn) = 0.

Proof. By proposition 4.1.15, f(S1, . . . , Sn) = 0 as maps. By using the Canonical

Basis, we deduce the result.

Proposition 4.2.6. Let V ∈ HomG(Ck(X), Ct(X)), W ∈ HomG(Cr(X), Ck(X)),

X ∈ HomG(Cr(X), Ct(X)), and α ∈ C. Then,

(VW + αX)0 = (V )0(W )0 + α(X)0,

(VW + αX)′0 = (V )′0(W )′0 + α(X)′0.

Proof. The first equation follows from proposition 4.2.5 by restricting the ()0,0 maps

to the Canonical Basis of (C∗(X))0.

To show the second equation, consider the map:

D̂tV D̂k

−1
D̂kWD̂r

−1
+ αD̂tXD̂r

−1
= D̂t(VW + αX)D̂r

−1
,

by taking the row sum equivariant projection operator of both sides, and using propo-

sition 4.2.3 part 4, we can deduce,

(V )′0(W )′0 + α(X)′0 = (VW + αX)′0.

Hence, the result follows.

The following result shows that (T )0, (T )′0 have full rank whenever T has full rank.

Proposition 4.2.7. Let T ∈ HomG(Ck(X), Ct(X)) have full rank. Then,

1. The map (T )0 has full rank.

2. The map (T )′0 has full rank.
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Proof. Part 1 is a consequence of proposition 4.1.12.

We show part 2. Consider S = T T , clearly S has full rank as T has full rank.

Hence, (S)0 has full rank by part 1. Therefore, (T )′0 = (S)T0 also has full rank.

We proceed to study the analogous version of Es,k in the equivariant case.

Definition 4.2.8. Let G ⊂ Sv be a permutation action. We will denote by,

1. The map Gs,k = (Es,k)0 as the row sum equivariant projection of the sth Sv-

irreducible projection of Ck(X).

2. The map G′
s,k = (Es,k)

′
0 as the column sum equivariant projection of the sth

Sv-irreducible projection of Ck(X).

We note that the subscript s indexes the Sv-irreducibles of Ck(X).

Using the operators (·)0, (·)′0, we deduce a few properties of Gs,k, G
′
s,k.

Corollary 4.2.9. The Row Sum and column sum equivariant projections of the family

of maps Es,k form an orthogonal family of idempotents maps on (Ck(X))0. That is,

1. G0,k + · · · +Gk,k = I.

2. G′
0,k + · · · +G′

k,k = I.

3. Gi,kGj,k = δi,jGj,k.

4. G′
i,kG

′
j,k = δi,jG

′
j,k.

5. G′
i,k = GT

i,k.

6. Gi,k is a projection operator to the space (Ni,k)0.

7. G′
i,k is a projection operator to the space Dk(Ni,k)0.

Proof. By the results of the preliminary section on the Johnson Scheme, we have,

E0,k + · · · + Ek,k = I,

Ei,kEj,k = δi,jEi,k.
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Using proposition 4.2.6, we can deduce the same for the Row Sum Equivariant pro-

jections. Hence, parts 1, 2, 3, and 4 follow.

We show part 5. Consider,

G′
i,k = ((ET

i,k)0)
T

= ((Ei,k)0)
T

= GT
i,k,

hence, part 5 follows.

Part 6 is obvious.

We show part 7. Since G′
i,k = GT

i,k, G
′
i,k must be a projection operator. By

proposition 4.2.3, G′
i,kDk = DkGi,k. Choose x ∈ (Ck(X))0, and let xi = Gi,kx. We

can deduce that G′
i,kDkx = Dkxi. Hence, G′

i,k acts as a projection operator on the

space Dk(Ni,k)0.

Corollary 4.2.10. Assume k = k0 = min(v − k, k). Let A : Ck(X) → Ck(X) be

an Sv-map that decomposes into eigenspaces as A =
∑k

s=0 akEs,k where aks are the

corresponding eigenvalues. Then,

1. The map (A)0 decomposes into eigenspaces using the the row sum equivariant

projections as:

(A)0 =
k∑

s=0

akGs,k.

2. The map (A)′0 decomposes into eigenspaces using the column sum equivariant

projections as:

(A)′0 =
k∑

s=0

akG
′
s,k.

Proof. This is an obvious consequence of corollary 4.2.9. Alternatively, we can apply
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the (·)0 operator to the equation A =
∑k

s=0 akEs,k to deduce the first part. Similarly,

we can apply the (·)′0 operator to the equation A =
∑k

s=0 akEs,k to deduce the second

part.

Proposition 4.2.11. Let T = VW where W ∈ J(v, k, t) and V ∈ J(v, t, k). If T is

nonsingular, then,

ker(V ) ∩ Im(W ) = {0},

ker((V )0) ∩ Im((W )0) = {0},

ker((V )′0) ∩ Im((W )′0) = {0}.

Proof. Let x ∈ Ker(V )∩ Im(W ). Clearly, there is z such that x = Wz and V x = 0.

Thus, VWz = V x = 0. Since T is nonsingular, we must have x = 0. Therefore,

Ker(V ) ∩ Im(W ) = {0}. Thus, part 1 follows.

To show the remainder parts, it suffices to show that (VW )0 and (VW )′0 are

nonsingular. Note that T =
∑t

s=0 asEs,t, where as 6= 0 are the eigenvalues. By

corollary 4.2.10, (T )0 and (T )′0 are both nonsingular.

The following result will prove useful in later sections.

Proposition 4.2.12. Let W ∈ J(v, k) have eigenspace decomposition
∑k0

s=0 λsEs,k.

Using the notation of definition 4.1.14, we have,

a. The map (W )i has eigenvalue λs with eigenspace (Ns,k)i.

b. The dimension of the space (Ns,k)i is given by

dimC((Ns,k)i) = 〈χs, φi〉Gsi,

where si is the dimension of the irreducible representation corresponding to φi,

〈, 〉G is the “class function” inner product of character theory, and the character

χs is defined in proposition 4.1.38.

c. The map (W )i decomposes as (W )i =
∑k0

s=0 λs(Es,k)i.
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d. The determinant of (W )i is given by,

det((W )i) = Πk0
s=0λ

〈χs,φi〉Gsi
s ,

where (W )i is viewed as a map from (Ck(X))i to (Ck(X))i.

Proof. Clearly, the spaces Ns,k are Sv-spaces, hence they are G-spaces. Also, by

assumption, Ns,k is an eigenspace of W with eigenvalue λs. Consider the application

of the (·)i,i = (·)i operator using using proposition 4.1.15 to the equation:

W =

k0∑

s=0

λsEs,k.

we deduce,

(W )i =

k0∑

s=0

λs(Es,k)i.

This establishes part c.

By proposition 4.1.15, we deduce that the operators (Es,k)i are a complete orthog-

onal set of maps from (Ck(X))i to the space (Ck(X))i. Hence, (Ns,k)i = Im((Es,k)i)

are eigenspaces of (W )i with eigenvalue λs. Hence, part a follows.

We proceed to show part b. Clearly, Ns,k is an Sv-irreducible with character χs.

By restriction, we can view χs as a character of G, not necessarily G-irreducible.

Also, by a standard result in character theory, Ns,k decomposes into G-irreducibles

as,

Ns,k '
⊕

〈χs, φi〉GMi,

where, φis are theG-irreducible characters of theG-irreducible spacesMi, and 〈χs, φi〉G
is the multiplicity of Mi in Ns,k. Clearly, (Ns,k)i ' 〈χs, φi〉GMi. Hence, part b follows.

Part d is a trivial application of the formula of the determinant of a linear map

T in terms of its eigenvalues.
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In general a projection to Ns,t that is a G-map is not necessarily integral. However,

the projections Es,t can be shown to be rational. This is because the irreducible

characters that arise from the action of Sv on the t-subsets are integer valued, a

consequence that every irreducible character of Sv is integer valued. Hence,

Es,t =
1

|Sv|
∑

σ∈Sv

χs(σ)ρt(σ),

has rational entries.

We will show that we can choose projections to Ns,t that are G-maps and are

almost integral up to a factor of v1 = |G|. We will do this with the aid of a right

inverse of Wt,k found by Wilson in [26],

Proposition 4.2.13. (Wilson) Let t ≤ k ≤ v − t. There exist
(
v
k

)
by
(
v
i

)
matrices

Ai , where i = 0, . . . , t, such that:

Uk,t =
t∑

i=0

1(
k−i
t−i
)AiWi,t.

Is a right inverse for Wt,k.

Corollary 4.2.14. Let G ⊂ Sv, where v1 = |G|. There are projections Qs,k :

Ck(X) → Ns,k, such that:

1. The matrix Qs,k has rational entries.

2. The matrix v1Qs,k is integral.

3. The matrix Qs,k is a G-map.

Proof. By using the right inverse provided by proposition 4.2.13, one can show that:

Wt,kU
G
k,t = v1I,

where

UG
k,t =

∑

g∈G
πk(g)Uk,tπt(g

−1).
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Clearly, 1
v1
UG
k,t is a right inverse of Wt,k, and in particular rk(UG

k,t) =
(
v
t

)
. Define

Dt,k = W T
t,k(

1

v1

Uk,t)
T .

A direct calculation shows that D2
t,k = Dt,k and Dt,kW

T
t,k = W T

t,k. Hence, Dt,k is a

projection operator that is a G-map, has rational entries, v1Dt,k is integral, and leaves

the rows of Wt,k invariant. Also, rk(Dt,k) = rk((UG
k,t)

T ) = rk(UG
k,t) =

(
v
t

)
as W T

t,k and

UG
k,t are injective.

Clearly, rk(W T
t,k) =

(
v
t

)
as W T

t,k is injective. Hence, it follows that Dt,k is a projec-

tion onto the column space of W T
t,k.

Note that the column space of ColQ(W T
t,k) = N0,k ⊕N1,k ⊕ · · · ⊕Nt,k.

Define Qs,k = Ds,k−Ds−1,k where D−1,k = 0. Clearly, Qs,k satisfies the conditions

of the conclusion.

Corollary 4.2.15. Let G ⊂ Sv, where |G| = v1. Define Ks,k = (Ns,k)0∩Zrk(G) where

rk(G) is the dimension of (Ck(X))0. Then,

1. The space Ks,k is a finitely generated free abelian group of abelian rank rs,k =

dimQ((Ns,k)0) = 〈χs, χ0〉G = rs(G) − rs−1(G), where we make the convention

r−1(G) = 0 and χ0 is the trivial character.

2. Let {βjs}
rs,k

j=1 a Z-basis of Ks,k. Set β = ∪ks=0{βjs}
rs,k

j=1. Let M ∈ J(v, k) with

eigenspace decomposition M =
∑k

s=0 λsEs,k. Using the basis β, (M)0 diagonal-

izes to (M)0B = BDλ, where,

(a) The matrix B = [[β]] is the matrix having β as its columns.

(b) The matrix Dλ is the diagonal matrix of eigenvalues of (M)0.

Proof. By corollary 4.2.14, there is a projection Qs,k to Ns,k such that: it is a G-map,

and v1Qs,k is integral. Clearly, (Qs,k)0 is a projection to (Ns,k)0 such that (v1Qs,k)0

is integral. Let L be any subset of columns of (Qs,k)0 that is linearly independent

over Q. Consider the Z-module L′ generated by the columns of L. Clearly, v1L
′ is

a submodule of integral vectors, and v1L
′ ⊂ (Ns,k)0 by construction. Hence, v1L

′ ⊂
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(Ns,k)0 ∩ Zrk(G) = Ks,k. Thus, Ks,k has a finitely generated free abelian subgroup of

maximal possible rank, i.e., dimC((Ns,k)0). It suffices to show,

dimC((Ns,k)0) = 〈χs, χ0〉G
= rs(G) − rs(G).

By proposition 4.2.12 part b, the first equation follows. We proceed to show the

second equation. Consider,

〈χs, χ0〉G = 〈πs − πs−1, χ0〉G
= 〈πs, χ0〉 − 〈πs−1, χ0〉G,

where πs is the character of the permutation action induced by G on the s-subsets.

We note that by Burnside’s theorem for group actions, 〈πs, χ0〉 = rs(G). Hence, the

second equation follows.

Part 2 is obvious.

We remark that the projections of corollary 4.2.14 are not the same projections

that arise from the representation of Sv. That is, Qs,k may not equal Es,k. However,

it is true that,

Qs,kEs,k = Es,k, Es,kQs,k = Qs,k.

But, Qs,kEi,k may not equal 0 since Qs,k is not necessarily an Sv-map.

4.3 The Mt,k and M′
t,k Incidence Structures

In the following, we will study the matrices Mt,k and M ′
t,k defined in the introduction.

We will look at their Smith Groups; we will consider the integral preimage problem;

we will provide consequence of the existence of (t, k)-basis; and we will close the

subsection with a brief study of the kernel of Mt,k and M ′
t,k.
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Clearly, by definition, Mt,k = (Wt,k)0 and M ′
t,k = (Wt,k)

′
0. Consider the equation,

Wt,kWk,r =

(
r − t

k − t

)
Wt,r, (4.7)

which we call the “cocycle conditions.”

By applying the (·)0, (·)′0, we can deduce the same for Mt,k and Mt,k’.

Corollary 4.3.1. Let t ≤ k ≤ r. Then,

1. Mt,kMk,r =
(
r−t
k−t
)
Mt,r.

2. M ′
t,kM

′
k,r =

(
r−t
k−t
)
M ′

t,r.

Proof. We prove part 1 by applying the (·)0 operatory to Equation (4.7) via the use of

proposition 4.2.5. Part 2 follows simililarly but instead we apply the (·)′0 operator.

As short-hand notation, we will denote Mt,k(ΩT ,ΩK) by mT,K , and M ′
t,k(ΩT ,ΩK)

by m′
T,K . The following proposition lists some properties for mT,K ,m

′
T,K .

Proposition 4.3.2. The following are true:

1. If GT .G or GK .G, then mT,K = βT,K
|GT |

|GT∩GK | , where βT,K ∈ {0, . . . , |G|
|〈GT ,GK〉|}.

2. If GK .G or GT .G, then m′
T,K = αT,K

|GK |
|GT∩GK | , where αT,K ∈ {0, . . . , |G|

|〈GT ,GK〉|}.

3. If GK .G or GT .G, then m′
T,K = βT,K

|GK |
|GT∩GK | and mT,K = βT,K

|GT |
|GT∩GK | , where

βT,K ∈ {0, . . . , |G|
|〈GT ,GK〉|}.

4. If GT . G or GK . G, and 〈GT , GK〉 = G. Then,

(a) The constant mT,K = |ΩK | whenever T ⊂ K.

(b) The constant mT,K = 0 whenever T\K 6= φ.

(c) The constant m′
T,K = |ΩT | whenever T ⊂ K.

(d) The constant m′
T,K = 0 whenever T\K 6= φ.

5. The following holds, |ΩT |mT,K = m′
T,K |ΩK |.
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Proof. Clearly, part 5 follows by proposition 4.2.3 part 4.

We show part 1. Let ΩT and ΩK be orbits of T and K under the action of G.

Consider f : ΩT × ΩK → {0, 1} defined by,

f(T ′, K ′) =





1 if T ′ ⊂ K ′,

0 else.

Clearly, f is a G-invariant function. Since f is either 0 or 1, f is the characteristic

function of some of the orbits of G on ΩT × ΩK .

Consider the quantity g(T ) =
∑

K′∈ΩK
f(T,K ′). Clearly, mT,K = g(T ). Let GT

be the stabilizer of T . Clearly, if g · (T,K ′) = (T,K ′′), then g ∈ GT . Hence, g(T ) is

the sum of the sizes of some of the orbits of GT on ΩK .

Consider the action of GT on ΩK . Clearly, if K ′ ∈ ΩK , then (GT )K′ = GT ∩GK′ ,

where (GT )K′ is the stabilizer of K ′ in the group GT . Hence, the size of the orbit ΘK′

of K ′ under the action of GT on ΩK is,

|ΘK′ | =
|GT |

|GT ∩GK′ | .

Since K ′ = g · K for some g ∈ G, and Gg
g·K = GK ; we must have GK′ = (GK)g

−1
,

where the operator (·)g is taken as conjugation by g. Hence, if GT . G or GK . G,

then

|GT ∩GK′ | = |GT ∩ (GK)g
−1 |

= |(GT )g ∩GK |

= |GT ∩GK |.

Therefore, all orbits of GT on the k-sets of ΩK have the same size given by |GT |
|GT∩GK | .

Hence,

mT,K = g(T )

= βT,K
|GT |

|GK ∩GT |
,
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where βT,K ∈ {0, . . . , x(T,K)}. It suffices to calculate x(T,K).

Clearly,

|G|
|GK |

= |ΩK |

= x(T,K)
|GT |

|GT ∩GK |
,

where x(T,K) is the number of orbits of GT on ΩK . The previous equations give a

formula for x(T,K) as

x(T,K) =
|G||GT ∩GK |
|GT ||GK |

=
|G|

|〈GT , GK〉|
,

where 〈GT , GK〉 is the group generated by GT and GK in G. Hence, part 1 follows.

We proceed to prove part 2. The proof is similar to part 1. However, we consider

the following function instead:

h(K) =
∑

T ′∈ΩT

f(T ′, K).

Clearly, h is the sum of the sizes of some of the orbits of GK on ΩT , and m′
T,K = h(K).

Using a similar analysis as part 1, we can show that all orbits of GK on ΩT have the

size equal to |GK |
|GT∩GK | . Also, we can show there are exactly |G|

|〈GT ,GK〉| orbits of GK on

ΩT . Hence,

m′
T,K = h(K)

= αT,K
|GK |

|GT ∩GK |
,

where αT,K ∈ {0, . . . , |G|
|〈GT ,GK〉| . Hence, part 2 follows.
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We proceed to prove part 3. From the analysis of parts 1 and 2, we have that

|ΩT |mT,K = βT,K |ΩT |
|GT |

|GT ∩GK |

= βT,K
|ΩT ||GT |
|GT ∩GK |

= βT,K
|G|

|GT ∩GK |
.

Similarly,

|ΩK |m′
T,K = αT,K |ΩK |

|GK |
|GT ∩GK |

= αT,K
|ΩK ||GK |
|GT ∩GK |

= αT,K
|G|

|GT ∩GK |
.

Hence, by using part 5, we have,

αT,K
|G|

|GT ∩GK |
= m′

T,K |ΩK |

= mT,K |ΩT |

= βT,K
|G|

|GT ∩GK |
.

Thus, αT,K = βT,K and part 3 follows.

Part 4 is a consequence of part 3.

Corollary 4.3.3. DtMt,k = M ′
t,kDk.

Proof. This can be viewed as consequence of proposition 4.3.2 part 3; or it can be

viewed as a deduction from proposition 4.2.3 part 4.

Using proposition 4.2.12, we deduce the eigenspace decomposition of the matrices

M ′T
t,kMt,k.

Corollary 4.3.4. Let
(
v
t

)
≤
(
v
k

)
. The following hold:

1. The matrix Mt,k(M
′
t,k)

T has eigenvalue λs =
(
k−s
t−s
)(
v−t−s
k−t

)
with eigenspace (Ns,t)0.
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2. The dimension of (Ns,t)0 is given by,

dimC((Ns,t)0) = 〈χs, χ0〉G,

where χs is the irreducible Sv-character that corresponds to Ns,t, and χ0 is the

trivial character.

3. The quantity 〈χs, χ0〉G of the previous part is given by,

〈χs, χ0〉G = rs(G) − rs−1(G),

where rs(G) is the number of orbits of G on the s-subsets, and r−1(G) = 0.

4. The map Mt,k(M
′
t,k)

T decomposes into eigenspaces as,

Mt,k(M
′
t,k)

T =

t0∑

s=0

λs(Es,t)0.

5. The map Mt,k(M
′
t,k)

T has determinant given by,

det(Mt,k(M
′
t,k)

T ) = Πt0
s=0(

(
k − s

t− s

)(
v − t− s

k − t

)
)〈χs,χ0〉G .

Proof. By proposition 4.1.42, we have,

Wt,kW
T
t,k =

t∑

s=0

(
k − s

t− s

)(
v − t− s

k − t

)
Es,t. (4.8)

By corollaries 4.2.10 and 4.2.9, Mt,k(M
′
t,k)

T = (Wt,kW
T
t,k)0 has (Ns,k)0 as eigenspaces

with eigenvalue
(
k−s
t−s
)(
v−t−s
k−t

)
. Hence, part 1 follows.

We proceed to show part 3. Consider,

〈χs, χ0〉G = 〈πs, χ0〉G − 〈πs−1, χ0〉G.

Note that by Burnside’s theorem for group actions, 〈πs, χ0〉G = rs(G). Hence, the
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result follows.

The rest of the conclusions follow from applying proposition 4.2.12 to Equation

(4.8) with i = 0.

Corollary 4.3.5. Let t ≤ v − t. Then,

det(Mt,v−t) = Πt
s=0

(
v − t− s

t− s

)〈χs,χ0〉G
,

det(M ′
t,v−t) = Πt

s=0

(
v − t− s

t− s

)〈χs,χ0〉G
,

where χ0 is the trivial character.

Proof. By Corrollary(4.3.4), we have,

det(Mt,v−t(M
′
t,v−t)

T ) = Πt
s=0

(
v − t− s

t− s

)2〈χs,1〉G
.

It suffices to show det(Mt,v−t) = det(M ′
t,v−t). By corollary 4.3.3, DtMt,v−t =

M ′
t,v−tDv−t. Also note that |ΩT | = |Ω∼T | since GT = G∼T . Hence, det(Dt) =

det(Dv−t). Thus, det(Mt,v−t) = det(M ′
t,v−t) and the result follows.

We remark that the above equation comes from the eigenspace decomposition

of Wt,kW
T
t,k, and in no way gives a diagonal form for Mt,v−t. However, computer

computations with several nontrivial groups seem to verify the following conjecture.

Conjecture 4.3.6. Let t ≤ v− t. Then, the matrix Mt,v−t has diagonal form D with

diagonal entries λs =
(
v−t−s
t−s

)
with multiplicity 〈χs, χ0〉G, where s = 0, . . . , t and χ0 is

the trivial character.

Also, direct calculations verify that the diagonal form conjectured above does not

generalize to the nonsquared case, i.e., when k + t < v.

4.3.1 Full Rank Results

We start with consequences of Wt,k having full rank.
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Proposition 4.3.7. Let πt be the character of the induced action of G the t-subsets.

Let φi be an irreducible complex character of G. The following are true:

1. If
(
v
t

)
≤
(
v
k

)
, then 〈πt, φi〉G ≤ 〈πk, φi〉G.

2. If
(
v
k

)
≤
(
v
t

)
, then 〈πk, φi〉G ≤ 〈πt, φi〉G.

Where 〈, 〉G is the class function inner product of character theory.

Proof. We show part 1. By proposition 4.1.53, Wt,k is surjective whenever
(
v
t

)
≤
(
v
k

)
.

Thus, (Wt,k)i is surjective by proposition 4.1.12. Hence,

dimC((Ct(X))i) ≤ dimC((Ck(X))i).

Clearly, (Ck(X))i = (N0,k)i ⊕ (N1,k)i ⊕ · · · ⊕ (Nk,k)i. Also, by proposition 4.2.12,

dimC((Ns,k)i) = 〈χs, φi〉Gsi.

Hence,

dimC((Ck(X))i) =
k∑

s=0

dimC((Ns,k)i)

=
k∑

s=0

〈χs, φi〉Gsi

= 〈πk, φi〉Gsi.

where si is the dimension of the irreducible G-space corresponding to φi. Similarly,

we can show dimC((Ct(X))i) = 〈πt, φi〉Gsi. Thus, we deduce,

〈πt, φi〉Gsi = dimC((Ct(X))i)

≤ dimC((Ck(X))i)

= 〈πt, φi〉Gsi.

Hence, the conclusion follows.

Part 2 is a similar argument.
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Corollary 4.3.8. Let rt(G) be the number of orbits of G on the t-subsets. Let rk(G)

be the number of orbits of G on the k-subsets. Then,

1. If
(
v
t

)
≤
(
v
k

)
, then rt(G) ≤ rk(G).

2. If
(
v
k

)
≤
(
v
t

)
, then rk(G) ≤ rt(G).

Proof. Apply proposition 4.3.7 to the trivial character χ0 of G and use the fact that

〈πt, χ0〉 = rt(G).

Corollary 4.3.9. The following hold.

1. If rt(G) < rk(G), then
(
v
t

)
<
(
v
k

)
.

2. If rk(G) < rt(G), then
(
v
k

)
<
(
v
t

)
.

Proof. We show part 1. Suppose otherwise, that is, rt(G) < rk(G) and
(
v
t

)
≥
(
v
k

)
. By

corollary 4.3.8 part 2, we must have rk(G) ≤ rt(G). Thus, rt(G) < rk(G) ≤ rt(G).

Clearly, this is a contradiction.

Part 2 follows similarly.

Clearly, by proposition 4.2.7, it follows that the matrices Mt,k and M ′
t,k have full

rank.

Definition 4.3.10. We define Mt,k as (Wt,k)0.
2 Hence, the entries of Mt,k are given

by,

Mt,k(ΩT ,ΩK) = mT,K

= |{K ′ ∈ ΩK |T ∩K ′ = φ}|.

Similary, we define Mt,k
′
as (Wt,k)

′
0.

We proceed to show the full rank results.

Proposition 4.3.11. Let
(
v
t

)
≤
(
v
k

)
. The following hold,

2We warn the reader that the (·) notation in Mt,k does not mean complex conjugation.
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1. The matrices Mt,k have full rank.

2. The matrices M ′
t,k have full rank.

3. The matrices Mt,k have full rank.

4. The matrices Mt,k
′
have full rank.

Proof. By corollary 4.1.57, the matrices Wt,k and Wt,k have full rank. The result

follows by applying proposition 4.2.7.

We note that part 1 of proposition 4.3.11 has been shown by Kreher in theorem

11 of [16], but by using a different method.

We close this subsection by providing left and right inverses for Mt,k and Mt,k
′

whenever possible. We note that the same technique can be used to show similar

results for Mt,k and Mt,k
′
.

Proposition 4.3.12. Let t ≤ k. Then,

1. If
(
v
t

)
≤
(
v
k

)
, then Mt,k is surjective and has a right inverse given by,

(Uk,t)0 =
t∑

i=0

(−1)i(
v−t−i
k−t
)Mk,iMi,t.

2. If
(
v
k

)
≤
(
v
t

)
, then Mt,k is injective and has a left inverse given by,

(Sk,t)0 =
v−k∑

i=0

(−1)i(
k−i
t−i
)Mk,iMi,t.

3. If rk(G) = rt(G), then Mt,k is invertible.

Proof. We will show the details for part 1, a similar argument will follow for part 2.

By proposition 4.1.53, there is a right inverse Uk,t of Wt,k given by,

Uk,t =
t∑

i=0

(−1)i(
v−t−i
k−t
)Wk,iWi,t.
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We can deduce that Uk,t is an Sv-map since Wk,i and Wi,t are Sv-maps. By applying

the (·)0 operator to the derived equation,

Wt,kUk,t − I = 0,

we deduce,

Mt,k(Uk,t)0 − I = 0.

Hence, (Uk,t)0 is a right inverse. Clearly, part 1 follows by using the substitutions

(Wk,i)0 = Mk,i, (Wi,t)0 = Mi,t.

We show part 2. We use the left inverse provided by proposition 4.1.56 and follow

a similar argument as part 1.

We show part 3 by splitting it into two cases.

Case
(
v

t

)
≤
(
v

k

)
. By part 1, Mt,k is surjective. Since the range and the domain of

Mt,k have the same dimension, it follows that Mt,k is an isomorphism.

Case
(
v

k

)
≤
(
v

t

)
. By part 2, Mt,k is injective. Since the range and the domain of

Mt,k have the same dimension, it follows that Mt,k is an isomorphism.

The following is the analogous result for M ′
t,k.

Proposition 4.3.13. Let t ≤ k. Then,

1. If
(
v
t

)
≤
(
v
k

)
, then M ′

t,k is surjective and has a right inverse given by,

(Vk,t)0 =
t∑

i=0

(−1)i(
v−t−i
k−t
)Mi,k

T
M ′

i,t.

2. If
(
v
k

)
≤
(
v
t

)
, then M ′

t,k is injective and has a left inverse given by,

(Xk,t)0 =
v−k∑

i=0

(−1)i(
k−i
t−i
)Mi,k

T
M ′

i,t.

3. If rk(G) = rt(G), then M ′
t,k is invertible.
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Proof. We will show the details for part 1, a similar argument will follow for part 2.

By proposition 4.1.53, there is a right inverse Uk,t of Wt,k given by,

Uk,t =
t∑

i=0

(−1)i(
v−t−i
k−t
)Wk,iWi,t.

We can deduce that Uk,t is an Sv-map since Wk,i and Wi,t are Sv-maps. By applying

the (·)′0 operator to the derived equation,

Wt,kUk,t − I = 0,

we deduce,

M ′
t,k(Uk,t)

′
0 − I = 0.

Hence, (Uk,t)
′
0 is a right inverse. Clearly, part 1 follows by using the substitutions

(Wk,i)
′
0 = Mk,i

′
, (Wi,t)

′
0 = M ′

i,t.

We show part 2. We use the left inverse provided by proposition 4.1.56 and follow

a similar argument as part 1.

We show part 3 by splitting it into two cases.

Case
(
v

t

)
≤
(
v

k

)
. By part 1, M ′

t,k is surjective. Since the range and the domain of

M ′
t,k have the same dimension, it follows that M ′

t,k is an isomorphism.

Case
(
v

k

)
≤
(
v

t

)
. By part 2, M ′

t,k is injective. Since the range and the domain of

M ′
t,k have the same dimension, it follows that M ′

t,k is an isomorphism.

4.3.2 The Smith Group of Mt,k and M′
t,k

In this section, we will prove results that will bound the order of Smith Group of Mt,k

and M ′
t,k.
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4.3.2.1 Bounds on |Mt,k||M′
t,k|

We will begin by showing an identity involving |Mt,k| and |M ′
t,k| by exploiting the

equation M ′
t,kDk = DtMt,k.

Proposition 4.3.14. The following are true:

1. There is an exact sequence such that,

0 → S(Mt,k) → S(DtMt,k) → S(Dt) → 0.

2. The following holds, |DtMt,k| = |Dt||Mt,k|.

Proof. By considering DtMt,k, we note that Dt is injective. Hence, proposition 4.1.32

applies, and we deduce the exact sequence:

0 → S(Mt,k) → S(DtMt,k) → S(Dt) → 0.

Since the matrices Mt,k, Dt, and DtMt,k have full rank and rt(G) ≤ rk(G), these

matrices must have zero abelian rank. Thus, S(Mt,k) = S(Mt,k), S(Dt) = S(Dt), and

S(DtMt,k) = S(DtMt,k). Therefore, the first part follows.

The second part is a corollary to part 1.

Proposition 4.3.15. The following are true:

1. There is an exact sequence such that,

0 → S(M ′
t,k) ⊕ (Z)rk(G)−rt(G) → S(M ′

t,kDk) ⊕ (Z)rk(G)−rt(G) → S(Dt) → 0.

2. There is a finite abelian group H3 such that,

S(M ′
t,kDk)

S(M ′
t,k)

⊕H3 ' S(Dk).
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3. There is an integer h3 dividing |Dk| such that,

h3|M ′
t,kDk| = |M ′

t,k||Dk|.

Proof. Consider the product M ′
t,kDk. Clearly, Dk is onto. Hence, proposition 4.1.32

applies, and we can deduce,

0 → S((M ′
t,k)

T ) → S((M ′
t,kDk)

T ) → S(DT
k ) → 0.

Because M ′
t,k and Dk have full rank and rt(G) ≤ rk(G), we have,

S((M ′
t,k)

T ) = S(M ′
t,k) ⊕ F((M ′

t,k)
T ),

S((M ′
t,kDk)

T ) = S(M ′
t,kDk) ⊕ F((M ′

t,kDk)
T ),

S(DT
k ) = S(Dk),

where r((M ′
t,k)

T ) = rk(G) − rt(G) and r((M ′
t,kDk)

T ) = rk(G) − rt(G). Hence, part 1

follows.

Part 2 is an application of proposition 4.1.26. Part 3 follows from part 2.

Corollary 4.3.16. Let t < k ≤ v−k. There is an integer h3 dividing |Dk| such that,

h3|Dt||Mt,k| = h3|DtMt,k|

= h3|M ′
t,kDk|

= |M ′
t,k||Dk|.

Proof. This is a consequence of the previous propositions and the identity M ′
t,kDk =

DtMt,k.

By recalling a few identities involving Wt,k and W T
t,k we will show some conditions

on the product |Mt,k||M ′
t,k|.

Proposition 4.3.17. (First Bound) Let t < k ≤ v − k.
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1. Let Jt,k = Mt,k(M
′
t,k)

T . There are exact sequences and finite abelian groups H1,

H ′
1 such that,

0 → S(M ′
t,k) ⊕H1 → S(Jt,k) → S(Mt,k) → 0,

0 → S(Mt,k) ⊕H ′
1 → S(Jt,k) → S(M ′

t,k) → 0,

where |H1| = |H ′
1|.

2. There is an integer h1 such that,

|Jt,k| = h1|Mt,k||M ′
t,k|.

3. Let ri(G) = 〈πi, χ0〉G be the number of orbits of G on the i-subsets, and define

r−1(G) = 0. Then,

|Jt,k| = |JTt,k|

= Πt
s=0(

(
k − s

t− s

)(
v − t− s

k − t

)
)rs(G)−rs−1(G).

4. The exp(Jt,k) divides Πt
s=0(

(
k−s
t−s
)(
v−t−s
k−t

)
)εs(G), where,

εs(G) =





1 if rs(G) − rs−1(G) 6= 0,

0 else.

5. The exp(Mt,k) divides Πt
s=0(

(
k−s
t−s
)(
v−t−s
k−t

)
)εs(G).

6. The exp(M ′
t,k) divides Πt

s=0(
(
k−s
t−s
)(
v−t−s
k−t

)
)εs(G).

Proof. Consider the map It,k = Wt,kW
T
t,k. Clearly, (It,k)0 = (Wt,kW

T
t,k)0 = (Wt,k)0(W

T
t,k)0 =

Mt,kM
′T
t,k = Jt,k. By proposition 4.2.11, Ker(Mt,k) ∩M ′T

t,k = {0}.
We deduce the first exact sequence by applying proposition 4.1.31 to the product

Mt,k(M
′
t,k)

T . Hence, we have the exact sequence:

0 → H → S(Mt,k(M
′
t,k)

T ) → S(Mt,k) → 0,
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where r(H) = rk(Mt,k) − rk(Mt,kM
′T
t,k) = rk(G) − rk(G) = 0. By proposition 4.1.31

again, we can deduce that H ' S(M ′
t,k) ⊕H1 for some finite abelian group H1.

Since Jt,k and Mt,k have full rank, it follows that S(Jt,k) = S(Jt,k) and S(Mt,k) =

S(Mt,k). Thus the exact sequence of proposition 4.1.31 becomes:

0 → S(M ′
t,k) ⊕H1 → S(Jt,k) → S(Mt,k) → 0.

Hence, the first exact sequence follows.

We show the second exact sequence. Consider, (It,k)
′
0 = (Wt,kW

T
t,k)

′
0 = (Wt,k)

′
0(W

T
t,k)

′
0 =

M ′
t,kM

T
t,k = JTt,k. By proposition 4.2.11, Ker(M ′

t,k)∩ Im(MT
t,k) = {0}. By using a sim-

ilar analysis that was used to deduce the first exact sequence, we can deduce the

second. Hence, part 1 follows.

Part 2 is clear consequence of the exact sequences found in part 1.

By corollary 4.3.4 or by corollary 4.2.10, we can deduce that (It,k)0 is nonsingular

with eigenvalues
(
k−s
t−s
)(

v−t−s
v−k−s

)
of multiplicity 〈χs, 1〉G = rs(G) − rs−1(G). Thus, part

3 follows.

Part 4 is an application of proposition 4.1.34 (Rushanan’s result).

Since S(Mt,k) and S(M ′
t,k) are homeomorphic images of S(Jt,k), it must be the

case that exp(Jt,k) divides exp(Mt,k) and exp(Jt,k) divides exp(M ′
t,k). Hence, parts 5

and 6 follow from part 4.

Proposition 4.3.18. (Second Bound) Let t < k ≤ v − k. Define λt,k =
(
v−2t
k−t
)
.

Then,

1. There are abelian groups H2 and H ′
2 such that

0 → H2 ⊕ S(Mk,t) → S(λt,kMt,t) → S(Mt,k) → 0,

0 → H ′
2 ⊕ S(Mk,t

′
) → S(λt,kMt,t) → S(M ′

t,k) → 0.

2. The exp(Mt,t) divides Πt
s=0

(
v−t−s
t−s

)εs(G)
.

3. The exp(Mt,t
′
) divides Πt

s=0

(
v−t−s
t−s

)εs(G)
.



218

4. The exp(Mt,k) divides λt,kΠ
t
s=0

(
v−t−s
t−s

)εs(G)
.

5. The exp(M ′
t,k) divides λt,kΠ

t
s=0

(
v−t−s
t−s

)εs(G)
.

Proof. We show part 1. Consider the product from proposition 4.1.46,

Wt,kWk,t = λt,kWt,t,

where λt,k =
(
v−t−k
k−t

)
. By applying (·)0 operator, we have

λt,kMt,t = (λt,kWt,t)0

= (Wt,kWk,t)0

= (Wt,k)0(Wk,t)0

= Mt,kMk,t.

By proposition 4.3.11, Mt,t,Mt,t
′
have full rank. Hence, Mt,t,Mt,t

′
are nonsingular.

By proposition 4.2.11, Ker(Mt,k) ∩ Im(Mk,t) = {0} since Mt,kMk,t = λt,kMt,t is

nonsingular. We apply proposition 4.1.31 to the product Mt,kMk,t. Thus, we get the

exact sequences:

0 → H → S(Mt,kMk,t) → S(Mt,k) → 0,

0 → K → S(Mk,t) → H → 0,

where r(H) = rk(Mt,k) − rk(Mt,kMk,t) = nt(G) − nt(G) = 0, and S(Mk,t) is injected

into H in the second exact sequence. By proposition 4.1.31 again, we deduce that

H ' H2 ⊕ S(Mk,t) for some finite abelian group H2. Thus, the first exact sequence

follows.

We show the second exact sequence of part 1. Consider the product Wt,kWk,t =
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λt,kWt,t again. By taking the (·)′0, we have

λt,kMt,t
′

= (λt,kWt,t)
′
0

= (Wt,kWk,t)
′
0

= (Wt,k)
′
0(Wk,t)

′
0

= M ′
t,kMk,t

′
.

By proposition 4.2.11, Ker(M ′
t,k) ∩ Im(Mk,t

′
) = {0} since M ′

t,kMk,t
′

= λt,kMt,t
′

is

nonsingular. We apply proposition 4.1.31 to the product M ′
t,kMk,t

′
. Thus, we get the

exact sequences:

0 → H → S(M ′
t,kMk,t

′
) → S(M ′

t,k) → 0,

0 → K → S(Mk,t
′
) → H → 0,

where r(H) = rk(M ′
t,k)− rk(M ′

t,kMk,t
′
) = nt(G)−nt(G) = 0, and S(Mk,t

′
) is injected

into H in the second exact sequence. By proposition 4.1.26, there is a finite abelian

group H ′
2 such that,

H ' H ′
2 ⊕ S(Mk,t

′
).

It suffices to show that S(λt,kMt,t) ' S(λt,kMt,t
′
).

Note that Mt,t
′

= ((Wt,t
T
)0)

T = ((Wt,t)0)
T = Mt,t

T
. Also, for any matrix A,

S(A) ' S(AT ). Hence, the second exact sequence of part 1 follows and therefore part

1 follows.

We show part 2. We recall that the matrix At of proposition 4.1.44 is the matrix

Wt,t as it is shown in proposition 4.1.46. By applying corollary 4.2.10 to proposition

4.1.44, we deduce that Mt,t = (Wt,t)0 is nonsingular with eigenspace decomposition:

Mt,t =
t∑

s=0

γs

(
v − t− s

t− s

)
Gs,k,

where γs ∈ {±1}. By Rushanan’s results, i.e., proposition 4.1.34, it follows that
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exp(Mt,t) divides Πt
s=0

(
v−t−s
t−s

)εs(G)
. Hence, part 2 follows.

Part 3 follows from part 2 since Mt,t
′
= Mt,t

T
, hence they have the same exponent.

We show parts 4 and 5. Clearly, by part 1, S(Mt,k) and S(M ′
t,k) are homeomorphic

images of S(λt,kMt,t). Thus, exp(Mt,k) and exp(M ′
t,k) each divide the exp(λt,kMt,t) =

λt,kexp(Mt,t). Therefore, they each divide the bounds given by parts 2 and 3.

Corollary 4.3.19. Let v1 = |G|, and suppose that every prime that divides v1 also

divides v. Let gcd(v, t) = gcd(v, t+ 1) = · · · = gcd(v, k + t− 1) = 1. That is,

gcd(v,
(k + t− 1)!

(t− 1)!
) = 1.

Let t < k ≤ v − k. Then, v1 is relatively prime to |Mt,k| and |M ′
t,k|.

Proof. It suffices to show that v1 is relatively prime to exp(Mt,k) and to exp(M ′
t,k).

By proposition 4.3.18, it suffices to show that v1 is relatively prime to

(
v − 2t

k − t

)
Πt
s=0

(
v − t− s

t− s

)εs(G)

.

Consider,

(
v − 2t

k − t

)
=

(v − 2t)(v − 2t− 1) · · · (v − (k + t− 1))

(k − t)!
.

Since gcd(v − a, v) = gcd(a, v) and

gcd(v, t) = · · · = gcd(v, 2t) = · · · = gcd(v, k + t− 1) = 1,

it follows that v is relatively prime to
(
v−2t
k−t
)
.

Also, consider,

(
v − t− s

t− s

)
=

(v − t− s)(v − t− s− 1) · · · (v − 2t+ 1)

(t− s)!
.
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Because,

gcd(v, t) = · · · = gcd(v, t+ s) = gcd(v, t+ s+ 1) = · · · = gcd(v, 2t− 1) = 1,

it follows that v is relatively prime to
(
v−t−s
t−s

)
.

Because v1 and v have the same prime factors, it follows that v1 is relatively prime

to
(
v−2t
k−t
)
Πt
s=0

(
v−t−s
t−s

)εs(G)
and the result follows.

4.3.3 The Integral Preimage Problem

The integral preimage problem for an integral matrix M : V → W involves deter-

mining when an integral z ∈ W has an integral preimage in V . For the matrices

Wt,k, the integral preimage problem is solved in [26] and is summarized by the next

proposition.

Proposition 4.3.20. Let z ∈ Ct(X) be integral. Then,

1. If there is an integral w ∈ Ck(X) such that Wt,kw = z, then
(
k−i
t−i
)

divides Wi,tz

for i = 0, . . . , t.

2. If
(
k−i
t−i
)

divides Wi,tz for i = 0, . . . , t, then there is an integral w ∈ Ck(X) such

that Wt,kw = z.

We note that the above proposition makes use the suitable right inverse of Wt,k

given in proposition 4.2.13.

Definition 4.3.21. When the matrix Lt,k = Mt,k or M ′
t,k has the same solution for

its integral preimage problem as Wt,k, i.e.,

1. If there is an integral w ∈ (Ck(X))0 and z ∈ (Ct(X))0 such that Lt,kw = z, then
(
k−i
t−i
)

divides Li,tz for i = 0, . . . , t.

2. If for given z ∈ (Ct(X))0,
(
k−i
t−i
)

divides Li,tz for i = 0, . . . , t, then there in an

integral w ∈ (Ck(X))0 such that Lt,kw = z.

We will say that Lt,k has a “trivial” solution for its integral preimage problem.
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A trivial solution to the integral preimage problems has some implications on the

exponent of the smith group. The next propositions shows this result.

Proposition 4.3.22. Let t < k ≤ v − k and Lt,k = Mt,k or M ′
t,k have a “trivial”

solution for its integral preimage problem, then exp(Lt,k) divides Πt
s=0

(
k−s
t−s
)
.

Proof. Since Lt,k is a surjective map, the Smith Group of Lt,k is torsion. Thus,

consider z ∈ S(Lt,k) =
ColQ(Lt,k)∩Z

ColZ(Lt,k)
such that for some w ∈ Q, Lt,kw = z. Let

z′ = Πt
s=0

(
k−s
t−s
)
z. Clearly,

(
k−i
t−i
)

divides Li,tz
′ for i = 0, . . . , t. Hence, z′ has an integral

preimage. Thus, Πt
s=0

(
k−s
t−s
)
z = z′ = Lt,kw

′ where w′ ∈ Z. Therefore, (Πt
s=0

(
k−s
t−s
)
)z =

0 ∈ S(Lt,k). Hence, the result follows.

We will see that under certain conditions on the order of the group G, the matrices

M ′
t,k and Mt,k will have a trivial solution to their integral preimage problem; but,

before that we introduce a major reduction for a general G.

Proposition 4.3.23. Let G ⊂ Sv, t+ k ≤ v and Lt,k = Mt,k or M ′
t,k. If

(
k−i
t−i
)

divides

Li,tc for i = 0, . . . , t, then there is integral x such that Lt,kx = v1c, where v1 = |G|.

Proof. Will show the result for Mt,k first. By proposition 4.2.13, it is shown that Wt,k

has a right inverse given by

Uk,t =
t∑

i=0

(−1)i(
k−i
t−i
)AiWi,t.

where the Ais are integral matrices from the Ci(X) to Ck(X). We note that Uk,t may

not be an Sv-map, but Wi,t and Wt,k are. Hence,

Wt,kρ(g)Uk,tρ(g
−1) = I,

for all g ∈ G. Therefore,

Wt,kU
G
k,t = v1I, (4.9)
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where,

UG
k,t =

t∑

i=0

(−1)i(
k−i
t−i
)AGi Wi,t,

AGi =
∑

g∈G
ρ(g)Aiρ(g

−1).

Clearly, ρ(g)AG
i x = AGi ρ(g)x for all g ∈ G. Hence, AG

i is a G-map. Thus, UG
k,t is a

integral G-map. Also, an application of the (·)0 operator gives

Mt,k(U
G
k,t)0 = v1I.

We show that v1c has an integral preimage under Mt,k. It suffices to show that:

if y is a rational vector such that yTMt,k is integral, then yT (v1c) is also integral.

Suppose y is rational, such that yTMt,k is integral, then

yT (v1c) = yT (v1I)c

= yTMt,k(Uk,t)0c

=
t∑

i=0

(−1)i(yTMt,k)(A
G
i )0(

Mi,tc(
k−i
t−i
)).

Hence, yT (v1c) is integral as:
(
k−i
t−i
)

divides Mi,tc for i = 0, . . . , t, and (AG
i )0 is integral

by construction.

We show the result forM ′
t,k. We apply the (·)′0 operateor to Equation (4.9) instead,

and we use an argument similar to the previous case.

As a corollary, we deduce the integral preimage problem has trivial solution when-

ever the Smith Group is relatively prime to |G|.

Corollary 4.3.24. Assume,

1. Let G be a permutation group in Sv, where v1 = |G|.

2. Let gcd(|Lt,k|, v1) = 1, where Lt,k = Mt,k or M ′
t,k.

Then,
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1. If
(
k−i
t−i
)

divides Li,tz for an integral z ∈ (Ct(X))0, then there is integral w ∈
(Ck(X))0 such that Lt,kw = z.

2. The map Lt,k has a trivial solution to the integral preimage problem.

Proof. By proposition 4.3.23, we find a w′ such that Mt,kw
′ = v1z, where v1 = |G|.

Let e1, . . . , erk(G) be an integral modular basis of (Ck(X))0, and let f1, . . . , frt(G) be an

integral modular basis of (Ct(X))0. Let the bases {ei}, {fj} give the Smith Normal

Form of Lt,k. That is, Lt,kei = difi for i = 1, . . . , rt(G), and Lt,kej = 0 for i =

rt(G) + 1, . . . , rk(G). Where di are the invariant factors of Lt,k.

Clearly, since w′ is integral, w′ = (
∑rt(G)

i=1 ciei) + (
∑rk(G)

i=rt(G)+1 c
′
iei), where all cis

and c′is are integral. Consider w = w′ − (
∑rk(G)

i=rt(G)+1 c
′
iei), clearly w is integral and

Lt,kw = Lt,kw
′ = v1z.

Let z =
∑rt(G)

i=1 gifi, where gis are integral as z is integral. Because Lt,kw = z, we

must have:

rt(G)∑

i=1

(v1gi)fi = v1z

= Lt,kw

=

rt(G)∑

i=1

ciLt,kei

=

rt(G)∑

i=1

(dici)fi.

By the Z-linearly independence of the fis, we must have dici = v1gi for all i =

1, . . . , rt(G). By assumption, each di is relatively prime to v1; hence, v1 divides each

ci. Thus, w0 = w
v1

=
∑nt

i=1
ci
v1
ei is an integral vector, and Lt,kw0 = z. Hence, the result

follows.

Proposition 4.3.25. Let,

1. The group G ⊂ Sv.

2. If p divides v1 = |G|, then p divides v.
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3. Let t < k ≤ v − k.

4. Let gcd(v, (k+t−1)!
(t−1)!

) = 1.

Then,

1. The |G| = v1 is relatively prime to |Mt,k| and |M ′
t,k|.

2. The maps Mt,k and M ′
t,k have trivial solution for the integral preimage problem.

3. The exp(Mt,k) divides Πt
s=0

(
k−s
t−s
)
.

4. The exp(M ′
t,k) divides Πt

s=0

(
k−s
t−s
)
.

Proof. Part 1 follows by corollary 4.3.19. Part 2 follows by corollary 4.3.24. Parts 3

and 4 follow by proposition 4.3.22.

We close this subsection with results about the Smith Group of M ′
t,k whenever

the integral preimage problem of M ′
t,k has trivial solution.

Proposition 4.3.26. Let M ′
2,3 have a trivial solution to the integral preimage prob-

lem. Then,

1. If G is not 1-transitive then,

2 · S(M ′
2,3) = (Z/3Z) or 0.

2. If G is 1-transitive then,

S(M ′
2,3) = (Z/3Z) or 0.

Proof. Suppose G is not 1-transitive. Then, z ∈ Zr2(G) has an integral preimage under

M ′
2,3, i.e., z = 0 in S(M2,3) if and only if:

1. 3 divides M ′
0,2z = jT z.

2. 2 divides M ′
1,2z.
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Clearly, the standard basis of Zr2(G), {e1, . . . , er2(G)}, forms a set of not necessarily

Z-independent generators for S(M ′
2,3) because M ′

2,3 is onto.

Clearly, 2(ei − ej) satisfies the conditions of the solution of the integral preimage

problem. Hence, 2(ei − ej) has in integral preimage and 2(ei − ej) = 0 in S(M ′
2,3).

Therefore 2 · S(M ′
2,3) = 〈2e1, . . . , 2er2(G)〉 = 〈2e1〉.

Clearly, 6e1 satisfies the conditions of the solution of the integral preimage prob-

lem. Hence, 6e1 = 0 in S(M ′
2,3). Therefore, 2e1 has order 3 or 1 in S(M ′

2,3). Part 1

follows.

Now, suppose that G is 1-transitive. Then, z has an integral preimage if and only

if:

1. 3 divides M ′
0,2z = jT z.

2. 2 divides M ′
1,2z = 2jT z.

Thus, it is only necessary to check that 3 divides jT z because the second condition is

checked trivially.

By using the standard basis e1, . . . , er2(G) as a set of not necessarily Z-independent

generators of S(M ′
2,3), we can show that (ei−ej) has an integral preimage by checking

the above conditions. Thus, (ei − ej) = 0 in S(M ′
2,3). Hence,

S(M ′
2,3) = 〈e1, . . . , er2(G)〉

= 〈e1〉.

Consider, 3e1. It has an integral preimage by checking the above conditions. Thus,

e1 has order 3 or 1 in S(M ′
2,3). Hence, part 2 follows.

The next two results follow similar proofs that we exclude.

Proposition 4.3.27. Let M ′
2,4 have a trivial solution to the integral preimage prob-

lem. Then,

1. If G is not 1-transitive then,

3 · S(M ′
2,4) = (Z/2Z) or 0.
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2. If G is 1-transitive then,

S(M ′
2,4) = (Z/6Z) or 0.

Proposition 4.3.28. Let M ′
3,4 have a trivial solution to the integral preimage prob-

lem. Then,

1. If G is not 1-transitive then,

6 · S(M ′
3,4) = (Z/2Z) or 0.

2. If G is 1-transitive then,

2 · S(M ′
3,4) = (Z/2Z) or 0.

4.3.4 Integral (t,k)-Bases

Given an matrix M : (Ck(X))0 → (Ct(X))0. In general, the free Z-module ColZ(M)

may not be generated by a Z-basis consisting of a subset of the columns of M .

However, when it is possible to find a Z-basis for ColZ(M) consisting columns of M ,

we call the Z-basis a “column basis.”

Definition 4.3.29. A (t, k)-basis is a column basis for the matrix Mt,k or the matrix

M ′
t,k.

The notion of a (t, k)-basis can prove useful when calculating Smith Groups. This

has been shown by Wilson in [26], where he used the existence of a (t, k)-basis to

device an recursive algorithm to calculate the Smith Groups of the matrices Wt,k. In

this section we will show a similar algorithm to calculate the Smith Groups of the

matrices M ′
t,k whenever an (i, i+1)-basis exists and the matrices M ′

i,i+1 have a trivial

solution to the integral preimage problem for i = 0, . . . , t.

We start with a general result about (t, k)-basis.
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Proposition 4.3.30. Let βt,k be a (t, k)-basis for Wt,k that is invariant under the

action of G ⊂ Sv. Define βGt,k to be the orbits of G in β. Then,

1. The columns given by βGt,k is a (t, k)-basis for the matrix M ′
t,k.

2. The columns given by βGt,k forms a column basis for the matrix Mt,kD
−1
k .

Proof. Let eΩK0
be an orbit in ∼ βGt,k. By assumption, there is a c such that Wt,keK0 =

Wt,kc, where c =
∑

K∈βt,k
cKeK has support βt,k. By applying the P0,k = P0,Ck(X),G

projection operator to the equation Wt,keK0 = Wt,kc, we deduce

Wt,kP0,keK = Wt,kP0,kc.

By direct calculation,

P0,keK0 =
1

|G|
∑

g∈G
ρk(g)eK0

=
|GK0 |
|G| eΩK0

=
eΩK0

|ΩK0 |
.

Also,

P0,kc =
∑

K∈βt,k

cKP0,keK

=
∑

K∈βt,k

cK
eΩK

|ΩK |

=
∑

ΩK∈βG
t,k

(
∑

K′∈ΩK
cK′)

|ΩK |
eΩK

.

Thus, we can deduce that there is a c ∈ (Ck(X))0 given by

c =
∑

ΩK∈βG
t,k

(
∑

K′∈ΩK

cK′)eΩK
,
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where,

Mt,k

eΩK0

|ΩK0 |
= Mt,k

∑

ΩK∈βt,k

cΩK

|ΩK |
eΩK

.

Thus,

Mt,kD
−1
k eΩK0

= Mt,kD
−1
k c.

Hence, we deduce that βGt,k forms a Column basis for Mt,kD
−1
k . By multiplying the

previous equation by Dt on the left, we deduce,

M ′
t,keΩK0

= DtMt,kD
−1
k eΩK0

= DtMt,kD
−1
k c

= M ′
t,kc.

Hence, βGt,k forms a column basis for M ′
t,k.

We proceed with a calculation of the Smith Normal form of M ′
t,k that depends on

on the existence of an (i, i+ 1)-basis. Before we start, we state a few results that will

be useful in our proof.

The following proposition can be found in Wilson’s paper in [27].

Proposition 4.3.31. Let A be an integral matrix and E an unimodular matrix such

that Ax = b has integral solution if and only if Eb = Dy for a fixed diagonal matrix

D and some integral y. Then, A has diagonal form given by D.

The next proposition, which will use the concept of indexes of Z-modules, can be

found in an earlier work of Wilson in [26].

Definition 4.3.32. Let M ⊂ Zn be a Z-module. Define,

M = {x ∈ Zn | cx ∈M, for some c ∈ Z, c 6= 0}.
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Clearly, M has the same abelian rank as M . Hence, M
M

is a torsion group. The index

of M is given by [M : M ]. That is, the order of M
M

.

Proposition 4.3.33. Let e1, . . . , er be the Z-basis for a module M ⊂ Zn of index 1,

then the matrix with rows d1e1, . . . , drer has diagonal form:




d1 0 · · · 0 0 · · · 0

0 d2 · · · 0 0 · · · 0
...

... · · · dr 0 · · · 0


 .

Lemma 4.3.34. Let,

1. The matrix U be unimodular.

2. The matrix F be surjective.

3. The matrix D be injective.

4. The following holds, UM = DF .

Then,

1. There is an exact sequence:

0 → S(D) → S(M) → S(F ) → 0.

2. The following holds, |S(M)| = |S(D)||S(F )|.

Proof. It suffices to show the exact sequence of part 1. Consider the productM TUT =

(UM)T = (DF )T = F TDT . Clearly, UT is unimodular. Also, because F is surjective,

F T must be injective. Similarly, because D is injective, DT must be surjective. By

proposition 4.1.32, we have the exact sequence,

0 → S(DT ) → S(F TDT ) → S(F T ) → 0.
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Clearly, S(F TDT ) = S(MTUT ) = S(MT ) since U is unimodular. Also, S(DT ) =

S(DT ) because DT is surjective. Hence, S(DT ) has abelian rank 0. By corollary

4.1.27, there is an exact sequence:

0 → S(DT ) → S(MT ) → S(F T ) → 0.

Since S(A) ' S(AT ) for any integral matrix A, it follows that

0 → S(D) → S(M) → S(F ) → 0.

The result follows.

The next result reduces the calculation of the Smith Group of M ′
t,k to the existence

of an (i, i+ 1)-basis.

Proposition 4.3.35. Let t ≤ k ≤ v − k. We will assume that:

1. The matrices M ′
i−1,i afford an (i− 1, i)-basis for i = 1, . . . , k.

2. The matrices M ′
i−1,i have a trivial solution to the integral preimage problem, for

i = 1, . . . , k.

Let Et,k be the rows of M ′
t,k after deleting the rows that correspond to an (t−1, t)-basis,

where we allow Et,k to be the empty matrix. That is,

M ′
t,k =


 Ct,k

Et,k


 ,
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where Ct,k are the rows that correspond to a (t− 1, t)-basis. Let Ft,k be defined as,

Ft,k =




(
k
t

)
jT

(
k−1
t−1

)
E1,k

(
k−2
t−2

)
E2,k

...
(
k−t
t−t
)
Et,k




= Dt,k




jT

E1,k

E2,k

...

Et,k




= Dt,kFt,k,

where Dt,k is the appropriate diagonal matrix. The following must be the case,

1. The matrices Ft,k are primitive of full rank. That is, they have trivial Smith

group.

2. The matrices Ft,t = Ft,t are unimodular.

3. The RowZ(M ′
t,k) = RowZ(Ft,k).

4. The matrix M ′
t,k admits a diagonal form given by

(
k−i
t−i
)

with multiplicity ri(G)−
ri−1(G), where i = 0, . . . , t and r−1(G) = 0.

5. The S(M ′
t,k) is given by,

(Z/

(
k

t

)
Z)r0(G) × (Z/

(
k − 1

t− 1

)
Z)r1(G)−r0(G) × · · · (Z/

(
k − t

t− t

)
Z)rt(G)−rt−1(G).

Proof. A similar proof to that of lemma 2 of [27] will be given. The proof is by

induction on k.
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Note that for k = 0, the result is clearly true since M ′
0,0 = 1. Suppose G is t0-

transitive. That is, G acts transitivily on the 1-sets, 2-sets, · · · , t0-sets. Then, for

t ≤ k ≤ t0, M
′
t,k =

(
k
t

)
1. Since Ft,t = 1 and Ft,k =

(
k
t

)
1, the result follows trivially.

Let k = t0 be the base case of our inductive proof. Assume the claim is true for

t0 ≤ k′ ≤ k, we will show the claim for k′ = k + 1. We will start by showing that

the S(M ′
k,k+1) is given as it is in part 5 by using proposition 4.3.31. The candidate

matrix that we will use for E in proposition 4.3.31 is Fk,k. Hence, proposition 4.3.31

will apply, if we show:

Lemma 4.3.36.

M ′
k,k+1z = b for some integral z ⇐⇒ Fk,kb = Dk,k+1y for some integral y.

Proof. The =⇒ part is clear. Suppose that for a given integral b, there is an integral y

such that Fk,kb = Dk,k+1y. Since Mk,k+1 has trivial solution to the integral preimage

problem, it suffices to show that
(
k+1−i
k−i

)
= k + 1 − i divides M ′

i,kb for i = 0, . . . , k.

Clearly, k + 1 divides jT b since this is the first row of Fk,kb = Dk,k+1y. Also, note

that for i ≤ t0,

M ′
i,kb =

(
k

i

)
jT b

=

(
k

i

)
(k + 1)

jT b

k + 1

= (k − i+ 1)

(
k + 1

i

)
jT b

k + 1
.

Hence, (k + 1 − i) divides M ′
i,kb. Therefore, assume t0 < i.

Consider, M ′
i,k =


 Ci,k

Ei,k


, where Ci,k are the rows that correspond to an (i−1, i)-

basis, and Ei,k corresponds to the remaining rows. It suffices to show that Ci,kb is

divisible by k + 1 − i for i = 2, . . . , k. We will show this by induction on i.

Let Fi−1,i =
[
F ∗
i−1,i F ∗∗

i−1,i

]
, where Fi−1,i

∗
are the columns of Fi−1,i that corre-

spond to the (i− 1, i)-basis.
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Claim 4.3.37. We have: ColZ(F ∗
i−1,i) = ColZ(Fi−1,i). In particular, as Fi−1,i has

trivial Smith group and full rank, F ∗
i−1,i is unimodular.

Proof. Let M ′
i−1,i =

[
A B

]
, where A consists of the columns that correspond to an

(i−1, i)-basis. Clearly, Di−1,iFi−1,i = Fi−1,i−1M
′
i−1,i. Thus, Fi−1,i = D−1

i−1,iFi−1,i−1M
′
i−1,i.

In particular, we have F ∗
i−1,i = D−1

i−1,iFi−1,i−1A. Since A consists of the columns that

correspond to an (i− 1, i)-basis, we have that for every integral z, there is integral y

such that M ′
i−1,iz = Ay.

Let x = Fi−1,iz for some integral z. Then,

x = Fi−1,iz

= D−1
i−1,iFi−1,i−1M

′
i−1,iz

= D−1
i−1,iFi−1,i−1Ay

= F ∗
i−1,iy,

hence, ColZ(Fi−1,i) ⊂ ColZ(F ∗
i−1,i) and the claim follows.

Resuming the proof of lemma 4.3.36. Clearly,

Fi−1,iM
′
i,k =




(
k
i

)
jT

(
k−1
i−1

)
E1,k

...
(
k−(i−1)
i−(i−1)

)
Ei−1,k




= D′
i,kFi−1,k, (4.10)

where D′
i,k is the matrix Di,k after erasing the rows that have diagonal entry equal to

1. By Equation (4.10), we have,

F ∗
i−1,iCi,t + F ∗∗

i−1,iEi,t = D′
i,kFi−1,k,
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hence,

1

k + 1 − i
F ∗
i−1,iCi,t + F ∗∗

i−1,i(
1

k + 1 − i
Ei,t) =

1

k + 1 − i
D′
i,kFi−1,k.

Note that 1
k+1−iD

′
i,k equals:




(
(k−0)+1
(k−i)+1

)
0 · · · 0

0
(
(k−1)+1
(k−i)+1

)
· · · 0

0 0 · · · 0
...

...
...

...

0 0 · · ·
(
(k−(i−1))+1

(k−i)+1

)







1
k+1

0 0 · · · 0

0 1
k−1

0 · · · 0

0 0 1
k−2

· · · 0
...

...
...

...
...

0 0 0 · · · 1
k−(i−1)+1




,

thus, 1
k+1−iD

′
i,kFi−1,kb equals:




(
(k−0)+1
(k−i)+1

)
0 · · · 0

0
(
(k−1)+1
(k−i)+1

)
· · · 0

0 0 · · · 0
...

...
...

...

0 0 · · ·
(
(k−(i−1))+1

(k−i)+1

)







1
k+1

jT b

1
k−1

E2,kb

1
k−2

E3,kb
...

1
k−(i−1)+1

Ei−1,kb




,

where, the right-hand side is integral by assumption. Thus, 1
k+1−iD

′
i,kFi−1,kb is inte-

gral.

Consider,

1

k + 1 − i
F ∗
i−1,iCi,tb+ F ∗∗

i−1,i(
1

k + 1 − i
Ei,tb) =

1

k + 1 − i
D′
i,kFi−1,kb.

Since 1
k+1−iEi,tb is integral and the right-hand side is integral, we must have,

1

k + 1 − i
F ∗
i−1,iCi,tb,

be integral. As F ∗
i−1,i is unimodular, we have that 1

k+1−iCi,tb is integral. The result

follows.
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Resuming to the proof of the proposition 4.3.35, lemma 4.3.36 shows that the

S(M ′
k,k+1) is given by part 5. That is, S(M ′

k,k+1) = S(Dk,k+1). Hence,

|Smith(M ′
k,k+1)| = |Smith(Dk,k+1)|,

and by lemma 4.3.34 applied to the following equation:

Dk,k+1Fk,k+1 = Fk,kM
′
k,k+1,

we deduce that |Smith(M ′
k,k+1)| = |Smith(Dk,k+1)||Smith(Fk,k+1)|. Hence, Fk,k+1

has trivial Smith group.

Let Fk,k+1 = [UV ], where U are the rows that correspond to a (k, k+1)-basis. By

a similar argument as the one given in claim 4.3.37, we can show that,

ColZ(Fk,k+1) = ColZ(U).

Thus, U is unimodular.

Consider,

Fk+1,k+1 =


 Fk,k+1

Ek+1,k+1




=


 U V

0 I


 ,

where, we used for Ek+1,k+1 the resulting rows of M ′
k+1,k+1 = I, the identity matrix,

after deleting those rows that correspond to the chosen (k, k + 1)-basis. Clearly,

det(Fk+1,k+1) = det(U) = ±1. Hence, Fk+1,k+1 is unimodular. Hence, part 2 follows.

Part 1 follows from the unimodularity of Fk+1,k+1.

We show part 3. Clearly, Ft,tM
′
t,k+1 = Ft,k+1. Also, Ft,t is unimodular for t ≤ k

by the Inductive Hypothesis, and is is unidmodular for t = k + 1 by part 2. Hence,

RowZ(M ′
t,k+1) = RowZ(Ft,k+1) and part 3 follows.



237

To show the remaining parts, let t ≤ k + 1. Consider the equation,

Ft,k+1 = Dt,k+1Ft,k+1

= Ft,tM
′
t,k+1.

Since Fk+1,k+1 is unimodular, it follows that Ft,k+1 is primitive, i.e., it has trivial

Smith Group. By lemma 4.3.34, S(Dt,k+1) ' S(Ft,tM
′
t,k+1) ' S(M ′

t,k+1). Thus parts

4 and 5 follow.

The following proposition shows a criterion for finding a (t, k)-basis.

Proposition 4.3.38. Suppose that t ≤ k ≤ v − k, and the following,

1. The matrix M ′
i−1,i admits an (i− 1, i)-basis for i = 1, . . . , t.

2. The matrix M ′
i−1,i has trivial solution to the integral preimage problem for i =

1, . . . , t.

3. The set β be a set of Q-linearly independent columns of M ′
t,k.

Then,

1. The matrix Fi,i is unimodular for i = 0, . . . , t.

2. There is an exact sequence,

0 → S(Dt,k) → S(M ′
t,k) → S(Ft,k) → 0.

3. There is a finite abelian group Hβ such that:

0 → Hβ → S(M ′
β) → S(M ′

t,k) → 0.

4. The following divisibility conditions holds, |Dt,k| divides |M ′
t,k| divides |M ′

β|.

5. If |M ′
β| = ±|Dt,k|, then β is a (t, k)-basis.
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Proof. The same proof of proposition 4.3.35 can be used to show that Fi,i is unimod-

ular for i = 0, . . . , t.

Part 2 is an application of lemma 4.3.34 to the equation Ft,tM
′
t,k = Dt,kFt,k.

We show part 3. Consider the following inclusion of free Z-modules,

ColZ(M ′
β) ⊂ ColZ(M ′

t,k) ⊂ Zrt(G).

Thus, there is an exact sequence,

0 → Hβ → S(M ′
β) → S(M ′

t,k) → 0,

where Hβ =
ColZ(M ′

t,k
)

ColZ(M ′

β
)
. Clearly, r(Hβ) = r(M ′

β) − r(M ′
t,k) = 0 − 0 since the matrices

M ′
β and M ′

t,k are onto. Thus, Hβ is a torsion group and by corollary 4.1.27 there is

an exact sequence:

0 → Hβ → S(M ′
β) → S(M ′

t,k) → 0.

Hence, part 3 follows.

Parts 4 and 5 are obvious consequences of parts 2 and 3.

We close this subsection with a proposition that shows how one can use a (t−1, t)-

basis in the calculation of the Smith Group of Mt,k or M ′
t,k.

Proposition 4.3.39. Let Lt,k = Mt,k or M ′
t,k. Assume,

1. The Z-module Zrt(G) ∩Ker(Lt−1,t) is contained in the Z-module ImZ(Lt,k).

2. The set βt−1,t is a (t− 1, t)-basis for Lt−1,t.

Then,

1. The set βt−1,t is a generating set for S(Lt,k) but not necessarily Z-independent.

That is, 〈βt−1,t〉 = S(Lt,k).
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2. If gcd(|Lt−1,t|, k − t+ 1) = 1, then βt−1,t is Z-independent. That is,

S(Lt,k) = (Z/a1Z) × · · · × (Z/art−1(G)Z),

where βt−1,t = {ΩT1 , . . . ,ΩTrt−1(G)
}, and 〈ΩTi

〉 = (Z/aiZ) is a nontrivial sub-

group of S(Lt,k).

Proof. Let ΩT ∈ (Ct(X))0. Since, βt−1,t is a (t−1, t)-basis for Lt−1,t, there are integral

cΩT ′
with support in βt−1,t such that:

0 = Lt−1,t(ΩT −
∑

ΩT ′∈βt−1,t

cΩT ′
ΩT ′).

By assumption, there is a z ∈ Zrk(G) such that:

Lt,kz = ΩT −
∑

ΩT ′∈βt−1,t

cΩT ′
ΩT ′ .

Since S(Lt,k) = Zrt(G)

ImZ(Lt,k)
, it follows that ΩT ∈ 〈βt−1,t〉 in S(Lt,k). Since,

〈ΩT | ΩT ∈ (Ck(X))0〉 = S(Lt,k),

part 1 follows.

We show part 2. Suppose otherwise. That is, there is some ΩT0 ∈ βt−1,t can be

expressed as an integral linear combination of the other elements of βt−1,t in S(Lt,k).

Paraphrasing this condition, there is an integral vector c with at least one entry equal

to 1, i.e., the entry corresponding to ΩT0 , and with support βt−1,t such that:

c = Lt,kz,

where z is also integral. If we multiply the above equation by Lt−1,t on the left, we

deduce,

Lβc = (k − t+ 1)Lt−1,kz,
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where Lβ are the columns of Lt−1,t that correspond to βt−1,t. Clearly, |Lt−1,t| = |Lβ|
since βt−1,t is a (t−1, t)-basis. Because gcd(|Lβ|, k−t+1) = gcd(|Lt−1,t|, k−t+1) = 1,

we can deduce that k − t+ 1 divides c. In particular, this means that the coefficient

that corresponds to ΩT0 in c is divisible by k − t + 1. That is, k − t + 1 divides 1.

This is a contradiction.

We give the remark that the first condition of proposition 4.3.39 is satisfied when-

ever Lt−1,t has a trivial solution to the integral preimage problem.

4.3.5 The Kernel of M′
t,k and Mt,k

The kernel of the matrix Wt,k has been shown by Graver and Jurkat in [9] to be

generated by elements of the form:

Π(A,B) = (xa1 − xb1)(xa2 − xb2) · · · (xat+1 − xbt+1)xat+2 · · · xak
,

where A = {a1, . . . , at+1, . . . , ak} and B = {b1, . . . , bt+1} are disjoint sets of {1, . . . , v},
and Π(A,B) is understood to be a formal sum of k-subsets of {1, . . . , v} where the

monomial terms xc1 · · · xck are identified with their corresponding k-subsets {c1, . . . , ck}.
The elements Π(A,B) are known as (t, k)-pods in the literature.

An effective way to calculate the (t, k)-pods, when the sets A and B are specified,

is to think of every monomial ±xc1 · · · xck → ±{c1, . . . , ck} = C in the summation

expansion of Π(A,B) as a set C, with corresponding term (−1)|C2|eC , where C1 =

C ∩ A and C2 = C ∩B have the properties:

0 ≤ |C2| ≤ t+ 1,

{at+2, . . . , ak} ⊂ C1,

C1 ∩ C2 = φ.

Hence, one could think of every term in the summation expansion of Π(A,B) as

corresponding to a set C2 ⊂ {1, . . . , t + 1}. Thus, one can formulate an equivalent

definition as it is given by the following proposition.



241

Proposition 4.3.40. Let A = {a1, . . . , ak} and B = {b1, . . . , bt+1} be such that

A ∩B = φ. For every T ⊂ {1, . . . , t+ 1} define fT : {1, . . . , t+ 1} → {1, . . . , v} as:

fT (i) =





bi if i ∈ T,

ai else.

Then,

Π(A,B) =
∑

T⊂{1,...,t+1}
(−1)|T |e{fT (1),...,fT (t+1),at+2,...,ak}.

As a remark, we note that Π(A,B) depends not only on A and B but also on

the indexing of the elements of A and B. That is, if we consider a (2, 3)-pod where

A = {a1, a2, a3} = {a′1, a′2, a′3} and a′1 = a2, a
′
2 = a3, a

′
3 = a1, then in general each

indexing will provide distinct Π(A,B)s.

We proceed to find corresponding generators of the Ker(M ′
t,k) and Ker(Mt,k) by

projecting Π(A,B) to the equivariant case. The following proposition summarizes

this result.

Proposition 4.3.41. Let A be a (t+1)-subset and B a k-subset such that A∩B = φ.

Let,

Π(A,B) = eK1 + · · · + eKr
,

where summation allows for repetition. Let Π(A,B)G be the equivariant projection

given by:

Π(A,B)G = eΩK1
+ · · · + eΩKr

.

Then,

1. The element D−1
k Π(A,B)G ∈ Ker(Mt,k), and the set of all D−1

k Π(A,B)G gen-

erate Ker(Mt,k).

2. The element Π(A,B)G ∈ Ker(M ′
t,k), and the set of all Π(A,B)G generate
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Ker(M ′
t,k).

Proof. We show part 1. Let A and B be given. Clearly, Wt,kΠ(A,B) = 0. By use of

the operator P0,t,G = 1
|G|
∑

g∈G ρt(g), we deduce,

Wt,kP0,k,GΠ(A,B) = 0.

It is a quick exercise to show,

P0,t,GΠ(A,B) = D̂k

−1
Π̃(A,B)

G

,

where,

Π̃(A,B)
G

=
r∑

i=1

ẽΩKi
,

ẽΩKi
=

∑

K′

i∈ΩKi

eK′

i
.

Hence, Wt,kD̂k

−1
Π̃(A,B)

G

= 0. By using the canonical basis of (Ck(X))0 and

(Ct(X))0, we deduce

Mt,kD
−1
k Π(A,B)G = 0,

where, we have identified Π̃(A,B)
G

= ẽΩK1
+ · · ·+ ẽΩKr

in Ck(X) with its counterpart

Π(A,B)G = eΩK1
+ · · · + eΩKr

in (Ck(X))0. Hence, D−1
k Π(A,B)G ∈ Ker(Mt,k).

We show that the elements of the form D−1
k Π(A,B)G generate the kernel. Con-

sider xG ∈ (Ck(X))0 such that Mt,kx
G = 0. Let xG =

∑
cΩK

eΩK
and x its lift

to Ck(X) given by x =
∑
cΩK

eK . Clearly, Wt,kx = 0 and P0,k,Gx = x. Hence,

x =
∑
ciΠ(Ai, Bi), for constants ci and sets Ai and Bi. Consider,

x = P0,k,Gx

= P0,k,G(
∑

ciΠ(Ai, Bi))

=
∑

ciD̂k

−1 ˜Π(Ai, Bi)
G

.
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Using the canonical basis of (Ck(X))0 and (Ct(X))0, we deduce,

xG =
∑

ciD
−1
k Π(Ai, Bi)

G.

Thus, part 1 follows.

We show part 2. Because Mt,kD
−1
k Π(A,B)G = 0, we have that M ′

t,kΠ(A,B)G =

DtMt,kD
−1
k Π(A,B)G = 0. Hence, Π(A,B)G ∈ Ker(M ′

t,k).

We show that Π(A,B)G generate the Ker(M ′
t,k). Let xG be such that M ′

t,kx
G =

0. Clearly, DtMt,kD
−1
k xG = 0. Thus, Mt,kD

−1
k xG = 0. By part 1, D−1

k xG =
∑
ciD

−1
k Π(Ai, Bi)

G. Hence, by multiplying by Dk, we deduce xG =
∑
ciΠ(Ai, Bi)

G.

The conclusion follows.

We close this subsection with a summary of a property of G-projections among

images of Wt,k that was used in proposition 4.3.41.

Proposition 4.3.42. Let,

Wt,keK =
∑

T⊂K
eT .

Assume that G ⊂ Sv is a permutation action. Then,

1. The following holds, Mt,kD
−1
k ΩK =

∑
T⊂K D

−1
t ΩT .

2. The following holds, M ′
t,kΩK =

∑
T⊂K ΩT .

Proof. The proof uses the same procedure as proposition 4.3.41. Simply apply P0,t,G

to both sides of the equation Wt,keK =
∑

T⊂K eT and proceed to simplify by using:

P0,t,GeT = D̂t

−1
(
∑

T ′∈ΩT

eT ′),

P0,k,GeK = D̂k

−1
(
∑

K′∈ΩK

eK′).

Using the canonical basis of (Ct(X))0 and (Ck(X))0, we can deduce the first part.

Part 2 follows by multiplying both sides of part 1 by Dt.
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4.4 Positive Equivariant G-Signings

We will formalize a signing property about special (t, k)-basis of Wt,k that has been

observed by researchers through heuristics. We will do this by introducing the concept

of a positive equivariant G-signing.

Definition 4.4.1. Assume,

1. Let β be a set of Q-linearly independent colums of W : Ck(X) → Ct(X).

2. Let W be a G-map and not necessarily an Sv-map.

3. Assume that β is G-invariant, i.e., g ·K ∈ β for all g ∈ G and K ∈ β.

4. Let ε : β → {±1} be a signing of the elements of β that is G-invariant. That

is, ε(g ·K) = ε(K) for all g ∈ G and K ∈ β.

5. Define Wβ = [WeK1 , . . . ,WeKr ] and W∗
β = [ε(K1)WeK1 , . . . , ε(Kr)WeKr ], where

β = {eK1 , . . . , eKr
}.

Then,

1. The map ε is a “positive equivariant G-signing” for (W,β) if and only if for all

eK ∈∼ β:

WP0,k,GeK = W
ẽΩK

|ΩK |
∈ C+(W ∗

β ),

where C+(W ∗
β ) = {W ∗

β c | c ≥ 0} is the positive cone spanned by W ∗
β , and,

ẽΩK
=

∑

K′∈ΩK

eK′ .

2. If the pair (W,β) admits a “positive equivariant G-signing” when G = {1}, then

we say that (W,β) admits a “trivial positive equivariant signing.”

A well-known result about positive cones of matrices, which we will use shortly,

is the Minkowski-Farkas Lemma.
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Lemma 4.4.2. (Minkowski-Farkas) Let W be a real matrix, and z ∈ R a vector

of real numbers. The following are equivalent,

1. The element z ∈ C+(W ).

2. If y ∈ R is a vector of real numbers such that yTW ≥ 0, then yT z ≥ 0.

The following proposition reduces the concept of positive equivariant G-signings

to the concept of trivial positive equivariant signings.

Proposition 4.4.3. Let W : Ck(X) → Ct(X) be matrix of rational entries that is a

G-map but not necessarily an Sv map. Let β be a set of columns that is Q-linearly

independent, and let β be G-invariant. Then, the following are equivalent,

1. The pair (W,β) affords a positive equivariant G-signing.

2. The pair (M ′, βG) affords a trivial positive equivariant signing, where M ′ =

(W )′0 and βG is the set of G orbits in β.

Proof. We proceed to show the equivalence in two separate cases.

Part 1 =⇒ part 2. Let ε be a positive equivariant G-signing of (W,β). Note

that,

1. The map W ∗
β is a G-map.

2. Given K ∈∼ β, there is c ≥ 0 such that W
eΩK

|ΩK | = W ∗
β c.

Consider,

W
eΩK

|ΩK |
= WP0,t,GeK

= P0,k,GWP0,t,GeK

= P0,t,GW
ẽΩK

|ΩK |
= P0,k,GW

∗
β c

= W ∗
βP0,t,Gc

= W ∗
β c,
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where c =
∑

ΩK∈(Ck(X))0
(
∑

K′∈ΩK
cK′)(ẽΩK

). Thus, W
geΩK

|ΩK | = W ∗
β c, where P0,Gc = c.

Clearly, this implies that Mt,kD
−1
k eΩK

= M∗
βGD

−1
k c. By multiplying both sides by

Dt, we deduce that M ′
t,keΩK

= (M ′)∗βGc. Hence, (M ′, βG) affords a trivial positive

equivariant signing, where the signing is given by εG(ΩK) = ε(K).

Part 2 =⇒ part 1. Let εG be the trivial signing for (M ′, βG). Lift this signing

to a of (W,β) by ε(K) = εG(ΩK).

Let K ∈∼ β. By the Minkowski-Farkas Lemma, it suffices to show that for every

y ∈ R, a vector of real numbers, such that yTW ∗
β ≥ 0, then yTW

geΩK

|ΩK | ≥ 0.

So, assume that yTW ∗
β ≥ 0. Consider,

0 ≤ yTW ∗
β

= yTρt(g)
Tρt(g)W

∗
β

= (ρt(g)y)
TW ∗

βρk(g)

= ((ρt(g)y)
TW ∗

β )ρk(g),

hence, 0 ≤ (ρt(g)y)
TW ∗

β since ρk(g) is a permutation action. Therefore, it follows

that yTW ∗
β ≥ 0 where:

y = P0,Gy

=
∑

ΩT∈(Ct(X))0

(
∑

T ′∈ΩT
yT ′)

|ΩT |
ẽΩT

.

Clearly, P0,t,Gy = y. Hence, 0 ≤ yTW ∗
β = yTP0,t,GW

∗
β . Thus, we can conclude

0 ≤ (y′)T (M ′)∗β, where y′ΩT
= y

T
.

By assumption, M ′eΩK
∈ C+((M ′)∗β). Hence, it follows by the Minkowski-Farkas

Lemma that (y′)T (M ′
t,keΩK

) ≥ 0. We can lift this equation to Ck(X) as yTW
edΩK

|ΩK | ≥ 0.
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Consider,

0 ≤ yTW
êΩK

|ΩK |

= (P0,t,Gy)
TW

êΩK

|ΩK |

= yTP0,t,GW
êΩK

|ΩK |
= yTW (P0,k,G

edΩK

|ΩK |
)

= yTW
edΩK

|ΩK |
,

hence, by the Minkowski-Farkas Lemma, it follows that W
deΩK

|ΩK | ∈ C+(W ∗
β ). The

conclusion follows.

Definition 4.4.4. Sometimes a positive equivariant G-signing for (M,β) is also a

trivial positive equivariant signing for (M,β). When this happens, we will call the

signing a “trivial positive equivariant G-signing” for (M,β).

In the next section, we will show examples of G-trivially positive equivariant

signings where G is nontrivial.

We close this section with an algorithmic criterion that helps determine when a

pair (M,β) affords a trivial positive equivariant signing.

Proposition 4.4.5. (Reduced Row Echelon Property). Let M be an n × m

matrix and β a subset of columns that is linearly independent and generate the column

space of M . Let N = [Mβ,M∼β] be a reordering of the columns of M such that the

columns in β are listed first. Assume that N has Reduced Row Echelon Form given

by:



I

r1

r2
...

rn



.
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The following are equivalent,

1. The pair (M,β) affords a trivial positive equivariant signing.

2. (Reduced Row Echelon Property). The ris in the row reduced echelon form

of N are either nonpositive or nonnegative.

Proof. We proceed to show the equivalence in two separate cases.

Part 1 =⇒ part 2. Let (M,β) afford a trivial positive equivariant signing ε. Let

Mβ = [M1, . . . ,Mn]. Let Ms ∈∼ β correspond to the sth column in N . Then,

Ms =
n∑

i=1

ε(Mi)ci,sMi,

where ci,s ≥ 0.

Note that ε(Mi)ci,s is the (i, s) entry in the Row Reduced Echelon Form of N .

Thus, the signing of (i, s) in the Row Reduced Echelon Form of N only depends on

i. Hence, ri is either nonnegative or nonpositive.

Part 2 =⇒ part 1. Assume that N has the Reduced Row Echelon Property. By

reversing the argument above, we can conclude that for,

Ms =
n∑

i=1

ci,sMi,

the signing of ci,s only depends on i not s. From this, we can construct the desired

signing ε.

4.5 The Case G = Stab(Ω)

In this section, we consider actions given by permutation groups G that are stabilizer

groups of partitions of {1, . . . , v}.

Definition 4.5.1. Let Ω be partition of {1, . . . , v} given by:

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωd,
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where |Ωi| = vi and v1 + · · · + vd = v. The stabilizer group Stab(Ω) ⊂ Sv of Ω is the

set of all permutations that leave Ω invariant. That is, σ ∈ Stab(Ω) if and only if as

sets we have σ · Ωi = Ωi for i = 1, . . . , d.

We consider a family of partitions {Ω(v)}∞v=1. For each member of the family, we

consider the action of the group Gv = Stab(Ω(v)) on the k-subsets and t-subsets of

{1, . . . , v}. We also consider a family of sets of k-subsets {βt,k(v)}∞v=1, and we study

the following questions:

1. How can we show βt,k(v) is a (t, k)-basis for Wt,k(v)?

2. How can we show βt,k(v)
Gv is a (t, k)-basis for M ′

t,k(v)? Where βGv

t,k are the

k-subsets’ orbits in βt,k under the action of Gv.

3. How can we find a trivial positive equivariant signing for (βt,k(v),Wt,k(v))?

4. How can we find a trivial positive equivariant signing for (βt,k(v)
Gv ,M ′

t,k(v))?

We provide a partial answer to these questions.

We give examples of families {Ω(v)}∞v=1 for which there exist {βt,k(v)}∞v=0 that are

(t, k)-basis of Wt,k(v), and admit a trivial positive equivariant signing when (t, k) =

(1, 2), (2, 3), (3, 4), (4, 5). We conjecture the existence of trivial positive equivariant

signings for these examples.

We start with a study of the spaces (Ck(X))0 when G = Stab(Ω(v)). We assume

for now that v is fixed.

Proposition 4.5.2. The orbits under the action of G = Stab(Ω) on the k-subsets

are in one to one correspondence with the set HΩ(k) defined as:

HΩ(k) = {[x1, . . . , xd] | x1 + · · · xd = k and 0 ≤ xi ≤ vi}.

Proof. Clearly, for every ΩK ∈ (Ck(X))0, one can construct a partition [x1, . . . , xd] ∈
HΩ(k). Namely, the parition where xi = |K ∩ Ωi|.

It suffices to show,
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1. If K ′ ∈ ΩK , then K ′ induces the same partition in HΩ(k) as K.

2. If ΩK and ΩK′ induce the same partition in HΩ(k), then ΩK = ΩK′ .

Clealry, G ' Sv1 × · · · × Svd
where Svi

acts on Ωi as the Symmetric Group. Note

that Svi
acts transitively on

(
Ωi

xi

)
. Hence, if |K ∩ Ωi| = |K ′ ∩ Ωi|, then one can find a

σi ∈ Svi
such that σi(K ∩ Ωi) = K ′ ∩ Ωi.

Let K ′ ∈ ΩK . Clearly, there is σ = (σ1, . . . , σd) ∈ Stab(Ω) such that σ(K) = K ′.

Thus, |K ′ ∩ Ωi| = |σi(K ∩ Ωi)| = |K ∩ Ωi|. Therefore, K ′ induces the same partition

as K.

If K and K ′ induce the same partition then |K ∩ Ωi| = |K ′ ∩ Ωi|. Thus, one can

construct a σ = (σ1, . . . , σd) where σi(K∩Ωi) = K ′∩Ωi. Clearly, σ(K) = K ′. Hence,

σ ∈ Stab(Ω). Therefore, ΩK = Ω′
K .

Definition 4.5.3. Let K be k-subset, and Ω = Ω1∪· · ·∪Ωd a partition of {1, . . . , v}.
We will denote the vector [|K ∩ Ω1|, . . . , |K ∩ Ωd|] by [|K ∩ Ω|]. We will define ω =

[|Ω ∩ Ω|] as the vector [v1, . . . , vd] where vi = |Ωi|.

Proposition 4.5.4. Let t < k ≤ v − k and G = Stab(Ω). Let ω = [|Ω|]. Choose a

k-subset K, and a t-subset T . Define φ = [|K ∩ Ω|] and ψ = [|T ∩ Ω|]. Then,

1. The sizes of the orbits ΩK, ΩT are given by:

|ΩK | =

(
ω

φ

)
,

|ΩT | =

(
ω

ψ

)
.

2. The (ΩT ,ΩK) entry of M ′
t,k is given by:

M ′
t,k(ΩT ,ΩK) =

(
φ

ψ

)
,

where,

(
φ

ψ

)
= Πd

i=1

(
φi
ψi

)
.
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3. The (ΩT ,ΩK) entry of Mt,k is given by:

Mt,k(ΩT ,ΩK) =

(
ω − ψ

φ− ψ

)
,

where,

(
ω − ψ

φ− ψ

)
= Πd

i=1

(
ωi − ψi
φi − ψi

)
.

Proof. Part 1 follows from the decomposition of G ' Sv1 × · · · × Svd
.

We show part 2. Let φ = [φ1, . . . , φd] = [|K ∩Ω|] and ψ = [ψ1, . . . , ψd] = [|T ∩Ω|].
Define Ki = K ∩ Ωi and Ti = T ∩ Ωi. We wish to find all t-subsets T ′ ∈ ΩT for

which T ′ ⊂ K. Clearly, any T ′ ∈ ΩT has decomposition T ′ = T ′
1 ∪ · · · ∪ T ′

d where

T ′
i = T ′ ∩ Ωi. The condition that T ′ ⊂ K is warranted exactly when T ′

i ⊂ Ki for

i = 1, . . . , d. Thus, we wish to find all subsets T ′
i of Ki that have size ψi. Clearly,

there are
(
φi

ψi

)
choices for T ′

i . Hence, there are Πs=0

(
φs

ψs

)
=
(
φ
ψ

)
choices for T ′ ∈ ΩT

that satisfy T ′ ⊂ K. Therefore, M ′
t,k(ψ, φ) =

(
φ
ψ

)
.

Part 3 uses a similar argument.

Now, we consider a family of partitions {Ω(v)}∞v=1, where each Ω(v) is a partition

of {1, . . . , v}.

Definition 4.5.5. Let {Ω(v)}∞v=1 be a family of partitions where fi(v) = |Ωi(v)| is

monotonically increasing with respect to v. That is, if v ≤ v ′, then fi(v) ≤ fi(v
′). We

will call {Ω(v)}∞v=1 a “monotone family.” We will denote [f1(v), . . . , fd(v)] by ω(v),

the numeric partition of v generated by Ω(v).

Proposition 4.5.6. Let {Ω(v)}∞v=1 be monotone family. Then,

1. If v ≤ v′, then ω(v) ≤ ω(v′).

2. If ω(v) ≤ ω(v′), then v ≤ v′.

Proof. Part 1 follows by the definition of a monotone family.

We show part 2. Suppose ω(v) ≤ ω(v′). If v′ < v, then by part 1 ω(v′) ≤ ω(v).

Hence, ω(v) = ω(v′) and this forces v = v′. This is a contradiction.
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Definition 4.5.7. Given a monotone family {Ω(v)}∞v=1, an “inclusion map” ι is

defined as a family of inclusion maps ιv,v′ : Ω(v) ↪→ Ω(v′), where v ≤ v′, with the

property that for all i = 1, . . . , d:

ιv,v′ : Ωi(v) ↪→ Ωi(v
′),

that is, iv,v′ injects Ωi(v) into Ωi(v
′). We will drop the subscripts v, v′ in the notation

of ιv,v′ unless it brings ambiguity.

In principle, for fixed v ≤ v′, there are
(
ω(v′)
ω(v)

)
possible inclusion maps. Since Ω(v)

is a Monotone Family, ω(v) ≤ ω(v′). Hence, there is at least 1 ≤
(
ω(v′)
ω(v)

)
possible

inclusion map from Ω(v) into Ω(v′). However, depending on the structure of Ω, this

inclusion map may not be unique.

Proposition 4.5.8. Let {Ω(v)}∞v=1 be a monotone family, and ι an inclusion map

for {Ω(v)}∞v=1. Denote by
(
v
s

)
the set of all s-subsets of {1, . . . , v}. Then,

1. Let s ≤ v− s ≤ v′− s and v ≤ v′, then ι induces an injection from the s-subsets

of {1, . . . , v} to the s-subsets of {1, . . . , v′}. That is, ι :
(
v
s

)
↪→
(
v′

s

)
.

2. Let s ≤ v − s ≤ v′ − s and v ≤ v′, then ι induces an injection ι : HΩ(v)(s) ↪→
HΩ(v′)(s). More precisely, given φ = [φ1, . . . , φd] ∈ HΩ(v)(s), ι([φ1, . . . , φd]) =

[φ1, . . . , φd] is the desired injection.

3. Let v ≤ v′, then ι induces an injection ι : Stab(Ω(v)) ↪→ Stab(Ω(v ′)) given by

σ → ι(σ), where ι(σ) is defined as:

ι(σ)(x) =





ιv,v′ ◦ σ ◦ ι−1
v,v′(x) if x ∈ ι(Ω(v)),

x otherwise.

4. Let v ≤ v′ and S ∈
(
v′

s

)
. If [|S ∩Ω(v′)|] ≤ ω(v), then there is a σ ∈ Stab(Ω(v′))

such that σ(S) ∈ ι(
(
v
s

)
).

5. Let v ≤ v′, r ≤ s ≤ v − s ≤ v′ − s, σ ∈ Stab(Ω(v)) and S ∈
(
v
s

)
. Then,
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(a) The map ιv,v′ satisfies ιv,v′(σ · S) = ιv,v′(σ) · ιv,v′(S).

(b) The map ιv,v′ satisfies ιv,v′(Wr,s(v)eS) = Wr,s(v
′)eιv,v′ (S).

(c) Let φ = [|S ∩ Ω(v)|] ∈ HΩ(v)(s). Then,

ιv,v′(M
′
r,s(v)eφ) = M ′

r,s(v
′)eιv,v′ (φ).

Proof. Since ι is indeed an injection, part 1 is clear.

We show part 2. Consider φ ∈ HΩ(v)(s). Choose S ∈ φ. Clearly, [|S ∩ Ω(v)|] = φ.

Note that |S ∩ Ωi(v)| = |ιv,v′(S) ∩ Ωi(v
′)|, since ιv,v′ is an injection. Define ιv,v′ :

HΩ(v)(s) ↪→ HΩ(v′)(s) by ιv,v′(φ) = [|ιv,v′(S) ∩ Ω(v′)|]. Clearly, ιv,v′ is well defined,

and ιv,v′(φ) = φ as numeric partitions of s. It suffices to show that ιv,v′ is injective.

Suppose that,

[|ιv,v′(S) ∩ Ω(v′)|] = ιv,v′(φ)

= ιv,v′(φ
′)

= [|ιv,v′(S ′) ∩ Ω(v′)|],

where S ∈ φ and S ′ ∈ φ′. Note that,

|S ∩ Ωi(v)| = |ιv,v′(S) ∩ Ωi(v
′)|

= |ιv,v′(S ′) ∩ Ωi(v
′)|

= |S ′ ∩ Ωi(v)|.

Hence, S and S ′ belong to the same orbit in HΩ(v)(s). That is, φ = φ′. The result

follows.

We show part 3. Note that, we can partition Ωi(v
′) into ι(Ωi(v))∪Ωi(v

′)′. The in-

jection that ι : Stab(Ω(v)) ↪→ Stab(Ω(v′)) induces essentially maps σ = (σ1, . . . , σd) ∈
Stab(ω(v)) = SΩ1(v) × · · · × SΩd(v) to a ι(σ) = (ι(σ1), . . . , ι(σd)), where ι(σi) acts op

Ωi(v
′) via pullback on the image ι(Ωi(v)), and as identity on the remaing part Ωi(v

′)′.

Clearly, this is an injection of groups. Hence, part 3 follows.
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We show part 4. By assumption, Si = S ∩Ωi(v
′) has size ≤ |Ωi(v)|. Let si = |Si|.

Since SΩi(v′) acts transitively on the si-subsets of Ωi(v
′), we can find a σi ∈ SΩi(v′)

that maps Si to a subset of ι(Ωi(v)). This is possible since si ≤ |Ωi(v)|. Hence,

for each i = 1, . . . , d, we can find σi ∈ SΩi(v′) such that σi(Si) ⊂ ι(Ωi(v)). Clearly,

σ = (σ1, . . . , σd) ∈ Stab(Ω(v′)) is a map such that σ(S) ∈ ι(
(
v
s

)
).

We show part 5. To show part a, note that ιv,v′(S) ⊂ ιv,v′(Ω(v)). Hence, by

definition of ιv,v′(σ),

ιv,v′(σ) · ιv,v′(S) = ιv,v ◦ σ ◦ ι−1
v,v′(ιv,v′(S))

= ιv,v′(σ(S))

= ιv,v′(σ · S).

Hence, part a follows.

Part b follows because ιv,v′ preserves inclusions since it is an injection. That is, if

R ⊂ S, then ιv,v′(R) ⊂ ιv,v′(S).

For part c, it suffices to show:

ιv,v′(Wr,s(v)ẽΩS
) = Wr,s(v

′)ẽιv,v′ (S),

where ẽΩS
=
∑

S′∈ΩS
eS′ . Clearly, this follows by part b.

Proposition 4.5.8 shows that we can think of the spaces HΩ(v)(s) as an ascending

chain of vector spaces or Z-modules. The next proposition shows that this chain

stabilizes.

Proposition 4.5.9. Let vi(∞) = maxv fi(v), where we allow vi(∞) = ∞. Define

γi(s) = min(vi(∞), s), where we assume ∞ ≥ s for all s. Let v∞i (s) be defined as the

first value of v for which fi(v) = γi(s). Define:

v0(s) =
d

max
i=1

v∞i (s).

Then,
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1. If v0(s) ≤ v, then ι : HΩ(v0(s))(s) ↪→ HΩ(v)(s) is onto.

2. If v < v0(s), then ι : HΩ(v)(s) ↪→ HΩ(v0(s))(s) is not onto.

Proof. We show part 1, Let S ∈
(
v
s

)
be an s-subset, and φ = [|S ∩ Ω(v)|]. Note that

φi = |S ∩ Ωi(v)| ≤ fi(v) and φi = |S ∩ Ωi(v)| ≤ s. Consider,

φi ≤ min(fi(v), s)

≤ min(fi(vi(∞)), s)

= fi(v
∞
i (s))

≤ fi(v0(s)),

hence, φ ≤ ω(v0(s)). By proposition 4.5.8 part 4, it follows that there is σ ∈
Stab(Ω(v)) such that σ(S) ∈ ι(

(
v0(s)
s

)
). Thus, φ has a preimage under ι. Because

φ was arbitrary, it follows that ι is onto.

We show part 2. It suffices to construct a φ ∈ HΩ(v0(s))(s) that does not have a

preimage under ι. Since v < v0(s), it must be the case that for some i0, min(fi0(v), s) <

γi0(s). If this is not possible, then v∞i (s) ≤ v for all i and this forces v0(s) ≤ v. Hence,

we assume that there is an i0 is such that min(fi0(v), s) < γi0(s). Consider,

min(fi0(v), s) < γi0(s)

= min(fi0(v
∞
i0

(s)), s)

= min(fi0(v0(s)), s),

hence, there is an i0 such that min(fi0(v), s) < min(fi0(v0(s)), s).

Consider any partition φ ∈ HΩ(v0(s))(s) for which φi0 = min(fi0(v0(s)), s). Clearly,

this φ will not have a preimage under ι.

The quantities v0(s) will be important later. The next proposition shows that

v0(s) is a strictly monotonic function of s.

Proposition 4.5.10. If s < s′, then v0(s) < v0(s
′).
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Proof. Let s < s′. Using the monotonicity of {Ω(v)}∞v=1, we can show that there

is an i for which γi(s) = min(vi(∞), s) < min(vi(∞), s′) = γi(s
′). Since the fi(v)s

are monotonically increasing, it follows that v∞i (s) < v∞i (s′) for some i. Thus, we

conclude v0(s) < v0(s
′).

We introduce a few definitions that will be used in the reduction results of the

next subsection.

Definition 4.5.11. Let {Ω(v)}∞v=1 be a monotone family, and ι an inclusion map for

{Ω(v)}∞v=1. A “compatible set for {Ω}∞v=1” is a family of sets of k-subsets {βt,k(v)}∞v=1

such that,

1. The set βt,k(v) ⊂
(
v
k

)
, where we use

(
v
k

)
to denote the set of all k-subsets.

2. The size of βt,k(v) is
(
v
t

)
.

3. The set βt,k(v) is invariant under the action of Stab(Ω(v)).

4. If v ≤ v′, then,

ι(βt,k(v)) ⊂ βt,k(v
′).

Similarly, we can introduce the notion of equivariant compatible sets.

Definition 4.5.12. Let {Ω(v)}∞v=1 be a monotone family, and ι an inclusion map for

Ω(v). An “equivariant compatible set for {Ω(v)}∞v=1” is a family of sets of k-subsets’

orbits {βGt,k(v)}∞v=1 under the action of G = Stab(Ω(v)) such that:

1. The set βGt,k(v) ⊂ HΩ(v)(k).

2. The size of βGt,k(v) is rG(t).

3. If v ≤ v′, then,

ι(βGt,k(v)) ⊂ βGt,k(v
′).



257

Definition 4.5.13. Let ε be a trivial positive equivariant signing for (M,β), where

M :
(
v
k

)
→
(
v
t

)
is a G-map. We say that ε is G-invariant if and only if ε(σ ·K) = ε(K)

for all σ ∈ G and all K ∈ β.

4.5.1 Reduction Results

In this subsection, we consider a monotone family {Ω(v)}∞v=1 with inclusion map

ι, a compatible set {βt,k(v)}∞v=1, and an equivariant compatible set {βGt,k(v)}∞v=1 for

{Ω(v)}∞v=1 such that the columns of βt,k(v) in Wt,k(v) are Q-linearly independent and

the columns of βGt,k(v) in M ′
t,k(v) are Q-linearly independent. We show,

1. The set βt,k(v) is a (t, k)-basis of Wt,k(v) for v ≥ k + t+ 1 if and only if the set

βt,k(v) is a (t, k)-basis of Wt,k(v) for v = v0(k).

2. The pair (βt,k(v),Wt,k(v)) admits a trivial positive equivariant signing that is

Gv = Stab(Ω(v))-invariant for v ≥ k+t+1 if and only if the pair (βt,k(v),Wt,k(v))

admits a trivial positive equivariant signing that is Gv = Stab(Ω(v))-invariant

for v = v0(k).

3. The set βGt,k(v) is a (t, k)-basis of M ′
t,k(v) for v ≥ k + t+ 1 if and only if the set

βGt,k(v) is a (t, k)-basis of M ′
t,k(v) for v = v0(k).

4. The pair (βGt,k(v),M
′
t,k(v)) admits a trivial positive equivariant signing for v ≥

k+ t+ 1 if and only if the pair (βGt,k(v),M
′
t,k(v)) admits a trivial positive equiv-

ariant signing for v = v0(k).

Proposition 4.5.14. (First Reduction). Let {Ω(v)}∞v=1 be a Monotone Family,

and ι an inclusion map for {Ω(v)}∞v=1. Assume that {βt,k(v)}∞v=1 is Compatible Set

for {Ω(v)}∞v=1 such that the corresponding columns of βt,k(v) in Wt,k(v) are Q-linearly

independent. The following are equivalent,

1. The set βt,k(v) is a (t, k)-basis of Wt,k(v) for v ≥ k + t+ 1.

2. The set βt,k(v0) is a (t, k)-basis of Wt,k(v) for v = v0(k).
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Proof. It suffices to show part 2 implies part 1. We proceed to show this by considering

two separate cases.

Case v0 ≤ v. Let K ∈
(
v
k

)
be a k-subset. By using the same argument of propo-

sition 4.5.9, we can show that there is σ ∈ Stab(Ω(v)) such that σ(K) ∈ ι(Ω(v0)).

Hence, σ(K) = ι(K ′) for some K ′ ∈
(
v0
k

)
. Therefore, K = σ−1 ◦ ι(K ′) for some

K ′ ∈
(
v0
k

)
.

Since βt,k(v0) is a (t, k)-basis for Wt,k(v0), there is an integral vector c with support

in βt,k(v0) such that Wt,k(v0)eK′ = Wt,k(v0)c. By applying ιv0,v to this equation, we

deduce,

Wt,k(v)eι(K′) = ι(Wt,k(v0)eK′)

= ι(Wt,k(v0)c)

= Wt,k(v)c
′,

where c′ is an integral vector with support in ι(βt,k(v0)) ⊂ βt,k(v). By applying σ−1

to both sides of the above equation, we can deduce,

Wt,k(v)eK = Wt,k(v)eσ−1(ι(K′))

= σ−1(Wt,k(v)eι(K′))

= σ−1(Wt,k(v)c
′)

= Wt,k(v)c
′′,

where c′′ is an integral vector with support in σ−1(ι(βt,k(v0))) ⊂ βt,k(v). Hence, the

result follows.

Case v < v0. Let K ∈
(
v
k

)
be a k-subset. Clearly, because the corresponding

columns of βt,k(v) in Wt,k(v) are Q-linearly independent, there is a rational vector

c with support in βt,k(v) such that Wt,k(v)eK = Wt,k(v)c. Hence, by applying ιv,v0

we get that Wt,k(v0)eι(K) = Wt,k(v0)c
′ where c′ is a rational vector with support

ι(βv,k(v)) ⊂ βt,k(v0). Since βt,k(v0) is a (t, k)-basis, it follows that c′ is integral and

this forces c to be integral as well.
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Proposition 4.5.15. (Second Reduction). Let {Ω(v)}∞v=1 be a Monotone Family

and ι an inclusion map for {Ω(v)}∞v=1. Assume that βt,k(v) is Compatible Set for

{Ω(v)}∞v=1 such that the corresponding columns of βt,k(v) in Wt,k(v) are Q-linearly

independent. The following are equivalent,

1. The pair (Wt,k(v), βt,k(v)) affords a trivial positive equivariant signing that is

G = Stab(Ω(v))-invariant for v ≥ k + t+ 1.

2. The pair (Wt,k(v0), βt,k(v)) affords a trivial positive equivariant signing that is

G = Stab(Ω(v))-invariant. for v = v0(k).

Proof. It suffices to show part 2 implies part 1. Let v0 = v0(k). Let εv0 be a

trivial positive equivariant signing for (Wt,k(v0), βt,k(v0)) that is Gv0 = Stab(Ω(v0))-

invariant. We will extend this signing to a signing εv for (Wt,k(v), βt,k(v)) that is

Gv = Stab(Ω(v))-invariant by considering two separate cases.

Case v0 ≤ v. Let K ∈
(
v
k

)
be a k-subset. By using a similar argument as

in proposition 4.5.9, we can show that there is σ ∈ Stab(Ω(v)) such that σ(K) ∈
ι(Ω(v0)). Hence, σ(K) = ι(K ′) for some K ′ ∈

(
v0
k

)
. Define εv(K) = εv0(K

′). Clearly,

εv is well defined since εv0 is Gv0-invariant. Also, by construction, εv is Gv-invariant,

and εv(ι(K
′)) = εv0(K

′).

We show that εv is a trivial positive equivariant signing. Consider K ∈∼ βt,k(v).

Choose σ ∈ Stab(Ω(v)) such that σ(K) = ι(K ′) where K ′ ∈
(
v0
k

)
. By assump-

tion, there is a rational c with support βt,k(v0) and signing given by εv0 such that

Wt,k(v0)eK′ = Wt,k(v0)c. By applying ι to both sides of this equation, we deduce,

Wt,k(v)eσ(K) = Wt,k(v)eι(K′)

= Wt,k(v)c
′,

where c′ is a rational vector with support ι(βt,k(v0)) ⊂ βt,k(v). Note that the signing

of c′ is given by εv since: if K ′ has sign given by εv0(K
′) in the summation expansion

of c, then ι(K ′) has sign given by εv0(K
′) = εv(ι(K

′)) in the summation expansion of

c′.
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Because εv is Gv-invariant, by applying σ−1 to both sides of the above equation,

we deduce Wt,k(v)eK = Wt,kc
′′ where c′′ has support βt,k(v) and signing given by εv.

Hence, εv is indeed a trivial positive equivariant signing.

Case v < v0. It suffices to construct a signing for (Wt,k(v), βt,k(v)). Let K ∈
(
v
k

)
,

consider the signing given by εv(K) = εv0(ι(K)). Clearly, this signing is well defined.

We show that εv is Gv-invariant. Consider,

εv(σ ·K) = εv0(ι(σ ·K))

= εv0(ι(σ) · ι(K))

= εv0(ι(K))

= εv(K).

where, we have used the fact that ι(Stab(Ω(v))) ⊂ Stab(Ω(v0)).

We show that εv is a trivial positive equivariant signing. Consider K ∈∼ βt,k(v).

Clearly, there is a rational c with support in βt,k(v) such that Wt,k(v)eK = Wt,k(v)c.

After applying ι to both sides of this equation, we deduce Wt,k(v0)eι(K) = Wt,k(v0)c
′

where c′ has support in ι(βt,k(v)) ⊂ βt,k(v0). Since εv0 is a trivial positive equivariant

signing, it follows that c′ has signing given by εv0 . Hence, c has signing given by

εv0 ◦ ι = εv.

Proposition 4.5.16. (Third Reduction). Let {Ω(v)}∞v=1 be a Monotone Family,

and ι an inclusion map for {Ω(v)}∞v=1. Assume that βGt,k(v) is an equivariant compat-

ible set for {Ω(v)}∞v=1 such that the corresponding columns of βGt,k(v) in M ′
t,k(v) are

Q-linearly independent. The following are equivalent,

1. The set βGt,k(v) is a (t, k)-basis for v ≥ k + t+ 1.

2. The set βGt,k(v) is a (t, k)-basis for v = v0(k).

Proof. It suffices to show part 2 implies part 1. We show this by considering two

separate cases.

Case v0 ≤ v. Note that v0(t) ≤ v0(k). Hence, by proposition 4.5.9, the spaces
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HΩ(v)(k) = HΩ(v0)(k) and HΩ(v)(t) = HΩ(v0)(t). Thus, by proposition 4.5.4, M ′
t,k(v) =

M ′
t,k(v0). Hence, the result follows.

Case v < v0. Let φ ∈ HΩ(v)(k). Clearly, since the corresponding columns

of βGt,k(v) in M ′
t,k(v) are Q-linearly independent, there is a rational vector c with

support in βGt,k(v) such that Mt,k(v)
′φ = Mt,k(v)

′c. Hence, by applying ιv,v0 , we

deduce that M ′
t,k(v0)ι(φ) = M ′

t,k(v0)
′c′ where c′ is a rational vector with support

ι(βv,k(v)
G) ⊂ βGt,k(v0). Since βt,k(v0) is a (t, k)-basis, it follows that c′ is integral.

Hence, c is integral as well.

Proposition 4.5.17. (Fourth Reduction). Let {Ω(v)}∞v=1 be a Monotone Family

and ι an inclusion map for {Ω(v)}∞v=1. Assume that {βGt,k(v)}∞v=1 is an equivariant

compatible set for {Ω(v)}∞v=1 such that the corresponding columns of βGt,k(v) in M ′
t,k(v)

are Q-linearly independent. The following are equivalent,

1. The pair (M ′
t,k(v), β

G
t,k(v)) affords a trivial positive equivariant signing for v ≥

k + t+ 1.

2. The pair (M ′
t,k(v), β

G
t,k(v)) affords a trivial positive equivariant signing for v =

v0(k).

Proof. It suffices to show part 2 implies part 1. Let v0 = v0(k), and let εv0 be a trivial

positive equivariant signing for (M ′
t,k(v0), β

G
t,k(v0)). Consider the following two cases.

Case v0 ≤ v. Note that v0(t) ≤ v0(k). Hence, by proposition 4.5.9, the spaces

HΩ(v)(k) = HΩ(v0)(k) and HΩ(v)(t) = HΩ(v0)(t). Thus, by proposition 4.5.4, M ′
t,k(v) =

M ′
t,k(v0). Hence, the result follows.

Case v < v0. It suffices to construct a signing εv for (M ′
t,k, β

G
t,k(v)). Let φ ∈

HΩ(v)(k). Consider the signing εv given by εv(φ) = εv0(ι(φ)). Clearly, this signing is

well defined since it is just the restriction of εv0 to HΩ(v)(k).

We show that εv is a trivial positive equivariant signing. Consider φ ∈∼ βGt,k(v).

Clearly there is a rational c with support in βGt,k(v) such that M ′
t,k(v)φ = M ′

t,k(v)c.

After applying ι to both sides, we deduce M ′
t,k(v0)ι(φ) = M ′

t,k(v0)c
′ where c′ has

support in ι(βGt,k(v)) ⊂ βGt,k(v0). Since εv0 is a trivial positive equivariant signing, it

follows that c′ has signing given by εv0 . Hence, c has signing given by εv0 ◦ ι = εv.
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4.5.2 Monotone Families {Ω}∞
v=1

Induced by (t,k)-Bases

We provide examples of (t, k)-bases {βt,k(v)}∞v=1 which admit stabilizer groups of the

form Stab(Ω(v)).

Our first example is the Khosrovshahi-Ajoodani basis, which was introduced

Ajoodani-Namini and Khosrovshahi in [1]. One defines this basis by introducing

the concept of a “starting block.”

Definition 4.5.18. Let K = {b1 < · · · < bk} be a k-subset of {1, . . . , v}. Let

t < k ≤ v−k. K is a “starting (t, k)-block” if and only if all the following inequalities

hold,





bl ≤ v − k − t+ 2l − 2 1 ≤ l ≤ t+ 1,

bl ≤ v − k + l t+ 2 ≤ l ≤ k.

We call K a “nonstarting (t, k)-block,” if it is not a (t, k)-starting block.

Definition 4.5.19. The Khosrovshahi-Ajoodani (K-Aj) (t, k)-basis is defined to be

the set of all nonstarting (t, k)-blocks.

Proposition 4.5.20. The Khosrovshahi-Ajoodani (t, k)-basis is indeed a (t, k)-basis

for Wt,k.

Our second example is the Bier-Frankl basis, which can be deduced indirectly to

be a (t, k)-basis from the work of Bier in [3]. However, because this basis has not

been shown to be a (t, k)-basis in the literature, we will provide a proof showing that

it is a (t, k)-basis by using the K-Aj basis. For now, we will call the Bier-Frankl basis,

the Bier-Frankl set.

One needs to introduce the concept of the Frankl rank to define the Bier-Frankl

set.

Definition 4.5.21. Let K be a k-subset in {1, . . . , v}. The Frankl-Graham density

of K is defined as:

fgd(K) = max
s=1,...,v

{|[1, . . . , s] ∩K| − |[1, . . . , s] ∩ ([1, . . . , k]\K)|}.
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The Frankl rank of K is given by r(K) = k − fgd(K).

A geometrical interpretation of the Frankl rank uses the mapping of a k-subset

K to a walk w(K) on the lattice Z × Z. Given K, define the walk induced by K on

Z×Z, by starting from the origin (0, 0) and ending in (v − k, k) by steps of length 1

where: the ith step is to the right, if i /∈ K; or, up, if i ∈ K. The Frankl rank can

now be defined as k − f where f is the y-intercept of the unique line with slope 1

that touches w(K) from above.

Let us consider the following example. Let K = {1, 3, 4} ⊂ {1, . . . , 7}. Figure 4.4

shows the graphical representation of the walk induced by K and the y-intercept of

the unique line with slope 1 that touches w(K) from above. For this example, the

y-intercept is 2. Hence, r(K) = 3 − 2 = 1.

-1 0 1 2 3 4 5

-1

0

1

2

3

4

��

�� ��

��

�� �� �� ��

Figure 4.4. Calculating the Frankl rank for the 3-subset {1, 3, 4} ⊂ {1, . . . , 7}.

One can also give an inequality definition of the Frankl rank.

Proposition 4.5.22. Let K = {a1 < · · · < ak} be a k-subset in {1, . . . , v}. K has

Frankl rank r if and only if the following hold,

1. The following inequality holds, ai + (k − r) ≥ 2i for i = 1, . . . , k.

2. There is an i0 such that ai0 + (k − r) = 2i0.

Proof. Let K = {a1 < · · · < ak} be a k-subset. Let f = fgd(K). Then, y = x + f

bounds w(K) tightly from above. That is, y(i) ≥ wi, where (i, wi) is a lattice point
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on w(K). Clearly, if (i, wi) ∈ w(K), then (i, wi) is the end of the i+wi = sth edge of

w(K) where the 1st edge starts at the origin. Also, if i+wi = s ∈ K, then s = as0 for

some s0. By construction, it is clear that s0 must equal wi. Hence, i+wi = awi
∈ K.

By choice of f ,

1. The following inequality holds, y(i) = i+ f ≥ wi. Thus, awi
+ f = wi + i+ f ≥

2wi. Hence, as + f ≥ 2s.

2. There is an i0 such that y(i0) = i0 + f = wi0 . Thus, awi0
+ f = wi0 + i0 + f =

wi0 + wi0 = 2wi0 . Hence, there is an s0 = wi0 such that as0 + f = 2s0.

Since f + r = k, the result follows.

Definition 4.5.23. The Bier-Frankl (B-F) (t, k)-set is defined to be the set of all

K-subsets with 0 ≤ r(K) ≤ t.

The next result shows that the K-Aj basis is equivalent to the B-F set.

Proposition 4.5.24. Let βt,k be the K-Aj basis, and β ′
t,k the B-F set. Let θ :

{1, . . . , v} → {1, . . . , v} be defined as θ(s) = v − s+ 1. Then, θ(βt,k) = β ′
t,k.

Proof. It suffices to show that θ(∼ βt,k) =∼ β ′
t,k. Clearly,

K = {b1 < · · · < bk} ∈∼ βt,k,

if and only if the following hold:





bl ≤ v − k − t+ 2l − 2 = θ(k + t+ 1 − 2(l − 1)) 1 ≤ l ≤ t+ 1,

bl ≤ v − k + l = θ(k − l + 1) t+ 2 ≤ l ≤ k.

Since, θ(a) ≤ θ(b) if and only if a ≥ b, and θ(θ(a)) = a; it follows that:





θ(bl) ≥ k + t+ 1 − 2(l − 1) 1 ≤ l ≤ t+ 1,

θ(bl) ≥ k − l + 1 t+ 2 ≤ l ≤ k.

Note that, θ(b1) > · · · > θ(b1). Let as = θ(bk−s+1). Clearly θ(K) = {a1 < · · · < ak}.
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It suffices to show that,

ai + (k − t− 1) ≥ 2i, for i = 1, . . . , k.

Because, this will imply that r(θ(K)) ≥ t + 1 by proposition 4.5.22. Let us consider

the first (t+ 1) inequalities:

ak ≥ k + t+ 1,

ak−1 ≥ k + t− 1,

ak−2 ≥ k + t− 3,

...

ak−t ≥ k − t+ 1.

By adding k − t− 1 to all the inequalities, we deduce:

ak + k − t− 1 ≥ 2k,

ak−1 + k − t− 1 ≥ 2(k − 1),

ak−2 + k − t− 1 ≥ 2(k − 2),

...

ak−t + k − t− 1 ≥ 2(k − t).

Now, let us consider the last (k − t− 1) inequalities:

as ≥ s where 1 ≤ s ≤ k − t− 1.

Note that, as + k − t− 1 ≥ s+ k − t− 1 ≥ s+ s = 2s. Thus, as + k − t− 1 ≥ 2s for

s = 1, . . . , k. The result follows.

Corollary 4.5.25. The B-F (t, k)-set is indeed a (t, k)-basis. We will refer to the

B-F (t, k)-set as the B-F (t, k)-basis.

Proof. This is a clear consequence of θ(βt,k) = β ′
t,k and the fact that Wt,k is an Sv-map
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hence commuting with θ.

Using the definition of the K-Aj basis, one can deduce a stabilizer group.

Proposition 4.5.26. Let βt,k be the K-Aj basis. Let,

Ωt,k = Ω1 ∪ · · · ∪ Ωt+2

= {1, . . . , v − k − t} ∪ {v − k − t+ 1, v − k − t+ 2} ∪

∪ · · · ∪ {v − k + t− 1, v − k + t} ∪ {v − k + t+ 1, . . . , v}.

Then, G = Stab(Ωt,k) is a stabilizer group of βt,k.

Proof. It suffices to show that G stabilizes ∼ βt,k. Let K = {b1 < · · · < bk} ∈∼ βt,k,

then the following must hold:





bl ≤ v − k − t+ 2l − 2 1 ≤ l ≤ t+ 1,

bl ≤ v − k + l t+ 2 ≤ l ≤ k.

Clearly, if we show the first (t + 1) inequalities, then the remaining follow by the

monotonicity of the bis.

It is a clear exercise that the G preserves the first (t+ 1) inequalites.

Corollary 4.5.27. Let β ′
t,k be the B-F basis. Let,

Ω′
t,k = Ω′

t+2 ∪ · · · ∪ Ω′
1

= {v, . . . , k + t+ 1} ∪ {k + t, k + t− 1} ∪

∪ · · · ∪ {k − t+ 2, k − t+ 1} ∪ {k − t, . . . , 1}.

Then, G = Stab(Ω′
t,k) is a stabilizer group of β ′

t,k.

Proof. Because β ′
t,k = θ(βt,k), it must be necessary that θStab(Ωt,k)θ

−1 = Stab(θ(Ωt,k))

is a stabilizer group of θ(βt,k) = β ′
t,k. Since Ω′

t,k = θ(Ωt,k) the result follows.

For the K-Aj basis βt,k, one can characterize the orbits in (Ck(X))0 that belong

to βt,k. We summarize this in the next proposition.
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Proposition 4.5.28. Let βt,k be the K-Aj basis, and G = Stab(Ωt,k). Then,

HΩt,k(k)∩ ∼ βGt,k = {[φ1, . . . , φt+1, φt+2] | r ≤
r∑

s=1

φs, r = 1, . . . , t+ 1}.

Proof. Let K = {b1 < · · · < bk} ∈∼ βt,k. The following must hold:





bl ≤ v − k − t+ 2l − 2 1 ≤ l ≤ t+ 1,

bl ≤ v − k + l t+ 2 ≤ l ≤ k.

Consider [φ1, . . . , φt+1, φt+2] = [|K ∩Ωt,k|]. Clearly, the first (t+1) inequalities trans-

late to:

r ≤
r∑

s=1

φs where r = 1, . . . , t+ 1. (4.11)

Because the remaining inequalites follow from the first (t + 1) inequalites by using

the assumption that the bis are monotonic, it must follow that Equation (4.11) is

necessary and sufficient.

4.5.3 The Equivariant Sign Conjecture

Let βt,k be the K-Aj basis or the B-F basis. Given the triple (Wt,k, βt,k, G), where

Stab(Ωt,k)); one can ask whether (M ′
t,k, β

G
t,k) affords a trivial positive equivariant

signing that is G-invariant. We will conjecture that these signing exist.

Conjecture 4.5.29. The Equivariant Sign Conjecture for the K-Aj basis. Let

t ≤ k ≤ v − k, βt,k be the K-Aj basis, and G = Stab(Ωt,k). Then, the pair (Wt,k, βt,k)

affords a trivial positive equivariant signing that is G-invariant.

Because the K-Aj basis is equivalent to the B-F basis, one can formulate an anal-

ogous conjecture for the B-F basis.

Conjecture 4.5.30. The Equivariant Sign Conjecture for the B-F basis. Let

t ≤ k ≤ v − k, β ′
t,k be the B-F basis, and G′ = Stab(Ω′

t,k). Then, the pair (Wt,k, β
′
t,k)

affords a trivial positive equivariant signing that is G-invariant.
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Using the results of the previous subsection, one can reduce the Equivariant Sign

Conjecture for the B-F basis.

Proposition 4.5.31. Let t ≤ k ≤ v − k, β ′
t,k(v) be the B-F basis, and G′ =

Stab(Ω′
t,k(v)) its Stabilizer group. Then, the following are equivalent,

1. The pair (Wt,k(v), β
′
t,k(v)) affords a trivial positive equivariant signing that is

G-invariant where v ≥ k + t+ 1.

2. The pair (Wt,k(v0), β
′
t,k(v0)) affords a trivial positive equivariant signing that is

G-invariant where v0 = 2k + t.

Proof. We will use the Second Reduction of the last subsection. Clearly, {Ω′
t,k(v)}∞v=1

is a Monotone Family. Also, we can use the natural inclusion ι : {1, . . . , v} ↪→
{1, . . . , v′} to extend to an inclusion map for {Ω′

t,k(v)}∞v=1. By construction, the B-

F basis is a Compatible Set for {Ω′
t,k(v)}∞v=1. This is because βt,k(v)

′ ⊂ βt,k(v
′)′

naturally. Clearly, the columns that corresponds to βt,k(v)
′ in Wt,k(v) are Q-linearly

independent since βt,k(v)
′ is a (t, k)-basis. Thus, the Second Reduction applies, and

it suffices to calculate v0(k).

Clearly, f1(v) = k−t, f2(v) = 2, . . . , ft+1(v) = 2, and ft+1 = f where v = k+t+f .

Hence, γ1(k) = k − t, γ2(k) = 2, . . . , γt+1(k) = 2, and γt+2(k) = k. Thus, v∞1 = v∞2 =

· · · = v∞t+1 = k + t+ 1, and v∞t+1 = k + t+ k = 2k + t. Therefore, v0(k) = 2k + t.

As a corollary, we formulate a similar reduction for the K-Aj basis.

Corollary 4.5.32. Let t ≤ k ≤ v−k, βt,k(v) be the K-Aj basis, and G = Stab(Ωt,k(v)).

Then, the following are equivalent,

1. The pair (Wt,k(v), βt,k(v)) affords a trivial positive equivariant signing that is

G-invariant where v ≥ k + t+ 1.

2. The pair (Wt,k(v0), βt,k(v0)) affords a trivial positive equivariant signing that is

G-invariant where v0 = 2k + t.
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Proof. It suffices to show part 2 implies part 1. Let εv0 be a trivial positive equiv-

ariant signing for (Wt,k(v0), βt,k(v0)) that is G-invariant. Since β ′
t,k(v0) = θ(βt,k(v0)),

ε′v0 = θ ◦ εv0 ◦ θ−1 is a trivial positive equivariant signing for (Wt,k(v0), β
′
t,k(v0)) that

is Stab(Ωt,k(v0)
′)-invariant. Hence, by proposition 4.5.31, there is a trivial posi-

tive equivariant signing ε′v of βt,k(v)
′ that is Stab(Ωt,k(v)

′)-invariant. By defining,

εv = θ−1 ◦ ε′v ◦ θ, one can check that εv is a trivial positive equivariant signing for

(βt,k(v),Wt,k(v)) that is Stab(Ωt,k(v))-invariant.

We proceed to check the conjectures for the cases (t, k) = (1, 2) and (2, 3). By

using the Second Reduction, it suffices to check the conjecture for the case v = 2k+ t.

In the following proposition we will show a much stronger result than the Equivariant

Sign Conjecture. We will show the existence of trivial positive equivariant G-signing

for v = 2k + 1.

Proposition 4.5.33. Let β1,2 be the K-Aj basis, and G = Stab(Ω1,2). Let v = v0(2) =

1 + 2 ∗ 2 = 5. Then,

1. A basis for HΩ1,2(1) is given by:

{[0, 0, 1], [0, 1, 0], [1, 0, 0]}.

2. A basis for HΩ1,2(2) is given by:

β1,2 ∪ (∼ β1,2) = {[1, 0, 1], [0, 1, 1], [0, 2, 0]} ∪ {[2, 0, 0], [1, 1, 0]}.

3. The pair (M ′
1,2, β

G
1,2) affords a trivial positive equivariant signing.

4. The pair (W1,2, β1,2) affords a trivial positive equivariant G-signing.

Proof. Parts 1 and 2 follow by direct computation, and by proposition 4.5.28.
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We show part 3. Using the basis of parts 1 and 2, M ′
1,2 has matrix representation:




1 0 0 2 1

0 1 2 0 1

1 1 0 0 0


 .

Note that M ′
1,2 has Reduced Row Echelon Form:




1 0 0 2 1

0 1 0 −2 −1

0 0 1 1 1


 .

Hence, we deduce that (M ′
1,2, β

G
1,2) has a trivial positive equivariant signing by propo-

sition 4.4.5. This signing is given by,

εG([1, 0, 1]) = 1, εG([0, 1, 1]) = −1, εG([0, 2, 0]) = 1.

We show that (W1,2, β1,2) affords a trivial positive equivariant G-signing, We will use

the signing inhereted from (M ′
1,2, β

G
1,2). That is, ε(K) = εG([|K ∩ Ω1,2|]).

Define ē = v − e, and 1̄∗ = 2̄, 2̄∗ = 1̄. Let a, b ∈ {1, . . . , v − 3}. We will consider

each orbit of ∼ β1,2 as a case. Hence, giving a total of two cases. We proceed to show

these cases.

Case [2,0,0]. Let {a, b} ∈ [2, 0, 0]. Let:

v[2,0,0] = {a, 0̄} + {b, 0̄} + {1̄, 1̄∗} − {1̄, 0̄} − {1̄∗, 0̄}.

Clearly, v[2,0,0] ∈ ColZ(Wβ1,2), and affords the same signing as εG. Also, a direct

calculation shows that W1,2{a, b} = W1,2v[2,0,0].

Case [1,1,0]. Let {a, ē} ∈ [1, 1, 0], where e = 1 or 2. Let:

v[1,1,0] = {a, 0̄} + {ē, ē∗} − {ē∗, 0̄}.
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Clearly, v[1,1,0] ∈ ColZ(Wβ1,2), and affords the same signing as εG. Also, a direct

calculation shows that W1,2{a, ē} = W1,2v[1,1,0].

Proposition 4.5.34. Let β2,3 be the K-Aj basis, and G = Stab(Ω2,3). Let v = v0(d) =

2 + 3 ∗ 2 = 8. Then,

1. A basis for HΩ2,3(2) is given by:

{[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 0, 0], [0, 1, 0, 1], [1, 0, 0, 1], [0, 0, 1, 1],

[0, 2, 0, 0], [0, 0, 2, 0], [2, 0, 0, 0]}.

2. A basis for HΩ2,3(3) is given by β2,3∪ ∼ β2,3 where:

β2,3 = {[0, 2, 1, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 2, 0], [1, 0, 2, 0],

[2, 0, 0, 1], [0, 1, 1, 1], [0, 0, 2, 1], [0, 2, 0, 1]},

∼ β2,3 = {[3, 0, 0, 0], [1, 2, 0, 0], [1, 1, , 1, 0], [2, 1, 0, 0], [2, 0, 1, 0]}.

3. The pair (M ′
2,3, β

G
2,3) affords a trivial positive equivariant signing.

4. The pair (W2,3, β2,3) affords a trivial positive equivariant G-signing.

Proof. Parts 1 and 2 follow by direct computation, and by proposition 4.5.28.

We show part 3. Using the basis of parts 1 and 2, M ′
2,3 has matrix representation:




2 0 0 2 0 0 1 0 0 0 0 1 0 0

0 0 1 0 2 0 0 0 0 0 0 1 0 2

0 1 0 0 0 0 0 0 0 0 2 1 2 0

0 1 0 0 0 0 1 0 2 0 0 0 0 0

0 1 1 0 0 2 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 2 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 3 0 0 1 1




.
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A calculation of the Reduced Row Echelon Form gives:




1 0 0 0 0 0 0 0 0 2 2 1 2 1

0 1 0 0 0 0 0 0 0 0 2 1 2 0

0 0 1 0 0 0 0 0 0 −6 −2 −1 −4 −2

0 0 0 1 0 0 0 0 0 −4 −2 −1 −3 −2

0 0 0 0 1 0 0 0 0 3 1 1 2 2

0 0 0 0 0 1 0 0 0 3 0 0 1 1

0 0 0 0 0 0 1 0 0 4 0 1 2 2

0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1 −2 −1 −1 −2 −1




.

Hence, we can deduce that (M ′
2,3, β

G
2,3) affords a trivial positive equivariant signing

by proposition 4.4.5. This signing is given by:

εG([0, 2, 1, 0]) = 1, εG([1, 1, 0, 1]) = 1, εG([1, 0, 1, 1]) = −1,

εG([0, 1, 2, 0]) = −1, εG([1, 0, 2, 0]) = 1, εG([2, 0, 0, 1]) = 1,

εG([0, 1, 1, 1]) = 1, εG([0, 0, 2, 1]) = 1, εG([0, 2, 0, 1]) = −1.

We show part 4. We will use the signing inhereted from (M ′
2,3, β

G
2,3). Define ε(K),

for K ∈ β2,3, by lettting ε(K) = εG([|K ∩ Ω2,3|]).
Define ē = v − e. Define 1̄∗ = 2̄, 2̄∗ = 1̄, 3̄∗ = 4̄, and 4̄∗ = 3̄. Let a, b, c ∈

{1, . . . , v − 5}. Consider the following parametrization for the orbits of ∼ β2,3.

• {a, 3̄, 3̄∗} be a representative of the orbit [1, 2, 0, 0].

• {a, ē, f̄} (where e = 3, 4 and f = 1, 2) be a representative of the orbit [1, 1, 1, 0].

• {a, b, ē} (where e = 3, 4) be a representative of the orbit [2, 1, 0, 0].

• {a, b, f̄} (where f = 1, 2) be a representative of the orbit [2, 0, 1, 0].

• {a, b, c} be a representative of the orbit [3, 0, 0, 0].



273

We will consider each orbit of ∼ β2,3 as a case. Thus, giving a total of five cases.

Case [3,0,0,0]. This case can be solved by considering the following calculation.

Let,

v[3,0,0,0] = {1̄, 1̄∗, 0̄} + {3̄, 1̄, 0̄} + {3̄, 1̄∗, 0̄} + {3̄∗, 1̄, 0̄} + {3̄∗, 1̄∗, 0̄}

−2{3̄, 1̄, 1̄∗} − 2{3̄∗, 1̄, 1̄∗} − 2{3̄, 3̄∗, 0̄} + {3̄, 3̄∗, 1̄} + {3̄, 3̄∗, 1̄∗}

−{a, 1̄, 0̄} − {a, 1̄∗, 0̄} − {b, 1̄, 0̄} − {b, 1̄∗, 0̄}

−{c, 1̄, 0̄} − {c, 1̄∗, 0̄} + {a, 1̄, 1̄∗} + {b, 1̄, 1̄∗}

+{c, 1̄, 1̄∗} + {a, b, 0̄} + {b, c, 0̄} + {a, c, 0̄}.

It can be shown by direct calculation that W2,3{a, b, c} = W2,3v[3,0,0,0]. Clearly, v[3,0,0,0]

has the signing given by ε.

Case [2,0,1,0]. This case can be solved by considering,

v[2,0,1,0] = {3̄, f̄ ∗, 0̄} + {3̄∗, f̄ ∗, 0̄} − {3̄, 1̄, 1̄∗} − {3̄∗, 1̄, 1̄∗}

−{3̄, 3̄∗, 0̄} + {3̄, 3̄∗, f̄} − {a, f̄ ∗, 0̄} − {b, f̄ ∗, 0̄}

+{a, 1̄, 1̄∗} + {b, 1̄, 1̄∗} + {a, b, 0̄}.

It can be shown by direct calculation that W2,3{a, b, f̄} = W2,3v[2,0,1,0] where f = 1, 2.

Clearly, v[2,0,1,0] has the signing given by ε.

Case [2,1,0,0]. Let,

v[2,1,0,0] = {1̄, 1̄∗, 0̄} + {ē∗, 1̄, 0̄} + {ē∗, 1̄∗, 0̄} − 2{ē∗, 1̄, 1̄∗}

−{ē, 1̄, 1̄∗} − 2{3̄, 3̄∗, 0̄} + {3̄, 3̄∗, 1̄} + {3̄, 3̄∗, 1̄∗}

−{a, 1̄, 0̄} − {a, 1̄∗, 0̄} − {b, 1̄, 0̄} − {b, 1̄∗, 0̄}

+{a, 1̄, 1̄∗} + {b, 1̄, 1̄∗} + {a, ē, 0̄} + {b, ē, 0̄}

+{a, b, 0̄}.

As the previous cases, it can be shown by direct calculation that: W2,3{a, b, ē} =

W2,3v[2,1,0,0] where e = 3, 4. Clearly, v[2,1,0,0] has the signing given by ε.
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Case [1,2,0,0]. Let,

v[1,2,0,0] = {1̄, 1̄∗, 0̄} − {3̄, 1̄, 1̄∗} − {3̄∗, 1̄, 1̄∗} − {3̄, 3̄∗, 0̄}

+{3̄, 3̄∗, 1̄} + {3̄, 3̄∗, 1̄∗} − {a, 1̄, 0̄} − {a, 1̄∗, 0̄}

+{a, 1̄, 1̄∗} + {a, 3̄, 0̄} + {a, 3̄∗, 0̄}.

As the previous cases, it can be shown by direct calculation that: W2,3{a, 3̄, 3̄∗} =

W2,3v[1,2,0,0]. Clearly, v[1,2,0,0] has the signing given by ε.

Case [1,1,1,0]. Let,

v[1,1,1,0] = {ē∗, f̄ ∗, 0̄} − {ē∗, 1̄, 1̄∗} − {3̄, 3̄∗, 0̄} + {3̄, 3̄∗, f̄}

−{a, f̄ ∗, 0̄} + {a, 1̄, 1̄∗} + {a, ē, 0̄}.

As the previous cases, it can be shown that: W2,3{a, ē, f̄} = W2,3v[1,1,1,0] where e = 3, 4

and f = 1, 2. Clearly, v[1,1,1,0] has the signing given by ε.

We note that we have checked the Equivariant Sign Conjecture for the cases

(t, k) = (3, 4), (4, 5) and (5, 6) by using a computer program. We do not include the

proofs of these cases since they involve a large number of cases.

4.6 The Case G = (Z/nZ)

In what follows, we will define s∗ as n − s. We consider the matrices Mt,k and M ′
t,k

when the action is given by G = (Z/nZ), the cyclic group of order n, and v = n.

We propose the following conjectures:

Conjecture 4.6.1. The (t,k)-basis conjecture. Weak version. Let t < k ≤
n− k ≤ n− t. If gcd(tk, n) = 1, then,

1. The matrix M ′
t,k(n) affords a (t, k)-basis.

2. The matrix Mt,k(n) affords a (t, k)-basis.
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Conjecture 4.6.2. The (t,k)-basis conjecture. Strong version. Let t < k ≤
n− k ≤ n− t then M ′

t,k(n) affords a (t, k)-basis.

We will show under the assumption gcd(tk, n) = 1 that Mt,k(n) = M ′
t,k(n). Thus,

the weak (t, k)-basis conjecture is really a conjecture about the matrices M ′
t,k(n).

We will check the these conjectures by finding a (t, k)-basis for the cases (t, k) =

(2, 3), (2, 4), and show some progress for the case (3, 4). Using the found (t, k)-basis,

we will calculate the Smith Group of M2,3,M
′
2,3,M2,4,M

′
2,4. Also, we will show the

following consequence of the (t, k)-basis conjecture:

Proposition 4.6.3. Let gcd(n, (2(k− 1))!) = 1, and t < k ≤ n− k ≤ n− t. Assume

the (t, k)-basis conjecture holds for n and all t, k where t < k ≤ n− k. Then, M ′
t,k(n)

has Smith Group given by:

(Z/

(
k

t

)
Z) × (Z/

(
k − 2

t− 2

)
Z)r2(n)−1 × (Z/

(
k − 3

t− 3

)
Z)r3(n)−r2(n) × · · ·

×(Z/

(
k − (t− 1)

t− (t− 1)

)
Z)rt−1(n)−rt−2(n),

where ri(n) =
(n

i)
n

is the number of orbits of (Z/nZ) on the i-subsets for i = 2, . . . , t.

We close the section with some ideas on how to find a (t, k)-basis for Mt,k(n)′.

4.6.1 The Orbits of (Z/nZ) On the k-subsets

We will propose a method for counting the orbits of k-subsets under the action of

(Z/nZ) by partitioning the k-subsets’ orbits into classes corresponding to partitions

of k. We will use the results of this subsection in the (t, k)-basis results.

Let us introduce the notion of a “cyclic ordered partition” to algebraically manip-

ulate the orbits of (Z/nZ).

Definition 4.6.4. Let n = a1 + · · · + ak be a partition of n with exactly k parts

where the order of the ais matter. Denote this partition by [a1, . . . , ak]. We will call

[a1, . . . , ak] an ordered partition of n with k parts.



276

Let G = Z/kZ act on the ordered partitions by t · [a1, . . . , ak] = [a1+t, . . . , ak+t],

where the subscripts are taken modulo k.

An orbit of the action of Z/kZ on the ordered partitions of n with exactly k parts

will be called a “cyclic ordered partition” of n with k parts.

The following proposition motivates our defintion.

Proposition 4.6.5. There is a one to one correspondence between the orbits of G on

the k-subsets and the set of cyclic ordered partitions of n with k parts.

Proof. We will show the proposition by example. Take for instance n = 7 and consider

the 3-subset K = {1, 3, 7}. Let us think of the set {1, . . . , 7} as 7 points evenly spaced

on the unit circle, where we number the points in increasing order using the clockwise

direction. Label the points of K with a circle. figure 4.5 shows the set K, and all

the other sets K + i that are in the orbit of K under the action of (Z/7Z). As
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Figure 4.5. The orbits of {1, 3, 7} under the action of (Z/7Z).

it is shown by the pictures of figure 4.5, the circular distances between consecutive

points of K are the same to the circular distances between consecutive points of

K ′ ∈ ΩK . Hence, the circular distances and their order in the clockwise direction

are an invariant of the action of (Z/7Z) on the orbit Ω{1,2,6}. Clearly, this invariant

information is represented by the cyclic ordered partition [1, 2, 4] using the clockwise
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direction. Similary, we can generate a cyclic ordered partition of n of size 3 for every

3-subsets’ orbit ΩK . It is a clear exercise to show that if two orbits generate the same

cyclic ordered partition of n of size three then they must be the same.

One can define the following map,

ψ(Ω{x1<x2<x3}) = [x2 − x1, x3 − x2, 7 − x3 + x1],

clearly an injection between the orbits of (Z/7Z) on the 3-subsets and the cyclic

ordered partitions of 7 of size 3. Conversely, one can define an inverse of ψ given by

φ as:

φ([a1, a2, a3]) = Ω{0,a1,a1+a2},

It is an easy exercise to show that φ and ψ are inverses of one another. Hence, the

result follows for (Z/7Z) and the 3-subsets.

For the general case, φ and ψ are given by:

ψ(Ω{x1<···<xk}) = [x2 − x1, x3 − x2, . . . , xk − xk−1, n− xk + x1],

φ([a1, . . . , ak]) = Ω{0,a1,a1+a2,...,a1+···+ak−1}.

For the rest of the section, we will use the language of cyclic ordered partitions

of n of size k to refer to the orbits of (Z/nZ) on the k-subsets. We will also use

the functions ψ,φ of proposition 4.6.5 whenever needed. The following Propsition

characterizes the k-subsets’ orbits.

Proposition 4.6.6. Let K ⊂ {0, . . . , n− 1} be a k-subset, and G = (Z/nZ). Then,

1. If 0 ∈ K, and g +K = K, then g ∈ K.

2. Let GK be the stabilizer of K in G, then there are g1, . . . , gr with 0 ≤ r ≤ [G :
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GK ] such that:

K = (GK + g1) ∪ (GK + g2) ∪ · · · ∪ (GK + gr),

where the above equation is viewed as an equation of sets.

3. For some integer r, k = |GK |r.

4. The gcd(k, n) divides |GK |.

5. Let a = [G : GK ], and r = |GK |
k

. Let ψ be the function defined in the proof of

proposition 4.6.5. The cyclic ordered partition of ΩK is given by:

ψ(ΩK) = [b1, . . . , br, b1, . . . , br, . . . , b1, . . . , br],

where the expansion b1, . . . , br is a partition of a, i.e., b1 + · · · + br = a where

the order of the bis is not important, and repeats itself |GK | times.

6. The following holds, |ΩK | = n
|GK | = a.

Proof. Part 1 is clear.

We show part 2. It suffices to show the claim when 0 ∈ K. Hence, we can assume

that GK ⊂ K. By considering the set K
GK

, we will be able to deduce the claim as long

as we show that: if (GK + g) ∩K 6= φ, then (GK + g) ⊂ K. Thus, let g + g′ ∈ K,

where g′ ∈ GK . Let g′′ ∈ GK , then g + g′ + g” ∈ (K + g′′) = K. Hence, the claim

follows since g′′ ∈ GK is arbitrary.

Part 3 is a clear consequence of part 2. Part 4 is a clear consequence of part 3.

We show part 5. Assume that K ∈ ΩK , where 0 ∈ K. Let s = |GK |, r = |GK |
k

,

and a = [G : GK ]. By part 2, there are g2, . . . , gr such that:

K = GK ∪ (GK + g2) ∪ · · · ∪ (GK + gr),

In particular, GK ⊂ K. Since G is cyclic, GK is also cyclic. Thus, GK = 〈n
s
〉 = 〈a〉.

As K is a the union of cosets of GK , we can choose the gis in the decomposition of
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part 2 to be such that 0 ≤ gi < a. Let K0 = {0, g2, . . . , gr} ⊂ {0, . . . , a}. Define,

b1 = g2, b2 = g3 − g2, · · · br−1 = gr − gr−1, br = a − gr. Clearly, the bis denote the

consecutive circular distances of the points of K in {0, . . . , a}. Because GK translates

these circular distances to the set {a, . . . , 2a}, and then to {2a, . . . , 3a}, and so on; it

follows that the cyclic ordered partition for K has form:

ψ(ΩK) = [b1, . . . , br, b1, . . . , br, . . . , b1, . . . , br].

Hence, the result follows.

Part 6 is clear.

As Corollaries, we calculate the sizes of orbits for small cases.

Corollary 4.6.7. (2-subsets). Let (Z/nZ) act on the 2-subsets, and let K be a

2-subset. Then,

1. If gcd(n, 2) = 1, then |ΩK | = n for all K.

2. Assume gcd(n, 2) = 2. Then,

|ΩK | =





n
2

if ψ(ΩK) = [n
2
, n

2
],

n else.

Corollary 4.6.8. (3-subsets). Let (Z/nZ) act on the 3-subsets, and let K be a

3-subset. Then,

1. If gcd(n, 3) = 1, then |ΩK | = n for all K.

2. Assume gcd(n, 3) = 3. Then,

|ΩK | =





n
3

if ψ(ΩK) = [n
3
, n

3
, n

3
],

n else.

Corollary 4.6.9. (4-subsets). Let (Z/nZ) act on the 4-subsets, and let K be a

4-subset. Then,
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1. If gcd(n, 4) = 1, then |ΩK | = n for all K.

2. Assume gcd(n, 4) = 2. Then,

|ΩK | =





n
2

if ψ(ΩK) = [a, b, a, b] where a+ b = n
2
,

n else.

3. Assume gcd(n, 4) = 4. Then,

|ΩK | =





n
4

if ψ(ΩK) = [n
4
, n

4
, n

4
, n

4
],

n
2

if ψ(ΩK) = [a, b, a, b] where a+ b = n
2
, a 6= b,

n else.

Definition 4.6.10. Let {x} be a partition of n given by f1a1 + · · ·+ frar where part

a1 repeats f1 times, part a2 repeats f2 times, . . . , and part ar repeats fr times. We

will denote {x} by af1
1 · · · afr

r .

Given a partition {x} = af11 · · · afr
r , one can ask how many cyclic ordered par-

titions with k = f1 + · · · + fr parts of n afford the partition {x}. An effective

answer to this question will help us find (2, 3)-bases and (2, 4)-bases. One can

find the number of such cyclic ordered partitions by using Burnside’s Formula for

Group Actions applied to the group (Z/kZ) acting on the set of Ordered Parti-

tions X = {[a0, . . . , ak−1] | [a0, . . . , ak−1] affords {x}} where the action is defined

by r · [a0, . . . , ak−1] = [a0+r, · · · .ak−1+r] with the subscripts taken modulo k. The

following proposition summarizes the calculation.

Proposition 4.6.11. Let {x} = af11 · · · afr
r be a partition of n with k parts. The

number of cyclic ordered partitions affording {x} is given by the sum:

1

k

∑

t∈Z/kZ

χ(t),
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where,

χ(t) =





( k
o(t)

)!

(
f1

o(t)
)!(

f2
o(t)

)!···( fr
o(t)

)!
if o(t) divides fi for all i,

0 else,

and o(t) = k
gcd(k,t)

.

As a corrollary, when gcd(n, k) = 1, we can tell how many cyclic ordered partitions

are afforded by a fixed partition of n with exactly k parts.

Corollary 4.6.12. Let {x} = af11 · · · afr
r be a partition of n with k parts, and let

gcd(n, k) = 1. The number of cyclic ordered partitions affording {x} is:

(k − 1)!

(f1)! · · · (fr)!
.

Proof. It suffices to show in the formula of proposition 4.6.11 that χ(t) = 0 whenever

t 6= 0.

If o(t) divides all fi, then o(t) divides f1 + · · · + fr = k, and o(t) divides f1a1 +

· · ·+ frar = n. Hence, o(t) divides gcd(n, k) = 1. Thus, o(t) = 1. That is, t = 0. We

have shown: if χ(t) 6= 0 then t = 0. The result follows.

We close this subsection with a calculation of the number of k-subsets’ orbits when

gcd(n, k) = 1.

Proposition 4.6.13. Let gcd(n, k) = 1, then number of orbits of Z/nZ on the k-

subsets is
(n

k)
n

.

Proof. By using Burnside’s formula, it suffices to calculate the number rk(n) given

by:

rk(n) =
1

n

n−1∑

i=0

πk(i),

where πk(i) = |{K ∈
(
n
k

)
| i + K = K}|. By assumption and proposition 4.6.6, it
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follows that:

πk(i) =





(
n
k

)
if i = 0,

0 else.

Hence, the result follows.

4.6.2 A Partition of the k-subsets’ Orbits of (Z/nZ)

We will propose a partition of the orbits of (Z/nZ) on the k-subsets by using the

partitions of k. This partition will prove instrumental when showing the existence of

a (2, 3)-basis and (2, 4)-basis.

We will denote the number of partitions of n with r parts by pr(n). The partition

of the k-orbits is motivated by the following result.

Proposition 4.6.14. If n ≥ 2k, then pn−k(n) = p(k). That is, the number of

partitions of n with exactly n− k parts is equal to the number of partitions of k.

Proof. Define,

Tk = {{x} | {x} is a partition of n with n− k parts},

Sk = {{p} | {p} is a partition of k}.

It suffices to show a bijection η : Tk → Sk.

Consider a partition {x} = af11 a
f2
2 · · · afr

r of n with n− k parts, i.e., f1 + · · ·+ fr =

n− k and 1 = a1 < a2 < · · · < ar. Clearly,

n = f1 + a2f2 + · · · + arar

≥ f1 + 2f2 + · · · + 2fr

= 2(n− k) − f1,
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hence, f1 ≥ n− 2k ≥ 0. Consider,

(f1 − (n− 2k)) + f2a2 + · · · + frar = n− (n− 2k)

= 2k,

hence, we get a partition of 2k with (f1 − (n − 2k)) + f2 + · · · + fr = k parts. By

substracting 1 from each of the parts, we get a partition of k = f2(a2 − 1) + · · · +

fr(ar − 1). Thus, {p} = (a2 − 1)f2 · · · (ar − 1)fr is a partition of k. We use this

construction to define η.

Define η : Tk → Sk as:

η(af11 · · · afr

r ) = (a2 − 1)f2 · · · (ar − 1)fr .

Clearly, η is well-defined. We show that η has an inverse.

Consider a partition {p} = (a′2)
f ′2 · · · (a′r)f

′
r of k, where s = f ′

2 + · · · + f ′
r is the

number of parts. Let f ′
1 = k − s. Clearly, f ′

1 + · · · + f ′
r = k. Note that, 2k =

f ′
1 +f ′

2(a
′
2 +1)+ · · ·+f ′

r(a
′
r+1). Clearly, this is a partition of 2k having k parts where

f ′
1 may equal 0. Let f ′′

1 = n − 2k + f ′
1. Note that f ′′

1 ≥ 0 since n − 2k ≥ 0. Clearly,

n = f ′′
1 + f ′

2(a
′
2 + 1) + · · · + f ′

r(a
′
r + 1) is a partition of n having f ′′

1 + f ′
2 + · · · + f ′

r =

n− 2k + f ′
1 + · · · + f ′

r = n− k parts. Define γ : Sk → Tk by,

γ((a′2)
f ′2 · · · (a′r)f

′
r) = 1f

′′

1 (a′2 + 1)f
′

2 · · · (a′r + 1)f
′
r ,

where f ′′
1 = n− k − (f ′

2 + · · · + f ′
r). Clearly, γ is a well defined map.

It is an easy exercise to show that γ = η−1.

We proceed to describe the partition of the k-subsets’ orbits of (Z/nZ).

Definition 4.6.15. Let 2k ≤ n, and let K a k-subset of {0, . . . , n− 1}. Let,

[a1, . . . , an−k] = ψ(Ω∼K).

Let {x} = 1f1bf22 · · · bfr
r be the partition of n with (n−k) parts afforded by [a1, . . . , an−k].
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Using the map of proposition 4.6.14, define the partition of k corresponding to the

orbit ΩK by:

{p} = (b2 − 1)f2 · · · (br − 1)fr .

Alternatively, the partition of k corresponding to the orbit ΩK is η(ψ(Ω∼K)), where η

is defined in the proof of proposition 4.6.14.

Let us illustrate map given by definition 4.6.15. Let n = 7 and k = 3. Figure 4.6

shows the correspondence between the partitions of 3 and the orbits of (Z/7Z) on the

3-subsets.

K ψ(K) ∼ K ψ(∼ K) p(k)
{0, 1, 2} [1, 1, 5] {3, 4, 5, 6} [1, 1, 1, 4] 31

{0, 1, 3} [1, 2, 4] {2, 4, 5, 6} [2, 1, 1, 3] 1121

{0, 1, 5} [1, 4, 2] {2, 3, 4, 6} [1, 1, 2, 3] 1121

{0, 2, 5} [2, 3, 2] {1, 3, 4, 6} [2, 1, 2, 2] 13

{0, 1, 4} [1, 3, 3] {2, 3, 5, 6} [1, 2, 2, 2] 13

Figure 4.6. Correspondence between the 3-subsets’ orbits of (Z/7Z) and the parti-
tions of 3.

From the table of figure 4.6, we deduce that the number of 3-subsets’ orbits that

correspond to the partition 31 is 1, to the partition 1121 is 2, and to the partition 13

is 2.

In general, we can calculate the exact number f({p}) of k-subsets’ orbits that

correspond to a fixed partition {p} = bf11 · · · bfr
r of k with s = f1 + · · · + fr parts by

using proposition 4.6.11. That is, we calculate the number of cyclic ordered partitions

of n with (n − k)-parts that afford the partition {g(p)} = γ({p}) = 1n−k−s(b1 +

1)f1 · · · (br + 1)fr .

The tables in figures 4.9, 4.10, 4.7, and 4.8 summarize the values of f({p}) for the

cases k = 2, 3, 4, 5.
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{p} {g(p)} f({p}) gcd(n, 4)

14 1n−824 (n−5)(n−6)(n−7)
4!

1

1221 1n−72231 (n−5)(n−6)
2!

1
1131 1n−62141 (n− 5) 1

22 1n−632 (n−5)
2!

1
41 1n−551 1 1

14 1n−824 (n−6)((n−5)(n−7)+3)
4!

2

1221 1n−72231 (n−5)(n−6)
2!

2
1131 1n−62141 (n− 5) 2

22 1n−632 (n−4)
2!

2
41 1n−551 1 2

14 1n−824 (n−5)(n−6)(n−7)+3(n−2)
4!

4

1221 1n−72231 (n−5)(n−6)
2!

4
1131 1n−62141 (n− 5) 4

22 1n−632 (n−4)
2!

4
41 1n−551 1 4

Figure 4.7. f({p}) for k = 4.

{p} {g(p)} f({p}) gcd(n, 5)

15 1n−1025 (n−6)(n−7)(n−8)(n−9)
5!

1

1321 1n−92331 (n−6)(n−7)(n−8)
3!

1

1231 1n−82241 (n−6)(n−7)
2!

1
1141 1n−72151 (n− 6) 1

1122 1n−82132 (n−6)(n−7)
2!

1
2131 1n−73141 (n− 6) 1

51 1n−661 1 1

15 1n−1025 (n−6)(n−7)(n−8)(n−9)+4·4!
5!

5

1321 1n−92331 (n−6)(n−7)(n−8)
3!

5

1231 1n−82241 (n−6)(n−7)
2!

5
1141 1n−72151 (n− 6) 5

1122 1n−82132 (n−6)(n−7)
2!

5
2131 1n−73141 (n− 6) 5

51 1n−661 1 5

Figure 4.8. f({p}) for k = 5.
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{p} {g(p)} f({p}) gcd(n, 2)

12 1n−422 n−3
2

1
21 1n−331 1 1

12 1n−422 n−2
2

2
21 1n−331 1 2

Figure 4.9. f({p}) for k = 2.

{p} {g(p)} f({p}) gcd(n, 3)

13 1n−623 (n−4)(n−5)
3!

1
1121 1n−52131 (n− 4) 1

31 1n−441 1 1

13 1n−623 n(n−9)
3!

+ 4 3
1121 1n−52131 (n− 4) 3

31 1n−441 1 3

Figure 4.10. f({p}) for k = 3.

Using the partition of the k-subsets’ orbits given by definition 4.6.15, we introduce

some notation that will prove useful later.

Definition 4.6.16. Let t < k ≤ n − k. Let {p1}, . . . , {pr} be the distinct partitions

of k. Let x and y, be linear combination of cyclic ordered partitions of n of size k.

Then,

1. We say that x = y mod 0 using M ′
t,k, whenever x− y ∈ Ker(M ′

t,k).

2. We say that x = y mod {pi1}, . . . , {pis} using M ′
t,k, whenever M ′

t,k(x − y) =

M ′
t,kz where z has support on cyclic ordered partitions corresponding to classes

{pi1}, . . . , {pis}.

4.6.3 The Ker(M′
t,k)

Proposition 4.3.41 shows a set the generators of Ker(M ′
t,k) using the equivariant

projections of the (t, k)-pods. In this section, we will illustrate a calculation of a



287

projected (t, k)-pod Π(A,B)G by defining B “relative” to A. We will do this to help

the reader understand the details. In later subsections, we will skip these details.

Definition 4.6.17. (Relative (t,k)-pods). A (t, k)-pod given by Π(A,B) is called

a relative (t, k)-pod whenever B is specified relative to A. That is, if

A = {a1, . . . , at+1, · · · ak},

then B = {b1, . . . , bt+1} where bi = fi(a1, . . . , ak) and fi is the ratio of two multi-

variable polynomials mod n.

In the calculations that will follow, we will specify fi as linear functions. The

following proposition illustrates the calculation of a projected relative (2, 3)-pod.

Proposition 4.6.18. Let [a1, a2, a3] be a cyclic ordered partition of n with three parts

where the ai ≥ 2. The following expresion is a projected relative (2, 3)-pod, i.e., an

element of the Ker(M ′
2,3),

[a1, a2, a3] − [1, a2, a
∗
2 − 1] − [1, a∗3, a3 − 1] − [a1, 1, a

∗
1 − 1]

+[a1, a2 + 1, a3 − 1] + [1, 1, 2∗] + [1, a1 + 1, a∗1 − 2] − [a1, 2, a
∗
1 − 2],

where a∗ = n− a.

Proof. Let A = {x1 < x2 < x3} ∈ Ω[a1,a2,a3], where magnitudes are taken in the

clockwise direction. For instance, A = {0, a1, a1 + a2} is a possible choice. We will

define B relative to A as B = {y1, y2, y3}, where,

1. The element y1 is one unit before x2 in the counter clockwise direction. That

is, y1 = x2 − 1 mod n.

2. The element y2 is one unit before x1 in the counter clockwise direction. That

is, y2 = x1 − 1 mod n.

3. The element y3 is one unit after x2 in the clockwise direction. That is, y3 = x2+1

mod n.
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We know that y1, y2, y3 exist since each ai ≥ 2. Also, by construction A ∩ B = φ.

Hence, we can construct a (2, 3)-pod. Figure 4.11 shows a graphical representation

of A and B using relative distances.

�x1

�

x3

�
x2

��

y2

��y3

��

y1

1

1
1

a3

a2

a1

Figure 4.11. Relative (2, 3)-pod.

Using the notation of proposition 4.3.40, we calculate Π(A,B). Let us take for

instance the set T = {} ⊂ {1, . . . , 3}. This set corresponds to the term {x1, x2, x3} =

A with sign (−1)0 = +1. Also, K = {x1, x2, x3} has cyclic ordered partition ψ(K) =

[a1, a2, a3], by assumption.

Let us consider the set T = {1}. This set corresponds to the term K = {y1, x2, x3}
having sign (−1)1 = −1. By using the assumption on the relative distances of y1, y2, y3

with respect to x1, x2, x3, we can calculate ψ(K) as [1, a2, a
∗
2 −1]. Similarly, using the

relative distance conditions one can calculate ψ(K) for each term K in the expansion

of Π(A,B).

Figure 4.12 shows the calculations of ψ(K) for each term K in the expansion of

Π(A,B) using the notation of proposition 4.3.40, and using the relative distances of

x1, . . . , x3 and y1, . . . , y3.

We note that in figure 4.12, we have represented T using binary notation. For

example, 101 corresponds to T = {1, 3}.
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T (−1)|T | K ψ(K)
000 +1 {x1, x2, x3} [a1, a2, a3]

100 −1 {y1, x2, x3} [1, a2, a
∗
2 − 1]

010 −1 {x1, y2, x3} [1, a∗3, a3 − 1]

001 −1 {x1, x2, y3} [a1, 1, a
∗
1 − 1]

110 +1 {y1, y2, x3} [a1, a2 + 1, a3 − 1]

011 +1 {x1, y2, y3} [1, a1 + 1, a∗1 − 2]

101 +1 {y1, x2, y3} [1, 1, 2∗]

111 −1 {y1, y2, y3} [a1, 2, a
∗
1 − 2]

Figure 4.12. Projected relative (2, 3)-pod.

Clearly, it follows that,

Π(A,B)G = [a1, a2, a3] − [1, a2, a
∗
2 − 1] − [1, a∗3, a3 − 1] − [a1, 1, a

∗
1 − 1]

+[a1, a2 + 1, a3 − 1] + [1, 1, 2∗] + [1, a1 + 1, a∗1 − 2] − [a1, 2, a
∗
1 − 2].

By proposition 4.3.41, it follows that Π(A,B)G ∈ Ker(M ′
2,3).

In the next subsections, we will construct relative (t, k)-pods by specifying relative

distances using diagrams similar to figure 4.11. From these relative (t, k)-pods, we

will calculate their corresponding projections by showing explicit calculations similar

to figure 4.12.

4.6.4 The (2,3) Case

In this subsection, we will calculate a (2, 3)-basis for M ′
2,3, for general n, with the aid

of special relative projected (2, 3)-pods. From the basis calculation, we will deduce

the Smith Group of M ′
2,3 and M2,3.
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4.6.4.1 The Space (C3(X))0

Using the classification of definition 4.6.15, we divide the cyclic ordered partitions of

n of size 3 into classes, where each class corresponds to a partition of 3. Since there

are 3 partitions of 3, the possible classes are:

{p1} = 31,

{p2} = 2111,

{p3} = 13.

Each class {pi} imposes conditions on the ais of [a1, a2, a3] whenever [a1, a2, a3] ∈ {pi}.
Figure 4.13 shows these conditions.

{p} ψ(K)
13 [a1, a2, a3] where ai ≥ 2

2111 [1, a2, a3] where ai ≥ 2

31 [1, 1, 2∗]

Figure 4.13. Classes of 3-subsets’ orbits.

The (2, 3)-basis calculation, and similarly the (2, 4)-basis calculation, will follow

by steps. First, we start by showing that any cyclic ordered partition [a1, a2, a3] in

the class corresponding to {p3} reduces to zero mod {p1}, {p2} using M ′
2,3. Second,

we use properties of M ′
2,3 to find a minimal possible generating set for the column

space of M ′
2,3 among the cyclic ordered partitions in the classes {p1} and {p2}. We

will be able to tell that we have a minimal generating set, hence a basis, with the

aid of the calculations of r2(n) given in figure 4.9. This will show the existence of a

(2, 3)-basis.

4.6.4.2 Projected Relative (2,3)-Pods

The following projected relative (2, 3)-pod will be used in later calculations.
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Proposition 4.6.19. Let a1 ≤ 5∗ = n − 5, i.e., a∗1 − 2 ≥ 3. Then, the following

expression is a projected relative (2, 3)-pod.

[2, a1, a
∗
1 − 2] − [a1, 1, a

∗
1 − 1] − [1, a1 + 2, a∗1 − 3]

+[1, a∗1 − 4, a1 + 3] + [1, a1 + 1, a∗1 − 2] − [2, a1 + 2, a∗1 − 4].

Proof. Let A = {x1, x2, x3} ∈ Ω[2,a1,a∗1−2]. For instance, A = {0, 2, 2+a2} is a possible

choice. Consider the following relative (2, 3)-pod,

�x1
� x3

�x2

��

y2

��y3

��

y1
11

1

1

a∗2 − 2

a2

2

Figure 4.14. Relative (2, 3)-pod.

We calculate the corresponding projected relative (2, 3)-pod as it is show in figure

4.15.

Thus, the result follows.

4.6.4.3 Finding a (2,3)-Basis

Using the relative projected (2, 3)-pods of propositions 4.6.19 and 4.6.18, we proceed

to find a generating set of the column space of M ′
2,3(n) over Z.

Proposition 4.6.20. The following are true:

1. If [a1, a2, a3] is such that ai ≥ 2. Then,

[a1, a2, a3] = [a1, a2 + 1, a3 − 1] − [a1, 2, a
∗
1 − 2] mod {p1}, {p2}.
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T (−1)|T | K ψ(K)
000 +1 {x1, x2, x3} [2, a2, a

∗
2 − 2]

100 −1 {y1, x2, x3} [a2, 1, a
∗
2 − 1]

010 −1 {x1, y2, x3} [1, a2 + 2, a∗2 − 3]

001 −1 {x1, x2, y3} [1, 1, 2∗]

110 +1 {y1, y2, x3} [a2 + 3, 1, a∗2 − 4]

011 +1 {x1, y2, y3} [1, 1, 2∗]

101 +1 {y1, x2, y3} [1, a2 + 1, a∗2 − 2]

111 −1 {y1, y2, y3} [2, a2 + 2, a∗2 − 4]

Figure 4.15. Projected relative (2, 3)-pod.

2. If a2 ≤ n− 5. Then,

[2, a2, a
∗
2 − 2] = [2, a2 + 2, a∗2 − 4] mod {p1}, {p2}.

3. If 2 ≤ a2 ≤ n− 4. Then,

[2, a2, a
∗
2 − 2] = [2, a2 + 1, a∗2 − 3] + [2, 2, 4∗] mod {p1}, {p2}.

Proof. Parts 1 and 2 are clear applications of proposition 4.6.19 and proposition

4.6.18. It suffices to show part 3. Clearly, part 3 is an application of part 1.

Our first objective will to show that: if [a1, a2, a3] ∈ {p3}, then [a1, a2, a3] = 0 mod

{p1, p2}. That is, for any cyclic order partition [a1, a2, a3] of size three in the class {p3},
there is x with support in the classes {p1}, {p2} such that M ′

2,3[a1, a2, a3] = M ′
2,3x.

Hence, reducing a possible generating set of the column space of M ′
2,3 to the classes

{p1}, {p2}.
We will start by reducing the cyclic ordered partitions of the form [2, a2, a

∗
2 − 2].
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Proposition 4.6.21. The following are true:

1. Let 1 ≤ a2 ≤ 3∗. Then,

[2, a2, a
∗
2 − 2] =





0 mod {p1}, {p2} if n is odd,

0 mod {p1}, {p2} if 2|n and a2 is odd,

−[2, 2, 4∗] mod {p1}, {p2} if 2|n and 2|a2.

2. If n is odd, then,

[2, 2, 4∗] = 0 mod {p1}, {p2}.

3. If n is even, then,

2[2, 2, 4∗] = 0 mod {p1}, {p2}.

Proof. The proposition is clear whenever a2 = 1, 3∗. If a2 = 4∗, then [2, a2, a
∗
2 − 2] =

[2, 4∗, 2] = [2, 2, 4∗]. Hence, a2 = 4∗ reduces to the case a2 = 2. Thus, without loss

of generality, assume 2 ≤ a2 ≤ n − 5 = 5∗. We will show part 1 by considering two

cases; within each case, we will also show the remainder parts.

Case n is odd. Let a2 be even, and let n− a2 = 2l + 1. By proposition 4.6.20,

[2, a2, a
∗
2 − 2] = [2, a2 + 2, a∗2 − 4] mod {p1}, {p2}.
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We apply the above congruence (l − 1) times to deduce,

[2, a2, a
∗
2 − 2] = [2, a2 + 2, a∗2 − 4] mod {p1}, {p2}

= [2, a2 + 2, a∗2 − 4] mod {p1}, {p2}
...

= [2, a2 + 2(l − 1), a∗2 − 2l] mod {p1}, {p2}

= [2, 3∗, 1] mod {p1}, {p2}

= 0 mod {p1}, {p2}.

In particular, we have shown that [2, 2, 4∗] = 0 mod {p1}, {p2}. Hence, part 2 follows.

Let a2 be odd. By proposition 4.6.20, we have

[2, a2, a
∗
2 − 2] = [2, a2 + 1, a∗2 − 3] − [2, 2, 4∗] mod {p1}, {p2}

= [2, a2 + 1, a∗2 − 3] mod {p1}, {p2}.

Hence, the above congruence reduces to the case a′1 = a1 + 1, where a′1 is even.

In particular, we have shown that [2, a2, a
∗
2 − 4] = 0 mod {p1}, {p2} whenever n is

odd.

Case n is even. Assume a2 is odd. Clearly, a∗2 is odd since n is even. Let

a1 = 2l + 1 and a∗1 = 2s + 1. Clearly, n = 2(l + s + 1). We apply proposition 4.6.20

to itself 2(s− 1) times,

[2, a2, a
∗
2 − 2] = [2, a2 + 2, a∗2 − 4] mod {p1}, {p2}

...

= [2, a2 + 2(s− 1), a∗2 − 2s] mod {p1}, {p2}

= [2, 3∗, 1] mod {p1}, {p2}

= 0 mod {p1}, {p2}.

Thus, we have shown that [2, a2, a
∗
2 − 2] = 0 mod {p1}, {p2} whenever n is even and

a2 is odd.
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Assume a2 is even. Clearly, a2 + 1 is odd. By proposition 4.6.20,

[2, a2, a
∗
2 − 4] = [2, a2 + 1, a∗2 − 3] − [2, 2, 4∗] mod {p1}, {p2}

= −[2, 2, 4∗] mod {p1}, {p2},

where we have used [2, a2 + 1, a∗2 − 3] = 0 mod {p1}, {p2} by the previous deductions.

In particular, we have shown that [2, 2, 4∗] = −[2, 2, 4∗] mod {p1}, {p2}. Hence,

2[2, 2, 4∗] = 0 mod {p1}, {p2} and part 3 follows. Also, we have shown that [2, a2, a
∗
2−

2] = −[2, 2, 4∗] mod {p1}, {p2} whenever both n and a2 are even.

Clearly, part 1 follows by the previous deductions.

We reduce the remaining elements of the class {p3} by making use of the following

lemma.

Lemma 4.6.22. Let σ be any permutation of {1, 2, 3}. Then,

1. The following holds,

M ′
2,3[a1, a2, a3] = [a1, a

∗
1] + [a2, a

∗
2] + [a3, a

∗
3].

2. The following invariance holds,

M ′
2,3[a1, a2, a3] = M ′

2,3[aσ(1), aσ(2), aσ(3)].

Proof. Let A = {x1, x2, x3} ∈ [a1, a2, a3]. For example, A = {0, a1, a1 +a2}. By calcu-

lating the cicular distances in the clockwise direction, part 1 follows from proposition

4.3.40 applied to:

W2,3e{x1,x2,x3} = e{x1,x3} + e{x1,x2} + e{x2,x3}.

Part 2 is a clear consequence of part 1.

We proceed to reduce the other elements of the class {p3}.
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Proposition 4.6.23. Let [a1, a2, a3] be such that ai ≥ 2, i.e., [a1, a2, a3] is in the class

of {p3}. Then,

1. If n is odd, then [a1, a2, a3] = 0 mod {p1}, {p2}.

2. If n is even, then [a1, a2, a3] = α[2, 2, 4∗] mod {p1}, {p2} for some integer α.

Proof. We show part 1. Thus, assume n is odd. By proposition 4.6.19, we know that

[a1, a2, a3] = [a1, a2 + 1, a3 − 1]− [a1, 2, a
∗
1 − 2] mod {p1}, {p2}. By proposition 4.6.21,

[a1, 2, a
∗
1 − 2] = [2, a∗1 − 2, a1] = 0 mod {p1}, {p2}. Hence,

[a1, a2, a3] = [a1, a2 + 1, a3 − 1] mod {p1}, {p2} (4.12)

By lemma 4.6.22, we can always rearrange the ais such that a3 is the minimum

of all the ais in [a1, a2, a3]. Thus, by repeated applications of Equation (4.12), we

deduce,

[a1, a2, a3] = [∗, ∗, 1] mod {p1}, {p2}

= 0 mod {p1}, {p2}.

We proceed to show part 2. Thus, assume n is even. By proposition 4.6.19,

we know that [a1, a2, a3] = [a1, a2 + 1, a3 − 1] − [a1, 2, a
∗
1 − 2] mod {p1}, {p2}. By

proposition 4.6.21, [a1, 2, a
∗
1 − 2] = [2, a∗1 − 2, a1] = α′[2, 2, 4∗] mod {p1}, {p2} for some

integral α′. Hence,

[a1, a2, a3] = [a1, a2 + 1, a3 − 1] + α′[2, 2, 4∗] mod {p1}, {p2}. (4.13)

By lemma 4.6.22, we can always re-arrange the ais such that a3 is the minimum of all

the ais in [a1, a2, a3]. Thus, by repeated applications of Equation (4.13) we can find

an integral α such that:

[a1, a2, a3] = [∗, ∗, 1] + α[2, 2, 4∗] mod {p1}, {p2}

= α[2, 2, 4∗] mod {p1}, {p2}.
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The previous results are sufficient to deduce a (2, 3)-basis.

Proposition 4.6.24. The following are true:

1. Let n be odd. Then, β2,3 = {[1, a, a∗ − 1]|a = 1, . . . , n−1
2
} is a (2, 3)-basis for

M ′
2,3.

2. Let n be even. Then, β2,3 = {[1, a, a∗ − 1]|a = 1, . . . , n−2
2
} ∪ {[2, 2, 4∗]} is a

(2, 3)-basis for M ′
2,3.

Proof. We show part 1. Assume n is odd. Clearly, r2(n) = n−1
2

. It suffices to find a

set of columns of M ′
2,3 that has size n−1

2
and generates the integral column space of

M ′
2,3.

By proposition 4.6.23, the column space of M ′
2,3 is generated by cyclic ordered

partitions of classes {p1}, {p2}. By using lemma 4.6.22, [1, a2, a3] = [1, a3, a2] mod 0.

Hence, it suffices to pick [1, a, b] ∈ {p2} with a < b to generate all the columns of

class {p2}. Thus, β2,3 = {[1, a, a∗ − 1]|a = 1, . . . , n−1
2
} generates all the columns of

class {p1} and {p2}. Since β2,3 has size n−1
2

, it must follow that it is a column basis.

Part 2 follows similarly. By using a similar argument as part 1, one can show

that β2,3 generates the column space of M ′
2,3 and has size n

2
. Since r2(n) = n

2
, it must

follow that β2,3 is a column basis.

4.6.4.4 The Smith Group of M′
2,3 and M2,3

By using the (2, 3)-basis for M ′
2,3 of proposition 4.6.24, we calculate the Smith Group

of M ′
2,3.

Proposition 4.6.25. The following are true:

1. If n ≥ 7 is odd, then M ′
2,3(n) has Smith Group (Z/3Z).

2. If n ≥ 8 is even, then M ′
2,3(n) has Smith Group (Z/6Z).

Proof. We will show that:
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1. If n ≥ 7 is odd, then M ′
β has determinant 3.

2. If n ≥ 8 is even, then M ′
β has determinant 6.

where β is the (2, 3)-basis of proposition 4.6.24, and M ′
β is the matrix consisting

columns of M ′
2,3 that correspond to β2,3. Because the abelian groups of order 3 and

6 are unique, the result will follow.

In the following calculations, we will use β2 = {[1, 1∗], . . . , [n0, n
∗
0]} as a basis of

the 2-subsets’ orbits, where,

n0 =





n−1
2

if n is odd,

n
2

if n is even.

Also, we will use the following consequence of lemma 4.6.22.

M ′
2,3[1, a, a

∗ − 1] = [1, 1∗] + [a, a∗] + [a+ 1, (a+ 1)∗].

Case n is odd. Using the basis β2 and β2,3, M
′
β has matrix representation:




2 1 1 · · · 1 1

1 1 0 · · · 0 0

0 1 1 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 1 2




,

where the above matrix is m×m with m = n−1
2

. Define fm as the determinant of the

above matrix. By using the minor expansion along the last column, we calculate:

fm = 2gm−1 + (−1)m+1,
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where gm is the determinant of the following m×m matrix:




2 1 1 · · · 1 1

1 1 0 · · · 0 0

0 1 1 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 1 1




.

Note that gm can also be calculated recursively, by doing a determinant expansion

along the last column. Hence, we deduce:

gm = (−1)m+1 + gm−1.

Therefore, for m ≥ 2,

gm =





1 if 2 | n,
2 if n is odd.

From the value of gm, we deduce that fm = 3 for m ≥ 3. Therefore, M ′
β has

determinant 3.

Case n is even. Using the basis β2 and β2,3, M
′
β has matrix representation:




2 1 1 · · · 1 1 0

1 1 0 · · · 0 0 2

0 1 1 · · · 0 0 0

0 0 1 · · · 0 0 1
...

...
...

...
...

...

0 0 0 · · · 1 1 0

0 0 0 · · · 0 1 0




,
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where the above matrix is m×m with m = n
2
. Define fm as the determinant of the

above matrix. By using the minor expansion along the last row, we calculate:

fm = −fm−1.

Hence fm = ±f4. Also, by direct calculation f4 = 6. Hence, the result follows.

We will calculate the Smith Group of the matrices M2,3(n). Figure 4.16 summa-

rizes the results.

gcd(2, n) gcd(3, n) S(M2,3(n))

1 1 (Z/3Z)

1 3 {1} (primitive)

2 1 (Z/12Z) or (Z/2Z) × (Z/6Z)

2 3 (Z/2Z) × (Z/2Z) or (Z/4Z)

Figure 4.16. The Smith Group of M2,3(n).

Figure 4.17 shows the values calculated for the Smith Group of M2,3 with the aid

of a computer program.

We proceed with the Smith Group calculations.

Proposition 4.6.26. Let gcd(n, 2) = 1 = gcd(n, 3), then S(M2,3(n)) = (Z/3Z).

Proof. Because gcd(n, 2) = 1 = gcd(n, 3), we must have D2 = nI and D3 = nI.

Thus, M ′
2,3D3 = D2M2,3 implies M ′

2,3 = M2,3. The result follows from proposition

4.6.25.

Proposition 4.6.27. Let gcd(2, n) = 1 and gcd(3, n) = 1. Then, M2,3(n) has trivial

Smith Group. That is, M2,3(n) is primitive.
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n S(M2,3(n)) n S(M2,3(n)) n S(M2,3(n))

7 (Z/3Z) 8 (Z/2Z) × (Z/6Z) 9 {1}

10 (Z/12Z) 11 (Z/3Z) 12 (Z/2Z) × (Z/2Z)

13 (Z/3Z) 14 (Z/12Z) 15 (Z/15Z)

16 (Z/2Z) × (Z/6Z) 17 (Z/3Z) 18 (Z/4Z)

19 (Z/3Z) 20 (Z/2Z) × (Z/6Z) 21 {1}

22 (Z/12Z) 23 (Z/3Z) 24 (Z/2Z) × (Z/2Z)

25 (Z/3Z) 26 (Z/12Z) 27 {1}

28 (Z/2Z) × (Z/6Z) 29 (Z/3Z) 30 (Z/4Z)

31 (Z/3Z) 32 (Z/2Z) × (Z/6Z) 33 {1}

34 (Z/12Z) 35 (Z/3Z)

Figure 4.17. The Smith Group of M2,3(n).

Proof. Under the assumptions for n, we have that D2 = nI and:

D3 =


 nI 0

0 n
3


 ,

where the last column of D3 corresponds to the orbit α0 = [n
3
, n

3
, n

3
]. Thus, we deduce

from M ′
2,3D3 = D2M2,3 that:

M ′
2,3 = M2,3


 I 0

0 3


 .

Therefore,

ColZ(M ′
2,3) ⊂ ColZ(M2,3) ⊂ Zr2(n).
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Clearly, r(ColZ(M ′
2,3)) = r(ColZ(M2,3)) = 0 since these matrices have full rank.

Hence, H = ColZ(M2,3)

ColZ(M ′

2,3)
has abelian rank 0 by proposition 4.1.21. Thus, one can

construct the following exact sequence of torsion groups:

0 → H → S(M ′
2,3) =

Zr2(n)

ColZ(M ′
2,3)

→ S(M2,3) =
Zr2(n)

ColZ(M2,3)
→ 0.

By proposition 4.6.25, |M ′
2,3| = 3. Hence, it suffices to show that |H| = 3 to show

that |M2,3| is trivial.

Note that M2,3 and M ′
2,3 differ at only one column, namely the column given by

α0. Let β2,3 be the (2, 3)-basis of proposition 4.6.24. Since α0 does not belong to β2,3,

clearly:

Mβ = M ′
β,

ColZ(M2,3) = ColZ([Mβ,M2,3α0]),

ColZ(M ′
2,3) = ColZ([Mβ, 3M2,3α0]).

Hence, H = 〈M2,3α0〉 has order either 3 or 1. We will show that M2,3α0 has order 3

in H.

Suppose that 〈M2,3α0〉 is the trivial group, then there is an integral vector c and

an integer d such that:

M2,3α0 = Mβc+ 3dM2,3α0.

Hence, (1 + 3d)M2,3α0 = Mβc. Since Mβ = M ′
β , M ′

β has Smith Group with order 3,

and (1 + 3d) is relatively prime to 3; we conclude that (1 + 3d) divides c. Therefore,

M2,3α0 = Mβc
′ = M ′

βc
′, where c′ = c

1+3d
is integral.

Note that M ′
2,3α0 = 3[n

3
, n

3
∗]. Hence, M2,3α0 = [n

3
, n

3
] and jTM2,3α0 = 1. On the

other hand, jTM ′
βc

′ = 3jT c′. This is a contradiction.

Therefore, H has order 3 and the result follows.
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Proposition 4.6.28. Let gcd(2, n) = 2 and gcd(3, n) = 1. Then,

S(M2,3(n)) = (Z/2Z) × (Z/6Z) or (Z/12Z).

Proof. Based on the assumptions for n, we can deduce that D3 = nI and,

D2 =


 nI 0

0 n
2


 ,

where the last column of D2 corresponds to the orbit α0 = [n
2
, n

2
]. Therefore, by using

M ′
2,3D3 = D2M2,3, we deduce,


 I 0

0 2


M ′

2,3 = M2,3.

Hence, the following inclusion of free Z-modules holds,

RowZ(M2,3) ⊂ RowZ(M ′
2,3) ⊂ Zr3(n).

Therefore, we deduce:

0 → H =
RowZ(M ′

2,3)

RowZ(M2,3)
→ Zr3(n)

RowZ(M2,3)
→ Zr3(n)

RowZ(M ′
2,3)

→ 0.

Note that H is the factor of two free Z-modules of the same abelian rank. Hence,

H is torsion. Also, note that the torsion part of Zr3(n)

RowZ(M2,3)
is S(M2,3), and the torsion

part of Zr3(n)

RowZ(M ′

2,3)
is S(M ′

2,3). Hence, we can deduce by proposition 4.1.26 that:

0 → H → S(M2,3) → S(M ′
2,3) → 0.

By proposition 4.6.25, S(M ′
2,3) = (Z/6Z). We will show that H = (Z/2Z). From

these calculations, we will deduce:

0 → (Z/2Z) → S(M2,3) → (Z/6Z) → 0.
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Which gives the possible solutions S(M2,3) = (Z/12Z) or S(M2,3) = (Z/2Z)×(Z/6Z).

Therefore, it suffices to show that H = (Z/2Z). Clearly, the rows of M2,3 are

linearly independent. Also, M2,3 and M ′
2,3 different at the row corresponding to α0.

Let M ′ be M ′
2,3 without the row corresponding to α0 and m′ be the row of M ′

2,3

corresponding to α0. Clearly,

RowZ(M ′
2,3) = RowZ(


 M ′

m′


),

RowZ(M2,3) = RowZ(


 M ′

2m′


).

Hence, H =
RowZ(M ′

2,3)

RowZ(M2,3)
= 〈m′〉 has order 2 or 1. Suppose H has order 1. Then, there

are integral c and d such that:

m′ = cTM ′ + 2dm′.

Hence 0 = cTM ′ + (2d+ 1)m′. Since the rows M ′
2,3 are linearly independent, it must

be the case that c = 0 and (2d + 1) = 0. Therefore, d = 1
2

giving a contradiction to

the assumption that it was integral.

Hence, H has order 2 and the result follows.

Proposition 4.6.29. Let gcd(2, n) = 2 and gcd(3, n) = 3. Then,

S(M2,3(n)) = (Z/2Z) × (Z/2Z) or (Z/4Z).

Proof. Based on the assumptions for n, we deduce that:

D2 =


 nI 0

0 n
2


 ,

D3 =


 nI 0

0 n
3


 ,
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where the last column of D2 corresponds to the orbit α0 = [n
2
, n

2
], and the last column

of D3 corresponds to the orbit β0 = [n
3
, n

3
, n

3
].

Because M ′
2,3D3 = D2M2,3, we deduce that:

F =


 I 0

0 2


M ′

2,3

= M2,3


 I 0

0 3


 .

Therefore, we can consider,

RowZ(F ) ⊂ RowZ(M ′
2,3) ⊂ Zr3(n).

Using the same analysis in the proof of proposition 4.6.28, we deduce an exact se-

quence:

0 → (Z/2Z) → S(F ) → (Z/6Z) → 0.

Hence, S(F ) = (Z/12Z) or (Z/2Z) × (Z/6Z). Consider,

ColZ(F ) ⊂ ColZ(M2,3) ⊂ Zr2(n).

Using the same analysis in the proof of proposition 4.6.27, we deduce an exact se-

quence:

0 → (Z/3Z) → S(F ) → S(M2,3) → 0.

If S(F ) = (Z/12Z), then S(M2,3) = (Z/4Z). Also, if S(F ) = (Z/2Z) × (Z/6Z), then

S(M2,3) = (Z/2Z) × (Z/2Z). Hence, the result follows.
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4.6.5 The (2,4) Case

We will proceed in a similar fashion as the (2, 3) case. First, we will introduce

contrived projected relative (2, 4)-pods to help us find a (2, 4)-basis. Then, we will

proceed to calculate the Smith Groups of M ′
2,4 and M2,4.

4.6.5.1 The Space (C4(X))0

By using the map of definition 4.6.15, we can partition all the 4-subsets’ orbits into

classes corresponding to the partitions of 4. Figure 4.18 shows theses classes along

with the the membership conditions on the cyclic ordered partitions [a1, a2, a3, a4].

Id {p} ψ(K) where ai ≥ 2

{p5} 14 [a1, a2, a3, a4]

{p4} 2112 [1, a1, a2, a3]

{p3} 3111 [1, 1, a1, a2]

{p2} 22 [1, a1, 1, a2]

{p1} 41 [1, 1, 1, 3∗]

Figure 4.18. Classes of 4-subsets’ orbits.

4.6.5.2 Projected Relative (2,4)-Pods

The following projected relative (2, 4)-pods will be used in the calculation of the

(2, 4)-basis.

Proposition 4.6.30. Let a1, a2, a4 ≥ 2 and a3 ≥ 1. Then,

[a1, a2, a3, a4] = [1, a2, a3, a4 + a1 − 1] + [1, a1 + a2, a3, a4 − 1] + [1, a2 + a3 − 1, a4, a1]

−[a1, a2 + 1, a3, a4 − 1] − [1, a1 + 1, a2 + a3 − 1, a4 − 1]

−[1, 1, a2 + a3 − 1, (a2 + a3)
∗ − 1] + [a1, 2, a2 + a3 − 1, a4 − 1] mod 0.
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Proof. Let A = {x1, x2, x3, x4} ∈ [a1, a2, a3, a4], and choose B = {y1, y2, y3} as shown

in figure 4.19.

�x1

�

x4
�

x3

�
x2

��

y2

��y3

�	

y1

1

1
1

a4

a3

a2

a1

Figure 4.19. Relative (2, 4)-pod.

The result follows from the projected relative (2, 4)-pod that results from the

relative (2, 4)-pod of figure 4.19. The calculation is shown in the table of figure 4.20.

T (−1)|T | K ψ(K)
000 +1 {x1, x2, x3, x4} [a1, a2, a3, a4]

100 −1 {y1, x2, x3, x4} [1, a2, a3, a4 + a1 − 1]

010 −1 {x1, y2, x3, x4} [1, a1 + a2, a3, a4 − 1]

001 −1 {x1, x2, y3, x4} [1, a2 + a3 − 1, a4, a1]

110 +1 {y1, y2, x3, x4} [a1, a2 + 1, a3, a4 − 1]

011 +1 {x1, y2, y3, x4} [1, a1 + 1, a2 + a3 − 1, a4 − 1]

101 +1 {y1, x2, y3, x4} [1, 1, a2 + a3 − 1, (a2 + a3)
∗ − 1]

111 −1 {y1, y2, y3, x4} [a1, 2, a2 + a3 − 1, a4 − 1]

Figure 4.20. Projected relative (2, 4)-pod.
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Proposition 4.6.31. Let 2 ≤ a ≤ n− 5. Then,

0 = [1, 1, a, a∗ − 2] − [1, a− 1, 1, a∗ − 1] − [1, 1, 1, 3∗] − [1, a+ 1, 1, a∗ − 3]

+[2, 1, a− 1, a∗ − 2] + [1, 1, a+ 2, a∗ − 4] + [a, 1, 1, a∗ − 2]

−[2, a, 2, a∗ − 4] mod 0.

Proof. Let A = {x1, x2, x3, x4} ∈ [1, 1, a, a∗−2], and choose B = {y1, y2, y3} as shown

in the relative (2, 4)-pod of figure 4.21.

�x4

�

x1

� x2

�x3

��

y2
��

y3

�	 y1
1

1

1

1

1

a∗ − 2

a

Figure 4.21. Relative (2, 4)-pod.

The result follows from the projected relative (2, 4)-pod that results from the

relative (2, 4)-pod of figure 4.21. The calculation is shown in the table of figure 4.22.

Proposition 4.6.32. Let 3 ≤ a ≤ n− 4. Then,

0 = [1, 1, a, a∗ − 2] − [1, a, 1, a∗ − 2] − [1, 1, 1, 3∗] − [1, a, 1, a∗ − 2]

+[1, 1, a, a∗ − 2] + [1, 2, a− 2, a∗ − 1] + [1, 1, a∗ − 2, a]

−[2, a− 2, 2, a∗ − 2] mod 0.

Proof. Let A = {x1, x2, x3, x4} ∈ [1, 1, a, a∗−2], and choose B = {y1, y2, y3} as shown

in the relative (2, 4)-pod of figure 4.21.
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T (−1)|T | K ψ(K)
000 +1 {x1, x2, x3, x4} [1, 1, a, a∗ − 2]

100 −1 {y1, x2, x3, x4} [1, a− 1, 1, a∗ − 1]

010 −1 {x1, y2, x3, x4} [1, 1, 1, 3∗]

001 −1 {x1, x2, y3, x4} [1, a+ 1, 1, a∗ − 3]

110 +1 {y1, y2, x3, x4} [2, 1, a− 1, a∗ − 2]

011 +1 {x1, y2, y3, x4} [1, 1, a+ 2, a∗ − 4]

101 +1 {y1, x2, y3, x4} [a, 1, 1, a∗ − 2]

111 −1 {y1, y2, y3, x4} [2, a, 2, a∗ − 4]

Figure 4.22. Projected relative (2, 4)-pod.

�x4

�

x1

� x2

�x3

��y2

��
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1

1

1

a∗ − 2

a

Figure 4.23. Relative (2, 4)-pod.
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The result follows from the projected relative (2, 4)-pod that results from the

relative (2, 4)-pod of figure 4.23. The calculation is shown in the table of figure 4.24.

T (−1)|T | K ψ(K)
000 +1 {x1, x2, x3, x4} [1, 1, a, a∗ − 2]

100 −1 {y1, x2, x3, x4} [1, a, 1, a∗ − 2]

010 −1 {x1, y2, x3, x4} [1, 1, 1, 3∗]

001 −1 {x1, x2, y3, x4} [1, a, 1, a∗ − 2]

110 +1 {y1, y2, x3, x4} [1, 1, a, a∗ − 2]

011 +1 {x1, y2, y3, x4} [1, 2, a− 2, a∗ − 1]

101 +1 {y1, x2, y3, x4} [1, 1, a∗ − 2, a]

111 −1 {y1, y2, y3, x4} [2, a− 2, 2, a∗ − 2]

Figure 4.24. Projected relative (2, 4)-pod.

4.6.5.3 Finding a (2,4)-Basis

The technique that we will use is the same as the one used for finding a (2, 3)-basis.

Using the classification of 4-subsets’ orbits of figure 4.18, we will reduce any cyclic

ordered partition of class {p5} to 0 mod {p1}, . . . , {p4}. Then, we will proceed to

reduce every cyclic ordered partition of class {p4} to 0 mod {p1}, . . . , {p3}. From the

classes {p1}, . . . , {p3}, we will find a (2, 4)-basis.

Before we start the reductions, we will state a lemma that will help us with our

calculations.

Lemma 4.6.33. Let [a1, a2, a3, a4] be cyclic ordered partition. Then,
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1. The value of M ′
2,4 is

M ′
2,4[a1, a2, a3, a4] = [a1, a

∗
1] + [a2, a

∗
2] + [a3, a

∗
3] + [a4, a

∗
4]

+[a1 + a2, (a1 + a2)
∗] + [a1 + a4, (a1 + a4)

∗].

2. The following symmetries hold:

M ′
2,4[a1, a2, a3, a4] = M ′

2,4[a1, a4, a3, a2]

= M ′
2,4[a3, a2, a1, a4].

Proof. Clearly, part 2 is an application of part 1. Hence, it suffices to show part 1.

Let {x1, x2, x3, x4} ∈ [a1, a2, a3, a4] be such that: a1 = x2 − x1, a2 = x3 − x2, a3 =

x4 − x3, a4 = n− x4 + x1. Clearly,

W2,4{x1, x2, x3, x4} = {x1, x2} + {x2, x3} + {x3, x4} + {x4, x1}

+{x1, x3} + {x2, x4}.

Part 1 follows by applying proposition 4.3.40 to the above equation.

Our first goal is to reduce the elements of the class {p5}. The next proposition

shows the reduction.

Proposition 4.6.34. Let [a1, a2, a3, a4] ∈ {p5}, i.e., ai ≥ 2. Then,

[a1, a2, a3, a4] = 0 mod {p1}, . . . , {p4}.

Proof. By applying proposition 4.6.30 to [a1, a2, a3, a4], we deduce:

[a1, a2, a3, a4] = [a1, 2, (a2 + a3) − 1, a4 − 1] (4.14)

−[a1, a2 + 1, a3, a4 − 1] mod {p1}, · · · {p4}.

If a4 − 1 = 1, then were are done. Suppose that a4 − 1 ≥ 2. By applying Equation
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(4.14) to [a1, 2, (a2 + a3) − 1, a4 − 1] = [a2 + a3 − 1, a4 − 1, a1, 2], we deduce:

[a2 + a3 − 1, a4 − 1, a1, 2] = [a2 + a3 − 1, 2, a1 + a4 − 2, 1] − [a2 + a3 − 1, a4, a1, 1]

= 0 mod {p1}, . . . , {p4}.

Hence, Equation (4.14) reduces to:

[a1, a2, a3, a4] = −[a1, a2 + 1, a3, a4 − 1] mod {p1}, · · · {p4}.

Clearly, one can apply the above equation to itself (a4 − 1) times to deduce:

[a1, a2, a3, a4] = ±[a1, a2 + a4 − 1, a3, 1]

= 0 mod {p1}, · · · {p4}.

Hence, the result follows.

We proceed to reduce cyclic ordered partitions in the class {p4}.

Proposition 4.6.35. Let a1, a2, a4 ≥ 2, and [a1, a2, 1, a4] ∈ {p4}. Then,

[a1, a2, 1, a4] = 0 mod {p1}, . . . , {p3}.

Proof. When we apply proposition 4.6.30 to [a1, a2, 1, a4], we deduce:

[a1, a2, 1, a4] = [1, a2, a4, a1] (4.15)

−[a1, a2 + 1, 1, a4 − 1] − [1, a1 + 1, a2, a4 − 1]

+[a1, 2, a2, a4 − 1] mod {p1}, . . . , {p3}.

Without loss of generality, assume that a4−1 ≥ 2. By applying the above congruence
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to [a2, a4 − 1, a1, 2] = [a1, 2, a2, a4 − 1], we deduce:

[a2, a4 − 1, a1, 2] = [1, a4 − 1, a1, a2 + 1] (4.16)

+[1, a4 + a1 − 2, 2, a2] − [a2, a4, a1, 1]

+[a2, 2, a4 + a1 − 2, 1] mod {p1}, . . . , {p3}.

By substituting congruence 4.16 into congruence 4.15, we deduce that if a4 ≥ 3, then:

[a1, a2, 1, a4] = 2[1, a2, 2, a4 + a1 − 2] (4.17)

−[1, a1 + 1, a2, a4 − 1] mod {p1}, . . . , {p3}.

We proceed by cases that depend on the size of a4.

Case a4 = 2. By use of lemma 4.6.33, we can assume that both a2 = 2 and

a4 = 2. Otherwise, we can reduce to the case a3 ≥ 3. Hence, it suffices to reduce

[5∗, 2, 1, 2].

By applying congruence 4.15 to [5∗, 2, 1, 2], we deduce that:

[5∗, 2, 1, 2] = [1, 2, 2, 5∗] − [5∗, 3, 1, 1] − [1, 4∗, 2, 1] + [5∗, 2, 2, 1]

= [1, 2, 2, 5∗] + [5∗, 2, 2, 1] mod {p1}, . . . , {p3}.

By application of lemma 4.6.33, [1, 2, 2, 5∗] = [2, 2, 1, 5∗] = [5∗, 2, 2, 1] mod 0. Hence,

the above congruence yields [5∗, 2, 1, 2] = 2[1, 2, 2, 5∗] mod {p1}, . . . , {p3}.
We proceed to reduce [1, 2, 2, 5∗] by applying congruence 4.13 to [2, 5∗, 1, 2].

[2, 5∗, 1, 2] = [1, 5∗, 2, 2] − [2, 4∗, 1, 1] − [1, 3, 5∗, 1] + [2, 2, 5∗, 1]

= [1, 5∗, 2, 2] + [1, 2, 2, 5∗] mod {p1}, . . . , {p3}.

Note that [1, 5∗, 2, 2] = [1, 2, 2, 5∗] mod {p1}, . . . , {p3} by lemma 4.6.33. Hence, it

follows that [2, 5∗, 1, 2] = 2[1, 2, 2, 5∗] mod {p1}, . . . , {p3}.
Note that [1, 2, 2, 5∗] = [2, 5∗, 1, 2] mod 0 by lemma 4.6.33. Thus, [1, 2, 2, 5∗] =

2[1, 2, 2, 5∗] mod {p1}, . . . , {p3} and therefore [1, 2, 2, 5∗] = 0 mod {p1}, . . . , {p3}.
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Hence, [2, 5∗, 1, 2] = 0 mod {p1}, . . . , {p3}, and the result follows.

Case a4 ≥ 3. Suppose that in congruence 4.17, we have shown that [1, a2, 2, a4 +

a1 − 2] = 0 mod {p1}, . . . , {p3}. Then, it will follow that:

[a1, a2, 1, a4] = −[1, a1 + 1, a2, a4 − 1] mod {p1}, . . . , {p3}.

By applying the above congruence (a4 − 1) times to itself, we deduce that:

[a1, a2, 1, a4] = ±[1, a1 + a4 − 1, a2, 1]

= 0 mod {p1}, . . . , {p3}.

Therefore, it suffices to show that [1, a2, 2, a4 + a1 − 2] = 0 mod {p1}, . . . , {p3}.
We will show this in lemma 4.6.36.

Lemma 4.6.36. Let a, b ≥ 2. Then,

[1, a, 2, b] = 0 mod {p1}, . . . , {p3}.

Proof. Clearly, because [1, a, 2, b] is a cyclic ordered partition, we have [1, a, 2, b] =

[2, b, 1, a]. By applying congruence 4.15 to [2, b, 1, a], we deduce:

[2, b, 1, a] = 2[1, b, 2, a] − [1, 3, b, a− 1] mod {p1}, . . . , {p3}.

By lemma 4.6.33, [1, b, 2, a] = [2, b, 1, a] mod 0, and hence mod {p1}, . . . , {p3}. Thus,

the above congruence yields:

[2, b, 1, a] = [1, 3, b, a− 1] mod {p1}, . . . , {p3}.

It suffices to reduce [1, 3, b, a− 1] to 0 mod {p1}, . . . , {p3}.
Clearly, [1, 3, b, a− 1] = [b, a− 1, 1, 3]. Without loss of generality, we can assume
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that a− 1 ≥ 2. Hence, we can apply congruence 4.15 to [b, a− 1, 1, 3] to deduce:

[b, a− 1, 1, 3] = 2[1, a− 1, 2, b+ 1] − [1, b+ 1, a− 1, 2] mod {p1}, . . . , {p3}.

We will show that 2[1, a − 1, 2, b + 1] = [1, b + 1, a − 1, 2] mod {p1}, . . . , {p3}. This

will give the result.

By lemma 4.6.33, [1, b + 1, a − 1, 2] = [a − 1, b + 1, 1, 2] mod {p1}, . . . , {p3}. By

applying congruence 4.15 to [a− 1, b+ 1, 1, 2], we deduce that:

[a− 1, b+ 1, 1, 2] = 2[1, b+ 1, 2, a− 1] + [1, a, b+ 1, 1]

= 2[1, b+ 1, 2, a− 1] mod {p1}, . . . , {p3}.

By lemma 4.6.33, [1, b + 1, 2, a − 1] = [1, a − 1, 2, b + 1] mod {p1}, . . . , {p3}. Hence,

[1, b+ 1, a− 1, 2] = [a− 1, b+ 1, 1, 2] = 2[1, a− 1, 2, b+ 1] mod {p1}, . . . , {p3}.
Thus, the result follows.

Having shown that any cyclic ordered partition of class {p4} is reduced to 0 mod

{p1}, . . . , {p3}; we will proceed to find a (2, 4)-basis.

We will first establish a congruence equation, given by lemma 4.6.37, among the

cyclic ordered partitions of class {p3}. By using lemma 4.6.37, we will be able to

calculate a (2, 4)-basis.

Lemma 4.6.37. Let 5 ≤ a ≤ n− 4. Then, the following holds mod {p1}, {p2},

[1, 1, a, a∗ − 2] = 2[1, 1, a− 2, a∗] − [1, 1, a− 4, a∗ + 2].

Proof. This will be a long argument, so we will summarize the first step. By using the

projected relative (2, 4)-pods found in propositions 4.6.35 and 4.6.32), we will deduce

the following congruence mod {p1}, {p2} for 4 ≤ a ≤ n− 4:

2([1, 1, a, a∗ − 2] − [1, 1, a− 2, a∗]) = [2, 1, a− 3, a∗] − [1, 2, a− 2, a∗ − 1]. (4.18)

We will proceed to reduce the right-hand side of the above congruence.
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By using the explicit definition of M ′
2,4, or by applying lemma 4.6.33; we calculate,

M ′
2,4([2, 1, a− 3, a∗] − [1, 2, a− 2, a∗ − 1]) = [a− 3, (a− 3)∗]

−[a+ 1, (a+ 1)∗], (4.19)

M ′
2,4([1, 1, a, a

∗ − 2] − [1, a, 1, a∗ − 2]) = [2, 2∗] − [a+ 1, (a+ 1)∗]. (4.20)

Clearly, a − 4 ≥ 1, since a ≥ 5. By substituting a = a − 4 in Equation (4.20), we

deduce:

M ′
2,4([1, 1, a− 4, a∗ + 2] − [1, a− 4, 1, a∗ + 2]) = [2, 2∗] − [a− 3, (a− 3)∗]. (4.21)

Clearly, Equation (4.20) minus Equation (4.19) yields [2, 2∗] − [a − 3, (a − 3)∗] on

the right-hand side. Hence, Equation (4.20) minus Equation (4.19) must equal the

left-hand side of Equation (4.21). Summarizing, we have shown that,

M ′
2,4([1, 1, a− 4, a∗ + 2] − [1, a− 4, 1, a∗ + 2]) = [2, 2∗] − [a− 3, (a− 3)∗],

and, we have shown,

[2, 2∗] − [a− 3, (a− 3)∗] = M ′
2,4([1, 1, a, a

∗ − 2] − [1, a, 1, a∗ − 2])

−M ′
2,4([2, 1, a− 3, a∗] − [1, 2, a− 2, a∗ − 1]).

Hence, we can show mod 0,

[2, 1, a− 3, a∗] − [1, 2, a− 2, a∗ − 1] = [1, 1, a, a∗ − 2] − [1, a, 1, a∗ − 2]

−([1, 1, a− 4, a∗ + 2] − [1, a− 4, 1, a∗ + 2]).
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Thus, we deduce mod {p1}, {p2} that,

2([1, 1, a, a∗ − 2] − [1, 1, a− 2, a∗]) = [2, 1, a− 3, a∗] − [1, 2, a− 2, a∗ − 1]

= [1, 1, a, a∗ − 2] − [1, 1, a− 4, a∗ + 2].

Clearly, the result follows by an algebraic manipulation of the above congruence.

Therefore, it suffices to show congruence 4.18. Clearly, by lemma 4.6.33, [1, 1, a, a∗−
2] = [1, 1, a∗ − 2, a]. Hence, proposition 4.6.31 yields the following congruence mod 0

whenever 3 ≤ a ≤ n− 4:

3[1, 1, a, a∗ − 2] − 2[1, a, 1, a∗ − 2] − [1, 1, 1, 3∗] (4.22)

+[1, 2, a− 2, a∗ − 1] − [2, a− 2, 2, a∗ − 2] = 0.

Similarly, proposition 4.6.32 yields the following mod 0, whenever 2 ≤ a ≤ n− 5:

2[1, 1, a∗ − 2, a] − [1, a− 1, 1, a∗ − 1] − [1, 1, 1, 3∗] (4.23)

−[1, a+ 1, 1, a∗ − 3] + [2, 1, a− 1, a∗ − 2] + [1, 1, a+ 2, a∗ − 4]

−[2, a, 2, a∗ − 4] = 0.

By letting a = a − 2 in congruence 4.23, we deduce the following mod 0, whenever

4 ≤ a ≤ n− 3:

2[1, 1, a∗, a− 2] − [1, a− 3, 1, a∗ + 1] − [1, 1, 1, 3∗] (4.24)

−[1, a− 1, 1, a∗ − 1] + [2, 1, a− 3, a∗] + [1, 1, a, a∗ − 2]

−[2, a− 2, 2, a∗ − 2] = 0.

By setting the left-hand side of congruence 4.24 equal to the left-hand side of con-
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gruence 4.22, we deduce the following mod 0, whenever 4 ≤ a ≤ n− 4:

2[1, 1, a, a∗ − 2] − 2[1, a, 1, a∗ − 2] + [1, 2, a− 2, a∗ − 1]

−2[1, 1, a∗, a− 2] + [1, a− 3, 1, a∗ + 1] + [1, a− 1, 1, a∗ − 1]

−[2, 1, a− 3, a∗] = 0.

Hence, we deduce the following mod {p1}, {p2}, whenever 4 ≤ a ≤ n− 4:

2[1, 1, a, a∗ − 2] + [1, 2, a− 2, a∗ − 1] − 2[1, 1, a∗, a− 2]

−[2, 1, a− 3, a∗] = 0.

The above congruence is clearly equivalent to congruence 4.18.

Corollary 4.6.38. Let n ≥ 7. Define,

β0 = {[1, 1, a, a∗ − 2]|a = 1, . . . ,
n− 2

2
}

∪{[1, 1, 2, 4∗], [1, 1, 3, 5∗], [1, 1, 4, 6∗]},

β1 = {[1, 1, a, a∗ − 2]|a = 1, . . . ,
n− 3

2
}

∪{[1, 1, 2, 4∗], [1, 1, 3, 5∗], [1, 1, 4, 6∗]}.

Then,

1. If n is odd, then β1 is a generating set for the column space of M ′
2,4.

2. If n is even, then β0 is a generating set for the column space of M ′
2,4.

Proof. It suffices to reduce the cyclic ordered partitions of class {p3}.
Clearly, by repeated applications of lemma 4.6.37, we can deduce for a an odd

integer, with 5 ≤ a ≤ n− 4, there is an integer m such that:

[1, 1, a, a∗ − 2] = m[1, 1, 5, 7∗]

= m(2[1, 1, 3, 5∗] − [1, 1, 1, 3∗])

= 2m[1, 1, 3, 5∗] mod {p1}, {p2}.
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Similarly, by repeated applications of lemma 4.6.37, we can deduce for a an even

integer, with 5 ≤ a ≤ n− 4, there is an integer m′ such that:

[1, 1, a, a∗ − 2] = m′[1, 1, 6, 7∗]

= m′(2[1, 1, 4, 6∗] − [1, 1, 2, 4∗]) mod {p1}, {p2}.

Hence, we have reduced all cyclic ordered partitions of the form [1, 1, a, a∗ − 2],

with 5 ≤ a ≤ n− 4, to the generating set β0 or β1 – depending on the parity of n.

It suffices to reduce the cyclic ordered partition [1, 1, 3∗, 1]. Clearly, this is 0 mod

{p1}, {p2}.

We proceeed to calculate a (2, 4)-basis.

Proposition 4.6.39. Let n ≥ 7. Then,

1. Let n be odd, and β2,4 be defined as:

β2,4 = {[1, a, 1, a∗ − 2]|a = 1, . . . ,
n− 3

2
}

∪{[1, 1, 3, 5∗]}.

Then, β2,4 is a (2, 4)-basis for M ′
2,4.

2. Let n be even, and β2,4 be defined as:

β2,4 = {[1, a, 1, a∗ − 2]|a = 1, . . . ,
n− 2

2
}

∪{[1, 1, 2, 4∗]}.

Then, β2,4 is a (2, 4)-basis for M ′
2,4.

Proof. By using the generating sets provided by corollary 4.6.38, we will give a (2, 4)-

basis by reducing these sets to sets of minimal size, i.e., of size r2(n). This will force

the reduced generating set to be a (2, 4)-basis. We proceed by considering cases that

depend on the parity of n.
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Case n is odd. Clearly, by lemma 4.6.33, [1, 1, 2, 4∗] = [1, 1, 4∗, 2] and [1, 1, 4, 6∗] =

[1, 1, 6∗, 4] mod 0. Because n is odd, 4∗ = n− 4 and 6∗ = n− 6 are also odd. Hence,

using a similar reasoning as corollary 4.6.38, we can apply lemma 4.6.37 repeatedly

to deduce the existence of integral m1 and m2 such that mod {p1}, {p2}:

[1, 1, 2, 4∗] = [1, 1, 4∗, 2]

= 2m1[1, 1, 3, 5
∗],

[1, 1, 4, 6∗] = [1, 1, 6∗, 4]

= 2m2[1, 1, 3, 5
∗].

Thus, β2,4 is indeed a generating set for the Column Space of M ′
2,4. Since β2,4 has

minimal size, it must be a (2, 4)-basis.

Case n is even. It suffices to reduce [1, 1, 3, 5∗] and [1, 1, 4, 6∗] to show that β2,4

is a generating set for the column space of M ′
2,4. Because β2,4 has minimal size, i.e.,

has size r2(n); it will follow that β2,4 is a (2, 4)-basis.

Consider the following equations that will be proven in lemma 4.6.40.

[1, 1, 3, 5∗] = [1, 2, 1, 4∗] + 2

n
2
−2∑

a=4

(−1)a[1, a, 1, (a+ 2)∗] (4.25)

−[1, 3, 1, 5∗] + (−1)
n
2
−1[1,

n

2
− 1, 1,

n

2
− 1] mod 0,

[1, 1, 4, 6∗] = [1, 1, 2, 4∗] − [1, 2, 1, 4∗] + [1, 3, 1, 5∗] (4.26)

−[1, 4, 1, 6∗] + 2

n
2
−2∑

a=5

(−1)a[1, a, 1, (a+ 2)∗]

−(−1)
n
2
−1[1,

n

2
− 1, 1,

n

2
− 1] mod 0.

where Equation (4.25) holds for n ≥ 16, and Equation (4.26) holds for n ≥ 18.

Equation (4.25) shows that [1, 1, 3, 5∗] = 0 mod {p1}, {p2} for n ≥ 16. We leave it

as an exercise to check this congruence for 8 ≤ n ≤ 14.

Similary, Equation (4.26) shows that [1, 1, 4, 6∗] = [1, 1, 2, 4∗] mod {p1}, {p2} for

n ≥ 18. We leave it as an exercise to check this congruence for 8 ≤ n ≤ 16.
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Hence, it follows that β2,4 is indeed a generating set. Therefore the conclusion

follows.

Lemma 4.6.40. The following hold mod 0 using M ′
2,4.

1. Let n ≥ 16. Then,

[1, 1, 3, 5∗] = [1, 2, 1, 4∗] + 2

n
2
−2∑

a=4

(−1)a[1, a, 1, (a+ 2)∗] (4.27)

−[1, 3, 1, 5∗] + (−1)
n
2
−1[1,

n

2
− 1, 1,

n

2
− 1] mod 0.

2. Let n ≥ 8. Then,

[1, 1, 4, 6∗] = [1, 1, 2, 4∗] − [1, 2, 1, 4∗] + [1, 3, 1, 5∗] (4.28)

−[1, 4, 1, 6∗] + 2

n
2
−2∑

a=5

(−1)a[1, a, 1, (a+ 2)∗]

−(−1)
n
2
−1[1,

n

2
− 1, 1,

n

2
− 1] mod 0.

Proof. We show part 1. It suffices to show that both sides of Equation (4.27) are the

same when we apply M ′
2,4.

By direct application of lemma 4.6.33, we deduce for n
2
− 2 ≥ 4 that:

n
2
−2∑

a=4

(−1)aM ′
2,4[1, a, 1, (a+ 2)∗] =

2[1, 1∗]f(n) +

n
2
−2∑

a=4

(−1)a([a, a∗] + 2[a+ 1, (a+ 1)∗] + [a+ 2, (a+ 2)∗]),

where,

f(n) =





0 if n = 2 mod 4,

1 if n = 0 mod 4.



322

Also, a direct calculation yields:

n
2
−2∑

a=4

(−1)a([a, a∗] + 2[a+ 1, (a+ 1)∗] + [a+ 2, (a+ 2)∗]) =

[4, 4∗] + [5, 5∗] + (−1)
n
2
−2{[n

2
− 1, (

n

2
− 1)∗] + [

n

2
, (
n

2
)∗]},

whenever n
2
− 2 ≥ 6, i.e., n ≥ 16. Thus,

(−1)
n
2
−1M ′

2,4[1,
n

2
− 1, 1,

n

2
− 1] + 2

n
2
−2∑

a=4

(−1)aM ′
2,4[1, a, 1, (a+ 2)∗]

= {4f(n) − 2(−1)
n
2
−2}[1, 1∗] + 2[4, 4∗] + 2[5, 5∗]

= 2[1, 1∗] + 2[4, 4∗] + 2[5, 5∗], (4.29)

where, we have used 4f(n) − 2(−1)
n
2
−2 = 2 whenever n is even.

Independently of the above, by using lemma 4.6.33, we can calculate:

M ′
2,4([1, 1, 3, 5

∗] − [1, 2, 1, 4∗] + [1, 3, 1, 5∗]) = 2[1, 1∗] + 2[4, 4∗] + 2[5, 5∗]. (4.30)

By setting Equation (4.30) equal to Equation (4.29), we deduce the conclusion.

We show part 2. We will show that both sides of Equation (4.28) are the same.

Clearly, for n
2
− 2 ≥ 7, i.e., n ≥ 18; we deduce by using lemma 4.6.33 that:

n
2
−2∑

a=5

(−1)aM ′
2,4[1, a, 1, (a+ 2)∗] =

− [5, 5∗] − [6, 6∗] + (−1)
n
2
−2{[n

2
− 1, (

n

2
− 1)∗] + [

n

2
, (
n

2
)∗]} + g(n)[1, 1∗],

where,

g(n) =





−1 if n = 2 mod 4,

0 if n = 0 mod 4.
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Consider,

(−1)
n
2
−1M ′

2,4[1,
n

2
− 1, 1,

n

2
− 1] + 2(

n
2
−2∑

a=5

(−1)aM ′
2,4[1, a, 1, (a+ 2)∗])

= −2[5, 5∗] − 2[6, 6∗] + {2(−1)
n
2
−1 + 4g(n)}[1, 1∗]

= −2[5, 5∗] − 2[6, 6∗] − 2[1, 1∗], (4.31)

where, we have used 2(−1)
n
2
−1 + 4g(n) = −2 whenever n is even.

Independently of the above, by using lemma 4.6.33, we can calculate:

M ′
2,4([1, 1, 4, 6

∗] − [1, 2, 1, 4∗] + [1, 3, 1, 5∗]) +M ′
2,4(−[1, 4, 1, 6∗] + [1, 1, 2, 4∗])

= −2[5, 5∗] − 2[6, 6∗] − 2[1, 1∗]. (4.32)

By setting Equation (4.31) equal to Equation (4.32), we deduce the conclusion.

4.6.5.4 The Smith Group of M′
2,4 and M2,4

The (2, 4)-basis of proposition 4.6.39 can be used to calculate the Smith Group of

M ′
2,4. The following proposition shows this result.

Proposition 4.6.41. Let n ≥ 7. Then, S(M2,4(n)′) = (Z/6Z).

Proof. We will proceed by cases. In each case, we will calculate the determinant

of M ′
β, where M ′

β is the matrix consisting columns of M ′
2,4 that correspond to β2,4.

Because there is a unique abelian group of order 6, the result will follow.

Case n is odd. We will assume that n ≥ 11, i.e., n−1
2

≥ 5. The cases for n = 7, 9

will follow by direct calculation.

Order the members of β2,4 in the following manner,

{[1, 1, 3, 5∗]} ∪ {[1, a, 1, (a+ 2)∗] | a = 1, . . . ,
n− 3

2
},
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and order the 2-subsets’ orbits canonical basis in the following manner,

{[a, a∗]|a = 1, . . . ,
n− 1

2
}.

With respect to these orderings, M ′
β has matrix representation:

Am =




2 3 2 2 · · · 2 2 2

1 2 1 0 · · · 0 0 0

1 1 2 1 · · · 0 0 0

1 0 1 2 · · · 0 0 0

1 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 1

0 0 0 0 · · · 0 1 3




,

where m = n−1
2

.

Because we are calculating the det(Am) = am, we can perform elementary row and

column operations without modifying the answer. Consider the following elementar

column operation:

C1 − C2 + C3 − C4 → C1.

That is, Column 1 minus Column 2 plus Column 3 minus Column 4 store the result

in Column 1. The resulting matrix A′
m, shown below, will have the same determinant



325

as Am.

A′
m =




2 3 2 2 · · · 2 2 2

2 2 1 0 · · · 0 0 0

2 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 1

0 0 0 0 · · · 0 1 3




.

Clearly, am = det(Am) = det(A′
m) = 2det(B′

m), where B′
m is given by:

B′
m =




1 3 2 2 · · · 2 2 2

1 2 1 0 · · · 0 0 0

1 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 1

0 0 0 0 · · · 0 1 3




.

We apply the following Elementary Column operation to B ′
m:

C1 − C2 → C1.
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We get the following matrix Bm with the same determinant as B ′
m.

Bm =




2 3 2 2 · · · 2 2 2

1 2 1 0 · · · 0 0 0

0 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 1

0 0 0 0 · · · 0 1 3




.

Summarizing, am = det(Am) = 2det(Bm). Thus, it suffices to calculate bm =

det(Bm).

Clearly, bm can be calculated by performing a determinant minor expansion along

the first row of Bm. Hence, we have:

bm = 2cm−1 − 3cm−2 + · · · + 2(−1)(m−2)+1c2

+2(−1)(m−1)+1c1 + 2(−1)m+1,
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where cm = det(Cm), and Cm is given as the following m×m matrix:

Cm =




2 1 0 0 · · · 0 0 0

1 2 1 0 · · · 0 0 0

0 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 1

0 0 0 0 · · · 0 1 3




.

By performing a determinant minor expansion along the first row of Cm, we deduce

the following recursive formula:

cm = 2cm−1 − cm−2,

where c1 = 3 and c2 = 5. It can be shown by induction that with these initial

conditions, cm = 2m + 1 for general m. By substituting this value of cm into the

previous formula for bm, we deduce:

bm = 2(−1)m{c1 − c2 + · · · + (−1)mcm−1} + 2(−1)m+1 − cm−2

= 2(−1)m{
m−1∑

i=1

(−1)i+1(2i+ 1)} + 2(−1)m+1 − 2(m− 2) − 1

= 2(−1)m{1 − (−1)m−1m} + 2(−1)m+1 − 2(m− 2) − 1

= 2m− 2(m− 2) − 1

= 3.

Therefore, am = 2bm = 6.
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Case n is even. Order the members of β2,4 in the following manner,

{[1, 1, 2, 4∗]} ∪ {[1, a, 1, (a+ 2)∗]|a = 1, . . . ,
n− 2

2
},

and order the canonical basis of the 2-subsets’ orbits in the following manner,

{[a, a∗] | a = 1, . . . ,
n

2
}.

With respect to these orderings, M ′
β has matrix representation:

Am =




2 3 2 2 · · · 2 2 2

2 2 1 0 · · · 0 0 0

1 1 2 1 · · · 0 0 0

1 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 2

0 0 0 0 · · · 0 1 2




,

where m = n
2
. Consider the following column operation:

C1 + C2 − C3 → C1.

That is, Column 1 plus Column 2 minus Column 3 store the result in Column 1. The
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resulting matrix A′
m, shown below, will have the same determinant as Am.

A′
m =




3 3 2 2 · · · 2 2 2

3 2 1 0 · · · 0 0 0

0 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 2

0 0 0 0 · · · 0 1 2




.

Clearly, am = det(Am) = det(A′
m) = 3det(B′

m), where B′
m is given by:

B′
m =




1 3 2 2 · · · 2 2 2

1 2 1 0 · · · 0 0 0

0 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 2

0 0 0 0 · · · 0 1 2




.

Summarizing, am = det(Am) = 3det(B′
m). Thus, it suffices to calculate b′m = det(B′

m).

Clearly, b′m can be calculated by performing a determinant minor expansion along
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the first row of B ′
m. Hence, we have:

b′m = dm−1 − 3dm−2 + · · · + 2(−1)(m−2)+1d2

+2(−1)(m−1)+1d1 + 2(−1)m+1,

where dm = det(Dm), and Dm is given as the following m×m matrix:

Dm =




2 1 0 0 · · · 0 0 0

1 2 1 0 · · · 0 0 0

0 1 2 1 · · · 0 0 0

0 0 1 2 · · · 0 0 0

0 0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 0 0

0 0 0 0 · · · 2 1 0

0 0 0 0 · · · 1 2 2

0 0 0 0 · · · 0 1 2




.

By performing a determinant minor expansion along the first row of Dm, we deduce

the following recursive formula:

dm = 2dm−1 − dm−2,

where d1 = 2 and d2 = 2. It can be shown by induction that with these initial

conditions, dm = 2 for general m. By substituting this value of dm into the previous

formula for b′m, we deduce:

b′m = 2(−1)m{d1 − d2 + · · · + (−1)mdm−1} + 2(−1)m+1 − dm−2 − dm−1

= 4(−1)m{
m−1∑

i=1

(−1)i+1} + 2(−1)m+1 − 2 − 2

= 4(−1)mf(m) + 2(−1)m+1 − 4,
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where,

f(m) =





1 if m is even,

0 else.

Clearly, by using the value of f(m), we can deduce that b′m = −2 for all m. Hence,

am = 3b′m = −6 and the result follows.

We proceed to calculate the Smith Group of M2,4. The following table summarizes

the result.

gcd(4, n) S(M2,4(n))

1 (Z/6Z)

2 (Z/6Z)

4 (Z/3Z)

Figure 4.25. The Smith Group of M2,4(n).

Proposition 4.6.42. Let gcd(n, 4) = 1. Then, S(M2,4(n)) = (Z/6Z).

Proof. Because gcd(n, 2) = 1 = gcd(n, 4), we must have D2 = nI, and D4 = nI. By

considering M ′
2,4D4 = D2M2,4, and the previous equations for D2 and D4, we must

have M ′
2,4 = M2,4. The result follows from proposition 4.6.41.

Proposition 4.6.43. Let gcd(n, 4) = 2. Then,

1. The set β2,4 is a (2, 4)-basis for M2,4 as well.

2. The following holds, S(M2,4) = (Z/6Z).
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Proof. Under the assumption for n, we can calculate:

D2 =


 nI 0

0 n
2


 ,

D4 =


 nI 0

0 n
2
I


 ,

where the last column of D2 corresponds to α0 = [n
2
, n

2
], and the last columns of

D4 corresponds to orbits of the form β0 = [a, b, a, b] with a + b = n
2
. Define Xn =

{[a, b, a, b] | a+ b = n
2
}. Because M ′

2,4D4 = D2M2,4, we can deduce:


 I 0

0 2


M ′

2,4 = M2,4


 I 0

0 2I


 .

Hence, we can partition the columns and rows of M2,4 and M ′
2,4 such that:

M ′
2,4 =


 A 2B

a 2jT


 ,

M2,4 =


 A B

2a 2jT


 ,

where the columns corresponding to


 B

2jT


 ofM2,4 are the columns corresponding to

orbits inXn, and the row corresponding to
[
a 2jT

]
ofM ′

2,4 is the row corresponding

to the orbit [n
2
, n

2
].

Clearly, β2,4 ∩Xn = {[1, n−2
2
, 1, n−2

2
]}. Let Mβ be the columns of M2,4 correspond-

ing to β2,4, and let M ′
β be the columns of M ′

2,4 corresponding to β2,4. By the previous
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decompositions of M2,4,M
′
2,4, we have the following decompositions of M ′

β,Mβ.

Mβ =


 A1 B1

2a1 2


 ,

M ′
β =


 A1 2B1

a1 2


 .

Claim 4.6.44. β2,4 is a (2, 4)-basis for M2,4.

Proof. Let

M2,4ΩK =


 B2

2


 ,

be a column of M2,4 corresponding to an element of Xn\β2,4.

Clearly, since β2,4 is a (2, 4)-basis for M ′
2,4, there is an integral vector


 x1

x2


 such

that:


 A1 2B1

a1 2




 x1

x2


 =


 2B2

2


 . (4.33)

We can manipulate the previous equation algebraically to deduce:


 A1 B1

2a1 2






x1

2

x2


 =


 B2

2


 .

It suffices to show that x1

2
is integral to reduce ΩK to the column space of β2,4.

Let us consider Equation (4.33) mod 2:

M ′
β


 x1

x2


 =


 A1 0

a1 0




 x1

x2




=


 0

0


 .
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Hence,


 x1

x2


 is in the kernel of M ′

β over F2. Because S(M ′
β) = (Z/6Z), it follows

that rk(M ′
β) = r2(n)− 1 when M ′

β is viewed as a map of F2-vector spaces. Therefore,

the kernel of M ′
β is one dimensional. Clearly,


 0

1


 is also in the kernel of M ′

β. Hence,

mod 2, we must have:


 x1

x2


 =


 0

1


 .

Therefore, 2 divides x1.

It remains to show that for any ΩK ∈∼ Xn, M2,4ΩK is in the column span of β2,4.

Consider ΩK ∈∼ Xn. Clearly,

M2,4ΩK =


 A2

2a2


 ,

Because β2,4 is a (2, 4)-basis for M ′
2,4, there is an integral vector


 y1

y2


 such that:


 A1 2B1

a1 2




 y1

y2


 =


 A2

a2


 .

The previous equation is equivalent to:


 A1 B1

a1 1




 y1

2y2


 =


 A2

a2


 .

By multiplying the previous equation by 2 on the last row, we deduce:


 A1 B1

2a1 2




 y1

2y2


 =


 A2

2a2


 .

Hence, M2,4ΩK is in the column span of β2,4. This proves claim 4.6.44.
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We resume to the proof of proposition 4.6.43. We show the second assertion.

We will calculate the det(Mβ) as 6. The result will follow because there is only one

abelian group of order 6.

Consider,

det(Mβ) = 2det




 A1 B1

a1 1




 .

Similarly,

6 = det(M ′
β)

= 2det




 A1 B1

a1 1




 .

Hence, det(Mβ) = 6 and the result follows.

Proposition 4.6.45. Let gcd(n, 4) = 4. Then, S(M2,4(n)) = (Z/3Z).

Proof. Under the assumption for n, we can calculate:

D2 =


 nI 0

0 n
2


 ,

D4 =




nI 0 0

0 n
2
I 0

0 0 n
4


 ,

where the last column of D2 corresponds to α0 = [n
2
, n

2
], the middle columns of D4

corresponds to orbits of the form β0 = [a, b, a, b] with a + b = n
2
, a 6= b, and the last

column of D4 corresponds to the orbit γ0 = [n
4
, n

4
, n

4
, n

4
]. Define Xn = {[a, b, a, b] |

a+ b = n
2
, a 6= b}.
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Because M ′
2,4D4 = D2M2,4, we can deduce:


 I 0

0 2


 ,M ′

2,4 = M2,4




I 0 0

0 2I 0

0 0 4


 .

Using the equations above, we can partition the columns and rows of M2,4 and M ′
2,4

such that:

M ′
2,4 =


 A 2B 4C

a 2jT 2


 ,

M2,4 =


 A B C

2a 2jT 1


 ,

where the columns corresponding to


 B

2jT


 of M2,4 are the columns corresponding

to orbits in Xn, the column corresponding to


 C

1


 of M2,4 is the column corre-

sponding to the orbit γ0, and the row corresponding to
[
a 2jT 2

]
of M ′

2,4 is the

row corresponding to the orbit [n
2
, n

2
].

Clearly, β2,4 ∩ Xn = {[1, n−2
2
, 1, n−2

2
]}, and γ0 /∈ β2,4. Let Mβ be the columns of

M2,4 corresponding to β2,4, and let M ′
β be the columns of M ′

2,4 corresponding to β2,4.

We have the decompositions:

Mβ =


 A1 B1

2a1 2


 ,

M ′
β =


 A1 2B1

a1 2


 .
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Claim 4.6.46. Let,

F =


 A B 2C

2a 2jT 2


 .

Then, ColZ(Mβ) = ColZ(F ).

Proof. The same proof of claim 4.6.44 can be used to show that for any ΩK ∈∼ {γ0},
FΩK = M2,4ΩK is in the column space of Mβ. Hence, it suffices to show that

Fγ0 = 2M2,4γ0 is in the column span of Mβ.

Because β2,4 is a (2, 4)-basis for M ′
2,4, there is an integral vector


 x1

x2


 such that:


 A1 2B1

a1 2




 x1

x2


 =


 4C1

2


 .

Using the same argument that we used in claim 4.6.44, we can show that 2 divides

x1. Also, we can manipulate the above equation algebraically to deduce:


 A1 B1

2a1 2






x1

2

x2


 =


 2C1

2




= 2M2,4γ0.

Thus, the result follows. This finishes the proof of claim 4.6.46.

We resume to the proof of proposition 4.6.45. Consider the following inclusion of

free Z-modules.

ColZ(F ) ⊂ ColZ(M2,4) ⊂ Zr2(n)

Hence, we deduce the following exact sequence:

0 → H → S(F ) → S(M2,4) → 0,
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where H = ColZ(M2,4)

ColZ(F )
.

Suppose that H has order 2. From claim 4.6.46, we know that S(F ) = S(Mβ).

Also, we know that S(Mβ) = (Z/6Z) by using a similar reasoning as in the proof of

proposition 4.6.43. Therefore, from the above exact sequence, we can deduce that

S(M2,4) has order 3, and therefore it must be (Z/3Z). Thus, it suffices to show that

H has order 2.

Clearly,

H =

ColZ




 A B C

2a 2jT 1






ColZ




 A B 2C

2a 2jT 2






= 〈


 C

1


〉.

Hence, H has order 2 or 1. Suppose that H is trivial. Clearly,

H =
ColZ(M2,4)

ColZ(F )

=
ColZ(M2,4)

ColZ(Mβ)

=

ColZ




 A B C

2a 2jT 1






ColZ(Mβ)
.

Using a proof similar to the proof of claim 4.6.44, we can deduce:

ColZ




 A B

2a 2jT




 = ColZ(Mβ).
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Hence, there is integral


 x1

x2


 such that:


 A1 B1

2a1 2




 x1

x2


 =


 C

1


 .

Clearly, this implies:

2(〈a1, x1〉 + x2) = 1,

which is a contradiction.

4.6.6 The (3,4) Case

We show partial results toward finding a (3, 4)-basis, and we show partial results

toward calculating the Smith Group of M ′
3,4.

4.6.6.1 Projected Relative (3,4)-Pods

We will calculate 3 relative projected (3, 4)-pods to show a reduction result for the

(3, 4) case.

Using the classification given by figure 4.18, we can partition the cyclic ordered

partitions of size 4 into 5 classes, where each class corresponds to a partition of 4.

The following propositions will use the notation of figure 4.18. All congruences will

use M ′
3,4.

Proposition 4.6.47. Let [a1, a2, a3, a4] ∈ {p5}, i.e., ai ≥ 2. Then,

2[a1, a2, a3, a4] = 0 mod {p1}, . . . , {p4}.

Proof. Let A = {x1, x2, x3, x4} ∈ [a1, a2, a3, a4], and choose B = {y1, y2, y3, y4} as

shown in the relative (3, 4)-pod of figure 4.26.
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Figure 4.26. Relative (3, 4)-pod.

The result follows from the projected relative (3, 4)-pod, shown in figure 4.27, that

results from the relative (3, 4)-pod of figure 4.26.

Proposition 4.6.48. Let [a1, a2, a3, a4] ∈ {p5}, i.e., ai ≥ 2. Then,

[a1, a2 + 1, a3 − 1, a4] = [a1, a2 − 1, a3 + 1, a4] mod {p1}, . . . , {p4}.

Proof. Let A = {x1, x2, x3, x4} ∈ [a1, a2, a3, a4], and choose B = {y1, y2, y3, y4} as

shown in the Relative (3, 4)-pod of figure 4.26.

The projected relative (3, 4)-pod that corresponds to the relative (3, 4)-pod of

figure 4.28 is shown in figure 4.29.

From the projected relative (3, 4)-pod of figure 4.29, we deduce mod {p1}, . . . , {p4}
that:

2[a1, a2, a3, a4] − [a1, a2 + 1, a3 − 1, a4] − [a1, a2 − 1, a3 + 1, a4] = 0.

By proposition 4.6.47, 2[a1, a2, a3, a4] = 0 mod {p1}, . . . , {p4}. Hence, we have:

[a1, a2 + 1, a3 − 1, a4] = −[a1, a2 − 1, a3 + 1, a4],
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T (−1)|T | K ψ(K)

0000 +1 {x1, x2, x3, x4} [a1, a2, a3, a4]

1000 −1 {y1, x2, x3, x4} [a2, 1, a3 − 1, a1 + a4]

0100 −1 {x1, y2, x3, x4} [a1 + a2, a3, 1, a4 − 1]

0010 −1 {x1, x2, y3, x4} [a1, 1, a2 + a3 − 1, a4]

0001 −1 {x1, x2, x3, y4} [1, a1 − 1, a2, a3 + a4]

1100 +1 {y1, y2, x3, x4} [1, a3 − 1, 1, a1 + a2 + a4 − 1]

1010 +1 {y1, x2, y3, x4} [1, a2, a3 − 1, a1 + a4]

1001 +1 {y1, x2, x3, y4} [a1 − 1, a2, 1, a3 + a4]

0110 +1 {x1, y2, y3, x4} [a1 + 1, a2 + a3 − 1, 1, a4 − 1]

0101 +1 {x1, y2, x3, y4} [1, a1 + a2 − 1, a3 + 1, a4 − 1]

0011 +1 {x1, x2, y3, y4} [1, a1 − 1, 1, a2 + a3 + a4 − 1]

1110 −1 {y1, y2, y3, x4} [a2, a3 − 1, 1, a1 + a4]

1101 −1 {y1, y2, x3, y4} [a1 + a2 − 1, 1, a3, a4]

1011 −1 {y1, x2, y3, y4} [a1 − 1, 1, a2, a3 + a4]

0111 −1 {x1, y2, y3, y4} [1, a1, a2 + a3, a4 − 1]

1111 +1 {y1, y2, y3, y4} [a1, a2, a3, a4]

Figure 4.27. Projected relative (3, 4)-pod.



342

�x1

�

x4

� x3

�

x2

��y4

��

y3

�	
y1


�

y2

1

1

1

1

a4a3

a2 a1

Figure 4.28. Relative (3, 4)-pod.

mod {p1}, . . . , {p4}.
If a2 ≥ 3, then by proposition 4.6.47 we deduce [a1, a2 − 1, a3 + 1, a4] = −[a1, a2 −

1, a3 + 1, a4] mod {p1}, . . . , {p4}. Hence, the result follows for a2 ≥ 3.

For a2 = 2, the result is trivial since

[a1, 2 + 1, a3 − 1, a4] = [a1, a2 + 1, a3 − 1, a4]

= −[a1, a2 − 1, a3 + 1, a4]

= −[a1, 2 − 1, a3 + 1, a4]

= 0

= [a1, 2 − 1, a3 + 1, a4],

mod {p1}, . . . , {p4}.

4.6.6.2 Partial Reduction for a (3,4)-Basis

Our research efforts on projected relative (3, 4)-pods did not yield a (3, 4)-basis. How-

ever, the following result was the best concise reduction.
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T (−1)|T | K ψ(K)

0000 +1 {x1, x2, x3, x4} [a1, a2, a3, a4]

1000 −1 {y1, x2, x3, x4} [1, a2 − 1, a3, a1 + a4]

0100 −1 {x1, y2, x3, x4} [a1 + a2, a3, 1, a4 − 1]

0010 −1 {x1, x2, y3, x4} [a1, a2 + 1, a3 − 1, a4]

0001 −1 {x1, x2, x3, y4} [1, a1 − 1, a2, a3 + a4]

1100 +1 {y1, y2, x3, x4} [a2 − 1, a3, 1, a1 + a4]

1010 +1 {y1, x2, y3, x4} [1, a2, a3 − 1, a1 + a4]

1001 +1 {y1, x2, x3, y4} [a1 − 1, 1, a2 − 1, 1 + a3 + a4]

0110 +1 {x1, y2, y3, x4} [a1 + a2 + 1, a3 − 1, 1, a4 − 1]

0101 +1 {x1, y2, x3, y4} [1, a1 + a2 − 1, a3 + 1, a4 − 1]

0011 +1 {x1, x2, y3, y4} [1, a1 − 1, a2 + 1, a3 + a4 − 1]

1110 −1 {y1, y2, y3, x4} [a2, a3 − 1, 1, a1 + a4]

1101 −1 {y1, y2, x3, y4} [a1, a2 − 1, a3 + 1, a4]

1011 −1 {y1, x2, y3, y4} [a1 − 1, 1, a2, a3 + a4]

0111 −1 {x1, y2, y3, y4} [1, a1 + a2, a3, a4 − 1]

1111 +1 {y1, y2, y3, y4} [a1, a2, a3, a4]

Figure 4.29. Projected relative (3, 4)-pod.
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Proposition 4.6.49. Let [a1, a2, a3, a4] ∈ {p5}, i.e., ai ≥ 2. Then, using M ′
3,4:

[a1, a2, a3, a4] =





[2, 2, 2, 6∗] mod {p1}, . . . , {p4} if all ais are even,

0 mod {p1}, . . . , {p4} else.

Proof. Suppose that some ai ≥ 3 is odd. Without loss of generality, asssume a3 ≥ 3.

Clearly, proposition 4.6.48 applies and it implies that for a1 ≥ 2, a2 ≥ 1, a3 ≥ 3, a4 ≥
2:

[a1, a2, a3, a4] = [a1, a2 + 2, a3 − 2, a4] mod {p1}, . . . , {p4}. (4.34)

Let a3 = 2s+ 1. We can apply the congruence 4.34 to itself s times to deduce:

[a1, a2, a3, a4] = [a1, a2 + 2, a3 − 2, a4]

= [a1, a2 + 4, a3 − 4, a4]

...

= [a1, a2 + a3 − 1, 1, a4]

= 0 mod {p1}, . . . , {p4}.

Hence, the result follows, and it suffices to show the proposition when all the ais are

even.

Let a3 = 2s. After applying congruence 4.34 to itself (s− 1) times, we can deduce

mod {p1}, . . . , {p4}:

[a1, a2, a3, a4] = [a1, a2 + 2, a3 − 2, a4]

...

= [a1, a2 + a3 − 2, 2, a4].

Now, we apply the previous argument to [a4, a1, a2+a3−2, 2] to deduce mod {p1}, . . . , {p4}:

[a4, a1, a2 + a3 − 2, 2] = [a4, a1 + a2 + a3 − 4, 2, 2].
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And, we proceed to do the same argument to [2, a4, a1 +a2 +a3 − 4, 2] to deduce mod

{p1}, . . . , {p4}:

[2, a4, a1 + a2 + a3 − 4, 2] = [2, a4 + a1 + a2 + a3 − 6, 2, 2]

= [2, 6∗, 2, 2].

Hence, the result follows.

As a corollary, we deduce the following.

Corollary 4.6.50. Let [a1, a2, a3, a4] ∈ {p5}, i .e . ai ≥ 2. Then, using M ′
3,4:

[a1, a2, a3, a4] =





[2, 2, 2, 6∗] mod {p1}, . . . , {p4} if n is even and

all ais are even,

0 mod {p1}, . . . , {p4} if n is even and

at least one ai is odd,

0 mod {p1}, . . . , {p4} if n is odd.

4.6.6.3 Partial Results for S(M′
3,4)

We calculate the Smith Group of M ′
3,4 whenever the integral preimage problem has

trivial solution. The following proposition summarizes the result.

Proposition 4.6.51. Let M ′
i−1,i have trivial solution to the integral preimage problem

for i = 1, 2, 3, 4. Assume that n is odd, and n ≥ 9. Then,

S(M ′
3,4) = (Z/4Z) × (Z/2Z)r2(n)−1.

Proof. By proposition 4.3.38, we deduce:

(Z/4Z) × (Z/2Z)r2(n)−1 = S(D3,4) (4.35)

⊂ S(M ′
3,4).
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By proposition 4.6.25, |M ′
2,3| = 3. Hence, gcd(|M ′

2,3|, 4 − 3 + 1) = gcd(3, 2) = 1.

Thus, by proposition 4.3.39, we deduce that:

〈β2,3〉 = S(M ′
3,4),

where β2,3 is Z-linearly independent in S(M ′
3,4). Hence, S(M ′

3,4) decomposes into

r2(n) nontrivial cyclic groups. By proposition 4.3.28 and Equation (4.35), S(M ′
3,4)

has exponent dividing 4. Therefore, by Equation (4.35),

S(M ′
3,4) = (Z/a1Z) × · · · × (Z/ar2(n)Z),

where ai = 2 or 4, and at least one ai is 4. It suffices to show that S(M ′
3,4) has exactly

one cyclic factor of size 4.

Suppose S(M ′
3,4) has two invariant factors of size 4. There are ΩT1 and ΩT2 be

two orbits in β2,3 such that there are integral z1, z2 satisfying:

4ΩT1 = M ′
3,4z1,

4ΩT2 = M ′
3,4z2.

By multiplying the previous equations by M ′
2,3 on the left, we deduce:

4M ′
2,3ΩT1 = 2M ′

2,4z1,

4M ′
2,3ΩT2 = 2M ′

2,4z2.

Let β2,4 be a (2, 4)-basis of M ′
2,4. The previous equations give,

2M ′
2,3ΩT1 = M ′

2,4z1

= M ′
β2,4

w1,

2M ′
2,3ΩT2 = M ′

2,4z2

= M ′
β2,4

w2,
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for some integral vectores w1 and w2. In particular, M ′
2,3ΩT1 and M ′

2,3ΩT2 have order

2 in S(M ′
β2,4

).

Clearly, S(M ′
2,4) = (Z/6Z) has a unique element of order 2. Thus, there is an

integral w3 such that:

M ′
2,3ΩT1 = M ′

2,3ΩT2 +M ′
β2,4

w3.

Therefore,

0 = M2,3(2ΩT1 − 2ΩT2 −M ′
3,4w3),

where w3 has support in β2,4.

Since M ′
3,4 has trivial solution to the integral preimage problem, it follows that

Ker(M ′
2,3) ∩ Zr3(n) ⊂ ImZ(M ′

3,4). Hence,

2ΩT1 − 2ΩT2 −M ′
3,4w3 = M ′

3,4w4

for some integral w4. Therefore, 2ΩT1 = 2ΩT2 in S(M ′
3,4). Thus, in S(M ′

3,4),

ΩT1 = ΩT2 + z2 (4.36)

where z2 is some element of order 2 of S(M ′
3,4).

We show that Equation (4.36) gives a contradiction. We will contradict the Z-

linear independence of β2,3. Clearly, since z2 has order 2, z2 =
∑

ΩTi
. Where ΩTi

are

elements of order 2 when viewed as elements of S(M ′
3,4), and ΩTi

∈ β2,3\{ΩT1 ,ΩT2}.
Thus, in S(M ′

3,4):

ΩT1 = ΩT2 +
∑

ΩTi
.

This contradicts the Z-linear independence of β2,3 in S(M ′
3,4).
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Corollary 4.6.52. Let gcd(n, 6!) = 1. Then,

S(M ′
3,4) = (Z/4Z) × (Z/2Z)r2(n)−1.

Proof. By proposition 4.3.25, the matrices M ′
i−1,i have trivial solution to the integral

preimage problem whenever i = 1, 2, 3, 4. Hence, the result follows by proposition

4.6.51.

4.6.7 Conjectures, Consequences, and Observations

We close this chapter with a conjecture related to the (t, k)-basis conjectures, and a

proposition that shows how to calculate the Smith Group of M ′
t,k(n) whenever the

(t, k)-basis conjecture holds.

We start with an observation about the integral preimage problem.

Proposition 4.6.53. Let t < k ≤ n− k, and let n be a prime. Then, M ′
t,k and Mt,k

have trivial solution to the integral preimage problem.

Proof. Note that the hypotheses of proposition 4.3.25 are satisfied whenever n is a

prime. Hence, the result follows by applying proposition 4.3.25.

We proceed to show a consequence of the weak (t, k)-basis conjecture.

Proposition 4.6.54. Let gcd(n, (2(k − 1))!) = 1, and 1 ≤ t < k ≤ n − k ≤ n − t.

Assume the (t, k)-basis conjecture holds for n, and for all (i−1, i) where i = 1, . . . , k.

Then, M ′
t,k(n) has Smith Group given by:

(Z/

(
k

t

)
Z) × (Z/

(
k − 2

t− 2

)
Z)r2(n)−1 × (Z/

(
k − 3

t− 3

)
Z)r3(n)−r2(n) × · · ·

×(Z/

(
k − (t− 1)

t− (t− 1)

)
Z)rt−1(n)−rt−2(n),

where ri(n) =
(n

i)
n

is the number of orbits on the i-subsets for i = 2, . . . , t.
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Proof. Under the assumption of n, we can deduce that M ′
i−1,i has trivial solution to

the integral preimage problem for i = 1, . . . , k by using proposition 4.3.25. Hence,

proposition 4.3.35 applies and the result follows.

Remark: The conclusion of proposition 4.6.54 has been verified for n a prime, and

n ≤ 19 with the aid of a computer program.

We close this chapter with another conjecture that has been verified by the work

of the previous sections for the cases (2, 3), (2, 4), and partly for the case (3, 4).

Conjecture 4.6.55. Let gcd(tk, n) = 1, t < k ≤ n− k, and let {p1}, . . . , {pr} be the

distinct partitions of k. Given {pi} = af11 · · · afl

l , define s({pi}) = f1 + · · · + fl as the

number of parts of {pi}. Let,

Xs = {ΩK | ΩK affords {pi} where {pi} satisfies s({pi}) ≤ s},

Ys = {{pi} | s({pi}) ≤ s}.

Then,

1. The set Xt contains a (t, k)-basis of M ′
t,k.

2. If ΩK ∈∼ Xt, then ΩK = 0 mod Ys using M ′
t,k.
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