
Variational Methods for Nonsmooth Mechanics

Thesis by

Razvan C. Fetecau

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2003

(Submitted April 22, 2003)



ii

c© 2003

Razvan C. Fetecau

All Rights Reserved



iii

Acknowledgements

I am extremely grateful to my advisor, Professor Jerrold E. Marsden, for his invaluable

contribution to my education during my graduate career. There are many aspects of his

mentorship which I loved, ranging from highly professional guidance to kindness and open-

mindedness.

In my fourth graduate year I was very fortunate to start working with Prof. Thomas Y.

Hou. The work I have done under his guidance greatly broadened my applied mathematics

education and enhanced my research skills. I am very thankful to Prof. Hou for the

opportunity to have learned with him.

I would like to extend my gratitude to Prof. Donald S. Cohen for his highly valued

advising regarding my research and my future career, especially during my early graduate

years.

I want to thank Prof. Michael Ortiz for his valuable suggestions and inspiring discus-

sions. I also want to thank Matthew West for making our collaboration so enjoyable and

exciting. I learned a lot from him.

I want to acknowledge the very stimulating and highly supportive academic environment

provided by the entire department of Applied and Computational Mathematics.

Finally, I would like to express special gratitude to my family for their love, encourage-

ment and support.



iv



v

Abstract

In this thesis we investigate nonsmooth classical and continuum mechanics and its dis-

cretizations by means of variational numerical and geometric methods.

The theory of smooth Lagrangian mechanics is extended to a nonsmooth context ap-

propriate for collisions and it is shown in what sense the system is symplectic and satisfies

a Noether-style momentum conservation theorem.

Next, we develop the foundations of a multisymplectic treatment of nonsmooth classical

and continuum mechanics. This work may be regarded as a PDE generalization of the

previous formulation of a variational approach to collision problems. The multisymplectic

formulation includes a wide collection of nonsmooth dynamical models such as rigid-body

collisions, material interfaces, elastic collisions, fluid-solid interactions and lays the ground-

work for a treatment of shocks.

Discretizations of this nonsmooth mechanics are developed by using the methodology of

variational discrete mechanics. This leads to variational integrators which are symplectic-

momentum preserving and are consistent with the jump conditions given in the continuous

theory. Specific examples of these methods are tested numerically and the longtime stable

energy behavior typical of variational methods is demonstrated.
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Chapter 1

Introduction

We shall begin with a survey of some history and literature to put our own work into

context. The literature and history is of course quite complex with many points of view, so

we focus on selected highlights only.

History and Literature: Theory. The problem of collisions has been extensively

treated in the literature since the early days of mechanics. More recently, much work

has been done on the rigorous mathematical foundation of impact problems, in particular

by generalizing Newton’s law to include forces which are measure-valued and hence can in-

clude impulses at the point of impact. The contact dynamics is thus governed by a measure

differential inclusion, a general formulation that can directly incorporate impulsive forces

and nonsmooth solutions. In this context, a measure differential inclusion has the form

dv

dt
∈ F (t, x),

dx

dt
= g(t, x, v),

where v(t) and x(t) denote the velocity and the position, F is a set-valued function and v(·)

is only required to have bounded variation.

The extension of the concept of a differential equation to that of a differential inclusion

was first considered by Filippov [1964, 1967, 1988]. These works provide a deep study of

ordinary differential equations with a discontinuous right-hand side, but the fact that so-

lutions are required to be continuous in the phase space makes the theory inapplicable to

collisions. Measure differential inclusions can be found in different contexts in the work of

Schatzman [1973, 1978], and the use of this concept to rigid-body dynamics was further

developed in the work of Moreau [1986, 1988], where the (unilateral) contact between rigid
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bodies received a formulation (called by the author a sweeping process) that combines differ-

ential inclusions with convex analysis. Since then, an extensive literature has been devoted

to the theoretical and numerical study of nonsmooth dynamics within the mathematical

framework of measure differential inclusions.

Substantial progress has been made in the last two decades on the existence and unique-

ness theory for the generalized solutions of rigid-body dynamics. The first rigorous results

in this area were produced by Monteiro Marques [1985] for the case of an inelastic collision

with a single convex constraint. Further results generalized the existence theory to more

general contacts in Paoli and Schatzman [1993a], to more general (nonconvex, but of class

C1) constraints in Monteiro Marques [1993] or even to a less regular constraint for an ar-

bitrary frictionless impact in Mabrouk [1998]. The recent works of Stewart [1998, 2000]

consider the impact dynamics with friction and give a rigorous mathematical solution to

the famous problem of Painlevé.

In the same elegant framework of differential inclusions, but oriented towards the control

and stability of nonsmooth dynamical systems, we mention the works of Brogliato [1996,

2001] and Brogliato et al. [1997].

History and Literature: Computations. The measure differential inclusion has also

been proved to be an excellent mathematical foundation for the study of numerical methods

for discontinuous ODEs. It is not our scope to give a complete account of these methods,

but we refer the reader to the excellent overviews of numerical methods for differential

inclusions by Dontchev and Lempio [1992] and Lempio and Veliov [1998]. In particular,

such numerical approaches have been pursued to develop efficient numerical methods for

rigid-body dynamics in the sweeping process formalism in Moreau [1986, 1999], Paoli and

Schatzman [1999], and Stewart [2000].

Various other numerical methods for rigid-body systems have been studied extensively

in the engineering and mathematics literature. We refer to the excellent book of Pfeiffer

and Glocker [1996] for a comprehensive account of some of these methods. We particu-

larly remark the approach that reduces the contact to a complementarity problem, concept

frequently used in constrained optimization, to decide at each step which constraints are

active.

However, most existing practical codes are based on smoothing techniques, a class of
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methods that use a penalty formulation to regularize the problem. This approach relies on

the definition of a proper gap function as a means to detect and penalize the interpene-

tration; see, for example, Simo et al. [1985], Carpenter et al. [1991], Wriggers and Zavarise

[1993], and Taylor and Papadopoulos [1993]. An obvious weakness of the penalty methods is

that they cannot handle collisions of irregularly shaped bodies (bodies with corners), where

neither normals nor gap functions can be defined. An elegant solution to this problem is

offered by the nonsmooth analysis approach from Kane et al. [1999b], where new robust

contact algorithms are derived using the powerful tools of nonsmooth calculus (see Clarke

[1983]).

An important issue in contact dynamics is how to formulate physically correct friction

models and an extensive body of literature has addressed this problem. Frictional effects

are generally accounted for by introducing a friction law (Coulomb’s law is an example)

which relates the sliding velocity to the contact forces. An alternative approach uses the

maximum dissipation principle where the friction force cf is required to maximize the rate

of energy dissipation −cT
f vrel, where vrel is the relative velocity at the contact, out of all

possible friction forces allowed by a given contact force cn. However, the correct modeling

of friction still has many open questions which generates controversy in various engineering

and mathematical communities. All the various numerical methods for contact that we

mentioned above have introduced friction in the dynamics and we refer to Anitescu et al.

[1999] and Moreau [1988] for measure differential inclusion methods, and to Jean [1988], Lee

and Oden [1993], Peric and Owen [1992], Pires and Oden [1983], White and Oden [1989],

Wriggers et al. [1990], Pfeiffer [1999], Armero and Petöcz [1999], for the complementarity

and gap function formulation and to Pandolfi et al. [2002] for the nonsmooth analysis

approach.

Variational Methodology. Our approach, in contrast, is based on a variational method-

ology that goes back to Young [1969], which allows the direct handling of the nonsmooth

nature of contact problems. We also use a variational approach to develop numerical integra-

tors for nonsmooth rigid-body dynamics. The procedure is based on a discrete Lagrangian

principle and automatically generates a symplectic-momentum preserving integrator. Near

impact, we introduce a collision point and a collision time and solve for them using a

variational method.
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Variational integrators are known to have remarkable near energy preserving properties

and we will recover this excellent energy behavior even in the nonsmooth case. We want

to emphasize that the variational point of view is not confined to conservative systems,

but also applies to forced and dissipative systems as demonstrated in Kane et al. [2000].

In future works we will investigate how forces and friction can be added to our collision

algorithm and also how to incorporate other dissipative effects (inelastic collisions).

Issues Addressed in This Thesis. We first show that by introducing a space of config-

uration trajectories extended by introducing curve parameterizations as variables, that the

traditional approach to the calculus of variations can be applied. Moreover, the formulation

in the extended setting enables us to address and give a rigorous interpretations to the sense

in which the flow map of a mechanical system subjected to dissipationless impact dynamics

is symplectic. The nonautonomous variational approach also leads to Weierstrass-Erdmann

type conditions for impact, in terms of energy and momentum conservation at the contact

point (see Hestenes [1966] and Young [1969]).

A part of this thesis develops the foundations of a multisymplectic treatment of non-

smooth classical and continuum mechanics. The formulation includes a wide collection of

nonsmooth dynamical models: rigid-body collisions, material interfaces, elastic collisions,

shocks and fluid-solid interactions. From a computational viewpoint, the multisymplectic-

momentum integrators for variational PDE’s, as formulated in Marsden et al. [1998], have

already proved of value in discrete mechanics, particularly in the development of multisym-

plectic spatially and temporally adaptive algorithms (asynchronous variational integrators).

From this perspective, the formalism developed in this work sets the stage for the develop-

ment of variational multisymplectic algorithms in the nonsmooth context.

The variational approach to nonsmooth multisymplectic field theory gives the existence

of the fundamental geometric structures as well as the jump in the Cartan form (the multi-

symplectic analogue of the Lagrangian 1−form from particle mechanics). We reconsider the

need for both vertical and horizontal variations in the nonsmooth case and give an alterna-

tive motivation for such a generalization. Moreover, we show how to apply the formalism

to various multisymplectic models of continuum mechanics such as free surfaces in fluids,

fluid-solid interactions, elastic collisions and also lay the groundwork for a treatment of

shocks.
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On the discrete side, the variational formalism leads to symplectic-momentum preserving

integrators that are consistent with the jump conditions and the continuous theory.

The theory of geometric integration (see, for example, Sanz-Serna and Calvo [1994] and

Hairer and Wanner [1996]) is typically concerned with smooth Hamiltonian or Lagrangian

systems posed on smooth spaces. These techniques do not immediately apply to nonsmooth

settings, and naive applications can result in extremely bad behavior, as demonstrated in

Stewart [2000].

Our methods answer an important question posed by Stewart [2000], how can geometric

integrators be formulated and implemented for collision problems? In fact, the algorithms

developed in this work show how a symplectic method can be constructed for nonsmooth

systems so that it retains the good behavior normally associated with symplectic methods.

Some existing work has been done on extensions of geometric integration to collision

problems. In particular, Barth et al. [1999] have constructed time-symmetric methods for

contact and Houndonougbo et al. [2000] (see also Houndonougbo and Laird [2002]) have

developed methods for impacts of hard spheres. To date there have been no symplectic

methods for collisions presented, in part due to difficulties with understanding symplec-

ticity in a nonsmooth setting. However, the variational formulation of continuous time

nonsmooth systems that we develop here is a key which allows us to understand the geo-

metric structure of the problem, both before and after discretization. Our methods can be

considered extensions of the large body of work on geometric integration of ODEs (see, for

example, Hairer et al. [1993], Hairer and Wanner [1996], Iserles et al. [2000], Leimkuhler

and Reich [2001], as well as Marsden and West [2001]).

We caution that the algorithm presented here is implicit and very expensive, and thus

may not be appropriate for use with large collision systems. Nonetheless, it is the first

geometric integrator for collision problems, and thus serves as a basis for the construction

of more efficient methods in the future. In fact, the methods of this work have already led

to the development of more computationally feasible collision integrators (see Cirak and

West [2003]).

We also discuss how nonsmooth analysis techniques (Kane et al. [1999b]) can be incor-

porated into the variational procedure such that the integrator can cope with nonsmooth

contact geometries (such as corner to corner collisions). As we mentioned before, this is the

case which most existing algorithms cannot handle (the standard penalty methods simply
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fail since no proper gap function can be defined for such geometries).

Summary of main results:

• rigorous understanding and proofs of the symplectic structure for collisions

• extension of the variational multisymplectic formalism to include various nonsmooth

problems in continuum mechanics

• setting the stage for the development of multisymplectic discretizations for fluid-solid

interactions, material interfaces, elastic collisions and shocks

• extension of the variational integration methods to include collisions

• the usual properties of variational integrators such as symplecticy, energy conservation

were shown either numerically or analytically to hold in the case of collisions

Organization of the Thesis. In Chapter 2 we first consider the time-continuous sit-

uation, and extend the conventional setting of geometric Lagrangian mechanics (see, for

example, Marsden and Ratiu [1999]) to include nonsmooth but still continuous trajectories.

This allows us to recover the standard jump conditions at impact and to prove that the

flow map of the system is symplectic in the extended sense.

To apply the standard geometric mechanical tools in nonsmooth situations, it is neces-

sary to formulate the problem so that the space of admissible trajectories of the system has

a smooth manifold structure. To do this, we work in the extended framework where both

configuration variables and time are considered as functions of a fixed parameter space. This

is the same approach as used in multisymplectic mechanics (see Gotay et al. [1997], Mars-

den et al. [1998]), where it was introduced to allow the consideration of right, or horizontal,

transformations of the system.

Chapter 3 presents a variational approach to nonsmooth multisymplectic field theory.

A large collection of nonsmooth dynamical models are considered: rigid-body collisions,

material interfaces, elastic collisions, shocks and fluid-solid interactions. This chapter is the

PDE extension of the theory developed in Chapter 2 to include continuum mechanics. The

results presented in this chapter were published in Fetecau et al. [2003b].

Next, in Chapter 4 we discretize the variational structure presented in Chapter 2, based

on the concept of discrete mechanics (see Marsden and West [2001] for an overview and
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history), to obtain variational integrators for collision problems. By discretizing the varia-

tional structure, rather than some generalized equations of motion, we are able to show that

our methods have various geometric properties, including the preservation of momentum

maps and symplectic structures.

Finally, in Chapter 5 we consider particular examples of our variational integrators

for collision problems and investigate their behavior on a number of sample problems of

rigid body collisions. We also discuss briefly about possible use of the nonsmooth calculus

approach (see Kane et al. [1999b]) in the context of variational collision integrators. The

results presented in Chapters 2, 4 and 5 will appear in Fetecau et al. [2003a].

Chapter 6 is devoted to concluding remarks and future work directions.
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Chapter 2

Nonsmooth Classical Mechanics

As noted in the introduction, the basic methodology used here is that of variational me-

chanics and variational discretizations. Clearly, a generalization to the nonsmooth setting

of the autonomous, smooth variational mechanics cannot be done in a straightforward way.

One of the major obstacles is that the lack of smoothness for the mappings prevents us

from using the differential calculus on the manifold of mappings, as one essentially does in

the smooth case (see Marsden and Ratiu [1999]).

The main issue addressed in this chapter is how to overcome this difficulty and how to

derive the conservation of quantities such as energy, momentum maps and the symplectic

form using a variational approach. The approach we use is to extend the problem to

the nonautonomous case, so that both configuration variables and time are functions of

a separate parameter τ . This allows the impact to be fixed in τ space while remaining

variable in both configuration and time spaces, and it means that the relevant space of

configurations will indeed be a smooth manifold, as we shall prove.

To make our variational procedure clear, we initially consider only the frictionless, purely

elastic impact problem. In the last section, however, we show how the results can be

extended to deal with friction and nonelastic impacts.

2.1 Lagrangian Mechanics in a Nonsmooth Setting

Consider a configuration manifold Q, and a submanifold with boundary C ⊂ Q which

represent the subset of admissible configurations. Let ∂C be called the contact set and let

L : TQ → R be a regular Lagrangian.
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Remark. Similar results are obtained if we considered the configuration Q a manifold

with boundary and the contact set to be ∂Q.

Let us now consider the path space defined by

M = T × Q([0, 1], τi, ∂C,Q),

where

T = {ct ∈ C∞([0, 1], R) | c′t > 0 in [0, 1]}

Q([0, 1], τi, ∂C,Q) = {cq : [0, 1] → Q | cq is a C0, piecewise C2 curve,

cq(τ) has only one singularity at τi, cq(τi) ∈ ∂C}.

A path c ∈M is thus a pair c = (ct, cq). Given a path we can form the associated curve

q : [ct(0), ct(1)] → Q by

q(t) = cq(c−1
t (t))

and we denote by C the space of all these paths q(t) ∈ Q.

The theory we will develop applies to rigid body impact problems, such as a particle

bouncing on a rigid wall or two rigid bodies colliding, where the submanifold ∂C is obtained

from the condition that interpenetration of matter cannot occur. The moment of impact τi

is fixed in the τ space, but is allowed to vary in the t space according to ti = ct(τi); thus

the setting we suggest is not restrictive in this sense.

We use a nonautonomous formulation of an autonomous mechanical system in order to

achieve smoothness of the manifold of mappings, as one can see from the following lemmas.

Lemma 1. T is a smooth manifold.

Proof. T is an open set in C∞([0, 1], R), which is a smooth manifold (see Marsden and

Ratiu [1999]). Then T is a submanifold of C∞([0, 1], R) and thus a manifold. �

Lemma 2. Q([0, 1], τi, ∂C,Q) is a smooth manifold.

Proof. Fix a chart U in Q such that U ∩ ∂C 6= ∅ and U ∩ ∂C is a chart in ∂C. Consider

the set

QU = Q([0, τi], U)×Q([τi, 1], U)× (U ∩ ∂C),
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where

Q([0, τi], U) = {q : [0, τi] → Q | q is a C∞ curve, q(τi) ∈ U}

Q([τi, 1], U) = {q : [τi, 1] → Q | q is a C∞ curve, q(τi) ∈ U}.

An element c ∈ Q([0, 1], τi, ∂C,Q) is the inverse image of the origin for some map gU :

QU → R2n given by

gU (q1(τ), q2(τ), qi) =

 q1(τi)− qi

q2(τi)− qi

 ,

where by n we denote the dimension of Q. One can prove that 0 is a regular value of gU ,

and then the set g−1
U (0) is a submanifold of QU and thus it has a manifold structure.

Now {g−1
U (0)}U represents a covering of Q([0, 1], τi, ∂C,Q), where each element of the

covering is a manifold. The elements of the covering satisfy the compatibility conditions

necessary to assure that Q([0, 1], τi, ∂C,Q) itself is a manifold (see Abraham et al. [1988]).

�

Corollary 1. M is a smooth manifold.

Remark. The theory can be easily extended to a problem involving more than one impact,

by simply taking multiple points τi at which the trajectory is nonsmooth.

Note that the tangent space at q ∈ Q can be written as

TqQ = {v : [0, 1] → TQ | v is a C0 piecewise C2 map , v(τi) ∈ Tq(τi)∂C},

which will be a convenient form below when we consider variations of trajectories. The

tangent space to the path space M is then given by TM = TT × TQ.

Remark. As we have noted above, fixing the impact point τi in τ space allows us to

rigorously define what we mean by a variation of the impact point in t space. This is

similar to the introduction of a parameterized spacetime in Marsden et al. [1998] and Lew

et al. [2002].
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The action map G : M→ R is given by

G(ct, cq) =
∫ 1

0
L

(
cq(τ),

c′q(τ)
c′t(τ)

)
c′t(τ) dτ, (2.1)

where c′ denotes the derivative with respect to τ .

Remark. c′q(τ) does not exist at τi, but the definition makes sense nonetheless.

If q is the associated curve for c ∈ M, by the change of coordinates: s = ct(τ) we can

also write G as

G(q) =
∫ ct(1)

ct(0)
L(q(s), q̇(s))ds, (2.2)

where q̇ denotes the derivative with respect to t.

Define the extended configuration manifold to be Qe = R×Q and the second-order

submanifold of T (TQe) to be

Q̈e = { d2c

dτ2
(0) ∈ T (TQe) | c : [0, 1] → Qe is aC2 curve}. (2.3)

Now we can derive the equations of motions and the jump conditions in a purely varia-

tional way, by taking variations of the actions with respect to the path. This leads to the

following fundamental theorem:

Theorem 1. Given a Ck Lagrangian L ,k ≥ 2, there exists a unique Ck−2 mapping EL :

Q̈ → T ∗Qe and a unique Ck−1 1-form ΘL on TQe, such that for all variations δc ∈ TcM

of c we have:

dG(c) · δc =
∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ + ΘL(c′) · δ̂c|τ
−
i

0

+ ΘL(c′) · δ̂c|1
τ+
i

, (2.4)

where

δ̂c(τ) =
((

c(τ),
∂c

∂τ
(τ)
)

,

(
δc(τ),

∂δc

∂τ
(τ)
))

.

The mapping EL is called the Euler-Lagrange derivative and the 1-form ΘL is called
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the Lagrangian 1-form. In coordinates they have the expression

EL(c′′) =
[
∂L

∂q
c′t −

d

dτ

(
∂L

∂q̇

)]
dcq +

[
d

dτ

(
∂L

∂q̇

c′q
c′t
− L

)]
dct (2.5)

ΘL(c′) =
[
∂L

∂q̇

]
dcq −

[
∂L

∂q̇

c′q
c′t
− L

]
dct. (2.6)

Proof. Consider δc ∈ TcM. We calculate dG(c) · δc using the definition (see Marsden and

Ratiu [1999])

dG(c) · δc =
d

dλ
G(cλ)

∣∣∣∣
λ=0

, (2.7)

where cλ is a curve in M with c0 = c and dcλ

dλ

∣∣∣
λ=0

= δc. Splitting cλ into components

cλ = (cλ
t , cλ

q ), we then have
(

d
dλcλ

t

∣∣
λ=0

, d
dλcλ

q

∣∣
λ=0

)
= (δct, δcq) and we can calculate

dG · δc =
∫ 1

0

[
∂L

∂q
δcq +

∂L

∂q̇

(
δc′q
c′t

−
c′qδc

′
t

(c′t)2

)]
c′t dτ +

∫ 1

0
Lδc′t dτ.

Now we split the integral
∫ 1
0 into

∫ τi

0 +
∫ 1
τi

in order to integrate the δc′q and δc′t terms by

parts. Some straightforward algebra then leads to equation (2.4). �

2.2 Hamilton’s Principle of Critical Action

Hamilton’s principle of critical action tells us that we should consider critical points of the

action function. Therefore, let define the space of solutions ML ⊂ M to be the set of

all paths c ∈ M which satisfy dG(c) · δc = 0 for all variations δc ∈ TcM which are zero at

the boundary points 0 and 1.

Using (2.4) we can see that c is a solution if it satisfies:

∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ + ΘL(c′)|τ
+
i

τ−i
· δ̂c(τi) = 0 (2.8)

for all variations δc ∈ TcM.

From equation (2.8) it is clear that c is a solution if and only if the Euler-Lagrange

derivative is zero on smooth portions and the Lagrangian 1-form has a zero jump at τi.
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Splitting EL(c′′) into the two components we obtain

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 in [t0, ti) ∪ (ti, t1] (2.9)

d

dt

(
∂L

∂q̇
q̇ − L

)
= 0 in [t0, ti) ∪ (ti, t1], (2.10)

where t0 = ct(0), t1 = ct(1) and ti = ct(τi).

In fact, (2.10) is redundant, as it is a consequence of (2.9). Indeed, if c is a path satisfying

(2.9) for all t ∈ (t0, ti) ∪ (ti, t1), then the second component (2.10) of the Euler-Lagrange

equations is identically satisfied. To see this, we may calculate

d

dt

(
∂L

∂q̇
q̇ − L

)
=

d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈ − dL

dt

=
[
∂L

∂q
q̇ +

∂L

∂q̇
q̈

]
− dL

dt

= 0,

where we used (2.9) to pass from the first to the second line.

The second part (2.10) of the Euler-Lagrange equations represents the conservation of

energy for an autonomous system, provided the motion is smooth. The energy E : TQ → R

is defined to be

E(q, q̇) =
∂L

∂q̇
(q, q̇) · q̇ − L(q, q̇).

It is not surprising that the second part of the Euler-Lagrange equations (2.10) is redundant,

since the first part (2.9) already has the energy evolution built into it.

The previous definition of the energy function allows us to write the Lagrangian 1-form

in the compact notation

ΘL =
∂L

∂q̇
dq − Edt, (2.11)

where we use (q, t) to refer to the two components of c. The conservation of the Lagrangian

1-form at the impact time reads:

ΘL|τ−i = ΘL|τ+
i

on TQe|(R× ∂C). (2.12)



15

Splitting this into the two components gives

∂L

∂q̇

∣∣∣∣
t=t−i

· δq =
∂L

∂q̇

∣∣∣∣
t=t+i

· δq (2.13)

for any δq ∈ Tq(ti)∂C and

E(q(t−i ), q̇(t−i )) = E(q(t+i ), q̇(t+i )). (2.14)

These equations are the Weierstrass-Erdmann type conditions for impact. That is, equation

(2.13) states that the linear momentum must be conserved in the tangent direction to ∂C,

while equation (2.14) states that the energy must be conserved during an elastic impact.

The system of equations (2.13) and (2.14) must be solved for q̇(t+i ). An obvious solution

is q̇(t+i ) = q̇(t−i ), but this is ruled out since the resulting trajectory would no longer lie in

the admissible set. That is, it would violate the physical non-interpenetration condition.

Remark. Of course, existence and uniqueness for nonsmooth systems are very deep ques-

tions. Here, we will simply remark that for a codimension-one smooth boundary ∂C and

quadratic kinetic energy, solutions to the system (2.13), (2.14) exist and are unique locally.

The questions of global existence and uniqueness of solutions for more general Lagrangians

is left for future works.

2.3 Lagrangian Flows and Conservation of the Symplectic

Form

As we have already seen, a path c ∈ M is a solution of the variational principle if its

associated curve q(t) satisfies the Euler-Lagrange equations (2.9) and the jump conditions

(2.13) and (2.14). It is a well-known fact that, in the smooth case, such a trajectory is

uniquely determined by an initial condition in TQ. Since we work in a nonsmooth context,

we must assume uniqueness of the physical trajectory at the impact point; we have already

discussed in the previous section some conditions under which this actually occurs.

Under this hypothesis, the space CL, defined to be the space of curves q(t) that satisfy

(2.9), (2.13) and (2.14) may be identified with the space of initial conditions (t0, q0, q̇0) on

R× TQ.
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Based on these remarks, we can define a flow Ft : R× TQ → R× TQ as follows

Ft(t0, q0, q̇0) = (t0 + t, q(t0 + t), q̇(t0 + t)), (2.15)

where q(t) is the unique trajectory in CL corresponding to (t0, q0, q̇0) ∈ R×TQ. The mapping

Ft is called the Lagrangian flow. In the nonsmooth setting, Ft will not necessarily be a

smooth map on the whole of its domain. Later, we will restrict attention to the parts of

the domain on which Ft is smooth, in order to use the derivatives of Ft with respect to the

initial conditions and to time.

Remark. Even though we have worked within an extended configuration manifold formu-

lation up until this point, here we have defined a flow on TQ, rather than taking a flow on

TQe with initial conditions in TQe. The reason for doing this is that the derivative t′0 has

no physical meaning, and no mechanical problem has the derivative of time with respect to

some parameter as an initial condition.

Next, we will show in which sense the Lagrangian flow Ft is symplectic. We begin by

relating the previous approach to the one used in the rest of the chapter.

As we noted above, to any initial condition (t0, q0, q̇0) in R × TQ there corresponds a

unique trajectory q(t) ∈ CL s.t. (q(t0), q̇(t0)) = (q0, q̇0). Trajectories in CL are unique up to

reparameterization in τ . Accordingly, we can define an equivalence relation in ML by

c0 ∼ c1 iff c0
q ◦ (c0

t )
−1 = c1

q ◦ (c1
t )
−1, (2.16)

where c0, c1 ∈ ML, c0 = (c0
q , c

0
t ), c

1 = (c1
q , c

1
t ). That is, two paths are equivalent if they

have the same associated curve, and so to a given trajectory q(t) in CL there corresponds

an equivalence class ĉ of curves in the extended space.

In a similar manner we can define an equivalence relation on TQe by

(t0, q0, t
′
0, q

′
0) ∼ (t1, q1, t

′
1, q

′
1) iff t0 = t1, q0 = q1 and

q′0
t′0

=
q′1
t′1

, (2.17)

which is a pointwise version of the previous equivalence relation (2.16).

Now, the quotient space TQe/∼ may be identified with the product R × TQ and the

flow Ft may be regarded not as a flow on TQe (which would not be desirable, as explained
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in Remark 2.3), but as a flow on the equivalence classes of TQe.

To prove symplecticity for the flow Ft in a precise sense we must reinterpret Theorem 1

by slightly modifying the definition of the Lagrangian 1-form ΘL.

That is, Theorem 1 stands with the same statement and fundamental relation (2.4) if

we replace ΘL with the 1-form Θ̄L on R × TQ ∼= TQe/∼, where Θ̄L is given by the same

coordinate expression as ΘL, i.e. relation (2.6). More precisely, (2.4) becomes

dG(c) · δc =
∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ

+ Θ̄L(c̃) · δc̃|τ
−
i

0 + Θ̄L(c̃) · δc̃|1
τ+
i

, (2.18)

where

c̃(τ) =
(

ct(τ), cq(τ),
c′q(τ)
c′t(τ)

)
δc̃(τ) =

((
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,

(
δct(τ), δcq(τ),

(
δc′q
c′t

−
c′qδc

′
t

(c′t)2

)
(τ)
))

.

It is exactly this 1-form Θ̄L on R × TQ which is preserved by the flow Ft, as we will now

show.

To any fixed (t0, q0, q̇0) ∈ R × TQ we associate the integral curve s 7→ Fs(t0, q0, q̇0) for

s ∈ [0, t]; the value of G on that curve is denoted by Gt, and again called the action. Thus

we define the map Gt : R× TQ → R by

Gt(t0, q0, q̇0) =
∫ t0+t

t0

L (q(s), q̇(s)) ds, (2.19)

where q(t) ∈ CL is the solution corresponding to (t0, q0, q̇0).

If c = (ct, cq) is any representative in the equivalence class ĉ corresponding to q, we can

write

Ft(t0, q0, q̇0) =
(

ct(τ), cq(τ),
c′q(τ)
c′t(τ)

)
, (2.20)

where τ = c−1
t (t0 + t).

Consider now an arbitrary curve λ 7→ (tλ0 , qλ
0 , q̇λ

0 ) in R × TQ which passes through

(t0, q0, q̇0) at λ = 0. Denote by qλ(t) the unique trajectories in CL corresponding to

(tλ0 , qλ
0 , q̇λ

0 ) and by ĉλ their equivalence classes in ML (at λ = 0 they reduce to q(t) and ĉ,
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respectively). We pick representatives (cλ
t , cλ

q ) in ĉλ such that for any λ ≥ 0 we have

(cλ
t )−1(tλ0 + t) = const, (2.21)

for some t > 0; we denote this common value by τ .

Then, using (2.20) and (2.21), the fundamental equation (2.18) becomes

dGt((t0, q0, q̇0)) · (δt0, δq0, δq̇0) = Θ̄L(Ft(t0, q0, q̇0)) ·
d

dλ
Ft(tλ0 , qλ

0 , q̇λ
0 )
∣∣∣∣
λ=0

− Θ̄L(t0, q0, q̇0) ·
d

dλ
(tλ0 , qλ

0 , q̇λ
0 )
∣∣∣∣
λ=0

, (2.22)

where (δt0, δq0, δq̇0) = d
dλ |λ=0

(tλ0 , qλ
0 , q̇λ

0 ).

Taking the exterior derivative of (2.22) we derive

0 = ddGt = F ∗
t (dΘ̄L)− dΘ̄L. (2.23)

Defining the Lagrangian symplectic form by ΩL = −dΘ̄L we now see that relation (2.23)

gives the symplecticity of the flow in the extended sense

F ∗
t ΩL = ΩL. (2.24)

Thus, we derived conservation of the canonical symplectic structure in the extended sense

(see Kane et al. [1999a]), namely,

ΩL = ωL + dE ∧ dt, (2.25)

where ωL = −dθL is the canonical symplectic form. Here, θL represents the component of

the Lagrangian 1-form given by (2.11)

θL =
∂L

∂q̇
dq. (2.26)

It is the term dE ∧ dt that distinguishes the nonautonomous structure used here from the

autonomous approach, for which the symplectic structure is given only by the canonical

symplectic form ωL.
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2.4 Noether’s Theorem

Suppose that a Lie group G, with Lie algebra g, acts on Q by the (left or right) action

Φ : G × Q → Q. Consider the tangent lift of this action to TΦ : G × TQ → TQ given by

(TΦ)g(vq) = T (Φg) · vq and for ξ ∈ g define the infinitesimal generators ξQ : Q → TQ

and ξTQ : TQ → T (TQ) by

ξQ(q) =
d

dt |t=0

exp(tξ) · q

ξTQ(vq) =
d

dt |t=0

Tqφt(vq),

where φt is the flow of the vector field ξQ.

In this section we will not use the extended configuration manifold setting with varia-

tions in both time and configuration variables, as is done in the rest of the chapter. This

means that we are restricted to symmetries of the configuration variables, which do not

involve altering the time variable. This allows us to deal with most of the interesting phys-

ical problems, while still keeping the theory relatively simple. For a full account of the

conservation of momentum maps in the extended setting see Marsden and West [2001].

For a fixed initial time t0 ∈ R, define the flow map F̃t : TQ → TQ by

F̃t(q0, q̇0) = (q(t0 + t), q̇(t0 + t)), (2.27)

where q(t) is the unique trajectory in CL corresponding to (q0, q̇0) ∈ TQ, as initial condition

at t0.

In the autonomous setting the Lagrangian 1-form Θ̄L reduces to the configuration com-

ponent θL given by (2.26) and the action Gt from (2.19) becomes the map Ḡt : TQ → R

defined by

Ḡt(q0, q̇0) =
∫ t0+t

t0

L (q(s), q̇(s)) ds. (2.28)

Define the Lagrangian momentum map JL : TQ → g∗ to be

JL(vq) · ξ = θL · ξTQ(vq).

We will now show that when the group action is a symmetry of both the Lagrangian and
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the submanifold ∂C, then the momentum maps are conserved quantities of the flow.

A Lagrangian L : TQ → R is said to be infinitesimally invariant under the lift of

the group action Φ : G × Q → Q if dL · ξTQ = 0 for all ξ ∈ g, and in this case the group

action is said to be a symmetry of the Lagrangian.

In proving the following theorem we will essentially use the assumption that the group

action Φ leaves the boundary ∂C of the collision set invariant (locally). An example where

this assumption is valid is the case of two or more irregular bodies (for example binary as-

teroids) moving in space under gravitational forces. In this case the collision set is invariant

to translations and rotations (G = SE(3)).

Theorem 2 (Noether’s Theorem). Consider a Lagrangian system L : TQ → R which is

infinitesimally invariant under the lift of the (left or right) group action Φ : G×Q → Q. In

the assumption that the group action leaves ∂C invariant (locally), then the corresponding

Lagrangian momentum map JL : TQ → g∗ is a conserved quantity of the flow, so that

JL ◦ F̃t = JL for all times t.

Proof. The group action of G on Q induces a group action of G on the space C of paths

q(t) in Q by pointwise action, so that Φg(q)(t) = Φg(q(t)). The tangent lift of Φ acting on

C will thus be the pointwise group action of the tangent lift of Φ group action on Q. From

this we derive

dG(q) · ξC(q) =
∫ t1

t0

dL · ξTQ dt

and so, symmetries of the Lagrangian induce symmetries of the action. This implies that

Φg leaves the space of solutions CL of the Euler-Lagrange equations invariant, and so we

may restrict Φg to CL.

Furthermore, the flow map F̃t : TQ → TQ commutes with the tangent lift of Φ on C:

F̃t ◦ TΦg = TΦg ◦ F̃t. Differentiating this with respect to g in the direction ξ gives

T (F̃t) · ξTQ = ξTQ ◦ F̃t.

We now follow the same idea used to prove symplecticity of the flow map Ft and identify

the space of solutions CL with the space of initial conditions TQ. For an initial condition
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vq ∈ TQ and corresponding solution curve q ∈ CL we thus have

dG(q) · ξC(q) = dḠt(vq) · ξTQ(vq)

= ((F̃t)∗(θL)− θL)(vq) · ξTQ(vq) (2.29)

from (2.22).

To derive (2.29) one uses the assumption that the group action Φ leaves ∂C invariant

(locally). More precisely, it is essential that the path curves qλ ∈ C corresponding to

vλ
q = ηλ(vq) (by ηλ we denote the flow of ξTQ on TQ) have exactly the same impact time ti

as the curve q. We conclude this from the relation

qλ(ti) = Φexp(λξ)(q)(ti) = exp(λξ) · q(ti),

as well as the assumption on the group action and the condition that q(ti) ∈ ∂C.

As the left-hand side of (2.29) is always zero, the previous identity gives

(θL · ξTQ) ◦ F̃t = θL · ξTQ,

which is the definition of conservation of the momentum map. This argument is valid for

any time t ∈ R, giving Noether’s theorem. �

2.5 Forcing and Friction

In this section we extend the theory developed so far to include forcing and friction. To do

this in the variational framework, we turn from using Hamilton’s principle to the Lagrange-

d’Alembert extension of it.

The usual force field description of impact dynamics contains a given external force, a

normal contact force field over the area in contact and a friction force field required to be

self-equilibrated and tangential to the surfaces in contact.

Following Marsden and Ratiu [1999], we define the exterior force field as a fiber-

preserving map F : TQe → T ∗Qe over the identity, which we write in coordinates as

F : (c, c′) 7→ (c, F (c, c′)). (2.30)
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We use a unified treatment of contact forces (the normal and the frictional forces) by defining

the contact force field to be a map f con : TQe|(∂C × R) → T ∗(∂C × R).

Given a Lagrangian L and the exterior and contact force fields defined as above, the

integral Lagrange-d’Alembert principle for a curve c ∈M states that

δ

∫ 1

0
L

(
cq(τ),

c′q(τ)
c′t(τ)

)
c′t(τ) dτ +

∫ 1

0
F (c(τ), c′(τ)) · δc(τ) dτ

+ f con(c(τi), c′(τi)) · δc(τi) = 0, (2.31)

for all admissible variations δc vanishing at the endpoints.

Using integration by parts and notations from Section 2.1 one can show that (2.31) is

equivalent to

∫ τi

0

[
EL(c′′) + F (c′)

]
· δc dτ +

∫ 1

τi

(EL(c′′) + F (c′)) · δc dτ

+ ΘL(c′)|τ
+
i

τ−i
· δ̂c(τi) + f con(c(τi), c′(τi)) · δc(τi) = 0. (2.32)

From (2.32) we obtain the extended forced Euler-Lagrange equations, which have

coordinate expressions

d

dτ

(
∂L

∂q̇

)
− ∂L

∂q
c′t = Fq in [0, τi) ∪ (τi, 1] (2.33)

− d

dτ

(
∂L

∂q̇
q̇ − L

)
= Ft in [0, τi) ∪ (τi, 1], (2.34)

where (Ft, Fq) denote the corresponding components of F .

However, the first part (2.33) of the extended forced Euler-Lagrange equations has the

energy evolution built into it, as can be seen from

dE

dt
=

d

dt

(
∂L

∂q̇
q̇ − L

)
=
(

d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇ (2.35)

=
Fq

c′t
q̇,

where we used (2.33) to pass from the first to the second line.

Therefore, from (2.34), the time component Ft of the exterior force field must necessarily
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be of the form

Ft = −Fq · q̇. (2.36)

This compatibility condition is a consequence of the fact that the mechanical system is

autonomous and the equations must depend only on the associated curve q(t). The nonau-

tonomous approach is relevant only in the context of nonsmooth mechanics and it is not

surprising that there is no particular gain of this approach wherever the motion is smooth.

Now we turn to (2.32) and write the remaining terms on the left hand side in components,

to obtain
∂L

∂q̇

∣∣∣∣t+i
t−i

· δq + f con
q · δq = 0, (2.37)

for any δq ∈ Tq(ti)∂C, and

E(q(t+i ), q̇(t+i ))− E(q(t−i ), q̇(t−i ))− f con
t = 0. (2.38)

The equations (2.37) and (2.38) represent the standard jump conditions for an inelastic

impact with friction. The equation (2.37) gives the jump in the tangential component

of the linear momentum due to the frictional forces acting on the tangent plane of the

contact submanifold ∂C. The energy dissipation, given by (2.38), is due to the tangential

frictional forces, as well as to the normal reaction force exerted by the constraint. For

frictionless collisions, f con
t plays the same role as the coefficient of restitution from the

measure differential inclusion formulation of contact dynamics (Kunze and Marques [2000];

Stewart [2000]).
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Chapter 3

Nonsmooth Continuum Mechanics

The purpose of this chapter is to combine the ideas of the variational collision theory and

algorithms with the multisymplectic theory and algorithms to produce a variational theory

for PDE’s in mechanics that allow for material interfaces, elastic collisions, shocks and fluid-

solid interactions. In Section 3.4.2 we classify a collection of nonsmooth dynamic models

that we will study.

To lay the variational and multisymplectic foundations for nonsmooth continuum me-

chanics we will rely on the smooth case studied from this perspective in Marsden et al.

[2001]. We plan to merge this work with variational algorithms and discrete mechanics

in our future work on the topic. The results presented in this chapter were published in

Fetecau et al. [2003b].

3.1 Multisymplectic Geometry

In this section we will review some aspects of basic covariant field theory in the framework

of multisymplectic geometry. The multisymplectic framework is a PDE generalization of

classical non-relativistic mechanics (or particle mechanics) and has diverse applications,

including to electromagnetism, continuum mechanics, gravity, bosonic strings, etc.

The traditional approach to the multisymplectic geometric structure closely follows the

derivation of the canonical symplectic structure in particle mechanics. The derivation first

defines the field theoretic analogues of the tangent and cotangent bundles (called the first jet

bundle and the dual jet bundle, respectively). It then introduces a canonical multisymplectic

form on the dual jet bundle and pulls it back to the Lagrangian side using the covariant

Legendre transform. As an alternative, Marsden et al. [1998] gave a very elegant approach
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of deriving the multisymplectic structure by staying entirely on the Lagrangian side, which

we will use here.

We start by reviewing the main concepts of the multisymplectic field-theoretic setting.

Let X be an oriented manifold, which in many examples is spacetime, and let πXY :

Y → X be a finite-dimensional fiber bundle called the covariant configuration bundle.

The physical fields will be sections of this bundle, which is the covariant analogue of the

configuration space in classical mechanics.

The role of the tangent bundle is played by J1Y (or J1(Y )), the first jet bundle of Y .

We identify J1Y with the affine bundle over Y whose fiber over y ∈ Yx = π−1
XY (x) consists

of those linear maps γ : TxX → TyY satisfying

TπXY ◦ γ = IdTxX .

We let dim X = n+1 and the fiber dimension of Y be N . Coordinates on X are denoted

xµ, µ = 1, 2, . . . , n, 0, and fiber coordinates on Y are denoted by yA, A = 1, . . . , N . These

induce coordinates vAµ on the fibers of J1Y . For a section ϕ : X → Y , its tangent map at

x ∈ X, denoted Txϕ, is an element of J1Yϕ(x). Thus, the map x 7→ Txϕ is a local section

of J1Y regarded as a bundle over X. This section is denoted j1(ϕ) or j1ϕ and is called the

first jet of ϕ. In coordinates, j1(ϕ) is given by

xµ 7→ (xµ, ϕA(xµ), ∂νϕ
A(xµ)), (3.1)

where ∂ν = ∂
∂xν .

We will study Lagrangians defined on J1Y and derive the Euler-Lagrange equations

by a procedure similar to that used in Lagrangian mechanics on the tangent bundle of

a configuration manifold (see Marsden and Ratiu [1999]). We thus consider theories for

which Lagrangians depend at most on the fields and their first derivatives (first-order field

theories). For a geometric-variational approach to second-order field theories we refer the

reader to Kouranbaeva and Shkoller [2000].

Higher order jet bundles of Y , JmY , can be defined as J1(· · · (J1(Y ))) and are used in

the higher order field theories. In this work we will use only J1Y and a specific subbundle

Y ′′ of J2Y which we will define below.
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Let γ ∈ J1Y so that πX,J1Y (γ) = x. Analogous to the tangent map of the projection

πY,J1Y , TπY,J1Y : TJ1Y → TY , we may define the jet map of this projection which takes

J2Y onto J1Y :

JπY,J1Y : Aff(TxX, TγJ1Y ) → Aff(TxX, TπY,J1Y · TγJ1Y ).

We define the subbundle Y ′′ of J2Y over X which consists of second-order jets so that on

each fiber

Y ′′
x = {s ∈ J2Yγ | JπY,J1Y (s) = γ}. (3.2)

In coordinates, if γ ∈ J1Y is given by (xµ, yA, vA
µ), and s ∈ J2Yγ is given by

(xµ, yA, vA
µ, wA

µ, kA
µν), then s is a second-order jet if vA

µ = wA
µ. Thus, the second jet

of a section ϕ, j2(ϕ), given in coordinates by the map xµ 7→ (xµ, ϕA, ∂νϕ
A, ∂µ∂νϕ

A), is an

example of a second-order jet.

Next we introduce the field theoretic analogue of the cotangent bundle. We define the

dual jet bundle J1Y ∗ to be the vector bundle over Y whose fiber at y ∈ Yx is the set of

affine maps from J1Yy to Λn+1(X)x, the bundle of (n + 1)-forms on X. A smooth section

of J1Y ∗ is therefore an affine bundle map of J1Y to Λn+1(X) covering πXY .

Fiber coordinates on J1Y ∗ are (p, p µ
A ), which correspond to the affine map given in

coordinates by

vA
µ 7→ (p + p µ

A vA
µ)dn+1x, (3.3)

where

dn+1x = dx1 ∧ · · · ∧ dxn ∧ dx0.

Analogous to the canonical one- and two-forms on a cotangent bundle, there are canonical

(n + 1)- and (n + 2)-forms on the dual jet bundle J1Y ∗. We will omit here the intrinsic

definitions of these canonical forms (see Gotay et al. [1997] for details). In coordinates, with

dnxµ = ∂µ dn+1x, these forms are given by

Θ = p µ
A dyA ∧ dnxµ + pdn+1x (3.4)

and

Ω = dyA ∧ dp µ
A ∧ dnxµ − dp ∧ dn+1x. (3.5)
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A Lagrangian density L : J1Y → Λn+1(X) is a smooth bundle map over X. In

coordinates, we write

L(γ) = L(xµ, yA, vA
µ )dn+1x. (3.6)

The covariant Legendre transform for L is a fiber preserving map over Y , FL : J1Y → J1Y ∗,

expressed intrinsically as the first-order vertical Taylor approximation to L:

FL(γ) · γ′ = L(γ) +
d

dε

∣∣∣∣
ε=0

L(γ + ε(γ′ − γ)), (3.7)

where γ, γ′ ∈ J1Yy.

The coordinate expression of FL is given by

pµ
A =

∂L

∂vA
µ

, and p = L− ∂L

∂vA
µ

vA
µ (3.8)

for the multimomenta pµ
A and the covariant Hamiltonian p.

Now we can use the covariant Legendre transform to pull back to the Lagrangian side

the multisymplectic canonical structure on the dual jet bundle. We define the Cartan

form as the (n + 1)-form ΘL on J1Y given by

ΘL = (FL)∗Θ (3.9)

and the (n + 2)-form ΩL by

ΩL = −dΘL = (FL)∗Ω, (3.10)

with local coordinate expressions

ΘL =
∂L

∂vA
µ

dyA ∧ dnxµ +
(

L− ∂L

∂vA
µ

vA
µ

)
dn+1x (3.11)

and

ΩL = dyA ∧ d

(
∂L

∂vA
µ

)
∧ dnxµ − d

(
L− ∂L

∂vA
µ

vA
µ

)
∧ dn+1x. (3.12)

To lay the groundwork for the following sections we introduce the concept of jet pro-

longations. We will show how automorphisms of Y lift naturally to automorphisms of J1Y

and we will construct the covariant analogue of the tangent map.

Let ηY : Y → Y be a πXY -bundle automorphism covering a diffeomorphism ηX : X →
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X. If γ : TxX → TyY is an element of J1Y , let ηJ1Y (γ) : TηX(x)X → TηY (y)Y be defined by

ηJ1Y (γ) = TηY ◦ γ ◦ Tη−1
X . (3.13)

The πY,J1Y -bundle automorphism j1(ηY ), also denoted ηJ1Y , is called the first jet exten-

sion or prolongation of ηY to J1Y and has the coordinate expression

ηJ1Y (γ) =
(
ηµ

X(x), ηA
Y (x, y),

[
∂νη

A
Y +

(
∂BηA

Y

)
vB

ν

]
∂µ

(
η−1

X

)ν)
, (3.14)

where γ = (xµ, yA, vA
µ).

If V is a vector field on Y whose flow is ηλ, so that

V ◦ ηλ =
dηλ

dλ
,

then its first jet extension or prolongation, denoted j1(V ) or VJ1Y , is the vector field

on J1Y whose flow is j1(ηλ); that is

j1(V ) ◦ j1(ηλ) =
d

dλ
j1(ηλ). (3.15)

In coordinates, j1(V ) has the expression

j1(V ) =
(

V µ, V A,
∂V A

∂xµ
+

∂V A

∂yB
vB
µ − vA

ν

∂V ν

∂xµ

)
. (3.16)

We note that one can also view V as a section of the bundle TY 7→ Y and take its first

jet in the sense of (3.1). Then one obtains a section of J1(TY ) 7→ Y which is not to be

confused with j1(V ) as defined by (3.15) and (3.16); they are two different objects.

This is the differential-geometric formulation of the multisymplectic structure. However,

as we mentioned before, there is a very elegant and interesting way to construct ΘL directly

from the variational principle, staying entirely on the Lagrangian side. It is this variational

approach that we will use in the next sections to extend the multisymplectic formalism to

the nonsmooth context.
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3.2 Variational Multisymplectic Geometry in a Nonsmooth

Setting

We now consider the variational approach to multisymplectic field theory of Marsden et al.

[1998] and formulate it a nonsmooth setting. A novelty of this variational approach is that

it considers arbitrary and not only vertical variations of sections. The motivation for such

a generalization is that, even though both the vertical and arbitrary variations result in

the same Euler-Lagrange equations, the Cartan form obtained from the vertical variations

is missing one term (corresponding to the dn+1x form). However, the horizontal variations

account precisely for this extra term and make the Cartan form complete.

We reconsider the need for horizontal variations in the nonsmooth context and adapt

the formalism developed in Marsden et al. [1998] to give a rigorous derivation of the jump

conditions when fields are allowed to be nonsmooth.

3.2.1 Nonsmooth Multisymplectic Geometry

Let U be a manifold with smooth closed boundary. In the smooth context, the configuration

space is the infinite-dimensional manifold defined by an appropriate closure of the set of

smooth maps

C∞ = {φ : U → Y | πXY ◦ φ : U → X is an embedding}.

In the the nonsmooth setting, we must also introduce a codimension 1 submanifold D ⊂

U , called the singularity submanifolds across which the fields φ may have singularities.

For example, the submanifold D may be the spacetime surface separating two regions of a

continuous medium or, in the case of two elastic bodies colliding, D may be the spacetime

contact set.

For the smooth case, the observation that the configuration space is a smooth manifold

enables the use of differential calculus on the manifold of mappings as required by variational

principles (see Marsden and Ratiu [1999], Marsden et al. [1998]). In this subsection we will

present various types of configuration spaces that one must consider in the nonsmooth

context and discuss their manifold structure.
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Configuration spaces The applications that we present in the next sections require

different configuration spaces, according to the type of singularities that we allow across

the singularity submanifold D.

Case (a). Continuous but nonsmooth For the first examples presented in this chap-

ter (such as rigid-body dynamics with impact and propagating singular surfaces within a

continuum medium), the configuration space is the set of continuous maps

Ca = {φ : U → Y | πXY ◦ φ : U → X is an embedding,

φ is C0 in U and of class C2 in U \D}. (3.17)

For each φ ∈ Ca, we set φX = πXY ◦ φ and UX = πXY ◦ φ(U), DX = πXY ◦ φ(D), so that

φX : U → UX and its restriction to D are diffeomorphisms. We also denote the section

φ ◦ φX
−1 by ϕ, as in

Y

πXY

��
U

φX

//

φ

??~~~~~~~~~~~~~~~~~
X

ϕ

KK

The submanifold D separates the interior of U into two disjoint open subsets U+ and U−,

that is int(U) = U+ ∪U− ∪ (U ∩D) and we let U+
X = φX(U+) and U−

X = φX(U−) be their

corresponding images in X. It follows that int(UX) = U+
X ∪ U−

X ∪ (UX ∩DX).

Remark 1. For particle mechanics, the formalism reduces to the spacetime formulation that

we developed in Chapter 2 (see also Fetecau et al. [2003a]) to study nonsmooth rigid-body

dynamics. We will discuss this example in detail in Section 3.3.

Case (b). Discontinuous without separation (slip) For problems such as propaga-

tion of free surfaces in fluids or interaction of an elastic body and a fluid, the configuration

map φ is no longer continuous. We must therefore choose a new configuration space to

include these cases. Observe that in such problems the fluid-fluid and the solid-fluid bound-

aries are material surfaces, in the sense that particles which are on the separating surface

at a given time remain on the surface at later times.
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Let US and UF be two open subsets of U such that ∂US = ∂UF = D is a codimension

1 submanifold in U . We adopt the subscripts S and F because one of the applications of

this general setting will be solid-fluid interactions; US, UF and D will be interpreted as the

spacetime regions of the solid, the fluid and of the surface separating the two materials,

respectively. For fluid-fluid boundaries, D is the spacetime free surface.

The requirement that there be no flow across the material interface is expressed by

considering the configuration space

Cb = {φ : U → Y | πXY ◦ φ : U → X is an embedding,

φ is of class C2 in US ∪ UF and φS(D) = φF (D) = φ(D)}, (3.18)

where φS, φF are the restrictions of the map φ on US, UF , respectively, and the notation f

represents the continuous extension of the map f to the closure of its domain.

Remark 2. One may alternatively denote US and UF by U+ and U−, respectively. This

will be particularly useful in §3.2.2, where we retain only these notations for the domains

where there are no singularities. As in case (a), we denote by U+
X , U−

X and DX the images

in X of U+, U− and D, under φX ,.

Case (c). Discontinuous with separation (collisions) Collisions of elastic bodies

may exhibit both of the features of the two classes of configuration maps presented so far.

The mechanical impact of two solids generates stress waves that propagate through their

bodies, reflect on the boundaries and then return to the contact interface. At the instant

when a returning wave first reaches the contact surface, the release begins and separation

will eventually occur. Because of the complicated, non-linear structure of the governing

equations, little of a general nature may be presented for impact problems. We refer to

Graff [1991] for a detailed discussion on the longitudinal impact of two elastic rods and

on the impact of an elastic sphere with a rod, to demonstrate some of the complexities

encountered in such problems.

We will consider the frictionless impact with slipping of two elastic bodies. The analog of

D from the previous paragraphs will be the spacetime contact set. However, to the contact

set in the spatial configuration, there correspond two distinct surfaces in the reference

configuration. In the multisymplectic formalism we consider two disjoint open sets U1 and
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U2 in U and D1 ⊂ ∂U1, D2 ⊂ ∂U2 two codimension 1 submanifolds. We consider the

following set as the configuration space for collision problems

Cc = {φ : U → Y | πXY ◦ φ : U → X is an embedding,

φ is of class C2 in U and φ(D1) = φ(D2)}, (3.19)

where the notation f represents, as before, the continuous extension of the map f .

Remark 3. The set φ(D1) (or equivalently, φ(D2)) must be interpreted as a subset of the

spacetime contact set. The subset does not contain points which belong to other types of

discontinuity surfaces (such as, for example, the points on the interface at the very moment

of impact, which also belong to Ca type waves that are generated by the mechanical impact

and propagate through the bodies). Intersections of different types of discontinuity surfaces

are extremely important and we intend to treat this subject in our future work on this topic.

We will thus not discuss this point further here.

Remark 4. For a more unified presentation and to include all three cases a-c in the general

result from Section 3.2.2, we will refer later to U1 and U2 as U+ and U−.

Remark 5. For purposes of connecting this work with PDE methods, one can consider the

closure of either of Ca−c in the topology of a larger space such as Hs(U, Y ) or C∞(U+, Y )×

C∞(U−, Y ). This enables one to regard Ca−c as subsets in a manifold of mappings of the

appropriate Sobolev class, as in Palais [1968] and Ebin and Marsden [1970].

Remark 6. In the remainder of the chapter we will write Ca−c to indicate the appropriate

configuration space with the manifold structure obtained by the procedure explained above.

However, whenever we state a general result which applies to all configuration manifolds

a-c, we will write C to mean any of the three.

Variations and tangent spaces We will account for general variations of maps φ ∈ C

induced by a family of maps φλ defined by the action of some Lie group. More precisely,

let G be a Lie group of πXY -bundle automorphism ηY covering diffeomorphisms ηX , with

Lie algebra g, acting on C by Φ : G × C → C, where

Φ(ηY , φ) = ηY ◦ φ. (3.20)
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Now let λ 7→ ηλ
Y be an arbitrary smooth path in G such that η0

Y = IdY , and let V ∈ TφC be

given by

V =
d

dλ

∣∣∣∣
λ=0

Φ(ηλ
Y , φ), and VX =

d

dλ

∣∣∣∣
λ=0

ηλ
X ◦ φX . (3.21)

We define the vertical component VyY of the tangent space at y to be

VyY = {V ∈ TyY | TπXY · V = 0}. (3.22)

Using this, we can naturally split the tangent space at each point y = φ(u) in the image of

φ into vertical and horizontal components, TyY = VyY ⊕HyY , where

HyY = Tuφ · TuU.

This decomposition of TyY induces a decomposition of TφC, so that any vector V ∈ TφC

may be decomposed as V = V h + V v, where

V h = T (φ ◦ φ−1
X ) · VX , (3.23)

and by (3.21), VX = TπXY · V .

Case (a). For φ ∈ Ca, it is easy to show that the tangent space TφCa is given by

TφCa = {V : U → TY | V is C0 in U and of class C2 in U \D,

πY,TY ◦ V = φ and TπXY ◦ V = VX is a vector field on X}. (3.24)

Case (b). In the multisymplectic description of a continuum medium, the bundle Y over

X is trivial. It consists of a fiber manifold M (also called the ambient space) attached to

each point of the spacetime X = B ×R (B is called the reference configuration). The fiber

components of the points φ(u) with u ∈ D (the interface in the reference configuration)

constitute the image of the interface in the spatial configuration.

By constructing variations of maps φ ∈ Cb as in (3.20), we can prove the following lemma

Lemma 3. Let NA be the outward unit normal of the current configuration interface and

V = (V µ, V A) be a tangent vector obtained by (3.21). Then, [[V A(u)]]NA = 0, for all u ∈ D.
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Proof. Let us first explain the sense in which the jump condition of this lemma must be

interpreted. A point y ∈ D is mapped by φ to a point φ(y) ∈ Y and denote by y the fiber

component of φ(y) (y is a point on the current interface). By definition (3.18), there exist

two points yS, yF ∈ D such that φS(yS) = φF (yF ) = φ(y).

Consider now a variation of a map φ ∈ Cb given by φλ = ηλ
Y ◦φ, where ηλ

Y are πXY -bundle

automorphisms covering diffeomorphisms ηX and η0
Y = IdY . By [[V (x)]] we mean

[[V (u)]] =
d

dλ

∣∣∣∣
λ=0

φλ
S(uS)− d

dλ

∣∣∣∣
λ=0

φλ
F (uF ), (3.25)

where φλ
S , φλ

F are the restrictions of the map φλ on US, UF , respectively. The two terms in

the right-hand side of (3.25) are vectors in Tφ(u)Y , so the addition operation makes sense.

Since φλ ∈ Cb, there exists a point uλ
F ∈ D such that

φλ
S(uS) = φλ

F (uλ
F ).

We note that u0
F = uF . Then, we can derive

d

dλ

∣∣∣∣
λ=0

φλ
S(uS) =

d

dλ

∣∣∣∣
λ=0

φλ
F (uF ) + TφF (uF ) · v, (3.26)

where

v =
d

dλ

∣∣∣∣
λ=0

uλ
F ∈ TuF D. (3.27)

By using (3.26), (3.25) becomes

[[V (u)]] = TφF (uF ) · v. (3.28)

Now, (3.27) and (3.28) prove the lemma. �

Using the same notation as before, we thus proved

TφCb = {V : U → TY | V is of class C2 in US ∪ UF , πY,TY ◦ V = φ,

TπXY ◦ V = VX is a vector field on X, and [[V A]]NA = 0 on D}. (3.29)

Case (c). A result very similar to Lemma 3 will hold for case (c) as well. More precisely,

consider two points u1 ∈ D1 and u2 ∈ D2 such that φ(u1) = φ(u2) = y. By an argument
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similar to the one used in the proof of Lemma 3, we can prove

V (u2)− V (u1) = Tφ(u1) · v, (3.30)

where v ∈ Tu1D1. Then, V (u2) − V (u1) ∈ TyY and, if we denote by NA the components

of the outward unit normal of the contact set in the current configuration, we abuse the

notation and write

[[V A]]NA = 0.

Hence, the tangent space TφCc is given by

TφCc = {V : U → TY | V is of class C2 in U1 ∪ U2, πY,TY ◦ V = φ,

TπXY ◦ V = VX is a vector field on X and [[V A]]NA = 0 on D}, (3.31)

where the jump relation has the interpretation explained before.

3.2.2 Variational Approach

We will show next how to derive the equations of motion and the jump conditions directly

from the variational principle, staying entirely on the Lagrangian side.

The action function S : C → R is defined by

S(φ) =
∫

UX

L(j1(φ ◦ φ−1
X )). (3.32)

We say that φ ∈ C is a stationary point or critical point of S if

d

dλ

∣∣∣∣
λ=0

S(Φ(ηλ
Y , φ)) = 0 (3.33)

for all curves ηλ
Y with η0

Y = IdY .
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Using the infinitesimal generators defined in (3.21), we compute:

dSφ · V =
d

dλ

∣∣∣∣
λ=0

S(Φ(ηλ
Y , φ))

=
d

dλ

∣∣∣∣
λ=0

∫
ηλ

X(UX)
L(j1(Φ(ηλ

Y , φ)))

=
∫

UX

d

dλ

∣∣∣∣
λ=0

L(j1(Φ(ηλ
Y , φ))) +

∫
UX

LVX

[
L(j1(φ ◦ φ−1

X ))
]
.

In Marsden et al. [1998] the following lemma is proved.

Lemma 4. For any V ∈ TφC,

dSφ · V h =
∫

∂UX

VX

[
L(j1(φ ◦ φ−1

X ))
]
, (3.34)

and

dSφ · V v =
∫

UX

d

dλ

∣∣∣∣
λ=0

L(j1(Φ(ηλ
Y , φ))). (3.35)

The previous lemma leads to the following fundamental theorem.

Theorem 3. Given a Lagrangian density L : J1Y → Λn+1(X), which is smooth away from

the discontinuity, there exists a unique smooth section DELL ∈ C∞(Y ′′,Λn+1(X)⊗ T ∗Y ))

and a unique differential form ΘL ∈ Λn+1(J1Y ) such that for any V ∈ TφC which is

compactly supported in U and any open subset UX such that UX ∩ ∂X = ∅,

dSφ · V =
∫

U+
X

DELL(j2(φ ◦ φ−1
X )) · V +

∫
U−X

DELL(j2(φ ◦ φ−1
X )) · V

+
∫

UX∩DX

[[
j1(φ ◦ φ−1

X )∗
(
j1(V ) ΘL

)]]
, (3.36)

where [[·]] denotes the jump.

Furthermore,

DELL(j2(φ ◦ φ−1
X )) · V = j1(φ ◦ φ−1

X )∗[j1(V ) ΩL]. (3.37)
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In coordinates, the action of the Euler-Lagrange derivative DELL on Y ′′ is given by

DELL(j2(φ ◦ φ−1
X )) =

[
∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂2L

∂xµ∂vA
µ

(j1(φ ◦ φ−1
X ))

− ∂2L

∂yB∂vA
µ

(j1(φ ◦ φ−1
X )) · (φ ◦ φ−1

X )B
, µ

− ∂2L

∂vB
µ∂vA

ν

(j1(φ ◦ φ−1
X )) · (φ ◦ φ−1

X )B
, µν

]
dn+1x⊗ dyA, (3.38)

while the form ΘL matches the definition of the Cartan form obtained via the Legendre

transform and has the coordinate expression

ΘL =
∂L

∂vA
µ

dyA ∧ dnxµ +
(

L− ∂L

∂vA
µ

vA
µ

)
dn+1x. (3.39)

Proof. We choose UX = φX(U) small enough so that it is contained in a coordinate chart

O. In the coordinates on O, let V = (V µ, V A) so that along φ ◦ φ−1
X , the decomposition

(3.23) can be written as

VX = V µ ∂

∂xµ
and V v = (V v)A ∂

∂yA
=

(
V A − V µ ∂(φ ◦ φ−1

X )A

∂xµ

)
∂

∂yA
.

Now, we use (3.35) to obtain

dSφ · V v =
∫

UX

[
∂L

∂yA
(j1(φ ◦ φ−1

X )) · (V v)A

+
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) · ∂(V v)A

∂xµ

]
dn+1x. (3.40)

We split the integral
∫
UX

into
∫
U+

X
+
∫
U−X

and integrate by parts to obtain

dSφ · V v =
∫

U+
X

[
∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂

∂xµ

∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

]
· (V v)Adn+1x

+
∫

U−X

[
∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂

∂xµ

∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

]
· (V v)Adn+1x

+
∫

UX∩DX

[[
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) · (V v)A

]]
dnxµ. (3.41)
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The jump arises from the different orientations of DX when we use Stokes theorem in U+
X

and U−
X . Additionally, from (3.34) we obtain the horizontal contribution

dSφ · V h =
∫

UX∩DX

[[
V µL

]]
dn+1x. (3.42)

We note that the terms corresponding to
∫
∂UX

vanish in both (3.41) and (3.42) since V is

compactly supported in U . Now, we can combine (3.41) and (3.42) to obtain

dSφ · V =
∫

U+
X∪U−X

{[
∂L

∂yA
− ∂

∂xµ

∂L

∂vA
µ

]
(j1(φ ◦ φ−1

X ))
}

dn+1x⊗ dyA · V

+
∫

UX∩DX

[[
V

{
∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))dyA ∧ dnxµ

+

[
L− ∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

∂(φ ◦ φ−1
X )A

∂xµ

]
dn+1x

}]]
. (3.43)

Let α be the n-form in the jump brackets of the integrand of the boundary integral in (3.43).

Then,
∫
UX∩DX

α =
∫
j1(φ◦φ−1

X )(UX∩DX) α, since α is invariant under this lift. Moreover, the

vector V in the second term of (3.43) (now written as an integral over j1(φ◦φ−1
X )(UX∩DX))

may be replaced by j1(V ) since πY,J1(Y )-vertical vectors are in the kernel of the form that

V is acting on. Now we can pull back the integrand with j1(φ ◦ φ−1
X )∗ to get an n-form on

UX ∩DX . To summarize, we proved that the boundary integral in (3.43) can be written as

∫
UX∩DX

[[
j1(φ ◦ φ−1

X )∗
(
j1(V ) ΘL

)]]
,

where ΘL ∈ Λn+1(J1(Y )) has the coordinate expression given by (3.39).

The integrand of the first integral in (3.43) defines the coordinate expression of the

Euler-Lagrange derivative DELL. However, if we choose another coordinate chart O′, the

coordinate expressions of DELL and ΘL must agree on the overlap O ∩ O′ since the left

hand side of (3.36) is intrinsically defined. Thus, we have uniquely defined DELL and ΘL.

Now, we can define intrinsically ΩL = −dΘL and check that (3.37) holds, as both sides

have the same coordinate expressions. �

We now use Hamilton’s principle of critical action and look for those paths φ ∈ C which
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are critical points of the action function. More precisely, we call a field φ ∈ C a solution if

dS(φ) · V = 0, (3.44)

for all vector fields V ∈ TφC which vanish on the boundary ∂U .

From Theorem 3 it follows that a field φ is a solution if and only if the Euler-Lagrange

derivative (evaluated at j2(φ◦φ−1
X )) is zero on U+

X and U−
X and the n-form j1(φ◦φ−1

X )∗
[
j1(V ) ΘL

]
has a zero jump across UX ∩DX .

We thus obtain the Euler-Lagrange equations in U+
X and U−

X , away from the singularities.

In coordinates, they read

∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂

∂xµ

∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) = 0 in U+

X ∪ U−
X . (3.45)

Finally, the intrinsic jump condition

∫
UX∩DX

[[
j1(φ ◦ φ−1

X )∗
(
j1(V ) ΘL

)]]
= 0 (3.46)

has the following coordinate expression

∫
UX∩DX

([[
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) · V A

]]

+
[[

LV µ − ∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

∂(φ ◦ φ−1
X )A

∂xν
V ν

]])
dnxµ = 0. (3.47)

In the next section we will write the jump conditions (3.47) for the particle and continuum

mechanics multisymplectic models and give their physical interpretations. Here, we simply

note that by taking vertical variations only (V µ = 0) we obtain a jump condition involving

only momenta p µ
A ; this will represent the jump in linear momentum condition. Horizontal

variations will in turn give the correct energy jump and a kinematic compatibility condition.

3.3 Classical Mechanics

For a classical mechanical system (such as particles or rigid bodies) with configuration space

Q, let X = R (parameter time) and Y = R × Q, with πXY the projection onto the first

factor. The first jet bundle J1Y is the bundle whose holonomic sections are tangents of
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sections φ : X → Y , so we can identify J1Y = R×TQ. Using coordinates (t, qA) on R×Q,

the induced coordinates on J1Y are the usual tangent coordinates (t, qA, vA).

We will apply the multisymplectic formalism described in Section 3.1 to nonsmooth

rigid-body dynamics. We are particularly interested in the problem of rigid-body collisions,

for which the velocity, acceleration and forces are all nonsmooth or even discontinuous. The

multisymplectic formalism will elegantly recover the spacetime formulation of nonsmooth

Lagrangian mechanics from Chapter 2 (see Fetecau et al. [2003a]).

In Chapter 2, a mechanical system with configuration manifold Q is considered, but

with the dynamics restricted to a submanifold with boundary C ⊂ Q, which represents

the subset of admissible configurations. The boundary ∂C is called the contact set; for

rigid body collision problems, the submanifold ∂C is obtained from the condition that

interpenetration of matter cannot occur. The dynamics is specified by a regular Lagrangian

L : TQ → R. We note that the multisymplectic framework allows us to consider time

dependent Lagrangians as well (see the general definition of a Lagrangian density in Section

3.1), but we will restrict our discussion here to only autonomous systems.

To apply the multisymplectic formalism for such systems, we choose U to be the interval

[0, 1] and D the set containing only one element τi ∈ [0, 1]. The set Ca from (3.17) becomes

C′ = {φ : [0, 1] → R×Q | φ is a C0, PW C2 curve ,

φ(τ) has only one singularity at τi}. (3.48)

Now let UX = [t0, t1] be the image in X = R of the embedding φX = πXY ◦ φ. The section

ϕ = φ◦φ−1
X : [t0, t1] → R×Q can be written in coordinates as t 7→ (t, qA(t)). Let ti = φX(τi)

be the the moment of impact, so that q(ti) ∈ ∂C. We note that, even though the singularity

parameter time τi is fixed, it is allowed to vary in the t space according to ti = φX(τi) and

thus, the setting is not restrictive in this sense.

Hence, the map φX : [0, 1] → [t0, t1] is just a time reparametrization. The need for

a nonautonomous formulation of an autonomous mechanical system is explained in the

following remarks.

Remark 7. In the smooth context, the dynamics of a mechanical system can be described

by sections of smooth fields ϕ : [t0, t1] → Q. As we noted in the general setting, the key

observation that the set of such smooth fields is a C∞ infinite-dimensional manifold enables
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the use of differential calculus on the manifold of mappings (see Marsden and Ratiu [1999]).

However, generalization to the nonsmooth setting is not straightforward and this is one of

the main issues addressed in Fetecau et al. [2003a].

Remark 8. The approach used in Chapter 2 is to extend the problem to the nonautonomous

case, so that both configuration variables and time are functions of a separate parameter τ .

This allows the impact to be fixed in τ space while remaining variable in both configuration

and time spaces, and it means that the relevant space of configurations will indeed be a

smooth manifold, as proved in Chapter 2. The nonsmooth multisymplectic formalism applied

to this problem leads to essentially the same extended formulation.

The Cartan form (3.39) becomes the extended Lagrange 1-form of particle mechanics,

with coordinate expression

ΘL =
∂L

∂q̇A
dqA +

(
L− ∂L

∂q̇A
q̇A

)
dt. (3.49)

Define the energy E : TQ → R by

E(q, q̇) =
∂L

∂q̇
(q, q̇) · q̇ − L(q, q̇),

which allows us to write the Lagrangian 1-form in the compact notation

ΘL =
∂L

∂q̇
dq − Edt. (3.50)

Let V ∈ TφC be a tangent vector constructed as in (3.21) with coordinates V = (V 0, V A).

As the fiber component of ϕ(ti) is varied in ∂C, we can write the jump condition (3.46) as

ΘL|t−i = ΘL|t+i on R× TQ|∂C. (3.51)

In coordinates, the jump condition (3.51) reads

V A ∂L

∂q̇A

∣∣∣∣t+i
t−i

+ V 0

(
L− ∂L

∂q̇A
q̇A

)∣∣∣∣t+i
t−i

= 0. (3.52)
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Splitting this into the two components gives

∂L

∂q̇

∣∣∣∣
t=t−i

· δq =
∂L

∂q̇

∣∣∣∣
t=t+i

· δq (3.53)

for any δq = V A ∂
∂qA ∈ Tq(ti)∂C and

E(q(t−i ), q̇(t−i )) = E(q(t+i ), q̇(t+i )). (3.54)

These equations are the Weierstrass-Erdmann type conditions for impact. That is, equation

(3.53) states that the linear momentum must be conserved in the tangent direction to ∂C,

while equation (3.54) states that the energy must be conserved during an elastic impact.

Hence, horizontal variations (V 0) give conservation of energy and vertical variations

(V A) give conservation of the Lagrange 1-form on T∂C.

3.4 Continuum Mechanics

3.4.1 Multisymplectic Formulation of Continuum Mechanics

Configuration Spaces in the Multisymplectic Formalism We will use here the for-

malism constructed in Marsden et al. [2001] to describe the configurations of a continuous

medium. Let (B,G) be a smooth n-dimensional compact oriented Riemannian manifold

with smooth boundary and let (M, g) be a smooth N -dimensional compact oriented Rieman-

nian manifold. The space (B,G) will represent what is traditionally called the reference

configuration, while (M, g) will denote the ambient space.

We choose X = B × R; the coordinates on X are xµ = (xi, x0) = (xi, t), with µ =

0, . . . , n, i = 1, . . . , n. Let Y = X × M be a trivial bundle over X with M being a

fiber at each point and let πXY : Y → X; (x, t, y) 7→ (x, t) be the projection on the first

factor (y ∈ M is the fiber coordinate). Let yA, A = 1, . . . , N be fiber coordinates; they

induce the coordinates on J1Y denoted γ = (xµ, yA, vA
µ). We denote the fiber coordinates

on J1Y ∗ by (Π, p µ
A ); they correspond to the affine map given in coordinates by vA

µ 7→

(Π + p µ
A vA

µ)dn+1x.

A section ϕ : X → Y of πXY has coordinate representation ϕ(x) = (xµ, ϕA(x)), while
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its first jet j1ϕ is given by

xµ 7→ (xµ, ϕA(x), ∂µϕA(x)), (3.55)

where ∂0 = ∂
∂t and ∂k = ∂

∂xk .

We note that we introduced two different Riemannian structures on the spatial part of

the base manifold X and on the fiber M . Thus, the formalism is general enough to apply

for continuum models where the metric spaces (B,G) and (M, g) are essentially different

(rods, shells models, fluids with free boundary). However, for classical 2-D or 3-D elasticity

or for fluid dynamics in a domain with fixed boundaries, the two Riemannian structures

may coincide.

Define the function J : J1Y → R with coordinate expression

J(x, t, y, v) = det[v]

√
det[g(y)]
det[G(x)]

. (3.56)

For a section ϕ, J(j1(ϕ)) represents the Jacobian of the linear transformation Dϕt. We

note that, even in the cases where the metrics G and g coincide, there is no cancellation in

(3.56), as the metric tensors are evaluated at different points (g(y) is different from G(x)

unless y = x or both tensors are constant).

Lagrangian dynamics To describe the dynamics of a particular continuum medium in

the variational multisymplectic framework, one needs to specify a Lagrangian density L.

The Lagrangian density L : J1Y → Λn+1X is defined as a smooth bundle map

L(γ) = L(γ)dn+1x = K− P =
1
2

√
det[G]ρ(x)gABvA

0v
B

0d
n+1x

−
√

det[G]ρ(x)W (x,G(x), g(y), vA
j)d

n+1x, (3.57)

where γ ∈ J1Y , ρ : B → R is the mass density and W is the stored energy function.

The first term in (3.57), when restricted to first jet extensions, represents the kinetic

energy, as vA
0 becomes the time derivative ∂tϕ

A of the section ϕ. The second term repre-

sents the potential energy and different choices of the function W specify particular models

of continuous media. Typically, for elasticity, W depends on the field’s partial derivatives

through the Green deformation tensor C (see Marsden and Hughes [1983], for example),

while for ideal fluid dynamics, W is only a function of the Jacobian J (3.56).
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The Lagrangian density (3.57) determines the Legendre transformation FL : J1Y →

J1Y ∗. The conjugate momenta are given by

p 0
A =

∂L

∂vA
0

= ρgABvB
0

√
det[G], p j

A =
∂L

∂vA
j

= −ρ
∂W

∂vA
j

√
det[G],

and

Π = L− ∂L

∂vA
µ

vA
µ =

[
−1

2
gABvA

0v
B

0 −W +
∂W

∂vA
j

vA
j

]
ρ
√

det[G].

We define the energy density e by

e =
∂L

∂vA
0

vA
0 − L or, equivalently e dn+1x = K + P. (3.58)

The Cartan form on J1Y can be obtained either by using the Legendre transformation and

pulling back the canonical (n+1)-form on the dual jet bundle as in (3.9), or by a variational

route as in Theorem 3. The resulting coordinate expression is given by

ΘL = ρgABvB
0

√
det[G]dyA ∧ dnx0 − ρ

∂W

∂vA
j

√
det[G]dyA ∧ dnxj

+

[
−1

2
gABvA

0v
B

0 −W +
∂W

∂vA
j

vA
j

]
ρ
√

det[G]dn+1x. (3.59)

Substituting the Lagrangian density (3.57) into equation (3.45) we obtain the Euler-

Lagrange equations for a continuous medium

ρgAB

(
Dgϕ̇

Dt

)B

− 1√
det[G]

∂

∂xk

(
ρ
∂W

∂vA
k

(j1ϕ)
√

det[G]
)

= −ρ
∂W

∂gBC

∂gBC

∂yA
(j1ϕ), (3.60)

where (
Dgϕ̇

Dt

)A

=
∂ϕ̇A

∂t
+ γA

BCϕ̇Bϕ̇C (3.61)

is the covariant time derivative, and

γA
BC =

1
2
gAD

(
∂gBD

∂yC
+

∂gCD

∂yB
− ∂gBC

∂yD

)

are the Christoffel symbols associated with the metric g.
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Given a potential energy W which specifies the material, equation (3.60) is a system

of PDE’s to be solved for a section ϕ(x, t). We remark that all terms in this equation are

functions of x and t and hence have the interpretation of material quantities. In particular,

(3.61) corresponds to material acceleration.

We define the multisymplectic analogue of the Cauchy stress tensor σ by

σAB(ϕ, x) =
2ρ(x)

J

∂W

∂gAB

(j1ϕ(x)). (3.62)

Equation (3.62) is known in the elasticity literature as the Doyle-Ericksen formula. We

make the important remark that the balance of angular momentum

σT = σ

follows from the definition (3.62) and the symmetry of the metric tensor g.

In the case of Euclidean manifolds with constant metrics g and G, equation (3.60)

simplifies to the familiar expression

ρ
∂2ϕA

∂t2
=

∂

∂xk

(
ρ

∂W

∂vA
k

(j1ϕ)
)

. (3.63)

Next we will describe the multisymplectic formalism for the two main application of the

theory we developed: elasticity and ideal fluid dynamics.

Elasticity As we noted before, for the theory of elasticity the reference configuration

(B,G) and the ambient space (M, g) are generally different. The spatial part B of the base

manifold X has the interpretation of the reference configuration and the extra dimension of

X corresponds to time. Later configurations of the elastic body are captured by a section

ϕ of the bundle Y . For a fixed time t, the sections ϕt play the role of deformations; they

map the reference configuration B onto the spatial configuration, which is a subset of the

ambient space M .

The fiber coordinates of the first jet j1ϕ of a section ϕ, as defined by (3.55), consist of

the time derivative of the deformation ϕ̇A and the deformation gradient FA
i given by

FA
i (x, t) =

∂ϕA

∂xi
. (3.64)
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Hence, the first jet of a section ϕ has the local representation

j1ϕ : (x, t) 7→ ((x, t), ϕ(x, t), ϕ̇(x, t), F (x, t)).

For a given section ϕ, the first Piola-Kirchhoff stress tensor P j
A is defined by

P j
A (ϕ, x) = ρ(x)

∂W

∂vA
j

(j1ϕ(x)). (3.65)

We also define the Green deformation tensor (also called the right Cauchy-Green tensor)

C by C = ϕ∗t (g); in coordinates we have

Cij(x, t) = gABF A
i F B

j . (3.66)

Using definitions (3.62) and (3.65), the Euler-Lagrange equations (3.60) become

ρgAB

(
Dgϕ̇

Dt

)B

= P i
A |i + γB

AC(Pj
BF C

j − JgBDσDC), (3.67)

where we have introduced the covariant divergence defined by

P i
A |i = DIVP =

∂P i
A

∂xi
+ Pj

AΓk
jk − P i

BγB
ACF C

i . (3.68)

Here, the Γi
jk are the Christoffel symbols corresponding to the base metric G.

We note that in (3.67) there is no a priori relationship between the first Piola-Kirchhoff

stress tensor and the Cauchy stress tensor, as W is assumed to have the most general form

W (x,G, g, v). However, such a relationship can be derived by imposing material frame

indifference on the energy function. This assumption will imply that the energy function

W depends on the deformation gradient F (equivalently, on v) and on the field metric g

only through the Green deformation tensor given by (3.66), that is W = W (C(v, g)). For

this particular form of W , definitions (3.62) and (3.65) lead to

P i
A = J(σF−1) i

A. (3.69)

Relation (3.69) is known as the Piola transformation law. Substituting it into (3.67), one
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obtains the Euler-Lagrange equations for the standard elasticity model

ρgAB

(
Dgϕ̇

Dt

)B

= P i
A |i. (3.70)

For elasticity in a Euclidean space, this equation simplifies to

ρ
∂2ϕA

∂t2
=

∂PAi

∂xi
. (3.71)

Barotropic Fluids For ideal fluid dynamics we have the same multisymplectic bundle

picture as that described for elasticity. For fluids moving in a fixed region we set B = M and

call it the reference fluid container. However, for fluid dynamics with free boundary, the

structures (B,G) and (M, g) are generally different. Configurations of the fluid are captured

by a section ϕ of the bundle Y , which has the interpretation of the particle placement field.

In coordinates, the spatial point y ∈ Y(x,t) corresponds to a position y = ϕ(x, t) of the fluid

particle x at time t.

For standard models of barotropic fluids, the potential energy of the fluid depends only

on the Jacobian of the deformation, that is W = W (J(g,G, v)). The pressure function is

defined to be

P (ϕ, x) = −ρ(x)
∂W

∂J
(j1ϕ(x)). (3.72)

For a given section ϕ, P (ϕ) : X → R has the interpretation of the material pressure which

is a function of the material density. Using (3.72), the Cauchy stress tensor (3.62) becomes

σAB(x) =
2ρ

J

∂W

∂J

∂J

∂gAB

(j1ϕ) = −P (x)gAB(y(x)). (3.73)

We refer to Marsden et al. [2001] for a discussion on how the pressure function arises in

both the compressible and incompressible models. We also remark here that one could also

consider (3.73) as a defining equation for pressure, from which (3.72) would follow.

With these notations, the Euler-Lagrange equations (3.60) become

ρgAB

(
Dgϕ̇

Dt

)B

= − ∂P

∂xk
J

((
∂ϕ

∂x

)−1
)k

A

. (3.74)

We introduce the spatial density ρsp = ρ/J and define the spatial pressure p(y) by
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p(y(x)) = P (x); then (3.74) can be re-written in the familiar form

Dgϕ̇

Dt
(x, t) = − 1

ρsp
grad p ◦ ϕ(x, t). (3.75)

3.4.2 Propagating Singular Surfaces within an Elastic Body

In this subsection we apply the theory developed in Section 3.2.1 to investigate the motion

of a singular surface of order 1 within a compressible elastic body. The order of a singular

surface is given by the lowest order of the derivatives of the configuration map φ(x, t) that

suffer a non-zero jump across the surface. For a singular surface of order 1, the configuration

map φ(x, t) is continuous, but its first-order derivatives (the velocity φ̇ and the deformation

gradient F ) may suffer jump discontinuities upon the surface. Thus, the configuration space

for this problem belongs to class (a) of the classification considered in Section 3.2.1.

The multisymplectic formalism will lead to the derivation of the correct jumps in lin-

ear momentum and energy across the discontinuity surface. Moreover, spatial horizontal

variations will lead to a kinematic condition known as the Maxwell compatibility condition.

We use the same notation as previously, so let U be diffeomorphic to an open subset of

the spacetime X and let D be a codimension 1 submanifold in U representing a discontinuity

surface in spacetime, moving within the elastic body. The configuration space C is given by

(3.17) and all the results from Section 3.2 apply for this example.

We note first that Theorem 3 implies that the Euler-Lagrange equations (3.67) will be

satisfied on either side of the discontinuity.

Now let V ∈ TφC be a tangent vector with coordinates (V µ, V A) and consider initially

only vertical variations (V µ = 0). From (3.47) we obtain the jump conditions

∫
DX

[[
∂L

∂vA
µ
(j1(φ ◦ φ−1

X ))
]]
· V Adnxµ = 0, (3.76)

where we used the continuity of the vector field V .

For simplicity, consider the Euclidean case, where Gµν = δµν and gAB = δAB . The jump

relation (3.76) becomes

∫
DX

[[
ρ(x)

∂ϕA

∂t

]]
· V Adnx0 +

∫
DX

[[
P j

A

]]
· V Adnxj = 0, (3.77)
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where, as before, ϕ denotes the section ϕ = φ ◦ φ−1
X .

The 1-forms dt and dxj , j = 1, . . . , n, on DX are not independent. More precisely, if

DX is given locally by f(t, x1, . . . , xn) = 0, then by differentiating we obtain

∂jf dxj + ∂tf dt = 0. (3.78)

Define Nj by Nj = ∂jf/|∇xf | and define the propagation speed U by

U = − ∂tf

|∇xf |
, (3.79)

where | · | represents the Euclidean norm. This speed is a measure of the rate at which the

moving surface traverses the material; it also gives the excess of the normal speed of the

surface over the normal speed of the particles comprising it. Then (3.77) becomes

∫
DX

([[
ρU

∂ϕA

∂t

]]
+
[[
P j

A

]]
Nj

)
· V Adnx0 = 0. (3.80)

By a standard argument in the calculus of variations we can pass to the local form and

recover the standard jump of linear momentum across a propagating singular surface of

order 1, which is [[
ρU

∂ϕA

∂t

]]
+
[[
P j

A

]]
Nj = 0. (3.81)

An alternative approach to derive the jump in linear momentum uses the balance of linear

momentum for domains traversed by singular surfaces (see Truesdell and Toupin [1960],

pg. 545 for example). For such derivations, the jump conditions are usually expressed in

spatial coordinates, where the propagation speed U and the Piola-Kirchhoff stress tensor

are replaced by a local propagation speed and the Cauchy stress tensor, respectively.

Remark 9. The conservation of mass implies the following jump relation, known as the

Stokes-Christoffel condition (see Truesdell and Toupin [1960], pg. 522)

[[
ρU
]]

= 0. (3.82)

In Courant and Friedrichs [1948], the continuous quantity ρU is denoted by m and is called
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the mass flux through the surface. Using (3.82), we can re-write (3.81) as

ρU

[[
∂ϕA

∂t

]]
+
[[
P j

A

]]
Nj = 0. (3.83)

Remark 10. In the terminology of Truesdell and Toupin [1960], the singular surfaces that

have a non-zero propagation speed are called propagating singular surfaces or waves. We

first note that this definition excludes material surfaces, for which U = 0. Moreover, Trues-

dell and Toupin [1960] classifies the singular surfaces with non-zero jump in velocity into

two categories: surfaces with transversal discontinuities ([[U ]] = 0), called vortex sheets,

and surfaces with arbitrary discontinuities in velocity ([[U ]] 6= 0), called shock surfaces.

One can conclude that there are no material shock surfaces, i.e., shock surfaces are always

waves. Also, there is a nonzero mass flux (m 6= 0) through a shock surface or through a

vortex sheet which is not material.

Remark 11. In the context of gas dynamics, Courant and Friedrichs [1948] define a shock

front as a discontinuity surface across which there is a non-zero gas flow (m 6= 0). Then,

a shock surface in the sense of Truesdell and Toupin [1960] is also a shock front.

The linear momentum jump was derived by taking vertical variations of the sections.

Next we will focus on horizontal variations (V µ 6= 0) and derive the corresponding jump

laws. Using (3.81), the jump conditions (3.47) become

∫
DX

[[
LV µ − ∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

∂(φ ◦ φ−1
X )A

∂xν
V ν

]]
dnxµ = 0. (3.84)

Consider first only time component variations (V 0 6= 0, V j = 0 for j = 1, . . . , n); then

(3.84) gives

∫
DX

[[
L− ∂L

∂vA
0

∂(φ ◦ φ−1
X )A

∂t

]]
V 0dnx0

−
∫

DX

[[
∂L

∂vA
j

∂(φ ◦ φ−1
X )A

∂t

]]
V 0dnxj = 0. (3.85)

Using (3.65), (3.78) and (3.79), (3.85) becomes

∫
DX

([[
Ue
]]

+
[[
Pj

A

∂ϕA

∂t

]]
Nj

)
V 0dnx0 = 0. (3.86)
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From (3.86) we recover the standard jump of energy (see Truesdell and Toupin [1960], pg.

610 for example), [[
Ue
]]

+
[[
Pj

A

∂ϕA

∂t

]]
Nj = 0. (3.87)

Finally we consider space component variations (V j 6= 0) in (3.84) and use (3.86) to obtain

∫
DX

[[
∂L

∂vA
0

∂(φ ◦ φ−1
X )A

∂xj
V j

]]
dnx0

−
∫

DX

[[
LV j − ∂L

∂vA
j

∂(φ ◦ φ−1
X )A

∂xk
V k

]]
dnxj = 0. (3.88)

Then, by using (3.65), (3.78), (3.79) and (3.82), (3.88) becomes

∫
DX

(
ρU

[[
FA

j

∂ϕA

∂t

]]
+ [[L]]Nj +

[[
FA

jP k
A

]]
Nk

)
V jdnx0 = 0. (3.89)

Since the components V j are arbitrary we conclude that

ρU

[[
FA

j

∂ϕA

∂t

]]
+ [[L]]Nj +

[[
FA

j Pk
A

]]
Nk = 0. (3.90)

Even though (3.90) does not resemble any standard conservation law, after some algebraic

manipulations using (3.81) and (3.87), (3.90) can be rewritten, for continuous U , as

U
[[
FA

j

]]
+
[[

∂ϕA

∂t

]]
Nj = 0, (3.91)

which is the statement of the Maxwell compatibility condition (see Jaunzemis [1967], Chap-

ter 2 or Truesdell and Toupin [1960], Chapter C.III. for the derivation of the kinematical

conditions of compatibility from Hadamard’s lemma).

To summarize, the vertical variations of the sections led us to derive the jump in linear

momentum, while horizontal time and space variations accounted for the energy balance

and the kinematic compatibility condition, respectively.

3.4.3 Free Surfaces in Fluids and Solid-fluid Boundaries

Now, we investigate in the multisymplectic framework a different type of discontinuous

motion that will illustrate the case (b) of the classification from Section 3.2.1. We consider

two types of discontinuity surfaces, namely, free surfaces in fluids and solid-fluid boundaries.
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A free surface or a free boundary is a surface separating two immiscible fluids or two regions

of the same fluid in different states of motion (Karamcheti [1966]). The second type of

discontinuity considers the interaction of a deformable elastic body with a surrounding

barotropic fluid.

As we already noted in Section 3.2.1, these types of discontinuous surfaces have one

feature in common, namely, they are material surfaces (particles which are on the surface

at a given time remain on the surface at later times). Equivalently, there is no flow across the

discontinuity and the surface is stationary relative to the medium. Hence, in the reference

configuration, the surface DX is given locally by f(x1, . . . , xn) = 0 (no dependence of the

function f on t). Moreover, from (3.79) we have that the propagation speed U for such

surfaces is zero. In the terminology of Truesdell and Toupin [1960], these surfaces are

material vortex sheets of order 0.

Free Surfaces in Fluids Theorem 3 implies that Euler-Lagrange equations of type (3.74)

will be satisfied on either side of the surface separating the two fluid regions. Next, we will

show that Theorem 3 gives the correct force balance on the separating surface and the other

physical conditions that must be satisfied on such boundaries.

Let V ∈ TφC be a tangent vector with coordinates (V µ, V A). We consider first only

vertical variations (V µ = 0); from (3.47) we obtain the following jump conditions

∫
DX

[[
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) · V A

]]
dnxµ = 0. (3.92)

For simplicity, we will consider Euclidean geometries, that is, Gµν = δµν and gAB = δAB.

We recall that for fluids, W = W (J); this relation and the stationarity of the discontinuity

surface (U = 0 on DX) simplifies the jump relation (3.92) to

∫
DX

[[
ρ
∂W

∂J

∂J

∂vA
j

Nj · V A

]]
dnx0 = 0, (3.93)

where Nj = ∂jf
|∇xf | is the normal vector to DX . From the definition of the Jacobian J (3.56),

one can derive
∂J

∂vA
j

= J(v−1)j
A.
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We use this relation and the definition of the material pressure (3.72) to re-write (3.93) as

∫
DX

[[
PJ

((
∂ϕ

∂x

)−1
)j

A

NjV
A

]]
dnx0 = 0. (3.94)

We notice that in (3.94), the term J

((
∂ϕ
∂x

)−1
) j

A

Njd
nx0 represents the A-th component

of the area element in the spatial configuration, as given by the formula of Nanson (see

Truesdell and Toupin [1960], pg. 249 or Jaunzemis [1967], pg. 154, for example). Hence,

substituting y = ϕt(x) in (3.94) and then passing to the local form we can obtain the jump

relation [[
pV ANA

]]
= 0, (3.95)

where p is the spatial pressure defined by p(y(x)) = P (x). Now, we combine (3.95) with

the property that the vector field V has a zero normal jump (see (3.29)), to obtain

[[p]] = 0, (3.96)

which is the standard pressure balance at a free surface.

We take now horizontal variations V µ 6= 0 such that V 0 6= 0 and V j = 0, for j = 1, . . . , n.

Then, (3.47) simplifies to

∫
DX

[[
∂L

∂vA
j

∂(φ ◦ φ−1
X )A

∂t
NjV

0

]]
dnx0 = 0. (3.97)

Furthermore, using the continuity of V 0 and the particular form of W = W (J) in the

Lagrangian (3.57), we can write (3.97) as

∫
DX

[[
PJ

((
∂ϕ

∂x

)−1
)j

A

∂ϕA

∂t
Nj

]]
V 0dnx0 = 0. (3.98)

As before, we use the formula of Nanson, substitute y = ϕt(x) in (3.98), and then pass to

the local form to obtain [[
p
∂ϕA

∂t
NA

]]
= 0. (3.99)
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Using the pressure continuity (3.96), the jump condition (3.99) becomes

[[
∂ϕA

∂t
NA

]]
= 0. (3.100)

We can also use the continuity of the normal vector to write (3.100) as

[[
∂ϕA

∂t

]]
NA = 0. (3.101)

The jump condition (3.100) is a kinematic condition which restricts the possible jumps

of the fluid velocity only to tangential discontinuities (the normal component is continuous).

In the literature, this condition may appear either as a boundary condition (see Karamcheti

[1966]) or as a definition for vortex sheets (see Truesdell and Toupin [1960]). However, we

recover it through a variational procedure, as a consequence of the general theorem of the

Section 3.2.2, using the particular form of the space of configurations (3.18) and of its

admissible variations (3.29).

Finally, let consider only space component horizontal variations (V 0 = 0 and V j 6= 0,

for j = 1, . . . , n). The vector field V j ∂
∂xj on X is lifted by T (φ ◦φ−1

X ) to a horizontal vector

field on Y (see decomposition (3.23)) with coordinates

V A =
∂(φ ◦ φ−1

X )A

∂xj
V j . (3.102)

Then, by using the previous jump conditions (3.96), (3.47) simplifies to

∫
DX

[[
∂L

∂vA
k

∂(φ ◦ φ−1
X )A

∂xj
NkV

j

]]
dnx0 = 0, (3.103)

where we also used that V jNj = 0 for material surfaces. Using (3.102) and the definition of

the material pressure (3.72), (3.103) becomes exactly (3.94), so it will provide the already

known jump condition (3.96).

Solid-fluid Boundaries We again apply Theorem 3 to find that the Euler-Lagrange

equations (3.67) will be satisfied in the domain occupied by the elastic body, while the fluid

dynamics in the outer region will be described by (3.74). As for free surfaces, the boundary

terms in Theorem 3 will give the correct pressure-traction balance on the boundary of the
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elastic body, as well as restrictions on the jumps in velocity.

For vertical variations only, the jump conditions are those given by (3.92). For Euclidean

geometries, these conditions become

∫
DX

Pj
ANj(V A)+ − PJ

((
∂ϕ

∂x

)−1
)j

A

Nj(V A)−

 dnx0 = 0, (3.104)

where we adopt the usual notation with superscript + and − for the limit values of a

discontinuous function at a point on the singular surface by approaching the point from

each side of the discontinuity.

Using the Piola transformation (3.69) and the formula of Nanson we can make the

substitution y = ϕt(x) in (3.104) and then pass to the local form; we obtain

σABNB(V A)+ − pNA(V A)− = 0. (3.105)

We use the property of the vector field V from (3.29),

(V A)+NA − (V A)−NA = 0,

to write (3.105) as

(σABNB − pNA) · (V A)+ = 0. (3.106)

As there are no restrictions on (V A)+, we have

σABNB − pNA = 0. (3.107)

Moreover, by denoting by tA = σABNB the stress vector, we obtain

tANA − p = 0, (3.108)

which is the pressure-traction balance on the boundary of the elastic body.

We now consider horizontal variations V µ 6= 0 such that V 0 6= 0 and V j = 0, for

j = 1, . . . , n. Using the previous result (3.108), the general jump conditions (3.47) reduce
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to ∫
DX

[[
∂L

∂vA
j

∂(φ ◦ φ−1
X )A

∂t
NjV

0

]]
dnx0 = 0. (3.109)

For solid-fluid interactions, the jump conditions (3.109) become

∫
DX

Pj
ANj

(
∂ϕA

∂t

)+

− PJ

((
∂ϕ

∂x

)−1
)j

A

Nj

(
∂ϕA

∂t

)−V 0dnx0 = 0, (3.110)

By using the Piola transformation (3.69) and Nanson’s formula, we make the substitution

y = ϕt(x) in (3.110) and then pass to the local form to get

σABNB

(
∂ϕA

∂t

)+

− pNA

(
∂ϕA

∂t

)−
= 0. (3.111)

Now, from (3.107) and (3.111) we can derive

[[
∂ϕA

∂t

]]
NA = 0, (3.112)

which implies the continuity of the normal component of the velocity. Thus, only tangen-

tial discontinuities in the velocity are possible. We emphasize again that we obtain this

restriction as a consequence of the choice of the configuration space (see (3.18) and (3.29))

and not by prescribing it as a boundary condition.

By an argument similar to the one used for fluid-fluid interfaces, we can show that the

space component horizontal variations do not provide new jump conditions; they will lead

in fact to the jump condition (3.105), from which the pressure-traction balance (3.108) can

be derived.

3.4.4 Collisions of Elastic Bodies

We now illustrate the last category of the classification of configuration spaces from Section

3.2.1. We will apply the general formalism to investigate the collision of two elastic bodies,

where the configuration manifold is given by Cc defined in (3.19) and the analog of the

singular surfaces from the previous subsections is the codimension 1 spacetime contact

surface. The interface is a material surface, so it has a zero propagation speed U = 0. By

the choice of the configuration space Cc we allow the elastic bodies to slip on each other

during the collision, but they do so without friction.
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If we consider only vertical variations, the jump conditions will be given by (3.92). In

the Euclidean case these conditions become

∫
DX

[[
P j

ANjV
A
]]
dnx0 = 0. (3.113)

By making the change of variables y = φt(x) in (3.113) and using the Piola transformation

(3.69), we can write the integral in the spatial configuration and then pass to the local form

to obtain [[
σABNBV A

]]
= 0, (3.114)

where NA are the components of the outward unit normal to the contact set in the current

configuration.

Let tA = σABNB denote the stress vector, as before. By using the jump restriction on

V from (3.31) we can derive [[
tANA

]]
= 0, (3.115)

which represents the balance of the normal tractions on the contact set during a collision.

From the derivation of (3.115) we also obtain that the tangential tractions are zero on the

contact surface.

Let us consider now time component horizontal variations (V 0 6= 0 and V j = 0, for

j = 1, . . . , n); the general jump conditions (3.47) reduce to (3.109), which in turn become

∫
DX

[[
P j

ANj

(
∂ϕA

∂t

)]]
V 0dnx0 = 0. (3.116)

By the same procedure used before, we can pass to the local form in the spatial configuration

and obtain [[
tA

∂ϕA

∂t

]]
= 0. (3.117)

From (3.115) and (3.117) we can derive

[[
∂ϕA

∂t
NA

]]
= 0, (3.118)

which gives the continuity of the normal components of the velocities, once the contact is

established. However, the tangential discontinuity in velocities, due to slipping, may be



59

arbitrary.

The space component horizontal variations will not provide new jump conditions; we

can show this by the same procedure used in Section 3.4.3.
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Chapter 4

Variational Collision Integrators

We now turn to considering discrete models of contact problems, in which the continuous

time variable is replaced with a discrete time index. The equations of motion are thus

algebraic rather than differential equations, and they can be regarded as an integrator for

the continuous system.

The approach we use is based on discrete variational mechanics (see Marsden and West

[2001]), in which the variational principle is discretized and the discrete equations and their

conservation properties are derived as in the continuous case. This has the advantage of

automatically capturing much of the geometric structure of the true problem even in the

approximate discrete setting.

4.1 Discrete Configurations and Equations of Motion

Disregard for the moment the continuous formulation of the Chapter 2 and introduce a

fixed timestep h ∈ R. Consider a discrete Lagrangian Ld : Q × Q → R which is a

function of two configuration points and the timestep, so that Ld = Ld(q0, q1, h). The

discrete Lagrangian will be chosen to approximate the continuous action integral over an

interval of length h, so that

Ld(q0, q1, h) ≈
∫ h

0
L(q, q̇)dt,

where q : [0, h] → R is an exact solution of the Euler-Lagrange equations for L satisfies the

boundary conditions q(0) = q0 and q(h) = q1.
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We now consider an increasing sequence of times

tk = kh for k = 0, . . . , N

and we also fix α̃ ∈ [0, 1] and we let τ̃ = ti−1 + α̃h denote the fixed impact time (corre-

sponding to τi from the continuous model) and t̃ = ti−1 +αh denote the actual impact time

(corresponding to ti). We take α = td(α̃), where td is some strictly increasing function which

maps [0, 1] onto [0, 1]. Thus, we only assumed that the step at which the impact occurs, is

known, and not the impact time t̃, which is allowed to vary according to variations in α.

The discrete path space is defined by

Md = Td ×Qd(α̃, ∂C,Q), (4.1)

where

Td = {td(α̃) | td ∈ C∞([0, 1], [0, 1]), td onto, t′d > 0 in[0, 1]} (4.2)

Qd(α̃, ∂C,Q) = {qd : {t0, . . . , ti−1, τ̃ , ti, . . . , tN} → Q, qd(τ̃) ∈ ∂C}. (4.3)

Remark. The set Td is actually the real interval [0, 1], but we used (4.2) to define it in

order to emphasize the analogy with the continuous case.

We identify the discrete trajectory with its image

(α, qd) = (α, {q0, . . . , qi−1, q̃, qi, . . . , qN}),

where qk = qd(tk) for k ∈ {0, . . . , N}, q̃ = qd(τ̃) and α = td(α̃). Thus a discrete trajectory

can be regarded as a sequence of points in Q, one of which must be in ∂C, and a single real

number α ∈ [0, 1]. The portion of the discrete trajectory around the impact is illustrated

graphically in Figure 4.1.

The discrete action map Gd : Md → R is defined by

Gd(α, qd) =
i−2∑
k=0

Ld(qk, qk+1, h) +
N−1∑
k=i

Ld(qk, qk+1, h)

+ Ld(qi−1, q̃, αh) + Ld(q̃, qi, (1− α)h) (4.4)
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∂C
q̃

αh
qi−1

h

qi−2

(1− α)h

qi

h

qi+1

Figure 4.1: The discrete variational principle for collisions

As the discrete path space Md is isomorphic to [0, 1]×Q× · · · × ∂C × · · · ×Q (N copies of

Q), it can be given a smooth manifold structure.

For qd ∈ Qd(α̃, ∂C,Q) the tangent space Tqd
Qd(α̃, ∂C,Q) is the set of all maps vqd

:

{t0, . . . , ti−1, τ̃ , ti, . . . , tN} → TQ such that πQ ◦ vqd
= qd and vqd

(τ̃) ∈ Tq̃∂C. For simplicity

we will identify vqd
with its image in TQ.

The tangent space to the full discrete path space is now TMd = TTd×TQd. At a given

point (α, qd) ∈Md we will write a tangent vector in T(α,qd)Md as

(δα, δqd) = (δα, {δq0, . . . , δqi−1, δq̃, δqi, . . . δqN}).

Define the discrete second-order manifold to be

Q̈d = Q×Q×Q,

which has the same information content as the continuous second-order manifold Q̈.

We now proceed, as in the continuous case, to derive the discrete equations of motion

and the conservation laws from Hamilton’s principle of critical action. We take variations

of the discrete action sum with respect to the discrete path and to the parameter α, as

stated in the following theorem.

Theorem 4. Given a Ck discrete Lagrangian Ld : Q × Q × R → R, k ≥ 1, there exists

a unique Ck−1 mapping ELd : Q̈d → T ∗Q and unique Ck−1 1-forms Θ−
Ld

and Θ+
Ld

on the

discrete Lagrangian phase space Q × Q, such that for all variations (δα, δqd) ∈ T(α,qd)Md
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of (α, qd) we have

dGd(α, qd) · (δα, δqd)

=
i−2∑
k=1

ELd(qk−1, qk, qk+1) · δqk +
N−1∑

k=i+1

ELd(qk−1, qk, qk+1) · δqk

+ Θ+
Ld

(qN−1, qN ) · (δqN−1, δqN )−Θ−
Ld

(q0, q1) · (δq0, δq1)

+ [D2Ld(qi−2, qi−1, h) + D1Ld(qi−1, q̃, αh)] · δqi−1

+ h [D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h)] · δα

+ i∗(D2Ld(qi−1, q̃, αh) + D1Ld(q̃, qi, (1− α)h)) · δq̃

+ [D2Ld(q̃, qi, (1− α)h) + D1Ld(qi, qi+1, h)] · δqi,

(4.5)

where i∗ : T ∗Q → T ∗∂C is the cotangent lift of the embedding i : ∂C → Q.

The map ELd is called the discrete Euler-Lagrange derivative and the 1-forms Θ+
Ld

and Θ−
Ld

are the discrete Lagrangian 1-forms. In coordinates these have the expressions

ELd(qk−1, qk, qk+1) = [D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h)] dqk (4.6)

for k ∈ {1, . . . , i− 2, i, . . . , N − 1} and

Θ+
Ld

(qk, qk+1) = D2Ld(qk, qk+1, h) dqk+1

Θ−
Ld

(qk, qk+1) = −D1Ld(qk, qk+1, h) dqk.

Proof. The formula is derived by straightforward algebra, by computing the derivative of

the discrete action map and by some rearrangement of the summation. This rearrangement

corresponds to a discrete version of integration by parts, resulting in two boundary terms

which are interpreted as the discrete Lagrangian 1-forms. �

By using the discrete version of Hamilton’s principle we consider the paths (α, qd) which

are critical points of the discrete action. Therefore, we define the discrete space of

solutions to be the set of all paths which satisfy dGd(α, q) · (δα, δq) = 0 for all variations

(δα, δqd) ∈ T(α,qd)Md which are zero at the boundary points 0 and N .

From (4.5) we conclude that (α, qd) is a solution if and only if the discrete Euler-Lagrange
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derivative is zero at all k other than {0, i− 1, i, N}. This statement at an arbitrary k reads

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0 (4.7)

and is known as discrete Euler-Lagrange equations. These describe the motion of the

system away from the impact point, by implicitly defining a map (qk−1, qk) 7→ (qk, qk+1).

Near the point of impact, the discrete Hamilton’s principle gives three additional sets

of equations, namely,

D2Ld(qi−2, qi−1, h) + D1Ld(qi−1, q̃, αh) = 0 (4.8a)

q̃ ∈ ∂C, (4.8b)

which is a system of n + 1 equations to be solved for q̃ and α, and

D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h) = 0 (4.9a)

i∗(D2Ld(qi−1, q̃, αh) + D1Ld(q̃, qi, (1− α)h)) = 0, (4.9b)

which is a system of n equations for the unknown qi. Finally, we also have

D2Ld(q̃, qi, (1− α)h) + D1Ld(qi, qi+1, h) = 0, (4.10)

which gives n equations to be solved for qi+1.

A discrete trajectory can thus be formed by starting from an initial condition (q0, q1),

using (4.7) to solve successively for the qk until the impact time is reached, and then solving

the systems (4.8), (4.9) and (4.10) in turn to obtain q̃, α and then qi and qi+1, before once

again continuing with (4.7) to complete the trajectory.

Remark. The discrete energy conservation through the collision depends critically on

exactly resolving the collision time with the parameter α. This is also the key feature of the

recent improvements of Pandolfi et al. [2002] to the nonsmooth collision methods developed

by Kane et al. [1999b].
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4.2 Relationship between Discrete and Continuous Models

Having established the basic discrete variational mechanics, we now consider how the dis-

crete model can be regarded as an approximation to the continuous model.

At first glance it appears that the discrete Euler-Lagrange equations are defined only

in terms of pairs of configuration positions. We will now see, however, that they can also

be interpreted as defining a mapping on the cotangent bundle T ∗Q. Define the discrete

Legendre transforms or discrete fiber derivatives F+Ld, F−Ld : Q × Q → T ∗Q as

given by

F+Ld(q0, q1) · δq1 = D2Ld(q0, q1, h) · δq1

F−Ld(q0, q1) · δq0 = −D1Ld(q0, q1, h) · δq0,

where h is the timestep in between q0 and q1. We note the implicit dependence on the

timestep of the definition above. This dependence is completely neglected in the constant

timestep discrete variational mechanics or rigorously treated in the nonautonomous setting

(using adaptive timesteps) and we refer to Marsden and West [2001] for a complete account

of these ideas.

These also can be written

F+Ld : (q0, q1) 7→ (q1, p1) = (q1, D2Ld(q0, q1, h)) (4.11a)

F−Ld : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1, h)). (4.11b)

If both discrete fiber derivatives are locally isomorphisms, then we say that Ld is regular.

We will generally assume that we are working with regular discrete Lagrangians.

We introduce the notation

p+
k,k+1 = p+(qk, qk+1, h) = F+Ld(qk, qk+1) (4.12a)

p−k,k+1 = p−(qk, qk+1, h) = F−Ld(qk, qk+1) (4.12b)

for the momentum at the two endpoints of each interval [k, k + 1].

We can now use definitions (4.11a) and (4.12) of the discrete fiber derivatives and of the
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discrete momenta to see that the discrete Euler-Lagrange equations (4.7) can be written as

F+Ld(qk−1, qk) = F−Ld(qk, qk+1) (4.13)

or simply

p+
k−1,k = p−k,k+1. (4.14)

That is, the discrete Euler-Lagrange equations enforce the condition that the momentum

at time k should be the same when evaluated from the lower interval [k− 1, k] or the upper

interval [k, k + 1].

In this interpretation, equation (4.9b) represents conservation of the projection of mo-

mentum (by i∗, on T ∗∂C) at the moment of impact

i∗p+(qi−1, q̃, αh) = i∗p−(q̃, qi, (1− α)h), (4.15)

which is a discrete version of the jump condition (2.13) from the continuous case.

To give an interpretation of the discrete equations around the impact time, we define

the discrete energy to be

Ed(qk, qk+1, h) = −D3Ld(qk, qk+1, h). (4.16)

Using this, we can write equation (4.9a) as

Ed(qi−1, q̃, αh) = Ed(q̃, qi, (1− α)h), (4.17)

so this equations simply represents conservation of discrete energy at the impact time, a

discrete analog of (2.14).

Remark. The discrete energy defined in this way is used in Kane et al. [1999a] and can be

motivated in several ways; first of all, for Lagrangians of the form of kinetic minus potential

energy, and with the choice of discrete Lagrangians given by

Ld(q0, q1, h) = L

(
γq0 + (1− γ)q1,

q1 − q0

h

)
, (4.18)
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where γ ∈ [0, 1] is an interpolation parameter, the discrete energy gets the usual expression

Ed(q0, q1, h) =
1
2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
+ V (γq0 + (1− γ)q1). (4.19)

A second motivation is the fact that the discrete energy becomes exactly the Hamiltonian

when one uses the exact discrete Lagrangian LE
d –that is, the discrete Lagrangian is equal

to the action integral taken along exact solutions of the Euler–Lagrange equations.

4.3 Symplecticity of the Flow

Define the discrete Lagrangian map FLd
: Q×Q → Q×Q by

(q0, q1) 7→ (q1, q2), (4.20)

where q2 is obtained by using the algorithm from Section 4.1. A solution (α, qd) ∈ Md is

formed by iteration of the map FLd
and it is uniquely determined by the initial condition

(q0, q1) ∈ Q×Q and the choice of timestep h. Hence, we parameterize the discrete solutions

of the variational principle by the initial conditions (q0, q1), and we consider the restriction

of Gd to that solution space.

The discrete fiber derivatives enables us to push the discrete Lagrangian map FLd
: Q×

Q → Q×Q forward to T ∗Q. We define the discrete Hamiltonian map F̃Ld
: T ∗Q → T ∗Q

by

F̃Ld
= F+Ld ◦ FLd

◦ (F+Ld)−1, (4.21)

with the coordinate expression

F̃Ld
: (q0, p0) 7→ (q1, p1). (4.22)

We note that the discrete Hamiltonian map can be equivalently defined using the other

discrete Legendre transform

F̃Ld
= F−Ld ◦ FLd

◦ (F−Ld)−1. (4.23)

Define the restricted discrete action map Ĝd : Q × Q → R to be Ĝd(q0, q1) =
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Gd(α, qd), where (α, qd) is the corresponding solution in Md such that (qd(t0), qd(t1)) =

(q0, q1). Then, equation (4.5) becomes

dĜd = (FN
Ld

)∗Θ+
Ld
−Θ−

Ld
. (4.24)

Taking a further derivative of this expression, and using the fact that d2Ĝd = 0, we obtain

(FN
Ld

)∗(ΩLd
) = ΩLd

, (4.25)

where ΩLd
= dΘ+

Ld
= dΘ−

Ld
is the unique discrete Lagrangian symplectic form, with

coordinate expression

ΩLd
(q0, q1) =

∂2Ld

∂qi
0∂qj

1

dqi
0 ∧ dqj

1. (4.26)

We have thus proven that the discrete evolution map exactly preserves a discrete symplectic

structure, so regarding Fd as an integrator for the continuous system we see that it is

automatically a symplectic method.

Note that the discrete Lagrangian symplectic form is the pullback under either discrete

Legendre transform of the canonical symplectic form on T ∗Q. The discrete Hamiltonian

map F̃Ld
: T ∗Q → T ∗Q thus preserves the canonical symplectic form and the canonical

momentum maps on T ∗Q.

4.4 Discrete Noether Theorem

Consider the (left or right) group action Φ : G × Q → Q of a Lie group G on Q, with

infinitesimal generator as defined in Section 2.4. This action can be lifted to Q × Q by

the product Φg(q0, q1) = (Φg(q0),Φg(q1)), which has the infinitesimal generator ξQ×Q :

Q×Q → T (Q×Q) given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)). (4.27)
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The two discrete Lagrangian momentum maps J+
Ld

, J−Ld
: Q×Q → g∗ are

J+
Ld

(q0, q1) · ξ = Θ+
Ld
· ξQ×Q(q0, q1) (4.28a)

J−Ld
(q0, q1) · ξ = Θ−

Ld
· ξQ×Q(q0, q1). (4.28b)

As in the continuous approach to the Noether’s theorem from Section 2.4, we are re-

stricted to symmetries of the configuration variables only. We consider symmetries which

do not involve altering the time variable and thus consider the timestep h to be a fixed

constant.

If a discrete Lagrangian Ld : Q×Q → R is such that dLd · ξ = 0, then Ld is said to be

infinitesimally invariant under the group action, and Φ is said to be a symmetry of

the discrete Lagrangian. Note that

dLd · ξ = (Θ+
Ld
−Θ−

Ld
) · ξQ×Q

and so, when Ld is infinitesimally invariant under the group action Φ, the two discrete

momentum maps are equal. In such cases we will use the notation JLd
: Q × Q → g∗ for

the unique single discrete Lagrangian momentum map.

Theorem 5. (Discrete Noether’s theorem) Consider a discrete Lagrangian system

Ld : Q × Q × R → R which is infinitesimally invariant under the lift of the (left or right)

action Φ : G × Q → Q. If we assume that the action leaves ∂C invariant (locally), then

the corresponding discrete Lagrangian momentum map JLd
: Q × Q → g∗ is a conserved

quantity of the discrete Lagrangian map FLd
: Q×Q → Q×Q, so that JLd

◦ FLd
= JLd

.

Proof. We introduce an action of G on the discrete path space Md by pointwise action on

the configuration components, so that Φg : Md →Md is given by Φg(α, qd) = (α, Φg(qd)).

Then, the infinitesimal generator ξMd
: Md → TMd is given by

ξMd
(α, qd) = (0, ξQ(q0), . . . , ξQ(qi−1), ξQ(q̃), ξQ(qi), . . . , ξQ(qN )).

From (4.4) we derive

dGd(α, qd) · ξMd
(α, qd) =

N−1∑
k=0

dLd · ξ (4.29)
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and so the space of solutions of the discrete Euler-Lagrange is invariant under the action

of G, and the Lagrangian map FLd
: Q × Q → Q × Q commutes with the lifted action

Φg : Q×Q → Q×Q.

Identifying the space of solutions with the space of initial conditions Q × Q and using

(4.24) we obtain

dGd(α, qd) · ξMd
(α, qd) = dĜd(q0, q1) · ξQ×Q(q0, q1)

= ((FN
Ld

)∗(Θ+
Ld

)−Θ−
Ld

)(q0, q1) · ξQ×Q(q0, q1).

From (4.29) and the invariance of the discrete Lagrangian, the left hand side of the previous

equation is zero, and so we have

(Θ+
Ld
· ξQ×Q) ◦ FN

Ld
= Θ−

Ld
· ξQ×Q. (4.30)

The last relation is simply the statement of preservation of the discrete momentum map,

given that for symmetry actions there is only a single unique discrete momentum map and

that the above argument holds for all subintervals, including a single timestep. �

Observe that JLd
is the pullback under F±Ld of the canonical momentum map JH on

T ∗Q, and that JH is thus preserved by F̃Ld
.
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Chapter 5

Numerical Examples

In this chapter we will choose a particular discrete Lagrangian and illustrate the performance

of the algorithm from the previous chapter on two simple conservative systems. We are

particularly interested here in the extent to which the variational integrator preserves the

energy for very long time simulations.

The examples that we present simplify very much the issues regarding grazing impacts

and multiple nearby solutions, such as one would encounter in complex collisions (simula-

tion studies of powder flows for example). Our algorithm, as presented in this chapter, is

limited to relatively simple situations, when one can readily identify and resolve the im-

pacts. However, considerable progress has already been made in extending these methods

to more practical schemes which are demonstrated on examples involving very complicated

collision sequences (see Cirak and West [2003]).

5.1 The Discrete Algorithm

For systems of the form

L(q, q̇) =
1
2
q̇T Mq̇ − V (q), (5.1)

where M is a mass matrix and V is a potential function, the Euler-Lagrange equations are

given by

Mq̈ = −∇V (q),
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which is simply Newton’s equation of mass times acceleration equals force. We consider the

second-order discrete Lagrangian

Ld(q0, q1, h) =
h

2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
− h

(
V (q0) + V (q1)

2

)
, (5.2)

which is clearly an approximation to the action integral over an interval of length h. The

discrete energy function for this choice of discrete Lagrangian is

Ed(q0, q1, h) =
1
2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
+
(

V (q0) + V (q1)
2

)
(5.3)

and the discrete Euler-Lagrange equations are

M
qk+2 − 2qk+1 + qk

h2
= −∇V (qk+1). (5.4)

Using the discrete Legendre transform (4.11a), we can push forward this algorithm on T ∗Q

and obtain a map

(qk, pk) 7→ (qk+1, pk+1)

given by

qk+1 = qk + hM−1pk −
h2

2
M−1∇V (qk)

pk+1 = pk −
h

2
(∇V (qk) +∇V (qk+1)) .

The integrator defined by the previous set of equations is called the leapfrog/Verlet in-

tegrator and is one of the most popular integration scheme in molecular dynamics. It is

a second-order accurate integrator, as one can also infer from the fact that the discrete

Lagrangian is second order (see Marsden and West [2001] for details about this theory).

This equation describes the motion of the discrete system away from the point of impact.

Given a point (qi−1, pi−1) just before impact, we must then solve (4.8) for q̃ and α, which

are

M
q̃ − qi−1

αh
−M

qi−1 − qi−2

h
+ (1 + α)

h

2
∇V (qi−1) = 0 (5.5a)

q̃ ∈ ∂C. (5.5b)
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Next we solve (4.9) for qi, which reads

1
2

(
qi − q̃

(1− α)h

)T

M

(
qi − q̃

(1− α)h

)
− 1

2

(
q̃ − qi−1

αh

)T

M

(
q̃ − qi−1

αh

)
+

1
2
(V (qi)− V (qi−1)) = 0 (5.6a)

i∗
(

M
qi − q̃

(1− α)h
−M

q̃ − qi−1

αh
+

h

2
∇V (q̃)

)
= 0. (5.6b)

To implement the system (5.6) we write (5.6b) in a form using Lagrange multipliers.

More precisely, we consider ∂C to have a local representation ∂C = φ−1(0) ⊂ Q, where 0

is a regular point of the constraint function φ : Q → R. Then we solve (5.6a) together with

the system

M
qi − q̃

(1− α)h
−M

q̃ − qi−1

αh
+

h

2
∇V (q̃) + λ∇φ(q̃) = 0 (5.7)

for the unknowns qi ∈ Rn and λ ∈ R.

Finally, we solve for qi+1 by (4.10), which is

M
qi+1 − qi

h
−M

qi − q̃

(1− α)h
+ (2− α)

h

2
∇V (qi) = 0 (5.8)

and we then continue integrating with equation (5.4) above.

We can also handle multiple impacts within a single timestep by dividing the impact

step in as many substeps as we need and solving sequentially (5.5) and (5.6) for any con-

straint involved in the impact. We will explicitly derive the equations for the case of two

impacts solved within the timestep (ti−1, ti); generalization to an arbitrary number would

be immediate.

If multiple impacts are realized in the timestep (ti−1, ti), then the system (5.6) will

return a solution qi which is not admissible (qi /∈ C). Let’s assume that there is only one

additional impact in the subinterval (t̃, ti) which occurs at the contact point q̃′ ∈ ∂C and

time t̃′ = t̃ + βh, with 0 < β ≤ 1 − α. Then, conservation of the discrete energy and

momentum at the impact point q̃, in addition with the condition that q̃′ must lie on ∂C
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give the following system of n + 1 equations

1
2

(
q̃′ − q̃

βh

)T

M

(
q̃′ − q̃

βh

)
− 1

2

(
q̃ − qi−1

αh

)T

M

(
q̃ − qi−1

αh

)
+

1
2
(V (q̃′)− V (qi−1)) = 0 (5.9a)

i∗
(

M
q̃′ − q̃

βh
−M

q̃ − qi−1

αh
+ (α + β)

h

2
∇V (q̃)

)
= 0 (5.9b)

q̃′ ∈ ∂C (5.9c)

to be solved for q̃′ and β.

Next, the analogous versions of (5.9a) and (5.9b) for the second impact point q̃′ give n

equations for qi

1
2

(
qi − q̃′

(1− α− β)h

)T

M

(
qi − q̃′

(1− α− β)h

)
− 1

2

(
q̃′ − q̃

βh

)T

M

(
q̃′ − q̃

βh

)
+

1
2
(V (qi)− V (q̃)) = 0 (5.10a)

i∗
(

M
qi − q̃′

(1− α− β)h
−M

q̃′ − q̃

βh
+ (1− α)

h

2
∇V (q̃′)

)
= 0. (5.10b)

The case of an arbitrary number of impacts is treated in a similar manner, by dividing the

timestep (ti−1, ti) in as many substeps as needed and solving sequentially systems of type

(5.9) to find all the contact points and times. Finally, we solve a system of type (5.10) for

qi and then we revert to the standard discrete Euler-Lagrange equations to continue away

from the impact.

In the numerical examples, we solve the implicit sets of equations (5.5) and (5.6) with

nested Newton loops.

5.2 Particle Colliding with a Rigid Surface

The first example we consider consists of a particle with unit mass moving under gravity in

the (x, y) plane and successively colliding and bouncing on a horizontal rigid floor located

at y = 0. This simple system has two degrees of freedom (the coordinates of the particle)

q = (x, y), the configuration manifold is Q = R2 and the contact submanifold ∂C is the line

y = 0. The particle moves with trajectory q(t) ∈ R2 in the admissible set y ≥ 0.

The Lagrangian describing this problem is in the form (5.1), where M is the diagonal
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Figure 5.1: The longtime energy behavior for a particle bouncing on a rigid floor

2× 2 mass matrix with diagonal elements (m,m) (m denotes the mass of the particle) and

V is the gravitational potential given by

V (q) = mgy. (5.11)

Here, g denotes the gravitational acceleration.

The discretization we use is (5.2), the one for which the variational collision integrator

was explicitly derived in the last section. The integrator in run with a step size of h = 0.01;

the initial conditions we used in the simulation are q0 = (0, 1) and q̇0 = (−2, 0). We

considered a unitary mass particle (m = 1).

The energy behavior in this case is shown in Figure 5.1 for a relatively large number of

impacts (1000 impacts). The same pattern is observed if the simulation is carried out for

essentially arbitrarily long times. This fluctuating energy behavior in typical of symplectic

methods. A detailed account on how the variational symplectic methods perform on smooth

conservative systems can be found in Kane et al. [2000].

5.3 Rotating Nonconvex Rigid Body Colliding with a Rigid

Surface

Now consider a sequence of collisions and bounces on a horizontal rigid floor for a three

degree of freedom system, namely, a rotating four point, star shaped rigid body (see Figure

5.2) moving in a plane. The convex hull of the star shaped body is a square with sides
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Figure 5.2: A rotating four-point, star-shaped rigid body colliding and bouncing on a
horizontal rigid floor

of length L. The rigid body moves under the gravitational force field in the vertical (x, y)

plane. The configuration manifold Q is SE(2) with local coordinates q = (x, y, θ), where

(x, y) ∈ R2 stand for the coordinates of the center of mass and θ ∈ [0, 2π] for the oriented

angle that a line moving rigidly with the body makes with the horizontal axis. The contact

set ∂C given by the non-penetration condition is given explicitly by

y =
L

2
(| sin θ|+ | cos θ|) . (5.12)

The subset of points where y ≥ L
2 (| sin θ|+ | cos θ|) represents the admissible set C ⊂ Q

and contact occurs whenever the relation becomes an equality.

The Lagrangian describing this problem has the expression (5.1), where V is the gravi-

tational potential (5.11) and M is the diagonal 3 × 3 mass matrix with diagonal elements

(m, m, I), where m is the mass of the body and I is the moment of inertia of the star shaped

body with respect to the z axis through its center of symmetry. In terms of m and L, I is

given by I = 29
192mL2.

We use again the discretization given by (5.2) and run the variational collision inte-

grator from Section 5.1 with a timestep h = 0.005 and initial conditions q0 = (0, 3.5, 0)

and q̇0 = (−2, 0, 5). We considered the body to have unitary mass m = 1 and a square

convex hull of size L = 1. A longtime (1,500 impacts) energy plot is shown in Figure 5.3.

The longtime energy behavior appears to be reasonably stable. It is not clear from these

numerical experiments whether this is an indication of a nearby conserved energy, as exists

for variational integrators applied to smooth systems, or simply a fairly stable random walk.
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Figure 5.3: The longtime energy behavior for a star-shaped rigid body bouncing on a rigid
floor. Note the fluctuating energy behavior typical of symplectic methods
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Figure 5.4: Log-log error diagram for the method in the star bounce example, after one
collision. The 2nd order accuracy of the integrator from the smooth setting is preserved
through collision. In this case a nonlinear gravity was used to avoid the degeneracy of the
exactly integrable linear gravitational potential

More numerical investigations and analytical work is needed to resolve this question.

We checked numerically the order of accuracy of the algorithm for the star bounce ex-

ample. A log-log error diagram after one collision is presented in Figure 5.4. The numerical

results show that the integrator is 2nd order accurate, i.e., the order of the method is the

same as the order of the discrete Lagrangian Ld. This is in fact a fundamental property

of the variational integrators developed in smooth settings (see Marsden and West [2001])

and we believe that it extends to the nonsmooth setting as well. In our future work on

the subject we intend to formulate and prove such results for the variational collisional

algorithms presented in this work.
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5.4 Nonsmooth Analysis Approach

The purpose of this section is to discuss collisions with multibody nonsmooth contact ge-

ometries when the contact set ∂C has a large number of singularities. For example, in

granular flows or fragmentation of brittle solids there are a large number of fragments un-

dergoing complex collision sequences. For these collisions, situations like corner to corner

contact are very likely to occur and the variational algorithm from Section 4.1 cannot cope

with contact in singular points of the contact set ∂C.

However, the nonsmooth analysis (see Clarke [1983]) provides an efficient analytical tool

to formulate and treat algorithmically complex contact situations, as shown in Kane et al.

[1999b]. The goal of this section is to combine discrete Lagrangian mechanics with nons-

mooth calculus to derive a variational formulation of the nonsmooth contact (in the sense

of nonsmooth admissible configuration sets). The symplectic nature of such an algorithm

is poorly understood, but one can conjecture that future theory on that would depend on

approaches like this one.

If C is the admissible set (possibly nonsmooth and nonconvex) of the system, we must

have q(t) ∈ C for all times or, in the discrete case, qk ∈ C for all k. These constraints may

be enforced by adding to the Lagrangian the indicator function IC of C defined by

IC(x) =


0 if x ∈ C

∞ otherwise.
(5.13)

In the discrete context this translates into defining a constrained discrete Lagrangian L̃d by

adding contributions from the indicator function. One particular way to do this is

L̃d(qk, qk+1, h) = Ld(qk, qk+1, h)− 1
2

[IC(qk) + IC(qk+1)] . (5.14)

We use, as before, the variational principle of Hamilton to derive the discrete equations of

motions. Thus, the discrete Euler-Lagrange equations become

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h)− ∂IC(qk) 3 0, (5.15)

where ∂IC denotes the generalized gradient of the indicator function.
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For points q in the interior of C, ∂IC(q) = {0}, while for points on the boundary of

C, ∂IC(q) = NC(q), where NC(q) represents the normal cone to C at q defined in the

nonsmooth analysis framework (see Clarke [1983] for a complete account of the nonsmooth

calculus used here). However, if q is a convex point, NC(q) reduces to the normal cone in

the usual convex analysis sense.

The constrained discrete equations (5.15) are thus the usual discrete Euler-Lagrange

equations (4.7) away from the impact. The generalized gradient ∂IC is not trivial only for

q̃ ∈ ∂C. If we specialize (5.15) for points qi−1, q̃ and qi+1, then we obtain

D2Ld(qi−1, q̃, αh) + D1Ld(q̃, qi+1, (1− α)h)− ∂IC(q̃) 3 0, (5.16)

which is a natural generalization of (4.9b) in the case when q̃ is a singular point of ∂C.

Alternatively, using the previous notations for discrete momenta (4.12), (5.16) can be

written as

p+(qi−1, q̃, αh)− p−(q̃, qi+1, (1− α)h) ∈ NC(q̃), (5.17)

where we used ∂IC(q̃) = NC(q̃) for q̃ ∈ ∂C. Therefore, (5.17) generalizes (4.15) in the case

when q̃ is a corner of ∂C and we cannot define a tangent plane at that point.

For Lagrangians consisting of only kinetic energy and for the particular discretization

(4.18), the momentum conservation (5.16) leads to a very interesting geometrical interpre-

tation. Indeed, for a unitary mass matrix, (5.16) becomes

q̃ − qi−1

αh
− qi − q̃

(1− α)h
− ∂IC(q̃) 3 0. (5.18)

The inclusion (5.18) can be rewritten in the following form

(1− α)qi−1 + αqi ∈ (I − ∂IC)(q̃). (5.19)

Now we will connect (5.19) with the concept of the closest point projection. First recall

the definition of the resolvent of the set-valued operator ∂IC as

R = (I + ∂IC)−1. (5.20)

It is a well-known fact that the resolvent of the subgradient of the indicator function of a
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convex set is the closest-point projection onto that set (see Rockafellar [1970]). Under the

assumption that C̄, the complement of C, is a convex set (see Figure 5.5), the inclusion

(5.19) can be written as

q̃ = PC̄(qi−α), (5.21)

where PC̄ represents the closest-point projection operator onto C̄ and qi−α is the convex

combination of the points qi−1 and qi

qi−α = (1− α)qi−1 + αqi.

We will conclude this section by the following two remarks which re-emphasize the particular

benefit of the nonsmooth calculus approach.

Remark. Besides its theoretical attractiveness, the nonsmooth analysis approach has a

great advantage over the standard penalty formulation methods in dealing with complex

nonsmooth contact geometries (see Kane et al. [1999b]), where neither normals nor gap

functions may be defined. Indeed, for such problems penalty methods simply fail.

Remark. The nonsmooth approach also gives the natural framework for constructing

time-adaptive variational integrators for collisions (see Kane et al. [1999a] and Marsden and

West [2001]), but we will leave the development and illustration of such contact algorithms

for future work.

qi

h

qi+1qi−2

h

qi−1
αh

q̃
(1− α)h

qi−α

C̄

C

Figure 5.5: Collision at a singular point of the contact set ∂C
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Chapter 6

Concluding Remarks and Future
Directions

Concluding Remarks. The main goal of this thesis was to develop a geometric compu-

tational approach to collisions and free boundary problems. By using a variational method-

ology we gain insights and new perspectives on these problems from both theoretical and

computational viewpoints. Regarded from a PDE/functional analysis point of view, this

thesis may seem to lack hard mathematical analysis results on existence and uniqueness

theory. This is indeed a theory which we do not address. For the interested reader, we

provide a brief literature survey on such alternative approaches (measure differential inclu-

sions, sweeping processes) to rigid-body dynamics with impact—see the introduction. For

recent progress on existence and uniqueness for free boundary problems we refer the reader

to Coutand and Shkoller [2003] and references therein.

Future Directions. There are several directions to pursue in the future to complete the

foundations laid in this work. Perhaps the most important task is to develop algorithms

and a discrete mechanics for nonsmooth multisymplectic variational mechanics and to take

advantage of the current algorithms that are already developing in this direction.

Another task is to further develop the theory of shock waves by combining the geometric

approach here with more analytical techniques, such as those used in hyperbolic systems of

conservation laws, as well as incorporating appropriate thermodynamic notions. Alterna-

tively, a possible direction is to link the nonsmooth multisymplectic theory developed in this

work with Lagrangian averaging regularization techniques used in alpha models (see Holm

et al. [1998]). The Lagrangian averaging technique is an intrinsic regularization method
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for the high wave modes of the Euler equations such that all the geometrical structure of

the fluid dynamics is preserved. Possible usage of the multisymplectic formalism into this

context will be investigated in our future work.

For some systems, there will be surface tension and other boundary effects; for some of

these systems a Hamiltonian structure is already understood (see Lewis et al. [1986] and

references therein), but not a multisymplectic structure.

Here we have only considered isolated discontinuities, but there may be degeneracies

caused by the intersections of different types and dimensions of discontinuity surfaces that

require further attention.

Finally, as in Kane et al. [2000], friction (or other dissipative phenomena) and forcing

need to be included in the multisymplectic formalism.
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