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SUMMARY

This rsport 19 concernsd witn the stetics and dynamics of very

thin wings of high speed alrplanes. With the modern %tendency to-
“wards sweépback, wnich 18 necassary for supersonic airplanes, ihe

wing constractions tend mors and mors to an ideal structars, hense for
the atetle problams of this report, th2 wing is idsalized %o a thin
vantilever elastic plats,

Part T glvee 2 general formalation of the fundamental equations.
2f deformation of thin elastic plates and the direct methods of
aolution, For small deflection of plates, the egusiions and doundary
condltions are derived from the three-dimensionsl equationa of elas-
ticity developed in pouwer series of the thickness of tha plate. I%
1s shown that the classical Polsson~Kirchhoff theory is coincident
with the first aspproximation in this development. These equetions
are then trensformed into obligue coordinates for treating problems
concerning swept plates. Since the problem of the cantilsver plate
ls very difficult to solve from the standpoint of biharmonic anely-
sis, emphasis is laid on ths direct methods of solution which leed
ta.useful approximate solutions with desired accuracy, Section 1.21
discusses the relation bsiwsen plate problems and equivalent varia~
tional problems, Section 1.22 contains a systematic review of the
Rayleigh-Ritz method and all methods allied %o it. Section 1,23
formulates the method of relaxation of boundary conditions, includ-
ing the Trefftz method as one instance,

Part II discusses the general meroslastic problems of high

speed alrplanes, For airplanes accelerating or decslerating through



the transonic reglon, the coeffliclents in the aercelastizity equa-
tione are of transient nature, Such traneient psriurbations ars naw
phenomena in asroanasutics but are sufficiently important to warrant
detmilod investlgailon. A general methematical treatment is glvaen,
theugh dus to laeck of asrosdynemic data st present, no spacific
axample 1g included. & general solulion is obtained and this solu-
tiﬁn 18 expanded indu & generalizad power series which proveas to dba
partieularly useful when ths $ransient perturbation is smell, The
prssap% result inclades the ordinary smell perturbation theory for
finilte degress of freedom as & particular case. Several results
regarding small perturbations are given in section 2.6,

The nexit %wo paris give a detalled computation on the deflsction
of and stressss in cantilever plates. Ths deflection of reciangular
cantllever plates is solved both by the Rayleigh~Ritz method and ths
mnethod of relaxatlion of boundary conditions., For swept platas the
Rayleigh-Ritz method is used. A theory of stress approximation with-
sut using the intsrmedizte deflection function is developed in Part

IV, and is applied to rectangular plates,



ROTATIONS

*, 7,2 Hestangular coordinates

WA ®
A& 4 t3
7%(f ¥= 0o Flexural rigldity of plates.
' M t = thickness
/{74‘ ! ’
VAR Mx,My, Hey Resultant bending and twisting
AN ot U LS il L e 3 .
ST l\ moments per unit length in plates,
/ M, Tha bendlag monents are consid-
T/ l arad positive when they put the
2 apper aide of en slemant of the
plate in compression. The aense
of the twistloag momeni agrees
with the couple due to the shear-
ing stresses Txy -
Q,ﬁ%, Resultsnt sheariag forces per unit length in & plate, normal
to middle surface. Thelr sign is the same as the correspond=-
ing sign of the shearing stresses,
u,v,W, HElastic displacements inx, y,2 directions respectively.
] Sweep~back angle
MUY Elsstic constants,
v, B Poissont's ratio and Younz's modulus respeciively.
A 2y _oagnr ) _ I
= -1y A= vz TS
q Intensity of distributed load per unit area of the middle
surface of the plate.
n,+t

2

Used in subscripts denotlng outer normal and tangential
directions respectively,
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© 1, GEVERAL PORMULATIONS OF THE FUNDAMENTAL BOUATIONS OF DEPORMATION
OF THIN ELASTIC FLATES AND DIRECT METHODS OF SOLUTION

1.1 Fundamental Egustions of Deformation

1,11 Introduction

| An sxact theory of plates should be deduced from the general squa-
$lons of elastlelty for s three~dimensional continuwam. The clsassieal
" Poisson~love theory (Refs. 1, 2, 3) which is based upon intuitive aém
gumptions is unsatisfactory in this respect, If the daflaction‘ia
falrly large, the finité displacement must be also taken Into accounty
since although the six components of the sirain tensor are small, some
of the derivatives of ths components of displacement might be largs,
Then it is necessary to differentiate betwsen stresses referred to the
surface elements of the undeformed and the deformed system.

The following formulation is concerned with small deflections,
Within this limitation the fundamenial equations are deduced by stari-
ing from the conditions in a thick plate, regarded as a three~dimensional
.eontinunm, and then passing to the 1limit of thin plate by expanding the
stresses into power series in the thickness of the plate. The validity
of the three-dimensional field equations and of the boundery conditions
at the:facas of the plate are retained during the limiting process,
This concept was suggested by P, Epstein (Ref, 6) in 1942, In its
appliéation to elastic plates, higher order terms can readily be deduced,
from which comparison to the classical theory can be made.

| In explicit terms the basic assumptions in the following‘devalopm
‘ment are2
(1) That the thickness of the plate is small compared to other

dimensions of the plate, and
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(2). Thét the dsformetion of the plate 18 small compared %o thse

thickness of the plate,

These assumptions are of course tacitly implied in the classlcal
theory of thin plates, which in addition postulates that any line
normal to the middle surface of the plate remains siraight and normal
t0 it in any stralned condition, and thet the stress componen$ normal
%0 4the middle surfsce is smell in comparison to other siress componenis

and may be neglected in the stress~sirein relationss



Let (x,y,2) be a system of Cartesian coordinates, and let the
plane 2 ..ocoincide with the middle surface of the plate in the un-
strained shate, The plate is assumed o bs thin, that is, the thick-
ness 2¢h of the plate 13 small compared 4o other dimensions of the
plate, The thickness may be varisble. It is designated by 2z e h(x,y)
where 2€ 1is a small guentity of the dimension of the thickness and
hix,y) a function of x and y desoriding the thickness distribution
of the plate,

Using the usual notation % G, 6 7., etc. for the components of

the stress tensor, the general field equations are
o'z Blac . Ty
oSy T 0 (1)

etc., by cyclic change of subscripts.
These stress components are connected to the components (u,v,w)

0of the displacement vector by relations like

2 By (W . Bd L BV
6} d!“ ’a}+ )\(’32 T D A t ?y )’
P W B (2)
G KL T oy

Expressing the field equations (1) in terms of the components of

displacements, they become*

*In all the following formules, there is g symmetry between u,v, and
X,¥. The third equation is usually omitted for simplicity in writing.
It is slways obtained by interchanging u into v, and x into y, and
¥ice versa,
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S "‘VW""(‘*”)%E('az ‘”?a':c*’%\)/')mo

3=

,%;,1- v"u+(l+0)%<(:—§—";-+gf‘—+ 2Y ) —o0

X ey (3)

v v (1) 2 (24 22Uy BYY

= v Vvt () o5 (55 + S5t 3y )

2 ,}D k%

where Vo= 25+ 2+

T 53
The boundary conditions for s plate under dlstributed ftraction
p{x,y) over its faces applied in the direction normal %o the middle
plane of the plate may be wriitten as

r}(ieh):"ipl

(4)
TZX ( '_'\"_Eh) :—T}y (teh) == 0

where "( teh ) mesns that the quantities attached are svaluated at

2 =+tech respectively. By this method, a total tractlion of 2p per
unit area of the middle surface of the plate is disiributed half on
top face and half on bottom face.® The conditions {(4) are natursl

for plates of uniform thickness. But for plates of varisble thickness
the specificstions of conditions (4) are rather artificisl, as 1% would
imply & sysiem of loading consisting not only uf normal pressure to

the faces but also of shearing stress along the faces of the plate.
However, the equations of deformation are developed according to the

above speclification first, and we will return to the more natural

*Since obviously the middle surface of a plate under the boundary
conditions e¢,(2eh)=p will not deflect, l.e. w(e)=0 , 1%
is evident by the principle of superposition that the differential
equations involving w(o) derived from the boundary condition (4) is
the seme as that derived from the conditions

S (+eh)=2p , G {-eh)=0
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saction,

‘voundery conditions for plates of veriable thickness at the end of this

Assuming that the stress components are analytic throughout the

thickness, one'a’otains3 by adding and subtracting the expanded form
of {4) in power serles, the equations

63(0) + —l-T e h* tr;(o) + ':1"_-, e*ht 6‘1(“')(0) + -

P ¢ ER R o) a0 -

- 0,
= P
eh ,
‘ (5)
Toe (O + 5, €W T (0) + & e %0y + o= o ‘
Ty (0) + J3—, e*h’ Tax (O + = &*W"’C};‘”(o‘) N o
geript x into y,

and two more equations obtalned from the last two by changing the sube

The accenis denote differentiation with respect toa,
Now the stress component

2y
- Y
Ty = K (37 * 5%) be
is defined exclusively by partials with respect to x and ¥. Bub 6
and 0, contain parsial derivative with respect to z . Let
— 20 +1) oo ’
A= K+ 2 T M 4 (5)
and define the twoedimensional stress components
' ' 24 ERNCA'A
Ya=2p[AZ% +aA-0)37]
M4 2V (7)
T,=2r[(a-n3% ~ A "7] )
50 that _
O == (A-1) Oz + Qux
G;;E(A“‘) 0“24‘ 3’]

(8)

Substituting (5) and (8) into the field equations (1) which are
certainly'valid for the particular value of 2 =0, one obtains, up to
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- fourth order in € ;

> s 2 P "
EP— =% i%@} + =»z(h"T5) +%‘( k" Ty, )§

‘1‘ &4- 4’ ? Y v
(e e Z0tar) e et

(9)
kS . o
% L % Ty — %_—. {(A"')%(hl":{)"' _J%'hﬁ’cix%
+ ‘ 4
- £ [(A-n%;(h*w;ﬂx » R (=0,

and a third equation by interchenging x and y in (9), where all the
partial derivatives are svaluated at 2 =

If all the partial derivatives of the stress components in (9)
are expressed in terms of pariials with respect to x and y of the disge
rlecement components, we will obtain the fundamental differentisl
equations defining the deformation of the elastlc plate.

In the following, the fandamental differential equation is dev-

sloped up to fourth order im €. This requires that &, GI, T,

€3 s Tyxs Tay D@ accurate up to second order iné, and ©{V, ¥, ete.

up to zero order. Now the definitions (2) and conditions (5) give,

when 2=0,

w 2-A *
2 == (A 3%+ 3Y) - e"h g

* 1“ ’ (10)
2u w I
3% T T3k~ T wo Cax ete.

From the field equations (3) and using (10), one obtains
';;4 (A—l)vw+___{—;x(h’t~2x)+'-$(h’l},}l
(11)

2*u 'a 'a L2 A 3 2 4



Ta
But from {1) and (8), the field equations cen be written as

>
0, + Fx Tax t By Tay =0

’ i D
Tat %ﬁ“ +(A-|)—5—X-G‘2+ %7 Gy =0

The partiele G}"

etc. (12)

» © eiec, cen be found by successive differentistion
of this equation with respect to Z, Note thet T stc. need only be

eorrect $o zero order in {10) and (11).

¥ow from (2), (7), snd (10),
2 ? 2 ?2'
whme2p B, T —oap{Ave-TH ao)
Hence by differentiating (12) with respect to
and (7), one obtains

, and using (13), (2),

’ 22U,
2 i & =Av(

v | ) 2 DV
Bx t 3y ), T Tex— AV %x | (14)
from which (10) and {11) cen be written in the following form:
' A _ DU BN N A(Z-A)ézha.vz CEBRCA'A
-—-4?—2— ——-—(A |)(w+fay) 2 (gx ¥/, (15)
'?\h/ Ty 2w
2y = -"ox —ACN Y Fx,
2. PN 2 W
Tr = (A-0vw o+ BE IRV
22U
22

) 2w 1
"‘—‘)-I- ‘ay( hIVL?y)} (16)
2 2V - el D 12U BV
—-Vu - A (3450 + A5 S {we (3%

Substituting (15) into the results of differentiation of the def-

initions (2) and (7), one obtains equations similar to (13) but now
correct to second order ine

PTW AT R gt oW Yy 2 (gt AW
Y — - - TR 2 e R
| 2 ’
:F‘imz—AVw+

> (17)
%yi‘,’ - A€ A%Cb"v”—%—"}j*f— (A—I)-%,C w351
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Sinilarly, a second diffsrentistion of (2) a2nd (7) with respect
to Z gives

2 o Dy BV
—fFij ’”“%V(%}*?X) A?*W(T“ b)/)+ e [hV( ]

> 'Dxa/ T’*‘)a)
llﬁ(“ 9-’;)( = —A(t+A) VL(ﬁ?a‘;L ?Z, v —3; 1 A 2y 'Dx+ 'Py) (JSJ
CPRN
v BECAes ol vt (34425].

By successive partisl differentiation of the fleld equations (3)

(2), and (7) with respect to 2, and using (15) spd (16), one obtains,

correct to zerc order in & ,

23u 2w/
23;\; — (2A-1D V (2&.{.?_\/) , ———723:—_—.(\"’ A Y eax’
- (19)
>% - 2A) VW 2%u _ _a a1
2324 ’

53+ =V u+2671"q:?(-3§1‘§;) etc.

4

and

ox?y ’
“ y oF i w
—,_‘—r— T = Al+A vPw - G md) 775
: (20)
o = VBT ¢ 2V (303
M v
EJF T = A28+ V" (?u‘3) V*—a—‘i-zAV ] T 3;)

The derivatives (s), T.(s) ete. can now bs computed.

FProm (12) and using (2), (7), and (15), one obtains, correct to
secorid 6rder in e ,

| ’

— 6 = A B (a4 2 ( pyt W
. (21)
| 5
T e (£-A TG
Z‘“ 2 Y 2x3Y
+ A(A~l)e_1'a
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Similariyg by diffsrentiating (12) with respect 40 2, snd ueing

(17) and (21),

T e S IR
: 22

P 3% A [(AZR v TR A (WY ""“’},

Clo
Farther differentiation of (12) leads to
Lo — —ATW- —‘3%[(A$;+v‘x he’ 32 + AZs (W v 30|
ap (28)
[CAZh + V' XW T B ) + Ay (K "““’\]}
and the following expressions in zero order:
ZPT(W):—___ZAVQ.%TW; ,
| (24)
E'—(:a‘;“g 2A vow, :
; ned in re~

All the quantities in equation {(9) have now been obtained

quired form, A single step of substituting them into equation (9)

- gives the final result:
v3¥)+ Sy n |

ro 2 Ae"g.—l‘;v‘*wi— = (h*

<h
-\-4~h =57>[(A +y YRR+ A—m};(hv ]
:.'aw >+ Lz'aw/
(620 ) [(A T T B )AL, (T3]
+?mv" —2AR (gt 2 ) — 2A 2 u"rv“%*; }
(25)

For a flat plate with congbant thickness %3, h =1, 2€ = %, and
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squation (25) becomas

9

o = Vv gl s e new] viw, (26)

where 1 = 2p = loading per unit sres of the middls surfaee of the plate,
and D= _EY (27)
b2 (i=pv)
It 1s to bhe noted thet the differential squation defining w and
those defining u, v are independent of eamch cther,

When the fourth order terms in  are neglscted, (28) reduces %o

the familisr form

1 4 k
TV W (28)

- Boundary Conditiong
The boundery conditlons at the sdges of a plate should be specified

in consistenco with the order of spproximation adopted in the @ifferenw
tial equations of equilibrium, In a thick plate subjected to glven
foreces, either the siresses oi the displacements have preserihed vale
nes at svery point of the edgé. For example, if one edge of & thick.
’?late coincides with the surface x = constant, the boundary conditions
at that edge are
l.u=v=w =0 for clamped edges,
2. 6 =Ty, =Tx —0 for free sdges, and
3, Some mixed conditions for supported edges.
In passing the field equation to the limit of & thin plate,
these boundary conditions pass to their respsctive integrated forms,
In the first approximation, when the differential equation is of
fourth order, twu conditlons are rsquired at each sdes, Thess may be

gpecified by
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1, w= 2% =9 for clampsd edges,

2» w and bending moment = o for simply supported edges, and
3., Bending moment = o, Resultanﬁ regaction = o for free edges,
wh%ra‘tha bending moments and resuliant reaction are to be
calculated only up to zero order in the thickness of the
plate,
In the second approximation, the differential equation is of
slxth order, so thres conditions are required at esch edge. These

may be specified, for example, by

) -> 2,2 BDW ‘33“_: 2w g
L wso , —x=-3¢-AchvgYoe, Sp=0+DV =0

for a clamped sdge, X = constant,

L

2. w = 0, bending moment = o, twisting moment = o, for simply

supported edges,

3. Bending moment = twisting moment = vertlcal shear = o, for

free adgasg
while the quentities named in (3) are now to be calculated up to
gecond order ine,

For higher order approximationsg, the differential équationz'ara
of 8t11l higher order and more stringent specifications of boundary
canditipns are necespary,

Expliclt expressions of forces and moments can be easily obtained,
Oonsidér the edge x = constant, Acc;ording to our fundsmental assumpw
tioﬁ, the stresses are expandlble into power series in Z throughout

- the thickness of the plate., YNow

. reh
X.—:JEh o dZ M""‘J G2dE
. ~-ch ~¢€h (29)
G eh H €h
xv=".eh TX:} d2~ , X) ——J:.Gk Lx)(zdz .



1z,

Hance —
X = 2¢h geo)+ ?-_(%\‘\_ffx"_‘_ _____

M, — 2 (P ooy 2 (SN o,

3 " Tx3

------

£
I

2eh 755 () + HBEH_)T (o) +

(30)

£ 7 €h
Hy = 25 e“ Ty (o) + 2 (S.H)., Ty (0) 4+ - .. -

The quantitisn &, (0), O6x(od, OLco) stc. should be conw
sistently evalumted according to the order of approximastion used,
For second approximations (up to fourth order in e ) they afe given
by equations (2), (8), (17), (18), (20), (21), (22), and (23). They

reduce to the familier forms in the first approximation as follows:

3 . 1'
Hﬂ.: i%%.hl Tx(Q) = —D[,ax; + p 43;/] ’
3 ”
Qx = 25‘”@1(")* Z(BG-"\ Txa ——:—DV‘%\\T/ 3 (31)
2 3 s 2w
ny =3 —?(eh} Tﬂ](0> — D(\"D) _—a—x—?—}— 3
et
where D= —— t = 2enh = the thickness of the
12 (1~-u*)
‘ plate

The resuliant reaction referrsd to above in the conditions for
free edges leads to the wellwkmown Kirchhoff's condition for free
edges. (Refs. 9 or 10 or 11), In short, the statically squipollent

resultant shearing force on the edge x = const, is & distributed

lo24 of

. 3
Q. + PHy —:D{ > +(2__D)'aw }

* 2y %3 2xy (32)

and a concentrated force of magnitude Hxy at the corners.

Similar formulas for forces and momenis on other edges are

sa8lly obtained by coordinate transformations.
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,‘Balcu;gtiag of Stresses

The strssses in the plate dus to bending can be computsd by
| ,aarieé expansions similar to equation (30),
For the first spproximatlon, the formulas for the mexlmam

normal stresses are!

, ™ :
(0 )max = {;"x » ¢ G} )Mq’:‘ﬁ -_'—,C:__ g (333

The shearing stresses parallel to x- and y-axes are obtained

from
W
(Tuy dian = ~ G 3555 (34)

and the shearing stresses parmllsl %o the % -axls are obiained from
the fact that the shearing foreces (x and Qy are distributed along
the thickness of the plate following ths parabolic law, {(c¢f. equations
{18) and (30), and remembering tha’ we are concerned only with the

first approximation). As in the mse of beams of rectangular cross

_ gsaction,

3 : 3
(-Txi >max— 2h Gix N (’2}3 )wmx= ﬁQqux .

max

(35)

Plates of Varlable Thickness

R@turning'now to the plates of variable thickness, when the ex-
terﬁal forces are applied to the plate in the nature of air pressure,
1.8, when the traciions tp(x,y) are applied on the faces of the plate
in thg direction normal to the faces, the boundary coanditions bscome

n‘n(teh)= Epixy) ,

Tht‘(IE"\)r_—- o, | T“el(teh)z 0. (35
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whers n 1g the outer normal to the face of the plate smnd t, the
tangent to the face of the plate in tha n-x plane, and t, that in

_ the n~y plane, Since eh(x,y) is assumed to be small, the follow-

ing table of direction cosines is valids ( see Fip z.12:1)

X Y 2
n - &hy - €h, '_*[a-%z(h;w;s]
£, V- g 0 Tleh]
3
t, 0 V= % h} t {ehy]

whers the subscripts x and y denote partial differentiations., The

WEH gign in the lsst column applies to faces on the *+ side of

the z=axis respectively.

By the general tensor transformation of stress-components,

ri(ieh) = [ b - _62_1( h;"'h;)]z‘fh('teh) + el[h: c;’ltz.(i-eh)

+hy G (2en) + 2hahy Tee (b)) ] |

Talteh) = £ -8 hivhy)] ehe G (ten) £ ehe (1-§he) e, (2en) (37)
HO-Ehd)en, + (1- £h2yeh +
sha)ehy v (- Shiyeh |7, (reh),
Now, up to first order in ¢,

[N

e, = Ox y

6 =
? tl-tl

e, = Cxy (38)

So, correct to third order in € , the stress components Tteetc. on
the rightehand side of (37) can be replaced by o etc.

Expend € (teh)ete, into a power series in +eh, and adding and
subtracting the expanded form of egs. (37), to obtain boundsry conw

ditions on the faces of the plate similar to eqs. (5), one obtains
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o0 ¢ % hzg,@ € [ hZ Qo) + hy 3,000 ¥ 2, T (@] 4 - - -~

Feo) =P+ 6“""*“(/\ 2)p +€ [T 6700 + hy T (0)

F b g0e) & 2k T ] ¥

Taalo) = - ehaP + €h [""’E Tl;(}((’)"' ‘“x(‘\x’@) + (hx*’hy)’?x;(o):]'f"“‘
! ‘ hy+ h £
T2l = [ W+ Churhy) g 03]+ Zﬁ[ b et (o)

+\n‘hxd@)+».‘(hx+h,>c,9(o) b 0% (0) = Chichy + hh,) ) Ty (o) |+ -
(39)

and two similar expressioms for Tayand Tyy(0), ALL the stress compo-
nents in thess equations‘ara evaluated 8t 2=0, and primes denots
differentiations with respect to 2 , The definitions of Q> 3,,
are given by eqs. (7), (8).

Substituting (39) into (1), and recalling (8), one obtains

the equation of equilibrinm:

P

u ’ ’ -~ 2 L
ST T S L+ by 2k T R Kt Ly 9

(40)

J L &y J ’

where all the stress components are taken at Z=o. The terms 03" ete.
involved in this equation mst be ezpressed in terms of the derivatives
of (u,v,w) with respect to x and ¥ Up to the first order in € ,
equations (13) through (24) are true in this case, Hence one obtains

the dlfferential equations
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2 DN 2D
+235

9= D V'w + VDV w1t 237 v ¥ %>
L 2D B 2D 2w _ 2 2D 2w ?
(\ D) g'.a“-x- 'ay“ + ?7\' i 'ax'a;: ‘?\X?/V (41)
i kS \—b a2 v IRY 24w :_3_?_ ?_;_&/ 2P ?&_X a
+ ( \—U)“ vD-3p ( (324 (%7—) )]“'“-3*-;;, Py st X ‘ax‘g)J -

The boundary conditions 2t the edges of the plate are the same as

befors.
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§ I 13 Difiaran%ial fguations and Boundery Conditions in Obligus
Goordina%ea

Oblique coordinetes may be used to advantasge in %r@afing probe=
" lems of s?ept plates, In obligque coordinetes the coordinates of =
point P are given by distances measured parellel to the ¥ and X
sxes, respectively, from the Y and ¢ sxes. (Pig, 1.13:1),

Let x~y be & rectangilar coordinate system snd let the N =axis
be colncident with the y axls, and the § -axis be at an sngle ©
from the x-axis, 6 is sald to be positive when the | ~axis lies in
the first quadrant.

It 1s clear from the figure that the coordinate transformation

is gilven by the following equations

) ‘gcose 7 (l)
j — Y(-Q—ESing
from which
L dST— drdyt — dy e 4240 dr dy . (82

Because of the computational complication induced by an oblique
angle, a general survey of the swept plate problem is carried out
only in the first spproximation,

Fér flat plates of constant thickness t , equation (1,12328)

becomes, ln oblique coordinates,

%W ' ¢ o v L atw o S 3 W
?E‘* - 4sin® ,ai;ar(*-( 2+ 43in 9)557[‘ 4”“”93531 a‘(,r =k,(3)
where
' 3 cos*6
K = ; o) »
- 4 =the loed per unlt area of the plate , (a)
b_____ E L

V2 (v-uY)
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' “;%'h':ls can also bé written as
-~ I WP YZIC 1 VAP VR & VA S y

~ Bxpresaions for force«é and moments in terms of the partials of
W with respect to the ¥, coordinates can be obisined from equa~-
tdons (1.12:31) snd (1.12:32). Genersl expressions are very cumber-
aoh& in oblique coordinates., Forces and moments on ssctions Y = c.onﬁ‘.,
N = const, are expressed as follows:s
M

y ° bending moment per unit length mciing on sections

Y = constant.,

= - D {'a”w

Cos'® e zs\ne,a‘;,a,(+($me+vc059) \Z % (5)

M‘l = bending moment per unit length ascting on sections

1 = const.

]

- D ( %—;ﬁ’; + VY %—‘g—’;) whare n is the normal to the (8)

sschion YL = congd.

‘ . an y W A DN
-2 %( $in*B + ))Cose)?}—;— 2Sme;g-;,(+

"

2w ?

‘31(”

co5*0

H’gt = twisding moment per unit length acting on a section
T = eonst. in the directlion of the no:fmal to the aaciion,
= - R ( JSp - sme B (7)

H'Zt = fwisting moment per unit length acting on a section
?.: const, in the direction of the normal to the sectlon
= - "%%;_9—" ( Sin® 55 ?E'- + 'af?'( ) (3)
' Q‘Z = Verticel (in : direction) shearing fo:rce/pe;r unit length

“acting in a section { = const.
D 2w
cos3 @

P w ?w
g —38inB —22 Speey 1+ ( 1+ 2Sin e)a;z»( Sing ¥ Sp (9)
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Qq

2 V-erticé,l {(in 2 wdirection) shearing force per unlt length
acting in a section Y = const, ‘

= — D _gnpgZX ) 2 inp 2av_ 20w |

= - Cosie} Sing 353 4-(1+2s5m 9)?’;_;1—35 935'\:‘/( ?Y; ? _ (19)

The determinetion of the deflection surface of a plate now consisis
of in‘hegm‘biﬁg squation (3) with appropriate boundary conditions,
These condltlions are swmarized as follows:

(1) Built-in edge: w and 2¥ must be zero, If the edge T=0

is built-in, then () =0, (%“S‘"e%’%’)g:f‘? (11)

(2) Simply-supported edge: w 2nd the bending moment acting on
the edge must be zero,

(3) Fres edge: The bending moment M, and the reaction Qnﬂ—?—?‘t—
along the adgs must wanish, The twisting moment W, must
also vanish at the sharp corner i1f that corner is unsupported.
Proper expressions for ™M, are to be chosen from (5) or (6)
on edges t = const, or Y = consi. respectively. For the
second condition on ‘the reaction, the results are!

On the edge corresponding t0 (—o

2

2w
{?;;’ —55;!\9_&2 ?’T* (2+sine -"“59) oz‘m(
__sing[\i-(\~)J>Co$}-9]?_;§;_? === O (12)

g::ov
‘and on the edge corresponding to »(= b

i-«smel\a»(\-u)cos e] 34-(z+.<;ufn‘e L cos*g) 'a,‘,a

3
2w B3y
2% 'bvr '31(3

§70

=O.

—35sin® §
N=b

(13)
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1.2 DIBECT METHODS OF SOLUTION

1,21 Equivalence Between s Differential System and s Varlational
Problem

A plate problem can usually be replaced by an equivalent varia-
tlonal problem. This squivalence is of great importance becauss
direct methods of solving the variational problems sometimes offer
powerful means to obtain useful approximate solutions., Conversely,
& plate problem cen be formulated according to the minimum energy
theorsms, -hichcan be derived from the varlation of strain energy
of an elastic body either through varlation in displacenentis or
through varlation in the stress tensor., From the former procedure
there results the theorem éf minimam potential energy (Ref. 8,3 V,
p. 66, or Ref, 19, $64) that "of all displacements satisfying given
boundary conditions, those that satlsfy the squillibrium conditions

minimize the potential energy
Vo= U i Fowav - ff Fouds, (1)
T

where the surface integral is taeken over that portion of the boundary

on which the saurface forces T, are prescribed,” In this expressionl

18 the strain energy stored in the plate

Ut ffesn o “

and F; is the body force vector and lﬁ_the vector of surface force

acting on an elementbof surface with an outer normal n; . w; 1s, as
before, the displacement vector, and €, Pﬁ the strain and stress
$ensor respectively. It should be emphasized that the displacemmsntis

mast satisfy the boundary conditions on that poriion of the surface
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where the displacements ere preseribed, andl nesd to satisfy the same

only. For example, ths "aatural" boundary conditions on free edges
are satisfied as a consequence of this theorem, and need not be ful-
filled in the choice of w

| In Xirchhoff's theory (Sse Ref. 2), he starts by assuming an ex-
pression for total strain energy of the bent plste which contains
only terms depending on the saction of bending and twisting momenis,
ag follows:

'awt

UQW—szf {("’ﬁi‘: + ;\;*)1‘ 2(t- “’[w, ab ks ]gd"‘*f > (3)

where the integration 1s extended over the entire region R of the
mid-surface of the plats, The poientisl energy of the extsrnal forces

and moments are given by the work funciion

W(w)-}j 9w dx a,_j M, 2 ds +j(@n ety v ds (4)

where the line integral is integrated in the positive sense (sc that n
is to s as the x is to the y axis) along the boundsry curve L of the
region R, "n" is the outer normal to the boundary curve 1 of R, and &
the length of the boundery curve along the boundary L.

The problem is then to find a unique funection w, which minimizes

the funciion

Viw) = Uy) — X (w) (5)

with the suxiliary condition of continuity on w and in conformity
with the conditions of support at the edges L of the plate.
A necessary condition that V{(w) reachss a minimum is that the

first variation § V() vanishes. This leads to the field equation



22,

1

4 _* .
V W= D (6)
and the boundary conditions
-~ }1

" % 3 l- e i
Either Sw--0 or D{(1-») %&c%i\i‘z%‘i)&f— - ces2® 3*""]‘(’

> 3 . E C
~ Cos e(%;’ﬂg;%‘)—sme(—a—;s%;;j)] )

Y
and $5~=0 or o ™ ‘
en D[(-0) Y coster S\'nze% +SiBZY v V‘w]+‘Mn==o

Y

where © 1s the angle between the ouber normel %o the boundary and the
z=axlg, N and § are as usual ths outer normsl and length of the bound-
ary curve, These results agree with those of Poisson-Love thsory,
Therefore, the form of the strain energy expression (3) is compatible
with the flrst approximation of the procedure of Sectlon 1.1,

In such & formulation of the fundsmentel field squatlon and
boundary condlitions, however, one ls confronted with the problém of
fornlng a proper expression for the poteniiael energy %o begin with.
The expression (3) is found satisfectory as & first approximstion, dbut
what are the proper expressions of U in higher order approximations?
Faf s satisfactory theory one must be sbls to darive aystema%icaily
the proper expressions for straln energy of a bent plate to any order‘
of approximetion without imposing arbitrary mssumptions regarding to
the deformaiioﬁ of the plate. In all events it seems that this probe
lem i as cowplicafed and is of the same naturs as the problem of
the last chapter,

From another point of view, supyose thet a differeﬁtial system
for the deformation of & plate 1s obtained by a certain process of

reasoning, Bub instead of proceeding as usual from the general solution
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to *thé jpai"ti:c\ﬂ,ar gsolution, which ofttimes is either imprectical
or lmposeible, one wishes to state the problem in & varistional
. form so that useful approximate solutions can be obiained by direct
methods, For ‘exampls a diffar@nti&l systen (6) and (7) can e
aquivalsan't 'fo the problem of finding & solution of the equation
SV =0 , where V is gilven by (5), (3), (4), |

In general, a differentiel system that consiste of & differ-
entlal equation D(Ww) 0 over & ragio:ﬁ R a2nd boundary condiiions
Bi(w) 0 on the bamdarj carve L, {i=1,2.---), cen be represented

as & problem to find a function w, so that

”R D(w)dwdxdy + ZL"J,_ Bi(w) d;w c?lS = 0 8)

for arbitrary S v,

If an integral ”é E(W)dxdy 'can be found of which the
vanishing of the first variztion leads to the ébove equation (8),
then (8) can be written as $ U E(W)dx dy =0 . Such an inte-
gral, in generél, has a simple physical meaning, as, for example, an
~ energy integral. But when one starts from a given differential syg.
tem, it is not at all evident that such an 1ntegréﬂ. can be found
easily., The formulation of the equivalent variational equation as
(8) tharafore avoids this difficulty,

Based on convergénce cansidar&tions, there is another reason for
ndt attaching too much lmportance on finding the energy integral., In
direct methods one approaches the true solution w by forming a se-

( Na= 1,8, 3-...—)‘ and by passing

" quence of app:roxim@ting functions - W,

| N td infinity to get the required solution. But sometimes when an

approximating sequence Wy, 1s found so that the integral _U& E (W, )dx dy
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v réadily donvérgeﬁ te the true minimum value, ths function \w, 1tself,
or its derivstive, may not be convergent. In genersl, the converge
ence of v/, or its derivetives 1s better if the order of the deriv-
atives of w occuring in the integrend Blw) is higher, TFor sxample,
Gmuﬁant remerked (Ref, 14) that the spactaeﬁlar success of the
direct procedurs of W. RBltz wes dus to & fortunste choice of the
problem of the vibration of plates for his 1llustration rather than
the seemingly easler problems of the membrane, The convergence csn
be lmproved by adding to the originsl minimizing integrel expressions
whlch conslst of higher order derivatives of w and which vanish for
the trus sclution, Tor example, the plate problem can be formulated

86 ag to find 2 function w which minimizes the funciionsl
‘(o) W oA [ (vt - 2y axd (9)
VG = U=V + & | (v*er - 5) dxdy |

where U and W are given by (3) and (4) respectively and "k% is sny
posiilve constaﬁt, Such edditional terms make Vlw) more sensitive
to variations of w without changing the true solution. In other
words, the minimizingkseqnﬁnce attached to such a "gensitiged" fune-
tional will be forced to be better as reogards convergence, However,
this ”s#nsitization” certainly spoils the physical meaning of the
original intsgral, ,
Eéuaiion (8) is not the only way to represent a differential
system D(W)=0 in a2 region Rand B (wW)=0, (i=l.2,----)

on the boundary L of B, It can be as well represented as

J/R iD’-(w) dx dy ‘\-Zi_]‘- B:(w) d =0 (10)
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1f £hﬂ fuﬁctions Dw,), Biulwy, (¢ =1.2 ----) where
is an approximating funeilonal sequence of w, be interprsied as
_error functions, then the problem is équivalant to finding a se-

quence W] 80 that the square error
jJR D (w,) dxdy + ZZ_}LB;‘(WN)ds (11)

be minimized,

The classlcal method of solving a variationzl prodlem dy fqrmu
ing its Huler's equation and then solving it with appropriate bound-
a7y conditions is an indirect method, The alternative idea of 1§eking
for a gsingle sequence of functions which solves the given minimal
prodlem is called the direct method., Mirst conceived‘by Ja Bernoulli
and later by Riemann (Ref, 15), it was developed by the fundemental
work of Hilbert (Ref, 16). Tts utilization to numeriesl celcalations
of the solutions was independently envisaged by Lord Rayleigh (Ref, 5)
and Walther Ritz (Ref, 17, 18). Since then numercus applications and
improvements have been made by meny authors., (See Refs, 10, 11, and
19).

Stated in general terms, the problem is the following: Given
an intégral expression V(Y] over a given domain R of the indapenden%
variables, whose boundary satisfies all the desired continuity assump—
tions§ to f£ind e function Y=w for which V[w]=d , the lower
1imit of \/LY]for the totality of all ¥s which satisfy the contimuity
conditions and boundary conditions,

':t 1svassumed that such a lower limit exists, and that the

integrand satisfies all the continuity and regularity conditions,
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The assumption on the dsfinability impliess the existence of a so-

celled minimal sequence Y, , ¢,, ¢, ----- of allowable functions,
for which
Lim V(] —=d (12)
n-y 00

The fundsmentsl concevntion of all dlrect methnds is such that
sach ¥, be obtained from n dafinité slementary ninimal problem, =and
through the passing to the limlt WN-—>2 to get the required solution
w of the given minimsl problem. These two principal steps, the con-
struction of the minimal sequence on the dasis of common minimal

problems and the passing to the limii, characterize the direct methods.
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$ 1.22 RAYLRIGH-RITZ METHOD AND ITS ALLIED METHODS

The Raylelgh-Rltz method consists in narrowing down the choicoe
of ¢ (See the last paragraph of §I,21) into & smaller class of
functions., It 18 assumed that ¥ can be written as functions that
satisfy the boundary condltions znd invilvs a number of peremetors,
TLess faraseters are then determliaed sou 29 w0 nake VIP]a minip:m,
The appreximzting funcblons mast satisfy the iuedary condliions,
but In genersl do not the differential equations,

The deflectlon w of an elastlc piate minimlzes the poteniisal
energy integral (1.21:5). In order to obtaln an approximate sclu-
tion, one essumes that w can be represented with sofficlent accuracy

by & series of the form

W =£‘_ CLpilx,y) (1)

i=t
whare i‘f;} is so chosen thet VW, satisfies the same continuity conditions
of w and boundary conditions on the edges where displacements are pre—
seribed. If (1) is inserted for w into the integrsl V, equation

(1.21:5), the latter becomes a quadratic function of the parameters

¢, (i=1,2,----n) » The minimizing conditions
2Vn ;
> — 0 (i=1, 2, N) (2)

provide, thersfore, N lineer equations to determine the ¥ unknown

constants ¢; . The approximate deflection surface v, is thus deter-
mined. This is the Rayleigh-Ritz procedure (Refs. 5, 17, 18).
Galerkin's method (Ref. 20) is more clossly related %o equation

(1.21:8), If w, satisfies 8ll the boundery conditions Bi(w), i=v2,---
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then the last member of (1,21:8) vanishes sutomatically when wy

is substituted into it, which now bscones
J| Do SW dxay =0 (3)
R

This cannot de satisfled by arbitrary werintions 3w, otherwiss Wy
reuld he mn exect solution, The conwsi:nts ¢ la (L) ecan, howeror,
Yo 00 ehousa thet (D) i satisfied forr o gst of i values of Sw,
%.;\0; {(%,y)s where i«p;(x,y)?’ it=1,2--N Bre the coordinete functions of
Wy + 28 defined by squetion (1), and $%:t are positive constants,
If now, ¥ bocomss infinite and the functions § @ Lx,yﬂ{ form &

completa system of functions, then the eet of all relations

_U DLW Y, dxdy=10, (i=1,2 - nN) (4)
R

becomes squivalent to the relation (3).

A generallzatlon dus vo L, V. Kantorovitch (Ref. 21) consists
in replacing the constants <. by unknown functions of one veristle
¢ (x> , for exemple, and an application of the minimum principle
leada to a system of ordinary differential equatio.ns for the functions
Cilx)

The collocation method of Biszeno and Koch (Refs. 22, 23) consiste
in specifying thet DP(%)be equal to zero ai N points of the region, snd

that of Courant (Ref. 24) in demanding that

S\)J(x,y)._____j | in X , (=1, 2 "™N) ()

0 elsawhere in R ,

where R; (i=1,2--n}is a subdivision of the entire region R.
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The H'aqu&tiéh@
‘J/Q D(Nﬂ)dxdy-————O ’ (L=I,Z----N) {,6)

are then just snough to determine the constanis c;.
The method of least squares (Refs. 26, 27, and 28), is related
t0 eq, (1,21:10)., The constants ¢: are to be determined by requiring

that the mesn square error be as smell as possidle. That is,

JJ (Desn]” drdy — min (7)
Hence thers are N equations

H D(wﬂ)'i;f—é—‘,”—“)— dxdy =0, ({=1,2-.-N) (8)
R v

t0 determine the constants ¢; .

These methods, al%fnough sometimes easier to apply, are narrover
in scope than the original Reyleigh~-Ritz method inasmuch as all the
boundary cendi_tions Biw) should be satisfied by W,; while in the Ray-
leigh~-Ritz method, which starts from the original energy integral,
only rigid" boundary conditions (in contrast %o the ‘*natuml“ bound-
ary conditions) mre required to be satisfied by w, . In cantilever
‘ platea,:it is the "natural® boundary conditions which cause great
diffienlty.,

ALl the methods outlined above are characterized by the fact that
the potentialvenergy ¥V is approached from gbove by the approximating
functions v, g ¢;¥. . In other words, if V(wpis the value of

V when the true solution w is re;}laced by wy» then

V W) 2V w), (9)
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This follows directly from the general minimum energy theorem.
Using Green's formula, it can be verified directly, end one obtains

the following result:
Vw) = Vv + Ulgy) (10)

where U is the integral (1,21:3) when w is substitutsd hy Ew

bl

and €y is the error function

En(x,7) = Wy — Wylx.y) | (11)

U(s,) 18 the sirain energy stored in a plate when it is subjected to
a fictitious deflection W = €4(x.y») and 1s of course a positive

qu amtit:y .
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1,2% METHODS OF RELARATION OF BOUNDARY CONDITIONS

Zquation (1,21:9) sugeesis immediately another method to obiain
an approximate solution for w, As befors, mssume that w cen be repre-

sented by an appioaimating series

]

Wy == ¥ b9 ) (N =1 2, 3..... ) (1)

Lo
Lt

here b are arkuosn constants and  gity), (i=1,2:---) the so-
called coordinate functions, satisfying the field equation (1.21:5).
Hence W, 1s a solution of the field eguation =nd the first paxy of
equation (1.21:8) vanishes, For the plete problem, thers remains an

squation in the form of a line integral

2w
JLBl(W) 8 Fnds + JL B.lw) §W ds = 0 | (2)
whers 5 N .
= Dle-w)eose T + sinze 3 + si'o v r V] My
B,(w) when the edge is free to rotate
or
— PL 2V when the corresponding edge is
2 clamped
3 ? W (3)
201 . > v
— DL("”)%S ysinze (SN - S ) — COS ze————.ax.a),f
“cese VEY —sing v 35 1 (o 25
B.(W) . ' when the edge 1s free %o displace
ar
_P W when the corresponding edge 1s supported
L or clamped

(4)

where P and L are characteristic dimensions of force and length respec-
tively.

When (1) is substituted for w intc (2), this equation cannot be
satisfied unless w 1s an exect solution, However, the coefficients

{b; } A = ', 2,3 ----- can be determined so that this equation is
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best approximéﬁely satiefied, This method was sugegesied by Courant
(Ref, 15) and Treffts (Ref. 29) who derived it from the condition of

least squars error on the boundary, i.e., In specifying pariicularly

W = B, (W) S X =8,(w) (5)

3

in equation (2) sbowve. Thon the left hand side of (2) is a quadratic
function in ths constanss {b{, i=1,62,.--..n , Regarding this as

a mean square arror, an ordinary maximaweaninimum process lsads to a

set of ¥ linear simultaneous equations:
I B Gwy) Bi(9) ds 4 jLBz(WN) Bo(9)dSmm0 C(imi,2,---) (6)
L

from which the ¥ unlmown constants {bi} can be solved.

3y assigning to $w and éE?% sultable forms, many approximating
procedures can be formulated, Every method enumeratsd in the last
part of section (I1.22) has & counter part in the present cass. It is
needless to stats them individually in detail, For example, an analogy

to Galerkin's method can be obtained by taking

2 9; (x.w . . .
§W=3‘(K,7) > é ‘%“n/ _ s'an Y C« =1, L'."'.N). (7)
) > )

Collocation method by taking Sw and 3 %‘%’ to be unlty at N points and
zeTo everywhere else; Coursni's modified colloecmtion method, by dive

1ding the boundary into N parts, and consider SW and $2Y 15 be unity

in one part o tlime, and zsro in others; and so on, Ths praciical
valus of sach depsnds on the nature of the partieanlar problem.
For Dirichlet's problems, the msthod of rslaxation of boundary

conditions always approaches the minimizing iategral from bglow, that
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is, if the funciional L(¥) i3 bsing minimized, then
I ?approx-) < T (Y¥re) for any X. (8)
Hence it 19 a trus counterpart of the Rasyleigh-Ritz procedurs,

which approaches V from sbove. In the plate problems the situation

is difforent. Let us sgeln define an error funeition &£.by
En o= W (oY) vy Xy ) _ (9)
Thén
VW)=V (Wy* 84) — Viw)+U (£

2 , = 2's 7w iy
+ off | T G0 (5% 55 + 5 * (10)

AV J 2¢n j 2
x37 6‘137] fD dXd)’— rqﬂ?‘hds (G )&Nds

where Vw)ls given by (1.21:5) and UEWis given by (1.21:3),
Transforming the integrals on the right hand side of (10) by
Green's formala and integreting vy paris, end remexbering thab
v*w, — —%- =0 in R,

one obtalns:

V () — V0 o U e+ [ B o B *fe(wuusﬂds (11)

The last two line integrals are aminimized in the process of determin-
ing the vunimown cons;i'.a.nts \bit of w.s but, in general, they do aot
vanish, If all the edges are clamped, then ths true solution w and
33\;1 will have the boundary valuss zero, and the last integrals be
come identical with eq. (6) or corresponding to the analogy to Gader-
kin's solution, and they vanish by the process of determiningy .

In this case, the tendency of approaching \V from below is certain,
However, for plates with frss edges, the true values of w and 2 ?n are

unknown, and the determinetlion of the sign and megnitude of these inte-

.grels are uncertain,
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11, ABBOELASTI( PROBLEAS OF HIGH SPEED AIRPLANES

2,1 Intreduction

In the fisld of aeroolastlcldy concerned with thin swept wings
of high aspeed sirplanss, %he seronautlical snginssr 1s encountering s
naw phimomenon: the transient nature of gerodynamic ceefflclenta.

A surersonic airplane mast reach 1ts full sussd or recover from its
fuli speed to landing epeed in a relatlvely short $lme. Thus & very
important part of the flight 1s essentially accelerating or deceler-
ating. Now 11 the transonic region, the effect of compressibility
ie particulserly pronounced, and the nature of zerodynamic response
to an oscillating wing changes 1n 2 rapid and subtlse mannsi; from

a phass lag in the subsonic case to a phase lead in the supersonic
case, The aeroslastic phenomena in this important reglon can dbe
ptundied only if the transient naturs of the aerndymnamic coefficienia
are taken into account, If the eggine power is properly scheduled,
go that from porformance computationz the veloelty of flight ss =
function of time 1s known, then all the cnefficiants can be regarded
es kmown functions of time, A particularly important case is thet
the transient perturbatlions are small, i.e., that the part of a co-
sfficient which varies with time 19 small compared to the coefficient
itself, In this case the computation is relatively simple.

This report treata the basic mathemmtical development of the
problem. In aeroelasticity the determination of physicsl constants
involved in the problem might be & more difficult task, But granting
that these coefficients are known, there ls still a nsed for a system—~

etic method of attack., At present it seeme that no work has been
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publighed in this fleld: on problems such as the eoffect of transient
perturbations on flutter, dynamic stabiilty, etc.

This transient perturbation theory includes the ordinary small
perturbation theory as a partleular case, The perturbation theory
exténds the meaning of 2 perticular solution vhich is nsually obisined
for & simplified picturs of the amcturl case., By ths fact that thea
golution of = boundary value prohlem depends continuonsly on the para-
meters of the differential system , 1% is natursl to look for the
posslibility of treating provlems in which the variation of parameters
from the solved case is infinitesimal, Xor example in the later part
of thls report it is often necessary to consiruct e sequsance of
orthogonal functions with preassigned boundary conditions. This cen
usually be done by findiag the natural modes of fres vibrating elastic
bodies., If ¥ is the m™ mode of a vibrating string, or bar, or meme
brane, or plate, with density dlstridution £ , then
{ Constant if m=n,

[ 2% ¥, doe =

0 if m¢n.
{4&\ cen usually be determined when ¢ 1s a constant £ . The per-
turbation theory then gives {J@} when 9 is slightly different from
S. « This problem has bsen treated by Lord Rayleigh (Ref. 5, p. 113),
H. Schmidt (Ref. 39, Teil 11, Kap. 3, §6) and W, Meyer zur Capellen
(Ref. 40,)
2.2 A General Solution

Agpume that the dynamical system can be described with sufficient
accurécy by n generalized coordinates q.,gﬁ...an » 1 being finite.

The equilibrium configuration is taken as ( 0,0.0:--0), If the system
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will nrodace

is conservative, the set of displacements 9,9 9,

forces Q,,Q, -~ Q, that are derlvatives of the potential energy
‘of the system, In the vicinity of the equilibrium position they

can be sxpressed by the linesr expressions

P U - n ‘E ‘
QL - 29, - Z:a i IiJ
whees £=02--- M gud kﬁg= Qc + M the other hand, 1la a non-~

conservative system, the forces may still depend on the coordinates,
and, ln the neighbourhood of the equilibrium position, are given dy
linear functions of coordinates, but in this case kg #'kji » In
reroelasticlty, the aerodynamic forces are usually linear fanctions

of the velocity and acceleration components in the neighbourhood of
the equilibrium position., The part due to acceleration, the apparent-
mags forces, which have their origin in the inertia of the surrounding
alr, can be included in the inertia forces. The part due %o velocity

can be written as
Q= - 2 %LJ 3

the dot indicating diffesrentistion with respect to time. To this may
be added a dlsturbing force )ﬁ due to zusi or control movements,

Hence in general

Q‘=-Z|k,'JiJ“JZ‘,GUaJ +VL . (.;=|,z,---n), (l)
J= B

Substituting into Legrange's equations, one obtains the equations

of motion

LA “ - » B - —',1 ,_ g +}) ("‘='J2’...n)-
Zoayh =- L by &

=\ J'-—

(2)
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ay, i, @¢ ana )/,; are funciions of airplane geometry and speed
of flight, they are esither constants or continuous functions of time,

Yhen the coefficlents are all constants, the classical approach
is to aspume g¢; = q;e;“t » subutitute into sqs. (2) snd deter-
mine % from the determinantal squation a(w)=o, The constants ¢
ars then determlansd Tfrom the ialtial condltions.

For stebility problems, an investigation of the nature of ths
roots of the determinantal equation will be enough to determine the
stability characteristics, ¥For problems of disturbed motion, such
as rolling power, controllability, maneuver, divergence, gust loading
problems and so on, 1t is the motion following the disturbznee that
mxst be computed. In such cases it is simpler 3o take care of the
initial conditions at the start, This can be done either by the folw
lowing method or by en spplication of operational caleulus (Ref., 41,
42).

When the coefficients are functions of time, ths above method
must be modified, It is simpler to reduce eq. (2) into & first-order

system, UWrlte

x|-3|‘xz-é‘, }.3=iz’----’¢;n=in‘ (3)

then eq. (2) reduces into the form

an . n
Z b",j [.“)LJ' = Z CCJ' (Q "j -+ g;. (t) (4)
=1 )=t :

J
The set of equations (4) 1s expressible as the single matrix equation

[bgliich = [eglixd + {3} (4)s
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or when no ambiguity can result, sven mors concisely as

LX=CX+§. {4)1

If the matrix b is non-singular, Ibl#0 , so that b~ exists,

then eq. (4b) can be premaltiplied by b’ to give

X\ = AX+ B (5)e

If the matrix b is singular, of rank r, then (4 ) wlll be reduc-
ible to =z system of r independent equations of the above form and 2n-r
purely algebraic relations cénnecting the 2n variables, These an-r
linsar relations c¢an be used o0 sliminste 2n-r of the variables x,
from the remaining squations of the system,

Therefors 1t 13 assumed that the dlfferential system ig

X = A®YX + But)
(5)
X (t=0) = KXo
whers X 1s a column matrix of the veriables of motion, X, the initial
conditions, Blt) a column matrix representing the disturbing forces
and Al) a square matrix consists of aerodynamic and inertia and
stiffness coefficients.

The classical theory deals with the case when A and B are matrices
of constants, The fundamental problem of this gection 1s the case when
A and B are functions of time. Speciel attention 1s pald to the effect
of a.small change in the elements of A on the final solution. 1In
other words, if X(Alt) is é solution of equation (5), we look for the

golution of the egquation

X = (A+SAIX+ B, X (t=e) = X,
(6)
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as a perlurbatlon to X ( Alt).
The geaeral solutlon of (5) 1s obtained as follows, Integrating

‘eq., (B) fromotot , one obtains

X ()= j:Acr))((t) dt -+ J: Beeddr + X, (7)
Let .
f‘t’ = L gcrde + Ko | (8)
Then (7) can be written es
€
fir= X (b - g AttyX(tlde. (9)

This is the equation of motion following the disturbence. It
is a wellwknown matrix Volterra integral equation of ths second kind,
Since Al®) 13, by naturs of the problem, a matriz valued continuoas
function of time, the existence of & unique continuous solution 1is
aspured. As a well-known result we can wrlte down the solution explic-

1tly at once:
T

(5]

' + wa ot T
XIAH:) = j-ct) + J Atc)fetdde + Z,jAtt)dfi‘-- | Atre) fere ) dT  (10)

c=l Yo

At this point a slight generalization may be introduced. The
kernel A(®), os T ¢ t, (t is the point of time in question), can always
he‘ expressed as a power series in T , But sometimes 1t is more con~
venient to express A as a function of both t andt, for example, as
e " ®. Thie case occurs in problems of determining the disturbed
motlon at the end of an accelsrating period of the airplane. We may
then write A(4T) , But %o distingulsh from the former case let it

be denoted by Kt %), reserving the notation A(t) to functions of T only,
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Zquation (9) then corresponds to

t
JC(.n:x(t)—j Kct,©) XiT)de (11)

0

where Kit,t) is o fixed sqaare matrix of continuous functisns of two
real variables ¢ and T in the triangle 3 os Tt &b, fcx) 1s a
flxed column matrilzx of continuous functions of + in o<tsb , dsfined
by oq. (8); and X is, of course, also matric valued.

The unigue continuous solution of (11) is given by the formula

(Ref. 43)
t
X )= feor + .i e o) femde (129
*2 *3 . )
where the resolvent kernel 4 (t, ®) = K(t, T2+ K gut K 5,0+ (13)

1s a matric valued contlnuous function of ¢+ and ¢ in T, with the fol-

lowing notations:

6
K*?¢s,er = J Ket, 51 K3, Tyd§
T

3 + *2 -
Koen S¢ i (14)

. . ‘
K*mu;,t) = L: K (t§) K* (5, ) a3

. .

From the gensral property of the Volterrs integral equation of
the second kind, RILT) is & continuous function of % andt; the series
K+ K*s K* e on oo converges uniformly and absolutely for any con-
tinuous kernel K (%, 7).

From the general solﬁtione (10) and {2), it follows that for amy
dynemical system with a finlte degree of freedom, the solution is a
continuous function of the initial conditions and of the coefficients
of the dlfferentisl equations, provided that the coefficisnts are con-
tinuous functions of time, This proves the statement quoted in the

introduction, § 2.1,
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2,3 A Generalized Taylor's Series

The following is & shorter derivation of a serles expansion of
ALD, Michai (Refs. 31, 44, and 45) in abstract space,

- Let us define a particular Banach space B, that is, a compleis
normed lineer snace closed undsr multiplicetlion by real or complex
auzbers, which forms a normed linsar ring, The elenents Kite,T) of
E are matric valued continuous functicns of twe real wveriables t and
T in the domain T s T st&b | The gddition of elements and malti-
plication by nuwbers areo defined in the ususl way, and the norm of
Kilt,T) 4g defined by any of the equivslent definitions of the norm of

& matrix, The ring multiplication is defined by the following:

t
K,* K. = j K (t3)K:(5,2)d5 (K, % & E) . (1)
T

In order %0 simplify the notation for an abatract series, fn eiamant I
is added to B, which has the propertiess |Ill=1, K}I "1*’i:"Kt’I)*Kz’K'*(IfK‘)J
K+ I =ItKe, (K+IWK =Kt (THK), (K+ DI¥Ka =K % Ky + I % Ks,  gng
k,* (1 +K,)=K,+I +K *K:s ; for any ¥ , K, in E, Let this new space
be called I, |

The composition multiplication defined above is in general not
permuteble, thet is, K, *K: # Ka ®*K, , That B’ is really a normed
linear ring can be saslly verified. Yor example, the associstive law
of composition‘mulfiplication is verified in the next section, & £.4.
As a consequence of the aésociative law

(Ki* Kad¥ Ky = K, ® (K% K3), (2)

the contimued multiplication of a finite number of elementz in B’ ig
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uniquely defined. In particenlar, all the powers of X ars uniguely
defined, Similarly, terms like K, *'s K *k,"" have unique inter-
pretations,

Now let us consider a power series of X in E', From a general
property of the Volierra resolvent kernel, the series I + K + K™+ e
converges absolutely in E . Denote the sum by L (KI® T 44 g0
nify the functional dependence of Q (£,%) on ths kernel X, and so

obiain the formula
I +K+ KA, K™ 225, O (Kot in E, (any X in B), (13)

In other words, (L (KIt,T) is an entire functional of X in &',

From this 1t follows that

3 abs. . ’,
I+ CA+8)+ (A48)* 4 (A48) " %... — () (AtBIET) in E
(any 4,B in E).

Evidently the fcllowing series, obtained by expanding all the brackets
above,

T + A+B 4 A¥3+ A%B + B*A + BB + A3+ A% g + A*BXA 40

also converges absolutely in E’ for eny A end B in E.
But an absolutely convergent series in E/ can be rearrangsd wlthe

out changing 1ts sun, Now rearrange the above series intc a doudble

series:
.I"'A+ A'A‘Z__r A*3+
+ (I + 4+ A"l.‘..-,--)#ﬁ*(l+A1'I'\*2'Q-A*3+..'.)

* , x3
+ (I +A d AT .. L grBr(LtAY AT )aBxe(I+A+ AT+

sun by rows and obtain the second formula
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Q (a+8ls, 0= QAItLe + QaraBx Qeay+ QA+ B »LAEB * QA

P for any A, B in B, Qin B’ (4)
This is the fundamental expansicn theorem, It means that the

functional () (A+81¢,%)  with kernel A5,T)+ B(tt)  can be expanded

into a generalized Tavlor's serlies in "poware! of B(fo) with coef-

ficients" the functionals Q (A[t,T).

Apply thia result to the matrie integral squation
J( X{t) ~ Jt Kt T)
t) = X({ (¢, 7 (Tldt 2
tt) =) A A (2..:2‘.21.3.)})1,‘,3

which has the unigue continuous solubion

t
X LRIEY = F0 T [T g it T) feo) at (2.2:12),,

where k(t.7) = Kit,T)+ K“(t,t) + K*? (t,©o+ - (9~3=13)bm
Recgll that SL (KI1t,T) 413 I plus a continuous function of ¢, Tin T,

which is the sum of an absclutely convergenit series with the genersl

term a continuous funection of t,7in T, sc it can be postmultiplied

by a column metrix §(T) and integrated from o to t term-by~term. Thus

the solution (2,2:12) of the integral eq. (2.,2:11) can be written as
X (kit)= QIK)#§

and therefore, following (4),
xck}sklt) = Q(K+EKI*§
= [ Qiky+ Qe EKxQK) + » 00 ] »F
= (K> + S)(K)% SKox X)) + S Qlk) %K a oo QUKRIREK ¥ X(K)
This expansion is valid for all continuous §K(t,t) in T: osT st sbh.

Further explanstion is given in the next Section, (3‘2.4.
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2,4 Elementary Derlvatlon of the Serles Expansion of Sclutions

The resulis of the presceding section will be derived asgein in
glementery way without using the noticn of sbstract space,

In section 2.2, the composition powers of K¢, T) are defined
by equations (2,2:14). A generalizetion of this defirition %o products
of two functions K,(t,©) and K:u% ig as follows!

K, * Kz(f»f)=5c Ki €ty 50 K, (3,0 dy ‘ (1)

T
The star product is a convenient shorthand for writing integrals.
Kilt,t) and Katt;7) are square matrices of continuous functions of
two variables t and T in the d.omain T: o< T <t £b s each
matrix in particular may consgist of a single function. The formal
work in the following is the same whether one thinks of X as = single
continuous funciion or a square mairix of continuous functions,

Now for thres funcilons K, (t,7), Ky(t,T) and K, (¢, T » 1t
can be verified that

K4 Ka® K3) = (K, % K ) * Ky | (2)

For 161’: L(t’-c)= K‘*Kg M(t’,’!): Kz*Kii

?

Then :
def. (¢t

<K.*Kz)*K3=J L(t,3) Ky (§,T)d}
T

t
=St4§5 K, %, 1) KaCq, %D Ks (g, ©) ‘“Z
<

3
which, by Dirlchlet!s lemma on the

change of order of integration,

!

t 1
S d'lJ K (8, MK, §) Ky (5, T) dg
T

T

= Je K,(t,~1)M(~1,t) dn = K, * (Ky*K3),
T
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A8 a consequence there is no amdbigulty in writing the star

product of three continucus funetions K,, X Ka as  K,* Ky * K,

9

‘which can be interpreted elther as K*( Ky #1G) or (K *K.)*Kj,

In particular, 1f K, = Ky =Kz, then K.ﬂ 1g uniquely defined =as

Ky Ky+ K, » Similer definitions apply to higher powers ol K, ,
¥ ] A
and to terms like K, Ca K,”.* K: " - 'The star product 18, in

gensral, nonwcommutaiive, 1.8, K * Ko #F Ko * K,
For convenience, let us define a function I, which has the value
unity regarded as » function of (t, ), but its star multiplication

with other functlons is definsd by the special rule
I *X = K= K=1I (3)

ingtesd of an integration, Obviously the associative law holds for
continued miltiplication of I and K's,

Wow consider the series

, »2 *™e
J + Kttty + K™ (¢,t) + + K s T) + (4)

or

t t
I + K, m -rJ Kt EIK (3,T)d3 +J K(t, % )ding@,'l)K('l:t)d’Z PR
T T z

It will be shown that this serles converges uniformly and absolutely

for t, Tin T o¢7T ¢t <b | TFor this purpose, lst us define the

norm of a matrix [ Ki (£.9] as | Ky (t, 0 Sa;:::;bl \/ZJ Kij (£, N
Let M= I Ker,
then

& t .
| k* e ol =1 ke knody 1< L[ midpl

£ Mt -T).
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, - ~i
By induction || ke, o IS (-M-T)‘ t-" ,
n-=tj;

Therefors the series (4) is dominated term-by~term by the series

o0 " -
5. -M—-—(b—o)“'

[+ <= (W
which is convergent Cor all finite values of b and M, Hence the
series (4) converges unlfurmly and absolutely in T; oe t <t <b.

Let the sum of the serles (4) be denoted by k18] v 39

signify the functional dependencs of {L(t,T) on the kernel X, Then

®x2 *3
Qv(KH,’t):—: I+ Ko+ K™% ,2)+ K (4,T) + . 5)

Since (5) iv true for any continuous function y(t, ) , BO it
1s true when the lkernel is a sum of two continuous funetions Kt x)
and €Kit e),,

Hence
- 2 '
Qekesklt,e)y= [ +r (k+8K)+ CKe3K)" 0 (y 8K)%%,.. .. (6)

Bat
| %2 t
(R+8K) (¢ £) = J [ Ressyesktb o] kepere §K3, 7)) dy

o

£
= 3 L KL D KEDHEK (L kg + k(LTISKY, e

T
v SK(t,y) KLY, T ] 43

= K* 4K xK + KxSK + 8k™%

A similar relation holds for higher powers of K*5K . Tng expansion
is formslly the seme as in ordinary non~commutstive algebra, Now

expand all the terms in the right hand side of (£) as above:
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DKt83K)= T 4 K + 8K + K™ + kasg = dk*K + SK¥2 +K*3

+ K¥ 56k + k% SK #K + SK K™ + KadK? + SKr»#3K

F KT e SK* o k™,

The series on ths right converges absolutely, 2nd hence can de re-
arranged in esny manner wnatsoever -vithout changing its value. BRew

grrange into z donble series
I + K + x* + g*3
+ (T + K.+|<*3+.~‘) «SK% (I + K+ K** 4.

e (I +r+K**+ - )x8K*(I +K+ K¥2 4 ) % SK* (T + K+K+-.)

)

and sum by rows, to obtain

' kK (k)
Q (K+5K 16,7 =0k) + QoK) % SKeQK)+ QK)*EKaLk)*3 - (7)

+-¢l.
Thls is the fundamental expansion theorem, It is analogous %o the

Taylor's series. The functional (] (KfSK)can be expanded into a series
in “powers" of 58X with Y"coefficienta" ms functions (L(K).
Apply this result to the matric integral equation (2.2:11) which

has the unique continuous solution

t
X (Kie)= fm’fj g (L, ) f(T)dT

]

(2.2:12)4,
where RtTy=K(te + KX, o) Kf e, T) ¢ -
Notice that

Qekity =1 + k(7)) (8)
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aence by defining the siar product of k or T to & coluwm metrix {fctt')]
as

¢
I#f =¥, ktf = j’ %:_.k.;J (t,©) fJ'f't)d'c, (9)

then the solutlion (2,3:12) can be written as

ACKIE) = (uKo *f [10)

and thersfore from {(7):

X (K+&K}t)= Q(k+sk) xF

=X(K) + Q(K)*gk #X(K) + ZQ(K)*SK*...*Q(K)ﬂSK*X(K)_ (11)

This expansion is valid for all continuous SK(%® in T: ag© st &b,

The result can be stated in the followlng theorem:

Let (), (Kit,T) be a functional of K(%. %) defined by the series
(5), and X(XIt) be the unique continuous solution of the Volterra inte—
gral equation of the second kind (2.2%11) with continuous kernel K(t,T);
then the unique continuous solution of the equation (2.2:11) when the

kernel becomes K (¢,%) +8K(£,2)  can be written as

X (K+8KIe) = X (k) + QoxsK4X R+ 77 Q (roxgK -~ »SK* K(K),
ul)‘oim

The star products in this formula are defined dy eqs. (1), (3), ana ( 9).

More explicitly
29

= t 1y 73
X (K €8KIE) = X(K) t 575'17 j Q) dy, | 5K ('?u?z)d'zzjoﬂ(’l”?s)d?si
’ ° (12)
..-Sq""gmq,,, X (KT dn

o

vhere for shoriness QL e, ~ has been written in place of (2 (KIt,7T)

It should be noted, however, that the expression (11) is in fact
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sesler to interprst ihen (12), The latter is & particular wey of
exprossing (11), end may not be the simplest. For example, it may
‘be desirable in intsrprot the general term of (11) me (CFf, eq, 17

below)
iQ(K)*SKf*{§1M)¥SK}~'{QJK)*XK}*K(Kl

Returning noy to whe original form of the dynanmicsl equation
(2,2:8) or (2.2:9) of whleh the solution is given by (2.2:10), it
is usefnl %to have the expliclt formulas:

When B(¥)=o0 , l.e. when no gust or control forces and mo=

ments are acting, the muiric equation of motion becomes

. in
XL“Z—}‘ AU' (&) XJ‘f)J xi. ('("=°)=Xob', (Z:'_'IZ,“'ZH)_
j=

(13}
Ths snlution is given by

14)

i t T
Rotarer=X,. + {j A(r)dt+J Act)dtJacs)ds + o f Kot |
4 ¢ 0

The so=called "matrizent functional® of A(t) is defined as follows:

t t 5
Rt thR) = J + J Aws)ds + j ACS)d‘J ACEods, +
LA A "

n
o t s 8 S0t (15
+ Z AU)JSJ.AI&)AQJOUJ A3 ds:
=2 n n n n ?
whare 1 is the idemfactor.
With this notation, (14) can be written as
t
K (aer = R, (A X, (16}

The generalized Taylor's expansion then leads to the following relationi
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t
K (A+8A1¢) = X (a1e) 4 i Ry (M SACS) X (Als, )ds,

%

oo i s

t . {
+7_ J RS‘(A)SA(S.)JS,J R,j'(A)SA“a)As,J . )
(-} o 0 o

{u3,3-
Sﬁ"l Si~il
Q,‘. (A)SA(s; )ds; /‘( (Als, ),

Yhen B(t) #o , 1,8, the gust or control forces or other exeiting

forces exist, the differentinl system

{ = A()IX) + Bt =) =
K=ARXW + B, f(t=o) =X (2,2:5),,

where A/®) 1s a square matrix of continuous functions of t, and B(¢)
a column matrix of functions of ¢, (integrable, but not necessarily
continuous) has the unique continuous solution (2,2:10) which can he
written as

X(ATE) = £ + A #RT(A) % (o)
(18)

¢
(t) = Bty dt  + X,
whers )c ja X :

The generalized Taylor's series of X (A+SA[t)  ynere SA (1)
is another square metrix of continuous function of &, now takes

exactly the same form as (17).

2.5 [The Solution in Cancnicsl Form

The nature of the solution can be best recognized by reducing
the result into canonical form., The dynamical system is represented

by the differential equation:

x = AW Kt + BLY) Aet=e) = X, | )
(2.2:5)y14

where At) 1a a square matrix of continuous functions of t, B(t) g

column matrix of integrable functions of %, and X(t) a column matrix

of the variables in question. Now let the variables X be subjected
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to a linear transformetion P, so that & column matrix of new variables
W 1s defined by
PX = W, (1)
where P is n non-singulsr square matrix of constants. The diffor-

entlal system (2.2:5) will be transformed into:

W-AW + 5 W =PX, (2)

where
A=7?ar" F=78. ()
A collineatory transformation P which renders the new kernel A
to the simplest form is %o be found.

(I) Consider first the case when A is a sguare matrix of constants,

From the general properiies of A-matrices and elementary divisors,
1t follows that: (Ref, b, Ghap, 20)

If 4,, and 2. are two metrices independent of A , then the nec-
essary and sufficient condition for the sxistence of a nonesingular
matrix P, sueh that

a, = pa, P
is thﬁt the cherzocteristic matrices of4a, and 4, have the same in-
variant factors, or if one prefers, the same elementary divisors.

Now the elementary divisors of the characteristic matriz A-AI
of A depend on the nature of the latent roots of A, (i.e., the roots
of "the determinantal equation |A -AIl=0  yrich are alsc called
characteristic roots)., Naturally one looks for the condition of
existence of a collineatory iransformation which renders & into a

dilagonal matrix, It is easily verified by the above general theorem,
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that this coliinnatgry transformation 13 always possible when the
latent roots of A are all distinct., Hovever, 1% is not alwsys posu=
1b19 $0 reduce A into a diegonal matrix by collinsatory transformation
when thers are repeated latent roots., It is found (Chap, VI, Ref, 47,
and ﬁhapu 3, Ref, 48), that the general canonical form is a diegonal
matrix with » certain number of unlt slements sddied in the super-
dlagonal (i.,e,, the elements !-“medlately teo the right of the prine
cipsl diagonal), The rale is the’t unit element is certainly absent
if the place ia the superdiagonal is adjacent horizontally and veri-
lcally to dlstinct elements in the principsl diagonal, but that it
may be present when the adjacant elements in the principsl dlsgonsl

ere the same. Thus th: typleal canonical form 1s

A A

(4)

\ J

where the slements In the principal dilagonal are, of course, the
latent roots, It is clear that the canonical mairix can be partitioned
into a dilsgonal matrix of sguare subumatrices whose rows and columms
do not overlap, and which are all of the simple classical type:
A, !
A (a1) the rest of places are zeros)
M (5)
The order of the simple classicsl submatrices can range from 1 to

n, depending on the degree of multiplicity of the particular latent

root Ai and the rank of the A -matrix A-A L,



53

This bheing esiublished, sereral partisular cases follmys

e 1 1 e

Cagse Im., All lateat roots distineci,

Let {Ai] be the latent roots of A, then there sxlats a nonw

singular matrlx P such that PA P"=A where A 1g 2 diagonal
aeirises
A
A,
A= E (8)
4 |
the order of & beingiln,
Writs (8) as a sum:
A= AR (7)

wvhere 2. 1s a disgonal matrix with all elemenis zero sxcept the one
occupying the i th column which is unity; the summation convantion
for the subscripts is used in (7).

Since o W i#j,

2:% = { 2. if =13,

1t follows that A" = A" 2. .
Therefore substituting N as kernel into (2.4:15), one obtains the
matrizant functional

At -R) A (t-2)

Ll
()

R:L(A)= e Z; . (8)

Hence from (2) and(2.4:16), it follows that when external forces

{gust or control) are absent, the solution is
2n it
WoAale) = ( é_e 2.) W, .
Hencs by (1},

X(A\t)?- P—’ { i:;e,ki‘t 2,;.)?)(0_ (9)
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When external forces do exist, one must use (2.,2:10) or 1ts sgquivalent

-

(2,4:18), the solution ig then

Acle=n)

{za)da)_

' t } an ¢
}((Alt)=J‘ Bddt + X, + P (T M Le o)

ihers fer=v j: B dt + PX.

T4 la pt sace pocognized that this is identical with the clonsg-
teal solution, Howevasr, the andventage of the Heavislde Operatlionsl
methods 18 preserved in the way the initial conditions are taken cars
of, In fact, the amount of work necessary in evaluating the trans~
formation P 1ls just the same as that needed by the classical or
Heaviside solution, The sdventage of the present method lles in the
fact that 1n maay cases ons is not interested in reducing the result
into 1ts canonical form; and thea 1t 1s simpler %o work directly with
the method developed in Section 2.4.

Case 1b. Mith repeated latent roots,

Coasider a typical simple classical submatrix.
Av
A= { o ] (11)
A .

The seriss (2,4:15) gives

t : Al =Y : n (eom”
R“(A£)=I+A;(C~n)+ — Tt + A YIS
= ( Mt -R) (t-n.)eM(t—M (t—/z)zé,xcct-m) )
e 21 (12)
rCt-n)
o ehitt (t-2) e
rMlt-A)
c Q e
. .

Mt
This shows thet the solution includes terms like t e and

2 e/\it

+ which 1s to bDe axﬁected from connilderations on the familimr
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solation of ﬁ system of linsar ordinary differentisl equations
wilth constant coefflclents when the euxiliary equatlion has multiple
roote,

‘ The above result is typleal, and generslization to any order of
the clansical type is obvious, Recall that the general form of the
canonical nmetrix (4) cen bs partitioned into a dlagonal matrix of

simple clsssical sutnairices A;, so write

A = [A' A,
Ny )

then
N
Rt A) ( R:(Ar)
( = t
A Rn(Az)l
(13)
RY (Ag)
\ J
and =as befors
£
X (Al1E) = L8 + P p 5 RYA)Pforde, (14)

1
t) = £ dt + X
where j® i B d °

(11). ¥hen A is a square matrix of functions of time.

Although the solutlon of the dynamical equation given in Section
2.4 18 an entire analytiec functional of the kernel A(%), the behaviour
2f the solution is in general complicated, However, in aeroelastic
problgms, the variation with time of the elements of the matrix A(%)

is in gensral small; that is, 1f A(t) is written as

= A
At Ay + (15)
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where A, 13 a metrix of constanits, thea 1in gensral
Jsag e« fagl, (16)

Such small perturbatlon prodlems are dlscussed in ssciion 2.6,
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$ 2.6 Small Pertnrbaiions

Although the resultis derived in aeciian 2.4 are perfectly gensral
‘80 that there 1s mo limltatlion to the nmegnituds of the norm of §K (t,T)

( or SA®)) in the series sxpansions (2,4311) or {2,417} these
gxpansions are of practical interest only when N®KI  is amall,

An upper bound to the remainder aftsr n terms of the expansion
(2.4:17) can Yo obizined as follows: the norm of the nth term (the
term with S§AK%) occuring n timee) is dounded by [l A(A '*)"*;{4—; whers
M= T Rl I8KT, T being the time interval 1n gquestion,

Recrll that the ordinary Taylor's expansion of e” with remainder is!

w

2
u 4
€ =j+u+_2l+,,.+,_—- +En9

where

"
{7

I
R, = J(l-z)“'euo“l

°

e ——_——
(m-1)!

So similarly wz have,

4
2n-) r el

‘ n_ M2
I K(Kk+8K) =X (K) = 2 JJ ” < ”K(K)Il——;?—o(n-z)e dz

L =i

A

Mn-H

< lIX(K)Hme

M

(1)

Hence the expansion converges at least ag faat as an exponential
series.

According to the mssumption of small perturbation, if

(t) = A, + SALY
A ' (2)

where A, 18 a squars matrix of constanits, then
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KL G &« ()

for % in the time interval in question, The solution with the kernel
A, may be regerded =s the inltinl solution, and that with the kernel
Ao + EA the perturbed solution, whers §A 1is the perturbation
kernel,

Fron the general expansion theorsm, if only the first few terms

ars taken, the perturbed solution is
t
A (At 3hlt) = X ”“’“’)"fn;‘(m)m(s: X(AJs)ds + remainder,  (4)
-]

where R$(Ac) it the matrizant functional with kernel A, , given by
8. {2.4:15),

The effect of perturbation can be appreciated in a few simple
cases as follows:

Let P be a collineatory transformation which transforms A, into
the canonical form A, - Assuming that all the roots of the character-

istic equation of A, are distinct, then A, is & diagonal matrix:
PAPT = A, = = M2 (5)

whore {Aif ere the roots of the characteristic equation | Ao -AI =0
and Z; the unitary matrix defined by (2.5:7). Then, according to
{2.5:8),

* -A. = _),‘(f""-) .
R, (A ; e ZL, (6)

Write also

SA =P sAP (7)
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and let the aifeméﬁ%s of S§A be dencted by Sa.;J- , é=1,2,---2n o The
variables X are reduced to W by PX = W as in the last section.

Consider the simplest case when the differential system con-

sists of
W = (Ae+ §A) W W lt=0) = /@ (8)
and SA 18 2 mabrix of constanis. Then
t ! t ;i (t®S Ajs -

j:a:m.)s/x RE(A) ds =[ J T Say asJ Z 2 matrix with
rt Mt

elomenits’ L. . .

° & = Say i i#j,
Xy ~A¢

+ e)‘i‘tga,b- i‘F "‘=J';

and the solution of disturbed motion is approximately!

Zn Mt an it °)
WA+ 8A)= 2 e e 2 e e W
’ 9
an o At T (@)
+ 5—, = Sa
IEX: Ay~ A

(o)

Q'VJ

J

In general {Aé} ars imagin ary numbers or complex numbers., Ths
formila above of course holds only for small valueé of %, |

The case discussed above has ean important engineering application,
I% tells the affect of a slight changs in design on the finsl behav-
iour of en air@lanew As particular exsmples, prodlems in dynamic
stabilitj, controliability, and mansuverability, ete., may be men-
tioned,

t «t

- -
1f $A®) 15 proportional to € , with elements Saj e, the

corregsponding result will De
an A=)t At

) . o - 9)
Wiassh =2 MW 7S “—sag W, (10)
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' %:ha summation mréz' {,j excludes those terms for wh'lch‘f\j “Ae - d =,

| for such terms the cm;ffician‘ha bafore Sacj ghould be repleced by
“peMt In the reduced form W;(A)are normel coordinates: W,

o)

oxcites the motion of V. alona, TFor the perturbed case, however, |/

axcites @Ji the coordinnites,
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111, DEFLEGTION OF CANTILEVER PLATES

83 .1, PRELIMINARY DISQUSSIONS

wy b es e

In second order (first) approximation th: prodlem of bending of

flat plates consists in integra’ing the squutiom

Nw o, M ¥w 1 -
St P ¢ ey T oy = e (1

vhare wix,y) satl«idaq slung the boundary L of & reglon R corvnin

boundary conditions deflined dy the problem, and W is coatinuous

(34) in R and on L, and ¢ satisfles desirable continulty properties,
There are four kinds of problems, classifisd according to the

nature of prescribed boundary conditions:

(4) Built-in edge problems

a)

w
W= =0 on 1y, where n is the cuter narmal to 4, (2)

|

o
s

.

(B) Supported sdge problems

k] az'ﬂ
wW=0, %‘%"F ¥ 5 = -f(x,)’) on L‘) (3)

where n and t are outsr normal and tangent to L respectively,
the sense of n is to t e x 18 to y~axis,

Subcase (By). Simply-supported edgs problems, f=o.

(C) Unsupported edge problems

3
l—-;:‘ + y.a-a-{-; = g(x,)') '
‘ . (4)
%+ tz-p)%ﬁ = hil,)'J an L.

Subcase (01), Free-edze problems: 3(x,y) =h(x,y)zo,
(D) Mixed edge-condition problems,

This can bs further clagslfivd into
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(Dy) BS, When L is partly simply-supported and partly built-in.
(Do) BU, When L is partly built-in and partly unsupported,
(Dg) SU, 'hen L is partly eupported and pertly unsapported,

(Dy) SEU, Yhen L is partly bullt-in, partly supported, and
wartly unsupporded.

Problem (&) is often made & subject of mathemmtical investigetion,
Existence theorems and solutions in fairly genersl forms have been
obtained by Almansi, Lauricella, J. Hedamard, A. Xorn, and others.
(Refs. 32, 33, 34, 35). Approximate solutions for rectengular plates
have been given by W. Ritz, Timoshenko and others (Refs. 17, 10).

Problem (B) is entensively studied by Timoshenko and others,
(Ref, 10), For rectangular plates an application of Fourler series
makes the probdlem particularly simple. Both problems (A) and (B)
can be reduced to a set of first boundary value problems of the
potential ‘theory., (Ref. 36, Chaptsr 19).

Problem (C) is much more difficult than the first two and few
existing results can be quoted, The problem of vibdbration of a rect-
angular plate with free edges which is 2kin to (Gl) was studied dy
Ritz 1n his 1909 paper in which he 1llustrated a spectacular success
of his enargy method,

0f problem (D), a few cases of (Dy), (Dz), and (Dy) have been
studied, (See Ref, 10 for refsrences to original works). The solved
cagses are:

(1) Bectangular plates with two opposite edges simply supporied
and the other two edges bulli-in.

(25 Rectangular plates with three edges simply supported and

one edge built~in,
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(3) ilec‘t@angular plates with two opposite edges simply sup—
ported, the third edge free and the fourth edge built-in or simply
supportqda

(4) Rectangular plates with two opposite edges simply sup-
ported snd the other two edges supported elastically.

(5) Plate of the form of & parallelogram with two opposite edges
simply supported. (Ref, 54),

In 211 the above cases, the solution can be put in the form of

an infinite series.

= I B
TE el W) sin Ty

where {Ym(y)} are functions of y alome, provided that the edges x
equal to constants are simply supported, _

(6) Circular plates supported at several points slong the
boundary, |

(7) Giréular plates in the form of a sector, the straight edges
- of which are simply supported.

For other problems, there is little available information.

The swept wing problem is a problem (Dg) with BU boundary. Exact
solutions are In general hard to get from the stendpoint of biharmonic
analysis but'approximate solutions of engineering significance can be

found by the various direct methods of solution.
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Solution of the Differsntial Equation

In the application of the method of relaxation of boundary
conditions, it is usually convenient to write the solutlon of eq.
(3.111) in the form of a sum of a particuler integrel and & bi-

harmonic function:

wix,y) = wp(x,y) + welx,y) (1)
80 that
4, 4, 4, )
I P S S AP
axd IxC 3y wH D Wl
and
\é4lxvc B 411’ \41‘ .
—_— e, +2%c =9 (2)
ox 2 Y2 2 R 2w

The particular integral W, can be easily obtained if qlx,y) is

simple, say, being & constant, a function of single veriable x or y,
or a polynomial in x,y. For other cases it was shown by Mathieun
(Ref. 37), thét a general expression for ”p can be obtained by an

. extension of the potential theory., It can be verified that if

U — 3
wp(XQV) - ) _'1_"_ T ff (T‘lpg-::. v\--;—)ﬂ(a.,b)dadb’ (3)
R

where
2
r2 = (x-a)+ (y-b),

then .
° if the point (x,y) is outsids of

4. the region R,
v (x,y) =
1 d0x,y)

if the point (x,y) is inside of
D the region R,

-The biharmonic funciion wb(x,y) can be consiructed conveniently
from harmonic functions, for which there is a very extensive store of

information., The following results are welle~known:
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If w

| zad Wy Ave two hawvmonic fuanctions in a region K, then

vE XN 4 v (4)
is a2 bihermonic function in the same region, Conversely, if the
boundary L of R intersects every line parasllel tc the x-axis in at
most two points, then for every biharmonic function w in R, thsre
exiat two harmonic functions v and wh, 80 that v cen be represented
by the formule f4),

Similar result is true when x in the above theorenw is replaced

by y. And furthermore, 1f the origin is enclosed in R and every
redius vector intersects L in only one point, then every biharmonic

functlon w in R can be represented by functions of the form

w= (r - roz) Wy (5)

where

Tzz xE + yg,
My and wz are two harmonic functions_in R, and T, is any preassigned
constant, Conversely, every function w in this form is & biharmonic
funetion in R.

In the application of the method of relaxation of boundary con-
ditions to swept plate probleme, a suitable form of erticular solu-
tion wp is first obtained. This ¥ while balancing the distributed
normal loads over the faces of the plate, will induce bending moments
and shear reactions along the edges of the plate. The next step is
then to find a solution for a plste lozded slong the edges, aﬁd to
this, the Trefftz method is spplied by %taking the biharmonic funetions

as elemeniary sclutions.

A remark on the places where the maximum mean stresses occur may
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be usseful. When the function ¢ (x,y) is zero over a subregion B_1

of R, the differential equation (3.1:1) becomes

v (v%) = 0 in . (1)
Hence 2y is a harmonic function over Eﬁ’ But & harmonic function
in By cennot nave a meximum or minimum at a point in the interior
of the region A, ( %2.26, Ref, 13, or §%7, Ref, 88), Its extre-
mus ls reached only on the boundery of ths region., Now ﬁf + _3_?_‘;.;
dx=  dy©
is the mean curvature of the bent middle surface of the plate. Hence
the mean curvature of a bent plate reaches its meximum or =ninimum
elther on the edges of the plate or undsr the points of loading,
Thus when the externel loed is applied alung the edfes of the plate
only, the mesn curvaturs is assured to resch ite meximum only on
the edges of the plate. The mesn curvature is prpportion-al to the
mean maximum bending stresses (e.g. 9% + ¥y) in the plate. Hence
the mean maximum bending stresses occur either under the load or on
the boundary of the plate.
Similar reasoning leesds to corresponding results regarding to
shearing stresses. If, in a certain subregiom Ry, q is a function of

¥ alone, then

-;; V(v'w) = g (¢t -5;—3—) = %—a—g‘—;-’;"y-)— =
But
-D v2%§1= Qx » the vertical shearing force on
- X = const. sectione
Hence

Vag=0 where q = q{y)
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In the same 1,:Ja;vs
Vng =0 "~ where q = q (x).

Gx and Qy are then harmonic functions in the respective cases.
Hence Q, {or Q?) reaches its maximum or minimum elther on the edges
of the plate nor at points where ;gﬁ-(or-??g) is different from
ZBTOo,

In the spplicetion of the method of relsxation of boundary

conditions, an error function is defined by the relation

N = w -
)i w Wﬁ

where wy is an approximaiting function to the true solutiocn w.

Since w and wy both satisfy the dlfferential squation
g

74*#: %o

80

over the whole plete, Therefore the mean curvature of the error
function reaches the maximum only on the boundary and hence the
meximum mean error in stresses occurs only on the boundary of the

plate.
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- % 3,2 Rectengular Cansilever Plates
sABCLang £ aces

The deflection of a rsetengular cantilever plate can dhe obtainsd
-by the Rayleigh-Ritz method and the method of relaxation of boundary
conditions, In this ssction both procedures are carried out in destail,
It is shown that the homogeneous part of the system of linsar equa-
tions for ths determination of the unknown cosfficients is independsnt
of the external lomding, and can be formulaited once and for all,
The loading condition effects the constant terms ¢f thsse equations
only. Hence the ssmple computation is carried out only for the case
of distributed shear load at the tip section.

For simplicity the coordinates (x,y) are expressed in dimension-
leoss form, The length is measured in tarms af.%g the halfmchord
of the plate (Fig. 3.2:1), Without modifying the dimensions of w snd
q, the flexural rigidity is here defined as

D = 4 E'ﬁgr
“8(1w p°)c%

where t is the thickness of the plate. E and » are the Young's modu-
lus and Foisson's ratio of the material of the plate. With this modi-

fication, the plate dimension is shown in PFig. 3.2:2,
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g 3.21 Solution b:sr Rayleig@-ﬁit; Method

The Rayleigh-Ritz method can be applied with success to find the
deflection sﬁrfaca of a cantilever plate. According to the energy
principle, the deflection w(x,y) of the plate is one of the "admissible®
functions which minimizes the potential energy of the plate:

TR L i Tw ‘ ::.}
ve 3 ff n{CEAE) c2 (o8B (G ) e

-”ﬂwdxd;-i— Jk&al‘g—ds‘ S (Q.«"gT ) wds,

~ where the line integral is extended over the free edges of the plate.
A funetion w is called admissible if and only if it satisfies the "rigidn
- support conditions on the boundary, for example, w = 0 on a simply |
supported edge and w = %—E— = 0 on a built-in edge,

It is assumed that w can be represented by a series of admissible

functions in the form

wa ow (GY)+ T SpaWa.(xy). . - (2)
m,n

@here the coefficients {amp| are determined by the minimization of
the energy integral (1).

The simplest procedure is to choose { Wun (X,¥)} which possess
the best orthogonality properties, such as the normal modes of free
© vibration of a plate of the same form and same supporting conditiens as
the given plate, Since, however, the vibration modes of a cantilever
plate are not conveniently 'e:qaressible in elementary func_ticns, their
use is impractical, '

In the following, wmn (X,y) is taken in the form

1 wmnA (x,7) = £y (x) - gn (¥) (3)
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Where fp (x) is the m*} free vibration mode of a thin elastic bar of
length L, clamped at the end x = 0 and free at the end x = L3 and
gn (¥) is 'the ntt  mode of a bar of length 2, with bothendsy= = 1
free, The fn and gn are normalized so that

L

| ' ’
(ta ) £ (Dax = Bm, Jta ) & ) v =8 (1)

Where Spn = 1 ifm=n, and S = o if m+n.

Substituting (2), (3) into (1), one obtains a quadratic function of the
constants { am} » When the }amn} 1s so chosen as to minimize V,

the conditions

2V ‘
o = 0 (any m, n) ()

lead to a system of simultaneous linesr equations from which { amn |

can be determined,

To obtain explicit formulas, let us introduce the following nota-

tions:
L " u l I
Ay = me(x) fn' (x) &x, X = f.sm"(y) gn (v) d&,
0 -1
fon = [l tal0) ax=Con, Man = [w' () ') o = A,
T = [ m@a, (me e Oaoa ©
and

)vo- J BWo a ,‘ ’ [/
{;m ), D xl(tm gn+>’fmgn)+ 3 y? (fmgnl})’fmlgn)

+2(1-Y)—megn}dx® )
[fom
J 9 fn gn dx ay+ [Un 2800 g5 4 [ (@y - 241y gy as

- -]
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Where the primes denote differentiation with respect‘ to the independent
variables, and in (7), the line integrals are extended over that part
of the free edges on which external shear and moments are applied,

The aforesaid system of linear equations (5) now takes the form:

2%[0(1:1:;:* ¥mm + 2 3Ym Can +2(1—”)<5mm >“nn]

+ 5T edj [sz mt Cgn + 2@ ») Gmi Mmoo -%“ab;\{;m
i # o
(any m, n). (8)

The left hand side of the equations (8) are definite linear forms
in { amn] » and can be determined once and for all for a given
aspect ratio of the plate, For different loading conditions, only the

terms {-%;;1_5..} are different.

The functions {fm (x)} and { gn (y)} are solutions of the

differential equation
d s -
| dx’:g = ol

with the boundary conditions u = B;; = o for a clamped end and

BZ‘L - 33“ v
o x* 3% T o for free ends. They are found to be as

follows: (Ref. 5)

(I). £. (x). Normal mode of a clamped-free bar of length L, clamped

at x = o, free at x = L +—

(118 ?hn + G?Sh Pn(... sin fﬂé + Sn'nh;hzr,x_),
J'I: ( sinp, + sinh p,7)

Where {Pn] are the roots of the equation (9)
cos Pncosh Pn + 1= o,
Py = 1.87510k,  Pp = L.69kOSL,  P3 = 7.854757
Py = 10.995541,  Pg = 11137168,

J,,(x) = —\/lf (~cos ;?nr’;‘. + cosh 2"5’5 ) -
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n>5, Pn = (2n-1) to 6 decimal places,

For n>2,

“r
-
JT £n(x) = - cos ._?%.X_+ [1- (=1 2;}’”]5""%%-+(-)H'- o= 3)
| + 1" P } e~ fn 3

within 5 significant figures.

(I1). &n (y), normal mode of a free-free lear of length 2, with origin
at the middle-point., —-/?~

If nis even: g, (y) = CSoSh gncos gny + cos gn cosh gn y
:J cosh ¢ an + cos 2 @ (10)a

¥here tan gqn + tanh gn = o,

If n is odd: gn (y) = sinh gn sin gn y+sin gn sinh gn y
¥ oinh 2 qn - sin 2 qn
Where tan qn -« tanh gqn = o,

(10)b

The roots qo, and q1 = o correspond to g (y) "T-"T y  and
g"(y) = E ¥« The other roots are
a2 = 2.365020, a3 = 3.926602, .Qh" 5497804,
175 dan= (R=%) 2 4o 6 decimal places.

In general, for n z2, up to four decimal places,

. ) n n .
gn (y) = cos 3 -7y + $2)3 cosh =TT ror evenr.

J2 cosh (’21‘ - %)"!T (10)¢
n n
. 3. (=02 sinh (Z=2)TY  sor oddn.
gn (¥) sin (Z - 3)ry + T (g Ty or o(lo)d

For smaell values of y and large n, the hyperbolic part of these
expressicns becomes negligible, and gpn (y) behaves like trigonometric
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functions.

The integrals ., @mn etc,, are found as follows:
b

(1). %mn = {%‘ A m= . (11)
] ifm+# n.
in {Pmefn inh (Pm +Pn
(11). (Gmn)a Pilzn (1‘!‘0"1: o’n)[s m-(-Pn ) 4 BH{!"'(Pnf )J -
mEn

-(1-%n) [ sin +1=m+ Pn) sinhmgﬁ—m)J

N (‘m=n) cos(Pm-Pn)+ cosh (Pm-Pn) ~ om+%n cos(Pm+ Pn) + cosh (Pm + Pn)
2 Pm - Pn 2 Pm + Pn
+ p SmPn+%n Pm TnPm - "m Pn
B2+ P2 ' 2 TERZ-P2

1
+ B 21Py2 [ Pm(coebn sinh Pn-cosh Pm sin Pn)+ Pn (cos Pn sinh Pm-cosh Pn sin Pm)}
o _
T Pm‘mxf » [Pm(sin?n sinh Pn - sinPm sinh Pn) - Pn(cos Pm cosh Pntcos Pn cosh Pm)J

» _
+ P;Z?‘F;Z{Pn (sin Pn sinh Pn - sin Pn sinhPm) - Pm (cos Pn cosh Pmtcos Pm cosh Pnj

+ %Jm (eos Pn sinh Pmtcosh Pn sin Pm)+Pn (cos Pm sinh Pntcosh Pm ain Pn)]f ,
| | (12)a
Gmm " % z( (1+m2) ainﬁ 2fm_Q me2) sin 2 Pm+0mPm
. (12)v

- (1 -oﬁ) sin Pm cosh ha+(1+d’x§) sinh Pm cosPm

+ T (4 - sinh 2Pn+ sinsz)k

.

b

whera

Cp = 208 Pmtcosh Pn
sin Pm+ sinh Pm {12)c
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These exact formulae are needed for small values of m and n.
For moderate values of m, n; the following approximate forsmmlae are
valid to four significant figures:

» -m. -P!l
For m, n>23 12 Gmn n gin (PmePn) L (-)™R 1
+2 +1 [ m+l n+lje -
@ -

an (=) +(= Fa

1 + :
* gz [ O™ ™ Yonera)e [ 100 msf2+ (4] 2m

+ [ (=0"+ (__,)n”e—Pn P+ o~ P Pn ]

+ [ (" (-I)nH gy L g Rn”‘ (12)a
m, n> b, L2 Gum = 2+Pm+(-)"] b mtll] By & (12)e
.. Yam= bhon's ‘rm?’m - Cun (13)

(iV)- Xon = j, &' (y) &n'(y) &y = ?’ %h ifm= n,

_ (1k)
0 ifm# n.
A' ! ’ ’
\ mi = Mm o= j & (v) g, () & (15)a
’ -t
When m and ¢ are both even:

A R— qn_ g jsm(@“'q‘)-ain(qm+qe)

ven-even €082 ~0824: -q; ,

sven-even, @fm%)(hﬁg: ) qu - g +4;

tanh gm+tanh q. _ tanh gm - tanh q:
am+ q; ae - q;

+ ¢og gm coOS g/ [



- 2cos gi [ ; Q. _ 2 cos o
ST +q?[ ‘@ cos m tanh 4, +a. oin @] - 55T~ q.c08 g tanh n +
+ 3, sin &a]}

When m and i are both odd: (except for index 1, which can be easily
integrated )

. 39,

Ami ain (gm-qi) . sin (qurq: )
odd-odd an - q |t q
m#i ' '

coth gm +coth a: _ coth gm - coth Q¢
ant+qg - am - q. d

—— sin gm sin qe[

+ gﬁ—?%-g%-{ am sin gm coth q.tq; cos qm]

2 sin gm

4 g | % sin q; co.thq;n-#qm‘ces Cn]}_ (15),
a4 g% ,
ANam = 2 sin 2 ' cos 2 ¢ tanh
qn 1 - qm __ cos ¢ gm aqm 1 ]
m, even T ¢OoS * { O [ am coshig, .
I * Gosh * gn

- (15)a

+g—§;s———% [ cosqmtanhqm-sinqn]}.

7 - 1, 8in 2 2 coth 1
T ain'd, { + 25 =8 4 ain -rqm[ " SIRET
m, odd SRR | am. ‘ an sinh'q ]

sIHA 4, m
+ %.Lg_ﬂ [ sin gn coth gm + cos qm]} (15)s
Vhen one of m and M is even and the other is odd, Aun = 0. (15

[ . _
(m (mi = J, gy = 2@l g - A, (8
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The values of the constants *mn, @m etc., are computed
according to formulas (11) through (16) and listed in Table 3.21:1
through Table 3.21:6, for a range of m and n from o to L. Coefficients
with small subscripts are the more difficult ones to compute; for
my n > UL, approximste calculations of these coefficlents can be
carried out relatively easily.

Values of fm (L), fm (L), gn (1) and gn (1) together with On and p,,,
9 m, are given in Tables 3.21:7 and 3.21:8. %m is defined by equation
(12)ec.



1

"“'gﬁgﬁmﬂgui&v Qﬁg%i1§w@r square plate loasded by uniform shear along the
ﬁ%g sechlan,

As an sxample consider the deflection of

a sqmgr% candilever plate loaded by a uni-

form shear load along the tip seciion, It

¥
| is wall=ltnown that the clmsslesl solutilon
- + o —
1 of 8%, Venant's problem of flaxurs of s
]
i beam of rectangular cross-section holds

only for a particular distribation of the

7 shear losd along the tip, and that the ord-
J/ inery enginesring beam thsory holds only
EV)y for comparatively long beesms with the width

;£ﬂ and depih of 13# cross=-pection of the sams

ordar of magnituds. The prasen} method
solves the case when the thickness of the
beam is much smaller than ths widih under
varions loading conditions, which ia ¢aken
as uniform shear in this exampls,
By symmstry, only even indices of gn(y) will appeaf in %he dafleciion
funciion. Let us take aix indeterminate coefficienta?
210, &z, 214,
820> Az20 89y ,
50 that the deflsction is exprossad ass
W= wo(my) 4 ayg £1(x)e (7) + 8y £1(x)gp(y) 4o o wdugyf, (Wgyly) (17)
The funciion w,(x,y) is taken as tha deflection funciion glven by
the ordinary baam theory, so that

Vplmy) 8 S f L& X} (18)
(1= 2 © .
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wh@rabq ie thé load per unlt length applied along the edge of ths

platea,
Sudstisuting (18) into (7) and integrating, one obitains

}v oot " " !
Y u-wf J (Lo [ o 0 fan*2mt0g ] dudy =3 f,00) [ gutr)dy
o J-i -

S

»
R e e
e ACY EY R AL WOY 5 B S PO ¢ 1)

whers p, is the root corresponding to f (x), Values of gi(l)@ (L,

and %, p, are listad in Table 3,21:7 and 8, For the particular

cags of L ;’gg and Y= ,3,

Y,

2, ~ »19583 1, T = a0 g,
W - e _ :
?a-'-z: 1.6103 q, 2% "5@2599 1,
Ve Ve . _z.8217 3, —D-I’—- = 18,445 9.
ke das

Subs%i%uting thesga into ﬁqua%iona (8), with m ranges from 1 and
2, and n from O, 2, 4, on2 obtains the gystem of linear simalitansous

squations as follows, whars » is taken %o be 0.3: : S
-, 19583 23

+1%5453 Qlo + g37528 alg haad 6@51‘80 al‘&l ”8‘.1758 a22+19°346a24 poid ‘p"“
: _1,6153
+168,469 a1, -32,421 8y,  +14.327 agg-15.202 agy = Y 2q.
' _3.8217 D
- B3.674 8yp +2188.97 a), =11.4798 8,,448.341 ap, = 2q,
@so 890 ago + 1.2680 213 ~3.00006 &), 13,705 azz+121.56 ag =, 19701 24,
_#5,2599
b B4.745 ayp -24,329 a4 +518,813 ayo=134.45 8y, = 2q,
: D
- 24, 807 algglﬁz,lz 2114 nl40'69 3‘22 + 2399,8 324 12 445 gg '
D

This can ba solved by iteratlon or otherwise, The solution is:
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S ey 00\3959‘%% %1.12

' 5 g = g
210 = = mmmeﬁﬂ, a14 = =.00170384,
sg0 = 00807651, By B QOIOOQ%Qs By, = =.00339184

Hence the deflsction surface is givan by

Lx_,f

w(x,y)= & [ 55-5)-007918 £, (x) - .02216 £, (x) g,(y)
+.003406 £, (x) g,(y) + .0L615 £, (x) +.02018 £,(x) g,(y)
- . 006782 £,(x) g,(¥) }.

_ whara £(x) and gly) are functions given dy (8) and (19),
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‘3;226' §@im@iog‘by Belaxation of Boundary Conditions

Tha problam of the deflsction of rsetangular cantilever plates
can ba solved by the method of relaxation of boundary conditions.

This is 2ssantially & modificatlon of bilharmonic analysis to obiain
ap@fﬂzimat@ solutions, The defleetion wix,y) is ropresssntad Dy n sun
of a particular integral sad a complémentary funetlon, The latter

ig then teken as & ssriezs of blharmonie fanciions, ths coefficients
of this seriss are dstermined dy minimlzing a wsighted msan arror

on the boundary of the plats. The principle of this method is dis-
cussed in Sectlon 1,23,

The procedurs is simplified if one can construct & convenlent
gaquancs of biharmonie functlons which’pomsasg orthogonallby prop@x%igﬁ
slong the boundary curve of tha plaie, wa&var, the classical Schmidl
process of normalization (p. 131, Ref, 25) is rather tedious for tha
present cassz, Hence a mors direct, though less systematic procedure
is adoptad in the following.,

Biharmonic Functiong

Since the functions

sinh a3in sin ginh
cogh A= cop Ay and cc:us)\x cogh \y

are harmonie functiohsa where A 13 any real constant, it follows that
(Cf, section 3.12):
’ sin sinh s;inhni sink
(A - AB x-= A3y>{ B co&kx c@@hA J = C cosh cos Ay)

are biharmonic¢ functions, where A, B, C are arbitrary constanis,

The notation on the possible combinations of trigonomstric and hyper-

beliec functions seems b0 be obvious.
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The fell@wing fanctions ars also biharmonie:
(ewnx) 2(y),  (asby) p80x)
whars 78 (y) and 2(x) are polynomials of degres nob highsr than third
in y and x respecitivaly, It can ba varifisd that the nost general form
of blharmonic fuanctions when ths wariables are separable 1s glven by the
ab@7% two typss, |

Approxlmatine Sequengs

Lat wa(xay) be a particular integral of the diffsrential equation
‘74vv° = %;

wnare ¢ 1s the distributed load over ths plate, This funcitlon in gen=-
eral does not satisfy the boundary conditions along the edges of the
plate (otherwiss LA is an exact solution and $he problem is solved),
Far conveniencs, howsver, assume that LA aa&isfi&s the boundary condi-
tions along tha bulli-in adge of ths plate, |

The following examples are carried out for the cass when the loadw
ing and henes the deflsetion 6f the plats is symmstric about the =x-
éxisa The snii~symmatric cass can b2 similarly worked oute.

The deflection surface is assumed %o be sxprassible in serieé of
tha formi

w = w, % % A)‘xjsinh%x cos My 4 %Bt‘ x sini x coshpy, (1)
whers A, @ ars constanis, In this form thes boundery conditions along
tha edge x =0,

“W:‘%\';" = O,

are satinfisd, Since this is the sdge where the maximum stress occurs,

1t seems reasonable to have boundary conditions on this edge satisfied

axactly %é‘star% with,
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‘Boeundary Punciiong,

The boundary funcions By (w) and B,(w) (0f, section 1,28) ars
. defined as functions along the boundarys

' Fw
B (w) = f D [ a,,; * V%‘gr] + Mn on unsupporisd sdgss,
. t

PL %’; an bailt-in adges

(2)

s

3

B, w) = [ bl 2:’3 ’ LZ‘?)%J T (@ 3”“’) on fres edges

Pw on supported edges . |

where n and t denots ihe normal and %mganti&l dirsctions on the

boundary and Mng qng Hnt tha extsrnal moment, shear, and twisting
coupla acting on the boundary respectively, Specifically,

B¢

, (w) = B, (w) on frae edge perpendicukar to x-axis

D[ax’ yi};'v;] - My

Bl‘L (w) = By(w) on fres edges perpendicular o y axis

hl
= pn [ )' "'{ff] -My, and so on.

Similarly let the following notations be used:
Ly

B.'—rtw) ={3.L¥“‘“§ . | Biﬁpcw) = 1( Bz&‘w) }HL,

x=zh

(3)

(side

B|éﬁe(-\‘/) = ; Blé(W)})’=il 'BL (W) = { B;Z(wl}y:i‘-

[side

. < 04
By symmetry f B, (w)}yzﬂ = { B, “’“},:-, , 80 BStw) means :Bl(w)

1
-on either sides of the platel ¥ =+ 1,

Of course, all the bhoundary functions vanish for stact soluiions,
When w is not an exact solution, the boundary functions rspresent the

2rror on the boundary.

According to (1) and (2), by substitution, one obiains
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BP0 B () + D Z A, [(ew LAY slmhAL - 2 A coshAL) cos )y
+DX B[ (Y -1 L singy = 2 peosp L] coshpy
B8P () = B8P, ) o p T An[(»-1)X L cosha L 4 (149) X'sinhAL ) coan ¥
’ 3 ES
=D XL By [ (1=-» )¢ L costL = (14 ¥ ) ainpl] cosh iy
Blﬁi_d%'w) = B?mégéa%) + DI A, [ (» él))\’(cfm N-x sinhlx + 2y cosA coshrx]
-D X By [(1=v ) (coshp) x sin pox 4 Y K coshucosp 3}'

8 | _ .
(glds {w) = 32@;@@‘@@) =D T AN(Y =1) N Bin M) x sinAx - 2(2- ¥ ) A'sin A cogh A x]

2

3 ‘
] .}E By [(» -1 ¢ (sinkcd-)x sinpx + 2 (2mv )[‘ﬂinj\[&ra}éiig;?
Equations for the Debermination of the Unknown Gosfficients @

The equations for the dstermination of the unknown cosfficlents {A)Lz
and f 8[@} can béa Tormed in various ways according to section 1,23, The

following is ons of the simplesi ways for the present prodlamg
]
4 - L :
J B]_Et—ip(w) L sinhAL - coshydy «l»’_[ Bl@d%(w) x sinhix (cosNdx = 0
] 0

o uip L sde
‘ Bz. (W)Lsinh)\L'co-’A)'d)’ + S B, —¢w) X sinh Ax -cash -olx =@
° : ° .

. ) L R
le:ﬂ(w) Lsnpl- cashjcyd] + S B,"-'-’"-e (W)X sinp x - eoshpt -dx =0,
o -]

(5)
(Y L y . .

f B,_u(w) L sin [LL.- cosh [t747 + S, B'z's‘_de(w)xm‘n[kx‘wsk&-dx =0

. .

This gives a system of llnsar simultansous squations in fanl and{?Br_}

from which thases constanis can bs determined.

Example 1. Roctangular Plates with Uniform Shear Load at the Tip Seciion

For a cantilever plate loaded at the tip section (See Fig, 3.3:1)
with a uniform load of g per unit lemgth, the particular solution W, (x,7)

may ba obtained by consldering the plate é.s 8 cantiiev@r baam3

_ ¢ | )
Wo(x,y) = E;‘{ (L-x)- L (L.—sx)} ' (6)
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This satisfies all the boundary conditions except the banding

moment along the edges y =t 1; that is, BFH’(WO) - Biﬁg (wy) =

L&‘S - side I—S-':ét - 9 - X
By (w)= B;“'{wo) =0, but B, (w,) = 31—éf—~2'

Let four indsterninats constants be taken for the Tirst approx-

imatlon. TLet {A} 4aks the velues { " } and {&} the values { 57},

where {n] are positiva integers., Then tha approximating deflection
function 1s
W o= éip {( L —x)3__ LZ( L_sx)}-{- A"x sinh I x cos’rrj + Az xs,‘nl,, 2Mrxcos 2Ty

t B, x sin 1':’ cosh IZ

. 20X
+ B2 X sin m cosh -1%‘! . (7)
A A, B,, B,, ars %o be determined from the boundary conditions,

Ths condition that thers is no resultadt force at the fres corners damands

that

b —-— - —
-alx—;;-o for x=1L, y=4).

Thils condition imposes the restriction thai

, sinh /L
= B .
5, + soh A ! (8)

Henea in fact, only three unknown constants are o ba determined,
The linear equations for the determination of the constants {An}, {Bn§
ars formsd according %o squations (5), In the prasent axample they are

the followings

' ! i ‘ L de
, L.smlan.S B.u(w) cos wy ~dy + j B:éL" (W)X sinhax - dx =o,
(] . -]
L i L TX =
j Bl uie(w) X+ 8in dx o, (9)

(]

I H L de
L sinh L j BF‘P(\W cos ry-dy + L Bzé"‘ (W) % sinh T x dx = o,

o
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Let us writs

Hp

5‘- B, (w) = Ca A, cos y4+0C,, Ay co8 2wy + Cp B cosh+ Cp kB cosh 2,
L BT (9) = 0, A, coamy + A, cos Bry + Cs1 B, cosh ™4 Gyl 1B, cosh 222,
B2 (w) = ZHLmx)4 kA, x 8inhTx = By A, coshmx + kyh,x einh2
+ AP A, cosh2mx + Kg; B, SmT—',_f + Lg, B, casT "'khk 8, xsmzv-p iBZkB uszn)c
,—II; Ez“sﬁf (w) = ky, B xsinT 4 1, 3 cos™ » &, k B x sin®Z 4 Il k B, coar
(10)
where

CA‘ = (1=-9) L7 sinh wlL + 2w cosh nL,

Car “C1-%) 4L sinh 2wl + 47 cosham L,

edh = (1) 2L coshmlh — (12T ginh L,

cA,'_ = (1-2)8W2 L coshanl — (1+v) 472 $inh2n L,

3

R S A TE ,

Kar = Ci-9)m%  Ka,= -4 (1=?) W% Ky =Q=w)cesh L, k3;=c1-*’>°°“‘%r:

k;' = (l—i?)T_;3 sinh + , kslz -_-(,-w)___; sinh 21 L s (11)

Ly =< a»Teshd s gg = 4v T cosh 2L, ,t,;,=_—z(z~v)%§ s“nh%,

l.a,;=-2(z )’)%z&n}\ KESinh%/4sinh.2_E~

Then the explicit expression of the system of equations (9) becomes:

1,5&‘(1) £ [ Losinh (L) 28y K (@) -2y (W] A+ [ kap (V) +29 ()] A,

+ [ L sinh (L) fog o>+ G k (@D] + Kgy (M) + Ly € VAT
+ kszk(m)—i- LBZK<X>J B' =05

’

/2-(]1:)+ [km(wm) 29 (X )]A 4 [ kazCxm) + 2v (ED) ] AL

+[ ko, CHV) + Loy (XT) + kps k (ZE) + Lo, k (2D) ] B,
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; L.leiinh T V'%{_A’ + [ Losinh L §eg! cat) + CBZI k(@)} + kg ()

t ) (T + kel k (TE) + L4 R (X)]B =0, (12)
‘whare (o«); (@), (1), (11), (III) etc, ars integrals listed in Tabls
3.2231,

Sampls Computation of & Squars Cantlilever Plats.

As a partlceular cass conslder a squave cantilever plats, L = 2,
When tha Polsson's ratic » 1is taken as 0.3, thso velue of the constanis
listed in equations (11) are then as follows:

k= 048395,

Ca = 10.0503e°7  ©,, = 85,9181s%7 ¢, = 15.2891e°" ¢, = 147,97420%7
Cp = =3.14159,  Ca= = 6,28318, O, = 5,42609, 04, = =43,4087,
k, 2 6,90872, Ik, = -27,6349, k, = 1.75643, | k,, = 8,11443,
kg = 6.24854, Xk, = 250.6602,

lg, = 2.,36485 le & 21,8505,  Ap T =19,3080, Ls, = -387,5397.

Then equations (12) becoms, when the numerical velues are subsiituied
from tadble 3,22:1,

]

5,919684s " A, - 2,607414s'" A, 4 ,116980 B, 3 -,0690695 ”59:

4 »q

963228 A, - 1,402525¢" A, 4 .501483 B~ -1,08206 % -
7.644550" A, + O 4 .731412 B,Z 0.
The solution is sasily found to ba

,0044641 = »

il

e?.‘l't‘ .A'

.207136 -

%
i
©

[1]

D
= =,0466575 5

=
i

B, ==0022580 &
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Honce the defleciion surfacs is approximately:

. 3 —
%i@,:%{ Li‘*—% + .0044641 = zqrx@sink’n’xcaa'n—y
+ »207136 e *" x gin 27x cos 2wy
~.0466576 - X sinTcosTY -,0028580 - x sln>} cos I,

At the tlp section, x = L3
w = % i -'33 + 0044641 cosTy $ 207136 cow Pvry} .

This 1s parhaps less mccurats than the previous :@sult obtained
by the Ra.yl@ighmnim mathod, sines only thres independent cosfficlients
have been taken, As a concluslon ws may say that in solving the plate
problem ths mathod of relaxation of boundary conditions is less
aceurate and mors tedious than the procedurs deseribed in Seetion 3.281.

Mco:rdinglyjha Reyleigh-Ritz method is used in the next section %o

solve the probelms of dsflection of swspt plates,



3.3 Swept Cantilever Plates

With the coordinate systsm and notations used in Section (1.13),

the potential energy intsgral (3.21:1) becomss

yw a»vaw b d
=3 casisff a4 -2 smeahz 322)2('-‘10)0{)56 s g étaz)]} § <

[ awessodidy + [, Bds - [ (0, FEE) wds (1)
4 L L

whers R is 2xtended over the whols plate and L over tha fress sdges;
Mps Hpgs and Q, baing the externally applied couples and shear on ths
zdges, The sweep angle is & ,
The same method used in Section (8,21) can be applisd here, Ths
bmndm'y conditions on dlsplacemenis at the restrainsd edge are
w=“0 and 3{20 when §‘—"O - {2)
Any funetion w continuous (D,4) and which satisfies (2) is caa,llred.
"admissible®, Tha solution of & loaded swept cantilever plate is
"given b;r ons of the admissible functions vwhich minimizes the poteniisl
energy.
| As before, write
w1 = Wil + Z’AM Woun (¥, 7) (3)
where ¥, (3,7) is an epproximats solutlon. Of courss all w, and f W,,,,,}
must e a,dmisaibla functions, Furthermoi;m, write
Woo (5,1) = £,(3) 3a00) (4)
wharg{{-m(?)}. and {g”('p} are the normal modss of a vibrating bar
as defined in Section (B3.21) and given by equations (3,2134) and 3,21:10),
Obviously wg,, in this form satisfiss the supporiing conditions (3.3:2).

Using the definitions adopted in Section (3.21) for the sysbols Ao, B..‘;,
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Y'm.:, Komi Ao, peme, and in ndditlen, leg
L 1] i i 7] /
\P”"": = L 1"‘" h d« B 7Z.~u' = f_‘ 9»' i dy ’

L e ] .
e = L 1("‘1 ?cl-' dx ’ énu‘. .[_, 3»1 95 J] .
Substituting (5,.3:3) date (3.3:3)) and agquating ils pertisl derivativas

(5)

L}

with eospest Lo Idm,‘} b vwdv, o5 hbain: o sretan of liasar slmud-
Yansous squetions sus lue deteraination of { a.“..j a3 Frllowss

2 Upn [ Ay # Foyy + 2( 1+ S0 = VC0576) @, Ay + 2($678 +00058) A

- 4 Sin 8 ( Y’MM g..,,. + Tmm ﬂ:vu:)]
" Z’: Ay [2(/4-5:.,'3 uaas"o)ﬁ i, + 2 (507 + VLas®) ym'/“j*r

l._[#nm

- : _ 2 Cos’® FE A
¢ s=6 ( 5‘:.,;%,, * T 7’7»:)] T T T D s, (6)
3 Ve D ‘rt o 91"'0 Y (3 T
yhora ﬁ_Z:... il "[If £w9n d‘;‘_.,_ 28 5537 + (510 ""L‘w“) ¢Za]
s” a*wo
et [-ene (e 50 ('”M‘”“””)»?az
+ £,,5 (Sn8 *uma)c‘*;’: - 28 g:f% " ? J)}#JZ
]
- cose [ 4,0, I o frrn o s _ [00,-30) 0,5
(M

These equations reducs corrsctly to (3.21:7) and (3.21:8) when 6= O,
The expressions for  o,,., @, [-.;, Kovm, 2,,,;. fewe BT2 glven befors

in Section 3.31l. Thosas for %m, Towe . Wome 4_”. are given below.
- ? 4 7] -

L " s, / .
@ ¥ = fof,,, £dx = Llerbw) - %, (8)a
L e o 2 [ k) | chth)] - 6E[ csbth, enblach]
e 2 feshe kb,

+ zazﬂ.:ﬁm -a'["“/”“f"_f . Suhlboh, ]
FPe =t /’L “Fort

y GAan [ Silbetpa) ""“m '%"

[ ey
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?‘I P, (sin p. sink p + sinp, sizhp) 4 p, (~cosh p, cosp.+ cos p_ cos‘:p)
*

[;p,,, (sinh p, cos D, = sin P, cosh P, ) + P, (sinkp cos p - sinp,cosh p, )I
+ Uz-[;ph(cw P: sinhp, « coshp sinp ) + p (coshp, sin p,~cos p sinh p. )

+F§¢,;[pm (2-cosh p.cos p = cos p, cosh B, ) + B (sin pmilinl\ p,~ sln p, isrl.m-g,’}

(form# 1), (8)y
N A conh LPm 1- 05 tog 2P 307" Tn [ 52 p, - Souh2
T tom = T 5 - LE el 4 3P, E[shrfu- swheh]
+ sin p, sink P, + O = (sinkp  cos p ~ sin jpmceskpm ) (8),
. L? o —P,,,
Tor m> 4, to four signifilcant figures: -F—_; ‘Pm.,, = &+ (-) € B
m
. _
()  Tm = [t fedd = £ f ) - Tm (9
: 3 . - - .;0’ COS(P;*FM) h(Pc.‘Pm)
e = 1+ % On T eos (pi-pa) cosh (Po+h | =S Sm | ces
T o I e T T R e
(¢FmMm) ‘
2Pk “—Tm[&n(ﬂ g,,) <siah (p: B,.)J T +0m | sin(R tfin) + sinhCP; +Fm)l
P = b 2 o U P 2 L prpm pi + B
i F‘lP i D..(sin p, sinh p, - sin p, sinh p) + p, (-cos p, coshp =cosp, coshpt 2)
P ‘
[p (sin p,cosh p, + sizhp cos p.) = p.;(sinh;pm cos p,+ sin p coshp, )]

4 [ (cos p, sinhpm + coshp;sin g) + p; (coshp sin p,<cos p sinh;o ,)]

6| P, (coshp; cos p, - cos p, cmshph) - p, (sinp, sinhp; 4 sin pbsinl\:pm.ﬂ}

R ) 0;2 ‘Q,z 3 |
L-(tmm= -‘—iTCOSh ZFM + | 4"" C—D‘ZFW\ +—Z- - _E. [5|n2.FM+ SlthFmJ

‘ 4+ a‘m C cos Pm sinh Py + cosh Prm S-‘nrm)—ﬁ'mzsinh,\sfnh Fm. mr4, A e %.
(WY, Wi = 5 8m 9/ dy = 2 Gem () 30 (1) = Mo . (10)4
When m and 1 are .bc:th even numbers or both odd numbsrs, 7{“.7- 0.
?Ihen m is ever and 1 is odd, _
R ! _ Sin (2 - 9c) ~ sm(9-+4.)
1ii cos”Ium _ufr’n"f,: qrn ~4; Qm‘* 9-4‘
~ (‘/(I*cné g, M- 5';"7"2‘-)
‘ ; . BnhG., Coth 3 + ! D tank 2,,toth 9 1 ] 4
+ CosqmsihQE[ qm + 2; gm - 94‘_
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b 2T (59 esq Hanb G - SinQ; Sing, tow‘-ﬁn&;)} (10),
3 Reb g Y )

(1),

(). $.. = f'Q..:. g dy < 2¢wgw - &

Similar %o T,., {wm:vanishes when m,1 are both sven or both odd.

When m is even and 1 is odd,

A L. = | i sin (9~ 4,) sin { Tm +4,)
3 7em 5t 2 f sintq./. 12 Do~ 90 T Qm+q,
,\/ | + tos 3 I’l’l/cgshb 1m J “ ‘/smh 30' m b m v

+ F2z b2 [ 24;sinq; 084, +4,, ( cosd, cosq; Tanh 4,y + sin ims"‘ftd””’j‘),]
m TP ‘

tanh@mcoth 9+ anh Gmcoth & — 1 |
‘+ (‘,OS'Q_M s,n&{_————-—-——’——‘ analis o _ ﬂ
v At 4, ’ Q.5 A . (an
The values of the constants ¥¢;3 T ete. arve computed according
to the above formulas and listed in Table 3,331 through Tabls 3,334,
for a rangs of m and i from O %o 4, Coefficients with larger sudseripis

can be computed relstively easily,

Empirical Results

| The cholcs of the first approximation w, (x,¥y) is guided by two
principles: It should be simple and general enough so that w, can be
sasily constructed for various loading conditions, and it should De
powerful snough to tske care of a mejor part of the deflection, For
thig purposs any empirical information would be invaluable.

From the test resulis obtained at GALCIT Structursel Laboratory
on the deflection of thin elastic swept piaxas (Ref, 52), it has been
. pointed ount that the deflection of a swept cantilaver plate at a dis-

tance fairly far away from the built-in edge can be approximated by assuming
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tha platz %o ba built-in along a fictitious line A-A perpendicular
$0 the longitudinsal axi@ of the plate (Fig. 3.331). The point of
intersection (point D in Fig, 3.3:1) of this line A=A with the actual
bullt=in edge B0 waries with the swyesp angla and leoading conditions.
This vafi@tion% however, is not conveniently prasdictabls,

The folleowing spproximate theory, togethsr with an sxperimentally
determined smpirical factor, seems to give desirable results,

Consider the swept cantilever plats as being formed by a series
of slemenitary symmetrical rechangular beams of length dx each, sa% one
against the other so that in the limit thsy apprcach the form of the
givan plate (Pig. 3.4:2)., Assume that, for each of these elemeniery
baams, the ordinery veam formulas for bending and torsion hold. In
the swept beam, however, 1% ls evident that ths strasms distribu%ion iz
no longsy unifarm across the widith of the bsam, To take carse of the
affact of this non-uniform stress distridbution, an affsctiveness factor k
is assumed, so that when the actusl width ¢ of the elemsniary beam is
rsduced to ke, the reasult will glve a correct eatimétian of dsflecﬁionov

With the notations and sign conventions illustrated in Fig, 3.3:2,
and according to the assumption on torsion formula above, the torsionsl
dafi&ation»of any elemeniary beem 1ls given by

dy = T dx

GJ
whers GJ' is the modified torsional rigidity of the beam. The deflsce

tion at {x,y) dus %o the twist of the element at £{ is
' ‘ T
= - = - —d
dw o= (Y ) dy (y-v 77 4. | |
The total deflection at ( x,y ) due to the torsion of the whole

plate is then
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SR T
w=§ - 4
Ths deflaction due to bending moment is given by

whara BI' 1s the modifled rigidity of the beam and M thﬁ banding mow
ment at the ssetlon, Hines the slope and defleetion of the beam al

the built=-in edge x = O are both zero, so a repeated intsgration gives

* N M (%) 7
- - —_ 2 ¥
= S o\sSc Yy , (13)

o

Therefore, the deflection of the plate is given by superposing

(12) and (13):

PRI ‘ X TS
= - Mf%') 2/ - d

The function w(x,y) obtained above 1svlingar in y» The second
term on the right hend side of (14) in genersl does not satisfy the
boundary condition (%"*)5:@ = 0 at the built-in edgs, This is dua
to the fact that the free torsion formule is used in computing the

torsional dsflection, Actually the built-in end is restrained from
| warping, Howsver, from the results of Timoshenko (Ref, 49), Senft
(:I»iaa:t'.a 50), and Fépple (Ref. 51) it appears that the sffect of end-
restrain{ dies out sxponentially as the distance from that end in-
crzases, The effect of end-rastraint amounts approximately to multi-
plying the second term in (14) by a factor

| (1=-e""),
whera A is a constaht, and then w(x,y) given by equation Ilé) satige

fies all the boundary conditions at the buili-in edgﬁ. The correction
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dus to ths fector e‘A’ is, however, quite nagligible a% finlts dise
$ances from tha buili-in edge. Hence, with this understanding, the
funetion w(x,y) given by squation (14) may be taken as the first ap-
proximation w,(x,y) in the Raylaigh-Ritz procadure,

Beturning $o the affactivenzgs factor, the modifiad rigldities

for narrow rectengular cross-sections ars given by

g1t = g ket d (15)
el 12 9 M . .
st = oAt

By comparison with expsrimental results an approximats value

2 g {18)

k¥ cos
is obtained, where © rspresents the sweep angle. That this formula gives
 fairly good rasults is illustrated by Fig. (3.3:3).

Several particnlar cases for cantilever plates of uniform thiclkness

ars listed below:

. * 3 zH )

(1) Pure bending, Cowm = dsf _%?7;‘0 (17)

If M4 = const, then ws _ Mx*

2EI’

I1) Purs torsion T(S) (18
(11) j [y-1a3)] dy . (18)

If T 2 const.,

+0.V19 XIJ

=T [ yx - -
(III) Concentrated load at the tip s»ctiono ‘

If the coordinates of the point of application of the concentreted
losd P 1s (X,Y), then

winy) = ﬁ*{X"{-é}q-%,fM@é‘f ~(r+nt +1’xr}(19)
(IV) Uniformly loaded

If q = load per unit ares, and b and c the span apd chord respec-

tively, then
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. | ; ;
W{*Y)"yﬁ%‘*gﬁiff[_ﬁﬂf(xt.gbf+z#ﬁ)+(§"bf4b*)7].
24l 26 3 3 (20}
In actuslly carrying out the computation, 1%t is often advantageous
to sxpand w,(x,y) and its derivativas into serles in terms of functloms

{fm(x)§) § S0t} 29 dsfined in connection wilth equetlion {4).

Example, Cantilsver Swept Plats Under Uniform Shesr Load Along the
Tip Section.

Ag an application of this method, the deflection of a cantilever
swapt plate under wniform shear load along the tip section is carried

out, The angle of swsep is denoted by @, and the load is applied along

of
the adge BF (Pig, 3.3:1), The 1angthAEF 1s taken as 2 and that of

ths sdgs CF 1s L, Ths approximats sclution wo(x,y) is congtraciad
.ga

3

secording to the elementary thsery given above, teking k = cos
and according to equations (15) and (19):

Q Kz X”’ '.\_\) 2 )(-3 —(Y"' )+an9X2+T-x7]}
a1 BE ] 1 [ane (T, . (=)
- c

wheralq 1s the total shear losd acting on the tip section, The coord-

Vg (=, y) =

inates X and T should now De taken as L cos® and L sin®é raspectively.
Transformed into the oblique coordinates ( §, 67 ) by the relation

x = g_cese

. (22)
y= NTtysing
aquation (21) bocomss
.2 3. 2
_ 1 o 5;3 -Qi + K2 mé |~ sl 9_5? L fnaji
‘ W°(§’Q-)—f—#c-v*)m;3i°§e[ 5 6J 7 Sin [ sin -t s = (23)

-12§+ Lyqlt,
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Substituting (23) into equation (7), one obtaing

0 I IR EAF MUSLITIS PR AR B P (24)

aamn (\ Y )CO 6 <)
+ fmg (G Hg4 kfdidy -3 )Cmu)j‘ ga ey
¥ ‘
whare & = L [~ 3’5,,"5"’19\], B = -4f1,

ans V 4 ; "
€2 - X ging, D = -EIL,

it

E =2 sind[- ‘—;—VMH ’llf_’) cos’0] | s F o= (1+v) sin’s.

¢ =L [(sin® + v cos 6 ){cogo + | %ﬁ siﬁ@)-(lﬂ ) sizfeJ)H = «G/L
X= - '—-{ 8in6 (sin'e + v cosd). (25)
The integrals involved in (24) can be worked ount without diffi-
culty, They are listed in ths following:
(U = [, o', a5a7=[2 £4(1) 10 2 0; =0 1f n#o.
(1), = L,ILLfn;lgn ydgags (2] LEA(L) - £,(0)]if n = 0, = 0 1f n#0.
(1), = 0§ fnepn a3 4y = [Fea@) 1ena1s 2o01ras1,

(Vg = § 5. Sy a3a7 =2 2 (L) g (1) 12 n is odd; = O if n is aven.

£1 (1)]1f n 18 odd;

=0 f nis even,

(V)mé 5; .8 gd;dq-zg(l)[Lf(L)-

= [ 2 0 a7 =[5 8005, |
(vn) = ) [“pgn ay aq =2 B £1(L) gy (L) Af n is even; = 0 if n 14 odd,

Fl

Fm
(vx;u) -j f faery dy dn = 2 -‘;: £,(L)g/ (1) if n is even; = 0 if n is odd
(1), = j,fd Ty 143 a7 =2 55 fn() g (z6)

All ths quantities involved in the righi-handwside of these squam
t/'ionsf are %abulated in Tables 3,21:6, 7, 8 and 3,3:4, }"‘or ihe pariicular
cages of 9 = 30%, 45°, and 60°; and Poissonts ratio ¥ = 0,3, the numer-
ical values of the constants A, B, C, etc., and the integrals @)m,(II)m,

(I11)mp» otc. are listed in Tables 3,3:5 and 3.3:6, HEquation (24)can
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now he writtan as

Ve _ o1 ! ,
2amn (129D pgts Zomn ~ 3 f»‘L’é} dn () dn, (27)

whers  Zmn® A(D)p + B (II) . 4 O(III)  « DIV) . +E(V) =+ F(VI)y,
¥ G(VID)gy + B (VITD),, & K(IR) |
and j' gn(’l Ydq = JEifn=0; =nd =0 if n40,

Sample Computation, Swept Plats, L = 4, 0= 45°

Let six indsterminate coefficlents be telken in thils cass, s0

 that ths defleection function is representad by
WOE D = WolE, 00 + 6,05, (524,00 + an H(5 §i (0 + 4 fi (8> g, 00
, (28)
+ Qe §, (559,00) + Qu £ (3) G, () F &z £2 €§) J, ().
Now ths equations for the determination of the coefficlents ay,
a1n stc, are, according to aquation (6), and teking ¥ = 0,3, @ = 459,
L= 4

2amn [ G + Xy + 207 By A+ 1o3 Y o Epn = 2:82843 (¥ Snst Toman))|

| ) | ; . __ans39 Ve
4 IVJZ*,MQ&J [z.7 B Ajat 143 Vi fjn = 282843 (Vs o+ Tmi ?Q,,.)J_ oo

(29)

Substituting the numerical values in, one obtains:

-09658a; 5 - .3032a77 + 1l.491ay, + 1.292a5; = 4.42%.,, = ~e29091
33.10m)7 + ,6064a,, - 2,5848,, - 2.584a,, = +.566476
~-45,1081 5 ‘ - 285,489, = =2.4454

+.2926L  (30)

= &3.128¢7 - 1.37581 4 + 65.7484¢ + 7a032a32 = 41,19170

3.794mp0 + .6873aq) + 686913 = 3,516ag) + 7,425,

= -,91876

+ 193,7a12 -}-111@1&23
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whara the right-hand-side of these squations are written in terms of
- 2 cos’® Q
(1-¢*2 P *

The solution 1s

a0 T 1.863 ay, ® -,01412 &, = 007508

S S
{(1=2%*)D

Hence the correction to w, (x,y) is quite small. The deflection.

-8
expressed in terms of » 1e€sy 879 = 1.863 5o 0 ete.

surface is given by equation (28).
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IV, Stresses in Rectapngular Cantilever Flates

§ b.1  Introduction
' The stresses in a cantilever plate can be obtained from the
deflection functlon according to equations (1.12:33) through (1.12:35)
of section (1.12) for rectangular plate and equations (1.13:5) through
{1.13:10) of section (1.13) for swept plate.

| Hence the strength computation can be carried out sasily if the
deflection problem is solved,

However, an exact solution for deflection of a cantilever plate
can be obtained only in a very limited number of particular cases., In
general, direct procedures such as those developed in the last chapter
are often used to obtain éractical approximate solutions within desired
accuracy. These procedures are satisfactory for the determination of
the deflection w as far as convergence is concerned. But in order to
obtain stresses from the approximate expression of w, one has to dif-
ferentiate w twice or thrice., Unfortunately, in many cases this
differentiation is not permissible. In differentidting the approximaw
ting series for w, either the convergence of the resulting series is no
longer guarahteed or ihe degree of convergence becdmes so poor that the
result is of no practical use., The approximating function always os-
éillateSAabout the true solution. Indeed, the very proof of the
possibility of an aspproximating procedure (Ref, 18) lies in the fact
that the fﬁnction.(wtrue - Wépprox.)‘possesses a large number of
zeroes somewhat uniformly distributed over the domain in question, and
that the number of zeroes increases without limit as the number of
terms in the approximating series Yapprox. tends to infinity. If w and

Wapprox. are continuous functions, this guarantees the convergence of
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Wapprox, Y0 W. But apparently the derivatives of wyppnoy, may not
converge to the derivatives of w, As an example one may take Ritz!
solution on the normal mode of a vibrating square plate: here the
Wepprox, Series behaves like the series 2 >-75% , and obviously
would not permit differsntiation higher than the second order. ¥Yence
a theory of direct stress approximation without ?zsing intermediate

_ deflection functions is desirable. For rectangular plates this can ba
carried out by a procedure scmewhal similar in nature to the Rayleigh-
Ritz method. A sequence of solutions is first constructed which satis-
£y the equations of equilibrium and boundary condition (on stresses),
but not necessarily the equation of compatibility. Then it is assumed
that the state of stresses can be represented by a linear combination
of elements of this sequence of functions., To choose from the infini-
tude of possible linear combinations the one that satisfies (in the
limit) the equation of compatibility, the basic minimum energy ﬁrinci—
ple is used from which the coefficlents in the approximating series can

be determined.

§ 4.2  Method of Solution

The method of solution is as follows,

Let Mx and My be the bending couples and H,the twisting couple per
unit length in the plate, Gx and Qy the transverse shear-stress resul-
tants _pér' unit length, and p the surface load per unit area acting on
the plate. (See Fig. L.1l:l) The equations of egquilibrium are

A8 28y .
+ + ” = 0, .
X 37 ‘ ‘ (1)

My o Hxy =

2 X b'y *Qx =0,

oHxy My -
_’Q7 =0,

> h T ay
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These equations are independent of the wéy in which.the stresses

are distributed over the thickness of the plate. In terms of the

stresses,

- (2)

Equations (1) consist of three equations in five unknowns. Solu-

tions can be obtained by superposing a particular integral and a com-

" plementary function. The complementary function satisfies the homo-

geneous equations

dQ« 24y ?My . JH dH oM
et S O oMy - xy My A
T 55 = Tyt ¥ Q, =o0, >t ay_QY o. (3)

let a stress function "X, be defined by the equations
e o= U @ = )X (1)

W i
Then the first equation of (3) is satisfied by an arbitrary func-

tion X. The second and third equations of (3) now become

b}l\;‘x N )(H:;HX.):o'
(5)

o aMy_*. a(Hy)v{-/X.)_:o‘
oy kYA

Define two more stress functions ¢ and ¥ as follows:

2¢
My = =, Mo = X,
>y = —
‘7 N b X (6)
% 2¢
Hﬂ]'f'x - )7 > Hx) _’x, = - -a/; ;
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[ Y%
-e
o
.

and hence Huy = ¥ ('SF; T X )s
R A s Rl

Then the system of equations (5) are satisfied by arbitrary con-
tinuous (D,1) functions ¢ and Y  The boundary conditlons on the

free edges are obviously
"X = const, and Hp, = My, = O, (M

Whera n denotes direction of outer normal to the edge in question. The
system of moments and shears derived from the two arbitrary functions
¢ and Y according to equations (6) may be called a "self-equilibrat—

ing system".
To determine the particular self-equilibrating system which in

conjunction with the particular integral solves the problem, use has to
be made of the basic energy principle for the stresses (Castigliéno’s
theorem of least work), according to which "the true state of stress is
distinguished from all statically correct states of stress by the condi-
tion that the complementary energy be a minimum".

For materials obeying Hooke's law, and for given surface stresses
or displacements, the complementary energy is the difference of the
strain-energy U and the work ). which the surface stresses do over
that portion of the suffaca where the displacements are prescribed.

'In the particular case of a cantilever plate, that portion of the
surface where the disﬁlacements are prescribed is the built-in edge,
where the deflection and rotations are zero. Hence the function LA
vanishes in all cases and the complémenta:y energy is identical with the
strain-energy in the plate. :
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§ be3  Applications

For plates of uniform thickness and isotropic material, the stress-

strain relations are

EX’ [d'l'v (6‘)’1‘(3)],

L

E
)

fy = 2252 o,

ste., by eyclic substitution of indicas. The strain enargy stored in

the plate is then

+
T
U-= o'-llE:,UJ {0;2+ 0‘7’+ 0;2- 2200 Ty s 0y @ + 9 G )4 2(1+7) (’t‘x;' -VC,: + Tan )} dzd)w‘/'
Y
s

Assuming that the normal stresses are distributed linearly over
the thickness of ths plate and that the contribution to the total energy
due to 9, and Tu. 5 T, are negligible (being of order +2:1

compared to other terms), so that

My 2 M 2 Hey 2
= —_— = y_ A2 Tyy = ., 1
5 £/, Y2 % /6 th ) e tha )
and hence
L z 2 2 ] axdy .
U.:;'T[J'.(I—D")D{Mx + My ZVMxM7+2(I+V)H,‘Y} xay (2)

Let a particular solution of the system of equations of equili-
brium for the given load distribution be denoted by Mxo, Myo, Hey,Qxo,
and Qyo, and let a system of self-equilibrating stresses derived from
the stress-functions ¢ and + according to eq (L.1:6) be added to

them 80 that
24
M"=MM+;;’ My = My, %
(3)
| 9
Hgy =‘HX70 + T(%_ %5).
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Then the strain energy U in the plate can be written as

Uu=u,+U+U, | ()

where

U, '_'-2“,_,:) [fj‘)‘ { Mxi t My: + 2v My, M,, + 201+ )’)H:;, }o!x 37, (h)a

U,F—"—“ f {p.lvtm,ji ZMyﬁiﬂp(M,o%—fw )+a(w)H (W °‘P)fd”/{mb

2 -9t )I Yo 87

(We

2

. = 2(1- vz)‘JI ( )+ ﬂ)-rz %%-}u ?_r_i) }019‘4

According to ths eqs, (L.2:7), the boundary conditions to be imposed on

¢ and -y aré
%= L : %'.‘:D! %‘P‘:o) %;ﬁ—:o, (5)3
= . 2 hd
y=tt - e -
This can be replaced by
=L sy o o -
L #m e, WEOL g . (5)
Ly ¢=~¢-=0>—§3}3=on..
¢ -~ and -~  are otherwise arbitrary,

To construct the functions ¢ and Y, use is made of the
vibration modes of thin elastic rods. Let  w.ty) be the amplitude
of the v th mode of a free vibrating thin elastic bar of length 2
clamped at both ends; and let v, w) be the corresponding function for
a bar of length L. " which is clamped at the end x=L and free
at the end «x=o o« Let w,(x) be that for a bar of length L
and s:.mply supported at its ends x=-° and x=L. s and r, ch
be that for a bar of length 2 and simply supported at both ends y= =1

Then the sets of functions  { u, w0 } etc., are orthogonal sequencas.
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Let them be normalized so that relations like

° when m=gn

m

jum (1) Un () dx = &, = { (6)

1 when m=n,
hold, &, being the Xronecker delta. The derived sequences { ux (x)}
and {vys )} , where primes indicats differentiation with respect
o x » are not orthogonal, since although W' (), Vo)
satisfy the same differential equation as W (%) and Vi (x)
mépect’imly, their corrssponding boundary conditions ai'e noi admissible.
On the other hand, the sequences | »/(x} and {w. w0} are orthogonal,
| since the derived boundary conditions are admissible., Let the follow-

ing notations be used:

i v g L ,
Umn =, = u":(*/)u."t ) d = V¥am T vﬂ(“‘) Vn () AX’
yray, mn
-1 °
m ! ’ ’ d m L ,
emm%“ = Sl Tm (Y)Y Gtyd @y, emmén =j W (2 W, (%) dx , (7)
1 ‘ ) ) L ’
9""\ = j U () T, (Y) dYa ?mn = J Ve () Wy () dx,
_l [}
) - 1 , d , L,
'lmn = j. Wer Cyd Th Ly)dy, §mn=$ Vo (X)) Wp (5 dx .
A . .
Now a set of stress functions ¢ and v , which satisfy the

boundary conditions (5) can be written as
$ = %—_—% Qun Vin (X Ty (y) }
2 bn W 00 Unly)

WA, ™%

i

v

Substituting (8) into (L), one obtains an expression for IJ as a
quadratic function of the constants {%~n}] and | bm»} » The con-

stants {%mn}, {bmn} must be so chosen as to make U  a minimum,
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By ordinary maximum minimum process this reguires that

W . AU, _ 3, 20U, _
mn ‘b_‘—rz;m ~'0, abﬂrm-‘. bbmn O), for aw m,n’ (9)

U, being independent of {@m,} and { bmn} . Now

gg.i. B (.-Lzm .I“(M,,“' Myo ) Von 00 7673 = C1#2) Hy (8ol 035 (3 | dxaly
: (10)a
%l{l— =7 ‘ 3D JJ‘{(M*/H'VMxo)Wm(“) Unly)+ (11 ¥) HX)"’WMLX) Un (y)}d"d].
- (VR ‘
(10)v
[+ »
)Uz - 2 0., + (1+3) A F Z’ j &g
s = L2 ] AN
v 2o [ 22 8m S SO E T ) bje (10)e
E_[lg_ = [ E_e_mmi-(l*”)wmn] len + ’l—-’g Z“ “nk bmk
Y . K#n
(10)a

T J%(A [ Z.V%m 9}1;( — (1) ng Q“"JQJK R

It should be noted that the right hand side of (10)a and (10)b are
known quantities and that of (10)e and (10)d are linear in jamn} and
" {bmn} . Hence equations (9) lead to a system of linear equations
from which { @mn}, { bmnl can be determined. ,

The linear forms (10)c and (10)d are functions of plate geomeiry
and indépendant of the externsl loading conditions, hence once tabulated
can be used for all loading conditions.

Convergence can be established from the fact that the sequences
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fu,o0) ete, , are complete systems. Physically, good convergence can
be expected since good estimations on Mxo, Myo, etc., from the point of
view of statics can usually be made, and hence those due to ¢ and y are
only small correction terms.

It remains to write out the explicit formulae for Un(y), Va(x),
Lm, Gemn ete., The several functions un(), Ve, ni(x, w,(x

all satisfy the diffsrentisl equation

(11)

and the boundary conditions u= %,KT-—- o for clamped ends, = B:‘:z =0
for supported ends and %35; = —%z—:-; =0 for free ends., A fourth set
of admissible boundary conditions are %‘—;— = 7’: =5 = , which are
the conditions satisfied by { m (3} and {wawof, .

The functions w., v, w etec., are found to be as follows:
(I) u, ¢y, normal mode of & clamped-clamped bar of length 2, with

origin at the middle point. This is similar to the fynotion 9, (v)
of section 3.21.

If n is even:

—~ cosh n S Pn h
Untyym o Pn COS MY T C0%Fn CostPay ,

i v\/ cosh® Pa + cos™Pa

where  tan p, 4 fach p, = 0. (12)

— sinh Pp sinppy + sinPn sinh PnY
J sinh? p, — sinzF“

+an Pa = tanh b, = o,

Pn
The roots are approximately equal to (w- L) .}’ . Their exact

values are given in Section 3.21,
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Normal mode of a free-clamped bar of length |. , free o x=o,

(IT). v, x) .
—F clamped at

x =, o

cos Py + cosh Pn (i PoX o ink Pa
Sin Pn + Sinh Pa L L

X)'

{ ws&i‘..pcasl\&‘f -
L L
(13)

Vi (X)=Jl:|_

Yhere Po is the root of cosp, toshp, +1 =0 .
f,0  of Section 3,21 with the

This is equal to the function
are given in Section 3,21,

_ crigin changed to x=L , The roots p,
(TIL) Waor: Normal mode of a supported-supported bar of length L ,

with ends at x=o and x =L 4

z . T ’
r L n, any integer., (1h)

wn(n = —L‘_ 3SIin

Normal mode of a supported-supported bar of lengith 2

(Iv) To (),
with ends at J=£1

Y (y> = (-7 g5in “7;7 ~ 4if n is even,

| (15)
™
Yo ) = (=% es T2 if n is odd.
The integrals (o, @mn etc., are then found to be as
. "
followss:
. o (26)
(D. Wy Tw,,, s f’ Up C¥) W) Cy) dy .

When m#+ L, mand £ both even:

o sin ( Pm +P)
Pm t Pe

P Py sin (Pm= Pt)

W, =
- [ o5 Pm )(l _cosPL j Pm ~ PL
oah" “coship, Pi
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o +anh Pm + tanh Pr _ +anh Fmn — tanh Bs
+ ¢ sfm cos [ Pt P b s J

* s L b loinpy conho = eouh cosptonhp ) ¥ p(sincost  cost cost, 4ach )] |
™ [
(16)a
and L ares bolh odd:

M

When m+ L, and
w _ Per P Sin Cf’m - Py Sin CFm + Py)
miL =
- sin fn (‘__ sin P ) Fen = Po P + P,i
( sinh? Pra ) sinh* py
. . coth Pm + coth Pt coth F""‘ o ¢ oth P1
+ sin Fm Sin P). [ P + PL Fm - Pj_ ]

- ﬂfh[ B siny coth b, + B, cos P'L]j |

- E3in h—t‘ [ Pre 5""?.«“““‘?1 + Py cos Fm] by P
m TP

N
(16)b
When wm=L, and m is an even number:
P: __ _Sin 2Pm 2 tanh Pm - |
O = g4 Costbm {' T Fm| Pen cosh‘Pm]
costhm 4 , ,
+ %?.Eﬂ [ cos Py +anh P + sin FMJ }
(16)c
When =L, and m 1is an odd mumber:
—_ Pm" ) 5m2f’m_ . 2 coth P!"" _ )
W= T {\ + gy T P [ o SR 1
Siﬂhz Pm
_ .ﬁ‘;ﬁ"_[ 5in Pm coth Py, + <08 P ]} ' (16)d
When one of ™ and n is even and the other is odd, Wmn = 0. \16)e
The p's in the above formulas are the roots corresponding to un(y).
(@).  Gma = Grm is given in Section 3.21.
‘ M o\Z
M.  Omm = (—3) (17)
M. Cmm = (25)° (18)
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M. ¢ = ot Pm {- sinpm _ SPmlathin] 5o p o oare both even.
mn A/I"’ cos” P 4?: -pr 4'F,: + ntrt J, ) ‘
Cosh® P (19)a

 4mm Fm [ cosPm sinfmeothPm] 3£ m, n are both odd.
S =T sin'Pm 4p2 -mUt AP ¥ WT,
Sinh® P (19)b

gmﬁb, if one of the m, n is even and the other is odd. (19)c

- The p, in these formulas are the roots belonging to u,(¥).

(VI),

— ‘ in F + G/MCo PV'\ + - " m - v g
g} (\ l)jla [ s m 3 ( omhpm Q’m)w th ng (nn ]
2

- + 0
sz - “1“7. PmL % T “q."‘; ~ qu,

(20)

where o, — =22 pm _+ cosh pm s+ and py, are the roots belonging to w,(x).
Sin f”m 4 sinh Pm ’

For m>2, o, - |-, P 1o five decimal places, and
_ (wl)“ 5in P + Ty CO5Pm { N 20m Pm-
?m"—TEnwr"’[ P o ' Fm"+v\‘n"+(‘) whwt - pd ]

(VII). "mnis the same as § .. except t.hat the term sinp,, should be changed
into -sin p, .

(VIII). %
‘should be changed into (-0

is the same as - ¢ except that the last term in the bracket

mn
n_2 G (nm) ,

)Y~ p2 v
The numerical values of these functions are given in Tables L.3:1

through L.3:7. No practical example is given since the application of
this method is quite similar to the Rayleigh-Ritz method of sections 3.2l

and Fa3a

% - At the time of writing this thesis, an elaborate experimental program
is going on at the GAILCIT structural laboratory. When such experimental
data become available, then it will be interesting to compare the numerical
solutions of particular cases,
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line of centers of twist

(x;¥,2) -~ right-handed coordinate system.

(x57) === coordinates of field noint.
(£,7) =--- running coordinatss of the points along the
line of the centers of twist.

The positive sense of torsional counle coincides with
the x-axis, and the twisting angle ¢ is measuvred in the
Same gense &8 the torsisnal counle.




-117-

Figt i‘%°1:1‘




118




<119~

tavle 3,21 3 1 ol x 1t

n " | 1 2 3 4
1| 12.85236 0 0 0
2 ; 0 488,5187% ] 0
5 0 0 3806.545 0
4 | 0 a 0 14617.274
|
Table 3,21 1 2 B, = 128
ot 1 2 P 4
L 9.5z 7,392 5,828 7,126
2 7,392 38,78 17,58 24,56
3| 5.828 17,39 | 76.39 25,89
4 7,126 24.56 25,38 | 143.0
Table B.21 ! B 'Y;m x 1°
e 1 2 3 4
1 | -3.949 11,78 . 87.56 36,17
T e | sas aae | e
MN%““!wwli:%és ; 21,727 ”| 44,99 18,69
4 i -1.553 5,439 i 46,105 99.02
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, Table &21 1 4 ¥ -
m;?mﬁu 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 31,28522 o 0
3 0 0 0 2877210 0
4 0 0 0 0 913.6019
Table 3,21 1 5 A
;\1 0 1 2 3 4
o 0 0 0 0 0
1] 0  3.,00000 0 3.46410 O
2. o 0 12,3701 | 0 | -8.93007
"3 0 3.46410 0 272028 | 0
el o | o -s;gsoov‘ o ae.ma
Table 3.21 : 6 (4
—
;\\’; 0 1 2 3 4
o 0 0 0 0 0
1 0 0 0 0 0
2 | -4.64724 O 10,0485 | ©  |6.60643
3| o0 |-10.1486| O  |-11.4837| O
4}0.9953 | 0 | 4.49002| 0  |-al.2107
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Table 3.21 3 7 $uce)
m 1 2 e 4
L fmtw) | 1,980194 ~1,992014  1,998525 ~2, 000053
WA S0y 2.692451 -9.600801 = 15,691245  -@1.99218%
@, . 742976 1.018474 ,999234 1,000058
.o 1.875104 4.894091 7,854757 10,995541
Table 3,21 : 8 3o ()
m 0 1 a3 4
dmt L707107  1.82474  -1.41420  -1,41421  1,41428
G (1) 0 1.22474  -3.28610 -5.55737 7.7748%
b 0 0 2.365020 5.497804
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Table 3.3 3 1 ’2/[;‘1.3

"

. . g .‘.{wmwé S

1 | 3,9604 15,874 11,5056  1,1360

R =B,9761 45,935 67,201  145.90
3 30,743 =217,94 123,37 ~1132,1

4

- =58,077 674244 786,96 241.80

Table 3,3 : 2 T.L

] 2 3 4

|

 2,0557 L7618 = o20337 33610
-4,7208  1,9933  2,4215  =,30113

|

1‘ ‘M
2
34,1608  -6,4026  2,0000  3,4945
4  -4.2066  4,2852  -74916  2,0000

Table 3.3 : 3 Toan

i

L | . . ,

e s

0 0 0 0

5

0 52,0734 0 32,4924

O I .
0|-8,08927) 0  -16.4495 0
0

0

19,0444 0O -118,908 O

o O
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-0
=2,00000
0

L.75206

o i

Table 3.3 3

0

‘ 0

=%, 46407
0
D046411

<

0

0

0
4,62440

o

4 %

s

o
0

- 4624436
0

5446415

E-EE-NE S

0
1.,464124
Q
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Tabls 3.3 ¢ 5

(1),

30° 45" 60°
A 587781, L17556L @ ~.B6B66
B -, 58778 ~.17555 25666
¢ ~.32500 - 45968 | ».BE290
D -, 249251, ,O71418%  .51918L
B .24925 -, 071418 -.51918
7 . 32500 .65000 .97500
G .10844L -, 11350 -» 36656
H -.10844 ,11350 . 36656
X . 154375 ~.29875 -, 4644
Table 3.3 3 6
Sutsgtipts (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
mn
(Dpn (3.8070)17F O 0 (-13.57758 8 0 0
(1) (1.00728 Fy- 0 0 (-10.76045)=%- O . 0
(111),, 0 (2.19838)57; O 0 (4.33903;3@ 0
() 0 (4.850445‘){% 0 J ‘(-4,87939?% 0
()m 0 (2.97471)T 0 0 (~§.81211834£' 0
(VI) 0 0 (-5.600784 )3 O o (5.63421)
(vir) . ) 0 (-5.03278 )L o0 0 (2,86362) (T
(VIII),, 0 0 (-3.70141)1L © 0 - (.594156)L7T
0 0 0 0 0 0
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Table 4.2:1 o,

2 L.1hobk 0 2.4831 o
3 0 11.48810 0 22.510k2
L 2.48531 0 2h.7265h 0
5

0 22.51042 0 h2a89623'“v

Table 4,2:2  Oma
e

mo 2 3 L 5
- 9.86960 0 ) 0
0

0 22.2066 0

2

3

b 0 0 39.h784 0
5 0 0 0 61.6850

“Table 4.2:3 - §,.,
W_Z;f}?, T
3.0818 0 1.067% 0

0 3.1711 0 .38478

. . t : o .
02,3495 0 -5.9958
~ Table 4.2:4 Tn

a® - s s

3 0 h.5hkS 0 1.5018
BRI Y
5 | 0 1.04h3 0 -7.k006
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- Table 4.2:5 €pu x L
. AR .
1 986959 o/ o o
| o 3.0k8% 0 ‘oww

0 ¢ 8.88263 0

0 O 0 15.7912

Tabdle 4.2:6 9, %L

\;f“ 1 : 2 3 Y

\\
I

1 1.03219 -.056033 .032755 -.013299

2 .08005 3.48312 .OOMTET  .16€43%
3 1,2812 002338 6.3241 J .01117
4

0 -3.6221 0| 9.1579

 Table 4,2:7 £

w1 2 | 3 4
1 21,9560 | -.56705 -.k4184 -.30173

H‘2 7~;f;a3372 -4.8638 -1,1543 -1.2465

1.3462 -1.3773 ‘7.71h9 -1.2723

- THT1h  2.4021 1 -1.3977 -10.559



