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ABSTRACT

A comparison of an exact calculation of maximum stress ln a
eylindrical rod under torsion is compared to the usual engineering
vappz‘ox:l:mation which takes the maximum strese as that exlsting on the
boundary of ‘tﬁn«a largest circle inscribed in the glven cross section.
A numerical exmmple for & symmetrical thin double wedge orcoss sectlon
1s caloulated and essential agreement in stress magnitude found,
although there was an eight degree difference in the locatlon of the

point of meximum stress,



I. INTROIUCTIOH

For practical applications, the maximum stress in a solid cylinder
. of arbitrary cross section under torsion is taken ae the maximum sheaxr
at:eas of the largest Inscribed circular cross section, which empirical
rule has through experience been found sufficilently accurate for enginser-
ing purpbsas. It 18 the purpose of this paper to investigate this approx.
lmation for a sclid double wedge, with partiloular attention to thin
symwetrical double wedges that occur in high speed wing cross sections, and
to determine the degree of accuracy.

The method of attack which is followed will be to investigate, under
St. Venant assumptlons, the ftorsion In & double wedge region R with
boundary C by means of & conformal transformation of R onto the interior
of a unit circle., The problem then becomes that of Dirichlet, or a bounda-
ry value problem of the first kind; specifically, one of solving A¥ = O
with the boundary condition that ¥ =4w (%) B(%) on C if (%) is the
mapping function of the region R onto the unit circle. The classical
‘solution, namely e form of Polesson's integral, will yileld Y from which the

desired stresses can be obtained with little difficulty.
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II. MATHEMATICAL BACKGROUND

A brief statement of the St. Venant torsion problem is in order,
but any detalled account would be superfluous as the literature upon the
sublect is both extenslive and comprahemsive.l) A s0l1id cylindrical dar
of homogeneous lsctropic materiasl undsrgoing torsion with ao snd restrailnt
or body forces may be analyzed by assuming successive cross sections
deform or warp identically lrrespective of their position along the
cylindrical axis. Accordingly the displacements u, v, and v in the x, y,
and z directions respectively, where x and y are the coordinates of a point

in the cross section and z the direction of the cylindrical axis, become

U = e AZY v = azx w o= ad(x,v)

in vhich « 18 the angle of twist per unit length and $(x,y) is as yet
an undetermined functlon which must satisfy the equilibrium, compatibility,

and boundary conditioms.

An elementary calculation of stresses from the displacements yield

2% __E

é .
sz =/U4(‘ (—5% - ) £ = mod, of elasticity
Tey® O =0y = 0z=0 ? = Poisson’s ratio

which one recognizes as the St. Vemant conditions. Substitution of these
values of the atress into the equations of equilibrium shows that A = O

is the governing equation for &(x,y), which is usually termed the torsion

1) See Mathematical Theory of Elasticity ; 1.8, Sokolnikoff. McGrav Hill
Book Co. 1946, Chap. IV, for one readable account.
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function. Finally the boundsry conditions require that the normal stress
on the boundary of the cylinder be zero. In terms of the torsion function

~ this requires

R A EPT
where ¥ ) ‘7{ , &and O are the unit vectors in the X, ¥, and surface normal
directlions reepectively.

The above derlvation presente esséntially the prodblem of Neumann, or
the second boundary value problem of potential theory, requiring for its
solution an analybic functiom é(x,y) whose normal derivative on the
boundary of the region containing &(x,y) is prescribed. It 1s convenient,
however, to translate the problem of Neumann into one of Dirichlet using the
Cauchy relations and the implied existence of a conjugate function, say
k4 (x,y). The problem thus becomes one of solving AY = O for which
the conditions on the boundary of the region can be ghawn to de ’{’b = 327
+ constant in which 2z 1s the complex coordinate of the cross section, It
‘may also bhe noted that the constant, actually associated with a rigid body
displacement, 18 non-essential as only derivatives of ¥ (x;y) are involved
in the stresses.

The method used in this paper is to determine V(x
tool of conformal mapping. This artifice is useful in as much as, while an
analytic function is invariant under & conformal transformation, the boundary
conditions are simplified providing the transformation is properly chosen.

If for exemple, the mapping of an erbltrary cylindrical cross section, R,
onto & unit olrcle is known, say z = o (%) , & belng the complex coordinate

in the circle plane, we may form



b
&(z) + 1¥(z) = F(z) = Flu(s)] = £(¥)

where now f{%) 1s apaelytic in the reglon R, wlth boundary say C. Thus
remembering the boundary conditions on ¥ (x,y) = %z?.‘, dropping the non-
essential constant, we have ¥ =40 ( 5) 5 (5) on the unit circle in

2ddition to Aﬁ'(x,y) = (O, The golution is glven by & special form of

Poisson's integral, namsly

= . o (e I (T)
£(s) = ¢ +id = ¢ L pe d6 + constant

‘where Y is the boundary of the unit circle.

Then providing the integral can be evaluated, @(x;y) and ¥ (x,y)
are given by the real and Imaginary parts of the integration. Finally
the non-zero stresses may be evaluated from the strains using é’e(x,y) or,

a8 has been shawn,l) directly from the complex torsion functiom £(¥) as

Poein = “\: df /d5
2x T Vley TMET LS/ dS

- «'.&3(5)]

1) Sokolnikoff. op. cit.
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ITI. THE MAPPING FUNCTION

We proceed next to develop the mapping function for a double wedge
croas sacﬁion , @and in particulear we wish to transform the region inside
the double wédge polygon into the intericr of the unilt cirecle. 'This is
convenlently done by the well known Schwarz-Christoffel transformation
where the geometric relatione and points of correspondence are as indicated
below. We cbserve that due to the symmetry about the y axis, four polnts
(inestead of the usual three) may dbe speclfied, and that in the special

case of a dlamond shape, or symmetrical double wedge, 3 = &, the origins

correspond.,

it
® A ®
/-""—-D\
P \(,/a‘
¢ // P‘(e-q’)\\
'/ Pcp \
X Al Ic = %
\ /
\ /
AN /
\\__‘/
B
[
Z = oL~ iy ~re'® s= E~in =Peup

Y
AM» >
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The Schwarz-Christoffel transformation formula gives for our case
% . -6- i -£~l 5 {

a =K (5-a)" (5-B)" (s-¢)" (5-d)" (2)

‘which for a = «l; D= «1; ¢ =+1; d2+1; o =¥ becomes
n

. ' ﬁ-‘ : -3 .
S K (3+0) (30007 (5-0)" (3-4)
which reduces %o o o

2 = .
%‘ K{ (;‘;-? ( ::.,: )w('%}':ﬁ) F} (2)

For the symmetrical case, § = §, to which we shall confine our diseussion,

0.

the further simplificative results in, o + 3 = 7

of
g%’ K[ ’S;-t ( :::: )ﬁ} (3)

As the integration for z in the above involves essentially the

incomplete Beta functlon (see equation 5 foildwing) , it can not be easily
evaluated In terms of elementary functions. Several approaches were
attempted,

a. Successive integration by parts in order to obtain a general term.
This resulted in a divergent series; it was hoped that after one
or two or so integrations, we could take advantage of the fact
that % =1 = ¢ where £ was a small quantity for normal airfoil

~ sections.

b. Expansion of the integrand in powers of ¢. This yielded a
logarithmic series which was not particularly useful.

¢. Integration of the analytlc function along a 6 = const. path from
O€r<1., This gave difficulties similar to those encountered
in 4 following.

d. Integration along the boundary r = 1. This procedure was carried

out 1n detail.
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Thus employing the last method and using the previously noted

correspondence of z= t/2 for ¢ = 1 we write (3) as

7, v o o
| -1 (P
(dz-= K( e (cg*‘) da where 3b50'=e‘
t/z '
@ x
| ismc?) , 4P o
= - ie d s = =4~ &
Kgozie“’smcp( cos @ ¢ o
Q «
oo ¢
K.L?_ %'* 7 Ki™[ -« £
2 Q@ cos cpd¢=T SIn @ cos ¢ dq@
o
From this X may be found; as zb-—-i-:- .‘P"-'g , then
« -
ic_ t Ki‘r(%.__z('a')-*. _alE
LI —— o3 W B L [~ e
z )
[~
5 -
Ki "[ CE) (s )]
2
2 (7)
3
. Ki .o t-ic
o2 B(%'n—s (L)
2 .
So in genersl the transformation becomes
t-i ?
_ ot t-ic , - & 'y
?b = 3 B—-——(%’?)fsm U cos U dv (5)
(-]

In order to evaluate this integral, coneider

@
- 6-)
I, = S sin °D cos ) d9

-]



B

and let

dx _ ¢ 5 '
= cosd; y = gind; d0= -—%: -5— ;s x = (1-y2)%; y = (1-2%)
$IiNn@ £~
‘ (-2
Then I, = S —————
1 s y € b)

Sucessive integration by parts yislds:

| 2 l-g | z z |2 4
R l ] z-s( Yy )+ 2-5_4-5( Y )_
I, = 2] () y - 3% -y 3-2 5-g\1-4* .

1=y
And resubstituting = for y, we obtain e tangent series
I - tan“ D[V 1 z-% P T ¥
v osin® [ (-e) -2y 3-e 4M

Q

0
which converges for 0 £ @ < 4 ¢ Writing the general term and summing

in an infinite series:

z-%
tan @ ( ) i
L= EPTY, [ Z(—s) ( t‘an q} ot < ,‘47_- (6)
which gives for the transformation  for O = o = -E—
z-€
ot ttc tan @ “B(Yl "')t 2n ‘
%, =z (5.5 s) I z)smd?[ g(‘) 2f) @ (7)

In the same menner a similar expression can be obtained in the region
Tcp<¢ T as

___.€
z - i & . (t-ic)cot @ Z B(‘ﬂ £2£) 27
Zh = t 2 B(z )zcosq[ = (') “Yf} COt CP (8)

-One convenlent limit check on the formula exists in the case of &
square. As the mapping function as written 1s exact we may proceed to
write a = 8 = = 6 = /2, Then a/w=1 — ¢ = % implies ¢ = 3.

Using this value of e, we may compute
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Bl 25-E) = Bz ) = 7.420

B(n »é—%w-f») = B(n , 1.25)
B(n+ £5-£) = B(n, 0.75)
B(n > L) = B(n ,1.25)
Bln o 2T 8) =81, 0,75

Formulas (7) and (8) respectively become

ot teq t 1.3 » B(n,1.25) 2n
g = L- te  tan @ [\+Z(—1\ (“ovs)hm ®Q

1.420 0.5 sing

e 't-ic . Co‘t"‘s@ _BM 2
Zb =1V Z%Y 5420 o5 :osq{ Z( B{n, 0.75) cot ?

Now adding the two for ¢ = t:-r- , where both expamsions are valid, we obtailn
2zy= tf2 vr1cfe=2x+12y ( @=TT/h)

or x=%t/4 amd y = ¢/i which as we see from the sketch 1s correct.
AY

As a matter of intet'est, the transformation showing the correspondence
in the two planes has been graphed in Fig. 1. It may be remarked that the
summation from 0 = 1 to m = @ may be dropped from (8) and the formula
will be accurate to three figures for the leading (or trailing) three

eighths of the chord.
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IV. THE STRESSES

We shall now salve axplicitly the problem of Dirichlet for cur case;

1.6, glven LAY = O  and the boundary condition that \I’.b = %ﬁb?-b =
30 (0)T(3), £ind ¥ (p,g). Proceed first to celculate ¥. from the

b
transfoymaticn formula whers in particulsr we are interssted the range
0 =@ < % end mors pertlcularly 0 s <«¢ = % which contsains the
point of mexlmum stress.

For convenience write the transformation formula (7) as

tote . B o=t X
£ = % TG s, F(«9) ’ Zy T 2 (-€) B, Fle) (9)
2-E )
tan <
h Flgy = — 11 + ( )]
were Flpy - 2[5
and BE = B( -g— s ‘——Z—E~
Thuse
o - ¢ 2 tz cé+t” Fz
{o= 22,2, = 3 2(-€) B, Fle) T 2G-er B (@
or as
2
P, = kv kP ook F | (10)
where we bave written
2 2 2
5 ot . _ e+t
k- ) * k’-- 201-£) B, ’ k3 - z(_\—s)z'B:

Next, looking forward to the cdmputation of & typical example, we
agpume 0 € @ < tan'l ( 1’/5 ) and substitute the power serles expansion

for sin ¢ and tan

1 4
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and 'bél:e ag ’ﬁhe transformation formula that pert of the summationa up to
and including n = 2, These three expansions amount t¢ neglecting terms
of the order tanﬁ(”l' /5) when using also that part of the sin ¢ and tancp

geries written above. Then F(p) is of the form

Flg) = «.9"5[1 va, 9t a, 9 r ay@ - ]

which means

2

k., » k,F + k_F

bacomes
2-2€ 3-£ 5-f G-28

-€
b‘*'bzq’ +b36? ~b,® +bq; +b6q) + b, @

by

upon expansicn and collection of constante. The relation of the constants
is given in the calculation of the example as 1t is too cumbersome Lo
present here.

Equation (11) must now be written as a Fourler series. Remembering

that the constant b, 1s non-essential, we expand ‘I’.b as an odd function

Z [5“ sin —' t ‘ vhere t- ":?Tc (12)
The coefflclents are given by
i
- \ nir "eo e
‘ﬂn = Z L@b(t) sin 5- ¢ dt n =1,3,5,7, (13)
ﬂ‘“ = © an,h,G,B,"“'

The solution of AY = O for our case of s circular region with no

ein@larity at the origin is the analytic functilon

k, z. '
I o= = p ) = Zﬁn *sin Ty @ (14)

"=1,3,5,
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Then lmowingz b ({a,q) , the conjugate function i’(fJ,CP) can be found as
o
ko LY
3 (F.q,) = ZB“P cos k. where ke = 29, (15)
Nz, 3,

We may now write the complex torsion function

f(s)= §+iY Zﬁ,, “ cos kep + § sin ko)

e ke < ko
Zﬁn et z B 5 (1€)

iz, 3,- N=1,3, -

In crder to compute stresses using the equation in Sectlion II we uneed

(d€lds) = ;Z;(s“k s (1)
‘I »
which on the boundary becomes
)
(df/ds)_ Zﬂ;n (el (18)
n=1,3, .

On the boundary where the maximum will ccour, the stresses may be obtained

- iy = {df/ds) _ . -
('zx‘t'ly)b /a [(dw/d'S) ua(,$)]b

Knowing w' (5) is the Schwarz-Christoffel form of the transformation

(19)

(dz/ds ) and » (%) the mapping function we may substitute im (19) for p =1

on the §oundary to obtain

Zﬂ ke‘(k"')‘? ﬂ
. ,l\, o T = n) 3, -
(T Tgy), =t Ko ()] ’
z_ I $z+l r;\ .
gt
[t +tF@ = c Fle) 20)
-t[?~(t E)B (\*E) Bz {
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which after some reduction and separation of real and imaginexry perts

gives finally the stresses on the boundary

' - [z sin®e coshqu > B YN i c F(Q)
T, = S ~— ¢co - -
lsz (}ld) [ k o l <@, 5( 24, ? 3 (-£) B
: n=(,3,5,
£ g 22
. \ Z Barn n i tFlo) ¢
7 :{2 S\ @ 05 & " S'ﬂ(—"“ _.D - -—
fvb(“"c) k 2, ! 2%‘? ) G-8) By <
“=|)3|5)."
where the coumplex constant of the transformation fermula K has been
written
' o k__ 2 \‘Cz-r £*
1.1) .-.F 1C - _t —‘Bi
K=ke = zi -y
€ Q=£ﬁ=ﬂ
~ o 4 —~2 P
It remaine then to find 1 = ’;x + Tzy and set (aT7/ da®@) = 0

(21)

fez)

in order to find the angle <« in the circle plane for which the stress is

& maximm or minimum. Wlth each valus of ¢ is assoclated an angle € in

the phyesical plane through the transpormation formula (7) and thus the

position of the maximum stress on the double wedge is determined. The

explicit calculation of this position of maximum strees, and its magnitude,

is complicated by algebralc difficulties and & trial and error solution

hes been used.

Finally the result should be compared in both position and magnitude

with the conventional approximstion. This has been done for one typical

alrfoll case in the followlng section.

¥
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V. NUMERICAL EXAMPLE

A numerilesl example has been calculated for the case of & falrly

thick but representative dieamond shape airfoil cross section with &

thickness ratio of .15838.

arbitrary, has been confined to

range of expanslon of the transformetion, formula (7).

As Indicated in equation (11) the relation hetween the constants

is somewhat complicated &nd those listed here are sufficient for filve

Tigure accuracy.

The range of expension, which 1s somewhat
q,=

1/5 which 18 well within the

=1 ,8—-¢_ _2—-¢_15-96e 2~-¢
& =3 2 T - € 148 3 = ¢
_ 1647 — 1152¢ + 180e® 2 — ¢ 15 - 6g
8 < 3540 BT = ¢ 18
_ 535—655¢ +234¢% — 203" 2- ¢ 1647 —1152¢ +180e®
&3 ~ 3240 5—¢ 3240
2-¢,2 -3 :1.5 be 2-¢ _44-8  4-g  6-¢
"?TE%’ )( ) - ( ~3'FTe "B-¢  T-¢
b, = k= t2/8 (non-essential)
b ot
e 27 Zoca B
b = - Cz-r t
3 k3 z(\—e)lB:
_ 1 L - g 2 — g
by = Kooy = kp (7 + S = )



_ _ 1 2~ g 2 w g

LT 1 2-e . 2(2-¢) ., (2-g)(l-¢) 12-
bg=lpmy =kpl+ gy £ g 0 Tz Ty 4 TH al-uch

o im

2oe, 2o¢

i
[

| _ z _ 1. 28-eg 2-g4° . %
b, = k(e + 28p) =l [+ Smm - ] o ey =]
T oniziT ot ‘ B’s=B(i‘ =)

It is convenlent to choose a simple value of g, say 1 /10 and find
the corresponding thickness ratio. Thue ¢ = 1/10 implies that
%=tan[(£’l‘f)/2] = tan 9° = ,15838. We next write out equations (21)
and (22) retaining only those terms necessary for three figure accuracy

in the final result.

- T € € ic .. T
T‘sz(/uoc) = kl(PO sin'@ cos q{ﬁsl Cos(zqr,q’ V)+rer 7[51 (-_05( z%q z))]

1-Z

g 4 '3
o ['*a.<92+azcv +a;<s>]
("-E)l;z

_ -1 ~ - L o
| lzyb(,ucC) =—|'(!:9 sinsq cos E(?[ﬁ‘ sm(zaoqml))f-..-\- 7ﬂ7 Sm('z’qa(? ﬂj}

Lt F )

-t
(-8) B z
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The computallon of constante 1s stralght forward, the values being

Indicated below

Using the above coefficients and «p = cpot

¥y

from which the first

v 109 = 3.13553 - .15143t°°7 + LoThTIt>"

D= 1/5 Y=g = en = .314159 t/c = ,15838 £=1/10
B,= B(%,7°) = B(0.05, 0.45) = 21,6193
k = —2V¥xt® _ z91ozs08 _
B, NPT TS 20468846
a; = 144828 by = 00135382
ay = .0338781 by = -.0000933553
2y = - 0948610 by = 000392297
by = .00313553 (uon-essential) bg = -.0000218376
bo = -.00064459% by = .000120126

E—1

1/5t, we find -

8 . .00088t%*%+ .00086t3°8

- .00008t%*9 + .00001:9+8

oight Fourler coefficlents have been computed as

p, =.08080 = ,08080
BBa =’ 3(.005520) = .01656
585 = 5(.001706) = .008530
Tpy = 7(.000654) = .00k5T

Bp = by = Pg =Pg =0
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Other convenlent values to have tabvulated are

o . = AL

2N ox 5610 2T L 54,9779
Z 3 F3v PN . ZCPO = Db g <
C 1

(Teye; 0513940 (o " WDUBL3978

T = 167,701
ke, *

Finelly the streeses 7., have heen

- s <]
and T = T -+
\/ ax (EZ Y

plotted ageinst <p in Pig. 2. The maxlimum stress was found to be

Tz

approximately T, = .0797/(0{‘ at ¢p=.02, which corresponds toc € = 1.10°
in the physical plane by equation (9).

The usual approximation is to assume the magnitude of the maximym
stress to be that which would occur on the circumference of the largest
circle Inscribed in the cross section with its center at the center of
. twist and its location at the point (or points) where the circle and

boundary are tangent. In this case such a procedure gives T,.. = 0782 ot
at 6 = 9.000



5

e

1

o

o

[




(20)

V. CONCLUSIONS

It has been shown that the usual engloeering approximatlon %o
the maximm stress in a cylindrical body of thin diamond cross section
under torsion is accurate enough for practical purposes. While non-
conservative by 2% in the example, it is felt that more careful
calculation of the Fourier coefficients would verhaps reduce the
mergin slightly, although as can be seen from Fig. 2, the meximum

stress can never be less than 1_. at 8= 0 (i.e. .07919 wmet).

5
Further as a peak accurs in Tox the maximum stress must be greater
or at least equal to .07919 /UOC . Regearding the position of the

maximm stress, engineering practice seldom permits sharp edges, in
missile wings for instance, and lends further justification for the

use of the much more easily applied approximate method.



