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HOTAYIOLS (cont'd)

0" = ‘iave frequency

k = Z7 <+ ‘iave length

Kn(x)=idodii‘ied Bessel function of second type (see Refl.

[)2 (x)= 1 1 T T fipgt

- Y1l =

1

(see Ref.



ABETRACT

In this paper 1t is shoun thet the shear
Zlelds on either side of the westerlies are dynanmi-
cally unstable and will roll up to forwu dlscrete
eddies. A sbudy of the stable vorbex sysbtems into
which these eddies might collect shows that a
"vortex street' is stable for a certain ranse of the
ratlo of width to vortex spacing. It is also shown
that a formation with vortices placed on ths corners
of a resular polygon ig stable if the nunber of
vortices isg less than seven This still holds if the
effect of the shear fleld north of the westerlies 1s
gimulzted by a fixed polar cyclone. It further ap-
pears thet with a strong general circulation, l.e.
strong westsrllies, only Luo or thise high pressure cells
should be Iound while the numbers, up to six, should
be found with wealrer cilrculations. This conclusion is

verifisd by Horthern IHeunlsnhere mean pressure charts.
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I. IHTRODUCTICH.

The motion of the atmosphere can be
congldered as a mean flow which 1s of very larpe scale
and is only slowly chianged and, superimposed on this,
the low level, smaller scale phenomena usually assocla-
ted with the polar front. If the mean pressures over
a period of aboult a week are plctted, it is seen that
the latter dlsturbances are averazed out, and only the
large scale mean motlon 1s shown. Such a plot of the
uorthern Hemisphere shows, in addition to the nean
westerly flow of air, largs scale closed isobaric systems
spaced at comparatively regular lntervals on the surface
of the earth. These include the Aleutian and Icelandic
low vpressure areas to the north of the westerlies and
the Pacific and Bermuda high pressure areas to the south
of the viesterlies.

L3 the position and strength of these vortilces
apparently control the mean path of the low level storms,
a kmowledge of the properties of these systems would
appear to be extremely desirabls for any long range weather
Tforecasting. Une aspect of this problem has been inves-
tigaved by Hossby (see Hei. ) who showed that wave dlatur-

bances of sbout the observed wave length can exist as g



regult of the variation of the Coriolis acceleration
with latitude. In the present paper, an investiga-
tion of another aspect of the problem arlsing from
the sxistence of the shearing motion on either side of
tie belt of westerlies will e gilven,
in making these calculatlions, several

approximatlions have heen made. The principal ones
and the reasons {or their adoption are as followa:

1) As the systemns are very deep, i.e. the

wind momentun vector for a vertical section

is roughly constant, it was felt that the

horizontal field of motlon was the dominant

factor; consequently, vertical velocities

were neglected, and horizontel momentum was

agsumed not to vary with height.

2) with this dynamical setup, the effect

of variation of density with sltituds would

probably be small; consequently the atmosphere

wasg assumed to be a layer of fluid of conctant

density with its depth belng determined by

the hydrostatic lawu.,



3) As these systems are continuously
velng dlsslpated by frictlon in the lower
Jayers and fed by fhe action of friction
on the thermodynamlcally produced wester-
lies at about the same rate, the effects
of friction have been neglescted.

4) It has also been assumed that the
fluid could be considered as being on a
rotating disc rather than on a rotating
sphere., As on the earth, the gravita-
tional field normal to the dilsc was
assumed to be deformed by an smount suf-
flcient to cancel out the centrifugal
accelerations due to the rotatlion of the

disc.



iI. Tzl FUNDALLETAL ECUATIONS

Using the assumptions discussed in I,
the equations determining the fluld motion on a
rotating Glsc (see tef, 2, p. 317) are, Ior a

Cartesian coordinate system, the dynamical

equatlons,
Ln = o 24
D# £ eoy g 3% (2.1)
Du 24 )
and Dt+2wu g@ s

and the aquation of continuity,

.Q./_?.—f-ﬁ{—g—i‘-d--g—g}:o y

Dt (2.2)
uliere
D0 _ al) () of)
De = 5F tUSE TV ST
In vector form these equations are
.l.)._-. O XS =
pZ *EP G =Tovh (2.3)
DA = =
and Gzt hvg =0 (2.4)

These equations may be combined to give a
very useful result. If from the curl of Zq. 2.3, one
eliminates the term v-g by Eq. 2.4, one obtains the
equation

£ {5522 )=0 (2.5)

Thig is the law of conservation of vorticity which
could Just as well have been taken as one of the fun-

damental equations. 1f the motiocn of the fluld coulad

- 4 -



have been started from rest with a uniforu depth, A, ,

the last equation can be integrated. This gives the

result that

g

_Cz%&‘ﬁ—_—. 2/2 ‘ (2.6)

|

As the dynamicai squations are non-linear,
general solutions to these expresslons are not readily
found; however the solution for the case of motion in
circles can he obtained quite easily. The equilibrium
of forces in the radial direction, Fig. 1, requires
that

For 2 (h)=hvs'+ 2ary (2.7)
From Eg. 2.6,
/z=/7.,{/+ 572w}=/z° {/*257:%("%)}, (2.8)

The equation to determine the veloecity is thus

0/21/ 1. dve _ 460 ,_“‘_i— 2
7 7 B Ll v A (2.9)

This can e put into a somewhat simpler forn using the

s a . . = Ve
dimensionless variables, e::;%%%/~ and Lé'_WQ%T .
9% o

With these variables, Bc. 2.9 bscomes
2
L SNt (2.10)
If U is positive, this is the ecuation for cyclonic
rctatien; if Ve 18 negative, this is the equation for

anticyclonic rotation. The solutions to this equation



which vanish for large radii were found numerically
at the liassachusetts Institute of Technology by means
of the Differential Analyzer. These results are
plotted in Filg. 2 together with K, (P)’ which they
approach agymptotically.

An approximate solubtlion Lo thls same
»roblen may be found by nsglecting the quadratic terus
of Zge. 2.1, i.e. by neglecting the convective terms
in the acceleration of the particles. If these terns
are omltted, £g. 2.1 and Ig. 2.6 may be solved for/4 ,

and the following result 1s obtained:

» 2
i (Sar Th)s T4 4 gt h-h)=0 (2.11)

In terms of the dimensionless variasbles X, ¥, and 7 s
this equation becomes

%272"“ ?'z‘* é;—;}'z}‘f'2=0- (2.12)
The only steady state solution to this equation whieh
vanlshes at infinity and which represents flovw in
circles (see Ref. 3) is

n=AK (p) (2.13)

where e=‘VX2+Y2 1s the same as in Ig. 2.10,and A

is an arbitrzry constant. If A 1s posgitive, the



notion ls anticyclonic; if A is negative, the motion

is cyclonic. From kg. 2.1, we have

= Ye. . 2n -- 4
V;—,@: —a—;g AK, (). (2.14)

This plotted for & wunit cyeclone, A=-/ , in Fig. 2
with the exact solutions which retzined the quadratic
terns., From Lgs 2414 1t can bLe seen that 1 e<</

the velocity varies inversely as the radius, just as in
an ordinary line vortex in an lncompressible non-viscous
fluid, and if distances between tine vortices of Lg. 2.14
are smell, results identical to those found with ordinary
vortices will ve obtained. lHowever, the linearization
of the equations of motion breaks down in this range, so
that results with cordinary wvortices cannot be applied
directly.

If we take 4, as being the depth of the homo-
geneous atmospheres, about 8 km.,a distance of 2000 km.
corresponds to e= l.04, Iige € shovis thiat al distances
ag large as this, the error caused by neglecting the
cuadratic terms is small, particula?ly if the constant
is adjusted so as to fit near e@= 1 rather than for very
larpge values ofe . As the spacing of the pressure

centers Dbelng investigated 1s of the order of 2000 km.,



tlie quadratic terms will be neglected throughout,
and the llnearlzed lorm, Ed. 2.12, will be used, in
adéition to this, the motions will bte conasidered %o be
elther stationary or changing very slowly so that the
local acceleration can be neglected as compared to
the Coriolis tern., This 1s equlvalent to saying that
the fluid moticns to be considered can be built up
through superposition of vortices of the type given by
zg. 2.13.

with these approximatlons, Zg. 2.1 and

Lige 2412 can be written as follows using dimensionless

variables:
= 27
V= 5;;% (2.15)
U 2—'—3—')2?
{%’“__2+%i;;_2}_,2=0 (2.186)

Hge 2415 1s exactly the ususl geostrophic wind equation.
It 1s of interest to note that Eq. 2,12 |
(or Eqe. 2.16) is the same as the ecuation for the de-
flection of a membrane which is elastically supported.
The character of the solutiens of Fq. 2.12 wuay often be

estimated using this analogy.
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IiT. REVIRED

£

CURARRIUTE AR JOUTS

In a first approxzimation the belt of
westerlies may be thought of as a uniform rectilinear
jet in an othervise undisturbed atmosphers. In
order to estimate the disturbences introduced by the
jet, this problem will be considered. If the velo=~
city of the jet is U. and its width is 2a, the
boundary conditions for the portion of fluld to the

north of the jet are
(a) p=-U,a for Y-« anc (b) p=0 Zfor Y=-e ,

The differentlal equation, from Eq. 2,16,1s

2

%;—;L‘z‘“‘)? =0 , (3.1)
The required solutlon is thus
-(Y-a)_

)7—_-«46109 (3.2)
This corregponds to a velocity field given by
U = ane—(Yva). (5.5)

This surface deflecticn is sketched in Fig. . The

velocity field shows reverse currents existing outside

the jet which die out rapicly with distance Irom the jet.
It was thought that in a two dimensional

extengion of this problem, such as jet 1ssuing from a



S gap in @ wall as in Fig. 4,the counter-currents night
form a series of closed paths. From Lce. 2415, the
boundary conditlons are that 7 be constant along the
wall and the edge of the jet. This will be talen as
unity for the quadrant where both X and ¥ are positive.
To final the required solution, let
n = 9'Y+ )?’ , (Be4)
The boundary conditions on %' are
(2) w'=0 for Y=0 and (b) )2’=/—e'Y for X=0
and (¢) »'=0 forX andY infinite.
The function »” can be bullt up of basic solu-
tions of the type », =/ (X)swm(A¥) by use of the Fourier
integral theorum. /A/(X) is found by substituting ¥, in

Ege 2416, This gives

%——fg’i—(/w\a)/:“a (5.6)
o ]70 = s/m(AY) 9~|/+/)2.X' (3.%7)

By the Tourier Iintegral thsorum,
LA «0
e’V—,—-?,—ijsm(AV) {fe'tsm(ht)o’t }c/) For Y >0,
(2] (=4
or

€Y= 2 [Ae smd¥DdA  se Y0, (5.8

w 10 -

(3.5)



From this

-V it
j~eV= 2 [ snpry {# - 785 Jdrt ror Yoo, (3.9)

The integral is an odd funection of ¥ and thus vanishes
for Y'=0, By comparison with this result, the func-
tion

/

n'= f“e—v’/’ﬁfx

SNNAYO{i-—7%?:}dA (3410)

3

(-}

satisfies Eg. 2.16 and the boundary conditions,Bq. 2.5
and is thus the required solution. The nunerical
values of n of Eq. 3.4 can be found by expansion in

series in the following manner:

%27(-2 = £ fne’“"’lz‘xsm(/l}’) o4
©0 o8 2ntl
= "’eﬁ _[ e_Xco‘Sh“{nZ:; (-1) ?%;;7}—! sinh’y }cas/zo( dot
ar rn+l
A nznrz YL Koy (X) o xY#o.  (3.11)

o
= 2 x
332 = 2, s X (ne)]
2
A sipilar expression for 3Jk. may be obtained by inter-
changing X and Y. By Hg. 2416 % is the sum of these two;

therefore, if XY*O0,

2Rt/ "
00 2 ’)h in
=2 B (L Ko+ Tk} (5.12)
n=o
i

X"
This is plotted in Fig. 5 for the lines Y=X and for
Y=co, It can e seen that there 1s no possibility of
a maxlmum or a minimum except on the boundary and that no
stationary pressure centers could be produced by this

[ICAI8

-1l -



This result might have been anticipated
by congideration of the membrans analogy stasted in ITI,
From this analogy and the results of the above problem,
it appears that no generalization of thils basic problen
can show closed 1sobars unless the jet flows in a
clcged path. If vie consider the Jet as floviing In a
circle aboubl the polar axis, the corresponding solution

is slmply that

= ALlp) (3415)
where e 1is the dimenslonless distance fromn the pole,
This zives a flow purely along the circles of latitude
with a pressure maximurm at the pole. From this, it
must be concluded that, from the point of view of this
particular problen, there ls no steady motion with
cloged isobsric fields south of the’westerlies and g
different mechanism mumst e found to explain their ex-

istence.

- 12 -



iv. STABILITY QF VORTZX BHEEDS

The problems discussed in III all show a
sharp velocity discontinuity at the edges of the jet;
in other words, the Jet is bounded by vortex sheebs.
The vortex sheets are in equilibrium, but if the
equilibrium is not stable, it must be assumed that the
systems would change until some stable condition ig
found. That sueh a vortex sheet is actually unstable
will be shoun in this section. Similar caleculations
by Fekeris have ylelded the same result. The stabil-
ity of thils vortex sheet will be investigated by
assuming that there is a small wave disturbance in the
vortex sheet, 1f the ecuwations of motion, Eq. 2.1,
and tho equation of comtinuity, Lg. 2.2, show that the
arplitude of this disturbance must increase with tine,
then the vortex sheet must be considered unstable ssg
any disturbance would thus Le ampliiied,

Suppose we have a mean flow as in Fize 8
which consists of a stationary body of fluid for y>0
and a uniform veloclty in the x direction for y<o
wlth the denth beinz constant, A, , in both regiong in
the equilibrium concition and a vortex shest geparating

the two rezions.

- 18 -



If the disturbance ig small, Eg. 2.1 and

e

%+ 2.2 may be linearised as follows:
24 g ‘au. 24

Y TRWV =9 3%
+Z;( < Y t2wu =—53A + 2wl

/7 SA av (4.1)

%~ +U 352 % + } o
The solutions of these equations which represent a
vave in the vortex siheet traveling in the positive
direction may be represented as the real parts of
the following expressions wihere the constants 4, B,
and C may be complex:

w=U+A o Ay+i(@t-Kx)

Y = B oMyt k)

R = hy +C @Ay 7itet i) (4.2)

The expresslons, Iq. 4.2, will be solutions if
I(0-krU)A -2wB-gikC =0
Pw A +ite-x#)B+gAl =0 (4.3)
~inh A+ Ao AB+i(kU)C =0
iIn order for Ig. 4.3 tc be consistant the following
relation rmust hold:
o-wl) -Rew  -gik
2w io-xU) g A =0
—ikh, Ao A i)

or if (o-xUI=0O,
/\"-'-'/(2{/-— (¢ kU)> 4w]

2G4,

(4.4)



From this the apprcpriate form for the
moving fluld mass wlhich shows a wave form in the

vortsex sheet is

2 2
/\=me~3€%‘?. (4.5)

I
For the statiomary fluld mass, designated by ( ) |,

7
= — _ 0—3_, cu®
<V 7/ _753%; )

These expressions give disturbances which die

(4.6)

aviay with increasing distance from the vortex sheet.
IT the displacement of the vortex sheet in the y
direction is called y, thls displacement must be
given by an expression such as

n=ae @ <%, (4.7)
In order to relate the armlitude of the wave with
the equations of motion, Zq. 4.2, we have the

kinematical condlitlon for small displacements that

s

n and v'=3F (4.8)

o

|

_ 22
v=gt+U

[\

Tor y=o0 ;3 this gives

B=éia(c-xkU)

) (4.9)
B =itaad

Yie have the additional dynamical boundary condition

that the fluid depth must be continuous over the

vortex sheet. From this,

- 15 -



A, - zwll)z 4 CoAn+i(@l-£k2 _ h, - O oA nri(rt-K)
or

.._.___-'agaa—#C:C,, (4:010)

Trom i#q. 4.3 and 4.9,

- o T-kU , (0- KU)*— Feo?
C = a g e s Aierd) -

(4.11)

C'n o Lo gimget

and 2wk + XN T

Substituting these expresslons in L. 4.10 we have

_ . (Fel)Pdew® g% Sw? ¢
Bewl + (o-kU) o ke Ak = a"ZwKMa_ ) (4.,12)

This expression determines the natural frequen-
cles of the system. It can be seen that o=2ew
and ¢g=xld-2w sre two rocis of this equation. This
equation can be solved easily 1f the fluid is very
deep so that A=< and A'=-4 . TFor this cass

2w

o= {kU-2w (4.13)

28 (12 4)
The third of these frequenciles is complex for all
wave lengths, and the sheet is thus unstable. This
is identical with the result obtained In an infinlte

fluid mass without Coriolis forces (see Ref. 4, p. 340).

- 18 -



By combining Bq. 4.15 with Lq. 4.5
or &g. 4.6 it is seen that as long ag the wave
length of a disturbance in the atmosphere is less
than a thousand niles, the magnitude of A obtained
differs from unlty by less than one percent, so the
approximate cormlex solution of Eg. 4.1% is suf-
ficiently zood to show that a vortex sheet is un-

stable and will breal down 1Into discrete ecddies.

- 17 -



V. STABILITY OF ROVEL 07 VORTICES

“When an unstable vortex sheet breaks up

into discrete eddies,the vorticity may either diffuse
hroughout the flvid mass or, if there 1s a stable
vortex formaticn, the vorticlty may collect in a defi-
nite pattern. Ls an example of this type of motion,
the vortex sheets shed from a two-dimensional bluff
body breal down and then form the well-lmown Kdrndn
"vortex street.”

The vortex sheet investlgated in the previous
section can brecalr up Intc only one systern which is
stationary and in equilibrium. This i1g a row of equal
vortices equally spaced as in Fig. ¥. In terms of
the dimensionless varlables introduced in II, the sur-
face deflection for such a system of wvortices of unit
strensth is, by Zq. 2.13,

=3 K Lex-nt)fry?]" (5.1)

N~

1t the n'th vortex ls displaced by amounts
AX, and 4y, 1n Lhe x and y directlons respectively,

the surface deflection in the displaced position is

y= Z‘/Q[(x—nﬂa%fv‘(g»%ﬂ‘?”‘ (5.2)

nde

The wvelocity of a wvortex is the swa of the velocltiles

- 18 -



induced by all the other vortices. By Zg. 2.15

the wveloeity of the vortex at the origin is

'dd_tdxa =—% Z K[(,’Z ”j“’zn)"“”(y"dyh)z] / =A%,
n=- y’Aga
(5.3)
d 4
a—_t—Agn = 'ga— Z K[(X‘nze’Azn)+(y’Ay”)J/y aZ,
heme g =49
If the displacements are small these can be written
2 K nd)

o - /-A~/J{A —a n=0

L AX, = 7 Yn—8Ye |

I Aot (544)

2oy =3 | s Konblfariany

n__w

Similar sxpressions for the velocltlesg of the other
vortices could be written by svumetry. These form a
set of gimultaneous differsnticl ecuations which must
be solved in order to detsrmine the motlon of the
vortlces,

Ag the equations for the displacements are
linear, any perturbation can e represented as a sua of

terms of the type A@:Amemy and Ay, =ay,e Y
where ogy<2m, and the individual harnonics can be in-
vestigated separately. From thig,

o = And) -
TrAX, =4y, ZZ Y & {costny —1]

n=i

and (5.5)
= [ And
% Ay, =AX, 52{ Yz f/il(n]}}[cos(m/)v’]



Cowbinlnz these twe equations, we obtain

2 2
ZLoax) -Max)=0 and (o4, -Xlay)=0 (5.6)

vwhers
kY.w =
Af= -4// “ —amwwﬁﬂf[ Zﬂ*KMWﬁwmﬂsv)
- =/

From dqg. 5.6 the motion can be stable only if
)f(o ; howevsr from Eg. 5.7, )? can nevsr be negzative.
A single row of wvortices is thus unstable.

La there are tvio shear regions in the
Lorthern llemisphere, cyclonic shear Lo the north of
the westerlles and antlicyclonlic shear to the south,
it 1s possible that a double row of vortices arising
frow these alpght be stable. &8s shiown 1In Flz. 8, thers
are two possible arransements of equal and oppositse

ortices which do not change with tiue.

<o will Ulrst investigate the stability of
the syruretrical system. If we let A%, and Ay,
be the displacements of the n'th vortex in the upper
row and 4x, and 4y, be the displacements of the n'th
vortex in tihe lower row, the surface deflection 1is

ziven by

Z‘ K [(z-n!—.az,, ) +(g—~4y,, )] 2 A [(x—nﬁ-mx,,) *y-o-47, )]‘E ( 5'3)

fiz- 00 H=- o



From this expresslon, the veloclities of the vortices
can be obtained in the same manner asg previously.

The wvelocity of the zero vortex 1ln the lower row is

/mm £d A rnitead?? . B
(AX)"' /{Ay,, Ay‘,} +Z:"121‘a'2[2 “3‘/*0’]”" /C[ j-fdj]{dx A;(}

-fZ{%?‘da/([ﬂ%&df/’}é ,( d]ﬁék[’?z—f*‘/] _}{ —Aij;

Ne=—-02
(5.9)
and
9; (a4,)= Z //c(w_,/( (nd) {ax,-a%,] Z ‘;{:;, fzgﬁ}':fjjﬁ Sk L0l 5200
2 20%” e AX, ~
,,zzx{wwé/([ nted7" ffd‘k[" 7} {3 o]
00 /
In these exprassionsz indicates the zero term of
»n=-00
the suwmation is to bhe left out.
Futting AX,,-—-AR’GG"”Q? , Ag,,=dy,e‘."9” y
A%, =Ax,ei?¢ , wnd Ag,=ig,e”¥ as before, we can
nurite Zg. 5.9 as
S jax) = A 5 ax C 2.
A,) = a4+ ax, + Ay.
=7 (6.10)
%(dy“)r_pﬁxc —ﬁZ’y’o '/'deo
wuhere
%
Kol = o . o, agz gy KilnH%dY
.,Zg (/- coscng)] —Zgz{,‘zjgg‘s&[n!ifj/z_rn,é"f)[ny,+di7:/z
- Koto) — fatel
_ 5, SN _ndd sincrig) /‘/[”ﬁdj+/([ 2024 %) 2
B = 200 {2 Zremai® 8 J (5.11)

#20% 7%
22[?, dz/([ﬂf_e?-/-al_]/e (% z)}{ém}cosu;gp)

et

+ Kol + B



D=A-23 Knd){/-coscnpp] +J K, [0

N=-00

£= C-A(d) =20 KLn*+d? 7 cos (ny)

n=j

Trom symnetry the egquations for the motion of the
zero wvortex in the upper row cuwn be written as

follovis:

d

a—z(A_?—(;)_—z —-AA—:(Z’ +5AX, -’Cdga

(5.12)
£ (dg,) = -DIZ, - Bay, — £ ax,

Vie notice the second pair of squations
1s identical with the first in eilther of {two cases,
first if 4x,=4X, and 44, =-2¢, , and second if
AX, ==8X, and A4AY.=4Y% . The first case corres-
ponds to awyrmebtrical perturbations with respect to
thie center line, and the second case corresponds to
antisymmetrical perturbations. In ordex» for the
systen to be stable, both types of motion must be
stable.

T'or the syrnmetrical case,

{4 -B}ax, ={A-C]ag , (
and {% ~Bf 24 = [prL£fax

(ol
-

H
]

2 AX, =0,
v [ig-84 - 1a-chof]{l . 2o (5.14)



Az

I 4ax,o0ray — 7%, the exponent A is given by

s D14 as

A=B 2V/iAa-cHD +£) (5.15)

For the unsymmetrical displacements we obtain the

similar resuld

A =-8 2V (A+C)HO~-E) (5.16)

As B is pure imaginary, the condition for stability
in the two cases is
(A-CHO+£E) <0

. (5.17)
and (A+CHD—£) KO .

For the special case where y=7m it is eagily seen
that the first of these is violated, for
d /(ﬁ%n+0£]__ﬁﬂﬁkkﬂﬁp%£7% _ = ] - oL
D+Lf = —4”2;/__15';}7/___ z’,gm,)ggi‘“‘—'a,f]yz 4)%:{/{/,1?2” wl] - K, [rzrne0%d?] f
(5.18)
= /{_/ﬁenflw:"df]ya 2 A, Lc2n /}‘ft'z—h/’_]yz
- o ' off Lol err j
4,é {2 foem/)%‘fa‘ﬂ% i (2 n+0)20 %+ o '

By inspection, O+£<0 . By using the recurrence
formulae for Bessel functions (see Ref. 3, p. 22),

A=C can be written azs follows:

£ () % A fon-spl] | KLt g bt
A-C=-2{ 22 K] -7 A e Gt J(5419)

This also 1s obviously negative. From this, it
follews that the syrmetrical vortex system of Fig. 8

igs unstable.



For the asymmetrical system of Fig. 8,
it 1s found by a similar procedure that Hg. 5.10
and Eq., 5.12 a:ad thus Bge. 5417 hold if
A==z > B cosonn r2J (LK R - 2 Kotk ]
th c/()'h‘/g {2 /(/,e)
h=so

—m= (R, }j Sin(n+3)y |

C = Zg{ezk(@) —’ﬁi—’”—"—/((ze,,)} cos (n+ )P

(5.20)
D =A *ZZ/( (nl) [/~ cos (np] -/-Z'Z:;/(o(gn) ,

£=C- ZZ/( (R,) COS (n+4) @,

P
where L, = [/)a»'-é)ifz-fa’f];fz
For y=m , the critlical case for stability,
C=F=0 . The stabllity criterion thus becomes
A D) O (5.21)

From Zg. 5.20 it is epparent that this condition
wlll be satisfied for a given value of £ for a range
of values of J hetween the limits which correspond

raspectively ta Amm=0 snd DHim=0 .
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Stable Hange of Values of d /¢ Tor Vortex Street

2 Upper limit Lover limit
0 .281 .281
P .300 .281
T2 <350 .280

These results are shown graphically in Fig. 9. it
should be noted that for small values of Z, the
result, o//f = .281, is exactly that obtained by
Kérnan (see Ref. 4, pe 348},

This calculation shows that stable con-
figurations do exist. Thege results would be
Girectly applicable to motions in the sarth's atmosphere
if the width of the vortex street were small compared
to the radius of the earth. Unfortunately, this is not
so and the curvature of the shear flelds on the edges
of the wiesterlies must be consldered. These effects

wlll be considered in the next section.

- 2D =



VI. STABILITY OF AILGS CF VOATICES

If the shear field north of the westerlies
ls neglected, a ring of ecually strong anticyclones
evenly spaced around a circle of latitude is the
only formation of vortices which will not change 1ts
shape with time. The stabllity of such a system
can be approximately investigated by considering tho
stability of a ring of vortices as glven by Zg. 24153
on a rotating disc as in Fig., 10. If there are N
vortices in such a ring of radius a, spaced at equal

27

angles of v =57 , the surface deflsction for such a

systern in 1ts equllibrium state is

N DA
)Z = Z A [afrr2i-Ranr cos(ne-6)]
n=/

For the calculation of the velocities
of the systen from the surface deflection, it is use-
ful to know the forus of Zgq. 2.15 in polar coordinates. /#
V. and V, are the dimensionless velocitles 1n the
radial and tangentlal directions respectively, these
are
20
28
n (8.2)
~

Vie = -

vy

\

1/6-_:

LY

and
Using the second of these, the system shown in
Fig. 10 has an angular velcelty,/l, ziven by

Vil

v
R =__é_)22;‘/q[235/ﬂ%3] sim B (6.3)

- 26 -



If the n'th vortex 1s displaced by
An, in the radial direction and by an angle of
46, 1in the tangential directlon, the surfacs de-

flection in the displaced conditlion is

Yo
y = E K, [tararjrr>-2(aranircosine +a8,-6)]
n=i

(6.4)
The velocity of the /N'th vortex is
Ve =— 555 Z‘/( [tarar fort" =2 (ar453) 1 €05 (NT+405 6’_7
A’/"sl (605)
Vo = Z/( L@aran)y +/’"~Z(c7+4f')/'cosmrmﬁ,,—a)]

with » placed equal to a»4%4 and @ placed equal to
46y after differentiation.

If the displacements are small, the changes
in velocity from the squilibrium value indicated in

Iig. 6.3 is, for the li'th vortex,

AVee = %(A&'f) —‘=;; 2% simtne) Kol Ru)

N/ .
b 530a6,-a60) | BE) + cosCPK ()]
r=/

(6.8)

K( )
and a4V, = agd-(.de,v} +24n = NZ [sm( ) K, (F,) = costnt) —5= }

n=/

+Z‘A,r' {/_s_f.eﬂ-)-fvS//f(nT)/((lﬁ,)] TZaAQ _’-’ﬂ-—’l-z:!/( ()

nai n=t

where = R a sintE)

Similar expressions for the velocities of the other

-~ 27 -



vortices could be written from symmetry. These
wiould form a set of simultaneous differential
equations for the displacements.

If the sV equations in each of the two
sets indicated 1n Eq. 6.6 are added, the followling

results are obtalned:

%‘15““’“}‘0 (8.7)

4 { : (26, - {gmm} {f[z v (SEIK (R + é—sm('g;/f,(/e,‘)]}

These can ve integrated directly. The result is

that )

=4 o (6.8)
246y = Ct [ [2or KRy« 4 smUDK, (/a,)]} +G .
n=/ ns=s

If the system is initially in equilibriwm, C, =(, =0 ,

and

V4 N
2. A% = 46, =0
n=/

n=¢ (ng)
These results correspond to the similar equations
for two dimensional line voritilces which state that

the impulse of a system having no externsal forces

reralns constant (see Ref. 2, p. 220).
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The method of liarmonic analysis used in
V can also be used to advantaze in solving Lq. B6.6.
Let us assume that
Ax, =am e ¥ and 46, =48, e?¥ where ¢ 1is a
member of the series, 27, 2%, £¥ ... Nolow, zor
Hes 6.6 can then be written as follows:

o
L ary =Aar, -5 aa
o 4w “ v (6.10)
a2 a6y =Cas, +Aa46y
where
A= =z St nT K (An)
Z%’/\ )
& 2
B = ,%?”“e”‘9{"—“—/;:‘,,’"’”“("’%”(""‘”}1 (6.11)
- ; £,
C = S [k ie, - cosor Kl st fniti ik 422
Nt
A
+ nZ' {(-'/——(?;"-‘)ﬂ—- cos¢nz)
By n
If 47 and a8,—e* , A nust satisfy
(A-A)+BC=0, (6.12)
or A=AxvV-8BC . (6413)
Tor any of the &V specified values of ¢, A nay be
written as
&
A= Z'Z sin(ne) sin(np) K, (R} for N odd
n={ (6»14)

N-2
2
or A =i Z smntne) sintny; K, (R,) For N even.

n=f
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As A is pure lmaginary the condition for stability
is that
LC 0. (6415)

In the same way,
M1

B= ZZ[/— cas(ngo;]{é(:—éfﬂ—} +cos’?(£’21)/(0/5’.,)] For N odd, (8.18)

NMN-2
2 ¥y
or B =23 [r-cosenp | ALE) + costg K, tk, ) + - &2 forV ever

n=/

By inspectioh, B is always positive, and the stability
criterion, IQ. 6.15, becones
C2o. (617)
ie will now investlgate what vortex rings satisfly
this condition.
If =2,

C = {/(t,(za)+/_%_(§‘i'}[/f cos gl +» 2 /222&} . {6.,18)

This is nositive for all values of ¥ ; so a ring of
two vortices is stabls.
If =3,
£,
C = Z{;"’-K,,(/?,) # K—-’—ué:?')ﬂ/v‘coscf] 2 /L-——/él Y (6419)
This, too, is always positive; so a ring of three
vortices 1sg stable.
if k=4,
C =2 {;ei/(, (&) + &g—f‘i)}[/f caos g7 -r{/{f,(za)—f /_Q_g;i’}[/f cos (z2¢))
+ /(,(ea/
= .

(6.20)

A gystenm of four vortices is thus stabls.



C‘E/fﬁ (K, ) st (Z)L 17 cos @) + A, (FS) stn'(BZ) (1+ cos £¢)
Z &

(6.21)
+ 5"‘,‘%?")(/'2603%_5 +cosy) + K—L—L’SZ)(/—ZGOS%_-”—' —rCosz(,o)] .
For y=2n, this is obviously positivse, If
p=£Zor ZF, 1t 1s also obviously positive. For
y=-F or F,
C= 2[./424 Ko [r/756a] » LO392 K, [/ 9022 a] ( )
6.22

_ I L/ 758a7 &, LA Po22a)
L2058 s + 2. 98946 ——L————————~[y022a

This is an expression with no positive roots, so a
ring of five vortices 1s stable.
it T =6,
C = 2{%/\’0 (R2) (1+cosy) + %(:’5-160590 *3 K (R)(1+casz2y)

" /(__,____/é %ol (2+cos2glf +K,2a) (14 cos 3p)+ 5B (3+cos3g). (6.23)
zZ

This obviously positive if cos¢ is positive. This

includes ¢= 2w, £L and 2ZL . For g=7 ,

"= f. AR, 3 AL, A (zay
C {-_c__.& +2./(,(@)+3-—La-ﬁz }+z Sfzar (6.24)

1ned 3 e : + 4 i s = FI ST
This is always positive. For y=ZZ or &,

C-z {35'/(,/@)—21 KR L 2 i (g )+ Z LUB) 2 K (o) r2 K128
3 2/72 ° .
~ ° ez =4 z(e.es)

As this, toc, 1s poslitive, a ring of six vortices is

shable.



If W=7,
C = Z//(,,(/?,) S (Z) (1+cos ) + /_\Zkg’ﬂ/(/_z“s%gﬂ“?,
2K () sin(ED()# cos2p) + /%.:_“iz.)(/.zmgmzw(ﬁ.zs)
+ K, (/fg) .S//fa(%’?) (1+cos3y) + ﬁg{) (/—2(05—67’—’+c083¢)} .
For y=27, £¥ , or #Z% , C 1s evidently positive.
Ir y=F or 47 ,
C=2 { JF2B K, [.8678a] +.0609 K, [/ 5638a] +/6950 K, [7.950647

- A L.8s78a] KI15638a7 Klrogo6a7
- PETT LS T HREO9 #3262 e (6.26)

so this is always positive.
. G7”
1t o= %—7/7 oT %“ s
C=z2 { OIBT7 K, [ 8678a] + ORI N, [1 563827+ FPOSK, [£9506a]

K[ 86783] | , ,esn K L563827 1.5309&2;4%17} (6.27)

-/ 1977 8878 a /séxaa /. 9506 a

This is positive if a>7/ ; so that a ring of seven

vortices is stable provicded a>7 .

If =8 and =7 ,
C ___2!_7/2—1 KLTESF2T 4 K (ayF) +VE /ﬂ(ad'ﬁ)_,ﬁ /}’aqg 8,3?‘*5‘
$7ESTa (6.28)

+2 K, (2a) 1-4—/%:?3).

This is always negative so that a ring of elght

vortices 1s not stable. It can be seen that any

higher nmuiber of vortices in a ring is not stabls.,
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A value of a grester than 7/ corresponds
either to disturbances of such a great wave length
or to the motion ol such a shallow layer of air in
the earth's atmosphere that it probsbly is of no
gignificance., The results of this calculation may
then be sumaarized by the statement that six or less
equal vortices placed at the cormers of a regular
rolygon form a stable vortex formation. This result
ig in agresement with the work of J. J. Thomson who
investigated the stability of similar formations of
two dimensional line vortiees in a friectionless, in-
compressible fluld (ses Ref. 5, p. 94).

As a single ring is stable, the effect of
the shear field to the north of the westerlies can
rouzhly be taken into account by placing a fixzed
vortex at the pole as in Fig. 11l. This, of course,
breaks down for the cases where the number of anti-
cyelones is large as can be seen from the results of V.
The effect of such a vortex is to change the rate of
rotation of the system as glven by Eq., 6.3 and to add

acditionsl terms to EQ. 6.6. If the polar cyclone
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has a strength A and the anticyclones have a strength

of unlity, it is found theat Eg. 6.10 still holds 1r

N~y
C=-A4/fz /(__4__‘_-_{31 +/(,(a)]+%:[275m’(¥)/(”(@,)+ -——J-—-&-K/€ff )} (6.29)

s e s Kt L] 2 et K45

The fixed polar cyclone is thus seen to cause a de-
crease in stabllity,and if A is large enough, the motion
becomes unstable.

If we call the minimum value of A which
makea €, as given by Zq. 8.29, vanlish A ..3t3ea1, then
%«Acpitical is the ratlo of the polar (cyclonle)
vorticity to the anticyclonle vorticity in the systen.,
It can be seen from EHge GeB9 that, exceplt for =2,
as Il increases this ratio descreases. From this if the
nolar vortex 1s falirly strong only two or three vortices
can Torm a stable systewm; however as the polsr vortex
becomes weaker, four, five, or even six anticyclones nay
form stable configurations.

In order to take 1into account the northern
shear azrea properly, 1t would be necessary to conslider
the stability of double ring systems. This problem is

very couplex, but the nature of the results can he
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estimated from the preceding calculationse. The
"vortex-street” is a limiting case where the spacing
1s small and shows a stable formation with a wvery
large number of vortices; however the width of the
westerlies 1s too great to permit this system to bhe
reached., The ring of vortleces with a polar cyclone
is & limiting case where the width of the westerlies
ls very large and should be nuch closer to the ob-

served phenonena.
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VIiI. CONCLUSICH

Ag a result of these calculestions it is
evident that the shear fields next to the westerlies
will roll up and forma series of closed 1sobaric
systems with high pressure cells to the south of the
westerlies and low pressure cells to ths north of the
westerlies. it further appears that a maxirum of
six hizh pressure cells will be observed although more
are possible if the belt of westerlies were to becone
extremely narrow. Of the two limiting cases, one
progresgsed to the Viest and the other to the Zast, so
one might expect the intermediale systems to be prac-
tically stationery. This 1s in rough agreement with
thie 1dea that the position of such systems cught
primarily to be determined by thermodynamic considera-~
tions, so that the stable vortex configurations in the
atmosphere wight be expected o be those that are
gtetionary.

&8 the polar alr mass shows a tendency to
rotate as a whole, an ineresse in the wmesterly winds,
on a percentage basis, inereases the shear to the north
of the westerlies faster than that to the south. Thus

a strony atuospherie clirculstion 1s correlated with a



large wvalue of the ratio of vorticlty to the

north of the westerlies to the vorticity south of
the westerlies, and a weak atmospherle circulation
corresponds to a small value of the ratio. From
the results of VI, this would imply that with strong
circulsation, only two or three high pressure cells
would be found wheress with weak circulatlon, stable
formstions having up to six cells could be found.
This result is well verified by llorthern Hemlsphere
mean pressure charts although no attempt has yet been
made to correlate these factors in a quantltative

fashion.
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