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Summary

A survey of the field of nonanmmutative algebra and arithmetic
indicates that a groeat many of the results are simply statements con-~
cerning a lattice the elements of which combine under an additional
operation of multiplication. This fact suggests that the investigation
of the algebraic and srithmetical pi0perties of lattices with a non-
commutative multiplication should simplify and correlate to & large ex—
tont a number of the imporitant fislds of modern algebra. Such an in-
vestigation is the sﬁbject of this thesis.

In chapter I the formal properities of lattices with a non-commutative
multiplication and its assoclated residuation are treated in detail. It
is shown that under certain general conditions each of these operations
may be defined in terms of the other. This fact gives an easy method of
extending the domain of definition of the operations and the properties
of such extensions are discussed. Imltiplications and residuations which
are unchanged by the extension have particularly simple properties and
are discussed in considerable detail. Finally, various special multi-
plications and residuations are investigated.

Chapter II treats lattices in which the multiplication is intimately
connected with lattice division. It is shown that each element of a
modular lattics in which suitable chain conditions hold, may be repre-
sénted a8 a product of irreducibles; and if there are two such decom-
positions, the number of irreducibles is the same and they are simllar
in pairs. Applying these results to non-commtative semi-groups gives
the following fundamental theorem:

The following three gonditions are necessary and sufficient that a



gemi-group 35 m GeCeDs and L.CeMe 0p graﬁi ons have sn arithmetie:
(1) ascendinz chain condition in S

(11) descending chaln condition for the fagtors of any element of S
(111) modular gomdition in S.

Cl;apter I1I has three main divisionse In the first part the
structure of ideal lattices in the vieinity of the unit element is
characterized in terms of arithmetlcal émd semi-arithmetlical lattlces.
In the second division degcompositions into primasry and semi-primary
elements are diseusse;i. And finally in the third part, the structure
of arehimedéan rasiduated lattices is investizated. In ;partiou_lar
structure theorems are proved which are analogous to the structure
theorems of hypercomplex systems.

This investigation was undertaken at the suggestion of Professor

Morgan Ward to whom I am indebted for constant encouragement and many

timely suggestionss



TABLE OF CONTENTS.

Ghaptgr IV
o Multiplication and Residuation
Section
1o INtroduction o o s o o o o o o o ¢ o o 5 0 o 0 o s o0 e
2, Notation and terminology « » o = o o o 5 2 s o o 2 s »
3. Formal properties of mmltiplication and residuation . .
4. Special multiplicBtions o« o o « o » v v o 0 0 0 0 0 o o
B, EXxomplos o » ¢ o o o 5 o s s s o e 2 e o 5 0 e s s s o .
Chapter II
Non-sommtative Arithmetie
le Introduction =« o « o« o = @« ¢ @ a8 ¢ o 8 ¢ 0 o ¢ 5 ¢ » «
2, The multiplication « o s » o o ¢ ¢ o ¢ o o s o o o ¢ o &
3. The decomposition theory o« » o ¢ ¢ o ¢ s ¢ ¢ o ¢ ¢ o v o
4, ZExamples of non-commutative arithmetic » « ¢ ¢ o o o ¢ »
5. Example of matrices over a ring « s ¢« o ¢ s ¢ ¢ s o + &
6. The ariéhmetic of & Somi-ZTOUD ¢ ¢ o » 2 ¢ ¢ ¢ o » o o »
7. ZProperties of the L-lattices ¢« » » o o o o o o ¢ ¢ o o »
8,

The commutative CSS0 o ¢ 9 ¢ ¢ ¢ o ¢ » 5 6 6 % o 2 s o @

Chapter III

Algebraic Properties of Non-cummtstive Residuated Lattioces

i.
2o
3o

4.

Introdwation.-.o....‘...os.-..-....
The struciure of ideal lattices with unit .+ » « ¢ » 4 &
Lattice struecture in the vicinlty of the unit element .

Arithmetical properties of ideal lattices o+ o o o & o o«

13
19

21

22

28
32
37
39
42

47

b2



Section v Page
. Be Ideal latticos with N1t « o » = o o« ¢ s ¢ ¢ ¢ o s » o s » 57
6+ Archimedean rasiduated‘lattices e o o o ¢ e o 00 0o 00 61

7o Semi-simplalattices...‘.-..-..-.,...... 63

FoforonCosS « o o o ¢« o » o s o 2 5 2 s s s o s 5 s s o s » » » 08



CHAPTER I

Multiplication and Residuation

1. Introdugtion. In thls work we shall investigate lattices*
over- which auxillary operations of multiplication and residuation are
defined. The study of such systems was begun by Dedekind at the
turn of the cantu:cy'.- In spite of the Importance of his work, it was
almost eompletely overlooked antil 1927-28 when Krull (Krull Lﬂ} and
Grell (Grell [/7 ) used Dedekind's ide=s in treating the ideal theory
of commtative and non-sommitative rings. After Krull's 1928 paper
no further work appears to have been done on this subject until the
rocont papers of Professor Morgan Ward and the writer on lattices
with a commmutative nultiplication and residuation.

We shall assume that the reader 1s familiar with elementary
lattice theory and also with the basic results of the commutative
theory as developsd in Ward (3] , Ward-Dilworth [72], and Dilworth[ 1]

Wa gonfine ourselves here entirely to the non-sommtative case.

2y Hotation zud terminolozys The fized lattice of elements

2, 5 ¢ will be demoted by 7w (), [ ] 5 will

o

*  Bguivalent terms used by other authors are: structure (Ore};

dualgroup {Dedekind), Verband (Klein). For s connected account of
lattice theory up to 1937 cf. Koethe (1] « A complete bibliography
of papers on lattice theory up to the pressnt has been compiled by

H' AO m‘ald, ThQSiS, C- In To (1939)0
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denoté un'i_on, cross-cut, and lattice division respectively. If a o6
and b > @, we say that 2 is eq_ual to 4 and write 2 = 4 .+ Sub-
iattiices of X will be denoted by German capitals and subsets of 9/(
which are not necessarily sublattices will be denoted by latin capitals.
The direot product of the lattices X, , - - , 9%, 1is defined to be the
set of vestors « = [d,, ... a.| where & ¢ ¢ and uniom, cross-
cut, and division are defined by (a,6) = f{(a.&), ..., (dan 6, [a0b]=
{[a,,b,]J.../[a,,,b,]]) aobif and only if & > b (i=/,.. a). 18 ¥
cohtains a unit element if will be demoted by &« o Similarly the
null element if it exists will be demoted by Zz  If (a,6)=«, «
and 4 are said to be co-prime. A set of elements of )/( is said to be
co-prime if the elements of the set are co-prime in pairs. If a DA >0
and & Z & implies Y= 2 orb, then @ is saild to cover & and we
write o > b .

If S and 7 are subsets of P » the set-theoretic sum and
interseetion will bs denoted by S+7 ad § ATrespactivaly.

A get S of elements of 31 is said to satisfy the ascending
. chain condlition if every chain @ < 2= ¢ 93 C - a.¢7 has only
s finite number of distinct elements. Similarly, if every chain
a > ag 3' g, D - Q. € 7’ has only a finite number of distinet
eléments, 2/( is said to satisfy the descending chain condition.
Ore [1J has shown that a set O eclosed with respect to union (cross-
cut) in which the ascending (descending) chaln condition holds always
contains 2 unit {null) element. If both the ascending and descending
chain conditions hold in a/{, 2/(13 saild to be archinedean.

'Te every subset S of X( has 2 unlon U(q) with the properties

L) oD @ every 4 ¢ ¢ and X > every « & J{implies x >w ()
& v
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then )’ is sald to be gompletely closed with respect to walom.
Similarly if every subset of‘}( has a eross-cut K(S} R J( is said

to be gompletely closed with respect to cross-cut. If J¥is com-

pletely closed with respect to both union and cross-ocut, we shall

simply say that 7 s completely closed.

3. Formal properties of mmltiplication and residustion. Let XY
be a one-valued operation which orders to certain pairs of elements

X,Y of X( a unique olement X/ . Such an operation is called a

right multiplication if the following postulates are satisfled:
Pl. If the products ac and hc¢ exist, them (2.0)C and [4.4/¢ pxisty
Ca = ¢ b fk*

2. a:b > ac = ba

/S
P3. (a,b)c = (ac, be),

from Pl-¥3 we have

M. a> & — ac o> bc.

For @ D b — (a.6) =a —> (&.6)¢c = A< > (ac be) =ac
—_— ac¢ D ba,
2. [ac, be]l D Ja,67C.

For ®@c¢ D J2,67c and 4¢ 2 Ja,67C by ML. Hence
[ac,6e]l D [a,e]¢ .

A one-valued operation X ) “which orders to certain pairs of
elements X,Y of 77 a unique element X ¥ is called a risht

regiduation if the following postulates are satisfied:

* 1f 7 is completely closed we assume that (/¢ ana w(S)c
exist if 4C exists for all < ¢ S.
*2  In this and succesding formulas the relations are assumed to hold

if end only if the indicated products exist. The symbol —> denotes

formal implication.
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Qle I a ¢ and b <’ exist, then [a.67 ' and (4 6) ¢ exist.

Q2 a = h — a-¢’= 4-a°/ C-a™ = ¢ &

7

03 [Q,b]‘C’_/ - [a.'c'/) b.c*/]‘

From Ql-Q3 we have

- Ri. a:vb —s a-c’ oD b

Por a>b —» J[a,67=5b —> [a,e] ' =s6.c ' 3
[Q'C"'/,g-'c"]rérc'/w_.? a-c /> bl
R2. (z. b/ ¢ > (a-c’/, b-c™)

For (a,4). ¢’/ > a ¢! and (a,4). ¢/ > & <’ by Rl. Hence Ra
In a similar manner left mziltiplicatioh Xey and left residuation
x” v  may be derined with the properties

Pl'« If a-6 gand a-C exlst, then o (4 c¢) apd o-[4<]gxist.

P2, @ = b — Q°<’740¢/ Coa = Cohb .
P3'. Be (6.C5 = (f(vb/ @ o d) .
. A D C —_— @ZebH D KXe (.,

M2t [ a4, aocc] D - l=],

QU If 76 and o ¢ exlst, them 4 (4¢) and @'\ [4.c] exist.

Qe'y @ =b —s Cla = ¢, ate < sl
R3t. o’ [é,c] = [’/‘_'/é’/ o’ C’]_
R1'. b >0 —> b o alc

R2', al(b,¢0) > (ate ave)

We shall now show that under gertain general conditions the
existence of a right multiplication implies the existencs of a right
residuation and conversglye.

THEOREM 3.1. 1f 2°1is completely glosed with respect %o union snd a
right multiplication exists sapisfying r1-P3 and such that w«(S)a -« (sa)*

» I S and / are two subsets of 7 such that the product of

each element of S with sach element of / exists, then QT will denote

the set of these products. If / consists of one member & we write Sa .
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then 00 has a right residustion with the proportles:

R', a D (as’)o.

R"s a DXxb6 —> Q.\b—/DX.

PROOF. If @ and & are such that there exists an element X with @ > x5,
1ot X denote the set of all such elements X . et @ &6 = «(X),

rThen since 2 5 xb all x¢ X , a 2 w(Xs) = a(X)b = @ 677) b
Mlgoif @ > xb , then x ¢ X and hence 2467 > X . R' and R"
are thus satiefied.

Rl ig satis o Por let a> xC, 4L > ypC, then (a.b)>
(xe,ve) = (x,3)C and [a¢] D [cC, ye] o [a y]Ce Hence
the residuals (2,6) ¢ and [a,6 6] ¢ 'exist.

®2 ig satisfied, For lot 2 =56 , Then o = b D (¢ //C.

Henee a- ¢/ > &6 ¢/, Algso boa D@c’)c —> 4:C7'5 a7

Hemce & ¢/ = 4.c¢7/ o Simllarly ¢ 2 (c aa = @ a)b —
¢c. 6> C-a’ and ¢ D (¢ bbb = @.é"//g‘e e-al > c 6’
dense C- -2/ — <o b/

/

QR3 is satisfied. a o> [a,67 D (ta,s7-¢cl)c —» R-c'os Iai7c”
Similarly b ¢/ D [a.67 ¢”ond hence [@ ¢/ g c] > [aé]-c”
Now [a 7 o [@ehe @ene] D [act,scrle— [ae7c
D[a ¢’ 4. ¢+] by M2, R" Hemee [a,e7 ¢’ = [Jac', soav]
THEOREM 3.2. If U ig completely closed With respect %o Cross-cuf sad
& right residustion exists satisfying Q1-Q3 and such that «(§/ 2= Kis-a’),
then 07 has a right miltiplication with the properties:
u, (as). L D g |
", X 67 >a —> X D ab,
PROOFs If @ and 9 are such thét there exists an element X with v b /> 4,

lat /Y denote the set of all such elements X . Let a4 = K(/'(/v
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Then (20)- b7 = x (k). 67 = k(X&) S a since 447 oz
all ¥ eA . Alsoif X 47 D a then X ¢ .V and x> 2é .
' and M" are thus satisfled.

Pl ig satisfied. For let X ¢/ > &, ¥V.¢/> 4 . fhen
(X y) ¢V (xcly.e”) D (aés emd [X,y] ¢ = [xc y.a]
5 I 2a.67. Henece (<. 4/ ¢ and [J<4,07 ¢ oxisot.

vPZ_;g_'gg_g,g_g_j,_e_g,. For let @ =4 « Then @c) ¢’/ 5 a2 5 &b —>
ac - 5cvby.25" and (4¢/-¢c’ D b >a —> bc¢c 5 ac . Hence
ac —= & ¢ . Sirﬁilarly lea)-al = (a6 D¢ —= ca>cd
and Cé6) . a~ = €&/ 47> ¢ —= 0o > cx . Hence Ca = <6 .

P3 is sagigrieds For ((a.¢é)c) ¢ D (a,é) D —> [2,i)¢ 5 azc
and ((a,é)c}-.c*: (a1é) 2 6 —> (a,e/c 5 sc by M. Hence (z,64/¢

v/

D (x¢, 42/ o« Alsoby B2 (ac, ¢c). ¢’ D ((ac/»c"/" Gesa) D le6)

Henee (ac¢,6 é¢)> (z.5/¢ , [z, 4,¢ -= (ae 2c/ |

w#e clearly have similar theorems for left multiplication and
residuation.
L& 3.1. Let ' have a risht multiplication and let a right residuation
be defined in terms of the multiplication as in theorem 3.1. then
M' and M" hold for the multiplicstion and residuation.
PROOF. Let the product @4 exist. 4them =24 >a2b, Hence (a¢): 67 o 4
by R" If X 6 o> ., then X > (47)b D akb by ', Rl. Hence
M' and M" are satisfied.
LEIMA Be2. 4ot ) have & rigsr residuation and let a risht multlolication
beo defined in terms of the residuation by theorem 3.2. ihen R' and R"
hold for the residuation gnd multiplication.
PROOF. Let o 4 existe f@hem @ 67/ 2 a 6 and a > (a6Ub
by H"e If & D x4, then @ 6 D x5/ 67 D % g0 tnét X' and R"

are satisfied,



\7)

4s a consequence of lemnas 3.1 and 3.2 we have the following two
theorems: - »
THEOREM 3.3. Let Xbe a gggg;gt_al_z closed lattice with a right
maltiplication which is comvletely digtributive with respect to union.
Lot a residuation be defined over J' as in theorem 3.1 and let s
multiplication x-y be defined in terms of the residuatior as in theor-em
3¢2. Then if the product ab exists, the product « - b6 exists and

Gob = ab,

PROOF. ‘'o prove the theorem we shall need the following lemmat

LEMA 3.3, Let J' be a completely closed lattice with a right multi-
plication which is completely destiributive with respect fo mphion. then
the pight residuation defined as in theorem 3.1 is gompletely
distributive with respect to cross-cut.

Le‘t S be a set of elements 2 of 3/(. ‘then since a > K(F),
26" 2 x(S) b7, Hemee x (5% > w(S) &', tn the other
hand sinee & o @b b, k(s) > k(S b)b) > (K(S )b, ang
hence K(S) 6D k(S 6. mms (5 LY = al(5)5 |

Continuing with the proof of the theorem we see from lemma 3.3
that the residual X Y~ satisfies the conditions of thoorem 3.2 and
hence the multiplication exists. XNow suppose that XY exists. ihen
by lerma 3.1 (XY/)-} 2 X . Hence Jf¢) exists by theorem 3.2 and
LY D XY . Farthermore z-Y 2 X —>» Z D xy and
CYM’//'Y'/D X. Bence ¢y 2 X) ., dms Vo) = AV,

CHEOREM Beds Lot a/ be a completely cloused lattice with & right resldu-

ation which is completely distributive with respect to cross-cut. Let

s/
a multiplication be defined over J' as in theorem 3.2 apd let &

residuation ¢/ " be defined in terms of the multiplication as in

atermpm——

theorem 3.1. then if the residusl Y.y’ exists, the residasl /o i
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exists and v = 4y

PEOOF; A!g in the previous cése we need the following lemma:

LA 3.4 Lot )* Do a complotely closed lattice with a riant
mm&w‘wmmmww =Qute
ihen the right multiplicatlon defined as in theorem 3.2 is gompletely
Qistributive with respect o wlem.

- Let S be a set of elements & of /' . then simee « (§/ 74,
w(S)s > ab Hance «(S/4 = «w{(Sh) . Un the other hand
since (aé) b5 a, w(58) 47 > «((58)-87)>uld nHence w (5¢)
> w(S) b and thus «(5/)4 = w(sh),

By lerma 3.4 the conditions of theorem 3.1 are satisfied and the
residuation Y°/ ' existse Let X s exist. then 1 2 (' )7)Y by
lemma 3.8. Hence Xoy” exists apd Yor ' D X ¥/, But xo zy

’ = xoy '/ since

—s X v/ > = by lerma 3.2. Hence X Yy
X D Wy )Y o wmas Koy = xy,
Theorems 3.3 and 3.4 show that if we start with a given multiplication
{residuation) and successively define a residuation 1zm11tiplication;
and mualtipllicatlion (residuatlion), the dom=in of the uriglnal operation
is in general extended. This process thus affords an easy method of
building up a multiplication table for the given operation. For we
have only to take a given set of products satisfying ¥i-~-P3 and apply
the process described above. In general we will obtain an extemsion of
the original multiplicatione.
The guestion naturally arises as to whether we can carry out the
above process of extension indefinitely. The answer is that the second
application of the prooess gives nothing new.
THEOREH 3.5. Let J{ be & completely closed lattice in which multiplication

As gompletely clg;stributj,ve‘ with respect to union. Let ,xy'/’ Koy /oy‘/
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denote the sugcessive multiplications wnd residuations defined by

theorems 3.1 and 3.2, Then )(a)/‘/ exlsts if and only if x y”exists

and Yoy = oxoyl,

PROOF. Trom theorem 3.4, the existencs of Yoy’ follows from ths
~existence of Xy and  Xey = X y ' . Hence it is sufficient

to show that the existence of XY 'follows from the existence of X°7
Let ¢/ @xiste Then X D (Xey /)oY . But since the product (¥o¥ '/°¥
exists, ((Yoy )y )V 5y er” and honce ((rev')oy) 'Y”v ekists.
Thus (X 7()oy D [((rey7)ev ) ¥ /[y . But then X O
Hoy™)ey o [((/a)/“//ay/"-%/]j « 4nd hence the residual X Y exists.
THEOREM 3.6 Let W be 2 qonrgletelx closed lattice in which
regiduation is completely distributive with respect to cross-cut. Let
XY, /oy"/ Koy denote the sucgessive multiplications and
rosiduations defined by theorems 3.1 and 3.2« IThen .ro) @xists if

and oniy if Xy exists and v¢) = A/ .

PROOF. By theorom 3.3 the existence of X2 ) follows from the existonco

of XV and /#°V — ~«y. Hence it is sufficient to show that the
existence of X) follows from the existemse of ¢) . Let 1/ exist.
Then (Yey/oy ™/ 2 X and (XoY)o y 7 exists. Hence oy D ((4ev)oy7)y
and ((«+y) 0/ /) y exists But then [((¥ex)oy~)y{ ¥y 7> (x JoY ™5 x
and ) ((rx)ey)y ]y’ exiéts. Henge Xy exists Dy theorem 3.2.
As an exazﬁple, consider the lattice diagramed bslow:
u
AN
\V

¥

Lat us start with the multiplication given by

alsiclz
albiclz

a

b

N[N IR R

N{o o 1D e}
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The ’correspondlng residuation is

wialplciz
ulujululul «
alalul| tzlz
bibiz|lu|zl z
clelz u| =z
zjz2\z zl z

Tho maltiplication defined in terms of this residuation is

NG jos R o
WREICSEYEY S
NOIR RN o
AN N NG E N AN A
Nie (e oo in
NN N N (NN

‘It will be noted that this multiplleation Is defined for every
pair of elements of ' .

It is obvious that a multiplication may be extended in a number
of differont ways and tho gquostion arises as to the relation betweoen
the extension we have just obtained and the varlous possible extensions.
The following two theorems characterize the multiplication and residu-

ation extensions of theorems 3.5 and 3.6 among all possible extensions.

THEOREM 3+7. Let ' be & lattice with risht maltiplication and let xy

denote its extension according to theorem 3.5. How let X¢Y be zn
arbitrary extension of the original multiplication. Thep Xy o +°Y
whenever the two products existe.

PROOF. Let %'/ 'denote the residusl corresponding to the original
maltiplication and let X°/ “be the residuation corresponding to the
miltiplication X+ + Fow X 2 (¥ Y7)oY since ++y is an extension

of the original multiplication. Hense X°» 'O «'v” and .io'" existe
1f X y ' exists. Fow (¥y/ ! > . Hence (¥)/° ) ” exists and

xyje. D ey )yl o X » But then « )Y 2 4°) by lemma 3.l.
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In view of theorem 37 we may speak of the extension of the
multiplication by residuation as bthe maximal extension. In a similar
rﬁanne;' we find that the extension of residuation by multijglication is
the minimal extension . For we have

| THEOREM 3.8. Lot ) be a lattlce with right residuation and let x '~/
denote its extension according to theorem 3.6, Now let /°r'be an
arbitrary extension of the original residuation. Then oy /> 47
whepever the two regidualg exist.
PROOF. Let M) denote the multiplication corresponding to the originsl
residuation and let ¥°) be the mmltiplication corresponding to the
residuation Y¢y’s Now (X//° ¥ ">X ginee 4% 'is an extension of
the original residuatiom. Hemee X» 2 X °Y and A°) exists if A
exists. Now X 2 (/') )Y . Henee (x-Y7)eY exists and
x o x»y/)y = (¥ »')ey o+ Bubt then X-p "' > -y~ by
lomma 3.2.

We next prove a sort of converse to theorems 3.1 and J¢2.

THEOREM 3.9. Let J' be a lattice comoletely closed with respest %o

uynion, Qver whlch a right multiplication is defined. Ihen the existence

of & right residusl 1s necessary and sufficient that the right malti-

plication be gompletely distributive with respect %o ualon.

PROOFs The necessity follows from theorem 3.l. To prove the sufficiency,
let S be any set of elements of O and let « = «(9) v = «(5)

whers a is an arbitrary elememt of N » Them «a 2 vV by Ml.

Now v a-! = «(Sa).a > «(Gaja’) > «is) =« eana v.a-/
exists singe v DS 4 for any element S ¢ ° . But then v > (v & /A
D «& by Ml Hence + = «& ,

THROREM 3.10. Let ¢ be 2 lattice comuletely closed with respect to

Qross-cut, over which g right regidustion is defined. Then the existence

&4 a2 right multiplication 1s negessary and sufficient that the rizht
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PROOFs The necessitAy follows‘ from theorem 3+.2. To prove the sufficienecy,
1et S be any set of elements of /' and let « = x(5/) - = K(s-a)
where & is an arbitrary elememf of 7 Them » o «-a ! py Rl

‘Wow w« = x(5) D «((S-aVa) o k(s-a’)a D vUa, ad VX exists
since sa > v any 5 im S . But then «-a” > @) a” >

by Rl. Hence v = w-al,

Closely connected with the notion of residuation 1s the notion of
a quotient.

DEFINITION 3¢le 5 is said to divide Q& on the right {left) if there
exists an element X (¥/ such that a = x6 (a=6)) ., x is
called a right quotient and Yy a lefi quotient.

Coneider the union @/5 of all quotients x such that a =x6
Then if multiplication 1s completely distributive on the right with
respect to union we have A = u(xb) = wx)b = 95b 2 1is
called the quotient of @ and 4 and clearly has the properties:

Dl. a = ayuh |
D2. gz ab > kDX

We have then the following theorem which relastes the residual to

the quotient; ,
THEOREM 3.11. If the right (left) guotient /4 (%) exists, then the

rpight (lefy) residual @ ¢/ (¢7a) exists and 4= 2 ¢ (V= 674

PROOF. Since @ > 94 4 , the right residual 0-6'/exisf,s and a 672
by R's But & o (ab’)b ., Hense @ = Vit = L’/Zgé/@.é’//;é/';(/.g/;,/ﬂ_é—/)/;.
Then 4L ';v(q/é)a»/{j by D2. But (% ,a-¢7/ > Y tnus 7 = (%, 4t

and hence 94 > « 4/ . Therefore %4 = &-4 o Similarly

L4 = 47 a
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It follows as a corollary that if & = @ 604, then «-4'is

the quotient 9% o

4. Special pultiplications. In this section we shall study the

dual character of multiplication and residuation under various stronger
econditions.
o impose first the following restriction:

P4, 2 D> ha 32 the product 42 exists.

THEOREM 4.1. r4 jmplies the following condition on the residual
/

Q4. 22" oxigtg 1f x4 exists for any x and 22 ‘oxa’l,
Conversely Q4 lmpliss P4 for multiplication.

PROOF. Let X & existe then (X'@7/2 exists and henge & 2 (A& /4
by P4. Hemce 2 &/ D X a~, conversely let 44 hold and suppose
that 44 oxists. %then &#)° 47 gxists. ience by 44, dd"/exists and
’ a-al >iéa)a’ Db, Thus a > b« ,
As a consequeﬁce of P4 1f R divides 4 on the right, then 2 - 4
We note that if ¢’ is closed with respect to multiplication
condition @4 besomes @ 2 '=<¢ where <¢ is the unit element of /7 ,
Consider now the condition
P5. Q = «a where c¢ is the unit element of 77 ,
THIOREM 4.2. P5 implies the followinz gondition on the residual
Q5. a obt—= a-b’ =cc.
Conversely, 95 implleg P5 for the zultiplication.
PROOF, Let @ > & . them 4 > ¢« & and the residual a & exists.
Purthermore 4 467> < and hence @ ¢ '= <, If Q-4 '=cr, them
a m(a-67/6 =wé =6 ., ‘hence @5 is satisfied. 4ssume P5.
Then Q@ > & — & @ ’'=2 . Hemes «Q exists and ) @~/ > .

But then («a) &' = << and hence «a2>a. Now @ D &-a /)i =cq.
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Hence 4 = (& and P5 is satisfled.

e no/t-e that B5 — P4, For /5 —» a = «« = («r6) & =
(“a, bay =(a,64) —> a =éex —= 74

Let us now counsider the case where the maltiplication is both a
right and left multiplication. Lf 07 is completely closed with
rospect to union and multiplication is completely distributive with
respaét to union, then clearly both the left and right residuations
exist.
DEFINIPION 4.1. A right rmltiplication tresiduation) is esid to be
normal if it is equal to its maximal (minimal) extensione

A similar definition holds for left multiplication (residuation)
and for a multiplication (residuation) which is both a left and right
multiplicétion {residuation), In particular, if s closed with
respect to the multiplication (residuation), the multiplication
{residuation) is alwsys normale. Ioreover the residuation (multiplication)

defined in terms of a normsl multiplication (residuation) is again

normal by theorem 3.4 (3.5)e

ZOREM 4.3+ The gondition that a normsl multiplication over 3/( be
both & left and right maltiplication implies the followine gondition
on the residuals:

Q6. 267> ct5 ¢la > 6.
Conversely, @6 lmplies the equality of the multiplication defined in
terms of the iwo rosidusls.

PROOF. Let @ 6 o C .« Then C/4 exists sinece the multiplication
is normal and hence 4 D (a4 b/ 56 D 4 by il. Hence ¢ ' =

exists and C a o b o If C¢la D 6, then @ o c(c’ay>chb

by M1' and hence & b > C.
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Un the other hand let Q@b exist. Then (@é)- 4~ D & gna
hence a,,.-(a &) > o by @6« DBut them 2 -6 exists and a4 ox.6
In a similar mammer A~ (a:6) D4 —= (@b 67/ Da o a.L > ae
and hemse @6 = a6
IEIOW 4.1, Lot 0¥ heve a normal rizht (left) multiplication. Ihem if @4
existoand 45> c (4 >c) then cb (ac) exate.

PROOF. Sizica ab exists @i)4 7 >a (allat) > i) by lemma 3.3.
But then @4) 4'> ¢ (a'tas) = ¢) and (& (ac) exists
gince the multiplication is normal.

THEOREM 4.4. Let )/ _have a normel left and right multiplication. 4hen

Ihe residuals have tha £ollowing propertless
R3s a-(b,¢) " = [a-é”/ a-c'J if 2 6  and «-¢” existe
R3'e (a,s;,7" ¢ = [ale, blc] if a”’c¢ and 47" ¢ exist.

PROOF. wet ¥ = [a- 4"/ 2.c¢7] . them @ ¢/ > x and a ¢/ >a,
Hence by 46 and theorem 4.3 X! & exists and X 7a > 5‘. X a 2 C.
Hemce X - @ D (4.¢) o Again by 46 and theorem 4.3 «@- (4 </
exists and a (4, ¢) 7 > X . How 4 D /ﬁ-(é,w"/(é,f/a (a-(4.¢ci”/b
by lemna 4.1 and Ml's Hemee 4 47/ o a-(4¢)”, Similarly 4 .c -/

S @ (be)7 . ‘thus A = [Q'é‘// o ¢'] D dalé )’ o Hemce x= a-(4c)/
which proves R3» A simllar proof gives R3'e

FICIA 4.2. Let ' have a normal right (left) maltiplication. Zhem if

o b’ ( 7 a) exigte and ¢ 2 C , a-c¢”/ (C;/-Q) exists.

PROOF. Simse A 67 (672 exists a > (a47)b (a = s(e'as)
Honce by lemma 4e1 ( 47/¢ (C(6%4/) exists. Bat then by ML and M1°

a o@@-b')c (a > ci(t7a/) ., Hence a ¢’ (¢ a) exists.

Brom theorem 4.4 and lemma 4.2 we have immediately

R¥ a Lé,ec] " D (a b a-c) if a6 'agna = ¢’ exist.
pd
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Ri'e  [x,67c = (alec, o7 c) if @7c and 67 ¢ exist.
The existence of a multiplication which is both a left and right
multiplication implies the following useful relations between the two
raaiduals:
R5. (a- b_’)‘_-/ a o b ig a b exists.
For the oxistence of & %' implies a > (2 47)6 . Hence
(a 6717 X oxists and @ s )Ma = b
RS*. a- (5-a2)" > b 1z b 2 exists.
From RS and RE"we get
R6 . 2 ((as)la) = a bk
R6 . (a (blaj7) " a = "4
For R§ —> (a-b')7a b —> a b6'5a (taeyTa) !
by R3» But a-((2-67/7a)’ > a. 6"/ byRS'. Hemce R6 holdse
In a similar manner we get R6 .
We note that if the notion of mutual residuation is generalized
to mean? b and ¢ are matually residusl with respect to 4 if
elther @.46" = ¢ and c’a=6 or béla=c¢c, ac /=06,
then 2% and (@ 4672 are mituslly residual with respect
to 2 . smilaz?ly b'a and -(#72) are mtuslly residusl with respect to .
Thus far we have made no assumption of the agsocliative law for the
maltiplication. In formulating the assocclative law thercls a certain
freedom of choice in the existence conditions. However, the following
formilation seems to be the only one whioh preserves the duality

between multiplication and residuation.

Pé. al{bc) = (adb)cC

» in this postulate it is assumed that the existence of the products

on elther side of the equality implies the existence of the products

on tha other sidee.
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- THEOREM 4.5. Lat 0 be 2 lattice with 2 right snd left mormsl multi-

plication for which /6 holds. Lhen the residuals satisfy the
following condition: |

67, @' b)c!t = a’l (b
Conversely, if @7 lia satisfied by the relsudals, then PG holds

PROOF. Lot A 5 and @76/ ¢’ exist. then a4 b > (a2 /e
ana b > a(a’ls) > « [((87%k). ¢ ')c] by lesma 4.1. Hence
b o [d(/d"»/b/v'LC'*/)]C by P6 . But then 5 ¢ ‘exists and
boe' o ala’tb. '), dence a /(b ¢7') exists and
a sl wo ) (@ b Similarly (a7l b). o o oa” (47
and (7 follows.

Row suppose that (7 holds and let 4¢ and 2 (4% existe Then
a” (albe)) > be and (a'( (aléer). ¢) > @c) ¢’ 2 b by
lemma 4.2. sut then @' [(a(bc))-c7’) 2b vy (2. Hence
aiée)). ¢/ D asb’ vhus (4¢6) ¢ exists and « (42 ) D(@4)C .
Similarly (@ab/c D a/léc) and /26 follows. |

4s a consequence of /6 we have
R7 Q. (be)! = @ c’) 67

gor a D (a (éc)7)(be) = ((a ec))b)e vy Pe,
Hemge Q@ -c” D (@-(be) l)b —> (a-¢'). b > a- (ba)
Gonversely a- ¢/ D ((a-c)-b6')b —> a o (ac’)c >
(((a-c7)-67)4)C by lemma 4ele sut than 2 > ((a-¢J: b/ )(bc)
by P§ o Hence Q- (4¢)/ > (@ ¢/) 67 . uwhus @ (e) !

= (@-ct) b

® in tﬁhis condition the existence of the residuals on either side

of the equality implies the existence of the residuals on the other side.
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In & -gimilar mammer we have
R7’ (gé 6)"! ¢ = 5! (a='c)

In coneluding this ssction we treat the case where we have a
left and right mltiplication for which the unit element of the lattice

'is the unit of multiplication.

Ps P55/ Ha = e = 2 all = ¢« 07,
. e havé already seen that this implies
Py, Py’ a > ba, a >ab,
05, @4 2o b 5 a b = TS Lla =
we furthermore have
R%ﬁgf . k! = wa = R
for Qa D a« —F A« O and <« O (a-«')«

— . T a - TS » Hemce «a - @ «/ and similarly

wie =a,
R?, R7! a-b7"> a b”.a D a if the maltiplication is normal.

¥or @ Dab —> a - b/ D> & and Q PbPa —> bla oa

If multiplication is defined in terms of residustion, then R ¢
implies P& for the multiplieatiom. ror Q« = (2« «/ S
and Q4 w7V D & —P A Daw. Henee X« = R . pimilarly

> pP5’ also RY — P¥ emd R? —= P7 if the

R’
mosiduation is normal. Hence we may state

THAORE 4.6« Lot &' be a lattice with rizht (left) multiplicaticn
ps == G5 <=5 RY (P65 G55 R3').

2nd residustion. 2hen
and if the residustion and multiplicstion are npormal, then

Py == Oy == R (P Ex &r = R
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5. mlg_s_. vw'e list in this section a fow oxamples of systoms
having the properties discussed in this chépter.

l« et R be a ring in which multiplication is distributive only
on the right with respect to ad&ition. wet )7 be lattice of modulss of
rhe product F4 of two modules is defined to be the set of elements
R.b, #A2b,+ - .. + Q. b, where <, ¢ 7 and b ¢ T o [Hi is
clearly a module of J° . With this definition of miltiplication J7 is
a lattice with right multiplication.

2. 1t Risa ring in which multiplication is distributive only
on the left with respeet to addifion, then as iz (1)the lattice 3/( of
modules of [{ has a left multiplication.

3, “the lattice of modules of an arbitrary ring has a multiplication
which is both a left and rizht multiplication.

4, The examples 1, 2, and 3 all give lattices in which the asso-
ciative law is satisfied. If we start with a non-associative ring
then the lattice of modules has a mmultiplication which is no longer
agsociative.

5. Let /{ be a non-assccistive ring in which multiplication is
distributive only on the right with respect to addition. A module 7
of /2 is called a left ideal if r& ¢ 7 all ac7 +r<l, the
get of all left ideals of /U is a lattice with right maltiplication
in which ~#holdss

6. The right ideals of /{ in 5 give a lattice with right multi-
plication in which /¥ holds.

7« The two-sided ideals of Pin B form 8 lattice with right
maltiplication in which both /7 and /% are sstisfied.

8. Let X be a non-associzative ring with a left unit element.
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Then the lattice of left ideals has a left and right maltiplication
in which F% holds. |

9. 4s in (8)a non-assoclative ring with right unit element gives

a lattice of rlght ideals with multiplication for which 4 holds.

10. The two~sided ideals of an arbitrary non-commmtative ring
yield & lattice with right and left maltiplication in which F7, P¥’
and Pé holde

1l. If the ring of example 10 has a unit element then the lattice
of two-sided ideals satisfied 5 and PS ',

Finally in sections 4, 5, and 6 of Chapter II several auditional
examples of lattices with a non-commutative multiplication are treated

in detail.



CHAPTER 1I

Non-commutative Arithmetic

1. Introduction. The subject of the present chapter is the
fundamental problem of obtaining decompositions which are in some sense
unique for the alemaents of a mmltiplicative domain. Conditions that
a system with a commutative and associative maltiplication have unigue
factorization into irreducibles have been studied by Clifford L 77 ,
Konig [7] , and Ward [2] o« M. Ward [ 7/ has also treated the non-
gomnutative case. However the regquirement that the decompostions be
unigue is too stringent since in the instances of non~commtative
polynomial theory and quotient lattices the decompositions, whils not
unique are connected by & simple relationship. - loreover in both of
these instances instead of a single operation of multiplication the
additional operations G. Cs Do ond L. Co M. are involved. This faoct
suggests that starting with a lattice over which a multiplication is
defined would be the most fruitful way to build a non-commtative
arithmetical theory. Furthermore the formal relations between the
maltiplication and lattice operations haw alrsady been developed in
considershle detail in chapter I and we arse now ready to treat the
é,rithmetical questions.

Before procseding further let us note that we have already ime-
poged certain existence conditions on the multiplication, If we write

== b when the product 24 emists, then ¥l states

(1) == C, h==C e (a,g)::‘;c/ [a 67 == c .

Furthermore B6 glves
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(2).[;:;:6)‘62,{‘:60_ ———e == A A s ==
The properties (1) and (2} along with an obvious trausitive
relation will be taken as the fundamental properties of the existence

reolation.

2. The multiplication. Let }/( be a lattice in which the as-
cending chain condition holds and let U denote its unit element. Con-

gider in b/( a relation ==  having the properties:

Tl. ZXor each a e’ thers are elementsg c?;’ﬂ”é?( such that c==a’ 2=

TRe == 6  a = and 6 = o —> o == d
T3 a == C L == c — (a,¢) == < | [a, el == c.
T4, If == 6 , ¢ == J ,thepn (== b — > & == d.

DEFINITION 2.1. Let L« denote the set of elements X such that x == &,
By 71 and 73, La is non-empty and olosed with respect to union

and eross—cut.  Honce /.~ 1is a sublattice of )4 « Thas with each

element 4 < 7" we associate a sublattice Z a .

THEOREH 2.1. The sublattices /. and [, are either disjoint or

they are identical. |

PROOF., If L and /., are not disjoint they have an element ¢ inm

eomnon. Let X be an arbitrary element of Lo e Then X== a, <=k & y

¢c == 4 ,and hence X == 5 by 13. Similarly each elemtnt Y € Ly

belongs to La e ’

DEFINITION 2.2, i write a~( 1f <~ and b Dbelong to the same

L-latticse.

~ 1is clearly an equivalence relation in )/(A with the L-lattlces

as equivalence classes.

GConsider now a right multiplication X} over }/( for which P4

and P6 hold and in addition the following postulates are satisfied:
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200. ab oxists if and ohly 12 “=> b .
0. With each & ¢ ' there exists an element /:a such that (& = X
1#. acCc =58 — - @cb‘ |

By P6 we have
21 A== <, ¢ == 2l —F O ==

G == 4, adé == e ~—F & == C

For ¢ («4) exists. Hence CA exists and ¢ == 4 Dby P00
22, A==t b= ¢ ——> A=t , b == C

For U, == 60 —> =2 ¢ by 2.1. But then <« == <,
Usg =2 bo and i == b o« Hence a4 == 4 ¢ by T4e Similarly =6 =—c .
2.3, /s ig the unit slement of Za .

For if K¢ [, 4 then « D xa —% L& =a = (a &Xa/ = %4 xn)
= fa,X)R by PO, P4, P3. Hemce </n = <4, X/ by PT.

et 2 L denote the L-lattice tov which 4 belongs. Let «ac<r
denote its unit element. Then we have
2e4e Qg = K.

For since & == X for some X , ¢ X=X and &/ ¥ = X by
2.3 and PO. But them K == a4/ X | and hence & == s<( by 2.1
Fow QX = 24/ x) = KXaA)x¥ —=2 a = @z by P6 and PT.

From the results of chapter I since the ascending chain condition
holds in < , there exists a residuation \° ¥ satisfying R', R", Q1-Q4.

DEFINITION 2.4. We write < - & 1if the residual < 4™ exiats.

2450 a.-x&7 = ca
For a4 = Ha Rk > A D lak —> Aad>la, But @ @ x a
Henece <a O &-a'/ , Therefore «-a / = “a .,

2060 (dé)'é—‘/:"f/z~

For &4/ 87 Do by lemma 3.l che Lo But & o ((@s)-67/b
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’ ‘/ : /’/,
— a 2 (ad. | by P7. Hemce (wé) &' — & .

2.7+ 2> 6 ifadoenlyif « ¢ = «,
For 2 Db — > & 2 b —> 2.¢75¢ s e But since 2-257 == <,
-’./A‘."/:~/’: %u’

-

7 e T é_"/ Hemee -4 '— <o . Conversely if

then 2 D (=.c™/j)é > b =4

3. The _gggp_rggg_g;j_;gg Aheory. ‘hroughout this section we make the
following asgumptions:
Al. & el > R e
A2 s o=x, a5 —e> 2 = (a &)
AJe )/( is modular.

As a3 conseguence of Al and A2, we have
Bele o o g, S a-e e b7,

For since @ C == e, 6. ¢7==c , we have A ¢ & L.o) by Al.
3e2. a ~& —> a e a,é) .

For 2~ 4 —> a v (a,i) —> & & [45] py Al
3.3 [a,67 = (2 ¢7/¢ it 2oé

For & D [w.67 —= [a.¢7=([2c7.67)b by A2 since < < &
—>2 [a,é]e6 by Qle But [4,47-477 - [4-«5‘// 47 =[a < a i
Hence [4.67 = -6/ |
LE3A 3el, (ba) 7 = % (c-av) )(a-c) if b==a cwa aec laoa,
PROOF. (féﬂ)'C‘"/C = Jéa,cq =z (/Z@/a/ el @ )2 = [{bﬁ}-&‘({c-&"]a

= [é/f'a‘/]a by 43, 343, Bebe LiOow (ék}'@“/’(?—‘ c-af 'by 3.1 and

1

hence & & ¢ 4~/ by 2.6. Hemse (Lx - c7/)c ((&- car)7)(c-a')la
= (6 (ca ) )(lcarja) = (L (ca)/)[aci= (b-(ca?))")(acyc) =

(C4-(c-a”)")(a-c))c by B6s Hemeo (42)- ¢ = (L-(c-a)')(zc')by Pl

i

/
DEFINITION 3ele If =< - 244 where « ~06 and (@ ¢/ = ast wWe say

that 2’ is conjugate to < .
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DIFINITION 3.2, @ is szid to be gimilar to b if there exists a
chain of élements a = a,a2, ,...,d,~6 ‘such that either <.  is con-
Jugate to 4y, or ., is conjugate to “c . (Ore L[I] ).

The relation of similarity is clearly reflexive, symstric, and
, transitive.
DEFINITION 3.3. An element P ¢ ) is said to be irredugible if kb # s/,
and 1f X D, X ~fp —= X = pl& 28 X = po
LEMMA 3.2 If /° ig irreducible, them ppeagd £~ —=» (F#/ = o7
PROOF. (4,P) 2/ and (a,#)~p sinece F—~~ « . Hence either
(a,p) = pof oOF C‘a,p/ =P o« If (a,#)=p , then p >« which
sontradicts H P a2 .
LEMA 3.3. If p is irreducidle and b = A4, o~ & p%4, then
b'> « whers A is gonjugate £9 P e
PROOF. Clearly ~ o4 . Hemee P .4 o (a<4)é = = . But
(Fé) = .o by lemma 3.4 and A ~ 6 by assumption. Hence /£ =/°. 47/
is conjugate to L
THEOREM 3.1. An olement gonjuzate o an jrreducible slement 1s an
irreducible elemgnt.
PROOF. Lot P be an irreducible eolement, and let P'— o . 2-( whers b~ a
and (/% a)=p4 . Lat \ > P’ with X~F7 . Then ¥ o p-a’l
and Y& O (/a. a-t)a = [a,~] by 3.3 since p == & and x——p ]
Hemge Yo = (k& [a,p1) = [&,(¥a,2)] by A3. Thus ¥ =
(fa) o = Ja, (Xa,p)] 2~ = (yap)- 27 DY 2e6, 43, 2.7+ Tow & =
for some < by Tl and hence A2 == J , Xa = o by 2.2. We thus
have Xa ~ pla = (Paa =[a pl, But since p~a , LK #T~F
and hence V&~~~ o (Aa,p) O P  gives (xa p) =, orpsince > is

an irreducible; and hence X = p¢ 27 = cla =57 OF X = Log~/ = o/
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THEOREH 3.2, 1f an irreducible P 4is conjugste to an element P/,

then P/ is an ;;;gdug;big.

?ROQF. Let p = p' 27 where p'~a and (P/c) = o and let A 3/7/’

X ~ o’ . then X &/ D pla by 3, Al; and thus ¥ 2 o /2

"Also X -4~/ ginge X A== 2 and p = .2 . Hence we have

elther (1) X'« = p« or (1) 4.4 = , If (1) holds, then

X a4 = Za since P == & gand hence 4 o= DY 2eTe sut & DL’

by hypothesis, hence X 2 (2,7 = x4 . ind singe k~p ' & = g4

If {ii) holds, wo have (X a-//=z = (%9 la-)i  ow La, a7 = Jplay

by 3.3. put them Y ODp’ o [x a7 and by 43, #'= [x, (Pa)]= Lrpd]=X
Hence either { = »'¢ or + =’ and thus /~  1is irreducible.
THZOREM 3.3. Zvery element gimilsr to an irreducible element is

irreducible.

PROOF. Clear from theorems 3.1 and 3.2 and definition 3.2.

THEOREM 3.4, Lot Q' be gonjugate to 4 = @« %«., - a,2, then

a'= ad'al, - - ala’ uhere 4«15.9&2&853‘&.&9. e,

PROOF. Suppose the theorem is true for every produet af «-/ ai ementg

and let 2= 67, a~6 , (a/¢) =44 , ihen X©6 , 94,

L o & ginge 2 ~b and < ~4 . Thus <« ‘= ((q‘,..442)1(44“’/‘?(@,[7
by lemma 3.1 Now @, ~0b and (4, ,4) D> (G,¢) = &% which gives

(., 6) = 44 o« Hence g '= 2 467 1is conjugate to <=, . let

(= 42 ana & = 9ax © -tz s ‘then 67~ s since &4 '-= a, s

and § == 4, . Wow (§,4/a = (sa,, éa)=(a, (éq)a,)=(a]s2])
= Ja, (4] = [4, att[=d, by #B, Bl3 and A3. Hemoe (s5,4') = 9 /= yu
‘thus 5-51/ is conjugate to &  and hence S ¢ = a/a,;_,.-.gpz’ by
hypothesise. substitution gives &2 ! = Q///' - —CC,/

We now prove the fundamental
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THEORTI 344, ;g_ an plement 4 ¢ ‘D< has two representations as a product
of irreducibles a = A, - LFP= 55, 2.2,, then » =5
and the 4's and 2's are similar in pairs.
PROOF*, Lst O = 2. /2 = 2o - 2, (1)
If 4 - 2 , this factor may be cencelled. If <~ = 2 , let 4 be
the first numer such that 2, O /% (%, - /2 j then 2 % (%, - /7
and /%, 2 —~ £, . Hemee (2, , o, - ;2] - 2 by lemma 3.2
But then & (/- ---12) D F amd £ = 2,- A 8)7 is
econjugate to &, snd ‘thu.s ie an irreducivle by thoorem 3.1l. Henco
2, = e Fow Bl 7= (2 (Fur 2 ) S, 2 )
J2, P 2T = (P 1278705, 05 BeBs Hemo® f2fu, -3 = /2, - 202,
by theorem 3.4 and /2 " is conjagate to T (¢ =L, K,
Substituting this result in (1) and cancelling 2,/ we may treat the
resulting exzpression in the same manier. e thus flnd 7/ =5 and the
P's =md 2's  similar in pairs.

Concerning the exlistence of a decomposition into irreducibles we
hava the follewing theorem:
THEOREN 3.5. If the descendinz chain condition holds for ‘the risht
fagtorg of Q& ¥ acl , then a4 has a decomposition into irreducible
PROOF. If & is not irreducible, then there is an element <@ = x&/
such that # »& , 4, — & and @ &, But then @ = (& 2 /9,

by A2 If <, is not an irreducible we have an @, = .« such that

&, 2a, .-~ 4, and Z.# 4, » 'then a2 = (aﬁ,'”/‘(lfr/ -,9;741 . Ve
Thus get a chain of elements <« < <, <« C - - which must break

* This proof is essentially that given by Ure [27 for non-

cormutative polynomizlse
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off giving an irreducible element [ such that @-6/7 . But if lo
if not irreducible #C bor o, ’Since P> o is a
descending chain for factors of & 1t rmust break off giving a
décomposition a = (% Fe, - /2/? .

e note that the descending chain condition for the factors of
an element of 2// does not follow from the aséending chain conditdon
in 94 as _in the cozmnﬁtative case. However 1t does follow from the

/ /
ascending chain condition in )4 vhere ' is the lattice of left

union and ecross-cut if they exist.

4. Hxamples of non-gommutative arithmetice 4s a first example
(
of the abstract theory let &/ be tha set of polynomials

Pix) = @ X+ gy A, 4,72 in an indeterminate X with cosfficients

out of a (not necessarily commtativej field XK. The rmltiplication is

defined by X4 = &X +a  where 2 , 2’ are elements of K. /7
is called the degree of /°(*/ and we write 7 = &(F/ . a P) is
called the reduced form of F(/ . Let (Vix/ = 4ox s it bu 452

be a second polynomial of )" and let 27 >4t . then [Flxs - & (4]7) 'bm‘
1s of degree less than 2 . Hence for each pair of polynomlals / (x)

and /; (x) there exist polynomials ,,:(\/ and /;m such that

/:"IL/X/ = (;7./ (x) /"J Cxj g(,\/) g\//z) v gL,/‘;)
and similarly. A = & (%) ) + 4 (x) §(el)< §0 )

Floatel = Qualtd By £

Fro (%) = (00, (0 Hiny

the last remainder being O since the degrees of the re-

mainders continunally decrease.

Lot us define in y s Ay > /30'/ if thoro oxigts a polynomial &( x)
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such that’ B(x/ = Px, A(x/ « ‘“The operation = is clearly
reflexive and transitive smd if 4 © 4, &8 5 4 |, then 4 and /5
dliffer only by multiplication by an element of K,
DIFINITION 4ele the reduced form of /(v 1s called the righy wnlon
‘of ,{7(»(1 and 47(';0 and is denoted by (/7/»«// ~ (;—r//.

-Fprom the form of the defining equations we have

(1, (F?(ﬂ///. /Z//rj/ > Llix) P

s

( (ks | FL i) 2 Hie,

(2)  Plx) > f7ra) ard  pro o F(xy > Pir) o (Hv) i)
DEFINITION 442, The reduced polynomisl [A'0x) £'o0)] = @ 47 ix) vy oo )i, cx)
: E(ﬁé’[ﬁ/r&x}ﬂfqﬁm is called the right cross-cut of /(X7 amd A (1) .

it ean be readily shown (Ore I27 , pp. 485-486) that the right
gross~-cut [/—7[r// Alrx)] has the fundamental properties
(1) Foo o [/‘7/»5// o], A D LA AT,
(2)' Lo o Pix) ano Hix) = P —= [Foo Aoyl 2 /P00,
Hence / is a lattlce with respect to right union and cross-cute

Since the product of any two polynomials of pd always exists,
71-T4 are trivially satisfied. 00 and PO are clearly satisfled
since we may take = = Z . ¥l and P2 are obviously satisfied and
¥3 is readily verified by multiplying the defining eguatlons of
on the right by a fixzed polynmomial #(*/ , 7he multiplication is
obviously assocliative so that r6 1s satisfied and ¥4 is satisfied by
the definition of division. Also ¥7 1s satisfied. For if Aic/bx/ =o
then & éon’i‘o and henece 6.2 o since @, Fo . but then x 7. =o
and 4. = o contrary to the assumption that é-7° . since “(x D&y
implies that the guoiient A(%X)exists, A2 follows from theorem 3.11 ch. I.
Al is obviously satisfied and we have only to show that 1 is modular.

rrom definition 4.2 we see that S [A4, 487 7 §(A/ # 5[5/~ $(%8) .
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Furthermore if A emd B arereduced and 4 253 , 5(A)- 55/
then A =5 « wor A DB —> B = @4 —> 5(8) =5(08)= 5(0)+SA)
= 5(@/% S(8) — §(Q)~0 —s Fek —> 3B =4 since 4
and [/ are reduced. Now let J /3 .+ ‘hen [///. (Bec)] 2 (& 2A4.e7)
st S[ABc)]
s [Gc]-5Ac)
[A, (8007 (8 14 c1) e

‘the irreducibles of ﬂ are simply those polynomials whose right

a

SA+8(8c)-siApe) = §(4)#~S16) + §50C) -
SIAc] +5(8) —~5SJA8c] = 5 (8 [4,]) hence

n

divisors are sither elanants of K or assoclates. rurthermore the
ascending chain condition heolds in 7{ and the descending chain condition
holds for the right divisors of any element of )/{ as a consldseration
of the degrees of the polynomials easily shows. Hence the results of

§ 3 give:

THEOREM 4.14 jgach non-gonstant polynomial of a non-commutative
polynomial domain has a decomvosition into irrediucibles. Lf &
polynomial hag two such decomposltions, then the number of jrreducibles
1n sach decompositieon is the same amd the irreducibles are s jg_z_x_iiar

in pairs.
Since linear differential or difference expressioans are a special
case of non-commutative polynomials, theorem 4.1 gives the decomposition
theorem for differential expressicns proved by woewy (Loewy [77 ).
More over the exsample of non-ecommutative polynomizls may be generslized
to any non-commutative domain of integrity with a Buclidean algorithm.
{Wedderburn [7] Je
As & second example, let Y' be the set of all ordered pairs 4 = ‘7//@
of elements of a lattice A5 for which 4.>2 . Unlon and cross-cut
ére defined by (A, 56/= [Z%%ﬁj ) [A48] = M’fﬁz/g/hé,] Nis a

lattice with respect to these operations and is called the quotient
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latties of o@ . Let us set 4 = B if and only if 4% =54, , in

which case the product 43 1is defined to e “/5, « 7/4, is clearly
an element of 7( sinee 4. 24, =422 . the relation =z satisfies
71 -T4. ror q%?,.f"v/ﬂ’/ A == Q%J_ s hence %1 is satisfied. 42 is
trivial, et /= C, [Sx=C . then .>¢ , 4, - e, and

hence (4,4) = (%2éi-, [4,67~ [f://cf/l. thus (4, 4) == c

/

[A)&7 == ¢ o Hence 15 is satisfied. rinally let 4= 5 , ( =

and C == . ‘then 4, _/.é/ s C,. = o » Co = 4, 9 and hence
a, = o, o whus 4 == [ proving 4.

from the definition of multiplication #00 is satisfied. PO is

satlsfied since a'/o?{ =t /) and %/LM = 2. g—f» = Z£ = 4 .« Plis

4 2 2
simply ¥3 snd P2 is obviously satisfieds (4, /7/C = <@54;). T /Gceu
- (C‘L, “L g;/ éL- ) (40 gc) Hemce P3 holds. P4 is

satisfied since (4 34) = (at, s )= [‘7 ‘4’/ =2 =4 (Ag)c =Car )é‘

Z

% (% £-)- 4(pc). Hencs P6 holds. Let AfC = BC o Then %= 4

Ce (e

a:ad hence 4 =46, « But @. =¢, = 4, o+ Hemee 4 = (3 , proving P7.
From the ddfinition of the relation -~ we see that 4~5 if and only
{f %.= 4, « Parthermore from chapter I 4= 1if and only if there
exists an X such that 4/ 2 X 8 + But this implies that 2. = 4«

Conversely if @. D4, , then A D [Zﬁ’;]. b ang (% é”] belongs

4 2z /

}/( sinse 4, O la,,47 . Hence A e[ is and only if <. 06,

Hence Al is satisfied. If A 2 X 5 , then /.=4, and @, OX, 4 o4

Hence [4,¢,7 > X, and [2,67 5 X . fTherefors 4G /= [‘7}4%/

/

Let B 2 A4 , A 3 .« Ten 4 oa,, Azaaz a, o6, aad

hence 4, D, , 4. = b2 .+ But then (4 G5 = [d;/f éé/ = ;@:%:4/

d

proving A2, If pé is modular, then 7 is clearly modular from the
defin-ition of union and cross-cute. - Flnally the ascendling condiiion

holds in 2{ if and only if it holds in L& and the descending chain
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eondition for the rizht divisors of an element of ) holds if and only

if it holdg in o5 » Hence from theorems 3.4 snd 3.5 we have.

THEZOREM 42, Let - be & modular lattice in which the ascendinz chain
condition md the descending chaln condition for the divisors of an
element hold. ZThen each glement no% 9qual 1o g unit of the guotient
1attice )( hes & decomposition into irreduoivles and if & guotient
has two such decompositions, the pumber of irreducibles is the same
and thoy ere gimilor in palrs.

The irreducibles of theorem 4.2 are those elements 4 for which
A >q, « It q’/@ be interpreted to mean the sublattice of
elements X such that &, ox O 9, , then theorem 4.2 gives a2 theorem
on the sublattices of a modular lattice 5 « PRurthermore if<C is
the lattice of nbmal subgroups of a group (> 5 and %%, is the
quotient group of 4r with respect to «, , Theorem 4.2 then states
that the msximal chains of normal subgroups connegting two normal
subgroups, heve the same length snd the factor groups are isomorphics
That similarity of quotients implies isomorphism of the factor groups
may bo seen as follows. Let B-c” be conjugate to 5 . Then (/3/0} ol
and 4 ~ C .« Henee (4.<¢,)= c; = by,e ™This gives [f’//cf/'i conjugate
to b » But from group theory the quotient group [205:1 is isomorphic

C é// 0’/

to the quotient group jo) » Hemce since the relation of isomorphism
(.// 4

is symetric and transitive, similar quotient groups are isomorphic.

5. ZExanple Of matrices gver a ring. Let /g be the set of a1

" finite matrices over a ring (non-commutative) /Y with unit element € .
DEFINITION 5.1« A set A of matrices of /g is called a left ideal
of Mg if

{1) the matrices of A  have the same number of rows and the same
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number of columns.
{2) the 'sum of any two matrices of A is again a matriz of 4 .
(5) the product on the left of a matri:k A ¢ A by any square matrix
of Me having the same number of rows and columns as X has rows
' is agai‘n 8 matrix of /7 . '

In a similar manner right ideals of /¢ may be defined.
DEFINITION 5.2. A set of oelements which i1s both & right and left
ideal is called a two-gided ideal or simply idesl of ¢ .

Phe following theorem characgerizes the ideals of Mr .
THEOREY 5.1. Let 4 be sn ideal of /< whose matrices have m rows
and n colwms. Then A is the set of all m-rowed, n-goluwmed matrices
over an ideal 7 of the ping R »
PROOF. Iet_« be a matrix of /7« with m rows and ncolumns and lst
o= (Cy), ¢ =0y J =/, .,k o Ve define . to be the
m-rowed matrix with all of its elements zero except the element in the
pth row and o4 coluwm which is C.; . Farthermore leot /Bﬁ-j‘be the
square matrixz of order Xk with all of its elements zero except the
element in the p* row and 5% column which is < .

Fow if & is the set of all elements of /X which occur as elements

in matrices of an ideal “ of *x , we show that 5 is a iwo-sided

ideal of X »
For let Q¢ O and b¢ 7 o Them 4 = Grs , ¢ = bca  wWhere

A = (ﬁcy)/(‘://."/hw/’ J=s ., A andﬂ:(ég//é'://...///n/ ST
om l

ars matrices of A . But then A4 contains o - c’z,ﬂ//t’ e;{f_ which

hags « = d,s in the Z% row and P colurm. Then 4 contains

o+ /3 which has <@+ &  in the e row and % golum. Hence
c+6 ¢ H o Also if »r is an arbitrary element of © , 4

PP MR

contains « 2, and 4, where = /17, --, ] and 44 has 27
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in the 7 rowamd &% colum, while 4" has /4 in the ~ %

row and 54 columm. Hence with <, 7 contains 49 and /2 where /
is an arbitrary element of /? e Thus 7 1s & two-sided ideal of ~X .

We mext show that ~/ ocontains 2 Srs where @ is an arbitrary
element of 7 « For if « = G;. where o < (4.,/ , then 7 contains
6;;’”0( E/f:f, = & €rs o Thus 4 cotains the set of all mn-rowed
matrices over 7 .+ But the set of all mn-rowed matrices over an
ideal of /U is clearly an ideal of /% . Hence 4 1is equal to the
set of all mn-rowed matrices o§® Z « Thus completes the proof of
the theoren.
DEFINITION 5.3. The ideal [ of theorem 5.1 is called the idsal of
balonging to A

In view of (1) definition 5.1 we may speak of mn-rowed ideals of My,
DEFINITION 5.4. Let 4 be an mn-rowed idesl of /% and (3 an rs-rowed
ldeal of /¢ « Let 7 and 4 be the belonging ideals of R . Ve
define thefmion (A4, &) of A and 5 +to be the set of all mwen (e, r) -
rowed, e (#,5) -columed matrices over the ideal (7,4) of /X .
In a similar mammer the cross-cut /7, &7  is defined to be the set
of all Wtax (/, ) powed, #x (% §) =colwmed matrices over the
ideal [ g 41 of R,

Let Y7 be the set of all ideals of /¢ .
THROREM 5.2, J is @ lattice with respect %o the union and gross-cut
of definition 5.4.
PROOF. ‘the proof is left to the rsader,
THEOREM 5¢3» 4 08 A amdonlyif J o4, msr nes.
PROOFs A 2 B S5 (4,8) = A T55 asielimyr) =4, en(s5) = »

(27/’-‘7): I o /:f/ L

Ve
THZORTM 5.4e )7 ig modular.
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PROOFs Let A > B 2 [A4,¢T - Then [4, (5¢)] > B since
is a lattice. vNow 7 o = l'# £ by theorem 5.3, and hence & = [, (& [/
ginoe the lattice of ideals of a ring is modilar. sut [/4, (13,¢c)] 1s
2rr A (M/W(/}g‘/) ~rowed and apax (im, e (7,2] ) = uesn 2k (0] nadli ) 2 F |
since w1 £, = pecex’ (#,7/, dence IA4,(F, <) has /7 rows and
similarly has s colums. Ths [A4 (pc)J-3 by theorem 5.3.

'We next define a multiplication over 2// ,
DEFINITION 5.5. Ve write A == 8 if the number of colums of 4 is the
same as the number of rows of 3
OEFINIPION Be6. If A == 3 , the product A8 is defined to be the
sot of all matrices of the form &8, . 8.+ - + % 3, where a. <& A
and 4 ¢ 3.

We then have
THEOREM 5.5. A4 4B 1is an ideal of e,
THTOREM 5.6. Let 4 = 5, A) rm-rowed and &, ms-rowed. ZThen AL
is rs-rowed snd 74 4is the ideal of /X belonging ko 43 .
PROOF. A0 1is obviously rs-rowed. KNow let 777 be the ideal belonging
to A8 . Let #r <722, Then /7 1is an element of the (% pow and /%

w) ()

Vidd
column of 9% + AL Fa F - A dky Py e Henee s = f‘z’j A, 4, where
R=rZ=r

("‘/'w)f—‘/?‘ and (/J’/(:'/)(" 2 . Hence #7 ¢ dh and ?C Fb .

e

On the other hand let 2¢ 7 and 4 ¢ & .+ ‘Then

aoo fo
Cc ¢ o . . - - o 0 h

A = o os .- re,{andﬂ = 2@ 0 6)3
w__/l 5‘

Hence o3 ¢ A.gmand aé €77 . ‘thus Tk ¢ 777 « vhence 777 = 4.
We state without proof

THEOREM 5.7. Ihe relation =c= satlafles ¥l - M.
1t may also be readily verified that v1, P2, P3, P4, and ?6 hold
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sinee they hold for the ideals of a non-comutative ring.
The lattice Xt may 'be simply characterized in terms of the lattice 32
of ideals of /2 and the lattiss ) of integers >/  wnder the

division relation < O4 if and only if < <4 ag follows:

SoREH 5.8, U is isomorphis to J$ x /0 & X0 mhere X demotes
girect product.

PﬁOOF. Let A€ r° correspond to {, .~ of )/,(ex e X B(C ir A
ls mn-rowed. thls correspondence 1s clearly l-l. in symbols
A <« (7 w77, |

Let /3 = fﬁ/_ ros ) e tThen (A4,5) <« | {(g4), o~ (0,09 b (.8 )
IA, 8] <= [ 15,41, oiax 7/ | oocin )|

We note that the ascending chain condition and the descending
chain condition for divisors of an element hold if and only if they
hold in ﬂ,f s+ Since they are always satisfied in 94(1 .

411 of theo condltions imposed in the afstract theory have thus been
investigsated oxcept Pl, P7, Al, and A2. I we consider the set 21
of all matrices such that the number of rows is greater than or equal to
the number of columns, then }/g is clearly closed under union and cross-
cut and is also closed with respect to multiplication sinee if A is
rm-rowed />4 and B is ns-rowed ¥ > S + then A8 is rs~rowed with
/> 5 o sowif 4 1s an m-rowed ideal of D,{ let ¢ be the ideal
corresponding to 5/9, A, V/J o Then clearly W)f A = A $ and hence £1
is satisflied.

Now let K be a domain of integrity izﬁ which every two-sided idéal

is a left principle ideal*. Them ®7 is satisfied. ror ¢f AC = G C

* At this point we exclude from 7 the null-ideal; that is, the ideal
coneisting of a single matrix all of whose elements are zero. J7 is still

a lattice since the null-ideal is irreducible. or if [7,47=9 then rFli4z)-

F(d) + fl£)- {7 ) and hence Fl74] is finite. sut f)is infinite since
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then 7L = & L  and hence (4/(¢/ =(4/(¢), But them (#)= (6] or F=4.
Nowif #~ 7 , then A is rm-rowed and /7 1is sm-rowed say. But
then A > X B where X = {7, w5/ 5], Hence Al is satisfied.
Filnally if > in R , then (¢ 2=/ or a= x b 5 whence Ca) = (x/(E)
or 7 = (ﬁ'ﬁ‘//ﬁ by theorem 3.11 che I. Now let 7 > A A &3
and let X < [17-[7_///44/%/} A —> [[7//,,4//7// P RIS [/Y/KS]
Then._m > g0 that ,)/6 )/ S 2 I and /7 £ ¢ ;andﬁenca 7 =5
But then ,}/'. B <> [/E-/J“///fr/ wi,sf < {7, m, nj <> A « Hence 4 = A B
anda # = (4 67)5 by theorem 3.11 ch. I. All of the postulates of
the abstract theory aré thus satisfied and theorems 3.4 and 3.5 give
THEOREM 5.9. Let /¢ be fhe set of all matrices over a non-commitative
domein of imtegrity /K in which gvery tweo-gided ideal is left principal
snd for which the aseending ghain conditlon and descending ghain com-
dition for the factors of an ideal not equal to the pull-ideal hold.
Then each two-dided ideal of //, can be represented as a product of
irreducible iwo-gided ideals and if there are iwo such re ntations,
the irreducible ideals are gimilar in pairs.

This result may be easily gemeralized as follows: lLet G be any
non~gcommuatative semi-group with right Ge C. De and L. Co M. And let
be the set of vectors A4 - f“, }%Mj‘ mhere 4 ¢ G} m and # are integers

with # > # » Let union, cross-cut and multiplication in X be defined by:

(/4/5?/ = {/6?/5// M{W,*’//mw« [h,s)/
[/4,5] = [[ﬁ/.é], W(M,/"// ///ym«t[////:]/
A5 = [aé, =, 5/ S N

It 1s easily shows that all of the postulates of ¢ 3 ars satisfied

and hence the decomposition theorems hold in W .

8. [The arithmetic of 2 semi-group. Let S be a semi-group of

7 og%0> F%0 - is an infinite descending chain.
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elements &, ¢, ¢ ... and unit alément ¢ such that eagh pair of
elements @, 5 has a Ge Ge Do (2,4) o then if the ascending chain con-
dition holds in S, a and 4 have an L. 8. M. dofined ag the G. C. D.

of those elements which both 2 and 4 divide. It is readily shown

‘that 2 ¢ = [/“_éf_/ « ‘the definitionms of § 3 are somewhat simplified.
DEFINITION 6ele if &' =@6" where (@,4/ =c , we say that @ is
conjugate t0 & .

DEFINITI

6.1 4 is gimilar to & if there exlsts a chain of elements

a}

& =Fo, A, ---, 2, = 6 guchh that elther <« is conjugate <+, or <.,
is conjuéate to 9 .

Vo have thon the following fundamental theoreom:
THEOREHM 6e.le Lot 5 ke 2 semi-group with G. C. De gnd L. Co Mo gperations.
ZIhen the following three gonditions are necessary and suffigient that
each element not egual to ¢ 9f S bg uniquely expressible as & product
9f Arreducibles, unigue @p %o similarity*:

(i) the ascending ghain condition in 53
(11) the descendinz chain condition for the rizht factors of each
elament in 53 |

(1ii) The modular comdition in Se.
PROOF. the sufficiency of conditions (1) - (iii) follows from the resulis

of sC 3. For since the product of any two elements always exist's,
T1 - T4 are trivially satisfied. - P00 - 27 are readily verified and Al
and 42 are trivially true since & €4 for everyx apd b . (11l gives A3,

Hence the existence and uniqueness theorems of $ 3 holde

» By ™unique up to similarity™ we mean that the irreducibles appearing

in the decompositions of similar elements are similar in pairs.
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Suppose now that each element not equal to ¢ of § is uniguely
(up to similarity) e.;presbsible as & product of irreducibles. we define
Pl =0 , Pla)= s if a= /5P --- (5, F . then F(4)=cif

and only if @=¢ and f(4/=7 if and only if « is irreducible. surther—

more flaé/= pPras. b since if a:/?’m/"'/f and 4= Zpy oo 7,
then 26 <= 2, .- 1% Zeces - £, . Henee @26 ang « + ¢

implies that f¢a/< pPl6). 1t follows that the ascending chain condition
holds in 9 and the descending chain condition holds for the factors of
sach element in 3.
¥e note that if & is similar to X , then (@)= r(2/.
Let & and © be any two olements of S. We have then & = &, (2,4
b =& (a,.) where (,,2,) =< » Them [a. 67 = [7 (2.6), 4 (z5)] =
[2.,43(7:4) = (2.6")4.(4.5) = =74, (5, 4) Where 4, " is similar to &, .
Then f(12.67/ = P@7) + /°(4) + P(la,e))= Pla)+ %)+ (@) But
Feayj= Plo')+ (((26)80 that [2(7.) = [F@) - [7(Ca8)) + Similarly
Llré,) = plé) - pCCa. )] » Henoe [ ([a.s7) = /a) + plé)~ /a5
or P(Iasz) + Plrzs)) = Pia) + (A4 « Thus ,° 1is a rank
funetion over S in the sense of sSirkho¥® (Birkhoff /77 pp. 447) and
3 is nodular by Birkhoff's result. Hence conditions (i) - (ii1) are
satisfisd,
7« ZEroperties of the I-lattices. Throughout this seotien postu-
late T3 will be rsplaced by the s’crongér postulate
| 730, Q== 4 agng ¢ == J —= (ac)=x (4 ) [acl==1[4]
DEFINITION 7ele The unit elements of the L-lattices are ealled the unilts
of 9/( .

4 7
Tet now 2,0, ¢/ « q a,'¢ L where <  and < are amy two

L 4

s

L-lattices. Then if o 4. == ¥, * Q' 0,/ == 4, we have (4,4 = (¥ 1)

s

and L/é/’,(/ a,) == (x x.) . Hence (4 47/ end (@, 4/ belong to the same

==
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L-lattices lie call this L-lattice to waich =1l of the unions of elements
from - %nd L, rvespectively belong the union of Z, and L2 ana
write (41,42) . In & similar manner we define the cross-cut [4/, 421
of two L-lattices. IHence we make the L-lattices into = lattica)ﬁ . Xe
will be modﬁzlar if 24 is modulare

In general the union of the unit elements of £, wmd <7 will not
be ths unit element of (4// £, ). However we show
Truons 7.1. AP the sescending chaln condition holds in )7, then the
units of /' are glosed under unlon and gross-cut and form a lattics
isomorphig with 9@ . .
FRO0OFe wo pro;ve first a necessary lemma.
IEMA 7.1, If the descending chain condition holds in %7 , then the
only slements of ){ such shat #=-x are sho unlts of V' .
PROOF OF LEMA. First of all we note that ¢ ™= for every unit 4r;

since if “== ¢, then ¥ = &« X, and hence < ==«by P4se Now let 2 ===

Then the chain a, &/,?' “5 < must break off by the descending con-
Iy + it .
dition so that <& = a” or a’= wa by P7. Bul since XA L = q U

L.< 5 and finally

and hence &'z alf , \e have then <’ % %a' a”
a = adl.

We continue with the proof of the theoram. Let <« and < be two
wnits, so that ¢« == 2« , fz’%,au' . Then (¢f. w’)== (4. ') gna
Ju,c0’1 = [e,e’]  VWnence (#,4°/ and J4 «'] are units by lemna 7sle

?he\L—lattiaes have a number of interesting interrelations. Ve
. mention however only ones
THIOREM 7.1. Let / be sn acbitrary I-lattlce sud let €< (. Zhem
). has a sublattice isomorpliec with /. and havinz ¢ as the unit eloment.

PROOF., Let X ¢/, and set up the correspondence /< </ where X< is
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elearly in L . Then (X) y)s—> (x,¥]€ = [ve,vZ) and
X, v é_——> [v,yv]&€ = [w&, ys/] « Forthermore the correspondence
is 1-1 by ¥7. Hence the theorem -follows.

We next characterize the irreducibles of J‘r in terms of the lattiee
' proPerties of the L—lattica‘s.
THEOREM 7.3, The irreducibles of J{ are the divisor-free elements of
PROOF. Let /’ ©be a divisor-free elemént of an L-lattice, and et ¥ o ’
X ~ fo o then clearly ¥ = #& or 4 =/ . Conversely, if * is an
irreducible, let . be the divisor-free element of ,< dividing ~ .
Then ©'>./ , pla/ emd 4+ 4 , snd hence 4= /.,

We note that theorem 7.3 may not hold if we weaken postulates Al and

A2, TFor example, let us replace Al and A2 by

Bl. a &~ é/ a’@@,/ éﬁ.@ —_— g e s __Q‘éAC'/.
B2. 2 > ¢ gnd 6 wad ——> Q= C.
B3. <o 4 m a ~ b —> g e (2,6 )

We define conjugate elements and .ureducible elements by
DERINITION 7+l 1f & = @ ¢ 'where 2 ~¢, 2 2€ < ©2 , ana
(a,) = a< , we say that <’ is conjugate to <
DEFINITION 7«2 p 1is an irreducible if & = < and if X = 7<;’~ =
p o —> X=r o X =pd

With these definitions the proofs of the existence and uniqueness
theorems follow, with some modifid¢ation as in 5f 3. However there may
be irrsducibles which are not divisor-free elemetits since we may have
XOpP, ¥=FP ¢, X ~ P but ¥ & £ .

We conclude this section with the investigation of the special

case where = 1is an equivalence relation. If == 1is an equivalence
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relation, the equivalence classes are multiplicatively closed sublattices.

Lety @ = % & =l b » be two decompositions of « .
Then « =4, and < == S, e But s - 4. =2 A, ano/ G- - .= Ag
Honce @ == gz == - - == &, =2 4, =% .- == &, .

Thus this case reduces to that of Y closed under multiplication.

8¢ [IThe commutative ¢sse, In this section we investigate the con-

sequences of assuming that the multlplication 1s commutative. Zxplicity

we assume

==

Ad. a,‘—’z-é*"—.;éﬂﬁ/ ad = ba
We have then
S8ele Q == é/éﬁd m— A =2 O
For since 4 == ¢ , 24 exists and 24 ==c, But % =4a == C
Whence < =* C
8e2e QX L= o
Hence == 18 an equivalence relation giving equivalence classes
{a} {4,] - . The L-lattices and the equivalence classes coincide.
Furthermore we note that each egquivalence class is closed with fespect
to union, coross~cut, multiplication, and residuation. We note also that
Ua = 2l o
THEOREM 8.1. @  ig gonjusate %o a if znd omly if a’=z.
PROOF,. Wa'prave firast a series of lenmas,
LEMMA Bele If a~6~cC znd 4, o C, then a ¢’ a b7,
PROOF. The residuals exist by Al. PFurthermore @ > (244 O
(@ 47c — a.c’ > 2.6 py R' and R".
IEMMA 8,8. 2~ 4 —~ ¢ —P Q. (bl = [aelac’]
FROOF» [z 67/ a.c/] D a. (4,07 ! by lemma 8.l But < O

((a67')4, (a.c’)c) o [a»é';a-c‘//(éC)'. Hence «.(4¢)72 [a-¢ a.c]
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and thus & (4c)™/ = [a ¢ a-e ]

IBIDIA 8430 Q2 a4’ = a . ' = x.

PROOF, 4 D A Ha —2 a o o a . Bﬁt a = a Lo

_ -/ -/ '
(d-cta’)r —> A D A “a ' o Hence 4 = & 4. « 3ince a =a<, the
 lemma follows.

We continue with the proof of the theorem. Let < = a4l a “,

/

(4,4) = all v Them A = @il = a- ()7 = [aa 2570 <
Jatt, 2-47] = a.6 =2’ by lemmas 8.2 and 8.3.

Now obviously any irreducible factor of an element belongs to the
same equivalence class as the elemeni itself. Furthermore since multi-
plication is cogmmtative, the ascending chain condition implies the
descending chain condition for the factors of an element & ¢ A . Henoe
by the uniqueness and existence theorems and theorem 8.1 each element
not a unit' in / is uniquely expressible as a product of irreducibles,
the irreducibles belonging to the seme equivalencva classe Thus con-
sidered as a lattice, each equivalence class is a direct product of

chalin lattices; ie.@., an arithmetical lattice (Ward [¥7 J.



CHAPTER III
Algebraic Properties of Non-commutatlve Residusted Lattices

Lle Introduction. In the theory of non-commutatlive rings certain
distinguished subrings, one-sided and two-sided ideals, play ihe impor-
tant roles. Ideals combine under cross-cut, union, snd multiplication
end hence are an instance of a lattice over which a non-commutsative
maltiplication is defined. The investigation of such lattices was begun
by We Krull (Krull [7 2/ ) who discussed decompositions into isolated
component idesls. vur aim in this'ehapter differs from that of Krull
in that we shall be particularly interested in the lattice structure of
these domains although certain related arithmetical questions are dis-
cussede

Throughout this chapter 54 will denote a lattice in which the as-
cending chain condition heolds and over which 2 closed right and left
maltiplication is defined sgtisfying P4, P4' and P6. The theorems of
chapter I then show that " is closed with respect to a right and left
residuation. Hence we shall call 77 a non-commtative reslduated lattice
or more briefly, an ideal lattice. If in addition P5 and P5' hold,
then we shall call 7{ a non-commutative residuated lattice with muit
or simply, ideal lattice with ynit. All of the formulas developed in
chapter I hold for ideal lattices with unit and all of those formulas

independent of P5 or Q5 (P5' ar W5') hold for ideal lattises.

2. The structure of idesl lattices with unit. Let (' be sn ideal
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lattice with unit. 4hen in 54 the following formulas hold:

21 (4,6) = cc — 5 a b= ~ , bla =a,
~ For (6,a) =« —= a- (a,8)7 = a =« —
[#27) a¢/] =a —» a¢' =a . simlarly 472 = &
22 (4¢/ = 5 (A, [51) = [rae, iae]

by -
or (.&1/ ["J//C’]) M [[dp,({,// z/ﬁ/ (‘)7 /9((K}/[élcj/,(ﬁlé//l (’M/['alk_‘jf/'[/b{sf'/"//
T([(ﬂ/[é/c‘\’)'ﬂ-z («/’(/[4/0])‘5‘/]} [(ﬂ/[é,c]}la'/j (ﬁ/[é/cj)‘(jﬂ]/:-
((a,T¢cyr). 5‘// (. I, ¢1).¢c") D (a ¢, [é,c].é‘{/ a ¢/ [ecle)s
-7 -/ 5 ’

(a-é/cf'é)a,c/, é~c‘f/ D (¢ b7 be) 2 (0, 4) = o<

by hypothesis. uemee (&, [é.c7)- [ (4.6), /7.¢c)] ~ = ¢ end
(a.7é.c7) > [ (s (ac)7 by @6s But [ (2,¢) (acs] >

(g/ lé6cl) by lattice properties. Henee (¢ /4 cJi) = [/a 6/ (a.c) T

2430 (6,¢) = e ——= @ = ([%e1 14 cT)

Por (4 c) =ec ——> ([a. 67, La¢c3) 27D ([as7-a” [4¢c]-a7)

) (é.av/ ca) > (é,¢) = > ([4/&/.7/ Iq c7) = &
—= (la.67, @ ¢c]) = a . Bt 2 > ([a.61 [ac7)

12,
by lattice properties. Hence = = [ [2,67, [ac7).

240 (9, 6) =, (F.0) =< —= (a [4c]) =

For (9,1¢c7) = (alscr) a’' = (a2 J4cy). (a.6)" -
-/ - ' _, . oy .
(2. 7¢cy) 67 5 (aé” [4e7.47) = (¢ 067 >
(4,0)= ce —> (47/ [ c7) = &

As a consequence of 2.2 and 2.4 ws have

2.5. If o, &,, are co-prime in pairs, then (C, [ﬂ,,--/ @a])= [(f,,ﬂ,//..,/(ph,d”)

.
For by successive application of 2.4, & 1is co~prime to [ﬂg/ P
dence (C,[a, .. @.7)=][(ca) (e raz v, a.7})] = L[(ea),

(0/5(7,)/ [0/ Z’-ﬁa/.u/ &M]/] = ... = [(’CI/Q,// [c/&);// S (p/ﬂfr/].
2.5 gives the following fundamentsl property of direct products of
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gublattices of sn ideal lattice with unit: ,

mmanm 2.1. ket CU be the sublstiice generated by the sublattices
C%, C%,,. .., C%, se8h of whioh gentaime << - hen (' ia the
direct product 02 CF CL, . CC itadamvic O . CF,
‘are co-prime in pairs.

PROOF. From the definitions of § 2 ch. I it follows directly that

let / denote the set of erosg-cuts [a, .. ) 4.] where @ ¢ C{j. We

(%, are co-prime in pairs if (%, 1is the direct product of

>

O%h . Let now (% J T 024 be co~prime in palrs and

have clearly |l oy @nd Il ., a5 ] = [fe,a'] . -, [, a./1],

Furthormore ([0,/4_; anl Lat,. ., @5id) " [ta, ta?  aii). .. /b?n,lf“’/,’v”ﬂ/f/\]
= [la,a, L (an, 0,07 by 2.5. Hence / is a sublattice

and 1s thus equal to Wz’, Ir ['4)»-‘) @n] = [ﬂ/;.../ 7y

then @~ = (@, [al . -, au1) = (9 @) ., (4 2,9] = (2. a)
4hence 2 O & « Similarly 4 O 4. end hence «, = 9,

this completes the proofe
1f the sublattices (7, .., C#%., have minimal elements,. the conditions
of lemas 2.1 may be slmplified.
OROLLARY. If the sublavtices (2, . . C%, of lema 2.1 have
minimal glements #,, .., “7» , them (7 is $he direct product of
o, .., %, Atamdoemlyif . .., 7, are so-prime in pairs.
From lemms 2.1 we have immadiately
LEMA 2.2 Any £inite set of divisor-free elements generstes & finite
Boolean algebra.
PROOF. A finite soolesn algebra of order 2n is the direct product of n
chains [uw, 2} [ asj, .., [u, 4.} of length l. sut if

@, ..., a, are divisor-free elememnts, | «, aj - Fa, 2.,

-



(47)

obviously satisfy the conditions of lemma 2.1.
If there are only a finite number of divisor-free elements in
we may speak of {ho DBoolsan algebra generated by the divisor-free elements.

This 1s certainly the case when the descending chain condition holds in

for we have

LEMiA 2.5. Lf the descending chain sondition holds in ), then there are
only a finite mumber of divisor-free elements.

FROOF» Let 1, /2, .-, /2, . . be an infinite sequence of distinet

di¥isor-free elements and form the descendlng chain &, = 9z 243> . .

Where d“ = [%/./ /9/“/ ) 1057 * If ﬁg' = ch-#/ then Z /C;/ . / /CC 7 =
[’bc“,. L /Z+,] @nd hence e = ey RO " 1) =
[ ( 77, pﬁ:)) e (1941 )]z & which is impcmsibie. ‘Thus

a, De, D ayz D - - 1is an infinite descending chain.

3. Lattige structure in the yicinlty of the unit element. Ve
turn now to the study of th‘e strusture of a residuated lattice in the
vieinity of the unit element and prove first the fundamental
IHEOR®H S.1s Lot ¥ be 2 residusted lsttlce with wilt having only &
finite nwrber of divisor-free elements /5, ... /3, .« iQreover
let 2 be the direct product of ghain lattices &, ... &,
where 4. 1is the ghaln M.f’ oo @ 2 D S . dhen £ i > b
end 4 doss mot belonz %o £ , the sublattice generated by the
elements of <0 and the olement £ , is the direst product of the
o where <5, is the

14

sheln lattloes &, , -, La, -
ghain lattige « ° A D 4« 2 - 2 27x D> b
PROOF. In view of the corollary to lemms 2.1, 1t is sufficient to -

show that (4, 4r )= C#FX o 12 (L s7.) F < | there exists

a divisor-free element 4 such that o > (4 » /. Singce p» o i



we have f = P, o low #k D [m«, ] > L sgince P > &,
But 7. "# Z’Mk/ rl siﬂce otherwise /2 7, while (/?-j;w,c) =
Hemee b = [#7«, /5] end & is contalned in <& which is com-
ti'ary to asswmption. Thus (46, 47,) =« ¢ #X

This theorsm enables us to construct certain characteristic sub-
Alattices with very simple properties. For let Z be the Boolean algebra
generated bj the divisor-free elements of % o If a divisor-free element P
of o covors an oloment <, not oontained in T , thon /o and 4,
generate & sublattice. CK.//, which is a direct produet of chaln lattices.
If 2, covers Pz and 92 does not belong to 95” then p@/ end Ao
generate a sublattioce Dé;a which is again a direet produet of chain
lattices. ‘e may continue in this manner as long as we obtain elements .
not contained in o\ﬁ, » Having cbtained a sublattice 05/( in this
manner it may 59 farther extended by building chains from other divisor-
free elements. ‘hus if we call lattices which are direct products of
chain lattices, arithmetical (Ward [ 7 ) we see that the structure of
s residuated lattice in the vieinity of the unit elament is charscterized
to & large extent in terms of arithmetical lattices.

This principle is very useful 1ln constructing examples of resid-
uated lattices. For example, suppose weﬁish to construct a residuated

lattice containing three divisor-free elsments. e start then with the

Boolean algebra «
a b

|
S~ //

[

How if we wish to add an element o covered by & by theorem 3.1
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The condition of theqrem 3+1 that each divisor-free element be a
member of one of the chain lattlces is essential for the truth of the
theorem as may be seen by simple examples. lowever in general a resid-
uated lattice will have an im‘inite ‘pumber of divisor-free elements and
theorem 3.1 ﬁvill no lpnger applys it may be generalized as followé:
THLOREY 3.2. et -/ Dbe the direct product of chaln lathices
b ba, .. .  of aresidusted lsttlos /¢ and let Z be
the lattice genersted by < and the set of divisor-free slements 4
which divide at least one element of <0 . jurthermore let /. > & .
then either 6 lies in ~© or the lattice gemerated by «3 aud b
i the direst product of the chala lettices &, , -, &, .., .
wepe &, - (6. 4.

PROCF. if (4, win] o e , M 7 ¢ , there exists a divisor-free
element o such that » = (4,74). sow »27c 2 [/, ,] > b ga

st # Jeno, #]  since otherwise 4 © 7o while (2, wc.) = 0.
Hence 4= [ ;7 emd b ¢ - . nence if & F o (4mk)= o xs
and the theorem follows by lemma 2.1.

The struotare of the lattice - of theorem 3.2 is comparatively
simple. We shall study its properties in terms of the notion of gémi-
arithmetieal lattices introduced by Morgan Ward (Wara I[+7 )
DEFINITION 3.1. A distribative lattice 5 1is said to be semi-
arithmetical if the indecomposable elements divisible by a given divisor-
freo olement form a chain lattices

A semi-arithmetical lattice in which the ascending chain condition
holds may be characteriged as follows (Ward Cv7):

IZMMA 3.1. A distributive lattice </ in which the ascending ghain con-
dition Qg_:_l,_gg Ais seml-arithmetical if and only if the indecomposables
oeourring in the reduced representation of an glement as s gross—cut of
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indecompogdables are go-prime in palrs.

From definition 3.1 it follows triviélly that an arithmetical
léttice 1s semi~arithmetical.

We shall show now that the lattice A% of theorem 3.2 is semi-
arithmetical and to that end prove the
THEOREM 3.5, Let < be a saml-arithmetigal sublattice of & residuated
lattice J¢ and let o contain the unlt slement « » Then if ~ isa
divisor-free slement of J , the sublattice .5 szenerated by , aud
she gublottice & is semi-arithmotleal.
PROOF. 1f /o is contained in =5 the theorem is trivial and we may
thus assume that # # a5 . Now let (/ We the set of all elements
of the form @ or /[XA &l where 4 ¢ S . U s clearly closed
with respect to cross-cut. We show that (/ is also closed with re-
spect to union. lLet X and Yy be two members of the set (/ . If
both X and )Y are contained in & » (4 v) is obviously in ( .
Let X=[px] P2 and Ve o Lot ¥, = 12 .. Za]
vhere the J. are indecomposables and (7. 2, ) =« c¢#v . Then
' singe P 2y, (L Z )= (=0 5) Hence (X, ») = (Y, [F2, .. 2]/
= [(v,P(v2 ), . (v g2,)] ©by2b. sut (y p) is elther
o or « and henee (¥ v) is containaed in (/ . if x= [~ XJ,PBk

and 2 = [~ 97 P DY, s, then (¥ y/ = ([//j’f/// ?,7/[/9/?,/1_../§5’])

J
= [P (2,00, (2nr), (%) (2,2 . (2.,2.7] = [Pa]
where @ ¢ A5 o nence (/ is identicsl with 5 .

Now let 2,5, ¢ be contained in (/. %hen in exactly the seme
manner as above we find that (&, [4,¢1)= [(2.40, (a.¢)], yop
example, if b= [P 4] , P 7 4, snd C ¢ a(f s then ~(a, [£¢c7)=

Zp, 2 5 Ze/]) = J(a,”), (8¢ ), (4.2,),(4,2) .. (2,2]]

,-//

(2172

=]z, 40, (a,c)] if £ PF ¢ 5 and if b S 5 then (4 Jgc]) =

sy
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(0, L2, ., 2 2/ . 2'1)=1@2), -,0(42),(9,2) - (22]=
[(a,2),..,(4,2), (ac)]=][Gpr),(a2) -, (92) (4c/]=
[l(&r,a’// (#,¢c; 7 . ‘He_nce B /is distributive.

Pinally let X € “ff/, then either 1 ¢ o5 or ¥ = [~ X7
where £ P ¥, . It F¢ && ,then X = [Z, ..., 2,7 where the 7,
are indecomposable and (7,, 2,/ =« oz . Ir 4= [ %, 7
then .V = Z/O/Z,J,,.}‘ ?,7 where o 2, -, P4 are
indecompossble and (2. 2,) =¢c CF v (R 2r)=c (=0, ., 1)
Thus /ff g is semi-arithmetical by lemma 3.1 and‘the proof is com-

plete,
Now since ~(7~ is obtained from an arithmetical lattice o by
a successive é,d.junction of a finite number of dilvisor-free elements and

since at each stage a gemi-arithmetical sublattice is obtalned, 5‘ itself

is gemi-arithmeticals. We have thus proved

THEOREM 5.4. The lattioe <> of theorem 5.2 i3 a semi-arithmetical
sublettice of ** .

In forming the sublattice Wis from the arithmetical lattice
only divisor-free elements which are divisors of some element of
are considered. If we adjoin a divisor-free element which does not

divide any of the elements of L s the results are even simpler; for

we have
THROREM 3.5. Let > be a direct product of the chain lattices

L5, .., 5, e;dletp _demote s divisor=froe element mot

contsined in «5 - ZIhem if 5 _does not divide any Of the elements of
 the sublattice gensrated by p and «C is the direot product & of
the chain [ »] and the chaln lattices of /7 . Furthermore if <3
1s dense 1n )¢ , then O 1s demse in 77 .

s C -
PROOF. Since /° does not divide @, if v ¢<,, (&, P) =4 | Hence
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the first part of the theorem follows. Let now X 2 [P @, . . a.].
¥hen y = [ (¥, r/, (X a,)'/._./ (X, 4,)]« ¥ow (x r) is clearly in £
and (¥ 2/) 1sin 2 by hypothesis. Hemce + £ i (

We conclude this seetion with
THEOREM 3.6. Let > be ihe direct product of the chain lattices
&, Bz, .., ob. 92aresiduated lattice /7 and let s>t
where / is indecompossble. fhen & znd b geperate a sublsttice <7
whlch is the 4irect product of the ghaln lautlees 2, . {4/, . L
Furthormore 42 < As dense dn 7 , shen < la demse in 7 .
PROOF. The first part follows directly from theorem 5.2, Let now
X O Impn, b omnle Mhen Y= [ (Km) Loma) (0 4) . (xwn,)]
Since <5 is dense by hypothesis, (X 77/, s (¥, /7.) are contained
in «& . Now either (¥ 4/ { in which case ¢ ey or (x4) Drre

sinee 4 1s indecomposzble. But then (X, 4) € & and X is contained

in 0&‘?/-
4. Apithmetical properties of idesl lgttices. Let o be an ideal

lattice in which the ascending chain comdition holdse

DEFINITION 4.1. An olament £ ¢ J° is sald to be 2 prime if £ 2 ab

and p P 2 implies L O b

DEFINITION 4.2. fn element ¢ ¢ 07 is sald to be right primary if £ 4%
and 2 2 A, implies £ ° 5" for some whole number < .

In the theory of commutative residuated lattices a residuated lattice
in which the ascending chain condition holds is said to be a Noether
lattice (Hard-Dilworth 127 ) if every irreducible is primery. If is
then shown that every element of a Noether lattice may be represented as

g simple* ceross~cut of a finite number of primaries each of which is

* A oross~cut representation is said to be simple if omitting uny

one of the terms changes the representation.
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agsoclated with a different prime.v The primes themselves and the totsl
number of prlimaries ax"e uniquely determined by the elsment.

+his result also holds fof the non~gommutative case although there
are certain complications due to the non-commutatively of the multi-
p’lication. 7@ shall show how these complications may be avoided.

Let )4 be a non-commutative Nowther lattice, i.e. every irreducible
is right primary. If @ and ¢ are elements of J{ , the product #¢
then has the form &4 = | 2, , .. . £,7 where the e are
right primary. Let 2, 2 (< =L -, €), 2o Pa (=470
Then since £, 2 24 we have 2. O L5 (¢ =t . r) . 1P we
then set & = -zztex ( Sexs ... S»-)  we have
4ele aé o [a, b1 D pa

Let 2 be right primary and consider the union 4/ of all elements X
such that _93)(5 for some whole number‘ S e Then 2 © P27  for some
whole number < by the ascending chain condition. Ffurthermore /~ is a
prime. ¥or if poaby then ¢ 2 #7 2 (a8)7 D a7 by 6.l
£ 9o a”, them Aoa . It 2 2 a’ ,then 205 and FOb
Henece either »~ o« or A~ 2 A « This prime is clearly unique and is
called the prime element assoclated with the right primary 2 . We
have moreover

LEMMA 4.1. 3AS cross-cut of two risht primaries associated with the same

prime F 18 alsg a right primery assoclated wlth F .

PEODF. Let [2/ 277 D. @b, [ 2 2 /2 A& . then either 2 or 2 g
say £, does not divide Q.  and hence £ > & . But then 0 ?b and
hence 2 7 O bt, Hemoca [ 2,277 72 é;/ whers s = zeeax (5,C)

[2 271 obviously is associated with »~ .
IEMMA 4.2, Let ¢ snd 27 Dbe right primaries associated with »~ and /°°

= Z

4 s
respeetively. fdhem 1f b » P, 2 27 "= Z.
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~ PROOF. 22 (2-27) 27 . Henee either 2= 2 2" or 95 ¢
But 12 2 o 277 , then 2 > ©’° and hence » > P’ contrary to hypothesis.

iote that lemma 4.2 holds only for the right residusl. If we were
considering left primaries, the ieft residual would replesce the right res-
idual.

The proof from this point on 1s exactly analogous to the proof in
classical ideal theory and will be o‘mittcﬁ. wWe thus obtain
mHEORIM 4.1, Let )’ be s mop-commtative liodther lsttice. then every
edement o2 ) may be represented as a siuple oross-eut of & finite
pumber of right primaries. Ihe primes and the tetal number of right
primaries are upiquely determined by the element.

The following theorem proved in vard-Dilworth [2] for the commut-
ative case holds also for non-commutative residuated lattices.
UHAORTN 402. Tho 1 wo conditlons are sufficient that ¥ be &
Hoether lattigas

(1) 7' 1s modular |

(11) @b > [«a, 6] for some 5.

PROOF. Let A Dbe irreducible and let 2 2 6c, a & 4., i‘hen a > (ac, bc)
= (4.¢/¢c 2 [(46) c5] by (ii)s Hemoe (4. 4)> a D [(22) ¢5]
and @ = [(2¢) (a.c¢5)] by (i)e But (@ 4)7 A and since a
is irreducible & = [a.¢®) , g > <% . VWhence Q is right
primary.

the distinetion between left and right primasries may be removed
by weakening the condltion of definition 4.2. e adopt the neme gemi-
primaries for these new olementse
DEFINI?ION 4.3. An slement & ¢ /7 1s said to be semi-primary if @ >/ ¢
and A P2 5° any S  iaplies <2 2 ¢’ for some vhole number <« .,

Let 3/( be an ideal lattics in which every element may be
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- represented as a eross-cut of a finite number of semi-primaries. Hore-
over let X,_and ')/ be any two elements of )T, Yhen XV = [ﬁ// oo a2
where the (/. are semi-primary. Let . 2 X% pop = T
and @, Oy =@+, .. p 'y 4hen Xy o [A‘/f ¥ %/ where
S= max (5, -, %) and O = e (Cep . 2] o Ve have proved
THEOREM 4.3. If every element Of a residuated lattice )7 is expressible
as a gross-cut of a finite number of semi-primaries, then for every X
and Yy in ' , there exist whole numbers s end o sugh that
4.2, Xy o [xs v/
If 4.2 holds in a residuated lattice, the semi-primary elements may
be simply characterized as follows:
THIOREM 4.4. Let ) be a residuated lattice in which 4.2 holds. Lhen
an element A ia semi-primary if and only 1f a prime /° exists such that
P D>a 2 ¢  for some wWhole mumber S .
PROOF. Let & be semi-primary and let A~ denote the umion of all
elements X sueh that 4 O x”  for some » . Then < o 7 for
some -~ o+ Nowlet / O XYy o ‘them « =2 X7 > Xy for some
integers #7 -and ~ bﬁ' 4.2. Hence « DX for some s or < ©x° for some -
Hence either © 2 X br P =2 Y e Clearly b oa o F° for some 5 .
Gonversely let » >« = A~° and suppose that < 2 é¢ . Then
5 o ¢c and hence elther o o« or ~ o C. Hence either 7 > 4% or
2 o c* .,
| The converse fo theorem 4,3 does not hold in general. However
under the assumption of the distributive law we have
(HEOREM 4.5. 4he following two conditions are sufficient that egery
olement of a residuated lattice ¢ satisfying the sscending chain
condition be expressible as 2 gross-cut Of a finite number of semi-
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1) ) 1s dlstributive.

(11) XY D [x5 v  for suiteble 5 amd < .
PROCF. ZEvery element of Y is clearly expressible as a cross-cut of a
finite number of indecomposables. Hence it is sufficient to show that
every indecomposable is semi.primary. Lot R Dbe indecomposable and
let a2 ébc, AP b7 any $. ‘them & D [55/ ¢*{ by (ii)
Hence ¢t = [((ﬂ/éf)/ (4.¢2) ] vy (i)s But (a/és) 7 & , Hence since
is indecomposable <@ = (2,¢°) and « D ¢

The distributive condition is essential in theorem 4.5 as the

following example shows:
d
5//0\/\

z<>

L

Let nga_ denote the sublattice { @, ¢” 4, ¢ ¢ 27 el =]

ﬁgé . the sublattice {° 6! 5} , and ey the sublattice [e, ercf .
we define g multiplication over %f as follows: « =< = &« gy “X = b
it Xeol, wux=cag xe Lo, wx =z a2 & € o, the
product of any two elements in 054 is 5 « ‘the product of any two
elements in Aj)pc s ¢ . ‘the product of any element of o with an
element of Lais Z o the product of an element of o e with an
»elmnent of ()C?_c is = + It is readily wverified that the multiplication so
defined satisfies 00 —~ v4', ¥6 and is also commtative. a\eis clearly
not distributive. It can also be verified that Xy = [¥° v/ for
suitable & and ¢ o However it is not true that Xy D2 /X, )] for

some § , since odc P [ ¢7/ « surthermore A 1is indecomposable
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N
. but pot semi-primary since <@ > be put as b any s snd A2 C°

a:nyé“.’

6, Ideal latticeg wm. /e turn now to the study of the pro-
perties of divisor-free elements .in an ideal lattice with unit. e
prove first the
LEMIA .l Lot + be a divisor-free element of pL and let « b_e_ any
element not divisible by . ihem one snd only ome of the following
formlag hold:

i) Ffa o af

-1
(11j faz = Fa) ¥
. R4 - "
PROOCF. ¥We have (Fﬁ f /)- fa = F by R5, uence &l ther (fa-f ’)‘/ﬁ’ﬁ =«

or (Fa-£7)7 Fa = F£ | in the rirst case fa o fa-F 7,

st fa - f' > Fa by R7. nemee fa = Fa- £/ , if
fa-e)l fa = £  Lthen f= F @l =((Ffa f) fa) 2=
(fa-¢)7 (Faa") > (Fa- €77/ f o mt (Fa-£7)7F > F,
wence (fa-£7)7§ = £ . sut then - (fa 57) = fa §7 o
(£ fa) - F7 = FPa F7C o when fa £/ D a £’ >a

sence Fa 2 (fa-+'/+ 2 af.
If both (1) and (ii) hold, them fa = fa £/ O &f - f /o=
sut then { = (7‘/ fa) D (F, ?z/ = « contrary to the assumption
that 7 1is a divisor-free element‘.
we olearly have a gimilar result for lsft residuals.
LEIDIA 5.2 et f bga divigor-gég elament of glggs;gugg‘eg lattice
in which 4.2 holds. then f gcomutes with every element which it does
not divide.
PROOF. Let 4 ¢ J{ such that + ? % . ihen by lemma 5.1 either fa >af

or fa = fa £ o« it fa = fa . f 77, then fa o (@ f°). f
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> asf by 4+2. But them fa > (fa) +7'5 (aS£<7) F's 2% o=
vontinuing m this méﬁmer we finally get {fa > a”’ . But then
£ o= (£ Fa) > (F, a%) ~:\oc_ gince f »# @~ . nence { = &
which is contrary to our assumption that f 1s a divisor-free element.
We thus have F& > a £ « o & similar manner using left residuals
Wegét af > fa, Hemee af = fa
As a cc‘rolla;'y, to lemna 5.2 the dlvisor-free elements in a residusted
lattice for which 4.2 holds always commute. In particular we have from
theorem 4.3
IEMMA 5.3e If in a residuated lattice gvery element is expressivle as
& cross—gut of semi-primaries, them the divisor-froe glements gomugte.
Lot pgt be an arbitrary residuated lattice in which the ascending
chain condition holds and denote by 9/( /the set of all elements X
which divide a finite product of divisor-free alements. X /is clearly
closed under union, oross-cut, multiplication and residuation and hence
is a residuated sublattice of A We have then
LR 5.4, Every prime in ) is divisor-free-
PROOF. Let / Dbe & prime in &’ = Then by the definition of 7@ ,
P 2 Ffe - fi where f, /., .. f, are divisor-free
slements of ) o Hence /= £, for some ¢
LmoA 5.5. Hvery slement of ) divides & finite produst of its
Yisor-frog v »
This lemma follows immediately from the following lermsz due to
Erull (Krull L[ 27T ).
LA 5.8. Let 9/( be 2 non.commutative residusted lattlce in which

the ascending ghain condition holds. Then each element « ¢! has

only & finite number of minimal prime divisors /.., /% sznd
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- divides a power of - - 7, *»
A f‘ur;‘,her consequencs of lemrng 5.6 is the result that 5( ' is the
maximal résiduated sublattice all of whose prime elements are divisor-free.
In certain cases b’l ’ is simply the Boolean szlgebra ﬁ‘ generated by
the divisor-free elements. For example we have
THRORM! 5.7, Let ' Be & residusted lattice with omly a finite
of the Boolean algebrs 75 generated by them, then )= .25,
PROOF. Under the hypotheses of the theorem f ~ < [F, ¢/ or = £
But if [£, f’] D £°, then £'> / which is impossible. Hemce [ = 1.
But then [ €, f., .. ., Ff.l= £ £ Fu amd (f - Fa)7F
Fofe - P e

* Krull states this lemma for the more general Qase where the aseending
chain condition is assumed only for prime slements while a residual
ghain eondition holds for all elements. However his proof seems to be
in error as he uses the following rule: If 2 ° ‘7/0,2/, then @ 9 a, ag
where (O, = & '@"/and Ca = Q/V-u/d « This rule is in general not
correct as the following ezample shows: Lot 1 be the lattiee dofined
by the covering relations « > 4 >&6> ¢ » 2z, 6 >d > =z
The multiplication is defimed by «X = k« = X a11 kel a?- =
all other products are equal to Z  -Then z.¢ ‘= a , d7z =<
and 2 2 €<, However =z P (z ¢/ (d712) =a?=a.

The lerma is readlly seen to be correct under the assumption of
the ascending chain condition since we may take &, = (4, 2.°) and

Ay = (a,a,”) and the rule stated above holds.
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I the diviéor—-frea eleménts do hot commite, the theorem does not
hold in general. Consider the lattice Kg | defined by the covering
relations &« >6 > C > 2 , ">z > C The multiplication is
glven by Ly = ¥y« = X all‘Xc—o(f, aé = ¢, ba = =z,
ac = Ca =ge = b = % = Z/ﬂziﬂjélaé/zzfrz all ¥¢ o5
Then )° = »7 . while 4% is the sublattice [« a, 4, ¢}

Applying theorem 5.7 to hypercomplex systems we obtain
THEORZM 5,8, 4 hypergomplex system in which the prime two-sided ldeals
gre gcommtative 1s g direct sum of simple two-gided ideals if and only if
sach irreducible two-gided idesl which is mot a prime has at lesst two
brimeg ideal divisorg.

We conelude this section by giving a variation of a theorem due
%o Krull*.

THEOREM B.9. Each element of J‘/JAW.&%&@%&M&&&&
number of semi-primaries if and only Af the divisor-free elements

commte.
PROOPs The second part follows from lemma 5.3, To prove the first

part let & = [, ... A-] be the decomposition of 2 into co-
/4/ w7, i
prime indecomposable elements. Them &, = /- 277 = [/7 ’:/ 2/
. #, n , A
o0 A = [(a, R, .., (a. ©')] whemce o = (ac, 27
for some < e e have then /°, 2 4, o /2 . Let Qo 2 bc,
then ~, > b < and hence either 224 or /< > C . Hence either
) | 4, . 4
a, o b or a,- > ¢C o 'Thus if the dlvisor-free elaments of b’(
4
cormute, each eolement of Xt may be uuilquely represented as a cross-cut

of co-prime semi-primary elements.
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6« Apchimedean gggiduagég, lattiges. ‘hroughout this section
unless the éontrary ié explicitly stated it will be agsumed that 5/( is
an ideal lattice in vhich botl:x the asconding and desoending chain con~
ditions hold. 7The unit element of Xz need not be the unit of mmlti-
plication.

DEFINITION 6.1. An element Q& of o' is said to be nilpotent if 47 = o
for some whole number o= .

LS04 6.1, The union /¢ of all nilpotent slements of 7' is milootent.
#  is called the radiesl of /7 .

PROOF. If a” =o apg g% = o y then ["/”z)OZO where o = 0,70, -
The result follows from the ascending chain condition.

DEFINITION 6.2. 4n olement S of ¥ is said to be gimple if S>Z
where Z 1is the null elsment of 3/( .

LEMMA 8.2, A nogopsary snd gufficiont condition that ths radieal be

the mill olement is that each simole element be idempotent.

PROOF. Let ¥ - 2, If $ is a simple element, singe 57, either
5=52 op 5*= 2 , But if 5% = =2 , then = > > >
contrary to definition 6.2. Suppose now that each simple element is
idempotent and let b1 # =z o Then 27z > S where S 1is simple.

Whemge = = »77 2 &7 = 5 which contradicts the definition

of § + Hence /7 = Z .

DEPINITION 643, If the radical is the null element, X{ is sald to bve

semi-simple.
ma 6.3. Let Jf be semi-simple and s be any simple element of
Ihen 4> s T3 @s =sa = S

Qa P s =TT, as = Sa T &,
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PROOF, Let 4 2 S . then QS © 5° =5 and hemee @S = s
Similarly S@ =5, If @ # 5 ,then 74,57 =2 and hence
25 = S — 2 \

The pesition of the radical in the lattice may have important
bearing on the arithmetical properties of the lattice. For example,
we have the following theorem: |
THEOREI 6.1. Lot O be am srdhimedesn residuated lattice whose diyisor-
fres glements generate z Boolean ulgebra with null slement #¢ . ZThen

the divisor-free elements are the only primes of ' -
PROOF. Since }/( is archimedean there are only a finite number of

divisor-free elementse Iet /< ©ve a prime of /T« Then ¢ = 27 = =z

and hence b oD But 2 = [4, . £r] wnere £, ... Fr
are the divisor-free elements of VAN Hemece pF > [f,,. . #-]
and hence A = # for some ¢

| The conelusion of theorem 6.1 may be stzted in the form )// = ){-/

Let Wm denote the sublattice of all elements X  such & D Jzr

The study of the structurs of / »7 may be reduced to the study of the
structure of semi-simple lattices. For since ﬂm is dense in JU it
is closed with respect to residuation and hence has a multiplication
( $ 3 chy I 'We call this mulfi"plication, the miltiplication ig Y
and denote it by & & .
THECREHY 6.2. Let 2,46 < %&, . If aée 0, ,then ¢ =a b
PROOF. ¢ 1is defined by (1) (¢ ¢) b > (i1) 1 67 D&,
X ¢ 7@, —> XD a b . Similarly 2¢ is defined by (i)' (@e/ 42>«
(11)' v é6"'oa , re N —> X = b Hemge if 2% ¢ )/(m/
then 24 > <-4 by (i)', {ii)s On the other hand.by (1), {(11)?

R b D ab o+ Hemge 2.4 = 26

In general we have
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| LEA 6ude a.b > ab.
Let now 4 Dbe a prime element of o Then b o w7 = =
and hence L O »e . Thus /p € 2;4/; « Towlet o Da-4 . fThen
p > aéb by lemma 6.4. Hence Vei.ther Poa or L > b . Ve thus have
THEOREI 6.3, L1f A Aig 2 prime element of ) , them kel amd A
is 2 prime in )Y, with respect to the multirlication in /..
THTORT 64 )%, is semi-simple.

PROOP. Lot © bo a simple eolement of %74 « Then $ > . Fow §>5 ¢

Hence 5 = 5-S or §-5 =4¢ o But if S T=x¢ , 22 > 8% by

lemma 6.4 and hengce S =0 . ‘This contradicts the dafinition of #¢

Hence each simplé element is idempotemt and by lemma 6.1 )’,{M is semi-simple
The most important application of archixedean residusted lattices

is in the theory of hypercomplex systems. More generally, let { be

the set of two-sided ideals of a non-commutative ring K in évhich the

ascending and descending chain conditioms hold for left ideals. Then /<

is the radical of /¢ . Now the quotient ring /4, is isomorphic to );/,(

and henée is semi-simple by theorem 6+4+ However from z well knowm

structure theorem, a semi-simple ring is a direct sum of simple two-

sided ideals. Its lattice of two-sided ideals is thus = Boolean algsbra

and theorem 6.1 gives

THEOREM 6.5. The only crime two-.sided ideals in 2 hypercomplex system
areg the divisor-free ideals.

7+ Semi-simple lattices. In this section we shall be particularly
interested in the sublattlces gensrsted by the simple elements of g semi-~
simple lattice 3/( .
LEIGA 7e1. There ars only & finite number of simple elements in a
gemi-simple lattice J/C .
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PROOF. Let S, €., 55, . - - be an infinite sequence of simple
alements. Comsider the chain A, € @2, < @43 T - .  where

Ry = (5,54, .. B $,)« The members of this chain are distinct. For

suppose that < =44, , then (s, .- o) = (si, Se,. - Sirs)
Hence Scv, = S5, = (5 Seks, SeSip, o s3) = (s, - Seri) S B
(37,”. e, 5S¢ ) Ser, = (S, Sey, o, 88, )=z This contradicts
definition 6.2. Hemce &, C a, < - is an infinite as-

gending chain contradieting the aseendlng chain conditlon.

THEOREM 7+1. Let /' _be a semi-simple lattice. Then if eagh slement
of )" gan be sxpressed ss & unlon of simple elements, ) isa
Boolean algebra.

PROOF. Let & ¢ o' have the repressntation

7ele Ca = (s, Se)

where S, ... S«  are distinct simple elements. The representation
7+1 is unigue and $s,-++, S~ ape the only simple elements which A
atvides.e For et & = (&, .., 5~)= (5, . iy SR ultiplying
by 5(‘/ we have s = (s g}// o, S/ . Hence all of the pro-
ducts are null except one, say S¢S, « Then Sgs‘c‘/ = S and
hence S5 O 9@»'/ by lemms 6.3. Thus S = s’ and =€ . I ZOS5
where S is simple and not equal to any of S/ . -, S« , then

(S, 82, .-, S«x) = (S, ..., Sk 5] contrary to the result we

have Jjust obtained.

We show now that the product of any two elements 1s egual to their

eross~cuts

Ve clearly have [2. 47 > a4 o let [267 = (s, .. 5w«

Then since 2, & >[a¢], a = (s, .. . $x a’) and & =
(5,/.../ ;K} é/) Ilence Qé - (5'/“,,./ S’,,c/v Q/j(‘g’/h“'/-?%/b//:‘

(§,/,,, L S a’s’) o [a é ] Thus [C(/é]:é?é.
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Since the pi'oduct is distributive with respect to union, the cross-

cut must be distrivutive and hence Yt ois 'distributive. Furthermore

is complémented. For let 2= (5, . - S/ « = (5, .. 5,)
and define A2'= (S«ss ..., Sa) » Then (4,a7) =< and
,[Of/d/] = @ a” o= (‘S‘/z s 5%/( §/ff// Ly gn) — Z - Hence )/(

ig a Boolean algebrae.

In an arbitrary semi~simple lattice, the set of clements which can
be represented ag a mion of simple elements need not be clos=sd with
reppect to cross-cut as we shqll show by an examp]:e-' However, if we
assums the modular axiom we have the following theorem:

THEOREN 7.2+ Let _)f' be 2 modular, semi-simple lattice. Then the

- simple elements of 3/( generate a nglgan ‘”;, gebra )/g . lowsover fé
is dense in )1 - |

PROOF. ILet ({ De ths set of a1l slements of )| which can be expressed

as a unior of simple elements of 3/{ . U is obviously closed m}ith
respect to union. We shall show ,thaﬁ 4 is dense in X[ and hence
closed with respect to cross-cuts Let (S .- 5») DA eand let
XD S .. S , X P Serr,---, Sue Them X = X, (s, ., 5,0]
s.) ] ) by the modular condition. A

= (S/J"‘/ ‘5\'—2/ Z/V,(S}f//»“/

1t [x , (Seni, . -, s.)] == =2 , then there is a simple

clement S seuch that [x, (Ser,, . 5,)] > . Buat then ¥ 2%
and (S«Ff/‘/ .-, &4/ 2 S .« Hence & = 5 (—je*'// -, S
= (Sep ) -, Sus) = S-S by lemma 6.3« Thus S = 5¢ and ¥ 2 S,

_contrary to assumption. Hemce [ X, (Seysr , . - ,5,)J=zand %= (5_.. So)
Sinee <{ is demse in 3/{ , 1t is clossd with respect to multi-
plication and is clearly semi-simple.. .loreover every element of 24

can be exyressed as a union of simple elementse FHence by theorem 7.l
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U = ){é 1s a Boolean algebra.
To show the significance of the modular comdition in the previous

theorem we give an exsmple of a non-medular semi-simple lattice

I [( denotes the set of elements of > which can be expressed
as a union of simple slements, we define a multiplication over AL as
follows: If )cyeé/,%fﬂ/'xf ¢ , then xy-:[x,yfj'
a.c =, 3, Yx =4 or 2 accordingas X > & or X P ., It
can be readily verified that all of the multiplication postulates are
sa.tisfied. Also a@ is non-modular since it contains the non- ‘
modular sublattice {2, ,x_ o 3, =zf + The simple elements « 3, J~
do not generate a Boolean algebra. In fact, ({ 1is not oclosed with
respect to cross-out singe o = [ty L],
THEOREM 7.3+ Lst ) be & modular seml-simple lattice. Lhen if for
2ach simple element S there exists sp element ¢ < guch that (s,57) =«
01U 1a a sooleen alacbra. |
PROOP. Vie may take the 5’ to ve divisor-free olements since if S
18 not divisor-free, there exists a divisor-free element f  such that £ 5> '
Bat then (S, fc) 2 (o, 5,7) =4 + Lot ¥ = (5., %), then
the length of chain from < to 2 i8 A . mstnow [T/ 5 . 5] ==z
' éince if [s/ . .., & 7 = Z , there exists an S such that
L 5/: ST D s :’:‘»utv'then 5?/9 s which is im-
| possidble. Sinece [f,; ey, SZ,/] ‘= =z the length of chain from « Zo z

is equal to or less than 4 . but <C D v . Hence ¢ = U7,
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| Theorem 7.3 glves immediately
THUOREM 7.4. 4 gomplemented, medular, semi-simple lattice is a
| We conolude with the st&temént of thearem 7.3 in terms of the two-
sided 1’&3&13 of & non-commutative ring. |
\HEOTE 7.5. iq%t R b & ring without radical in hioh the sseendiug
 and descending ghaln conditions hold for twe-gided ideals. iaem if
for sagh ivo-sided Mesl 5 thers exiats an ldwdl ¥ 4 sach that
(7 777 = £ s £ iz a direst gum of twozsided simple idesls.

Such an ideal o~ always exists if 7 has a prineiple unit.

/
¥or in that case we mey take J7 to be the set of all elements.Y such

that EJ('L (O) .
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