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Abstract

In this thesis we study problems arising in the design of sense and respond systems and present

analytical solutions to them as well as results from experiments dealing with real systems. Sense

and respond systems employ sensors and other sources of data to sense what is happening in their

environments, process the obtained information, and respond appropriately. A goal of the processing

stage is to reconstruct the best possible estimate of the state of the environment using messages

received from sensors. Due to the large number of messages that need to be processed, it is desirable

to have algorithms that can incrementally process the received measurements and recover the state.

The state estimation process becomes more problematic if measurements obtained from the sensors

are noisy or they are sent at unpredictable times. First, we study models of state estimation and

present algorithms that can incrementally compute accurate linear state estimates of the surrounding

environment. Second, we define a framework called predicate signaling that allows us to make

tradeoffs between message generation rates and the quality of the state estimate through specification

of suitable predicates. We show how predicate signaling generalizes commonly used signaling schemes

and present a detailed analysis based on stochastic processes to evaluate schemes based on predicate

signaling.
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Introduction to Sense and Respond
Systems

A sense and respond system (1) estimates the history of global states of the environment from infor-

mation in streams of events and other data, (2) detects critical conditions—threats or opportunities—

by analyzing this history, and (3) responds in a timely fashion to these conditions. The term sense

and respond system was introduced by Haeckel and Rolan [13, 14]. The essential characteristic of

a sense and respond system is that it can be defined by a set of when-then rules of the following

form: when a condition holds then respond in the prescribed way. The designs of when-then rules

vary widely depending on the application being considered. For example, in the context of homeland

security the when clause may be the detection of an intruder in a monitored area and the then clause

may be the fast engagement of the threat.

An important problem in sense and respond systems is minimizing the amount of time needed

for evaluating the when clause and executing the then clause. For example, an intrusion detection

application, may fuse information coming from different sensors in order to predict the presence of

an intruder in the area. If the time needed to reach a decision becomes too high, the execution of the

then clause may be useless since the intruder may have already caused serious damage. Similarly,

the execution of the then clause should be efficient. Consider, for example, path planning for an

autonomous vehicle. The optimal path is computed initially using a given set of data. If the when

clause detects a change in this data set, it might be possible to recompute the optimal path given

the new change in the data set very rapidly without having to recompute everything from scratch.

This example suggests the importance of incremental algorithms for processing when-then rules.

It is impossible to define a general accurate evaluation measure for sense and respond systems.

This is because there are many different ways of specifying and evaluating clauses. Sense and respond

systems offer a theoretical framework for a wide range of applications. However, it is possible to

identify some basic evaluation criteria which are common to most of the applications.

(1) The cost of a false positive, i.e., the cost of executing a response to a condition that did not

arise. In terms of when-then rules, this is the cost of executing the then clause while the when

clause is false. An example is the cost of attacking an innocuous object erroneously determined
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to be an intruder.

(2) The costs of a false negative, i.e., the cost of not executing a response to a condition that did

arise. In terms of when-then rules, this is the cost of not executing the then clause while the

when clause is true. An example is the cost of not engaging a dangerous intruder erroneously

determined to be innocuous.

(3) The detection delay, i.e., the time between the instant the condition in the when clause becomes

true and the instant the system detects that it is true.

(4) The response delay, i.e., the time between the detection of the condition in the when clause

and the execution of the response action defined in the then clause.

Depending on the application, it may be necessary to include other evaluation criteria; for ex-

ample, it may be appropriate to measure the effectiveness of a response action. Suppose that, in

an intrusion detection application, the objective of the response is to engage an intruder. We want

to define parameters measuring how successful the engagement mission has been. Did the mission

completely neutralize the intruder or did it only partially accomplish the task? Defining these mea-

sures require careful consideration and strongly depends on the domain of the sense and respond

application.

The design of sense and respond systems is simplified by separating two problems: the detection

of the critical condition (corresponding to the evaluation of the when clause) and the execution

of the response (corresponding to the execution of the then clause). This thesis addresses both of

these problems. The remainder of the thesis is organized as follows. Part I studies the problem of

detecting changes in time-varying statistical models (when clause) and rapidly executing responses

to the detected changes (then clause). We consider linear statistical models and use the total least

square method as an estimation procedure. Part II focuses on the problem of reducing the amount

of communication needed to signal that a condition defined in a when clause has begun to hold.

Such problems are important for applications such as sensor networks, where many sensors with

limited communication capabilities are deployed to detect anomalous conditions. If communication

is not properly controlled such sensors may run out of battery power.
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Part I

Stream Processing Algorithm for

Change Detection and Adaptation
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Chapter 1

Introduction

System behaviors vary over time. For example, an information network varies from heavily loaded

to lightly loaded conditions; patterns of incidence of disease change at the onset of pandemics; file

access patterns change from proper usage to improper usage that may signify insider threat. The

models that represent behavior need to be updated frequently to reflect such changes; in the limit,

models need to be updated with each new event. Usually the model used is unknown and needs

to be estimated on the basis of received measurements. This chapter discusses algorithms that

fuse information in multiple event streams with the objective of estimating the most recent model

describing system behavior.

Algorithms that adapt to changes in behavior may depend on a appropriate amount of history:

those that give too much weight to the distant past will not adapt to changes in behavior rapidly;

those that don’t consider enough past information may conclude incorrectly, from noisy data, that

behavior has changed when it has not. Efficient algorithms are incremental; the computational time

required to incorporate each new event should be small and ideally independent of the length of the

history. This part illustrates how incremental algorithms can be efficiently derived for the case when

the model is linear and the estimation procedure used is the total least square method.

1.1 Overview

A sense and respond system learns about its environment from information in event streams and

other data sources. The environment is represented by a model, and algorithms continuously esti-

mate models as new events arrive on event streams. The learned model is used to determine the

best response to critical conditions.

In some problem areas, critical conditions are signaled by changes in behavior of a system.

Information assurance systems monitor applications, such as email, and usage of information assets,

such as files, to generate alerts when changes in behavior that may signal misuse are detected.

Financial applications detect potential non-compliance with regulations by monitoring changes in
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patterns of income and expenditure. Pharmaceutical companies monitor changes in patterns of side

effects reported by customers to detect potential problems with medicines.

These applications develop and continuously update models of system behavior. As system

behavior changes, model parameters change too; significant changes in parameters indicate probable

changes in behavior. The systems of interest consist of groups of entities. For instance, in the

pharmaceutical example, the system consists of all customers who have bought a product, and

the events in the system are activities by customers such as logging of complaints or indications

of satisfaction. The system generates a stream of events: the sequence of events generated by all

the customers collectively. Successive events may be generated by different entities; for example, a

complaint registered by one customer may be followed by complaints from many other customers

before an event is generated by the first customer again.

1.2 Model of Behavior

A signal is represented by a point in a multidimensional space where the dimensions are attributes of

behavior. The dimensions in a pharmaceutical example dealing with blood sugar monitors include

the age of the product, the strength of the battery, the type of erroneous reading, length of experience

with this type of product, and so on. Our algorithm is fed a stream of signals (sometimes called

event information) and thus is continuously fed new points in this space. A model is a surface in

this space, and a metric of the fitness of the model is the average mean-square distance of points

from the surface.

The system may change its behavior, and this change may be gradual or abrupt. In the blood

sugar monitor example, a change may be caused by the introduction of a defective component in

some batches of the product. The signals that are generated after the change reflect the changed

behavior. The algorithm updates its estimate of the model parameters each time it receives a signal

with the goal of maintaining an accurate model at all times. Fig. 1.1 illustrates a changing behavior

in 3–dimensional space. Points are generated on the one surface before the change and on the other

surface after the change.

1.3 Incremental Algorithms for Stream Processing

A stream processing algorithm takes a sequence of events as its inputs and scans this sequence only

once in order of event occurrence [4, 19]. The computational complexity measures are the space

used by the algorithm and the time required to process each new event. An incremental algorithm

is one for which the time required to fuse a single event with the history of events is small compared

with the length of the history; we seek algorithms in which the time is independent of the length
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Figure 1.1: Two three-dimensional surfaces corresponding to two different models of behavior. One
surface models the the pre-change behavior and the other surface models the post-change behavior.
Each generated point falls on one of the two surfaces: points marked with o belong to one surface
and points marked with * to the other surface.

of the history or is a low-degree polylog or polynomial. For example, consider the computation of

a moving-point average over a window. When the window moves by one value, the computation of

the new moving–point average can be done in time independent of the length of the window: merely

add the leading-edge value and subtract the trailing-edge value. We present algorithms for adapting

to behavioral change that come close to being incremental.

1.4 Related Work

A related problem, though different in spirit, is the change-point detection problem. Here, the goal

is to detect changes in the model underlying the data assuming that there exists a time when the

model changes. The following is a brief description of the problem. For a more complete description

of the problem, the reader is referred to Gustafsson [12] and Lorden [20].

Let f0 and f1 be two different probability density functions and {Xi} be a sequence of random

variables defined as follows: 



X1, X2, . . . , Xν−1 ∼ f0

Xν , Xµ+1, . . . , Xn ∼ f1,
(1.1)

where ν is unknown and denotes the time when the change in distribution occurs. The probability

densities f0 and f1 may be known or unknown. The goal is to detect that a change has taken place

at some time N as close as possible to ν subject to a constraint on the rate of false positives. Let
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us assume that one observation is received at any discrete time stamp and no more observations are

received after a change is detected. Let N be a random variable denoting the number of observations

received; equivalently, N denotes the time at which the test decides to stop taking observations,

since we observe X one at a time. Since the decision to stop at time N is based only on the

first N observations, N is called a stopping time. Let us denote by Et[N ] the expected number of

observations received assuming that a change takes place at time t. Then the change point detection

problem may be formulated as:

minimize Eν [N − (ν − 1)|N ≥ ν]

subject to E∞[N ] ≥ c

Here, E∞[N ] represents the expected number of observations until a false positive occurs (since

a change never occurs). Therefore, 1
E∞[N ] represents the false positive and the first constraint

restricts the false positive rate to be less than 1
c . The objective function describes the expected

delay in signaling a change after its occurrence. The problem above has received much attention in

the literature. When both the pre-change distribution f0 and the post-change distribution f1 are

completely specified, the problem is well understood and has been solved under a variety of criteria.

The most popular procedures used are Page’s CUSUM test [94] and the procedures of Shiryarev [26]

and Roberts [24]. The first asymptotic theory of change point detection was provided by Lorden

[20].

In practical problems the assumption that both pre-change and post-change distributions are

known is too restrictive. It is likely that both pre-change and post-change distributions involve

some unknown parameters for which only partial information can be given. Ideally, we would like to

minimize false alarm rates and detection delays for all problems. There is no attractive definition in

the literature of optimal procedures for detecting changes for the most general version of the problem.

Yajun Mei [22] gives an interesting definition of optimality for the case of unknown pre-change and

post-change distribution and proposes procedures that are then proved to be asymptotically optimal,

thereby generalizing Lorden’s asymptotic theory.

In the context of our work, both the pre-change and post-change model are unknown and the

objective is to estimate the post-change model as accurately as possible. The algorithm that we

propose is aimed at smoothing occurring changes as quickly as possible. More than one change can

potentially occur and, for any change, both the pre-change and the post-change model are assumed

to be unknown. Our goal is to use the received stream of data and capture changes in the underlying

model as efficiently as possible. The process of using streams of data and adapting to the surrounding

environment is called in the literature adaptive stream processing. Much attention has recently been

given to this topic [4, 5, 6, 18].



8

Chapter 2

Theory

2.1 Types of Models

A popular way of estimating a model that fits a set of points is regression. One of the variables of the

model is identified to be a dependent variable and the other variables are independent variables. A

model predicts the value of the dependent variable given the values of all the independent variables.

The differences between the values of the dependent variables in the actual set of data points and

the values predicted by the model are the errors of the model. There are many possible ways of

defining the best fitting model. A good choice that can often be motivated for statistical reasons

and also leads to a simple computational problem is the least square (LS) estimate. Formally, let

X ∈ Rn×p be a matrix where each row represent a point lying in an p-dimensional space and let b

be the vector of dependent variables. Then the ordinary least square problem seeks to

minimizeb̂∈Rp ‖b− b̂‖2
subject to b̂ ∈ R(X),

(2.1)

where R(X) is the affine subspace generated by the column of the matrix X. Once a minimizing

b̂ is found, then any β satisfying the relation Xβ = b̂ is called a LS estimate and ∆b = b − b̂ is

the corresponding LS correction. The quadratic programming problem in 2.1 is solved when b̂ is

the orthogonal projection of vector b onto R(X). Thus, the LS problem amounts to perturbing the

vector of dependent variables b by a minimum amount ∆b so that b̂ = b−∆b can be predicted by

the columns of X.

Weighted Data Points. Our objective is to adapt the estimate to changes occurring in the

model, thus a reasonable procedure is to associate each data point with a weight. The larger the

weight, the more likely it is that the data point is associated with the last model used. The new

problem where each row of the matrix X is multiplied by the correspond weight is called a weighted
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least square problem and allows the weights to determine the contribution of each observation to

the final parameter estimates.

However, for our purposes all variables are equivalent. Furthermore, each variable represents

an attribute of behavior and may be affected by sampling or measurement errors. The underlying

assumption in weighted least square regression is that errors only occur in the vector b and that the

matrix X of predictors is exactly known. Clearly, this is an invalid assumption for our problem.

A more suitable approach for our problem is the total least square method [16], sometimes also

called orthogonal regression. This approach defines the error to be the minimum distance of a data

point from the surface.

The best-fitting hyperplane with respect to a set of points is obtained by solving the minimization

problem

min
∑n

i=1 αi · (βT · xi)2

subject to ‖β‖ = 1,
(2.2)

where n denotes the number of points, β = (β1, β2, . . . , βp) is the column vector of unknowns defining

the normal to the estimated hyperplane, αi < 1 is the weighting factor and xi is a column vector

denoting the point received at time i. We define the matrix Z = {z1,z2, z3, . . . , zn} consisting of

weighted row vectors zi, where zi = αix
T
i is the weighted observation received at time i.

Using matrix-vector notation, we can write the equation 2.2 as

minimize ‖Zβ‖2

subject to ‖β‖ = 1
(2.3)

Using Lagrange multipliers, the problem can be formulated as finding the vector β minimizing

the expression

E = ‖Zβ‖2 − λ(‖β‖ − 1), (2.4)

which is equivalent to minimizing

E = βT ZT Zβ − λ(βT β − 1). (2.5)

In order to minimize the error E we take the derivatives in matrix form and set them to zero;

we are then left with the following eigenvalue problem:

ZT Zβ = λβ

subject to ‖β‖ = 1.
(2.6)

Thus, the solution of our problem β will be an eigenvector of the matrix ZT Z. It remains to

decide which of these eigenvectors minimizes the expression . Since the goal is to minimize expression
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2.4, we want λ to be as small as possible. Thus, the solution will be the eigenvector β associated

with the minimum eigenvalue λ of the matrix ZT Z.

We conclude the chapter with some considerations about the minimum eigenvalue λ. It is a

well-known fact that the matrix ZT Z is a positive semi-definite matrix, thus all its eigenvalues will

be real and non-negative. For convenience of notation, assume λ = λ1 ≤ λ2 ≤ . . . λp, where each

λi is an eigenvalue of ZT Z. Let us make the further assumption that the columns of Z have zero

mean. If this is not the case, we can always center the matrix by subtracting the mean of each

column from its elements, do the analysis, and then add the mean at the end. If we now project the

data matrix Z onto the eigenvector β and call the resulting projection q = Zβ, we can see that the

variance estimate of q is

qT q = βT ZT Zβ = βT λ1β. (2.7)

Since ZT Z is symmetric, all its eigenvectors will be orthogonal and therefore the variance esti-

mate of q becomes exactly λ1. Therefore, geometrically speaking, we are looking for the direction

β in the dimensional space where the variance is minimized.

2.2 Exponential Smoothing and Sliding Window

A key issue is that of determining the weight to be given to old information in estimating models.

Too much weight given to old information results in algorithms that do not update models rapidly,

but the more information that is used, the better the estimates in the presence of noise. Popular

algorithms for dealing with different emphases on newer and older data are sliding window and

exponential smoothing. A sliding window protocol with window size W estimates a model using

only the W most recent data points; it treats all W data points in the window with equal weight,

and effectively gives zero weight to points outside the window. An exponential smoothing algorithm

parameterized by α, 0 ≤ α ≤ 1, gives a weight of αk to a data point k units in the past; thus, an

algorithm using a small value of α “forgets faster”. We refer to α as the forgetting factor.

Incremental stream-processing algorithms can be obtained for both sliding window and exponen-

tial smoothing. Next, we show how this can be done for exponential smoothing under the assumption

(made throughout this work) that the dimensionality p of the model is negligible with respect to the

number of data points considered. Let P i = ZT
i Zi, where Zi is the matrix of dependent variables

at step i. It follows that P i+1 = αZi + xi+1x
T
i+1, where xi+1 is the column vector representing the

point received in iteration i + 1. Since xT
i+1xi is an outer product of a p-dimensional vector with

itself, the resulting p-dimensional matrix can be computed in O(p2) operations. The last step is

to compute the minimum eigenvalue of the square p- dimensional matrix P i+1. Using well-known

methods from numerical analysis such as the power method, or Cholesky decomposition, it is possible

to compute the eigenvector associated with the minimum eigenvalue in O(p3). Therefore the worst
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case complexity to recover the least square estimate for the weighted total least square problem is

O(p3), which shows that the computation can be done incrementally, i.e., independently on the size

of the received data set. A similar analysis shows that incremental algorithms can be obtained for

the sliding window protocol. For a detailed description of computational techniques for total least

square problems the reader is referred to Van Huffel and Vandewalle [16].

An important issue is that of determining the appropriate α to use at each time T . The value of

α can range from 1 (in which case all points from 0 to T are weighted equally) to 0 (in which case

only the data point that arrived at T is considered). Small values of α adapt to changes rapidly

because they give less weight to old data, whereas large values of α are better at smoothing out

noise.

One approach is to change the relative weights given to old and new data when a change is

estimated. For instance, suppose the algorithm estimates at time 103 that with high probability a

change occurred at time 100; the algorithm then reduces the weight given to signals received before

100 and increases the weight given to signals received after 100. A disadvantage of this approach is

that, if the algorithm estimates that a behavioral change has taken place when in reality no change

has occurred, it discards valuable old data needlessly. The same approach can be used with sliding

windows.

2.3 Experimental Setup

At any point in time, the behavior of a system is captured by a model that is represented by a

bounded surface. Our algorithm attempts to estimate the true model given a sequence of noisy

signals. We call the model and the surface estimated from signals the estimated values as opposed

to the “true” values. The true model is changed at some point in time during the experiment and

we evaluate whether the estimated model follows the true model accurately.

At each point in time, a signal is generated as follows. First, a point q is generated on the true

bounded surface randomly; next, a random error term e is generated randomly using the given error

distribution; and finally, a data point r = q + e · v is generated, where v is the unit normal to the

true surface at point q.

2.3.1 Algorithm

Input at time T : A sequence of T − 1 points that arrived in the time interval [0, T − 1] and a new

point that arrived at time T .

Output at time T : An estimate of the surface—a hyperplane in a linear model— at time T .

Goal: Minimize the deviation between the estimated and true surfaces.

The true model changes over time, and the manner of change is described separately.
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2.3.2 Angle Between Planes

One measure of the fit of the estimated model to the true model is the angle between the surfaces.

The inner product of the unit normals to the hyperplanes representing the estimated and true models

is the cosine of the angle between the hyperplanes, and we use this as a measure of goodness. The

cosine is 1 if the hyperplanes are parallel and 0 if they are orthogonal.

2.3.3 Comparison of Distances of Points from True and Estimated Sur-

faces

Another measure of the fit is represented by the differences in distances of data points from the true

and estimated surfaces. Let Dk,t be the minimum distance of the data point that arrived at time

k from the true surface at time t. Recall that dk,t is the minimum distance of the data point that

arrived at time k from the surface estimated at time t. Let E be defined as follows:

E =
∑

k

(Dk,k − dk,k)2. (2.8)

Now E is a measure of goodness; the smaller the value of E, the better the resulting estimate. E

is usually called the residual sum of squares error. Notice that E can be nonzero even if the true and

estimated hyperplanes are parallel, because this error term is zero if and only if the two hyperplanes

are the same.
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Chapter 3

Experiments

We restrict ourselves to linear models; thus, the surface is a hyperplane in a multidimensional space.

In each of our experiments we assume that we are given the true model; we generate noisy data

from the true model, compute an estimated model from the noisy data, and compare the true

and estimated models. At an arbitrary point in time, we change the true model. Noisy data is now

generated using the new true model (the distribution of noise terms is assumed to remain unchanged

even though the true model changes). Since the estimation algorithm has no specific indication that

the true model has changed, the algorithm uses data from before the change as well as data from

after the change. Therefore, the estimated model may not be close to the new true model during

and immediately after the change. We would like the estimated model to become closer to the true

model as the time since the last change increases.

The set of experiments is restricted to 2–dimensional surfaces. Noise is assumed to be Gaussian.

This is not a necessary assumption; in fact, the algorithm may be applied with any white noise

vector. We consider cases where the noise is low (σ2 = 1) or high (50 ≤ σ2 ≤ 100), and study the

effect of different values of α on the accuracy of the model. We choose values of α as follows. We

pick a positive integer w that we call the window size (not to be confused with the window in the

sliding window algorithm) and a positive number γ that we call the threshold. The value of γ is set

to 0.5 in the experiments. Given w and γ, we pick α such that the total weight assigned to all the

signals w or more time units into the past is exactly (up to a rounding error) γ. For instance, if

w = 4 and γ = 0.5 then we know that the first w signals have a total weight of 1
2 , the next w have

a total weight of 1
4 , the next w have a weight of 1

8 , and so forth.

3.1 Experiments With Changing Behaviors

We ran many experiments. In each experiment a change occurs after a certain number of time units.

Each change is a translation followed by a rotation of the (true) plane. Fig. 3.1 illustrates the 2D

case; each line is associated with a behavior change. Here we report on the following experiments:
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Figure 3.1: The model of behavioral change used in the performed experiments. When the model
changes, points are generated using a different line.

• The true model is changed after 500 time units. The translation is 0.75 and the rotation is 10

degrees.

• The true model is changed after 50 time units. The translation is 0.02 and the rotation is 1

degree.

• The true model is changed after 5 time units. The translation is 0.0018 and the rotation is 0.1

degrees.

Each experiment was run for several thousand time units and thus covered many changes of the

true model. For ease of visualization, we only show 1500 points in the figures; however, the same

pattern occurs for larger numbers of points.

Fig. 3.2 shows the cosine and the angle between the true and estimated hyperplanes at different

points in time for the low variance case. Fig. 3.3 shows the relative distance error as a function of

time for the low variance case. Figures 3.4 and 3.5 show results for the high variance case. The

angle between the true and estimated planes increases sharply at the point of the change and then

decreases. The angle at the instant of change is larger for higher values of α; this is not surprising,

because higher values of α give greater weight to pre-change data. Also, algorithms with higher

values of α take longer after a change to reduce the error.

Higher values of α are less susceptible to noise. This is not apparent from the figures in the

low-variance case, but is readily apparent in the high-variance case. Indeed, the algorithm with

low α cannot distinguish between a change to the true model and noise in the case of high noise

variance. This suggests, as expected, that only high values of α should be used in the case of high

noise whether the true model is stationary or not. As discussed earlier, one approach is to adapt the
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Figure 3.6: The scalar product between the vector of estimated and actual coefficients with threshold
0.5, noise variance 100 and change occurring after 50 iterations.
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Figure 3.8: The scalar product between the vector of estimated and actual coefficients with threshold
0.5, noise variance 100 and a change occurring every 5 iterations.
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relative weights given to old and new data when the algorithm estimates that a change has occurred.

When changes occur frequently as in Figures 3.6–3.9, large values of α are not appropriate since

they give large weight to data generated according to different past models. Large α values give

high accuracy, but only when the amount of data generated according to the same model is high;

when this is not the case, smaller values of α give better performance.

The experimental results are explained quite simply by considering the function
∑c

i=1 αk−i −
∑k

i=c+1 αk−i, where c denotes the time at which the true model changes. The first term is the total

weight assigned to pre-change signals and the second to post-change signals. Immediately after the

change, the pre-change weights are larger because there are fewer post-change signals. Likewise, the

higher the value of α the greater the weight given to pre-change signals.

3.2 Adaptive Algorithms

Adaptive algorithms change the relative weights assigned to older and newer data when a change is

detected. The figures show that when a change is abrupt, the change can be detected readily and

adaptive algorithms work well. If each change is small but changes occur frequently, the algorithm

may come close to accurate predictions for large α values. This can be seen clearly in Figures 3.6–3.9.

An alternative strategy is to compare the model at time T with the models at previous times t,

T −M ≤ t ≤ T , where M is a constant window size. So far we have only discussed the case where

M = 1, which is sufficient for substantial changes. If the algorithm detects a change between any

model at a previous time t and the current model, then the algorithm adapts the weights, giving

greater weight to signals after time t and less to signals before time t. These experiments are left

for future investigation.
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Chapter 4

Conclusions

In this part we have described an algorithm for estimating the parameters of a time-varying linear

model. The algorithm combines the method of total least squares with exponential forgetting to

compute the best estimate of the current model. We have shown that all the computation can be

done incrementally using a very small amount of memory. For the tested models we have discussed

the recovery of parameters as functions of the frequency of behavioral change of the model.
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Part II

Predicate Signaling
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Chapter 5

Introduction

In this part, we study mechanisms for reducing communication in distributed sense and respond

systems that obtain information from sensors and other sources of data and use it to detect specific

conditions. Sensors can generate messages periodically, when anomalies are detected, or when

queried by other nodes. We propose a strategy called predicate signaling that generalizes these

schemes by generating messages when specified predicates, which can deal with both time and

anomalies, hold. We show how power consumption, message generation rates and estimation errors

can be controlled by choosing predicates appropriately. We compare predicate signaling with other

schemes. We derive formulas based on stochastic differential equations to estimate performance

measures in predicate signaling. We analyze measurement data, and compare simulations based on

measured data with results predicted by our theory. Predicate signaling is a general framework that

can be particulary suitable to applications requiring low communication rates for reasons such as

energy constraints, secrecy, reduced electromagnetic interference and limited bandwidth.

5.1 Problem Overview

Distributed systems that respond to conditions in the environment can be specified by a set of rules

of the form “when a predicate P begins to hold then execute action e”, where P is a predicate on the

history of global states of the system [3]. The system initiates action e when the value of predicate

P changes from false to true (the system may have another action e′ that is executed when ¬P

changes value from false to true). The specification also includes quality of service and accuracy

requirements; these aspects are discussed later. Examples of systems that respond to conditions

include those that intercept intruders, warn when a tsunami is likely to hit, or respond to situations

that require control-law changes in multi-agent control systems.

Errors: Each node has access only to its own local state. A node estimates the global state by

fusing local state information sent to it by other nodes. Nodes can exactly compute only certain

types of predicates on global states [7]; estimates of other predicates may be incorrect. Consider a
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node w responsible for initiating action e when the value of predicate P changes from false to true.

A false positive occurs if node w’s estimator for P has value true while P has value false. Let d be

the delay from the point in time at which P begins to hold to the point in time at which w initiates

an action. During the delay interval, the estimated value for P is false while P is true; thus, a false

negative occurs for the interval. Design specifications (discussed later) include maximum acceptable

rates of error.

Next, we discuss different schemes by which nodes communicate with each other and then propose

a common framework —predicate signaling— that unifies these schemes and allows for systematic

analysis of tradeoffs among them.

5.2 Common Signaling Schemes

We first describe the three most popular signaling schemes used in the literature. These are in order,

time-driven, anomaly-based and query-based signaling. Then we propose a unifying scheme called

predicate signaling and compare it with the other three schemes.

5.2.1 Time-Driven Signaling

Consider a node w of a distributed system that executes an action e when its estimate of a predicate

P becomes true. Typically P is a function of the local states of other nodes. In time-driven

signaling, nodes periodically send local state information that node w needs to estimate P . The

optimal period is determined by trading off the cost of erroneous estimates against the costs of more

frequent messages and computation. While time-driven signaling is appropriate for applications

such as data gathering, it is inappropriate if systems are required to respond only to rare events,

such as tsunamis, in which case P rarely becomes true. For example, if a system turns on backup

power generators when a brownout is imminent, and if this situation arises only when temperatures

exceed 100 degrees, there is little value in sending temperature measurements every minute while

the temperature is below 95 degrees.

5.2.2 Anomaly-Based Signaling

A goal for a communication strategy is: nodes should communicate only when they have to. Anomaly-

based signaling helps to achieve this goal by adopting the following scheme. Predictive models that

track measurements exist for many applications including weather, power grids, stock markets,

intruder behavior, and virus propagation. The model that predicts a parameter such as amount of

rainfall most accurately may be different under different global conditions, such as when a hurricane

is approaching or when there is high pressure over nearby deserts. Accurate predictive models can

be employed to reduce the volume of communication between nodes.
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Consider communication from a node v to a node w. Some system parameters are observable by

both nodes; for example, both nodes may have local clocks that give the same time (to a sufficient

degree of accuracy) and thus time is observable by both nodes. Parameters that are at least partially

observable by multiple nodes are not limited to time; for instance multiple nodes may be able to

observe signals sent by a satellite. Some parameters that are observable by node v may not be

observable by w; for instance, if nodes v and w are far apart, w may not be able to observe the

temperature at v. For brevity v’s local parameters with respect to w are those parameters that v can

observe but w cannot. The communication strategy uses models that predict v’s local parameters

given the parameters observable by both v and w. Associated with communication from node v to

node w is a set of such predictive models.

At any given time, node v uses one of the models, say model M , in its set. Node v sends

messages to w only when: (1) the values that v measures of its local parameters deviate by more

than a specified threshold from the values predicted by the model M that v is currently using; or (2)

v changes the model M that it is using. These messages, which we call signals, include the current

measured values of v’s local parameters and the model that v uses from that point onwards until

the next message indicating a model change. Node w estimates v’s local parameters from (1) the

model M that v is currently employing, (2) the parameters that both v and w can observe, and (3)

the messages that w has received.

The rate at which messages are sent decreases with the predictive accuracy of the model. An

advantage of anomaly-based signaling is that the absence of signals conveys information; namely,

the information that measurements match the current model. By contrast, the absence of signals

never conveys information in (traditional) models of distributed systems—see theories of process

knowledge and learning in traditional distributed systems [15, 8]—because these models do not deal

with real time. However, the problem of estimation becomes difficult when measurements are noisy

and this issue is discussed later.

An illustration of the two signaling techniques is shown in Figure 5.1. The top plot shows time-

driven signaling where values are measured and signals are sent periodically. The bottom plot shows

a model that predicts a local parameter, say temperature, of a node v that is observable by another

node w, as a function of time. Associated with this model is a tolerance band: a message is sent

by v to w only when v’s measurement of its temperature crosses this tolerance band. This signal

includes the value of v’s measurement and the model that v uses from that point onwards. Node

w estimates v’s temperature given v’s current model, the current time (observable by both nodes),

and messages received by w from v.

In some cases, an anomalous situation may be represented as a composition of simpler anomalous

situations. For example, a power brownout is likely when temperatures are very high and when

power lines are saturated. In such cases, a predicate P is expressed as a composition, such as
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P = Q ∧ R, of predicates Q and R. Different nodes estimate the different predicates P , Q and R,

and send signals when the estimates of their predicates change; for instance, the node that estimates

P does so using the the most recent estimates of Q and R that it receives.

A potential criticism is that accurate models may require a lot of computation, and so tradeoffs

between communication and computation should be achieved. However, in many applications such

as weather, the model maps time (which is assumed to be the only observable parameter) to the

unobservables. Such models can be registered on storage systems that are either centralized or

distributed throughout the network. A large spectrum of approaches for constructing sensor storage

systems has been developed in recent years, some of which are briefly discussed next. In the simplest

approach each sensor can store the data locally (e.g., in flash memory), so that all writes are local

and incur no communication overhead. If the size of the model exceeds the sensor storage capability,

the remaining part of the model is stored in a distributed fashion on other sensors in the network.

The disadvantage is that if the sensor needs a portion of the model stored on another sensor, it

needs to send a message to recover the desired information. Such read requests are usually handled

by flooding. Research efforts such as Directed Diffusion [17] have attempted to reduce these read

costs, however, by using intelligent message routing.

An alternate scheme that is not discussed here is to use another simple model: assume that the

last value of the signal received is the best predictor of the future. Initial experiments with weather

data suggest that this works well. An advantage of such a model is that no storage or computation

is required; a sensor generates a message only when the measured value deviates from the value of

the last signal generated.

5.2.3 Query-Based Signaling

Declarative queries have recently assumed the role of a key programming paradigm for networks

consisting of a large set of nodes. TinyDB [21] and Cougar [28] are two example query processing

systems for multi-hop sensor networks. These systems emphasize in-network processing of declar-

ative queries to reduce data communications and battery usage. TinyDB especially focuses on

acquisitional aspects of query processing such as where, when and how often data should be col-

lected from the sensors [25]. Cougar uses sensor update and query occurrence probabilities for view

selection and location on top of a carefully constructed aggregation tree. Declarative queries are

especially useful because they allow programmers to task an entire network of nodes rather than

requiring them to program the individual nodes of the network. However, a major problem arises

when querying a sensor network database. In standard databases, which are typically considered

to be complete sources of information, the job of the engine is to answer a query correctly based

upon available data. In sensor network databases it is often impossible to gather all relevant data

needed for a query; this is due to the fact that the physically observable world consists of a set of
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continuous phenomena in both time and space. In order to compensate for this a number of data

reduction techniques, where the general goal is to trade accuracy for performance in massive data

sets, have been proposed. Some of those techniques consist of synopsis data structures [11] that

provide a summary of the data set within acceptable levels of accuracy while being much smaller

in size. Other techniques involve sampling at discrete points in time. Most recently, model-driven

techniques have been proposed for querying sensor networks [9]. Such models provide a framework

for optimizing the acquisition of sensor readings; sensors are used to acquire data only when the

model is not rich enough to answer the query with acceptable confidence. Performance metrics are

resource consumption, delay when answering queries [29] and communication costs. If a sensor is far

from the query source, then the query source cannot acquire the reading from it without forwarding

the request to other nodes.

In the context of sense and respond systems, a controller generates queries for the sensor network

when a predicate P , to which the controller is required to respond, is likely to change value from

false to true. Query-based signaling can be integrated into the predicate signaling framework by

making the response e (to a predicate becoming true) the generation of a query.

5.2.4 Predicate Signaling

Predicate signaling is a generalization of the signaling schemes, discussed above, that allows designers

to make design choices that trade off relative advantages of different signaling schemes within a

common framework. Moreover, predicate signaling is a natural framework for sense and respond

systems specified by when-then rules; when a predicate P becomes true then execute an action e,

where the action for a sensor or fusion node is the generation of a signal. Next, we show how

predicate signaling generalizes other schemes.

Periodic signaling with a period D is a special case of predicate signaling in which the predicate

is to send messages every D time units:

∃ integer k :: t = k ×D.

Anomaly-based signaling is a special case in which the predicate is to send a message when an

anomaly occurs. Query-based signaling is incorporated into predicate signaling in the following way:

the signal sent when a predicate becomes true is a query to the sensor network to send additional

information. The optimal policy for a node v that is responsible for initiating a response when a

predicate P becomes true may be to request additional information if v has received no messages

for such a long time that its estimate of P is likely to be inaccurate.

Predicate signaling is neither better nor worse than other schemes; it is a unified framework for

systematic analysis of tradeoffs.
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Problem Setting for Predicate Signaling The history of a system at a point T in time

specifies the (global) system state at each time t from the instant of system initiation (t = 0) to the

time t = T . The history is a function from time to system states.

We are given the following:

1. A set of pairs (P, e), where P is a predicate on the history of global states of a system and e

is an action.

2. For each pair (P, e), the net benefit of initiating action e with delay d after P becomes true.

3. For each pair (P, e), the cost of executing action e while P is false.

4. Constraints on energy, message bandwidth and computing capacity.

The problem is to maximize the net benefit per unit time subject to the given constraints. A

definition of net benefit is the difference between the benefits of executing appropriate actions and

the costs of executing inappropriate actions. Here, we start investigating only a very small part of

the overall problem; we give analytical and simulation results for the dependencies of the estimation

error and the message rate on the adopted signaling scheme.
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Chapter 6

Design Issues

Next we list some of the relative advantages of different signaling schemes and then discuss how

predicate signaling allows designers to make tradeoffs among them within a unified framework.

1. Reduction in average load: If predictive models are accurate then communication rates are

lower in anomaly-based signaling than in time-driven signaling for the same degree of error.

Also, the rate of generation of queries in query-based signaling can be reduced by querying for

additional measurements only when local measurements deviate from the current model.

2. Reduction in energy: At first, it might be said that anomaly-based signaling conserves

energy for the times when it is needed: times when reality doesn’t fit the current model used

by the estimator. However, it has been observed that in sensor networks, energy is consumed

both during active communication and idle listening. The sensors in a predicate signaling

based architecture spend most of the time in idle listening and only very little time in active

communication. The exact cost of idle listening depends on radio hardware and mode of

operation. For long-distance radios (0.5km or more), transmission power dominates receiving

and listening costs. By contrast, several generations of short-range radios show listening costs

of the same order of magnitude as receiving and transmission costs. Therefore, predicate

signaling based architectures offer significant advantages in situation where sensors detecting

changes in predicates need to send this information over long distances.

3. Increase in load variance: The loads on communication and computational resources are

more stable in time-driven signaling systems than in anomaly-based signaling systems, which

may have long periods of inactivity punctuated by bursts of frenetic activity.

4. Greater consequence of lost messages: A single message loss can be catastrophic in

anomaly-based signaling. Consider the consequence of the loss of a message from a node v to

a node w where the message contains (1) the information that v’s estimate of a predicate P

has become true and (2) the new model that v starts to use from that point onwards. Node w



30

will both estimate the value of P incorrectly and use the wrong (old) model in its estimation.

There will be no subsequent message from v while v’s measurements match v’s current model,

and node w will continue to use the wrong model until it receives a subsequent message from

v. This incorrect use of the wrong model can persist for an arbitrarily long time. By contrast,

in periodic signaling, if a single message is lost, the error can be repaired by the message sent

in the next period. Since the cost of lost messages is high in anomaly-based signaling, more

computationally expensive communication protocols are used than for time-driven signaling;

for instance, senders may resend messages repeatedly until an acknowledgment is received.

5. Computational impact: In many cases anomaly-based signaling requires less computation,

averaged over time, than time-driven signaling.

By suitably combining predicates from time-driven and anomaly-based signaling, we can choose

design points in between time-driven and anomaly-based signaling and thus make tradeoffs between

them. For instance we can reduce communication and computational requirements while limiting

the consequences of lost messages and load variance. Also, by generating queries for additional

measurement data only when certain predicates hold, and specifying these predicates appropriately,

designers can control message generation rates while limiting errors.
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Chapter 7

Filter for Predicate Signaling

Predicates are estimated from measurements, and the measurements may have error; this error

is usually called measurement error. The dynamic component of the measurement error is called

measurement noise. Predicate estimation is a problem in filtering: estimating true values from noisy

measurements. A huge body of literature exists on filtering with time-driven signaling, beginning

with the Kalman filter [27]. There are substantial differences in the algorithms for filtering when

signals are generated on a time-driven basis and when signals are generated only when a predicate

begins to hold. To illustrate the differences between the algorithms we review, in a few lines, the

essential ideas of the Kalman filter and then discuss the new challenges introduced by predicate

signaling. In the simple Kalman filter, it is assumed that the a priori probability density of the

parameter of interest and the noise of the measuring device are normally distributed. Recursively

applying Bayes’ Law, the normal a posteriori probability density can be efficiently derived, and the

mean and variance of the a posteriori density depends on the means and variances of the a priori

density and the measurement noise. The derivations of the Kalman filter may be found in Sayed et

al. [27]; here we only give the final equations under the assumption of a one-dimensional state space

model,

dX
(1)
t = F (t)X(1)

t + G(t)wt

X
(2)
t = H(t)X(1)

t + vt,
(7.1)

where X
(1)
t is the state and X

(2)
t is the observed output. The terms wt and vt are respectively the

process noise and the measurement noise.

Let us assume here that x0, w0, w1, . . . and v0, v1, . . . are jointly Gaussian and independent.

Furthermore, assume that the expectation of wt is E[wt] = 0 and the expectation of vt is E[vt] = 0.

In addition, assume that E[wtws] = q(t)δ(t − s), E[vtvs] = r(t)δ(t − s) and E[wtvs] = 0, where

δ(t2 − t1) is the Dirac delta function and q(t), r(t) are positive functions. Thus both process noise

and measurement noise are uncorrelated in time, and uncorrelated with each other. The goal is to

find the estimate of the state vector X
(1)
T , here denoted by X̂

(1)
T , which is a linear function of the
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measurements X
(2)
t , 0 ≤ t ≤ T received up to time T and minimizes the mean squared estimation

error E[(X(1)
T −X̂

(1)
T )2]. The initial estimate and covariance matrix are denoted respectively by X̂

(1)
0

and P0. The details of the derivation of the Kalman estimator can be found in many books. Here,

we only report the differential equations,

Ṗt = 2F (t)P (t) + G2(t)Q(t)− K̂2
t Rt

ˆ̇X(1)
t = F (t)X̂(1)

t + K̂t[X
(2)
t −H(t)X̂(1)

t ],

where K̂t = P (t)H(t)/R(t) is the Kalman gain. The new problem introduced by predicate signaling

is conditioning. The algorithm estimates the distribution of the true value given that measured

values satisfied a specified model (¬P holds) between signals. Even in the case when X(1) and

X(2) are both Gaussian processes, the Kalman Bucy filter cannot be applied if a predicate signaling

approach different from time-driven is used for providing the measurements of X(2). This is because

the information upon which we are conditioning consists of a set of pairs {(ti, ei)}, where ti is the

time when the predicate changed its truth value for the ith time and ei is the description of the event

that caused the predicate to change at time ti. Obviously, the process generating this information

is no longer Gaussian even if both X(1) and X(2) are continuous Gaussian processes.

This conditioning leads us to a different technique for estimation, and different algorithms.

7.1 Representation of Noise as Stochastic Processes

We begin by studying a model of noise suitable for a filter that can be used with anomaly-based

signaling.

Model Noise: We define the noise of a model M , at time t, to be f(t) − g(t): the difference

between the true value f(t) of a parameter at time t and the value g(t) predicted for that parameter

by model M at t. We also use the term process noise for model noise.

Measurement Noise: We define measurement noise at time t to be m(t) − f(t): the difference

between the measured value m(t) of a parameter and its true value f(t) at time t.

A signal is generated when the measurement deviates from the current model by more than a

given threshold, i.e., when m(t) − g(t) > σ, where σ is the threshold. Thus a signal is generated

when the measured value (model noise plus measurement noise) exceeds the threshold.

Our problem is to estimate the true value f(t) of a parameter at time t given the signals received

up to that point in time. This problem is equivalent to estimating the model noise f(t)−g(t) at time

t, since the true value f(t) can be obtained by summing the model noise and the model prediction

g(t).

Since we assume that measurements are being taken continuously, a reasonable mathematical

abstraction for measurement noise and model noise is that they are continuous stochastic processes.
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A simple choice for this abstraction is the Ornstein-Uhlenbeck (OU) process [10]. An OU process is

the solution of the following stochastic differential equation,

dXt = −αXtdt + βdWt, (7.2)

where Wt is an Wiener process, and α and β are positive constants. An OU process is a Gaussian

process that experiences a drift towards the initial value of magnitude proportional to its displace-

ment. Let us denote by X0 the initial value at time t0. Then, at any time t, the random variable

Xt has the following mean and variance:

X0e
−(t−t0)α (mean)

β
2α (1− e−2(t−t0)α) (variance).

(7.3)

A Wiener process Wt is instead a zero mean Gaussian process with variance t, with the additional

property that increments are independent, i.e., for s < t, Wt − Ws is independent of Ws. Notice

that while the variance of an OU process converges to β
2α as t → ∞, the variance of a Wiener

process grows linearly with time. We represent model noise by an OU process because we expect

to use accurate models, so the variance of process noise does not increase without bound over time.

We could represent measurement noise either as an OU process or as a Wiener process; for this

analysis we use the simpler Wiener process. This assumption is valid provided predicates are used

to ensure that the inter-arrival time between signals is not too large; in fact this can guarantee that

the variance does not grow much.

Let X
(1)
t be the measurement noise, and let X

(2)
t be the model noise. The measurement and

model noise processes are described by the following pair of stochastic differential equations,





dX
(1)
t = adW

(1)
t (measurement noise)

dX
(2)
t = −αX

(2)
t dt + βdW

(2)
t (model noise),

(7.4)

where W
(1)
t and W

(2)
t are independent Wiener processes, and a, α and β are parameters. Under the

mapping of time a2t → t, we can rewrite the system of equation 7.4 as





dX
(1)
t = dW

(1)
t (measurement noise)

dX
(2)
t = −κX

(2)
t dt + εdW

(2)
t (model noise),

(7.5)

where κ = α
a2 and ε = β

a .

The pair of equations 7.5 defines a two-dimensional Ito diffusion process. An Ito diffusion process

has the general form

dXt = b(Xt)dt + σ̂(Xt)dW t, (7.6)
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where X ∈ Rd, b : Rd → Rd, σ : Rd → Rd × Rd, and W t is an Rd-valued Wiener process.

The generator of an Ito diffusion process [10] is a linear operator of the form

L̂ =
d∑

i=1

bi
∂

∂xi
+

1
2

d∑

i=1

σ̂ikσ̂jk
∂2

∂xi∂xj
. (7.7)

For our Ito diffusion process defined in equation 7.5 we have

d = 2, b(Xt) =


 0

−κX
(2)
t


 and σ̂(Xt) =


 1 0

0 ε


 .

Therefore, applying the formula given by equation 7.7 we obtain that the generator of our Ito

diffusion process on R2 is

L̂ := −κx2
∂

∂x2
+

1
2

(
∂2

∂x1∂x1
+

∂2

∂x2∂x2

)
. (7.8)

7.2 Conditional Probabilities Given Predicates

Initially restrict attention to a simple predicate: the difference between measured and modeled values

exceeds a constant. We call this constant σ. Thus, the predicate is

|x(1)
t + x

(2)
t | = kσ for some k ∈ N.

We introduce the following mathematical model. The plane R2 is split into (overlapping) domains

Ωk = {(x1, x2) : |x1 + x2 − kσ| < σ}, k ∈ Z. Observe that the boundary ∂Ωk consists of two

disconnected components (parallel lines) that belong to Ωk−1 and Ωk+1; we denote them by Γk−1

and Γk+1 respectively. An illustrative example including few domains is presented in Figure 7.1.

We solve the following problem: given an increasing sequence 0 = t0 < t1 < . . . < tn of hitting

times and a sequence ni (ni+1 = ni± 1), reconstruct the probability distribution for Xt conditional

on the event {τi = ti, ki = ni, i = 1 . . . n, τn+1 > t}. Our approach is to employ the Fokker-Planck

equation. Since Xt ∈ Ωki for t ∈ (ti, ti+1), the probability density pt(x) that Xt is found at x

satisfies the Fokker-Planck equation





∂tpt(x) = L̂∗pt(x)

pt(x) = 0 if x ∈ ∂ΩKi

(7.9)

Here L̂∗ = 1
2

(
∂2

∂x1∂x1
+ ε2 ∂2

∂x2∂x2

)
+ κ ∂

∂x2
x2 is the adjoint of the generator L̂. This follows

immediately from the derivation in Appendix E. The initial condition pti(x) = qi(x)δ∂Ωki−1
(x) is

the single layer density on ∂Ωki−1 ⊂ Ωki corresponding to the distribution of exit locations from the
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Figure 7.1: Domains Ω−1,Ω0 and Ω1

previous domain ∂Ωki−1 . Let λn and φn(x1, x2 − kσ) be the eigenvalues and the eigenfunctions of

L̂∗ in the strip Ωk with zero boundary conditions (observe that k only appears through translation

of x1). Let us label the eigenvalues as 0 ≥ λ0 ≥ λ1 ≥ ... ≥ λn. Let ϕn be a set of functions such

that, for any pair (i, j), it holds that

∫

Ωki

φi(x1, x2 − kσ)ϕj(x1, x2 − kσ)dx = δi,j .

In other words, (ϕn, φn)n∈N form a bi-orthogonal set. Furthermore, assume that φ0(x) is normalized

to have integral one. Using the orthogonality we can write any solution of equation 7.9 as

pt(x1, x2) =
∞∑

n=0

p(i)
n eλn(t−ti)φn(x1, x2 − kiσ), (7.10)

where the coefficients p
(i)
n are related to the initial conditions qi(x) as

p(i)
n =

∫

Ωki

pti(x)ϕn(x1, x2 − kiσ)dx. (7.11)

The equality above follows by expanding pti using the definition given in equation 7.10 and then

using the fact that (ϕn, φn)n∈N form a bi-orthogonal set. Since pti(x) = qi(x)δ∂Ωki−1
we can rewrite

the integral as

p(i)
n =

∫

∂Ωki−1

qi(x)ϕn(x1, x2 − kiσ)ds. (7.12)
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We can finally compute p
(i+1)
m using the flux operator F̂ (see Appendix A) and obtain





p
(i+1)
m =

∑∞
n=0 p

(i)
n eλn(ti+1−ti)Tm,n,

Tm,n =
∫
Γ
F̂φn(x1, x2)n(x)ϕm(x1, x2 ± σ)ds

(7.13)

where Γ = {x : x1 + x2 = σ}; the “±” sign corresponds to ki+1 = ki ∓ 1. Thus the whole problem

is effectively reduced to the computation of the transfer matrix Tm,n and of the eigenvalues λm,n.

We next show how to get an analytical expression for the transfer matrix Tm,n. The flux operator

for the generator 7.8 [10] is given by F̂ = (∂x1,ε2∂x2
)/2. Since the normal to any boundary ∂Ωk is

n = (1, 1)/
√

2, we obtain

F̂u(x) · n =
1

2
√

2
[σx1u(x) + ε2σx2u(x)].

Expression 7.13 for the transfer matrix may therefore be written as

Tmn =
1
2

∫

Γ

[∂x1φn(x1, x2) + ε2∂x2φn(x1, x2)]ϕm(x1 ± σ, x2)dx. (7.14)
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Chapter 8

Theory and Measurements

In this chapter we evaluate predicate signaling in the setting of habitat monitoring. This problem

has received much attention from the sensor network community [1, 2]. We fit our models to

measurements of weather data extracted from the historical Integrated Surface Hourly database.

The data give parameters such as temperature and pressure at hourly intervals at different locations

over 5 years. We use a single simple predictive model to illustrate a point: if there are benefits

from using even a single predictive model, then there surely are benefits from using a set of more

accurate models where the model most appropriate for each point in time is employed. The predicted

parameter is the average over the 5 years. For instance, the predicted pressure at 9 AM on December

25 is the average of the measured pressure at 9 AM on December 25 over the 5 years.

Next we show that the Ornstein-Uhlenbeck and Wiener processes are satisfactory models for the

data, and then present experimental results concerning communication requirements and estimation

accuracy.

8.1 Fitting of Data

We estimate the parameters of the pair of stochastic differential equations 7.4 that fits data at a given

location and for a given parameter (such as temperature or pressure) as follows. For the purposes

of fitting the model to data we assume that there is no measurement noise. We first estimate the

parameters κ and ε of equation 7.5 that specify the stochastic process for model noise. We do so

by using the formula for the variance of the distribution of the difference h(τ) between model noise

values at two times separated by a duration τ :

h(τ) = X
(2)
t+τ −X

(2)
t .

This formula was given in equation 7.3.

We then compute the sample correlation function c(τ) for the parameter from the measured data.
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Figure 8.1: Model of the hourly pressure for the location of San Diego North Island

Then we compute the values of κ and ε so that the variance of h(τ) best fits c(τ).

Due to space limitations we only report results obtained using pressure data collected at a single

location (San Diego North Island). All other experiments in this work refer to this data source.

For the other locations that we tested, we determined that the quality of the fit was approximately

as for this location with parameters ε ∈ [0.2, 0.7], κ ∈ [0.01, 0.1]. Next, consider estimating the

parameter a that specifies the degree of measurement noise. In the data, pressure measurements are

produced by an instrument that consists of redundant digital pressure transducers. Brownian noise

is usually the dominant noise component, though flicker noise and thermal noise also contribute

for this transducer. The accuracy of the sensor is ±0.02 inches of mercury, while the resolution is

0.003 inches of mercury for measurement and 0.005 inches of mercury for reporting. Due to the

high accuracy of the sensor, the contribution of measurement noise is small, and we have chosen the

parameter a to be 0.2.

Figure 8.2 compares the correlation between measurements T units apart with predictions from

a model. Figure 8.3 compares the probability density of the difference between model noise 2 units

apart with predictions from a model. The figures suggest that the model fit is satisfactory.

8.2 Message Generation Rates

We expect the rate at which messages are generated to decrease as the value of the threshold

increases. We conducted the following experiment to estimate message rates. In the experiment, a

message was generated when the model given above (average over the 5 years) deviated from the
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by sensors located at San Diego North Island. The fitted parameters are ε = 0.4972, κ = 0.027
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level pressure observations reported by sensors located at San Diego North Island. The Gaussian
probability density function of h(2) computed using the process parameters ε = 0.4972 and κ = 0.027
has mean 0 and variance 0.4783.
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Figure 8.4: Average time between two consecutive messages. The parameters of the polynomial
fitting are a = 0.1485, b = 0.284, α = 1.622.

measurement by a value greater than the threshold. The model was run over all points —every hour

of every day— over the 5 years. The average and maximum times between messages were computed

for each value of the threshold. The resulting graphs are shown in Figures 8.4 and 8.5.

As expected, average and maximum message inter-arrival times increase with the threshold. A

fitting with the polynomial axα + b was carried out, and the coefficients of the polynomials are

shown.

8.3 Distribution of the Estimator Given Asynchronous Mes-

sages

Next, we evaluate how accurately the distribution of the estimator can be computed. At the instant

a signal is received giving the value of the parameter, the estimator distribution is determined by

the measurement noise. Later, the distribution is influenced by both measurement noise and model

noise; the variance for both types of noise is monotonic non-decreasing with time while there are no

signals. The estimator distribution converges to the equilibrium distribution as the time after the

signal is received becomes large; this distribution is obtained by using only the smallest eigenvalue

of the Fokker-Planck operator. The estimator distribution a short time after a signal is received can

only be computed using several of the smaller eigenvalues.

We compare the reconstruction of the probability density function obtained using formula 7.10

with the parameters a = 0.2, ε = 0.4972, κ = 0.027 with the probability density function computed
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λ p
(1, 0) -8.7909 1.2732
(1, 2) -10.1409 -0.3183
(1, 4) -11.4909 0.0398
(1, 6) -12.8409 -0.0033
(1, 8) -14.1909 0.00020723

Table 8.1: Values of the five largest eigenvalues and corresponding p(0) obtained using formula 7.10.

by means of numerical simulations. For our experiments we consider the time differences to be

respectively 1.5 and 15.0 and fix t0 = 0. Clearly, when t = 1.5, a larger number of eigenvalues

contribute to the reconstruction of the probability function, while for t = 15.0 all eigenvalues except

λ1,0 decay and the probability density function in 7.10 converges to the stationary distribution given

by the normalized eigenfunction φ1,0 corresponding to the smallest eigenvalue λ1,0. Table 8.1 gives

the values of the five largest eigenvalues obtained using equation 7.10.

The results are shown in Figures 8.6 and 8.7.

8.4 Decrease in Estimation Confidence With Message Ab-

sence

An advantage of predicate signaling is that the absence of messages conveys the information that

measurements fit the model. Though the absence of signals conveys information, the presence of



42

−1.5 −1 −0.5 0 0.5 1 1.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
2

V
al

ue
 o

f t
he

 d
en

si
ty

Probability density function of X
1.5
(2)

1st approximation
3rd approximation
5th approximation
Simulation

Figure 8.6: Probability density function of X
(2)
1.5 .

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
2

V
al

ue
 o

f t
he

 d
en

si
ty

Probability density function of X
13.0
(2)

Stationary density
Numerical Simulation

Figure 8.7: Probability density function of X
(2)
13 .



43

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Mean squared error for different values of σ

Time

M
ea

n 
sq

ua
re

d 
er

ro
r

σ = 0.5,

σ = 1.5

σ = 2.5

Figure 8.8: Expected loss functions for different values of σ under the assumption that the process
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signals conveys even more information. The estimate for an unobservable parameter, at any point in

time, is a random variable whose variance increases with the time since the last signal was received. A

question that arises in predicate signaling is, how rapidly do confidence intervals for estimates grow?

If, for instance, the 95% confidence interval gets large very rapidly, then a node fusing information

from multiple locations is likely to make erroneous estimates if it hasn’t received signals for some

time. The rate at which the confidence interval increases is one of the factors that determines the

time-driven aspect of predicate signaling. Even if measurements fit the model, signals may need to

be generated merely so that confidence intervals of estimates are reasonably small.

Of course, while no signal is generated the measured value falls within the specified threshold.

So, one approach to maintaining small confidence intervals is to make the threshold small. But

a consequence of small thresholds, as we saw in the previous experiments, is that messages are

generated more frequently. Thus, designers have to trade off message frequency against model

accuracy. The next set of performance measures deals with this issue.

We have taken the variance computed using the probability density function in equation 7.10 as

a measure of the estimation error. The mean squared error is minimized by the expectation of the

signal given the measurements and the minimum expected loss is the variance.

Figure 8.8 shows the variance for different values of σ as a function of time, assuming the process

to be all the time within the initial domain Ω0.

Finally, consider a case where a message is lost in a system that uses a protocol in which messages

are not resent until an acknowledgment is received. Assume that the next message sent after a
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message is lost is indeed delivered to its destination. This second message repairs (at least some of)

the damage of the lost message because each message that is delivered tells the receiver the model

that the sender is currently using. What are the average and worst-case durations between the

sending of two successive messages? The average time is proportional to σ2

1+ε2 as shown in Appendix

D. Experiments on the measured data shows that the worst-case time is indeed many hundreds of

time steps (see Figure 8.5).
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Chapter 9

Conclusions

The graph of average signal inter-arrival time shows the benefits of using model-based or anomaly-

based signaling. We expect that more accurate models will give significantly reduced message gen-

eration rates. Even for the trivial model, the maximum time between signals is very large. Thus,

the loss of a single message can result in the wrong model being used to estimate state for a long

time. This suggests that pure anomaly-based signaling is inadequate for even trivial models. Some

combination of the common signaling schemes should be used.

The increase in standard deviation (and thus confidence intervals) of estimators with time since

the last signal suggests that there are benefits to incorporating query-based signaling: when the

confidence interval gets unacceptably large, a query is sent asking for more recent measurements.

The relationships among the performance measures suggest systematic ways for designers to

make tradeoffs between message rates and accuracy. Next, we discuss some of the weaknesses of

predicate signaling and suggest ways of ameliorating the consequences of these weaknesses.

Sense and respond systems are useful when the rare event (the earthquake, the intruder, the

virus) occurs. The model that represents the rare situation may not be as accurate as models that

represent typical behavior. Thus, when the rare event occurs, the frequency of messages required to

obtain satisfactory accuracy in estimation may be extremely high. This condition holds whether the

signaling scheme is time-driven, anomaly-based or query-based; if we cannot model what is going

on, we have to measure frequently. A criticism of predicate signaling is that worst-case message

rates may be as bad as for time-driven signaling, and thus bandwidth requirements may be just as

high.

Predicate signaling does have advantages even in this case. First, energy can be conserved during

the long periods during which models accurately represent measurements. The conserved energy

can be used when truly required: when actual behavior doesn’t fit into expected norms. Second,

even though worst-case bandwidths are high, the bandwidth can be used almost all the time for

other applications. The bandwidth needs to be reserved for signaling only for the very rare periods

during which models don’t represent measurement.
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Anomaly-based signaling assumes either that models can be computed rapidly or that results

are precomputed and placed in flash memories so that the execution of a model can be reduced to a

lookup. If the model maps a large number of observable parameters to an unobservable parameter

then the cost of table lookup is significant. Initial experiments suggest the adequacy of simple models

that make predictions based on the most recent measurements or on recent measurements combined

with time.
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Appendix A

Fokker-Planck Equations

Consider a diffusion process on Rd with generator L̂; the latter has a general form

L̂x =
d∑

i=1

bi(x)∂xi +
1
2

d∑

i,j=1

aij(x)∂2
xixj

. (A.1)

The probability density pt(x|y) conditioned on the fact that the particle that starts at y at time

0 is located at x at time t satisfies the Fokker-Planck equation

∂tpt(x|y) = L̂∗xpt(x|y). (A.2)

Here L̂∗ is the adjoint of L̂:

L̂∗x = −
d∑

i=1

∂xibi(x) +
1
2

d∑

i,j=1

∂2
xixj

aij(x). (A.3)

Let Ω be an open subset of R2 with smooth boundary ∂Ω. Let us add the initial condition to

equation A.2 that the process has not touched the boundary ∂Ω up to time t. Furthermore, let

%t(x|y) be as pt, except conditional on the no-touching event. Formally,

%(x|y) = pt(x|y)
[ ∫

Ω

pt(x|y)
]−1

. (A.4)

Since pt satisfies equation A.2 with the boundary condition pt(x|y) = 0 for x ∈ ∂Ω, we can

rewrite it as

pt(x|y) =
∞∑

k=0

pk(y)eλktφk(x), (A.5)

where λk and φk are respectively the eigenvalues and eigenvectors of L̂∗ in Ω with zero boundary

conditions (we set 0 ≥ λ0 ≥ λ1 . . . ≥ λn). As shown in Appendix B, φ0(x) is sign-definite; assume

it is positive and normalized to have integral over Ω equal to unity. Observe that if ever the
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stationary %(x|y) exists, then φ0(x) = limt→∞ %t(x|y) (for any y ∈ Ω) and thus the condition of sign-

definiteness is equivalent to existence of the stationary conditional (on non-touching) distribution.

Suppose we know that our measured model deviation touched the boundary for the first time

at time t; what is the distribution of its location on ∂Ω? Since L∗ = ∇x · F̂ , where F̂ is the flux

operator, we can use Gauss’s theorem to show that the answer follows from the formula





∫
Ω
L̂∗pt(x)dx =

∫
∂Ω
F̂pt(x) · ds(x)

F̂pt(x) := 1
2∂x · [â(x)pt(x)]− b · pt(x)

(A.6)

On the boundary ∂Ω, pt(x) = 0, thus F̂pt(x) = 1
2∂x · [â(x)pt(x)] on ∂Ω. Here â is a matrix

whose ij–th component is aij . Thus given a probability density %(x), F̂% · ds is the probability flow

through the element ds. This implies that the single layer density given by (F̂% · n)δ∂Ω(x) (not

normalized as written) corresponds to the escape distribution on ∂Ω.
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Appendix B

0-order Approximate Operator

We find all eigenvalues and eigenfunctions for the operator

L̂∗ = L̂∗1 + L̂∗2, L̂∗1 :=
1
2
∂2

x1x1
+ κ∂x1x1, L̂∗2 :=

1
2
∂2

x2x2

in the domain Ω := R× [−L,L]. In order to find the eigenvalues νn and the eigenfunctions ξn(x1) of

L̂∗1, we observe that the greatest (smallest by the absolute value) eigenvalue ν0 and the corresponding

eigenfunction ξn(x1) are given by

ν0 = 0, ξ0(x1) =
√

κ

π
e−κx2

1 , (B.1)

Notice that the eigenfunction ξ0 is normalized to have total integral unity. Setting ξn(x1) =

ξ0(x1)hN (x1) we obtain equations for hn(x1):

∂2
x1x1

hn(x1)− 2κx1∂x1hn(x1) = 2νnhn(x1). (B.2)

This immediately implies that hn(x1) are expressed using Hermite polynomials as

hn(x1) = Hn(
√

κx1), (B.3)

thus we obtain

νn = −κn, ξn(x1) =
√

κ

π
e−κx2

1Hn(
√

κx1), n = 0, 1, 2, . . . (B.4)

The operator L̂∗2 has eigenvalues µm = −π2m2/8L2 and eigenvectors





ψm(x2) =
π

4L
cos

πmx2

2L
(m = 1, 3, . . .)

ψm(x2) =
π

4L
sin

πmx2

2L
(m = 2, 4, . . .).

(B.5)
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Since

L̂∗[ξn(x1)ψm(x2)] = (L̂1
∗

+ L̂2
∗
)[ξn(x1)ψm(x2)],

and noticing that

L̂1
∗
[ξn(x1)ψm(x2)] = νn[ξn(x1)ψm(x2)], L̂2

∗
[ξn(x1)ψm(x2)] = µm[ξn(x1)ψm(x2)],

we can conclude that

L̂∗[ξn(x1)ψm(x2)] = (νn + µm)ξ(x1)ψm(x2).

Therefore, L̂∗ has the following eigenvalues and eigenvectors:





λm,n = −π2m2

8L2
− κn

φm,n(x) =
√

κπ

4L
e−κx2

1Hn(
√

κx1) cos
πmx2

2L
,

(B.6)

where n = 0, 1, 2, . . ., m = 1, 3, 5, . . .. If m = 2, 4, 6, . . ., “cos” function is changed to “sin”. Observe

that φ1,0(x) is positive with total integral over Ω equal to unity. Since Hermite polynomials are a

set of orthogonal polynomials in R the functions ϕm,n are defined as

ϕm,n =
4

π2nn!
Hn(

√
κx1) cos

πmx2

2L
; (B.7)

as before, “sin” has to be taken if m is even. The normalizing coefficient is chosen to have

∫

Ω

φm,n(x)ϕm′,n′(x)dx = δm,m′δn,n′ .
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Appendix C

Eigenfunctions in the Diagonal
Strip

It has been shown in Appendix A that our probability density conditioned on the fact that the

domain has not been touched is the solution to the eigenvalue problem formulated in equation A.2.

Thus, we need to find the eigenvalues and eigenfunctions of the Fokker-Planck operator

L̂∗ =
1
2
[∂2

x1x1
] + ε2∂2

x2x2
+ κ∂x2x2

in a strip Ω := {(x1, x2) : |x1 + x2| < σ} (zero boundary conditions). Introducing

y1 =
x1 + x2√

1 + ε2
, y2 =

εx1 − x2/ε√
1 + ε2

, (C.1)

we obtain

L̂∗ =
1
2
[∂2

y1y1
+ ∂2

y2y2
] +

κ

1 + ε2
[∂y2y2 − ε(y1∂y2 + y2∂y1) + ε2∂y2y2],

and the domain becomes Ω = {(y1, y2) : |y1| < σ√
1 + ε2

}. Regular perturbation theory may now be

applied to this problem. For the lowest order approximation we may use the results of Appendix B

to get 



λm,n ≈ −π2m2

8L2
− κn

φm,n(x) ≈
√

κπ

4L
e−κy2

2Hn(
√

κy2) cos
πm(x1 + x2)

2σ

(“sin” has to be taken if m is even).
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Appendix D

Expected Interarrival Times

The objective of this appendix is to derive an analytic formula for the expected value of the time

between two consecutive exit times (i.e., the time when the boundary of the current domain is

touched). This is obtained by using the Dynkin formula [23], which states:

Let f ∈ L2(Ω). Suppose τ is a stopping time such that E[τ ] < ∞. Then

E[f(Xx
τ )] = f(x) + E[

∫ τ

0

L̂f(Xx
s ), ds] (D.1)

where Xx
t is a process starting at x at time 0.

We want to choose a function f such that

(1) f(Xx
τ ) is easy to compute and does not depend on τ , e.g., f is identically zero on the boundary

of the domain.

(2) L̂f is easy to compute and the result is a simple function of τ , e.g., L̂f = 1, so that the the

integral in equation D.1 is just τ .

Applying Dynkin’s formula for such a choice of f we would obtain 0 = f(x) + E[τ ], thus E[τ ] =

−f(x). This gives the expectation of the hitting time τ . Furthermore, it implies that f is the

solution of the differential equation L̂f = 1 with Dirichlet (zero) boundary conditions. It can be

easily verified that f(x1, x2) = (x1+x2)
2

1+ε2 − σ2

1+ε2 solves the equation. Under the assumption that the

process starts at (0, 0) at time 0, the expected value of τ equals σ2

1+ε2 .
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Appendix E

Adjoint of a Linear Operator

Consider a linear operator of the form

L =
d∑

i=1

d∑

j=1

αi,j(x)
∂2

∂xi∂xj
+

d∑

i=1

βi(x)
∂

∂xi

where αi,j : Rd → R, βi : Rd → R are nice enough functions that have continuous second order

derivatives with respect to the independent variables x1, . . . , xd. For any pair of functions u, v:

Rd → R we have

vαi,j
∂2u

∂xi∂xj
= ∂

∂xi

(
vαi,j

∂u
∂xj

)
− ∂u

∂xj

∂
∂xi

(αi,jv) =

= ∂
∂xi

(
αi,jv

∂u
∂xj

)
− ∂

∂xj

(
u ∂

∂xi
(αi,jv

)
+ u ∂2

∂xi∂xj
(αi,jv).

The steps above need some justification. The first equality follows because

∂

∂xi

(
vαi,j

∂u

∂xj

)
− ∂u

∂xj

∂

∂xi
(αi,jv) =

∂

∂xi
(vαi,j)

∂u

∂xj
+ vαi,j

∂

∂xi

∂u

∂xj
− ∂u

∂xj

∂

∂xi
(αi,jv) =

= vαi,j
∂2u

∂xi∂xj .

The second equality follows because

∂

∂xi

(
αi,jv

∂u

∂xj

)
− ∂

∂xj

(
u

∂

∂xi
(αi,jv)

)
+ u

∂2

∂xi∂xj
(αi,jv) =

=
∂

∂xi

(
αi,jv

∂u

∂xj

)
− ∂u

∂xj

∂

∂xi
(αi,jv)− u

∂2

∂xjxi
(αi,jv) + u

∂2

∂xi∂xj
(αi,jv) =

=
∂

∂xi

(
αi,jv

∂u

∂xj

)
− ∂u

∂xj

∂

∂xi
(αi,jv).

The previous equalities hold for each pair of integers i, j ∈ {1, . . . , d}.
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Also, notice that

∂

∂xi
(βiuv)− u

∂

∂xi
(βiv) =

∂

∂xi
(vβi)u + vβi

∂u

∂xi
− u

∂

∂xi
(βiv) = vβi

∂u

∂xi
. (E.1)

Now,

vLu = v

( d∑

i=1

d∑

j=1

αi,j
∂2u

∂xi∂xj

)
+

d∑

i=1

βi
∂u

∂xi
=

=
d∑

i=1

d∑

j=1

vαi,j
∂2u

∂xi∂xj
+

d∑

i=1

vβi
∂u

∂xi
=

=
d∑

i=1

d∑

j=1

u
∂2(αi,jv)
∂xi∂xj

− u

d∑

i=1

∂

∂xi
(βiv) +

d∑

i=1

d∑

j=1

∂

∂xi

(
vαi,j

∂u

∂xj

)
+

−
d∑

i=1

d∑

j=1

u
∂

∂xi
(αi,jv) +

d∑

i=1

βiuv =

= u

[ d∑

i=1

d∑

j=1

∂2(αi,jv)
∂xi∂xj

−
d∑

i=1

∂(βiv)
∂xi

]
+

+
d∑

i=1

∂

∂xi

(
v

d∑

j=1

αi,j
∂u

∂xj
− u

d∑

j=1

∂

∂xi
(αi,jv) + βiuv

)
. (E.2)

Denote by L∗ the linear operator

L∗ =
d∑

i=1

d∑

j=1

∂2(αi,j)
∂xi∂xj

−
d∑

i=1

∂

∂xi
βi.

Also, let P be a vector whose ith component is a scalar function defined by

P i = v

n∑

j=1

αi,j
∂u

∂xj
− u

d∑

j=1

∂

∂xi
(αi,jv) + βiuv.

We can rewrite equation E.2 as

vLu− uL∗v = ∇P , (E.3)

which is also called Lagrange’s identity.

Integrating both sides in eq. E.3 we obtain

∫

Rd

vLu− uL∗vds =
∫

Rd

∇P ds.

Using Gauss’s theorem, ∫

Rd

∇P ds =
∫

∂Rd

Pnds, (E.4)
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where n is the outward normal of ∂Rd.

We consider the inner product space L2(Rd) of all square integrable R2 valued functions with

usual inner product (f, g), defined by

(f, g) =
∫

R2
f(x)g(x)dx.

If the identity (v, Lu) = (u, L∗v) holds, then L∗ is called the adjoint operator. If u and v are

identically zero on the boundary, then the identity holds.
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