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Chapter 6

Competing Orders, Quantum
Phase Fluctuations, and
Quasiparticle Tunneling Spectra

6.1 Introduction

In the previous two chapters, we have presented the scanning tunneling spectroscopic studies of

hole-doped YBCO [§4] and electron-doped SLCO [§5] that reveal several contrasting spectroscopic

features. Specifically, the quasiparticle tunneling spectra of YBCO exhibit spectral characteristics

well captured by the mean-field d-wave [or (d+ s)-wave] generalized BTK formalism. In SLCO, the

quasiparticle tunneling spectra are consistent with isotropic s-wave pairing symmetry while excess

low-energy spectral weight that deviates significantly from the mean-field BCS theory is present.

In accordance with the low-energy spectral anomaly, high-field low-temperature vortex dynamics

measurements on SLCO reveal sizable reduction of Hab
irr with respect to Hab

c2 at T → 0, implying

strong field-induced quantum phase fluctuations. In comparison, relatively weaker quantum phase

fluctuations associated with YBCO is consistent with the applicability of mean-field theory to its

low-energy spectral characteristics. The satellite features and the “pseudogap”-like spectral dip

around the Fermi level manifested in the tunneling spectra of p-type cuprates are suggestive of the

presence of a pinned competing order with an energy scale comparable to or larger than that of

superconductivity. On the other hand, the complete absence of the satellite features and zero-field

pseudogap, and the appearance of current- or field-induced “pseudogap” in n-type SLCO and other
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one-layer compounds signify a small coexisting competing order revealed only upon the suppression

of superconductivity. Based on these findings and the notion that the varying degrees of quantum

phase fluctuations are indicative of the varying degrees of proximity to quantum criticality, we

conjecture that the non-universal spectral features among n- and p-type cuprates can be accounted

for by tuning the relative energy scales of competing orders to superconductivity.

In this chapter, the aforementioned conjecture is put to test by means of a calculation of the

low-energy single-particle spectra that incorporates quantum phase fluctuations into superconduc-

tivity with coexisting density waves as the competing order. To date, most theoretical investigations

on the tunneling spectra of cuprate superconductors generally address competing orders and super-

conducting phase fluctuations separately. One approach takes the BCS-like Hamiltonian as the

unperturbed mean-field state and treats the disorder-pinned competing order as the weak perturba-

tive scattering potential for the Bogoliubov quasiparticles [249, 255, 256, 257, 258, 259, 260, 101, 261]

[§6.3]. Another approach begins with the BCS-like Hamiltonian and includes superconducting

phase fluctuations in the proper self-energy correction without any consideration of competing or-

ders [262, 263, 264]. By allowing both the competing orders and the superconducting phase fluctua-

tions in the superconducting state [§6.2], we find that the low-energy excitations thus derived differ

from conventional Bogoliubov quasiparticles, and various seemingly puzzling and non-universal phe-

nomena in the hole- and electron-type cuprates, such as the excess subgap low-energy excitations

[§5.3.1] below Tc and pseudogap phenomena [§5.4.3], can be coherently explained. We further con-

sider the low-energy limit in d-wave superconductors where the Bogoliubov quasiparticles are the

dominating low-energy excitations and disorder-pinned competing orders maybe treated perturba-

tively, and find that calculated quasiparticle interference spectra reveal modulated density of states

due to the presence of competing order, consistent with experimental observations. Therefore, we

conclude that the presence of competing orders is indisputable at least in the quasi-2D Bi-2212.
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6.2 Competing orders and quantum phase fluctuations on

low-energy excitations

We first consider a simple case of coexisting s-wave superconductivity (SC) and charge density waves

(CDW) with finite quantum phase fluctuations at T = 0. That charge density wave is the relevant

competing order to s-wave superconductivity is because the symmetry of s-wave superconducivity

is compatible with that of CDW. Under certain conditions, such as in the half-filled Hubbard model

with negative U , the two orders can further rotate into each other without modifying the low-energy

spectrum and hence be unified under a higher SO(4) symmetry [265]. Empirically, the coexistence

has been known in NbSe2 [266, 267], although the energy scale of CDW in NbSe2 is much larger

than that of superconductivity and therefore does not directly affect the low-energy excitations of

the superconducting order. The simple case of s-wave superconductivity coexisting with CDW can

be extended straightforwardly to dx2−y2-wave superconductivity with a competing order being either

CDW [252, 73], spin-density waves (SDW) [268, 249], or d-density waves (DDW) [75]. Nevertheless,

compatibility in the symmetry of the superconductivity order parameter with that of the relevant

competing order is important for determining which competing states is pertinent under a given

superconducting pairing symmetry.

In subsequent discussions we shall associate realistic band structures of n-type cuprate super-

conductors with the scenario of coexisting s-wave SC and CDW, and those of p-type cuprates with

the scenario of coexisting dx2−y2-wave SC with disorder-pinned SDW. We further assume that the

exact degree of quantum phase fluctuations depends on microscopic coupling mechanism between

superconductivity and competing orders, which is not fully understood and is therefore left as a

variable to be determined empirically.
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6.2.1 Formalism

In the case of coexisting s-wave SC and CDW, the mean-field Hamiltonian is given by:

HMF = HSC +HCDW

=
∑

k,σ ξk c
†
k,σck,σ −

∑
k ∆

(
c†k,↑c

†
−k,↓ + c−k,↓ck,↑

)
+

∑
k,σ V

(
c†k,σck+Q,σ + c†k+Q,σck,σ

)

=
∑

k

(
c†k,↑ c−k,↓ c

†
k+Q,↑ c−(k+Q),↓

)


ξk −∆ −V 0

−∆ −ξk 0 V

−V 0 ξk+Q −∆

0 V −∆ −ξk+Q





ck,↑

c†−k,↓

ck+Q,↑

c†−(k+Q),↓


≡

∑
k Ψ†

k,Q H0 Ψk,Q,

where ξk is the normal-state energy of particles of momentum k relative to the Fermi energy, σ is the

spin index, c† and c are the fermion creation and annihilation operators, Q is the wave vector of the

CDW, and ∆ and V denote the SC energy gap and CDW energy scale, respectively. H0 is the (4×4)

matrix, and the adjoint of Ψ represents a (1× 4) matrix Ψ†
k,Q ≡

(
c†k,↑ c−k,↓ c

†
k+Q,↑ c−(k+Q),↓

)
. We

have further imposed the condition ξkξ−(k+Q) < 0 to ensure that CDW excitations only involve

particle-hole sectors. The mean-field Hamiltonian in Eq. (6.1) can be exactly diagonalized so that

the bare Green’s function G0(k, ω) is given by

G−1
0 = ωI −H0 =



ω − ξk ∆ V 0

∆ ω + ξk 0 −V

V 0 ω − ξk+Q ∆

0 −V ∆ ω + ξk+Q


, (6.1)

where I denotes the (4× 4) unit matrix.

Next, we introduce phase fluctuations to the superconducting order parameter ∆(r) = |∆(r)| eiθ(r).

In order to couple quasiparticles explicitly to the phase field θ(r), we follow Ref. [262] and perform
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a gauge transformation to the fermion operators: cσ(r) → cσ(r)eiθ(r)/2. After integrating out the

fast momentum degrees of freedom with variations larger than 1/ξ0 (ξ0: superconducting coherence

length) [269], the resulting low-energy effective theory contains the mean-field theory of coexisting

SC and CO, the Gaussian theory of the phase fluctuations, and the coupling term between the

two [262]:

Heff = H0 +HI ,

H0 = HMF + 1
2

∑
q
nf

4mq2θ(q)θ(−q),

HI =
∑

k,q,σmv(k) · vs(q)c†k+q,σck,σ,

(6.2)

where m is the free electron mass, v(k) = ∇kξk/h̄ is the normal-state group velocity, and vs =∫
d2re−iq·r∇θ(r)/2m is the superfluid velocity.

Expressed in the basis of Ψ, HI =
∑

k,q Ψ†
k,Q HI(k,q) Ψk,Q where

HI ∝



iθq q · ∇kξk 0 0 0

0 iθq q · ∇kξk 0 0

0 0 iθq q · ∇kξk+Q 0

0 0 0 iθq q · ∇kξk+Q



≈ iθq q · ∇kξk



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


.

(6.3)

In deriving Eq. (6.3), we have taken the approximation ξk+Q ≈ −ξk to simplify the calculation,

which holds for electrons around the Fermi surface along the {100} and {010} axes where CDW

couples most strongly with SC.
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With Eq. (6.3), we can now write down the proper self-energy for the electrons:

Σ∗(k) =
∑

qHI(k,q)G(k + q, ω)HI(k + q,−q)

=
∑

q
1
16 〈θqθ−q〉 (q · ∇kξk)(q · ∇kξk+q)

 G11(k, ω) −G12(k, ω)

−G21(k, ω) G22(k, ω)

 ,
(6.4)

where Gij(k, ω)’s are the (2× 2) matrices composing the full Green’s function

G(k, ω) =

 G11(k, ω) −G12(k, ω)

−G21(k, ω) G22(k, ω),

 .

In Eqs. (6.3) and (6.4), only the longitudinal phase fluctuations are retained because at T = 0 in

the zero field limit, the transverse phase fluctuations are energetically very costly and therefore may

be neglected. After summing over an infinite series of ring diagrams [Fig. 6.1(a)], the phase field

correlation function 〈θqθ−q〉 is given by [264]

〈θqθ−q〉 ≈
4m ωp
h̄ n2D

s Ω
1
q2
, (6.5)

where n2D
s the two-dimensional superfluid density, ωp the plasma frequency, and Ω the sample

volume.

(a) (b)

Figure 6.1: (From Figs. 3 and 4 of Ref. [262].) (a) The infinite sum of the ring diagrams for the
superfluid velocity field propagator. (b) The Dyson’s equation for the fermion Green’s function. The
thin (thick) wiggly line is the bare (full) velocity field propagator, and the thin (thick) solid line is
the bare (full) fermion Green’s function.

Thus, we obtain the full Green’s function G(k, ω) self-consistently through the Dyson’s equation
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[Fig. 6.1(b)]:

G−1(k, ω̃) = G−1
0 (k, ω)− Σ∗

= G−1
0 (k, ω)− η

∑
q

1
q2 (q · ∇kξk) (q · ∇kξk+q)

 G11(k, ω̃) −G12(k, ω̃)

−G21(k, ω̃) G22(k, ω̃)



=



ω̃ − ξ̃k ∆̃ Ṽ 0

∆̃ ω̃ + ξ̃k 0 −Ṽ

Ṽ 0 ω̃ − ξ̃k+Q ∆̃

0 −Ṽ ∆̃ ω̃ + ξ̃k+Q


,

(6.6)

Here ω̃ denotes the energy renormalized by the phase fluctuations, and η ≡ mωp/4h̄n2D
s Ωq2 is a

parameter indicative of the magnitude of fluctuations. Equation (6.6) can be solved self-consistently

for each ω and each k-value in the Brillouin zone. Summing over a finite phase space in q near

each k, we use the iterative Newton’s method to find the corresponding ξ̃k, ω̃, Ṽ and ∆̃ to the

full Green’s function G(k, ω̃) [270]. The converged Green’s function thus yields the spectral density

function A(k, ω̃) ≡ −Im [G(k, ω̃)] /π and the DOS N (ω̃) ≡
∑

kA(k, ω̃).

In the case of dx2−y2-wave SC, similar derivations can be made if we replace in Eq. (6.1) ∆

by ∆d(cos kxa − cos kya) and V by the disorder-pinned g2VSDW , where a is the square lattice

constant, and g is the coupling strength between SDW and disorder. The periodicity Q of the

charge modulations caused by the disorder-pinned SDW is twice that of the SDW.

6.2.2 Numerical results

For a given cuprate band structure with a known doping level, the quasiparticle DOS calculated

from the aforementioned approach depends primarily on two variables: the ratio ∆/V and the

magnitude of the quantum phase fluctuations represented by η. For an s-wave electron-doped

superconductivity with ∆ > V , finite quantum phase fluctuations can induce substantial subgap

DOS even if the mean-field SC and CDW orders are fully gapped, as illustrated in Fig. 6.2(a).

Comparing the single-particle excitation spectrum derived from §6.2.1 with the BCS curve, we see
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Figure 6.2: Comparison of the calculated quasiparticle DOS with experimental spectra on SLCO:
(a) The calculated DOS for coexisting s-wave SC and CDW with quantum fluctuations is compared
with the BCS prediction (dashed line). We note that finite subgap DOS can be induced by quantum
fluctuations even if the mean-field DOS is fully gapped. (b) Momentum-independent quasiparticle
tunneling spectrum of the electron-doped cuprate SLCO (thick line) is compared with the calculated
DOS. The bare parameters are ∆ = 8.5 meV, V = 2 meV, and the fluctuation strength η =
0.0001/16π.
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that, under finite quantum fluctuations, the spectral weight shifts from above the mean-field gap

to lower energies and the spectral peaks are suppressed. The bare superconducting gap value and

bare charge density wave energy for this set of simulation are chosen to be 8.5 meV and 2 meV,

respectively, to match the experimentally observed peak position. The spectral peak of the phase-

fluctuated SC with coexisting CDW locates at ∼ 13.5 meV, but the effective gap ∆eff =
√

∆2 + V 2

is only ∼ (9− 11.5) meV when all uncertainties in fitting parameters are included. Therefore, in the

presence of fluctuations, the subgap density of states is filled in and the peak-to-peak separation of

the single-particle spectrum appears larger than the actual spectral gap, which is characteristic of

any fluctuation-smeared tunneling spectrum.

In Fig. 6.2(b), we plot the normalized quasiparticle tunneling spectrum of SLCO with the sim-

ulation result. The calculated spectrum fits the low-energy excitations of the experimental data

fairly well, while the calculated peak height is lower than the observed peak height. Since the calcu-

lated spectrum conserves the density of states when compared with the mean-field BCS prediction

and yields a reasonable 2∆/kBTc ∼ 4.85 ratio, we believe that the simulation captures all major

low-energy physics of SLCO and that the discrepancy in peak height between the calculated and

the observed spectra may have originated from the tunneling matrix effect and the uncertainty in

background normalization.

We further investigate how the quasiparticle tunneling spectra of an s-wave superconductor evolve

under varying V/∆ ratio and a constant magnitude of quantum phase fluctuations. Given the degrees

of phase fluctuation characterized by η = 0.0001/16π, the calculated spectra for V/∆ < 1, such as

those for V/∆ = 2.0/8.5 and V/∆ = 8.0/8.5, exhibit similar spectral characteristics [Fig. 6.3(a)].

They all exhibit substantial subgap low-energy excitations but no discernible satellite features. For

a larger V/∆ > 1, the satellite features designated by the red circle in Fig. 6.3(b) appear above the

spectral gap, which is indicative of the coexisting CDW. Therefore, the absence of satellite features in

the superconducting state tunneling spectra of electron-doped cuprates implies that the energy scale

of the coexisting order is smaller than that of superconductivity. Consequently, as the temperature

increases, the competing order vanishes before the system turns normal, which explains the absence
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Figure 6.3: A scenario for the occurrence of the satellite features as the consequence of coexisting
CO and SC in the ground state with V ≥ ∆: Evolution of the quasiparticle tunneling spectra for an
s-wave superconductor from absence of the satellite features to appearance of which with increasing
(V/∆) and a constant magnitude of quantum phase fluctuations η = 0.0001/16π.

of pseudogap in their normal-state tunneling spectra.

For a dx2−y2-wave hole-doped superconductors, we find that by taking into account a coexisting

disorder-pinned density wave with g2VSDW > ∆, our model can reproduce the experimentally ob-

served satellite features [as indicted by the red circles in Fig. 6.4(b)] in the limit of vanishing phase

fluctuations [Fig. 6.4(a)]. The incorporation of varying degrees of quantum phase fluctuations would

give rise to various types of “pseudogap”-like spectra revealed in the scanning tunneling spectra on

Bi-2212 [Fig. 6.4(d)] [68]. A specific example that displays double peaks of comparable height is

given in Fig. 6.4(c) to compare with the empirically observed double-peak structure, as indicated

by the arrows in Fig. 6.4(d). Decreasing the phase fluctuations and CO would recover the sharp

superconducting coherence peaks, as shown in spectra denoted by thin red lines in Fig. 6.4(d) and

in Fig. 6.4(a). In contrast, increasing phase fluctuations while maintaining the strengths of both

orders smears the double-peak feature into a big broad “pseudogap” peak as shown in Fig. 6.4(e).

By comparing the calculated spectra of a d-wave hole-doped cuprate superconductor [Fig. 6.4(a,c,e)]
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Figure 6.4: Comparison of the calculated quasiparticle DOS with experimental spectra on Bi-2212:
(a) Calculated d-wave mean-field DOS using parameters ∆ = 30 meV, g2VSDW = 40 meV, and
η = 0. (b) (Adapted from Fig. 2 of Ref. [183].) Quasiparticle c-axis tunneling spectrum of the hole-
doped d-wave superconductor Bi-2212 in Ref. [183], showing satellite features as marked by arrows.
(c) Calculated d-wave DOS with phase fluctuations using parameters ∆ = 30 meV, g2VSDW = 40
meV, and η = 0.001/16π. (d) (Adapted by permission from Macmillan Publishers Ltd: Nature [68],
copyright (2002).) Quasiparticle c-axis tunneling spectrum of Bi2Sr2CaCu2Ox in Ref. [68], showing
“pseudogap”-like features and the coexistence of two gaps as indicated by the red arrows. (e)
Calculated d-wave DOS with phase fluctuations using parameters ∆ = 30 meV, g2VSDW = 40 meV,
and η = 0.0025/16π. We note that the double-peak structure in (c) merges into one broad peak,
yielding a pseudogap-like spectrum.
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with the empirically observed “pseudogap”-like spectra [Fig. 6.4(d)] [68]], we see clearly that the

nano-scale variations in the spectral gap of Bi-2212 originate from the interplay of the competing

order with the phase-fluctuated superconducting order, whose fluctuation strength varies at nano-

scale possibly due to random disorder in this high-2D system. The energy scale of the competing

order is larger than that of superconductivity, and hence the spectral gap associated with the coex-

isting order sustains above the superconducting transition temperature, giving rise to the pseudogap

observed in the normal-state tunneling spectra of Bi-2212 [54].

6.2.3 Summary

In summary, we recapitulate the implications of the coexistence of SC and CO on the origin of

pseudogap phenomena and the satellite features in cuprate superconductors. For arbitrary values

of ∆ and V , the poles associated with HMF in Eq. (6.1) generally give rise to two sets of peaks

at ω = ±∆eff and ω = ±∆ in the quasiparticle DOS. For ∆ � V , we find that ∆eff ≈ ∆ so

that only one set of peaks can be resolved in the quasiparticle spectra, particularly under finite

quantum fluctuations. In this case, the magnitude of ∆eff in the quasiparticle spectra is expected

to decrease with increasing T and completely vanishes at Tc, which is consistent with the general

findings in the electron-type cuprate superconductors [49, 16, 271]. On the other hand, for V ≥ ∆,

two distinct sets of peaks can be resolved at T � Tc and for limited quantum phase fluctuations.

With increasing T or quantum phase fluctuations, the peaks at ω = ±∆ diminish while those at

ω = ±∆eff ∼ ±V are broadened by fluctuations thus appear to remain nearly invariant in position,

similar to the findings of pseudogap phenomena in underdoped Bi2Sr2CaCu2Ox (Bi-2212) cuprates

above Tc [54]. In short, these results corroborate our conjecture that V � ∆ is associated with

the absence of pseudogap and the satellite features in electron-doped cuprates, whereas V ≥ ∆d

is responsible for their presence in under- and optimally doped hole-doped cuprates. Thus, the

experimental observation of non-universal pseudogap phenomena in the cuprates can be reconciled

by coexisting CO and SC of different relative strengths.
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6.3 Collective modes and quasiparticle interference on the

local density of states of cuprate superconductors1

The presence of competing orders and the proximity to quantum criticality [249, 62, 202] have sig-

nificant consequences on the unconventional low-energy excitation spectra of the cuprates, including

weakened superconducting phase stiffness [73], the occurrence of excess subgap quasiparticle density

of states (DOS) [49], and the presence (absence) of pseudogap [49, 54, 16] and Nernst effect in

the hole (electron)-type cuprates above the SC transition [64, 65]. Other experimental observables

of the coexisting orders involve various spin and charge ordering revealed in the neutron scatter-

ing and scanning tunneling spectroscopy measurements as mentioned in §1.2.3. In this section,

we examine the effect of coexisting spin/charge density waves on recent scanning tunneling spec-

troscopic studies of the Fourier transformed (FT) quasiparticle local density of states (LDOS) in

nearly optimally doped Bi-2212 [95, 97, 272] and find that while Bogoliubov quasiparticle interfer-

ence [256, 258, 101, 273, 274, 275] apparently plays an important role in the observed FT-LDOS

in the superconducting state, certain spectral details of the LDOS cannot be accounted for unless

collective modes such as spin/charge density waves are considered [256, 258, 101]. More importantly,

the observations of four high-intensity Bragg peaks remaining above Tc in the FT-LDOS map of

Bi-2212 [99] cannot be reconciled with quasiparticles being the sole low-energy excitations. By com-

paring the experimental data to the calculated energy (E), momentum transfer (q) and temperature

(T ) dependence of the FT-LDOS modulations of a d-wave superconductor with random disorder, we

conclude that collective modes such as spin/charge density waves are relevant low-energy excitations

which contribute to the aforementioned LDOS modulations in Bi-2212.

6.3.1 Model

We begin our model construction by recalling that substantial nano-scale spectral variations are ob-

served in the low-temperature tunneling spectroscopy of under- and optimally doped Bi-2212 single
1The main contents of this section are published as C.-T. Chen and N.-C. Yeh, Phys. Rev. B 68, 220505(R)

(2003).
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crystals [Fig. 6.4(d)] [276, 67, 68, 194] which exhibits two types of spatially separated regions. In the

last section, we have shown that for regions with double-peak or rounded hump-like “pseudogap”

features at larger energies ∆eff , quantum phase fluctuations resulting from pinned density waves

coexisting with superconductivity are important, where as for region with sharp quasiparticle co-

herence peaks at smaller energies ∆d, Bogoliubov quasiparticle spectra with a well-defined d-wave

pairing order parameter ∆k dominate over the collective modes. Our model therefore assumes that,

embedded in the predominantly superconducting regions, there are “puddles” of spatially confined

“pseudogap regions” with a quasiparticle scattering potential modulated by the pinned density waves

along the Cu-O bonding directions [§6.5]. The spatial modulations can be of either the ‘checker-

board’ pattern [256, 258] or ‘charge nematic’ with short-range stripes [277, 73] at a periodicity

of four lattice constants, as inferred from neutron scattering experiments in a variety of p-type

cuprates [84, 278, 279, 280, 281, 282, 85]. The calculation is implemented on a (400× 400) sample

area with either 24 randomly distributed point impurities or 24 randomly distributed puddles of

charge modulations that cover approximately 6% of the sample area.2

Superconducting
(SC) phase

SC + locally 
pinned SDW/ 
CDW due to 
disorder

Figure 6.5: Disorder-pinned density waves forming “puddles” of “pseudogap” regions embedded in
the predominantly superconducting region.

The Hamiltonian of the two-dimensional superconductor is given by H = HBCS +Himp, where

2For simplicity, we do not take into account the effect of disorder on either suppressing the local pairing potential
∆d(r) or altering the nearest-neighbor hopping coefficient (t) in the band structure of Bi-2212, although such effects
reflect the internal structures of charge modulations [101, 273].
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HBCS denotes the unperturbed BCS Hamiltonian of the d-wave superconductor,

HBCS =
∑
kσ

(εk − µ)c†kσckσ +
∑
k

∆k

[
c†k↑c

†
−k↓ + c−k↓ck↑

]
, ∆k ≈ ∆d cos 2θk, (6.7)

and Himp is the perturbation Hamiltonian associated with impurity-induced quasiparticle scattering

potential [258, 273, 274]. In Eq. (6.7), ∆d is the maximum gap value and θk is the angle between the

quasiparticle wavevector k and the anti-node direction. Using the T-matrix method, the Green’s

function G associated with H is given by G = G0 + G0TG0, where G0 is the Green’s function of

HBCS and T = Himp/(1 − G0Himp) [cf. Appendix C]. We remark that the perturbative approach

adopted here for the competing order is justifiable for low-energy (i.e., E < ∆d) excitations in d-wave

superconductors, because the gapless nodal Bogoliubov quasiparticles are the dominant low-energy

excitations in this limit, as manifested in Fig. 6.4(a). In other words, the perturbative approach is

a special case of the exact self-consistent treatment described in §6.2.

To proceed, we note that the Hartree perturbation potential for single scattering events in the

diagonal part of Himp is

Vα(q) =
∑
i

Vs,me
iq·ri

for non-interacting non-magnetic (Vs) and magnetic (Vm) impurities at locations ri [274], whereas

that for puddles with short stripe-like modulations centering at rj is3

Vβ(q) =
∑
j

V0e
iq·rj

2 sin(qy,xRj) sin(qx,yRj)
qy,x sin(2qx,y)

, (6.8)

and that for checkerboard modulations is

Vγ(q) =
∑
j

V0e
iq·rj

[
2 sin(qyRj) sin(qxRj)

qy sin(2qx)
+ (qx ↔ qy)

]
. (6.9)

Here all lengths are expressed in units of the lattice constant a, Rj is the averaged radius of the

3For coexisting superconductivity and CDW, Vβ(q) represents the second-order effect of quasiparticle interference
with pinned CDW. The first-order effect of CDW has been discussed in Ref. [101].
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j -th puddle, and V0 denotes the magnitude of the scattering potential by pinned collective modes.

Empirically, for nearly optimally doped Bi-2212, Rj ranges from 5 ∼ 10 [68]. Here we take different

values for Rj with a mean value 〈Rj〉 = 10. In the context of our discussion in §6.2, the Hartree

potentials contains information of the mean-field competing order and the self-energy correction that

couples the superconducting phase fluctuations to the fermionic excitations of the coexisting state.

For simplicity, we neglect the energy dependence of Vα,β,γ and assume that Vs, Vm and V0 are

sufficiently small so that no resonance occurs in the FT-LDOS [273]. For sufficiently large scattering

potentials, full T-matrix calculations become necessary as in Ref. [274]. However, large Vs,m would

result in strong spectral asymmetry between positive and negative bias voltages [274], which differs

from experimental observation [95, 97, 272]. We also note that the energy dependence of Vβ,γ

reflects the spectral characteristics of the collective modes and their interaction with quasiparticles

and impurities. For instance, we expect Vγ ∼ ζg2 for pinned SDW, where ζ is the impurity pinning

strength and g is the coupling amplitude of quasiparticles with SDW fluctuations [256, 258].

In the limit of weak perturbations, given the Hamiltonian and the scattering potentials Vα,β,γ(q),

we find that the FT of the LDOS ρ(r, E) that involves elastic scattering of quasiparticles from

momentum k to k + q is

ρq(ω) = − 1
πN2 limδ→0

∑
k Vα,β,γ(q)×{

uk+quk (uk+quk ∓ vk+qvk) Im
[

1
(ω−Ek+iδ)(ω−Ek+q+iδ)

]
+uk+qvk (uk+qvk ± vk+quk) Im

[
1

(ω+Ek+iδ)(ω−Ek+q+iδ)

]
+vk+quk (uk+qvk ± vk+quk) Im

[
1

(ω−Ek+iδ)(ω+Ek+q+iδ)

]
−vk+qvk (uk+quk ∓ vk+qvk) Im

[
1

(ω+Ek+iδ)(ω+Ek+q+iδ)

]}
(6.10)

in the first-order T-matrix approximation for infinite quasiparticle lifetime. Here N is the total

number of unit cells in the sample, and Im[. . . ] denotes the imaginary part of the quantity within

the brackets, which is related to the equal-energy quasiparticle joint density of states. The upper

(lower) sign in the coherence factor applies to spin-independent (spin-dependent) interactions. uk
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and vk are the Bogoliubov quasiparticle coefficients, u2
k + v2

k = 1, u2
k = [1 + (ξk/Ek)] /2, where

ξk ≡ εk − µ, Ek =
√
ξ2k + ∆2

k, µ is the chemical potential, and εk is the tight-binding energy of the

normal state of Bi-2212 according to Norman et al. [283],

εk = t1
2 (cos kx + cos ky) + t2 cos kx cos ky + t3

2 (cos 2kx + cos 2ky)

+ t4
2 (cos 2kx cos ky + cos kx cos 2ky) + t5 cos 2kx cos 2ky,

t1−5 = −0.5951, 0.1636,−0.0519,−0.1117, 0.0510 eV.

6.3.2 Numerical results

Using Eq. (6.10) and Vα,β,γ(q), we obtain the energy-dependent FT-LDOS maps in the first Bril-

louin zone for non-magnetic point impurities in Fig. 6.6 with two different superconducting gap

values, ∆d = 20 and 40 meV, and T = 0. The most intensed modulation q-values are associated

with the elastic scattering events connecting quasiparticle momenta k located around the tips of the

constant-energy contours where the available phase space is maximized, as illustrated in Fig. 6.6(c).

Comparing Fig. 6.6(a) with Fig. 6.6(b), we find that the polarity of the bias voltages does not change

the primary features of the FT-LDOS plots, consistent with experimental findings. However, because

of the directionality of the coherence factors [uk+quk (uk+quk − vk+qvk)], the intensities associated

with qB and qC are much stronger than those of qA [Fig. 6.6(a)(b)] and also in Fig. 6.7(a), which

differs from the STM observation [95, 97] that reveals comparable intensities associated with qA and

qB , and weaker intensities with qC . Interestingly, the intensity of qA becomes larger than that of

qB if one assumes magnetic point impurity scattering, as illustrated in Fig. 6.7(b). However, there

is no evidence of magnetic scattering in the samples used in Refs. [95, 97]. In contrast, the presence

of pinned collective modes, regardless of CDW or SDW, gives rise to much stronger intensities for

qA (by about two orders of magnitude), as shown in Fig. 6.8 for pinned SDW (with spin-dependent

coherence factors). Thus, the empirical FT-LDOS maps [95, 97] cannot be solely attributed to

quasiparticle scattering by non-magnetic point impurities and should contain contributions from

the pinned density waves. For reference, an example of the real-space LDOS modulations corre-
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Figure 6.6: Calculated energy-dependent Fourier transform (FT) maps of quasiparticle LDOS in the
first Brillouin zone with randomly distributed non-magnetic point defects using Eq. (6.10) and Vα:
(a) ∆d = 40 meV and (ω/∆d) = ±0.15,±0.45,±0.75 (up and down from left to right); (b) ∆d = 20
meV and (ω/∆d) = 0.15, 0.45, 0.75 (left to right). (c) Schematic illustration of the equal-energy
contours and representative modulation wavevectors qA, qB , and qC , which correspond to q1, q7,
and q2 in Refs. [95, 97].
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Figure 6.7: Evolution of the relative intensities of FT-LDOS with energy (ω) for qA, qB and qC as
defined in Fig.1(c) and Vs, Vm and V0 all taken to be unity: quasiparticle scattering by (a) single
non-magnetic point impurity, and (b) single magnetic point impurity.

sponding to quasiparticle scattering by the three types of random disorders Vα,β,γ(q) is included in

Figs. 6.9(a)–(c), though a detail comparison between experiments and calculations must be done

through the FT-LDOS maps.

The relevance of collective modes becomes indisputable when we consider the temperature

dependence of the FT-LDOS. In calculating the FT-LDOS at finite temperatures, we assume

∆d(T ) = ∆d(0) [1− (T/Tc)]
1/2, and the coherence factors change with temperature accordingly:

u2
k =

1
2

[
1 +

ξk
Ek

]
=

1
2

[
1 +

ξk√
ξ2k + ∆2

d(T )

]
, v2

k =
1
2

[
1− ξk

Ek

]
=

1
2

[
1− ξk√

ξ2k + ∆2
d(T )

]
.

The thermal smearing of quasiparticle tunneling conductance (dI/dV ) is obtained by using

(dI/dV ) ∝
∣∣∣∣∫ ρq(E)(df/dE)|(E−eV )dE

∣∣∣∣ ,
where f(E) denotes the Fermi function. As shown in Fig. 6.10(a), for point impurity scattering, the

q-values contribute to the FT-LDOS map become significantly extended and smeared at T = 0.75Tc.

In the limit of T → T−c , the FT-LDOS contains hardly any feature except for the weak residual

modulations encoding normal-state Fermi surface information. In contrast, pinned SDW yields
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Figure 6.8: Energy-dependent FT-LDOS maps with randomly distributed pinned SDW using
Eq. (6.10) and Vγ : (a) ∆d = 40 meV and (ω/∆d) = ±0.15,±0.45,±75, up and down from left
to right; (b) ∆d = 20 meV and (ω/∆d) = 0.15, 0.45, 0.75, from left to right. The FT-LDOS does not
exhibit discernible differences in the spectral characteristics except the total intensities if we simply
replace Vγ by Vβ and assume non-magnetic coherence factors in Eq. (6.10).
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Figure 6.9: Real space quasiparticle LDOS for a (400 × 400) area at T = 0 due to scattering by
(a) non-magnetic point impurities, (b) pinned CDW, and (c) pinned SDW, for ∆d = 40 meV and
ω = 30 meV.

strong intensities in the FT-LDOS map only at qA for T ≥ Tc, as shown in Fig. 6.10(b). The overall

energy dispersion due to pinned SDW is weaker than that due to point impurities, as shown in

Fig. 6.10(c) for |qA| versus V (biased voltage) at both T = 0 and T = Tc. In particular, we note

that the dispersion is further reduced at Tc. These findings are consistent with recent experimental

observation of 4 nearly non-dispersive Bragg peaks above Tc by Vershinin et al. [99].

6.3.3 Summary

The energy, momentum, and temperature dependence of our calculated FT-LDOS in Figs. 6.6–6.10 is

supportive of spatially modulated collective modes being relevant low-energy excitations in cuprates

besides quasiparticles. In the superconducting state, the high intensities of the Bragg peaks along

the principle axes cannot be explained by point-impurity as the sole scattering source. Furthermore,

we must invoke the presence of pinned collective modes in order to account for the observation of 4

non-dispersive Bragg peaks in the FT-LDOS map above Tc.

6.4 Conclusion

In summary, we have analyzed the effect of quantum phase fluctuations and competing orders on

cuprate superconductivity. By incorporating both superconductivity (SC) and competing orders

(CO) in the bare Green’s function and quantum phase fluctuations in the self-energy, we obtain
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Figure 6.10: The FT-LDOS maps at T = 0, 0.75Tc and Tc (from left to right) for (a) point impurities
Vα(q) and (b) pinned SDW Vγ(q). We assume ∆d(T ) = ∆d(0)[1 − (T/Tc)]1/2, ∆d(0) = 40 meV,
tunneling biased voltage = 18 mV, and Tc = 80 K. Besides temperature-dependent coherence factors,
the thermal smearing of quasiparticle tunneling conductance (dI/dV ) is obtained by using (dI/dV ) ∝
|
∫
ρq(E)(df/dE)|(E−eV )dE|, where f(E) denotes the Fermi function. (c) |qA|-vs.-V (biased voltage)

dispersion relation for pinned SDW at T = 0 and Tc.
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excess subgap quasiparticle density of states even for fully gapped SC and CO. Moreover, we find

that the occurrence (absence) of pseudogap phenomena above Tc or Hc2 in the hole (electron)-type

cuprate superconductors may be a natural consequence of a competing order energy scale being

larger (smaller) than the superconducting energy gap. We further investigate the modulations in

the quasiparticle FT-LDOS of cuprates as a function of energy, momentum and temperature using

the first-order T-matrix approximation in which the pinned CO is treated as a small perturbation.

The latter approach is a special case of the self-consistent calculations and is justifiable when we

consider the low-energy (E < ∆d) quasiparticle scattering in d-wave superconductors. Our results

suggest that a full account for all aspects of experimental observation in hole-doped d-wave cuprates

below Tc must include CO as relevant low-energy excitations besides Bogoliubov quasiparticles, and

that only the pinned CO can account for the observed FT-LDOS above Tc.


