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Abstract

We consider Jacobi matrices J with bn ∈ R on the diagonal, an > 0 on the next

two diagonals, and with spectral measure dν(x) = ν ′(x)dx + dνsing(x). In particular,

we are interested in compact perturbations of the free matrix J0, that is, such that

an → 1 and bn → 0. We study the Case sum rules for such matrices. These are trace

formulae relating sums involving the an’s and bn’s on one side and certain quantities

in terms of ν on the other. We establish situations where the sum rules are valid,

extending results of Case and Killip-Simon.

The matrix J is said to satisfy the Szegő condition whenever the integral

∫ π

0

ln
[
ν ′(2 cos θ)

]
dθ,

which appears in the sum rules, is finite. Applications of our results include an

extension of Shohat’s classification of certain Jacobi matrices satisfying the Szegő

condition to cases with infinite point spectrum, and a proof that if n(an − 1) → α,

nbn → β, and 2α < |β|, then the Szegő condition fails. Related to this, we resolve a

conjecture by Askey on the Szegő condition for Jacobi matrices which are Coulomb

perturbations of J0. More generally, we prove that if

an ≡ 1 +
α

nγ
+ O(n−1−ε), bn ≡ β

nγ
+ O(n−1−ε)

with 0 < γ ≤ 1 and ε > 0, then the Szegő condition is satisfied if and only if 2α ≥ |β|.
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2.4 The Szegő Integral and Its Siblings — a Semi-Continuous Family . . 24

2.5 m and M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Sum Rules for Jacobi Matrices 40

3.1 Continuity of Integrals of ln(Im M) . . . . . . . . . . . . . . . . . . . 40

3.2 The Step-by-Step Sum Rules . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The Z, Z±
1 , and Z−

2 Sum Rules . . . . . . . . . . . . . . . . . . . . . 56

3.4 Shohat’s Theorem with an Eigenvalue Estimate . . . . . . . . . . . . 66

3.5 Necessary Conditions for Z(J) < ∞ . . . . . . . . . . . . . . . . . . . 69

3.6 Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1

Introduction

This thesis discusses the spectral theory of Jacobi matrices. A Jacobi matrix is the

tri-diagonal semi-infinite self-adjoint matrix

J =




b1 a1 0 . . .

a1 b2 a2 . . .

0 a2 b3 . . .

. . . . . . . . . . . .




(1.1)

with an > 0 and bn ∈ R. We will mainly be interested in matrices which are compact

perturbations of the free matrix J0 (with an ≡ 1 and bn ≡ 0). For such J we have

an → 1, bn → 0, and σess(J) = [−2, 2]. Outside this interval J can have only simple

isolated eigenvalues, with ±2 the only possible accumulation points. We denote them

E+
1 > E+

2 > · · · > 2 and E−
1 < E−

2 < · · · < −2.

There is an intimate connection between Jacobi matrices and orthogonal polyno-

mials on the real line, that is, polynomials orthonormal with respect to a (positive)

measure on R. Actually, when we restrict ourselves to bounded Jacobi matrices on

one side, and to probability measures with bounded infinite supports on the other,

then these two objects are one. Indeed, there is a special spectral measure ν for J

as an operator on `2({0, 1, . . . }), namely, the spectral measure with respect to the

vector δ0. It turns out that the orthogonal polynomials Pn(x) for this measure are at

the same time Dirichlet eigenfunctions for J , when energy x is fixed and n is varied.
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In particular, they obey the three-term recurrence relation

xPn(x) = an+1Pn+1(x) + bn+1Pn(x) + anPn−1(x) (1.2)

with P−1 ≡ 0 and P0 ≡ 1. So given a measure ν, one can construct the corresponding

J by means of Pn and (1.2). This gives a one-to-one correspondence of matrices and

measures.

Although Jacobi matrices and orthogonal polynomials have a lot in common, it

seems that there has not been much interaction between these two areas. In the

present work we would like to join efforts in this direction by applying methods from

one area to answer questions in the other. This aim is reflected in the fact that our

work has two main parts. In the first part, Chapter 3, we develop the sum rules for

Jacobi matrices, tools which we then apply in the second part, Chapter 4, to solve an

open problem and some related questions in the theory of orthogonal polynomials.

The sum rules are trace formulae which relate spectral information of J and sums

involving the an’s and bn’s. They were first written down by Case [2] (motivated by

Flaschka’s work on the Toda lattice [10]), who proved them for J ’s with J − J0 finite

rank, and his methods probably also work in the case
∑

n(|an − 1|+ |bn|) < ∞. An

important contribution in this respect was recently obtained by Killip-Simon [13],

who extended the sum rules to J − J0 trace class. The sum rule part of the present

thesis is motivated by their work. In this introduction we will only state the first of

the sum rules, leaving the rest for later. But before we can do this, we need to define

its constituents.

An object of particular interest, both for us and in the theory of orthogonal

polynomials, is the Szegő integral

Z(J) ≡ 1

2π

∫ 2

−2

ln

(√
4− x2

2πν ′(x)

)
dx√

4− x2
(1.3)
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with ν ′(x) ≡ dνac(x)/dx. It is often taken in the literature as

1

2π

∫ π

0

ln
[
ν ′(2 cos θ)

]
dθ,

which differs from Z(J) by a constant and a minus sign. This is a natural analogue

of the Szegő integral for measures supported on the unit circle, which is one of the

central objects in the theory of orthogonal polynomials on the unit circle.

We say that J satisfies the Szegő condition (or J is Szegő) if Z(J) is finite. The

negative part of the integrand in (1.3) is always integrable, and Z(J) ≥ −1
2
ln(2).

Hence, we are left with the question whether Z(J) < ∞. There is extensive literature

on when this is the case. See, for example, [1, 2, 8, 11, 17, 18, 20, 21, 22, 28, 33, 34].

We are interested in this question for two reasons. One is that Z(J) and similar

integrals appear in the sum rules which we study here. The other is that the open

problem we want to solve is exactly this question for certain special J ’s, as we shall

see later.

Next, we introduce the eigenvalue sum

E0(J) ≡
∑
±

∑
j

ln

[
1
2

(
|E±

j |+
√

(E±
j )2 − 4

)]
. (1.4)

It is not hard to see that E0(J) < ∞ if and only if

∑
±

∑
j

√
|E±

j | − 2 < ∞. (1.5)

The last quantity we need is

A0(J) ≡ lim
N→∞

(
−

N∑
n=1

ln(an)

)
, (1.6)

which we define if the limit exists, even if it is +∞ or −∞.

Now we are ready to formulate the Z sum rule, called C0 in [13]:

Z(J) = A0(J) + E0(J). (1.7)
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In this equality two terms come from the spectral measure ν, whereas the third comes

from the matrix J . In this light, the form Z(J) − E0(J) = A0(J) might seem more

appropriate, but we will see that the form (1.7) enters naturally.

As noted above, Killip-Simon proved (1.7) for J − J0 trace class, in which case

A0(J) is well defined and all three terms can be shown to be finite. It is not a priori

clear what happens if we abandon this assumption. The interest in this question is

justified, besides the quest for broadening of mathematical knowledge, by the main

result of Killip-Simon. They were able to prove one of the sum rules (P2, called Z−
2

here) for all Jacobi matrices, and using it they obtained a characterization of all

Hilbert-Schmidt perturbations of J0. This result (motivated in turn by previous work

on Schrödinger operators by Deift-Killip [5] and Denisov [6]) shows how to exploit the

sum rules as a spectral tool. In particular, Killip-Simon emphasized the importance

of proving the sum rules for as large a class of J ’s as possible.

In Chapter 3 of our thesis we will address this question and extend all the sum

rules to full generality. One of our main results in that chapter is the following:

Theorem 1.1. Suppose the limit (1.6) exists. If any two of the three quantities Z(J),

A0(J), and E0(J) are finite, then all three are, and (1.7) holds.

Remarks. 1. The full theorem (Theorem 3.14) does not require the limit (1.6) to

exist, but is more complicated to state in that case.

2. If the three quantities are finite, many additional sum rules hold.

3. Peherstorfer-Yuditskii [22] (see their remark after Lemma 2.1) prove that if

Z(J) < ∞, E0(J) = ∞, then the limit in (1.6) is also infinite.

Theorem 1.1 is a real line analogue of a seventy-year-old theorem for orthogonal

polynomials on the unit circle:

1

2π

∫ 2π

0

ln
[
ν ′(eiθ)

]
dθ =

∞∑
n=0

ln(1− |αj|2), (1.8)

where {αj}∞j=1 are the Verblunsky coefficients (also called reflection, Geronimus,

Schur, or Szegő coefficients) of ν. This result was first proven by Verblunsky [39]
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in 1935, although it is closely related to Szegő’s 1920 paper [34].

One application we will make of Theorem 1.1 and related ideas is to prove the

following (≡ Theorem 3.20):

Theorem 1.2. Suppose σess(J) ⊆ [−2, 2] and (1.5) holds. Then J is Szegő if and

only if

lim inf
N→∞

(
−

N∑
n=1

ln(an)

)
< ∞. (1.9)

Moreover, if these conditions hold, then

(i) the limit (1.6) exists and is finite,

(ii) limN→∞
∑N

n=1 bn exists and is finite,

(iii)
∞∑

n=1

[
(an − 1)2 + b2

n

]
< ∞. (1.10)

Results of this genre when it is assumed that σ(J) = [−2, 2] go back to Shohat

[28], with important contributions by Nevai [18]. The precise form is from Killip-

Simon [13]. Nikishin [21] showed how to extend this to Jacobi matrices with finitely

many eigenvalues. Peherstorfer-Yuditskii [22] proved Z(J) < ∞ implies (i) under the

condition E0(J) < ∞, allowing an infinity of eigenvalues for the first time. Our result

cannot extend to situations with E0(J) = ∞ since Theorem 1.1 says that if (i) holds

and Z(J) < ∞, then E0(J) < ∞.

We will highlight one other result from Chapter 3 (see Theorem 3.24):

Theorem 1.3. Suppose (1.10) holds and either lim sup[−∑N
n=1(an − 1 + 1

2
bn)] = ∞

or lim sup[−∑N
n=1(an − 1− 1

2
bn)] = ∞. Then Z(J) = ∞.

One of the main results of [13] is the proof of a conjecture of Nevai [20]. It states

that if the perturbation J − J0 is trace class, then Z(J) < ∞. Killip-Simon were

able to prove this by extending the sum rule (1.7) to J − J0 trace class, and by using

a result of Hundertmark-Simon [12] that E0(J) < ∞ in that case. In Chapter 4 we

will address a related question involving non-trace-class J − J0. This is yet another

reason for us to extend the sum rules to full generality. The question is the following

conjecture of Askey about Coulomb-decay Jacobi matrices, reported by Nevai in [17]:
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Askey’s Conjecture. If

an ≡ 1 +
α

n
+ O

(
1

n2

)
, bn ≡ β

n
+ O

(
1

n2

)
,

and α2 + β2 > 0, then J is not Szegő.

These an, bn are natural because they are just at the borderline beyond J − J0

trace class. It has been known for some time that in the case of α = β = 0, one

has Z(J) < ∞. These results predate Killip-Simon by more than twenty years, for

example, Nevai’s result in [17] that if
∑

ln(n)|an − 1| < ∞ and
∑

ln(n)|bn| < ∞,

then Z(J) < ∞.

The other cases have remained open and will be treated in this work. Actually, we

will consider more general errors here, namely, O(n−1−ε) for ε > 0. Before stating our

main result in this respect, let us first discuss the history of these kinds of problems.

In the late 1940’s Pollaczek [23, 24, 25] found an explicit class of examples in the

region (in our language) |β| < −2α, one example for each such (α, β), with further

study by Szegő [34, 36]. They found that in these cases the Szegő condition fails.

In 1979 Nevai [17] reported the above conjecture of Askey. However, in 1984

Askey-Ismail [1, p.102] gave some explicit examples with bn ≡ 0 and α > 0, and

noted that the Szegő condition holds (!), so they concluded the conjecture needed to

be modified.

In 1986 Dombrowski-Nevai [8] proved a general result that Szegő condition holds

when bn ≡ 0 and α > 0 with o(n−2) errors. And finally, in 1987 Charris-Ismail [3]

computed the weights for Pollaczek-type examples in the entire (α, β) plane. Although

they did not note it, their examples are Szegő if and only if 2α ≥ |β|. We will see that

this is the general picture for this problem, and the “right” form of the conjecture.

Here is our result for this class:

Theorem 1.4. Let

an ≡ 1 +
α

nγ
+ O(n−1−ε), bn ≡ β

nγ
+ O(n−1−ε)
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with 0 < γ ≤ 1 and ε > 0. Then J is Szegő if and only if 2α ≥ |β|.

Remark. This is a corollary of more general results, in particular, of Theorem 4.16.

We will prove even more for 1
2

< γ ≤ 1. In Section 4.4 we discuss some situa-

tions when the Szegő integral is allowed to diverge at one end of [−2, 2] and study

its convergence at the other end (one-sided Szegő conditions). This is of particular

interest when the perturbation J − J0 is Hilbert-Schmidt (which is the origin of the

requirement γ > 1
2
). In that case the abovementioned P2 sum rule of Killip-Simon

shows that the Szegő integral (1.3) can only diverge at ±2. We establish here the

following picture for these γ:

-

6

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

α

β
2α = β

2α =−β

±2

±2

−2

+2

−2

+2
Legend:

±2 – Szegő condition holds

+2 – Szegő condition at 2 holds

−2 – Szegő condition at −2 holds

The (α, β) plane is divided into four regions by the lines 2α = ±β. Inside the

right-hand region Z(J) converges at both ends, inside the top and bottom regions

Z(J) converges only at, respectively, 2 and −2, and inside the left-hand region Z(J)

diverges at both ends. As for the borderlines 2α = ±β, if α ≥ 0, then Z(J) converges

at both ends, and if α < 0, then Z(J) diverges at ±2 (convergence at ∓2 is left

open). The divergence results follow from the material in Chapter 3, whereas the

convergence results are proved in Chapter 4. We note that the divergence results

hold for more general errors, trace class in particular.

The thesis is organized as follows. In Chapter 2 we collect most of the background

material we need. With a couple of exceptions, proofs are provided for the reader’s

convenience. Some more specialized results are left for the appendices to Chapters 3

and 4.
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In Chapter 3 we extend the sum rules to general Jacobi matrices, non-trace-class

in particular, and prove Theorem 1.1. We then give various applications, including

Theorems 1.2 and 1.3, the second of which can be viewed as a general necessary

condition for Z(J) < ∞.

In Chapter 4 we apply the sum rules to derive sufficient conditions for Z(J) < ∞.

These are stated in the form of a relation between the sizes of the on-diagonal and

off-diagonal pieces of the perturbation J − J0, and are in line with the (α, β) picture

above. In particular, we obtain Theorem 1.4.
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Chapter 2

Background

In this chapter we collect most of the background material used in this work. The

majority of the results are common knowledge about Jacobi matrices and orthogonal

polynomials. In Section 2.1 we develop the basic relationships between these objects.

In Section 2.2 we state results concerning bound states: Sturm oscillation theory and

Lieb-Thirring inequalities. Section 2.3 deals with the behavior of spectral measures

and eigenvalues for converging sequences of matrices. Section 2.4 introduces the Szegő

integral and derives some of its important properties. Finally, Section 2.5 contains

some basic facts about the m-function, the Borel transform of the spectral measure.

2.1 Jacobi Matrices, Spectral Measures, and

Orthogonal Polynomials

The main object of our investigation is the Jacobi matrix

J =




b1 a1 0 . . .

a1 b2 a2 . . .

0 a2 b3 . . .

. . . . . . . . . . . .




with an > 0 and bn ∈ R. In this work we will only consider cases where {an} and

{bn} are bounded. Hence J is a bounded self-adjoint operator on the Hilbert space
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`2(Z+) = `2({0, 1, . . . }). Usually, J is extended to map the set of complex sequences

{un}∞n=−1 to the set of complex sequences {vn}∞n=0 by taking a0 ≡ 1 and defining

(Ju)n ≡ an+1un+1 + bn+1un + anun−1

for n ≥ 0. If such a sequence satisfies the eigenfunction equation

(Ju)n = ζun (2.1)

for some ζ ∈ C and all n ≥ 0, then u is called a generalized eigenfunction (or simply

eigenfunction) of J for energy ζ. It is clear from (2.1) that any eigenfunction u for

energy ζ is uniquely determined by un and un−1 (for arbitrary n). Consequently,

eigenfunctions for a given energy form a two-dimensional vector space. Notice that if

un = un−1 = 0, then the eigenfunction u is identically zero.

For any energy there are two special eigenfunctions. If u−1 = 0 and u0 = 1, then

the eigenfunction u is the Dirichlet eigenfunction, and if u−1 = 1 and u0 = 0, then

it is the Neumann eigenfunction. Obviously, ζ is an eigenvalue of J if and only if

the Dirichlet eigenfunction for ζ is in `2(Z+). By self-adjointness of J , this can only

happen for ζ ∈ R. If ζ ∈ C\R, then there is always an eigenfunction u ∈ `2(Z+) for

ζ, but it has u−1 6= 0. Indeed, one can take

un ≡ −(
(J − ζ)−1δ0

)
n

(2.2)

for n ≥ 0, and u−1 = 1. This is well defined because (J − ζ)−1 : `2(Z+) → `2(Z+) is

a bounded operator. Obviously (J − ζ)u = −δ0 + a0u−1δ0 = 0.

We define the Wronskian of two sequences {un}∞n=−1 and {vn}∞n=−1 to be

Wn(u, v) ≡ an(unvn−1 − un−1vn) (2.3)

for n ≥ 0. Clearly Wn(u, u) ≡ 0. The most useful property of this object is that if

u, v are two eigenfunctions of J for energy ζ, then W (u, v) ≡ Wn(u, v) is independent
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of n. This is well known and can be checked easily using (2.1). Notice that then

W (u, v) = 0 if and only if u and v are linearly dependent. This shows that for any

energy there can be only one `2-eigenfunction (up to a multiplicative constant).

The vector δ0 = (1, 0, 0, . . . ) is a cyclic vector for J . Indeed, if Qn is a real

polynomial of degree n with leading coefficient q 6= 0, then it is clear that

Qn(J)δ0 = q
( n∏

j=1

aj

)
δn +

n−1∑
j=0

rjδj

for some rj ∈ R. This of course means that there is a unique real polynomial Pn of

degree n such that Pn(J)δ0 = δn (and since an > 0, the leading coefficient of Pn must

be positive). Hence δ0 must be cyclic. It follows that the spectrum of J is simple and

the spectral measure for δ0 (which we will call ν) is a spectral measure for J , in the

sense that J is isomorphic to the operator of multiplication by x on L2(R, dν).

By the spectral theorem,

〈δ0, (J − ζ)−1δ0〉 =

∫
dν(x)

x− ζ

for ζ ∈ C\R (all integrals in this chapter are taken from −∞ to ∞ unless indicated

otherwise). More generally, we have

〈δ0, f(J)δ0〉 =

∫
f(x) dν(x) (2.4)

for any f ∈ L1(R, dν). Notice also that ν(R) = ‖δ0‖2 = 1, that is, ν is a probability

measure, and the support of ν is bounded. Also, it is an infinite set, because by the

spectral theorem L2(R, dν) ∼= `2(Z+) is infinite-dimensional.

Next we turn to the polynomials Pn. By (2.4) and Pn(x) ∈ R we have

∫
Pn(x)Pm(x) dν(x) = 〈Pm(J)δ0, Pn(J)δ0〉 = δm,n.

Hence the polynomials P0 ≡ 1, P1, P2, . . . are an orthonormal set in L2(R, dν). Since

the degree of Pn is n and Pn is real with positive leading coefficient, these must be
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the orthogonal polynomials for ν, which one obtains by applying the Gram-Schmidt

procedure to the set {1, x, x2, . . . } ⊂ L2(R, dν). This latter set is a basis and thus so

must {P0, P1, . . . } be. Moreover, we have

∫
xPn(x)Pm(x) dν(x) = 〈Pm(J)δ0, JPn(J)δ0〉 = an+1δm,n+1 + bn+1δm,n + anδm,n−1

and it follows that with P−1 ≡ 0,

xPn(x) = an+1Pn+1(x) + bn+1Pn(x) + anPn−1(x) (2.5)

for n ≥ 0. This is the so-called three-term recurrence relation. It shows that

{Pn(x)}∞n=0 is the Dirichlet eigenfunction for J and energy x. It also shows that

multiplication by x on L2(R, dν) is unitarily equivalent to J acting on `2(Z+) (the

corresponding bases being {P0, P1, . . . } and {δ0, δ1, . . . }). This follows from the spec-

tral theorem as well.

In the above, we have constructed a measure ν (and its orthogonal polynomi-

als) associated to a given bounded Jacobi matrix. One can also go in the opposite

direction. Given a probability measure ν with bounded infinite support, one first

constructs its orthogonal polynomials Pn using the Gram-Schmidt procedure in the

Hilbert space L2(R, dν) with inner product 〈f, g〉ν ≡
∫

f̄g dν. Again, Pn are all real

and have positive leading coefficients. Since xPn(x) is a polynomial of degree n + 1,

it is orthogonal to Pm(x) for m ≥ n + 2. It is also orthogonal to Pm(x) for m ≤ n− 2

because 〈xPn(x), Pm(x)〉ν = 〈Pn(x), xPm(x)〉ν and xPm(x) is of degree at most n− 1.

If we denote the leading coefficient of Pn by γn, then

an ≡ 〈xPn(x), Pn−1(x)〉ν = 〈Pn(x), xPn−1(x)〉ν = 〈Pn(x),
γn−1

γn

Pn(x)〉ν =
γn−1

γn

> 0

because Pn is orthogonal to polynomials of degree less than n. Hence with

bn ≡ 〈xPn−1(x), Pn−1(x)〉ν (2.6)
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we have (2.5). This gives rise to a Jacobi matrix J . By (2.5), the spectral measure

for δ0 and J coincides with the one for P0(x) ≡ 1 and the operator of multiplication

by x on L2(R, dν). This latter measure is clearly ν.

We have just seen that there is a bijection between matrices and measures, so that

bounded Jacobi matrices and probability measures with bounded infinite support are

essentially two guises of the same object.

For future reference we note that by (2.5), the leading coefficient of the polynomial

Pn is γn = (a1 . . . an)−1, and thus by Gram-Schmidt

Pn(x) =
1

a1 . . . an

[
xn −

n−1∑
j=0

〈xn, Pj(x)〉νPj(x)
]
. (2.7)

Then from orthonormality of the Pj’s we obtain

1 = 〈Pn(x), Pn(x)〉ν =
( 1

a1 . . . an

)2[
〈xn, xn〉ν −

n−1∑
j=0

〈xn, Pj(x)〉2ν
]

and therefore

an =
1

a1 . . . an−1

√√√√〈xn, xn〉ν −
n−1∑
j=0

〈xn, Pj(x)〉2ν . (2.8)

Let us now consider the “basic” matrix

J0 ≡




0 1 0 . . .

1 0 1 . . .

0 1 0 . . .

. . . . . . . . . . . .




.

This is the free half-line discrete Schrödinger operator, and therefore will be called

the free matrix. It is a direct computation that for θ ∈ (0, π),

2 cos θ cos nθ = cos(n + 1)θ + cos(n− 1)θ (2.9)

2 cos θ sin nθ = sin(n + 1)θ + sin(n− 1)θ
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and so {cos nθ}n and {sin nθ}n are eigenfunctions of J0 for energy 2 cos θ. Using (2.9)

and induction, one can show that cos nθ and sin(n + 1)θ/ sin θ are polynomials of

degree n in cos θ. We call

Tn(cos θ) ≡ cos nθ (2.10)

the Chebyshev polynomials of the first kind and

Un(cos θ) ≡ sin(n + 1)θ

sin θ
(2.11)

the Chebyshev polynomials of the second kind (when extended to all of R). By (2.9),

{Un(x
2
)}n is the Dirichlet eigenfunction for J0 and energy x, so Un(x

2
) is the nth

orthogonal polynomial for ν0, the spectral measure of J0. For later reference we note

that

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1. (2.12)

The above, of course, shows that the free eigenfunctions for energy 2 cos θ ∈ (−2, 2)

are of the form c1e
inθ + c2e

−inθ. For the sake of completeness, we note that one can

easily see that the free eigenfunctions for any energy x ∈ R are

un =





c1e
inθ + c2e

−inθ x = 2 cos θ ∈ (−2, 2),

c1n + c2 x = 2,

(−1)n(c1n + c2) x = −2,

c1e
nθ + c2e

−nθ x = 2 cosh θ > 2,

(−1)n(c1e
nθ + c2e

−nθ) x = −2 cosh θ < −2.

(2.13)

In general, if ζ ∈ C is different from ±2 and z + z−1 = ζ, then the eigenfunctions for

energy ζ are un = c1z
n + c2z

−n.

Finally, the spectral measure for J0 is

dν0(x) = χ[−2,2](x)

√
4− x2

2π
dx, (2.14)
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as can be seen from

∫ 2

−2

Un(x
2
)Um(x

2
)
√

4− x2 dx =

∫ π

0

4 sin(n + 1)θ sin(m + 1)θ dθ = 2πδm,n

by using the change of variables x = 2 cos θ.

We close this section with an estimate of the norm of the difference J − J0 in the

Schatten classes Ip [29]. This appears in [13] and will be useful in our considerations

of compact perturbations of J0.

Lemma 2.1. If cn ≡ max{|an − 1|, |bn|, |an−1 − 1|}, then for any p ∈ [1,∞),

1
3

( ∞∑
n=1

cp
n

)1/p

≤ ‖J − J0‖p ≤ 3

( ∞∑
n=1

cp
n

)1/p

.

Proof. Let C be the diagonal matrix with cn’s on the diagonal. Then the tri-diagonal

matrix S given by C1/2SC1/2 = J − J0 has all elements bounded by 1, so that the

operator norm ‖S‖ ≤ 3. By Hölder’s inequality for Ip [29] we have

‖J − J0‖p ≤ ‖C1/2‖2p ‖S‖ ‖C1/2‖2p ≤ 3

( ∞∑
n=1

cp
n

)1/p

.

On the other hand,

( ∞∑
n=1

cp
n

)1/p

≤
( ∞∑

n=1

|bn|p
)1/p

+ 2

( ∞∑
n=1

|an − 1|p
)1/p

≤ 3‖J − J0‖p,

using

‖A‖p
p = sup

{ ∑
n

|〈ϕn, Aψn〉|p
∣∣∣{ϕn}, {ψn} orthonormal sets

}

from [29].

In this context, we also mention the obvious fact that

sup
n
{cn} ≤ ‖J − J0‖ ≤ 3 sup

n
{cn} (2.15)

which was used to obtain ‖S‖ ≤ 3.
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2.2 Bound States

In this work we will mostly consider Jacobi matrices whose essential spectrum is

[−2, 2]. We will call such matrices BW matrices (for Blumenthal-Weyl). Note that

this class includes compact perturbations of J0, that is, such that an → 1 and bn → 0.

Hence from now on, unless stated otherwise, all matrices will be assumed to be BW

matrices.

The condition σess(J) = [−2, 2] and boundedness of J imply that outside of [−2, 2]

there can be only simple isolated eigenvalues, with ±2 the only possible accumulation

points. We denote these E+
1 > E+

2 > · · · > 2 and E−
1 < E−

2 < · · · < −2, and call them

bound states. To avoid possible notational problems, we define E±
j ≡ ±2 whenever J

has less than j positive/negative bound states.

In many of our considerations we will deal with positive bound states only. The

reason is the following. If we define J̃ to have ãn ≡ an and b̃n ≡ −bn, then J̃ =

U(−J)U where U = U∗ is the unitary transformation taking a vector {un} ∈ `2 to

{(−1)nun}. Due to this symmetry, negative bound states of J are negatives of positive

bound states of J̃ and any results for the latter translate to the former. Note that

J0 = J̃0, which is reflected in the fact that the free eigenfunctions (2.13) for energies

x and −x differ by (−1)n.

We quote here without proof two important results involving eigenvalues. The

first is from Sturm oscillation theory (see, e.g., [37]), which relates behavior of eigen-

functions for some energy x ≥ 2 (x ≤ −2) and the number of eigenvalues above

(below) this energy. We say that a real sequence {un}∞n=−1 crosses zero at n ≥ 0 if

umun−1 < 0, with m ≥ n smallest such that um 6= 0. For non-zero eigenfunctions,

this is the same as saying that u crosses zero at n if unun−1 < 0 or un = 0, because

in the latter case un = 0 implies un+1un−1 < 0.

Theorem 2.2. Let J be a BW matrix.

(i) If x ≥ 2, then the number of eigenvalues of J strictly above x equals the number

of times the Dirichlet eigenfunction for x crosses zero on the interval [1,∞).

(ii) If u, v are non-zero eigenfunctions for energies x > y, respectively, and u crosses
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zero at both n < m, then v crosses zero at least at one of n, n + 1, . . . ,m.

(iii) If x ≤ −2, then the number of eigenvalues of J strictly below x equals the number

of times the Dirichlet eigenfunction for x fails to cross zero on the interval [1,∞).

(iv) If u, v are non-zero eigenfunctions for energies x < y, respectively, and u fails

to cross zero at both n < m, then v fails to cross zero at least at one of

n, n + 1, . . . , m.

Remarks. 1. So, for example, (i) shows that the Dirichlet eigenfunction for x ≥ E+
1

stays positive.

2.(iii) and (iv) follow from (i) and (ii) by the above symmetry argument.

The second result is a Lieb-Thirring inequality for Jacobi matrices [12], bounding

the distance of eigenvalues from the essential spectrum in terms of a certain Ip norm

of the difference J − J0.

Theorem 2.3. For any p ≥ 1
2

there exists cp < ∞ such that for any J

∑
j

(
|E+

j − 2|p + |E−
j + 2|p

)
≤ cp

∑
n

(
|an − 1|p+1/2 + |bn|p+1/2

)
.

Remarks. 1. By Lemma 2.1, the right-hand side is comparable to ‖J − J0‖p+1/2
p+1/2.

2. We will mainly use this result for p = 1
2

and J − J0 ∈ I1, that is, trace class.

2.3 Convergence of Jacobi Matrices

Most of the techniques we develop here will, in one way or another, involve succes-

sive approximation of a Jacobi matrix of interest by other Jacobi matrices. We will

therefore need various results on limits of matrices. We collect these in this section.

The first is a well-known theorem relating convergence of the matrix elements and

of the spectral measure.

Theorem 2.4. Assume that Jm, m = 1, 2, . . . , and J are uniformly bounded Jacobi

matrices with spectral measures νm and ν, respectively, and matrix elements a
(m)
n , b

(m)
n
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and an, bn, respectively. Then νm ⇀ ν (weak convergence) if and only if for all n

lim
m→∞

a(m)
n = an, lim

m→∞
b(m)
n = bn. (2.16)

Proof. Let M be the uniform bound on ‖J‖ and ‖Jm‖. This means that all spectral

measures are supported on [−M,M ]. Let us first assume that νm ⇀ ν. We will show

by induction that for all n

lim
m→∞

|a(m)
n − an| = 0, lim

m→∞

(
sup
|x|≤M

|P (m)
n (x)− Pn(x)|

)
= 0. (2.17)

Clearly |a(m)
0 − a0| = 0 and |P (m)

0 (x)− P0(x)| = 0. The induction step for an follows

from (2.8), the assumption νm ⇀ ν, νm(R) = ν(R) = 1, and from the induction

hypothesis. The induction step for Pn then follows from the same facts, (2.7), and

from the convergence for an which has just been established. This proves (2.17). Eq.

(2.6) then proves the convergence for bn.

Now we assume that (2.16) holds for all n. Notice that

∫
xjdν(x) = 〈δ0, J

jδ0〉 = (J j)1,1

and (J j
m)1,1 → (J j)1,1 for each j by the hypothesis. Hence,

∫
Q(x)dνm(x) →

∫
Q(x)dν(x) for every polynomial Q. Using the uniform approximation of contin-

uous functions by polynomials on [−M, M ] and an ε
3

argument, we obtain

∫
ϕ(x)dνm(x) →

∫
ϕ(x)dν(x)

for any ϕ ∈ C(R). Therefore νm ⇀ ν.

From now on we shall say that Jm converge to J (denoted Jm → J) whenever

(2.16) holds, or equivalently, whenever νm ⇀ ν.

In much of what follows, we will consider two natural approximating sequences
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connected to a matrix J . We let

Jn ≡




b1 a1

a1 b2 . . .

. . . . . . . . .

. . . bn−1 an−1

an−1 bn 1

1 0 1

1 0 . . .

. . . . . .




(2.18)

be the matrix obtained from J by changing bm to 0 and am−1 to 1 for m > n. Clearly

Jn − J0 has rank at most n and so has only finitely many bound states. Notice that

Jn → J in the above sense. This sequence will play an important role in proving one

inequality in the sum rules in Chapter 3.

It will be useful to define Jn;F to be the upper left-hand n×n corner of J (or Jn).

For J0 we will denote this matrix J0,n;F . We have the following result.

Lemma 2.5.

det(z − Jn;F ) = a1 . . . anPn(z). (2.19)

Proof. It is easy to check that (2.19) holds for n = 0, 1 (with the determinant of the

0× 0 matrix being 1). Then by expanding in the last row, we obtain

det(z − Jn+1;F ) = (z − bn+1) det(z − Jn;F )− a2
n det(z − Jn−1;F )

which, by (2.5), also holds for a1 . . . anPn(z) in place of det(z − Jn;F ). This finishes

the proof.
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The second sequence is formed by the matrices

J (n) ≡




bn+1 an+1 0 . . .

an+1 bn+2 an+2 . . .

0 an+2 bn+3 . . .

. . . . . . . . . . . .




(2.20)

obtained from J be deleting the first n rows and columns. Note that J (n) → J0

whenever J−J0 is compact. This property will prove useful for obtaining the opposite

inequality in the sum rules in Chapter 3.

We have the following application of Sturm oscillation theory.

Corollary 2.6. If ε ≥ 0 and J has only finitely many eigenvalues above 2 + ε/below

−2− ε, then there is n such that J (n) has no such eigenvalues.

Proof. If there are only finitely many eigenvalues above 2+ ε, we only need to choose

n to be larger than the last crossing of zero of some eigenfunction for energy 2+ε. By

Theorem 2.2(ii), the Dirichlet eigenfunction for J (n) and energy 2 + ε, which crosses

zero at −1, cannot cross zero at m ≥ 0. Theorem 2.2(i) then gives the result. The

case −2− ε is similar.

Next, we prove two results on the convergence of sums of eigenvalues. These

involve the matrices Jn and J (n) which we have just introduced. In the following we

assume that f is a continuous function on R such that f is even, f(x) = 0 for |x| ≤ 2,

and f is monotone increasing on [2,∞). We have the following result from [13].

Lemma 2.7. For any J and all n,

(i) |E±
1 (Jn)| ≤ |E±

1 (J)|+ 1,

(ii) |E±
j+1(Jn)| ≤ |E±

j (J)|.
In particular, for any f as above,

∞∑
j=1

f(E±
j (Jn)) ≤ f(E±

1 (J)± 1) +
∞∑

j=1

f(E±
j (J)). (2.21)
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Moreover, if J − J0 is compact, then

lim
n→∞

∞∑
j=1

f(E±
j (Jn)) =

∞∑
j=1

f(E±
j (J)). (2.22)

Remarks. 1. Each of (i), (ii), (2.21), and (2.22) is intended as two statements —

one with all plus signs and one with all minus signs.

2. Recall that E±
j ≡ ±2 if there are less than j positive/negative bound states.

3. The sums for J are allowed to be infinity. Since Jn has only finitely many

bound states, the corresponding sums are finite.

Proof. By the symmetry discussed in Section 2.2, we only need to consider E+
j . We

follow the proof in [13]. We start by proving (i),(ii) in 4 steps.

First, we compare J and Jn;F . Since the latter is a restriction of the former to

`2({0, 1, . . . , n− 1}), the min-max principle [26] shows that

E+
j (Jn;F ) ≤ E+

j (J).

Second, we let J+
n;F be the matrix obtained from Jn;F by adding 1 to its bottom

right-hand corner (changing it to bn + 1). Obviously

E+
1 (J+

n;F ) ≤ E+
1 (Jn;F ) + 1 ≤ E+

1 (J) + 1 (2.23)

and since the change is a rank 1 perturbation, we also have (again by the min-max

principle)

E+
j+1(J

+
n;F ) ≤ E+

j (Jn;F ) ≤ E+
j (J). (2.24)

Next, we let J+
0 be J0 with its upper left-hand corner changed to 1 (instead of 0).
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We let J+
n = J+

n;F ⊕ J+
0 , that is,

(J+
n )k,l =





(J+
n;F )k,l 0 ≤ k, l < n,

(J+
0 )k−n,l−n k, l ≥ n,

0 otherwise.

Here we denote by Ak,l the (k, l) element of the matrix A, with the upper left-hand

corner being A0,0. Since J+
0 has no eigenvalues by Theorem 2.2 (the Dirichlet eigen-

function for energy 2 is un ≡ 1), inequalities (2.23) and (2.24) hold with J+
n in place

of J+
n;F .

Finally, Jn is obtained from J+
n by adding the matrix

dJ+ ≡

−1 1

1 −1




at sites n, n + 1. Since 〈ϕ, dJ+ϕ〉 ≤ 0 for any ϕ ∈ R2, this change decreases all

eigenvalues. This proves (i),(ii), and (2.21) follows immediately.

To prove (2.22) we note that if J − J0 is compact, then ‖Jn− J‖ → 0. Hence also

‖E+
j (Jn)− E+

j (J)‖ → 0. (2.25)

Thus if
∑∞

j=1 f(E+
j (J)) < ∞, then (ii) and the dominated convergence theorem imply

(2.22). If
∑∞

j=1 f(E+
j (J)) = ∞, then Fatou’s lemma gives

lim inf
n→∞

∞∑
j=1

f(E±
j (Jn)) ≥

∞∑
j=1

f(E±
j (J)) = ∞

and (2.22) holds again.

We finish this section with proving a related result for J (n).



23

Lemma 2.8. For any BW matrix J and all n we have

|E±
j+n(J)| ≤ |E±

j (J (n))| ≤ |E±
j (J)|. (2.26)

If f is as in Lemma 2.7, then

lim
n→∞

∞∑
j=1

[
f(E±

j (J))− f(E±
j (J (n)))

]
=

∞∑
j=1

f(E±
j (J)). (2.27)

Remarks. 1. Again, each of (2.26) and (2.27) represents two statements.

2. By (2.26), the sum on the left-hand side of (2.27) has non-negative summands

and is finite for every n.

3. In (2.27) both sides can be infinity.

Proof. Again consider only E+
j . Since J (n) is a restriction of J to `2({n, n + 1, . . . }),

(2.26) holds by the min-max principle.

Call the sum on the left of (2.27) δ±n (f, J). Since E+
j (J (n)) ≤ E+

j (J), we have for

any m,

δ+
n (f, J) ≥

m∑
j=1

[
f(E+

j (J))− f(E+
j (J (n)))

]
.

From Corollary 2.6 we know that for each j

lim
n→∞

E+
j (J (n)) = 2.

Hence we have by taking n →∞ and then m →∞,

lim inf
n→∞

δ+
n (f, J) ≥

∞∑
j=1

f(E+
j (J)).

On the other hand, since f ≥ 0,

lim sup
n→∞

δ+
n (f, J) ≤

∞∑
j=1

f(E+
j (J))
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is obvious. This proves (2.27).

2.4 The Szegő Integral and Its Siblings — a

Semi-Continuous Family

This section follows the exposition in [13]. One of the main objects of study in this

thesis is the Szegő integral

Z(J) ≡ 1

2π

∫ 2

−2

ln

(√
4− x2

2πν ′(x)

)
dx√

4− x2
, (2.28)

where ν ′(x) dx ≡ dνac(x) is the absolutely continuous part of ν. With the change of

variables x = 2 cos θ, this integral can be written as

Z(J) =
1

2π

∫ π

0

ln

(
sin θ

πν ′(2 cos θ)

)
dθ. (2.29)

Before we proceed, let us introduce two classes of related integrals. For ` ≥ 1 we

define

Y`(J) ≡ − 1

π

∫ π

0

ln

(
sin θ

πν ′(2 cos θ)

)
cos(`θ) dθ (2.30)

= − 1

π

∫ 2

−2

ln

(√
4− x2

2πν ′(x)

)
T`

(x

2

) dx√
4− x2

(2.31)

and

Z±
` (J) ≡ 1

2π

∫ π

0

ln

(
sin θ

πν ′(2 cos θ)

)
(1± cos(`θ)) dθ (2.32)

=
1

2π

∫ 2

−2

ln

(√
4− x2

2πν ′(x)

)(
1± T`

(x

2

)) dx√
4− x2

(2.33)

with T` from (2.10). Of course,

Z±
` (J) = Z(J)∓ 1

2
Y`(J) (2.34)
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when all integrals converge.

Many authors consider the integral

1

2π

∫ π

0

ln
[
ν ′(2 cos θ)

]
dθ (2.35)

instead of Z(J). By (2.29), this differs from Z(J) by a sign and a constant. Our

choice of Z(J) has two reasons. The form (2.28) appears in the sum rules which play

a major role in this work, and from (2.14)

Z(J0) = Z±
` (J0) = Y`(J0) = 0.

We add that each of Z±
` , Y` will have its own sum rule, as Z has (1.7) (see Chapter 3).

The first question to be answered at this point is the convergence of the above

integrals. Let ln± be defined by

ln±(y) = max{0,± ln(y)},

so that

ln(y) = ln+(y)− ln−(y),

|ln(y)| = ln+(y) + ln−(y).

Lemma 2.9. The ln− piece of (2.28), (2.30), and (2.32) always converges.

Proof. Since 1± cos(`θ) ≤ 2, we only need to treat (2.28):

∫ 2

−2

ln−

(√
4− x2

2πν ′(x)

)
dx√

4− x2
≤

∫ 2

−2

ln−

(
1

2πν ′(x)
√

4− x2

)
+ ln−

(
4− x2

) dx√
4− x2

≤
∫ 2

−2

2πν ′(x) dx +

∫ 2

−2

ln−
(
4− x2

) dx√
4− x2

< ∞

using ln−(xy) ≤ ln−(x) + ln−(y) and ln−(x) ≤ x−1.

It follows that the integrals defining Z(J) and Z±
` (J) either converge or diverge to
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+∞. We therefore always define Z(J) and Z±
` (J), although they may take the value

+∞. Since the weight in Y`(J) does not have a definite sign, Y`(J) cannot always

be defined. However, Z(J) < ∞ clearly implies the convergence of both Z±
` (J) and

Y`(J), so we define Y`(J) by (2.34) if and only if Z(J) < ∞.

Note that the proof of Lemma 2.9 actually gives a lower bound on Z(J) and

Z±
` (J), since

∫
ν ′(x)dx ≤ 1. We will improve this bound for Z(J) and Z−

2 (J) in

Lemma 2.12. These two integrals are of special interest among the Z family, as will

be seen in Chapter 3. The weights in them, in terms of θ, are 1 and 2 sin2(θ) and so

represent the two types of decay at ±2 which are exhibited by the weights 1±cos(`θ).

It is clear from their definitions that Z(J) and Z±
` (J) can be +∞ when ν ′(x) is

small on a large enough set. For example, if it decays fast enough at ±2 (which will

be the case in one part of Askey’s conjecture as we shall see in Chapter 3) or if it

vanishes on a set of positive Lebesgue measure. Conversely, Z(J) < ∞ implies that

the essential support of νac is [−2, 2].

If Z(J) < ∞, we say that J obeys the Szegő condition or J is Szegő. This

condition is a natural object in the theory of orthogonal polynomials (see, e.g., [36]).

If Z±
1 (J) < ∞, we say J is Szegő at ±2. This is because if Z+

1 (J) < ∞, then the

integral in (2.28) can only diverge at x = −2 and if Z−
1 (J) < ∞, the integral can

only diverge at x = 2, as can be seen from changing variables to θ. Note that if

Z−
1 (J) < ∞, then Z−

2 (J) < ∞ because

1− cos(2θ) = 2 sin2(θ) ≤ 8 sin2
(

θ
2

)
= 4(1− cos θ).

Similarly Z+
1 (J) < ∞ implies Z−

2 (J) < ∞. As in [13], we will call Z−
2 (J) < ∞ the

quasi-Szegő condition.

In the remaining part of this section we will prove a result of Killip-Simon [13],

who realized that integrals like Z(J) are just negative entropies. Entropies are up-

per semi-continuous w.r.t. weak convergence of spectral measures, which translates,

via Theorem 2.4, into lower semi-continuity of Z(J) w.r.t. pointwise convergence of
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matrix elements. That is,

Z(J) ≤ lim inf
n→∞

Z(J(n)) (2.36)

whenever J(n) → J (and similarly for Z±
` (J)). This will be proved by obtaining vari-

ational principles for Z(J) and similar integrals, as suprema of (weakly) continuous

functions. Inequality (2.36) is the cornerstone of the passage from step-by-step sum

rules to “full size” sum rules (see Chapter 3), and plays an important role in the

proofs of the main results of Chapter 4.

Following [13], if µ, ν are two finite measures, we define the entropy of µ relative

to ν to be

S(µ|ν) ≡




− ∫

ln
(

dµ
dν

)
dµ if µ is ν-a.c.,

−∞ otherwise.

(2.37)

Notice that if dµ = f dν, then

S(µ|ν) = −
∫

ln(f(x))f(x) dν(x), (2.38)

the usual definition of entropy. In that case

∫
ln−

(
dµ

dν

)
dµ ≤

∫
f−1(x) dµ(x) = ν({x|f(x) 6= 0}) ≤ ν(R) < ∞, (2.39)

so that the integral in (2.37) can only diverge to −∞.

Lemma 2.10.

S(µ|ν) ≤ µ(R) ln

(
ν(R)

µ(R)

)
(2.40)

with equality if and only if µ is a multiple of ν.

Proof. If µ is not ν-a.c., then there is nothing to prove, so assume dµ = f dν. Then

by the concavity of ln and Jensen’s inequality for the probability measure dµ/µ(R),

S(µ|ν) = µ(R)

∫
ln

(
f−1(x)

)dµ(x)

µ(R)

≤ µ(R) ln

( ∫
f−1(x)

dµ(x)

µ(R)

)
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= µ(R) ln

(
ν({x|f(x) 6= 0})

µ(R)

)

≤ µ(R) ln

(
ν(R)

µ(R)

)
.

Since ln is strictly convex, equality in the first inequality holds only if f−1(x) is a

constant where f(x) 6= 0, and in the second inequality only if f(x) 6= 0 everywhere

on the essential support of ν. This proves the claim.

Theorem 2.11.

S(µ|ν) = inf
F

[ ∫
F (x) dν(x)−

∫ (
1 + ln F (x)

)
dµ(x)

]
(2.41)

where the infimum is taken over all real-valued bounded continuous functions F with

infx∈R F (x) > 0. So if µn ⇀ µ and νn ⇀ ν and the supports of µn, µ, νn, ν are

uniformly bounded, then

S(µ|ν) ≥ lim sup
n→∞

S(µn|νn).

Proof. Let us define

S(F ) ≡ S(F ; µ, ν) ≡
∫

F (x) dν(x)−
∫ (

1 + ln F (x)
)
dµ(x)

for F > 0 with F ∈ L1(dν) and ln F ∈ L1(dµ). For any fixed continuous F this

function is weakly jointly continuous in µ and ν on the set of measures with uni-

formly bounded supports. Since the infimum of continuous functions is upper semi-

continuous, the second claim of the theorem follows from the first. We are left with

proving (2.41).

First consider µ to be ν-a.c., so assume that dµ = f dν. Then

ln
F (x)

f(x)
≤ F (x)

f(x)
− 1

whenever f(x) > 0, which is equivalent to

−f(x) ln f(x) ≤ F (x)− f(x)(1 + ln F (x)).
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Integrating w.r.t. dν gives S(µ|ν) ≤ S(F ), and so S(µ|ν) ≤ infF S(F ).

To obtain equality, one could take F ≡ f . But f might not be continuous nor

bounded away from 0,∞, so we will have to approximate it instead. First take

fN(x) ≡





N f(x) > N,

f(x) 1
N
≤ f(x) ≤ N,

1
N

f(x) ≤ 1
N

,

and pick continuous FN ;n such that 1
N
≤ FN ;n ≤ N and FN ;n → fN in L1(dµ + dν).

We have

∣∣∣S(FN ;n)−S(fN)
∣∣∣ =

∣∣∣∣
∫

(FN ;n − fN) dν −
∫

(ln FN ;n − ln fN) dµ

∣∣∣∣

≤
∫
|FN ;n − fN | dν +

∫
|FN ;n − fN |N dµ(x)

and so limn→∞ S(FN ;n) = S(fN). Moreover,

S(fN) =

∫
(fN − f) dν −

∫
ln+ fN dµ +

∫
ln− fN dµ.

Clearly fN → f in L1(dν), so the first integral converges to 0 as n →∞. By monotone

convergence theorem (and using (2.37) and (2.39)), the rest converges to

−
∫

ln+ f dµ +

∫
ln− f dµ = S(µ|ν).

Hence infF S(F ) ≤ infN,n S(FN ;n) = S(µ|ν), as was to prove.

Now assume µ is not ν-a.c. Then there is a set A ⊂ R such that µ(A) > 0

and ν(A) = 0. Let fN(x) ≡ 1 + NχA(x), and let FN ;n be continuous and such that

1 ≤ FN ;n ≤ N +1 and FN ;n → fN in L1(dµ+dν). Then as above, limn→∞ S(FN ;n) =

S(fN). But

S(fN) = ν(R)− µ(R)− µ(A) ln(N + 1),

that is, S(fN) → −∞. Hence infN,n S(FN ;n) = −∞ = S(µ|ν).
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This result can now be applied to Szegő-type integrals via the following lemma.

Lemma 2.12. Let ν be the spectral measure of J and let

dµ0(x) ≡ dx

π
√

4− x2
, (2.42)

dµ±` (x) ≡ 1± T`

(
x
2

)

π
√

4− x2
dx (2.43)

for ` ≥ 1. Then there are κ0, κ
±
` ∈ R such that

Z(J) = κ0 − 1
2
S(µ0|ν), (2.44)

Z±
` (J) = κ±` − 1

2
S(µ±` |ν). (2.45)

Moreover, κ0 = −1
2
ln(2) and κ−2 = 0.

Remark. Here µ0 and µ±` are probability measures, as can be seen using the change

of variables x = 2 cos θ. Hence Z(J) ≥ κ0 and Z±
` (J) ≥ κ±` by Lemma 2.10.

Proof. Notice that since µ0, µ±` are absolutely continuous, S(µ0|ν) = S(µ0|νac) and

S(µ±` |ν) = S(µ±` |νac). If µ0, µ±` are not ν-a.c., that is, ν ′(x) = 0 on a subset of [−2, 2]

of positive measure, then all the −S’s and Z’s are +∞. So assume the µ’s are ν-a.c.

Then (2.44)/(2.45) follow directly from (2.28)/(2.33) and from (2.37), if we take

κ0 ≡ 1

2π

∫ 2

−2

ln

(
4− x2

2

)
dx√

4− x2
,

κ±` ≡
1

2π

∫ 2

−2

ln

(
4− x2

2
(
1± T`

(
x
2

))
)

1± T`

(
x
2

)
√

4− x2
dx.

Since T2(y) = 2y2 − 1, we have κ−2 = 0. To compute κ0 we apply once again the

change of variables x = 2 cos θ:

κ0 =
1

2π

∫ π

0

ln(2 sin2 θ) dθ

=
1

2
ln(2) +

1

2π

∫ 2π

0

ln | sin θ| dθ
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=
1

2
ln(2) +

1

2π

∫ 2π

0

ln

∣∣∣∣
1− e2iθ

2

∣∣∣∣ dθ

=
1

2
ln(2) + ln

(
1

2

)
= −1

2
ln(2),

where we used Jensen’s formula for f(z) = 1
2
(1− z2) to evaluate the integral.

Hence Z and Z±
` are lower semi-continuous in J . We gather the results obtained

in this section in

Theorem 2.13. The negative parts of the integrals defining Z(J) and Z±
` (J) are

bounded by

κ ≡ 2 +
1

π

∫ 2

−2

ln−
(
4− x2

) dx√
4− x2

.

Moreover,

Z(J) ≥ −1
2
ln(2) (2.46)

and

Z−
2 (J) ≥ 0. (2.47)

If J(n) → J (in terms of pointwise convergence of matrix elements), then

Z(J) ≤ lim inf
n→∞

Z(J(n)) (2.48)

and

Z±
` (J) ≤ lim inf

n→∞
Z±

` (J(n)). (2.49)

We note that the bounds (2.46) and (2.47) are sharp, as can be seen from Lemma

2.10 by taking ν = µ0 and ν = µ−2 = 1
2π

√
4− x2 dx, respectively.
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2.5 m and M

One of the central objects of spectral theory of Jacobi matrices is the m-function.

This is the Borel transform of the spectral measure ν of J , defined by

m(ζ) ≡
∫

dν(x)

x− ζ
= 〈δ0, (J − ζ)−1δ0〉 (2.50)

for ζ ∈ C\R. We write m(ζ; J) when we want to make the J-dependence explicit. In

the case under consideration, that is, when ν is supported on [−2, 2] plus the set of

points {E±
j }, we can write

m(ζ) =
∑
±

∑
j

ν({E±
j })

E±
j − ζ

+

∫ 2

−2

dν(x)

x− ζ
. (2.51)

Clearly, m is meromorphic in C\[−2, 2] and analytic off the support of ν.

One usually looks at m(ζ) for ζ ∈ C+, the (open) upper half-plane, since m(ζ̄) =

m(ζ). Clearly Im m(ζ) > 0 in C+. More precisely, for E ∈ R and ε > 0,

Im m(E + iε) =

∫
ε

(x− E)2 + ε2
dν(x). (2.52)

Using this and ∫
ε

(x− E)2 + ε2
dx = π,

one can show that Im m(E + iε) dE recovers dν(E) as ε ↓ 0, as can be seen in the

following standard result (see, e.g., [30]).

Theorem 2.14. Let m be the Borel transform of the measure ν. Then

lim
ε↓0

Im m(E + iε) dE = πdν(E) (2.53)

in the sense of weak convergence of measures. Pointwise,

lim
ε↓0

Im m(E + iε) = πν ′(E) (2.54)
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for almost all E (w.r.t. the Lebesgue measure), and the singular part of ν is supported

on the set of those E for which

lim
ε↓0

Im m(E + iε) = ∞. (2.55)

Remark. Actually, (2.54) and (2.55) hold with non-tangential limits from C+.

In light of Theorem 2.14, the following lemma relates the spectral measure and

the behavior of `2-eigenfunctions at the origin (cf. Theorem 4.25).

Lemma 2.15. If u(ζ) is an eigenfunction for J and energy ζ ∈ C\R such that

u(ζ) ∈ `2(Z+), then

m(ζ) = − u0(ζ)

u−1(ζ)
. (2.56)

Proof. From (2.2) and the argument after it, we know that u must be a multiple of

δ−1 − (J − ζ)−1δ0. Then

− u0(ζ)

u−1(ζ)
= 〈δ0, (J − ζ)−1δ0〉,

which is m(ζ) by (2.50).

This equality can be used to derive an important relation between the m-functions

of J and J (1), which will play a crucial role in the proof of the step-by-step sum rules

in Chapter 3:

Lemma 2.16.

m(ζ; J)−1 = −ζ + b1 − a2
1m(ζ; J (1)). (2.57)

Remark. One can iterate this to obtain a continued fraction expansion of m around

∞ (since m(∞) = 0).

Proof. Let

un(ζ) ≡ (
δ−1 − (J − ζ)−1δ0

)
n
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for n ≥ −1 be the `2-eigenfunction for J and energy ζ. Then

vn(ζ) ≡





un+1(ζ) n ≥ 0,

a1u0(ζ) n = −1

is the `2-eigenfunction for J (1), as can be easily verified (notice that an(J (1)) = an+1(J)

but a0(J
(1)) = 1). Therefore

m(ζ; J (1)) = − u1(ζ)

a1u0(ζ)
= −(ζ − b1)u0(ζ)− u−1(ζ)

a2
1u0(ζ)

=
−ζ + b1 −m(ζ; J)−1

a2
1

by using (2.1) and (2.56). Eq. (2.57) is immediate.

It will be useful to transfer everything into the unit disk D = {z | |z| < 1}, using

the fact that z 7→ ζ = z + z−1 maps D bijectively onto the Riemann sphere cut along

[−2, 2]. Under this mapping, the upper half-disk is mapped onto the lower half-plane

and the lower half-disk onto the upper half-plane. Thus we define for |z| < 1

M(z) = −m(z + z−1). (2.58)

The minus sign is picked so that Im M(z) > 0 if Im z > 0. Hence M is meromorphic

in D with poles at (β±j )−1 such that

E±
j = β±j + (β±j )−1 (2.59)

and |β±j | > 1. Hence β±j = β(E±
j ) with

β(E) ≡ E + sgn(E)
√

E2 − 4

2

for |E| ≥ 2. It is clear that the function β(E) is well defined and increasing on

(−∞,−2]∪ [2,∞) with β(±2) = ±1. One can easily see that |β| − 1 ³
√
|E| − 2 for

|E| → 2.

We would now like to write (2.51) (or rather its imaginary part) in terms of M .
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By separating the pole terms (including those at ±2, if they are present), we get

Im M(z) = Im
∑
±

α(±1)

z + z−1 − 2
+ Im

∑
j,±

α(β±j )

z + z−1 − [β±j + (β±j )−1]
+ K(z), (2.60)

where

K(z) ≡ Im

∫ 2

−2

χ(−2,2)(x)
dν(x)

z + z−1 − x

and we use α(β±j ) for the weights ν({E±
j }) (and α(±1) for ν({±2})). Also, χ(−2,2)

ensures that possible mass points at ±2 do not enter twice. We note that since α(β±j )

are point masses of a probability measure, we have

∑
j,±

α(β±j ) ≤ 1 (2.61)

with the α(±1) terms included in the sum as β±∞ ≡ ±1.

Note that K(z) is a harmonic function in D, so one should be able to rewrite it

in terms of its boundary values using the Poisson kernel

Pr(θ, ϕ) ≡ 1− r2

1 + r2 − 2r cos(θ − ϕ)
(2.62)

with r < 1 and θ, ϕ ∈ [0, 2π]. Since the imaginary parts of the pole terms in (2.60)

go pointwise to 0 as r ↑ 1,

lim
r↑1

[
K(reiθ)− Im M(reiθ)

]
= 0

for any θ ∈ [0, 2π]. Hence the boundary values of K(z) coincide with those of Im M(z).

By the definition of M and by (2.54) for non-tangential limits, we have

Im M(eiθ) = − Im M(e−iθ) = πν ′(2 cos θ) (2.63)

for a.e. θ ∈ [0, π], where

Im M(eiθ) ≡ lim
r↑1

Im M(reiθ) (2.64)
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exists almost everywhere. Note that by using this, one can substitute Im M(eiθ) for

πν ′(2 cos θ) in (2.29), (2.30), and (2.32). In Chapter 3, the sum rules will be stated

in these terms and proved using the properties of the limit in (2.64).

If µ̃ is a finite measure on [0, 2π] such that µ̃({0}) = µ̃({π}) = µ̃({2π}) = 0 and

µ̃(I) = πν(2 cos I) (2.65)

for any interval I ⊂ (0, π) ∪ (π, 2π), and we let

dµ#(θ) ≡ (2 sin θ)−1 dµ̃(θ), (2.66)

then by (2.63) and (2.65),

K(eiθ) = Im M(eiθ) = (µ#)′(θ) (2.67)

for a.e. θ ∈ [0, 2π]. Hence one should expect the Poisson integral formula

K(reiθ) =

∫ 2π

0

Pr(θ, ϕ)
dµ#(ϕ)

2π
(2.68)

to hold in some sense (see, e.g., [27]).

The problem with this identity is that the measure µ# inside the integral is signed

and may be infinite, as can be seen from (2.66). One can remove the signature

problem by using the symmetry of µ#. If we let

Dr(θ, ϕ) = Pr(θ, ϕ)− Pr(θ,−ϕ) (2.69)

and define a (positive but possibly infinite) measure µ on [0, π] by

dµ(θ) ≡ dµ#(θ) ¹ [0, π] = (2 sin θ)−1 dµ̃(θ) ¹ [0, π], (2.70)
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then the integral in (2.68) becomes

∫ 2π

0

Dr(θ, ϕ)
dµ(ϕ)

2π
.

This is because by (2.66), dµ#(θ) ¹ [π, 2π] = −dµ(2π − θ). Since ϕ ∈ [0, π] implies

Dr(θ, ϕ) ≥ 0 for θ ∈ [0, π] and Dr(θ, ϕ) ≤ 0 for θ ∈ [π, 2π], the integral is well defined

(although, a priori, it may be infinite). It turns out that, as one expects from the

above heuristic, this integral is finite and

Im M(reiθ) = Im
∑
j,±

α(β±j )

reiθ + r−1e−iθ − [β±j + (β±j )−1]
+

∫ π

0

Dr(θ, ϕ)
dµ(ϕ)

2π
(2.71)

for r < 1. By M(z̄) = M(z) and Dr(−θ, ϕ) = −Dr(θ, ϕ), we only need to consider

θ ∈ [0, π]:

Lemma 2.17. If M and µ are defined by (2.58) and (2.70), r < 1, and θ, ϕ ∈ [0, π],

then Dr(θ, ϕ) ≥ 0, it is bounded and continuous in ϕ, and (2.71) holds.

Proof. If θ, ϕ ∈ [0, π], then Dr(θ, ϕ) ≥ 0 and it is bounded in ϕ by (2.62). We use

(2.62) and (2.69) to show

Dr(θ, ϕ) =
(1− r2)2r[cos(θ − ϕ)− cos(θ + ϕ)]

[1 + r2 − 2r cos(θ − ϕ)] [1 + r2 − 2r cos(θ + ϕ)]

= Pr(θ, ϕ)
4r sin θ sin ϕ

1 + r2 − 2r cos(θ + ϕ)
.

Notice that if θ, ϕ ∈ [0, π], then 2r cos(θ + ϕ) ≤ 2r| cos θ|. Since r < 1, we have

sin2(θ) + 2| cos θ| = 1− cos2(θ) + 2| cos θ| ≤ 2 ≤ 1 + r2

r
,

which implies
r sin2(θ)

1 + r2 − 2r| cos θ| ≤ 1.

Hence

0 ≤ Dr(θ, ϕ)

sin ϕ
≤ 4Pr(θ, ϕ)

sin θ
(2.72)
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for θ, ϕ ∈ (0, π).

Since µ̃([0, π]) ≤ π by (2.65), the integral in (2.71) can be estimated as

0 ≤
∫ π

0

Dr(θ, ϕ)

sin ϕ

dµ̃(ϕ)

4π
≤ ‖Pr‖∞

sin θ

and so it is finite (notice that if θ = 0, π, then Dr(θ, ϕ) ≡ 0).

To show (2.71), one can check directly that

Dr(θ, ϕ) = Im
4 sin ϕ

reiθ + r−1e−iθ − 2 cos ϕ
.

Then by (2.65),

K(reiθ) =

∫ π

0

Im
1

reiθ + r−1e−iθ − 2 cos ϕ

dµ̃(ϕ)

π

=

∫ π

0

Dr(θ, ϕ)
dµ̃(ϕ)

4π sin ϕ

=

∫ π

0

Dr(θ, ϕ)
dµ(ϕ)

2π
,

and so (2.71) is just (2.60).

For later reference, notice that (2.67) shows

Im M(eiθ) = µ′(θ) (2.73)

for a.e. θ ∈ [0, π].

Finally, we note that (2.57) reads

−M(z; J)−1 = −(z + z−1) + b1 + a2
1M(z; J (1)). (2.74)

We have that M(0; J) = m(∞; J) = 0 and similarly M(0; J (1)) = 0. Hence if we let

f(z) ≡ M(z)

z
, (2.75)
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then by (2.74), f(0) = 1. This will be used to prove the sum rule for Z. To prove

sum rules for Z±
` , we will need to compute the Taylor coefficients of ln f . We will do

this, using the method of [13], in the appendix to Chapter 3.
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Chapter 3

Sum Rules for Jacobi Matrices

Most of the material contained in this chapter is a joint work with Barry Simon [33].

In Section 3.1 we prove a technical result on continuity of boundary values of the

M -function introduced in Chapter 2. This is then applied in Section 3.2 to derive the

step-by-step sum rules. Section 3.3 iterates these to obtain the “full size” sum rules,

and proves Theorem 1.1 and related results. In Section 3.4 we prove Theorem 1.2

and in Section 3.5 Theorem 1.3, along with other results.

3.1 Continuity of Integrals of ln(Im M)

In this section, we will prove a general continuity result about boundary values for

M -functions satisfying (2.71). We will consider suitable weight functions, w(ϕ), on

[0, π], of which the examples of most interest are w(ϕ) = sink(ϕ), k = 0 or 2. Our

goal is to prove that

lim
r↑1

∫
ln[Im M(reiϕ)] w(ϕ) dϕ =

∫
ln[Im M(eiϕ)] w(ϕ) dϕ (3.1)

and that the convergence is in L1 if the integral on the right is finite. All integrals in

this section are from 0 to π if not indicated otherwise. We define

d(ϕ) ≡ min(ϕ, π − ϕ) (3.2)
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and we suppose that

0 ≤ w(ϕ) ≤ C1 d(ϕ)−1+α (3.3)

for some C1, α > 0 and that w is C1 with

|w′(ϕ)w(ϕ)−1| ≤ C2 d(ϕ)−β (3.4)

for C2, β > 0. For weights of interest, one can take α = β = 1.

Remarks. 1. For the applications in mind, we are only interested in allowing

“singularities” (i.e., w vanishing or going to infinity) at 0 or π, but all results hold

with unchanged proofs if d(ϕ) ≡ minj{|ϕ−ϕj|} for any finite set {ϕj}. For example,

w(ϕ) = sin2(mϕ), as in [14], is fine.

2. By (3.3),
∫ π

0
w(ϕ) dϕ < ∞.

3. Note that (3.1) does not contradict (2.53) because the logarithm kills the

singular part of the measure under consideration, which affects M(reiϕ) but not

M(eiϕ).

The main technical result we will need is

Theorem 3.1. Let M be a function with a representation of the form (2.71) and let

w be a weight obeying (3.3) and (3.4). Then (3.1) holds. Moreover, if

∫
ln[Im M(eiϕ)]w(ϕ) dϕ > −∞ (3.5)

(it is never +∞), then

lim
r↑1

∫ ∣∣ln[Im M(reiϕ)]− ln[Im M(eiϕ)]
∣∣w(ϕ) dϕ = 0. (3.6)

We will prove Theorem 3.1 by proving

Theorem 3.2. For any a > 0 and p < ∞, ln+[Im M(eiϕ)/a] ∈ Lp
(
(0, π), w(ϕ)dϕ

)
,

and

lim
r↑1

∫ ∣∣∣∣ln+

(
Im M(reiϕ)

a

)
− ln+

(
Im M(eiϕ)

a

)∣∣∣∣
p

w(ϕ) dϕ = 0. (3.7)
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Theorem 3.3. For any a > 0, we have

lim
r↑1

∫
ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ =

∫
ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ. (3.8)

Proof of Theorem 3.1 given Theorems 3.2 and 3.3. By Fatou’s lemma and the fact

that for a.e. ϕ, Im M(reiϕ) → Im M(eiϕ), we have

lim inf
r↑1

∫
ln−[Im M(reiϕ)] w(ϕ) dϕ ≥

∫
ln−[Im M(eiϕ)] w(ϕ) dϕ. (3.9)

Since Theorem 3.2 says that sup0<r≤1

∫
ln+[Im M(reiϕ)]w(ϕ) dϕ < ∞, it follows that

if
∫

ln−[Im M(eiϕ)]w(ϕ) dϕ = ∞, then (3.1) holds.

If (3.5) holds, then

lim
a↓0

∫
ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ = 0

since ln−(y/a) is monotone decreasing to 0 as a decreases. Given ε, first find a so

∫
ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ <

ε

3

and then, by (3.8), r1 < 1 such that for r1 < r < 1,

∫
ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ <

ε

3
.

By (3.7), find r2 < 1 such that for r2 < r < 1,

∫ ∣∣∣∣ln+

(
Im M(reiϕ)

a

)
− ln+

(
Im M(eiϕ)

a

)∣∣∣∣ w(ϕ) dϕ <
ε

3
.

Writing

|ln(α)− ln(β)| ≤
∣∣∣∣ln+

(
α

a

)
− ln+

(
β

a

)∣∣∣∣ + ln−

(
α

a

)
+ ln−

(
β

a

)
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we see that if max{r1, r2} < r < 1, then

∫ ∣∣ln[Im M(reiϕ)]− ln[Im M(eiϕ)]
∣∣ w(ϕ) dϕ < ε,

so (3.6) holds.

We will prove Theorem 3.2 by using the dominated convergence theorem and

standard maximal function techniques. We let the maximal function of the measure

µ̃ defined in (2.65) be

µ̃∗(x) = sup
0<a<π

µ̃([x− a, x + a])

2a
.

The Hardy-Littlewood maximal inequality for measures (see Rudin [27]) says that

|{x | µ̃∗(x) > λ}| ≤ 3µ̃([0, 2π])

λ
≤ 6π

λ
. (3.10)

Lemma 3.4. Let M satisfy (2.71). Then for θ ∈ (0, π) and r ∈ (0, 1),

Im M(reiθ) ≤ 2µ̃∗(θ)
sin θ

+
1

r sin2(θ)
. (3.11)

Proof. We have that Pr is a convolution operator with a positive even function of ϕ,

decreasing on [0, π], with
∫ 2π

0
Pr(θ, ϕ) dϕ/2π = 1. So by standard calculations, (2.72),

and (2.70), ∫ π

0

Dr(θ, ϕ)
dµ(ϕ)

2π
≤

∫ π

0

4Pr(θ, ϕ)

sin θ

dµ̃(ϕ)

4π
≤ 2µ̃∗(θ)

sin θ
.

On the other hand, for |β| ≥ 1,

∣∣∣∣
1

z + z−1 − β − β−1

∣∣∣∣ =

∣∣∣∣
z

(z − β)(z − β−1)

∣∣∣∣ ≤
|z|

|Im z|2 =
1

r sin2(θ)

if z = reiθ, so (2.61) yields

Im
∑
j,±

α(β±j )

z + z−1 − β±j − (β±j )−1
≤

∑
j,± α(β±j )

r sin2(θ)
≤ 1

r sin2(θ)
.
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Proof of Theorem 3.2. Let

f1(ϕ) =
2µ̃∗(ϕ)

sin ϕ
, f2(ϕ) =

2

sin2(ϕ)
.

For a.e. ϕ we have ln+[Im M(reiϕ)/a] → ln+[Im M(eiϕ)/a] by (2.64). By (3.11), for

all r ∈ (1
2
, 1), ln+[Im M(reiϕ)/a] ≤ ln+[(f1(ϕ) + f2(ϕ))/a]. Thus if we prove that for

all p < ∞ ∫ ∣∣∣∣ln+

(
f1(ϕ) + f2(ϕ)

a

)∣∣∣∣
p

w(ϕ) dϕ < ∞,

we obtain (3.7) by the dominated convergence theorem. Since

|ln+(x)|p ≤ C(p, q)|x|q

for any p < ∞, q > 0, and suitable C(p, q), and

|x + y|q ≤ 2q|x|q + 2q|y|q,

it suffices to find some q > 0 such that

∫
(|f1(ϕ)|q + |f2(ϕ)|q) w(ϕ) dϕ < ∞.

Since for v−1 + t−1 = 1,

∫
|f1(ϕ)|qw(ϕ) dϕ ≤

(∫
|f1(ϕ)|qv dϕ

)1/v(∫
|w(ϕ)|t dϕ

)1/t

and w(ϕ) ∈ Lt for some t > 1 by (3.3), it suffices to find some s > 0 with

∫
(|f1(ϕ)|s + |f2(ϕ)|s) dϕ < ∞.

If s < 1
2
, then

∫ |f2(ϕ)|s dϕ < ∞ and by Cauchy-Schwartz and (3.10),

∫
|f1(ϕ)|s dϕ ≤

( ∫
|2µ̃∗(ϕ)|2s dϕ

) 1
2
( ∫

| sin ϕ|−2s dϕ

) 1
2

< ∞.
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As a preliminary to the proof of Theorem 3.3, we need

Lemma 3.5. Let w obey (3.4). Let 0 < ϕ0 < π and let ϕ1, ϕ2 ∈ [0, π] obey

(a) d(ϕ1) ≥ d(ϕ0), d(ϕ2) ≥ d(ϕ0), (3.12)

(b) |ϕ1 − ϕ2| ≤ d(ϕ0)
β. (3.13)

Then for C3 ≡ C2e
C2,

∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ ≤ C3|ϕ1 − ϕ2| d(ϕ0)
−β. (3.14)

Proof.

∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ =

∣∣∣∣exp

( ∫ ϕ2

ϕ1

w′(η)

w(η)
dη

)
− 1

∣∣∣∣ ≤
∣∣ exp

(
C2|ϕ2 − ϕ1| d(ϕ0)

−β
)− 1

∣∣

by (3.4) and (3.12). But |ex − 1| ≤ e|x||x|, so by (3.13),

∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ ≤ C2e
C2|ϕ1 − ϕ2| d(ϕ0)

−β.

We will also need the following pair of lemmas:

Lemma 3.6. Let 0 < η < θ < π − η and

Nr(θ, η) ≡
∫ θ+η

θ−η

Dr(θ, ϕ)
dϕ

2π
.

Then

0 ≤ 1−Nr(θ, η) ≤ 4(1− r)

r sin2(η)
. (3.15)

Proof. We have

1 =

∫ 2π

0

Pr(θ, ϕ)
dϕ

2π
,
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so since Dr ≤ Pr, we obtain Nr ≤ 1. Also, by (2.69),

1−Nr(θ, η) ≤ 2

2π

∫
ϕ∈[0,2π]
|θ−ϕ|≥η

Pr(θ, ϕ) dϕ.

If |θ − ϕ| ≥ η, then

Pr(θ, ϕ) =
1− r2

(1− r)2 + 4r sin2[1
2
(θ − ϕ)]

≤ 2(1− r)

4r sin2(η/2)
≤ 2(1− r)

r sin2(η)

and (3.15) is immediate.

Lemma 3.7. There is c > 0 such that for θ ∈ [0, π] and r ∈ (1
2
, 1),

Im M(reiθ) ≥ c(r−1 − r) sin θ. (3.16)

Proof. In terms of m, for ε > 0 and E ∈ R,

Im[−m(E − iε)] ≥
∫ 2

−2

ε dν(x)

(E − x)2 + ε2
. (3.17)

Now if z = reiθ, then

M(z) = −m(E − iε)

with z + z−1 = E − iε, or E = (r + r−1) cos θ and ε = (r−1 − r) sin θ. If r > 1
2
, then

|E| ≤ 3, |ε| ≤ 2, and in (3.17), |x| ≤ 2. Thus by (3.17),

Im M(z) ≥ ε

29

∫ 2

−2

dν(x) =
ν([−2, 2])

29
ε,

which is (3.16).

Proof of Theorem 3.3. Since ln− is a decreasing function, to get upper bounds on

ln−[Im M(reiθ)/a], we can use a lower bound on Im M . The elementary bound

ln−(ab) ≤ ln−(a) + ln−(b) (3.18)
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will be useful.

As already noted, Fatou’s lemma implies that the lim inf of the left side of (3.8)

is bounded from below by the right side, so it suffices to prove that

lim sup
r↑1

∫ π

0

ln−

(
Im M(reiθ)

a

)
w(θ) dθ ≤

∫ π

0

ln−

(
Im M(eiθ)

a

)
w(θ) dθ. (3.19)

Pick γ and κ so that 0 < max{β, 1}γ < κ < 1
2
, and let θ0(r) ≡ (1 − r)γ and

η(r) ≡ (1− r)κ. We will bound Im M(reiθ) from below for d(θ) ≤ θ0(r) using (3.16),

and for d(θ) ≥ θ0(r) we will use the Poisson integral for the region |θ − ϕ| ≤ η(r).

By (3.16) and (3.3), using

∫ θ0

0

ln−(sin θ)θ−1+α dθ = O
(
θα
0 ln− θ0

)

as θ0 → 0, we have

∫

d(θ)≤θ0(r)

ln−

(
Im M(reiθ)

a

)
w(θ) dθ ≤ Cαθα

0 (r)
[
C̃a + ln−(r−1 − r) + ln−(θ0(r))

]

which goes to zero as r ↑ 1 for any a. So suppose d(θ) > θ0(r). By (2.71), (2.73), and

Dr ≥ 0,

Im M(reiθ) ≥
∫ θ+η(r)

θ−η(r)

Dr(θ, ϕ) Im M(eiϕ)
dϕ

2π

= Nr(θ, η)

∫ θ+η(r)

θ−η(r)

Dr(θ, ϕ)

2πNr(θ, η)
Im M(eiϕ) dϕ, (3.20)

where we dropped the pole terms and the contribution of µsing in (2.71).

For later purposes, note that for d(θ) > θ0(r), (3.15) implies

0 ≤ 1−Nr(θ, η) ≤ C(1− r)1−2κ (3.21)

which goes to zero as r ↑ 1 since κ < 1
2
. Using (3.20) and (3.18), we bound

ln−[Im M(reiθ)/a] as two ln−’s. Since ln− is convex and Dr(θ, ϕ)[2πNr(θ, η)]−1 dϕ

restricted to (θ− η, θ + η) is a probability measure, we can use Jensen’s inequality to
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see that

w(θ) ln−

(
Im M(reiθ)

a

)

≤ w(θ) ln−
[
Nr(θ, η)

]
+

∫ θ+η(r)

θ−η(r)

w(θ)

w(ϕ)

Dr(θ, ϕ)

Nr(θ, η)
w(ϕ) ln−

(
Im M(eiϕ)

a

)
dϕ

2π
.

(3.22)

In the first term (for the θ’s with d(θ) > θ0(r)), Nr obeys (3.21), so as r ↑ 1,

∫

d(θ)>θ0(r)

w(θ) ln−
[
Nr(θ, η)

]
dθ = O

(
(1− r)1−2κ

) → 0. (3.23)

In the second term, note that for the θ’s in question, Nr(θ, η)−1− 1 = O((1− r)1−2κ)

and by (3.14), w(θ)/w(ϕ) − 1 = O(η(r)θ−β
0 (r)) = O((1 − r)κ−βγ). Since Dr(θ, ϕ) ≤

Pr(θ, ϕ), we thus have

∫

d(θ)>θ0

ln−

(
Im M(reiθ)

a

)
w(θ) dθ

≤ O
(
(1− r)1−2κ

)
+

[
1 + O

(
(1− r)1−2κ

)][
1 + O

(
(1− r)κ−βγ

)]
∫

d(θ)>θ0

∫

|ϕ−θ|≤η

Pr(θ, ϕ)w(ϕ) ln−

(
Im M(eiϕ)

a

)
dϕ

dθ

2π
. (3.24)

Since the integrand is positive, we can extend it to {(θ, ϕ) | θ ∈ [0, 2π], ϕ ∈ [0, π]}
and do the θ integration first, using

∫
Pr(θ, ϕ)dθ/2π = 1. We obtain

∫ π

0

ln−

(
Im M(reiθ)

a

)
w(θ) dθ ≤ o(1) +

[
1 + o(1)

] ∫ π

0

ln−

(
Im M(eiθ)

a

)
w(θ) dθ.

Take r ↑ 1 and (3.19) follows.

This concludes the proof of Theorem 3.1. By going through the proof, one easily

sees that

Theorem 3.8. Theorem 3.1 remains true if in (3.1) and (3.6), ln[Im M(reiϕ)] is

replaced by ln[g(r) sin ϕ + Im M(reiϕ)] where g(r) ≥ 0 and g(r) → 0 as r ↑ 1.

Proof. In the ln+ bounds, we get an extra [sup 1
2
<r<1 g(r)] sin θ in f2(θ). Since we still
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have pointwise convergence, we easily get the analog of Theorem 3.2. In the proof of

Theorem 3.3, Fatou is unchanged since g(r) → 0, and since

ln−
[
g(r) sin ϕ + Im M(reiϕ)

] ≤ ln−
[
Im M(reiϕ)

]
,

the lim sup bound has an unchanged proof as well.

3.2 The Step-by-Step Sum Rules

Before we state the step-by-step sum rules, we need to define several quantities. By

Lemma 2.8, if f is even or odd and monotone on [2,∞) with f(2) = 0, then

δn(f, J) ≡
∑
±

∞∑
j=1

[
f(E±

j (J))− f(E±
j (J (n)))

]
(3.25)

exists and is finite. If β±j is defined by E±
j = β±j + (β±j )−1 and |βj| ≥ 1, we let

X
(n)
` (J) ≡ δn(f, J), f(E) ≡





ln|β| ` = 0,

−1
`
[β` − β−`] ` ≥ 1.

(3.26)

In addition, we will need

ζ
(n)
` (J) ≡




−∑n

j=1 ln(aj) ` = 0,

2
`
limm→∞

[
Tr

(
T`(

1
2
Jm;F )

)− Tr
(
T`(

1
2
J

(n)
m−n;F )

)]
` ≥ 1,

(3.27)

where Jm;F is the finite matrix formed from the first m rows and columns of J , and

T` is the `th Chebyshev polynomial of the first kind defined in (2.10). By Lemma 3.31

(applied to J, J (1), . . . , J (n−1) and added together), the limit in (3.27) exists and the

expression inside the limit is independent of m once m > ` + n. Note that by (2.12),

ζ
(n)
1 (J) =

n∑
j=1

bj, (3.28)



50

ζ
(n)
2 (J) =

n∑
j=1

1
2

[
b2
j + (a2

j − 1)
]
. (3.29)

By construction (with J (0) ≡ J),

X
(n)
` (J) =

n−1∑
j=0

X
(1)
` (J (j)) (3.30)

and

ζ
(n)
` (J) =

n−1∑
j=0

ζ
(1)
` (J (j)). (3.31)

Finally, M(z̄) = M(z), (2.63), and (2.29)/(2.30)/(2.32) imply

Z(J) =
1

4π

∫ 2π

0

ln

(
sin θ

Im M(eiθ; J)

)
dθ, (3.32)

and for ` ≥ 1,

Z±
` (J) =

1

4π

∫ 2π

0

ln

(
sin θ

Im M(eiθ; J)

)
(1± cos(`θ)) dθ, (3.33)

Y`(J) = − 1

2π

∫ 2π

0

ln

(
sin θ

Im M(eiθ; J)

)
cos(`θ) dθ. (3.34)

Our main goal in this section is to prove the next three theorems.

Theorem 3.9 (Step-by-Step Sum Rules). Let J be a BW matrix. Then

Z(J) < ∞ if and only if Z(J (1)) < ∞. If Z(J) < ∞, then for ` ≥ 1 we have

Z(J) = − ln(a1) + X
(1)
0 (J) + Z(J (1)), (3.35)

Y`(J) = ζ
(1)
` (J) + X

(1)
` (J) + Y`(J

(1)). (3.36)

Remarks. 1. By iteration and (3.30)/(3.31), we obtain Z(J) < ∞ if and only if

Z(J (n)) < ∞, and

Z(J) = −
n∑

j=1

ln(aj) + X
(n)
0 (J) + Z(J (n)), (3.37)
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Y`(J) = ζ
(n)
` (J) + X

(n)
` (J) + Y`(J

(n)). (3.38)

2. We call (3.35)–(3.38) the step-by-step Case sum rules.

Theorem 3.10 (One-Sided Step-by-Step Sum Rules). Let J be a BW matrix.

Then Z±
1 (J) < ∞ if and only if Z±

1 (J (1)) < ∞. If Z±
1 (J) < ∞, then for ` = 1, 3, 5, . . .

we have

Z±
` (J) = − ln(a1)∓ 1

2
ζ

(1)
` (J) + X

(1)
0 (J)∓ 1

2
X

(1)
` (J) + Z±

` (J (1)). (3.39)

Remark. Theorem 3.10 is intended to be two statements: one with all the upper

signs used and one with all the lower signs used.

Theorem 3.11 (Quasi-Step-by-Step Sum Rules). Let J be a BW matrix. Then

Z−
2 (J) < ∞ if and only if Z−

2 (J (1)) < ∞. If Z−
2 (J) < ∞, then for ` = 2, 4, 6, . . . we

have

Z−
` (J) = − ln(a1) + 1

2
ζ

(1)
` (J) + X

(1)
0 (J) + 1

2
X

(1)
` (J) + Z−

` (J (1)). (3.40)

Remarks. 1. Since Z(J) < ∞ implies Z+
1 (J) and Z−

1 (J) < ∞, and Z+
1 (J) or

Z−
1 (J) < ∞ imply Z−

2 (J) < ∞, we have additional sum rules in various cases.

2. In [14], Laptev et al. prove sum rules for Z−
` (J) where ` = 4, 6, 8, . . . . One can

develop step-by-step sum rules in this case and use them to streamline the proof of

their rules as we streamline the proof of the Killip-Simon P2 rule (our Z−
2 rule) in the

next section. One only needs to repeat the proofs in the previous section with d(ϕ)

as in the remark after (3.4).

The step-by-step sum rules were introduced in Killip-Simon, who first consider

r < 1 (in our language below), then take n → ∞, and then, with some technical

hurdles, r ↑ 1. By first letting r ↑ 1 with n = 1 (using results from the previous

section), and then taking n →∞ (as in the next section), we can both simplify their



52

proof and obtain additional results. The idea of using the imaginary part of (2.74) is

taken from [13].

Proof of Theorem 3.9. Taking imaginary parts of both sides of (2.74) with z = reiθ

and r < 1 yields

Im M(reiθ; J) |M(reiθ; J)|−2 = (r−1 − r) sin θ + a2
1 Im M(reiθ; J (1)).

Taking ln’s of both sides, we obtain

ln

(
sin θ

Im M(reiθ; J)

)
= t1 + t2 + t3 (3.41)

where

t1 = −2 ln|M(reiθ; J)|,
t2 = −2 ln a1,

t3 = ln

(
sin θ

g(r) sin θ + Im M(reiθ; J (1))

)

with

g(r) ≡ a−2
1 (r−1 − r).

Let

fr(z) ≡ M(rz; J)

rz
, (3.42)

so fr(0) = 1 (see (2.75)). Obviously, fr is meromorphic in 1
r
D. Inside the unit

disk, fr has poles at {(rβ±j (J))−1 | j so that |β±j (J)| > r−1} and it has zeros at

{(rβ±j (J (1)))−1 | j so that |β±j (J (1))| > r−1}. This is because the zeros of M(z; J) are

the poles of M(z; J (1)) by (2.74). Thus, by Jensen’s formula (3.91) for fr:

1

4π

∫ 2π

0

t1 dθ = − ln r +
∑

|β±j (J)|>r−1

ln|rβ±j (J)| −
∑

|β±j (J(1))|>r−1

ln|rβ±j (J (1))|.

By (2.26), the numbers of terms in the sums differ by at most 2, so that the ln(r)’s
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cancel up to at most 2 ln(r) → 0 as r ↑ 1. Thus as r ↑ 1, (3.26) shows that

1

4π

∫ 2π

0

(t1 + t2) dθ → − ln(a1) + X
(1)
0 (J).

By Theorems 3.1 and 3.8 (with w(θ) ≡ 1) and by (3.41),

1

4π

∫ 2π

0

t3 dθ → Z(J (1)),

1

4π

∫ 2π

0

(t1 + t2 + t3) dθ → Z(J).

Hence Z(J) < ∞ if and only if Z(J (1)) < ∞, and if they are finite, (3.35) holds.

To obtain (3.36) for ` ≥ 1, we use the same method but with higher Jensen’s

formulae (3.92) for fr. We first note that by (3.42) and (3.98), the `th Taylor coefficient

of ln fr(z) is r`ζ
(1)
` (J). So by (3.92):

r`ζ
(1)
` (J) =

1

π

∫ 2π

0

ln |fr(e
iθ)| cos(`θ) dθ −

∑

|β±j (J(1))|>r−1

(rβ±j (J (1)))` − (rβ±j (J (1)))−`

`

+
∑

|β±j (J)|>r−1

(rβ±j (J))` − (rβ±j (J))−`

`

=− 1

2π

∫ 2π

0

(t1 + t2) cos(`θ) dθ

+
r`

`

{ ∑

|β±j (J)|>r−1

[
(β±j (J))` − 1

]−
∑

|β±j (J(1))|>r−1

[
(β±j (J (1)))` − 1

]
}

− r−`

`

{ ∑

|β±j (J)|>r−1

[
(β±j (J))−` − 1

]−
∑

|β±j (J(1))|>r−1

[
(β±j (J (1)))−` − 1

]
}

.

Again, as r ↑ 1, we obtain

− 1

2π

∫ 2π

0

(t1 + t2) cos(`θ) dθ → ζ
(1)
` (J)−

∑
j,±

(β±j (J))` − (β±j (J))−`

`

+
∑
j,±

(rβ±j (J (1)))` − (rβ±j (J (1)))−`

`

= ζ
(1)
` (J) + X

(1)
` (J).
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By Z(J) < ∞, the L1 convergence in Theorems 3.1 and 3.8, and by (3.41),

− 1

2π

∫ 2π

0

t3 cos(`θ) dθ → Y`(J
(1)),

− 1

2π

∫ 2π

0

(t1 + t2 + t3) cos(`θ) dθ → Y`(J),

proving (3.36).

Proofs of Theorems 3.10 and 3.11. These are the same as the above proof, but now

the weight w(θ) is either 1 ± cos(θ) or 1 − cos(2θ), and that weight obeys (3.3) and

(3.4).

Corollary 3.12. Let J be a BW matrix. If J − J̃ is finite rank, then J is Szegő

(resp. Szegő at ±2) if and only if J̃ is.

Proof. For some n, J (n) = J̃ (n), so this is immediate from Theorems 3.9 and 3.10.

Given this result, a natural question arises:

Conjecture 3.13. Let J be a BW matrix. If J − J̃ is trace class, then J is Szegő

(resp. Szegő at ±2) if and only if J̃ is. It is possible this conjecture is only generally

true if J − J0 is only assumed compact or is only assumed Hilbert-Schmidt.

This conjecture for J = J0 is Nevai’s conjecture recently proven by Killip-Simon.

Ideas in this work would prove this conjecture if one can prove a result of the following

form. Let J − J̃ be a finite rank operator so that by Lemma 2.8,

δ(J, J̃) ≡ lim
N→∞

∑
±

N∑
j=1

(√
|E±

j (J)| − 2 −
√
|E±

j (J̃)| − 2

)

exists and is finite. The conjecture would be provable by the methods of this work (by

using the step-by-step sum rule to remove the first n pieces of J and then replacing

them with the first n pieces of J̃) if one had a bound of the form

|δ(J, J̃)| ≤ (const.)Tr(|J − J̃ |). (3.43)
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This is because |β| − 1 = O(
√
|E| − 2) shows that X

(n)
0 (J)−X

(n)
0 (J̃) is comparable

to δ(J, J̃).

Inequality (3.43) holds for J = J0 by Theorem 2.3. There are counterexamples

that show (3.43) does not hold for a universal constant c. However, in these examples,

‖J‖ → ∞ as c →∞. Thus it could be that (3.43) holds with c only depending on J

for some class of J ’s. If it held with a bound depending only on ‖J‖, the conjecture

would hold in general. If J was required in J0+ Hilbert-Schmidt, we would get the

conjecture for such J ’s.

For later reference we write down the step-by-step Z, Z±
1 , and Z−

2 sum rules

(iterated (3.35) and (3.39)) explicitely. We define

ξ±(E) ≡ ln |β| ± 1
2
(β − β−1), (3.44)

F (E) ≡1
4

[
β2 − β−2 − ln(β4)

]
, (3.45)

G(a) ≡1
2

[
a2 − 1− ln(a2)

]
, (3.46)

with E = β + β−1 and |β| ≥ 1. We then have

Z(J) =−
n∑

j=1

ln(aj) +
∑
j,±

[
ln

∣∣β±j (J)
∣∣− ln

∣∣β±j (J (n))
∣∣
]

+ Z(J (n)), (3.47)

Z+
1 (J) =−

n∑
j=1

[
ln(aj) + 1

2
bj

]
+

∑
j,±

[
ξ+

(
E±

j (J)
)− ξ+

(
E±

j (J (n))
)]

+ Z+
1 (J (n)),

(3.48)

Z−
1 (J) =−

n∑
j=1

[
ln(aj)− 1

2
bj

]
+

∑
j,±

[
ξ−

(
E±

j (J)
)− ξ−

(
E±

j (J (n))
)]

+ Z−
1 (J (n)),

(3.49)

Z−
2 (J) =

n∑
j=1

[
G(aj) + 1

4
b2
j

]−
∑
j,±

[
F

(
E±

j (J)
)− F

(
E±

j (J (n))
)]

+ Z−
2 (J (n)). (3.50)
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3.3 The Z, Z±
1 , and Z−

2 Sum Rules

Our goal here is to prove that “full size” sum rules of Case type hold under certain

hypotheses. Of interest on their own, these considerations also somewhat simplify

the proof of the P2 sum rule in Section 8 of [13], and considerably simplify the proof

of the C0 sum rule for trace class J − J0 in Section 9 of [13]. Throughout, J will

be a BW matrix. Our three main tools are lower semi-continuity of the Z’s in J ,

their boundedness from below, and the step-by-step sum rules. We use lower semi-

continuity of the Z’s in two ways — we approximate J with Jn, and J0 with J (n) (the

latter when J −J0 is compact). As we shall see, these and the step-by-step sum rules

will yield the two opposite inequalities in the “full size” sum rules.

Motivated by (3.47)–(3.50), we introduce the following quantities:

Ā0(J) ≡ lim sup
n→∞

(
−

n∑
j=1

ln(aj)

)
, (3.51)

A0(J) ≡ lim inf
n→∞

(
−

n∑
j=1

ln(aj)

)
,

Ā±
1 (J) ≡ lim sup

n→∞

(
−

n∑
j=1

(
aj − 1± 1

2
bj

))
, (3.52)

A±
1 (J) ≡ lim inf

n→∞

(
−

n∑
j=1

(
aj − 1± 1

2
bj

))
,

A2(J) ≡
∞∑

j=1

[
G(aj) + 1

4
b2
j

]
, (3.53)

where G(a) is from (3.46). Note that G(a) ≥ 0 because ln(a2) ≤ 2a− 2, and G(a) ∼
(a − 1)2 for a ∼ 1. Since G(a) ≥ 0, the sum in (3.53) exists (but may be +∞).

Since G(a) = O((a − 1)2), it follows that A2(J) is finite if and only if J − J0 is

Hilbert-Schmidt.

In (3.52), we use aj − 1 in place of ln(aj), which appears in (3.48). The reason for

this is that we will mainly be interested in the Z±
1 sum rules when J − J0 is Hilbert-

Schmidt, in which case {aj − 1} ∈ `2 and so
∑|ln(aj) − (aj − 1)| < ∞. Notice also

that in the case of a discrete Schrödinger operator (i.e., an ≡ 1), Ā0(J) = A0(J) = 0.
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Next, we introduce some functions of the eigenvalues:

E0(J) ≡
∑
j,±

ln|β±j |, (3.54)

E±1 (J) ≡
∑

j

√
|E±

j | − 2 , (3.55)

E2(J) ≡
∑
j,±

F (E±
j ), (3.56)

where F (E) is from (3.45). In (3.54) and (3.56), we sum over + and −. In (3.55), we

define E+
1 and E−1 with only the + or only the − terms. Note that F is even, increasing

on [2,∞), F (2) = 0, and F (E) ∼ 2
3
(|E| − 2)3/2 for |E| ∼ 2. Hence E2(J) < ∞ if and

only if
∑
j,±

(|E±
j | − 2)3/2 < ∞.

Also, since |β| − 1 = O(
√
|E| − 2 ), we have that E0(J) < ∞ if and only if

∑
j,±

√
|E±

j | − 2 < ∞. (3.57)

We will need the following basis-dependent notion:

Definition. Let B be a bounded operator on `2(Z+). We say that B has a conditional

trace if

lim
`→∞

∑̀
j=1

〈δj, Bδj〉 ≡ c-Tr(B) (3.58)

exists and is finite.

Remark. If B is not trace class, this object is not unitarily invariant.

Our goal in this section is to prove the following three theorems whose proof is

deferred until after all the statements.

Theorem 3.14. Let J be a BW matrix. Consider the four statements:

(i) Ā0(J) > −∞,

(ii) A0(J) < ∞,
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(iii) Z(J) < ∞,

(iv) E0(J) < ∞.

Then

(a) (ii) + (iv) ⇒ (iii) + (i),

(b) (i) + (iii) ⇒ (iv) + (ii),

(c) (iii) ⇒ Ā0(J) < ∞,

(d) (iv) ⇒ A0(J) > −∞.

Thus (iii)+ (iv) ⇒ (i)+ (ii). In particular, if A0(J) = Ā0(J), that is, the limit exists,

then the finiteness of any two of Z(J), E0(J), and Ā0(J) implies the finiteness of the

third.

If all four conditions hold and J − J0 is compact, then

(e) The limit

lim
n→∞

(
−

n∑
j=1

ln(aj)

)
≡ A0(J) (3.59)

exists and is finite, and the Z sum rule holds:

Z(J) = A0(J) + E0(J). (3.60)

(f) For each ` = 1, 2, . . . ,

−
∑
j,±

1
`
[β±j (J)` − β±j (J)−`] ≡ X

(∞)
` (J) (3.61)

converges absolutely and equals limn→∞ X
(n)
` (J).

(g) For each ` = 1, 2, . . . ,

B`(J) =
2

`

[
T`

(
J

2

)
− T`

(
J0

2

)]
(3.62)

has a conditional trace and

c-Tr(B`(J)) = lim
n→∞

ζ
(n)
` (J). (3.63)
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For example, for ` = 1 we have that
∑n

j=1 bj converges to a finite limit.

(h) The Y` sum rules hold:

Y`(J) = c-Tr(B`(J)) + X
(∞)
` (J) (3.64)

where Y` is given by (3.34), X
(∞)
` by (3.61), and c-Tr(B`(J)) by (3.58), (3.62),

and (3.63).

Remarks. 1. In a sense, this is the main result of this chapter.

2. We will give examples later where Ā0(J) = A0(J) and one of the conditions

(i)/(ii), (iii), (iv) holds but the other two fail.

3. By Lemma 3.29, for ` odd, T`(J0/2) vanishes on-diagonal, and for `

even, T`(J0/2) eventually vanishes on-diagonal and c-Tr(T`(J0/2)) = −1
2
. Thus

(g) says c-Tr(T`(J/2)) exists and the sum rule (3.64) can replace c-Tr(B`(J)) by

2
`
c-Tr(T`(J/2)) plus a constant (zero if ` is odd and 1

`
if ` is even).

Corollary 3.15. Let J − J0 be compact. If Z(J) < ∞, then −∑n
j=1 ln(aj) either

converges or diverges to −∞.

Remarks. 1. We will give an example later in which Z(J) < ∞, and

limn→∞(−∑n
j=1 ln(aj)) = −∞.

2. In other words, if J − J0 is compact and Ā0(J) 6= A0(J), then Z(J) = ∞.

3. Similarly, if J − J0 is compact and E0(J) < ∞, then the limit exists and is

finite or +∞.

Proof. If Z(J) < ∞ and Ā0(J) > −∞, then by Theorem 3.14(b), all four conditions

hold, and so by (e), the limit exists. On the other hand, if Ā0(J) = −∞, then

Ā0(J) = A0(J) = −∞.

Corollary 3.16. If J − J0 is trace class, then Z(J) < ∞, E0(J) < ∞, and the sum

rules (3.60) and (3.64) hold.

Remark. This is a result of Killip-Simon [13]. Our proof that Z(J) < ∞ is

essentially the same as theirs, but our proof of the sum rules is much easier.



60

Proof. Since J − J0 is trace class, it is compact. Clearly, Ā0(J) = A0(J), and is

neither ∞ nor −∞ since aj > 0 and
∑|aj − 1| < ∞ imply

∑|ln(aj)| < ∞. By

Theorem 2.3 and (3.57), E0(J) < ∞. The sum rules then hold by (a), (e), and (h) of

Theorem 3.14.

The following result is a “one-sided” analogue of (a)-(d) of Theorem 3.14 for J−J0

Hilbert-Schmidt:

Theorem 3.17. Suppose J − J0 is Hilbert-Schmidt. Then

(i) A±
1 (J) < ∞ and E±1 (J) < ∞ implies Z±

1 (J) < ∞,

(ii) Ā±
1 (J) > −∞ and Z±

1 (J) < ∞ implies E±1 (J) < ∞,

(iii) Z±
1 (J) < ∞ implies Ā±

1 (J) < ∞,

(iv) E±1 (J) < ∞ implies A±
1 (J) > −∞.

Remarks. 1. Each of (i)–(iv) is intended as two statements.

2. In Section 3.5, we will explore (iii), which is the most striking of these results

since its contrapositive gives very general conditions under which the Szegő condition

fails.

3. The Hilbert-Schmidt condition in (i) and (iv) can be replaced by the somewhat

weaker condition
∑
j,±

(|E±
j | − 2)3/2 < ∞. (3.65)

That is true for (ii) and (iii) also, but by (3.66) below, (3.65) plus Z±
1 (J) < ∞ implies

J − J0 is Hilbert-Schmidt.

Theorem 3.18. Let J be a BW matrix. Then the Z−
2 sum rule holds:

Z−
2 (J) + E2(J) = A2(J). (3.66)

Remarks. 1. This is, of course, the P2 sum rule of Killip-Simon [13]. Our proof

that Z−
2 (J) + E2(J) ≤ A2(J) is identical to that in [13], but our proof of the opposite

inequality is somewhat streamlined.

2. As in [13], the values +∞ are allowed in (3.66).
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Proof of Theorem 3.14. We let Jn and J (n) be as in (2.18) and (2.20). Then (3.47)

for Jn (noting (Jn)(n) = J0 and Z(J0) = 0) reads

Z(Jn) = −
n∑

j=1

ln(aj) +
∑
j,±

ln|β±j (Jn)|. (3.67)

Lemma 2.7 implies that the eigenvalue sum converges to E0(J) if J−J0 is compact.

More generally, the sum is bounded above by E0(J) + c0 where c0 ≡ 0 if J − J0 is

compact and

c0 ≡ ln|β+
1 (J) + 2|+ ln|β−1 (J)− 2| (3.68)

otherwise. Moreover, by Theorem 2.13, Z(J) ≤ lim inf Z(Jn). Thus we have

Z(J) ≤ A0(J) + E0(J) + c0. (3.69)

Thus far, the proof is directly from [13]. On the other hand, by (3.37), we have

Z(J) ≥ Ā0(J) + lim inf
n→∞

X
(n)
0 (J) + lim inf

n→∞
Z(J (n)). (3.70)

By Lemma 2.8, lim X
(n)
0 (J) = E0(J). Moreover, by Theorem 2.13, Z(J (n)) ≥ −1

2
ln(2),

and if J − J0 is compact, that is, J (n) → J0, then 0 = Z(J0) ≤ lim inf Z(J (n)).

Therefore, (3.70) implies that

Z(J) ≥ Ā0(J) + E0(J)− c (3.71)

where

c ≡ 0 if J − J0 is compact, c ≡ 1
2
ln(2) in general.

With these preliminaries out of the way the rest of the proof is straightforward:

Proof of (d). (iv) and (3.69) imply that

Ā0(J) ≥ A0(J) ≥ Z(J)− E0(J)− c0 > −∞. (3.72)
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Proof of (a). (3.69) shows Z(J) < ∞, and (d) shows that (i) holds.

Proof of (c). By (3.71) and E0(J) ≥ 0,

Z(J) ≥ Ā0(J)− c,

so Z(J) < ∞ implies Ā0(J) < ∞.

Proof of (b). Since Ā0(J) > −∞ and c < ∞, (3.71) plus Z(J) < ∞ implies E0(J) <

∞. Clearly, (c) shows that (ii) holds.

Note that (iii), (iv), and (3.71) imply that

A0(J) ≤ Ā0(J) ≤ Z(J)− E0(J) + 1
2
ln(2) < ∞. (3.73)

Thus we have shown more than merely (iii) + (iv) ⇒ (i) + (ii), namely, (iii) + (iv)

imply by (3.72) and (3.73)

−∞ < Ā0(J) ≤ A0(J) + 1
2
ln(2) + c0 < ∞.

With c0 as in (3.68). We can say more if J − J0 is compact:

Proof of (e). (3.73) is now replaced by

A0(J) ≤ Ā0(J) ≤ Z(J)− E0(J)

since we can take c = 0 in (3.71). This plus (3.72) with c0 = 0 implies Ā0(J) = A0(J)

and (3.60).

Proof of (f), (g), (h). We have the sum rules (3.37), (3.38). By Theorem 2.13,

Z±
` (J) = Z(J) ∓ 1

2
Y`(J) is lower semi-continous in J . Since ‖J (n) − J0‖ → 0, we

have

lim inf
n→∞

[
Z(J (n))∓ 1

2
Y`(J

(n))
] ≥ Z∓

` (J0) = 0. (3.74)

On the other hand, since Z(J (n)) < ∞ and E0(J
(n)) ≤ E0(J) < ∞, J (n) obeys the
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sum rule (3.60). Since −∑n
j=1 ln(aj) converges conditionally,

lim
n→∞

A0(J
(n)) = lim

n→∞

(
−

∞∑
j=n

ln(aj)

)
= 0.

Moreover, E0(J
(n)) → 0 by Lemma 2.8 and by the fact that E0(J) < ∞, and we

conclude that Z(J (n)) → 0. Thus (3.74) becomes

lim sup
n→∞

Y`(J
(n)) ≤ 0, lim inf

n→∞
Y`(J

(n)) ≥ 0,

or

lim
n→∞

Y`(J
(n)) = 0. (3.75)

By Lemma 2.8, limn X
(n)
` (J) = X

(∞)
` (J), with X

(∞)
` (J) from (3.61). Since E0(J) <

∞ implies
∑

j,±(|β±j | − 1) < ∞, we have that the sum defining X
(∞)
` (J) is absolutely

convergent. This proves (f).

By this fact, (3.38), and (3.75), limn ζ
(n)
` (J) exists, is finite, and obeys the sum

rule

Y`(J) = lim
n→∞

ζ
(n)
` (J) + X

(∞)
` (J).

Hence (h) will follow from (g), and we are left with showing (3.63). But by (3.27), the

existence of limn ζ
(n)
` (J) is precisely the existence of the conditional trace of B`(J),

and they are equal. Indeed, if m > 2` + n, then for k ≥ `,

(
T`(

1
2
J

(n)
m−n;F )

)
k,k

=
(
T`(

1
2
Jm;F )

)
k+n,k+n

,

(
T`(

1
2
J0)

)
k,k

= 0

by the argument in the proof of Lemma 3.29 below, and for k < `,

(
T`(

1
2
J

(n)
m−n;F )

)
k,k
→ (

T`(
1
2
J0)

)
k,k

as n →∞ (and m > 2` + n) by compactness of J − J0. This proves (3.63).
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Proof of Theorem 3.18. By (2.47), Z−
2 (J (n)) ≥ 0 for all J (n). Thus, following the

proofs of (3.69) and (3.71), but using (3.50) in place of (3.47),

Z−
2 (J) + E2(J) ≤ A2(J)

and

Z−
2 (J) + E2(J) ≥ A2(J),

which yields the Z−
2 sum rule (3.66). In the above, we use the fact that in place of

Z(J) ≥ −1
2
ln(2) one has Z−

2 (J) ≥ 0 (and so c = 0), and the fact that A2(J) < ∞
implies J − J0 is compact (and so always A2(J) + c0 = A2(J)).

Proof of Theorem 3.17. Let ξ±(E) be as in (3.44) and consider g(β) ≡ ξ−(E) in the

region β ≥ 1. Then

g′(β) = β−1 − 1
2
− 1

2
β−2 = −1

2
β−2(β − 1)2,

so g is analytic near β = 1 and g(1) = g′(1) = g′′(1) = 0, that is, g(β) = O((β − 1)3).

On the other hand, ξ+(E) = g(β)+β−β−1 = β−β−1+O((β−1)3). Since β+β−1 = E

means β − β−1 =
√

E2 − 4 = 2
√

E − 2 + O(|E − 2|3/2) and β − 1 = O(
√

E − 2 ), we

conclude that

E > 2 ⇒





ξ−(E) = O(|E − 2|3/2),

ξ+(E) = 2
√
|E| − 2 + O(|E − 2|3/2),

(3.76)

while in the same way

E < −2 ⇒





ξ−(E) = 2
√
|E| − 2 + O(|E + 2|3/2),

ξ+(E) = O(|E + 2|3/2).

(3.77)
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It follows that

∑
j,±

ξ+
(
E±

j

)
= 2E+

1 (J) + O(‖J − J0‖2),

∑
j,±

ξ−
(
E±

j

)
= 2E−1 (J) + O(‖J − J0‖2),

since Theorem 2.3 implies
∑

j,±(|E±
j | − 2)3/2 ≤ c3/2‖J − J0‖2. Thus for some c < ∞

we have

Z±
1 (J) ≤ A±

1 (J) + 2E±1 (J) + c‖J − J0‖2 (3.78)

by writing the sum rule (3.48)/(3.49) for Jn (with Z±
1 ((Jn)(n)) = 0), taking limits, and

using Lemma 2.7 and Z±
1 (J) ≤ lim inf Z±

1 (Jn). Theorem 2.13 says Z±
1 (J (n)) ≥ −κ,

and so by (3.48)/(3.49) and Lemma 2.8,

Z±
1 (J) ≥ Ā±

1 (J) + 2E±1 (J)− c‖J − J0‖2 − κ. (3.79)

With these preliminaries, the proof is straightforward:

Proof of (i), (iv). Immediate from (3.78) and Z±
1 (J) ≥ −κ.

Proof of (ii), (iii). Immediate from (3.79) and E±1 (J) ≥ 0.

Remark. (i)–(iv) of Theorem 3.17 are exactly (a)–(d) of Theorem 3.14 for the Z±
1

sum rules. One therefore expects a version of (e) of that theorem to hold as well.

Indeed, a modification of the above proof yields for J − J0 Hilbert-Schmidt that if

E+
1 (J), Z+

1 (J), Ā+
1 (J) are finite, then

Z+
1 (J) = −

∞∑
n=1

[
ln(an) + 1

2
bn

]
+

∑
j,±

[
ln|β±j |+ 1

2
(β±j − (β±j )−1)

]
,

and if E−1 (J), Z−
1 (J), Ā−

1 (J) are finite, then

Z−
1 (J) = −

∞∑
n=1

[
ln(an)− 1

2
bn

]
+

∑
j,±

[
ln|β±j | − 1

2
(β±j − (β±j )−1)

]
.
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3.4 Shohat’s Theorem with an Eigenvalue

Estimate

Shohat [28] translated Szegő’s theory from the unit circle to the real line and was able

to identify all Jacobi matrices which lead to measures with no mass points outside

[−2, 2] and have Z(J) < ∞. The strongest result of this type, so far, is the following

theorem from Killip-Simon [13, Theorem 4′] (the methods of Nevai [18] can prove the

same result):

Theorem 3.19. Consider the statements

(i) A0(J) < ∞,

(ii) Z(J) < ∞,

(iii)
∑∞

n=1

[
(an − 1)2 + b2

n

]
< ∞,

(iv) A0(J) = Ā0(J) and is finite,

(v) limN→∞
∑N

n=1 bn exists and is finite.

If σ(J) ⊆ [−2, 2], then we have

(i) ⇐⇒ (ii),

and either one implies (iii), (iv), and (v).

We can prove the following extension of this result (≡ Theorem 1.2):

Theorem 3.20. Theorem 3.19 remains true if the assumption σ(J) ⊆ [−2, 2] is

replaced by σess(J) ⊆ [−2, 2] and E0(J) < ∞.

Remarks. 1. Gončar [11], Nevai [18], and Nikishin [21] extended Shohat-type

theorems to allow finitely many bound states outside [−2, 2].

2. Peherstorfer-Yuditskii [22] recently proved that (ii) and E0(J) < ∞ implies (iv)

and additional results on polynomial asymptotics.

Proof. Let us first suppose that σess(J) = [−2, 2], so that J is a BW matrix. By

Theorem 3.14(a), (i) of this theorem plus E0(J) < ∞ implies (ii) of this theorem. By

Theorem 3.14(c), (ii) of this theorem implies (i) of this theorem.
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If either holds, then (iv) follows from (e) of Theorem 3.14 and (v) from the ` = 1

case of (g) of Theorem 3.14. Finally, (iii) follows from Theorem 3.18 if we note that

E0(J) < ∞ implies E2(J) < ∞, that Z(J) < ∞ implies Z−
2 (J) < ∞, and that

G(a) = O((a− 1)2).

If we only have a priori that σess(J) ⊆ [−2, 2], we proceed as follows. If Z(J) < ∞,

then σac(J) ⊇ [−2, 2], so in fact σess(J) = [−2, 2]. If A0(J) < ∞, we look closely at

the proof of Theorem 3.14(a). Inequality (3.69) does not require σess(J) = [−2, 2], but

only that σess(J) ⊆ [−2, 2]. Thus, A0(J) < ∞ implies Z(J) < ∞ if E0(J) < ∞.

There is an interesting way of rephrasing this. Let γn be the leading coefficient of

the orthogonal polynomial Pn. Then by (2.7),

γn = (a1a2 . . . an)−1. (3.80)

Thus

A0(J) = lim inf
n→∞

ln(γn) (3.81)

and

Ā0(J) = lim sup
n→∞

ln(γn). (3.82)

Corollary 3.21. Suppose σess(J) ⊆ [−2, 2] and E0(J) < ∞. Then Z(J) < ∞ (i.e.,

the Szegő condition holds) if and only if γn is bounded from above (and in that case,

it is also bounded away from 0; indeed, limn→∞ γn exists and is in (0,∞)).

Remark. Actually, lim sup γn < ∞ is not needed; lim inf γn < ∞ is enough.

Proof. By (3.81), γn bounded above implies A0(J) < ∞, and thus Z(J) < ∞. Con-

versely, Z(J) < ∞ implies −∞ < A0(J) = Ā0(J) < ∞. So by (3.80), it implies γn is

bounded above and below.

In the case of orthogonal polynomials on the unit circle, Szegő’s theorem says

Z < ∞ if and only if κn is bounded if and only if
∑∞

j=1|αj|2 < ∞, where κn is

the leading coefficient of the orthogonal polynomial ϕn, and αj are the Verblunsky

(a.k.a. Geronimus, a.k.a. reflection) coefficients. In the real line case, if one drops
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the a priori requirement that E0(J) < ∞, it can happen that γn is bounded but

Z(J) = ∞. For example, if an ≡ 1 and bn = n−1, then Z(J) cannot be finite. For,

as J − J0 is Hilbert-Schmidt, Theorem 3.17(iii) is applicable and Ā−
1 (J) = ∞ implies

Z(J) = ∞.

But the other direction always holds:

Theorem 3.22. Let J be a BW matrix with Z(J) < ∞ (i.e., the Szegő condition

holds). Then γn is bounded. Moreover, if J − J0 is compact, then limn→∞ γn exists.

Remarks. 1. The examples of the next section show that Z(J) < ∞ is consistent

with lim γn = 0.

2. This result — even without a compactness hypothesis — is known. For γn is

monotone decreasing in the measure (see, e.g., Nevai [19]) and so one can reduce this

to the case σ(J) ⊆ [−2, 2].

Proof. By Theorem 3.14(c), Z(J) < ∞ implies Ā0(J) < ∞ which, by (3.82), implies

γn is bounded. If J − J0 is compact, then Corollary 3.15 implies that lim γn =

exp(lim−∑n
j=1 ln(aj)) exists but can be zero.

Here is another interesting application of Theorem 3.20:

Theorem 3.23. Suppose bn ≥ 0 and

∞∑
n=1

|an − 1| < ∞. (3.83)

Then E0(J) < ∞ if and only if
∑∞

n=1 bn < ∞.

Proof. If
∑∞

n=1 bn < ∞, then E0(J) < ∞ by (3.83) and Theorem 2.3. On the other

hand, if E0(J) < ∞, (3.83) implies A0(J) < ∞, so by Theorem 3.20,
∑N

n=1 bn is

convergent. Since bn ≥ 0,
∑∞

n=1 bn < ∞.
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3.5 Necessary Conditions for Z(J) < ∞
One necessary condition for the Szegő condition to hold is Corollary 3.15. In this

section we will provide others. These will yield one part of Askey’s conjecture.

Theorem 3.24. Suppose

∞∑
n=1

[
(an − 1)2 + b2

n

]
< ∞, (3.84)

and

lim sup
N→∞

(
−

N∑
n=1

(
an − 1± 1

2
bn

))
= ∞ (3.85)

for either plus or minus. Then the Szegő condition fails at ±2.

Remark. This proves Theorem 1.3.

Proof. (3.85) implies that Ā±
1 (J) = ∞, so by Theorem 3.17(iii), Z±

1 (J) = ∞.

Here is a related result:

Theorem 3.25. Let J be a BW matrix. If

lim sup
N→∞

(
−

N∑
n=1

[
ln(an) + p bn

])
= ∞ (3.86)

for some |p| < 1
2
, then the Szegő condition fails.

Remark. If (3.84) holds, assumption (3.86) is slightly stronger than (3.85), but

we do not need (3.84) here. This also shows why ln(an) replaces an − 1 in (3.86).

Proof. Note that one can prove a step-by-step sum rule and a version of Theorem 3.14

for the weight wp(θ) ≡ 1 + 2p cos θ just as we did it for the weight w0(θ) = 1. Here

Z(J) is replaced by the Szegő-type integral with the weight wp(θ), Ā0(J) by the

lim sup in (3.86), and E0(J) by
∑

j,± ξp(E
±
j ), where

ξp(E) ≡ (
1
2

+ p
)
ξ+(E) +

(
1
2
− p

)
ξ−(E).
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We have ξp(E) ∼ (1+2p)
√
|E| − 2 if E ∼ 2 and ξp(E) ∼ (1−2p)

√
|E| − 2 if E ∼ −2

(see (3.76) and (3.77)). In particular, |2p| < 1 gives
∑

j,± ξp(E
±
j ) > −∞. It follows

that (c) of this modified Theorem 3.14 holds. This, (3.86), and 0 ≤ wp(θ) ≤ 2 imply

Z(J) = ∞.

These considerations yield another interesting result:

Theorem 3.26. Let |p| < 1
2

and |q| < 1
2
.

(i) If

lim sup
N→∞

(
−

N∑
n=1

[
ln(an) + p bn

])
> −∞ (3.87)

and

lim inf
N→∞

(
−

N∑
n=1

[
ln(an) + q bn

])
= −∞, (3.88)

then Z(J) = ∞.

(ii) If

lim sup
N→∞

(
−

N∑
n=1

[
ln(an) + p bn

])
= ∞

and

lim inf
N→∞

(
−

N∑
n=1

[
ln(an) + q bn

])
< ∞,

then E0(J) = ∞.

Remark. In particular, if an ≡ 1, bn ≥ 0, and
∑∞

n=1 bn = ∞, we have Z(J) = ∞
and E0(J) = ∞. On the other hand, if instead

∑∞
n=1 bn < ∞, then Z(J) < ∞ and

E0(J) < ∞ by Theorems 3.23 and 3.14(a).

Proof. Consider Theorem 3.14 for the weight wp and its corresponding Szegő-type

integral in place of Z(J). Since wp is bounded away from 0 and ∞, the integral

is finite if only if Z(J) < ∞. By the computed asymptotics of ξp(E) at ±2, the

corresponding E-sum is finite if and only if
∑

j,±
√
|E±

j | − 2 < ∞, which holds if and

only if E0(J) < ∞. The same is true for the weight wq.

If Z(J) < ∞, then by using (b) of Theorem 3.14 for wp and (3.87), one obtains

E0(J) < ∞. But then (d) of Theorem 3.14 for wq contradicts (3.88). This proves (i).
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The proof of (ii) is similar, using (a) and (c) of this modified Theorem 3.14.

Corollary 3.27. If

an ≡ 1 +
α

n
+ ea(n), bn ≡ β

n
+ eb(n)

with

lim
n→∞

n
(|ea(n)|+ |eb(n)|) = 0 (3.89)

and 2α± β < 0, then the Szegő condition fails at ±2.

Remarks. 1. This is intended as separate results for + and for −.

2. All we need is

lim
n→∞

(ln N)−1

N∑
n=1

(|ea(n)|+ |eb(n)|) = 0

instead of (3.89). In particular, trace class errors can be accommodated.

3. This settles the 2α < |β| case of Askey’s conjecture. The complementary region

2α ≥ |β| will be treated in the next chapter.

Proof. We use Theorem 3.24. If (3.89) holds, then

N∑
n=1

(
an − 1± 1

2
bn

)
= (α± 1

2
β) ln N + o(ln N),

so (3.85) holds if 2α± β < 0.

We can use these examples to illustrate the limits of Theorem 3.14:

(1) If an = 1, bn = 1
n
, then Z(J) = ∞ (by Corollary 3.27) while Ā0(J) = A0(J) < ∞.

Thus E0(J) = ∞.

(2) If an = 1− 1
n
, bn = 0, then Z(J) = ∞ (by Corollary 3.27) and Ā0(J) = A0(J) =

∞, but E0(J) < ∞ since J has no spectrum outside [−2, 2].

(3) If an = 1 + 1
n
, bn = 0, then Z(J) < ∞ (by Theorem 1.4, proved in Section 4.3)

while Ā0(J) = A0(J) = −∞. Thus E0(J) = ∞.
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Finally, we note that Nevai’s result that an = 1 + (−1)nα/n + O(n−2) and bn =

(−1)nβ/n + O(n−2) implies Z(J) < ∞ ([17]; see also [4]) shows that we can have

Z(J) < ∞, E0(J) < ∞, and have the sums
∑

an and/or
∑

bn be only conditionally

and not absolutely convergent.

3.6 Appendix to Chapter 3

In this appendix we collect auxiliary results which we have used in the present chapter.

The first result are Jensen’s formulae for Taylor coefficients of logarithms of functions

meromorphic in a neighborhood of D̄ (see, e.g., [13, Proposition 3.1]).

Lemma 3.28. Let f be a function meromorphic in a neighborhood of D̄ with f(0) 6= 0

and

ln

(
f(z)

f(0)

)
=

∞∑

`=1

α`z
` (3.90)

for small |z|. If zj are the zeros of f inside D and pj the poles, then

ln |f(0)| = 1

2π

∫ 2π

0

ln |f(eiθ)|dθ +
∑

j

ln |zj| −
∑

j

ln |pj| (3.91)

and

Re(α`) =
1

π

∫ 2π

0

ln |f(eiθ)| cos(`θ)dθ − Re
∑

j

z−`
j − z̄`

j

`
+ Re

∑
j

p−`
j − p̄`

j

`
. (3.92)

The next three lemmas are from [13]. The last of them, Lemma 3.31, computes

the Taylor coefficients of ln(M(z)/z) using a method independent of Lemma 3.28.

Our proof of higher order sum rules (3.36) rests on equating the outputs of these two

lemmas.

Recall that the upper left-hand corner of a matrix A is A0,0.

Lemma 3.29. Let T` be as in (2.10) and let n ≥ ` ≥ 1. Then

Tr
[
T`(

1
2
J0,n;F )

]
= −1

2

(
1 + (−1)`

)
. (3.93)
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If ` is odd then both T`(
1
2
J0,n;F ) and T`(

1
2
J0) vanish on-diagonal. If ` is even, then

(T`(
1
2
J0))k,k = 0 for k ≥ `

2
, and

(
T`(

1
2
J0,n;F )

)
k,k

=





(
T`(

1
2
J0)

)
k,k

if 0 ≤ k ≤ `
2
− 1,

(
T`(

1
2
J0)

)
n−1−k,n−1−k

if n− `
2
≤ k ≤ n− 1,

0 otherwise.

(3.94)

In particular, the sum of the diagonal elements of T`(
1
2
J0) is −1

4
(1 + (−1)`).

Remark. The picture we are establishing for even ` is the following. If J0 were a

doubly infinite matrix with 0’s and 1’s (acting on `2(Z)), then T`(
1
2
J0) would vanish

on-diagonal. Since J0 has one end, this will affect the first `
2

diagonal terms. And, of

course, J0,n;F has two ends.

Proof. First notice that by (2.19), the Chebyshev polynomial of the second kind

Un(x
2
) from (2.11) is a multiple of the characteristic polynomial of J0,n;F . This means

that its zeros yj ≡ 2 cos( jπ
n+1

) (j = 1, . . . , n) are the eigenvalues of J0,n;F . By (2.10),

T`(
1
2
yj) = cos( `jπ

n+1
), and so

Tr
[
T`(

1
2
J0,n;F )

]
=

n∑
j=1

cos( `jπ
n+1

) = −1
2
− 1

2
(−1)` + 1

2

n+1∑
j=−n

exp(i `jπ
n+1

).

The last sum is 0 because ` is not a multiple of 2(n + 1). This proves (3.93).

Assume ` is odd. By (2.9) and induction, T` contains only odd powers of x. Since

J0 has non-zero terms only on places with odd sums of indices, Jm
0 and Jm

0,n;F vanish

on-diagonal when m is odd. Hence so do T`(
1
2
J0) and T`(

1
2
J0,n;F ).

Now assume ` is even and consider J0 and J0,n;F extended to act on `2(Z) by

adding only zeros (so they become doubly infinite matrices). Notice that if A is a

tridiagonal matrix, then (Am)k,j only depends on elements of A with distance at most

m− 1 from the position (k, j) (in the metric |k1 − k2|+ |j1 − j2|). This means that

(
T`(

1
2
J0,n;F )

)
k,k

=
(
T`(

1
2
J0)

)
k,k
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for k < n− `
2
. But it also means that if ` ≤ n− 1, then

Tr
[
T`(

1
2
J0,n;F )

]− Tr
[
T`(

1
2
J0,n−1;F )

]
=

(
T`(

1
2
J0,n;F )

)
k,k

for any k ∈ [ `
2
, n− 1− `

2
]. Hence, by (3.93) for n and n− 1, this element must be 0

for any such k. Since each Jm
0,n;F must have a symmetric diagonal, (3.94) follows.

Lemma 3.30. For any fixed λ ∈ R and small z,

ln

(
1− λ

z + z−1

)
=

∞∑

`=1

2
`

[
T`(0)− T`(

1
2
λ)

]
z`. (3.95)

Proof. We use the generating function

g(x, z) ≡
∞∑

`=1

T`(x)
z`

`
= −1

2
ln(1− 2xz + z2). (3.96)

Hence, with 2x = λ,

ln

(
1− 2x

z + z−1

)
= 2

[
g(0, z)− g(x, z)

]
=

∞∑

`=1

2
`

[
T`(0)− T`(x)

]
z`.

Eq. (3.96) is well known (see, e.g., [36, eq. (4.7.25)] or [13]) and can be proved as

follows. First consider x = cos θ ∈ (−1, 1) and |z| < 1. Then

∂g

∂z
(cos θ, z) =

1

z

∞∑

`=1

cos(`θ)z`

=
1

2z

(
− 2 +

∞∑

`=0

[(
zeiθ

)`
+

(
ze−iθ

)`
])

=
1

2z

(
− 2 +

1

1− zeiθ
+

1

1− ze−iθ

)

=
cos θ − z

1− 2z cos θ + z2

= −1

2

∂

∂z
ln(1− 2z cos θ + z2).

Since (3.96) obviously holds for z = 0, it holds for |x| < 1 and |z| < 1. The coefficient
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at z` of both sides of (3.96) is clearly an `th degree polynomial in x, so the polynomials

must coincide and the equation holds for any fixed x and all small z.

Using this lemma, we will now compute the Taylor coefficients of ln(M(z)/z) in

terms of J .

Lemma 3.31. For ` ≥ 1,

ζ
(1)
` (J) ≡ 2

`
lim

m→∞

[
Tr

(
T`

(
1
2
Jm;F

))− Tr
(
T`

(
1
2
J

(1)
m−1;F

))]
(3.97)

exists, and for small z,

ln

(
M(z)

z

)
=

∞∑

`=1

ζ
(1)
` (J)z`. (3.98)

Proof. First notice that by the argument in the proof of Lemma 3.29, the difference

of traces in (3.97) is constant once m > `
2
, so ζ

(1)
` (J) exists.

If we consider Jm;F as an operator on `2(Z+) (extended by zeros to a semi-infinite

matrix), then Jm;F → J elementwise as m → ∞. Hence the spectral measures of

Jm;F converge weakly to ν, and so do the M -functions (at any fixed z ∈ D). We let

ζ ≡ z + z−1, so that zζ = 1 + z2. By (2.50), (2.58), and Cramer’s rule,

fm(z) ≡ M(z; Jm;F )

z
=

1

z

det(ζ − J
(1)
m−1;F )

det(ζ − Jm;F )
=

1

1 + z2

det(1− ζ−1J
(1)
m−1;F )

det(1− ζ−1Jm;F )
,

where the last equality holds because the numerator matrix has order one less than

the denominator matrix. By the above argument, for any z ∈ D we have

fm(z) → f(z) ≡ M(z; J)

z
.

Next we notice that if λj are the eigenvalues of a matrix A, then ln det(A) =
∑

ln(λj). Hence, by Lemma 3.30, with K`(x) ≡ 2
`
[T`(0)− T`(

x
2
)] and |z| small,

ln fm(z) = − ln(1 + z2) +
∞∑

`=1

[
Tr

(
K`(J

(1)
m−1;F )

)− Tr
(
K`(Jm;F )

)]
z`



76

= − ln(1 + z2)−
∞∑

k=1

z2k

k
(−1)k +

∞∑

`=1

2

`

[
Tr

(
T`(

1
2
Jm;F )

)− Tr
(
T`(J

(1)
m−1;F )

)]
z`,

where the first sum appears because with 0n×n the zero n× n matrix,

2z`

`

[
Tr

(
T`

(
0(m−1)×(m−1)

))− Tr
(
T`

(
0m×m

))]
=

2z`

`
T`(0),

and T2k+1(0) = 0 and T2k(0) = (−1)k by (2.10). Since

∞∑

k=1

z2k

k
(−1)k = − ln(1 + z2),

the `th Taylor coefficient of ln fm(z) converges to ζ
(1)
` (J) as m →∞. But ln fm(z) →

ln f(z) for all z in a neighborhood of 0, so ζ
(1)
` (J) must be the `th Taylor coefficient

of ln f(z).
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Chapter 4

Szegő Jacobi Matrices

The contents of the first four sections of this chapter follow, often verbatim, the

contents of [42] although, of course, we change numbering to be appropriate. Our

goal is to derive sufficient conditions for Z(J) < ∞, which will yield the 2α ≥ |β|
case of Askey’s conjecture. We let a+ ≡ max{a, 0} and a− ≡ max{−a, 0}. Our main

result is

Theorem 4.1. Let

an ≡ cn + O(n−1−ε) bn ≡ dn + O(n−1−ε) (4.1)

for some ε > 0, where cn ≥ 1 + |dn|
2

for n > N , limn→∞ cn = 1 and

∞∑
n=1

n

[
c2
n+1 − c2

n +
cn+1

2
|dn+2 − dn+1|+ cn

2
|dn+1 − dn|

]

+

< ∞ (4.2)

Then the matrix J , given by (1.1), satisfies the Szegő condition.

Remarks. 1. The notation n > N means that cn ≥ 1 + |dn|
2

is required for all but

finitely many n.

2. Notice that the sum in (4.2) cannot be simplified. We cannot replace the last

two terms by cn|dn+1− dn| because we take positive parts of the summands in (4.2).

3. In particular, one can take cn ≡ 1 + α/n and dn ≡ β/n with 2α ≥ |β|. This

settles the 2α ≥ |β| case of Askey’s conjecture.
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We will prove this theorem in two steps. The first one is an extension of a result

in [8], and shows that J is Szegő whenever an, bn satisfy the conditions for cn, dn in

Theorem 4.1.

The second step lets us add O(n−1−ε) errors to such an, bn. Our tools here are the

sum rules, in particular, the step-by-step Z sum rule (3.47). By Corollary 3.12, the

Szegő condition is stable under finite rank perturbations. We will be able to pass to

certain infinite rank perturbations of J by representing them as limits of finite rank

perturbations and using (2.48). To do this, we will need to control the change of the

E±
j ’s under these perturbations, in order to estimate the eigenvalue sum in (3.47) (or,

more precisely, in (4.22) below).

In Section 4.1 we prove an extension of the abovementioned result from [8]. Sec-

tion 4.2 provides the desired control of movement of eigenvalues under perturbations.

In Section 4.3 we use these tools to prove Theorem 4.1 and related results (includ-

ing Theorem 1.4). In Section 4.4 we complete the picture outlined in Chapter 1 by

providing sufficient conditions for Z±
1 (J) < ∞.

4.1 On an Argument of Dombrowski-Nevai

In this section we will improve a result of Dombrowski-Nevai [8]. We will closely

follow their presentation and introduce an additional twist which will yield this im-

provement. The notation here is slightly different from [8] because their bn’s start

with n = 0 and their “free” an’s are 1
2
. We define

Sn(x) ≡ a2
1 +

n∑
j=1

[
(a2

j+1 − a2
j)P

2
j (x) + aj(bj+1 − bj)Pj(x)Pj−1(x)

]
(4.3)

for n ≥ 0. Notice that the Sn obey the obvious recurrence relation

Sn(x) = Sn−1(x) + (a2
n+1 − a2

n)P 2
n(x) + an(bn+1 − bn)Pn(x)Pn−1(x). (4.4)
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Using this and (2.5), one proves by induction the following formula from [7]:

Sn(x) = a2
n+1

[
P 2

n+1(x)− x− bn+1

an+1

Pn+1(x)Pn(x) + P 2
n(x)

]
. (4.5)

The results in [8] are based on (4.4) and (4.5). Our simple but essential improve-

ment is the introduction of a function closely related to Sn, but satisfying a recurrence

relation which is more suitable for the purposes of this argument. We define

Rn(x) ≡ Sn(x) +
an+1

2
|bn+2 − bn+1|P 2

n(x), (4.6)

so that we have

Rn(x) = Rn−1(x)+(a2
n+1 − a2

n)P 2
n(x) + an(bn+1 − bn)Pn(x)Pn−1(x)

+
an+1

2
|bn+2 − bn+1|P 2

n(x)− an

2
|bn+1 − bn|P 2

n−1(x).

The importance of this relation lies in the fact that it implies the crucial inequality

Rn(x) ≤ Rn−1(x) +

[
a2

n+1 − a2
n +

an+1

2
|bn+2 − bn+1|+ an

2
|bn+1 − bn|

]
P 2

n(x) (4.7)

by writing |Pn(x)Pn−1(x)| ≤ 1
2

(
P 2

n(x)+P 2
n−1(x)

)
. Hence, our choice of Rn eliminated

the unpleasant cross term in (4.4).

Now we are ready to apply the argument from [8], but to Rn in place of Sn. We

define

δn ≡
[
a2

n+1 − a2
n +

an+1

2
|bn+2 − bn+1|+ an

2
|bn+1 − bn|

]

+

. (4.8)

Lemma 4.2. If an ≥ 1 + |bn|
2

for n > N , then for n > N

P 2
n(x) ≤ 4

4− x2
Rn−1(x), |x| < 2, (4.9)

max
|x|≤2

P 2
n(x) ≤ (n + 1)2 max

|x|≤2
Rn−1(x), (4.10)

0 ≤ Rn(x) ≤ exp

(
4δn

4− x2

)
Rn−1(x), |x| < 2, (4.11)
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max
|x|≤2

Rn(x) ≤ e(n+1)2δn max
|x|≤2

Rn−1(x). (4.12)

Proof. From (4.5),

Sn−1(x) = a2
n

[
Pn−1(x)− x− bn

2an

Pn(x)

]2

+
1

4

[
4a2

n − (x− bn)2

]
P 2

n(x).

The assumption 2an ≥ 2 + |bn| implies 4a2
n− (x− bn)2 ≥ 4− x2 for |x| ≤ 2, and (4.6)

implies Rn−1(x) ≥ Sn−1(x). This proves (4.9). Inequality (4.10) follows from (4.9)

and Lemma 4.23, and (4.11)/(4.12) from (4.7), (4.8), and (4.9)/(4.10).

In [8], similar statements are proved for Sn. The important difference is that

the proofs use (4.4) rather than (4.7), and therefore involve δ′n = [a2
n+1 − a2

n]+ +

an|bn+1− bn|. This is a serious drawback because the condition
∑

nδn < ∞ will play

a central role in our considerations. If, for example, an = 1 + α/n and bn = β/n,

then
∑

nδ′n < ∞ only if α ≥ 0 and β = 0 (cf. the result from [8] mentioned in

Chapter 1), but
∑

nδn < ∞ whenever 2α ≥ |β|. This is because in δn (and not in

δ′n) the contribution of the positive |bn+1 − bn| terms can be canceled by a decrease

in an. Therefore Rn can sometimes be a better object to look at than Sn.

The next result relates Rn and Z(J).

Lemma 4.3. Suppose limn→∞ an = 1, limn→∞ bn = 0, and

∞∑
n=1

(|an+1 − an|+ |bn+1 − bn|
)

< ∞. (4.13)

Then ν ′(x) is continuous in (−2, 2) and for x ∈ (−2, 2),

lim
n→∞

Rn(x) =

√
4− x2

2πν ′(x)
. (4.14)

Remark. The right-hand side appears in (2.28) and so one can use (4.14) and

Fatou’s lemma to obtain upper bounds on Z(J) in terms of the Rn’s (see the proof

of Theorem 4.6).
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Proof. Theorem 4.25 shows continuity of ν ′(x) and that for any x ∈ (−2, 2),

lim
n→∞

[
P 2

n+1(x)− xPn+1(x)Pn(x) + P 2
n(x)

]
=

√
4− x2

2πν ′(x)
.

Then (4.5), (4.6), boundedness of {Pn(x)}n (Theorem 4.25), an → 1, and bn → 0

imply that this limit is the same as limn Rn(x).

In the light of the discussion preceding Lemma 4.3, the following will be useful.

Lemma 4.4. If inf{an} > 0 and
∑

n δn < ∞, then (4.13) holds.

Proof. We have 0 ≤ [a2
n+1 − a2

n]+ ≤ δn, hence
∑

[a2
n+1 − a2

n]+ < ∞. By telescoping
∑

[a2
n+1 − a2

n]− ≤ a2
1 +

∑
[a2

n+1 − a2
n]+ < ∞ and so

∑ |a2
n+1 − a2

n| < ∞. Since

inf{an} > 0, it follows that
∑ |an+1 − an| < ∞. Also, since

0 ≤ an+1

2
|bn+2 − bn+1|+ an

2
|bn+1 − bn| ≤ δn + |a2

n+1 − a2
n|

and an are bounded away from zero,
∑ |bn+1 − bn| < ∞.

These lemmas have the same consequences as in [8], but with δn in place of δ′n.

Thus we can prove the following two results.

Theorem 4.5. Suppose an ≥ 1 + |bn|
2

for n > N , limn→∞ an = 1, and

∞∑
n=1

n2

[
a2

n+1 − a2
n +

an+1

2
|bn+2 − bn+1|+ an

2
|bn+1 − bn|

]

+

< ∞.

Then there is c > 0 such that for x ∈ (−2, 2),

ν ′(x) ≥ c
√

4− x2.

Remarks. 1. In particular, the corresponding matrix J is Szegő.

2. Notice that the above conditions are satisfied for an ↓ 1, bn ≡ 0, as pointed out

in [8].
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Proof. By (4.8) and (4.12), we have for all |x| ≤ 2 and n > N

Rn(x) ≤ exp

( ∞∑
j=N

(j + 1)2δj

)
max
|x|≤2

RN(x) ≡ 1

2πc
< ∞.

Lemmas 4.4 and 4.3 finish the proof.

The main result of this section is

Theorem 4.6. Suppose an ≥ 1 + |bn|
2

for n > N , limn→∞ an = 1, and

∞∑
n=1

n

[
a2

n+1 − a2
n +

an+1

2
|bn+2 − bn+1|+ an

2
|bn+1 − bn|

]

+

< ∞.

Then Z(J) < ∞.

Remark. This is Theorem 4.1 without the O(n−1−ε) errors.

Proof. Once again, we closely follow [8]. By Lemmas 4.4, 4.3, and Fatou’s lemma

Z(J) ≤ lim
ε↓0

(
lim inf
n→∞

1

2π

∫ 2−ε

−2+ε

ln+(Rn(x))
dx√

4− x2

)
,

and so it is sufficient to prove

∫ 2−n−2

0

ln+(Rn(x))
dx√
2− x

+

∫ 0

−2+n−2

ln+(Rn(x))
dx√
2 + x

≤ C

for some C < ∞. Let us consider the first integral, which we denote In (the other

can be treated similarly).

By (4.11) and (4.12), for n > N

In ≤In−1 + 2δn

∫ 2− 1
(n−1)2

0

dx

(2− x)
3
2

+ ln+

[
max
|x|≤2

Rn(x)

] ∫ 2− 1
n2

2− 1
(n−1)2

dx√
2− x

=In−1 + 2δn(2n− 2−
√

2) +

(
2

n− 1
− 2

n

)
ln+

[
max
|x|≤2

Rn(x)

]

≤In−1 + 4nδn +
2

n− 1
ln+

[
max
|x|≤2

Rn−1(x)

]
+

2(n + 1)2δn

n− 1
− 2

n
ln+

[
max
|x|≤2

Rn(x)

]
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≤In−1 + 13nδn +
2

n− 1
ln+

[
max
|x|≤2

Rn−1(x)

]
− 2

n
ln+

[
max
|x|≤2

Rn(x)

]

because ln+(xy) ≤ ln+(x) + ln+(y). Iterating this we obtain

In ≤ IN + 13
n∑

j=N+1

jδj +
2

N
ln+

[
max
|x|≤2

RN(x)

]
≤ 13

∞∑
n=1

nδn + 5 ln+

[
max
|x|≤2

RN(x)

]
≡ C

2

as desired.

For further reference we make the following

Definition. We call a pair of sequences {an, bn}∞n=1 admissible, if an ≥ 1 + |bn|
2

for

n > N , limn→∞ an = 1, and

∞∑
n=1

n

[
a2

n+1 − a2
n +

an+1

2
|bn+2 − bn+1|+ an

2
|bn+1 − bn|

]

+

< ∞.

Hence, if {an, bn} is admissible, then J is Szegő. We make some useful observa-

tions.

Lemma 4.7. Suppose {an, bn} is admissible and {en, fn} is such that 2en ≥ |fn| for

n > N , en → 0, and
∑

n
(|en+1 − en|+ |fn+1 − fn|

)
< ∞. Then {an + en, bn + fn} is

also admissible.

Proof. We only need to show the last condition for admissibility. If

εn ≡ (an+1 + en+1)
2 − (an + en)2 +

an+1 + en+1

2
|bn+2 + fn+2 − bn+1 − fn+1|

+
an + en

2
|bn+1 + fn+1 − bn − fn|,

then we want
∑

n[εn]+ < ∞. Notice that

εn ≤ δn + 2an+1|en+1 − en|+ 2|an+1 − an||en|+ |en+1 + en||en+1 − en|
+

an+1 + en+1

2
|fn+2 − fn+1|+ an + en

2
|fn+1 − fn|
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+
en+1

2
|bn+2 − bn+1|+ en

2
|bn+1 − bn|,

and so we only need to prove
∑

nXn < ∞ for Xn being any of the above terms.

If Xn is δn or one of the terms containing |en+1 − en| or |fn+1 − fn|, then this is

obvious. For the remaining three terms the same will hold by Lemma 4.4 if {nen}n is

bounded. But
∑

n|en+1− en| < ∞ and en → 0 imply nen ≤
∑∞

m=n n|em+1− em| → 0

as n →∞.

Lemma 4.8. Suppose {an, bn} is admissible and en ↓ 0 is such that {nen|an+1− an|}
or {nen|bn+2 − bn+1|} is bounded. Then {an + en, bn} is also admissible.

Proof. If

εn ≡ (an+1 + en+1)
2 − (an + en)2 +

an+1 + en+1

2
|bn+2 − bn+1|+ an + en

2
|bn+1 − bn|,

then by en+1 ≤ en,

εn ≤δn + 2an+1en+1 − 2anen + e2
n+1 − e2

n +
en+1

2
|bn+2 − bn+1|+ en

2
|bn+1 − bn|

≤δn + en

(
2(an+1 − an) + 1

2
|bn+2 − bn+1|+ 1

2
|bn+1 − bn|

)

≤δn +
2en

an+1 + an

(
δn +

|an − an+1|
4

|bn+2 − bn+1|+ |an+1 − an|
4

|bn+1 − bn|
)

,

and so
∑

n[εn]+ < ∞ by the hypotheses and Lemma 4.4.

We conclude this section with an interesting corollary. It shows that there are

many Jacobi matrices which are Szegő, but one cannot pass to the “full size” sum

rule (3.60) because Ā0(J) = −∞ and E0(J) = ∞.

Corollary 4.9. Let {an, bn} be admissible and let J̃ be a matrix with ãn ≡ an + c/n

and b̃n ≡ bn for some c > 0. Then Z(J̃) < ∞ but Ā0(J̃) = −∞ and E0(J̃) = ∞.

Proof. Z(J̃) < ∞ by Lemma 4.8, and Theorem 3.14(c) shows Ā0(J) < ∞. Since

an → 1 and
∑

c
n

= ∞, we obtain Ā0(J̃) = −∞. By Theorem 3.14(d), this implies

E0(J̃) = ∞.
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4.2 Control of Change of Eigenvalues under

Perturbations

In this section we will prove results on the behavior of eigenvalues under certain finite

rank perturbations of the an’s and bn’s. Namely, we will show that these perturbations

decrease E+
j and increase E−

j for all but finitely many j. This, of course, means that

we will not consider arbitrary perturbations. Indeed, in all the perturbations we can

treat, the an’s cannot increase. Immediately a question arises, how is this compatible

with the possibility of an > cn in Theorem 4.1. The answer is in Lemma 4.8. Before

doing a general O(n−1−ε) perturbation of cn, dn, we will increase the cn’s by Cn−1−ε

for some large C, so that the assumptions of Theorem 4.1 will stay valid and the new

cn will be larger than an. Then we will use results from this section. For details see

the proof of Theorem 4.1 in the next section.

For j ≥ 1 and n ≥ 0 we define

pn(±j) ≡ Pn(E±
j )

(∑∞
m=0 P 2

m

(
E±

j

))1/2
.

Hence p(±j) ≡ {pn(±j)}∞n=−1 with p−1(±j) ≡ 0 is the normalized Dirichlet eigen-

function of J for energy E±
j . Naturally, p(±j) satisfies the same recurrence relation

as P (E±
j ), and so for n ≥ 0,

pn+1(±j) =
E±

j − bn+1

an+1

pn(±j)− an

an+1

pn−1(±j). (4.15)

In what follows, we will use a well-known result from first order eigenvalue per-

turbation theory (see, e.g., [38, p.151]):

Lemma 4.10. Let J(t) ≡ J + tA for t ∈ (−ε, ε) where J and A are bounded self-

adjoint operators on a Hilbert space. Assume that J(0) has a simple isolated eigen-

value E(0) /∈ σess(J(0)) and let ϕ(0) be the corresponding normalized eigenfunction.

Then there are analytic functions E(t), ϕ(t) defined on some interval (−ε′, ε′) such



86

that E(t) is a simple isolated eigenvalue of J(t) with normalized eigenfunction ϕ(t),

and we have ∂
∂t

E(t) = 〈ϕ(t), Aϕ(t)〉.

In the case of Jacobi matrices, all eigenvalues outside [−2, 2] are simple. Hence if

J(t) ≡ J + tA with A bounded self-adjoint matrix, then

∂
∂t

E±
j (t) = 〈p(±j; t), Ap(±j; t)〉 (4.16)

as long as E±
j (t) stays outside [−2, 2].

We have E±
j = ±2 whenever J has fewer than j positive/negative bound states.

Then, of course, (4.16) does not apply when E±
j (t) = ±2, but we at least have

continuity of E±
j (t) in t by norm-continuity of J(t).

Here is the main idea of this section. Fix n and take A to be the matrix with

An−1,n = An,n−1 = −1 and all other entries zero (the upper left-hand corner of A

being A0,0). Then increasing t corresponds to decreasing an. We have

∂
∂t

E±
j (t) = −2pn(±j; t)pn−1(±j; t).

Let us take j = 1. Then by Theorem 2.2(i),(iii) we know that sgn(pn(1; t)) =

sgn(pn−1(1; t)) and sgn(pn(−1; t)) = − sgn(pn−1(−1; t)) for n ≥ 1. Hence E+
1 will

decrease and E−
1 will increase when we decrease an. This is exactly what we want.

Unfortunately, it is not always the case for other eigenvalues. Indeed, let us

consider a positive eigenvalue E+
j . By Theorem 2.2(i), p(j) changes sign j − 1 times,

and so E+
j will grow when we decrease the corresponding an’s. However, if E+

j ∼ 2,

an ∼ 1, and bn ∼ 0, then by (4.15), pn+1(j) ∼ 2pn(j) − pn−1(j), that is, p(j) is

(locally) close to a linear function of n. Therefore, if sgn(pn(j)) = − sgn(pn−1(j)),

then sgn(pm(j)) = sgn(pm−1(j)) for m 6= n but close to n. Hence, a suitable decrease

of an along with some neighboring am’s should still result into a decrease of E+
j . This

is the content of the present section.

Definition. Let δ > 0. We say that J̃ δ-minorates J , if |E±
j (J̃)| ≤ |E±

j (J)| whenever

|E±
j (J)| < 2 + δ.
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Remarks. 1. This is well defined because E±
j = ±2 whenever J has less than j

positive/negative bound states.

2. Notice that for fixed δ this relation is transitive.

Lemma 4.11. There exists δ > 0 such that the following is true. If for some J we

have |am− 1| < δ and |bm| < δ for m ∈ {n, n+1, n+2}, and J̃ is obtained from J by

decreasing an by c > 0 and an+2 by d > 0 so that |an − c− 1| < δ, |an+2 − d− 1| < δ,

and c/d ∈ [ 1
13

, 13], then J̃ δ-minorates J .

Remark. That is, decreasing both an and an+2 results into a decrease of all but

finitely many |E±
j |. The same trick applied to an and an+1 fails.

Proof. Let q ≡ c/d. Let E ≡ E+
j and pn ≡ pn(+j) with 2 < E+

j < 2 + δ. Then by

(4.15),

pn+1 =2pn − pn−1 +
E − 2an+1 − bn+1

1 + (an+1 − 1)
pn +

an+1 − an

1 + (an − 1)
pn−1

=2pn − pn−1 + O(δ)(|pn|+ |pn−1|) (4.17)

with |O(δ)| ≤ Cδ for some universal constant C < ∞ and all small δ. Similarly we

obtain by iterating (4.15),

pn+2 = 3pn − 2pn−1 + O(δ)(|pn|+ |pn−1|). (4.18)

Let now J(t) ≡ J + tA where A is such that An−1,n = An,n−1 = −q, An+1,n+2 =

An+2,n+1 = −1 and all other entries are 0. Then obviously E±
j (0) = E±

j and J̃ = J(d).

By (4.16),

∂
∂t

E+
j (0) = 〈p,Ap〉 = −2(qpnpn−1 + pn+2pn+1).

By (4.17) and (4.18),

qpnpn−1 + pn+2pn+1 = 6p2
n − (7− q)pnpn−1 + 2p2

n−1 + O(δ)(p2
n + p2

n−1). (4.19)
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Since 6 · 2− (
7−q
2

)2
> 0 for q ∈ (7− 4

√
3, 7 + 4

√
3) ⊃ [ 1

13
, 13], it follows that

6p2
n − (7− q)pnpn−1 + 2p2

n−1 > δ0(p
2
n + p2

n−1)

for some small δ0 and all q ∈ [ 1
13

, 13]. So if we choose δ such that |O(δ)| ≤ δ0, then

∂
∂t

E+
j (0) < 0.

This argument obviously applies to all t ∈ [0, d], not only to t = 0, as long as

E+
j (t) > 2. This is because for each such t, J(t) satisfies the conditions of this

lemma. Hence E+
j (t) can only decrease with t (and so stays smaller than 2+δ). Also,

no new bound states can appear. Indeed, if E+
j (t1) = 2 and E+

j (t2) > 2 for some

t2 > t1, then E+
j (t) would have to have a discontinuity in [t1, t2], because by the above

argument it has to decrease whenever it is larger than 2.

A similar argument applies to E−
j (0) > −2 − δ, with pn+1 ∼ −2pn − pn−1 and

pn+2 ∼ 3pn + 2pn−1 in place of (4.17) and (4.18), and shows that such E−
j increases

with t. The result follows.

As mentioned earlier, same trick with an+1 in place of an+2 does not work. Indeed,

in (4.19) we would have 2p2
n − (1 − q)pnpn−1 + O(δ)(p2

n + p2
n−1), which cannot be

guaranteed to be positive for any δ > 0. However, we can replace an+2 by an+k

for k ≥ 2, and the lemma stays valid for some smaller δ = δ(k) > 0 and c/d ∈
[(4k2 − 3)−1, 4k2 − 3] (we use that pn+k ∼ (k + 1)pn − kpn−1 for E+

j ). Of course, the

bounds on |am − 1| and |bm| have to hold for all m ∈ {n, . . . , n + k}.
Before we start perturbing the bn’s, let us state one more result with the same

flavor.

Lemma 4.12. There exists δ > 0 such that the following is true. If for some J we

have |am− 1| < δ and |bm| < δ for m ∈ {n, n+1, n+2}, and J̃ is obtained from J by

decreasing an, an+1, and an+2 by c > 0 so that |am−c−1| < δ for m ∈ {n, n+1, n+2},
then J̃ δ-minorates J .

Remark. Again, the result can be extended to decreasing an, . . . , an+k (for k ≥ 2)

by c > 0, with a smaller δ = δ(k) > 0.
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Proof. An argument as above gives for An−1,n = An,n−1 = An,n+1 = An+1,n =

An+1,n+2 = An+2,n+1 = −1 that

∂
∂t

E+
j (0) = −2(pn−1pn + pnpn+1 + pn+1pn+2)

= −2
(
8p2

n − 7pnpn−1 + 2p2
n−1 + O(δ)(p2

n + p2
n−1)

)

which is negative for small enough δ, since 8 · 2− (7
2
)2 > 0. The rest of the previous

proof applies.

Our next aim is to allow perturbations of the bn’s as well. If one decreases bn, it

is obvious that all E+
j decrease, but all E−

j decrease as well. Hence, perturbing the

bn’s alone will not move “in” all bound states. To ensure that, we have to counter

the undesired movement of E±
j by decreasing an’s.

Lemma 4.13. There exists δ > 0 such that the following is true. If for some J we

have |am− 1| < δ and |bm| < δ for m ∈ {n, n+1, n+2}, and J̃ is obtained from J by

decreasing an and an+2 by c > 0 and changing bn by d ∈ [− c
2
, c

2
] so that |an−c−1| < δ,

|an+2 − c− 1| < δ, and |bn + d| < δ, then J̃ δ-minorates J .

Proof. This time we have An−1,n = An,n−1 = An+1,n+2 = An+2,n+1 = −1 and

An−1,n−1 = q ≡ d/c. We obtain

∂
∂t

E+
j (0) = −2(pn−1pn + pn+1pn+2) + qp2

n−1

= −2
(
6p2

n − 6pnpn−1 + (2− q
2
)p2

n−1 + O(δ)(p2
n + p2

n−1)
)
,

which is negative for small enough δ if q < 1 (i.e., if 6(2 − q
2
) − (6

2
)2 > 0). A

similar argument for E−
j requires q > −1, so there is a δ > 0 which works for all

q ∈ [−1
2
, 1

2
].
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4.3 Sufficient Conditions for Z(J) < ∞
We will now outline an argument which shows how to use (3.47) to prove stability of

the Szegő condition under certain trace class perturbations. A hint of this appears in

Section 3.2 as a commentary to Conjecture 3.13.

Let J̃ be a trace class perturbation of a matrix J such that Z(J) < ∞. That is,

∑
n

(|ãn − an|+ |b̃n − bn|
)

< ∞. (4.20)

Let J̃n be the matrix which we obtain from J by replacing aj, bj by ãj, b̃j for

j = 1, . . . , n. Notice that this is different from (2.18), but we still have J̃n → J̃

(elementwise and also in norm). Now by applying (3.47) to both J̃n and J and

subtracting, we obtain

Z(J̃n) = Z(J)−
n∑

j=1

[
ln(ãj)− ln(aj)

]
+

∑
j,±

[
ln |β±j (J̃n)| − ln |β±j (J)|

]
. (4.21)

From (2.48) we know that Z(J̃) ≤ lim inf Z(J̃n). So by taking n →∞,

Z(J̃) ≤ Z(J) +
∞∑

j=1

| ln(ãj)− ln(aj)|+ lim inf
n→∞

∑
j,±

[
ln |β±j (J̃n)| − ln |β±j (J)|

]
. (4.22)

If infj{ãj, aj} > 0, then the first sum is finite by (4.20). Hence, if we could show

that the lim inf is smaller than +∞, we would prove Z(J̃) < ∞. Notice that this

is true if for some δ > 0 each J̃n δ-minorates J , because then |β±j (J̃n)| ≤ |β±j (J)|
whenever |E±

j (J)| < 2 + δ and the remaining |β±j (J̃n)| are bounded. This is where

results from the previous section enter the picture.

Unfortunately, we cannot treat general trace class perturbations at this moment.

The reason is the necessity of using Lemma 4.8, as described in Section 4.2. It also

needs to be said that in what follows, the “partial perturbations” J̃n will be slightly

different from those above. They will differ in some matrix elements, but they will

still converge to J̃ and so (4.22) will stay valid.
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Let us now apply the above argument. We start with

Lemma 4.14. Let J be Szegő with an → 1, bn → 0, and let en ↓ 0, en < an,
∑

n en < ∞. Then the matrix J̃ with ãn ≡ an − en and b̃n ≡ bn is also Szegő.

Proof. Let δ ≡ min{δ(2), δ(3), δ(4)} > 0 where δ(k) are as in the remark after Lemma

4.12 (that is, good for decreasing 3, 4, and 5 consecutive an’s). Let N be such that

for j ≥ N we have |aj − 1| < δ, |ãj − 1| < δ, and |bj| < δ. For n ≥ N + 1 let J̃n be

such that bj(J̃n) ≡ bj and

aj(J̃n) ≡





ãj j ≤ N − 1,

ãj + en+1 N ≤ j ≤ n,

aj j ≥ n + 1.

Then J̃N+1 is Szegő because it is a finite rank perturbation of J .

Let n ≥ N + 2. Notice that J̃n is obtained from J̃n−1 by decreasing aj(J̃n−1) by

c ≡ en − en+1 for j = N, . . . , n. This can be accomplished by successive decreases of

3, 4, or 5 neighboring aj’s by c, as in Lemma 4.12 (and the remark after it). It follows

that J̃n δ-minorates J̃n−1, and so by induction J̃n δ-minorates J̃N+1. Then by (4.21)

(with δ < 1
2
),

Z(J̃n) ≤ Z(J̃N+1) + 2
∞∑

j=N

ej + K ln(M) < ∞,

where K is the number of eigenvalues of J̃N+1 outside of (−2 − δ, 2 + δ) and

M ≡ 3 supj{aj, |bj|} ≥ ‖J̃n‖. So Z(J̃n) are uniformly bounded and since J̃n → J̃ ,

(2.48) implies Z(J̃) < ∞.

Corollary 4.15. Suppose {an, bn} is admissible and {en, fn} is such that en → 0,

fn → 0, en > −an, and
∑

n
(|en+1 − en|+ |fn+1 − fn|

)
< ∞. Then the matrix J̃ with

ãn ≡ an + en, b̃n ≡ bn + fn is Szegő.

Remark. This is Lemma 4.7 with the condition 2en ≥ |fn| removed.
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Proof. Let us define ēn ≡
∑∞

j=n |ej+1− ej| and similarly for fn. Notice that ēn ≥ |en|,
ēn ↓ 0, and

∞∑
n=1

ēn ≤
∞∑

n=1

n|en+1 − en| < ∞.

Then if ẽn ≡ en + ēn + f̄n, we have 2ẽn ≥ |fn|, and so {an + ẽn, bn + fn} is admissible

by Lemma 4.7. By Lemma 4.14, the result follows.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Our strategy is as outlined at the beginning of Section 4.2 and

this section. We let

C ≡ sup
n

{
n1+ε|ãn − an|, n1+ε|b̃n − bn|

}
< ∞, (4.23)

and increase an by 6Cn−1−ε (we call these again an). Then by Lemma 4.8 (or by

Lemma 4.7), {an, bn} (with the new an) is also admissible. Thus, the new J is Szegő

and we now have

an − ãn ∈ [5Cn−1−ε, 7Cn−1−ε],

bn − b̃n ∈ [−Cn−1−ε, Cn−1−ε]. (4.24)

Let δ be such that both Lemmas 4.11 and 4.13 are valid. Let N be such that for

j ≥ N we have |aj − 1| < δ, |ãj − 1| < δ, |bj| < δ, and |b̃j| < δ. We let J̃N−1 be such

that

aj(J̃N−1) ≡





ãj j ≤ N − 1,

aj j ≥ N,

and similarly for bj(J̃N−1). Then J̃N−1 is Szegő because it is a finite rank perturbation

of J .

We construct J̃N from J̃N−1 in two steps. First we decrease aN , aN+2 by 2|bN− b̃N |
and change bN to b̃N . Then we decrease aN by aN − ãN and aN+2 by (aN − ãN)/13 (in

terms of the new aN). Both perturbations are δ-minorating by Lemmas 4.11 and 4.13,
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and the obtained matrix J̃N agrees with J̃ in first N couples aj(J̃N), bj(J̃N). The

others are the same as in J , a possible exception being aN+2(J̃N), for which we only

know

aN+2(J̃N)− ãN+2 ∈ [2C(N + 2)−1−ε, 7C(N + 2)−1−ε] (4.25)

(if N is chosen so that (2 + 7
13

)N−1−ε ≤ 3(N + 2)−1−ε).

Now we apply the same procedure to inductively construct J̃n from J̃n−1 for n ≥
N + 1. Each J̃n will agree with J̃ up to index n, and other elements will be the same

as in J , possibly except of an+1(J̃n) and an+2(J̃n). For these we will have (4.25) (with

n + 1 and n + 2 in place of N + 2), which is just enough so that we can change bn+1

to b̃n+1 when passing to J̃n+1 by the same method. Since J̃n δ-minorates J̃n−1, we

obtain by induction that each J̃n δ-minorates J̃N−1.

Again, we have by (4.21) (with δ < 1
2
),

Z(J̃n) ≤ Z(J̃N−1) + 14C
∞∑

j=N

j−1−ε + K ln(M) < ∞

with K and M as in the proof of Lemma 4.14. Since J̃n → J̃ , the result follows.

For a sequence en we define ∂en ≡ en+1−en and ∂2en ≡ ∂(∂en) = en+2−2en+1+en.

Using results in this section and those in Section 3.5, we can prove the following:

Theorem 4.16. Let

an ≡ 1 + αen + O(n−1−ε), bn ≡ βen + O(n−1−ε)

with en ↓ 0,
∑

n en = ∞,
∑

n n[∂2en]− < ∞, and ε > 0. Then Z(J) < ∞ if and only

if 2α ≥ |β|.

Remark. Notice that the last condition on en is satisfied whenever en is eventually

a convex sequence. In particular, en = n−γ with 0 < γ ≤ 1 is included, proving

Theorem 1.4.
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Proof. First consider α < 0. Then

−
N∑

n=1

ln(an) =
N∑

n=1

[|α|en + O(e2
n) + O(n−1−ε)

] →∞

as N →∞, and so Z(J) = ∞ by Corollary 3.15.

Next assume 0 ≤ 2α < |β|. If we take |p| < 1
2

such that α < −pβ, then

−
N∑

n=1

[
ln(an) + pbn

]
=

N∑
n=1

[
(−α− pβ)en + O(e2

n) + O(n−1−ε)
] →∞

by the hypotheses. Also, since −α + pβ ≤ pβ < −α ≤ 0,

−
N∑

n=1

[
ln(an)− pbn

]
=

N∑
n=1

[
(−α + pβ)en + O(e2

n) + O(n−1−ε)
] → −∞.

Theorem 3.26(i) then gives Z(J) = ∞.

Finally, assume 2α ≥ |β|. Note that ∂en ≤ 0. We let cn ≡ 1 + αen and dn ≡ βen.

Then the square bracket in (4.2) equals

2α∂en + α2(en+1 + en)∂en − |β|1 + αen+1

2
∂en+1 − |β|1 + αen

2
∂en

=

[
2α + α2(en+1 + en)− |β|1 + αen+1

2
− |β|1 + αen

2

]
∂en − |β|1 + αen+1

2
∂2en

= (2α− |β|)2 + α(en+1 + en)

2
∂en − |β|1 + αen+1

2
∂2en

≤ |β|1 + αen+1

2
[∂2en]−

since ∂en ≤ 0 and 1 + αen+1 > 0. Hence, (4.2) holds by
∑

n n[∂2en]− < ∞ (i.e.,

{cn, dn} is admissible). Theorem 4.1 finishes the proof.

Corollary 4.17. Let 2α ≥ |β|, en ↓ 0, γ > 0, ε > 0, and

an ≡ 1 +
α

nγ
+ en + O(n−1−ε), bn ≡ β

nγ
+ O(n−1−ε).

Then Z(J) < ∞.
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Remarks. In these cases, −∑N
n=1 ln(an) diverges to −∞. This is only consistent

with (3.69) because E0(J) = ∞, that is, the eigenvalue sum diverges and the two

infinities cancel.

Proof. By the remark after Theorem 4.16 and by the proof, {1 + αn−γ, βn−γ} is

admissible if 2α ≥ |β|. By Lemma 4.8, {1 + αn−γ + en, βn−γ} is admissible. Then

use Theorem 4.1.

A natural question here is what happens if we allow errors more general than just

O(n−1−ε), but still small compared to the leading term of the perturbation. As for

the Z(J) = ∞ result in Theorem 4.16, it certainly holds for such errors, as can be

seen from the arguments in the proof.

On the other hand, the stability of Z(J) < ∞ is unclear. One can easily see

that we need strong hypotheses at 2α = |β|, the boundary of the “Szegő” region. For

example, if an = 1+αn−1−(n ln(n))−1 and bn = 2αn−1, then the Szegő condition fails

(at −2), as follows from Theorem 3.24. Hence, in this case one cannot expect more

than trace class errors to preserve the Szegő condition. Inside the “Szegő” region the

situation might be different, but at the present time we are not able to treat even

trace class errors for 2α ≥ |β| (see Conjecture 3.13).

Let us now return to considering perturbations of a single an. As noted in Section

4.2, decreasing it can only guarantee decrease of |E±
1 |. However, if we know that J

has no bound states, then this is sufficient to conclude that no new bound states can

appear when decreasing an.

Theorem 4.18. Assume that J with an → 1, bn → 0 has only finitely many bound

states, and let J̃ have ãn ≤ an and b̃n = bn with ãn → 1. Then Z(J̃) < ∞ if and

only if Z(J) < ∞ and
∑

n(an − ãn) < ∞. In any case, J̃ also has only finitely many

bound states.

Proof. We only need to prove this theorem for J with no bound states. For by

Theorem 2.2(i),(ii), J has finitely many of them if and only if J (n) has none for large

enough n — one only needs to choose n to be larger than the last crossing of zero of
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some eigenfunction for energy 2 and the last non-crossing of zero of an eigenfunction

for −2. And by (3.47), J is Szegő if and only if J (n) is.

So let us assume that J has no bound states. Then by the above discussion, J̃

has none as well. Indeed, if we let J̃n have aj(J̃n) ≡ ãj for j = 1, . . . , n and all other

entries same as J , then J̃n is created from J̃n−1 by decreasing an. Since J̃n−1 has no

bound states, the same must be true for J̃n. Since J̃n → J̃ in norm, J̃ also has no

bound states.

If Z(J) < ∞ and
∑

(an − ãn) < ∞, then Z(J̃) < ∞ by (4.22). No bound

states and Theorem 3.14(d) imply Ā0(J) > −∞. So if
∑

(an − ãn) = ∞, we obtain

Ā0(J̃) = ∞, and then Z(J̃) = ∞ by Theorem 3.14(c). Finally, if Z(J) = ∞, then no

bound states and Theorem 3.14(a) give Ā0(J) = ∞. This implies Ā0(J̃) = ∞ and so

again Z(J̃) = ∞.

Since Theorem 3.14 does not distinguish between no bound states and E0(J) < ∞,

we can extend the above result to that case, but we need to restrict it to δ-minorating

perturbations of the an’s only (e.g., decreasing an by en ↓ 0). If E0(J) = ∞, then

such a result cannot be generally true. For example, if an ≡ 1 + α/n and bn ≡ β/n

with 2α > |β|, then decreasing α by α− |β|/2 results into a non-summable change of

the an’s, but the matrix stays Szegő.

4.4 One-Sided Szegő Conditions

In this section we will discuss Jacobi matrices which are Szegő at 2 or −2. That is,

such that Z+
1 (J) < ∞ or Z−

1 (J) < ∞. One might say that a better definition would

be to call J Szegő at ±2 if the Szegő integral converges at ±2, without any conditions

on the rate of divergence at ∓2. We cannot object to this, but note that in the case

J = J0+Hilbert-Schmidt (i.e., J − J0 ∈ I2), which we will consider here, these two

definitions coincide. Indeed, for such J we know from Theorem 3.18 that

Z−
2 (J) < ∞. (4.26)
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That, of course, means that Z(J) can only diverge at ±2, and it diverges at ±2 if

and only if Z±
1 (J) = ∞ (since the weight in Z±

1 has the same decay at ∓2 as the one

in Z−
2 ).

Hence we will use the sum rules (3.48) and (3.49) in this section. Just as with

Z(J), the infinite sums are always absolutely convergent and (3.48), (3.49) hold even

if Z±
1 (J) = ∞. This shows that the one-sided Szegő conditions are also stable under

finite rank perturbations.

Actually, we will only consider the Szegő condition at 2 and use only (3.48). The

reason for this is the spectral symmetry discussed in Section 2.2. Therefore, our

results for 2 will immediately translate into similar results for −2.

As in the previous section, the main tool for handling trace class perturbations

will be the following inequality, which we obtain from (3.48) just as we obtained (4.22)

from (3.47) (with the same J̃n). With ξ+(E) from (3.44) we have

Z+
1 (J̃) ≤ Z+

1 (J) +
∞∑

j=1

| ln(ãj)− ln(aj)|+ 1
2

∞∑
j=1

|b̃j − bj|,

+ lim inf
n→∞

∑
j,±

[
ξ+

(
E±

j (J̃n)
)− ξ+

(
E±

j (J)
)]

. (4.27)

A direct computation shows that ξ+(E) is increasing and positive on [2,∞), and

increasing and negative on (−∞,−2]. This means that the last sum in (4.27) will be

negative whenever E+
j (J̃n) ≤ E+

j (J) and E−
j (J̃n) ≤ E−

j (J) for all j. In particular, if

ãj = aj and b̃j ≤ bj for all j.

Theorem 4.19. Suppose J − J0 is compact.

(i) If J is Szegő at 2, and J̃ has ãn = an, b̃n ≤ bn with
∑

n(bn − b̃n) < ∞, then J̃ is

also Szegő at 2.

(ii) If J is Szegő at −2, and J̃ has ãn = an, b̃n ≥ bn with
∑

n(b̃n − bn) < ∞, then J̃

is also Szegő at −2.

(iii) Let Ĵ have ân = an, b̂n ≥ bn with
∑

n(b̂n − bn) < ∞, and let both J, Ĵ be Szegő.

If J̃ has ãn = an and bn ≤ b̃n ≤ b̂n, then J̃ is also Szegő.

Proof. (i) follows from the discussion above, (ii) from (i) by symmetry, and (iii) from
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(i) and (ii) and the fact that J is Szegő if and only if it is Szegő at both ±2.

When perturbing the an’s as in Section 4.2, we have to be careful with negative

bound states. Indeed, decreasing all |E±
j | does not necessarily make the last sum in

(4.27) negative because ξ+(E) increases on (−∞,−2]. This problem can be overcome

if the contribution of the E−
j (J)’s to that sum is finite. Since for E ∼ −2 we have

ξ+(E) = O(|E + 2|3/2) by (3.77), this means that we need

∑
j

|E−
j (J) + 2|3/2 < ∞. (4.28)

Then the lim inf in (4.27) will be bounded from above as long as every change

J̃n−1 → J̃n decreases all E+
j ∈ (2, 2+ δ), irrespective of what happens to E−

j (because

ξ+(E−
j (J̃n)) ≤ 0). By Theorem 3.18, (4.28) holds whenever J − J0 ∈ I2.

But before we can use this idea to handle certain trace class perturbations as in

Section 4.3, we first need to find some an, bn to be perturbed. Our aim is to treat the

case an = 1 + αn−γ + O(n−1−ε) and bn = βn−γ + O(n−1−ε) with 2α > ±β, and show

that such J is Szegő at ∓2. Since we need J − J0 ∈ I2, we will consider γ > 1
2
. To

prove the next result, we will return to the methods of Section 4.1.

Lemma 4.20. Suppose an → 1, bn → 0.

(i) Let {an} be eventually strictly monotone and

an − an−1

an+1 − an

→ 1,
bn+1 − bn

an+1 − an

→ ω (4.29)

with ω finite. If eventually

ω sgn(an+1 − an) < −2 sgn(an+1 − an),

then there are δ > 0, c > 0 such that ν ′(x) ≥ c
√

4− x2 for x ∈ (2− δ, 2).

(ii) Let {bn} be eventually strictly monotone and

bn − bn−1

bn+1 − bn

→ 1,
an+1 − an

bn+1 − bn

→ ω1 (4.30)
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with ω1 finite. If eventually

ω1 sgn(bn+1 − bn) < −1
2
sgn(bn+1 − bn),

then there are δ > 0, c > 0 such that ν ′(x) ≥ c
√

4− x2 for x ∈ (2− δ, 2).

Remarks. 1. (ii) is (i) with ω1 = ω−1. It handles the case ω = ±∞.

2. In particular, such J is Szegő at 2 if J − J0 ∈ I2.

3. By symmetry, the same result holds for the Szegő condition at −2, with “< −2”

and “< −1
2
” replaced by “> 2” and “< 1

2
.”

Proof. (i) First notice that (4.13) holds because an is (eventually) monotone, and

either bn is monotone (if ω 6= 0) or |bn+1 − bn| ≤ |an+1 − an| (if |ω| < 1). Hence, we

can use Lemma 4.3. This time we will work with Sn instead of Rn, because it has a

simpler recurrence relation (4.4). Notice that by the proof of Lemma 4.3, for every

|x| < 2 we have Sn(x) → √
4− x2/2πν ′(x) as n → ∞. The result will follow if we

prove that Sn(x) ≤ C for some C < ∞, all x ∈ (2− δ, 2), and all large n.

We will show this by proving that for some K and all large enough n we have

Sn+K−1(x) ≤ Sn−1(x) for all x ∈ (2 − δ, 2). That is, we will iterate (4.4) K times at

once. Here K ≥ 3 and δ > 0 will be fixed, but they will not be specified until later.

We let n be large and such that for all j ≥ n we have |aj − 1| < δ and |bj| < δ,

and we take x ∈ (2− δ, 2). Then by (2.5) in the form (4.15) we obtain for Pn ≡ Pn(x)

and k ∈ {0, . . . , K − 1}

Pn+k = (k + 1)Pn − kPn−1 + O(δ)(|Pn|+ |Pn−1|).

We also have

a2
n+k+1 − a2

n+k =(an+k+1 − an+k)(2 + o(1)),

an+k(bn+k+1 − bn+k) =(an+k+1 − an+k)(ω + o(1))
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with o(1) = o(n0) taken w.r.t. n. From these estimates we obtain

Sn+k − Sn+k−1 = (a2
n+k+1 − a2

n+k)P
2
n+k + an+k(bn+k+1 − bn+k)Pn+kPn+k−1

= (an+k+1 − an+k)
{[

(2 + o(1))(k + 1)2 + (ω + o(1))k(k + 1)
]
P 2

n

− [
(2 + o(1))2k(k + 1) + (ω + o(1))(2k2 − 1)

]
PnPn−1

+
[
(2 + o(1))k2 + (ω + o(1))k(k − 1)

]
P 2

n−1

+ O(δ)(P 2
n + P 2

n−1)
}

,

where the O(δ) also depends on K and ω (but not on x or n). Using the identities
∑K−1

k=0 k2 = K(2K2 − 3K + 1)/6,
∑K−1

k=0 k = K(K − 1)/2, and an+k+1 − an+k =

(an+1 − an)(1 + o(1)), we obtain for K ≥ 3,

3

K

Sn+K−1 − Sn−1

an+1 − an

= O(δ)(P 2
n + P 2

n−1)

+
[
2K2 + 3K + 1 + ω(K2 − 1) + o(1)

]
P 2

n

− [
4K2 − 4 + ω(2K2 − 3K − 2) + o(1)

]
PnPn−1

+
[
2K2 − 3K + 1 + ω(K2 − 3K + 2) + o(1)

]
P 2

n−1

where both O(δ) and o(1) depend on K and ω. Let I, II, III denote the three square

brackets in the above expression, without the o(1) terms. If I · III − (II/2)2 > 0,

then for small enough δ and large n (so that O(δ) and o(1) are negligible) the above

expression will have the same sign as I. We have I · III − (II/2)2 > 0 whenever

ω /∈ [c1(K), c2(K)] ≡
[
−2− 6 + 2

√
3
√

K2 − 1

K2 − 4
,−2− 6− 2

√
3
√

K2 − 1

K2 − 4

]
.

Also, I > 0 when ω > d(K) ≡ −(2K2 +3K +1)/(K2−1), and I < 0 when ω < d(K).

Since c1(K), c2(K), d(K) → −2 as K →∞, and by the above,

sgn(Sn+K−1 − Sn−1) = sgn(an+1 − an) sgn(I),

one only needs to take K large so that ω > max{c2(K), d(K)} (if sgn(an+1−an) = −1)
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or ω < min{c1(K), d(K)} (if sgn(an+1 − an) = 1). Then for small enough δ and all

large n one obtains sgn(Sn+K−1(x) − Sn−1(x)) = −1 whenever x ∈ (2 − δ, 2). The

result follows.

(ii) The proof is as in (i), but with the role of an+1 − an played by bn+1 − bn. We

obtain I = ω1(2K
2+3K+1)+K2−1 and sgn(Sn+K−1−Sn−1) = sgn(bn+1−bn) sgn(I)

whenever

ω1 /∈
[
−1

2
−

√
3

2
√

K2 − 1
,−1

2
+

√
3

2
√

K2 − 1

]
.

Now we are ready to introduce errors and state the main result of this section.

Theorem 4.21. Suppose J̃ has

ãn ≡ an + O(n−1−ε), b̃n ≡ bn + O(n−1−ε)

with
∑∞

n=1

[
(an − 1)2 + b2

n

]
< ∞ and ε > 0.

(i) Assume an, bn satisfy (4.29) and n2+ε|an+1 − an| → ∞. If eventually

ω sgn(an+1 − an) < −2 sgn(an+1 − an),

then J̃ is Szegő at 2. If eventually

ω sgn(an+1 − an) > 2 sgn(an+1 − an),

then J̃ is Szegő at −2.

(ii) Assume an, bn satisfy (4.30) and n2+ε|bn+1 − bn| → ∞. If eventually

ω1 sgn(bn+1 − bn) < −1
2
sgn(bn+1 − bn),

then J̃ is Szegő at 2. If eventually

ω1 sgn(bn+1 − bn) < 1
2
sgn(bn+1 − bn),
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then J̃ is Szegő at −2.

Remark. Notice that if sup{n2+ε|an+1 − an|} < ∞, then |an − 1| . n−1−ε and

since (in (i)) ω is finite, we also have |bn| . n−1−ε. Hence, J − J0 is trace class and

so Szegő by Corollary 3.16.

Proof. (i) We follow the proof of Theorem 4.1. First we increase an by 6Cn−1−ε with

C from (4.23). We have

an + 6C
n1+ε − an−1 − 6C

(n−1)1+ε

an+1 + 6C
(n+1)1+ε − an − 6C

n1+ε

− an − an−1

an+1 − an

=
O(1)

n2+ε(an+1 − an) + O(1)
→ 0.

So if we call an + 6Cn−1−ε again an, we still have (an − an−1)/(an+1 − an) → 1.

Similarly, (bn+1 − bn)/(an+1 − an) → ω. And, of course, {an} has the same type of

monotonicity as before, by the assumption n2+ε|an+1− an| → ∞. We call the matrix

with these new an, bn again J . By hypothesis J − J0 ∈ I2, so J is Szegő at 2 by

Lemma 4.20(i) and (4.26).

Now we consider the same J̃n as in the proof of Theorem 4.1. The first of them is

J̃N−1 and it is Szegő at 2 because it is a finite rank perturbation of J . Each next J̃n

will δ-minorate J̃n−1. That proves that in (4.27) (with J̃N−1 in place of J) the sum

involving E+
j will be bounded above by Kξ+(M) with K and M as in Lemma 4.14.

The sum with E−
j will be bounded above by c =

∑
j[−ξ+(E−

j (J̃N−1))], and this is

finite by (3.77) and (4.28) (which holds because J̃N−1 − J0 ∈ I2). So the lim inf in

(4.27) cannot be +∞ and the result follows.

(ii) The proof is identical.

Corollary 4.22. Let γ > 1
2
, ε > 0, and

an ≡ 1 +
α

nγ
+ O(n−1−ε), bn ≡ β

nγ
+ O(n−1−ε). (4.31)

If 2α > ±β, then J is Szegő at ∓2.

Proof. If γ > 1, then Z(J) < ∞ by Corollary 3.16, and so Z±
1 (J) < ∞. If γ ∈ (1

2
, 1],

then use Theorem 4.21(i) (if α 6= 0) or (ii) (if α = 0) with an, bn in that theorem
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being 1 + αn−γ and βn−γ.

As for other pairs (α, β) in (4.31), Theorem 3.17(iii) shows that if 2α < ±β, then

J cannot be Szegő at ∓2. Hence, the (α, β) plane is divided into four regions by the

lines 2α = ±β. Inside the right-hand region J is Szegő, inside the top and bottom

regions J is Szegő only at, respectively, 2 and −2, and inside the left-hand region J

is Szegő neither at 2 nor at −2. On the borderlines the situation is as follows. If

2α = ±β and α ≥ 0, then Corollary 4.17 shows that J is Szegő, and so Szegő at

both 2 and −2. If 2α = ±β and α < 0, then J cannot be Szegő at ±2 by Theorem

3.17(iii). It is possible that such J is Szegő at ∓2.

By this, the picture from Chapter 1 is justified.

4.5 Appendix to Chapter 4

In this appendix we prove auxiliary results which we used in the present chapter. The

following lemma from [16] was applied in the proof of Lemma 4.2:

Lemma 4.23. If Q(x) is a polynomial of degree at most n− 1 and for |x| ≤ 2,

√
4− x2 |Q(x)| ≤ 1, (4.32)

then for |x| ≤ 2,

|Q(x)| ≤ n

2
.

In the proof we will need the Gauss-Jacobi quadrature for the Chebyshev polyno-

mials of the first kind:

Lemma 4.24. Let xj ≡ cos
(
(2j − 1)π/2n

)
with j = 1, . . . , n be the roots of the

Chebyshev polynomial of the first kind Tn(x). If Q(x) is a polynomial of degree at

most n− 1, then

Q(2x) =
n∑

j=1

(−1)j−1

n

√
1− x2

j Q(2xj)
Tn(x)

x− xj

. (4.33)
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Proof. By (2.10), Tn(x) = cos(n arccos(x)) for |x| ≤ 1. Since xj is a root of Tn(x),

the right-hand side of (4.33) (denoted Q̃(2x)) is a polynomial of degree at most n−1.

Obviously limx→xj
Tn(x)/(x− xj) = T ′

n(xj). Moreover,

T ′
n(x) = [cos(n arccos(x))]′ =

n sin(n arccos(x))√
1− x2

, (4.34)

and so

T ′
n(xj) =

(−1)j−1n√
1− x2

j

.

Since for j = 1, . . . , n,

Q̃(2xj) =
(−1)j−1

n

√
1− x2

j Q(2xj)T
′
n(xj) = Q(2xj),

and both Q and Q̃ are of degree n− 1, they must coincide.

Proof of Lemma 4.23. Let xj be as in Lemma 4.24. First assume 2xn ≤ x ≤ 2x1.

Then

|Q(x)| ≤ (
4− x2

1

)− 1
2 =

(
4− 4 cos2

(
π
2n

))− 1
2 =

1

2 sin
(

π
2n

) ≤ n

2

because |x1| = |xn| and sin( π
2n

) ≥ 1
n
.

Now let x > 2x1 (the case x < 2xn is identical) and put y ≡ x
2
. By (4.32) and

(4.33),

|Q(x)| = |Q(2y)| ≤ |Tn(y)|
2n

n∑
j=1

∣∣∣ 1

y − xj

∣∣∣ =
1

2n

∣∣∣∣
n∑

j=1

Tn(y)

y − xj

∣∣∣∣

because y > xj for all j. Now since xj are precisely the roots of Tn(y), the last sum

is just T ′
n(y). We have

|T ′
n(y)| = n

∣∣∣∣
sin nθ

sin θ

∣∣∣∣ ≤ n2

by (4.34) with y = cos θ and induction on n. Hence |Q(x)| ≤ n2

2n
= n

2
.

The following result from [15] was used in the proof of Lemma 4.3:
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Theorem 4.25. Suppose limn→∞ an = 1, limn→∞ bn = 0, and

∞∑
n=1

(|an+1 − an|+ |bn+1 − bn|
)

< ∞. (4.35)

Then the spectral measure of J is purely absolutely continuous in (−2, 2) with contin-

uous density ν ′(x) > 0. Moreover, for any energy x ∈ (−2, 2), all eigenfunctions are

bounded and

lim
n→∞

[
P 2

n+1(x)− xPn+1(x)Pn(x) + P 2
n(x)

]
=

√
4− x2

2πν ′(x)
. (4.36)

Remarks. 1. In [15], an → 1
2

and the limit is 2
√

1− x2/πν ′(x).

2. With slightly more effort one can show that the m-function is continuous on

C+ ∪ (−2, 2).

3. Results relating density of the absolutely continuous part of the spectral mea-

sure and asymptotics of the solutions of difference (or differential) equations, under

the assumption of finite variation of the potential, go back to Weidmann [40, 41].

Proof. We start with showing the existence of WKB asymptotics for energies in

(−2, 2), as in [31]. We fix x ∈ (−2, 2) and define ωn ≡ (x−bn)/2an. We let Ĩ ⊂ (−1, 1)

be a closed interval containing x
2

in its interior and consider n0 such that ωn ∈ Ĩ for

all n ≥ n0. Then we have

|ωn+1 − ωn| ≤ |x|+ |bn|
2anan+1

|an+1 − an|+ 1

2an+1

|bn+1 − bn|. (4.37)

Next we define

u±n = e±i
Pn

n0
arccos(ωj) (4.38)

for n ≥ n0. Then

an+1u
±
n+1 + (bn+1 − x)u±n + anu

±
n−1 = c±n u±n (4.39)
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with

c±n =an+1e
±i arccos(ωn+1) + ane

∓i arccos(ωn) + bn+1 − x

=
bn+1 − bn

2
± i

(
an+1

√
1− ω2

n+1 − an

√
1− ω2

n

)
,

since sin(arccos(t)) =
√

1− t2. Hence

|c±n | ≤
1

2
|bn+1 − bn|+ |an+1 − an|+ an

|ωn+1 − ωn|√
1− ω2

n

≤ Cdn

with dn ≡ |an+1 − an|+ |bn+1 − bn|, and C < ∞ depending on Ĩ. That is, c±n ∈ `1.

We will also need the Wronskian of u+ and u− (which depends on n). We have

Wn(u+, u−) = an(u+
n u−n−1 − u+

n−1u
−
n ) = an(ei arccos(ωn) − e−i arccos(ωn))

and since ωn → x
2
,

lim
n→∞

Wn(u+, u−) = i
√

4− x2. (4.40)

Now we turn to eigenfunctions ϕn for energy x. We will show that each of them

asymptotically approaches a linear combination of u+ and u−. If

an+1ϕn+1 + (bn+1 − x)ϕn + anϕn−1 = 0, (4.41)

then we let αn, βn be such that


 ϕn

ϕn−1


 =


 u+

n u−n

u+
n−1 u−n−1





αn

βn


 . (4.42)

By (4.41),


u+

n+1 u−n+1

u+
n u−n





αn+1

βn+1


 =




x−bn+1

an+1
− an

an+1

1 0





 u+

n u−n

u+
n−1 u−n−1





αn

βn


 .
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From this and (4.39),


αn+1

βn+1


 =

[
Id +

1

Wn+1(u+, u−)


−c+

n u+
n u−n −c−n u−n u−n

c+
n u+

n u+
n c−n u+

n u−n




] 
αn

βn




=(Id +Mn)


αn

βn


 ,

with

Mn ≡ 1

Wn+1(u+, u−)


 −c+

n −c−n (u−n )2

c+
n (u+

n )2 c−n




summable because c±n ∈ `1. Hence for D ≡ 2C/
√

4− x2 (so that ‖Mn‖ ≤ Ddn for

large n) and n →∞,

∥∥∥ Id−
∞∏
n

(Id +Mj)
∥∥∥ ≤ e

P∞
n ‖Mj‖

∞∑
n

‖Mj‖ ≤ eD
P∞

n dj D

∞∑
n

dj → 0. (4.43)

It follows that αn → α∞ and βn → β∞. Then from |u±n | = 1 and (4.42) we have

lim
n→∞

|ϕn − (α∞u+
n + β∞u−n )| = 0. (4.44)

This proves boundedness of all eigenfunctions for energy x.

Before we proceed, we note that if we consider a closed interval of energies I ⊂
(−2, 2) instead of a single energy x, then n0, C, and D can be chosen uniformly for

x ∈ I, and (4.40), (4.43) also hold uniformly in x. Hence from now on we will consider

all x ∈ I with I ⊂ (−2, 2) an arbitrary closed interval.

Let us now prove the remaining claims for J − J0 finite rank. For all small ε ≥ 0

and x ∈ I we let θ(x + iε) ≡ arccos(x+iε
2

), taking the usual branch of arccos. Note

that Im(θ(x + iε)) < 0 for ε > 0. We define u(x + iε) to be the unique eigenfunction

for energy x+iε such that un(x+iε) = e−iθ(x+iε)n for large n. Then u(x+iε) ∈ `2(Z+)

for ε > 0 and so by (2.56),

m(x + iε) = − u0(x + iε)

u−1(x + iε)
.
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Since un(x + iε) and un+1(x + iε) are obviously continuous up to ε = 0 for large

n, by solving the eigenfunction equation backwards, so must be u−1(x + iε) and

u0(x + iε). Also, u−1(x) 6= 0, because u−1(x) = 0 forces u0(x) 6= 0, and then

un(x)/u0(x) would be real for all n, which is a contradiction. In conclusion, m(x+ iε)

and each un(x+ iε) are continuous in ε up to ε = 0. This shows that limε↓0 m(x+ iε)

is finite and so there is no singular spectrum in (−2, 2) by Theorem 2.14. We define

m(x) ≡ m(x + i0) = limε↓0 m(x + iε).

Next we let vn(x) ≡ −un(x)/u−1(x) so that v−1(x) = −1 and v0(x) = m(x).

Let η(x) ≡ i|u−1(x)|/u−1(x) so that |η(x)| = 1 and vn(x) = iη(x)un(x)/|u−1(x)|.
Since vn(x) − vn(x) is an eigenfunction for energy x with v−1(x) − v−1(x) = 0 and

v0(x)− v0(x) = 2i Im m(x), the orthogonal polynomials clearly satisfy

Pn(x) =
vn(x)− vn(x)

2i Im m(x)
.

So for large n

Pn(x) =
η(x)e−iθ(x)n + η(x)eiθ(x)n

2|u−1(x)| Im m(x)
. (4.45)

Notice that Im m(x) = Im v0(x) 6= 0 because otherwise vn(x) would be real for all n,

which is a contradiction. Also notice that J − J0 finite rank and (4.38) implies that

e−iθ(x)n/u−n (x) is constant in n for large n, and this constant has modulus 1. Similarly

for eiθ(x)n/u+
n (x), and the two constants are complex conjugates of each other. It

follows that if P (x) plays the role of ϕ in (4.44), then

|α∞(x)| = |β∞(x)| = 1

2|u−1(x)| Im m(x)

and α∞(x) = β∞(x). A direct computation, using (4.45) and x = eiθ(x) + e−iθ(x), then

gives for large n

P 2
n+1 − xPn+1Pn + P 2

n = |α∞|2
(
2− e2iθ − e−2iθ

)
= |α∞|2(4− x2). (4.46)
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Looking at the Wronskian of v and v̄ at n = 0 and at large n, we obtain

W (v, v) = (−1)m− (−1)m = −2i Im m

and

W (v, v) =
1

|u−1|2
(
iηuniηun−1 − iηun−1iηun

)
=

2i Im(unun−1)

|u−1|2 = −i

√
4− x2

|u−1|2 .

By equating these we have

|α∞(x)| = |β∞(x)| = 1

2|u−1(x)| Im m(x)
=

[
1

2
√

4− x2 Im m(x)

] 1
2

. (4.47)

Substituting this into (4.46) and using (2.54), we obtain (4.36) for a.e. x. By (4.46),

P 2
n+1(x) − xPn+1(x)Pn(x) + P 2

n(x) is constant in n for large n, and it is obviously

continuous on I for all n. So the density ν ′(x) must be positive and continuous too.

Since I was arbitrary, the result for finite rank J − J0 follows. Notice that we have

shown that in this case
√

4− x2 /2πν ′(x) is a polynomial, positive on (−2, 2).

Now we return to general J . Let Jk be obtained from J by replacing an by 1 and

bn by 0 for n > k. Notice that n0, C, D can be chosen uniformly for all x ∈ I and

all Jk. The functions u±n will, of course, be k dependent, but u±n (x; Jk) = u±n (x; J)

whenever n0 ≤ n ≤ k. Therefore also αk(x; Jk) = αk(x; J). Moreover, obviously

|α∞(x; Jk) − αk(x; Jk)| → 0 as k → ∞ uniformly on I, and by (4.43) the same is

true for |α∞(x; J) − αk(x; J)|. Thus, α∞(x; Jk) → α∞(x; J) uniformly on I. The

same holds for β∞(x; J), and so α∞(x; J) = β∞(x; J). This means that α∞(x; J) 6= 0,

because otherwise Pn(x) → 0 by (4.44). Then, however, W (P (x), ϕ(x)) = 0 for

any other eigenfunction ϕ(x) (by (4.44), ϕn(x) is bounded) and so Pn(x) ≡ 0, a

contradiction. Therefore, |α∞(x; J)| must be bounded away from 0 and ∞ on I,

because it is a uniform limit of continuous functions |αk(x; J)|, and hence continuous.
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By the above, (4.47) for Jk, and (2.54), we have for gk(x) ≡ ν ′(x; Jk) and

g(x) ≡ 1

2π
√

4− x2 |α∞(x; J)|2 > 0,

that gk(x) → g(x) uniformly on I. Since gk are continuous, so is g. By Theorem 2.4

we know that gk(x)dx weakly converge to dν(x) on I, so we must have ν ′(x) = g(x)

for x ∈ I, and νsing(I) = 0. Since I was arbitrary, ν is purely a.c. in (−2, 2) with

positive continuous density. Finally, by (4.46) we have

lim
k→∞

[
P 2

k+1(x)− xPk+1(x)Pk(x) + P 2
k (x)

]
= lim

k→∞
|α∞(x; Jk+1)|2(4− x2)

=|α∞(x; J)|2(4− x2)

=

√
4− x2

2πg(x)
,

which is (4.36). The proof is complete.
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nomials on the real line, Comm. Math. Phys., to appear.
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