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Chapter 1

Introduction

Twenty years have passed since the discovery of the first copper-oxide high-temperature supercon-

ductor La2−xBaxCuO4 in 1986, and the intriguing physics of cuprate superconductors continues to

fascinate scientists. Coherent comprehension of the underlying mechanism remains elusive. Never-

theless, a number of superconducting and normal-state properties are now understood in great detail

from the comparison of experimental findings to theoretical analyses of simple models. In this chap-

ter, we review the basic properties of the cuprate superconductors, survey the current experimental

and theoretical progress, and conclude with a brief outline of the thesis.

1.1 Crystalline structures and electronic phase diagram of

high-temperature superconductors

1.1.1 Crystalline and electronic structures of parent compounds

Cuprate superconductors are generally referred to as doped Mott insulators. To understand the

origin of this terminology, we begin with an investigation of the cuprate crystalline and elec-

tronic structures. All high Tc superconductors share the following two elements: the CuO2 planes

that form single-layer or multilayer conducting blocks per unit cell, and the “charge reservoirs”

in between the CuO2 planes that are responsible for contributing either electrons or holes to the

CuO2 planes. In Fig. 1.1, three representative cuprate superconductors, the one-layer hole-doped

La2−xSrxCuO4 (LSCO), the one-layer electron-doped Nd2−xCexCuO4±δ (NCCO), and the infinite-
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layer Sr1−xLaxCuO2 (SLCO), are illustrated as examples. It is understood that the electronic states

of the CuO2 planes control the physics of high Tc superconductivity. By doping with substitution

elements or by changing the oxygen content (as in YBa2Cu3O6+δ) in the charge reservoirs, the

carrier density in the CuO2 planes can be controlled.

SLCO LSCO NCCO

Figure 1.1: Crystalline structures of representative hole-doped and electron-doped cuprates:
electron-doped Sr1−xLaxCuO2 (SLCO), hole-doped La2−xSrxCuO4 (LSCO), and electron-doped
Nd2−xCexCuO4±δ (NCCO). We note the absence of apical oxygen in all electron-doped cuprates, in
contrast to the presence of CuO6 octahedron in hole-doped cuprates. Furthermore the infinite-layer
system differs from all others in that no excess charge reservoir exists between consecutive CuO2

planes.

In the undoped parent compound, the electronic states of the Cu on the plane are in the d9

configuration. The presence of oxygen octahedron sounding the central Cu ion and the associated

Jahn-Teller distortion split the degenerate eg orbitals of Cu d9 with the resulting highest partially

occupied orbital being dx2−y2 . The Cu dx2−y2-orbital and the doubly occupied O px, py-orbitals

form a strong covalent bonding. In the absence of interaction among electrons, the hybridization of

these three orbitals gives rise to the bonding, non-bonding and half-filled anti-bonding bands and

predicts a good metal, in sharp contrast to the large charge gap observed in the undoped compounds.

The failure of the band theory, and hence that of the conventional Fermi liquid approach to high

Tc problems, stems from the existence of a large on-site Coulomb interaction that well exceeds the

bandwidth of the tight-binding anti-bonding band. If a charge carrier were to hop onto a partially
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filled Cu dx2−y2 orbital, the two Cu dx2−y2 carriers would experience a large energy penalty, and,

hence, it is energetically more favorable to localize the electrons. Electronic systems with half-

filled states and strong localizations are known as Mott insulators. Specifically, the strong on-site

Coulomb repulsion suppresses charge fluctuations, splits the half-filled anti-bonding band into an

empty upper-Hubbard band and a filled lower-Hubbard band, thereby turning a band metal into a

Mott insulator with an optical gap of a few eV .

More precisely, in the cuprate systems, the energy penalty of having a second hole in the Cu

d-orbital is much larger than the energy separation between the Cu dx2−y2 and O p-orbitals. Thus,

the extra hole primarily goes to the O px, py orbitals, and the energy cost (Ep−Ed), of the order of

∼ 2 eV , is named the charge transfer gap. Because the hybridization integral, tdp, is much smaller

than the energy barrier (Ep−Ed), the electrons in the undoped compounds form localized moments

on the Cu sites. These spins are anti-ferromagnetically aligned via the super-exchange interaction

that involves virtual hopping to the neighboring O p-orbitals. As a result, the parent compounds of

high Tc materials are referred to as anti-ferromagnetic Mott insulators.

1.1.2 Electronic phase diagrams

When charge carriers are introduced to the CuO2 planes, several novel phases appear as exemplified

in Fig. 1.2. This section provides an overview of the electronic phase diagrams of cuprates and

summarizes the most important phenomena shared among all cuprate superconductors. We remark

that the physics of cuprate superconductors is extremely rich, and therefore a simplified phase

diagram such as that shown in Fig. 1.2 cannot capture many interesting details that take place

in different cuprate systems. Since the physics behind these non-universal phenomena is the main

theme of the thesis, we shall discuss these issues in more detail later in this chapter [§1.2].

As mentioned in the previous section, at zero doping, the electronic state of the parent com-

pound is an anti-ferromagnetic Mott insulating state for both the n-type (electron-doped) and the

p-type (hole-doped) cuprates. Chronologically, soon after the discovery of La2CuO4, long-range

Néel spin ordering in this system was experimentally determined [1]. Strictly speaking however,
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Figure 1.2: The zero-field temperature (T ) vs. doping (x) phase diagram of representative electron-
doped (n-type) and hole-doped (p-type) cuprate superconductors. AFM: long-range commensurate
anti-ferromagnetic order. SC: superconducting state. PG: pseudogap region. FL: Fermi liquid. TN ,
Tc, and T ∗ are respectively the Néel temperature, the superconducting transition temperature, and
pseudogap temperature.

the Hohenberg-Mermin-Wagner theorem asserts that an ideal two-dimensional (2D) magnetic sys-

tem with isotropic anti-ferromagnetic Heisenberg couplings would remain magnetically disordered

at finite temperature. The finding of long-range anti-ferromagnetic ordering in real systems can

be reconciled with theory by relaxing the strict 2D picture and incorporating three-dimensional

(3D) anisotropic effects. The anisotropic effects in cuprate can arise through many different ways.

For instance, in addition to the dominant 2D Heisenberg term, there are small interlayer coupling,

Dzyaloshinski-Moriya (DM) anisotropic coupling and easy-plane (x-y) anisotropic coupling terms

in the real and spin space Hamiltonian [2]. In orthorhombic systems, such as La2CuO4, DM and

interlayer anisotropies stabilize the 3D long-range anti-ferromagnetic phase [3, 4]. In tetragonal

systems, such as Nd2CuO4, where the former two anisotropies are absent, x-y anisotropy results in

a crossover from the 2D Heisenberg behavior to the 2D XY regime, followed by a crossover to the

3D XY regime, and hence stabilizes the long-range Néel order [5, 4].
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As holes are introduced to the CuO2 planes, the Néel temperature of the system decreases

rapidly upon doping and the commensurate anti-ferromagnetic (AFM) long-range order disappears

completely at around p ∼ 0.02, where p is the number of doped holes per Cu. Above this doping

level, various types of spin fluctuations replace the original commensurate AFM order and continue

to survive in the superconducting phase. In La2−xSrxCuO4 (x = p for the one-layer systems), static

incommensurate spin fluctuations develop beyond the Néel state and persist in the superconducting

state, while in other compounds, such as YBa2Cu3O6+δ, commensurate magnetic resonance modes

and significant dynamic spin fluctuations coexist with superconductivity in the underdoped and

optimally doped region.

When hole-doping is further increased, superconductivity sets in at p ∼ 0.05 and lasts up to

p ∼ 0.25. There is general consensus that the pairing symmetry of the superconducting order pa-

rameter of hole-doped cuprates is predominantly dx2−y2-like in the underdoped and optimally doped1

region [6, 7]. In the heavily overdoped limit, on the other hand, a significant s-wave component in

addition to the dx2−y2 component has been revealed [8] [§1.2.1].

In the normal state of the underdoped cuprates, various phenomena associated with a partially

suppressed density of states around the Fermi level and an opening of the spectral gap in the

spin and charge fluctuations have been observed [9]. This state is termed as the pseudogap phase

[§1.2.2]. Near the optimal doping, the pseudogap phase crosses over to an anomalous non-Fermi-

liquid region where quantum critical scaling behavior in the spin and charge density fluctuations is

suggested [10, 11]. As we further increase the doping to the overdoped range, conventional Fermi-

liquid physics is eventually recovered.

On the electron-doping side, despite an overall similarity, we notice that the AFM state exists

over a wider doping range and the superconducting region is much narrower in comparison with that

of the hole-doped cuprates. An intuitive way to visualize the robustness of the AFM order in the

electron-doping phase diagram is the spin-dilution picture. While the hole doping introduces carriers

to the O p-orbitals, the electron doping takes place in the Cu d-orbital. The resulting mobile spinless
1The optimal doping p0 ≈ 0.16 is defined as the doping concentration with the highest transition temperature

Tc(p0). Underdoping refers to the doping level where p < p0, and overdoping refers to p > p0.
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Cu 3d10 configuration dilutes the background anti-ferromagnetic coupling and leads to a gradual

reduction of the Nèel temperature [12]. The suppression of TN is comparable to that observed in the

Zn-doped La2CuO4 [13, 14] where the doped Zn with a localized 3d10 configuration dilutes the AFM

order of the Cu spins. In contrast, the doped holes in the O orbitals induce ferromagnetic coupling

between adjacent Cu spins, strongly frustrating the anti-ferromagnetic background [15]. Therefore,

the Néel temperature drops rapidly with increasing hole doping, and the resulting AFM phase is

much narrower in the hole-doped cuprates.

In the normal state of the n-type cuprates, no discernible zero-field low-energy pseudogap is

observed by the tunneling and photoemission spectroscopy measurements, although, upon the ap-

plication of a large magnetic field that fully suppresses superconductivity, a partial tunneling gap is

again detected [16, 17, 18] [§1.2.2]. Besides, the electronic properties of the normal state measured

by the transport and zero-field tunneling experiments are more conventional, similar to what the

Fermi-liquid region in the overdoped p-type cuprates exhibits.

1.1.3 Effective single-band Hubbard model and t− J model

The electronic states responsible for the essential physics in cuprate superconductors are the Cu

dx2−y2 orbital and the O px, py orbitals. Therefore, to understand the generic features of the cuprate

phase diagram, a sensible starting point may be a three-band Hubbard model [19], which includes

both the Cu and O orbitals. However, there is strong evidence that the single-band Hubbard model

suffices to account for many important aspects of cuprate physics [20], even though it is not apparent

why one could safely ignore the oxygen orbitals when constructing a low-energy Hamiltonian. This

issue was addressed by the insight of Zhang and Rice [21], which brings forward the importance of

the singlet formation between the doped O hole and the Cu hole originally residing at the half-filled

central Cu2+ ions [Fig. 1.3]. It is by considering the low-energy theory of the singlet motion in the

CuO2 planes that we arrive at an effective single-band model proposed by Anderson [20].

In the hole-doped cuprates, the primary driving force of the singlet formation is the reduction

in kinetic energy from phase coherence and from Cu − O hybridization. According to the second-
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Figure 1.3: Schematic diagram of a single CuO4 cluster and the hybridization of the Cu 3d9 hole
with the surrounding O 2p hole states.

order perturbation calculation [21], to maximize the energy gain, a doped hole first spreads out

as a symmetric coherent superposition of the four O 2p hole states surrounding the Cu2+ ion and

then hybridizes with the central Cu dx2−y2 hole to form a Zhang-Rice singlet [Fig. 1.3]. Since

the symmetric O hole states localized at different CuO4 clusters are not orthogonal, a proper set

of Wannier functions for the whole lattice has to be constructed from the localized states. By

hybridizing the symmetric O Wannier states with the central Cu dx2−y2 states, the original three-

band Hamiltonian can be rewritten in terms of this new basis.

The resulting low-energy effective Hamiltonian of the Zhang-Rice singlets in the CuO2 plane

reduces to a single-band Hubbard model, which contains an effective singlet hopping matrix element

ti,j,σ and an effective potential term U ∼ (Ed − Ep) where Ed (Ep) is the energy of the Cu dx2−y2

(O 2px, 2py) holes,

H = −
∑

<i,j>,σ

[
ti,j,σc

†
i,σcj,σ + h.c.

]
+

∑
i,σ

Uni,σni,σ. (1.1)

In Eq. (1.1), i and j label the lattice sites, and the first summation is over the nearest neighbors.
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In the high U (strong-coupling) limit, Hubbard model is reduced to the t− J model:

H = P

− ∑
<i,j>,σ

[
ti,j,σc

†
i,σcj,σ + h.c.

]
+ J

∑
<i,j>

[
(~Si · ~Sj −

1
2
ninj

]P, (1.2)

where the exchange coupling is given by J = 4t2/U , and P is the projection operator that projects

out the double occupancy states. For the electron-doped cuprates, mapping from the three-band

model to the one-band Hubbard model is more apparent because the doped charge carriers, instead

of going to the O sites, fill up the Cu 3d-orbitals. By replacing the hybridization hopping tpd with a

second-order effective hopping element and assuming that U is large, we arrive at exactly the same

single-band t − J model (1.2). In this case, the effective Hamiltonian characterizes the hopping of

the Cu 3d10 configuration, in contrast to that of the Zhang-Rice singlets for hole doping.

We note that, although in the lowest-order approximation the three-band Hubbard model reduces

to the single-band t−J model for both electron- and hole-doped cuprates, this theory cannot account

for the asymmetry in the phase diagram between the two types of cuprates [Fig. 1.2] because the one-

band t − J model with nearest-neighbor hopping is electron-hole symmetric. Introducing further

neighbor couplings into the one-band model could break the symmetry [22, 23, 24]. However,

when solved on finite clusters, the three-band Hubbard model with parameters derived from the ab

initio local density functional theory generates similar nearest-neighbor t and next-nearest-neighbor

t′ hopping elements in the effective model for both types of doping [25]. This difficulty can be

circumvented if an additional Cu 4s orbital is taken into account [26]. It is known that the apical

oxygens in the hole-doped cuprates modulate the Cu 4s orbital [27] and thus change the t′/t ratio

significantly. Since electron-doped cuprates have no apical oxygen atoms, it may explain why they

have a different t′/t value and thus a disparate phase diagram from that of the hole-doped cuprates.

At the time of writing, we do not know what the suitable microscopic model is for electron-doped

cuprates. More theoretical effort is necessary to better elucidate the microscopic origin of the

asymmetry in the phase diagram.
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1.2 Electron-doped vs. hole-doped cuprates: review of cur-

rent experimental and theoretical status

As a first-order description, the one-band Hubbard model and its derivative t − J model capture

the essential physics of the doped anti-ferromagnetic Mott insulators, i.e., the competition between

the kinetic energy (t) that favors the delocalization of charge carriers and the anti-ferromagnetic

exchange interaction (J) originated from the strong on-site Coulomb repulsion. Mean field theory of

the t−J model supplemented by an off-site Coulomb potential reveals a plethora of possible ground

states closely spaced in energy [28], characterized by their respective broken symmetries and their

distinctive low-energy excitations. A central objective of the high Tc research is to determine which

orders are responsible for the cuprate phenomenology. In this section, we review the experimental

findings that uncover the competing gound states and comment on related theoretical proposals

advocating for specific orders. We focus on contrasting the pairing symmetry and the pseudogap

phenomena between the electron- and hole-doped cuprates and discuss how these apparent non-

universal phenomena are linked to the presence of competing orders.

1.2.1 Pairing symmetry

The identification of the pairing symmetry is an important step toward determining the pairing

mechanism of high-temperature superconductivity because it poses great constraints on the micro-

scopic theory. Empirically, the Knight shift and spin-lattice relaxation measurements by the nuclear

magnetic resonance (NMR) technique have shown that carriers in cuprate superconductors form sin-

glet pairing below the transition temperature [29, 30]. Consequently, from a symmetry consideration

the parity of the (orbital) order parameter must be even. In a quasi-two-dimensional system where

interlayer coupling is sufficiently weak and electron motion is strongly confined in the CuO2 planes,

d-wave pairing is preferable because it minimizes the on-site Coulomb repulsion while retaining 2D

confinement. When the interlayer coupling strength increases, however, s-wave pairing becomes

more favorable as the system gains a larger condensation energy at the expense of the Coulomb
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energy.

It is well established that the pairing symmetry of the underdoped and optimally doped p-type

cuprates is predominately d-wave [6, 7] [Fig. 1.4(a)]. Preponderant evidence from non-phase-sensitive

experiments such as the angular-resolved photoemission spectroscopy (ARPES) [31], thermal con-

ductivity [32], and penetration depth measurements [33] has revealed the anisotropy of the pairing

potential, the presence of line nodes, and the existence of low-energy nodal quasiparticles. Addition-

ally, ingenious phase-sensitive techniques such as the SQUID interferometry [34], single-Josephson-

junction modulation [34, 35], and tricrystal scanning SQUID magnetometry [36] experiments have

confirmed the change of phase across the line nodes, which is consistent with a d-pairing symmetry.

(a) (b)

+
-
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-
-

Figure 1.4: Magnitude and phase of the superconducting order parameter as a function of direction
in the momentum space. The superconducting order parameter of (a) a d-wave superconductor is
given by ∆d(k) = ∆ cos 2θk, where ∆ is the maximum gap value and θk is the angle between the
quasiparticle wavevector k and the antinode direction, while that of (b) a (d+s)-wave superconductor
is ∆(d+s)(k) = ∆ [(1− x) cos 2θk + x]. In figure (b), x = 30% s-wave admixture is assumed.

Curiously, in the heavily overdoped cuprates, there is a significant s-wave component mixing into

the d-wave order parameter [Fig. 1.4(b)]. Our tunneling results on the overdoped (Y0.7Ca0.3)Ba2Cu3O6+δ

(Ca-YBCO, doping level p ≈ 0.22) thin films [8] find a substantial ∆s/∆d ratio [§4], where ∆s

and ∆d are the magnitudes of the s-wave and d-wave components. Subsequent ARPES mea-

surements on overdoped YBa2Cu3O6.993 (YBCO) (p ≈ 0.18) reconfirms the large in-plane gap

anisotropy [37]. In addition, Raman spectroscopy results on tetragonal Bi2Sr2CaCu2O8+δ (Bi-
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2212) [38] and Tl2Ba2CuO6+δ (Tl-2201) [39] single crystals suggest that the s-wave mixing with

overdoping is a generic feature of high Tc superconductors regardless of the crystalline symmetry.

In the electron-doped cuprates, the determination of the pairing symmetry has been more con-

troversial. While quasiparticle tunneling spectroscopy [40, 41] and earlier Raman spectroscopy [42]

indicate an s-wave pairing in nearly optimally doped one-layer Nd2−xCexCuO4−δ (NCCO) and

Pr2−xCexCuO4−δ (PCCO), tricrystal SQUID magnetometry [43], ARPES measurements [44, 45],

and recent Raman spectroscopy results [46] are more consistent with d-wave pairing.2 Recently,

doping-dependent pairing symmetry is observed by point-contact spectroscopy [47] and penetration

depth measurements [48], where the change from d-wave pairing in the underdoped to s-wave in the

optimally doped and overdoped one-layer PCCO is reported. Furthermore, scanning tunneling spec-

troscopy studies of the infinite-layer Sr0.9La0.1CuO2 (SLCO) [49] have identified an s-wave pairing

[§5] in this simplest cuprate compound that is free of the complications from the Cu−O chain effect

as in YBCO and the oxygen inhomogeneity induced disorder as in NCCO, PCCO, and Bi-2212.

The non-universal pairing symmetry observed in electron-doped and hole-doped cuprates indi-

cates that, instead of being a ubiquitous property of high-temperature superconductors, the sym-

metry of the order parameter varies with material-dependent properties including the anisotropy

ratio, the on-site Coulomb repulsion and the anti-ferromagnetic coupling strength. Thus, the pair-

ing symmetry is possibly a mere consequence of the compromise between different competing energy

scales [50] rather than a sufficient condition of cuprate superconductivity.

1.2.2 Pseudogap

The first experiments showing evidence for a normal state gap-like feature in the hole-doped cuprates

are the temperature-dependent NMR spin-lattice relaxation rate and Knight shift measurements of

underdoped YBCO [51, 52]. The spectral weight of the low-frequency spin fluctuations is trans-

ferred to the high-frequency range in the normal state, and a “spin gap” is developed well above
2We note that the d-wave pairing observed in ARPES [45] and Raman scattering [46] is not an exact dx2−y2

symmetry, since the maximum gap is displaced away from the [π, 0] to where the Fermi surface crosses the magnetic
Brillouin zone boundary, indicating a strong coupling to the background anti-ferromagnetic fluctuations in the one-
layer electron-doped cuprates.
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the transition temperature Tc. Other measurements probing the charge, spin, and single-particle

excitations of underdoped p-type cuprates all hint at an opening of low-energy spectral gaps above

Tc. The development of spectral gaps in spin fluctuations (as measured by the NMR spin-lattice

relaxation rate), in charge fluctuations (as measured by the optical conductivity spectra via in-

frared reflectance [53]), and in single-particle excitation spectra (as measured by the tunneling spec-

troscopy [54] and ARPES [55, 56]) all takes place at different temperatures. In the phase diagram

given by Fig. 1.2, we define the pseudogap temperature T ∗(p) as the temperature below which a

suppression of electronic density of states around the Fermi level develops.

Nernst Region

Figure 1.5: Schematic phase diagram for the hole-doped cuprates showing that the Nernst region
only covers a small part of the pseudogap phase. Note that the “normal′′ metal coincides with the
anomalous metal state shown in Fig. 1.2.

While NMR, neutron scattering, transport, and optical conductivity measurements probe the

reduced spin and charge scattering rates, tunneling spectroscopy and ARPES probe directly the
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loss of single-particle density of states. ARPES measurements of underdoped Bi-2212 reveal a

normal state (leading edge) spectral gap whose magnitude and momentum anisotropy resembles

the superconducting gap [55, 56], and the earlier tunneling spectroscopy measurements observe a

smooth evolution of the superconducting gap into the pseudogap [57, 54]. Based on these results,

some physicists speculate that the pseudogap is a precursor to the superconducting gap.

There are two main categories of theories under the precursor scenario: the “pre-formed magnetic

pairing” conjecture and the “pre-formed Cooper pairing” conjecture. Representative theories of

pre-formed magnetic pairs include the resonating valence bond (RVB) theory and its derivative,

the SU(2) gauge theory [20, 58], which view the pseudogap as a spin gap opening up upon the

singlet pairing below a pseudogap temperature T ∗. In the theory, the singlet pairing fluctuates and

resonates among different pairs, thus restoring translational symmetry of the CuO2 planes. This

ground state is known as an RVB spin liquid state. The orbital wavefunction of such a pseudogap

phase could display staggered-flux correlations [58, 59], equivalent to the d-wave superconducting

correlations in the zero-doping limit [60]. By cooling the pre-formed magnetic-pair system below

Tc, the singlet pairs would turn into Cooper pairs, so that long-range superconductivity becomes

established. Experimental data suggestive of this scenario have been reported by the observation of

a normal state spin gap in NMR measurements [61]. However, direct observation of the proposed

staggered flux phase (in which orbital currents circulate in a staggered pattern) remains elusive.

Furthermore, that there is no apparent broken symmetry in an RVB spin liquid cannot be easily

reconciled with numerous experimental reports on the observation of broken symmetries in cuprates

[§1.2.3]. Another version of the pre-formed magnetic pairing scenario suggests that the singlet

pairing would result in a valence-bond solid (spin-Peierls state) instead of the RVB spin liquid [62].

At low temperatures, the conjecture of the bond-ordered states seems to be consistent with several

experimental phenomena. However, a finite-temperature theory directly applicable to the pseudogap

phase is still lacking.

In the preformed Cooper pair scenario, the pseudogap phase is regarded as a state with strong

superconducting phase fluctuations resulting from the small phase stiffness in high Tc cuprates [63].
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The pairing potential in the pseudogap phase is non-vanishing, and hence the spectral gap is non-

zero, though the phase coherence is lost. The supporting experimental evidence for the fluctuating

superconducting order above Tc is provided by the Nernst experiments, where the short-range su-

perconducting correlations are manifested as the non-zero Nernst signals [64, 65, 66]. However, the

Nernst region where local superconducting order persists and phase fluctuation scenario applies is

much smaller than the observed pseudogap region [Fig. 1.5]. Therefore, phase fluctuations of the

pre-formed Cooper pairs alone cannot account for the wide range of the pseudogap phase.

Another viewpoint concerning the nature of pseudogap is based on Landau’s symmetry-breaking

theory where a competing order is assumed to be responsible for the pseudogap phenomena. In

contrast to earlier tunneling spectroscopy with limited spatial resolution that shows smooth tran-

sition from the superconducting phase to the pseudogap phase [57, 54], recent spatially resolved

scanning tunneling spectroscopy measurements indicate that there are two types of single-particle

spectra with different gap values coexisting in the underdoped and optimally doped Bi-2212 sam-

ples [67, 68]. Furthermore, the interlayer tunneling spectra of Bi-2212 mesa samples demonstrate

that the sharp superconducting coherence peaks coexist with a gradual hump feature at T � Tc,

and that the superconducting gap vanishes above Tc while the higher energy hump background

persists till T ∗ > Tc [69]. The ARPES measurements on La2−xSrxCuO4 [70] and the bulk specific

heat measurements [71] also support the conjecture of the pseudogap phase as a competing order

phase. Candidates for the competing order include (fluctuating) stripe order [72, 73], circulating

current order [74] also known as d-density wave order [75], (dynamic) anti-ferromagnetic order [76],

and valence-bond-solid order [62]. Determining which orders are present in the superconducting and

the pseudogap phases is one of the most important current topics of cuprate physics [62, 58, 73, 76].

In contrast to the ubiquitous presence of pseudogap above Tc in underdoped p-type cuprates [55,

56, 9], no discernible normal state single-particle excitation gap has been observed in the zero-field

tunneling spectroscopy of n-type one-layer NCCO and PCCO [16, 17, 18], and no discernible normal

state leading edge gap has been seen within the resolution of ARPES [77]. Nernst measurement on

NCCO also exhibits negligible superconducting fluctuations above Tc [65, 78]. Furthermore, scanning
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tunneling spectra of infinite-layer SLCO indicate complete absence of any normal state tunneling

gap [§5], and the NMR spin-lattice relaxation rate and Knight shift measurements show that there

is no normal state spin gap in this compound [79]. Only when a magnetic field exceeding the upper

critical field is applied, would a normal state “pseudogap” appear in the tunneling spectra [17, 18].

However, such a “pseudogap” in n-type cuprates only appears below Tc, which apparently contradicts

the precursor Cooper pairing scenario.

To explain the absence of the zero-field pseudogap and the field-induced pseudogap in the

electron-doped systems, we propose that the strength of the competing order in the n-type cuprates is

smaller than the superconducting gap, which is opposite to their counterparts in the p-type cuprates.

Only when the superconducting order is suppressed and the competing order enhanced by a large

external field would the single-particle spectral gap associated with the competing order be revealed.

In Chapter 6, we present a simple model that implements this conjecture in the calculation of the

tunneling spectra for both s- and d-wave cuprate superconductors. Numerical simulations based on

this model confirm that our conjecture is consistent with the observed spectral characteristics of

the infinite-layer SLCO [§6]. Moreover, it can be shown that, by varying the gap ratio of the two

competing orders, the appearance of pseudogap phenomena in hole-doped cuprates can be reconciled

with the absence of pseudogap in the electron-doped cuprates.

1.2.3 Orders in cuprate superconductors

On way to differentiate between numerous theories of high-temperature superconductivity is to

identify the (static or fluctuating) quantum order that each theory prescribes for the pseudogap

and the superconducting phases. Experimentally, spin correlations of several cuprate families have

been studied in detail by means of inelastic and elastic neutron scattering for comparison with

theoretical predictions. One of the most conspicuous features observed in LSCO and YBCO is the

presence of incommensurate spin fluctuations, which are static in the underdoped LSCO with doping

0.055 < p < 0.14 [80, 81, 82], dynamic in LSCO with p > 0.14, and dynamic in YBCO throughout

the entire superconducting doping range [83]. In Nd-doped LSCO, Bragg peaks related to static
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spin and charge orders are revealed with a charge modulation periodicity half of that of the spin

modulation [84]. This observation is consistent with the “stripe” picture where the doped holes self-

organize into charge stripes that are the anti-phase domain walls between Néel ordered regions [72].

Similar static stripe-like orders are also detected in La1.875Ba0.125CuO4 [85].

In the stripe phenomenology, the incommensurability δq of the spin fluctuations is related to the

doping level by δq = p, exactly what is observed in underdoped LSCO for 0.055 < p < 0.1253 [86].

Therefore, it is proposed that the static incommensurate spin density waves in LSCO are spin stripes,

even though the corresponding charge Bragg peaks have never been identified (presumably due to

the weak intensity). Furthermore, the dynamic incommensurate spin fluctuations that take place

beyond 1/8 doping are interpreted as slowly fluctuating stripes. In comparison, earlier neutron scat-

tering results on YBCO do not provide as strong evidence for stripe formation. Most experimental

data on YBCO exhibit dynamic spin fluctuations with a more complicated doping-dependent incom-

mensurability [83]. Recently, one-dimensional incommensurate spectral features have been observed

in highly ordered underdoped YBa2Cu3O6.5, in which the spin fluctuations are incommensurate

along the {100} axis and commensurate along the {010} direction [87, 88]. The one-dimensional

incommensurate scattering is taken as strong evidence of stripe-like modulations in underdoped

YBCO. We remark, in passing, that the neutron scattering experiments on electron-doped cuprates

show dynamic commensurate spin fluctuations [89, 90, 91, 92], in contrast to the incommensurate

scattering of hole-doped cuprates.

Other types of orders that appear in some theories of cuprate superconductivity include the

d-density wave order [75] (or the circulating current order [74]) branded as the hidden order of the

pseudogap phase. The orbital currents flowing in the CuO2 planes break the time-reversal symmetry

and produce a c-axis moment. This phase should be visible in the neutron scattering experiments

if it exists. To date, the only supportive evidence for the static c-axis moment comes from a set of

experiments on underdoped YBa2Cu3O6.6 [93, 94]. However, contradictory results have also been

reported for highly ordered YBa2Cu3O6.5 [87, 88]. Whether the dynamic orbital current fluctuations

3Beyond the 1/8 doping, the observed incommensurability of LSCO saturates at 0.125.
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of the staggered flux state predicted by the SU(2) slave-boson theory exist or not is yet to be verified.

While spin orders couple directly to neutron magnetic moments, charge correlations can only

be detected indirectly through neutron scattering of the induced lattice distortion. The ideal probe

for static charge orderings of quasi-two-dimensional samples is the scanning tunneling spectroscopy

(STS). Low-temperature scanning tunneling spectra taken on highly anisotropic Bi-2212 have re-

vealed a number of interesting phenomena, including a checkerboard-like charge ordering in the

vortex core of nearly optimally doped samples [95], dispersive modulations in the local density of

states in nearly optimal doped and slightly underdoped samples [96, 97], and non-dispersive incom-

mensurate modulations in heavily underdoped samples [98]. In addition, it is found that above the

superconducting transition temperature, four non-dispersive modulation peaks along the anti-nodal

direction survive [99]. These results imply the presence of the checkerboard or stripe order in the

pseudogap phase and its coexistence with the superconducting order in the vortex core of the super-

conducting phase. Another cuprate compound that exhibits incommensurate charge density wave

order is the highly two-dimensional Na-doped Ca2CuO2Cl2 [100]. In the underdoped samples, all

tunneling spectra below Tc reveal pseudogap-like density of states without sharp superconducting

coherence peaks, similar to those taken on the non-superconducting samples. Thus, it is tempting

to attribute the pseudogap spectra to the presence of charge ordering. An alternative interpretation

of the density of states modulation is to view it as a manifestation of the bond-ordered states among

which the stripe order is a special case [62]. To distinguish between different bond orders of the

same periodicity, the phase information of the Fourier-transformed local density of states must be

retained and carefully analyzed [101]. To date, no definitive result has been obtained from such

analysis [73].

Up to this point, we have only discussed the orders that break explicit symmetries such as the

spin-rotational symmetry, the lattice symmetry, or the time-reversal symmetry. There are other

theories that conjecture more subtle topological orders as the relevant orders that characterize the

pseudogap phase. These theories are based on the RVB scenario [20] that postulates a common origin

for the pseudogap and the superconducting phases as a doped spin liquid state. Two types of spin
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liquids most discussed in the context of cuprate superconductivity are the Z2 [102] and U(1) spin

liquids [103, 58] characterized by their respective low-energy gauge groups. At the time of writing,

the experiments designed to detect the non-trivial fluxes [104] associated with the topological order

have not produced any positive result [105, 106]. Therefore, we shall restrict our discussion to the

symmetry-breaking orders in this thesis.

1.3 Overview of the thesis

This thesis presents scanning tunneling spectroscopic studies of two families of cuprate superconduc-

tors, the hole-doped cuprate YBCO, and the electron-doped cuprate Sr0.9La0.1CuO2 (SLCO). Their

contrasting properties, such as the pairing symmetries and pseudogap phenomena, are highlighted,

and a proposal to unify these apparent non-universal phenomena in terms of coexisting orders is

put forward. The theoretical model based on this proposal is solved by numerical methods, and the

results are found to reconcile the findings in the low-energy quasiparticle spectral characteristics of

different cuprates.

The thesis is organized as follows. Chapter 2 first describes the fundamental physics of tunneling

spectroscopy within the tunneling Hamiltonian formalism. The Blonder-Tinkham-Klapwijk (BTK)

theory is then introduced to treat the tunneling spectra of superconducting electrodes with a variable

junction barrier [Appendix A]. For superconductors of unconventional pairing symmetries, the

generalized BTK theory is derived in order to account for the Andreev bound state developed at

the sample surface along the nodal direction. Tunneling spectra of d-wave superconductors along

the nodal, anti-nodal, and c-axis are summarized, and comparisons are drawn among the spectra of

various mixed pairing symmetry superconductors.

Chapter 3 begins with a brief review of the scanning tunneling microscopy (STM) technique,

followed by detailed description for the instrumentation of the cryogenic STM built for the thesis

research. The working principle of the STM and the essential components are outlined. The specifi-

cations of the STM electronics and the high-voltage circuitry for piezoelectric control are provided,

and the cryogenic probe design is illustrated. Additional elements necessary for a fully functional
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STM are documented, which include the improvement of thermal response and measures taken for

the vibrational, acoustic, and electrical noise reduction.

Chapter 4 presents the STS results on the hole-doped YBCO with a range of doping. The pairing

symmetry and the pairing potential are extracted by fitting to the BTK formalism. Predominantly d-

wave pairing is found in underdoped and optimally doped pure YBCO, and in overdoped Ca-YBCO

a significant s-wave admixture is revealed by STS. In addition, tunneling spectra of optimally doped

YBCO with a small concentration of non-magnetic impurities are studied, which exhibit strong

suppression of the superconducting gap and a single resonance peak at the impurity site, consistent

with the d-wave pairing symmetry around optimal doping. The implication of the doping-dependent

pairing symmetry in the context of quantum criticality and the existence of fluctuating competing

orders is discussed.

Chapter 5 presents the tunneling spectra of the electron-doped SLCO. In contrast to the pre-

dominantly d-wave pairing in hole-doped cuprates, the order parameter of SLCO is found to be

momentum-independent with a single-particle excitation gap substantially exceeding the BCS value.

Above Tc, the spectral gap closes, indicating the absence of zero-field pseudogap. The single-particle

spectral response to the quantum impurities (Zn and Ni) further corroborates the finding of the

s-wave pairing in SLCO. Moreover, it is found that the mean-field Bogoliubov quasiparticle based

description fails to account for several important spectral characteristics of SLCO: the excess low-

energy excitations, the rapid decrease of the spectral gap with increasing temperatures, and the

current-induced pseudogap-like features. These observations are in contrast to the applicability of

the mean-field BTK theory to YBCO tunneling spectra and can be understood in terms of the pres-

ence of strong quantum fluctuations in SLCO that results from its proximity to a quantum critical

point. Additional evidence for strong quantum phase fluctuations have been obtained from studies

of high-field vortex dynamics [107] in various cuprates and will be discussed and compared with

microscopic quasiparticle spectra.

In Chapter 6, a theoretical model for coexisting density waves with superconductivity is investi-

gated by numerical methods. By incorporating quantum phase fluctuations and using realistic band
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structures, we find that the resulting quasiparticle spectra exhibit excess low-energy excitations

consistent with empirical results [§5.3.1]. Furthermore, by tuning the ratio of the strength of the

competing order to that of the superconducting order, the absence of pseudogap in n-type cuprates,

the current-induced pseudogap-like spectra in SLCO [§5.3.2], and the general presence of pseudogap

phenomena in hole-doped cuprates [§1.2.2] are reproduced. An additional theoretical manifestation

of competing orders is also investigated by considering the interference of quasiparticles scattered off

pinned density waves, and the numerical results are found to compare favorably with experimental

data in Bi-2212 [95, 97, 99]. Finally, we conclude that competing orders are important in under-

standing the cuprate phenomenology. Further experiments that investigate the varying proximity

to quantum criticality of different cuprate superconductors are proposed for future studies.


