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Figure 4.1  HLS histories of all sites, plotted with the aligned time scale and the same 

scaling of emergence and submergence relative to modern HLS.  The 1935 event 

dominates the history.  The 1962 event is the second largest event.  The vertical 

deformation rates vary markedly from site to site and for different periods.
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Figure 4.1  Continued ...
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Figure 4.2  Non-tectonic HLS die-downs during ENSO and IOD (Indian Ocean Dipole) 
events.  Values in the brackets are measured emergence/submergence (-) from the 
paleogeodetic records.
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Figure 4.4a Three sites with particularly good HLS records allow calculation of uncertainties in 
rates of submergence/emergence due to annual fluctuations in lowest low tides.  These three 
residual plots of the HLS records show the HLS fluctuations.  The 2σ standard deviations are +/- 
2.6 cm at Bai, +/-2.7cm at Sambulaling, and +/-2.8 cm at Angsa. The average HLS uncertainty is 
+/- 2.7 cm.  This is the uncertainty that we can assign assign then to uneroded HLS records.  Bai 
and Sambulaling data are from Fig. 3.42 and 3.50 respectively.  
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Figure 4.7  Vertical displacements during the 1935 event.  The values of emergence (red) and 
submergence (green) are in cm and are plotted with their 2-σ uncertainty.  The red and green 
lines are contours of the values.  Contours of bathymetry (blue) are in meters.  The 25-km 
isobath of the subduction interface cuts diagonaly accross the map.

4-77



1

2

3

4

5

6

7

8

1920 1925 1930 1935 1940 1945

Tb00A1

Bdg00B1

Brg00A1

Pn00A1

Mm00A1

Lg99/00A1

Taj00A1

Msn00A1

Figure 4.8  Date ranges of the December 1935 event based on visual ring counting from the 

exterior ring. The weighted average of the dates is 1935.8 +/-0.6 (2σ).  

-40 -30 -20 -10 0 10 20 30 40 50

Tb00A1-3a
Bdg00B1-2b
Bdg00B1-3a
Bdg00B1-4b
Brg00A1-2aBrg00A1 2a
Brg00A1-3a
Brg00A1-4a
Pn00A3-2b-1
Pn00A3-2b-2
Pn00A3-4bPn00A3 4b
Pn00A3-5b
Mm00A1-3a
Lg00A1-1b
Lg00A1-2a
Taj00A1-2aTaj00A1 2a
Taj00A1-3a
Taj00A1-4a
Taj00A1-4b
Taj00A1-5b

Tf99C1
At99A1-2
Lm99A1-1a

Age differences (years)
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Figure 4.18  Superposition of the slips on the subduction interface from the 2-D elastic 

dislocation models of 4.16 and 4.17.  The 1962 slip patches overlap with the 1935 rupture  but 

extend farther up-dip and down-dip. This may indicate that the 1962 silent event facilitates the 

distribution of slips throughout the broader interface.

Figure 4.16  The 2-D elastic dislocation fit of the paleogeodetic data of the 1962 emergence 

event. Slips are allowed to vary along the patch.  The observed emergences are explained by 

slips on and near the lower boundary of the 1935 patch and on a wider patch further down-dip.   

Black dots and vertical bars represent values of paleoseismic emergence with their 2-σ  errors.  

The scatter of the data reflects their variability along strike.  Red bars indicate the sections of the 

subduction interface that slipped.  Bold orange lines show the magnitude of slips on the 

subduction interface prescribed by the inversion.  The triangular shape of the orange line 

indicates that we have allowed slip to vary on the interface.  The thin red curve is the modeled 

vertical surface deformation.
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Figure 4.22  Modern rates (1962-2000) after 2 mm/yr adjustments for the global sea-level rise.  
Values are in milimeters per year.  Contouring of the values shows that the hingeline runs parallel 
to the trench.  The maximum submergence occurs around the southwestern part of Tanabala 
Island.  The larger maximum emergence is centered about 10 km off the east coast of Tanamasa 
Island.  An "odd" ridge of emergence runs almost parallel to the long axis of Pini Island.  
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Figure 4.23a  Sketch showing the parameters of an idealized elastic dislocation model 
of interseismic deformation at a subduction zone [after Sieh et al., 1999]

Figure 4.23b  An elastic dislocation model of an earthquake cycle.  Red patches slip equal to a 
plate rate (i.e. a fraction of aseismic slip is 1.0) during an interseismic period.  Panels A and B 
show contributions to vertical motion from indivdual sources.  Panel D shows a total vertical 
motions.  Note that motions due to the top and the bottom interfaces are nearly mirror image to 
each other.  So, in a steady state subduction they nearly cancel one another.  Panel C shows 
vertical motion in a seismic event, which is nearly a mirror image to that of the interseismic 
period [from Steve Ward, written comm., 2002].
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Figure 4.24  Elastic dislocation models of slow vertical deformation prior to 1935.  

Panel A uses a 2 mm/y global sea level rise correction.  Panel B assumes 1 mm/y.  The 

high rate of submergence and low rates of emergence require rates of slip on the 

subjacent interface that are 50 -75% of the long-term plate rate.  Slip rates on the 

interface between the islands and the trench are appreciably higher than the long-term 

plate rate. 
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Figure 4.25 Elastic 

dislocations modeling of 

slow vertical deformation 

for the period from 1935 

to 1961.  Paleogeodetic 

data are projected onto a 

cross-section 

perpendicular to the 

trench.  Both Panel A and 

B have a fixed boundary 

at 125km from the trench 

but use a global sea-level 

rise correction of 2 mm/yr 

and 1 mm/yr respectively.  

In Panel C this boundary 

has been allowed to 

move.  In all three models 

the up-dip section slips at 

or slightly faster than 

long-term plate rate.  Data 

from the western part 

require the 1935 rupture 

patch to creep at about a 

quarter of the long-term 

plate rate.  Panel C shows 

that intrusions of the 

creeping up-dip and 

down-dip sections into 

the healed 1935 rupture 

patch better fit the eastern 

data.    
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Figure 4.26  The 2-D inverse elastic dislocation models of the modern rates (1962-2000). The 

fully locked model in Panel A is an acceptable inverse model, but greatly under predicts the 

important westernmost point.  Models in Panel B and C fit the westernmost point and thus are 

preferred solutions.  The principal observation is that the submergence rates in the western part 

have declined significantly since 1962.  This requires that slip rates on the interface between the 

island and the trench have decelerated to only about 65% of the long-term plate rate, but that the 

zone of slippage extent farther down-dip onto the principal locked patch.  
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Figure 4.27  Summary of paleogeodetic records of vertical deformations for the 20th century.  

Note that deformation rates differ significantly between the three periods separated by the 1935 

and 1962 events.  Submergence rates are fastest in the post-earthquake period 1935-1962.  In the 

past four decades the rates slowed down.  These differences indicate changes in the the slip rates 

and other processes operating on and around the subduction interface.
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Figure 4.29  Seismic and aseismic slip history on the subduction interface from 1900 
to 2000 based on paleogeodetic data and elastic dislocation models. The red, yellow, 
and green areas represent the amount of slips in the 1935, 1962 emergence, and 1962 
submergence events respectively.  All other colors represent aseismic slips during 
intervening periods. Stable sliding at plate rate is indicated as 100% on the right-side 
scale.
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Figure 4.30.  Hyphothesis of the eastward moving of the subducting Investigator Fracture Ridge 

zone (IFZ) along the Sumatran subduction. WFSR is Wharton Fossil Spreading Ridge zone. The 

plate vector is ~7 degree eastward from the axis of the IFZ. Thus, the IFZ moves toward east 

about 7 mm/yr.  The IFZ moved about 70 km since 10 Ma or about 155 km along the trench axis.  

This subducting IFZ may have led to the intense faulting on the hanging wall above and to the 

high percentage of aseismic slip on the subduction interface. Gray shaded  and yellow shaded 

regions indicate the trails of and an approximate present position of  the IFZ.
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