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Abstracts 

 

This thesis is organized in two parts, both concerned with local synaptic 

interactions within the dendritic tree. The first part is focused on how specific 

synaptic arrangements that can be used to compute direct ion selecti vity can be 

learned in an unsupervised manner. The second part consists of a double 

synaptic veto model that can account for the observed reverse-phi selectivity of 

direction-selective cells. We propose an activity-based, local learning model that 

may account for the direction selectivity in neurons in the visual cortex based on 

the local veto operation among excitation and inhibition. We implement the 

learning rule with local calcium concentration changes and a BCM type learning 

curve (Bienenstock, Cooper and Munro, 1982). Our biophysical simulations 

suggest that a model cell implementing our learning algorithm develops direction 

selectivity organically after unsupervised training. The learning rule is also 

applicable to cells with multiple direction-selective subunits on dendrites and is 

stable under a number of starting conditions.   

 

Reverse-phi motion is the illusory reversal of perceived direction of movement 

when the stimulus contrast is reversed in successive frames. Livingstone (2000) 

showed that direction-selective cells in striate cortex of the alert macaque 

monkey showed reversed excitatory and inhibitory regions when two different 

contrast bars were flashed sequentially during a two-bar interaction analysis. We 

carry out detailed biophysical simulations of a direction-selective cell model 
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implementing a synaptic shunting scheme.  Our results suggest that a simple 

synaptic-veto mechanism with strong direction selectivity for normal motion 

cannot account for the observed reverse phi-motion effect.  A direct interaction 

between the ON and OFF pathway, missing in the original shunting-inhibition 

model, is essential to account for the reversal of response.  We propose a double 

synaptic-veto mechanism in which ON excitatory synapses are gated by both 

delayed ON inhibition at their null side and by delayed OFF inhibition at their 

preferred side. The converse applies to OFF excitatory synapses.  Mapping this 

scheme onto the dendrites of a direction-selective neuron permits the model to 

respond best to normal motion in its preferred direction and to reverse-phi motion 

in its null direction.  
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Chapter One 

 

Introduction 

 

This thesis consists of two major parts. The first part, a detailed description of a 

synaptic learning rule for local synaptic interactions between exc itation and 

shunting inhibition on a direction-selective  cell’s dendrite is given in Chapters 

Two and Three. The second part, a double synaptic veto mechanism that can 

account for the observed “reverse-phi” selectivity of cortical direction-selective 

cells, is introduced in Chapter Four which has been published as Mo and Koch 

(2003). This chapter serves as a guided tour to give readers a quick overview of 

each chapter and the motivation behind.  

 

The ability to detect motion direction is arguably one of the most important 

functions of all vision systems. Direction-selective cells in the retina of the rabbit 

(Barlow and Levick, 1964; reviewed by Vaney et al., 2001), the pretectal nucleus 

of the optical tract (NOT) of the wallaby (Ibbotson and Price, 2001), the lobular 

plate of the fly (Egelhaaf and Borst, 1992), and the visual cortex of the cat and 

monkey (Goodwin et al., 1975; Emerson and Gerstein, 1977; Ganz and Felder, 

1984; Emerson et al., 1993;Jagadeesh et al., 1993; Livingstone, 1998) have 

been extensively studied (reviewed by Clifford and Ibbotson, 2003).  Over the 

years, both feed-forward (Koch and Poggio, 1985; Livingston, 1998; Anderson et 

al., 1999) and feedback (Suarez et al., 1995; Douglas et al., 1995; Maex and 



Orban, 1996; Ernst et al., 2001; Rao and Sejnowski, 2001) schemes have been 

proposed. Recent experimental evidence suggests the asymmetrical delayed 

inhibition is likely to be one of the mechanisms that underlie cortical direction 

selectivity (Livingstone, 1998). Such a mechanism may be based on shunting 

inhibition, i.e.,  an increase in a chlorine based GABA_A conductance that 

reverses close to the cell's resting position, as proposed by Koch and Poggio 

(1985). 

 

One important open question is: how can the required synaptic specific 

interaction among excitations and inhibitions be obtained in an unsupervised 

manner? The wiring requirement for such a scheme is the following: excitation in 

visual space can reside on either side of the inhibitory zone, but not on both 

sides, in which case the model receives symmetric input in space-time and is 

thus not direction-selective. Cats reared in a stroboscopically illuminated 

environment develop normal orientation-selective neurons in cortex but direction-

selective neurons are virtually abolished. This effect remains after long periods of 

normal visual exposure (Cynader and Chernenko, 1976; Humphrey and Saul, 

1998; Saul and Feidler, 2002; rabbit visual cortex: Grigonis et al., 1988). The 

results suggest the establishment of direction-selective properties of cortical cells 

is likely to go through a visual-experience driven, activity-based learning phase. 

The learning process for direction selectivity may be independent of the 

establishment of orientation selectivity. In this study, we propose an activity-

based, local learning model that may account for direction selectivity in V1 cells 



or other types of computations based on local veto operation among excitation 

and inhibition.  We assume that the inhibitory connection is fixed and the learning 

process only occurs at excitatory synapses in chapter two and through most of 

chapter three, because very little  experimental evidence exists for inhibitory 

learning. A global, activity-based inhibitory learning scheme that works with our 

local excitatory learning rule is also addressed in the last section of chapter three. 

Given the fact no calcium flow through an inhibitory channel when it is open, it is 

unclear if our calcium based local learning mechanism can be applied to the 

learning of inhibitory synapse.  We here adopt a global inhibitory learning 

mechanism as described by Soto-Trevino et al. (2003).  In cat area 17, 40% of 

cells are found to have their inhibition tuning preference different from their spike 

outputs in an intracellular study investigating synaptic mechanisms of orientation 

and direction selectivity (Monier et al, 2003). The excitation tuning preference of 

these cells is the same as either the spiking output or the inhibition. The lack of 

homogeneities in input combinations might reflect the result of an activity based, 

excitation-inhibition differential learning process during development.  

 

Various modified versions of the original Hebbian learning rule that can account 

for the development of direction selectivity have been proposed (Bienenstock et 

al., 1982; Feidler et al., 1997; Blais et al., 2000; Rao and Sejnowski, 2001). Our 

learning rule is based on the peak calcium concentration change at spines 

following a synaptic input.  We use a BCM type learning curve (Bienenstock et al., 

1982) without implementing a non-linear sliding threshold that is yet to be 



experimentally verified. Direction-selective cells in the monkey V1 can respond to 

movement within 0.1 degree, which is much smaller than their receptive field size 

(Livingstone, 1998), suggesting cortical direction-selective  cells have direction-

selective subunit structures on their dendrites (Emerson, 1997). We use 

compartmental simulations and a model cell with very simple geometry to test 

our learning rule, different from all previous studies that treat the post synaptic 

cell as a point-neuron or simply an integration unit (Koch and Segev, 2000; Koch 

et al., 2003). This allows us to investigate the development of direction-selective 

subunit structures at the dendritic level.   

 

The effect of post-synaptic calcium concentration on LTP and LTD has been 

shown by (Yang and Zucker, 1999) in their photolysis experiments. Fast rising 

calcium concentration changes in dendritic spines mediated by action potential 

and long sustained rising mediated by synaptic inputs have been observed in 

calcium imaging experiment (Sabatini and Svoboda, 2002). A comparison of the 

calcium dynamics that is discovered in their study and that is implemented in our 

model is given in the discussion section of Chapter two. We assume calcium-

dependent synaptic weight changes can be achieved biochemically through the 

calcium-dependent phosphorylation of a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) subtype of glutamate receptors (AMPARs) as 

described by Castellani et al. (2001). 

 

Phi motion refers to our perception of motion when discrete bars are presented in 



a continuous spatial and temporal sequence.  Reverse-phi motion was first 

demonstrated by Anstis (Anstis, 1970; Anstis and Rogers, 1975). Subjects 

perceive the reverse direction of motion when the contrast of a moving object 

reverses in the second frame of a two-frame shift experiment. Reverse-phi like 

effects have also been reported during electrophysiological experiments from 

direction-selective  complex cells in the cat striate cortex (Emerson et al., 1987), 

the H1 cell in the fly's lobula plate (Egelhaff and Borst, 1992), and the optical 

tract of the wallaby (Ibbotson and Clifford, 2001). Recent recordings from 

direction-selective  cells in the alert monkey show that cells in both cortical areas 

V1 and MT reverse facilitation and suppression regions in the 2-bar interactions 

map when two different contrast bars are presented (Livingstone et al., 2000; 

Conway and Livingstone, 2001). This implies that these cells respond to reverse-

phi motion in the reversed direction. In Chapter Four, we show how the circuitry 

for the normal direction selectivity can be adapted to account for the reverse-phi 

selectivity. Our results suggest that a simple synaptic-veto mechanism with 

strong direction selectivity for normal motion cannot account for the observed 

reverse phi-motion effect due to the fact that a direct interaction between the ON 

and OFF pathways is missing in the original shunting inhibition model. We show 

a double synaptic-veto mechanism, derived from the traditional asymmetrical 

delayed shunting inhibition model, can account for both normal and reverse-phi 

motion direction selectivity. In such a scheme, ON excitatory synapses are gated 

by both delayed ON inhibition at their null side and by delayed OFF inhibition at 

their preferred side. The converse applies to OFF excitatory synapses.  Mapping 



this scheme onto the dendrites of a direction-selective neuron permits the model 

to respond best to normal motion in its preferred direction and to reverse-phi 

motion in its null direction.  

 

Both the learning model and the reverse-phi model use shunting inhibition to 

achieve dendritic specific veto of excitatory inputs. The shunting inhibition’s local 

“gating” effect is discussed in Chapter Five, as well as the optimal inhibition and 

excitation input locations in our model. Recent experiments in the retina provide 

evidence in favor of at least some nonlinear interactions between excitatory and 

shunting inhibitory inputs that take place within the dendrites of direction-

selective ganglion cells (Taylor et al., 2000; for a dissenting view, see Borg-

Graham 2001). Large conductance changes that reverse around the cell's resting 

potential have been observed in V1 during visual stimuli (Anderson et al., 2000; 

Borg-Graham et al., 1998). Our results suggest shunting inhibition may be 

important for forming direction-selective  synaptic connections as well as the final 

direction selectivity.   

 

Finally, in Chapter Six we discuss whether our learning rule described in 

chapters two and three can account for the “double-veto” synaptic placement we 

proposed in chapter four.  Reverse-phi motion stimuli do not appear to be a 

common feature of natural spatiotemporal scenes. It therefore remains unclear 

why cortical cells should invert their direction selectivity for reverse-phi motion.  

We believe that the synaptic circuitry responsible for detecting reverse-phi motion 



has to be established as a by-product of developing normal direction selectivity, 

rather than a stand-alone training process. We show such connections may be 

established due to the background firing of inhibitory input cells, which causes 

bias in the learning outcome.  



Chapter Two 

 

A Synaptic Learning Rule for Local Synaptic Interactions 

between Excitation and Shunting Inhibition 

 

2.1 Introduction 

The ability to distinguish object movement directions is important to all motion 

processing systems. In the cat and monkey, V1 is the first stage in the visual 

pathway where direction-selective (DS) cells are encountered. Cats reared in a 

stroboscopically illuminated environment develop normal orientation-selective 

neurons in cortex but direction-selective neurons are virtually abolished. This 

effect remains after long periods of normal visual exposure (Cynader and 

Chernenko, 1976; Humphrey and Saul, 1998; Saul and Feidler, 2002). Therefore, 

direction selectivity is likely to require structured synaptic input during early 

developmental stages. These neurons are thus excellent targets for the study of 

activity-dependent synaptic weight changes. Hebb proposed his famous learning 

rule based on the correlation between pre- and post-synaptic activities (Hebb, 

1949). Long-term potentiation (LTP) and the long-term depression (LTD) are 

likely to be among the synaptic manifestations of such a learning rule (Bliss and 

Lomo, 1973; Dudek and Bear, 1992; Reviewed by Malenka and Nicoll, 1999).  

However, a computational study showed that the simple Hebbian learning rule 

performs poorly in direction-selective synapse placement (Feidler et al., 1997). 

This is not surprising since the basic requirement for direction selectivity is a non-



linear interaction between two different inputs in space-time. In a natural 

environment, as many stimuli are expected to move in the preferred than in the 

null direction. While there exists a correlation between pre- and post-synaptic 

firing in the preferred direction, this is not the case for motion in the opposite, null, 

direction.  

 

There are various modified versions of the original Hebbian learning rule that can 

account for the development of direction selectivity. The principal component 

analyzer model proposed by Oja in 1982 adds a non-linear decay term to 

achieve stability (Oja, 1982), although itself is not a direction selective learning 

rule. A post-synaptic “gating” rule links synaptic weight changes with post-

synaptic activities (Feidler et al., 1997). The BCM learning rule, originally 

proposed to account for orientation selectivity and binocular interactions , has 

been extended to the generation of direction-selective units (Bienenstock et al., 

1982; Feidler et al., 1997; Blais et al., 2000).  

 

Intracellular calcium concentration is one of the biophysical variables critical to 

LTP induction, suggesting it may be an important messenger bridging the gap 

between firing frequency changes and synaptic modifications (Lynch et al., 1983; 

Yang et al., 1999; Zucker, 1999; Kalikulov et al., 2002). NMDA receptors are 

likely to be the entry points of calcium at spines since an antagonist of NMDA 

receptors inhibits the induction of LTP (Collingridge et al., 1983).  The age-

dependent time course change of the NMDA current has been proposed to 



account for the age-dependent decline of visual cortical plasticity (Carmignoto 

and Vicini, 1992).  Glutamate receptors may involve in regulating spine structure 

plasticity (Fischer et al., 2000). Calcium influx through NMDA channels can 

cause a large, localized and transient increase in the postsynaptic calcium level 

(MacDermott et al., 1986; Gamble and Koch, 1987; Zador et al., 1990; Helmchen 

et al., 1999; Sabatini et al., 2001; Sabatini et al. 2002). The existence of voltage-

gated gated calcium channels in hippocampal cells and their contribution to 

synaptic plasticity have been reported (Dingledine, 1982; Cummings et al.). A 

simulation study by Castellani et al. (2001) suggests a BCM type learning curve 

can be achieved by calcium-dependent protein kinases and phosphatases 

activity changes that in turn modify the phosphorylation state of AMPA receptors 

and thus their conductance. Enzymes involved in this process reside in the 

postsynaptic density (reviewed by Kennedy, 2000) and may involve with the 

long-term calcium-dependent regulation in neuronal gene expression (reviewed 

by Bito et al., 1997).  

 

A great deal is known about direction-selective  cells through experimental, 

modeling and theoretical investigations.  The motion energy model (Adelson and 

Bergen, 1985), as well as the equivalent Reichardt model (Reichardt, 1961; 

Santen and Sperling, 1985), interprets observed physiological and 

psychophysics data well. At the biophysical level, network models that rely on 

excitatory feedback (Douglas et al., 1995; Maex and Orban, 1996;  Rao and 

Sejnowski, 2001) and feed-forward models (Koch and Poggio, 1985; Livingston, 



1998; Anderson et al., 1999) have been proposed to account for direction-

selective synaptic arrangements in the cortex.  The asymmetry in the summation 

of excitatory inputs at dendrites alone is not sufficient to account for the 

directional response based on modeling study by Anderson et al. (1999).  

Asymmetrical delayed inhibition is likely to be one of the mechanisms that 

underlie direction selectivity. Such a mechanism based on shunting or silent 

inhibition was proposed for the cortex by Koch and Poggio (1985).   A bar moving 

in the preferred direction reaches the excitatory input before the inhibitory one, 

which only acts after an additional delay (Fig. 2-1a). The excitatory input reaches 

the soma and causes the cell to spike because of the temporal offset between 

the two inputs. In the opposite, null direction, the excitato ry input is “vetoed” by 

the inhibition if the bar’s speed is approximately matched to the delay. The wiring 

requirement for such a scheme is simple: excitation in visual space can reside on 

either side of the inhibitory zone, but not on both sides, in which case the model 

receives symmetric input in space-time and is thus not direction-selective.  Large 

conductance changes that reverse around the cell's resting potential have been 

observed in V1 during visual stimuli (Anderson et al., 2000; Borg-Graham et al., 

1998). Given the local effect of shunting inhibition, it is interesting to investigate 

its possible role in synaptic learning.  

 

Both retinal and cortical direction-selective cells have subunit structures within 

their receptive fields (Barlow and Levick, 1965; Emerson et al., 1987; Livingstone 

et al., 2001). A comparison of two fictitious cortical DS cells with and without 



subunit structures is shown in Fig. 2-1b. Both cells receive inputs from the same 

group of LGN cells but the one with subunit structures utilizes its resources more 

efficiently and has superior position-invariant direction tuning.  Synaptic logic 

models involving complex, branch-specific synapse placements had long been 

proposed (Poggio, 1982; Koch and Poggio, 1987).  Recent work by Mel and 

colleages suggests that the large dendritic tree of cortical pyramidal neurons may 

function as a two-layer neural network (Poirazi et al., 2003). The standard form of 

Hebbian learning rule and all of its variations describing changes only in the 

overall connection strength between the pre- and post-synaptic neurons cannot 

account for structure plasticity (Mel, 2002) and local learning, for they do not 

distinguish among post-synaptic connection locations. We here demonstrate, 

using a highly idealized compartmental simulation of a single post-synaptic 

neuron, how a learning rule for local synaptic interactions between excitation and 

shunting inhibition could, in principle, account for direction selectivity and 

subunits learning at the dendrite level.  



 

2.2 Methods  

All compartmental simulations were carried out using the program NEURON 

(Hines and Carnevale, 1997).  The idealized cell morphology of a direction-

selective neuron included eight dendrites (width 0.5 µm, length 100 µm) that 

were directly connected to the soma (width 16 µm, length 16 µm). Each dendrite 

was unbranched and had 20 compartments, for a total of 180 compartments. The 

dendrites were passive except for an N-type calcium conductance, while the cell 

body contained sodium and potassium conductance that gives rise to fast 

Hodgkin-Huxley-like action potentials. Given our model cell’s low L value/large 

space constant (L=0.45 at the tip of the dendrite), large sodium conductance is 

not needed at dendrites to sustain back-propagating spikes as opposed to a 

simulation study by Tsay and Yuste (2002) using a big layer five pyramidal 

neuron model. There was no spike adaptation mechanism in our model. The 

biophysical parameters included: R i=250 Ω•cm, Cm=0.5 µF/cm2, Eleak=-60 mV, 

Rm=10 kΩ•cm2, gNa=0.030 S/cm2, gK=0.028 S/cm2, ENMDA=0 mV, gNMDA=0-2 nS, 

τNMDA on=0.1 ms, τNMDA off=80 ms, EAMPA=0 mV, gAMPA=0-2 nS, τAMPA on=0.1 ms, 

τAMPA off=2 ms, EGABA=-60 mV, gGABA=5.0 nS, τGABA on=1 ms, τGABA off=80 ms. 

Synaptic input was modeled using the point process in NEURON (adopted from 

Archie and Mel, 2000). The input resistances of the model cell were 570 MΩ, 

I008 MΩ (L=0.22, transfer resistance 519 MΩ), and 1448 MΩ (L=0.45, transfer 

resistance 503 MΩ), at the soma, the middle of the dendrite and the tip of the 

dendrite respectively. The large input resistance allowed a single excitatory 



synaptic input around 2ns to elicit spikes at the soma.  Real cells may have much 

lower input resistance at soma, but they may also require several simultaneous 

excitatory inputs to elicit spikes.  The large input resistance was due to our cell’s 

limited size (dendrite: 100 µm in length, 0.5 µm in diameter. Soma: 16 µm in 

diameter). Increasing the dendrite length to 200 µm and diameter to 1.5 µm and 

connecting a large compartment that was 500 µm in length and 5 µm in diameter 

decreased the model cell’s input resistance to around 70 MΩ.  Our learning 

model converged as expected using this alternative geometry setting when we 

increased the excitatory and inhibitory input connection strength by ten folds to 

make them large enough to elicit spikes.     

 

The N-type voltage-gated calcium conductance was taken from (Benison et al., 

2001) and mapped to dendrites with a density of 1 mS/cm2. We assume that 

excitatory synapses are located to dendritic spines and that the rapid rise in 

intracellular calcium concentration at the postsynaptic site inside the spine 

following synaptic activation have two main sources (Fig. 2-2a): calcium current 

through the NMDA synapse, ICa_NMDA ,, and calcium current, ICaN, that is located in 

the dendrite and a certain amount of which diffuses up into the spine.  ICa_NMDA 

was calculated as one third of the total current through the NMDA synapse but 

with a reversal potential ECa=130mv.  Of the ICaN entering the dendritic 

compartment associated with the spine, 5% was assumed to contribute to the 

calcium concentration at the spine (Koch, 1999).   These scaling factors were 

chosen to bring the amounts of calcium entering through NMDA channels and 



through N-type voltage gated calcium channels within the same order of 

magnitude.  The final calcium concentration at the spine was given by a simple 

decay equation 
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The stimulus was a 1-D bar moving across the receptive fields of 6 LGN cells 

(Fig. 2-1b) at 10 deg/sec (for details, see section 4.2). Each of the middle four 

LGN cells provided delayed input to one dendritic branch of the model cell while 

the LGN cell immediately to the right and the LGN cell immediate ly to the left 

provided delayed excitation. The delay was 10 ms. There were a total of 8 

excitatory synapses and 4 inhibitory synapses in the model (Fig. 2-1d). Each 

geniculate input was assumed to directly excite its appropriate dendrite at a 

single synaptic cluster (here modeled as one deterministic excitatory synapse), 

and— via a local interneuron— to inhibit a dendrite. This was modeled by a single 

deterministic inhibitory synapse that was delayed by 10 ms with respect to 

excitation. Excitatory synapses were mapped to the dendrite compartment 60µm 

away from the soma; inhibitory synapses located 50µm away from the cell body.  

In the main model, inhibition was assumed to be of the shunting type, with a 

reversal potential EGABA=-60mV (the cell's resting potential is -60 mV). The 

temporal dynamics of the excitatory (NMDA) and inhibitory (GABA) synaptically 

induced conductance changes were as described by (Destexhe and Sejnowski, 

1994).   
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Fig. 2-1. Illustration of a direction selective (DS) mechanism and basic kinds of 
information available to an excitatory synapse to determine its learning strategy 
(A) A DS neuron in V1 receives two LGN inputs, one excitatory and one delayed 
inhibitory (via a cortical interneuron). Solid curves show excitatory synaptic 
conductance changes during the preferred and null direction motion stimuli. 
Dashed curves show inhibitory synaptic conductance changes plotted in negative. 
The difference in temporal alignment of these two inputs during motion stimuli 
forms the base of the V1 cell's direction selectivity. (B) Connection diagram for two 
DS cells with (bottom) and without (top) DS subunits on their dendrites. Both 
receive inputs from the same LGN cell array.  The DS cell on the top has no 
subunit structures. A bar needs to move across the middle line between LGN input 
cell 2 and 3's receptive fields to elicit directional response. The DS cell at the 
bottom has one DS subunit on each of its four dendrites and thus has much better 
position invariant direction selectivity within its receptive field. (C) Three types of 
information available to an excitatory synapse on a remote dendrite of a DS cell to 
determine whether or not its own activity is contributing to the direction selectivity 
of the host cell. (D) The model neuron and relative excitatory and inhibitory 
synapses placement. Left: multiple DS subunits. Right: single unit model.



 

2.3 A local learning scheme for direction selectivity 

We considered what kinds of information were available to an excitatory, 

geniculate synapse that just landed on a dendrite of a cortical neuron to correctly 

judge whether its activity contributed or degraded the direction selectivity (DS) of 

the host cell, assuming the inhibitory input was already connected and fixed. 

There are three major pieces of information accessible to local mechanisms: the 

state of the excitatory input, the state of the local inhibitory input and whether or 

not the host cell generates a somatic action potential within a small time window 

and this spike propagates back into the dendrite to the postsynaptic site of 

excitation.  Assuming binary states (e.g., excitatory input is either on or off), this 

gives rise to eight possible scenarios (for instance, both excitation and inhibition 

are active and the host cell spikes).  We assume the excitatory synapse can only 

be modified when it is active; this reduces the combinations to four scenarios (Fig. 

2-1c). In scenario one, there is no inhibition and the cell spikes after the 

excitatory synapse opens. The assumption is that the excitatory synapse directly 

contributes to the cell’s direction selectivity and thus its connection strength 

should increase. In scenario two, there is no inhibition and no spike when the 

excitatory synapse opens. The fact that the DS cell isn’t spiking suggest that the 

stimulus moves in the null direction; yet the excitatory input is not gated by the 

inhibition and counteracts the cell’s direction selectivity. Its connection strength 

should decrease. In scenario three, both the excitation and the inhibition are 

open, yet the cell fires an action potential. The assumption is that this scenario 



corresponds to the null direction motion and that the excitatory synapse lands on 

a spot with incorrect matching of inhibition. Its connection strength should 

therefore decrease.  In scenario four, the excitation is successfully blocked by 

inhibition, suggesting a null direction movement, in which case the blocking by 

inhibition is legitimate. On the other hand, this could also correspond to a 

preferred direction movement. The cell generates an action potential in the 

presence of inhibition, yet this spike, propagating back from the soma into the 

dendrite, is blocked by inhibition from reaching the site of excitation.  Given this 

ambiguity, the best possible action is to do nothing and keep the excitatory 

weight constant.    

 

An excitatory synapse can adjust its weight if it can distinguish these four 

scenarios.  We next mapped out local calcium concentration changes during 

these scenarios and used this biophysical variable to “inform” the excitatory 

synapse about which action it should take during the learning process.  

 

2.4 Calcium dynamics at spine and the local learning rule   

Fig. 2-2a illustrates a dendritic branch with two spines with independent 

excitatory inputs. Inhibition was mapped to a dendritic compartment located 

between the excitatory inputs and the soma, fulfilling the “on-the-path” 

requirement (Koch et al., 1982). We mapped the two excitatory synapses into 

one, electrical equivalent, dendritic compartment (Koch, 1999). Calcium can 

enter the spine in two ways: either through NMDA channels at the spine or 
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on local calcium concentration change (A) A schematic drawing of calcium 
entrance points at spines and the local dendritic branch. Calcium can enter 
spines directly through NMDA channels or indirectly through N-type voltage-
gated calcium channels that could be activated by back-propagating somatic 
action potentials. Shunting inhibition is located between the spine and soma 
and can block back-propagating somatic spikes and clamp the membrane 
voltage to reduce the amount of calcium entrance. (B) Local calcium 
concentration changes following synaptic activation for  four different learning 
scenarios. Solid curves show the total calcium concentration. Dashed (resp. 
dotted) curves show the calcium concentration changes due to calcium 
entering through N-type voltage gated calcium channels (resp. local NMDA 
channels). Peak calcium exposures within 30 ms are marked. (C) A BCM type 
learning curve (gNMDA=1ns). Peak calcium concentration reached in each of 
the four scenarios described above and the corresponding synaptic weight 
changes are marked on the curve. Calcium concentrations are in an arbitrary 
unit. The synaptic weight change is relative to the maximum allowed learning 
step size in each trial. (D) A linear sliding threshold is chosen for the learning 
curve. Three learning curves shown are calculated at gNMDA=0ns (dashed), 
gNMDA=1ns (solid), gNMDA=2ns(dotted). 



through the N-type voltage gated calcium channels inserted into the dendritic 

membrane. We reason that calcium can enter the spine from the dendrite but 

cannot exit to the dendrite from the spine; given the large volume difference 

between the spine head and the dendrite , and given various calcium pumps 

along the thin neck of the spine. Therefore, the two spines are chemically 

independent, although they are electrically equivalent (Zador and Koch, 1990).   

 

The excitatory and inhibitory inputs and the back-propagating spike from the 

soma affect the total calcium concentration at the spine in their own way.  The 

excitatory input directly correlates with the calcium current entering through 

NMDA channels, which is spine/synapse specific. Its time course is mainly 

determined by the conductance change of the local NMDA synapse. Back- 

propagating action potentials signal the global activation state of the DS cell.  N-

type voltage-gated calcium channels are mainly activated when there is a back-

propagating spike.  Given the NMDA synapse’s reversal potential  (set to zero), 

the synaptic input current alone cannot elevate the membrane potential high 

enough to cause significant activation of the N-type voltage gated calcium 

channel. The on-the-path shunting inhibition affects the time course of both 

calcium currents. It clamps the membrane voltage when open, thereby reducing 

the amount of calcium current entering through NMDA channels. Furthermore, it 

completely blocks back-propagating spikes, which in turn blocks calcium 

entrance through N-type voltage gated calcium channels. The clamping and 

blocking effects are branch specific due to the local action of shunting inhibition. 



The total calcium concentration at the synapse results from the addition of the 

two currents assuming instant diffusion of the intracellular free calcium from 

dendrites into spine. We modeled all internal calcium buffers and calcium pumps 

using a single decay constant. 

 

We implemented the above calcium scheme and computed the resultant 

changes in free, intracellular calcium concentration ([Ca2+]) at the spine for the 

four scenarios considered earlier (Fig. 2-2b). In scenario one, there is no local 

inhibition and the cell spikes after the excitatory synapse opens. Calcium enters 

through both channels. Changes of [Ca2+] are high. In scenario two, there is 

neither local inhibition nor a back-propagating spike immediately after the 

excitatory synapse opens. Calcium mainly enters through NMDA channels. 

Changes of [Ca2+] fell into an intermediate range. In scenario three, the excitatory 

input is blocked by the inhibition but the cell spikes. The amount of calcium 

entering through NMDA channels is reduced by inhibition.  Meanwhile residual 

calcium enters through voltage N-type gated calcium channels due to the back-

propagating action potential immediately before the synapse opens, adding to 

the total calcium concentration. Changes of [Ca2+] again fall into an intermediate 

range. In scenario four, excitation is blocked by inhibition in the absence of any 

action potential. Only a limited amount of calcium enters through the NMDA 

synapse due to the  clamping effect of shunting inhibition. Changes of [Ca2+] are 

low.  

 



As we mentioned earlier, the proper action for scenario one is to increase the 

weight of the excitatory synapse. Changes of [Ca2+] in this case are high. The 

proper action for scenario two and three is to decrease the synaptic weight. 

Changes of [Ca2+] in these cases are medium. The proper action for scenario 

four is to keep the synaptic weight unchanged. Changes of [Ca2+] are low. In 

order to link the synaptic weight change with maximum calcium exposure, we 

map the peak calcium exposures to a BCM type learning curve (Fig. 2-2c). The 

amplitude of each excitatory synapse from the geniculate input to the target cell 

is changed in accordance with the maximum calcium concentration just below 

the synapse reached within 30 ms of synaptic activation.  Following the BCM 

learning curve (Fig. 2-2c), this is associated with the following change in synaptic 

weight: 

weightchange = a ec (−[Ca 2+ ]−d )− ec (−[Ca2+]−d )

2π + b 

 

With a=-2.63, b=1, and c=14. d is a constant that varies continuously between  -

0.10 and -0.22 as  g NMDA  varies from 0 to 2 ns. The learning curve is chosen to 

give a negative output at a medium calcium concentration and a positive one at 

high calcium concentration (Fig. 2-2c). The parameters a and b are chosen to 

restrict the function’s output to between -1 and 1. The parameter c is a scaling 

factor that determines the width of the curve and parameter d is a sliding 

threshold that linearly shifts the curve according to different values of g NMDA (Fig. 

2-2d). gAMPA is always set to equal g NMDA.  

 



Instead of implementing a non-linear threshold that will narrow or broaden the 

learning curve with respect to the average [Ca2+] change during training, we use 

a linear sliding-threshold to shift the learning curve without changing its shape as 

shown in Fig. 2-2d.  We link the sliding threshold directly to the excitatory 

synaptic connection strength. This prevents runaway excitation and helps 

stabilize the synapse (Bienenstock et al., 1982; Abbott and Nelson, 2000). The 

larger the connection strength, the more [Ca2+] accumulates over time, 

independent of learning scenarios. 

 

2.5 Direction-selective single-unit learning 

We first tested our learning rules in a model cell without subunit structures. The 

connection scheme is shown in Fig. 2-3a. The model initially receives balanced 

excitatory inputs from both left and right LGN neurons. Two excitatory inputs are 

mapped into the same compartment on the dendrite. The initial connection 

strength is 1ns each. Delayed inhibition is fixed at 5 ns and is mapped to a 

compartment between the excitatory inputs and the soma.  During each trial, a 

bright bar moving to either the left or to the right is randomly presented and the 

maximum change of [Ca2+] at each excitatory synapse within 30 ms of its 

opening during the trial is recorded. After each trial, the synaptic weight change 

is calculated based on the learning curve shown in Fig. 2-2d. 

 

A synapse can only be rewarded if the host cell spikes and this action potential 

successfully invades the dendrite. Our learning model cannot converge to 
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direction selectivity if none of the excitatory inputs is strong enough to drive the 

cell to spike.  Therefore, we need to impose a “competition” rule to control the 

model’s excitability. We implemented this by holding the total excitatory 

connection strength over each local dendrite constant during simulations.  This 

rule is of the “subtraction” type (Abbott and Nelson, 2000); that is, after each trial, 

half of the value of the synaptic weight above or below the total connection 

strength is subtracted from or added to both excitatory synapses.  If the two 

excitatory synaptic weights are ge1 and ge2 , the rule specifies  ge1 new = ge1 old -(ge1 

old+ge2 old-2 ns)/2  (for details see Chapter 3). This competition rule prevents both 

inputs from slipping to zero. We assume there is no initial bias and the model cell 

receives balanced input from the left and the right. The outcome is dependent on 

the training sequence. The synaptic weight changes for both inputs during a 

simulation run that lasted 300 trials are shown in Fig. 2-3b. Before training, the 

model cell responds equally for motion in either direction (Fig. 2-3d). During the 

initial training period, if a rightward moving bar is present, the left excitatory 

synapse opens first and causes the host cell to spike (scenario one for the left 

synapse). Then the inhibitory synapse opens and blocks the excitatory input from 

the right excitatory synapse (scenario three for this synapse). After the trial, the 

left connection is strengthened and the right one weakened.  If a leftward moving 

bar is shown to the model, the right synapse opens first and causes the model 

cell to spike (scenario one). Then the inhibitory synapse opens and blocks 

excitation from the left excitatory input (scenario three). After the trial, the right 

connection is strengthened and the left weakened.  If the training regime 



consisted of alternating left and right stimuli, we would expect the synaptic 

strengths of both sides to oscillate within a range close to the learning step size, 

but never converge. However, a random training sequence contains consecutive 

left or right trials and thus causes the oscillation to be larger than one learning 

step. The longer the training sequence, the larger the oscillation we can expect 

the model to encounter. Once the oscillation reaches a large enough value such 

that the connection strength of one excitatory input, say the right input, drops 

below a value that is enough to elicit a somatic spike, the oscillation stops. Now 

during its preferred direction motion, a bar moving from the right to left, its weight 

is decreased according to the scenario two instead of being increased according 

to scenario one. The right input thus enters a downward spiral and gradually 

decreases its weight to zero while its counter part, the left input gradually 

increases its weight to the maximum allowed value. In the simulation shown in 

Fig. 2-3b, this transition occurs around 80 trials. After training, only the excitatory 

input to the left side of inhibition remains. The cell acquired direction selectivity 

for rightward motion, with DI = 1 (Fig. 2-3d). Fig. 2-3c shows another simulation 

run during which the right excitatory input cell won the competition and the prefer 

direction of motion is reversed. We ran 100 simulations with a 0.032 ns learning 

step size, during all of which the model cell converged to a DS cell within 200 

trials (in 52 out of these 100 the preferred direction was rightward). An index of 

direction selectivity (DI) is computed as (preferred direction response – null 

direction response) / (preferred direction response + null direction response). DI 

values close to zero indicate a lack of direction selectivity, while the maximal 



extent of selectivity yields DI = 1. In all above cases, the model cell reached DI=1 

after training.  

 

2.6 Direction-selective multiple subunits learning 

How can our learning rule assure that direction selectivity in different dendritic 

subunits of the host neuron is the same?  To answer this question, we tested our 

DS learning rule in a model cell with four direction-selective  subunits on its 

dendrites. The model connection scheme is shown in Fig 2-4a. Each of the 

middle four LGN cells (1-4) provides delayed inhibitory input to one dendrite (1-4 

from the left) of the model cell.  LGN cells 0-3 each provides a left excitatory 

input to dendrite 1-4 respectively. We refer to this group as the left input 

connection group. LGN cells 2-5 each provide a right excitatory input to dendrite 

1-4 respectively. We refer to this group as the right input connection group and to 

the connections within a group as “friends” and the connections between groups 

as “competitors”. The model cell initially has four potential DS subunits on four of 

its eight dendrites. The learning goal is to have all members within one group 

out-compete their competitors after training. If the four subunits were completely 

independent and all received the exact same sequence of visual stimuli, we 

would expect them to converge to the same direction selectivity. Unfortunately, 

neither of these two conditions is true. Although at each trial the same moving 

bar is presented to each subunit, the exact timing of the bar reaching the 

receptive field of each geniculate cell is different. Both NMDA and GABA 

synapses have long off ramps. Their late currents can cause differences in the 
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status of subunits. The shunting inhibition mostly affects local connections but it 

also has a more global effect. The same curve as in the single-unit learning case 

is used in our simulations without being tailored to each subunit.  These 

differences can cause different branches to learn to respond to opposite 

directions of motion.  The model cell is thus not direction-selective . The problem 

can be solved if there are internal links between group members and competition 

between the groups. The links between group members indeed exist in our 

model through somatic spikes. For example, the LGN cell 1’s input connection to 

the dendrite 2 and the LGN cell 2’s input connection to the dendrite 3 belong to 

the same left input group. In a rightward movement trial, a late spike caused by 

LGN cell 1’s input will also be counted as a spike caused by LGN cell 2 given the 

overlap of their input time courses. In case LGN cell 2’s connection streng th 

drops below the transition threshold, this would “rescue” it from scenario two to 

scenario one. The same spike, however, will not help the LGN cell 2’s connection 

to dendrite 1, which belongs to the right input group.  The inhibitory input to 

dendrite 1  always opens before LGN cell 2 on dendrite 1 during a rightward 

movement trial, and thus blocks any back-propagating spike from reaching LGN 

cell 2’s connection point. So this “link forward” effect only benefits group friends 

but not competitors.  A similar “link backward” effect also exists. An early spike 

caused by LGN cell 2 will also be registered as LGN cell 1’s own spike if it 

happens within 30 ms of LGN cell 1’s firing. The “rescue” effort only occurs 

during the preferred direction movement while there are no linkages among 

group members during the null direction movement. If a group member is stuck 



far away from the divergent point, long consecutive same direction trials are 

required to increase its connection strength above the spiking threshold. To 

speed up convergence, we imposed an additional “majority” rule. We linearly 

scaled the learning step size of each trial with respect to the total number of 

action potentials generated at the soma during that trial. In such a setting, a 

group member is increased more in its preferred direction and decreased less in 

its null direction, once its group responds with more spikes than the other one. 

This creates a direct competition between groups and thus facilitates 

convergence.  

 

Initially, the model cell receives balanced inputs at each of its dendrites as shown 

in Fig. 2-4b and is not direction-selective. After 300 trials training, the entire left 

input group wins over the right input group and the model cell develops four DS 

subunits on its dendrites sensitive to rightward motion. Each direction-selective 

subunit reaches its divergent point at different trials and goes through different 

weight change paths. Note initially, LGN cell 2 provides excitatory input to both 

dendrite 1 and 3. After training, only the connection to dendrite 3 remains. 

Therefore the learning process is indeed branch specific.  We carried out 100 

simulations with a 0.032 ns learning step size, which was increased linearly with 

the number of action potentials generated according to our majority rule. The 

model cell converged to achieve uniform DS subunit structures within 200 trials in 

all cases. DI equals 1 in all cases. The model converged to a right direction-

selective unit during 47 simulation runs and to a left direction-selective unit during 



the remaining runs.  

 

In the above stimulations, all dendrites receive balanced input from each side. 

We further tested our learning model in a “random start” configuration. The total 

input connection strength to a dendrite is still fixed but the relative contribution 

from the left input cell and from the right input cell is randomly assigned. Such a 

simulation run is shown in Fig. 2-5a.  After 200 training trials, the right input group 

won at dendrite one while the left input group was leading at dendrite three and 

four. The competitions between the two groups were about even at dendrite two. 

Because of the “majority” rule we imposed and the “link forward” and “link 

backward” effect, the left input group finally increased its “friends’” connection 

strength at dendrite one and two and destabilized its “competitors”. After 1000 

training trials, the model cell developed four rightward motion selective subunits. 

To test the stability of our learning model in the random start condition, we ran 10 

simulations, each at 4 different learning step sizes: 0.1  ns, 0.032 ns, 0.01 ns and 

0.003 ns. Training periods are 100 trials, 500 trials, 1000 trials and 2000 trials 

respectively.  DI converged to 1 for all conditions. Another possible scenario 

during development is that initially all the excitatory geniculate inputs to the V1 

cell are very weak and not enough to drive the cell to spike. Gradually, as the 

input connections are strengthened, the cell starts to spike and competition 

among input synapses begin.  We tested our learning model in such a 

“developmental” configuration. Initially all connection weight are zero. The 

weights are increased gradually because of the “competition” rule we imposed. 
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The total excitatory connection strength to a dendrite is below the desired value, 

so at each trial, both inputs are increased by the maximum allowed learning step 

size (Fig. 2-5b). During the initial 100 trials, there are no spikes and all the input 

connections increase at each trial.  Once the input connection strength reaches 

about 0.3 ns, the model cell starts to spike and the connection strength of 

different input groups starts to diverge.  After 600 training trials, the model cell 

develops four rightward motion selective subunits. To test the stability of our 

learning model in the development condition, we carried out 10 simulations each 

at 4 different learning step sizes. The model cell converged to DI=1 under all 

conditions.  

 

2.7 Discussion 

Our learning scheme makes several testable predictions. Firstly, intra-cellular 

calcium concentration changes should correlate with LTP (high calcium 

concentration increase) and LDP (moderate calcium concentration increase) at 

the synaptic level. Postsynaptic calcium elevation experiments using photolysis 

of caged EGTA in CA1 hippocampal slices suggest such a relationship (Yang 

and Zucker, 1999).  Shunting inhibition can be mimicked using the dynamic 

clamp (Chance and Reyes, 2002). This,  together with two-photon calcium 

imaging, can be used to determine if shunting inhibition indeed can direct local 

synaptic modifications via local calcium concentration change.  Secondly, our 

“competition” rule suggests neurons with direction-selective subunit structures on 

its dendrites have the ability to control independently the total excitatory input 



connection strengths to each of their major dendrites.  Evidence for such a 

mechanism, albeit operating at the whole cell level, has been provided by 

Turrigiano and Nelson (1998).  Local protein synthesis (reviewed by Schuman, 

1997) may play an important part in this process. In addition, we predict that cats 

reared in an environment with little motion in one particular direction---achieved 

by having the animals wear LCD goggles---will show a deficit in direction-

selective cells tuned for that direction relative to the opposite direction of motion. 

In our learning model, random motion plays a key role in breaking the balance 

between the left and right input cells. Symmetry could also be broken by a bias in 

the initial connection strength between the left and right input. 

 

Our learning scheme makes a few key assumptions.  Delayed inhibition is of the 

shunting type, pre-connected to fulfilling the on-path condition, and fixed. The 

training stimuli move at a speed that matches the delay factor of the inhibition. 

Shunting inhibition is crucial to our multiple subunits learning model in achieving 

the branch specific veto of excitation and the branch specific blocking of back 

propagating spikes. We compared the single-unit and the multiple subunits 

model with four, six and eight subunits in the standard case with hyperpolarizing 

inhibition with EGABA=-60mV - 90mV (model cell’s resting potential is -60mV). The 

single-unit learning is not dependent on the shunting inhibition while the more 

subunits the learning model has, the more it relies on shunting inhibition (for 

details see Chapter Five).  

 



In our simulations, the inhibitory connection strength is fixed. However, the 

strength of inhibition close to the cell body may be related to calcium levels there, 

as recently considered (Soto-Trevino et al., 2001). We implemented such a 

global inhibitory learning scheme together with our local excitatory learning 

mechanism and achieved differential excitation-inhibition learning (for details see 

Chapter Six). 

 

Fast rising calcium concentration changes in dendritic spine mediated by action 

potential and long sustained rising mediated by synaptic inputs have been 

observed in calcium imaging experiments (Sabatini and Svoboda, 2002). The 

measured calcium decay constant is 12 ms at spines and 15 ms at small dendrites. 

We used a single decay constant of 15 ms for both calcium sources and assumed 

instantaneous dendrite-to-spine diffusion. We have no evidence to suggest that a 

more sophisticated treatment of calcium dynamics will change our conclusion 

appreciably.  Experimental evidence suggests voltage-gated calcium channels 

exist in spines, while little calcium diffuses between the spine and the dendritic 

shaft in either directions (Sabatini and Svoboda, 2002; for a dissent view see 

Majewska et al., 2000a; Majewska et al., 2000b; Holthoff et al., 2002).  Such a 

scheme is computationally equivalent to our model setting given we used 

instantaneous dendrite to spine uni-direction calcium diffusion and single 

compartment for the spine and the dendritic shaft. We choose the N-type voltage 

gated calcium channel to have a voltage sensitive calcium dynamics different 

from calcium flowing through NMDA channels. The high threshold L type voltage 



gated calcium channels should also serve our purpose.   

 

We exploit calcium gain-control mechanisms which dynamically shift the learning 

curve according to the average, local activity level. The key to the stability of the 

original BCM learning rule (Bienenstock et al., 1982) is a non-linear threshold 

that decreases and increases faster than the average response.  Such a sliding 

threshold control requires that the tuning curve be narrowed for small responses 

and broadened for large responses. For the sake of simplicity, we implemented a 

linear sliding of the learning curve without changing its shape. The linear sliding 

can be implemented in many ways, such as by an increased calcium pump within 

the spine with respect to time-averaged calcium exposure or adaptation of 

calcium-dependent enzyme activities. Both the duration and the amplitude of 

post-synaptic calcium concentration have been shown to affect LTP and LTD 

(Yang and Zucker, 1999). Brief and large postsynaptic calcium concentration 

changes lead to LTP while sustained and moderate changes cause LTD. 

However, brief and moderate calcium concentration change can lead to either 

LTP or LTD. A calcium gain-control mechanism/sliding learning threshold can 

explain such phenomena. Sustained calcium concentration elevation may shift 

the learning curve as well as the LTD/LTP transition threshold toward high 

calcium concentration and thus increase the probability of LTD formation.   

  

Spike-time-dependent plasticity (STDP) is a temporal asymmetry Hebbian 

learning rule.  The synaptic weight change depends on the relative timing of the 



pre-synaptic input and the back-propagating spike. STDP was shown in a 

modeling study to automatically balance synaptic strengths and reduce the 

spiking latency of the post-synaptic neuron (Song et al., 2000). A network of 

neocortical neurons implementing STDP developed direction selectivity after 

training (Rao and Sejnowski, 2000; Rao and Sejnowski, 2001). Our learning rules 

are different from the "prediction and sequence learning" mechanism (Montague 

and Sejnowski, 1994; Montague et al., 1995; Markram, 1997). In our learning 

scenario one, the excitatory connection is increased if there are back-

propagating spikes within a certain period following synaptic activation; while in 

learning scenario three, the excitatory connection is decreased if there is a spike 

a few milliseconds before its opening and the back-propagating spike is clamped 

by inhibition at opening. These fit into the general framework of the STDP with 

the exception that our learning rules not only take the temporal sequence 

between the input and the output into account but also the states of local 

inhibition. The difference is critical for the learning of branch-specific DS subunits.  

 

We assume the direction selectivity of V1 cells is derived from feed-forward 

connections only. The learning is also restricted to feed-forward connection. 

There are extensive feedback interactions among V1 cells and these feedback 

currents are likely to be important for sharpening directional tuning (Douglas et 

al., 1995; Maex and Orban, 1996).  It will be important to see if the same learning 

principle can be used to establish mutual excitation between cells selective to the 

same direction of motion and mutual inhibition among cells tuned to opposing 



directions of motion. Such network learning may be used to generate two 

direction-selective  cell groups with roughly equal members during the 

development process.  



Chapter Three  

 

A Detailed View of Critical Parameters and Constraints That 

Affect the Learning Model 

 

 

3.1. Introduction 

We described a local synaptic learning model for local synaptic interactions 

between excitation and shunting inhibitions in the chapter two. Here we take a 

detailed look at several important model parameters and additional constrains 

that affect the stability of the learning model and its convergence speed. The first 

such parameter is the learning step size, which directly affects the number of 

training trials required to reach direction selectivity. The smaller the learning step 

size, the longer the required training period. The subtractive type of “competition” 

rule affects the stability of both the single -unit learning model and the multi-

subunits learning model. It helps to control the post-synaptic cell’s excitability. 

“Linkages” between subunits are needed to have all subunits converge to the 

same direction selectivity. The “link-back” and “link-forward” effect connect 

subunits through back propagating spikes. The “majority” rule facilitates the quick 

convergence of subunits. Here we compare the simulations with and without 

such a learning rule to show its effect on the learning model.  
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The inhibitory input connection strengths are fixed in all previously described 

simulations. In section 3.6, we propose a simply global inhibitory synapse 

learning scheme that links the average spikes at soma with the inhibitory 

synaptic connection strength. The goal of inhibitory learning is to achieve a 

targeted average spike number given random direction motion stimuli. We tested 

the inhibitory learning rule in simulations together with our excitatory synapse 

learning rule. Our results show such a scheme can achieve excitation-inhibition 

differential learning.  

 

3.2 The model convergent speed and learning step size 

We tested the relationship between the learning step size and the model 

convergent speed (Fig. 3-1). In our learning model, the synaptic weight change at 

each step is calculated from the learning curve and then scaled with learning 

step size set for the simulation. The larger the learning step size, the larger 

synaptic weight change after each trial. At 0.032ns (maximum allowed 

conductance is 2ns), the learning model reaches divergent point with 10 trials. 

About 60 trials are required to reach the divergent point when the learning step is 

decreased to 0.01ns. Two simulations at learning step size 0.003ns are shown in 

Figs. 3-1 C and D. The model cell reaches the divergent point around 800 trials 

in one simulation, but fails  to converge within 2000 trials in the other one. In our 

learning model, the  oscillation of synaptic weights is caused by the incoming 

stimuli sequence. The smaller the learning size, the more consecutive one-

direction stimuli needed to cause a large enough oscillation that can push both 



inputs to the divergent point. If our learning curve were a step function, such that 

a synapse were increased or decreased by exactly one learning step size, we 

would expect the number of consecutive same direction trials needed to be 

N  = (g initial synaptic weight – g divergent point)/step size 

2N random trials are thus required to reach the divergent point. The actual 

situation in our model is more complicated because we use a continuous BCM 

type learning curve. The synaptic weight changes at each trial are not exactly 

one learning step, but we would expect the number of training trials needed to 

reach the divergent point still scales non-linearly with respect to the learning step 

size. For simulations shown in Fig. 3-1, 10, 60, 800 trials are needed to reach the 

divergent point for learning step size 0.032ns, 0.01ns, 0.003ns, not far from the 

8-fold (23) increase in trial length for the every 3 fold decrease in the step size.  

The learning model converges much faster (only N trials are required), if the 

stimuli are same direction motions. The bursting spiking waves discovered in 

developing mammalian retina (Meister et al, 1991; Wong et al, 1993) may be 

equivalent to such same direction stimuli.    

 

3.3 The “competition” rule 

The Hebbian learning rule is a positive  feedback learning rule.  Correlated input 

connections are increased and uncorrelated input connections are decreased 

during the training process. Such a learning rule causes fluctuations in the 

excitability of the post synaptic cell. Various constraints have been proposed to 

prevent the cell from growing overactive or slipping into non-firing territory. We 
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Fig. 3-2. The single-unit learning model's response without the competition rule. 
A.  Synaptic weight changes for the left input cell (solid curve) and the right input 
cell (dotted curve) during one simulation run that both initial connection strengths 
were below the spiking threshold. Both connections slip to zero after training. B.  
Synaptic weight changes during a simulation run that both initial connection 
strengths are well above the spiking threshold. The model cell is direction-
selective after training. C. Synaptic weight changes during a simulation run that 
both initial connection strengths are just above the spiking threshold. Model cell 
is direction-selective after training. D. Average DI values of the model cell of 10 
simulations each at 4 different learning step size. The initial condition is the same 
as in C.



use a subtractive type constraint in our learning model. In each trial, the total 

excitatory input connection strength to each dendrite is held constant. Half the 

amount that is over/under the targeted value after learning is then subtracted 

from/added to all synapses on that dendrite. This has the benefit of creating a 

direct competition between synapses on a dendrite while keeping the total 

excitability of the model cell constant during simulations.  

 

We first investigated the “competition” rule’s effect on the single-unit learning 

model.  Synaptic weight changes for several simulation runs without imposing 

such a “competition” rule are shown in Fig. 3-2. In our learning model, a synapse 

can only be rewarded if there is a back propagating spike.  Simulations show 

both connections gradually decrease toward zero during training if neither 

connection’s initial strength is large enough to cause a spike (Fig. 3-2A).   If both 

initial connections are well above the spiking threshold, the learning model is 

stable and became direction-selective after training as shown in Fig. 3-2B. 

Although we did not impose the “competition” rule in this case, we still limited the 

highest synaptic conductance a synapse can reach to 2ns  and the lowest to zero. 

Another simulation run with both initial connection strengths just above the 

spiking threshold is shown in Fig. 3-2C.  To test the stability of our learning model 

in the same condition as Fig. 3-2C, that is, with initial values strong enough to 

elicit spikes, we ran 10 simulations each at 4 different learning step sizes: 0.1ns, 

0.032 ns, 0.01 ns and 0.003 ns. The training length for each step size was 100 

trials, 500 trials, 1000 trials, and 2000 trials respectively. After the training was 



completed, a leftward movement trial and a rightward movement trial were 

presented to the model cell and the  resulting spike numbers were recorded. The 

cell converged to DI=1 in all trials as shown in Fig. 3-2D.  

 

We then tested our multi-subunits learning model without imposing the 

“competition” rule. The challenge facing the multi-subunits model is to coordinate 

the learning between subunits. We used the “random start” initial condition to put 

different subunits into different domain of direction selectivity initially and then 

tested the model’s ability to converge without the “competition” rule. In most 

cases, the model cell failed to become direction-selective after training as shown 

in Fig. 3-3A.   Note again, in the multi-subunits model, the competition rule was 

imposed onto each dendrite. We ran 10 simulations each at 4 different learning 

step sizes: 0.1  ns, 0.032 ns, 0.01 ns and 0.003 ns. Model cell’s average DI was 

close to 0 after trainings. Synaptic weight changes for the left input cells and the 

right input cells at each dendrite during one simulation run are shown in Fig. 3-3B. 

Initially, dendrite one is not direction-selective . Dendrite two and three a re 

rightward motion selective while dendrite four is leftward motion selective. After 

training, connections to dendrite one and four all drop below the spiking threshold 

while connections to dendrite two and three all reaches maximum. The model 

cell is thus not direction-selective.  

 

Our results suggest both the single -unit and the multi-subunits learning model 

require the “competition” rule for stability.  The single-unit model can converge 
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without the “competition” rule if either initial connection strength is above the 

spiking threshold but not if both initial connections are weak. This is expected 

given that we do not implement a sliding threshold that scales non-linearly with 

respect to the average response of the cell as in the original BCM model. Our 

linear sliding threshold and the “competition” constraints are easy for real 

neurons to implement than a non-linear sliding threshold.  

 

3.4 Linkages between subunits 

The model cell initially has four potential DS subunits on its dendrites. The 

learning goal is to have all members of one group win over their competitors after 

training. If the four subunits are completely independent, all receive  the exact 

same sequence of visual stimuli and have the same initial condition, we would 

expect them to converge to the same direction selectivity. Unfortunately, neither 

of these conditions is true. Although at each trial the same moving bar is 

presented to each subunit, the exact timing of the bar reaching the receptive field 

of each excitatory input is different. Both the NMDA synapses and the GABA 

synapses we use in simulations have long off ramps. Their late currents cause 

difference in the status of subunits. The shunting inhibition mostly affects local 

connections but it also had some global effects. We do not tailor our learning 

curve to each subunit but rather use the same curve as in the single-unit learning 

case. In addition, we would expect different subunits to receive different stimuli in 

a natural setting. Therefore the difference in subunits can cause different 

branches to learn to be selective to different directions and the model cell itself is 
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Fig. 3-4. Illustration of the "link-back" effect between adjacent subunits in the 
same input group A. Somatic voltage change.  B.  Local calcium concentration 
changes within 30 ms of the excitatory synapse firing during a rightward motion 
trial for all four input connections. Solid line: Total calcium concentration. Dashed 
line: Calcium concentration buildups due to calcium entering through N-type 
voltage gated calcium channels. Dotted line: Calcium concentration buildups due 
to calcium entering through NMDA synapses. LGN cell 2's excitatory input occurs 
at time 0. LGN cell 3's excitatory input occurs 15ms later. The timing of branch 
specific inhibitions is marked with closed circle.  Calcium concentrations are in 
arbitrary unit. The peak calcium concentration is marked in each case. Left input I 
is not strong enough to cause a spike initially while left input II is. The spike due 
to left input II causes left input I to increase its connection strength without 
affecting all the connections in the right input group.  C. A schematic drawing of 
the input connection to the model. Left input I refers to the LGN cell 2's 
connection to dendrite 3. Right input I refers to the LGN cell 2's connection to 
dendrite 1. Left input II refers to the LGN cell 3's connection to dendrite 4. Right 
input II refers to the LGN cell 3's connection to dendrite 2.



not direction-selective. The problem would be solved if there are internal links 

between group members and there is competition between the groups. The link  

between group members indeed exists in our model through back-propagating 

spikes. We first considered the “link back” effect as show in Fig. 3-4. The LGN 

cell 2’s input connection to the dendrite 3 (left input I) and the LGN cell 3’s input 

connection to the dendrite 4 (left input II) belong to the same “left input group”. 

LGN cell 2’s input connection to dendrite 1 (right input I) and LGN cell 3’s input 

connection to dendrite 2 (right input II) belong to the same “right input group” (Fig 

3-4A). Synaptic calcium concentration changes during a rightward movement trial 

for all four synapses are shown in Fig. 3-4B. LGN cell 2 spikes at time zero while 

LGN cell 3 spikes 15ms later. Left input 1’s connection strength is below the 

spiking threshold. In a rightward movement trial, this corresponds to scenario 2 

for the left input I: no inhibition, no back propagating spike and the connection 

strength should be further weakened after the trial. However, 15 ms after left 

input I’s opening, left input II opens. Left input II causes a back propagating spike 

which also propagates back close to left input I’s connection site (dendrite 3).  

This switches left input I from scenario 2 to scenario 1. The connection strength 

of left input I increases after the trial instead of decreases.  The same spike, 

however, does not affect right input I and right input II. The inhibitory synapses 

on dendrite 1 and 2 opens before those two right input connections and thus 

blocks the back-propagating spike. So this “link forward” effect only benefits 

group friends but not competitors.  Such link effects only exist between adjacent 
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Fig. 3-5. Illustration of the "link-forward" effect between adjacent subunits in the 
same input group. A. Somatic voltage change.  B. Local calcium concentration 
changes within 30 ms of excitatory synapse firing during a rightward motion trial 
for all four input connections. Solid line: Total calcium concentration. Dashed line: 
Calcium concentration buildups due to calcium entering through N-type voltage 
gated calcium channels. Dotted line: Calcium concentration buildups due to 
calcium entering through NMDA synapses. LGN cell 2's excitatory input occurs at 
time 0. LGN cell 3's excitatory input occurs 15ms later. The timing of branch 
specific inhibitions is marked with closed circle.  Calcium concentrations are in 
arbitrary units. The peak calcium concentration is marked in each case. Left input 
II is not strong enough to cause a spike initially while left input I is. The second 
spike due to left input II causes left input one to increase its connection strength 
without affection the connections in the right input group. C. A schematic drawing 
of the input connection to the model. Left input I refers to the LGN cell 2's 
connection to dendrite 3. Right input I refers to the LGN cell 2's connection to 
dendrite 1. Left input II refers to the LGN cell 3's connection to dendrite 4. Right 
input II refers to the LGN cell 3's connection to dendrite 2.
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Fig. 3-6. There is no "link-forward" effect between adjacent subunits in the same 
input group if the LGN input firing rate is not high enough. A. Somatic voltage 
change.  2. B. Local calcium concentration changes within 30 ms of excitatory 
synapse firing during a rightward motion trial for all four input connections. Solid 
line: Total calcium concentration. Dashed line: Calcium concentration buildups 
due to calcium entering through N-type voltage gated calcium channels. Dotted 
line: Calcium concentration buildups due to calcium entering through NMDA 
synapses. LGN cell 2's excitatory input occurs at time 0. LGN cell 3's excitatory 
input occurs 15ms later. The timing of branch specific inhibitions is marked with 
closed circle.  Calcium concentrations are in arbitrary unit. The peak calcium 
concentration is marked in each case. Left input II is not strong enough to cause 
a spike initially while left input I is. The spike due to left input I cannot increase 
left input II due to the misalignment of both time courses. C. A schematic drawing 
of the input connection to the model. Left input I refers to the LGN cell 2's 
connection to dendrite 3. Right input I refers to the LGN cell 2's connection to 
dendrite 1. Left input II refers to the LGN cell 3's connection to dendrite 4. Right 
input II refers to the LGN cell 3's connection to dendrite



inputs (adjacent in the visual space) in our model given the various time course 

settings. 

 

A similar “link forward” effect also exists in our model as shown in Fig. 3-5. In this 

case the LGN cell’s firing rate is elevated to make them spike multiple times 

during a bar sweep. The connection strength of left input I and left input II a re 

reversed. Left input I now causes the model cell to spike twice during its opening 

while left input II alone is too weak to cause a spike.  During a rightward 

movement trial, the second spike caused by left input I “rescues” left input II. The 

spike does not cause either right input I or right input II to increase their 

connection strength because the inhibitory connections to dendrite 1 and 2 

blocks the back-propagating spike.  However, if the LGN cell array’s firing 

frequency is held low, the left input I can only cause one spike during its opening. 

In our model setting, such a spike occurs before left input II’s opening and thus 

can not help increase left input II (Fig. 3-6). In the real case, we expect overlap 

between each LGN cell’s receptive fields. The noise and jitter in spike timing can 

also help create such a linkage.  

 

3.5 The “majority” rule  

The “rescue” effort mentioned above only happens during the preferred direction 

movement for a group and there are no links between group members during the 

null direction movement. If a group member is stuck far away from the transition 

point, it may require long consecutive “same direction” trials to increase its 
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Fig. 3-7. The "majority" rule's effect on the multi-subunits learning model. A. 
Synaptic weight changes for the left input cells (solid curves) and the right input 
cells (dotted curves) at each dendrite during one simulation run with the "majority" 
rule. Subunits on dendrite 1-3 are direction-selective to rightward motion while the 
subunit on dendrite 4 is direction-selective to leftward motion initially. All subunits 
converge to the same direction-selective after training with alternating left and right 
trials. B. A simulation run as shown in A but without the "majority" rule imposed. 
Dendrite 4 fails to switch to a rightward motion selective unit after training. 



connection strength above the spiking threshold . To speed up convergence, we 

impose an additional “majority” rule. We linearly scale the learning step size of 

each trial with respect to the total spike numbers of that trial. This creates a direct 

competition between groups and thus facilitates convergence.  The effective 

learning step size in our model is increased by around four folds when the 

majority rule is imposed, given the model on average produces three spikes. Fig. 

3-7 shows synaptic weight changes for all inputs during two simulation run with 

(Fig. 3-7A, learning step size 0.025 ns) and without (Fig. 3-7B, learning step size 

0.1 ns) the “majority” rule imposed. Initially, dendrites 1-3 are direction-selective  

to the rightward movement while dendrite 4 is direction-selective to the leftward 

movement. The learning goal is to have all dendritic subunits converge to the 

same direction selectivity. The stimuli used in stimulations are alternating left and 

right moving bars. The subunit on dendrite 4 can not be converted by DS units on 

dendrites 1-3 without the majority rule.  The “rescue” effort during the preferred 

direction trial (rightward) is canceled by the weight decrease during the null 

movement trial (leftward). With the “majority” rule, however, dendrite 4 is quickly 

converted. In this case, the “rescue” effort during the preferred direction is larger 

(on average four times) than the weight decrease during the null trial because the 

model cell responds with more spikes during a preferred direction trial and thus 

has a larger learning step size.   

 

We tested our multi-subunits learning model without imposing the “majority” rule. 

The challenge facing the multi-subunits model is to coordinate the learning 
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Fig. 3-8. The "majority" rule's effect on the multi-subunits learning model. A. 
Average DI values of the model cell of 10 simulations each at 4 different learning 
step size in a "random start" setting. Without the "majority rule", model cell is on 
average less direction-selective after training. B. Same simulation run without the 
"majority" rule as in Fig 3-7B except the model is trained with rightward motion 
stimuli only. All subunits converge to the same direction selectivity.



between subunits. We used the “random start” initial condition to put different 

subunits into different domains of direction selectivity initially and then tested the 

model’s ability to converge without the “major” rule. In most cases, the model cell 

is still direction-selective but the selectivity is less than 1 (Fig. 3-8A).    

 

The “majority” rule greatly speeds up the model’s convergence, but in theory it is 

not required if the training is long enough. Fig. 3-8B shows a simulation with the 

same condition as the simulation shown in Fig. 3-7B but using only single 

direction movements as the training stimuli. In such a case, dendrite 4 is 

converted to a rightward motion selective unit.  It is interesting to see if such a 

dynamic scaling of learning step size exists in nature. Without the majority rule, 

the more subunits the neuron has, the longer “single direction training” 

sequences required to converge all of the units to be selective to the same 

direction of motion.  

 

3.6 Differential excitation-inhibition learning 

Up to now, we fix the inhibitory connection strength throughout our simulations. 

Here we investigate the possibility of relaxing this constraint and let inhibitory 

synapses converge to their own optimal connection strength. Given the fact that 

all inhibitory synaptic connection strengths are the same on a ll dendrites, we do 

not need a local, dendrite-specific, learning rule.  Neither has it to be a direction-

selective one, since the excitatory learning rules we proposed has already 

accomplished the purpose.   
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Fig. 3-9. The excitation and inhibition differential learning. A. Schematic drawing 
of the starting condition. All initial excitatory and inhibitory connection strengths 
are zero. B. Synaptic weight changes for an inhibitory input cell (solid curve) and 
the average spike number of the model cell (dotted curve, averaged over 30 
trials) during a simulation run.  C. Synaptic weight changes for the left input cells 
(solid curves) and the right input cells (dotted curves) at each dendrite during one 
simulation run. The model cell is direction-selective after learning.



 

Therefore we used a simple inhibition learning rule that links the inhibitory 

synapse strength with the model cell’s average response as described by Soto-

Trevino et al. (2001). We set a target spike number of 3 spikes per trial and keep 

a 30-trial spiking history. At each trial, the inhibitory synaptic weight change is 

linear related to the difference between the target value and the average spike 

number. This learning rule is not a direction-selective one: a DS cell that spikes 6 

times in its preferred direction and 0 in its null direction or a non-DS cell that 

spikes 3 times in both directions fulfills the requirement. Synaptic weight changes 

for a simulation run with our learning model implementing the inhibition learning 

rule are shown in Fig. 3-9. Excitatory input weight changes are shown in Fig. 3-

9C. The model cell is direction-selective after training. Initially, all excitatory and  

inhibitory synapses’ weights are zero and so is the average spike number. The 

excitatory synapse weights gradually increase over the spiking threshold 

because of the “competition” rule. The learning model is not direction-selective  

because there is no inhibition. The average spike per trial quickly increases over 

the target value, 3 spikes per trial. Then the inhibitory synapse connection 

strengths start to increase, so does the competition between excitatory synapses. 

The inhibitory synapse weights overshoot to a certain value and gradually come 

down and the model cell stabilizes to become direction-selective. A simulation 

with extended training periods is shown in Fig. 3-10. In such a setting, the 

inhibitory synapse weights can go down significantly even after the model 

converges if extended periods of null direction motion trials cause the  average 



spike numbers to go down. This in turn causes the excitatory input connections 

to fluctuate (close to 500 trials in Fig. 3-10). Long consecutive null direction 

motion trials can force the model cell to start the learning process all over again.  

 

We did not implement a local learning rule for inhibition because it is unclear how 

inhibitory synapse can obtain local information biophysically. Its strength might 

also be controlled by local calcium concentration change if it co-localizes with 

excitatory synapses at the spine. In our model setting, the inhibitory synapse is 

connected to the main dendrite and it is unlikely that the limited number of 

calcium ions exiting from spine can cause significant calcium fluctuation at 

dendrites close to the site of inhibition. The average intracellular calcium 

concentration is directly linked to the average spike number and can be easily 

sensed by the inhibitory synapses as we have proposed in our learning rule.  
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Chapter Four  

 

Modeling Reverse-Phi Motion Selective Neurons in Cortex: 

Double Synaptic Veto Mechanism 

 

4.1 Introduction 

Reverse-phi motion was first demonstrated by Anstis (Anstis, 1970; Anstis and 

Rogers, 1975). Subjects perceive the reverse direction of motion when the 

contrast of a moving object reverses in the second frame of a two-frame shift 

experiment. A repetitive ‘four-stroke’ cycle of reverse-phi motion gives a strong 

illusion of unidirectional apparent motion (Anstis and Rogers, 1986). The reverse-

phi illusion involves the short-range motion process pathway (Chubb and 

Sperling, 1989). Random dot cinematograms (RDC) studies suggest that Dmax ---

the maximum distance dots can move from one frame to the other while still 

preserving  the sense of motion---for reverse-phi motion is comparable to D max for 

normal motion, compatible with the notion that the same short-range direction-

selective mechanism is most likely responsible for both normal and reverse-phi 

motion (Sato, 1989). Reverse-phi like effects have also been reported during 

electrophysiological experiments from direction-selective  complex cells in cat 

striate cortex (Emerson et al., 1987), the H1 cell in the fly's lobula plate (Egelhaff 

and Borst, 1992), and the optical tract of the wallaby (Ibbotson and Clifford, 

2001). Recent recordings from direction-selective cells in the alert monkey show 

that cells in both cortical a reas V1 and MT reverse facilitation and suppression 



regions in the 2-bar interaction map when two different contrast bars are 

presented (Livingstone et al., 2000; Conway and Livingstone, 2001). This implies 

that these cells respond to reverse-phi motion in the reversed direction.  

 

Space-time plots of reverse-phi motion show energy in the reverse direction (Fig. 

1A). Although the bar movement direction is to the right, the left motion energy 

unit aligns better with the stimuli and extracts more motion energy than the right 

motion energy unit.  Therefore both the motion energy model (Adelson and 

Bergen, 1985) as well as the equivalent Reichardt model (Reichardt, 1961; 

Santen and Sperling, 1985) can account for the reverse-phi motion. At the core 

of the Reichardt detector is a correlation step that involves multiplication between 

inputs. Mathematically, if the sign of one of the inputs that are being multiplied is 

reversed, as in the case of reverse-phi motion, the sign of the final product is also 

reversed.  However, there is no experimental evidence that either a single 

neuron or a neural network can perform a clean, four-quadrant multiplication 

operation. Even for a single identifiable cell that performs multiplication, such as 

the LGMD neuron in the locust's visual system (Hatsopoulos et al., 1995; 

Gabbiani et al., 1999; Gabbiani et al., 2001), it is unlikely that the sign of the 

cell’s output could be reversed for a reversed signed input, given multiple half-

wave rectifications mechanisms and narrow operating ranges for most 

biophysical processes involved.  It is therefore of interest to study a direction-

selective mechanism that can be implemented by neurons and that can account 

for both normal and reverse-phi motion.  
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Fig. 4-1. Space-time plot of normal and reverse-phi motion and connectivity 
diagram of the model that accounts for direction and reverse-phi selectivity. (A) 
Space-time plot of a one dimension white bar moving from left to right in normal 
motion (left panel) and in reverse-phi motion (right panel).   A right motion energy 
unit aligns well with the normal motion plot, but triggers a much reduced 
response for the reverse-phi motion. Instead, this strongly stimulates a left 
motion energy unit. Adopted from Fig. 16 in (Adelson and Bergen, 1985). (B) 
Connectivity diagram of normal and reverse-phi motion direction selective model. 
Input to LGN neurons comes from a one-dimensional array of 179 pixels.  The 
intensities from those pixels were summed through difference of Gaussian 
spatial filters on to LGN cells. There are one ON and one OFF center geniculate 
cell at one of six spatially offset locations. Each of the middle four ON center 
LGN cells provided excitatory input to one branch of the model cell dendrites; 
while the ON center LGN cell immediately to the right and the OFF center LGN 
cell immediately to the left provide delayed on-the-path inhibition. The converse 
connection scheme for the OFF center LGN cells' excitatory inputs are not 
shown.



 

The first computational step in visual processing is half-wave rectification and 

separation into ON and OFF channels. It is unknown whether direction selectivity 

is generated between non-linear interactions of these half-wave rectified signals 

or between simple cells that carry the reconstructed full wave signal.  DL-2-

amino-4-phosphonobutyric acid (APB) reversibly blocks the ON response in the 

mammalian retina (Schiller, 1982), but the detection of motion direction is largely 

unaffected in rabbit, cat and monkey in electro-physiological experiments (Knapp 

and Mistler, 1983; Horton and Sherk, 1983; Sherk and Horton, 1984; Schiller et 

al., 1986). Similarly, existing direction-selective models treat ON and OFF inputs 

separately (Koch and Poggio, 1985; Suarez et al., 1995; Rao and Sejnowski, 

2000). However, the nature of reverse-phi motion stimuli suggests an interaction 

between ON and OFF channels. Different rectification schemes affect the ON-

OFF interaction differently and therefore carefully constructed reverse-phi stimuli 

were used in experiments to separate the firs- order, second-order and third-

order motion (Lu and Sperling, 1999; Mather and Murdoch, 1999). The 

requirement for ON-OFF interactions constrains cellular models of direction 

selectivity.  

 

V1 direction-selective  cells show slanted excitatory regions in their receptive field 

map (Livingstone, 1998). The asymmetry in the summation of excitatory inputs at 

dendrites alone was not sufficient to account for the directional response based 

on modeling study by Anderson et al. (1999).  Therefore, asymmetrical delayed 



inhibition is likely to be the mechanism that underlies direction selectivity. Such a 

mechanism based on shunting inhibition, i.e., an increase in a chlorine based 

GABA_A conductance that reverses close to the cell's resting position, was 

proposed for the cortex by Koch and Poggio (1985). Recent experiments in the 

retina provide evidence in favor of at least some nonlinear interactions between 

excitatory and shunting inhibitory  inputs that take place within the dendrites of 

direction-selective  ganglion cells (Taylor et al., 2000; for a dissenting view, see 

Borg-Graham 2001; Borst 2001). Large conductance changes that reverse 

around the cell's resting potential have been observed in V1 during visual stimuli 

(Anderson et al., 2000; Borg-Graham et al., 1998). Here we show how a double 

synaptic-veto mechanism, derived from the traditional asymmetrical delayed 

shunting inhibition model, can account for both normal and reverse-phi motion 

direction selectivity. 

 

4.2 Methods 

We followed a two-step compartmental simulation strategy using the program 

NEURON (Hines and Carnevale, 1997).  We first investigated the performance of 

an idealized neuron (Fig. 4-4B) before we implemented our synaptic assembly 

onto a reconstructed V1 cell (Fig. 4-7A). The idealized cell morphology is shown 

in Fig 4B. Eight dendrites (width 0.5µm, length 100µm) were directly connected 

to the soma (width 16µm, length 16µm). Each dendrite had 20 compartments, for 

a total of 180 compartments. The dendrites were passive, while the cell body 

contained a number of voltage-dependent currents that give rise to fast Hodgkin-



Huxley like action potentials. The biophysical parameters were as follows: 

Ri=250 Ω• cm, C m=0.5  µF/cm2, E leak=-60 mV, Rm=10 kΩ• cm2, g Na 
=0.024 S/cm2, 

gK=0.020 S/cm2, ENMDA 
=0 mV, g NMDA 

=2.5 nS, τ NMDA  on=0.1 ms, τ NMDA off=80 ms, 

EAMPA 
=0 mV, g AMPA 

=2.5 nS, τAMPA on=0.1ms, τAMPA off 
=2 ms, E GABA 

=-60 mV, 

gGABA 
=6.0 nS, τGABA_on=1 ms, τGABA off 

=80 ms. Synaptic input was modeled using 

the point process in NEURON (adopted from Archie and Mel, 2000).  

 

We adopted a layer 4 stellate cell model from Mainen and Sejnowski,1996 (Fig. 

4-7A). The model cell contained sodium channels at the soma and dendrites, as 

well as fast potassium channels at the soma and the axon. Both calcium- and 

voltage-dependent slow potassium channels and high-threshold calcium 

channels were present at the soma and dendrites. All passive and active 

parameters were the same as those used in their original paper. All synapse 

parameters we re the same as described above except E GABA 
=-70 mV, 

gGABA 
=6.9 nS.  

 

The input connection scheme to both models is shown in Fig. 4-1B. The spatial 

resolution of the stimulus was 1 minute of arc and the temporal resolution 0.1 ms. 

The LGN layer was modeled as a transfer function. Stimuli projected onto the 

LGN layer consisted of two 6 by 1 arrays of spatial filters modeling ON center 

and OFF center cells that covered 3  degree of visual space. The spatial kernel 

was a difference of Gaussian (DOG) function (adopted from Wörgötter and Koch, 

1991).  The Gaussian kernel was G(x)=(K/2πσ2) exp(-x2/2σ2), σcenter=10.6 minute, 



σsurround=31.8 minute and Kcenter/Ksurround=17/16. Stimuli were first passed through 

these spatial filters and then through low-pass temporal filters, with a delay 

between the center and  the surround component (τcenter=10 ms, τsurround=20 ms 

delaysurround=3 ms). The resulting values we re scaled to give a time-dependent, 

stimulus-driven LGN instantaneous firing rate with a maximum value of 200 Hz. A 

background -firing rate of 5 Hz wa s added and all negative values we re set to 0 

(half-wave rectification). OFF center cells were modeled as the reverse of their 

ON center counterpart. 

 

Each of the middle four ON center LGN cells provided the excitatory input to one 

branch of the model cell dendrites, while the ON center LGN cell immediately to 

the right (preferred side) and the OFF center LGN cell immediately to the left (null 

side) provided delayed inhibition. Each of the middle four OFF center LGN cells 

provided excitatory input to one branch of the  model cell dendrites, while the OFF 

center LGN cell immediately to the right and the ON center LGN cell immediately 

to the left provided delayed inhibition. The delay was 12 ms. There were a total of 

8 excitatory synapses and 16 inhibitory synapses in the model. Excitatory 

synapses were mapped to the dendrite compartment 60µm away from the soma; 

same type inhibitory input was located 50 µm and different type inhibition 40 µm 

away from the cell body. Given that shunting inhibition was on the direct path 

between excitation and the soma, it could effectively and specifically veto the 

excitatory input to that branch while only minimally affecting the excitatory input 

from neighboring branches (Koch, Poggio and Torre, 1982).  
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Fig. 4-2. Normal shunting inhibition cannot account for reverse-phi motion. (A) 
Asymmetrical delayed inhibition scheme resulted in direction selectivity. ON 
excitation was gated by a delayed ON inhibition at its preferred side and the 
converse for OFF excitation (symbols as in Fig. 1). (B). Excitatory and inhibitory 
inputs to model cell when a bright thin bar moves across its receptive field at 
10o/s in preferred normal (PN) motion direction (a,b); in null normal (NN) motion 
direction (c,d), preferred reverse-phi (PR) motion direction (e,f), and null reverse-
phi (NR) motion direction (g,h). Solid lines: Excitatory inputs from on center cells 
(a,c,e,g) and off center cells (b,d,f,h). Dash lines: Delayed Inhibitory inputs (20 
ms delay) were plotted in negative. Inputs were calculated as the stimuli passed 
through the spatial-temporal filters mentioned in the methods section. (C) The 
direction index DI, for the eight-armed dendritic model cell for different inhibitory 
delay times and contrast reversal rates. Over a wide range of inhibitory input 
delay times, the model cell was direction selective to normal motion but only 
weakly to reverse phi motion.



 

For the layer 4 stellate cell, 8 triplets of excitatory-inhibitory-inhibitory synapses 

were mapped to eight separate terminal branches. This arrangement was 

replicated four times and mapped onto 32 terminal branches. The total synaptic 

count was 32 excitatory and 64 inhibitory synapses. 

 

4.3 Asymmetric-delayed shunting inhibition model 

We started by testing how well the reverse-phi effect was explained by the 

original asymmetric-delayed inhibition model of Barlow and Levick (1965), as 

implemented with shunting inhibition (Torre and Poggio,1978; Poggio and 

Torre,1978; Koch et al.,1982) . We then carried out compartmental simulation in 

NEURON using an idealized dendritic geometry to prove our concept and 

compare the model against experimental data. Finally, we mapped our synaptic 

connection scheme to a more realistic cortical cell morphology and demonstrated 

how it could account for both normal and reverse-phi direction selectivityThe 

traditional Barlow and Levick (1965) inhibitory based scheme is shown in Fig. 4-

2A. Inhibition was assumed to be of the shunting type (that is, with an inhibitory 

reversal potential around the local resting potential) so that synaptic interactions 

are restricted to local branches. We plotted the time course of excitatory and 

inhibitory inputs to the model from two adjacent cells in the LGN input layer (Fig. 

4-2B). When a white bar moved in a normal fashion in the preferred direction, 

there was a temporal shift between excitatory and inhibitory inputs (Fig. 4-2B.a), 

while in the null direction excitation and inhibition overlapped and therefore 



cancelled each other (Fig. 4-2B.c).  If the same bar moved in the reverse-phi 

fashion, there was little difference in the temporal alignment of excitatory and 

inhibitory inputs between preferred and null direction movement (Fig. 4-2B.e-h). 

For normal motion only the ON branch received significant input, while for 

reverse-phi motion the input was spread between ON and OFF channels. The 

combined areas under the excitation or inhibition curves for both branches were 

much less for reverse-phi motion than normal motion. Because of the low-pass 

filtering and the rectification inherent in the LGN layer, both the excitatory and 

inhibitory inputs to the model cell during reverse-phi motion were reduced.  

 

We compared the direction index (DI) of the model cell using different stimulus 

reversal rates and the delay factor for the inhibition (Fig. 4-2C). DI was calculated 

as the response in the preferred direction minus the null direction response, 

divided by the sum of the preferred and the null direction. The value of preferred 

direction was calculated as the sum of excitation minus inhibition with all negative 

values set to zero. Thus DI ranges from 0, for a non-discriminatory system, to 1, 

for a system that does not respond at all to null direction motion. The model was 

direction-selective  to normal motion for a wide range of delay values but was only 

weakly direction-selective to reverse-phi motion. DI for reverse-phi motion 

increased when the stimulus reversal rate increased, but the direction preference 

was the same as that of normal motion, contrary to the experimental data.  

Therefore, it appears that a traditional inhibition scheme cannot easily account 

for reverse-phi motion.  



 

Given the nature of reverse-phi motion, a direct non-linear interaction between 

ON and OFF branches, missing in traditional schemes, is needed to account for 

reverse-phi motion direction selectivity.  We here propose a “reversed” shunting 

inhibition scheme (Fig. 4-3A), in which an ON excitation is gated by a delayed 

OFF inhibition at its null side and an OFF excitation is gated by a delayed ON 

inhibition at its null side (see Poggio, 1982; Koch and Poggio, 1987 for other 

synaptic logic models involving ON-OFF interaction). Not surprisingly, this model 

responds equally strongly to both directions for normal motion, as inhibition is 

only activated by a bar of the opposite contrast from that of excitation.  However, 

there is a difference in the temporal alignment of excitatory and inhibitory inputs 

between the preferred and null direction reverse-phi movement.  When the 

inhibitory delay matches the stimuli reversal rate, DI is close to 1. DI decreases 

when the stimulus reversal rate increases.  We conclude that the ON-OFF and 

OFF-ON vetoing scheme can discriminate the direction of reverse-phi motion. 

Given that the experimental data demonstrated that reverse phi motion in the 

cell’s null direction elicited more vigorous responses than reverse phi motion in 

the preferred direction (DI < 0), the delayed inhibitory input needs to reside at the 

excitatory input’s preferred side instead of its null side.    

 

4.4 Double synaptic veto mechanism 

A traditional shunting inhibition scheme can account for normal motion direction 

selectivity while a “reversed” shunting inhibition scheme can account for reverse-



0 100 200
Time [ms]

In
pu

t S
tr

en
gt

h

0 100 200

0 10 20 30 40 50 60 70 80
Delay [ms]

D
ire

ct
io

n 
In

de
x

50Hz ReversePhi

Normal Motion
75Hz ReversePhi

Normal Motion
100Hz ReversePhi

Normal Motion

RS

A

B

C a

b

c

a

c

e

g

b

d

f

h

PN

NN

PR

NR

PN

NN

PR

NR

ON-OFF OFF-ON

0.0

0.0

0.0

1.0

1.0

1.0

Preferred Direction   Input Order in Visual Space

Fig. 4-3. Reversed shunting inhibition scheme was direction selective to reverse-
phi motion. (A) Reversed asymmetrical delayed-inhibition scheme. ON excitation 
was gated by a delayed OFF inhibition at its preferred side and the converse for 
OFF excitation. (B) Excitatory and inhibitory inputs to the model cell when a bright 
thin bar moves across its receptive field at 10o/s in the preferred normal (PN) 
motion direction (a,b); in the null normal (NN) motion direction (c,d), the preferred 
reverse-phi (PR) motion direction (e,f), and the null reverse-phi (NR) motion 
direction (g,h). Solid lines: Excitatory inputs from on center cells (a,c,e,g) and off 
center cells (b,d,f,h).  Dash lines (Delayed Inhibitory inputs (20 ms delay) are 
plotted in a reverse negative. (C) The DI calculated for reverse-phi motion. The 
model is not direction selective to normal motion but when inhibitory input delay is 
optimal, the model was direction selective to reverse phi motion.



phi motion direction selectivity. In order to account for both, we need to combine 

both synaptic schemes.  One way to achieve this is to construct a model cell with 

four dendritic branches. Two of them implement a traditional shunting inhibition 

scheme while the remaining two implement a “reversed” shunting inhibition 

scheme. Such a connection scheme will be selective to both types of motion. 

However, the “traditional” branches offer a non-gated path for reverse-phi 

excitatory inputs, while the “reversed” branches offer a non-gated path for normal 

motion excitation.  Such non-gated excitatory inputs results in a high background 

level of depolarization at the soma and therefore low DI values. 

 

We propose here a double synaptic veto mechanism that combines the two 

synaptic schemes in a more sophisticated way at the microcircuitry level (Fig. 4-

4A). In the new connection scheme, an ON excitatory synapse is gated by both a 

delayed ON inhibition at its null side (Fig. 4-1B, right side of the cell) and by a 

delayed OFF inhibition at its preferred side (Fig. 4-1B, left side of the cell) and an 

OFF excitatory synapse is gated by both a delayed OFF inhibition at its null side 

and by a delayed ON inhibition at its preferred side. Same type inhibition at the 

null side vetoes null direction normal motion, while different type inhibition at the 

preferred side vetoes preferred direction reverse-phi motion.  We mapped this 

triplet of synapses, one excitatory and two shunting inhibitory ones, onto the 

abstract cell model with a soma and eight dendritic branches (Fig. 4-4B), creating 

a simulacrum with four direction-selective subunits, each of which implements 
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the synaptic connection of Fig. 4-4A (the detailed connection scheme is 

explained in the methods section).  

 

The model responded best to normal motion in its preferred direction (DI=1) and 

reverse-phi motion (DI=-1) in its null direction (Fig. 4-4C). Note that the amplitude 

of the response to normal motion (6 spikes) was twice as large as the amplitude 

to reverse-phi motion (3 spikes), reflecting the fact that both the excitatory and 

inhibitory inputs for normal motion stimuli were stronger. In a broad range of 

model parameters, Cm=0.5 to 1µF/cm2, Eleak=-70 to -60mV, Delayinhibitory input=8 to 

15ms, gAMPA + gNMDA =1 to 10nS, gAMPA / gNMDA  =0.1 to 10,and gGABA / (gNMDA+ 

gNMDA) =1 to 10, the simulation showed direction selectivity for both types of 

motion, but only specific parameter sets resulted in high DI. When DI was small, 

null direction normal motion or preferred direction reverse-phi motion also elicited 

spikes, but the timing of the first spike was late compared to the case of the 

preferred direction movement (data not shown).  Even if gNMDA was set to zero, 

the cell responded in a differential way to null and preferred direction motion. 

Since sodium and potassium channels are only placed at the soma, the voltage-

dependent dendritic current was not required for the model’s direction selectivity. 

However, NMDA currents increased somatic voltage during preferred direction 

movement and thus increased DI. The inhibitory synapses were always located 

between the excitatory input and the spike-triggering zone at the cell body, 

thereby fulfilling the “on-the-path” condition (Koch et al., 1982).  The inhibitory 



conductance change in most cases only needs to be a little bit larger than the 

excitatory conductance change to achieve a “veto” effect. 

 

To test whether shunting inhibition was required for the direction selectivity we 

observed, we decreased the GABA channel reversal potential from –60 mV to –

90 mV in 5 mV steps. At the same time we decreased the amplitude of gGABA 

accordingly so that the model always responded to a preferred direction normal 

motion stimuli with 6 spikes and null direction reverse-phi stimuli with 3 spikes. DI 

for both types of motions decreased when the GABA channel reversal potential 

was decreased. At –90 mV, the model responded with 5 spikes to null direction 

normal motion stimuli and with 3 spikes to preferred direction reverse-phi motion 

stimuli. Thus the direction selectivity was lost.  

 

4.5 Receptive field and two-bar interaction maps  

The direction-selective  cell shows a slant in the space-time plot (Fig. 4-5A). A 

recent study of direction-selective cells in awake monkey V1 shows an excitatory 

region on the cell’s preferred side and an inhibitory region on the cell’s null side, 

consistent with our connection scheme (Livingstone, 1998). To compare the 

experiment data with our model, we incorporated a synaptic noise source (AMPA 

conductance only) at the soma to achieve a reasonably high background firing 

rate and then presented flashing bar stimuli at 20 different spatial locations 

across the receptive field (Fig. 4-5B).  There was good agreement between the 

experimental data and the response of our eight-arm model. Both space-time 
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Fig. 4-5. Comparison of space-time response mapping of monkey V1 cell and 
model cell. (A) PSTHs obtained from a layer 5/6 complex cell in primary visual 
cortex of the alert macaque monkey in response to flashed bars, presented in 
random orders at a series of positions across the cell's receptive field. (from 
Livingston, 1998. Figure 3A). This cell's preferred direction was from the bottom 
towards the top.  Flash bar duration =56 ms; inter-stimulus delay =100 ms; 75 
stimulus presentations. (B) PSTHs obtained from the model neuron to flashed 
bars at 20 spatial locations across its receptive field.  The model's preferred 
direction is from the bottom towards the top. It shows a decrease in the response 
onset time and an increase in the response transiency, as does the V1 complex 
cell.



plots showed a progressive shortening of the response onset time and a more 

transient response going from the cell’s preferred side to its null side. In our 

model, the shortening of response onset time and the increasing in response 

transiency were due to asymmetrical delayed inhibition and the basic property of 

integrate-and-firing neurons of LGN layer. The response onset time was 

determined mainly by the excitatory input since the inhibitory input was relatively 

small and delayed. Going from the preferred to the null side, the bar moves from 

the edge to the center of the receptive field of the first LGN cell that provided 

excitatory, increasing the excitatory input amplitude and decreasing the time 

needed to charge the membrane to fire the first spike. The response transiency is 

primarily determined by how quickly inhibition can overcome excitation and shut 

off the response. Moving towards the null side, excitatory input strength 

decreases, while inhibitory input strength increases as well as the response 

transiency. The slant of the excitatory and inhibitory regions in the space-time 

plot is related to the cell’s velocity tuning (Livingstone, 1998; McLean and 

Palmer, 1989; Reid et al., 1991). Since we did not include any synaptic delay 

between the retina and V1, the model responds much earlier to the visual 

stimulus than actual striate cortex neurons. The periodic firing is caused by the 

deterministic synaptic input.  Random noise channels at the soma are 

responsible for the background firing and jitter of spikes around the peak firing 

time. Rao and Sejnowski (2000) showed a similar space-time plot for their 

direction-selective  model. In their network model, the decrease of response onset 

time was due to the increase of the excitatory synaptic input strength from the 



cell at the preferred side toward the model cell itself. This effect is expected for 

any direction-selective  model that is based on asymmetrical inhibition.  

 

The experimental data also show reversed excitatory and inhibitory regions in the 

two-bar interaction map of direction-selective cells in V1 and MT when opposite 

contrast bars instead of same contrast bars were presented (MT: Fig. 4-6A. 

Livingstone, 2001. Fig 1. V1: Livingstone, unpublished data).  To compare with 

the experimental data, we tested our model’s response to two sequentially 

presented bars (Fig. 4-6B). The X-axis corresponds to the position of the first 

flashed bar and the Y-axis corresponds to the position of the second flashed bar. 

The diagonal line corresponds to both bars being presented at the same spatial 

location. A non-direction-selective  cell should have excitation regions both above 

and below the diagonal line while a direction-selective cell should have 

asymmetric excita tion regions with respect to the diagonal line. When the two 

bars are of the same contrast, the excitatory region of our model cell’s response 

map is mostly above the diagonal, where the second presenting bar’s position is 

located more toward the null side of the first presenting bar. However, when the 

two bars have opposite signs of contrast, the excitatory region is mostly below 

the diagonal, whereas the second presenting bar’s position is located more 

toward the preferred side of the first bar, signaling  a reverse in the direction 

preference of the model.  There is no difference between the white-white and 

black-black plots, given the symmetric ON and OFF inputs the model receives 

(likewise for the black-white and black-white plots). The difference of the 
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Fig.4-6. Two-bar interaction maps.   (A) Interaction map for two MT cells in the 
alert monkey (Fig. 1 in Livingstone et al., 2001). (B) Same interaction map for the 
eight-armed model neuron.  Pairs of bars (8' of width) were flashed sequentially 
for 13 ms each at different spatial locations. Spikes were counted for 100 ms 
from the start of the first bar flash. X-axis is the first flash bar's position and Y-axis 
is the second bar's position. Diagonal line is where two bars presented at the 
same spatial location. From left to right, Panel 1: Both bars were white. Areas 
above the diagonal line, where the second bar position was more positive than 
the first bar position, were more active than the area below the diagonal line. 
Panel 2: Both bars were black. Panel 3: The first bar was black and the second 
bar was white. Areas below the diagonal line were more active than the area 
above the diagonal line. Panel 4: The first bar was white and the second was 
black. Panel 5: The same contrast conditions minus the inverted contrast 
conditions (1+2-3-4).  Model neuron preferred two same contrast bars flashed 
sequentially in its preferred direction and two inverted contrast bars flashed 
sequentially in its null direction. Given the symmetrical input, the white-to-white 
and black-to-black model interactions are identical, as are the black-to-white and 
the white-to-black one.   (C) Space-time two bar interaction map of the model cell 
following the technique pioneered by (Emerson et al., 1987). The reference bar 
was presented at time 0 at four different locations across the receptive field. For 
each reference bar position, the probing bar was presented at different locations 
and times relative to the reference bar. Spikes were counted for 100 ms from the 
start of the first bar flash. Four such maps were added together to give a position 
invariant ds-dt map of two bar interactions. From left to right, Panel 1: Both bars 
were white. Areas along the diagonal line, where the two bar presenting 
sequence matched the preferred direction and speed, were more active than 
areas orthogonal to the diagonal line, where the two bar presenting sequence 
matched the null direction.  Panel 2: Both bars were black. Panel 3: The 
reference bar was black and the probing bar was while. Panel 4: The reference 
bar was white and the probing bar was black. Panel 5: Same contrast conditions 
minus inverted contrast conditions. The model neuron preferred two same 
contrast bars flashed sequentially in its preferred direction and two inverted 
contrast bars flashed sequentially in its null direction.  



excitatory and inhibitory regions between the same and inverted contrast bar 

presentations is more clearly evident in Fig. 4-6B: excitation is mostly above and 

inhibition mostly below the diagonal. Note that excitation was stronger at the 

model cell’s preferred side (minus side of spatial scale), while inhibition was 

stronger at the model cell’s null side (plus side of spatial scale). This was again 

due to the spatial asymmetry of excitation and inhibition. Although the model is 

direction-selective  to both presentations, direction selectivity was higher for same 

contrast bar presentations than for different contrast bar presentations. This 

translates into a weaker response to reverse-phi than to normal motion. The 

experiment data from MT cells in Fig. 4-6A shows the same overall trend but with 

a much larger receptive field and better overall position invariance across the 

receptive field. There were a few major differences between the empirically 

determined MT cell response maps (Fig. 4-6A) and our V1 model cell response 

(Fig.  4-6B). Fig. 4-6A shows a diagonal organization, while Fig. 4-6B shows a 

more circular organization. Part of this difference can be explained by the 

receptive field size difference between MT and V1 cells. This difference can also 

arise due to differences in the number and density of direction-selective  subunits 

along the preferred direction and the extent of the non-linear boost of the final 

output stage.  Some V1 direction-selective complex cells do show a circular 

interaction region while other V1 complex cells reveal a more diagonal 

organization (M. Livingstone, unpublished data). In addition, the diagonal region 

in the model (Fig. 4-6B) is above baseline, whereas it appears to be below 

baseline in the data (Fig. 4-6A). This elevation is likely due to the reverse 



correlation technique used in the experiment and further non-linear excitation 

mechanisms that are missing from our model.  

 

Despite these differences, the “same minus inverted” maps (the rightmost panel 

in Figs.  4-6A and 4-6B), which demonstrate the non-linear interactions, do show 

a substantial amount of similarity. Lastly, the cross-shaped backdrop in Fig. 4-6B 

does not appear in the experimental data. Again, this is due to the difference in 

receptive field size between the  recorded MT cell and our V1 model cell. If Fig. 4-

6A were evaluated within a larger spatial range (for example, within +/- 10°), the 

same cross-shaped background would appear (personal communication with M. 

Livingstone).  

 

We also generated space-time two bar interaction maps (Fig. 4-6C) to compare 

with the experimental data published by Emerson et al. (1987) on complex cells 

in cat striate cortex. The X-axis corresponds to the time of the flashed probe bar 

relative to the time of presentation of the flashed reference bar. The Y-axis 

corresponds to the position of the flashed probe bar relative to the position of the 

flashed reference bar (for more details, see Emerson et al., 1987). A direction-

selective cell should have obliquely oriented excitatory regions (Fig. 2 in 

Emerson et al., 1987). When the two bars are of the same contrast, the 

excitatory region of our model cell’s response map is mostly found along the 

diagonal, whereas the second presenting bar’s position is located more toward 

the null side of the first presenting bar. However, when the two bars presented 



have opposite contrast sign, the excitatory region mostly flanks the diagonal 

area, whereas the second presenting bar’s position is located more toward the 

preferred side of the first bar, signaling a reverse in the direction preference of 

the model.  The difference of excitatory and inhibitory regions between the same 

and inverted contrast bar presentations is more clearly evident in Fig. 4-6C:  

excitation is mostly along the diagonal line while inhibition mostly flanks the 

diagonal area. Note that excitation is stronger at the model cell’s preferred side 

(minus side of spatial scale), while inhibition is stronger at the model cell’s null 

side (plus side of spatial scale). This is due to the spatial asymmetry of excitation 

and inhibition. The non-linear facilitation observed in the experiment by Emerson 

and colleagues may derive from a specific excitatory directional interaction that is 

not addressed in our model or from generic non-directional facilitations (such as 

network feedback or active channels on the dendrites that are masked by 

directional suppressions). 

 

4.6 The layer 4 stellate cell model  

Although all our parameters are physiologically plausible, and the model 

displayed direction selectivity for a broad range of parameters, we wanted to 

ensure that the effect we observed was not due to the model cell’s cable 

structure. We therefore mapped our double synaptic-veto arrangement onto an 

anatomically correct layer 4 stellate cell model (Mainen and Sejnowski, 1996; 

Fig. 4-7A). All active and passive parameters of the original model cell remained 

unchanged. The new model’s response to different types of motions is illustrated 



in Fig. 4-7B. The stellate cell showed direction selectivity for normal motion and 

the opposite selectivity for reverse-phi motion with DI=1 in both cases. We also 

tested our connection scheme on the layer 5 pyramidal cell model from (Mainen 

and Sejnowski, 1996). The pyramidal cell model showed the same directional 

preference when we mapped our synapse triples onto basal dendrites alone or 

basal and apical dendrites together (data not shown).  

 

4.7 Discussion 

We demonstrate here that our double synaptic-veto mechanism can account for 

the reversal of direction selectivity in reverse-phi motion. Our biophysical 

simulations are, obviously, a mere proof of concept that such a scheme might be 

implemented in a plausible manner by cortical cells. Given the large number of 

degrees of freedom of any detailed biophysical simulations and the few 

constraints, except for order of magnitude estimations on the relevant 

parameters, little else is possible at this point in time. However, the fact that 

different cell models with distinct dendritic morphologies and voltage-dependent 

currents can be driven by the same synaptic arrangement to replicate the 

experimental data in terms of direction selectivity shows that our double synaptic-

veto mechanism is not implausible from a physiological point of view.  

 

This scheme makes several predictions that can be evaluated using extra cellular 

recordings.  Firstly, the non-direction-selective zone for reverse-phi motion 

should reside at the cell’s null side instead of the preferred side. Due to our 



A

B

0 100 200 300
-80
-60
-40
-20

0
20
40

Preferred Normal Motion

0 100 200 300
-80
-60
-40
-20

0
20
40

Preferred Reverse Phi

0 100 200 300
-80
-60
-40
-20

0
20
40

Null Normal Motion

0 100 200 300
-80
-60
-40
-20

0
20
40

Time [ms]

Null Reverse Phi

V
m

 [m
v]

Time [ms]

Fig. 4-7. Mapping the double synaptic veto mechanism onto a layer 4 stellate cell 
model caused it to respond differentially for both normal as well as reverse-phi 
motion. (A) Input synapse location on a layer 4 stellate cell.  (Cell model was 
taken from Mainen and Sejnowski, 1996). (B) Stellate cell model's response to a 
bright bar moving at 10o/s across its receptive field. The model responds best 
when a normal motion stimulus moves in its preferred direction and when a 
reverse-phi motion stimulus moves in its null direction, as do many V1 cells in the 
macaque monkey (Livingstone, 2000). 



inhibitory synaptic connection scheme, the non-discriminating zone of direction-

selective cells demonstrated experimentally in retinal and cortical neurons 

(Livingstone, 1998; He et al., 1999) should also reverse its location for reverse-

phi stimuli. Secondly, the response amplitude to normal motion in the preferred 

direction should be larger than to reverse-phi in the null direction (Figs. 4-4C and 

4-7B). The inputs from the LGN layer to the model cell are weaker and spread 

into both ON and OFF channels for reverse-phi stimuli.  Thirdly, DI for reverse-

phi motion should be more sensitive to parameter tuning than normal motion, 

especially for inhibitory input delay. Our input time course analysis (Figs. 4-2 and 

4-3) suggests DI of reverse-phi motion is quite sensitive to the reversal rate: the 

higher the reversal rate, the weaker the input signals feeding into the direction-

selective cell. This last property might show up in appropriate psychophysical 

studies as an increase in the motion detection threshold (increase of percentage 

of motion coherence or a decrease of Dmax). 

 

In this study, we assume that direction selectivity is generated at the single cell 

level in a feed-forward manner, without the aid of local feedback circuits. There 

are extensive feedback interactions among V1 cells and these feedback currents 

are likely to be important for sharpening directional tuning (Douglas et al., 1995; 

Maex and Orban, 1996). As we stated before, our models respond in an 

appropriate direction-selective manner to both types of motions over a broad 

parameter range, although DI was not always high. When DI was low, the 

response onset time for the preferred direction motion was less than for the null 



direction motion. A network could use this difference in response onset time to 

increase DI if we assume neurons with the same direction preference have more 

excitatory feedback connection among themselves. In fact this difference alone is 

enough to generate direction selectivity through network interaction (Maex and 

Orban, 1996; Suarez, Koch and Douglas, 1995; Suarez 1995). Excitatory 

feedback might also help to produce balanced response amplitude for normal 

motion and reverse phi motion. In psychophysics experiments, human subject 

have the same detection threshold for normal motion and reverse-phi motion 

(Sato, 1989). Monkey V1 cell’s response amplitudes to normal motion and 

reverse-phi motion are also comparable (M. Livingstone, personal 

communication). In our simulation, although DI=1 for normal motion and DI=-1 for 

reverse-phi motion, our model responds with many more spikes for the normal 

motion due to the low-pass nature (Krukowski and Miller, 2001) and half-wave 

rectification of our vision system. This difference can be decreased by network 

interactions if the feed-forward input triggers the cortical response and sets the 

directional bias, while the network itself determines the amplitude of the 

response. Of course, the use of shunting inhibition to compute the normal and 

reverse-phi direction selectivity does not rule out additional biophysical 

mechanisms to sharpen up this selectivity (Mel, 1993; Archie and Mel, 2000; Mel 

and Archie, 1998) such as facilitation in the preferred direction (Emerson et al., 

1987).  

 



We use the term “excitation” and “inhibition”, rather than “facilitation” or 

“suppression” in this report. Facilitation and suppression usually refer to the non-

linear part of a cell's response. We did not isolate linear responses from non-

linear responses in our analysis, although the “same minus inverted” map (Fig. 4-

6B and C) is a plot of the non-linear interaction and thus shows facilitation and 

suppression (Emerson et al., 1987; Livingstone et al., 2001). The non-linear 

suppression in the null direction comes from shunting inhibition. There is no 

significant non-linear facilitation in our model other than NMDA synaptic inputs. 

This might provide positive non-linear interaction in the real neuron. Because the 

excitatory input for reverse-phi motion spreads between ON and OFF channels, 

such facilitation could further increase the difference of response amplitudes. 

Excitatory feedback, missing in our feed-forward model, might underlie the 

facilitation in the preferred direction and might fill in the gap of response 

amplitude difference between normal and reverse phi motion.  

 

In the traditional inhibition-based direction-selective scheme, shunting inhibition 

is not necessarily required if the neuron does not possess subunit structures. 

However, shunting inhibition is required for our double synaptic veto mechanism 

to restrict the interaction to local branches. As we stated in the results section, 

direction selectivity for both normal and reverse-phi motion decreases to almost 

zero when the inhibitory channel reversal potential decrease from –60 mV to –90 

mV. Our double synaptic veto scheme requires branch-specific computations that 

cannot be achieved by non-shunting inhibition. Archie and Mel (2000) 



demonstrated disparity tuning and reverse-phi like effects (Cogan et al., 1993; 

Cogan et al., 1995; Cumming and Parker, 1997; Ohzawa et al., 1997; 

Livingstone and Tsao, 1999) without shunting inhibition in a similar modeling 

study. The non-linear interaction underlying disparity tuning in their model is 

clustering (non-linear excitatory interaction). The basic non-linear direction 

interaction in our model is between the excitation and shunting inhibition; 

shunting inhibition is required for the on-path veto and direction selectivity.   We 

only used one type of GABA synapse that has a long off ramp (80 ms) in our 

simulation. This long off ramp is only necessary to shut off the long lasting NMDA 

currents. If we set NMDA conductance to zero and GABA synapse off ramp to 

2ms, the model is still direction-selective. In real neuron, fast and slow inhibitions 

co-exist.  

 

The key to our double synaptic gating mechanism is that excitatory inputs are 

half-wave rectified and carry separate ON or OFF signals, while the inhibitory 

input carries both ON and OFF signals (in a spatially segregated manner). In our 

model, inhibition originates (via interneurons) from LGN ON and OFF center 

cells. The inhibition could, in principle, also be supplied by a cortical simple cell, 

with spatially offset ON and OFF regions within its receptive field. The separation 

of ON and OFF channels occurs at the very first mammalian visual processing 

stage in the retina  (Rodieck, 1998). Within the mammalian visual system it is not 

until V1 that these two channels combine their information. Since the detection of 

reverse-phi requires interaction between ON and OFF channels and the simple 



cell might be the first place that this interaction occurs, it was proposed 

(Livingstone et al., 2001) that direction selectivity in the monkey might arise 

between the interactions of two simple cells that carry the full-wave signal. In the 

visual system of the fly, the reverse-phi effect observed in higher-order visual 

cells (Egelhaaf and Borst, 1992) was used to support the argument that there is 

no ON-OFF channel separation. Although ON-OFF interaction is necessary to 

account for reverse-phi motion, our results suggest only inhibition needs to carry 

the full-wave signal. The excitation to the direction-selective cell can originate 

from direct geniculate projection. 

 

The synaptic triplet arrangement proposed here for our double synaptic veto 

scheme requires rather sophisticated synapse placement during the 

development process. Two inhibitory ON and OFF inputs need to make synapse 

close by their associated excitatory input or between this input and the cell body 

in order to be able to effectively veto excitation (Koch et al., 1982). This is in 

contrast to traditional shunting inhibition schemes that only require the pairing of 

one inhibitory process for each excitatory one. It is possible that activity-

dependent, temporally asymmetric Hebbian learning rules (Markram, 1997) might 

be used to establish such specific connection schemes as shown for normal 

direction selectivity by Rao and Sejnowski (2000). It does remain a major 

challenge to understand how direction-selective neurons with subunit structures 

could be established in an unsupervised manner on the basis of such learning 

rules.  



 

Reverse-phi motion stimuli do not appear to be a common feature of natural 

spatiotemporal scenes. It therefore remains unclear why cortical cells should 

invert their direction selectivity for reverse-phi motion.  We believe that the 

synaptic circuitry responsible for detecting reverse-phi motion has to be 

established as a by-product of developing normal direction selectivity, rather than 

as a stand-alone training process. If the inputs to direction-selective cortical 

neurons have a significant background-firing rate, then OFF inhibition at the 

preferred side of ON excitation is released when a white bar moves in the 

preferred direction and thus helps to increase direction preference. If the 

inhibition comes from simple cells, it naturally contains spatially offset ON and 

OFF signals. The challenge is to properly align the ON and OFF regions with 

excitatory inputs. We are currently investigating learning rules that could account 

for our double synaptic veto mechanism. The “prediction and sequence learning” 

mechanism proposed in (Montague and Sejnowski, 1994 and Montague et al., 

1995) might play an important role in the establishment of the reverse-phi motion 

detection circuit.   



Chapter Five 

 

Models’ Dependency on Shunting Inhibition 

 

5.1 Introduction 

The shunting inhibition refers to an increase in a chlorine based GABA_A 

conductance that reverses close to the cell's resting position. Such an inhibition 

is most effective when it fulfills the on-the-path condition.  Our models require 

branch specific inhibitions which are implemented using shutting inhibition as 

illustrated in Fig. 5-1A. Inhibition 1 needs to decrease excitation 1 more than it 

does excitation 2. If we reverse excitation and inhibition locations, inhibition 1 still 

affects excitation 1 more than excitation 2. The excitatory input’s effect on the 

soma increases while the inhibitory input’s effect decreases in this case. In 

natural condition, inhibitory inputs are likely to be close to soma than excitatory 

inputs. Such a local veto effect breaks if we switch the locations of inhibition 1 

and inhibition 2 or simply map al four synapses into a single dendritic 

compartment. 

 

It is unclear if such local shunting effects exist in the real cells. Active channels  

tend to clamp membrane voltages during high frequency firing and thus reduce 

the shunting effect (Holt and Koch, 1997). Many experiments using white noise 

or depolarization to elevate cell’s back ground firing rate to uncover inhibition 

(Citron and Emerson, 1983;Livingstone, 1998; Monier et al, 2003). Such 
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inhibition is more effective than the area above the diagonal line. D. A line plot of 
C with inhibition fixed at the middle of the dendrite. 



techniques drive the average membrane potential up and thus reduce the 

shunting effect. Recent experiments in the retina provide evidence in favor of at 

least some nonlinear interactions between excitatory and shunting inhibitory 

inputs that take place within the dendrites of direction-selective ganglion cells 

(Taylor et al., 2000; for a dissenting view, see Borg-Graham 2001). Large 

conductance changes that reverse around the cell's resting potential have been 

observed in V1 during visual stimuli (Anderson et al., 2000; Borg-Graham et al., 

1998).  In this chapter, we tested both our reverse-phi model and learning 

model’s dependency on the shunting inhibition.  

 

5.2 Optimal inhibitory and excitatory input locations on dendrite.  

We first considered the optimal location for the shunting inhibition using our 

model cell. We varied the excitation and inhibition input location on dendrites and 

measure the EPSP amplitude at the soma as shown in Fig. 5-1C.  The diagonal 

line shows the case where excitation and inhibition co-locate (in the “different 

branch inhibition” case, they are located on the same position in different 

dendrites). The excitation is always distal to the inhibition (on-the-path) in the 

area below the diagonal line  of the “same branch inhibition” plot. Here the 

inhibition is more effective than above the diagonal line, where inhibition is distal 

to the excitatory synapse. The “same minus difference” plot shows shunting 

inhibition’s local veto effect. Shunting inhibition is more effective in blocking the 

“same branch excitation” compared to the “different branch excitation” when the 

“on-the-path” condition is fulfilled. Such local veto effect decreases to zero when 
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the inhibition input location is too close to the soma. In our learning model, the 

inhibitory input location is fixed at the middle of the dendrite (0.5).  

 

We also considered the optimal excitatory input location when the inhibitory input 

location is fixed at the middle of the dendrite. Four pairs of excitatory synapses 

were mapped onto different locations on one dendrite, all of which fulfilling the 

“on-the-path” condition. The “competition” rule worked over all eight excitatory 

synapses. Fig. 5-2 shows the closer the excitation to the soma, the larger the 

connection weight after learning. This is expected, given the decrease in the 

amplitude of the back action potential propagating back from the soma to the 

distal dendrites. The excitatory connections to the distal end did not drop to zero 

after training, but rather settled to a lower value than those toward the proximal 

end. T his wa s due to the sliding threshold we imposed: the smaller the 

connection weight, the lower the peak calcium concentration required for an 

increase in the weight of the excitatory synapse. Excitatory connections tend to 

reside at the distal end of dendrites in real cells with some possible scaling at the 

distal ends to keep the amplitude of the somatic EPSP constant. If there is an 

underlying mechanism that favors distal excitatory connection, our learning rule, 

which works against this trend, can help produce a balanced dendritic tree.   

 

5.3 The Reverse-phi Mode’s dependency on shunting inhibition 

To test whether shunting inhibition is required for the direction selectivity we 

observe, we decreased the GABA channel reversal potential from –60 mV to –90 
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mV in 5 mV steps. At the same time we decreased the amplitude of g  GABA 

accordingly so that the model always responded to a preferred direction normal 

motion stimuli with 6 spikes and null direction reverse-phi stimuli with 3 spikes. DI 

for both types of motions decreased when the GABA channel reversal potential 

was decreased (Fig. 5-3). At –90 mV, the model responded with 5 spikes to null 

direction normal motion stimuli and with 3 spikes to preferred direction reverse-

phi motion stimuli. Thus the direction selectivity wa s lost.  

 

The reverse-phi model’s dependency on the shunting inhibition is expected. Our 

double veto mechanism involves null side same-type inhibitions and preferred 

side different-type inhibitions. If we mix these inhibitions from different dendritic 

branches, the model will receive symmetric input in space-time and thus has 

neither normal nor reverse-phi motion selectivity.  

 

5.4 The learning model’s dependency on shunting inhibition 

To test whether the shunting inhibition is required for our learning model, we 

decreased the GABA channel reversal potential from –60 mV to –80 mV in 5 mV 

steps. Note that the cell’s resting potential was always -60mV. 10 simulation runs 

were conducted for each reversal potential. The average DI of the model cell 

after training is shown in Fig. 5-4A. Our results show that the single-unit learning 

model is not dependent on the shunting inhibition.   This is not surprising since 

the single-unit learning model has no dendritic subunit and thus local inhibition is 

not required. Any global inhibition can fulfill its requirement. However, the 
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assumption here is that the model cell has zero or very low background firing 

rate. The threshold thus performs the non-linear operation between two spatial 

offset inputs, which is required by all direction-selective models. If, however, the 

model cell has a high background firing rate, then the model cell will not even be 

direction-selective  if we use non-shunting type inhibition and look for the time 

averaged response (Borst and Egelhaaf, 1989). Shunting inhibition is required in 

this case to generate basic direction selectivity.  

 

The multi-subunits learning model’s performance is dependent on the shunting 

inhibition. At -80 mV, 20 mV away from the resting potential, all direction 

selectivity is lost. In such simulation runs, the overall inhibitory current became 

larger as we gradually decreased the GABA channel’s reversal potential. To 

control for such variations we used two types of compensation. In the first 

scheme, we decreased the amplitude of g  GABA accordingly, so that the model 

always responded to a preferred direction normal motion stimulus with 7 spikes if 

all connections within an entire input group reached their maximum connection 

values and those of the other input group dropped to zero. The average DI after 

trainings with respect to the GABA channel reversal potential is shown in Fig. 5-

4B. The learning model’s performance still decreased dramatically when the 

shunting condition was not met. At -60mv, the model cell responded with 7 

spikes in its preferred direction and no spike in its null direction. The direction 

index was 1. At -80mv, when we lowered the g GABA to allow 7 spikes in the 



preferred direction, the model cell responded with 3 spikes in the null direction. 

Therefore the DI of the learning product was less than 1 in this case.  

 

In the second scheme, we relaxed the spike number requirement for the learning 

model. At each reversal potential, we lowered the inhibitory synaptic connection 

strength until the model cell started to spike in the null direction given the 

maximum excitatory connection strength. Thus the inhibitory synapse weight we 

used in this scheme was greater than the value used in the above case. The DI 

of the ultimate learning product was 1 at all reversal potentials but the model 

produced less spikes when the inhibition was away from the resting values. The 

average DI and spike numbers for learning models with 4 subunits (solid curve), 

6 subunits (dashed curve), and 8 subunits (dotted curve) are shown in Fig. 5-5. 

The spike number refers to the maximum number of spikes the model cell can 

generate in its preferred direction while maintaining  DI=1. Our results suggest the 

more subunits the model cell has, the more its performance depends on the 

shunting inhibition.  In the four subunits model, the excitatory inputs to dendrite 1 

and dendrite 2 open before any inhibition opens, given the spatial offset and 

temporal delay of the inhibition. Therefore only 2 of 4 subunits’ learning are 

affected by the non-shunting type later inhibitory current. 4 of 6 units and 6 of 8 

units are affected in the 6 and 8 subunits models, making them rely more and 

more on shunting inhibition. Synaptic weight changes during a simulation run for 

the 6 subunits model and for the 8 subunits model are shown in Figs. 5-6 and 5-

7. The GABA channel reversal potential for these two simulations was -80mV. 
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Fig. 5-5. Multi-subunits learning model requires the inhibition to be of the 
shunting type. A. A schematic drawing of model cells with four (solid curve), six 
(dashed curve) and eight subunits (dotted curve) on their dendrites. B. Average 
DI values of the multi-subunits learning model at different GABA channel reversal 
potentials. The more subunits the learning model has, the more it depends on 
shunting inhibition. C. Maximum number of spikes the model cell can produce 
during a preferred direction run at DI=1 given different GABA channel reversal 
potentials.  



We can see from the weight change that the late subunits lost synchronization 

with the first few subunits and learned to be selective to a different direction. The 

model cell was less direction-selective compared to the case of shunting 

inhibition.  

 

The other important aspect of shunting inhibition is that it allows more subunits to 

contribute to the cell’s overall response. This is most obvious when going from 4 

units to 8 units; the model cell produced much more spikes in the shunting 

condition than the non-shunting condition (Fig. 5-5B). A model cell implementing 

the non-shunting type inhibitions faces a dilemma: if it allows the late subunits to 

contribute to the cell’s response in the preferred direction, the inhibitory input 

strength has to be decreased as in our first compensation scheme and the model 

cell’s DI suffers; if it keeps its DI value at 1, then the inhibition input strength has 

to be increased and all late responses are wiped out. Therefore shunting 

inhibition and its local veto property are desirable for direction-selective cells with 

subunit structures on their dendrites. 



0

0.5

1

g N
M

D
A
  (

ns
)

Dendrite 1 Dendrite 2

0

0.5

1

g N
M

D
A
  (

ns
)

Dendrite 3 Dendrite 4

0 50
0

0.5

1

Trial No

g N
M

D
A
  (

ns
)

Dendrite 5

0 50
Trial No

Dendrite 6

A

Fig. 5-6. GABA channel's reversal potential affects learning model's 
performance. Synaptic weight changes for the left input cells (solid curves) and 
the right input cells (dotted curves) at each dendrite during one simulation run. 
GABA channel's reversal potential is set to -80mv. The subunit on dendrite 6 fails 
to reach the same direction selectivity as the rest subunits. 
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Chapter Six 

 

A Learning Rule for the Reverse-Phi Selective Synaptic 

Placement  

 

6.1 Introduction 

Our “double veto” mechanism described in Chapter Four can account for the 

reverse-phi effect first observed by Anstis (Anstis, 1970; Anstis and Rogers, 

1975). Subjects perceived the reverse direction of motion when the contrast of a 

moving object reversed in the second frame of a two-frame shift experiment. 

Reverse-phi motion stimuli do not appear to be a common feature of natural 

spatiotemporal scenes. It therefore remains unclear why cortical cells should 

invert their direction selectivity for reverse-phi motion.  We believe that the 

synaptic circuitry responsible for detecting reverse-phi motion has to be 

established as a by-product of developing normal direction selectivity, rather than 

as a stand-alone training process. Here we show such a connection might be 

established due to the background firing of inhibitory input cells, which causes 

bias in the learning outcome.  

 

6.2 The reverse-phi learning scheme 

In our learning model, the incoming stimuli sequence plays the key role of 

breaking the balance of initially balanced excitatory inputs and pushes the model 

beyond the divergent point. If the input connections are biased, the learning 
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receptive field and a 20Hz, 10% background firing is biased to become a right 
motion selective cell. The resulting "double veto" is equivalent to a tri-synapse 
connection proposed by Mo and Koch, 2003. 



outcomes are also expected to be biased. Receptive field substructures of the 

inhibitory input cell can play such a role to bias the learning outcomes. Fig. 6-1A 

shows a model cell receiving inputs from an inhibitory cell with only an ON 

receptive field which is the same single-unit learning model as described in 

chapters two and three.  Instantaneous firing frequencies of the inhibitory cell 

during a bar moving to the right (solid line) and to the left (dashed line) are shown 

in the right of the figure. There is no difference in the inhibitory time course with 

respect to the motion direction.  Therefore, in the absence of any other biases, 

the model cell is as likely to become a left motion-selective cell as a right one 

after learning. However, if the inhibitory input comes from a simple cell with 

spatially offset ON-OFF regions (Bishop et al., 1973; Heggelund, 1986; Jones 

and Palmer, 1987;Ferseter, 1988; Deangelis et al. 1993), the situation is more 

complicated. Two such inhibitory inputs with OFF excitatory regions to the left 

side of the ON excitatory regions are shown in Fig. 6-1B (background firing rate 0) 

and Fig. 6-1C (background firing rate 20Hz 10% of the peak firing rate). In the 

case of 10% background firing (in the absence of any input), there is a difference 

in the inhibitory input time course with respect to motion direction.  If a white bar 

moves from the left to right (solid curve), it reaches the OFF region of the 

inhibitory input cell first and thus drops the cell’s firing rate to 0. It then reaches 

the left excitatory input cell. The excitatory input causes the model to spike. The 

bar finally reaches the ON region of the inhibitory input cell. The inhibition blocks 

input from the right excitatory input cell.  The left excitatory cell’s connection 

strength is increased and the right excitatory cell’s connection is decreased 



according to our learning model. However, if the bar moves from the right to left 

(dashed curve), there is no such clamping of inhibitory firings by the OFF region. 

If the inhibitory input cell spikes before the right input cell due to its random 

background firing, the right excitatory input’s connection strength won’t be 

increased although the bar moves in its preferred direction during this trial. Such 

a scenario gives the left excitatory cell advantage in competition. The advantage 

doesn’t exist if the inhibitory input has a zero background firing rate as shown in 

fig. 6-1B.   

 

6.3 The background firing of inhibitory inputs can facilitate the “double 

veto” synaptic placement 

We implemented the learning scheme described above in our learning model. To 

account for the inhibitory background firing, we used a stochastic model for 

inhibitory synapse. At any moment during the simulation, the probability of an 

inhibitory synapse opening was related to its instantaneous firing frequency 

based on its background firing rate plus the stimuli driven firing. Histograms of 

synaptic opening events during a simulation run for all the leftward and rightward 

movements trials during a simulation run are shown in Fig. 6-2A. The 

background firing rate was 20Hz. Note the shape of the histograms resembles 

the instantaneous firing frequency curves of Fig. 6-1C. Synaptic weight changes 

from both excitatory inputs during the simulation are shown in Fig. 6-2B.  

The model cell learned to be direction-selective after training with DI=1.  
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There are two possible learning outcomes for such learning model; one is 

reverse-phi selective; the other is not (Fig. 6-3A). We looked at the relationship 

between the percentage of simulation converged to be reverse-phi selective 

versus the inhibitory input’s background firing rate (Fig. 6-3B). DI values 

represented the average of 20 simulations at each different background firing 

frequency). At 20Hz, 10% of the 200 HZ peak firing rate, the model cell 

converged to the reverse-phi synapse placement 100% times. Therefore, it is 

possible that such a “double veto” synaptic placement, as we propose, can be 

established as a byproduct of the normal direction selectivity development 

process.  
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Chapter Seven 

 

Summary 

 

There is considerable interest in activity based synaptic learning rules. Given the 

complexity of our brain, it is impossible to genetically specify each synaptic 

connection exactly. Instead, the development process may involve experience-

dependent neural plasticity (Quartz and Sejnowski, 1997; Quartz, 1999). In this 

thesis, a learning model for direction-selective synapse placement based on local 

calcium concentration at spines is proposed. The same principle can be applied 

to other learning scenarios that require specific excitation-inhibition interactions.  

 

We tested our learning rule in compartmental simulations. We implemented a 

simple calcium scheme and used the computed calcium concentration at spines 

during simulations to direct synaptic weight changes. The model cell 

implementing our learning rule is direction-selective after learning. The learning 

model is stable under a variety of starting conditions. Jacobs et al. (2001) 

demonstrated that cortical regions involved in later stages of information 

processing have more complex dendritic/spine system than that of early stages 

of processing. Dendritic subunit learning rules are likely to be even more 

important in the proper development of these areas. Our model cell’s simple 

geometry allows us to simulate dendritic subunits learning scenarios. Our 

simulation results prove  our learning rule is indeed local: the input connection 



strength after training depends on its post-synaptic location. In our model, the 

difference among locations is caused by inhibitory inputs to different branches. 

Based on our model, we made a few predications in the discussion section of 

Chapter Two that can be tested in experiments. Possible extension of modeling 

studies is also discussed.      

 

We also proposed a global inhibition learning rule this is dependent on the overall 

excitatory state of the cell. The inhibition learning rule works together with our 

excitation to achieve excitation-inhibition differential learning. A model cell 

implementing such learning rules is direction-selective after training. Much less is 

known about the learning mechanism of inhibitory synapses than that of 

excitatory synapses. It will be interesting to see if our inhibitory learning scheme 

exists in nature.   

 

Reverse-phi is an interesting visual illusion. It can help  us to understand the 

direction-selective scheme evolution chose to adopt given the fact that the 

cellular reverse-phi equivalent has been discovered in a variety of animal 

systems. In this thesis work, we presented for the first time a biophysical model 

that can account fo r both the normal and reverse-phi direction selectivity. The 

model’s response to bar stimuli was compared with the response of real cells 

recorded in monkey V1. Our double synaptic-veto mechanism, in which ON 

excitatory synapses are gated by both delayed ON inhibition at their null side and 

by delayed OFF inhibition at their preferred side, is an extension of the original 



asymmetric-delayed shunting inhibition scheme. We reason such a double veto 

can come from cortical simple cells.    

 

We used shunting inhibition in both of our models to achieve branch specific veto 

of excitations. We discussed shunting inhibition’s local effect and our model’s 

dependency on this special type of inhibition. Our reverse-phi model and multiple 

subunits learning model depend on the shunting inhibition while the single-unit 

learning model does not. We showed in our simulations how shunting inhibition 

can help to achieve dendritic specific local learning. Shunting inhibition can 

clamp membrane voltage and thus reduce the amount of calcium flow through 

nearby NMDA channels. Shunting inhibition can block back-propagating spikes 

from reaching its distal side. Given the local nature of the shunting inhibition, both 

of these effects only affect the dendritic branch that the inhibition resides within a 

certain parameter tuning range. Although no experimental evidence exists, so far, 

on such effects of shunting inhibition, there is evidence suggesting that shunting 

inhibition is important to cell’s direction selectivity (Taylor et al., 2000). Large 

conductance changes of cortical cells have been observed during visual stimuli, 

which is also consistent with the existence of shunting inhibition (Anderson et al., 

2000; Borg-Graham et al., 1998). It is interesting to see if nature can use the 

shunting inhibition not only to achieve local dendritic specific computation but 

also learn the appropriate synaptic placement.   

 



Finally, our learning rule can facilitate the placement of the double synaptic veto 

connections proposed to account for the reverse-phi selectivity. This can be 

achieved through an inhibitory input with simple cell- like receptive field structure 

and low background firing rate. This is consistent with our idea that the reverse-

phi selectivity is formed as a by-product of the normal direction selectivity, given 

that there are no substantial reverse-phi stimuli in the natural scenes.  
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