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Abstract

This thesis investigates the dynamics of binary systems composed of spinning compact objects

(such as white dwarfs, neutron stars, and black holes) in the context of general relativity. In

particular, we use the method of Lyapunov exponents to determine whether such systems are chaotic.

Compact binaries are promising sources of gravitational radiation for both ground- and space-based

gravitational-wave detectors, and radiation from chaotic orbits would be difficult to detect and

analyze. For chaotic orbits, the number of waveform templates needed to match a given gravitational-

wave signal would grow exponentially with increasing detection sensitivity, rendering the preferred

matched filter detection method computationally impractical. It is therefore urgent to understand

whether the binary dynamics can be chaotic, and, if so, how prevalent this chaos is.

We first consider the dynamics of a spinning compact object orbiting a much more massive

rotating black hole, as modeled by the Papapetrou equations in Kerr spacetime. We find that

many initial conditions lead to positive Lyapunov exponents, indicating chaotic dynamics. The

Lyapunov exponents come in positive/negative pairs, a characteristic of Hamiltonian dynamical

systems. Despite the formal existence of chaotic solutions, we find that chaos occurs only for

physically unrealistic values of the small body’s spin. As a result, chaos will not affect theoretical

templates in the extreme mass-ratio limit for which the Papapetrou equations are valid. Chaos

will therefore not affect the ability of space-based gravitational-wave detectors (such as LISA, the

Laser Interferometer Space Antenna) to perform precision tests of general relativity using extreme

mass-ratio inspirals.

We next consider the dynamics of spinning black-hole binaries, as modeled by the post-Newtonian

(PN) equations, which are valid for orbital velocities much smaller than the speed of light. We

study thoroughly the special case of quasi-circular orbits with comparable mass ratios, which are

particularly relevant from the perspective of gravitational wave generation for LIGO (the Laser

Interferometer Gravitational-wave Observatory) and other ground-based interferometers. In this

case, unlike the extreme mass-ratio case, we find chaotic solutions for physically realistic values of

the spin. On the other hand, our survey shows that chaos occurs in a negligible fraction of possible

configurations, and only for such small radii that the PN approximation is likely to be invalid. As

a result, at least in the case of comparable mass black-hole binaries, theoretical templates will not
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be significantly affected by chaos.

In a final, self-contained chapter, we discuss various methods for the calculation of Lyapunov

exponents in systems of ordinary differential equations. We introduce several new techniques ap-

plicable to constrained dynamical systems, developed in the course of studying the dynamics of

spinning compact binaries.

Considering the Papapetrou and post-Newtonian systems together, our most important general

conclusion is that we find no chaos in any relativistic binary system for orbits that clearly satisfy

the approximations required for the equations of motion to be physically valid.
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Chapter 1

Introduction

General relativity is nonlinear. As a result, in the solutions to general relativistic equations of

motion lies the possibility of an extreme sensitivity on initial conditions—that is, general relativity

is potentially chaotic. In classical physics, exactly solvable systems—such as the Kepler problem in

Newtonian gravity—deservedly receive a great deal of attention, and so it is in relativity as well:

the exactly solvable motion of a test particle orbiting a rotating black hole stands as a particularly

remarkable example. But just as classical physics produces the chaotic orbit of Pluto [1] and the

chaotic obliquity of Mars [2], so must general relativity ultimately produce chaos as well. It is the aim

of this thesis to explore the dynamics of a particular family of potentially chaotic relativistic systems:

binary systems composed of spinning compact objects, such as white dwarfs, neutron stars, and

black holes. Compact binaries are promising sources of gravitational waves, both for ground-based

detectors (such as LIGO, the Laser Interferometer Gravitational-wave Observatory [3]) and space-

based detectors (such as the proposed LISA project, the Laser Interferometer Space Antenna [4]).

Chaos in these systems would have significant observational consequences; in particular, chaos could

complicate attempts to detect gravitational waves from these sources. This is because current

matched filter detection methods rely on covering the parameter space with a discrete mesh, with

each choice of mesh size achieving a particular signal-to-noise ratio [5–7]. Chaos in the gravitational

wave sources would cause the number of such parameter-space templates needed to fit a given signal

to increase exponentially with decreasing mesh size [8], potentially leading to a computationally

intractable number of templates. It is this concern, and the intrinsic interest of understanding the

nonlinear dynamics of general relativity, that motivate the present work.

Chapters 2 and 3 of this thesis are concerned with the dynamics of extreme mass-ratio binaries,

where the larger object is a rotating (Kerr) black hole. If the smaller body has mass µ, and the

central body has mass M , then we require that µ � M , so that the mass of the small body does

not affect the background spacetime.1 In the extreme mass-ratio limit, which is well-satisfied by,

e.g., compact objects orbiting supermassive black holes in galactic nuclei, the general relativistic
1The gravitational radiation from these systems should be detectable by LISA.
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equations of motion simplify considerably, becoming a set of ordinary differential equations—much

simpler than their cousins, the partial differential equations of full general relativity.2 In the case of

a nonspinning small particle, the equations simplify too much from our perspective: a nonspinning

test particle follows Kerr geodesics, which are fully integrable, i.e., there are as many constants of the

motion as there are coordinates. As a consequence, there is no possibility of chaos. To restore this

possibility, we add spin to the smaller body, which introduces new (spin) degrees of freedom while

simultaneously destroying one of the constants. We discuss this system, described by the Papapetrou

equations, in Sec. 1.1.1.

In Chapter 4, we consider the dynamics of spinning compact binaries using the post-Newtonian

(PN) equations with spin [9–11], which are essentially a perturbative expansion of full general relativ-

ity in v/c; these equations allow us to consider the case of comparable masses. We use a Hamiltonian

formulation that is particularly well-suited to the study of the PN system as a nonlinear dynamical

system. The post-Newtonian Hamiltonian we use contains several spin interaction terms, including

the traditional spin-orbit coupling and a spin-spin coupling term, as well as mass monopole/spin-

induced quadrupole interaction terms that are of the same order as the spin-spin coupling [9]. Since

these quadrupole terms are too large to neglect, we specialize in the present case to binary black

holes, for which the quadrupole terms are known exactly. (In neutron stars these terms depend on

the poorly known equation of state.3) We pay particularly close attention to quasi-circular orbits

(“as circular as possible,” given nonvanishing spins). These are particularly relevant for gravitational

wave generation and detection, since many binary systems are expected to circularize due to grav-

itational radiation reaction [13] (and, moreover, stay circular [14]). In Chapter 4, we also consider

the extreme mass-ratio limit of the PN equations, in order to make contact with the Papapetrou

approximation considered in Chapters 2 and 3.

For both the Papapetrou and the post-Newtonian systems, our primary method for quantifying

chaos is the calculation of Lyapunov exponents, which measure the average divergence rate of nearby

phase-space trajectories. A Lyapunov exponent greater than zero indicates that nearby trajectories

separate exponentially fast, which is a characteristic of chaotic systems. (See Chapter 2 for further

discussion of the technical requirements for chaos.) In the process of calculating these exponents

in the Papapetrou equations, we encountered several difficulties. The Lyapunov exponents can be

calculated in several different ways, but for the Papapetrou system we could not initially get these

methods to agree. Furthermore, even after this discrepancy was resolved,4 it became clear that the

constrained nature of the Papapetrou equations (which enforce, for example, normalization condi-

tions on the spin and 4-momentum) leads to significant complications in calculating the characteristic

exponents. Addressing these difficulties led to the development of general techniques for dealing with
2Hats off to the brave souls of numerical relativity who tackle the partial differential equations directly.
3An approximate treatment of neutron star binaries is still possible [12], and is left for future work.
4See the Afterword for an account of the discrepancy and its resolution.
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chaos in constrained dynamical systems, and eventually resulted in a suite of computational tools

for solving the problem in a general setting. These techniques, and their software implementation,

are discussed in Chapter 5; they allowed most of the results in Chapter 4 to be obtained rather

quickly and painlessly.5 Chapter 5 is logically independent of Chapters 2–4; readers of this thesis6

less familiar with dynamical systems theory than general relativity may wish to refer forward to

Chapter 5 while reading Chapters 2–4.

It is important to note (as mentioned briefly above) that we ignore gravitational radiation reaction

throughout this thesis. The two systems we consider—the Papapetrou equations and the post-

Newtonian equations—are conservative, Hamiltonian dynamical systems. The addition of dissipative

radiation, and the resulting inevitable plunge, would destroy the formal possibility of chaos, since

the mathematical definition of chaos relies on an infinite-time limit (Sec. 1.2). For the purposes

of gravitational-wave templates, we may ignore radiation reaction, since any chaos present in the

conservative limit, if it occurs on a short-enough timescale, will manifest itself in the dissipative

dynamics as well. As discussed in Sec. 1.2 below, the Lyapunov exponent (through its inverse)

provides exactly the timescale needed to make this judgment.

In this thesis, we work almost exclusively in geometric units, which set G = c = 1, so that length,

time, and momentum have units of mass, while energy and angular momentum have units of mass

squared. We denote relativistic 4-vectors either with a Greek superscript (e.g., vµ, µ ∈ {0, 1, 2, 3})

or with a vector arrow (e.g., ~v). We set Euclidean vectors in boldface (e.g., ξ). The symbol log

denotes in all cases the natural logarithm; on the rare occasion that base-10 logarithms are needed,

we denote them by log10.7

Finally, we note that the chapters in this thesis are reasonably self-contained. This is convenient

for the author, since the chapters represent lightly edited versions of papers prepared for separate

publication. It is also convenient for the reader, since those interested primarily in, e.g., a survey

of chaos in Kerr spacetime can skip directly to Chapter 3. The price we pay for this modularity

is a minor amount of redundancy, but even this is a feature, not a bug: the topics receiving the

most coverage constitute precisely the foundational material essential for understanding the primary

results of the thesis. This recalls the so-called “spiral approach” to pedagogy, wherein the same topic

is covered several times from different points of view, often with increasing levels of sophistication.

The treatment of Lyapunov exponents is an example, with a brief introduction in Sec. 1.2, a longer

discussion in Chapters 2 and 3, and then a thorough examination in Chapter 5.
5Obtaining the results in Chapters 2 and 3 was painful.
6Assuming there are any.
7We use “log” for base-e logarithms (in place of “ln,” which is pronounced “log” half the time anyway) because

Nature does not particularly care that we have ten fingers. (If only we had e fingers—we could then avoid all confusion
on this point.) This usage is also an important reminder for the computationally inclined: in virtually all computer
languages, the user will be unpleasantly surprised if his code expects, e.g., log(10) to return 1.
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1.1 The Papapetrou and post-Newtonian equations

We give here a brief introduction to the principal systems studied in this thesis, both of which model,

in their respective ranges of validity, relativistic binary systems consisting of spinning compact

objects.

1.1.1 Papapetrou (or Dixon)

The Papapetrou equations [15] describe the motion of a spinning test particle in an arbitrary back-

ground spacetime. More specifically, the equations model a pole-dipole particle, which includes the

spin dipole moment but ignores higher order effects (such as the mass quadrupole). They are also

conservative, and ignore the dissipative effects of gravitational radiation. Because of its conceptual

clarity, the formulation due to Dixon [16] is the starting point for most investigations, including

ours. Dixon writes the equations of motion in terms of the 4-momentum pα and spin tensor Sαβ ,

which are defined by integrals of the particle’s stress-energy tensor Tαβ over an arbitrary spacelike

hypersurface Σ:

pα(Σ) =
∫

Σ

Tαβ dΣβ (1.1)

Sαβ(~z,Σ) = 2
∫

Σ

(x[α − z[α)T β]γ dΣγ , (1.2)

where ~z is the coordinate of the center of mass. (Since the stress-energy tensor has vanishing

divergence, these definitions are independent of Σ [16].) The equations of motion for a spinning test

particle are then

dxµ

dτ
= vµ

∇~v pµ = − 1
2Rµ

ναβ vνSαβ (1.3)

∇~v Sµν = 2p[µvν],

where vµ is the 4-velocity, i.e., the tangent to the particle’s worldline, Rµ
ναβ is the Riemann curvature

tensor, and brackets denote antisymmetrization [so that p[µvν] = 1
2 (pµvν−pνvµ)]. The 4-momentum

equation in Eq. (1.3) includes a term involving a coupling of the spin to the Riemann curvature

tensor of the spacetime. In the absence of spin (all components of Sαβ zero), or in flat spacetime

(all components of Rµ
ναβ zero), we recover the geodesic equation,

∇~v ~p = 0. (1.4)

For nonzero spin or curvature, the 4-momentum deviates from geodesics due to the spin-curvature

coupling.
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For the rest of this thesis, whenever we refer to “the Papapetrou equations,” we almost always

mean the system described by Eq. (1.3) with the background spacetime given by a Kerr black hole.

An astrophysical Kerr black hole is fully specified by the mass M and the spin angular momentum

per unit mass a.8 Geodesic motion of a particle around a Kerr black hole is constrained by three

integrals of the motion: the energy E, the z angular momentum Lz, and the Carter constant Q. As

noted above, these are sufficient to guarantee the absence of chaotic solutions for Kerr geodesics.9

For the non-geodesic motion represented by the Papapetrou equations, we use the metric for Kerr

spacetime to determine the Riemann tensor appearing in Eq. (1.3). In this case, the Papapetrou

equations model a spinning particle orbiting a (much larger) spinning black hole. (A “particle” in

this context is simply a second compact object—a white dwarf, neutron star, or black hole—and

should not be confused with an elementary particle.)

Two of the constants in Kerr geometry, the energy and axial angular momentum, are mani-

festations of a general phenomenon: to each symmetry of the metric (typically represented by a

Killing vector) there corresponds a conserved quantity (which is essentially Nöther’s theorem). This

result holds even in the presence of spin: for an arbitrary spacetime, each Killing vector ~ξ leads to

a constant

Cξ = ξµpµ − 1
2ξµ;νSµν , (1.5)

where ξµ;ν = −ξν;µ is the covariant derivative of the Killing vector. The time-translation symmetry

of the Kerr metric then gives energy conservation,

−E = pt − 1
2gtµ,νSµν , (1.6)

while rotational symmetry about the black hole’s spin axis gives z angular momentum conservation,

Jz = pφ − 1
2gφµ,νSµν . (1.7)

The Carter constant does not arise from an explicit symmetry of the metric, but rather from a

Killing tensor Kµν [17] (satisfying Kµ(ν;α) = 0); the corresponding quantity is not conserved when

the particle has nonvanishing spin, although it deviates from a constant only at linear order in the

spin [18].

As discussed in Chapter 2, we rewrite the Papapetrou equations in terms of the more intuitive
8This is a special case of the celebrated “no-hair theorem” for black holes, which says that a black hole is specified

completely by its mass, spin, and charge. For astrophysical black holes, charge is unimportant, since any charge would
be shorted out at values too small to be gravitationally significant.

9Here we consider there to be three coordinates, say the Boyer-Lindquist coordinates (r, θ, φ). If we include the
time t on our list of coordinates, we add the conserved particle rest mass µ to our list of constants, and the conclusion
is the same. This leaves mass and spin as the only relevant parameters.
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spin vector,

Sµ = − 1
2εµ

ναβ uνSαβ , (1.8)

where uν = pν/µ, so that Eq. (1.3) can be reformulated as a system of 12 coupled nonlinear ordinary

differential equations. These equations constitute the dynamical system that is the focus of our study

in Chapters 2 and 3.

1.1.2 Post-Newtonian (with spin)

Whereas the Papapetrou equations represent a system in full general relativity, but are valid only

in the test-particle limit, the post-Newtonian equations are valid only for v � c, but their range of

validity includes even equal-mass binaries. In schematic form, the PN equations of motion read

µr̈ = F0 + εF1 + ε3/2 F3/2 + ε2 F2 + ε5/2 F5/2 + · · ·, (1.9)

where r is the relative separation and ε = (v/c)2 ∼ Mtotal/r. The zeroth term is classical Newtonian

gravity, while the higher-order terms represent relativistic corrections. It is traditional to refer to

the various terms by their order in (v/c)2, so that the first term is 1PN, the second is 2PN, and

so on. The 5
2PN term is the radiation reaction due to gravitational radiation, which we ignore

throughout this thesis, since we are interested primarily in the long-time evolution of the system.10

The claim in [19] (and subsequent papers) that the PN equations have chaotic solutions was an early

motivation for the work in this thesis. While we cannot (yet) comment definitively on these results,

we do offer a broad survey of quasi-circular orbits, an important special case.

The Hamiltonian formulation we use for the post-Newtonian equations, as developed in [9],

includes the following terms:

H = HN + HPN + HSO + HSS, (1.10)

where we use subscripts to label the different contributions: Newtonian (N); traditional post-

Newtonian through 2PN, without spin (PN); spin-orbit coupling (SO); and terms quadratic in the

spins (SS). The full form of the terms appears in Chapter 4; for now, we simply note that the

spin-orbit (SO) coupling is effectively a 3
2PN effect, and the terms quadratic in the spins (SS) are

effectively 2PN effects [20]. The Hamiltonian describes an effective one-body system, and so is a

function of the relative position X and the relative momentum P; it also depends on the spins S1

and S2 of the two objects. The equations of motion can be derived using Poisson brackets:

dX
dt

= {X,H} = +
∂H

∂P
,

dP
dt

= {P,H} = −∂H

∂X
(1.11)

10We plan to examine the effects of radiation reaction, as well as the recently calculated 3PN corrections, in future
work.
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for the position and conjugate momentum, and

dS1

dt
= {S1,H} =

∂H

∂S1
× S1 ≡ Ω1 × S1 (1.12)

and
dS2

dt
= {S2,H} =

∂H

∂S2
× S2 ≡ Ω2 × S2 (1.13)

for the spins.11 Since each vector has three components, these equations represent 12 coupled non-

linear ordinary differential equations, which constitute the dynamical system studied in Chapter 4.

1.1.3 Normalized units and µM

We work in normalized units throughout much of this thesis. This involves measuring distances and

times in terms of M and momenta in terms of µ. The meaning of M and µ depend on context;

for the Kerr/Papapetrou case, M is the mass of the central black hole, while µ is the mass of the

test particle. In the post-Newtonian case, M is the total mass m1 + m2, and µ is the reduced mass

m1m2/M . When working in normalized units, we might refer to, for example, a particle at r = 10.

This means that the particle is a distance r = 10 M = 10 GM/c2 from the origin of the coordinate

system.

The use of normalized units explains what seems to be a strange choice, employed in Chapters 2

and 3 and in [21]: the spin parameter S, which is the magnitude of the spin of the Papapetrou test

particle, is measured in terms of the product µM , not (as one might expect) in terms of µ2. This

choice of units is forced on us if (1) we measure lengths and times in terms of the mass M of the

central body; (2) we measure momenta in terms of the mass µ of the small body; and (3) we wish

to avoid introducing seemingly arbitrary factors of µ/M into the equations.

The reason for the strange choice of units can be motivated heuristically by writing the total

angular momentum as the sum of the orbital angular momentum and the spin: J = L + S. For

simplicity, suppose that only the small body is spinning [as is the case when the central body is a

nonrotating (Schwarzschild) black hole], and that the small body is a maximally spinning black hole,

so that S = µ2 Ŝ, where we use a hat to indicate a unit vector. Now, the orbital angular momentum

is L = X×P, i.e, essentially a length times a momentum. To convert to normalized units, we need

to factor out an M from X and a µ from P:

X×P = µM(X̃× P̃), (1.14)

where we indicate vectors written in normalized units with tildes. In order to convert the total
11This uses the canonical angular momentum Poisson bracket {Si, Sj} = εijkSk.
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angular momentum to these units, we should divide by µM , so that

J̃ =
J

µM
=

L
µM

+
S

µM
≡ L̃ + S̃. (1.15)

where S̃ = S/µM . If instead we insist on measuring the spin in terms of µ2, we have

J̃ =
J

µM
=

L
µM

+
S

µM
= L̃ +

µ2

µM
S̃ = L̃ +

µ

M
S̃. (1.16)

The explicit factor of µ/M is the price we pay for measuring S in units different from those used for

J and L.

For the Papapetrou equations, the choice to measure S in terms of µM places sharp restrictions

on the magnitude of S̃, as discussed at length in Chapter 2. Briefly, for a maximally spinning black

hole, the maximum spin is µ2, so the maximum spin parameter is

S̃max =
S

µM
=

µ2

µM
=

µ

M
� 1, (1.17)

where in the final step we have imposed the test-particle condition µ � M . Thus, the “spin

parameter” appearing in the Papapetrou equations must be small compared to unity, at least for

black holes. (We show in Chapter 2 that this result is true in general.) It is only in the case µ = M

that S̃ = 1; mathematically, the Papapetrou equations are perfectly valid in this limit, but they no

longer realistically model any physical system. This point was not emphasized strongly in Suzuki

and Maeda [21], leading some (and perhaps even the authors) to overstate the prevalence of chaos

in Schwarzschild spacetime (see Sec. 1.3).

We note that the units discussed above pose no real restrictions on the magnitude of S̃ for the

post-Newtonian case, since the PN equations are valid for the case µ = M , i.e., an equal-mass binary.

The only difference is that (as in Chapter 4) we would write instead m1 = m2 for an equal-mass

binary, reserving µ and M for the reduced and total mass, respectively.

For most of this thesis, we will work in normalized units, so for the most part we will omit tildes

or any other special notation. The variable S, for example, means S measured in units of µM , so

that S = 1 means that S = 1µM . The only major exception is Chapter 4, where the spins we report

are typically measured in more conventional units; e.g., S1 = 1 means S1 = m2
1.

1.1.4 Normalization constraints

Both the Papapetrou equations and the PN equations possess some simple normalization constraints

that are preserved by the equations of motion. The Papapetrou spin satisfies

SµSµ = 1
2 SµνSµν = S2, (1.18)
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while the PN spins satisfy S2
1 = S1 · S1 and S2

2 = S2 · S2, so that S, S1, and S2 are constants of the

motion. In the Papapetrou case, we have the additional requirement that the squared 4-momentum

yield the (negative of) the particle’s rest mass:

pµpµ = −µ2, (1.19)

which we typically write as

pµpµ = −1 (1.20)

in normalized units.

1.1.5 Spin supplementary conditions and the center of mass

The Papapetrou equations are under-determined as written in Eq. (1.3); they require a spin sup-

plementary condition (SSC) to fix the center of mass of the spinning body [16]. The condition

advocated and used in Chapter 2 (following [16]) is

pµSµν = 0. (1.21)

This condition picks out a unique worldline, which we identify as the center of mass of the body.

Indeed, if we define the “rest frame” of the body as the frame where the spatial part of the 4-

momentum (that is, the conventional 3-momentum) vanishes, then Eq. (1.21), the definition of Sαβ

[Eq. (1.2)], and the condition pi = 0 give the relativistic generalization for the Newtonian center of

mass:

zi =

∫
t=const.

xi T 00 d3x∫
t=const.

T 00 d3x
. (1.22)

The choice of Eq. (1.21) for the supplementary condition is not the only one in the literature; the

condition

vµSµν = 0 (1.23)

is advocated by many authors (see [22] for a review). Because this condition is satisfied by a

family of helical worldlines filling a cylinder with frame-dependent radius [16, 23]—and, not least,

because condition (1.21) allows for an explicit relationship between vµ and pµ to be derived, which

is especially convenient for numerical calculation—we follow Dixon in enforcing pµSµν = 0.

It is sometimes objected that it is pedantic to argue over which of Eq. (1.21) or Eq. (1.23) is

“correct”: to the extent that the approximations represented by the Papapetrou equations are valid,

the two conditions are identical. This objection is essentially correct; the two conditions differ at third

order in the spin (Chapter 2), so the difference between the two conditions is negligible for physically

realistic spins. Perhaps surprisingly, though, the general subject of spin supplementary conditions
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is not pedantic—when considering the post-Newtonian limit, it becomes clear that conditions (1.21)

and (1.23), the subject of so much argument, are not only identical, but also disagree with the

traditional post-Newtonian center of mass.

To see the problem with the standard covariant SSCs [Eqs. (1.21) and (1.23)], consider the PN

Hamiltonian for the spin-orbit coupling (discussed in Chapter 4):

HSO =
L · Seff

r3
, (1.24)

where L is the angular momentum, r is the relative separation, and

Seff =
(

2 +
3
2

m2

m1

)
S1 +

(
2 +

3
2

m1

m2

)
S2. (1.25)

For the test particle limit to apply, one body must be much heavier than the other, say m1 � m2.

In this limit, to lowest order the contribution of the lighter body to the spin-orbit coupling is

HSO =
3
2

L · S2

r3

m1

m2
. (1.26)

In the limit m1 � m2, we can write M ≈ m1 for the total mass; the force derived from Eq. (1.26)

is then

−3M

r3

(
v × S− 3

2
(n̂ · v) (n̂× S)− 3

2
n̂ (n̂ · [v × S])

)
, (1.27)

where n̂ = r/r and we write S in place of S2 for the spin of the small body. On the other hand, if we

expand the spin-curvature coupling in the Papapetrou equations [Eq. (1.3)] for a Kerr background

in v/c, then to the same order (1PN) as the spin-orbit coupling we have

− 1
2Rµ

ναβ vνSαβ = −3M

r3
(v × S− (n̂ · v) (n̂× S)− 2 n̂ (n̂ · [v × S])) , (1.28)

in disagreement with Eq. (1.27).

The resolution to this discrepancy is given explicitly in [24], and it was implicit long before in [25]:

the forces in Eq. (1.27) and Eq. (1.28) are both correct, but they refer to different locations of the

center of mass. The “natural” PN center of mass is defined by an integral involving the total mass,

kinetic energy, internal energy, and gravitational potential energy (as given explicitly in [20]), which

differs from the Papapetrou center of mass at 1PN order:

zPN = zPapa +
1
2µ

v × S, (1.29)
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so that the relative separation vectors satisfy

rPN = rPapa +
1
2µ

v × S, (1.30)

where we write µ for the mass of the smaller body. Plugging rPapa from Eq. (1.30) into Eq. (1.28)

yields Eq. (1.27).

As a final comment, we note that the difference between the PN and Papapetrou CM coordinates

is small in all cases of physical interest, so that the orbits always virtually coincide—in particular,

conclusions regarding chaos are not sensitive to the choice of CM coordinate. If we use normalized

units (distances in terms of M , momenta in terms of µ, S in terms of µM), then Eq. (1.30) gives

|rPN − rPapa| =
∣∣∣∣12 v × S

∣∣∣∣ = ∣∣∣∣12 v × S
∣∣∣∣ ≤ vS

2
, (1.31)

which is very small, since both v and S (when measured in terms of µM) are much smaller than unity.

Of course, Eq. (1.30) requires the velocity to satisfy v � 1, but the result holds even when v ∼ 1. In

this case, the appropriate generalization of Eq. (1.30), in terms of the Lorentz factor γ = (1−v2)−1/2,

is [26]

rPN = rPapa +
γ

µ(γ + 1)
v × S, (1.32)

so that (again in normalized units)

|rPN − rPapa| =
∣∣∣∣ γ

γ + 1
v × S

∣∣∣∣ ≤ vS ≤ S � 1. (1.33)

1.1.6 Degrees of freedom

The constraints in our two model systems—both of which consist of 12 coupled differential equations—

reduce the true number of degrees of freedom, and hence (Sec. 1.2 below) the number of Lyapunov

exponents. The Papapetrou system has two normalization constraints [Eqs. (1.18) and (1.20)] and

an orthogonality constraint [the spin supplementary condition, Eq. (1.21)], each of which eliminates

one degree of freedom. Since time is not a dynamical variable in this context, we eliminate one

more degree of freedom by projecting onto a spacelike hypersurface, leaving 8 degrees of freedom.

For the post-Newtonian case, the two spin normalization constraints reduce the 12 apparent degrees

of freedom to 10. In the extreme mass-ratio limit of the post-Newtonian system, one of the spins

is fixed in magnitude and direction, eliminating two more degrees of freedom, leaving 8 total—and

thus corresponding exactly to the Papapetrou case.
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1.2 Lyapunov exponents and chaos

The Lyapunov exponents of a dynamical system provide a quantitative measure of the separation rate

of nearby trajectories in phase space. A particularly intuitive method for visualizing these exponents,

developed in detail throughout this thesis, is to imagine the time-evolution of an infinitesimal ball

centered on a particular initial condition. Under the action of the flow, this ball is deformed into

an ellipsoid—stretched in some directions, squeezed in others. In general, the (semi)axes ri of

the ellipsoid grow geometrically (that is, exponentially), so that on average ri(t) = Lt
i for some

constant Li. These Li are the Lyapunov numbers, and the Lyapunov exponents are then

λi = log Li = lim
t→∞

log [ri(t)]
t

. (1.34)

(The infinite-time limit is part of the formal definition, but of course in practice we must use a finite

cutoff; see Sec. 1.2.5.) For a system with system with n degrees of freedom, the initial n-dimensional

ball deforms into an n-dimensional ellipsoid, yielding n Lyapunov exponents.

1.2.1 Deviation vector method

A less formal method, which makes contact with the intuitive notion of the “exponential separation”

of nearby trajectories, can be used to extract the largest Lyapunov exponent. Heuristically, if we

consider two initial conditions separated by a small deviation vector of length ε0, then in chaotic

systems the separation (by definition) grows exponentially with time:

ε(t) = ε0 eλt. (1.35)

Since a generic deviation vector must have a nonzero component in the direction of greatest stretch-

ing, eventually it points essentially parallel to the longest ellipsoid axis, so the separation rate λ in

Eq. (1.35) is the largest Lyapunov exponent. Its inverse is a time: tλ = 1/λ, which we refer to as

the Lyapunov timescale corresponding to λ; nearby initial conditions diverge by a factor of e in a

time tλ. If the largest Lyapunov exponent vanishes, then the system is not chaotic.

Translating the informal definition of exponential divergence in Eq. (1.35) into a concrete algo-

rithm, though not as straightforward as it seems, is not difficult: by choosing a deviation vector, and

then monitoring its length as a function of time, we can estimate the largest Lyapunov exponent

using

λ =
log [r(t)]

t
, (1.36)

where r(t) = ε/ε0 is the length of the deviation after time t. We mention some subtleties and

caveats that apply to this method throughout this thesis, especially in Chapter 5. We refer to this
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(relatively) straightforward method as the deviation vector method.

1.2.2 Jacobian method

We can sharpen our understanding of Lyapunov exponents by making more precise the meaning of

a “deviation vector.” Consider an autonomous system of first-order ordinary differential equations:

dy
dt

= f(y), (1.37)

where y = y(x1, . . . , xn). The requirement of first-order equations forces us to consider the “coor-

dinates” {x1, . . . , xn} to be the full phase space, so that in a typical mechanical system a “point” is

a list of positions and velocities. Writing δy for a small deviation vector in this phase space, we can

express the distance between the two trajectories by using the best linear approximation of f ,

d(δy)
dt

= f(y + δy)− f(y) = Df · δy, (1.38)

to lowest order in δy, where Df is the Jacobian matrix of the system [(Df)ij = ∂fi/∂xj ]. By

considering a complete set of deviation vectors spanning an infinitesimal ball, and following their

evolution into an ellipsoid, we can extract all n exponents of the system, using an algorithm discussed

in Chapters 2 and 5. Since the numerical implementation of this technique requires the Jacobian

matrix, we refer to it as the Jacobian method.

1.2.3 The origin of exponential separation

We take an opportunity here to examine a fundamental question: Why do so many dynamical

systems exhibit exponential separation of nearby initial conditions? As a first step, consider the

one-dimensional version of Eq. (1.38):

d(δy)
dt

= f ′(x) δy, (1.39)

which is an equation of motion for the deviation. At any particular point, f ′(x) simply evaluates

to a number, so Eq. (1.39) says that at each point d(δy)/dt ∝ δy. This is precisely the equation for

exponential growth: locally, at least, the deviation grows exponentially. Of course, if f ′(x) < 0, then

this “growth” is really a decay, and so on average the “growth” might actually be zero. [In fact, for

one- or two-dimensional dynamical systems (described by autonomous differential equations), this

must happen: the growth, and hence the Lyapunov exponent(s), must in general average out to

zero.12] If, on the other hand, the average growth is positive, it will be exponential, by virtue of the

12This follows from the Poincaré-Bendixon theorem [27].
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equation of motion for the deviation [the multidimensional generalization of Eq. (1.39)],

d(δy)
dt

= Df · δy. (1.40)

Thus, we see that the origin of exponential growth is the linear nature of the local approximation

to the system—that is, its differentiability.

1.2.4 Constrained systems

The standard methods for the numerical calculation of Lyapunov exponents apply to unconstrained

systems of differential equations (as discussed in textbooks such as [27] and [28]), but the addition

of constraints to the phase-space variables (such as those in the Papapetrou equations) introduces

considerable complications. In particular, in unconstrained systems the deviation vector between

nearby initial conditions is essentially arbitrary, but in constrained systems the deviations must be

carefully constructed. The crux of the matter can be seen by considering a simplified model system:

a simple pendulum described in Cartesian coordinates (x, y), instead of the more natural polar

coordinates (r = const., θ).13 For simplicity, consider a deviation only in the spatial coordinates

(i.e., not in the momenta), so that in polar coordinates we consider an initial angle θ and a nearby

angle θ + δθ, where δθ is an arbitrary (small) deviation. In Cartesian coordinates, we are not free to

consider a point (x + δx, y + δy) for arbitrary deviations (δx, δy); since the coordinates themselves

are constrained to satisfy

x2 + y2 = r2, (1.41)

the deviations must satisfy

(x + δx)2 + (y + δy)2 = r2, (1.42)

so that δy = −(x/y) δx to lowest order. (It makes sense that the components of the deviation

are related, since we have added a spurious degree of freedom by using Cartesian coordinates.) In

Chapter 5, we introduce the notion of a constraint-satisfying deviation, that is, a deviation whose

components are chosen so that the deviated trajectory satisfies the same constraints as the initial

point. We then show how these constraint-satisfying deviations allow all the methods for calculating

Lyapunov exponents to be generalized to constrained dynamical systems.

1.2.5 The meaning of zero

Finally, we remark on the meaning of “zero” in the context of Lyapunov exponents. Chaotic systems

are characterized by at least one positive Lyapunov exponent; for nonchaotic systems, all Lyapunov

exponents are zero. And yet, in reality we must use prescriptions such as that in Eq. (1.36), which

13The simple pendulum is not chaotic, of course, but it is just complicated enough to illustrate our point.
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are never exactly zero numerically, even for orbits known to be nonchaotic. The formal limit of

infinite time used in Eq. (1.34) is impossible to implement in practice; the best we can do, it seems,

is to calculate λ from Eq. (1.36) for large values of t, and place a bound on the size of the exponent.

It turns out that we can do slightly better than this: by rearranging Eq. (1.36), we can write the

growth of the deviation vector as

log [r(t)] = λt, (1.43)

which means that we can calculate log [r(t)] as a function of time, and then perform a least-squares

fit on the simulation data; the slope of the fit is the Lyapunov exponent. This method, since it is

sensitive only to the slope and not to the absolute value, gives a better bound on λ than a näıve

application of Eq. (1.36).

Another indicator of chaotic behavior is the shape of the Lyapunov plot, i.e., a plot of log [r(t)]

vs. t. For nonzero Lyapunov exponents, such plots are roughly linear, with a slope equal to the

Lyapunov exponent, as indicated by Eq. (1.43). For nonchaotic systems, such plots are logarithmic:

nonchaotic separations grow as a power-law at worst, so that

log [r(t)] ∝ log tα = α log t. (1.44)

The log t vs. t behavior characterizes many of the suspected nonchaotic initial conditions discussed

in this thesis.

Using the shape (as determined by visual inspection) of the log t vs. t graph to evaluate the

presence of chaos is a blunt and error-prone instrument for chaos detection: even for chaotic initial

conditions, the deviation initially grows as a power law, with the exponential growth dominating

only at later times. It is always possible that seemingly power-law growth is chaotic on long-enough

timescales. It is therefore important to calculate baseline orbits that are known not to be chaotic.

For example, in the Papapetrou case, we calculate a baseline orbit by setting the spin parameter S

to zero, corresponding to a Kerr geodesics, which is integrable and therefore must (in general) have

vanishing Lyapunov exponents. The magnitude of the numerical exponents in these cases therefore

gives an indication of the typical strength of power-law separation. If a suspected chaotic orbit

gives an exponent with a magnitude similar to that of a nonchaotic baseline orbit, then we say that

the Lyapunov exponent is “indistinguishable from zero,” and the corresponding initial condition is

probably not chaotic on the timescale considered.

1.3 Chaos in general relativity: a review and critique

We present here a review of some subtleties and issues related to chaos in the context of general

relativity. In the process, we review and critique some previous work on the subject, and evaluate



16

previous claims of chaotic behavior in spinning relativistic binaries.

1.3.1 Chaos detection

While Lyapunov exponents are our primary method for investigating chaos in relativistic binaries,

there are several other possible methods. We discuss several qualitative methods (and indicate our

reasons for avoiding them) in Chapter 2, but here we take the opportunity to examine the method

of fractal basin boundaries, employed by J. Levin in a series of papers on chaos in the PN equations

of motion [19, 29, 30] (the last of which was co-authored with N. J. Cornish).

In the context of spinning binaries (as used in, e.g., [19]), a basin is simply the two-dimensional

space (θ1, θ2), where θ is the angle between the vertical axis and each particle’s initial spin. Levin

varies (θ1, θ2) for fixed initial values of the position and momentum, and then determines whether

the resulting orbits coalesce, escape to infinity, or are stable and bounded. By color-coding each

behavior and plotting points in (θ1, θ2) space, Levin shows that the boundary between the three

types of behavior is fractal, indicating a sensitive dependence on initial conditions. For example, a

fractal boundary between stable and plunge orbits means that arbitrarily small changes in the initial

conditions can lead to coalescence instead of stability.

The fractal basin boundary method has several limitations. First, it makes no distinction between

chaotic and nonchaotic bound orbits: a non-fractal region of the basin corresponding to bound orbits

(as appears in [19]) can be full of chaos, independent of the existence of a fractal basin boundary.

In other words, the key issue of the prevalence of chaotic orbits, so important from the perspective

of gravitational-wave templates, is simply not addressed by fractal basin boundaries. Moreover, the

establishment of sensitive dependence through fractal basin boundaries gives no indication of the

timescale of the chaos—this requires a Lyapunov exponent. Finally, fractal basin boundaries only

establish sensitive dependence in the asymptotic behavior of the orbits, i.e., bound, unbound, or

plunge. This is completely different from the case most relevant for gravitational-wave generation:

an initial condition leading to a bound orbit whose nearby initial conditions separate exponentially

fast, and also lead to bound orbits. In fact, Cornish and Levin [31] show using Lyapunov exponents

that there are such orbits located near the fractal basin boundaries identified in [19]—but this simply

underscores the primacy of Lyapunov exponents as a measure of chaos.

1.3.2 Time coordinate subtleties

General relativity has a time-redefinition ambiguity, allowing any chaos apparently to be defined

away by means of a coordinate transformation. If a system is chaotic when measured using time t,

merely set t′ = log t and the chaos seemingly disappears. Concern about this problem prevented

Levin from calculating Lyapunov exponents in [19, 29]. Even in a recent paper [31], Cornish and
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Levin warn of this ambiguity—and then proceed to calculate Lyapunov exponents.

Cornish and Levin are perhaps (overly) influenced by their own role in addressing chaos in

mixmaster cosmological models [32], where the time ambiguity is relevant. The problem simply does

not exist in our context. One can give technical arguments based on the preferred time direction

picked out by the Schwarzschild or Kerr solutions (implicit also in the PN equations), but this is

unnecessary: there is no ambiguity in the meaning of the Lyapunov exponents as seen by an observer

at infinity. Similarly, there is no ambiguity in the meaning of the Lyapunov exponents in the local

Lorentz frame of a particle, where proper time is the appropriate coordinate. Furthermore, these

two descriptions are connected, since—in a static background spacetime—the coordinate time (the

time-at-infinity) is simply a (spatially dependent) reparameterization of the proper time. A positive

Lyapunov exponent has an unambiguous interpretation for the problem at hand.

1.3.3 Genericity and the choice of initial conditions

A couple of papers [8, 31] have shown that there are positive Lyapunov exponents in certain special-

ized cases for Schwarzschild geodesics. Such orbits are fully integrable, and hence cannot be chaotic;

formal definitions of chaos explicitly rule out such nongeneric cases for precisely this reason [27].

Nevertheless, in an important sense—from the perspective of gravitational wave detection—sensitive

dependence is the key property. The sensitive orbits in [8, 31], on the other hand, must be chosen

with exquisite care; [8] considers unstable, circular geodesics, and [31] considers both that case and

a more general class of unstable orbits. In both cases, it is the specialized initial conditions that lead

to positive Lyapunov exponents, not a general preponderance of chaotic orbits. Such specialized

initial conditions tell us nothing about the prevalence of chaos in relativistic binary systems.

Unlike the specialized unstable geodesics considered in [8, 31], the chaos found in [29] (using

the PN equations) corresponded to highly eccentric comparable-mass binaries, whose relevance is

potentially limited by the likely circularization of inspiraling binaries. Moreover, there is no indi-

cation in [29] of the prevalence of these chaotic initial conditions. In fact, by calculating Lyapunov

exponents, Schnittman and Rasio [33] argued that there is no chaos in the PN system. Their result

turned out to be too strong, as shown in [30]—there are at least some PN initial conditions with

positive Lyapunov exponents. Nevertheless, the failure to find chaos in [33] is a hint that chaos is

rare. This agrees with our finding (for quasi-circular orbits) presented in Chapter 4.

1.3.4 Papapetrou spin parameter confusion

The paper by Suzuki and Maeda [21], which represents the primary starting point for the project

represented by Chapters 2 and 3, measures the Papapetrou spin parameter in terms of µM , as

described in Sec. 1.1.3 above. They find chaos only when S ∼ 1, but they do not emphasize the
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unphysical nature of this parameter value. In fact, they consider values of S greater than 1: “Because

the value of S = 1µM is not a mathematical special bound, we will analyze the case of S > 1 µM as

well in order to see the spin effect more clearly.” Their main concession to the limitations on their

results is that, for S = 1.4 µM , “Very strong chaos occurs in this case, although it may be [physically]

unrealistic.” (As shown in Chapter 2, any value of S & 10−4 µM is physically unrealistic.)

Perhaps as a result of this under-emphasis on the limitations of their results (and perhaps also

due to their title, “Chaos in Schwarzschild spacetime: The motion of a spinning particle”), Ref. [21]

has been cited as strong evidence of chaos in binary black hole orbits. For example, in [29] we find

the following, citing [21]:

Another important example of chaos around a black hole is the motion of a spinning test

particle. This already shows the key features of the two-body [post-Newtonian] system

investigated here.

Other examples of overstatement can be found in [8, 31, 34]. To their credit, Cornish and Levin do

note in [30] that Suzuki and Maeda find chaos only “for unphysically large values of the particle’s

spin.” But one fears that the damage is done.

1.3.4.1 Chaos in this thesis

As a result of these considerations, in this thesis we use Lyapunov exponents to determine the

prevalence of chaos and the corresponding timescales, we avoid the non-generic, unstable initial

conditions leading to sensitive dependence in the absence of true chaos, and we indicate clearly

whether the initial conditions leading to chaos are physically valid.
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Chapter 2

Dynamics of spinning test particles
in Kerr spacetime

This chapter was published as M. D. Hartl, Phys. Rev. D 67, 024004 (2003); available (with correc-

tions to the published version) as gr-qc/0210042.

Abstract

We investigate the dynamics of relativistic spinning test particles in the spacetime of a rotating

black hole using the Papapetrou equations. We use the method of Lyapunov exponents to deter-

mine whether the orbits exhibit sensitive dependence on initial conditions, a signature of chaos. In

the case of maximally spinning equal-mass binaries (a limiting case that violates the test-particle

approximation) we find unambiguous positive Lyapunov exponents that come in pairs ±λ, a char-

acteristic of Hamiltonian dynamical systems. We find no evidence for nonvanishing Lyapunov ex-

ponents for physically realistic spin parameters, which suggests that chaos may not manifest itself

in the gravitational radiation of extreme mass-ratio binary black-hole inspirals (as detectable, for

example, by LISA, the Laser Interferometer Space Antenna).

2.1 Introduction

The presence of chaos (or lack thereof) in relativistic binary inspiral systems has received intense

attention recently due to the implications for gravitational-wave detection [1–8], especially regarding

the generation of theoretical templates for use in matched filters. There is concern that the sensitive

dependence to initial conditions that characterizes chaos may make the calculation of such templates

difficult or impossible [8]. In particular, in the presence of chaos the number of templates would

increase exponentially with the number of wave cycles to be fitted. In addition to this important

concern, the problem of chaos in general relativity has inherent interest, as the dynamical behavior
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of general relativistic systems is poorly understood.

Several authors have reported the presence of chaos for systems of two point masses in which one

or both particles are spinning [1, 3, 6]. Our work follows up on [3], which studies the dynamics of a

spinning test particle orbiting a nonrotating (Schwarzschild) black hole using the Papapetrou equa-

tions [Eqs. (2.9)]. We extend this work to a rotating (Kerr) black hole, motivated by the expectation

that many astrophysically relevant black holes have nonzero angular momentum. Furthermore, the

potential for chaos may be greater in Kerr spacetime since the Kerr metric has less symmetry and

hence fewer integrals of the motion than Schwarzschild. In addition, the decision to focus on test

particles is motivated partially by the LISA gravitational wave detector [9], which will be sensitive to

radiation from spinning compact objects orbiting supermassive black holes in galactic nuclei. Using

the Kerr metric is appropriate since such supermassive black holes will in general have nonzero spin.

There are many techniques for investigating chaos in dynamical systems, but for the case at

hand we favor the use of Lyapunov exponents to quantify chaos. Informally, if ε0 is the phase-

space distance between two nearby initial conditions in phase space, then for chaotic systems the

separation grows exponentially (sensitive dependence on initial conditions): ε(τ) = ε0 eλτ , where λ

is the Lyapunov exponent. (See Sec. 2.3.1 for a discussion of issues related to the choice of metric

used to determine the distance in phase space.) The value of Lyapunov exponents lies not only

in establishing chaos, but also in providing a characteristic timescale τλ = 1/λ for the exponential

separation.

By definition, chaotic orbits are bounded phase space flows with at least one nonzero Lyapunov

exponent. There are additional technical requirements for chaos that rule out periodic or quasiperi-

odic orbits, equilibria, and other types of patterned behavior [10]. For example, unstable circular

orbits in Schwarzschild spacetime can have positive Lyapunov exponents [5], but such orbits are

completely integrable (see Sec. 2.6) and hence not chaotic. In practice, we restrict ourselves to

generic orbits, avoiding the specialized initial conditions that lead to positive Lyapunov exponents

in the absence of chaos.

The use of Lyapunov exponents is potentially dangerous in general relativity because of the

freedom to redefine the time coordinate. Chaos can seemingly be removed by a coordinate trans-

formation: simply let τ ′ = log τ and the chaos disappears. Fortunately, in our case there is a fixed

background spacetime with a time coordinate that is not dynamical but rather is simply a reparam-

eterization of the proper time. As a result, we will not encounter this time coordinate redefinition

ambiguity (which plagued, for example, attempts to establish chaos in mixmaster cosmological mod-

els, until coordinate-invariant methods were developed [11]). Furthermore, we can compare times in

different coordinate systems using ratios: if tp is the period of a periodic orbit in some coordinate

system with time coordinate t, and τp is the period in proper time, then their ratio provides a
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conversion factor between times in different coordinate systems [5]:

t

τ
=

tp
τp

. (2.1)

For chaotic orbits, which are not periodic, we use the average value of dt/dτ over the orbit, so that

tλ
τλ

=
〈

dt

dτ

〉
(2.2)

as discussed in Sec. 2.7.4. [This more general formula reduces to Eq. (2.1) in the case of periodic

orbits.] Since we want to measure the local divergence of trajectories, the natural definition is to

use the divergence in local Lorentz frames, which suggests that we use the proper time τ as our time

parameter. The Lyapunov timescale in any coordinate system can then be obtained using Eq. (2.2).

Lyapunov exponents provide a quantitative definition of chaos, but there are several common

qualitative methods as well, none of which we use in the present case, for reasons explained below.

Perhaps the most common qualitative tool in the analysis of dynamical systems is the use of Poincaré

surfaces of section. Poincaré sections reduce the phase space by one dimension by considering the

intersection of the phase space trajectory with some fixed surface, typically taken to be a plane.

Plotting momentum vs. position for intersections of the trajectory with this surface then gives a

qualitative view of the dynamics. As noted in [4], such sections are most useful when the number of

degrees of freedom minus the number of constraints (including integrals of the motion) is not greater

than two, since in this case the resulting points fall on a one-dimensional curve for non-chaotic orbits,

but are “dusty” for chaotic orbits (and in the case of dissipative dynamical systems lie on fractal

attractors). Unfortunately, the system we consider has too many degrees of freedom for Poincaré

sections to be useful. It is possible to plot momentum vs. position when the trajectory intersects a

section that is a plane in physical space (say x = 0) [3], but this is not in general a true Poincaré

section.1

Other qualitative methods include power spectra and chaotic attractors. The power spectra

for regular orbits have a finite number of discrete frequencies, whereas their chaotic counterparts

are continuous. Unfortunately, it is difficult to differentiate between complicated regular orbits,

quasiperiodic orbits, and chaotic orbits, so we have avoided their use. Chaotic attractors, which

typically involve orbits asymptotically attracted to a fractal structure, are powerful tools for explor-

ing chaos, but their use is limited to dissipative systems [10]. Nondissipative systems, including test

particles in general relativity, do not possess attractors [12].

Following Suzuki and Maeda [3], we use the Papapetrou equations to model the dynamics

1In [3], they are aided by the symmetry of Schwarzschild spacetime, which guarantees that one component of the
spin tensor (Sec. 2.2.1 below) is zero in the equatorial plane. As a result, it turns out that all but two of their variables
are determined on the surface, and thus their sections are valid. Unfortunately, the reduced symmetry of the Kerr
metric makes this method unsuitable for the system we consider in this chapter.
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of a spinning test particle in the absence of gravitational radiation. We extend their work in a

Schwarzschild background by considering orbits in Kerr spacetime, and we also improve on their

methods for calculating Lyapunov exponents. The most significant improvement is the use of a

rigorous method for determining Lyapunov exponents using the linearized equations of motion for

each trajectory in phase space (Sec. 2.3.1), which requires knowledge of the Jacobian matrix for the

Papapetrou system (Sec. 2.5.2). We augment this method with an implementation of an informal

deviation vector approach, which tracks the size of an initial deviation of size ε0 and uses the relation

ε(τ) = ε0 eλτ discussed above. We are careful in all cases to incorporate the constrained nature of

the Papapetrou equations (Sec. 2.2.1) in the calculation of Lyapunov exponents (Sec. 2.4.2).

We use units where G = c = 1 and sign conventions as in MTW [13]. We use vector arrows for

4-vectors (e.g., ~p for the 4-momentum) and boldface for Euclidean vectors (e.g., ξ for a Euclidean

tangent vector). The symbol log refers in all cases to the natural logarithm loge.

2.2 Spinning test particles

2.2.1 Papapetrou equations

The Papapetrou equations [14] describe the motion of a spinning test particle. Although Papapetrou

first derived the equations of motion for such a particle, the formulation by Dixon [15] is the starting

point for most investigations because of its conceptual clarity. Dixon writes the equations of motion

in terms of the 4-momentum pα and spin tensor Sαβ , which are defined by integrals of the particle’s

stress-energy tensor Tαβ over an arbitrary spacelike hypersurface Σ:

pα(Σ) =
∫

Σ

Tαβ dΣβ (2.3)

Sαβ(~z,Σ) = 2
∫

Σ

(x[α − z[α)T β]γ dΣγ , (2.4)

where ~z is the coordinate of the center of mass. The equations of motion for a spinning test particle

are then

dxµ

dτ
= vµ

∇~v pµ = − 1
2Rµ

ναβ vνSαβ (2.5)

∇~v Sµν = 2p[µvν],

where vµ is the 4-velocity, i.e., the tangent to the particle’s worldline. It is apparent that the

4-momentum deviates from geodesic motion due to a coupling of the spin to the Riemann curvature.
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2.2.1.1 Spin supplementary conditions

As written, the Papapetrou equations 2.5 are under-determined, and require a spin supplementary

condition to determine the rest frame of the particle’s center of mass. Following Dixon, we choose

pµSµν = 0, (2.6)

which picks out a unique worldline that we identify as the center of mass. In particular, in the zero

3-momentum frame defined by pi = 0, applying Eq. (2.6) to Eq. (2.4) yields

zi =

∫
t=const.

xi T 00 d3x∫
t=const.

T 00 d3x
, (2.7)

which is the proper relativistic generalization of the Newtonian center of mass. The frame defined

by pi = 0 is thus the rest frame of the center of mass, and in this frame Eq. (2.6) implies that S0j = 0,

i.e., the spin is purely spatial in the rest frame.

A second possibility for the supplementary condition is

vµSµν = 0. (2.8)

This condition has the disadvantage that it is satisfied by a family of helical worldlines filling a

cylinder with frame-dependent radius [15, 16], centered on the worldline picked out by condition 2.6.

As a result, we adopt pµSµν = 0 as the supplementary condition.

We note that the difference between the conditions 2.6 and 2.8 is third order in the spin [which fol-

lows from Eq. (2.15) below], which means that it is negligible for physically realistic spins (Sec. 2.2.2).

In particular, the two conditions are equivalent for post-Newtonian expansions [17], where condi-

tion 2.8 is typically employed [18].

2.2.1.2 A reformulation of the equations

For numerical reasons, we use a form of the equations different from Eqs. (2.5). (We discuss this and

other numerical considerations in Sec. 2.5.1.) Following the appendix in [3], we write the equations

in terms of the momentum 1-form pµ and the spin 1-form Sµ.2 The system under consideration is

a spinning particle of rest mass µ orbiting a central body of mass M ; in what follows, we measure

all times and lengths in terms of M , and we measure the momentum of the particle in terms of µ,
2The lowered indices are motivated by the Hamiltonian formulation for a nonspinning test particle, where it is the

one-form pµ that is canonically conjugate to xµ [13].
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so that pνpν = −1. In these normalized units, the equations of motion are

dxµ

dτ
= vµ

∇~v pµ = −R∗ αβ
µν vνpαSβ (2.9)

∇~v Sµ = −pµ

(
R∗α γδ

β SαvβpγSδ

)
,

where

R∗α µν
β = 1

2Rα
βρσερσµν . (2.10)

The tensor and vector formulations of the spin are related by

Sµ = − 1
2εµναβ uνSαβ (2.11)

and

Sµν = −εµναβSαuβ , (2.12)

where uν = pν/µ (= pν in normalized units). In addition, the spin satisfies the condition

SµSµ = 1
2Sµν Sµν = S2, (2.13)

where S is the spin of the particle measured in units of µM (see Sec. 2.2.2).

Because of the coupling of the spin to the Riemann curvature, the 4-momentum pµ [Eq. (2.3)] is

not parallel to the tangent vµ. The supplementary condition 2.6 allows for an explicit solution for

the difference between them (see [19] for a derivation):

vµ = N(pµ + wµ), (2.14)

where

wµ = −∗R∗µαβγSαpβSγ (2.15)

and
∗R∗αβµν = 1

2R∗αβρσε µν
ρσ . (2.16)

The normalization constant N is fixed by the constraint vµvµ = −1. We see from Eq. (2.15) that the

difference between pµ and vµ is O(S2), so that the difference between Eqs. (2.6) and 2.8 is O(S3).

The spin 1-form satisfies two orthogonality constraints:

pµSµ = 0 (2.17)
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and

vµSµ = 0. (2.18)

These two constraints are equivalent as long as vµ is given by Eq. (2.14), since wµSµ ∝ ∗R∗µαβγSµSα ≡

0. When parameterizing the initial conditions, we enforce Eq. (2.17); since we use Eq. (2.14) in the

equations of motion, Eq. (2.18) is then automatically satisfied.

2.2.1.3 Range of validity

We note that the Papapetrou equations include effects due only to the mass monopole and spin

dipole (the pole-dipole approximation). In particular, the tidal coupling, which is a mass quadrupole

effect, is neglected. It is also important to note that the Papapetrou equations are conservative and

hence ignore the effects of gravitational radiation. For a thorough and accessible general discussion

of the Papapetrou equations and related matters, including a comprehensive literature review, see

Semerák [19].

2.2.2 Comments on the spin parameter

It is crucial to note that, in our normalized units, the spin parameter S is measured in terms of µM ,

not µ2. The system we consider in this chapter is a compact spinning body of mass µ orbiting a large

body of mass M , which we take to be a supermassive Kerr black hole satisfying M ≈ 105–106 M�.

We will show that physically realistic values of the spin must satisfy S � 1 for the compact objects

(black holes, neutron stars, and white dwarfs) most relevant for the test particles described by the

Papapetrou equations.3 The case of a black hole is simplest: a maximally spinning black hole of

mass µ has spin angular momentum s = µ2, so a small black hole µ orbiting a large black hole of

mass M � µ has a small spin parameter S:

S =
s

µM
≤ µ2

µM
=

µ

M
� 1.

The limit is similar for neutron stars: most models of neutron stars have a maximum spin of

smax ≈ 0.6 µ2 [20], which gives S . 0.6 µ/M .

2.2.2.1 Bounds on S for stellar objects

The bound on S is relatively simple for black holes and neutron stars, but the situation is more

complicated for compact stellar objects such as white dwarfs. The maximum spin of a stellar object

is typically determined by the mass-shedding limit, i.e., the maximum spin before the star begins to

break up. The spin in the case of the break-up limit is the moment of inertia times the maximum
3Recall that the Papapetrou equations ignore tidal coupling, so they are inappropriate for modeling more extended

objects.
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(break-up) angular velocity: smax = IΩmax. If we write I = αµR2 and Ωmax = β
√

Gµ/R3 for some

constants α, β . 1, then we have

smax = αβ (Gµ3R)1/2. (2.19)

The values of α and β depend on the stellar model; if we use the values for an n = 1.5 polytrope,

we get α = 0.2044 and β = 0.5366 [21], so that smax = 0.110 (Gµ3R)1/2.

The limit in Eq. (2.19) depends on the mass-radius relation for the object in question. Since

most neutron stars have masses and radii in a narrow range, the estimate of smax ≈ 0.6 µ2 discussed

above is sufficient, but for white dwarfs the value of smax can depend strongly on the mass. An

analytical approximation for the mass-radius relation for non-rotating white dwarfs is [22]:4

R

R�
= 0.01125

(
µ

µmax

)−1/3

f(µ)1/2 (2.20)

where

f(µ) = 1−
(

µ

µmax

)4/3

(2.21)

and

µmax = 1.454 M�. (2.22)

We could plug Eq. (2.20) into Eq. (2.19) to obtain an order-of-magnitude estimate, but [21]

tabulates a constant J̄ equivalent to the product αβ (which increases as the angular velocity of the

star increases). They write J = J̄ (GM3R0)1/2 for a rotating white dwarf, where J̄ depends on the

polytropic index n of a non-spinning white dwarf of the same mass, and R0 is the non-spinning

radius. In our notation, this reads

smax = J̄ (Gµ3R)1/2. (2.23)

White dwarfs with µ > 0.6 M� are not well approximated by polytropes (the effective polytropic

index varies from near 3 in the core to near 1.5 in the outer parts), but useful bounds can be obtained

by substituting R from Eq. (2.20), which is more accurate for white dwarfs than a pure polytrope

model. Plugging 2.20 into 2.23 and converting to geometric units gives

smax = 77.68 J̄ µ4/3 M
2/3
� f(µ)1/4. (2.24)

From Table 3 in [21], we have J̄ = 0.1660 for a maximally rotating n = 1.5 polytrope (vs. αβ = 0.110

for a slowly rotating one) and J̄ = 0.0785 for n = 2.5. As illustrated in Fig. 2.1, the values for a

more realistic numerical model [23] lie between these curves, as expected.

Note from Eq. (2.24) that smax/µ2 ∝ µ−2/3 for µ � µmax, so that the spin per unit mass squared

4The mean molecular weight µ̄ is set equal to 2, corresponding to helium and heavier elements, which is appropriate
for most astrophysical white dwarfs.
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Figure 2.1: The maximum spin angular momentum smax vs. mass µ for a rigidly rotating white
dwarf. We plot curves for n = 1.5 and n = 2.5 polytropic approximations using Eq. (2.24), together
with four points derived using a more realistic numerical white dwarf model (Geroyannis and Papa-
sotiriou [23]).

is unbounded as µ → 0.5 Nevertheless, the spin parameter Smax is bounded, since Smax ∝ smax/µ ∝

µ1/3 in the low mass limit. We plot smax/µ vs. µ in Fig. 2.2, which shows that the maximum value

of smax/µ is approximately 9 M� (corresponding to a µ = 0.5 M� white dwarf). For a central black

hole of mass M = 106 M�, we then have

S ≤ Smax =
smax

µM
= 9× 10−6, (2.25)

which is small compared to unity.

2.2.2.2 Tidal disruption

We can obtain a higher value of S if the central black hole mass is smaller, but it is important to bear

in mind that such lower-mass black holes may tidally disrupt the white dwarf companion, thereby

violating a necessary condition for the validity of the Papapetrou equations. In order of magnitude,

a white dwarf orbiting at radius r will be disrupted when the tidal acceleration due to the central

body overcomes its self-gravity, i.e.,
GM

r3
R ≥ Gµ

R2
. (2.26)

For the white dwarf to be undisrupted down to the horizon at r = M , we must have M ≤ R3/2µ−1/2,

so that [using Eq. (2.20)] the minimum mass not to disrupt is Mmin ∝ µ−1. We could evaluate the

proportionality constant using Eq. (2.20), but we can obtain a more accurate result by adopting a

5Eq. (2.24) is valid only for µ ≥ 0.01 M�, but smax/µ2 continues to increase with decreasing µ for equations of
state appropriate for brown dwarfs and planets.
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Figure 2.2: smax/µ vs. mass for a white dwarf. As in Fig. 2.1, we plot curves for n = 1.5 and n = 2.5
polytropes and the numerical model from [23]. The corresponding spin parameter Smax is obtained
simply by dividing smax/µ by the mass M of the central black hole.

constant based on a more realistic tidal disruption model. Tables 1 and 2 of [24] give the value of

the variable r̂ ≡ r

R

( µ

M

)1/3

, which is approximately 2.0 for the white dwarfs of interest here. This

gives

Mmin = 2.0−3/2 R3/2µ−1/2, (2.27)

as illustrated in Fig. 2.3. For a 1.0 M� white dwarf, which (based on [23]) has smax = 8.57 M2
�, the

central black hole must satisfy Mmin = 8.2× 104 M�, so that the spin parameter S can be no bigger

than Smax = smax/(µMmin) = 1.0× 10−4 in order to avoid tidal disruption.

2.2.2.3 The S = 1 limit

We have shown that all physically realistic cases satisfy S � 1, but we nevertheless consider the

limit of S = 1 (corresponding to µ = M) in order to investigate more thoroughly the dynamics of

the Papapetrou equations, and to compare our results with [3], which investigates the S = 1 limit

in detail. The S = 1 limit introduces no singularities into the equations of motion, and the resulting

orbits are valid solutions of the equations. On the other hand, in this limit the Papapetrou equations

are not physically realistic, since they are derived in the limit of spinning test particles, which must

satisfy µ � M . We thus cannot draw reliable results about the behavior of astrophysical systems

from the S = 1 limit.
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Figure 2.3: The minimum black hole mass M required not to disrupt an inspiraling corotating white
dwarf before the last stable (prograde) circular orbit around a maximally rotating Kerr black hole,
as a function of white dwarf mass µ.

2.2.3 Symmetries and the parameterization of initial conditions

In the approximation represented by the Papapetrou equations there is still a constant of the motion

associated with each Killing vector ~ξ of the spacetime [15]:

Cξ = ξµpµ − 1
2ξµ;νSµν . (2.28)

[For brevity, we write the constant in terms of the spin tensor Sµν [Eq. (2.12)].] Since Kerr spacetime

is stationary and axially symmetric, it has the Killing vectors ~ξt = ∂/∂t and ~ξφ = ∂/∂φ, so the

energy E and z angular momentum Jz are conserved:

E = −pt + 1
2gtµ,νSµν (2.29)

and

Jz = pφ − 1
2gφµ,νSµν . (2.30)

(We write Jz in place of the orbital angular momentum Lz since the spin also contributes to the

angular momentum of the system.) In contrast to the energy and momentum integrals, the Carter

constant Q is no longer present when the test particle has nonvanishing spin [25].

In our problem there are twelve variables, four each for position, momentum, and spin. For the

purposes of finding orbits by numerical integration, we may parameterize the initial conditions by

providing τ = 0, r, θ, φ = 0, pr, E, Jz, S, and any two of the spin components. The normalization

conditions pµpµ = −1 and SµSµ = S2 allow us to eliminate one component each of momentum and
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spin. The constraint pµSµ = 0 and the integrals of the motion then give three equations in three

unknowns:

0 = pµSνgµν (2.31)

E = −pt + 1
2gtµ,νSµν (2.32)

Jz = pφ − 1
2gφµ,νSµν (2.33)

We must solve these equations for the two remaining components of pµ and one remaining component

of Sµ. In Schwarzschild spacetime these can be solved explicitly due to the greater symmetry [3],

but in the Kerr case of interest here the problem requires numerical root finding.

We also use a related parameterization method starting with the Kerr geodesic orbital param-

eters: eccentricity e, inclination angle ι, and pericenter rp. We derive the corresponding energy,

angular momentum, and relevant momenta, and then proceed as above. This method is discussed

further in Sec. 2.7.1.3.

2.3 Lyapunov exponents

2.3.1 General discussion of Lyapunov exponents

Our method for calculating Lyapunov exponents is well established in the literature of nonlinear

dynamical systems [10, 12], but accessible treatments are hard to find in the physics literature, so

we summarize the method here. Our discussion is informal and oriented toward practical calculation,

based on Ref. [10]; for a more formal, rigorous presentation see Eckmann and Ruelle [26].

First we give an overview of the methods for calculating Lyapunov exponents most commonly

used in physics. Given an initial condition, a set of differential equations determines a solution (the

flow), which is a curve in the phase space. The Lyapunov exponents of the flow measure the rate at

which nearby trajectories separate. As discussed in the introduction, an orbit is chaotic if a nearby

phase-space trajectory separated by an initial distance ε0 separates exponentially: ε(τ) = ε0 eλτ ,

where λ is the Lyapunov exponent.

Implicit in the definition of chaos above is a notion of a distance function on the phase space (or,

more properly, the tangent space to the phase space, as in Eq. (2.36) below). It is conventional to

use a Euclidean metric to define such lengths [10, 12], but any positive-definite nondegenerate metric

will do [26]. While the magnitude of the resulting exponent obviously depends on the particular

metric used, the signs of the Lyapunov exponents are a property of the dynamical system and do not

rely on any underlying metric structure. We discuss these issues further in Sec. 2.4.1 and Sec. 2.7.4.

This informal definition of Lyapunov exponents leads to a practical method for calculating λ:

given an initial condition, consider a nearby initial condition a distance ε0 away, where ε0 is “small”,
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typically 10−5–10−7 of the relevant physical scales. (Values of ε0 much smaller than this can result

in a loss of numerical precision.) Keeping track of the deviation vector between the two points yields

a numerical approximation of λ. (It is important to rescale the deviation vector if it grows too large,

since for any bounded phase space flow even a tiny deviation can grow to at most the size of the

bounded region.) We call this approach the deviation vector method.

There are two primary limitations to the approach outlined above. First, the method yields only

the largest Lyapunov exponent, which is sufficient to establish the presence of chaos but paints a

limited picture of the dynamics. Second, the deviation vector approach is most appropriate when

an analytical expression for the Jacobian matrix is unknown; by choosing ε0 small enough (and by

keeping ε(τ) small by rescaling if necessary), the method essentially takes a numerical derivative.

Among other complications, the value of the exponent depends both on the maximum allowable

size εmax (the size at which the deviation is rescaled) and the initial value ε0 (the size of the deviation

after each rescaling).

The principal virtue of the deviation vector approach compared to the more complicated Jacobian

method (discussed below) is speed, since it requires solving only the equations of motion. (As we

discuss in Sec. 2.3.2.1, the Jacobian method involves the time-consuming evolution of the Jacobian

matrix in parallel with the equations of motion.) It also provides a valuable way to verify the validity

of the Jacobian method.

The Jacobian method is a more thorough and rigorous approach to the calculation of Lya-

punov exponents, which makes precise the notion of “infinitesimally” separated vectors. The general

method proceeds as follows: consider a phase space with variables y = {yi} and an autonomous set

of differential equations
dy
dτ

= f(y). (2.34)

(Here we use τ instead of t in anticipation of the application of these results to general relativity,

where we will be using proper time as our time parameter.) If δy represents a small deviation vector,

then the distance between the two trajectories is

d(δy)
dτ

= f(y + δy)− f(y) = Df · δy +O(‖δy‖2), (2.35)

where Df is the Jacobian matrix [(Df)ij = ∂fi/∂xj ].

We can clarify the notation and make the system easier to visualize if we introduce ξ as an

element of the tangent space at y, so that

dξ

dτ
= Df · ξ, (2.36)

which is equivalent to taking the limit ‖δy‖ → 0. We visualize ξ as a perfectly finite vector (as
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Figure 2.4: The Jacobian matrix maps a tangent space ball to an ellipsoid.

opposed to an “infinitesimal”). Since it lives in the tangent space, not the physical phase space, ξ

can grow arbitrarily large with time. This means that instead of the frequent rescaling required in

the deviation vector approach, ξ must be rescaled only when it grows so large that it approaches the

floating point limit of the computer. This is a rare occurrence, and in practice the tangent vector

almost never needs rescaling.

Although following the evolution of an arbitrary initial tangent vector ξ yields the largest Lya-

punov exponent, we can do even better by following the evolution of a family of n tangent vectors,

which allows us to determine all n Lyapunov exponents. The essence of the method is as follows: for

a system of differential equations with n variables, we consider a set of n vectors that lie on a ball in

the tangent space. We represent this ball using a matrix whose columns are n normalized, linearly

independent tangent vectors, conventionally taken to be orthogonal. This set of orthonormal vectors

then spans a unit ball in the tangent space. The action of the Jacobian matrix, which is a linear

operator on the tangent space, is to map the ball to an ellipsoid under the time-evolution of the

flow, as shown in Fig. 2.4.

For a dynamical system with n degrees of freedom, there are n Lyapunov numbers that measure

the average growth of the n principal axes {ri(τ)}n
i=1 of the ellipsoid. More formally, the Lyapunov

numbers Li are given by

Li = lim
τ→∞

[ri(τ)]1/τ , (2.37)

where ri(τ) is the length of the ith principal axis of the ellipsoid. The corresponding Lyapunov

exponents are the natural logarithms of the Lyapunov numbers, so that

λi = lim
τ→∞

log [ri(τ)]
τ

. (2.38)

These limits exist for a broad class of dynamical systems [26].

The principal axes of the tangent space ellipsoid indicate the directions along which nearby initial

conditions separate or converge, which we may call the Lyapunov directions. In particular, consider

a principal axis that is stretched under the time evolution. Such a vector has one component for

each dimension (position or momentum) in the phase space; a nonzero component in any direction

indicates an exponential divergence in the corresponding coordinate. For example, if a system has
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two spatial coordinates (r, φ) and corresponding momenta (pr, pφ), then a typical tangent vector will

have components ξ = (ξr, ξφ, ξpr
, ξpφ

). If the only tangent vector with nonzero Lyapunov exponent

is, for example, ξ = 1√
3
(1, 1, 1, 0), then nearby initial conditions separate exponentially in r, φ, and

pr, but nearby values of pφ do not separate exponentially. This is potentially relevant to the present

study since, in the limit of a point test particle, the gravitational radiation depends on the spatial

variables but not the spin. If the principal axes along expanding directions have nonzero components

only in the spin directions, the system could be formally chaotic without affecting the gravitational

waves.

In summary, the method for visualizing the Lyapunov exponents of a dynamical system is to

picture a ball of initial conditions—an infinitesimal ball if visualized in the phase space, or a unit

ball if visualized in the tangent space—and watch it evolve into an ellipsoid under the action of

the Jacobian matrix. After a sufficiently long time, the ellipsoid will be greatly deformed, stretched

out along the expanding directions and compressed along the contracting directions. The directions

of the principal axes are the Lyapunov directions, and their lengths give the Lyapunov numbers

through the relation Li ≈ [ri(τ)]1/τ .

2.3.2 Numerical calculation of Lyapunov exponents

In order to implement a numerical algorithm based on the considerations above, we must bear two

things in mind. First, since the vectors spanning the initial unit ball are arbitrary, they will all be

stretched in the direction of the largest exponent: in general every initial vector has some nonzero

component along the direction of greatest stretching, which dominates as τ → ∞. In order to find

the other principal axes, we must periodically produce a new orthogonal basis. We will show that

the Gram-Schmidt procedure is appropriate. Second, the lengths of the vectors could potentially

overflow or underflow the machine precision, so we should periodically normalize the ellipsoid axes.

2.3.2.1 The algorithm in detail

To simplify the notation, we denote the (time-dependent) Jacobian matrix Df by Jτ and the ellipsoid

(whose columns are the tangent vectors) by U . The algorithm then proceeds as follows:

1. Construct a set of n orthonormal vectors (which span an n-dimensional ball in the tangent

space of the flow). Represent this ball by a matrix U whose columns are the tangent vectors ξi.

2. Eq. (2.36), applied to each tangent vector, implies that U satisfies the matrix equation

dU

dτ
= Jτ U, (2.39)

which constitutes a set of linear differential equations for the tangent vectors. Since Jτ depends
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on the values of y, these equations are coupled to our system of nonlinear differential equations

ẏ = f(y), so they must be solved in parallel with Eq. (2.34).

3. Choose some time T big enough to allow the expanding directions to grow but small enough

so that they are not too big. Numerically integrate Eqs. (2.34) and (2.39), and every time T

apply the Gram-Schmidt orthogonalization procedure. The vectors resulting from the Gram-

Schmidt procedure approximate the semiaxes of the evolving ellipsoid. Record the log of the

length log [ri(τn)] of each vector after each time T , where τn = nT . Finally, normalize the

ellipsoid back to a unit ball.

4. At each time τ , the sum

λi ≈
1
τ

N∑
n=1

log [ri(τn)] ≡ log [ri(τ)]
τ

(2.40)

is a numerical estimate for the ith Lyapunov exponent.

2.3.2.2 Gram-Schmidt and Lyapunov exponents

The use of the Gram-Schmidt procedure is crucial to extracting all n Lyapunov exponents. Let us

briefly review this important construction. Given n linearly independent vectors {ui}, the Gram-

Schmidt procedure constructs n orthogonal vectors {vi} that span the same space, given by

vi = ui −
i−1∑
j=1

ui · vj

‖vj‖2
vj . (2.41)

To construct the ith orthogonal vector, we take the ith vector from the original set and subtract off

its projections onto the previous i− 1 vectors produced by the procedure.

The use of Gram-Schmidt in dynamics comes from observing that the resulting vectors approx-

imate the semiaxes of the tangent space ellipsoid. After the first time T , all of the vectors point

mostly along the principal expanding direction. We may therefore pick any one as the first vector in

the Gram-Schmidt algorithm, so choose ξ1 ≡ u1 without loss of generality. If we let ei denote unit

vectors along the principal axes and let ri be the lengths of those axes, the dynamics of the system

guarantee that the first vector u1 satisfies

u1 = r1e1 + r2e2 + · · · ≈ r1e1 ≡ v1

since e1 is the direction of fastest stretching. The second vector v2 given by Gram-Schmidt is then

v2 = u1 −
u1 · v1

‖v1‖2
v1 ≈ u1 − r1e1 = r2e2,

with an error of order r2/r1. The procedure proceeds iteratively, with each successive Gram-Schmidt
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step (approximately) subtracting off the contribution due to the previous semiaxis direction.

It is important to choose time T long enough to keep errors of the form r2/r1 small but short

enough to prevent numerical under- or overflow. In practice, the method is quite robust, and it is

easy to find valid choices for the time T , as discussed in Sec. 2.7.

2.4 Relativity and Papapetrou subtleties

The algorithm described above is of a general nature, designed with a generic dynamical system

in mind. The Papapetrou equations and the framework of general relativity present additional

complications. Here we discuss some refinements to the algorithm necessary for the present case.

2.4.1 Phase space norm

In the context of general relativistic dynamical systems, the meaning of trajectory separation in

phase space is somewhat obscured by the time variable. We can skirt the issue of trajectories

“diverging in time” by using a 3 + 1 splitting of spacetime, and consider trajectory separation in a

spacelike hypersurface [27]. This prescription reduces properly to the traditional method for classical

dynamical systems in the nonrelativistic limit.

In Kerr spacetime, we use the zero angular-momentum observers (ZAMOs), and project 4-

dimensional quantities into the ZAMO hypersurface using the projection tensor Pµ
ν = δµ

ν + UµUν ,

where Uµ is the ZAMO 4-velocity. In this formulation, spatial variables obey xµ → x̃i = P i
µ xµ and

momenta obey pµ → p̃i = Pµ
i pµ (and similarly for Sµ) [27]. The relevant norm is then a Euclidean

distance in the three-dimensional hypersurface.

We should note that we use the projected norm for conceptual clarity, not necessity. The näıve

use of a Euclidean norm using unprojected components yields the same sign for the exponents, as

noted in Sec. 2.3.1. The magnitudes of the resulting exponents are also similar (Sec. 2.7.4).

2.4.2 Constraint complications

Although the Lyapunov algorithm is fairly straightforward to implement for a general dynamical sys-

tem, the constrained nature of the Papapetrou equations adds a considerable amount of complexity.

The fundamental problem is that the tangent vector ξ cannot have arbitrary initial components for

the Papapetrou system, as it can for an unconstrained dynamical system. Each ξ must correspond

to some deviation δy which is not arbitrary: the deviated point y + δy must satisfy the constraints.
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2.4.2.1 Constraint-satisfying deviations

Recall that the dynamical variables in the Papapetrou equations must satisfy normalization and

orthogonality constraints (Sec. 2.2.1): pνpν = −1 (normalized units), SνSν = S2, and pνSν = 0. To

make the constraint condition on δy clearer, let C(y) = 0 represent the constraints rearranged so

that the right hand side is zero. For example, with y = (t, r, µ, φ, pt, pr, pµ, pφ, St, Sr, Sµ, Sφ),6 we

can write

C1(y) = pνpν + 1, (2.42)

so that C1(y) = 0 for a constraint-satisfying y. The other constraints are then

C2(y) = SνSν − S2 (2.43)

and

C3(y) = pνSν . (2.44)

A deviation δy is constraint-satisfying if C(y + δy) = 0 when C(y) = 0.

We may construct a constraint-satisfying deviation δy as follows. Begin with a 12-dimensional

vector y that satisfies the constraints. Add a random small deviation to eight of its components to

form a new vector y′. (We need not add a deviation to t; see Sec. 2.4.2.2 below.) Determine the

remaining three components of y′ using the constraints, using the same technique used to set the

initial conditions. Finally, set δy ≡ y′ − y. The corresponding ξ is then simply δy/‖δy‖.

The prescription above glosses over an important detail: the inference of tangent vector compo-

nents from the constraints is not unique. Solving the constraint equations involves taking square

roots in several places, so there are a number of sign ambiguities representing different solution

branches. The implementation of the component-inference algorithm must compare each compo-

nent of y with the corresponding component of y′ to ensure that they represent solutions from the

same branches. Enforcing the constraints in this manner, and thereby inferring the full tangent

vector ξ, is especially important for the algorithm described in the next section.

2.4.2.2 A modified Gram-Schmidt algorithm

A spinning test particle has an apparent twelve degrees of freedom—four each for position, momen-

tum, and spin—so a priori there is the potential for twelve nonzero exponents. Since the Papapetrou

equations have no explicit time-dependence, we can eliminate the time degree of freedom. The three

constraints (momentum and spin normalization, and momentum-spin orthogonality) further reduce

the number of degrees of freedom by three. We are left finally with eight degrees of freedom.

Eliminating the four spurious degrees of freedom from the tangent vectors presents a formidable
6Recall that we write the equations of motion in terms of µ = cos θ.
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obstacle to the implementation of the phase space ellipsoid method described in Sec. 2.3.2.1. The

crux of the dilemma is that the axes of the ellipsoid must be orthogonal, but must also correspond to

constraint-satisfying deviation vectors—mutually exclusive conditions. Solving this problem requires

a modification of the Gram-Schmidt algorithm:

1. Instead of a 12 × 12 ball (i.e., n = 12 in the original algorithm), consider an 8 × 8 ball by

choosing to eliminate the t, pt, pφ, and St components. The time component ξt of each tangent

vector is irrelevant since nothing in the problem is explicitly time dependent; the first column

of the Jacobian matrix is zero, so ξt is not necessary to determine the time-evolution.7 The

other three components are determined by the constraints as described above.

2. Given eight initial random tangent vectors, apply the Gram-Schmidt process to form an 8 ×

8 ball. For each vector, determine the three missing components using the constraints, and

then evolve the system using
dU

dτ
= JτU

as before. (Now U represents a 12× 8 matrix instead of a 12× 12 ball.)

3. At each time T , extract the relevant eight components from each vector to form a new 8 ×

8 ellipsoid, apply Gram-Schmidt, and then fill in the missing components using the constraints,

yielding again a 12 × 8 matrix. The projected norms of the eight tangent vectors contribute

to the running sums for the Lyapunov exponents as in the original algorithm.

The algorithm above yields eight Lyapunov exponents for the Papapetrou system of equations.

In order to implement this algorithm, we must have a method for constructing a full tangent

vector ξ from an eight-component vector ξ̃. The method is as follows:

1. Let ỹ′ = ỹ + εξ̃ for a suitable choice of ε.

2. Fill in the missing components of ỹ′ using the constraints to form y′, taking care that y and y′

have the same constraint branches.

3. Infer the full tangent vector using ξ =
y′ − y

ε
.

This technique depends on the choice of ε, and fails when ε is too small or too large. Using the

techniques discussed in the next section to calibrate the system, we find that ε ≈ 10−5–10−6 works

well in practice.

2.4.2.3 Two rigorous techniques

It should be clear from the discussion above that extracting all eight Lyapunov exponents is difficult,

and in practice the techniques are finicky, depending (among other things) on the choice of ε as
7Also, the time piece is discarded in the projected norm formalism in any case (Sec. 2.4.1).
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described in Sec. 2.4.2.2 above. How, then, can we be confident that the results make sense?

Fortunately, there are two techniques that give rigorous Lyapunov exponents by managing to sidestep

the constraint complexities entirely.

First, it is always possible to calculate the single largest exponent using the Jacobian method

without considering the constraint subtleties. The complexity of the main Jacobian approach in-

volves the competing requirements of Gram-Schmidt orthogonality and constraint satisfaction, but

in the case of only one vector these difficulties vanish. Since the equations of motion preserve the

constraints, an initial constraint-satisfying tangent vector retains this property throughout the inte-

gration. Thus, we begin with a vector constructed as in Sec. 2.4.2.1 and evolve it (without rescaling)

along with the equations of motion. Other than the requirement of constraint satisfaction, its initial

components are arbitrary, so it evolves in the direction of largest stretching and eventually points

in the largest Lyapunov direction. The logarithm of its projected norm then contributes to the sum

for the largest Lyapunov exponent.

Second, we can implement a deviation vector approach as described in Sec. 2.3.1. Given an

initial condition y0, we construct a nearby initial condition y′0 as in Sec. 2.4.2.1 and then evolve

them both forward. In principle, an approximation for the largest Lyapunov exponent is then
1
τ log (‖y′ − y‖/‖y′0 − y0‖) ≡ 1

τ log (‖δy‖/‖δy0‖). In practice (for chaotic systems) the method

saturates: for a given initial deviation, say ‖δy0‖ ∼ 10−6, once the initial conditions have diverged

by a factor of ∼106 the method breaks down.8 (The traditional solution to the saturation problem is

to rescale the deviation before it saturates, but such a rescaling in this case violates the constraints.)

Despite its limitations, this unrescaled deviation vector technique is valuable, since it tracks the

correct solution until the saturation limit is reached, and avoids the subtleties associated with the

constraints.

With these two techniques in hand, we have a powerful method for verifying that the largest

Lyapunov exponent produced by the Gram-Schmidt method is correct. This, in turn, gives us

confidence that the other Lyapunov exponents produced by the main algorithm are meaningful as

well.

2.5 Implementation details

2.5.1 Some numerical comments

Finally, we discuss some specialized issues related to integrating the Papapetrou equations on a

computer. The primary subjects are the formulation of the equations, optimization techniques, and

error checking.
8This underscores the point that chaos is essentially a local phenomenon. Any unrescaled deviation vector approach

must saturate, since no bounded system can have trajectories that diverge for arbitrarily long times.
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Our choice to write the Papapetrou equations using the spin vector is motivated partially by

numerical considerations. The spin vector approach has nice properties compared to the tensor

approach as S → 0. Comparing their covariant derivatives is instructive:

∇~v Sµ = −pµ

(
R∗α γδ

β SαvβpγSδ

)
∇~v Sµν = pµvν − pνvµ = 2p[µvν].

Though simpler in form, the derivative of Sµν has unfortunate numerical properties for small S,

since in the limit S → 0 we have pµ → vµ: the difference pµvν − pνvµ goes to zero in principle but

in practice is plagued by numerical roundoff errors. Since S � 1 is the most physically interesting

limit, the vector approach is more convenient for our purposes.

Calculating the many tensors and derivatives which go into the Papapetrou equations and the

corresponding Jacobian matrix is a considerable task. As a first step, we use GRTensor for Maple to

calculate all relevant quantities, and we use Maple’s optimized C output to create C code automati-

cally. Due to the symmetries of the Riemann tensor and the metric, many terms are identically zero,

which significantly reduces the number of required operations. For example, in order to calculate

R∗α γδ
β SαvβpγSδ we need four loops, which constitutes 44 = 256 evaluations, but in fact R∗α γδ

β

has only 80 nonzero components. Performing loop unrolling by writing these terms to an optimized

derivatives file consisting of explicit sums speeds up calculation by an order of magnitude compared

to nested for loops.

Another optimization involves the choice of coordinates used in the metric, which has significant

consequences for the size of the tensor files and the number of floating point operations required.

Simply using µ = cos θ in the Kerr metric reduces the size of the Riemann derivatives by at least a

factor of two.9 Since these derivatives are the bottleneck in the calculation of the Jacobian matrix, we

can get more than a 50% improvement in performance with even this simple variable transformation.

All integrations were performed using a Bulirsch-Stoer integrator adapted from Numerical Re-

cipes [28]. Occasional checks with a fifth-order Runge-Kutta integrator were in agreement. We

verified the Papapetrou integration by checking errors in the constraints and conserved quantities;

for an orbit such as that shown in Fig. 2.6, all errors are at the 10−11 level after τ = 105 M .

As should be clear from Sec. 2.5.2 below, the Jacobian matrix of the Papapetrou equations has a

large number of terms, and it is essential to verify its correctness by using a diagnostic that compares

Df · δy with the difference f(y+ δy)− f(y) for a suitable constraint-satisfying δy. It is not sufficient

for the difference merely to be small: we must calculate the quantity f(y + δy)− f(y)−Df · δy for

several values of δy and verify that each component scales as ‖δy‖2. An early implementation of the
9Warning: This variable substitution changes the handedness of the coordinate system, since the unit vector µ̂

points opposite to θ̂. This in turn introduces an extra minus sign in the Levi-Civita tensor εαβγδ, which appears many
times in the Papapetrou equations and the corresponding conserved quantities. The author discovered this subtlety
the hard way.
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Jacobian matrix, which gave nearly identical results for f(y + δy)− f(y) and Df · δy, nevertheless

had an undetected O(S2) error. The unrescaled deviation vector approach showed a discrepancy

with the Jacobian method,10 which showed spurious chaotic behavior. The ‖δy‖2 scaling method

described above eventually diagnosed the problem, which resulted from a missing term in ∂Ṡµ/∂Sν

(Sec 2.5.2).

2.5.2 The Jacobian matrix

For reference, we write out explicit equations for part of the Jacobian matrix of the Papapetrou

equations.

The Jacobian matrix of a system of differential equations, specialized to the case at hand, is as

follows: 

∂ẋµ

∂xν

∂ẋµ

∂pν

∂ẋµ

∂Sν

∂ṗµ

∂xν

∂ṗµ

∂pν

∂ṗµ

∂Sν

∂Ṡµ

∂xν

∂Ṡµ

∂pν

∂Ṡµ

∂Sν


(2.45)

Once we calculate ∂ẋµ/∂xν = vµ
,ν , all the other derivatives can be expressed in terms of the deriva-

tives of vµ, the tensors and connection coefficients, and Kronecker δs.

Written out in full, and the Papapetrou equations are as follows:

ẋµ = vµ (2.46)

ṗµ = −R∗ αβ
µν vνpαSβ + Γα

βµpαvβ (2.47)

Ṡµ = −pµ

(
R∗α γδ

β SαvβpγSδ

)
+ Γα

βµSαvβ (2.48)

We measure τ and r in units of M (the mass of the central body), pµ in units of the particle rest

mass µ, and Sµ in terms of the product µM . The overdot is an ordinary derivative with respect to

proper time: ẋ ≡ dx/dτ .

The unusual placement of indices on R∗ is motivated by the form of the Jacobian matrix. The

index placement shown above brings the equations into a form where the indices on pµ and Sµ are

always lowered, which simplifies the Jacobian matrix since (for example) ∂pµ/∂xµ = 0. Otherwise

the Jacobian matrix is unnecessarily complicated; for example, if pµ appeared anywhere on the right

hand side then we would have ∂pµ/∂xν 6= 0, which would contribute to Jτ .

As discussed in Sec 2.2.1, the supplementary condition pµSµν = 0 [Eq. (2.6)] leads to the equation

for vµ in terms of pµ:

vµ = N(pµ + wµ) = Nṽµ, (2.49)

10This illustrates the value of calculating the Lyapunov exponents using two different methods.
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where

ṽµ = pµ + wµ (2.50)

and

wµ = −∗R∗µαβγSαpβSγ . (2.51)

N is a normalization constant fixed by vµvµ = −1.

The calculation of the partial derivatives ẋµ in Eq. (2.45) proceeds as follows. From the relation

for vµ = Nṽµ, we have
∂ẋµ

∂xν
= vµ

,ν = Nṽµ
,ν + N,ν ṽµ.

Now, ṽµ
,ν = pµ

,ν + wµ
,ν = pαgαµ

,ν − ∗R∗µαβγ
,νSαpβSγ , so the first term is easy. The second term

is trickier: from the expression for vµ, we have that −1 = vµvµ = N2(pµpµ + 2wµpµ + wµwµ) =

N2(−1 + 2wµpµ + wµwµ), so we have

N = (1− 2wµpµ − wµwµ)−1/2.

Differentiating gives

N,ν = N3
(
pαwα

,ν + wα
,νwα + 1

2wαwβgαβ,ν

)
= N3

(
ṽαwα

,ν + 1
2wαwβgαβ,ν

)
,

where we have re-labeled the dummy index (µ → α). Summing the various terms, we have

vµ
,ν = N

[
pαgαµ

,ν + wµ
,ν

+ vµ(vαwα
,ν + 1

2Nwαwβgαβ,ν)
]
. (2.52)

The expression for ∂ẋµ/∂pν is similar to vµ
,ν , but it is simpler because the derivative of the

metric with respect to the momentum is zero. As before, we use the product rule:

∂vµ

∂pν
= N

∂ṽµ

∂pν
+

∂N

∂pν
ṽµ.

The first term requires

∂ṽµ

∂pν
=

∂pµ

∂pν
+

∂wµ

∂pν
= gµν − ∗R∗µανβSαSβ ≡ gµν + Wµν .

Note that Wµν is symmetric. The second term requires

∂N

∂pν
= N3(Wανpα + wαδ ν

α + Wανwα) = N3(wν + ṽαWαν).
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Summing the terms gives

∂ẋµ

∂pν
= N(gµν + Wµν + Nvµwν) + NvµvαWαν (2.53)

with
∂wµ

∂pν
≡ Wµν = −∗R∗µανβSαSβ . (2.54)

Finally, we calculate ∂ẋµ/∂Sν . With

∂ṽµ

∂Sν
= −Sαpβ(∗R∗µαβν − ∗R∗µναβ) ≡ V µν ,

and
∂N

∂Sν
ṽµ = NvµvαV αν ,

we have
∂ẋµ

∂Sν
= NV µν + NvµvαV αν . (2.55)

We calculate the derivatives of ṗµ and Ṡµ using vµ
,ν , the product rule, and the derivatives of the

various tensors in the problem. The full results appear in the appendix.

2.6 Integrability and chaos

2.6.1 Phase space and constants of the motion

Having laid the foundation for the numerical calculation of Lyapunov exponents, we now discuss

some general aspects of dynamical systems relevant to our study. A dynamical system with n co-

ordinates has a 2n-dimensional phase space, typically consisting of generalized positions and their

corresponding conjugate momenta. Motion in the phase space is arbitrary in general, but when there

are integrals of the motion then the flow is confined to a surface on which the integral is constant.

This can be seen most easily by transforming to angle-action coordinates, where the surface is an

invariant (multidimensional) torus.

A system with n coordinates and n constants of the motion is integrable and cannot have chaos

(though the motion can still be quasiperiodic or exhibit other complicated behavior). For example,

we can consider geodesic orbits around a Kerr black hole to have eight degrees of freedom (n = 4) and

four constants of the motion—particle rest mass µ, energy E, axial or z angular momentum Lz, and

Carter constant Q—which are enough to integrate the equations of motion explicitly. Alternatively,

we may look at Kerr spacetime as having a 6-dimensional phase space by eliminating time (which is

simply a reparameterization of the proper time) and using rest mass conservation to eliminate one

momentum coordinate. Then the three integrals E, Lz, and Q are sufficient to integrate the motion.
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(In practice, we allow all four momenta to evolve freely; the normalization is then a constraint which

can be checked for consistency at the end of the integration.)

In the case of a spinning test particle, the extra spin degrees of freedom create the possibility for

chaotic behavior. Moreover, since Q is not conserved in the case of nonzero spin, even without the

extra spin degrees of freedom the potential for chaos would exist. Kerr spacetime has just enough

constants to make the system integrable; losing Q reduces the number of analytic integrals below

the critical level required to guarantee integrability.11

2.6.2 Hamiltonian systems

2.6.2.1 Lyapunov exponents for Hamiltonian flows

The phase space flow of Hamiltonian systems is constrained by more than the integrals of the

motion. In particular, the Lyapunov exponents of a Hamiltonian system come in pairs ±λ; i.e.,

if λ is a Lyapunov exponent then so is −λ [26]. Geometrically, this means that if one semimajor

axis of the phase-space ellipsoid stretches an amount eλτ = L, another axis must shrink by an

amount e−λτ = 1/L. One consequence of this property is that the product of the lengths of the axes

is 1. Since the ellipsoid volume is proportional to this invariant product, Liouville’s theorem on the

conservation of phase space volume follows as a corollary.

The ±λ property of Hamiltonian flows results from the symplectic nature of the Jacobian matrix

for Hamiltonian dynamical systems.12 But a näıve analysis of the Jacobian matrix of the Papapetrou

equations shows that it is not symplectic in the canonical sense. Nevertheless, the Papapetrou

equations can be derived from a Lagrangian [30], and can be cast in Hamiltonian form by use of a

free Hamiltonian with added constraints (following the method of Dirac [31] as discussed in [32]).

As a consequence, we could in principle find coordinates in which the Jacobian matrix is symplectic

with respect to the canonical symplectic matrix. Fortunately, this is an unnecessary complication,

since the underlying dynamics are independent of the coordinates.

2.6.2.2 Exponents for spinning test particles

As discussed in Sec. 2.4.2.2, the lack of explicit time dependence independence and the three con-

straints reduce the degrees of freedom from twelve to eight, which leaves the possibility of eight

nonzero Lyapunov exponents. The phase space flow is further constrained by the constants of the

motion, energy and z angular momentum; corresponding to each constant should be a zero Lya-

punov exponent, since trajectories that start on an invariant torus must remain there. This leaves
11It is possible that deformations of Kerr geometry that destroy Q nevertheless possess a numerical integral that

preserves integrability, in analogy with some galactic potentials [29], but the loss of Q certainly ends the guarantee of
integrability.

12A matrix S is symplectic with respect to the canonical symplectic matrix J if ST JS = J , where J =

„
0 −I
I 0

«
and I is the n× n identity matrix.
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six exponents potentially nonzero. Since the exponents must come in pairs ±λ, there should be at

most three independent nonzero exponents.

2.7 Results

First we give results for the dynamics of the Papapetrou equations in the extreme (and unphysical)

limit S = 1, which represents a violation of the test-particle approximation but is still mathematically

well-defined. We find the presence of chaotic orbits (in agreement with [3]). We next examine the

effects of varying S, including the limit S � 1. Finally, we investigate more thoroughly the dynamics

for physically realistic spins.

2.7.1 Chaos for S = 1

2.7.1.1 Maximally spinning Kerr spacetime

In a background spacetime of a maximally spinning Kerr black hole (a = 1) there are unambiguous

positive Lyapunov exponents for a range of physical parameters when S = 1. We show a typical orbit

that produces nonzero Lyapunov exponents in Fig. 2.6. The orbit has energy E = 0.8837 µ, z angular

momentum Jz = 2.0667 µM , and the radius ranges from pericenter rp = 1.7 M to apocenter ra =

6.7 M . The Lyapunov integrations typically run for 104 M , which corresponds approximately to

400 φ-orbital periods.

We can illustrate the presence of a chaotic orbit by plotting the natural logarithm of the ith el-

lipsoid axis log [ri(τ)] vs. τ [Eq. (2.40)], so that the slope is the Lyapunov exponent, as shown in

Fig. 2.7.13 There appear to be two nonzero Lyapunov exponents; the third largest exponent is

consistent with zero, as shown in Fig. 2.8. The reflection symmetry of the figure is a consequence of

the exponent pairing: for each line with slope λ, there is a second line with slope −λ.

The main plot in Fig. 2.7(a) is generated by the modified Gram-Schmidt algorithm (Sec. 2.4.2.2).

Recall that this method depends on the value of ε used to infer the tangent vector; we find a valid ε

by calibrating it using the rigorous Jacobian method, which must yield an exponent that matches

the largest exponent from the modified Gram-Schmidt method. The plot in Fig. 2.7(a) represents

the case ε = 10−6; it is apparent that the two methods agree closely. The unrescaled deviation vector

method provides an additional check on the validity of the largest exponent, as shown in Fig. 2.7(b).

As expected, the unrescaled approach closely tracks the full Jacobian approach until it saturates.

The numerical values of the exponents are shown in Table 2.1. The ±λ property is best satisfied

by ±λmax, the exponents with the largest absolute value. The exponents are least-squares fits to
13It is traditional to plot log [ri(τ)]/τ , which converges to the Lyapunov exponent as τ →∞, but it is much easier

to identify the linear growth of log [ri(τ)] than to identify the convergence of log [ri(τ)]/τ . The ±λ property is also
clearer on such plots.
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(a)

(b)

Figure 2.5: The orbit of a non-spinning (S = 0) test particle in maximal (a = 1) Kerr spacetime,
plotted in Boyer-Lindquist coordinates. (a) y = r sin θ sinφ vs. x = r sin θ cos φ; (b) z vs. ρ =√

x2 + y2. The orbital parameters are E = 0.8837 µ and Jz = 2.0667 µM , with pericenter 2.0 M
and apocenter 6.0 M .
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Figure 2.6: The orbit of a maximally spinning (S = 1) particle in maximal Kerr spacetime, for
E = 0.8837 µ and Jz = 2.0667 µM (the same values as in Fig. 2.5 above). The spin has initial values
of S r̂ = Sµ̂ = 0.1, corresponding to an initial angle of 54◦ with respect to the vertical in a fiducial
(ZAMO) rest frame. As in Fig. 2.5, we plot y vs. x in (a) and z vs. ρ in (b). The spin causes
significant deviations from geodesic orbits.
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(a)

(b)

Figure 2.7: Natural logarithms of the phase space ellipsoid axes vs. proper time in Kerr spacetime
with S = 1. The slopes of the lines are the Lyapunov exponents; the largest exponent is approxi-
mately λmax = 5 × 10−3 M−1. The initial conditions are the same as in Fig. 2.6, and one point is
recorded at each time T = 100M (Sec. 2.3.2.1). (a) Full Gram-Schmidt Jacobian method (light)
with rigorous Jacobian method (dark). The full GS method is rescaled at each time T according the
algorithm in Sec. 2.3.2, while the rigorous Jacobian method is unrescaled. The two methods agree
closely on the value of the largest Lyapunov exponent. (b) Rigorous Jacobian method compared to
unrescaled deviation vector method. Note that the latter method, which started with a deviation of
size 10−7, saturates at ∼16. This corresponds to a growth of e16 ≈ 9 × 106, which means that the
separation has grown to a size of order unity.
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Figure 2.8: Ellipsoid axis lengths from the upper half of Fig. 2.7(a) (light), compared to an integration
with zero spin and hence zero Lyapunov exponent (dark). Only two of the four lines represent
exponents distinguishable from zero.

the data, with approximate standard errors of 1%. These errors are not particularly meaningful

since the exponents themselves can vary by ∼10% depending on the initial direction of the deviation

vector. Moreover, even exponents that appear nonzero may be indistinguishable from zero in the

sense of Fig. 2.8; for such exponents a “1%” error on the fit is meaningless.

For initial conditions considered in Fig. 2.6, and other orbits in the strongly relativistic region

near the horizon, typical largest Lyapunov exponents are on the order of a few × 10−3/M . For the

particular case illustrated in Fig. 2.6, we have λmax ≈ 5 × 10−3 M−1, which implies an e-folding

timescale of τλ ≡ 1/λ ≈ 2 × 102 M . This is strongly chaotic, with a significant divergence in

approximately eight φ-orbital periods.

Based on integrations in the case of zero spin, which corresponds to no chaos (Lyapunov exponents

all zero), we can determine how quickly the exponents approach zero numerically.14 Fig. 2.8 compares

the four apparently positive exponents with a known zero exponent. Only two of the four exponents

are unambiguously distinguishable from zero, consistent with the argument in Sec. 2.6.2 that there

should be at most three independent nonzero exponents.

Finally, we note that the components of the direction of largest stretching are all nonzero in

general. The chaos is not confined to the spin variables alone, but rather mixes all directions.

This indicates that chaos could in principle manifest itself in the gravitational waves from extreme

mass-ratio binaries—but see Sec. 2.7.3 below.
14As noted in the introduction, it is possible for integrable but unstable orbits to have positive Lyapunov exponents.

We avoid this issue by choosing a baseline orbit that is not unstable.
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Table 2.1: Lyapunov exponents in Kerr spacetime in units of 10−3 M−1, using a least squares fit.
The exponents correspond to the semimajor axis evolution shown in Fig. 2.7(a). As is typical with
the Gram-Schmidt Jacobian method, the exponents with the largest magnitudes are determined
most accurately, and thus show the ±λ property most clearly. The standard errors on the fit are
∼1% for each exponent, but these errors are dominated by two systematic errors: (1) the variation
due to different choices of initial (random) tangent vectors; (2) nonzero numerical values even for
exponents that converge to zero eventually. In particular, the four smallest exponents (in absolute
value) are indistinguishable from zero (see Fig. 2.8).

+λ 5.5 1.5 0.56 0.25
−λ 5.3 1.6 0.76 0.072

Table 2.2: Lyapunov exponents in Schwarzschild spacetime in units of 10−3 M−1, using a least
squares fit. The exponents correspond to the semimajor axis evolution shown in Fig. 2.10(a), which
is similar to the orbit in Fig. 4(d) of Ref. [3]. As with the Kerr case (Table 2.1), the standard errors
on the fit are ∼1% for each exponent, and the same caveats apply. The four smallest exponents (in
absolute vale) are indistinguishable from zero in the sense of Fig. 2.8.

+λ 1.2 0.67 0.21 0.0063
−λ 1.5 0.57 0.10 0.00023

2.7.1.2 Schwarzschild spacetime revisited

We now reconsider the case of a spin S = 1 particle in Schwarzschild spacetime, as investigated in

Ref. [3]. Fig. 2.9 shows an orbit similar to a chaotic orbit considered there (Fig. 4(d) in [3]). A

plot of log[ri(τ)] vs. τ (Fig. 2.10) shows behavior similar to that in Fig. 2.7. In particular, the ±λ

symmetry is present, apparently with two positive exponents. (The other lines are indistinguishable

from zero, again using S = 0 orbits as a baseline.) The largest exponent of 1.5 × 10−3 M−1 agrees

closely with the value from Ref. [3], which reported an exponent of ∼2×10−3 M−1 for a similar orbit.

(This agreement is somewhat surprising, since [3] appears not to have taken the constrained nature

of the deviation vectors into account. Luckily, the exponents are robust, and even unconstrained

deviation vectors give nearly correct results.)

2.7.1.3 Kerr and Schwarzschild compared

The Kerr and Schwarzschild Lyapunov exponents of the previous two sections are not all that

different; both are 10−2–10−3 M−1 in order of magnitude. Nevertheless, the two systems prove to

be quite different: chaotic orbits are easy to find in Kerr spacetime for nearly any initial condition

that explores the strongly relativistic region near the horizon, whereas nearly all analogous orbits in

Schwarzschild spacetime are not chaotic.

Fig. 2.11 compares Kerr and Schwarzschild orbits with the same inclination angle ι = 10◦ and

eccentricity e = 0.5 but varying pericenters rp. (Details of this parameterization method, mentioned
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(a)

(b)

Figure 2.9: The orbit of a maximally spinning (S = 1) test particle in Schwarzschild spacetime for
E = 0.94738162 µ and Jz = 4.0 µM As before, we plot (a) y vs. x and (b) z vs. ρ =

√
x2 + y2.
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(a)

(b)

Figure 2.10: Natural logarithms of the phase space ellipsoid axes vs. proper time in Schwarzschild
spacetime with S = 1. The largest exponent is λmax ≈ 1.2 × 10−3 M−1. The initial conditions are
the same as in Fig. 2.9. (a) Full Gram-Schmidt Jacobian method (light) with rigorous Jacobian
method (dark). (b) Rigorous Jacobian method compared to unrescaled deviation vector method.
As in Fig. 2.7(b), the unrescaled method eventually saturates.
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Figure 2.11: Comparison of maximally spinning (S = 1) particle orbits in Kerr (dark) and
Schwarzschild (light) spacetime. We plot the largest Lyapunov exponent versus pericenter (nor-
malized by the marginally stable radius). The Kerr initial conditions for the innermost orbits are
essentially as in Fig. 2.6. The Schwarzschild orbits are identical to their Kerr counterparts in incli-
nation (10◦) and eccentricity (e = 0.5) but have the Kerr parameter a set to zero. The Schwarzschild
orbits have exponents indistinguishable from zero over the entire range of parameters.

above in Sec. 2.2.3, appear in Chapter 3.) We insure that the systems are analogous by using orbits

of S = 1 particles with the same values of rp/rms, where rms is the radius of the marginally stable

orbit in the corresponding S = 0 (geodesic) case. We use a Kerr geodesic integrator developed by

Scott Hughes [33] to find rms, which is the smallest pericenter that still yields a stable orbit. For

the values of ι and e considered, rms = 1.0 M for Kerr and rms = 4.67 M for Schwarzschild.

It is evident from Fig. 2.11 that the Kerr orbits are chaotic for a broad range of pericenters,

with the maximum Lyapunov λmax generally decreasing as the pericenter increases. In contrast, the

Schwarzschild orbits are not chaotic anywhere over the entire range of valid initial conditions. In fact,

we are unable to find any chaotic orbits in Schwarzschild spacetime other than the types identified

by Suzuki and Maeda [3], which were exceptional cases of orbits on the edge of a generalized effective

potential. In Kerr, on the other hand, chaotic orbits appear to be the rule for pericenters near rms.

2.7.2 Dependence on S

Since chaos must disappear as S → 0, we expect to see the largest Lyapunov exponent approach

zero in this limit. This is indeed the case: in Fig. 2.12, which shows the variation of λmax with S

for two different orbits, we see that the chaos unambiguously present when S = 1 is not present for

smaller values of S. In particular, the largest Lyapunov exponent is indistinguishable from zero over

the entire range 10−6 ≤ S ≤ 10−1. (The far left of the plots have data points for each decade in this

range.)

Although the strength of the chaos generally decreases with S, one remarkable feature of Fig. 2.12(a)
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(a)

(b)

Figure 2.12: Variation of largest Lyapunov exponent vs. S. (a) The spin S = 1 initial conditions
are the same as in Fig. 2.6. (b) Another S = 1 case with a different inclination angle (20◦) and
pericenter (2.5 M). As the spin decreases, we hold fixed the Kerr orbital parameters: inclination
angle, eccentricity, and pericenter. Note that in (a) the chaos disappears below S ∼ 0.5, but returns
in a region centered on S ∼ 0.3. The horizontal line in both plots is the value of λmax calculated for
the baseline S = 0 orbit. In both (a) and (b) the Lyapunov exponent is indistinguishable from zero
for physically realistic spins.
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Figure 2.13: Two orbits from the “bump” in Fig. 2.12(a). The S = 0.4 orbit (light) is not chaotic,
but the S = 0.3 orbit (dark) is chaotic, despite having a smaller value of the spin.

is the return of chaotic orbits between S ∼ 0.25 and 0.4 after their disappearance at S ∼ 0.5. The

effect is qualitatively clear in Fig. 2.13. This chaotic “bump” in λmax vs. S illustrates an important

theme in nonlinear dynamical systems: the only way to determine whether an orbit is chaotic is to

do the calculation. Though we certainly expect the strength of chaos to be smaller for S � 1 than

for S ≈ 1, it is impossible, in general, to determine a priori whether a particular set of parameters

will lead to chaotic behavior.

2.7.3 Physically realistic spins

The Papapetrou equations are only realistic in the test-particle limit, so physically realistic spins

must satisfy S � 1 (Sec. 2.2.2). This corresponds to likely sources of gravitational waves for

LISA [34–36], e.g., maximally spinning µ = 10 M� black holes spiraling into supermassive M =

106 M� Kerr black holes, which have spin parameters of S = µ/M = 10−5. Because of their likely

importance as emitters of gravitational waves, it is essential to understand the dynamics of such

systems.

2.7.3.1 Vanishing Lyapunov exponents

We would like to be able to make a definitive statement about the presence or absence of chaos for

“small” spins, e.g., values of S in the range 10−2–10−6. Unfortunately, when determining Lyapunov

exponents numerically, it is impossible to conclude definitively that an orbit is or is not chaotic, since

to do so would require an infinite-time integration. On the other hand, for suspected non-chaotic

orbits, we can provide an approximate bound on the e-folding timescale.

The numerical values of exponents suspected to be zero depend strongly on the time of the
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Figure 2.14: The variation of the dimensionless quantity λmax M with final integration time τf for
spin parameter S in the range 10−2 ≤ S ≤ 10−6. From top to bottom, the total integration time
varies from 104 M to 107 M . It is likely that the true Lyapunov exponent is zero.

integration. For example, for values of S in the range 10−2 ≤ S ≤ 10−6, the exponent in Fig. 2.12

appears to be λmax ≈ 5 × 10−4 M−1, but this plot represents an integration time of only 104 M .

Longer integration times give correspondingly smaller estimates for the suspected zero exponents

(Fig. 2.14). For the system shown in Fig. 2.12, an integration of 107 M yields an estimate of

λmax ≈ 3.0 × 10−7 M−1 for all spins in the range 10−2 ≤ S ≤ 10−7. In this case, the relevant

Lyapunov timescales are at least 3× 106 M , and are probably much longer; the size of the bound is

limited only by our patience and computer budget. It seems highly likely that such orbits are not

chaotic.

2.7.3.2 Spin-induced phase differences

Even if their Lyapunov exponents are zero, small spins affect the relative phase of the orbits, and

since phase differences accumulate secularly [37], the spin can still affect the gravitational wave

signal. It is therefore useful to have a sense of the orders of magnitude of such spin-induced phase-

shifts. Tables 2.3 and 2.4 show typical values for the phase difference ∆φ = φgeodesic − φspin for

S = 10−5, where the geodesic and spin systems start with the same initial 4-velocity vµ. The most

useful quantity in practice is the phase shift as measured by observers at infinity, so we integrate

in terms of the Boyer-Lindquist coordinate time t in place of τ . (This involves multiplying the

differential equations by dτ/dt at each time step.) As is apparent from the tables, the phase shifts

range broadly, from 10−1 to 10−5 radians after 2000 radial orbital periods, but tend to decrease in

magnitude with increasing inclination angle or pericenter.

Reference [36] shows that the number of orbital periods in a full inspiral from r ≈ 4 M to the
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Table 2.3: Phase shifts ∆φ = φgeodesic − φspin in radians as a function of orbital inclination angle ι
and pericenter rp for a = 0.5 and S = 10−5. Inclination angle ι = 0◦ is prograde equatorial and
ι = 180◦ is retrograde equatorial. The geodesic orbits and their corresponding spin orbits start with
the same initial 4-velocity vµ, and the integrations are performed using Boyer-Lindquist coordinate
time t, with tmax ≈ (2000 times the average radial orbital period). The pericenters are scaled by the
marginally stable radius rms, and we start at rp/rms = 1.5 to guarantee the existence of valid initial
conditions for the non-geodesic orbit. The spin has fixed initial values of S r̂ = Sµ̂ = 0.1 S (with
hats indicating an orthonormal basis), corresponding to initial angles of 9◦ to 30◦ with respect to
the vertical in a fiducial (ZAMO) rest frame, increasing with decreasing pericenter.

rp/rms

ι 1.5 2.0 2.5 3.0
10◦ 1.50× 10−2 5.69× 10−3 4.32× 10−3 2.13× 10−3

45◦ 2.79× 10−2 1.23× 10−2 1.01× 10−2 4.34× 10−3

85◦ 4.36× 10−2 2.92× 10−3 1.48× 10−3 8.24× 10−4

135◦ −9.02× 10−3 −6.25× 10−3 −2.34× 10−3 −1.30× 10−3

170◦ 8.40× 10−4 2.85× 10−4 1.84× 10−4 7.31× 10−5

ι 3.5 4.0 4.5 5
10◦ 2.02× 10−3 1.27× 10−3 1.14× 10−3 7.77× 10−4

45◦ 4.60× 10−3 2.24× 10−3 1.66× 10−3 1.83× 10−3

85◦ 1.00× 10−3 2.20× 10−3 1.86× 10−3 1.26× 10−3

135◦ −9.02× 10−3 −6.25× 10−3 −2.34× 10−3 −1.30× 10−3

170◦ 8.40× 10−4 2.85× 10−4 1.84× 10−4 7.31× 10−5

Table 2.4: Phase shifts ∆φ = φgeodesic − φspin in radians as a function of orbital inclination angle ι
and pericenter rp for a = 1 and S = 10−5. As in Table 2.3, the pericenters are scaled by rms, and
the spin has fixed initial values of S r̂ = Sµ̂ = 0.1 S (corresponding in this case to initial angles of 28◦

to 61◦, again decreasing with increasing pericenter).

rp/rms

ι 1.5 2.0 2.5 3.0
10◦ 7.21× 10−2 4.58× 10−2 2.41× 10−2 1.83× 10−2

45◦ 2.37× 10−1 5.56× 10−2 2.59× 10−2 1.83× 10−2

85◦ 1.96× 10−2 6.21× 10−3 2.82× 10−3 2.13× 10−3

135◦ −1.04× 10−2 −3.17× 10−3 −3.21× 10−3 −1.41× 10−3

170◦ 3.89× 10−4 1.48× 10−4 6.68× 10−5 5.97× 10−5

ι 3.5 4.0 4.5 5
10◦ 1.10× 10−2 9.46× 10−3 6.56× 10−3 7.43× 10−3

45◦ 1.73× 10−2 1.52× 10−2 1.08× 10−2 7.83× 10−3

85◦ 2.66× 10−2 3.64× 10−3 6.47× 10−4 3.48× 10−3

135◦ −1.12× 10−3 −8.46× 10−4 −8.82× 10−4 −5.59× 10−4

170◦ 8.09× 10−5 9.55× 10−5 3.06× 10−5 1.66× 10−5
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Figure 2.15: The natural logarithm of the largest ellipsoid axis vs. time for proper time τ (dark) and
coordinate time t (light). The exponents are clearly different, but the Lyapunov timescales τλ = 1/λτ

and tλ = 1/λt are related by Eq. (2.56).

final plunge is N ∼ M
µ , which is 105 for the systems in Tables 2.3 and 2.4. Since the table represents

values of ∆φ for 2000 times the average radial orbital period, this means that the total phase shift

during the inspiral is 50 ∆φtable. For a 10◦ inclination angle the total phase shift is on the order of a

tenth of a radian to a radian. Slightly more realistic values of the number of orbits can be obtained

using Fig. 2 in [36], which gives N ∼ 2× 104 orbital periods from r = 4 M to the plunge at r ≈ M

for a = 0.998, ι = 10◦, and M/µ = 105. Since the orbit spends most of its time between 4 rms and

2 rms, interpolating in Table 2.4 gives ∆φtotal ≈ 10 × ∆φr=3.0 = 2 × 10−2. This is only a rough

estimate, since the orbits in [36] are circular, while the orbits we consider are eccentric.

2.7.4 Comments on time, rescaling, and norms

In this chapter, we have elected to use τ as the time parameter, a rescaling time T of 100 M , and a

projected norm (Sec. 2.4.1). Here we discuss the effects of varying these choices.

First, we consider the effects of using coordinate time t in place of τ . In Fig. 2.15, we plot the

natural logarithm of the largest ellipsoid axis log[r1(τ)] vs. τ together with log[r1(t)] vs. t. (We

use the unrescaled deviation vector approach for simplicity, since the Jacobian approach requires a

new Jacobian matrix for each coordinate change.) The exponents are λτ = 5.05 × 10−3 M−1 and

λt = 2.51× 10−3 M−1, implying Lyapunov timescales of τλ = 1.98× 102 M and tλ = 3.98× 102 M .

The average value of dt/dτ over the orbit is 2.06, whereas tλ/τλ = 2.01, so the relationship

tλ
τλ

=
〈

dt

dτ

〉
(2.56)

discussed in the introduction is well satisfied.



60

Figure 2.16: Natural logarithms of the ellipsoid axes vs. τ for rescaling time T = 100M (dark) and
time T = 50 M (light).

Second, we discuss the effects of varying the rescaling time T . We find that choosing T to be a

moderate fraction of the shortest Lyapunov timescale (corresponding to the largest Lyapunov ex-

ponent) works best, giving each axis enough time to grow before rescaling while still keeping the

negative exponents from underflowing and preventing the largest axis from dominating. Rescal-

ing times between 50 M and 100 M work best for the systems we consider, which have Lyapunov

timescales ranging from 102 M to 103 M . A comparison of results for T = 50 M and T = 100M

appears in Fig. 2.16.

Third, we compare the projected norm used here to a näıve Euclidean norm for determining the

length of the phase-space tangent vectors ξi. As shown in Fig. 2.17, even using a 12-dimensional

Euclidean norm changes the resulting exponent very little (approximately 15% in this example).

Given its conceptual advantages, we choose to use the projected norm with the confidence that the

Lyapunov exponent order of magnitude is robust.

2.8 Conclusions

A spinning test particle, as described by the Papapetrou equations, appears to be chaotic in Kerr

spacetime, with maximum e-folding timescales of a few × 102 M . The applicability of this result

is limited by three main factors: (1) chaos appears only for physically unrealistic values of the

spin parameter; (2) other effects, such as tidal coupling, may be important for some astrophysical

systems, violating the pole-dipole approximation implicit in the Papapetrou equations; and (3) we

neglect gravitational radiation. The third limitation is not fatal, since the radiation timescales can

be long enough that chaos, if present in the conservative limit, would have time to manifest itself in

the gravitational radiation of extreme mass-ratio systems.
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Figure 2.17: The natural logarithm of the largest ellipsoid axis vs. τ for the Euclidean norm (top)
and the projected norm from Sec. 2.4.1 (bottom).

In the unphysical S = 1 limit, the Lyapunov exponents exhibit characteristics expected of a

Hamiltonian system, appearing in pairs ±λ (Sec. 2.6.2). There are zero Lyapunov exponents which

correspond to the constants of the motion, but the other exponents are in general nonzero. (For

the Kerr orbits considered in this chapter, we find that two of the three independent exponents

are nonzero, as illustrated in Fig. 2.8.) Typical orders of magnitude for the largest Lyapunov

exponents are a few×10−3 M−1 for unphysical spins (S = 1). For physically realistic spin parameters

(Sec. 2.7.3), we find that λmax . few× 10−7 M−1, corresponding to e-folding timescales of a few×

106 M . Even this bound appears to be limited only by the total integration time; in all physically

realistic cases considered, λmax is indistinguishable from zero (using S = 0 integrations as a baseline).

From the perspective of gravitational radiation detection, our most important conclusion is that

chaos seems to disappear for physically realistic values of S, i.e., values of S for which the test-

particle approximation and hence the Papapetrou equations are valid. We are unable to comment

on the dynamics of comparable mass-ratio binaries, since such systems are not accurately modeled

by the Papapetrou equations, but for extreme mass-ratio binaries it appears unlikely that chaos will

present a problem for the calculation of theoretical templates for use in matched filters. A more

thorough exploration of parameter space is needed to reach a firmer conclusion (Chapter 3).
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Appendix: Full Jacobian

For reference, we list the derivatives needed to calculate the full Jacobian matrix.

From Sec. 2.5.2, we have the following:

∂ẋµ

∂xν
= N

[
pαgαµ

,ν + wµ
,ν + vµ(vαwα

,ν + 1
2Nwαwβgαβ,ν)

]
(2.57)

∂ẋµ

∂pν
= N(gµν + Wµν + Nvµwν) + NvµvαWαν (2.58)

with

Wµν = −∗R∗µανβSαSβ (2.59)

∂ẋµ

∂Sν
= NV µν + NvµvαV αν (2.60)

with

V µν = −Sαpβ(∗R∗µαβν − ∗R∗µναβ). (2.61)

Now we simply apply the product rule many times:

∂ṗµ

∂xν
= −pαSβ

(
R∗ αβ

µγ ,ν vγ + R∗ αβ
µγ vγ

,ν

)
+ pα

(
Γα

βµ,ν vβ + Γα
βµ vβ

,ν

)
(2.62)

∂ṗµ

∂pν
= −Sβ

(
R∗ νβ

µγ vγ + R∗ αβ
µγ pα

∂vγ

∂pν

)
+ Γν

βµ vβ + Γα
βµ pα

∂vβ

∂pν
(2.63)

∂ṗµ

∂Sν
= −R∗ αν

µγ vγpα −R∗ αβ
µγ

∂vγ

∂Sν
pαSβ + Γα

βµ pα
∂vβ

∂Sν

∂Ṡµ

∂xν
= −pµSαpγSδ

(
R∗α γδ

β ,ν vβ + R∗α γδ
β vβ

,ν

)
+ Sα

(
Γα

βµ,ν vβ + Γα
βµ vβ

,ν

)
(2.64)

∂Ṡµ

∂pν
= −SαSδv

β
(
δ ν
µ R∗α γδ

β pγ + pµR∗α νδ
β

)
− pµR∗α γδ

β Sα
∂vβ

∂pν
pγSδ + Γα

βµ

∂vβ

∂pν
Sα (2.65)
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∂Ṡµ

∂Sν
= −pµpγvβ

(
R∗ν γδ

β Sδ + R∗α γν
β Sα

)
− pµR∗α γδ

β Sα
∂vβ

∂Sν
pγSδ + Γν

βµ vβ + Γα
βµ

∂vβ

∂Sν
Sα (2.66)

Accidentally leaving off the final term in
∂Ṡµ

∂Sν
led to the robust but spurious chaotic behavior

mentioned in Sec. 2.5.1.
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Chapter 3

A survey of spinning test particle
orbits in Kerr spacetime

This chapter has been accepted for publication in Phys. Rev. D; available as M. D. Hartl, gr-

qc/0302103.

Abstract

We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide

a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole.

We perform a thorough parameter space search for signs of chaotic dynamics by calculating the

Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations

admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with

pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole.

Despite the presence of these chaotic solutions, we show that physically realistic solutions to the

Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to

realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to

the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling

into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer

Space Antenna) should not exhibit any signs of chaos.

3.1 Introduction

The present chapter continues the investigation initiated in Chapter 2, which considered the dy-

namics of spinning test particles (i.e., compact astrophysical objects) orbiting a spinning black hole

(Kerr spacetime). The primary objective is to determine whether or not the orbits of spinning com-

pact objects spiraling into much more massive black holes are chaotic. Evidence for chaotic orbits in
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relativistic binaries has been presented in [1–6] (although only [1] was directly concerned with the ex-

treme mass ratio systems we consider here). An astrophysical example of the systems we consider is

a solar-mass black hole or neutron star orbiting a supermassive black hole in a galactic nucleus. Such

systems are potentially important sources of gravitational radiation in frequency bands detectable

by space-based gravitational wave detectors such as the proposed Laser Interferometer Space An-

tenna (LISA) mission. The methods of data analysis for signals from such detectors typically rely

on matched filters, which use a discrete mesh in parameter space to achieve a given signal-to-noise

ratio. The presence of chaos would cause the number of templates needed to fit a given signal to

grow exponentially with decreasing mesh size, potentially overwhelming the computers performing

the analysis.

Many studies have used the Papapetrou equations to investigate the dynamics of spinning test

particles in the background spacetime of a central black hole (including most recently [1, 7–10];

see [9] and [10] for a more thorough literature review). We found in Chapter 2 that the Papapetrou

equations formally admit chaotic solutions in Kerr spacetime, but the chaos seemed to disappear for

physically realistic spins. This conclusion was tentative, since we investigated only a few values of the

many parameters appearing in the equations. In the present study, we undertake a thorough search

of parameter space in order to determine the prevalence of chaotic orbits, both for dynamically

interesting (but physically unrealistic) orbits with high spin parameter S and for astrophysically

relevant systems with smaller spin.

As in Chapter 2, we use Lyapunov exponents to measure the divergence of nearby trajectories

and to provide an estimate for the timescale of the divergence. For chaotic systems, initial conditions

separated by a small distance ε0 diverge exponentially, with the separation growing as ε(τ) = ε0 eλτ ,

where λ is the Lyapunov exponent. For nonchaotic orbits, λ = 0, but when λ is nonzero it provides

the e-folding timescale τλ = 1/λ for chaotic behavior to manifest itself. In this chapter we use two

rigorous methods for determining the maximum Lyapunov exponent λmax described in Chapter 2.

Further details appear below in Sec. 3.4 and in Sec. III of Chapter 2.

Our parameter space search makes use of a convenient orbital parameterization technique, which

allows us to specify desired values of pericenter rp and orbital inclination ι (Sec. 3.3). We vary these

orbital parameters along with the spin magnitude, eccentricity, Kerr spin angular momentum a, and

spin inclination, and calculate the largest Lyapunov exponent for each set of initial conditions. A

complete description of our methods for searching parameter space appears in Sec. 3.5. Although

not exhaustive, the resulting survey of parameter space gives a thorough picture of chaos in the

Papapetrou equations with a Kerr background.

We set G = c = 1, use sign conventions as in MTW [11], and use Boyer-Lindquist coordinates

(r, θ, φ) for Kerr spacetime. We use vector arrows for 4-vectors and boldface for Euclidean vectors.

The symbol log denotes the natural logarithm.
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3.2 Spinning test particles

We use the Papapetrou equations of motion [12] to model a spinning test particle. As reformulated

by Dixon [13], these equations describe the motion of a “pole-dipole particle,” which neglects effects

smaller than those due to the mass monopole and spin dipole (thus neglecting the tidal coupling,

which is a mass quadrupole effect). The Papapetrou equations describe a particle with negligible

mass compared to the masses responsible for generating the background spacetime. In our case,

we write µ for the test particle’s mass and M for the mass of the central Kerr black hole; the test

particle limit then requires that µ � M .

3.2.1 Equations of motion

Dixon’s formulation for the equations of motion uses an antisymmetric spin tensor Sµν to represent

the spin angular momentum of the particle. The covariant derivative of the 4-momentum pµ deviates

from the nonspinning (geodesic) case by a term representing a coupling of the spin to the background

spacetime curvature. If we write vµ for the 4-velocity, the full equations of motion appear as follows:

dxµ

dτ
= vµ

∇~v pµ = − 1
2Rµ

ναβ vνSαβ (3.1)

∇~v Sµν = 2p[µvν].

Here Rµ
ναβ is the Riemann curvature tensor of the spacetime, which in our case corresponds to the

Riemann tensor for the Kerr metric. Note that in the case of vanishing spin (all components of Sµν

equal to zero) or flat spacetime (all components of Rµ
ναβ equal to zero), we recover the geodesic

equation ∇~v pµ = 0.

For numerical and conceptual purposes, we use a reformulation of the equations of motion in

terms of the momentum 1-form pµ and spin 1-form Sµ. The spin 1-form can be derived from the

4-momentum and spin tensor using

Sµ = − 1
2εµναβ uνSαβ , (3.2)

where uν = pν/µ. The spin 1-form is easier to visualize than the spin tensor, and the Papapetrou

equations are better-behaved numerically in the S → 0 limit when expressed in terms of the spin

1-form. Details of this formulation appear in Chapter 2 and the appendix.
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3.2.2 General constraints

The Papapetrou system of equations (3.1) is highly constrained, even in arbitrary spacetimes. The 4-

momentum and spin satisfy normalization conditions that are conserved by the equations of motion:

pµpµ = −µ2 (3.3)

and
1
2SµνSµν = S2. (3.4)

A further condition is required to identify a unique worldline for the center of mass:

pµSµν = 0. (3.5)

A more detailed discussion of this “spin supplementary condition” appears in Chapter 2.

3.2.3 Kerr constraints

The Papapetrou equations share an important property with geodesic motion, namely, to each

symmetry of the background spacetime (typically represented by a Killing vector) there corresponds

a constant of the motion. Kerr spacetime has two such symmetries, which provide two constraints

in addition to those described in the previous section. (The Killing tensor that leads to the Carter

constant in the geodesic does not correspond to a conserved quantity when the spin is nonzero; see

Sec. 3.3.2.3 below.)

To each Killing vector ~ξ there corresponds a constant given by the standard expression for

geodesics, plus a contribution due to a coupling with the spin tensor:

Cξ = ξµpµ − 1
2ξµ;νSµν . (3.6)

Kerr spacetime’s two Killing vectors ~ξt = ∂/∂t and ~ξφ = ∂/∂φ then give energy and z angular

momentum conservation:

−E = pt − 1
2gtµ,νSµν (3.7)

and

Jz = pφ − 1
2gφµ,νSµν . (3.8)

3.2.4 The spin parameter S

The spin magnitude S that appears in Eq. (3.4) quantifies the size of the spin and thus plays a crucial

role in determining the behavior of spinning test particle systems. As in Chapter 2, we measure
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distances and times in terms of M and momenta in terms of µ. In these units, S is measured

in units of µM . When measured in traditional geometrized units, the spin of a black hole can

be as large as its mass squared, i.e., Sgeom, max = µ2. In this case the spin parameter goes like

S ∼ µ2/(µM) = µ/M , which is necessarily small for a test particle system. This result applies to

all astrophysically relevant systems, as shown in Chapter 2. Thus, we have the important physical

constraint that the spin parameter S must satisfy S � 1 for all physically realistic systems. A

thorough discussion of various possibilities (including neutron stars and white dwarfs) in Chapter 2

showed that realistic values of S for LISA sources fall in the range 10−4–10−7.

The smallness of the spin’s effect is not dependent on our choice to measure S in terms of µM .

If instead we measure S in terms of µ2, then the equation of motion for Sµν becomes (rewriting ∇~v

as D/dτ)
D(Sµν/µ2)

d(τ/M)
= 2

1
µ

p[µvν], (3.9)

where we have factored out from each variable its corresponding scale factor. This gives

DSµν

dτ
=

µ

M

(
2p[µvν]

)
, (3.10)

so that in these units the spin’s effective magnitude is suppressed by a factor of µ/M . Measuring S in

terms of µM effectively absorbs the unavoidable smallness of the spin effect into the spin parameter

itself.

3.3 Parameterizing initial conditions

The many constraints on the equations of motion lead to considerable complexity in parameterizing

the initial conditions. We summarize here the primary parameterization method described in Chap-

ter 2, and then discuss in detail a method for parameterizing initial conditions using the geometrical

properties of the orbit.

3.3.1 Energy and angular momentum parameterization

It is easy to parameterize the Papapetrou equations directly in terms of the momentum and spin

components, but more physically relevant parameterizations are more difficult. The parameterization

method discussed in Chapter 2 solves for the initial conditions using the integrals of the motion E

and Jz. This method also serves as the foundation for a more sophisticated parameterization in

terms of orbital parameters (Sec. 3.3.2).

The energy and angular momentum parameterization method proceeds as follows. If we think of

the system in terms of the spin 1-form Sµ, we have 12 variables, four each for position, 4-momentum,

and spin. Since Kerr spacetime is static and axially symmetric, without loss of generality we may set
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the initial time and axial angle to zero: τ = φ = 0. (We use the proper time τ as our time parameter,

as discussed in Sec. 3.4 below.) We then provide the initial values for r, θ, and pr, together with the

constants E, Jz, and S. Finally, we provide two components of the spin vector in an orthonormal

basis. It is easiest to specify the radial and θ components S r̂ and S θ̂; since the r-θ part of the Kerr

metric is diagonal, we may then easily derive the 1-form components Sr and Sθ.

Having specified values for seven of the variables, we must now use the five equations that relate

them. Since we measure the particle’s momentum in terms of its rest mass µ, the momentum

normalization relation is

pµpµ = −1, (3.11)

which we use to eliminate pθ. We then solve the spin normalization condition

SµSµ = S2 (3.12)

to eliminate Sφ. The spin-momentum orthogonality constraint and the two integrals of the motion

then give three equations in the three remaining unknowns pt, pφ, and St:

0 = pµSνgµν (3.13)

E = −pt + 1
2gtµ,νSµν (3.14)

Jz = pφ − 1
2gφµ,νSµν (3.15)

(The first of these equations is equivalent to the condition pµSµν = 0, as discussed in the appendix.)

We solve Eqs. (3.13)–(3.15) with a Newton-Raphson root finder, which works robustly given

good initial guesses. The terms 1
2gtµ,νSµν and 1

2gφµ,νSµν are typically small, even in the physically

unrealistic case of S ∼ 1, so E and Jz are good initial guesses for their corresponding momenta. We

typically use Sθ as the initial guess for St. In all cases, we verify a posteriori that all constraints are

satisfied to within machine precision.

3.3.2 Orbital geometry parameterization

While the method described above is sufficient for determining a set of valid initial conditions,

parameterizing orbits by energy and angular momentum is not particularly intuitive. It is much more

natural to think in terms of the orbital geometry, so we prefer to parameterize by the pericenter rp,

the eccentricity e, and the orbital inclination angle ι. Such parameters have precise meaning only

for geodesic orbits, but are nevertheless still useful for the case of spinning test particles.
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3.3.2.1 Kerr geodesics

The first step in parameterizing solutions of the Papapetrou-Dixon equations using orbital parame-

ters is to solve the geodesic case. The traditional method for specifying a geodesic in terms of con-

served quantities uses the energy E, the z angular momentum Lz, and the Carter constant Q [11].

In order to use the orbital parameters, we adopt a mapping from (rp, e, ι) to (E,Lz, Q) based on

unpublished notes supplied by Teviet Creighton and Scott Hughes (and implemented in Hughes’s

Kerr geodesic integrator [14]).

In order to use the more intuitive orbital parameters, we must determine the set (E,Lz, Q) given

the set (rp, e, ι). We obtain two of the necessary equations by noting that the radial velocity dr/dτ

vanishes at pericenter and apocenter, since these radii correspond to turning points in the radial

motion. The equation for the time-evolution of the Boyer-Lindquist radius r is [11]:

Σ2

(
dr

dτ

)2

= R(r), (3.16)

where

R(r) = [E(r2 + a2)− aLz]2 −∆[r2 + (Lz − aE)2 + Q], (3.17)

and we use the standard auxiliary variables

Σ = r2 + a2 cos2 θ (3.18)

and

∆ = r2 − 2Mr + a2. (3.19)

The quantity a is the Kerr spin parameter J/M , i.e., the central black hole’s spin angular momentum

per unit mass, which is dimensionless in our normalized units. From Eq. (3.17) we see that dr/dτ = 0

implies that R(r) = 0, so we obtain one equation at each turning point:1

R(rp) = 0 (3.20)

and

R(ra) = 0, (3.21)

where the apocenter is defined by

ra =
(

1 + e

1− e

)
rp. (3.22)

1In this chapter we never consider exactly circular orbits, but we note that our prescription fails in this case: the
conditions (3.20) and (3.21) are identical when e = 0, since ra = rp. For exactly circular orbits one must use the
additional condition R′(rp) = 0, where R′ = dR/dr.
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The final equation required to complete the mapping is [15]

Q = L2
z tan2 ι. (3.23)

The value of ι resulting from this definition agrees closely with the maximum value of |π/2− θ| for

a numerically determined solution to the equations of motion, i.e., it faithfully captures a geometric

property of the orbit.

Eqs. (3.20)–(3.23) give three equations in three unknowns, which are easy to solve using a non-

linear root finder as long as good initial guesses for the energy, angular momentum, and Carter

constant can be found. The approach we adopt uses the degenerate cases of circular equatorial

orbits to provide the raw material for analytical guesses. The energies for prograde and retrograde

circular orbits in the equatorial plane are

Epro(r) =
1− 2v2 + ãv3

√
1− 3v2 + 2ãv3

(3.24)

and

Eret(r) =
1− 2v2 − ãv3

√
1− 3v2 − 2ãv3

, (3.25)

where we write v ≡
√

M/r and ã = a/M for notational simplicity. The initial guess for the energy

is then an average of these energies, weighted using the inclination angle,2 with “radius” given by

the semimajor axis of an ellipse with pericenter rp and eccentricity e:

Eguess = 1
2 [α+ Epro(rsemi) + α−Eret(rsemi)] , (3.26)

where

α± = 1± cos ι, (3.27)

and

rsemi =
rp

1− e
. (3.28)

It is possible (though rare) for Eq. (3.26) to yield an energy guess greater than 1; in this case, we

simply set Eguess = 1.

Once we have a guess for the energy, we can find the corresponding guess for the angular momen-

tum. Using the value from Eq. (3.26) and the expression for the angular momentum for a circular

equatorial orbit gives

Lguess
z = cos ι

√
1− e2

2(1− Eguess)
(3.29)

2We adopt the convention that a ≥ 0, so that ι indicates whether the orbit is prograde (0 ≤ ι < π
2
) or retrograde

(π
2

< ι ≤ π).
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as an initial guess for the angular momentum. Finally, the guess for the Carter constant is

Qguess = (Lguess
z )2 tan2 ι. (3.30)

Plugging Eqs. (3.26), (3.29), and (3.30) into the nonlinear root finder yields the actual values of E,

Lz, and Q to within machine precision in fewer than 10 iterations.

One caveat about our parameterization method is worth mentioning: some values of (rp, e, ι)

correspond to unstable Kerr orbits, and in this case the method returns a set (E,Lz, Q) corresponding

to an orbit with a different pericenter from the one requested. We can illustrate this behavior by

factoring Eq. (3.17), which is a quartic function in r:

R(r) = (1− E2)(r1 − r)(r − r2)(r − r3)(r − r4). (3.31)

The roots are ordered so that r1 ≥ r2 ≥ r3 ≥ r4. Bound motion occurs for r1 ≥ r ≥ r2, which

implies that r1 = ra and r2 = rp, but this works only for stable orbits. In the case that the orbit

requested is unstable, the set (rp, e, ι) returned by the algorithm instead corresponds to a nearby,

stable orbit. In this case, the numerically calculated roots of R(r) satisfy r3 = rp, requested, but

the parameterization method returns r2 as the pericenter, i.e., it returns a nearby stable orbit with

pericenter rp = r2 > rp, requested. As a result, the actual pericenter is larger than the value requested.

We use routines from [14] to identify the boundary between stable and unstable orbits (so that the

latter may be excluded), but the code has a few minor bugs, and the identification procedure is not

infallible. As a result, some such orbits appear in the results below (Sec. 3.5) and can be identified

by having pericenters different from those requested. It is essential to understand, however, that the

orbits returned by the parameterization algorithm are never unstable, and represent perfectly valid

(stable) solutions to the equations of motion.

3.3.2.2 From Kerr geodesics to Papapetrou initial conditions

Once we have the set (E,Lz, Q) for the geodesic case, we can use the well-known properties of the

Kerr metric to solve for all the parameters necessary for the method described in Sec. 3.3.1 above.

The first step is to force the constants of the motion to agree by setting EPapapetrou = EKerr and

Jz = Lz. Next, we set θ0 = π/2 (corresponding to the equatorial plane), since this is the only angle

guaranteed to be shared by all Kerr geodesic orbits.3 Finally, we must choose an initial value r0

for the Boyer-Lindquist radius, which in the case of θ0 = π/2 coincides with the crossing of the

3This restricts our sample to Papapetrou orbits that cross the equatorial plane. This almost certainly represents the
vast majority of valid Papapetrou solutions, but there remains the intriguing possibility of spinning particle solutions
that orbit permanently above or below the equatorial plane. We leave an examination of this possibility to future
investigators.
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equatorial plane. One possibility is simply to use the average value of the pericenter and apocenter,

r0 = 1
2 (rp + ra). (3.32)

This radius is guaranteed to lie between pericenter and apocenter, and the prescription in Eq. (3.32)

works fine for the mildly eccentric orbits considered in this chapter, but a more robust method

must take into account that highly eccentric orbits should in general cross the equatorial plane near

pericenter. (Requiring a plane-crossing far from pericenter would force the inclination angle to be

small, which is a constraint we do not wish to impose.) This suggests choosing an initial value of r

close to pericenter. One flexible method is to choose

r0 = rp(1 + αe), (3.33)

where α is a number of order unity. This reduces correctly to rp in the e = 0 (circular) limit, and

selects an equatorial plane crossing near pericenter in the e ∼ 1 limit. If we set α = 2 in Eq. (3.33),

then this method agrees exactly with Eq. (3.32) in the cases e = 0 and e = 0.5, and differs from

Eq. (3.32) by less than 15% when e = 0.6. Most of the results in this chapter use Eq. (3.32), but

Eq. (3.33) is preferable in general.

Once the initial θ and r are known, we can determine all components of the Kerr 4-momentum pµ
K ,

but three of the Papapetrou momenta are determined by the constraints (Sec. 3.3.1). We are

therefore free to force only one of the four components of the Papapetrou momentum pµ
P to be

the same as its Kerr counterpart. For the bulk of this chapter, we set the radial components equal

(pr
K = pr

P ), since it is the radial momentum that is most closely tied to the stability and boundedness

of the orbits. This choice results in Papapetrou orbits with pericenters and eccentricities fairly close

to the Kerr geodesic values, but with much higher orbital inclination angles (Fig. 3.7). The alternate

choice of pθ
K = pθ

P results in Papapetrou orbits with inclinations similar to their Kerr counterparts,

but with very different pericenters (Fig. 3.8). See Sec. 3.5 for further discussion.

We determine a value for the radial Papapetrou momentum pr
P using the Kerr geodesic param-

eters EK , Lz, and Q by applying Eq. (3.17) and the equation

ρ2pr = µ
√

R(r), (3.34)

where ρ = r2 + a2 cos2 θ [11]. We then convert to pr using pr = prgrr. Proceeding exactly as in

Sec. 3.3.1, we specify two of the spin components and eliminate two variables using 4-momentum

and spin normalization, and then solve numerically for pt, pφ, and St. The result is a set of initial

conditions for the Papapetrou equations with the same energy and angular momentum as a Kerr

geodesic with the desired values of rp, e, and ι.
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It sometimes happens that the Papapetrou initial conditions derived in this manner specify an

orbit that is unstable against plunge into the black hole. Since there is no “effective potential” for

a generic Papapetrou orbit as there is for Kerr geodesics, there is no way a priori to detect this

instability. Plunge orbits are detected at runtime by testing for radial coordinates less than the

horizon radius.4 Orbits that plunge are removed from consideration since by definition they cannot

be chaotic.

3.3.2.3 Empirical orbital parameters

In making the transition from geodesics to solutions of the Papapetrou equations, we are able to

enforce the conditions EPapapetrou = EKerr and Jz = Lz, but this is no guarantee that the Papa-

petrou orbit has the corresponding orbital parameters rp and ι: the spin-coupling term − 1
2ξµ;νSµν

[cf. Eq. (3.6)] has a potentially large effect on the empirical values of the pericenter and orbital in-

clination. This effect is most pronounced when we consider high spin parameter values, i.e., S ∼ 1.

In these dynamically interesting cases, the empirical pericenter and inclination will differ in general

from the values requested in the parameterization.

The empirical Papapetrou pericenter rp, P is easy to find: we simply integrate the orbit with

a small stepsize for a large number of periods, and then record the minimum radius achieved. In

practice, this works robustly, reproducing almost exactly the requested Kerr value of rp, K in the

limit S � 1. The only exception involves values of rp, K that correspond to requested unstable

orbits, as discussed in Sec. 3.3.2.1 above. Each of these orbits has an empirical pericenter larger

than the pericenter requested: the requested pericenter corresponds to the root r3 in Eq. (3.31), but

the empirical pericenter returned by the algorithm corresponds to the larger root r2.

Having found the empirical pericenter for an orbit, we must next find its empirical orbital incli-

nation angle ιP . In order to reproduce the definition from Eq. (3.23), we need to find an analogue

of the Carter constant Q for spinning test particles. Kerr spacetime has a Killing tensor Kµν [16]

that satisfies

Kµ(ν;α) = 0, (3.35)

which gives rise to an extra conserved quantity in the case of geodesic motion:

K = Kµνpµpν . (3.36)

This quantity is related to the traditional Carter constant Q by [11]

K = Q + (Lz − aE)2. (3.37)

4In practice, the most common runtime error is actually a numerical underflow in the integration stepsize as the
particle approaches the horizon.
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When the test particle has nonzero spin, the quantity defined by Eq. (3.37) is no longer constant,

but there is an analogous expression that is conserved to linear order. Adapting a result from [7],

we can write this approximately conserved quantity as

C = Kµνpµpν − 2pµSρσ(fν
σ fµρν − f ν

µ fρσν), (3.38)

where

fµν = 2a cos θe1
[µe0

ν] + 2re2
[µe3

ν], (3.39)

fµνσ = 6

(
a sin θ√

Σ
e0
[µe1

νe2
σ] +

√
∆
Σ

e1
[µe2

νe3
σ]

)
, (3.40)

and the {ea
µ} are the standard orthonormal tetrad for the Kerr metric. The effective Carter “con-

stant” for spinning particles is then

Qeff = C − (Jz − aE)2, (3.41)

where we use the full angular momentum Jz (which includes the contribution from the spin) in

place of Lz. The quantity Qeff is nearly but not exactly constant, so in order to define an empirical

inclination angle we find the maximum effective Q over an orbit, and then define ιP by

Qeff, max = J2
z tan2 ιP . (3.42)

As in the geodesic case, the value of ι obtained from Eq. (3.42) agrees well with the maximum value

of |π/2−θ| over an orbit.5 When S = 0, Eq. (3.42) reduces to the definition of the orbital inclination

for geodesics, Eq. (3.23).

3.4 Lyapunov exponents

3.4.1 The principal exponent

The Lyapunov exponents for a chaotic dynamical system quantify the chaos and give insight into

its dynamics (revealing, for example, whether it is Hamiltonian or dissipative). For a dynamical

system of n degrees of freedom, in general there are n Lyapunov exponents, which describe the

time-evolution of an infinitesimal ball centered on an initial condition. This initial ball evolves into

an ellipsoid under the action of the Jacobian matrix of the system, and the Lyapunov exponents are

related to the average stretching of the ellipsoid’s principal axes. We described in Chapter 2 a general
5This is true only when we force the Kerr and Papapetrou values of pr to agree (Sec. 3.3.2.2), which is the case for

all orbits considered except for the initial conditions shown in Fig. 3.8. In that case we revert to the simpler method
of finding the maximum value of |π/2− θ| over several orbits.
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method for calculating all n of the system’s exponents, but in the present study we are interested

only in the presence or absence of chaos in the Papapetrou system, so we need only calculate the

principal Lyapunov exponent, i.e., the exponent corresponding to the direction of greatest stretching.

A nonzero principal exponent indicates the presence of chaos.

When studying a differentiable dynamical system, we typically introduce a set of variables y =

{yi} to represent the system’s phase space, together with the autonomous set of differential equations

dy
dτ

= f(y) (3.43)

which determine the dynamics. Associated with each initial condition is a solution (or flow). The

principal Lyapunov exponent quantifies the local divergence of nearby initial conditions, so any fully

rigorous method necessarily involves the local behavior of the system, i.e., its derivative. For a

multidimensional system, this derivative map is given by the Jacobian matrix,

(Df)ij =
∂fi

∂xj
. (3.44)

It is the Jacobian map that determines the time-evolution of infinitesimally separated trajectories.

If we consider a point y on the flow and a nearby point y + δy, then we have

f(y + δy) =
d

dτ
(y + δy) =

dy
dτ

+
d(δy)

dτ
, (3.45)

so that the separation δy satisfies

d(δy)
dτ

= f(y + δy)− dy
dτ

= f(y + δy)− f(y). (3.46)

Since

f(y + δy)− f(y) = Df · δy +O(‖δy‖2), (3.47)

we can write the time-evolution of the deviation vector as

d(δy)
dτ

= Df · δy +O(‖δy‖2). (3.48)

If we identify the “infinitesimal” deviation δy with an element ξ of the tangent space at y, we

effectively take the limit as δy → 0; the equation of motion for ξ is then

dξ

dτ
= Df · ξ. (3.49)

This equation describes the time-evolution of the separation between nearby initial conditions in a
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rigorous way. We will refer to ξ as a tangent vector, since formally it is an element of the tangent

space to the phase space.

If the Jacobian Df in Eq. (3.49) were some constant matrix A, the solution would be the matrix

exponential

ξ(τ) = exp(Aτ) · ξ0. (3.50)

For long times, the solution would be dominated by the largest eigenvector of A, and would grow

like

‖ξ(τ)‖ ≈ eλmaxτ , (3.51)

where λmax is the largest eigenvalue.6 (Here we have used ‖ξ0‖ = 1.) Turning things around, if we

measured the time-evolution of ξ, we could find an approximation for the exponent using

λmax =
log ‖ξ(τ)‖

τ
. (3.52)

The general case follows by considering Jacobian matrices that are time-dependent. In this case,

we are unable to define a unique principal exponent valid for all times, but there is still a unique

average exponent that describes the average stretching of the principal eigenvector. Our method

is to track the evolution of a tangent vector as it evolves into the principal axis of the ellipsoid.

If we use re(τ) = ‖ξ(τ)‖ to denote the length of the longest principal ellipsoid axis, the principal

Lyapunov exponent is then defined by

λmax = lim
τ→∞

log [re(τ)]
τ

. (3.53)

We use an infinite time limit in this formal definition, but of course in practice a numerical approach

relies on a finite cutoff to obtain a numerical approximation.

The Jacobian method for determining the largest Lyapunov exponent involves solving Eqs. (3.43)

and (3.49) as a coupled system of differential equations in order to follow the time-evolution of a

ball of initial conditions. One possibility is then to use Eq. (3.53) to estimate the system’s largest

exponent. A related technique, which provides more accurate exponents, is to sample log [re(τ)] at

regular time intervals, and then perform a least-squares fit on the simulation data. Since log [re(τ)] =

λτ , the slope of the resulting line then gives an estimate for the Lyapunov exponent. This is the

method we implement in practice.

A less rigorous but still useful technique, which we call the deviation vector approach, involves

solving only Eq. (3.43), but for two initial conditions: y0 and y0 + δy0. If the solutions to these

initial conditions a time τ later are y and y′, respectively, then the approximate principal Lyapunov
6The most common choice for the norm ‖ · ‖ is the Euclidean norm, but we use a slightly different norm in the

case of the Papapetrou equations (Sec. 3.4.2 below).
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Figure 3.1: Rigorous Jacobian method compared to the unrescaled deviation vector method for
an S = 1 particle in maximal (a = 1) Kerr spacetime. The vertical axis is the natural logarithm
of the largest principal axis r1 of the phase space ellipsoid; the slope is the principal Lyapunov
exponent, λmax ≈ 5× 10−3 M−1. The unrescaled deviation vector method started with a deviation
of size 10−7, and it saturates at ∼16. This corresponds to a growth of e16 ≈ 9× 106, which means
that the separation has grown to a size of order unity. In conventional units, this indicates radial
separations of order GM/c2 and velocity separations of order c. The norm is calculated using the
projected norm described in Sec. 3.4.2.

exponent is

λmax =
log ‖δy‖/‖δy0‖

τ
, (3.54)

where δy ≡ y′ − y. This approach has a serious drawback: no matter how small the initial size of

the deviation, eventually the method saturates as the difference between y and y′ grows so large

that it no longer samples the local difference between two trajectories.7 On the other hand, because

we need only solve Eq. (3.43) and not Eq. (3.49), the deviation vector method is significantly faster

than the Jacobian method (by a factor of approximately 5 for the system considered here). We

therefore adopt the deviation vector method as our principal tool for broad surveys of parameter

space. The method for handling the saturation problem is discussed in Sec. 3.4.3.

A comparison of the Jacobian and deviation vector methods appears in Fig. 3.1. It is apparent

that the two methods agree closely until the deviation vector approach reaches the saturation limit.

3.4.2 The Papapetrou case

The discussion in the previous section was of a general nature, applicable to virtually any dynamical

system described by differential equations. Here we describe some of the details needed to apply the
7It is possible to re-scale the deviation once it reaches a certain size, but this method is error-prone since it can

depend sensitively on the precise method of rescaling. The constrained nature of the Papapetrou equations also
presents difficulties for rescaling, as discussed in Sec. 3.4.2.
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general methods to the Papapetrou equations. In particular, we must discuss further the key ideas

of constrained deviation vectors and phase space metric.

For the Papapetrou system, the phase space vector y has 12 components:

y = (t, r, µ, φ, pt, pr, pθ, pφ, St, Sr, Sµ, Sφ). (3.55)

The tangent vector ξ has one component for each variable. The set of equations Eq. (3.43) is simply

the Papapetrou equations written out in full:

ẋµ = vµ

ṗµ = −R∗ αβ
µν vνpαSβ + Γα

βµpαvβ

Ṡµ = −pµ

(
R∗α γδ

β SαvβpγSδ

)
+ Γα

βµSαvβ ,

where we have used the formulation in terms of the spin 1-form described in the appendix. The

second necessary equation, Eq. (3.49), requires the Jacobian matrix,



∂ẋµ

∂xν

∂ẋµ

∂pν

∂ẋµ

∂Sν

∂ṗµ

∂xν

∂ṗµ

∂pν

∂ṗµ

∂Sν

∂Ṡµ

∂xν

∂Ṡµ

∂pν

∂Ṡµ

∂Sν


, (3.56)

whose explicit form appears in Chapter 2.

It is important to mention that the tangent vector ξ—or, equivalently, the deviation vector δy—

cannot have completely arbitrary components. On the contrary, the deviation must be chosen

carefully, in order to ensure that, given a point y that satisfies the constraints from Sec. 3.2.2, the

deviated vector y + δy also satisfies the constraints. Otherwise, the relation f(y + δy) − f(y) =

Df · δy +O(‖δy‖2) is not satisfied. (This is the principal complication in implementing a rescaled

version of the deviation vector method: the rescaled vector would violate the constraint.) In practice,

we are able to find a valid deviation vector by applying the same techniques used to satisfy the

constraints in the first place (Sec. 3.3); for details, see Chapter 2.

One final detail is the notion of metric: implicit in the definition of the Lyapunov exponent,

Eq. (3.53), is a metric on phase space used to calculate the norm of the tangent vector ξ. We

adopt a metric introduced in [17], which involves projecting the deviation vector onto the spacelike

hypersurface defined by the zero angular momentum observers (ZAMOs). The projection is effected

using the projection tensor Pµ
ν = δµ

ν + UµUν , where Uµ is the ZAMO 4-velocity. The spatial and

momentum variables are then projected according to xµ → x̃i = P i
µ xµ, pµ → p̃i = Pµ

i pµ, and



82

Sµ → S̃i = Pµ
i Sµ. After the projection, we calculate the Euclidean norm in the three-dimensional

hypersurface. We note that while this prescription is convenient, and reduces correctly in the

nonrelativistic limit, the magnitudes of the Lyapunov exponents are similar for several other possible

choices of metric Chapter 2.

3.4.3 Chaos detector

Since we are concerned with calculating Lyapunov exponents for a large number of parameter values,

we use the (unrescaled) deviation vector method because of its speed. As mentioned in Sec. 3.4.1,

this method has the property of saturation (as illustrated in Fig. 3.1), which is ordinarily a problem,

but here we use it to our advantage as a sensitive detector of chaos.

Our method for determining whether a particular initial condition is chaotic is to consider a

nearby initial condition separated by a small vector δy0 (with norm ‖δy0‖ typically of order 10−7 or

10−8) and then integrate until the system reaches 90% of the saturation limit, defined as a separation

δy with unit norm. If we write re = ‖δy‖/‖δy0‖, the approximate Lyapunov exponent satisfies

log [re(τ)] = λτ, (3.57)

so that λ is the slope of the line log [re(τ)] vs. τ . Saturation occurs when re = 1/‖δy0‖, so that the

integration ends when log [re(τ)] = − log (0.9 ‖δy0‖). We record the value of log [re(τ)] at regular

time intervals (typically every time T = 100 M in our case), and upon reaching 90% saturation

perform a least-squares fit on the simulation data to determine the exponent.

We note that the cutoff value of 0.9 is somewhat arbitrary and is the result of numerical exper-

imentation. When using the (unrescaled) deviation vector approach, most of the chaotic systems

saturate—that is, plots of log [re(τ)] vs. τ flatten out (Fig. 3.1)—when the separation is of order

unity, corresponding to radial separations of order M , velocity separations of order 1, and angular

separations of order 1 radian. The 90% prescription ends the integration before the growth flattens

out, so that the numerical estimate for the exponent is still reasonably accurate.

For the large maps of parameter space, we typically integrate up to τfinal = 105 M or saturation,

whichever comes first. We choose this maximum time mainly for practical reasons: it is the longest

integration possible in a reasonable amount of time. [We integrate as deeply as 107 M (Sec. 3.5.7) for

individual orbits, but such long integrations are impractical for more than a handful of parameter

combinations.] Dramatically longer integrations are also not particularly useful, since the timescale

for gravitational radiation reaction is on the order of τGW = M2/µ [18], which for the most relevant

LISA sources is 104–106 M (i.e., µ ∼ 10−6–10−4 M). Searching for chaos in such systems on a

timescale longer than ∼107 M is probably pointless, since the radiation reaction would dominate

the dynamics in this case. Finally, it appears that chaos, when present in the Papapetrou system,
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Figure 3.2: A comparison of chaotic and nonchaotic initial conditions. The slopes of the lines are
the approximate Lyapunov exponents. Each initial condition shares the same values of S = 0.1,
e = 0.6, and rp = 1.21. They differ only in inclination angle: ι = 31◦ (chaotic) and ι = 28.5◦ (not
chaotic). Their respective Lyapunov exponents are λ = 1.0 × 10−3 M−1 and λ = 3.0 × 10−5 M−1.
See Sec. 3.5.2 for details.

manifests itself on relatively short timescales (102–104 M), or else not at all. The onset of chaos is

marked by a qualitative change from power law growth (which appears as logarithmic growth on

our plots of log [re(τ)] vs. τ) to exponential growth (which is linear on the same plots). An example

of two similar initial conditions giving rise to qualitatively different dynamical behavior appears in

Fig. 3.2.

One important refinement to the technique described above is to require several 90% saturation

points in a row before declaring the orbit to be chaotic. This is necessary because some nonchaotic

orbits have very high amplitudes on plots of log [re(τ)] vs. τ (Fig. 3.3), even though nearby trajec-

tories separate linearly with time (Fig. 3.4) rather than exponentially (Fig. 3.5). This phenomenon

occurs mainly for orbits with many periods in the deeply relativistic zone near the horizon. Such

orbits may reach “90% saturation” briefly as part of their oscillation, but quickly return to separa-

tions far below our chaotic cutoff. We therefore adopt the criterion of three 90% saturation points in

a row (with a time T = 100 M sampling interval) as a robust practical test for chaos. See Sec. 3.5.8

for further discussion.

Our confidence of this method’s robustness derives from comparing the method above to the

Jacobian method for the same initial conditions. Since the Jacobian method does not saturate, the

agreement of the two methods indicates that our procedure provides an accurate detector for chaos

(as in Fig. 3.12 below).
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Figure 3.3: A chaos mimic: log [re(τ)] vs. τ for an S = 0 orbit. The size of the initial deviation vector
is ε0 = 3.3× 10−7. The value of log [re(τ)] periodically rises up to the saturation level (shown as a
horizontal line at 14.82, since e14.82 ε0 = 0.9). The system’s spin satisfies S = 0, and is hence fully
integrable, which implies no chaos. We detect such spurious chaos by demanding several saturation
points in a row for a positive detection. The corresponding orbit appears in Fig. 3.22.
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Figure 3.4: The difference δr between the Boyer-Lindquist radii of two nearby trajectories for a chaos
mimic. The growth in the separation is substantial, but not exponential. The initial conditions are
the same as in Fig. 3.3.
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Figure 3.5: The difference δr between the Boyer-Lindquist radii of two nearby trajectories for a
chaotic orbit. The initial condition is taken from the inner region of Fig. 3.9 (rp, K = 2.0, eK = 0.5,
ιK = 10◦, S = 1). On this linear scale, the separation seems to burst unexpectedly, in contrast to
the relatively smooth linear growth for the nonchaotic orbit shown in Fig. 3.4.

3.4.4 Implementation notes

We integrate the Papapetrou equations on a computer using Bulirsch-Stoer and Runge-Kutta in-

tegrators implemented in the C programming language, as described in Chapter 2 (and shown in

Fig. 3.6). The derivatives and Jacobian matrix are extensively hand-optimized for speed. We mon-

itor errors using constraints and conserved quantities, with a global error goal of 10−13. The errors

are at the 10−11 level or better for highly chaotic orbits after 105 M . Orbits with low spin or high

pericenter are even more accurate, often achieving the error goal of 10−13.

The many plots in Sec. 3.5 are typically generated using driver programs written in the Perl

programming language, which in turns calls the C integrator repeatedly. This general paradigm—

using an interpreted language such as Perl to call optimized routines in a compiled language such

as C—is one we warmly recommend.

3.5 Results

We present here the results of parameter variation in the Papapetrou system of equations (Figs. 3.7–

3.43). We represent the effects compactly using several different kinds of plots, most of which involve

plotting inclination vs. pericenter, with other parameters held fixed. We refer to these as rp-ι maps.

As discussed in Sec. 3.3, starting with the Kerr values rp, K , ιK , and eK , we find the corresponding

energy EK , angular momentum Lz,K , and Carter constant QK , and then force the Papapetrou values

to satisfy EP = EK , Jz,P = Lz,K and pr
P = pr

K . Each rp-ι map has two components: part (a), shown

on the left, uses the Kerr parameters ιK and rp, K requested by the parameterization (Sec. 3.3.2.2),
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Figure 3.6: The orbit of a maximally spinning (S = 1) test particle in maximal (a = 1) Kerr
spacetime, plotted in Boyer-Lindquist coordinates. (a) The orbit embedded in three-dimensional
space, treating the Boyer-Lindquist coordinates as ordinary spherical polar coordinates; (b) y =
r sin θ sinφ vs. x = r sin θ cos φ; (c) z vs. ρ =

√
x2 + y2. The requested orbital inclination angle

is ι = 6◦, but the strong spin coupling gives rise to an empirical value closer to ιP = 46◦. The
empirical pericenter is rp = 2.219 M , which is fairly close to the requested value of 2.367 M .
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Figure 3.7: Shading/coloring of parameter space for an S = 1 orbit. The shading/color on the left
is repeated on the right, so that we can visually determine the mapping of (rp, K , ιK) to (rp, P , ιP ).
It is evident that orbits with low requested pericenters and orbital inclination angles are mapped to
low-pericenter orbits at high inclinations, and the entire parameter space is compressed. Note that
the gap in stable initial conditions visible in (b) is a true gap, not a fold.
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Figure 3.8: Shading/coloring of parameter space for an S = 1 orbit illustrating the alternate param-
eterization method from Sec. 3.3.2.2. As in Fig. 3.7, the shading/color on the left is repeated on the
right. The spatial part of the initial spin is purely in the z direction. The Kerr pθ

K and Papapetrou
pθ

P values are forced to agree, which leads to similar inclination angles in parts (a) and (b), at the
cost of dramatically different pericenters.
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while part (b), shown on the right, always shows the empirical Papapetrou values ιP and rp, P in

the sense of Sec. 3.3.2.3.

One important feature of rp-ι parameter space apparent in the empirical plots is the prevalence

of large empirical inclination angles for all values of the Kerr inclination ιK . Fig. 3.7 shows the

mapping for S = 1 between the requested Kerr parameters [Fig. 3.7(a)] and the empirical Papapetrou

parameters [Fig. 3.7(b)] using a shading scheme (which appears as a more informative color scale

in electronic versions of this chapter). We see that even the orbits at the bottom of Fig. 3.7(a)

get mapped to high empirical inclination angles; ιK = 1◦ orbits are mapped to inclinations of

order ιP = 40◦.

This compression of parameter space is the result of our choice to force the Kerr and Papapetrou

value of the radial momentum to agree (Sec. 3.3.2.2). The price we pay for this choice is that

the θ component of the Papapetrou momentum—which is constrained to satisfy the equations in

Sec. 3.2.2—is relatively large. This high pθ
P flings even orbits with low requested values of ιK to

high inclinations (Fig. 3.7). It is possible to find low-inclination Papapetrou orbits by requiring that

the Kerr and Papapetrou values of pθ agree, but at the cost of forcing pr to be very different—again

a result of the constraints. The resulting parameter space (Fig. 3.8) is not nearly as compressed

in inclination angle, but the Papapetrou pericenters are compressed and shifted down, and many

requested values of rp, K are lost as plunge orbits. In addition, the empirical values of the eccentricity

are typically not close to the value requested (reaching, e.g., eP = 0.75 for eK = 0.5). Because of the

deficiencies of this alternate parameterization method, we choose the fixed pr plots are our primary

investigative tool in this chapter.

3.5.1 Varying pericenter and orbital inclination

In this section we show rp-ι maps (Fig. 3.9 and Figs. 3.25–3.29) for orbits with fixed eccentricity e =

0.5 and spin parameters S r̂ = S ẑ = 0.2 S, where S is the total spin.8 We indicate the strength of

the chaos at each point with a grayscale rectangle, with the darkest colors representing the strongest

chaos (and with white indicating no chaos). An example of such a plot appears in Fig. 3.9. (Fig. 3.10

shows a similar plot for the alternate parameterization method that forces pθ
K = pθ

P . The maximum

exponents in the two cases are virtually identical.) The most important general results evident from

the plots are two-fold. First, the largest exponents occur for orbits with pericenters deep in the

relativistic zone near the horizon. Second, the prevalence of chaotic orbits is a decreasing function

of spin parameter S, with virtually all chaos gone by the time S = 0.1.

An example of the value of the empirical rp, P -ιP plots appears in Fig. 3.26, which shows orbits

of particles with spin S = 0.5. The appearance of a strongly chaotic point in Fig. 3.26 seems
8These “fixed” spin parameters give rise to a variety of spin inclination angles in the fiducial (ZAMO) rest frame;

see Sec. 3.5.6 below.
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Figure 3.9: rp-ι map for a = 1, e = 0.5, S = 1, S r̂ = S ẑ = 0.2 S: chaos strength as a function of
pericenter and orbital inclination angle. (a) Requested parameters; (b) empirical parameters. The
initial conditions are the same as in Fig. 3.7. The rectangles are shaded according to the Lyapunov
exponent for the initial condition represented by each point, with darker shades of gray representing
larger exponents and hence stronger chaos. The point at rp, K = 2.3, and ιK = 20◦ is one of the
points in Fig. 3.17, which shows the effects of varying S r̂ and S ẑ. The largest exponent in this plot
is λ = 4.1×10−3 M−1, corresponding to a timescale of 1/λ = 2.4×102 M for a factor of e divergence
in nearby initial conditions.
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Figure 3.10: rp-ι map for a = 1, e = 0.5, S = 1, using the alternate parameterization method that
forces pθ

K = pθ
P . The initial spatial component of the spin is purely in the z direction. (a) Requested

parameters; (b) empirical parameters. The initial conditions are the same as in Fig. 3.8. The
rectangles are shaded according to the Lyapunov exponent for the initial condition represented by
each point, with darker shades of gray representing larger exponents and hence stronger chaos. The
largest exponent in this plot is λ = 4.0×10−3 M−1, corresponding to a timescale of 1/λ = 2.5×102 M
for a factor of e divergence in nearby initial conditions. These values are virtually identical to the
values in Fig. 3.9.
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Figure 3.11: Natural logarithm of the largest ellipsoid axis vs. time. We use the unrescaled deviation
vector method to investigate the single chaotic initial condition from Fig. 3.32, which has rp, K = 1.21,
ek = 0.6, ιK = 31◦, and S = 0.1. The principal ellipsoid axis grows until it saturates at τ = 17600 M .

perplexing, given that it is surrounded by many points with much smaller exponents. As is evident

from the empirical plot, this point of strong chaos (which is, in fact, the largest Lyapunov exponent

for any of the plots) maps to a compressed area of initial conditions with small empirical pericenters

[Fig. 3.26(b)].

From an astrophysical standpoint, the most interesting parameter to vary is the spin S, since

only S � 1 orbits are physically realistic (Sec. 3.2.4). From Figs. 3.25–3.29, which involve varying S

from 0.9 down to 10−4, we see that both the prevalence and strength of chaos decrease significantly

as S is decreased. The Lyapunov exponent ranges as high as 10−2 M−1 when S = 0.5 (Fig. 3.26),

but the chaos is weak when S = 0.2 (Fig. 3.27) and is gone below S = 0.1 (Figs. 3.28 and 3.29).

3.5.2 Varying eccentricity

The choice of e = 0.5 in the previous section is partially motivated by likely gravitational wave sources

for LISA [19], e.g., a neutron star or small black hole in an eccentric orbit around a supermassive

black hole. In this section, we consider a second series of eccentric orbits at fixed e = 0.6 and varying

spin parameter. We also investigate the case of a near-circular orbit (e = 0.01) more appropriate for

the circularized gravitational wave sources important for ground-based detectors such as LIGO.

The rp-ι plots for e = 0.6 follow the same pattern as those with e = 0.5. Chaos is strongest

for orbits with small pericenters and values of S of order unity (Figs. 3.30–3.33). There is a single

orbit at S = 0.1 that appears to be chaotic (Fig. 3.32), but other than this one exception there is

apparently no chaos below S = 0.1. A close examination of the single S = 0.1 chaotic orbit appears

in Figs. 3.11 and 3.12, which shows that the chaos is real.
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Figure 3.12: Natural logarithm of the largest ellipsoid axis vs. time using the unrescaled deviation
vector method and the rigorous Jacobian method. The unrescaled integration is identical to that
shown in Fig. 3.11. The two methods agree until the deviation method saturates, at which point we
stop the deviated vector integration. The continued growth of the Jacobian method confirms that
the orbit determined by the initial condition is indeed chaotic.

The effect of chaos is smaller for the near-circular (e = 0.01) orbits considered (Figs. 3.34–3.37),

with typical Lyapunov exponents of order 2× 10−3 M−1 when S = 1 (Fig. 3.34). Moreover, we find

only four points with nonzero exponents for S = 0.5 (Fig. 3.35), in contrast to the more eccentric

orbits, which have strong chaos for S = 0.5. By the time S = 0.1 (Fig. 3.36), all chaos has completely

disappeared for the near-circular orbits.

3.5.3 Varying Kerr parameter a

Here we investigate the effect of the Kerr parameter a on the strength and prevalence of chaos.

Although Suzuki and Maeda found in [1] that there is chaos even in Schwarzschild spacetime, to

which Kerr spacetime reduces when a = 0, the chaotic orbits found in [1] are exceptional orbits lying

on the edge of a generalized effective potential. We found evidence in Chapter 2 that such chaotic

orbits are rare.

The conclusion that chaotic orbits become less prevalent as a → 0 is supported by a more

thorough examination, as illustrated in Figs. 3.38–3.43. All of these orbits have eccentricity e = 0.5

and spin S = 1, and a varies from 0.9 down to 0. Even for low values of a, the parameter space is

strongly affected by the spin, with plots of the empirical pericenter and orbital inclination showing

significant distortion. Nevertheless, we see unambiguously that the chaotic orbits prevalent when

a = 1 are greatly suppressed as a decreases, with no chaotic orbits at all below a = 0.2. This

appears to be a result of the increase of the marginally stable radius rms as a → 0. When a = 0,

the minimum stable radius is at rms = 4 in units of the central black hole’s mass, fully 2M away
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Figure 3.13: Spin cutoff map for a = 1 and e = 0.5. The rectangles are shaded according to the
minimum value of S for which the corresponding initial condition is still chaotic. White rectangles
indicate points that are not chaotic even when S = 1. The darkest points correspond to a cutoff
value of S = 0.18457; below this critical value, none of the initial conditions are chaotic.
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from the horizon at rH = 2 M . As discussed in Chapter 2, the extra (spherical) symmetry of the

Schwarzschild metric leads to an additional integral of the motion, which also has a suppressive

effect on chaos.

3.5.4 Spin cutoffs for chaos

In this section we provide spin cutoff values for chaos, i.e., the minimum spin values for which chaos

exists. For a given initial condition defined in terms of fixed orbital parameters (as described in

Sec. 3.3.2), we vary the spin parameter S and find the maximum value for which chaos occurs. The

smaller this cutoff value, the stronger the chaos: nonchaotic orbits have a cutoff value of S = 1, i.e.,

they are not chaotic even in the extreme S = 1 limit; conversely, a cutoff value of S = 10−5 would

indicate chaos for the (physically realistic) value S = 10−5, but not for any smaller values.9

Fig. 3.13 is an example of a spin cutoff map. The procedure for producing such a map is similar

to the method used to make the Lyapunov rp-ι maps: we consider a grid of points in rp-ι space,

and for each point we find an approximate value for the spin cutoff. We begin by finding out if the

system is chaotic for S = 1, using the Lyapunov map as a start. If the orbit for S = 1 is chaotic, we

halve the spin value and calculate the Lyapunov exponent for S = 0.5. If the system is still chaotic,

we consider S = 0.25; otherwise, we consider S = 0.75. The procedure continues until the difference

between chaotic and nonchaotic spin values is smaller than some threshold, which we choose to be

0.05. (This value is chosen to achieve reasonable accuracy while still completing the calculations in

a tolerable amount of time.)

Figs. 3.13–3.15 show the spin cutoff values for several parameter combinations corresponding to

Lyapunov maps from Sec. 3.5.1 above. The plots are color-coded with grayscale so that the most

chaotic points—those with the smallest spin cutoff values—appear darkest. The points surrounded

by white are not chaotic even for S = 1. The cutoffs for the darkest points depend on the parameter

values: for Fig. 3.13 (a = 1 and e = 0.5), the same as Fig. 3.9 above), we find Scutoff = 0.18457;

Fig. 3.14 (a = 1 and e = 0.01, the same as Fig. 3.34) has Scutoff = 0.65625; and Fig. 3.15 (a = 0.5

and e = 0.5, the same as Fig. 3.40) has Scutoff = 0.28125. We should not take the digits of precision

seriously, since these values are accurate only to within 0.05, but in all cases the spin cutoff values

are significantly above the physically realistic range of S ∼ 10−4–10−7.

3.5.5 Retrograde orbits

We have considered a wide variety of orbits—varying eccentricity and Kerr parameter for different

pericenter, orbital inclination, and spin parameters—but so far all orbits have satisfied 0 < ι < π/2,

9Implicit in this scheme is the assumption of monotonicity, i.e., monotonically decreasing chaos as S decreases.
While not strictly true (as discussed in Chapter 2), this assumption is still broadly applicable, and exceptions are
rare.
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Figure 3.14: Spin cutoff map for a = 1 and e = 0.01. The rectangles are shaded according to the
minimum value of S for which the corresponding initial condition is still chaotic. White rectangles
indicate points that are not chaotic even when S = 1. The darkest points correspond to a cutoff
value of S = 0.65625; below this critical value, none of the initial conditions are chaotic.
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Figure 3.15: Spin cutoff map for a = 0.5 and e = 0.5. The rectangles are shaded according to the
minimum value of S for which the corresponding initial condition is still chaotic. White rectangles
indicate points that are not chaotic even when S = 1. The darkest points correspond to a cutoff
value of S = 0.28125; below this critical value, none of the initial conditions are chaotic.
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Figure 3.16: rp-ι map of retrograde orbits (ι > 90◦) for a = 1, e = 0.5, S = 1: chaos strength
as a function of pericenter and orbital inclination angle. (a) Requested parameters; (b) empirical
parameters. The rectangles are shaded according to the Lyapunov exponent for the initial condition
represented by each point, with darker shades of gray representing larger exponents and hence
stronger chaos. The scaling is the same as in Fig. 3.9; an exponent of λ = 0.01 M−1 would appear
black. The chaos is weak for these retrograde orbits: the largest Lyapunov exponent in the plot is
λ = 3.5× 10−4 M−1.
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i.e., they have all been prograde orbits, moving in the same direction as the central black hole’s spin.

We investigate now the case of retrograde orbits, and show that they are poor candidates for chaos.

It is evident from looking at an rp-ι plot of a retrograde orbit (Fig. 3.16) that the pericenters are

much larger than their prograde counterparts. For the S = 1 particle illustrated in Fig. 3.16, the

minimum empirical pericenter is larger than 6M , in contrast to prograde orbits, which get below

1.5 M . Furthermore, although it is clear from Fig. 3.16(b) that the parameter space is severely

distorted, the chaos is extremely weak. The largest Lyapunov exponent, even in this extreme S = 1

case, is λmax = 3.5×10−4, two orders of magnitude smaller than in the prograde case. Unsurprisingly,

all chaos disappears when S � 1. The smallest value of Scutoff is 0.65265 for the parameter values

shown in Fig. 3.16; we find no evidence of chaos below this value of S.

3.5.6 Varying spin inclination

So far we have always used the same values for the two spin components passed to the parameteriza-

tion procedure (scaled by the total spin S): S r̂ = S ẑ = 0.2 S. We consider now the effect of varying

these parameters, and also discuss the corresponding initial spin inclination angles in a fiducial rest

frame.

We begin with an initial condition that is chaotic for S = 1 but is otherwise arbitrary. We then

vary S r̂ and S ẑ and calculate the Lyapunov exponent for each configuration. The result for a = 1,

eK = 0.5, rp, K = 2.3 and ιK = 20◦ appears in Fig. 3.17. When S r̂ = S ẑ = 0.2, the parameter values

chosen correspond to a point from Fig. 3.9. There are not valid initial conditions for all choices of

parameter; in particular, negative values of S ẑ are often unstable or are unable to satisfy the spin

constraints. Nevertheless, there is a large variety of parameters that do give rise to valid orbits, and

many of them are chaotic. The strongest chaos exists for orbits that have small values of S ẑ, but

this appears to be mainly because such orbits are able to achieve small empirical pericenters. As

Fig. 3.18 clearly shows, the Lyapunov exponent generally decreases as pericenter increases, with no

chaotic orbits above rp, P = 2.5 M .

While we are forced by the constraints to parameterize the equations of motion in terms of spin

components, it is more convenient to visualize the spin in a fiducial rest frame that is hypersurface-

orthogonal to the particle’s trajectory. In Kerr spacetime, the hypersurface-orthogonal observers are

the zero angular momentum observers (ZAMO), which is the same frame we use when calculating

the Lyapunov exponents. By projecting the components of the spin vector Sµ into the ZAMO frame

in the same way as we do for the projected norm (Sec. 3.4.2), we can find the local value of the spin

inclination angle θlocal (i.e., the angle between the spin axis and the axis of the central black hole).

The results appear in Table 3.1. It is clear that our variation of spin components samples a large

variety of initial spin inclination angles.
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Figure 3.17: Lyapunov exponents for varying values of initial spin components S r̂ and S ẑ. The
parameter values S = 1, rp, K = 2.3, eK = 0.5, and ιK = 20◦ are held fixed. The point with
S r̂ = S ẑ = 0.2 appears in Fig. 3.9. The actual local spin inclination angles in a fiducial (ZAMO)
rest frame appear in Table 3.1. Note that only one valid initial condition exists for negative initial
S ẑ.
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Figure 3.18: Scatter plot of empirical pericenters rp, P vs. Lyapunov exponent for the spin inclina-
tions in Fig. 3.17. The Lyapunov exponent is primarily a function of pericenter, regardless of spin
inclination.
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Table 3.1: Local spin inclination angles θlocal in a fiducial (ZAMO) rest frame as a function of S r̂

and S ẑ. The parameter values S = 1, rp, K = 2.3, eK = 0.5, and ιK = 20◦ are held fixed. An
illustration of their Lyapunov exponents appears in Fig. 3.17.

S r̂

S ẑ -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0.9 22.7◦ 28.7◦

0.8 48.6◦ 40.4◦ 36.1◦ 40.2◦ 48.4◦ 55.9◦

0.7 60.7◦ 54.4◦ 47.8◦ 44.7◦ 47.9◦ 54.5◦ 60.8◦ 65.7◦

0.6 64.9◦ 59.6◦ 54.2◦ 51.7◦ 54.5◦ 59.9◦ 65.2◦ 69.3◦

0.5 69.1◦ 64.6◦ 60.2◦ 58.2◦ 60.5◦ 65.0◦ 69.4◦ 72.8◦

0.4 73.2◦ 69.6◦ 66.0◦ 64.4◦ 66.3◦ 70.0◦ 73.5◦ 76.3◦ 78.4◦

0.3 77.3◦ 74.6◦ 71.8◦ 70.5◦ 72.0◦ 74.9◦ 77.6◦ 79.7◦ 81.3◦

0.2 81.5◦ 79.6◦ 77.7◦ 76.8◦ 77.9◦ 79.8◦ 81.7◦ 83.1◦ 84.2◦

0.1 84.7◦ 83.7◦ 83.3◦ 83.9◦ 84.9◦ 85.8◦ 86.5◦ 87.1◦

0.0 90.0◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦

-0.1 94.2◦

3.5.7 Deep integrations

Since we adopted a maximum time of 105 M for the Lyapunov integrations, it is reasonable to

ask whether chaos might manifest itself on a longer timescale. This is certainly possible, but it

appears that most initial conditions are either chaotic on a timescale of order 102–104 M or are not

chaotic at all, as discussed in Sec. 3.4.3. An example appears in Fig. 3.2, where one initial condition

is unambiguously chaotic, while a second located close by is not chaotic, even on a much longer

timescale.

To convince ourselves that slow chaos is not lurking in the apparently nonchaotic regions, we

performed a few longer-time integrations. In particular, we calculated the Lyapunov exponents

using τfinal = 107 M for all the innermost (rp = 1.32) orbits from Fig. 3.28 (S = 0.1) and Fig. 3.29

(S = 10−4), which are strongly chaotic when S = 1 but are apparently without chaos below S = 0.1.

The largest exponent occurs for ι = 28.5◦, which is therefore the worst-case scenario. Plots of

the Lyapunov exponents vs. time appear in Fig. 3.19 (S = 0.1) and Fig. 3.20 (S = 10−4); their

magnitudes are on the order of λmax = 3 × 10−7 M−1, corresponding to an e-folding timescale of

approximately 3.3 × 106 M . For comparison, we show λ vs. τ for a chaotic initial condition in

Fig. 3.21; it is clear that the Lyapunov exponent asymptotes to a nonzero value in much less than

105 M , even for weak chaos. (The initial condition in Fig. 3.21 is the S = 0.1 orbit illustrated in

Figs. 3.11 and 3.12, whose Lyapunov exponent is actually quite small compared to analogous S = 1

orbits.) The long integrations thus provide strong evidence that the disappearance of nearly all

chaotic orbits below S = 0.1 is a real effect.
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Figure 3.19: Approximate Lyapunov exponent vs. time for a nonchaotic deep (τfinal = 107 M)
integration. The parameter values are a = 1, S = 0.1, e = 0.5, rp = 1.32 M , and ι = 28.5◦,
corresponding to one of the inner orbits from Fig. 3.28. The Lyapunov exponent appears to be zero;
its time-evolution has the characteristic hyperbolic shape expected as log [re(τ)]/τ approaches zero
for large times. A least-squares fit of log [re(τ)] vs. τ gives a value of λ ≈ 2.8× 10−7 M−1.
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Figure 3.20: Approximate Lyapunov exponent vs. time for a nonchaotic deep (τfinal = 107 M)
integration. The parameter values are a = 1, S = 10−4, e = 0.5, rp = 1.32 M , and ι = 28.5◦,
corresponding to one of the inner orbits from Fig. 3.29. As in Fig. 3.19, the Lyapunov exponent
appears to be zero. A least-squares fit of log [re(τ)] vs. τ gives a value of λ ≈ 3.0× 10−7 M−1.
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Figure 3.21: Approximate Lyapunov exponent vs. time for a chaotic deep (τfinal = 105 M) integra-
tion. The simulation data is identical to that shown in Fig. 3.12; the parameter values are a = 1,
S = 0.1, eK = 0.6, rp, K = 1.21 M , and ιK = 31◦, corresponding to the chaotic orbit from Fig. 3.32.
The Lyapunov exponent for this chaotic orbit levels off after less than 105 M , in contrast to Figs. 3.19
and 3.20, where λ continues to decrease even after 107 M .

3.5.8 S = 0 and chaos mimics

Since the case of S = 0 corresponds exactly to geodesic orbits in Kerr spacetime, such systems cannot

be chaotic—the return of the Carter constant Q and the loss of the spin degrees of freedom make

the system fully integrable. Nevertheless, even some geodesic orbits can have a large separation

of nearby initial conditions, which can appear to be chaotic. These chaos mimics typically spend

many orbital periods whirling around deep in the strongly relativistic zone near the horizon, only

occasionally zooming out to higher radii. These so-called zoom-whirl orbits may provide significant

challenges to detection despite their formal integrability.

An example of how much divergence an S = 0 orbit can experience appears in Fig. 3.3. A picture

of the corresponding orbit (visualized in Boyer-Lindquist coordinates embedded in ordinary space)

appears in Fig. 3.22, which makes clear the large number of low-radius φ-periods characteristic of

zoom-whirl orbits. A second example of a chaos mimic appears in Figs. 3.24 and 3.23. This orbit, in

contrast to the previous one, does not have a particularly small pericenter, but its high inclination

angle and zoom-whirliness allow it to mimic chaotic orbits.

The chaos mimics can exhibit large growth of the initial deviation vector, approximately a factor

of 106–108, after 105 M . The principal means for detecting them is by requiring several high-

separation points in a row (on a time-T ≈ 100 M basis) as mentioned in Sec. 3.4.3; the mimics

have oscillations with high amplitudes due to their zoom-whirliness, but they do not represent true

saturations of the separation vector.
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Figure 3.22: The orbit of a chaos mimic: a non-spinning (S = 0) test particle in maximal (a = 1)
Kerr spacetime, plotted in Boyer-Lindquist coordinates. A Lyapunov plot of these initial conditions
appears in Fig. 3.3 from Sec. 3.4.3. (a) The orbit embedded in three-dimensional space, treating
the Boyer-Lindquist coordinates as ordinary spherical polar coordinates; (b) y = r sin θ sinφ vs.
x = r sin θ cos φ; (c) z vs. ρ =

√
x2 + y2. The inclination angle is ι = 31◦, while the pericenter is

rp = 1.1 M (just 0.1 M above the horizon at rH = 1M).
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Figure 3.23: Another chaos mimic: a non-spinning (S = 0) test particle in maximal (a = 1) Kerr
spacetime, plotted in Boyer-Lindquist coordinates. A Lyapunov plot of these initial conditions ap-
pears in Fig. 3.24. (a) The orbit embedded in three-dimensional space, treating the Boyer-Lindquist
coordinates as ordinary spherical polar coordinates; (b) y = r sin θ sinφ vs. x = r sin θ cos φ; (c) z

vs. ρ =
√

x2 + y2. The inclination angle is ι = 88.5◦, while the pericenter is rp = 4.4 M .
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Figure 3.24: A chaos mimic: the natural logarithm of the principal ellipsoid axis (log [re(τ)]) vs. τ
for an S = 0 orbit. The size of the initial deviation vector is ε0 = 10−8. The value of log [re(τ)]
briefly rises up to the saturation level at log(0.9/ε0) [so that ε(τ) = 0.9], but the orbit is not chaotic
since its spin satisfies S = 0. A plot of the corresponding orbit appears in Fig. 3.23.

3.6 Conclusions

The Papapetrou equations, which model a spinning test particle, exhibit chaotic solutions in Kerr

spacetime for a wide range of parameters. In terms of the mass M of the central (Kerr) black hole,

the largest Lyapunov exponents are of order λmax = 0.01 M−1, which represents an exponential

divergence of trajectories on a timescale of τλ = 1/λ = 100 M . Furthermore, there are many

chaotic orbits with exponents in the range 10−3–10−4 M−1. Despite the large number of chaotic

orbits, we find that values of λ corresponding to unambiguous chaos occur exclusively when the spin

parameter S is not small compared to unity. In particular, we find virtually no chaos for spin values

below S = 0.1, and no evidence of any chaos for spins below S = 10−4.

The strongest determinant of chaotic behavior, apart from the spin parameter, is the pericenter

of the orbit in question. The most highly chaotic orbits are those that reach pericenters near the

horizon of the black hole. This is due to the high spacetime curvature in these regions, which

maximizes the size of the coupling of the spin to the Riemann curvature tensor [Eq. (3.1]. When the

Kerr parameter a is small, so that the Kerr metric differs only slightly from the Schwarzschild metric,

the pericenters are much higher than in the extreme Kerr (a = 1) case. Chaos in the Papapetrou

system is therefore weak when a is small. The prevalence of chaos is also dependent on orbital

eccentricity. Near-circular (e = 0.01) orbits have many fewer regions of chaotic orbits than those

with higher eccentricities (e = 0.5 or e = 0.6). This seems due primarily to the lower pericenters

accessible to high-eccentricity orbits.

The dependence of the Lyapunov exponents on S is our most important result: in all cases
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considered, physically realistic values of S (satisfying S � 1) are not chaotic. We have shown

conclusively that the Papapetrou equations admit many solutions that are formally chaotic, but

without exception such chaotic solutions occur only for relatively large values of S. Below the upper

limit for physically realistic spins (S ∼ 10−4), we find no evidence of chaotic solutions. As a practical

matter, this means that chaos will not manifest itself in the gravitational radiation from extreme

mass-ratio binary inspirals.
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Appendix: Spin vector formulation

We summarize here the formulation of the Papapetrou equations in terms of the spin 1-form Sµ

(often referred to loosely as the “spin vector”), as mentioned in Sec. 3.2.1. In this chapter we

consider a spinning particle of rest mass µ orbiting a central Kerr black hole of mass M , and it is

convenient to measure all times and lengths in terms of M and all momenta in terms of µ. In these

normalized units, the equations of motion in terms of the spin 1-form are

dxµ

dτ
= vµ

∇~v pµ = −R∗ αβ
µν vνpαSβ (3.58)

∇~v Sµ = −pµ

(
R∗α γδ

β SαvβpγSδ

)
where

R∗α µν
β = 1

2Rα
βρσερσµν . (3.59)

The supplementary condition Eq. (3.5) allows for an explicit solution for the 4-velocity vµ in

terms of pµ:

vµ = N(pµ + wµ), (3.60)

where

wµ = −∗R∗µαβγSαpβSγ (3.61)

and
∗R∗αβµν = 1

2R∗αβρσε µν
ρσ . (3.62)
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The normalization constant N is fixed by the constraint vµvµ = −1.

The spin 1-form satisfies two orthogonality constraints:

pµSµ = 0 (3.63)

and

vµSµ = 0. (3.64)

These two constraints are equivalent as long as vµ is given by Eq. (3.60): 0 = vµSµ ∝ pµSµ +

wµSµ = pµSµ, since by definition of wµ [Eq. (3.61)] the second term involves the contraction of a

symmetric tensor with an antisymmetric tensor and therefore vanishes. We enforce Eq. (3.63) in

our parameterization scheme, and we use Eq. (3.60) in the equations of motion, so Eq. (3.64) is then

automatically satisfied.
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Figure 3.25: rp-ι map for S = 0.9, a = 1, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. Chaotic
orbits are widespread.
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Figure 3.26: rp-ι map for S = 0.5, a = 1, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. Because
of the extremely low pericenters accessible at this value of S (which are excluded when S = 1), the
chaos for S = 0.5 is the strongest we find. The largest Lyapunov exponent is just over λ = 0.01 M−1.
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Figure 3.27: rp-ι map for S = 0.2, a = 1, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. Only
a few orbits are chaotic.
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Figure 3.28: rp-ι map for S = 0.1, a = 1, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. All
chaos is gone, although the parameter space is still somewhat compressed.
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Figure 3.29: rp-ι map for S = 10−4, a = 1, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. There are
no chaotic orbits. The empirical parameter values in (b) are indistinguishable from the requested
values except for initial conditions that specify values of ι corresponding to unstable orbits (as
discussed in Sec. 3.3.2.3).
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Figure 3.30: rp-ι map for S = 1, a = 1, and e = 0.6. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. Chaotic
orbits are widespread. The largest Lyapunov exponent is λ = 5.5× 10−3 M−1.
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Figure 3.31: rp-ι map for S = 0.5, a = 1, and e = 0.6. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. As in
the case of Fig. 3.26, the low accessible pericenters give rise to strong chaos. The largest Lyapunov
exponent is λ = 9.2× 10−3 M−1.
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Figure 3.32: rp-ι map for S = 0.1, a = 1, and e = 0.6. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. There
is only one chaotic initial condition (which is in fact the only S = 0.1 chaos we find), but the
chaos is real, as discussed in Sec. 3.5.2 and illustrated in Fig. 3.12. The Lyapunov exponent is
λ = 1.0× 10−3 M−1.
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Figure 3.33: rp-ι map for S = 10−4, a = 1, and e = 0.6. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. All
chaos has disappeared. As in Fig. 3.29, the empirical parameter values in (b) are indistinguishable
from the requested values except for initial conditions that specify unstable orbits (Sec. 3.3.2.3).



118

2.8 3 3.2 3.4 3.6 3.8 4
rp,K HML

20

40

60

80
Ι K

H°L
Geodesic HKerrL parameters

0.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a)

2 2.5 3 3.5 4
rp,P HML

20

40

60

80

Ι P
H°L

Empirical Papapetrou parameters

0.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(b)

Figure 3.34: rp-ι map for S = 1, a = 1, and e = 0.01. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. There
is some relatively weak chaos. The largest Lyapunov exponent is λ = 2.7× 10−3 M−1.
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Figure 3.35: rp-ι map for S = 0.5, a = 1, and e = 0.01. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. There
are a few regions of weak chaos.
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Figure 3.36: rp-ι map for S = 0.1, a = 1, and e = 0.01. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. There
are apparently no chaotic initial conditions.
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Figure 3.37: rp-ι map for S = 10−4, a = 1, and e = 0.01. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. The
chaos had disappeared.
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Figure 3.38: rp-ι map for S = 1, a = 0.9, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. Chaotic
orbits are widespread.
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Figure 3.39: rp-ι map for S = 1, a = 0.7, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. There
is still substantial chaos.
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Figure 3.40: rp-ι map for S = 1, a = 0.5, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. The
chaos is largely confined to low pericenter orbits.
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Figure 3.41: rp-ι map for S = 1, a = 0.4, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. Only
a handful of initial conditions are chaotic.
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Figure 3.42: rp-ι map for S = 1, a = 0.2, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. No
initial conditions are chaotic.
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Figure 3.43: rp-ι map for S = 1, a = 0, and e = 0.5. (a) Requested parameters; (b) empirical
parameters. The shading is scaled to the same maximum Lyapunov exponent as in Fig. 3.9. No
initial conditions are chaotic. Note that every column of (a) is identical. This is a result of the
spherical symmetry of the a = 0 (Schwarzschild) metric: all inclination angles are equivalent. As
seen in (b), this symmetry is broken by the spin of the test particle.
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Chapter 4

Dynamics of binary black holes
using the post-Newtonian
approximation

This chapter represents ongoing research based in part on suggestions by Alessandra Buonanno, and

is expected to continue (in expanded form) in collaboration with her.

Abstract

We investigate the dynamics of binary black holes using an effective one-body, Hamiltonian formu-

lation of the post-Newtonian (PN) equations of motion. The Hamiltonian includes four distinct spin

effects: spin-orbit coupling, spin-spin coupling, and two mass monopole/spin-induced quadrupole

interaction terms. We investigate the qualitative effects of these terms on the orbits, and we also

compare post-Newtonian orbits with analogous solutions of the Papapetrou equations, which model

a spinning particle in the extreme mass-ratio limit. In the special case of quasi-circular orbits, we

search for the presence of chaos (using the method of Lyapunov exponents) for a large variety of

initial conditions. We find that the addition of the spin-spin terms leads to strongly chaotic be-

havior, but the chaos is rare, occurring only in a tiny fraction of cases. Moreover, chaos occurs

only for orbits with low radii, where the approximations required for the physical validity of the

post-Newtonian equations are not well satisfied.

4.1 Introduction

Relativistic binary systems made of compact objects, such as neutron stars or black holes, are among

the most promising (or, at least, are among the best-understood) candidates for the production of

gravitational waves detectable by both ground- and space-based gravitational wave observatories.

The difficulty of detecting the signals from such systems has led to a theoretical effort to under-
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stand the gravitational waveforms likely to be emitted by such systems, which in turn has led to a

consideration of their dynamical behavior. In particular, several authors [1–5] have investigated the

presence of chaos in the dynamics of compact binaries, motivated in part by the effect chaos could

have on the calculation of theoretical templates for use in matched filters [6–8]. The extreme sensi-

tivity on initial conditions that characterizes chaotic systems would lead to significant difficulties in

the implementation of such filters, since the number of templates required for a good match would

grow exponentially with increasing detection sensitivity [9].

In the Papapetrou equations, which model the dynamics of a spinning test particle, chaos was

found for the case of a spinning particle orbiting a nonrotating (Schwarzschild) black hole [1]. We

extended this result to the case of a rotating (Kerr) black hole in Chapters 2 and 3, finding widespread

chaotic solutions. As demonstrated in Chapter 2, however, the values of the total spin for the

test particle leading to chaotic solutions are not realizable in physical systems that satisfy the

approximations made in deriving the Papapetrou equations. Furthermore, in Chapter 3 we showed

that chaos, while widespread for these unrealistic spin values, disappears in all cases for physically

realistic spins. In short, there is strong evidence that extreme mass-ratio systems, which are most

relevant for proposed space-based gravitational wave detectors, are not chaotic for any parameter

values of physical interest.

The case of comparable-mass binaries has been investigated by several authors [2–4] using the

post-Newtonian (PN) equations of motion (Sec. 4.2). There was initially some doubt regarding

the results presented in [2], which found chaos in the PN equations for spinning bodies, since the

timescale of the chaos was not reported: it was not clear whether the chaos discovered in the

equations—as calculated in the conservative limit neglecting gravitational radiation reaction—would

have time to manifest itself in the inspiral timescale tinsp. The work in [3] cast doubt on the presence

of chaos in these systems, finding that the Lyapunov characteristic exponents for the PN equations,

which measure the divergence rate of nearby trajectories, are zero in all cases tested. However, [4]

found some initial conditions that do have positive Lyapunov exponents, indicating the presence

of chaos, with characteristic times shorter than tinsp, thus raising the possibility that theoretical

templates calculated for systems with spinning compact objects are affected by chaos.

In the present study, we examine and extend these results by investigating the dynamics of

spinning binary black holes using a Hamiltonian formulation of the post-Newtonian equations of

motion. In order to make chaos formally possible, we exclude gravitational radiation reaction—since

tests for chaos technically require an infinite-time limit, the finite inspiral times due to radiation

reaction would eliminate the possibility of chaos. On the other hand, we do include post-Newtonian

terms involving the spin of the two bodies: the addition of spin is essential to create the possibility

of chaos, since without spin the conserved quantities constrain the motion to be at worst quasi-

periodic. As discussed in Sec. 4.2.1, we use four separate spin terms in the equations of motion
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to model accurately their effect of the dynamics. We focus on black holes, to the exclusion of

other compact astrophysical objects, because two of these spin terms (which involve spin-induced

quadrupole effects) are known exactly only for black holes, and yet their magnitudes are comparable

to the spin-spin coupling and hence cannot be ignored. (This is an extension of previous work, as

other authors have not considered these quadrupole terms when investigating chaos.)

In Sec. 4.4, we examine the PN dynamics in the extreme mass-ratio limit, in order to make contact

with Chapters 2 and 3. We then investigate chaos for comparable-mass binary black holes (Sec. 4.5).

Since binary black hole inspirals tend to circularize under gravitational radiation reaction, we focus

on the important special case of quasi-circular orbits.1 As in previous work, we favor Lyapunov

exponents (Sec. 4.5.1) to quantify the presence (or absence) of chaos.

We work almost exclusively in geometric units (G = c = 1). Euclidean vectors, such as those that

appear in the post-Newtonian equations of motion, are set in boldface, and we use vector arrows to

denote relativistic 4-vectors. The symbol log refers in all cases to the natural logarithm.

4.2 The post-Newtonian equations of motion

The post-Newtonian (PN) equations for the two-body problem are an approximation to full general

relativity, essentially involving a series expansion in v/c. The PN equations are therefore valid in

the limit v � c; since (in geometric units) the velocity satisfies v2 ∼ M/r, where M is the total

mass of the binary, the condition v � 1 requires that the radius satisfy r � M . As in the case of

the classical two-body problem, in the post-Newtonian case it is possible to reduce the motion of a

relativistic binary to a one-body problem. A typical orbit using the one-body formulation is shown

in Fig. 4.1. In this chapter, we use an effective one-body, Hamiltonian approach, as developed in [10],

which provides a particularly clean derivation of the equations of motion. In addition, since detecting

chaos involves determining the separation of nearby phase-space trajectories, is it convenient to work

directly in terms of spatial coordinates and their corresponding conjugate momenta—a criterion

automatically satisfied by the Hamiltonian formulation.

4.2.1 The Hamiltonian formulation

We can represent the PN Hamiltonian schematically as follows [10–12]:

H = HN + HPN + HSO + HSS. (4.1)

We include the following terms: Newtonian, standard post-Newtonian (through 2PN, i.e., v4/c4),

spin-orbit coupling, and spin-spin coupling. (We omit the radiation reaction, as discussed in the
1A thorough investigation of eccentric orbits is more involved due to the large number of possible orbits, and is

left for future work.
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Figure 4.1: The orbit of two maximally spinning 10M� black holes, using a Hamiltonian, effec-
tive one-body formulation of the post-Newtonian equations of motion. (a) The orbit embedded
in Euclidean space; (b) the projection onto the x-y plane. Lengths are measured in terms of the
total mass M = m1 + m2, and we show a schematic horizon at rH = M , indicating the collapse
radius where the relative separation of the two bodies is the sum of their horizon radii. (We have
rH,1 = m1, and rH,2 = m2 for maximally spinning black holes, so the relative separation of collapse
is rH = m1 + m2 = M .) Note that, in contrast to Newtonian orbits, the orbit is not closed, and the
orbital plane precesses around the center of mass. The initial conditions producing this orbit are
X = (15, 0, 0), P = (0.137306, 0.262401, 0.0929462), S1 = (0, 0, 1), and S2 = (1

2 , 1
2 , 1√

2
), with all the

PN terms from Sec. 4.2.1 turned on.
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introduction.) Throughout this treatment, we use X for the (relative) position, P for the conjugate

(relative) momenta, and (S1,S2) for the spins of the two particles.

For two bodies with masses m1 and m2, the effective one-body approach introduces the total

mass M = m1 + m2 and the reduced mass µ = m1m2/M (precisely as in the solution of the

Newtonian two-body problem).2 Using these mass variables, we can express the first term (the

standard Newtonian energy) as follows:

HN =
P 2

2µ
− µM

r
, (4.2)

where r = ‖X‖. The post-Newtonian terms used in this chapter are 1PN and 2PN, given by

HPN = µ(Ĥ1PN + Ĥ2PN), (4.3)

where

Ĥ1PN =
1
8
(3η − 1)(p2)2 − 1

2
[(3 + η)p2 + η(n · p)2]

1
q

+
1

2q2
(4.4)

and

Ĥ2PN =
1
16

(1− 5η + 5η2)(p2)3 +
1
8
[(5− 20η − 3η2)(p2)2 − 2η2(n · p)2p2 (4.5)

−3η4(n · p)4]
1
q

+
1
2
[(5 + 8η)(p2) + 3η(n · p)2]

1
q2
− 1

4
(1 + 3η)

1
q3

,

and we use the unit vector n = X/r, the auxiliary variable η = µ/M , and the reduced canonical

variables p = P/µ and q = X/M . In most of this chapter, we will measure momenta in terms of µ

and distances in terms of M , so we will typically not distinguish between the canonical and reduced

canonical variables.

The next term in Eq. (4.1) is the spin-orbit coupling (corresponding to Lense-Thirring precession

in the extreme mass-ratio limit m1 � m2):

HSO =
L · Seff

r3
, (4.6)

where

Seff =
(

2 +
3
2

m2

m1

)
S1 +

(
2 +

3
2

m1

m2

)
S2. (4.7)

We have three separate terms quadratic in the spin, so that the last term in Eq. (4.1) is

HSS = HS1S2 + HS1S1 + HS2S2 . (4.8)

2For clarity in what follows, we adopt the arbitrary convention that m1 ≥ m2.
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The first term, the spin-spin coupling, is

HS1S2 =
1
r3

[3(S1 · n)(S2 · n)− S1 · S2], (4.9)

which is valid for all bodies (e.g., neutron stars or white dwarfs, as well as black holes). The next

two terms we include are monopole-quadrupole interaction terms, and their form is valid only for

black holes.3 They are

HS1S1 =
1

2r3
[3(S1 · n)(S1 · n)− S1 · S1]

m2

m1
(4.10)

and

HS2S2 =
1

2r3
[3(S2 · n)(S2 · n)− S2 · S2]

m1

m2
. (4.11)

With the full Hamiltonian in hand, we can now derive the equations of motion using Pois-

son brackets. As in classical Hamiltonian mechanics, the time-evolution of a dynamical quan-

tity f(X,P,S1,S2) is simply the Poisson bracket of the quantity with the Hamiltonian:

df

dt
= {f,H}. (4.12)

The Hamiltonian equations of motion for the (relative) position and (relative) momentum are then

the familiar canonical equations:

dX
dt

= +
∂H

∂P
,

dP
dt

= −∂H

∂X
. (4.13)

To derive the spin equations of motion, we use the canonical angular momentum Poisson bracket

{Si, Sj} = εijkSk, (4.14)

which yields
dS1

dt
=

∂H

∂S1
× S1 ≡ Ω1 × S1 (4.15)

and
dS2

dt
=

∂H

∂S2
× S2 ≡ Ω2 × S2. (4.16)

Eqs. (4.13) and (4.15)–(4.16), with the Hamiltonian given by Eq. (4.1), are the equations of motion

used throughout this chapter.
3We leave to future work the generalization to neutron stars and other compact bodies whose quadrupole moments

depend on their internal structure and equations of state.
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4.2.2 Conserved quantities

There are many conserved quantities in the post-Newtonian equations. These constants of the

motion constrain the dynamical behavior of the system and provide valuable checks when testing a

numerical implementation of the equations. Here we discuss all the quantities known to be conserved,

and at which orders they are conserved.

4.2.2.1 Quantities conserved at all orders

The following quantities are conserved at all orders:

• Total energy H: Ḣ = {H,H} = 0 by the antisymmetry of Poisson brackets.

• Total angular momentum J = L + S1 + S2: see [10].

• The spin magnitudes S1 and S2: this is evident from Eqs. (4.15) and (4.16), since the cross

product is perpendicular to the spin and hence can change only its direction.

4.2.2.2 Quantities conserved only through spin-orbit coupling

If we neglect the terms quadratic in the spin (i.e., we include only terms through spin-orbit coupling),

the following additional quantities are conserved:

• L2 = L · L: at this order, L̇ = Seff × L/r3, which changes the direction of L but not its

magnitude.

• L · Seff : see [10].

In our numerical implementation (Sec. 4.2.3), we verify that the correct quantities are conserved at

the proper orders, to within the accuracy of the numerical integrations.

4.2.3 Numerical implementation

Our primary implementation of the post-Newtonian equations of motion is a collection Mathemat-

ica packages, relying on the native NDSolve function to effect numerical integrations. A primary

virtue of Mathematica is the ability to type in the Hamiltonian directly, with the equations of

motion calculated automatically using Mathematica’s symbolic differentiation capabilities. From a

debug/development perspective, the typesetting capabilities of Mathematica make it particularly

easy to inspect the equations visually for consistency with printed representations. We implement

the equations in a standard way to eliminate the mass variables, measuring lengths and times in

terms of the total mass M and momenta in terms of the reduced mass µ. In these units, consistency

then forces the angular momenta to be measured in terms of µM .
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A second implementation uses a Mathematica interface as a front-end to an optimized C++ back-

end. For long-time integrations, the increase in speed is worth the effort. Moreover, the calculation

of Lyapunov exponents (Sec. 4.5.1 below) requires access to the internals of the ODE solver, so

NDSolve is inappropriate. Instead, we use the techniques and routines described in Chapter 5. In

order to calculate the Lyapunov exponents of any dynamical system, in general we need both the

equations of motion and the Jacobian matrix of the system. We use Mathematica to generate the

required expressions directly from the Hamiltonian, using the built-in CForm function to convert

to C++ source code.4 We then link these routines to the general ODE integrator and Lyapunov

calculator described in Chapter 5. Mathematica’s ability to handle pipes and temporary files makes

it possible to use exactly the same interface for both the native Mathematica ODE solver and the

C++ back-end, so that the difference between the two implementations is transparent to the user.

As noted in Sec. 4.2.2, we verify in all cases that the relevant quantities are conserved. Ad-

ditionally, we find that, in the appropriate limits, the equations reproduce the Keplerian orbits of

Newtonian gravitation (N turned on), the Lense-Thirring precession (extreme mass-ratio limit, N

and SO turned on), and the (classical) quadrupole precession (N and S1S1 turned on). Finally,

the Lyapunov routines and Jacobian matrix used in Sec. 4.5 are verified using the techniques from

Chapter 5.

4.3 Parameterizing post-Newtonian orbits

We discuss here two convenient methods for parameterizing initial conditions for post-Newtonian

orbits. We first describe a method that gives orbits that approximately satisfy desired values of

eccentricity, pericenter, and orbital inclination. We then treat the important special case of quasi-

circular orbits. Finally, we examine the effects of varying the post-Newtonian terms included in the

initial conditions and subsequent time-evolution.

4.3.1 Eccentric orbits

One convenient parameterization method allows the easy creation of bound orbits and makes contact

with the Kerr (geodesic) and Newtonian limits, namely, parameterizing in terms of the eccentricity e,

pericenter rp, and orbital inclination angle ι. These three quantities are obviously constants of the

motion in the Newtonian limit, but in fact they can also be defined so that they correspond to

conserved quantities for geodesics in Kerr spacetime (to which the PN equations approximately

reduce in the limit where one of the masses dominates the other, say m2 � m1, and the system is

not strongly relativistic, so that v � 1 and r = |X| � M).

4The additional use of the freely available package Optimize.m gives a factor of 5 increase in speed for the case at
hand.
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Figure 4.2: A highly eccentric orbit for two maximally spinning 10M� black holes. (a) The orbit
embedded in Euclidean space; (b) the projection onto the x-y plane. Lengths are measured in
terms of the total mass M = m1 + m2, and we show a schematic horizon at rH = M . The energy
and angular momentum of the orbit correspond to a Kerr geodesic orbit with eccentricity e = 0.8,
pericenter rp = 7M , and orbital inclination ι = 30◦ (E = 0.985915 µM and Lz = 3.38238 µM ,
where µ = m1m2/M is the reduced mass). The empirical values of these parameters, as determined
from the numerical solution to the equations of motion, are e = 0.805, rp = 6.72 M , and ι = 30.9◦.
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Given the desired values of the orbital parameters (e, rp, ι), and the masses and spins of the

bodies, we must find valid initial conditions for the relative position X and relative momentum P.

Our method relies on a mapping between (e, rp, ι) and (EK , Lz, Q) for families of Kerr geodesics,

where EK , Lz, and Q are the energy, z angular momentum, and Carter constant. (This mapping is

described in detail in Chapter 3.) In the present case of the PN equations, we take in as parameters

the requested values in the set (e, rp, ι), together with the masses and spins. We then calculate

the appropriate value of the Kerr spin parameter a, which in our case is simply the magnitude of

Seff [10]:

a = ‖Seff‖. (4.17)

Finally, we set φ = 0, θ = π/2, and r = rp(1 + e). Using these values of a, r, θ, and φ, we find the

values of the set (EK , Lz, Q) corresponding to (e, rp, ι) for a Kerr geodesic, exactly as in Chapter 3.

These conserved quantities allow the calculation of the corresponding Kerr momentum [13],

but this momentum does not correspond to the energy for the PN equations (as given by the PN

Hamiltonian evaluated at the initial conditions). Instead, we keep two of the Kerr momentum

components by setting Px,PN = px,Kerr and Py,PN = py,Kerr = Lz/r. We then solve the equation

H(X,P,S1,S2) = EK (4.18)

for Pz,PN. The resulting momentum, when combined with the initial position and spins, gives a set

of initial conditions for the PN equations with the same energy and z angular momentum as a Kerr

geodesic with orbital parameters (e, rp, ι) and spin parameter a = Seff . The resulting orbits have

empirical values of (e, rp, ι) quite close to those requested, even for equal-mass binaries (Fig. 4.2).

4.3.2 Quasi-circular orbits

A second, more specialized parameterization of the PN initial conditions enforces the condition of

quasi circularity. In particular, through second post-Newtonian order the quasi-circular orbits are

in fact exactly circular, and even with spin-orbit coupling added there exist “spherical” orbits, i.e.,

orbits confined to lie on a sphere, with fixed radius but varying angle θ. Once any of the spin-

spin terms is turned on, exact sphericity is impossible in general, but it is still possible to satisfy

exactly the conditions leading to spherical orbits in the absence of spin-spin coupling. These orbits

are especially important for modeling possible sources of gravitational radiation, since the orbits of

compact binaries are expected to circularize due to gravitational radiation reaction, and then remain

circular [14, 15].

The conditions leading to quasi-circular orbits are as follows. Given an initial radius r0, we set
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φ0 = 0 and θ0 = π/2, so that

X0 = (r0, 0, 0). (4.19)

We then require that the initial radial momentum vanish:

(Pr)0 = 0. (4.20)

[Since the Hamiltonian is quadratic in Pr, this means that (ṙ)0 = (∂H/∂Pr)Pr=0 = 0, so that (at

least initially) the radius is not changing.] Finally, we require that the initial values of Ṗr and θ̇

vanish, which means (using Hamilton’s equations) that

(
dPr

dt

)
0

= −
(

∂H

∂r

)
0

= 0 (4.21)

and (
dθ

dt

)
0

= −
(

∂H

∂Pθ

)
0

= 0. (4.22)

Given the initial position and the initial spins, these equations can be solved numerically for the

initial values of Pθ and Pφ, thereby giving a complete set of initial conditions. One particular virtue

of these conditions is that they reduce properly to circular orbits in the absence of the spin terms,

but can still be satisfied by orbits with nonzero spin couplings.

4.3.3 Post-Newtonian orbits at various orders

Here we show some of the effects of turning on or off the various post-Newtonian terms. Figs. 4.3–4.7

show quasi-circular orbits satisfying Eqs. (4.19)–(4.22), successively including more terms in the PN

Hamiltonian from Sec. 4.2.1. We use quasi-circular orbits to make the effects especially easy to see,

but this is not a necessary restriction. In particular, note that Figs. 4.1 and 4.2 demonstrate that the

PN equations capture some of the essential aspects of relativistic orbits, especially the characteristic

precession of the orbital plane.

4.4 The extreme mass-ratio case

When the masses satisfy m1 � m2, the PN equations describe a spinning test particle of mass m2

orbiting a spinning supermassive black hole of mass m1. If we ignore the terms involving S2, then

the resulting orbits are essentially geodesics orbiting a Kerr black hole, so by comparing these orbits

to those with nonzero S2 terms we can get a sense of the effects of the S2 terms on the dynamics.

Another motivation for considering the extreme mass-ratio case is to make contact with Chapters 2

and 3, which investigated the dynamics of spinning test particles orbiting Schwarzschild or Kerr
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Figure 4.3: A post-Newtonian quasi-circular orbit of two maximally spinning 10 M� black holes,
with Newtonian, 1PN, and 2PN terms turned on. (a) The orbit embedded in Euclidean space; (b)
the radius r =

√
x2 + y2 + z2 as a function of time. Lengths are measured in terms of the total mass

M = m1 + m2, and we show a schematic horizon at rH = M . The Newtonian gravitational-wave
frequency is fGW = 100 Hz, corresponding to a radius of r = 10.14 M [Eq. (4.29)]. The initial
spins are S1 = (1, 0, 0) m2

1 and S1 = ( 1√
2
, 0, 1√

2
) m2

2, and the other initial conditions are fixed by the
conditions for quasi circularity (Sec. 4.3.2).
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Figure 4.4: A post-Newtonian quasi-circular orbit of two maximally spinning 10 M� black holes,
with terms through spin-orbit coupling. (a) The orbit embedded in Euclidean space; (b) the radius
r =

√
x2 + y2 + z2 as a function of time. Lengths are measured in terms of the total mass M =

m1+m2, and we show a schematic horizon at rH = M . The Newtonian gravitational-wave frequency
is fGW = 100 Hz, corresponding to a radius of r = 10.14 M [Eq. (4.29)]. The initial spins are
S1 = (1, 0, 0) m2

1 and S1 = ( 1√
2
, 0, 1√

2
) m2

2, and the other initial conditions are fixed by the conditions
for quasi circularity (Sec. 4.3.2). The addition of spin-orbit coupling to the N, 1PN, and 2PN terms
destroys exact circularity, but exact sphericity is preserved.
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Figure 4.5: A post-Newtonian quasi-circular orbit of two maximally spinning 10 M� black holes,
with all the terms from Sec 4.2.1 present except for the S1S1 and S2S2 spin-induced quadrupole
terms. (a) The orbit embedded in Euclidean space; (b) the radius r =

√
x2 + y2 + z2 as a function

of time. Lengths are measured in terms of the total mass M = m1 + m2, and we show a schematic
horizon at rH = M . The Newtonian gravitational-wave frequency is fGW = 100 Hz, corresponding to
a radius of r = 10.14 M [Eq. (4.29)]. The initial spins are S1 = (1, 0, 0) m2

1 and S2 = ( 1√
2
, 0, 1√

2
) m2

2,
and the other initial conditions are fixed by the conditions for quasi circularity (Sec. 4.3.2). The
addition of spin-spin coupling to the N, 1PN, and 2PN terms destroys exact sphericity, but the
Eqs. (4.19)–(4.22) are still satisfied, leading to nearly circular orbits for these initial conditions.
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Figure 4.6: A post-Newtonian quasi-circular orbit of two maximally spinning 10 M� black holes,
with all the terms from Sec 4.2.1 present except for the S2S2 spin-induced quadrupole term. (a)
The orbit embedded in Euclidean space; (b) the radius r =

√
x2 + y2 + z2 as a function of time.

Lengths are measured in terms of the total mass M = m1 + m2, and we show a schematic horizon
at rH = M . The Newtonian gravitational-wave frequency is fGW = 100 Hz, corresponding to a
radius of r = 10.14 M [Eq. (4.29)]. The initial spins are S1 = (1, 0, 0) m2

1 and S2 = ( 1√
2
, 0, 1√

2
) m2

2,
and the other initial conditions are fixed by the conditions for quasi circularity (Sec. 4.3.2). The
addition of spin-spin coupling to the N, 1PN, and 2PN terms destroys exact sphericity, but the
Eqs. (4.19)–(4.22) are still satisfied, leading to nearly circular orbits for these initial conditions.



144

-10
-5

0
5

10

x
-10

-5

0

5

10

y

-2
0
2

z

-10
-5

0
5

10

x

(a)

0 500 1000 1500 2000 2500 3000
t HML

10.1

10.11

10.12

10.13

10.14

10.15

10.16

r
HML

(b)

Figure 4.7: A post-Newtonian quasi-circular orbit of two maximally spinning 10 M� black holes,
with all the terms from Sec 4.2.1 (including the all the spin-spin couplings) present. (a) The orbit
embedded in Euclidean space; (b) the radius r =

√
x2 + y2 + z2 as a function of time. Lengths are

measured in terms of the total mass M = m1+m2, and we show a schematic horizon at rH = M . The
Newtonian gravitational-wave frequency is fGW = 100 Hz, corresponding to a radius of r = 10.14 M
[Eq. (4.29)]. The initial spins are S1 = (1, 0, 0) m2

1 and S1 = ( 1√
2
, 0, 1√

2
) m2

2, and the other initial
conditions are fixed by the conditions for quasi circularity (Sec. 4.3.2). The addition of spin-spin
coupling to the N, 1PN, and 2PN terms destroys exact sphericity, but the Eqs. (4.19)–(4.22) are still
satisfied, leading to nearly circular orbits for these initial conditions.
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Table 4.1: Phase shifts ∆φ = φgeodesic − φspin in radians as a function of orbital inclination angle ι
and pericenter rp for e = 0.5 in the extreme mass-ratio case m2/m1 = 10−5. (The entries scale
roughly as m2/m1.) The spin of the small body is offset π/4 toward the spin of the large central
body, and both have maximal spins. The inclination angle indicates whether the orbit is prograde
(0 ≤ ι < 90◦) or retrograde (90◦ ≤ ι ≤ 180◦). The “geodesic” orbits and their corresponding spin
orbits start with the same initial 4-velocity ~v, and the integrations use tmax ≈ (10 times the average
radial orbital period). Blank entries indicate radius/inclination combinations for which no valid
initial condition was found.

rp(M)
ι 4 8 12 16 20

10◦ 4.8× 10−6 2.6× 10−6 1.3× 10−6

45◦ −4.2× 10−5 −8.9× 10−6 −5.3× 10−6 −2.6× 10−6 −5.1× 10−6

85◦ −1.6× 10−4 −1.5× 10−4 −1.9× 10−5 −9.5× 10−6 −3.0× 10−6

135◦ 6.9× 10−5 8.5× 10−5 2.9× 10−5 118× 10−5

170◦ 7.9× 10−5 4.4× 10−5 1.8× 10−5 9.4× 10−6

Table 4.2: Phase shifts ∆φ = φgeodesic−φspin in radians as a function of orbital inclination angle ι and
pericenter rp for quasi-circular orbits in the extreme mass-ratio case m2/m1 = 10−5. (The entries
scale roughly as m2/m1.) The spin of the small body is offset π/4 toward the spin of the large central
body, and both have maximal spins. The inclination angle indicates whether the orbit is prograde
(0 ≤ ι < 90◦) or retrograde (90◦ ≤ ι ≤ 180◦). The “geodesic” orbits and their corresponding spin
orbits start with the same initial 4-velocity ~v, and the integrations use tmax ≈ (10 times the average
φ orbital period).

rp(M)
ι 4 8 12 16 20

10◦ −5.8× 10−5 4.7× 10−6 5.3× 10−6 3.7× 10−6 3.2× 10−6

45◦ 1.6× 10−4 2.2× 10−5 1.2× 10−3 6.8× 10−6 4.6× 10−6

85◦ 2.3× 10−5 2.1× 10−5 −8.5× 10−6 −3.3× 10−6 −2.2× 10−8

135◦ 4.4× 10−5 −2.3× 10−5 −9.9× 10−5 −1.3× 10−5 −3.3× 10−7

170◦ −9.9× 10−5 −4.2× 10−5 −1.9× 10−5 −9.6× 10−6 −5.6× 10−6

black holes using the Papapetrou equations.

4.4.1 Deviation from “geodesic” orbits

We can measure the effect of the S2 terms in the equations of motion as follows. After choosing some

appropriate final time tf , we calculate the orbital phase angle φg for “geodesics,” which includes the

PN terms through spin-orbit coupling, together with the HS1S1 term to account for the quadrupole

moment of the central black hole. Then, for the same tf , we calculate φs, the orbital phase angle

with the S2 terms (HS1S2 and HS2S2) turned on. The difference ∆φ ≡ φg−φs provides a quantitative

measure of the effect of the spin-spin coupling terms.

We present two tables of ∆φ values, one for an eccentric orbit (Table 4.1, e = 0.5), and another

for a quasi-circular orbit (Table 4.2, e ≈ 0). The final time in both cases is ten times an effective
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orbital period, defined as follows. For the eccentric case, we calculate the average radial period

Tr, which we define as twice the average time between the turning points in the radial motion. In

practice, this involves integrating for some time t � Tr, creating an interpolating function for r as

a function of time, differentiating it, and then solving numerically for all the zeros.5 The average

radial period is then twice the average time between zeros. Since the radius is nearly constant for

the quasi-circular case, the use of Tr is inappropriate, and instead we use the average φ period Tφ,

which is simply the final time divided by the winding number φf/2π. Tables 4.1 and 4.2 show values

of ∆φ for varying orbital inclination angles and pericenters and a mass ratio of m2/m1 = 10−5; the

phase shifts scale roughly as m2/m1, so these tables make it possible to obtain estimates for other

mass ratios as well.

4.4.2 Comparing post-Newtonian and Papapetrou orbits

We mentioned in the introduction the investigations of the dynamics of a spinning test particle in a

background spacetime. The Papapetrou equations model this system; if we choose the background

to be the Kerr metric (as in Chapters 2 and 3), then the Papapetrou equations model the orbit

of a small rotating black hole orbiting a supermassive rotating black hole. The Papapetrou system

should therefore agree closely with the post-Newtonian equations when m1 � m2 and r = |X| � M .

We can compare the PN equations directly with the Papapetrou equations (as reformulated by

Dixon [16]) by examining the covariant time-derivative of the 4-momentum:

Dpµ

dτ
= − 1

2Rµ
ναβ vνSαβ , (4.23)

where Rµ
ναβ is the Riemann tensor of the spacetime, vν is the 4-velocity, and Sαβ is the spin tensor.

For vanishing spin, this is simply the geodesic equation, so the Papapetrou equations include the

Newtonian, 1PN, and 2PN terms. Since the Kerr metric is an exact description of a rotating black

hole, the geodesic equation also includes the S1 part of the spin-orbit coupling in Eq. (4.6), as well as

the S1S1 quadrupole term [Eq. (4.10)]. [Here we identify S1/m1 with the Kerr parameter a, the spin

angular momentum per unit mass. This is valid in the extreme mass-ratio limit, but see Eq. (4.17)

above for the more general expression.]

For nonvanishing spin, the right-hand term in Eq. (4.23) is known to reproduce the post-

Newtonian spin-orbit coupling to leading order when expanded in v2/c2 (that is, 1PN) [17]. This

means that the spatial part of the expression 1
2Rµ

ναβ vνSαβ , expanded to lowest order in v2/c2, is

equal to the piece of dP/dt given by HSO in Eq. (4.1). (There is an important subtlety here: the def-

initions for the center of mass used for the Papapetrou equations and the Hamiltonian PN equations

differ by a factor of order 1PN: Xcm, PN = Xcm, Papa + 1
2µ v × S. The correspondence between the

5The freely available Mathematica package RootSearch proved invaluable in this context.
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Figure 4.8: The orbit of two maximally spinning black holes in the extreme mass ratio (m1 �
m2) limit, using the post-Newtonian equations (dark) and the Papapetrou equations (light). The
Papapetrou initial conditions satisfy the conditions of eccentricity e = 0.5, pericenter rp = 30, and
orbital inclination ι = 10◦. The analogous PN orbit starts with the same position and momentum.
In both cases, the spin of the small body initially points 45◦ from the vertical. The PN equations
of motion include all the PN terms from Sec. 4.2.1 except the S2S2 quadrupole term.

Papapetrou spin-orbit coupling and the PN spin-orbit coupling is only evident once this substitution

has been made.) To higher order, the right-hand side of Eq. (4.23) includes products of S with the

Riemann tensor, which is a function of a = S1/m1; since S in the Papapetrou equations is S2 in

our treatment of the PN equations, this means that Eq. (4.23) should include the S1S2 coupling

term [Eq. (4.9)], although this has not to our knowledge ever been verified explicitly. Finally, the

Papapetrou equations model a pole-dipole particle, so they do not include the S2S2 quadrupole term

of the smaller body [Eq. (4.11)].

We can compare Papapetrou and PN orbits more directly by constructing analogous initial

conditions. We first select values of the eccentricity e, the pericenter rp, and the orbital inclination

angle ι for the Papapetrou equations, as discussed in Chapter 3. We then use the resulting values

of position, momentum, and spin as the initial conditions for the PN equations of motion (with the

S2S2 term turned off). The orbits agree closely, especially at higher radii, as shown in Fig. 4.8. The

quantitative agreement is worse at lower radii due to the violation of the condition r � M required

for the validity of the PN equations, but the qualitative behavior—especially the precession of the

orbital plane—is essentially the same.

As a more quantitative comparison, we can use the PN equations to investigate the errors in

the Papapetrou system caused by deviations from the test particle approximation. As discussed at

length in Chapter 2, if we measure distances in terms of the central mass MP and momenta in terms
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Figure 4.9: The error in the Papapetrou radial period Tr,P vs. mass ratio for an eccentric (e = 0.5)
orbit with pericenter rP = 30. Here ∆ is the fractional difference between the Papapetrou radial
period and the post-Newtonian radial period: ∆ = Tr,P /Tr,PN−1. Even in the m2 → 0 limit, we are
unable to find initial conditions leading to exactly the same periods, which we correct by subtracting
the fractional difference ∆0, which is the extrapolation of ∆ to the case of vanishing mass ratio. (In
this case, ∆0 = 0.003.) It is evident that the Papapetrou radial period differs significantly from the
corresponding PN period when m2 & 0.1 m1, indicating a failure of the test-particle approximation.

of the particle mass µP , then the spin S of the small body is measured in terms of µP MP . (Here we

use the subscript P for Papapetrou, to distinguish the Papapetrou masses from the total mass M

and reduced mass µ used for the PN system.) This means that a small maximally spinning black

hole in a maximal Kerr background has a spin parameter of

S =
maximum spin

µP MP
=

µ2
P

µP MP
=

µP

MP
� 1. (4.24)

The last step uses the requirement that the second body be a test particle. Deviations from this

approximation are equivalent to increasing the value of S, so that S = 1 corresponds to µP = MP ,

i.e., an equal mass binary.

Our strategy is to consider initial conditions where both the Papapetrou system and PN system

are valid: orbits with extreme mass ratios (Papapetrou valid) and relatively large pericenters (PN

valid). Using the average radial period Tr, we can compare the two systems quantitatively as we vary

the mass ratio: from its initial small value (taken to be 10−5) we increase m2 until the mass ratio

is 1. Since the PN equations are valid in the equal mass (m1 = m2) limit, the difference between

the Papapetrou and PN values of Tr is due to the violation of the test particle approximation. The

results appear in Fig. 4.9 for an eccentric orbit and Fig. 4.10 for a near-circular orbit. In both cases,

the Papapetrou period deviates significantly from the PN value when m2 & 0.1 m1, which indicates

a failure of the test-particle approximation.
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Figure 4.10: The error in the Papapetrou radial period Tr,P vs. mass ratio for a near-circular
(e = 0.05) orbit with pericenter rP = 30. As in Fig. 4.9, ∆ is the fractional difference between the
Papapetrou radial period and the post-Newtonian radial period (∆ = Tr,P /Tr,PN−1), and ∆0 is the
extrapolation of ∆ to the case of vanishing mass ratio. (In this case, ∆0 = 0.001.) The Papapetrou
radial period differs significantly from the corresponding PN period when m2 & 0.1 m1, indicating
a failure of the test-particle approximation.

4.5 Investigating chaos in the post-Newtonian equations

Previous studies of chaos in the post-Newtonian equations considered comparable mass-ratio binaries

with eccentric orbits [2, 4, 19–21]. Here, we also consider comparable mass-ratio binaries, but choose

to focus on quasi-circular orbits. As noted in the introduction, these orbits are particularly important

because many astrophysically relevant binary systems should circularize due to the energy lost to

gravitational radiation. We set the radii of these orbits so that the frequencies of their corresponding

gravitational waves lie in a range 40 Hz ≤ fGW ≤ 240 Hz, roughly corresponding to the frequency

band for the Laser Interferometer Gravitational-Wave Observatory (LIGO). [More properly, we

choose radii such that the Newtonian frequency of the gravitational waves (which is simply twice

the orbital frequency) lies in the LIGO band, as discussed in Sec. 4.5.2 below.]

4.5.1 A brief discussion of Lyapunov exponents

As in Chapters 2 and 3, Lyapunov exponents are our primary tool for investigating the nonlinear

dynamics of general relativistic systems. We have discussed at length in Chapters 2 and 5 our

techniques for calculating these exponents for systems similar to the PN equations. Here we present

a brief summary of Lyapunov exponents.

Given an initial condition in the phase space of a dynamical system with n degrees of freedom, we

imagine an n-dimensional ball of nearby initial conditions centered on that point. As the dynamics

unfold, in general the ball is stretched in some directions and squeezed in others, deforming into an n-
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Figure 4.11: The orbit of two maximally spinning 10 M� black holes. The dynamics are chaotic,
as shown in Fig. 4.12. The initial conditions satisfy the requirements for quasi circularity, though
in fact the orbit’s radius is not even approximately constant (see Sec. 4.5.2.2 below). The initial
radius is 5.658 M , corresponding to an orbit with a Newtonian gravitational-wave frequency of
fGW = 240 Hz [Eq. (4.29)]. The initial spins are S1 = (0.13036, 0.262852,−0.955989)m2

1 and
S2 = (0.118966,−0.13459,−0.983734)m2

2. The other initial conditions are fixed by the conditions
for quasi circularity (Sec. 4.3.2).
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Figure 4.12: The natural logarithms of the ellipsoid axes ri vs. t for the system shown in Fig. 4.11.
The slopes of the lines are the Lyapunov exponents. Two nonzero exponents are clearly visible
(λ = ±3.2 × 10−3 M−1), but all the others are consistent with zero. There is an apparent ±λ
symmetry: for each exponent +λ, there is a corresponding exponent −λ; even the zero exponents
approach zero symmetrically. This behavior is a characteristic of Hamiltonian systems [18].
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dimensional ellipsoid under the action of the flow. Such an ellipsoid has n principal (semi)axes ri(t),

and the average multiplicative rate of stretching or squeezing of each axis is the ith Lyapunov

number :

Li = lim
t→∞

[ri(t)]1/t. (4.25)

The natural logarithm of the Lyapunov number is the Lyapunov exponent associated with the axis:

λi = lim
t→∞

log [ri(t)]
t

. (4.26)

Implementing this prescription numerically leads to a visualization of the exponents as a plot of

log [ri(t)] vs. t (so that the slope is the exponent λi), which refer to as a Lyapunov plot. The result

for a chaotic PN orbit appears in Fig. 4.12.

In practice, following the evolution of the phase-space ellipsoid, and thereby extracting all the

Lyapunov exponents of the system, involves using the Jacobian matrix of the system to model an

“infinitesimal” ball that captures the true linear approximation to the dynamics. It is also possible,

and computationally faster, to extract only the largest Lyapunov exponent by considering only one

nearby initial condition, joined by some small deviation vector to the original point, and the tracking

the growth of the deviation with time. In what follows, most of our simulations use this faster (but

less robust) deviation vector method, but we have checked many of the results using the Jacobian

method. Further details of our various techniques for calculating Lyapunov exponents appear in

Chapter 2 and especially Chapter 5.

It is worth noting that we can think of the PN system as constrained, since we wish to think of

the spin magnitudes as fixed. In other words, given an initial spin vector, a “nearby” initial spin

should point in a different direction but have the same magnitude. The system thus has only 10 true

degrees of freedom (three for relative position and momentum, and two for each spin), and should

therefore have only 10 Lyapunov exponents. The constraints lead to significant complications in

calculating the Lyapunov exponents; we discuss in Chapter 5 several methods for addressing these

complications.

The principal value of the largest Lyapunov exponent is that it provides the e-folding timescale

tλ = 1/λ for the divergence of nearby trajectories. The formal definition of λ in Eq. (4.26) requires

an infinite-time limit, but of course any numerical method for λ must introduce some finite cutoff.

As a result, in general it is impossible to say with any certainty that a system is not chaotic—

even if it appears that λmax → 0 for some tcutoff , chaos may yet manifest itself on longer timescales.

Nevertheless, it is possible to calculate nonchaotic baseline orbits (corresponding, for example, to the

PN terms through the spin-orbit coupling), whose nearby initial conditions still exhibit some nonzero

(power-law) separation. If a suspected chaotic orbit has a Lyapunov exponent with a magnitude

similar to a baseline orbit, it is “indistinguishable from zero” and is probably not chaotic.
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For the present problem, the most relevant timescale is the inspiral time due to the energy loss

from gravitational radiation. For the quasi-circular orbits considered below, this is approximately

given by the following formula [22], which is valid for circular orbits:

tinsp =
5

256
M2

µ

( r

M

)4

, (4.27)

M is the total mass and µ is the reduced mass. We then adopt the criterion tλ < tinsp as an

operational definition of chaos, which is equivalent to the condition

λ tinsp > 1 condition for chaotic orbits. (4.28)

On the other hand, if tλ > tinsp, then, even if the system is formally chaotic in the conservative limit

we consider here, the chaos will not have time to manifest itself before the final plunge. If there is no

exponential divergence in a time tinsp, there is no significant difference in the number of templates

needed for chaotic versus nonchaotic orbits, so in these cases chaos is unimportant for gravitational

wave detection.

4.5.2 A survey of quasi-circular orbits

In this section, we elucidate the effects of varying the parameters in the PN equations of motion

on the presence of chaos in the resulting dynamics. In many of the examples, we parameterize the

orbits by their radii, or, equivalently, by the “gravitational wave frequency”:

fGW =
1
π

(
GM

r3

)1/2

, (4.29)

where we restore the factor of G so that the result is in Hz. It is essential to note that Eq. (4.29)

is the Newtonian gravitational wave frequency, which is valid only for radii that satisfy r � M .

Nevertheless, Eq. (4.29) provides a convenient way to parameterize the initial conditions by radius

in a way that has transparent physical significance in the nonrelativistic limit. When we refer below

to an orbit with gravitational wave frequency of (say) 240 Hz, we mean an orbit with a radius that

satisfies Eq. (4.29) when fGW = 240 Hz. It is important to remember that this is close to, but not

exactly, the true frequency of the gravitational wave.

4.5.2.1 Varying spin directions

We illustrate the effect of varying the spin directions by generating a large number of quasi-circular

orbits with randomly oriented (maximal) spins. For each spin configuration, we choose the radius

corresponding to a gravitational wave with frequency fGW = 240Hz (the high end of the LIGO
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Figure 4.13: Lyapunov exponents for 500 quasi-circular orbits as a function of total angular momen-
tum J for the (10+10)M� configuration. The spin for each body is maximal and randomly oriented
(distributed uniformly on a unit sphere), and the initial radius corresponds to a gravitational wave
frequency of fGW = 240 Hz. The Lyapunov exponents are measured in terms of the inverse inspiral
time 1/tinsp, so that λtinsp > 1 indicates that nearby trajectories diverge by a factor of e on a
timescale shorter than the inspiral timescale. There is only one such chaotic initial condition out of
the 500 orbits considered for this configuration.
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Figure 4.14: Lyapunov exponents for 500 quasi-circular orbits as a function of total angular mo-
mentum J for the (20 + 10)M� configuration at 240 Hz. The spin for each body is maximal and
randomly oriented (distributed uniformly on a unit sphere), and the initial radius corresponds to
a gravitational wave frequency of fGW = 240Hz. The Lyapunov exponents are measured in terms
of the inverse inspiral time 1/tinsp, so that λtinsp > 1 indicates that nearby trajectories diverge by
a factor of e on a timescale shorter than the inspiral timescale. There are 49 such chaotic initial
conditions out of the 500 orbits considered for this configuration. Unlike the (10 + 10)M� case
shown in Fig. 4.15 below, the chaotic orbits in this case correspond to total angular momentum in
the middle of the range.
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Figure 4.15: Lyapunov exponents for 500 quasi-circular orbits as a function of total angular mo-
mentum J for the (10 + 10)M� configuration at 240 Hz. The spin for each body is maximal with
random initial spin angles (which overweights the poles); see Fig. 4.13 above for the results with
the initial spin directions distributed randomly on a unit sphere. The initial radius corresponds to
a gravitational wave frequency of fGW = 240Hz. The Lyapunov exponents are measured in terms
of the inverse inspiral time 1/tinsp, so that λtinsp > 1 indicates that nearby trajectories diverge by
a factor of e on a timescale shorter than the inspiral timescale. There are 14 such chaotic initial
conditions out of the 500 orbits considered for this configuration. They are clustered at the low end
of the angular momentum range, indicating that the spins are closely aligned with each other and
anti-aligned with the orbital angular momentum.

frequency band). The choice of radius is motivated by two main factors. First, choosing the lowest

possible radius (consistent with the abilities to detect the corresponding gravitational waves) likely

represents a worst-case scenario for chaos, since low-radius regions correspond to stronger spin cou-

plings in the equations of motion (as noted in Chapter 3). Second, minimizing the radius minimizes

the inspiral timescale tinsp, which in turn minimizes the computational cost of a final integration

time significantly longer than tinsp. This allows us to achieve a better bound on Lyapunov exponents

suspected to be zero, and increases our confidence that apparently nonzero exponents represent gen-

uine chaotic behavior. In what follows, the final integration time is 10 times the inspiral time of

each orbit.

We consider the following mass configurations: (20+5)M�, (10+5)M�, (5+5)M�, (10+10)M�,

(20+20)M�, (20+10)M�, and (15+5)M�. For each configuration we choose 500 initial conditions,

with randomly oriented maximal initial spins whose directions are distributed uniformly on a unit

sphere.6 The results appear in Figs. 4.13–4.15 and Table 4.3. The most notable result is the presence

of chaotic orbits for the (10 + 10)M� and (20 + 10)M� cases. Fig. 4.16 shows a Lyapunov plot for

the initial conditions producing the largest value λtinsp in our simulation data. The onset of chaos

is marked by a transition from linear (or at most power-law) separation of nearby initial conditions
6One of several equivalent methods for achieving this is to choose u and v to lie uniformly in [0, 1], and then choose

θ = cos−1(2u− 1) and φ = 2πv for the initial spin orientation angles for each body.
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Table 4.3: The prevalence of chaos in post-Newtonian quasi-circular orbits at 240 Hz, for spin
directions chosen randomly on a unit sphere. We calculate the fraction of orbits whose e-folding
times tλ = 1/λ are less than the inspiral time tinsp, which is our operational definition of chaos. The
final integration time is 10 times the inspiral time. We also include 95% confidence intervals for the
reported fractions, and we show the average value of λ measured in units of the inverse inspiral time
for the (20+10)M� configuration (the only case in our simulation with more than one chaotic orbit).
The simulation data represent 500 randomly chosen initial spin directions for each configuration,
with the initial radius fixed by requiring a gravitational wave frequency of 240 Hz (as determined
by the Newtonian formula).

Configuration Fraction chaotic 95% confidence interval Average chaotic λtinsp

(20 + 5)M� 0 [0, 0.00738]
(10 + 5)M� 0 [0, 0.00738]
(5 + 5)M� 0 [0, 0.00738]

(10 + 10)M� 0.002 [5.06× 10−5, 0.0111]
(20 + 20)M� 0 [0, 0.00738]
(20 + 10)M� 0.104 [0.0777, 0.136] 1.45
(15 + 5)M� 0 [0, 0.00738]

to exponential separation. On our Lyapunov plot (which is logarithmic on its vertical axis), chaotic

orbits appear as linear growth.

Our initial simulation runs involved choosing random values of the spin angles, distributed uni-

formly in the appropriate ranges (i.e., θ ∈ [0, π] and φ ∈ [0, 2π]). This prescription does not result

in points distributed uniformly on a unit sphere, but rather overweights points near the poles. In

our case this was a lucky accident: as shown in Fig. 4.15, for (10 + 10)M� the chaotic orbits are

clustered at the lowest values of the total angular momentum J , corresponding to initial spin vectors

nearly anti-aligned with the orbital angular momentum L, so that J = |L + S| is minimized. This

clustering in not visible in Fig. 4.13, which uses random points falling uniformly on a unit sphere;

only one point out of 500 is chaotic in this case. The overweighting of the poles in Fig. 4.15 made

possible the discovery that chaos in the (10 + 10)M� configuration is concentrated at values of the

spin angles θ1 and θ2 near π, as shown in Fig. 4.17.

The clustering of chaos at low values of the total angular momentum in the (10 + 10)M� con-

figuration suggests an explanation based on [23], which identifies a tumbling mode in spinning

binaries due to the “loss of gyroscopic bearings” when the anti-alignment of S and L leads to a

near-cancellation in their sum. While such a tumbling mode certainly seems a promising source of

chaotic orbits, in our case the total angular momentum J is not much smaller than L or S (the

condition for tumbling identified by [23]): for the chaotic orbits in Fig. 4.15, we have J ≈ 2.3 µM ,

L ≈ 4 µM , and S ≈ 2µM . Moreover, the clustering at low total angular momentum is not a general

result. In fact, when using uniformly distributed points, only the (20 + 10)M� configuration shows

significant chaos, and its chaotic orbits occur mainly in the middle part of the angular-momentum
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Figure 4.16: The natural logarithm of the principal ellipsoid axis vs. time for the strongest chaos
(corresponding to the maximum value of λtinsp) found in the (10 + 10)M� case. The slope of the
line is the Lyapunov exponent, which is approximately λ = 3.2 × 10−3 M−1 using a least-squares
fit. This corresponds to a Lyapunov (e-folding) timescale of tλ = 1/λ = 3.1 × 102 M , which is less
than a fifth of the inspiral timescale. The simulation data for a nonchaotic orbit (light) is shown for
reference. The initial conditions producing this plot are the same as those in Fig. 4.11.
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Figure 4.17: Chaos as a function of initial spin angle θ: cos θ2 vs. cos θ1 for the initial conditions
in Fig. 4.15. Most points (light) are not chaotic; the few chaotic points (dark) are clustered in the
lower left-hand corner, indicating that chaos [in this (10 + 10)M� case] occurs when the spins are
nearly anti-aligned with the orbital angular momentum L.
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Figure 4.18: Lyapunov exponents as a function of gravitational-wave frequency for quasi-circular
orbits of two maximally spinning 10 M� black holes. The initial spins are the same as in Fig. 4.11,
while the initial radius is determined by Eq. (4.29). The Lyapunov exponents are measured in terms
of the inverse inspiral time 1/tinsp, and the frequencies are chosen to correspond closely to the LIGO
frequency band. There is an abrupt transition to chaos at approximately 160 Hz. The subsequent
decrease in λtinsp is purely the result of the decrease of tinsp with increasing frequency; in fact, the
values of λ are approximately constant.

range (Fig. 4.14).

4.5.2.2 Varying initial frequencies

We now investigate the results of varying the initial gravitational-wave frequencies for the chaotic

orbit from the previous section. We begin with a (10 + 10)M� system that is strongly chaotic when

fGW = 240 Hz (Fig. 4.11), and then vary the (Newtonian) frequency from 40 Hz back up to 240 Hz.

(The initial radius is determined by the frequency, the initial spins are as given in Fig. 4.11, and the

other initial conditions are determined by the conditions for quasi circularity.) The result appears in

Fig. 4.18, which shows that chaos is absent for initial radii corresponding to fGW less than 160 Hz.

Above 160 Hz, there is an abrupt change in the dynamics from regular to chaotic, with a maximum

Lyapunov exponent more than 18 times the inverse inspiral time (meaning that nearby trajectories

diverge by a factor of e in a time tλ ≈ tinsp/18). Fig. 4.19 shows a Lyapunov plot for initial conditions

on either side of the transition to chaos.

This qualitative change in the dynamical behavior in this case is mirrored in the orbits themselves.

In particular, the onset of chaos is associated with a breakdown in the quasi circularity of the orbit.

As shown in Fig. 4.20, just below the transition to chaos the orbit is nearly circular. Just above the

transition, the orbits are not even approximately circular, as shown in Fig. 4.21.

A similar plot of λtinsp vs. frequency for the (20 + 10)M� appears in Fig. 4.22. There are a

couple of scattered chaotic initial conditions at lower frequencies, but there is still a reasonably
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Figure 4.19: The natural logarithms of the principal ellipsoid axis vs. time for frequencies on opposite
sides of the transition to chaos shown in Fig. 4.18: fGW = 158 Hz (light) and fGW = 160 Hz (dark).
The slope of each line is the Lyapunov exponent, with λ ≈ 7×10−5 M−1 (light, nonchaotic/consistent
with zero) and λ ≈ 4×10−3 M−1 (dark, chaotic). The initial spins are the same as in Fig. 4.11, while
the initial radii are determined by Eq. (4.29). The orbits corresponding to these two frequencies
appear in Figs. 4.20 and 4.21.

sharp transition to chaos at around 225 Hz, and above 230 Hz all the initial conditions (for this

choice of initial spins) are chaotic. A Lyapunov plot of points before and after the transition appears

in Fig. 4.23. The change in the orbits on either side of the the transition is not as dramatic as in

the the (10 + 10)M� system, but the orbit after the transition is noticeably more erratic, as shown

in Figs. 4.24 and 4.25.

To verify that the disappearance of chaos at lower frequencies is generic, we repeated the 240 Hz

survey for fGW = 40 Hz in the (10 + 10)M� system. The inspiral times are very long in this case,

requiring patience on the part of the simulator, but the results are gratifying: as shown in Table 4.4,

we found not even one orbit with a Lyapunov time less than the inspiral time at 40 Hz. Any chaos,

if present, manifests itself in this case on timescales longer than tinsp.

4.5.2.3 Varying spin magnitudes

In Sec. 4.5.2.2, we created one-parameter families of orbits by considering quasi-circular orbits that

are chaotic at 240 Hz, and we then varied the frequency (or, equivalently, the quasi-circular radius)

to determine the frequency dependence of chaotic behavior. In this section, we do the same, but

instead fix the frequency (at 240 Hz) and vary the magnitude of one of the spins.

We begin with the maximally spinning (10 + 10)M� and (20 + 10)M� systems from Sec. 4.5.2.2

at 240 Hz, both of which are chaotic. We then vary the spin S2 of the second body. As shown in

Figs. 4.26 and 4.27, the dynamics are nonchaotic for most values of S2, with a transition to chaos at

sufficiently high spins. The transition occurs at S2 = 0.85 for the (10+10)M� configuration, and at
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Figure 4.20: The nonchaotic quasi-circular orbit of two maximally spinning 10M� black holes (in
the effective one body approach), corresponding to a gravitational wave frequency of fGW = 158 Hz.
The initial spins are the same as in Fig. 4.11, while the initial radius is determined by Eq. (4.29). The
corresponding Lyapunov plot is shown in Fig. 4.19. The orbit’s radius is approximately constant.
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Figure 4.21: The chaotic quasi-circular orbit of two maximally spinning 10M� black holes (in the
effective one body approach), corresponding to a gravitational wave frequency of fGW = 160 Hz.
The initial spins are the same as in Fig. 4.11, while the initial radius is determined by Eq. (4.29). The
corresponding Lyapunov plot is shown in Fig. 4.19. Note that the quasi circularity has broken down;
the radius is not even approximately constant. This qualitative change in the orbit accompanies the
onset of chaos as the frequency increases (with a corresponding decrease in radius), as illustrated in
Fig. 4.18.
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Figure 4.22: Lyapunov exponents as a function of gravitational-wave frequency for quasi-circular or-
bits of two maximally spinning black holes, (20+10)M� configuration. The Lyapunov exponents are
measured in terms of the inverse inspiral time 1/tinsp, and the frequencies are chosen to correspond
closely to the LIGO frequency band. There are a couple of scattered chaotic orbits at lower frequen-
cies, but most of the chaos is concentrated at high frequencies. The initial conditions are determined
by the frequency-radius relation [Eq. (4.29)], the conditions for quasi circularity, and the initial spins:
S1 = (−0.935125, 0.329567, 0.130101)m2

1 and S2 = (0.039523,−0.54303,−0.838783)m2
2.
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Figure 4.23: The natural logarithms of the principal ellipsoid axes vs. time for frequencies on oppo-
site sides of the transition to chaos shown in Fig. 4.22: fGW = 224 Hz (light) and fGW = 227 Hz
(dark). The slope of each line is the Lyapunov exponent, with λ ≈ 2.9 × 10−4 M−1 (light, non-
chaotic/consistent with zero) and λ ≈ 2.2 × 10−3 M−1 (dark, chaotic). The initial spins are the
same as in Fig. 4.22, while the initial radius is determined by Eq. (4.29). The orbits corresponding
to these two frequencies appear in Figs. 4.24 and 4.25.
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Figure 4.24: The orbit of two maximally spinning black holes, (20 + 10)M� configuration. (a) The
orbit embedded in Euclidean space; (b) the projection onto the x-y plane. Lengths are measured
in terms of the total mass M = m1 + m2. The frequency is 224 Hz, and the spin is the same as in
Fig. 4.22. This orbit gives rise to the lower (nonchaotic) curve in Fig. 4.23. Compare with Fig. 4.25.
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Figure 4.25: The orbit of two maximally spinning black holes, (20 + 10)M� configuration. (a) The
orbit embedded in Euclidean space; (b) the projection onto the x-y plane. Lengths are measured
in terms of the total mass M = m1 + m2. The frequency is 227 Hz, and the spin is the same as in
Fig. 4.22. This orbit gives rise to the upper (chaotic) curve in Fig. 4.23. The orbit is much more
erratic, with a smaller pericenter, than the corresponding nonchaotic case at slightly lower frequency
(Fig. 4.24).
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Table 4.4: The prevalence of chaos in post-Newtonian quasi-circular orbits at 40 Hz, for spin direc-
tions chosen randomly on a unit sphere. We calculate the fraction of orbits whose e-folding times
tλ = 1/λ are less than the inspiral time tinsp, which is our operational definition of chaos. The
final integration time is 10 times the inspiral time. We also include 95% confidence intervals for
the reported fractions. The simulation data represent 500 randomly chosen initial spin directions
for each configuration, with the initial radius fixed by requiring a gravitational wave frequency of
40 Hz (as determined by the Newtonian formula). In this case, the number of chaotic orbits for each
configuration is zero.

Configuration Fraction chaotic 95% confidence interval
(20 + 5)M� 0 [0, 0.00738]
(10 + 5)M� 0 [0, 0.00738]
(5 + 5)M� 0 [0, 0.00738]

(10 + 10)M� 0 [0, 0.00738]
(20 + 20)M� 0 [0, 0.00738]
(20 + 10)M� 0 [0, 0.00738]
(15 + 5)M� 0 [0, 0.00738]

S2 = 0.53 for the (20 + 10)M� case. Since the dynamics in both cases are nonchaotic when S2 = 0,

the chaos must be produced by the spin terms in the Hamiltonian.

In Figs. 4.28 and 4.29, we show Lyapunov plots for orbits on either side of the chaotic transition.

Although the difference is not as dramatic as the frequency-induced transition (Figs. 4.19 and 4.23),

there is still a qualitative change in the value of the principal Lyapunov exponent. Unlike the system

in Sec. 4.5.2.1, this transition does not give rise to a qualitative change in the orbit as the spin is

varied. Instead, the chaos manifests itself primarily in the time-evolution of the spins, as shown

in Figs. 4.30 and 4.31 [the (10 + 10)M� configuration] and Figs. 4.32 and 4.33 [the (20 + 10)M�

configuration].

4.5.2.4 Varying the PN terms

The previous results in this section included all the PN terms described in Sec. 4.2.1. Here we

investigate the effect on the presence of chaos of turning off some of the terms. We focus on a

chaotic orbit found in our simulations of the (20 + 10)M� configuration for fGW, as shown in

Fig. 4.14. The Lyapunov plots for a variety of PN term combinations appear in Fig. 4.34. The

most important result is that the spin-spin terms are crucial to the presence of chaos; when only

Newtonian, 1PN, 2PN, and spin-orbit are turned on, the system is not chaotic. The only surprising

result is that the S1S1 quadrupole term apparently exerts a stabilizing influence: when only S2S2 is

turned off, the system is nonchaotic, but if S1S1 is then turned off as well (leaving S1S2 as the only

spin-spin term) the system returns to chaotic behavior.
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Figure 4.26: Lyapunov exponents as a function of spin for quasi-circular orbits of two 10 M� black
holes at 240 Hz. We fix the spin of one hole at the maximum value (S1 = m2

1), and also fix the
spin directions (as given in Fig. 4.11), and then vary the spin S2 of the second body. The Lyapunov
exponents are measured in terms of the inverse inspiral time 1/tinsp. There is an abrupt transition
to chaos when S2 exceeds 0.85 (measured in units of m2

2).
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Figure 4.27: Lyapunov exponents as a function of spin for quasi-circular orbits of two spinning
black holes at 240 Hz, (20 + 10)M� configuration. The initial spins are in the same directions as
in Fig. 4.22, while the initial radius is determined by Eq. (4.29). We fix the spin of one hole at the
maximum value (S1 = m2

1), and also fix the spin directions (as given in Fig. 4.22), and then vary the
spin S2 of the second body. The Lyapunov exponents are measured in terms of the inverse inspiral
time 1/tinsp. There is a transition to chaos when S2 exceeds 0.53 (measured in units of m2

2); the
values of λtinsp for lower values of S2 are indistinguishable from zero (i.e., they are the same size as
the exponent for a nonchaotic baseline orbit).
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Figure 4.28: The natural logarithms of the principal ellipsoid axis vs. time for spins on opposite sides
of the transition to chaos shown in Fig. 4.26: S2 = 0.83 (light) and S2 = 0.86 (dark). The slope
of each line is the Lyapunov exponent, with λ ≈ 2.0× 10−4 M−1 (light, nonchaotic/consistent with
zero) and λ ≈ 3.5 × 10−3 M−1 (dark, chaotic). The orbits corresponding to these two frequencies
appear in Figs. 4.30 and 4.31.
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Figure 4.29: The natural logarithms of the principal ellipsoid axis vs. time for spins on opposite
sides of the transition to chaos shown in Fig. 4.27: S2 = 0.40 (light) and S2 = 0.58 (dark). The
initial spins are in the same directions as in Fig. 4.22, while the initial radius is determined by
Eq. (4.29). The slope of each line is the Lyapunov exponent, with λ ≈ 4.6 × 10−4 M−1 (light,
nonchaotic/consistent with zero) and λ ≈ 2.0 × 10−3 M−1 (dark, chaotic). The initial spins are in
the same directions as in Fig. 4.22, while the initial radius is determined by Eq. (4.29). The orbits
corresponding to these two frequencies appear in Figs. 4.32 and 4.33.
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Figure 4.30: (a) The nonchaotic quasi-circular orbit of two 10M� black holes (in the effective one-
body approach) at 240 Hz, with spin magnitudes of S1 = 1 and S2 = 0.83; (b) Cartesian “spin
space” showing the time-evolution of Sx, Sy, and Sz. Compare with Fig. 4.31(b). The initial spins
are in the same directions as in Fig. 4.11, while the initial radius is determined by Eq. (4.29). The
corresponding Lyapunov plot is shown in Fig. 4.28.
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Figure 4.31: (a) The chaotic quasi-circular orbit of two 10M� black holes (in the effective one-body
approach), with spin magnitudes of S1 = 1 and S2 = 0.86 at 240 Hz; (b) Cartesian “spin space”
showing the time-evolution of Sx, Sy, and Sz. The initial spins are in the the same direction as in
Fig. 4.11, while the initial radius is determined by Eq. (4.29). The corresponding Lyapunov plot is
shown in Fig. 4.28. There appears to be no qualitative difference between the orbit (a) and the orbit
in Fig. 4.30(a), but there is a qualitative change in the spin behavior. Unlike the frequency transition
shown in Fig. 4.19, which gives a qualitative change in the evolution of the spatial variables, the
spin transition to chaos manifests itself in the spin degrees of freedom.
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Figure 4.32: (a) The nonchaotic quasi-circular orbit of two black holes, (20 + 10)M� configuration
(in the effective one-body approach) at 240 Hz, with spin magnitudes of S1 = 1 and S2 = 0.40; (b)
Cartesian “spin space” showing the time-evolution of Sx, Sy, and Sz. Compare with Fig. 4.33(b).
The initial spins are in the same directions as in Fig. 4.22, while the initial radius is determined by
Eq. (4.29). The corresponding Lyapunov plot is shown in Fig. 4.29.



169

-5
-2.5

0
2.5

5

x

-5

-2.5

0
2.5

5
y

-4

-2

0

2

4

z

-5
-2.5

0
2.5

5

x

-5

-2.5

0
2.5

5
y

(a)

-0.5
-0.25

0
0.25

0.5
Sx

-0.5
-0.25

0
0.25

0.5
Sy

-0.5

-0.25

0

0.25

0.5

Sz

-0.5
-0.25

0
0.25

0.5
Sx

-0.5
-0.25

0
0.25

0.5
Sy

(b)

Figure 4.33: (a) The chaotic quasi-circular orbit of two black holes, (20 + 10)M� configuration (in
the effective one-body approach), with spin magnitudes of S1 = 1 and S2 = 0.58 at 240 Hz; (b)
Cartesian “spin space” showing the time-evolution of Sx, Sy, and Sz. The initial spins are in the same
directions as in Fig. 4.22, while the initial radius is determined by Eq. (4.29). The corresponding
Lyapunov plot is shown in Fig. 4.29. There is little difference between the orbit (a) and the orbit in
Fig. 4.32(a), but there is a qualitative change in the spin behavior. Unlike the frequency transition
shown in Fig. 4.23, which gives a qualitative change in the evolution of the spatial variables, the
spin transition to chaos manifests itself primarily in the spin degrees of freedom.
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Figure 4.34: The natural logarithms of the longest ellipsoid axis r vs. t for a strongly chaotic
(20+10)M� configuration, for varying post-Newtonian terms. The initial spins (both maximal) are
S1 = (−0.935125, 0.329567, 0.130101)m2

1 and S2 = (0.039523,−0.54303,−0.838783)m2
2, while the

initial radius is r = 4.318 M , corresponding to fGW = 240 Hz; the other initial conditions are fixed
by the conditions for quasi circularity (Sec. 4.3.2). The final time is 50 times the inspiral time, and
the slopes of the lines are the Lyapunov exponents. In all cases, the Newtonian, 1PN, 2PN, and
spin-orbit terms are turned on, but some of the others may be turned off; from top to bottom (with
colors, visible in electronic versions of this chapter, noted parenthetically): all PN terms (black);
S1S1 and S2S2 turned off (cyan); S1S1 turned off (blue); S2S2 turned off (wiggly/red, nonchaotic);
S1S1, S2S2, and S1S2 turned off (straight/orange, nonchaotic).

4.6 Conclusions and future work

The dynamics of binary black holes, as modeled by the post-Newtonian equations, are significantly

affected by the presence of spin. In particular, the addition of spin terms to the post-Newtonian

equations of motion leads to significant changes in the orbital geometry and dynamical behavior of

the solutions. The effects of the spin terms are particularly clear on quasi-circular orbits, where the

interaction terms quadratic in the spin cause deviations from perfectly spherical orbits. We also find

that, in the extreme mass-ratio limit, the PN equations agree well with the Papapetrou equations,

for both eccentric and near-circular orbits.

We find that, for quasi-circular orbits, the presence of the interaction terms quadratic in the

spins leads to chaotic solutions for a variety of different parameter values, as indicated by positive

Lyapunov exponents. These exponents come in ±λ pairs, a reflection of the Hamiltonian nature of

the dynamics. We measure the strength of the chaos by comparing the e-folding timescale for chaotic

behavior (the inverse of the Lyapunov exponent) with the inspiral timescale. We find especially

strong chaos for high-frequency/low-radius orbits and high spins. By varying the frequency and spin

parameters, we find that a smooth change of parameters leads to an abrupt transition to chaos,

accompanied by qualitative changes in the solutions to the equations of motion.
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Despite the unambiguous presence of chaos, chaotic solutions are rare, occurring only for a small

percentage of initial conditions even at the highest frequencies and spins. Moreover, the “quasi-

circular” orbits producing positive Lyapunov exponents, which are not even approximately circular

due to the strong spin-spin coupling, have pericenters that are not small compared to M . In other

words, the equations of motion are chaotic only for orbits where the post-Newtonian approximation

(which requires r � M) is invalid. Finally, for the vast majority of the combinations of frequency

and spin—even those at high frequencies with maximal spins—chaos is entirely absent.

There are several natural directions for future work. The addition of the 3PN term to the Hamil-

tonian should help indicate whether the chaos discovered in this study is a result of a breakdown in

the equations themselves. It would also be valuable to generalize the survey of quasi-circular orbits to

eccentric orbits. Finally, a study of neutron star binaries that includes the spin-induced quadrupole

terms (calculated using a parameterized equation of state) would be useful for understanding these

important systems.
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[11] T. Damour and G. Schäfer, Nuov. Cimento 101, 127 (1988).

[12] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 62, 084011 (2000).
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Chapter 5

Lyapunov exponents in constrained
and unconstrained ODEs

Abstract

We discuss several numerical methods for calculating Lyapunov exponents (a quantitative measure

of chaos) in systems of ordinary differential equations. We pay particular attention to constrained

systems, and we introduce a variety of techniques to address the complications introduced by con-

straints. For all cases considered, we develop both deviation vector methods, which follow the

time-evolution of the difference between two nearby trajectories, and Jacobian methods, which use

the Jacobian matrix to determine the true local behavior of the system. We also assess the merits

of the various methods, and discuss assorted subtleties and potential sources of error.

5.1 Introduction

Chaos exists in a wide variety of nonlinear mathematical and physical systems, and ordinary differ-

ential equations are no exception. Since the original discovery by Edward Lorenz of deterministic

chaos in a toy atmosphere model (consisting of twelve differential equations) [1], a seemingly endless

variety of ODEs exhibiting extreme sensitivity to initial conditions has emerged. Many tools, both

qualitative and quantitative, have been developed to investigate this chaotic behavior. Perhaps the

most important quantitative measure of chaos is the method of Lyapunov exponents, which indicate

the average rate of separation for nearby trajectories. (See [2–7] for some recent investigations into

measures of chaos and their applications.) The present chapter is concerned with general methods

for calculating these exponents in arbitrary systems of ODEs. We first review the techniques for

calculating Lyapunov exponents in unconstrained systems [8, 9] (where each coordinate represents a

true degree of freedom), and then introduce several new methods for calculating Lyapunov exponents

in constrained systems (where there are more coordinates than there are degrees of freedom).
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A defining characteristic of a chaotic dynamical system is sensitive dependence on initial condi-

tions, and the Lyapunov exponents are a way of quantifying this sensitivity. In a system of ordinary

differential equations, this sensitive dependence corresponds to an exponential separation of nearby

phase-space trajectories: if two initial conditions are initially separated by a distance ε0, the total

separation grows (on average) according to

ε(t) = ε0 eλt, (5.1)

where λ is a positive constant (with units of inverse time) called the Lyapunov exponent. Two

important caveats to Eq. (5.1) are necessary. First, this prescription yields only the largest Lyapunov

exponent, but a dynamical system with n degrees of freedom has in general n such exponents.

Second, Eq. (5.1) does not constitute a rigorous definition, since it defines a true Lyapunov exponent

only if ε is “infinitesimal.” A more precise definition of Lyapunov exponents involves the true local

behavior of the dynamical system, i.e., the derivative or its higher-dimensional generalization.

We can go beyond Eq. (5.1) to determine (at least in principle) all n Lyapunov exponents by

considering not just one nearby initial condition, but rather a ball of initial conditions with radius ε0.

As discussed in Sec. 5.2, this ball evolves into an n-dimensional ellipsoid under the time-evolution

of the flow, and the lengths of this ellipsoid’s principal axes determine the Lyapunov exponents. We

will see that there are many advantages to this ellipsoid view, both conceptual and computational.

We discuss in Secs. 5.2 and 5.3 several techniques for calculating Lyapunov exponents in ODEs,

and compare the relative merits of the various methods. We take special care to explain methods for

the calculation of all n Lyapunov exponents. Our principal examples are two well-studied and simple

systems: the Lorenz equations (Sec. 5.2.4.1) and the forced damped pendulum (Sec. 5.2.4.2). The

techniques and code were developed and tested on the much more complex problem of spinning bodies

orbiting rotating (Kerr) black holes, as discussed briefly in Sec. 5.3.4 and at length in Chapters 2

and 3.

Our two model systems are unconstrained, so that each variable represents a true degree of

freedom. As we see in Sec. 5.3, following the evolution of a phase-space ellipsoid—and hence calcu-

lating the Lyapunov exponents—becomes problematic when the system is constrained. Such systems

are common in physics, with constraints arising for both mathematical and physical reasons. For

example, instead of using the angle θ to describe the position of a pendulum, we may find it math-

ematically convenient to integrate the equations of motion in Cartesian coordinates (x, y), with a

constraint on the value of x2 + y2. Another example is a spinning astronomical body, whose spin

is typically described by the components of its spin vector S = (Sx, Sy, Sz). On physical grounds,

we might wish to fix the magnitude ‖S‖ = S =
√

S2
x + S2

y + S2
z , so that only two of the three spin

components represent true degrees of freedom.
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We describe in Sec. 5.3 three methods for finding Lyapunov exponents in constrained systems.

Our principal example of a constrained system is the forced damped pendulum described in Cartesian

coordinates, a system chosen both for its conceptual simplicity and to facilitate comparison with the

same system without constraints. We also show the application of these techniques to the dynamics

of spinning compact objects in general relativity. It was the investigation of these constrained

systems in Chapter 2 that led to the development of the key ideas described in this chapter.

We have developed a general-purpose implementation of the principal algorithms in this chapter

in C++, which is available for download [10]. The user must specify the system of equations (and

a Jacobian matrix if necessary), as well as a few other parameters, but the main procedures are

not tied to any particular system. Most of the results in this chapter were calculated using this

implementation.

We use boldface to indicate Euclidean vectors, and the symbol log signifies the natural logarithm

loge in all cases. We refer to the principal semiaxes of an n-dimensional ellipsoid as “axes” or

“principal axes” for brevity.

5.2 Lyapunov exponents in unconstrained flows

There are two primary approaches to calculating Lyapunov exponents in systems of ordinary differ-

ential equations. The first method involves the integration of two trajectories initially separated by

a small deviation vector; we obtain a measure of the divergence rate by keeping track of the length

of this deviation vector. We refer to this as the deviation vector method. The second method uses a

rigorous linearization of the equations of motion (the Jacobian matrix) in order to capture the true

local behavior of the dynamical system. We call this the Jacobian method. Though computationally

slower, the Jacobian method is more rigorous, and also opens the possibility of calculating more than

just the principal exponent. In this section we discuss these two methods, and several variations on

each theme, in the context of unconstrained dynamical systems.

When discussing Lyapunov exponents in ordinary differential equations, it is valuable to have

both a general abstract system and a specific concrete example in mind. Abstractly, we write the

coordinates of the system as a single n-dimensional vector y that lives in the n-dimensional phase

space, and we write the equations of motion as a system of first-order differential equations:

dy
dt

= f(y). (5.2)

We will refer to a solution to Eq. (5.2) as a flow. As a specific example, consider the Lorenz system
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Figure 5.1: The Lorenz attractor. All initial conditions except the origin (which is an unstable
equilibrium) are attracted to the figure shown.

of equations:

ẋ = −σx + σy

ẏ = −xz + rx− y (5.3)

ż = xy − bz,

where σ, r, and b are constants. In the notation of Eq. (5.2), we then have y = (x, y, z) and

f(y) = (−σx + σy,−xz + rx− y, xy− bz). The Lorenz equations exhibit chaos for a wide variety of

parameter values; in this chapter, for simplicity we consider only one such set: σ = 10, b = 8/3, and

r = 28. For these parameter values, all initial conditions except the origin asymptote to the elegant

Lorenz attractor (Fig. 5.1).

5.2.1 The deviation vector method

The most straightforward method for calculating the largest Lyapunov exponent is to consider an

initial point y(1)
0 = y0 and a nearby point y(2)

0 = y0 + δy0, and then evolve both points forward,

keeping track of the difference δy ≡ y(2)−y(1). If the motion is chaotic, then exponential separation
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implies that

‖δy‖ = eλmaxt ‖δy0‖, (5.4)

so that the largest exponent is

λmax =
log [re(t)]

t
, (5.5)

where we write

re = ‖δy‖/‖δy0‖, (5.6)

with a subscript e that anticipates the ellipsoid axis discussed in Sec. 5.2.2.3. Here ‖ · ‖ denotes

the Euclidean norm (though in principle any positive-definite norm will do [11]). It is convenient

to display the results of this process graphically by plotting log [re(t)] vs. t, which we refer to as a

Lyapunov plot ; since Eq. (5.5) is equivalent to log [re(t)] = λmaxt, such plots should be approximately

linear, with slope equal to the principal Lyapunov exponent. (In practice, to extract the slope we

perform a least-squares fit to the simulation data, which is less sensitive to fluctuations in the value

of log [re(t)] than the ratio log [re(tf )]/tf at the final time.) We refer to this technique as the

(unrescaled) deviation vector method.

It is important to note that, because of the problem of saturation, Eq. (5.5) does not define

a true Lyapunov exponent. In a chaotic system, any deviation δy0, no matter how small, will

eventually saturate, i.e., it will grow so large that it no longer represents the local behavior of the

dynamical system. Moreover, chaotic systems are bounded by definition [in order to eliminate trivial

exponential separation of the form x(t) = x0 eλt], so there is some bound B on the distance between

any two trajectories. As a result, in the infinite time limit Eq. (5.5) gives

λmax = lim
t→∞

log ‖δy‖/‖δy0‖
t

≤ lim
t→∞

log B/‖δy0‖
t

= 0. (5.7)

In the näıve unrescaled deviation vector method, the calculated exponent is always zero because of

saturation.

One solution to the saturation problem is to rescale the deviation once it grows too large. For

example, suppose that we set ‖δy0‖ = ε for some small ε (say 10−8), and then allow the deviation

to grow by at most a factor of f . Then, whenever ‖δy‖ ≥ f ‖δy0‖, we rescale the deviation back

to a size ε and record the length Ri = ‖δy‖/‖δy0‖ of the expanded vector. If we perform N such

rescalings in the course of a calculation, the total expansion of the initial vector is then

re =
‖δyf‖
‖δy0‖

N∏
i=1

Ri, (5.8)

where δyf is the final size of the (rescaled) separation vector. Applying Eq. (5.5), we see that the
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Figure 5.2: Comparison of the unrescaled (light) and rescaled (dark) deviation vector methods for
calculating the principal Lyapunov exponent of the Lorenz system [Eq. (5.3)]. The slope of the
rescaled line is the Lyapunov exponent (λmax = 0.905±0.003; see Sec. 5.2.4.1). The initial deviation
is ‖δy0‖ = 10−8, and rescaling occurs (for the rescaled method) if ‖δy‖ ≥ 10−2. Note the saturation
of the unrescaled approach once the deviation has grown too large.

approximate Lyapunov exponent satisfies

λmax =
1
t

[
log
(
‖δyf‖
‖δy0‖

)
+

N∑
i=1

log Ri

]
. (5.9)

We refer to this as the (rescaled) deviation vector method.

The rescaled deviation vector method is not particularly robust compared to the rigorous method

described below (Sec. 5.2.2), and there are significant complications when applying it to constrained

systems, but if implemented with care it provides a fast and accurate estimate for the largest

Lyapunov exponent. Fig. 5.2 shows both the rescaled and unrescaled deviation vector methods

applied to the Lorenz system [Eq. (5.3)]. Note in particular the saturation of the unrescaled approach.

We discuss the limitations of the rescaled method further in Sec. 5.4.

5.2.2 The Jacobian method

Although the deviation vector method suffices for practical calculation in many cases, in essence it

amounts to taking a numerical derivative. For a one-dimensional function of one variable, we can

approximate the derivative at x = x0 using

f ′(x0) ≈
f(x0 + ε)− f(x0)

ε
, (5.10)
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for some ε � 1, but this prescription is notoriously inaccurate as a numerical calculation [12]. Of

course, it is better (if possible) to calculate the analytical derivative f ′(x) and evaluate it at x0. The

higher-dimensional generalization of this is the Jacobian matrix, which describes the local (linear)

behavior of a higher-dimensional function. In the context of a dynamical system, this means that we

can find the time-evolution of a small deviation δy using the rigorous linearization of the equations

of motion:

f(y + δy)− f(y) = Df · δy + O(‖δy‖2), (5.11)

where

(Df)ij =
∂fi

∂xj
(5.12)

is the Jacobian matrix evaluated along the flow. For example, for the Lorenz system [Eq. (5.3)] we

have

Df =


−σ σ 0

r − z(t) −1 −x(t)

y(t) x(t) −b

 , (5.13)

where we write the coordinates as functions of time to emphasize that Eq. (5.13) is different at each

time t.

5.2.2.1 Jacobian diagnostic

One note about Jacobian matrices is worth mentioning: practical experience has shown that errors

occasionally creep into the calculations leading to the Jacobian matrix, especially if the equations

of motion are complicated. It is therefore worthwhile to note that Eq. (5.11) provides an invaluable

diagnostic: calculate the quantity

∆ = f(y + δy)− f(y)−Df · δy (5.14)

for varying values of ‖δy‖; if ∆ does not generally scale as ‖δy‖2, then something is amiss. (The

routines in [10] include this important Jacobian diagnostic function.)

5.2.2.2 The principal exponent

The main value of Eq. (5.11) in the context of a dynamical system is its combination with Eq. (5.2)

to yield an equation of motion for the deviation δy:

f(y + δy) =
d

dt
(y + δy) = f(y) +

d(δy)
dt

, (5.15)
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Figure 5.3: The natural logarithm of the tangent vector length r1 ≡ ‖ξ(t)‖ vs. t for the Lorenz
system. The slope of the rescaled line is the system’s largest Lyapunov exponent (λmax ≈ 0.905).
The figure and exponent are virtually identical to the rescaled deviation method show in Fig. 5.2.

so that (discarding terms higher than linear order) Eq. (5.11) gives

d(δy)
dt

= Df · δy. (5.16)

This equation is only approximately true for finite (that is, non-infinitesimal) deviations, but we can

take the infinitesimal limit by identifying the deviation δy with an element ξ in the tangent space

at y. This leads to an exact equation for ξ:

dξ

dt
= Df · ξ. (5.17)

The initial value of ξ is arbitrary, but it is convenient to require that ‖ξ0‖ = 1, so that the factor

by which ξ has grown at some later time t is simply ‖ξ(t)‖.

The core of the Jacobian method for the principal Lyapunov exponent is to solve Eqs. (5.2)

and (5.17) as a coupled set of differential equations. As in Sec. 5.2.1, for chaotic systems the length

of the deviation vector will grow exponentially, so that

‖ξ(t)‖ ≈ eλmaxt, (5.18)

which implies that

λmax =
log ‖ξ(t)‖

t
. (5.19)

For sufficiently large values of t, Eq. (5.19) provides an approximation for the largest Lyapunov

exponent. It is essential to understand that there is no restriction on the length of the tangent
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Figure 5.4: The Lorenz system with an evolving ellipsoid. The ellipsoid is calculated exactly in the
tangent space (for a total time t = 0.4) and is superposed on the phase space for the purposes of
visualization. There is one expanding axis (∼ e0.905 t) and one contracting axis (∼ e−14.57 t); the
third axis has a fixed unit length (Sec. 5.2.4.1).

vector ξ: the Jacobian method does not saturate. The only limitation on the size of ξ in practice is

the maximum representable floating point number on the computer.

5.2.2.3 Ellipsoids and multiple exponents

Although following the time-evolution of a tangent vector ξ in place of a finite deviation δy solves the

problem of saturation, it still only allows us to determine the principal exponent λmax. For a system

with n degrees of freedom, this leaves n − 1 exponents undetermined. In order to calculate all n

exponents, we must introduce n tangent vectors. (We discuss the value of knowing all n exponents in

Sec. 5.2.3 below.) Since n (linearly independent) vectors span an n-dimensional ellipsoid, this leads

to a visualization of the Lyapunov exponents in terms of the evolution of a tangent space ellipsoid

(Fig. 5.4). Fig. 5.5 shows the corresponding Lyapunov plot.

The general method is to introduce a linearly independent set of vectors {ξ(1), ξ(2), . . . , ξ(n)}.

It is convenient to begin the integration with vectors that form the orthogonal axes of a unit ball,

so that the vectors {ξ(1)
0 , ξ

(2)
0 , . . . , ξ

(n)
0 } are orthonormal. Each of these tangent vectors satisfies its

own version of Eq. (5.17):
dξ(n)

dt
= Df · ξ(n). (5.20)
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Figure 5.5: The natural logarithms of all three of the ellipsoid axes ri vs. t for the Lorenz system,
calculated using the Jacobian method (Sec. 5.2.2). The slopes are the Lyapunov exponents. The
three lines correspond to the exponents λ1 ≈ 0.905, λ2 ≈ 0.0, and λ3 ≈ −14.57 (Sec. 5.2.4.1). These
values agree with the calculations in [9].

If we combine the n tangent vectors to form the columns of a matrix U, then Eq. (5.20) implies that

dU
dt

= Df ·U. (5.21)

This equation, combined with Eq. (5.2), describes the evolution of a unit ball into an n-dimensional

ellipsoid.

The value of the tangent space ellipsoid is this: if ri is the ith principal ellipsoid axis [and

ri(0) = 1], then

ri(t) = eλit, (5.22)

where λi is the ith Lyapunov exponent. That is, the ellipsoid’s axes grow (or shrink) exponentially,

and if λi > 0 for any i then the system is chaotic [11]. [Recall that we refer to the semiaxes as

“axes” for brevity (Sec. 5.1).] Turning Eq. (5.22) around, we can find the ith Lyapunov exponent

by finding the average stretching (or shrinking) per unit time of the ith principal ellipsoid axis:

λi ≈
log [ri(t)]

t
. (5.23)

In practice, a more robust prescription is to record log [ri(t)] as a function of t and perform a

least-squares fit to the pairs (tj , log [ri(tj)]) to find the slope λi.

Though Eq. (5.23) provides an estimate for the ith Lyapunov exponent, it requires us to find

the n principal axes of the final ellipsoid. While it is true that the columns of the final matrix Uf

necessarily span an ellipsoid, but they are not in general orthogonal; in particular, the final tangent
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vectors do not necessarily coincide with the ellipsoid’s principal axes. A first step in extracting these

axes is to note an important theorem in linear algebra (see [9] for a proof):

Theorem 1 Let A be an n × n real matrix consisting of n linearly independent column vectors

{vi}n
i=1, and let {s2

i }n
i=1 be the eigenvalues and {ui}n

i=1 the normalized eigenvectors of AT A (where

AT is the transpose of A). Then {vi}n
i=1 lie on an n-dimensional ellipsoid whose principal axes are

{si ui}n
i=1.

In other words, finding the principal axes of the ellipsoid represented by a matrix A is equivalent to

finding the eigensystem of AT A. (We note that the ellipsoid is unique: any other matrix B whose

columns {wi}n
i=1 lie on the same ellipsoid as {vi}n

i=1 must necessarily give the same principal axes.)

In principle, we are done: simply evolve U for a long time, and find the eigenvalues of UT U.

In practice, this fails miserably; every (generic) initial vector ξ
(i)
0 has some component along the

direction of greatest stretching, so all initial tangent space vectors eventually point approximately

along the longest principal axis. As a result, all axes but the longest one are lost due to finite floating

point precision.

The solution is to find new orthogonal axes as the system evolves. In other words, we can let

the system evolve for some time T , stop to calculate the principal axes of the evolving ellipsoid,

and then continue the integration. The method we advocate is the Gram-Schmidt orthogonalization

procedure, which results in an orthogonal set of vectors spanning the same volume as the original

ellipsoid, and with directions that converge to the true ellipsoid axes. This approach, originally

described in [13], is a common textbook approach [8, 9], and was used successfully in Chapter 2.

Numerically, the Gram-Schmidt algorithm is subject to considerable roundoff error [12], and is

usually considered a poor choice for orthogonalizing vectors, but in the context of dynamics its

performance has proven to be astonishingly robust. (See Sec. 5.4 for further discussion.)

We review briefly the Gram-Schmidt construction, and then indicate its use in calculating Lya-

punov exponents. Given n linearly-independent vectors {ui}, the Gram-Schmidt procedure con-

structs n orthogonal vectors {vi} that span the same space, given by

vi = ui −
i−1∑
j=1

ui · vj

‖vj‖2
vj . (5.24)

To construct the ith orthogonal vector, we take the ith vector from the original set and subtract off

its projections onto the previous i−1 vectors produced by the procedure. The use of Gram-Schmidt

in dynamics comes from observing that the resulting vectors approximate the axes of the tangent

space ellipsoid. After the first time T , all of the vectors point mostly along the principal expanding

direction. We may therefore pick any one as the first vector in the Gram-Schmidt algorithm, so

choose ξ1 ≡ u1 without loss of generality. If we let ei denote unit vectors along the principal axes
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and let ri be the lengths of those axes, the dynamics of the system guarantees that the first vector

u1 satisfies

u1 = r1e1 + r2e2 + · · · ≈ r1e1 ≡ v1

since e1 is the direction of fastest stretching. The second vector v2 given by Gram-Schmidt is then

v2 = u1 −
u1 · v1

‖v1‖2
v1 ≈ u1 − r1e1 = r2e2,

with an error of order r2/r1. The procedure proceeds iteratively, with each successive Gram-Schmidt

step (approximately) subtracting off the contribution due to the previous axis direction. In principle,

the system should be allowed to expand to a point where r2 � r1, but (amazingly) in practice the

Gram-Schmidt procedure converges to accurate ellipsoid axes even when the system is orthogonalized

and even normalized on timescales short compared to the Lyapunov stretching timescale. As a result,

the procedure below can be abused rather badly and still give accurate results (Sec. 5.4).

5.2.2.4 The algorithm in detail

We summarize here the method used to calculate all the Lyapunov exponents of an unconstrained

dynamical system ẏ = f(y) with n degrees of freedom:

1. Construct an orthonormal matrix U0 whose columns (the initial tangent vectors) span a unit

ball, and then integrate

ẏ = f(y) (5.25)

and

U̇ = Df ·U (5.26)

as a coupled set of 2n differential equations. We recommend choosing a random initial ball for

genericity.

2. At various times tj , replace U with the orthogonal axes of the ellipsoid defined by U, using

the Gram-Schmidt orthogonalization procedure. This can be done either every time T , for

some suitable choice of T , or every time the integrator takes a step. We have found the latter

prescription to be especially robust in practice.

3. If the length of any axis exceeds some very large value (say, near the maximum representable

floating point value), normalize the ellipsoid and record the axis lengths

R
(k)
i (ith axis at kth rescaling) (5.27)

at the rescaling time. Do the same if any axis is smaller than some very small number.
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Figure 5.6: Closeup of Fig. 5.5, showing the natural logarithms of the two largest ellipsoid axes
vs. t for the Lorenz system, calculated using the Jacobian method (Sec. 5.2.2). The slopes are
the Lyapunov exponents. The plot for the larger axis closely matches the figures for the rescaled
deviation vector method (Fig. 5.2) and the single tangent vector Jacobian method (Fig. 5.3).

4. Record the value of

log r
(j)
i = log [Li(tj)] +

kmax∑
k=1

log R
(k)
i (5.28)

at each time tj , where Li is the ith principal axis length. The second term accounts for

the axis lengths at the kmax rescaling times. Note that if tj is a rescaling time itself, then

log [Li(tj)] = log 1 = 0, since by construction the ellipsoid has been normalized back to a unit

ball.

5. After reaching the final number of time steps N , perform a least squares fit on the pairs

(tj , log r
(j)
i ) to find the slopes λi. Since

log [ri(t)] ≈ λit, (5.29)

the slope λi is the Lyapunov exponent corresponding to the ith principal axis. Using the

Gram-Schmidt procedure should result in the relationship λ1 > . . . > λn.

Most of the value of calculating λi for i > 1 comes from having all n of the exponents (Sec. 5.2.3

below). Nevertheless, it is worth noting that the algorithm works for any value 0 < m ≤ n, so the

method above can be used without alteration to find an arbitrary number of exponents. Fig. 5.6

shows the axis growth for m = 2 in the Lorenz system, while Fig. 5.5 shows the growth for m = n = 3.
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5.2.3 The value of multiple exponents

Calculating all the exponents of a system of differential equations allows us to paint a more complete

picture of the dynamics in several different ways. In particular, with all n exponents comes the ability

to visualize the entire phase space ellipsoid (instead of just its principal axis), as in Fig. 5.4. Another

important benefit of knowing all the exponents is a determination of dissipative or conservative

behavior. Conservative flows preserve phase space volumes, while dissipative flows contract volumes.

Geometrically, the volume V of an ellipsoid is proportional to the product of its principal axes {ri},

so that the ratio of the final to the initial volume is

Vf

V0
=
∏

i

ri, (5.30)

assuming that the initial volume is a unit ball. For dissipative systems, phase space volumes in

general contract exponentially according to

Vf

V0
= e−Λt, (5.31)

where Λ is a positive constant. Combining Eq. (5.30) and Eq. (5.31) yields

Λ = − log
(

Vf

V0

)
= − log

(∏
i

ri

)
= −

∑
i

log ri = −
∑

i

λi, (5.32)

where the λi are the Lyapunov exponents. In other words, the phase space volume contraction

constant Λ is equal to minus the sum of the Lyapunov exponents.

If the Lyapunov exponents sum to zero, then the contraction factor vanishes, and volumes are

conserved—i.e., the system is conservative. The special case of Hamiltonian systems is of particular

interest, since the equations of motion for many mechanical systems can be derived from a Hamil-

tonian. The Hamiltonian property strongly constrains the Lyapunov exponents, which must cancel

pairwise: to each exponent +λ there corresponds a second exponent −λ [11]. Several examples of

this ±λ property of Hamiltonian systems appear below.

Having all the Lyapunov exponents also allows us to verify that there is at least one vanishing

exponent, corresponding to motion tangent to the flow, which must be the case for any chaotic

system. (See Ref. [9] for a proof.) Since we have finite numerical precision, we do not expect to find

any exponent to be identically zero, but some exponent should always be close to zero. A practical

criterion for “close to zero” is to compute error estimates for the least-squares fits advocated in

Sec. 5.2.2.4; an exponent is “close to zero” if it is zero to within the standard error of the fit.

Applications of this method appear in Sec. 5.2.4.1 and Sec. 5.2.4.2 below. It is worth noting that the

fitting errors are not the dominant source of variance in calculating Lyapunov exponents; variations
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in the initial conditions and initial deviation vectors contribute more to the uncertainty than errors

in the fits. See Sec. 5.2.4.1 for further discussion.

One final note deserves mention: the statement that Λ = −
∑

i λi is equivalent to a theorem due

to Liouville [9], which relates the volume contraction to the trace of the Jacobian matrix:

Vf

V0
= exp

(∫ t

0

TrDf(t) dt

)
, (5.33)

where again we assume that V0 corresponds to a unit ball. If the trace of the Jacobian matrix

happens to be time-independent, then this yields

Vf

V0
= exp [(TrDf) t], (time-independent trace) (5.34)

so that Eq. (5.32) gives Λ = −TrDf . In this special case, we can perform a consistency check by

verifying that ∑
i

λi = TrDf . (time-independent trace) (5.35)

5.2.4 Examples

5.2.4.1 The Lorenz system

Following the phase space ellipsoid allows us to visualize the dynamics of the Lorenz system in an

unusual way. Fig. 5.4 shows the Lorenz attractor together with the phase space ellipsoid for a short

amount of time (tf = 0.4). The initial ball is evolved using Eq. 5.21, so it represents the true tangent

space evolution, which is then superposed on the Lorenz phase space (x, y, z). It is evident that the

initial ball is stretched in one direction and flattened in another, as well as rotated. (As we shall see,

the third direction is neither stretched nor squeezed, corresponding to the zero exponent discussed

in Sec. 5.2.3.)

By recording natural logarithms of the ellipsoid axes as the system evolves, we can obtain nu-

merical estimates for the Lyapunov exponents, as discussed in Sec. 5.2.2.4. A plot of log [ri(t)]

vs. t appears in Fig. 5.5 for a final time tf = 50, with the slopes giving approximate values for the

exponents. Using a tf = 5000 integration for greater accuracy yields the estimates

λ1 = 0.905± 9× 10−6

λ2 = 1.5× 10−6 ± 1.7× 10−6 (5.36)

λ3 = −14.57± 9× 10−6

for the parameter values σ = 10, b = 8/3, and r = 28. The ± values are the standard errors on the

least-squares fit of log [ri(t)] vs. t. One of the exponents is close to zero (as required for a flow) in
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the sense of Sec. 5.2.3: the error in the fit not small compared to the exponent. [In the case shown

in Eq. (5.36), the “error” is actually larger than the exponent.] The other two exponents are clearly

nonzero, with the positive exponent indicating chaos.

As mentioned briefly in Sec. 5.2.3, the largest source of variance in calculating Lyapunov expo-

nents is variations in the initial conditions, not errors in the least-squares fits used to determine the

exponents. We express the exponents in the form

λ̄± σ√
N

, (5.37)

where

λ̄ =
1
N

N∑
j=1

λ(j) (5.38)

is the sample mean and

σ =

√√√√ 1
N − 1

N∑
j=1

(
λ(j) − λ̄

)2 (5.39)

is the standard deviation. For the Lorenz system, using a final integration time of tf = 5000 for

N = 50 random initial balls [all centered on the same initial value of (x0, y0, z0)] gives

λ1 = 0.9053± 4.1× 10−4

λ2 = −4.5× 10−6 ± 7.6× 10−7 (5.40)

λ3 = −14.5720± 4.1× 10−4

The values of the error are much greater than the standard errors associated with the least-squares

fit for the slope for any one trial. As expected, it is evident that λ2 is consistent with zero.

There is a strongly expanding direction and a very strongly contracting direction in the Lorenz

system, and the volume contraction constant Λ is large: Λ = −
∑

i λi = 13.67, so that after a

time t = 5000 the volume is an astonishingly small 6.75× 10−29674. This is despite the exponential

growth of the largest principal axis, which grows in this same time to a length 1.52 × 101965; the

volume nevertheless contracts, since the smallest axis shrinks to 4.44 × 10−31639 in the same time.

We note that the periodic renormalization and reorthogonalization of the ellipsoid axes is absolutely

essential from a numerical perspective, since these axis lengths are far above and below the floating

point (double precision) limits of xmax ≈ xmin−1 ≈ 10308 on a typical IEEE-compliant machine [12].

The Lorenz system affords an additional check on the numerically determined exponents: the

trace of the Jacobian matrix [Eq. (5.13)] is time-independent, so the exponents should satisfy

Eq. (5.35): ∑
i

λi = −13.67 ?= TrDf = −(σ + 1 + b) = −41
3
≈ −13.67. (5.41)
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Figure 5.7: θ vs. t for the forced damped pendulum [Eq. (5.42)].

Eq. (5.35) is thus well satisfied.

5.2.4.2 The forced damped pendulum

We turn now to our second principal example of a chaotic dynamical system, the forced damped

pendulum (FDP). This is a standard pendulum with damping and periodic forcing; written as a

first-order ODE, our equations are as follows:

θ̇ = ω

ω̇ = −c ω − sin θ + ρ sin t (5.42)

ṫ = 1

Here c is the damping coefficient and ρ is the forcing amplitude, and the gravitational acceleration g

and pendulum length ` are set to one for simplicity. We include the equation ṫ = 1 so that the system

is autonomous (i.e., we remove the explicit time-dependence by treating time as a dynamical variable

with unit time derivative). In addition to being an example with transparent physical relevance (in

contrast to the Lorenz system), the forced damped pendulum, in slightly altered form, serves as a

model constrained system in Sec. 5.3 below.

The forced damped pendulum is chaotic for many values of c and ρ. For simplicity, in the present

case we fix c = 0.1 and ρ = 2.5. A plot of θ vs. t shows the system’s erratic behavior (Fig. 5.7),

but a more compelling picture of the dynamics comes from a time-2π stroboscopic map. A time-T

map involves taking a snapshot of the system every time T and then plotting ω vs. θ. Since the

forcing term in Eq. (5.42) is 2π-periodic, this provides a natural value for T in the present case. The

resulting plot shows the characteristic folding and stretching of a fractal attractor (Fig. 5.8), which
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Figure 5.8: ω vs. θ: the time-2π stroboscopic map for the forced damped pendulum. A point
(ω = θ̇, θ) is plotted every time 2π, resulting in a fractal attractor characteristic of dissipative chaos.

for the FDP attracts almost all initial conditions [9].

The forced damped pendulum is dissipative and strongly chaotic. We calculate the Lyapunov

exponents (Fig. 5.9) using the Jacobian matrix:

Df =


0 1 0

− cos θ − c ρ cos t

0 0 0

 , (5.43)

The Lyapunov exponents are (for a tf = 5× 104 integration)

λ1 = 0.160± 7× 10−6

λ2 = 8× 10−8 ± 1× 10−7 (5.44)

λ3 = −0.262± 7× 10−6

where the error terms are the standard errors in the least-squares fit for the slope. (See Sec. 5.4

and especially Table 5.1 for the true errors due to varying initial deviations.) One exponent is

consistent with zero (as required for a flow) to within the error of the fit. The dissipation constant

is Λ = −
∑

i λi = 0.1. The trace of the Jacobian matrix is time-independent, so that TrDf = −c,

and indeed
∑

i λi = −0.1 = −c = TrDf as predicted by Eq. 5.35.

The zero exponent in the FDP is associated with the time “degree of freedom” in the Jacobian: if

we delete the final row and column of the Jacobian matrix, only the positive and negative exponents

remain (see, e.g., Fig. 5.13 below). Since the time is not an actual dynamical variable, for the

remainder of this chapter we will suppress this “time piece,” but it is important to note that the
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Figure 5.9: The natural logarithms of all three of the ellipsoid axes ri vs. t for the forced damped pen-
dulum, calculated using the Jacobian method (Sec. 5.2.2). The slopes are the Lyapunov exponents.
The three lines correspond to the exponents λ1 = 0.160±0.0049, λ2 = 0.0, and λ3 = −0.262±0.0053
(Sec. 5.4 and Table 5.1).

time dependence is absolutely crucial to the presence of chaos. According to the Poincaré-Bendixon

theorem [9], an autonomous system of differential equations with fewer than three degrees of freedom

cannot be chaotic. We will treat the FDP system as a time-dependent system with two degrees of

freedom, but the extra equation ṫ = 1 in the autonomous formulation is what creates the potential

for chaos.

An instructive case to consider is the limit c = ρ = 0. In this limit, the system is a simple

pendulum, which is a Hamiltonian system. A simple pendulum is not chaotic, of course, and both

its Lyapunov exponents are zero, but the Hamiltonian character of the system nevertheless shows

up in the ±λ property discussed above (Sec. 5.2.3): numerically, the exponents approach zero in a

symmetric fashion, as shown in Fig. 5.10.

5.3 Lyapunov exponents in constrained flows

We come now to the raison d’être of this chapter, namely, the calculation of Lyapunov exponents for

constrained systems. For pedagogical purposes, our primary example is the forced damped pendulum

with the position written in Cartesian coordinates. In addition to this instructive example, we also

discuss two constrained systems of astrophysical interest, involving the orbits of spinning compact

objects such as neutron stars or black holes (see, e.g., Chapters 2 and 3 and references therein).

Written in terms of the Cartesian coordinates (x, y) = (cos θ, sin θ), the equations of motion for
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Figure 5.10: The natural logarithms of the ellipsoid axes ri vs. t for the forced damped pendulum
in the limit of zero dissipation and zero forcing (i.e., a simple pendulum). The Lyapunov exponents
are zero, and the distance between nearby trajectories grows linearly (leading to logarithmic growth
in this log plot). Nevertheless, the Hamiltonian character of the system is manifest in the ±λ
symmetry: for each exponent +λ, there is a corresponding exponent −λ. In the nonchaotic limiting
case shown here, the Lyapunov exponents approach zero symmetrically.

the FDP [Eq. (5.42)] become (upon suppressing the time piece)

ẋ = −ωy

ẏ = ωx (5.45)

ω̇ = −c ω − y + ρ sin t

For a pendulum with unit radius, the Cartesian coordinates of the pendulum satisfy the constraint

x2 + y2 = 1. (5.46)

Although it is certainly possible to use (ẋ, ẏ) in the equations of motion, along with (x, y), this is

an unnecessary complication; in order to keep the equations as simple as possible, we retain the

variable ω in the equations of motion.

Developing the techniques for solving constrained systems using this toy example has several

advantages. The equations of motion and the constraint are extremely simple, which makes it easy

to see the differences between the constrained and unconstrained cases. In addition, the constraint

is easy to visualize, and yet it captures the key properties of much more complicated constraints.

Finally, since we have already solved the same problem in unconstrained form, it is easy to verify

that the techniques of this section reproduce the results from Sec. 5.2.4.2.
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5.3.1 Constraint complications

To see how constraints complicate the calculation of Lyapunov exponents, consider an implementa-

tion of the deviation vector approach (Sec. 5.2.1). In the unconstrained forced damped pendulum,

given an initial condition, we would construct a deviated trajectory separated by a small angle δθ

(and a small velocity δω). In the constrained version, a näıve implementation would use a deviated

trajectory with spatial coordinates x + δx and y + δy, where δy = (δx, δy) is a small but otherwise

arbitrary deviation vector. But the deviations are not independent; the deviated initial condition

must satisfy the constraint:

(x + δx)2 + (y + δy)2 = 1. (5.47)

To lowest order in δx, we must have δy = −(x/y) δx.

We can now consider a more general case. Suppose there are k constraints, which we write as

a k-dimensional vector equation C(y) = 0. (In our example, C has only one component: with

y = (x, y, ω), we have C1(y) = x2 + y2 − 1 = 0.) Then if a point y satisfies the constraints, the

deviated trajectory must satisfy them as well:

C(y + δy) = 0. (5.48)

We will refer such a δy as a constraint-satisfying deviation.

Let us outline one possible method for constructing such a constraint-satisfying deviation. Let n

be the number of phase space coordinates (n = 3 for the constrained forced damped pendulum

model). Consider an n-dimensional vector ỹ0 that has d nonzero entries, where d represents the

true number of degrees of freedom (d = 2 for the constrained FDP). Assume that we have some

method for constructing from ỹ0 an n-dimensional initial condition y0 that satisfies the constraints.

For example, we could specify the initial values of x and ω, and then derive an initial value of y

using y =
√

1− x2 (or y = −
√

1− x2; more on this later). Now consider an n-dimensional vector

ỹ′0 = ỹ0 + δỹ0, which adds arbitrary deviations to d degrees of freedom. We can then use the same

method as above to find y′0 from ỹ′0, and then set

δy0 = y′0 − y0 (5.49)

to arrive at a constraint-satisfying deviation.

5.3.2 Constrained deviation vectors

Having determined δy0 by Eq. (5.49) (or by some other method), we can immediately apply the

unrescaled deviation vector approach: simply track y′ and y as the two trajectories evolve, and
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Figure 5.11: Comparison of the unrescaled (light) and rescaled (dark) constrained deviation vector
methods for calculating the principal Lyapunov exponent of the constrained forced damped pendu-
lum (Sec. 5.3.2.1). The slope of the rescaled line is the Lyapunov exponent, λ1 = 0.161 ± 0.0046
(Sec. 5.4). The initial deviation is ‖δy0‖ = 10−6, and rescaling occurs (for the rescaled method) if
‖δy‖ ≥ 10−2, which happens 4 times in this figure. As in Fig. 5.2, the unrescaled approach saturates
once the deviation has grown too large.

monitor the length of δy = y′ − y. Since the equations of motion preserve the constraint, the

resulting δy is always constraint-satisfying. The only subtlety is using a restricted norm to eliminate

the extra degrees of freedom; for example, the restricted FDP norm is

‖δy‖r =
√

δx2 + δω2 (5.50)

if we choose to eliminate the y degree of freedom. Since δy ≈ −(x/y) δx, using the full Euclidean

distance would add the term δy2 = (x2/y2) δx2 to the expression under the square root, leading to

an overestimate for the principal exponent. The restricted norm avoids this problem by considering

only true degrees of freedom.

5.3.2.1 Rescaling for constrained systems

In contrast to the simplicity of the unrescaled method, the rescaled deviation vector method requires

great care, since a carelessly rescaled deviation is not constraint-satisfying: C(y + δy/r) 6= 0 for

a rescaling factor r 6= 1. In this case, it is necessary to extract δỹ from δy and then rescale it

back to its initial size ‖δỹ0‖ using the restricted norm. By reapplying the procedure leading to

Eq. (5.49), we then find a new (rescaled) constraint-satisfying δy that satisfies ‖δy‖r = ‖δỹ0‖. In

this case, it is essential that the new deviation vector have the same constraint branches as the old

one. For example, suppose that in the FDP case the value of y is negative before the rescaling.

When calculating a new y′ to arrive at the rescaled deviation δy, it is then essential to choose
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Figure 5.12: The natural logarithm of the tangent vector length r1 ≡ ‖ξ(t)‖r vs. t for the constrained
forced damped pendulum, using a constraint-satisfying tangent vector (Sec. 5.3.2.2). We use the
restricted norm ‖·‖r to calculate phase space distances (see text). Compare to Fig. 5.9 (unconstrained
Jacobian method) and Fig. 5.11 (constrained deviation vector method).

the negative branch in the equation y′ = ±
√

1− x′2. The result of implementing this constrained

deviation vector method to the forced damped pendulum appears in Fig. 5.11.

5.3.2.2 A Jacobian method for the largest exponent

The method outlined above for unrescaled deviation vectors leads to a remarkably simple implemen-

tation of the single tangent vector Jacobian method. Given a constraint-satisfying deviation δy0,

set

ξ0 = δy0/‖δy0‖r, (5.51)

where ‖·‖r is a restricted norm on the d true degrees of freedom. We refer to such a ξ as a constraint-

satisfying tangent vector. Since the equations of motion preserve the constraints, we can evolve this

tangent vector using Eq. (5.17). The Jacobian method does not saturate, so we need only rescale

if ‖ξ‖r approaches the floating point limit of the computer. We can then use a procedure based on

the rescaled deviation method to find a new (rescaled) constraint-satisfying tangent vector, but this

is typically unnecessary since by the time the floating point limit has been reached we already have a

good estimate of the principal Lyapunov exponent. The resulting Lyapunov plot for the constrained

FDP appears in Fig. 5.12.

5.3.2.3 Ellipsoid constraint complications

We now have three methods at our disposal for calculating the largest Lyapunov exponent, but for d

degrees of freedom there are d exponents. What of these other exponents? Here we find an essential
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difficulty in implementing the ellipsoid method described in Sec. 5.2.2.3. The core problem is this:

the tangent vectors must be orthogonalized in order to extract all d principal ellipsoid axes, but

at the same time each tangent vector must be constraint-satisfying. Simply put, it is impossible in

general to satisfy the requirements of orthogonality and constraint satisfaction simultaneously.

We present here two different solutions to this problem, which we will refer to as the restricted

Jacobian method and the constrained ellipsoid method.

5.3.3 Restricted Jacobian method

The most natural response to a system with more coordinates n than degrees of freedom d is to

eliminate the spurious degrees of freedom using the constraints. Unfortunately, this procedure is

often difficult in practice: solving the constraint equations may involve polynomial or transcendental

equations that have no simple closed form. Even for the simple case of the FDP, the sign ambiguity

in y = ±
√

1− x2 makes a simple variable substitution impractical. Fortunately, such substitutions

are unnecessary: since the equations of motion preserve the constraints, there is no need in general

to eliminate n− d coordinates. In fact, constraints can be a virtue, since they can be used to check

the accuracy of the integration.

The same cannot be said of the Jacobian matrix. As argued above, the extra degrees of freedom

lead to fundamental difficulties in applying the Jacobian method for finding Lyapunov exponents;

constraints, far from being a virtue, are a considerable complication. In contrast to the equations

of motion, though, it is relatively straightforward to eliminate the spurious degrees of freedom. The

trick is to write a restricted d× d Jacobian matrix, with entries only for d coordinates.

An example should make this clear. For the FDP system in constrained form, we wish to

eliminate one degree of freedom in the Jacobian matrix, and we can choose to eliminate either x

or y. Choosing the latter, the Jacobian becomes

Df =

 ∂ẋ
∂x

∂ẋ
∂ω

∂ω̇
∂x

∂ω̇
∂ω

 , (5.52)

where we have suppressed the derivatives with respect to the “time degree of freedom” (as discussed

in Sec. 5.2.4.2). The term to focus on here is ∂ẋ/∂x, which seems to be zero a priori since ẋ = −ωy,

but this is only true if we treat x and y as independent. Since we are eliminating the y degree of

freedom, we cannot treat them as independent; y has a nonzero derivative with respect to x, so that

∂ẋ

∂x
= −ω

∂y

∂x
. (5.53)

If we find ∂y/∂x using y = ±
√

1− x2, we have exactly the same sign ambiguity problem that we

had in trying to eliminate the y degree of freedom in the equations of motion. The difference here
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Figure 5.13: The natural logarithms of both ellipsoid axes for the constrained forced damped pen-
dulum, calculated using the restricted Jacobian method (Sec. 5.3.3). The slopes are the Lyapunov
exponents. The results agree well with the unconstrained case (Fig. 5.9 and Table 5.1).

is that we need only the derivative of y, not an explicit solution for y in terms of x, and this we can

achieve by differentiating the constraint:

0 =
∂

∂x
(x2 + y2) = 2x + 2y

∂y

∂x
⇒ ∂y

∂x
= −x

y
. (5.54)

If we integrate the equations of motion using the variables (x, y, ω), then we have the value of y

at any particular time, and we never need deal with the sign ambiguity. Using the same trick to

calculate ∂ω̇/∂x, we can write the restricted Jacobian as

Df =

 ω
x

y
− y

x

y
−c

 (5.55)

We now proceed exactly as in the unconstrained Jacobian method, using the restricted Jacobian

to calculate the evolution of the initial tangent space ball. Since we deal only with a number of

coordinates equal to the true number of degrees of freedom, the constraints are not a consideration,

and we can reorthogonalize exactly as before.

The general case is virtually the same. For n coordinates and d degrees of freedom, there must

be m = n− d constraint equations of the form

Ck(y) = 0 (5.56)

for k = 1 . . .m. We must choose which d coordinates to keep in the Jacobian matrix, eliminating m
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Figure 5.14: The orbit of a spinning relativistic binary, calculated using the post-Newtonian equa-
tions of motion. The equations model two spinning bodies, but we use an effective one-body approach
to reduce the dynamics to the motion of one body. Distances are measured in terms of GM/c2, where
M = m1 + m2 is the total mass of the system. For a pair of black holes, each with 10 times the
mass of the Sun, the length unit is GM/c2 = 20 GM�/c2 = 30 km.

coordinates in the process. By differentiating the constraints, we arrive at m linear equations for

the derivatives of the m eliminated coordinates in terms of the n variables:

∂Ck

∂yj
= 0, (5.57)

where j ranges over the indices of the eliminated coordinates (j = 2, corresponding to y, for the

FDP). Since these are linear equations, they are both easy to solve and do not suffer from any sign

or branch ambiguities. The d × d Jacobian matrices that result allow the calculation of Lyapunov

exponents with all the robustness of the Jacobian method for unconstrained systems.

We considered the constrained forced damped pendulum for purposes of illustration, but it is

admittedly artificial. A more realistic example is shown in Fig. 5.14, which illustrates the dynamics

of two spinning black holes with comparable masses. (Such systems are of considerable interest for

ground-based gravitational wave detectors such as the LIGO project.) The equations of motion come

from the Post-Newtonian (PN) expansion of full general relativity—essentially, a series expansion in

the dimensionless velocity v/c, where the first term is ordinary Newtonian gravity and the higher-

order terms are post-Newtonian corrections (see, e.g., [14–16]). The constraint comes from the spins

of the black holes: it is most natural to think of the spin as having two degrees of freedom (a fixed

magnitude with two variable angles specifying the location on a sphere), but the equations of motion

use all three components of each hole’s spin. We apply the methods described above to eliminate
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Figure 5.15: The natural logarithms of the ellipsoid axes ri vs. t for the system shown in Fig. 5.14.
Time is measured in units of GM/c3, where M = m1 + m2 is the total mass of the system. For two
10 solar-mass black holes, the time unit is GM/c3 = 20 GM�/c3 = 10−4 s. The spin magnitudes
are fixed, so that each spin vector represents only two true degrees of freedom. We deal with
this constraint by using the restricted Jacobian method (Sec. 5.3.3). Two nonzero exponents are
clearly visible, but all the others are consistent with zero. Note the ±λ symmetry characteristic of
Hamiltonian systems.

one of the spin degrees of freedom for each black hole, using the constraints

S2
x,i + S2

y,i + S2
z,i = S2

i = const., i ∈ {1, 2}. (5.58)

Using the effective one-body approach [14], a priori the system has 12 degrees of freedom: three each

for relative position x, momentum p, and the spins S1 and S2. Eliminating two spin components

leaves 10 true degrees of freedom. As a result, the system has 10 Lyapunov exponents, as shown in

Fig. 5.15; note in particular the ±λ symmetry characteristic of Hamiltonian systems.

5.3.4 Constrained ellipsoid method

The restricted Jacobian method relies on eliminating spurious degrees of freedom from the Jacobian

matrix, but such a prescription relies on making a choice—namely, which coordinates to eliminate.

Each choice results in a different Jacobian matrix. Since calculating the Jacobian matrix even once

can be a formidable task for sufficiently complicated systems, it is valuable to have a method that

uses the full Jacobian—treating all coordinates as independent—which can be calculated once and

then never touched again. This requirement leads to the constrained ellipsoid method, which uses

the full Jacobian matrix to evolve constraint-satisfying tangent vectors, collectively referred to as

a “constrained ellipsoid.” When recording ellipsoid axis growth, we extract from each vector a

number of components equal to the true number of degrees of freedom, resulting in vectors that can
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Figure 5.16: The natural logarithms of both ellipsoid axes ri vs. t for the constrained forced damped
pendulum, calculated using the constrained ellipsoid method (Sec. 5.3.4). The slopes are the Lya-
punov exponents. The results agree well with the unconstrained case (Fig. 5.9 and Table 5.1).

be orthogonalized and (if necessary) normalized just as in the unconstrained case.

A detailed description of the constrained ellipsoid algorithm appears below, but we first present

an important prerequisite: calculating constraint-satisfying tangent vectors. Let a tilde denote a

vector with dimension d equal to the true number of degrees of freedom (as in Sec. 5.3.1). We

construct a full tangent vector ξ (with n components) from a d-dimensional vector ξ̃ at a point y

on the flow as follows:

1. Let ỹ′ = ỹ + εξ̃ for a suitable choice of ε.

2. Fill in the missing components of ỹ′ using the constraints to form y′ as in Sec. 5.3.1.

3. Infer the full tangent vector ξ using

ξ =
y′ − y

ε
. (5.59)

Setting the initial conditions is now simple: form a random d×d matrix, orthonormalize it, and then

infer the full d× n matrix using the method above on each column. The construction of constraint-

satisfying tangent vectors described above is also necessary in the reorthogonalization steps of the

constrained ellipsoid method.

The full method is an adaptation of the Jacobian method from Sec. 5.2.2.4:

1. Construct a random d×d matrix and orthonormalize it to form a unit ball. Use the constraints

to infer the full d× n matrix U.

2. Evolve the system forward using the equations of motion and the evolution equation for U,

U̇ = Df ·U. (5.60)
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3. At each time T , extract the relevant eight components from each tangent vector to form a

d×d ellipsoid, orthonormalize it, and then fill in the missing components using the constraints,

yielding again a d×n matrix. The restricted norms of the d tangent vectors contribute to the

running sum for the logs of the ellipsoid axes [Eq. (5.28)].

It is important to note that, unlike the other Jacobian methods, rescaling every time time T (or

some similar method) is required for the inference equation [Eq. (5.59)], since the product of ε and

the components of ξ must be small for the inference to work correctly. The method only works if

the system is renormalized regularly, so the value of T should be chosen to be small enough that no

principal ellipsoid axis grows too large.

As before, we use the constrained FDP model for purposes of illustration. Treating each coordi-

nate as independent yields [upon differentiation of Eq. (5.45)]:

Df =


∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂ω

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂ω

∂ω̇
∂x

∂ω̇
∂y

∂ω̇
∂ω

 =


0 − ω −y

ω 0 x

0 − 1 −c

 (5.61)

The coordinates are not independent, of course, but this Jacobian matrix satisfies Eq. (5.11) as

long as the deviation is constraint-satisfying. For example, using the full deviation vector δy =

(δx, δy, δω) with Eq. (5.61) gives the same result as the restricted deviation vector δỹ = (δx, δω)

with Eq. (5.55), as long as δy = −(x/y) δx. As a result, the Lyapunov exponents calculated with

the constrained ellipsoid method (Fig. 5.16) agree closely with the restricted Jacobian method (and

with the original unconstrained results [Fig. (5.9)]).

As a final example of the constrained ellipsoid method, consider Fig. 5.17, which shows a solution

to equations that model a relativistic spinning test particle (e.g., a black hole or neutron star) orbiting

a supermassive rotating black hole. (The case illustrated is a limiting case of the equations, which

is mathematically valid but not physically realizable; see Chapter 2.) These equations (usually

called the Papapetrou equations) are highly constrained, so a näıve calculation of the Lyapunov

exponents is not correct. It was the complicated nature of the Jacobian matrix for this system that

originally motivated the development of the methods in this section (Chapter 2). A Lyapunov plot

corresponding to the orbit in Fig. 5.17 is shown in Fig. 5.18. Note especially the ±λ symmetry, a

result of the Hamiltonian nature of the equations of motion.

5.4 Comparing the methods

A summary plot of all the methods discussed in this chapter, applied to the forced damped pendulum,

appears in Fig. 5.19. It is evident that all the methods agree closely. A more quantitative comparison
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Figure 5.17: The orbit of a small spinning compact object (such as a solar-mass black hole) in
the spacetime of a rotating supermassive black hole. (a) The orbit embedded in spherical polar
coordinates; (b) the orbit’s projection onto the x-y plane. The lengths are expressed in terms
of GM/c2, where M is the mass of the central black hole. For a maximally spinning black hole, the
horizon radius is rH = GM/c2. For the supermassive black hole at the center of the Milky Way,
M = 3 × 106 M� [17], which corresponds to a length unit of GM/c2 = 4.4 × 109 m. The system
shown here is chaotic (Fig. 5.18), although this orbit represents a limiting case of the equations that
is not physically realizable, as shown in Chapter 2.
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Figure 5.18: The natural logarithms of the ellipsoid axes for the system shown in Fig. 5.17 vs. rela-
tivistic proper time τ , in units of GM/c3, where M is the black hole’s mass. For the supermassive
black hole at the center of the Milky Way, M = 3×106 M� [17], which corresponds to a time unit of
GM/c3 = 15 s. The largest Lyapunov exponent is λmax ≈ 5× 10−3 (GM/c3)−1, which corresponds
to an e-folding timescale of τλ = 1/λ = 2×102 GM/c3. For M = 3×106 M�, this means that nearby
trajectories diverge by a factor of e in the local (Lorentz) frame of an observer on this orbit in a
time τ = 3000 s = 50min. We find nonzero exponents in this system only for physically unrealistic
values of the small body’s spin (Chapter 3).
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Figure 5.19: Natural logarithms of the ellipsoid axes vs. t for the unconstrained deviation vector
method (dashed), the unconstrained Jacobian method from Fig. 5.9 (thick) and all the constrained
methods. The constrained methods include the following: rescaled deviation vector (black), Jacobian
with single constraint-satisfying tangent vector (red), restricted Jacobian (orange), and constrained
ellipsoid (dashed blue). (The colors appear as shades of gray in print versions of this chapter.) All
the constrained methods start with exactly the same initial conditions.
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Table 5.1: Comparison of different Lyapunov exponent methods applied to the forced damped pen-
dulum. We consider both the unconstrained [Eq. (5.42)] and constrained [Eq. (5.45)] formulations.
The integrations have a final time tf = 104, and for each method we consider 100 random initial de-
viations. We calculate the positive exponent (λ1) and, if possible, the negative exponent (λ3) as well.
(We omit the zero exponent (λ2) for brevity.) The error estimates are the standard deviations in
the mean, σ/

√
N . The deviation vector methods are all rescaled. The constrained ellipsoid method

rescales and reorthogonalizes every time T = 1, and uses a value of ε = 10−6 for the tangent-vector
inference [Eq. (5.59)]. The error goal is a fractional error of 10−10 per step.

Method λ1 λ3

unconstrained deviation vector 0.1610± 0.00050
unconstrained Jacobian 0.1608± 0.00050 −0.2618± 0.00053

constrained deviation vector 0.1608± 0.00051
constrained Jac. (1 tangent vector) 0.1605± 0.00048

restricted Jacobian 0.1607± 0.00048 −0.2614± 0.00055
constrained ellipsoid 0.1605± 0.00050 −0.2617± 0.00051

appears in Table 5.1, which gives error estimates based on integrations using fixed initial conditions

and random initial deviations. This table was produced by using an initial point produced from

the final values of a previous long integration, which avoids any transient effects due to starting

at a point not on the attractor. The estimates for the exponents use a final time of tf = 104,

with 100 randomly chosen values for the deviation vector or initial ball. All the methods agree on

the mean exponents to within one standard deviation of the mean. (Recall that we omit the zero

exponent associated with the time “degree of freedom.”)

5.4.1 Speed

The various methods for calculating the exponents differ significantly in their execution time, as

shown in Table 5.2. Generally speaking, the deviation methods are faster than their Jacobian

method counterparts, which is no surprise—the deviation vector methods involve fewer differential

equations. More surprising is the performance penalty for the restricted Jacobian method. This is

the result of a significantly smaller typical step-size in the adaptive integrator needed to achieve a

particular error tolerance. The restricted Jacobian may result in a system of equations that is more

difficult to integrate because of the elimination of simple degrees of freedom with the potentially

complicated solutions to the constraint derivative equations ∂Ck/∂yi = 0 [Eq. (5.57)]. On the other

hand, the performance penalty of the restricted Jacobian method is probably worth the gain in

robustness, as discussed below. Moreover, for other systems (e.g., the system shown in Figs. 5.14

and 5.15), the restricted Jacobian method is comparable in speed to the other Jacobian methods.



206

Table 5.2: Timing comparison for different Lyapunov exponent methods applied to the forced
damped pendulum. The times (on a 2 GHz Pentium 4) for a final time of tf = 104 are in seconds:
t1 for the positive exponent λ1 and t1−3 for the negative exponent λ2; we omit the zero exponent
(λ2) for brevity. (We write 1−3 to emphasize that calculating λ3 also calculates λ1 as a side-effect.)
We consider both the unconstrained [Eq. (5.42)] and constrained [Eq. (5.45)] formulations. The
integrations use a C++ Bulirsch-Stoer integrator adapted from [12]. The deviation vector methods
are rescaled, and the constrained ellipsoid method rescales and reorthogonalizes every time T = 1.
The error goal is a fractional error of 10−10 per step. The relatively small difference between de-
viation vector and Jacobian methods is the result of the small number of degrees of freedom; for
larger systems (with larger Jacobians) the difference can become large (Chapter 3). We note that
the restricted Jacobian method is unusually slow for the forced damped pendulum, but this is not
generally the case.

Method t1 t1−3

unconstrained deviation vector 2.57
unconstrained Jacobian 3.65 5.16

constrained deviation vector 3.51
constrained Jacobian (1 tangent vector) 4.05

restricted Jacobian 35.3 45.0
constrained ellipsoid 4.30 5.88

5.4.2 Robustness

Numerical methods are more useful if they are relatively insensitive to small changes in implementa-

tion details, and the Jacobian methods win in this category. When reorthogonalization occurs every

time step, without rescaling, the plain Jacobian method is virtually bulletproof. The rescaling in

this case can even occur only when the tangent vector norms reach very large or small values, say

‖ξ‖ ≈ 10±100. This robustness also applies to the restricted Jacobian method, which is considerably

less finicky than any other method for constrained systems, and we recommend its implementation

if practical.

Jacobian methods that rescale and reorthogonalize every time T are less robust, since a priori we

have no knowledge of appropriate values for T . Experimentation in this case is required to find good

values of T ; for the Lorenz system, T = 1 works well, but T = 5 leads to inaccurate estimates for the

negative exponent, as seen in Fig. 5.21. It is better to err in the direction of small times, since the

Gram-Schmidt procedure is quite robust: even when rescaling occurs on very short timescales—so

that the longest axis has almost no chance to outgrow the other principal axes—the Gram-Schmidt

method still converges to the correct exponents (Fig. 5.20). Using the Gram-Schmidt algorithm to

find the principal axes benefits from a strong feedback mechanism, insuring rapid convergence to

the correct axes. Using a very small value for T greatly increases the execution time, of course. A

useful prescription in practice is to do a short integration with T chosen to be small compared to any

characteristic timescales in the problem, in order to obtain a first estimate for the exponents. We

may then choose T to be as large as we like, consistent with the avoidance of unacceptable roundoff
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Figure 5.20: The natural logarithms of the two larger ellipsoid axes for the Lorenz system using the
Gram-Schmidt algorithm, with the axes rescaled every T = 10−3. The largest and smallest directions
differ by less than 2% when rescaling this frequently, but the axes nevertheless converge rapidly to
the correct directions (as determined by the Jacobian method, Fig. 5.6). Numerical investigations
confirm that this robustness persists at least down to T = 10−5.

error.

The constrained ellipsoid method is dependent on frequent rescaling to keep the size of the

tangent vectors small, since the inference scheme represented by Eq. (5.59) fails for large vector

norms. As a result, this method suffers from the complexity of all time T methods, i.e., it requires

care in choosing an appropriate value of T . In addition, the value of ε in Eq. (5.59) must be chosen

carefully to achieve accurate tangent-vector inferences: the method relies on small values of ε for

accuracy, but values that are too small suffer from roundoff errors. It is advisable to calibrate the

value of ε so that the largest Lyapunov exponent agrees with the result of a second method (such as

the single tangent-vector method or the deviation vector method), as discussed in Chapter 2. Such

a calibration was required to produce the values in Table 5.1; the largest exponent calculated using

the constrained ellipsoid method differs from the other methods by several standard deviations when

using ε = 10−5 for the inference, but agrees well when using ε = 10−6.

Finally, the deviation vector methods are all very fast, but they are sensitive to the size ε0 of the

initial deviation vector. The rescaled methods are particularly inaccurate if the value of ε0 is too

small, which leads to roundoff error in the initial size of the deviation vector and can give inaccurate

results, as shown in Fig. 5.22. These methods should be used with care, and should always be

double-checked with a Jacobian method if possible.
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Figure 5.21: The natural logarithms of the ellipsoid axes for the Lorenz system, with reorthogonal-
ization/rescaling every time T = 1 (dark dots) and T = 5 (light lines). The two larger exponents
agree exactly, but the negative exponent is incorrect due to roundoff error, since the smallest axis
shrinks from unity to a size of e−5×14.57 ≈ 2× 10−32 in a time T = 5.
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Figure 5.22: The natural logarithms of the largest ellipsoid axis for the constrained forced damped
pendulum, calculated using the rescaled deviation vector method for varying sizes of the initial
deviation. We vary the size of the initial deviation vector from ε0 = 10−4 (bottom) to ε0 = 10−13

(top). Values of ε0 between 10−4 and 10−8 agree closely, but smaller values lead to erroneously high
values for the Lyapunov exponent. It is important to calibrate the deviation vector method using
the Jacobian method (Sec. 5.2.2) if possible.
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5.5 Summary and conclusion

Chaotic solutions exist for an enormous variety of nonlinear dynamical systems. Lyapunov ex-

ponents provide an important quantitative measure of this chaos. We have presented a variety

of different methods for calculating these exponents numerically, both for constrained and uncon-

strained systems. Both types of systems can be investigated using deviation vector methods or

Jacobian methods. Deviation vector methods use the equations of motion to evolve two nearby

trajectories in phase space to determine the time-evolution of the small deviation vector joining the

trajectories. This family of methods is computationally fast, but yields only the largest exponents,

and also suffers from sensitivity to the size of the initial deviations. The Jacobian methods share the

use of the Jacobian matrix of the system as a rigorous measure of the local phase-space behavior.

They are computationally robust in general, and can be used to determine multiple exponents, but

this comes at the cost of execution speed.

Calculating Lyapunov exponents for constrained systems presents a variety of complications,

all revolving around the notion of constraint-satisfying deviations: “nearby” trajectories must be

chosen carefully to insure that they satisfy the constraints. We have presented several methods for

dealing with these complications, including a deviation vector method and two Jacobian methods:

the restricted Jacobian method, which eliminates spurious degrees of freedom in the Jacobian by

differentiating the constraints; and the constrained ellipsoid method, which uses the full Jacobian

matrix to evolve constraint-satisfying tangent vectors. These methods allow the determination of

all d Lyapunov exponents for systems with d degrees of freedom.
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Appendix: Ellipsoid axes and the singular value decomposi-

tion

In this appendix, we discuss an alternative method for calculating the ellipsoid axes used in the Ja-

cobian method, namely, calculating the ellipsoid axes exactly. The method described seems superior

on paper to the Gram-Schmidt technique described in Sec. 5.2.2, but suffers from subtle compli-

cations that make it fragile in practice. Nevertheless, within a narrow range of validity (specified

below), calculating exact ellipsoid axes provides valuable corroboration of the principal Jacobian

method discussed above.
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Recall Theorem 1 from Sec. 5.2.2.3, which relates the eigensystem of the matrix AT A to the

ellipsoid spanned by the columns of A. In order to find the axes of an evolving ellipsoid, we could

apply Theorem 1 directly, but there is a mathematically equivalent prescription that is numerically

virtually bulletproof, namely, the famous singular value decomposition:

Theorem 2 Let A be a nonsingular n× n matrix. Then there exist orthonormal n× n matrices U

and V , and a diagonal matrix S, such that

A = USV T . (5.62)

This is the singular value decomposition (SVD) of A, and the values si in S = diag(s1, . . . , sn) are

the singular values.

Since V is an orthogonal matrix, we have V T = V −1, so that Eq. (5.62) is equivalent to AV = US.

Geometrically, this means that the image of the unit ball V is equal to an ellipsoid whose ith principal

axis is given by si times the ith column of U . V in this context is a special ball, but the image of

any unit ball is the same unique ellipsoid. This leads to the following theorem:

Theorem 3 Let A be a nonsingular n × n matrix, and let U and S be the matrices resulting from

the singular value decomposition of A [Eq. (5.62)]. Then the columns of A span an ellipsoid whose

ith principal axis is si ui, where S = diag(s1, . . . , sn) and {ui}n
i=1 are the columns of U .

We thus see that the singular value decomposition is equivalent to finding the eigensystem of AT A.

(See Appendix A in [9] for proofs of these theorems.)

Substituting the singular value decomposition for the Gram-Schmidt procedure leads to a re-

placement of step (2) from Sec. 5.2.2:

(2′) At various times tj , replace U with the orthogonal axes of the ellipsoid defined by U, using

the singular value decomposition. This can be done either every time T , for some suitable

choice of T , or every time the integrator takes a step. It is essential to order the principal axes

consistently. We recommend sorting the axes so that s1 ≥ s2 ≥ . . . ≥ sn.

Unfortunately, this prescription behaves badly when rescaling is necessary, as shown in Fig. 5.23.

The underlying cause of this is a fundamental property of the singular value decomposition: it is only

unique up to a permutation of the ellipsoid axes. If we adopt an ordering based on the axis lengths,

we can refer, for example, to the longest axis as axis 1. During any particular time period, axis 1 may

grow or shrink; the only requirement is that it be the fast-growing axis on average. Unfortunately,

rescaling the axes causes this ordering method to fail: if axis 1 should happen to contract between

rescaling times, then the ordering based on length leads to incorrect axis labels, since axis 1 is no

longer the longest axis. Even worse, when ordering by axis length, the length of the longest axis
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Figure 5.23: The natural logarithms of the two larger ellipsoid axes for the Lorenz system using
the singular value decomposition. The axes are rescaled every T = 0.5 to exaggerate the deviations
from the correct results, but any rescaling causes the SVD method to fail (see text). Compare to
unrescaled SVD (Fig. 5.24) and the Gram-Schmidt method with frequent rescaling (Fig. 5.20).
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Figure 5.24: The natural logarithms of the two larger ellipsoid axes for the Lorenz system using
the singular value decomposition, without rescaling. The results agree well with the Gram-Schmidt
method (Fig. 5.6). Rescaling (which is always necessary if we approach the floating point limits of
∼10±308) ruins the agreement.



212

is always added to the running sum for the largest Lyapunov exponent, while the length of the

smallest axis always contributes to the smallest exponent. This selection bias leads to systematic

errors, guaranteeing overestimates for the absolutes values of both the exponents (Fig. 5.23).

If the system is not rescaled, there is still some initial ambiguity in axis labels, but once axis 1

has grown sufficiently large it is very unlikely ever to become smaller than the other axes. Thus,

after an initial expansion and contraction phase that establishes the ordering, the axis labels remain

fixed, and the results of the (unrescaled) SVD method agree well with Gram-Schmidt (Fig. 5.24).

It should be possible in principle to follow the axis evolution by tracking the continuous defor-

mation of the ellipsoid. This would mean assigning labels to the axes and then ensuring, e.g., that

axis 1 at a later time is indeed the image of the original axis 1. This method would require following

the system over very short timescales to guarantee the correct tracking of axes, and even then is

likely to be fragile and error-prone. Because of these complications, we recommend the simpler

Gram-Schmidt process, which has proven to be reliable and robust in practice.
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Afterword

We collect here some lessons learned while working on this thesis, some opinions, and selected advice

on a variety of topics—including a numerical cautionary tale. We address especially the role played

by computation in the numerical study of the systems we consider. Given the informality of this

section, and in a break from the style used elsewhere in this thesis, we (that is, I) switch here to the

first person singular.

Lessons and advice

• Don’t use C for scientific computing.

Although good for speed, C is seriously sub-optimal for scientific computing, with a dearth

of mathematical functions and a terribly long development/debug cycle. I wasted countless

hours tracking down subtle heisenbugs1 that usually resulted from some seemingly innocuous

change clobbering a block of memory somewhere in the bowels of the program.

• C++ is decent for scientific computing.

C++ addresses some of C’s most serious deficiencies (although it becomes a terribly bloated

language in the process). The Standard Template Library (STL) container classes are espe-

cially great, effectively replacing the inflexible C array data type and alleviating many of the

memory-management hassles of C. Still, having to write pow(x, 1.5) to raise x to the 3/2

power (as in C) is insulting.2 Expressiveness matters, and C++ doesn’t have it for mathemat-

ics. I’d seriously consider using Fortran 90/95 for the numerical code (but not for anything

else) if I had it to do over again.

• Learn to use a graphical debugger.

Despite the pain of debugging C and C++, it is infinitely worse without DDD, the Data Display

Debugger, at your side. By the way, when compiling a C++ program with the GNU C++

compiler, use g++ -ggdb foo.cpp in place of g++ -g foo.cpp. This allows the debugger to

inspect the contents of STL vectors as if they were ordinary C arrays.
1heisenbug /hi:’zen-buhg/ n. A bug that disappears or alters its behavior when one attempts to probe or isolate it.

(From the Jargon File, http://catb.org/jargon/html/entry/heisenbug.html.)
2For a laugh, try writing pow(x, 3/2) instead.
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• Scripting languages are good (even when they’re bad).

Everyone should learn a scripting language. Since they are interpreted (or at most compiled to

bytecode), they are slower than C/C++ for numerical tasks, but for most anything else their

large libraries and short development/debug cycle are a godsend. The results in Chapter 3

would never have happened without the Perl programming language. As wonderful as it is,

Perl is actually terrible. I have since converted to Python, which is much better than Perl,

and should be learned by all.

• Mathematica is worth it.

Expensive, occasionally buggy, and so very proprietary—Mathematica has some significant

drawbacks. Unfortunately, it is so powerful that it’s worthing putting up with the problems.

The implementation of the PN equations in Mathematica took only a few days, with dozens of

extraordinarily useful auxiliary functions written along the way. The various parameterization

schemes for the Papapetrou equations, stupidly coded directly in C at great personal cost,

were reimplemented inside Mathematica in under two days. There’s no substitute for having

robust equation solvers, root finders, numerical integrators, and symbolic differentiators all

readily available. Though difficult after-the-fact debugging is a major flaw in Mathematica,

the intuitive notebook interface makes for an incredibly fast development/debug cycle. Add

to this a flexible and highly expressive programming language, and Mathematica becomes a

tool too compelling to ignore.

• Use the right language for the job.

I’m definitely still in the learning stage, but already this philosophy has paid major dividends.

Using different computer languages for different tasks—even with the added complexity of

getting the components to communicate—is a huge win.

The PN integrator is a case in point. The equations of motion, the rendering of the orbits, and

various analysis tools (e.g., given a solution to the equations, return the empirical pericenter)

are written in Mathematica. For many purposes, this is adequate, but calculating Lyapunov

exponents requires access to the guts of the integrator, which Mathematica’s ODE solver

NDSolve doesn’t allow, and would be hideously slow if implemented in Mathematica by hand.

These routines are written in C++, as part of a general platform for calculating Lyapunov

exponents (as described in Chapter 5), and need only be supplied with the equations of motion,

their derivatives, and the Jacobian matrix. The expressions for these for the PN equations

are impossibly long, but luckily Mathematica can export its native expressions as C code,

using the function CForm. The resulting code needs to be cleaned up a bit (I/O and string

manipulation are not Mathematica’s strengths), so I use a series of Python scripts to take the

raw Mathematica output and convert it to a C++ file, which is then compiled and linked with
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the integrator.

The great part is that, by using Unix pipes, temporary files,3 and Mathematica options, it is

possible to switch between the native Mathematica integrator and the C++ back-end on the

fly. The speed boost from the C++ routines was high enough that I ended up using them

to calculate ordinary orbits, even though they were only strictly necessary for calculating

Lyapunov exponents.

• Don’t be afraid to learn a new language.

I learned a web scripting language (PHP) for a personal project, and then realized that it

wasn’t that hard (and was lots of fun) to learn a new language. This led to Perl, Python,

C++, and a deeper understanding of Mathematica. The productivity boost was more than

worth the time spent. Even more important, perhaps, is the motivation boost—it’s just much

more fun to do a project when the tool is right for the job.

• Parameterization matters.

Once under the mistaken impression that setting up the equations of motion was the hard

part, I only slowly realized that much of the work comes in implementing the parameterization

methods—and a good method makes a big difference. The Papapetrou project sputtered along

until I implemented the parameterization of initial conditions in terms of the orbit’s geometric

properties (e, rp, ι), thereby gaining the ability to (among other things) find bound orbits easily.

I shudder to imagine undertaking the broad survey of parameter space in Chapter 3 without

this method.

A cautionary tale

And finally, a cautionary tale.

In the early days of the Papapetrou project, I had successfully (I thought) found the Lyapunov

exponents for a particular orbit using the Jacobian method, and my initial results were (it seemed)

nearly ready to be published, but I thought it prudent to check the Jacobian method using the

deviation vector method. I was confident that the Jacobian method worked correctly, since the

Lyapunov exponents

1. were “reasonable,” in order of magnitude, based on the results from [1];

2. came symmetrically in pairs ±λ, a strong indication that the numerical results correctly cap-

tured this key property of Hamiltonian systems (Chapter 2);

3. went to zero as the spin parameter S approached zero, just as they should.
3The ability to create temp files with names guaranteed to be unique is included in virtually all modern computer

languages. This is “well-known,” but was not known to this author until recently.
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Upon implementing the deviation vector method I discovered that the resulting exponent, when

compared with the largest exponent from the Jacobian method,

1. agreed!

By now, convinced that everything was working, I started to move on to other things, but then

I realized that I should check the deviation vector method with different values of ε (the initial size

of the deviation). To my surprise, larger values of ε gave different results—and the chaos was gone.

Dismayed, I continued testing the deviation vector code, and found that the Lyapunov exponent

depended on ε: the system was seemingly chaotic for very small ε, but the chaos disappeared when

it was larger. Moreover, the larger values of ε, in the range 10−3–10−7 agreed with each other

(and gave vanishing exponents), whereas values in the range 10−8–10−15 gave different results for

each ε. Evidently, very small values of ε were leading to roundoff errors in the deviation vector

method, which is essentially a method for taking numerical derivatives—notorious for numerical

inaccuracy [2] (an illustration of this phenomenon appears in Chapter 5). I was forced to consider

the possibility that the Jacobian method might be wrong, and that I had, purely by chance, initially

chosen a (too-small) deviation vector size ε that just happened to give the same spurious exponent

as the (incorrect) Jacobian method. I set out to find an error in the Jacobian matrix.

It is important to realize that the Jacobian matrix for the Papapetrou equations was hand-coded,

so debugging it was an arduous process, virtually impossible by visual inspection. I needed some

sort of automated test. After considerable experimentation, I finally hit upon the following method

(which, with hindsight, is obvious): the error in a finite difference approach should scale as ε2:

∆ = f(y + δy)− f(y)−Df · δy = O(ε2), (5.63)

where ε = ‖δy‖. [The variable f represents the right-hand side of the equations of motion, Eq. (1.37),

which I was confident were correct, having tested them extensively by verifying the preservation of

the constraints and conserved quantities, and checking several limiting cases.] By calculating ∆ for

various ε, and searching for an ε2 scaling, I would have a sensitive test for a correct Jacobian. I

implemented the test. The Jacobian failed it; the error scaled as ε. Thus began the search for the

error. After many, many4 hours, the answer struck: there was a single missing O(S2) term in the

Jacobian (as noted in the appendix to Chapter 2). Once added, the diagnostic worked, and there

was much rejoicing in the land.5

Some lessons from this tale:
4many
5The rejoicing did not last long. I quickly realized that I had not addressed the issue of constraints, an issue resolved

only after much panic and hand-wringing. That is a story for Chapter 2, with Chapter 5 bringing the method to
full fruition. Also, now that my example of chaos was gone, I had to find a new one. The (e, rp, ι) parameterization
method developed in Chapter 3 eventually saved the day, allowing a systematic search of low-pericenter orbits, where
chaos (at least for the unphysical S = 1 case) is widespread.
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• In some ways, numerical analysis shares more in common with experiment than with theory.

Teasing a result out of a computer suffers from some of the same fragility and vicissitudes one

might encounter with a delicate piece of experimental apparatus. Budget extra time for any

computer project, always taking into account Hofstadter’s Law.6

• Calculate things in more than one way if at all possible.

• Any long, hand-coded equations will have mistakes. A diagnostic, if possible, is invaluable.

• Avoid long, hand-coded equations. Get Mathematica to do it. (Then check it with the diag-

nostic anyway.)

6Hofstadter’s Law: Any computer project will take longer than you think, even when you take into account
Hofstadter’s Law.
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