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Abstract

Since the first neuromorphic retina was introduced 10 years ago, we have seen neu-
romorphic modeling extended to motion processing, saccadic systems, and auditory
processing, to name a few. This dissertation extends neuromorphic modeling to the
fly visual system. The retinotopic and regular arrangement of the layers in this sys-
tem makes viable the mapping of the structure of the layers to silicon. The ability of
the fly to compute motion reliably with only 24,000 receptors, while consuming only
microwatts of power, also makes this system attractive for neuromorphic modeling. T
start this dissertation by comparing the filter bandwidth properties and offsets of the
fly receptors with those of silicon receptors. The filtering properties and the offsets of
the receptors are critical because they determine the limits of subsequent processing
circuitry. This work is the first characterization of biological and artificial offsets.
Next, T describe an analog circuit that captures some of the adaptation and temporal
filtering properties of the cells in the initial layers of the visual system. The adapta-
tion time constant of the circuit is controliable via an external bias. The temporal
filtering of the circuit changes with the S/N ratio of the signals. This prefiltering
preceding the motion areas is important to ensure that the motion computation is
robust under different S/N ratios. The filtering should be adaptive to match the S/N
ratio so as to maximise the information transfer to subsequent processing. Adapta-
tion is also a big component of the motion computation since the visual system has
to extract information from a 2 to 3 decade range of speeds of objects under a six
decade range of illumination. In this dissertation, I show the first adaptive motion
model that matches its time scale to that of the moving image. The model explains
experimental data showing motion adaptation in the direction-selective cells of the fly.
Finally, I describe a novel analog silicon implementation of the Reichardt model that
is used to describe the responses of the direction-selective cells to motion. This silicon

model is eritical in showing that local direction selectivity can be computed from the
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correlation of continuous-time, graded inputs. The computation integrates the visual
information over time in the decision making process and binarized features are not
needed for the correlation. This model differs from previous silicon implementations
of t he Reichardt model that used token-based information for correlation. This model

is a. closer analogue of the motion computation in flies than previous silicon models.



vi

Contents

Acknowledgements

Abstract

1 Introduction

1.
1.

1

2

Background of Silicon Retinae . . . . . . .. .. ... L.
Overview . . . . . . . L,
1.2.1  Speed Issues and Offsets in Silicon . . . . . .. ... . . ...
1.2.2  Circuit Model of Retina and Lamina . . . . . . . .. .. ...
1.2.3 Motion Adaptation . . . . .. . ...
1.2.4 Direction Selective Circuit . . . . . . . . . ... .. ... ...

Bibliography

2 Photoreceptor Modeling

2

Lie

=

84
[

1

i

Fly Photoreceptors . . . . . . . . . . .. .
211 Ommatidium . . . . 0oL
2.1.2  Dioptric Arrangement . . . . . .. ...
Fundamental Limits in Biological and Silicon Receptors . . . . . . . .
2271 Optics . . .
2.2.2  Spatiotemporal Bandwidths of Fly Receptors and Silicon Re-

CeploTsS © . . . L L Lo e e e e e
2.2.3  Relationship Between the Spatial Bandwidth and Sampling Fre-

QUETICY .« . o f
224 Dead Avea . . . . ..
2.2.5  Visual Resolution of Receptors . . . . . . . . .. .. ... ...

NOISE SOUTCES . . o o

iii

v

ot

o

-
Y

ok
A

16

NG
[N

[
b



2.4 Physiology of Receptors . . . . .o Lo 25
2.5 Receptor Modeling . . . . . . ..o 26
2.6 Offset Distributions in the Silicon Retina . . . . . . . . .. ... ... 28
2.6.1 Thermal Drift and DC Offsets to Uniform Lighting . . . . . . 29
2.6.2 AC Gain Mismatches . . . . . . . ... 31

2.6.3 Comparison Between Offsets in the Silicon Retina and the Fly
Retina . . . ... .. ... L 35
2.6.4 DO Offsets and AC Gain Mismatches in the Second Retina . . 36
Bibliography 41
3 Laminar Modeling 45
3.1 Anatomy of Laminar Layer . . . . . . . ... ... 45
3.2 Physiology of LMCs . . . . .. oL 47
3.3 Role of Laminar Monopolar Cells . . . . .. . ... ... ... ... 50
3.4 Circuit Description . . . . . . . .. .. Lo 51
3.5 Variants of the Retino-Laminar Cireuit . . . . . . . . ... ... ... 52
351 RLa o 52
3.5.2 RbLo ... . 62
353 Rls o o 66
3.6 Lavout . . ..o 70
3.7 Discussion . . . . ... e 71
Bibliography 73
4 Motion Adaptation 76
41 Anatomy . . . ... 77
4.2 Adaptation in the Fly’s Motion System . . . . . . . . ... ... ... 77
4.3 Correlation Model . . . . . . . ... 82
4.4  Adaptive Correlation Model . . . . . . ... ... 86
4.5 aVLSI Model of the Adaptive Correlator . . . . . . . . . . ... ... 88

4.6 Adaptation of the Filter Time Constant . . . . . . . . ... .. ... 50



viil

4.6.1  Dynamics of Time-Constant Adaptation . . . . . .. .. ... 90
4.6.2 Steady-state Response . . . . . . .. ... ... ... 93

4.7 Dynamics of Time-Constant Adaptation with Quiescent Time Constant 94

4.7.1 Rate Change of Time-constant Adaptation . . . . . .. . ... 95
4.7.2 Recovery Time . . . . . . . . .. ... 97
4.8 Step Response of Correlator to a Sine-Wave Input . . . . . . .. ... 98
4.9 Results from the aVILSI Model of the Adaptation Circuitry . . . . . . 100

4.9.1 Adaptation Data after Filtering through the Photoreceptor . . 102

4.9.2 Adaptation Dynamics of Adaptive Correlator . . . . . . . . . 102

4.10 Comparisons with other Models . . . . . ... ... ... ... .... 104
Bibliography 106
5 Analog Model of Direction Selectivity 110
5.1 Direction-Selective Models . . . . . . .. .. .. ... ... ... ... 110
5.2 History of Motion Chips . . . . . . . . .. . ... ... ... ..., 111
5.3  Correlation Model of Direction-Selective Circuit . . . . . . . . .. .. 113
5.3.1 Transfer Function . . . . . . .. ... ... ... ... ... 114

5.3.2  Circuit Implementation . . . . . . .. .. .. ... ... ... . 116

5.4 Experimental Results . . . . . .. . .. ... ... ... ... .. ... 118
5.4.1  Output of Lowpass Filter. . . . . . . .. .. ... .. .. ... 119

5.4.2  Response of Direction-Selective Output . . . . . ... .. ... 121

5.4.3 Dependence of Direction-Selective Output on Contrast . . . . 122

5.0 Discussion . . ... 124
Bibliography 128
6 Conclusions 131

Bibliography 134



7 Appendix to Chapter 5
7.1  Transfer Function of WTA



List

1.1

b
b

2.3
2.4
2.5

2.6

2.13
2.14

2.15

of Figures

Cross-section of compound eye showing the four distinct layers in the

visual system. . . . . ..o Lo

Dioptric apparatus and cells comprising an ommatidium of an apposi-
tlon eve. . . . . . L e e e
Neural superposition of receptors onto the laminar cells. . . . . . . .
Schematic of a compound eye and a sampling array of fly receptors.

Sampling array of silicon receptors. . . . . . . . .. ... ...
Modulation transfer function of a sampling grid of receptors. . . . . .
Step and impulse responses of dark-adapted and light-adapted pho-
toreceptors and LMCs in Calliphora. . . . . . . . . . .. .. .. ...
Plot of photoreceptor response versus log of intensity in the fly pho-
toreceptors. . . . ... L Lo L e
A silicon model of the photoreceptor responses. . . . . . .. .. ...
Circuitry showing the path from the pixel through the scanners in the

columns and then through the video circuitry. . . . . . . . . .. ...

Voltage drift at a single pixel over time under constant lighting conditions.

Plot showing the DC offsets distribution in a retina with 59 x 66 pixels.

Histogram of DC response of retinal pixels to a constant background

intensity. . . . . . .. L.

A sample of the responses of the pixels in the retina to a blinking LED.

2d image of p-p offset distribution in retina in response to a blinking
LED of contrast 0.09. . . . . . . .. ... ... .

Histogram of p—p response of retinal pixels in response to a blinking

T T°T Yy ~f cimsndogne od £ £33

13
14
16
17
20

24
26

27



2.18

2.22

3.1
3.2

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

X1

y 2d image of p-p offset distribution in retina in response to a blinking

LED of contrast 0.15. . . . . . .. . ... .. ... ...
Plot of the coefficient of variation of the AC offset data against the
inverse of the contrast. . . . . . .. ... .. ... ... ... .....
2d image of DC offset distribution in retina under uniform lighting
conditions. . . . . . ...
Histogram of steady-state response of pixels in the 32x32 array under
uniform lighting conditions. . . . . . .. .. ... ... ... .. ...
A sample of the step responses of the pixels in the second retina to an
LED of contrast 0.134. . . . . . . . ... .. ... ... ... ...
2d image of p—p offset distribution in retina in response to a blinking
LED of contrast 0.134. . . . . . . .. ... ... .
Histogram of p—p offset distribution in response to a blinking LED of

contrast U.134. . . . . . .o s

Cross-section of the cells in a cartridge of a fly. . . . . . ... ... ..
Plot of LMC response versus log of intensity. . . . . .. ... .. ...
Step and impulse responses of dark-adapted and light-adapted pho-
toreceptors and LMCs in Calliphora. . . . . . . . . .. .. ... ...
Circuit diagram of retino-laminar circuit. . . . . . . .. ... .. ...
Small signal model of the circuit shown in Figure 3.4. . . . . .. . ..
Frequency plot of the RL; circuit over five decades of background in-
tensity. . . . . . L
Measured I-V curve of Q. . . . . . . .. Lo
Circuit diagram of the variant, RLo. . . . . . . .. ... ... .. ...
Frequency plot of the variant, RLo, over five decades of background
intensity. . . . . . ...
Temporal responses of the variants, RL; and RL, over five decades of
background intensity. . . . . ... ..o

Contrast responses of LMC over different background intensities. . . .

34

35

36

39

39

40

46
48

49

51
22

o7

58

oY



3.13
3.14
3.15
3.16
3.17

3.18
3.19

e
b

4.3

4.4

Xii
Response of V], and V4, of RLs to a step response over four decades of
intensities. . . . . . . ... L
Plots of adaptation responses of RL, and of Delbriick’s circuit. . . . .
Adaptation responses of the RLs circuit for two values of V.. . . . . .
Response of V; of Rl to a step response for different values of V. . .
Circuit diagram of the variant, RLg. . . . . . .. ... ... ... ...

Frequency plot of the RI; circuit over five decades of background in-

Step responses of the RLy and RL3 circuits. . . . . . .. .. .. ...
Plots of adaptation responses of RL, and RLs under five decades of
background intensity. . . . . .. ... Lo
Response of V}, and V;, of RL3 to a step response over four decades of

Intensities. . . . . . . L. L

- Adaptation responses of RL3 for two different values of V. . . . . . .

Response of V; of RL3 to a step response for different values of V. . .
Layout of the variant, RLy. . . . . . . . .. ... ... ... ... ...

2D layout of an array of 20 x 20 pixels of the variant, RLy, in 1.2um

Tangential cells in the lobula plate of Calliphora.. . . . . . . . . . ..
Example of the response of H1 to a stepwise displacement of a stimulus
presented to the neuron in the preferred direction. . . . . . . . . . ..
Experiments by de Ruyter van Steveninck and associates which show
that adaptation occurs independent of direction of motion. . . . . . .
Plot of the adapted time constant versus the velocity of the adapting
stimulus. . . ..o
Adapted time constant versus contrast frequency. . . . . . ... . ..

Curves showing that the H1 neuron is sensitive to velocity contrast.

60

68
69
70

72

78

79

80



4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

417

4.18
4.19

4.20

0.1

xiii

Output of the Hassenstein—Reichardt correlator for various fixed time
constants. . . . . ... L Lo e e e
Adaptive correlation model and the gain curves of the filters in the
model. . . . .. L
Adaptive correlation model. . . . . . ... L.
Circuitry for adaptation to the motion frequency. . . . . .. .. . ..
Adaptation of the time constant of system to a change in the motion
frequency. . . . ..
Comparison of the steady-state adapted response of the H1 neuron and
of the model for different adapting velocities. . . . . . . . .. ... ..
Plot shows that the adapted output of the Hassenstein—Reichardt cor-
relator should sit on the high gain portion of the curve. . . . . . . . .
Circuit modified from the one shown in Figure 4.11 so that it has a
quiescent time constant. . . . . . .. ... ...
Plots showing the recovery of the filters’s time constant back to the
quiescent time constant. . . . . .. ... Lo
Simulated step response of correlator to a moving sine wave grating
with a fixed time constant and an adapting time constant. . . . . . .
Adaptation of the cutoff frequency of the filters to a sine wave. .

Normalized p—p outputs of lowpass and highpass filters over 4 decades
of frequency. . . . . . ..
Adaptation of the cutoff frequency of the filters to various input fre-

quencies of a sine wave that drives a red LED light incident on the

Curves showing adaptation of the cutoff frequency of the filters to a

step change in the input frequency. . . . . . . ... .. ... .. ...

» Curves showing the adaptation of the cutoff frequency to a step increase

of 58 percent in the input frequency of a square wave and a sine wave.

Tree diagram of the various motion schemes implemented in silicon. .

97

100

101

102

103

104

112



5.2
5.3

5.4

5.9

5.11

5.13

5.14

Xiv

Block diagram of new motion model for direction selectivity. . . . . .
Plot of the temporal averaged outputs, 7; and T, versus the spatial
phase between the receptors for different spatial wavelengths. . . . . .
Plot of the temporal averaged outputs, T; and T, versus the phase
between the receptors. . . . . . ... ... L.
Motion circuit that implements the novel direction-selective model.
Plot of lowpass filter and small-signal model. . . . . . . .. ... ...
Step response of the lowpass filter for three different values of V..
Step responses of V;, and I, to a stimulus of contrast 0.4 at two back-
ground intensities. . . . . ... .. oL
Step responses of V4, and Iy, to a stimulus of contrast 0.4 and 0.54 at
the same background intensity. . . . . .. ... ... ... ... ...
Responses of 1}, and the direction-selective output to direction changes
of the stimulus. . . . . . . . ... L
Responses of V4, and the direction-selective output to direction changes
of the stimulus. The speed of the stimulus increases from 9Hz to 10Hz
in the middle of the figure. . . . . . .. .. ... .00 L.
Responses of V}, and the direction-selective output to direction changes
of the stimulus at a contrast of 0.58. . . . . . ... .. ... .....
Responses of V4, and the direction-selective output to the slowing down
of the stimulus. . . . . . .. ...
Responses of 14, and the direction-selective output to the speeding up
of the stimulus. . . . . ... .. ... ...
Responses of 1}, and the direction-selective output to my hand moving
back and forth over the chip. . . . . . . . .. ... ... .. ... ...
Responses of Vj, and the direction-selective output to a change in di-
rection of the stimulus under fluorescent lighting. . . . . .. ... ..
Responses of V4, and the direction-selective output for two different

contrast signals to a sine-wave stimulus moving at 1Hz. . . . . . . . .

119
120

124

126

126



XV

of Tables

Comparison of Speed Sensitivities in Silicon and Insect Receptors
Comparison of Offsets in Silicon and Fly Receptors . . . . . ... ..

Offsets in Second Silicon Retina . . . . . . . . . . . .. .. ... ...



Chapter 1 Introduction

This dissertation describes the neuromorphic modeling of the initial layers of the fly’s
visual system and the motion-adaptation process in the direction-selective cells. It
also describes a silicon model of the direction-selective computation in the fly. The
retinotopically ordered subunits of the fly’s visual system makes the latter a good
candidate for neuromorphic modeling. Extensive studies of insects’s optics [1], visual
behavior [2][3][4], physiology [5], neuroanatomy [6], and oculomotor control [7] have
been undertaken over the past 40 years. A review of the work in insects can be found
in different sources [8][9][6][10][11].

The ability of the fly to navigate with 24,000 receptors (in the Musca) using only
milliwatts of powers is amazing. The small number of receptors (as compared to 10°
cones and about 100 x 10° rods in our retina), the low power consumption, and the
retinotopic arrangement of the subunits of the visual layers, make it feasible to model
the visual system on silicon. The number of receptors is at least eight times smaller
than the number of pixels (300,000) on a standard VGA imager. The pixel size of
both CCD imagers (20 to 30pm) and CMOS imagers (10 to 50um) is comparable to
the facet size of the subunits of the fly’s eye (20 to 50um). The optics for silicon
imagers is not diffraction limited, since most imagers use single lenses. However, with
the decreasing pixel size of silicon imagers, individual lenses on each pixel are needed,
as in the fly’s eye, to increase the collecting power of light. Sharp, for example, has a
microlens over each photosensitive element in their high density imagers. Sony has a
similar implemention with its Hyper HAD technology. There is a growing interest in
low-power systems in the silicon industry as the density of transistors grows with the
decreasing line widths. The decreased power consumption is accomplished partially
by a reduced power supply and partially through processing techniques. This trend
leads to complex chips that consume microwatts of power, and thus fits in with the

low power consumption observed in flies.
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The physics of the phototransduction process is similar in biological receptors
and silicon receptors, because this process involves the conversion of photons to the
flow of charged particles. This similarity means that the noise sources in both kinds
of receptors are the same, and the signal is subjected to both photon noise and
transducer noise. Both biological and silicon systems are similar in the sense that
they have to deal with mismatches. By modeling in silicon, we can understand how
neural computation deals with the system offsets. The similarities in the physics of
computation in both systems make neuromorphic modeling helpful in our quest to
understand the neural computation in the visual system.

An important benefit from neuromorphic modeling is the bidirectional flow of
biological-based algorithms to more efficient artificial systems. This need is dire
in artificial motion systems, which are cumbersome and power hungry. Motion al-
gorithms that run on digital systems are also constrained by the serial-processing
nature of these systems. Artificial motion systems that use front-end CCD sensors
with 640 x 480 pixels are found wanting; partially because the information flow is
limited by the frame rate of the sensors; and partially because the data are computed
serially on the digital system. Some motion algorithms cannot deal with the frame
rate of CCD sensors, so motion is computed on fewer than 60 frames/second. It is
true that the advent of faster processors can solve part of this problem, but faster
processors also mean higher power consumption. If flies can extract motion with
24,000 receptors using milliwatts of power, it is obvious that there are lessons that we
can learn from the underlying motion computation in the biological system. There
are already two ways that researchers have tried to improve motion systems: by using
continuous-time sensors, and by processing the information in parallel in real time.

With silicon microchips, we can use small robot systems with specialized vision
chips to understand autonomous navigation. A robotic platform with a front-end
sensor, an analogue of the fly’s eye that was built by Franceschini and colleagues [12],
weighs about 10kg. Its compound eye consists of 100 electro-optical sensors arranged
in a circle; it weighs 1kg. We can scale the weight and size of the robot platform by

2 or 3 orders of magnitude by using silicon microchips.
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1.1 Background of Silicon Retinae

Neuromorphic modeling of retinal processing has evolved in the past 10 years, since
the first silicon retina by Mahowald and Mead in 1988 [13][14][15][16]. That silicon
retina is a model of the cones, horizontal cells, and bipolar cells of the outer plexiform
layer (OPL) of the vertebrate retina. It performs automatic local gain control through
network adaptation, and models the spatiotemporal responses of the cones and the
horizontal cells. A later receptor design by Delbriick [17] implements automatic gain
control through local adaptation in the pixel. The silicon retina by Boahen and
Andreou [18] is a close correlate to the neurocircuitry of the OPL. By using current-
mode CMOS transistors, the researchers were able to model the shunting inhibition
of the horizontal cells onto the cones, and to model the gap junctions in the cones and
horizontal cells with a single transistor. The shunting inhibition was not implemented
in the previous retinae. Boahen and Andreou’s retina also includes inter-receptor
coupling that changes with the signal-to-noise (S/N) ratio of the input. The adaptive
spatiotemporal filtering of this retina corresponds to the physiology of the cells in the
OPL [19][20]. The advantages of using a biologically inspired, continuous-time sensor
over a CCD sensor have been explicated by Delbriick [17] and by Boahen [21]. The
noise properties of the silicon sensor have also been measured in detail by Delbriick

[17).

1.2 Overview

This dissertation extends neuromorphic modeling to the domain of the invertebrate
eye. The fly’s eye is a compound eye, which consists of thousands of little eyes, or
ommatidia. Each ommatidium has its own lens, whereas the simple eye of vertebrates
has only a single lens. The same photopigment, rhodopsin, is present on the micro-
tubular membranes of the receptors in the ommatidia, and on the disc-membrane
system of rods and cones in vertebrates. The compound eye of the Musca has a total

of about 24,000 receptors; the human eye has over 1 million cones and 100 x 10° rods.



Figure 1.1: Cross-section of compound eye showing the four distinct layers in the
visual system. The layers consist of the photoreceptors, the lamina, the medulla, and
the lobula complex. The lobula complex is made up of the lobula and the lobula
plate. The wide-field direction-selective cells are found in the lobula plate. Source:
Adapted from Kirschfeld [17], Figure 1, pg. 63.

Even the total number of 0.5 million neurons in the visual system of the fly is only
one-half of the number of cones. Despite these differences between invertebrates and
vertebrates, the optical processing and the projection of the image onto the retina of
invertebrates is no different from that of vertebrates. The physiology of the cells in
the initial visual layers is similar in invertebrate and vertebrate eyes. One difference

between both visual systems is that the fly responds faster than most vertebrates.

1.2.1 Speed Issues and Offsets in Silicon

The fly visual system is divided into four distinct layers: the retina, the lamina,
the medulla, and the lobula complex as shown in Figure 1.1. The subunits of the
retina, lamina, and medulla are retinotopically arranged. The lobula complex is
divided into two sections; the lobula and the lobula plate. The lobula plate contains

wide-field, direction-selective cells. Most of the cells in these layers respond with
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graded potentials, rather than with spikes. The output cells in the lobula plate
provide input to the optomotor control system. The range of speeds to which the
direction-selective cells respond is determined by the speed sensitivity limits of the
photoreceptor. In this chapter, I compare the speed limits of biological and silicon
receptors under different lighting conditions. The speed sensitivity is determined by
the spatial and temporal bandwidths of the receptors. The spatial bandwidth in the
fly is determined by the acceptance angle of the receptors and the optics. The spatial
bandwidth of the silicon receptors is set by the optics, the sensor width, and the
spatial period between the receptors. The temporal bandwidth in both receptors
is determined by the time constant of the receptors.

The neural system and the silicon system have to deal with offsets or mis-
matches between the neurons or transistors, respectively. In Chapter 2, T describe
how the DC offsets and AC gain mismatches measured in two silicon retinae com-
pare with that of the photoreceptors in the fly retina. The offsets in silicon can be
reduced through well-controlled processing, careful design and layout of the circuits,
and adaptation mechanisms. The offsets in the neural system can be reduced through

adaptation and self-calibration.

1.2.2 Circuit Model of Retina and Lamina

The photoreceptor cells from the retina are presynaptic (with sign-inverting synapses)
to the laminar monopolar cells (LMCs) in the lamina. The LMCs play a role similar to
that of the bipolar cells in the OPL of the vertebrate retina. The LMCs code only the
signal contrast and adapt their spatiotemporal filtering to the S/N ratio. These cells
also exhibit a center-surround organization, but the spatial center-surround property
is weak compared to that of the bipolar cells in the OPL. The temporal analogue of
the spatial center-surround property is expressed strongly in these cells. This response
corresponds to self-inhibition in the cells. In Chapter 3, I describe a small, compact
retino-laminar circuit that captures the automatic local-gain-control behavior of

the receptors, and the adaptive temporal filtering of the LMCs. This circuit is used
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as a front end to a direction-selective circuit described in Chapter 5.

1.2.3 Motion Adaptation

The adaptive properties in the photoreceptor cells are also present in the direction-
selective cells in the lobula plate. Recordings show that these cells adapt to motion
stimuli. The dynamic range of input frequencies to which the cell responds is in-
creased through adaptation. The Hassenstein—Reichardt detector, which models the
responses of these direction-selective cells, can be modified to account for this adapta-
tion behavior. The time constants of the filters in this model are assumed to be fixed.
In Chapter 4, I present an adaptive correlation model, where the time constants
of the filters adapt to the stimuli motion. We obtain the stimulus’s frequency by
comparing the outputs of a lowpass and highpass filter. We then use the difference
in the outputs of the filters to adapt the time constant. The results from this model
explain the physiological results from the direction-selective cells. The correlates of
the subunits of this model cannot be attributed to the neuroanatomical units in the
visual layer, because of incomplete physiological information from the cells in the

medulla and lobula areas.

1.2.4 Direction Selective Circuit

Different motion algorithms and circuits have been developed in the past 20 years.
The initial implementations came from the computer-vision community, where motion
algorithms that used CCD sensors as a front end, were implemented on a sequential
machine. More recent implementations use continuous-time sensors as a front end,
and are based on models that describe direction selectivity in biological systems (ex-
cept for the gradient model). The most common model used in the neuromorphic
community is the correlation model. The models usually follow token-based schemes,
in which robust features, such as spatial edges, pulses, or discretized temporal edges,
are used for correlation. In Chapter 5, T describe a novel implementation of the cor-

relation model, where temporal averaging and mutual inhibition are part of the



-
direction selectivity process. The circuit uses the graded output signals of the retino-
laminar circuit described in Chapter 3, and does not use any pulses or edges in the
direction selective computation. Previous implementations have ignored the temporal
averaging computation in the correlation model, and only one other implementation

incorporated mutual inhibition [22].
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Chapter 2 Photoreceptor Modeling

The receptors in the invertebrate retina and the rods and cones in the vertebrate
retina have the same task of transducing light into an electrical signal. Both types of
retinae have to contend with coding the information over a large range of intensities.
The dynamic range of the fly’s receptors is about 7 decades, whereas that of the
vertebrate retina is about 10 decades. The wider dynamic range of the vertebrate
retina is made possible through two groups of receptors: the rods and the cones. The
cones code the higher range of intensities, and the rods take over when the background
drops to the level of moonlight.

The sampling arrangement of fly receptors is regular. Thus, we can make com-
parisons between the fly receptors and a sampling grid of silicon receptors. Since the
receptors are the front end to any subsequent visual processing, they constrain the
information flow to later layers. In insects, one important piece of the visual informa-
tion extracted is motion so the limit of speed sensitivities in the receptors is critical.
The speed sensitivity is determined by the spatial and temporal bandwidths of the
receptors. These bandwidths vary with background intensities. A similar argument
can be proposed for analog silicon systems. In this chapter, I compute the speed
sensitivities of silicon receptors, and compare them with that of the fly receptors. T
also review the geometrical optics of insect eyes and lenses, since the optical cutoff
frequency determines the spatial bandwidths of the receptors.

Both neural and silicon systems have mismatches among their neurons or transis-
tors, respectively. Here, measurements of the DC offsets and AC gain mismatches
are characterized on two silicon retinae; one with 59 x 66 pixels, and the other with
32 x 32 pixels. The pixels consist of the photoreceptor circuit model by Delbriick
[20]. T compare these offsets with the offsets measured from fly receptors. Silicon
offsets can be reduced through a well-controlled process, and through careful design

and layout. We can also use long-term adaptation to remove offsets.
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2.1 Fly Photoreceptors

The anatomy and optics of insect receptors have been extensively studied by many
researchers [1][2][3]. A short description of the optics and the anatomy of the receptors

is given here.

2.1.1 Ommatidium

The compound eye in the Musca consists of about 3000 ommatidia, or “little eyes.”
The corneal lens and the crystalline cone make up the dioptric apparatus of each
ommatidium. The ommatidia are arranged hexagonally over the whole eye, but the
interommatidial angle increases away from the equatorial region of the eye. The
dioptric apparatus and the cells constituting each ommatidium are shown in Figure
2.1. An ommatidium consists of the lens, a crystalline cone, a cluster of retinula
cells, glial cells, pigment cells, and optical support cells. Each retinula cell has a
rhabdomere, which in Calliphora, consists of about 60,000 aligned tubular microvilli,
each about 70nm across and about 300pum long [4][5]. The microvilli are equivalent
to the disks in the rod outer segments in the vertebrate retina. They increase the
surface area of the cell on which a high concentration of the photosensitive pigment,
rhodopsin, (> 100 million molecules of rhodopsin per cell), is situated. Light is
absorbed by the rhodopsin on the microvilli. The rhabdomere has a diameter of
about 1um and a high refractive index, so it behaves like a wave guide from the focal
plane of the lens. In most insects, the rhabdomeres are fused to form a rhabdom. In
the higher Diptera, the rhabdomeres are separate and they point in a different visual
axis. In the Drosophila, there are eight rhabdomeres (R1 to R8) in each ommatidium
as shown in Figure 2.2a. R1 to R6 have a rhodopsin peak in the blue part of the
spectrum at 490nm, and another peak in the ultraviolet range. R7 is predominantly
an ultraviolet receptor, with enhanced blue sensitivity in a subpopulations of cells.
R38 is predominantly a blue-green receptor. R1 to R6 synapse onto cells in the lamina;
R7 and R8 synapse onto cells in the medulla. Each receptor has its own visual axis,

as shown in Figure 2.2b. Each cartridge in the lamina collects visual signals from
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Figure 2.1: Dioptric apparatus and cells comprising an ommatidium of an apposition
eve. The figure shows the detailed anatomy of the ommatidium. Source: Adapted
from Stavenga [3], Figure 2, pg 360.

six rhabdomeres that point in the same visual axis. This wiring between the retina
and the lamina is called neural superposition. Kirschfeld [1] pointed out that this
wiring is a means of increasing the optical aperture of the collector and the gathering
power of the eye, while retaining high visual acuity. The ommatidia are somewhat
optically insulated from one another by the pigment cells. The arrangement of the
eight receptors in the ommatidium is shown in Figure 2.2b. The lens in each facet
inverts the image, so the axon bundles from the retina makes a 180° twist before

synapsing onto the cartridges as shown in Figure 2.2c.

2.1.2 Dioptric Arrangement

Both the single lens of the vertebrate camera eye and the multi-facet optics of the

compound eye perform the same kind of optical processing. The optical image is
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Figure 2.2: Neural superposition of receptors onto the laminar cells. (a) The figure
shows the arrangement of the receptor cells, R1 to R8, in the ommatidium. (b) The
figure shows the neural superposition of receptors with the same visual axes from
neighboring ommatidia onto a cartridge in the lamina. The visual angle, A¢, is the
interommatidial angle. (c¢) The figure shows the twist in the axons of the receptors
before synapsing onto the cells in the different cartridges. Source: Figure 2.2a adapted
from Kirschfeld [2], Figure ba, pg. 68; Figure 2.2c adapted from Franceschini [33],
Figure 12b, pg. S33.

projected onto the ommatidia in the compound eye, and onto the rods and cones in
the vertebrate eye. However, the compound eye has lower resolution due to diffraction
limits. The visual resolution is about 1° to 2° in the Musca, whereas the resolution
is about 0.5 min in the fovea of the human eye. To obtain the high resolution of
the fovea, the compound eye on a human would have a diameter of 1m, as shown by
Kirschfeld [6]. The decreased resolution of compound eyes does not affect detectability
of an image that covers a visual field of several ommatidia. It means that the insect
has to be closer to a scene, than a human. The high refractive index of the lens
creates a magnifying lens with a focal length of 50um to 78 um. The diameter of each

facet is about 25um to 35pum, so the f-number of each eye is about 1 to 2. The optics
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of insects have been studied by many researchers since Exner in 1851 [6].

2.2 Fundamental Limits in Biological and Silicon
Receptors

In this section, I look at the constraints that the receptors place on the later pro-
cessing layers in both neural and silicon systems. Since the visual input of interest
is motion, the speed responses of the direction-selective circuitry in both systems are
limited by the speed responses at the receptors. Luckily, the regular arrangement
of the facets is similar to that of a regular grid of silicon receptors. Hence, we can
use similar techniques to compute the speed sensitivities of both types of receptors.
Much research has been carried out to determine the tradeoffs among the optics, the
sampling density of the ommatidia, the visual resolution, and the eye size in insects.
A review of this work can be found in [7][8]. Both Laughlin [9] and Glantz [10]
have analyzed the speed sensitivities of various insect receptors. Similar analytical

methods can also be applied to silicon receptors.

2.2.1 Optics

The optics of the animal or the silicon imager determines the optical cutoff frequency,
Veo, Of the visual input to the receptors. Since the lens pupil in the insect eye is
diffraction limited, we can determine v, from the Airy’s disc. The diameter of the
Airy’s disc is 2.44)\/D, where D is the diameter of the facet and ) is the wavelength
of the light. We approximate the Airy’s disc by a Gaussian, and the half-width of
the Gaussian is A/D. Hence, the optical cutoff frequency is given by v,, = D/A. The
facet size of the different fly species varies between 25 to 50um. Assuming A be 0.5um
and D be 25um, then v, = 25/0.5(cyc/rad) = 0.9cyc/deg.

In the case of the human or silicon imagers, v,, is determined by the aperture
of the eye or the lens. The aperture of the human eye varies between 2.4mm and

6.0mm, depending on the background intensity. Assuming that the aperture is 2mm,
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Figure 2.3: Schematic of a compound eye and a sampling array of fly receptors. (a)
Figure shows the arrangement of the ommatidia in the compound eye. The diameter
of the facet is D and the radius of the eye is R. (b) Figure shows an array of receptors.
The interommatidial angle is A¢ and the angular diameter of the rhabdomere is Ap;.
The spatial frequency of the stimulus is ». Source: Adapted from Snyder [7], Figure
1, pp. 696.

the optical cutoff frequency of humans is given by v, = 2mm/0.5um = 60cyc/deg.
The aperture of the lens used on silicon imagers can be computed from the focal
length of the lens and the f-number. Some lenses have a fixed f-number: others have
f-numbers that vary from 1 to 22. Let us pick an f-number of 2, and focal length of
4mm. The aperture size is then 2mm and v,, = 60cyc/deg.

The sampling bandwidth of the receptors theoretically should be at least twice
the optical cutoff frequency of the lens, by Nyquist’s criterion. If it is not so, aliasing

will occur. In fact, aliasing is seen in the responses of flies to motion.

2.2.2 Spatiotemporal Bandwidths of Fly Receptors and Sili-

con Receptors

The dependence of the spatial and temporal bandwidths of the fly receptors and
silicon receptors over different background intensities are elucidated in this section.
The speed sensitivities of the receptors are then computed from these bandwidths.

The output of the receptors depends on the convolution of the visual input with the



Figure 2.4: Sampling array of silicon receptors. The grid spacing is Az and the sensor
width is a.

optical modulation transfer function (MTF) and the spatial MTF of the receptors.
The MTF of the receptors is determined by the width of the sensor area. The highest
spatial frequency that can be reconstructed by the array of receptors depends on the
sampling period of the array. Analyses of the spatial and temporal bandwidths of the
silicon receptor have also been done by Sarpeshkar and colleagues [16].

The relationship between the sensor width and the sampling period determines
whether aliasing occurs in the receptor output. This analysis is described in Section
2.2.3. Each pixel normally contains transistors besides the sensor region. The area
occupied by the transistors is called the dead area. The impact of the dead area
between pixels on the motion computation is described in Section 2.2.4 and a de-
scription of the visual resolution of silicon and fly receptors is described in Section

2.2.5.

Spatial Bandwidths

The sampling grid of the fly retina is shown in Figure 2.3. The angular diameter of
the rhabdomere is Ap,; the sampling period is defined by the interommatidial angle,
A¢ = D/R, where D is the diameter of the facet and R is the radius of the eye. For
a square array of receptors, the highest resolvable spatial frequency is v, = 1/2A¢;
for a hexagonal array, v, is given by v, = 1/V/3A¢ 7.

The sampling grid of the silicon retina is shown in Figure 2.4. The sensor widsh,
a, corresponds to the angular diameter of the rhabdomere, Ap,; the grid period, Az,

corresponds to the interommatidial angle, Ag. The conversion of @ and Az to angular
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terms depends on the lens in front of the imager. If we use a wide-angle lens with
a field of view of 90° and a retina with 60 x 60 pixels, then each pixel subtends an
spacing angle of 1.5°. If the lens has a 30° field of view, then the spacing angle will
be 0.5°. In the case of the wide-field lens, if we assume Az = 150um, then 100um
corresponds to 1°. Assuming a sensor width of 30um, this width corresponds to an
angle of 0.3°. We need to identify a criterion to avoid aliasing in the retina. Again,
1

assuming that Az = 150um, the sampling frequency of the retina is f, = T

s(cye/pm) = seyc/deg. The sensor at each pixel acts as a spatial lowpass filter.
The filtering by the receptor helps to limit input frequencies that cause aliasing. The
spatial MTF of the sensor in the frequency domain is a sinc function of form b—“%ff—“
We can view the sinc function as a lowpass filter with a cutoff frequency at the first
zero, which is <.

The acceptance angle, Ap, is given by the convolution of the optical MTF of the
lens with the spatial MTF of the rhabdomere. This convolution is only an approxi-
mation because the acceptance angle varies over different intensities partially through
the migration of pigment cells to the rhabdomere. Under high intensities in the lo-

cust, the acceptance angle is as low as 1.7°, under low intensities it is as high as 4°.

The acceptance angle of silicon receptors is invariant with the background intensity.

Temporal Bandwidth

The temporal bandwidth of fly receptors varies only by a factor of 2 or 3 over several
decades of intensity. The temporal resolution is usually defined as the half-width, At,
of the receptor’s temporal impulse response. The temporal bandwidth of our present
silicon receptors, on the other hand, is linearly dependent on the background intensity.
The temporal bandwidth is defined by ;;—n where (' is the capacitance at the sensor

node and g, is the transconductance of the transistor supplying the photocurrent.

Speed Sensitivity

The speed sensitivity, v, of the receptor can be defined as the acceptance angle

over the half-width of the temporal impulse of the receptor. The speed sensitivity is
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Table 2.1: Comparison of Speed Sensitivities in Silicon and Insect Receptors

Ap(deg) | At(ms) | v(°/s) | Intensity
Calliphora | 1.2 50 24 160ph/s
Calliphora | 1.0 16 60 5 x 10°ph/s
Lucilia 1.5 25 60 10eff ph/s
Lucilia 1.2 8.3 145 1 x 10'%fF ph/s
Locust 1.5 20 75 14ph/facet /s
Locust 2.4 48 75 3 x 10°ph/facet /s
Silicon 1.5 6 25 3 x 10°ph/s
Silicon 1.5 0.004 | 37500 | 3 x 10ph/s

+Locust results from Howard and Payne [12] and from Glantz [10]

+Lucilia results from Howard and colleagues [13] and from Glantz [10]
+Silicon results from Delbriick [20], Ap computed using a 90° field of view lens
and an array of 60 x 60 pixels

+Calliphora results from Juusola and colleagues [14] and from

Smakman and colleagues [15]

a measure of the upper limit of speeds that can be detected by the receptor. Snyder
[11] pointed out that the speed sensitivities of the receptors are almost invariant
with intensity, because both the acceptance angle and the integration time decrease
by approximately the same factor with increasing intensity. The data for Ap, At,
and v of different insect receptors and silicon receptors at low and high background
intensities are shown in Table 2.1.

As we can see, the speed sensitivities of the fly receptors do not vary much over
intensity. In the case of silicon receptors, since the spatial bandwidth is fixed and the
temporal bandwidth varies linearly with the intensity, the speed sensitivities of the
silicon receptor increases linearly with the background intensity, as shown in Table
2.1. Hence, the speed sensitivity in our silicon receptors decreases too much at low
background intensities. Part of this problem can be alleviated by having spatially-
coupled receptors where the coupling increases at low background intensities. The
spatially-coupled receptor can then be influenced by intensity over a wider region than
the sensor area itself. This property is already implemented in some silicon retinae

[30]. The other solution is to have an electronic shutter in front of the lens that



oy ;
s \\ [ f$2fS
osr{t Y S =
E‘ X e f=0.5£

0.6r

0.4+

o2r

0.2k

Spatial modulation transfer function

0.4

Spatial frequency (cyclesfrad)

Figure 2.5: Modulation transfer function of a sampling grid of receptors. The diagram
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sampling frequency of the silicon grid is defined as f,. The curves illustrate how the
modulation transfer function depends on the spacing, Az, and the sensor width, a.

changes the lens aperture at different background intensities. Yet, another solution
is to decrease the rate at which the time constant changes over background intensity.
The comparison of both types of receptors show that biological receptors do a better

job in sensing speed at low background intensities.

2.2.3 Relationship Between the Spatial Bandwidth and Sam-
pling Frequency

The impact of the relationship between the sensor width and the sampling period
can be broken up into the three cases, a € Az, a = Az, and ¢ > Ax. This analysis
has been demonstrated by Theuwissen [17]. The MTF of the sensor in the frequency

domain is given by

VTE — sin (7 fa)/(fsAx)
i (rfa)/(fsAz)
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The term fa in the MTF function has been normalized by f,Ax.
For the first case, where a < Az, we assume that ¢ = Az/2. The MTF is given

by

sinwf /2,

MTF =
wf/2f

The spatial cutoff frequency of the sensor, f, is at f = 2f,. The MTFs for all three
cases are shown in Figure 2.5. The Nyquist criterion is not satisfied in this case. For

the second case, where a = Az, the MTF is given by

sinwf/ fs

MIE==25 /Js

The cutoff frequency is now at f = f;. Aliasing is more limited in this case. For the
final case, where a > Az, we assume that a = 2Az. Hence,
sin ;
MTF = ——=.

2]
fs

The cutoff frequency is now at f = 0.5f,. This case satisfies the Nyquist criterion.
This analysis is also applicable to the acceptance angle and the interommatidial angle
of the fly receptors.

There are two ways to prevent aliasing in the retina: by extending the sensor of
one pixel halfway into the neighboring pixels, or by manipulating the silicon process
such that electrons generated by the photons colliding with the silicon substrate can
be collected by neighboring pixels. The former method is possible in only the 1D

case; the latter case is possible for a 2D scenario.

2.2.4 Dead Area

What is the effect of the dead area (i.e., not photosensor area) on the motion com-
putation? In detecting actual motion, the stimulus has to travel between at least

two receptors. The time taken by the stimulus to travel between the receptors, &1,
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affects the motion processing performed in subsequent layers. For example, if the
signals from both receptors are directly correlated together, then &¢ should be less
than the temporal response of the receptor, At. We define the dead area by Oz and
the maximum speed detected by the receptor by wv,, where v, = a/Af. Assuming
that the speed of the stimulus is v;, we get dz/v; < At = a/v,. Hence, we need
vy > %’2 If the dead area is large, then the stimulus should be fast, for the receptor
outputs to correlate in time. Notice that, if dz > a, then the stimulus speed has to
be faster than the maximum speed detected by the receptor. To solve this problem,
we have to delay the output of the receptor by a sufficient amount of time, T},, so
that correlation between the pixels can occur. So At+Tj, > 6t. Of course, if 0z < a,
direct correlation between the receptor outputs is possible. In biological receptors, as
in silicon receptors, the sensor width is smaller than the pixel spacing, so some delay
is introduced in the pathway before correlation is performed on the signals. The other
problem with dead area in a pixel is shown in the analysis in Section 2.2.3. If the

sensor width is less than the pixel spacing, aliasing occurs.

2.2.5 Visual Resolution of Receptors

The diameter of the facet or the pixel size in silicon affects the visual resolution of the
eye or the imager. The spatial resolution is determined by the number of receptors
per visual angle. In the fly, eyes with large facets have a lower sampling frequency and
a smaller diffraction limit. The visual acuity, however, depends on both the diameter
of the facet and the local radius of curvature. If the radius is large, then the visual
acuity is higher. The advantage of large facets is that the eyes have more photon
collecting power, hence, a higher S/N ratio (valid for the case of a point source). The
same results can be extended to the pixels in a silicon imager. The tradeoff between
resolution and S/N ratio has been documented by Snyder and colleagues [18], through
the use of information theory.

As the pixel size of silicon imagers shrinks and the number of pixels grows, the

visual resolution of the silicon receptor starts to approach the visual acuity of the
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Figure 2.6: Recordings from a photoreceptor and a LMC in Calliphora. Step response
of a dark-adapted photoreceptor (A) and a LMC to a 300ms light step. On the right
are responses of a light-adapted photoreceptor (C) and a LMC (E) to a 20ms contrast
step and to a 300ms contrast step (D and F respectively). Source: From Juusola and
colleagues [14], Figure 2, pg. 122.

cones in the human fovea. For comparison, the cones in the fovea are 2.5um apart
and the inner segment is 2.3um wide. The distance of the lens to the retina is 17mm.
Hence, the visual acuity is 2.5/17 mrad or 0.5 min of arc. However, the S/N ratio of
the pixel in the silicon imager also decreases with the decreasing pixel size so some
companies have resorted to putting microlenses on each pixel to increase the collecting

power of the pixel.

2.3 Noise Sources

The noise in biological photoreceptors is photon noise and transducer noise. The
photon noise comes from the light; and the transducer noise is from the chemical

amplification process. Barlow [19] suggested that our percept comes from photon
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Figure 2.7: Plot of photoreceptor response versus log of intensity in the fly photorecep-
tors. The figure shows that the transient gain curve shifts over different background
intensities. Source: From Laughlin [22], Figure 3, pg. 170.

counting, and the reliability of this counting in the behavioral response of organisms
is limited by photon noise in the sensory input itself. The photon noise is classified as
shot noise due to the random arrival of photons. The transducer noise is also called
dark noise and is partly caused by the spontaneous isomerization of the photopigment
rhodopsin due to thermal noise.

CCD and CMOS sensors are also subjected to the random Poisson process of
photon arrival. The transducer noise gives rise to what is called dark current in
the sensor terminology. Electron-hole pairs are generated by photons hitting the
silicon substrate. The efficiency of the collection of electron—hole pairs is about 0.2
to 0.8, depending on the wavelength and the device structure. The current flowing in
the transistors is also subjected to thermal noise, shot noise, and flicker noise. The
thermal noise and shot noise can be characterized as Poisson events. Delbriick [20]
has done a detailed characterization of the noise spectrum and the S/N ratio of silicon

photoreceptors over various background intensities. The thermal noise and shot noise
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in transistors are equivalent sources of noise, as shown by Sarpeshkar and colleagues

21].

2.4 Physiology of Receptors

The membrane potential of the receptors in the fly’s eye depolarizes in response to
an increase in the light intensity. This depolarization is unlike the response of the
rods and cones in the vertebrate retina; they hyperpolarize with an increase in light
illumination. The response range of the receptors varies over 60 to 80mV. At low light
levels, the response reduces to the appearance of quantum bumps. The amplitude and
duration of the bumps decrease under light adaptation. The physiological responses
of photoreceptors have been studied by many researchers, including Laughlin [22],
Juusola and colleagues [14], and Scholes [23]. Typical step and impulse responses
of the photoreceptors are shown in Figure 2.6. Figure 2.6a shows the response of a
dark-adapted photoreceptor to different light steps. Figure 2.6¢ and Figure 2.6d show
the responses of a light-adapted photoreceptor to a 20ms and a 300ms contrast step
respectively.

Both invertebrates and vertebrate photoreceptors adapt in response to light in-
tensity. Otherwise, the receptors will saturate at high intensities. In fact, the gain
per unit contrast is approximately constant at high intensities [24]. The shift in the
response curves of the fly’s photoreceptors over different intensities is shown in Fig-
ure 2.7. This shift shows that the photoreceptors are adapting to the background
intensity; that ensures that the operating point of the photoreceptors will be sitting
at the center of the curve where the contrast gain is the highest. As a result of light
adaptation, the receptors are able to maintain a high transient gain over six to eight
decades of intensities. Weckstrom and colleagues [25] showed that calcium channels
and voltage-activated potassium channels are responsible for the time constant and

adaptation in the photoreceptors.



Figure 2.8: A silicon model of the photoreceptor responses by Delbriick. The transient
gain of the circuit is determined by the ratio of the capacitors, S’—l%

2.5 Receptor Modeling

The gain and phase responses of vertebrate receptors can be modeled by a cascade of
filters as shown by Fuortes and Hodgkin [26]. They modeled the turtle cones by an
RC filter with 7 to 10 stages of delay to account for the sharp high frequency cutoff
in the gain plots. However, the output of the filter does not fit the data in the phase
plot. The responses of invertebrate receptors can also be modeled by a cascade of
filters. French [27] modeled the fly receptors by using a cascade of first-order and
second-order filters. The output of the model fits the actual responses of the gain
plot of the receptors but not the phase plot. Howard and Payne [12] modeled the
responses of the invertebrate receptor as a nonlinear filter. The impulse response of
the receptor can be approximated by the log-normal model with threshold to activate

the ionic channels.

R(t) — e«ing(t/t,))2f211)2



e
VI‘

Rowsel —-l

| i

| |

| |

| |

I | | Vout
T g 5; ‘
}’_ Vi eSS - 1
—] ViHqloy T > > i

| |

| |

| |

| |

| |

| |

Pixel Circuitry Video Circuitry

Figure 2.9: Circuitry showing the path from the pixel through the scanners in the
columns and then through the video circuitry. Measurements are done at the output
of the inverter.

where ), is time to peak after a flash is delivered and w is a measure of the dispersion
of t,. The model fits the receptor’s responses at low and medium backgrounds, but
not at high light levels.

The silicon model of the photoreceptor by Delbriick is shown in Figure 2.8. This
circuit models the adaptation responses of the biological photoreceptor to light inten-
sities. A summary of how the circuit works is described in Section 3.4 of Chapter 3.
The DC gain is defined by the & of the transistor, where « is the efficiency of the gate in
controlling the surface potential of the transistor. The AC gain is defined by the ratio
of the capacitors, C; and G, (i.e., AC gain=(C; + Cy)/Cy). This circuit is used in the
pixel of the silicon retinae from which offset measurements are done, as described in
Section 2.6. A movie of the output from one of these retinae consisting of 59 x 66 pixels
can be found at the website http://www.pcmp.caltech.edu/anaprose/shih /shihretmovie.mpg.

The movie was recorded with an image capture board from Precision Digital Images.
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Figure 2.10: Voltage drift at a single pixel over time under constant lighting condi-
tions.

2.6 Offset Distributions in the Silicon Retina

Both DC and AC offsets or mismatches are present in fly receptors. From Figure 2.7,
two types of offsets can be inferred. One is the dc offset of the DC gain curve between
the biological receptors and the other offset comes from the variation in the slopes
of the DC gain curves and also that of the AC gain curves. Much like these offsets
in neurons, the same type of offsets are present between pixels in silicon. Systematic
offsets can be reduced by well-controlled processing, and by careful layout and circuit
design. Since we frequently use commercially available CMOS technologies, process
control is out of our hands. However, we can reduce offsets through careful circuit
layout and design; or by using adaptation on a long time constant with tunneling-
injection structures [28]. In this section, I measured the DC offsets and AC gain
mismatches from two different silicon retinae with Delbriick’s receptor pixels. The
layouts of the pixels in the two retinae are different, and the retinae were processed on
different runs by the MOSIS foundation. I obtained the DC offsets by exposing the

retina to uniform lighting from an LED source; T obtained the AC gain mismatches
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Figure 2.11: Plot showing the DC offsets distribution in a retina with 59 x 66 pixels.
The pixel outputs were measured in the presence of a constant background intensity.

by exposing the retina to an LED driven by a square wave of varying intensities and

varying contrasts.

2.6.1 Thermal Drift and DC Offsets to Uniform Lighting

The first set of results was obtained from a retina with 59 x 66 pixels. Figure 2.9
shows the circuitry along the path from the phototransduction stage to the measured
output. The offsets of all the transistors along the path add up to the offsets observed
at the output. The circuitry in each pixel is shown on the extreme left of Figure 2.9.
The pass transistor in the middle of the figure is part of the circuitry in the scanners at
the bottom of the retina and the video circuitry on the extreme right is at the output
of the scanners. Details of the circuitry for scanning out the pixels in the array have
been described by Mead and Delbriick [29][30]. Since all the pixels encounter the
same video circuitry, we can assume that the offsets at the output are due to offsets
between the pixels.

First, the output from a single pixel in the silicon retina was recorded over a period
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Figure 2.12: Histogram of DC response of retinal pixels to a constant background
intensity. The standard deviation of the distribution is 12.1mV.

of more than 24 hours. An incandescent bulb driven by a DC source was mounted
about 1 foot over the chip. Figure 2.10 shows the drift of this pixel over this time.
The p-p variation in the pixel output is only about £5mV, and is due primarily to
thermal noise and flicker noise. The sources of noise in transistors are discussed by
Delbriick [20] and by Sarpeshkar and colleagues [21]. This variation in the output of
a single pixel over time is smaller than the DC offset distribution in the array.

I obtained the DC offsets in the retina by using a green LED as the stimulus.
For each pixel, the average of six readings was recorded. The mean of all the pixels
was computed and then subtracted from each pixel, and the resulting output was
plotted in Figure 2.11. The distribution of pixel outputs corresponds to the DC
offsets between the pixels. From Figure 2.11, we can also see the systematic offsets
(evident from the three strips) caused by the silicon processing. The histogram of
the DC offsets is shown in Figure 2.12. The standard deviation of this histogram is
about 12.1mV. This deviation is equivalent to a contrast of about 0.25 as computed

from the DC gain of the pixel, which is 50mV/decade of intensity. The definition
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Figure 2.13: A sample of the responses of the pixels in the retina to a blinking LED.
The figure shows the variations in the maximum and minimum outputs of the pixels.

of contrast here and in the remainder of this dissertation is defined as the difference
of the maximum and minimum intensities over the sum of these intensities (i.e.,
(I; — Iy)/(I; + I5)). We can also see that the drift from a single pixel over time is

smaller than the DC offsets in the retina.

2.6.2 AC Gain Mismatches

The magnitude of the AC gain mismatches is critical as the AC output of the receptor
represents changes in the visual input. Large AC mismatches between the pixels would
degrade subsequent computations involving neighboring pixels. I calibrated the AC
gain mismatches in the silicon retinae by measuring the p—p responses of the pixels to
an LED that was modulated by a 10Hz square wave. The offsets were recorded for five
modulations of the LED. Figure 2.13 shows a sample of the step responses of the pixels
in the retina to a stimulus of contrast 0.09. For each LED modulation, the average of
128 readings from each pixel was recorded; the responses after removal of the mean

of all the pixels are shown in Figure 2.14. Surprisingly, the p—p variation between
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Figure 2.14: 2d image of p-p offset distribution in retina in response to a blinking
LED of contrast 0.09.

the pixels was about 6 percent, which is larger than I expected. This variation can
also be seen from the histogram of the distribution of the responses in Figure 2.15.
The p—p response depends on the AC gain of the pixel, and this gain is the ratio of
the capacitors, C; and C,, in Figure 2.8. The capacitor matching in silicon is usually
about 1 to 3 percent for capacitors of the size used in our receptors [31]. These large
gain mismatches are also seen in the results from the next four modulations as shown
in Figure 2.16.

A possible reason for the larger-than-expected mismatches might be that the
offset of the readout transistor, Q, in Figure 2.9, is large. The evidence comes from
the similarity in the AC offset pattern in Figure 2.14 and the DC offset pattern in
Figure 2.11. As it turns out, the readout transistor has a minimum transistor length
of 2uum in this layout. This small transistor length leads to large variations in the
output response. The threshold variations for such a small transistor length creates
about a 5mV offset. Since the transistor is operated in subthreshold, this offset leads
to large variations in the output current.

If we assume that the AC gain mismatch data are dominated by the offset of
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Figure 2.15: Histogram of p—p response of retinal pixels in response to a blinking
LED of contrast 0.09.

the readout transistor, we can try to compute the latter offset from these data. We
can then remove the readout transistor’s offset from the DC offset data to obtain
the actual DC offsets. Assuming that the variances (or random variables) of the
transistors are independent of one another, then the DC variance, o3, is the sum of
the DC variance from the receptor circuit, oy, and the variance from the readout
transistor, o2. Correspondingly, the AC variance, o2, is the sum of the AC variance

from the receptor circuit, o7,., and the variance from the readout transistor. Hence,

Ogc = (O§d<z + OE)G (21)
and
Ope = (0pee + 07)G, (2.2)

where G is the gain through the video circuitry.
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Figure 2.16: 2d image of p-p offset distribution in retina in response to a blinking
LED of contrast 0.15.

The AC gain of the receptor, g, is given by

Al C1+C,U
gp jemng AU/“I—' = “'171-)-%, (23)

where Av is the receptor response to a contrast of % and Ur is the thermal voltage.
Here, AT is the modulation in the light intensity, /. We assume that the variances
from the contrast, the capacitors, k, and U, are dominated by the variance from
the readout transistor, o,. Hence, o,. = o,. This assumption is valid because we
know that the capacitor mismatches are small in silicon and that x does not differ

significantly across the pixels. The mean of the responses to the contrast, -‘%, is given

by Av = &Lg,. The coefficient of variation (CV ) of the distribution can be defined as

C\/ - O-Q,C. — C’r'r

JAY I
mean Tgp

The CVs for five different contrast values (0.0896, 0.101, 0.1124, 0.1241, and
0.1483) are plotted against the inverse of the contrast in Figure 2.17. The slope of
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inverse of the contrast.

the linear fit to the points in the figure is -0.0104. The standard deviation, o, is
then 0.0104 x g,. From the layout, the capacitor ratio is 8.53, and we assume a & of
0.5. The standard deviation for the readout transistor is then 4.5mV. We have seen
that the standard deviation of the DC offsets is 11.8mV. If we subtract the variance
of the readout transistor from the variance of the DC offset measured, we should get

the actual variance of the DC offset. In this case, it is 10.9mV.

2.6.3 Comparison Between Offsets in the Silicon Retina and

the Fly Retina

How do the offsets in our retinae compare with those of the fly retina? Shown in
Table 2.2 are the means and standard deviations of the AC gain mismatches measured
in the silicon retina for the five different contrast values and the offsets from the fly
retina. I obtained the numbers in the rightmost column by taking the CV percentage
of each measurement. The numbers gives us an idea of how big the standard deviation

is as compared to the mean. For larger responses in the receptor output, we expect
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Figure 2.18: 2d image of DC offset distribution in retina under uniform lighting
conditions.

the deviation in the responses also to be larger. The data for the fly receptors were
obtained from the work of Juusola [32] who measured the responses of fifty-four R1-
6-type receptors. The responses from each receptor were averaged 20 to 1000 times.
The intensity numbers in the Table 2.2 for the fly receptors are measured in terms of
effective photons/sec. The contrast in Juusola’s work is defined as I,,, / Lin.

If we compare the rightmost column between responses of the silicon receptors
and those of the fly receptors, we see that the percentage variation is lower for the fly
receptors that for the silicon receptors in this retina. As we will see in Section 2.6.4,
the percentage variation of the responses in the second silicon retina is comparable

to that of the fly receptors.

2.6.4 DC Offsets and AC Gain Mismatches in the Second
Retina

We can test our theory that the offsets are dominated by the offsets of the readout

transistor by taking the same measurements from a 32 x 32 silicon retina whose pixel
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Figure 2.19: Histogram of steady-state response of pixels in the 32x32 array under
uniform lighting conditions.

has a longer transistor length, 19um. Figure 2.18 shows the DC offsets distribution
in the retina; the histogram of this distribution is shown in Figure 2.19. From Figure
2.19, we can see that the standard deviation is now 21mV. The higher standard
deviation probably occurs because of the different processing run. The DC gain from
the pixel is 48mV /decade of intensity; hence, the deviation corresponds to a contrast
of about 0.46. The systematic offsets seen in the first retina are also obvious in this
retina.

The AC gain mismatches were measured at four different contrasts, as shown
in Table 2.3. Figure 2.20 shows a sample of the step responses of the pixels to an
LED of contrast 0.134. The variations in the maximum and minimum outputs of the
pixels is smaller when compared to that in Figure 2.13. The distribution of the AC
gain mismatches from the entire chip is shown in Figure 2.21. The histogram of the
distribution is shown in Figure 2.22. Now as expected, the variation in the AC offsets
is about one-half as much as the variation recorded in the first silicon retina. It

proves that the AC offsets that we observed in the first retina were due to the offsets
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Table 2.2: Comparison of Offsets in Silicon and Fly Receptors

Material | Contrast | Intensity(ph/s) | Mean(mV) | Std Dev(mV) | Variation(%)
Silicon 0.0896 2 x 104 76.8 4.7 6
Silicon 0.1018 2 x 10t 87.3 6.1 7
Silicon 0.112 2 x 10 99.3 8.8 8.8
Silicon 0.124 2 x 104 106.9 10.6 9.9
Silicon 0.148 2 x 104 147.1 15.1 10.3
Calliphora | 1.12 5000 4.1 0.2 4.8
Calliphora | -1 5000 -8.9 0.5 5.6
Calliphora | 1.12 5 x 10° 7.9 0.4 5
Calliphora | -1 5 x 10° -22.5 2.6 11.55
Table 2.3: Offsets in Second Silicon Retina

Contrast | Intensity(ph/s) | Mean(mV) | Std Dev(mV) | Variation(%)

0.031 2 x 10! 50.6 2.7 9.3

0.075 2 x 10" 97.9 3.2 3.2

0.102 2 x 10" 145.8 3.5 2.4

0.134 2 x 10! 195 4.2 2.15

in the readout transistor. It also illustrates that careful circuit design and layout are

critical in reducing the offsets in silicon. The variation in the second retina is also

now comparable to that of the fly receptors, as we can see by comparing the data in

Table 2.2 with those in Table 2.3. Of course, if the receptor output, was used directly

by other processing circuitry within the pixel, the offsets of the readout transistor

would not have played a part in the subsequent computation.

The DC offsets can be ignored if the receptor output is AC-coupled to the gate of

the next transistor. However, it is not clear that this coupling is carried out in the

neurons or synapses. Neurons are considered to be imprecise computational elements;

yet the offset distribution between different receptors is amazingly small.
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Figure 2.20: A sample of the step responses of the pixels in the second retina to
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Figure 2.21: 2d image of p-—p offset distribution in retina in response to a blinking
LED of contrast 0.134.
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Chapter 3 Laminar Modeling

The receptors, R1 to R6, project sign-inverting synapses onto the monopolar cells in
the lamina. The monopolar cells carry out a similar role to that of the bipolar cells in
the OPL of the vertebrate retina. The spatiotemporal filtering properties in both cells
are similar, except that the temporal factor is more dominant than the spatial factor
in the monopolar cells. The monopolar cells remove the DC of the receptor output,
and amplify the remaining signal to cover the full response range of the cells. The cells
also remove redundancy in the temporal domain by responding transiently to signal
changes. This transient behavior corresponds to self-inhibition. The spatiotemporal
filtering changes with the S/N ratio, such that the bandpass filtering of the LMCs
changes to lowpass under low light conditions.

In this chapter, I describe a small, compact retino-laminar (RL) circuit that
captures the automatic local gain control properties of the receptor and adaptive
filtering properties of the monopolar cells. The cutoff frequencies of the bandpass
filtering of this circuit shift with the S/N ratio, such that in the range of 1 to 100
Hz (within the operating range of the LMCs), the circuit response changes from
a highpass under high S/N conditions to a lowpass under low S/N conditions. This
chapter presents three different variants of the RL circuit and shows the dependence of
the frequency response of these variants on the background intensity. The adaptation
time constant of the circuit is controllable via an external bias, and the adaptation
behavior of the circuit over different background intensities is more symmetrical than

that of Delbriick’s photoreceptor circuit.

3.1 Anatomy of Laminar Layer

As we saw in Chapter 2, the first visual ganglion is the lamina. Tt consists of an array

of retinotopically arranged cartridges, where each cartridge receives axons from six
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Figure 3.1: Cross-section of the cells in a cartridge of a fly, showing the the arrange-
ment of the monopolar cells, L1 to L5, the receptor cells, R1 to R6, the centripetal
cell, T1, and the centrifugal cells, Cy and Cs. The figure also shows the « processes of
the amacrine (Am) cells and the 5 processes of T;. P: posterior, V: ventral. Source:
Adapted from Meinertzhagen [3], Figure 42, pg 255.

rhabdomeres with the same visual axes from neighboring ommatidia. In addition to
the photoreceptor axons, each cartridge also contains a set of five centripetal first-
order interneurons, called monopolar cells (L1-L5); the basketlike arborizations (/-
fibers) of the centripetal T;-cell and two small-field centrifugal elements (C,, Cj),
derived from the corresponding column in the medulla (the second visual ganglion).
A simple cross-section of a cartridge is shown in Figure 3.1. There are about 14
neuronal classes of cells in the lamina. The intricate connection of these cells has been
described in detail [1][2][3][4][5]. Lateral connections between neighboring cartridges

are mediated by two wide-field centrifugal cells (Tan 1, Tan 2) and by the lamina
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amacrine cells. The former link the medulla to the lamina. The latter reside within
the lamina and provide each cartridge with the a-fibers. Adjacent cartridges are also
connected by a regular network of collaterals emerging from the L4 monopolars.

Here, we only describe the synaptic connections between the receptors and the
output cells in the lamina, .1 and L2. The receptors, R1 to R6, synapse onto only
L1, L2 and L3. L1 is a pure output element, whereas 1.2 feedbacks onto R1 to R6.
The tetrad synapse consisting of the receptors, L1, L2, and an « process, is the
most common synapse in the cartridge. There are about 1200 of these synapses per
cartridge. Bach cartridge is surrounded by three epithelial glial cells (EGCs). Both
« and [ processes are presynaptic to the EGCs. Some researchers believe that they
may have the function of controlling and blocking the extracellular route between
cartridges, and that they could form an intracellular route for translaminar current
[4]. The cartridges also have gap junctions among each other through the epithelial

glial cells.

3.2 Physiology of LMCs

The physiology of LMCs has been expounded by various researchers [6][7][8][9]. We
describe only the responses of L1 and L2 cells, which are postsynaptic to the receptor
cells. The responses of .1 and L2 are similar to each other. Their resting potential
is between —35 to —45mV, and the full response range covers about 50mV. The re-
sponse curves shift with the background intensity as shown in Figure 3.2. Because
of the amplification of the signal at the photoreceptor-LMC synapse (% 6), the slope
of the curves in Figure 3.2 is greater than that of the receptor curves. The dynamic
range of the LMCs is about 2.3 log units. When the receptors depolarize in response
to a brief flash of light, the LMCs respond with a transient hyperpolarization. The
hyperpolarization is generated by the release of a fast transmitter, histamine, from
the receptors. Histamine activates the histamine-gated chloride channels in the post-
synaptic LMC, thus generating a transient hyperpolarization in the LMC. In the case

of the dark-adapted LMCs, the response is monophasic approaching that of a lowpass
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Figure 3.2: Plot of LMC response versus log of intensity. The figure shows that the
transient gain curve shifts over different background intensities and the DC gain is
zero. Source: From Laughlin [6], Figure 5, pg 171.

filter. With light adaptation, the response of the LMC becomes more transient and
biphasic as shown in Figure 3.3. Figure 3.3b shows the response of a LMC in a dark-
adapted condition to different light intensities, while Figure 3.3e and 3.3f show the
response of the LMC to a 20ms and a 300ms contrast step. The depolarization of the
LMC is due partially to a reduction in the synaptic input from the photoreceptor [7]
and partially to a secondary effect of the changes in depolarizing conductances with
positive reversal potentials.

The spatial receptive field of the LMCs varies with the background intensity
[7][10}[11]. At high intensities, the LMC demonstrates lateral inhibition through its
center-surround receptive field. The surround is much shallower than that of bipolar
cells in the OPL showing inhibition in the spatial domain is weaker than inhibition
in the temporal domain. The surround can be generated by the extracellular space
of the lamina [4]. This space depolarizes in response to light, because the photocur-

rent injected into the lamina must return to the retina by crossing epithelial glial
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Figure 3.3: Recordings from a photoreceptor and a LMC in Calliphora. Step response
of a dark-adapted photoreceptor (A) and a LMC to a 300ms light step. On the right
are responses of a light-adapted photoreceptor (C) and a LMC (E) to a 20ms contrast
step and to a 300ms contrast step (D and F respectively). Source: From Juusola and
colleagues [8], Figure 2, pg. 122.

cells. TLaughlin [6] models the inhibition in the LMCs by the log-subtract—amplify
strategy. The weak center-surround antagonism of the LMC receptive field subtracts
an estimate of the local mean from the signal. The remainder is then amplified to
fill the LMC dynamic range. The background is removed so that full response range
can be used. This strategy maximizes the information uptake to the LMCs from
the receptors. Juusola and colleagues [12] recently characterized the kernels of the
receptors and the LMCs by a second-order Volterra series. The kernels obtained are
least-squares estimates, where the estimates are first-order and second-order Wiener
kernels. From this estimate, they found that photoreceptor responses were approx-
imately linear, while the LMC responses are nonlinear. The synaptic relationship
between the receptor and the LMC is modeled as a nonlinear-linear-nonlinear cas-

cade.
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3.3 Role of Laminar Monopolar Cells

Different theories have been proposed for the function of the spatiotemporal propetr-
ties of the LMCs. Laughlin and Hardie [13] suggested that the lateral and temporal
inhibition in the LMCs is a mechanism to retrieve and amplify the contrast informa-
tion from the receptors. Another theory for the function of the LMCs is by Srinivasan
and colleagues [14], who used the predictive coding scheme to remove redundancy in
the image. They were able to show that the form of the filters predicted by this
scheme matches the spatial and temporal antagonistic fields of the LMCs. The lat-
eral inhibition removes the existing redundancy in the image created by the spatial
correlations between neighboring pixels. The temporal inhibition suppresses any re-
sponse to a static signal. The hypothesis that the role of the early visual stages is to
reduce redundancy was first advocated by Barlow [15]. Srinivasan and colleagues [16],
later, suggested another hypothesis where they used the theory of matched filters to
determine the filters needed to match the spatiotemporal distribution of the input
stimulus. Their analysis showed that the LMCs are optimized to detect moving blobs
at low S/N and to detect moving edges at high S/N.

Recently, van Hateren [17][18][19] suggested a theory that takes into account the
spatiotemporal structure of natural scenes. The theory predicts the filters that would
maximize the information flow through a noisy channel of limited dynamic range.
The theory also predicts the change in spatiotemporal filtering under different S/N
conditions. The predicted filters reduce redundancy at high S/N ratios, but increase
redundancy at low S/N ratios. The filters exhibit the lowpass characteristics of the
dark-adapted LMC and the highpass or bandpass characteristics of the light-adapted
LMC. The bandpass characteristic comes about because it would pass along frequen-
cies with decent S/N ratios. The reason for this is that information is proportional
to the logarithm of the S/N. Hence, low frequencies are attenuated, so they don’t
occupy too much of the dynamic range, and high frequencies are attenuated since

their S/N ratio is low.
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Figure 3.4: Circuit diagram of retino-laminar circuit (also RL1). The feedback consists
of a resistor implemented by a pFET transistor, Q;. The conductance of the resistor
is controlled by the external bias, V.

3.4 Circuit Description

In this section, I describe a small, compact, circuit model of the adaptation prop-
erties of the receptor and the adaptive filtering properties of the monopolar cells.
The circuit is called the retino-laminar circuit (RL) since it captures properties of
both the retina and the lamina. The RL circuit is shown in Figure 3.4. Here, I have
replaced the adaptive element in Delbriick’s receptor circuit [20] (shown in Figure
2.8, Chapter 2) by a nonlinear resistor consisting of a pFET transistor, ;. The
implementation of a floating, voltage-controlled resistor has been described earlier by
Banu and Tsividis [21]. The bias for the pFET, V4, is generated by Qs and Q4. An
external bias voltage, Vi, controls Qs, thus also controlling how much V}, is below
Vi. Hence, we can control the conductance of Q; via V,,. We give a brief description
of the circuit operation here; details are described in [20]. The receptor voltage, V;,
is clamped to the voltage needed to sink the current sourced by Qg, which is biased
by an external bias, V,,. Transistors, Q» and Qg, form a high-gain, inverting ampli-
fier. The value of V), sits at the voltage required for Qs to supply the photocurrent.

The feedback transistor, Qs, is operated in subthreshold so that V; is logarithmic
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Figure 3.5: Small signal model of the circuit shown in Figure 3.4. C, is the parasitic
capacitance at the node, V.

in the photocurrent. When the photocurrent increases, the change in V, leads to a
large change at the output, V1. This change in V] is capacitively coupled through the
capacitive divider, consisting of C; and Cjy, into Vj, so that Qs supplies the extra

increase in photocurrent.

3.5 Variants of the Retino-Laminar Circuit

We describe three variants of this circuit: RLy, RLsy, and RLj3. Because RLs is an

improved version of RL;, we discuss them together.

3.5.1 RIL;

The first variant, RL; is already shown in Figure 3.4. In this section, we solve for the
transfer function of the circuit and describe the dependence of the conductance of Q;

on the background intensity.

First Variant

We first solve for the transfer function of the circuit by writing the KCL equations

at the nodes, v,, vy, and v;, in the small-signal model shown in Figure 3.5.

vpCy + Clvg — Up) + galvp — v1) = 0, (3.1)
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Figure 3.6: Frequency plot of the RL; circuit over five decades of background intensity.
The number next to each curve corresponds to the log intensity of the mean value; 0
log corresponds to the intensity of a red LED. The plot shows that, in the range of 1
to 100 Hz, the circuit is a bandpass filter at high light intensities, and reduces to a
lowpass filter at low light intensities.

Imay + V19 + Ci{ty — vpt) + ga(vs — vpy) =0, (3.2)
iin af Crv'r = Oms5 ('Upi - 'Ur/"i)a (33)

where g4 is the output conductance of Q2 and Qg, g, is the output conductance of
Q1, gm is the transconductance of a transistor, and C, is the parasitic capacitance at

the node, V.. Taking the Laplace transform of Equation 3.1, we get

svp;Cd + SC;(’Upg = ”l)g) + ga(vm — ‘U;) = 0. (3.4)

From Equation 3.4, we solve for v,

_ Upi
v = SC,; + G (S(Od + Ol) =+ ga)

vpl
= P (sl +
ST+ ga/gm2( (T +10) + Ga/ gm2)
Upl
= K 3.5
s+ X’ ( )
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Figure 3.7: Measured I-V curve of Q;. The curves were obtained by using different
common-mode voltages. The six curves were taken with the common-mode voltage
varying from 2 to 3V in steps of 0.2V. The curve with the highest slope corresponds
to a common-mode voltage of 3V. The reason for the asymmetry in the curves is
described in the text.

where K = s(rig+7) + X and X = 2. The time constants, 7, 7., and 74, are

defined as follows:

Gm2 Gms Gm2

Taking the Laplace transform of Equation 3.2, we get
JmaUy + V1gq + SC;(’U; — Up[) + ga(v[ - ’Upg) =) (3.6)
Solving for v, from Equation 3.6 and substituting for Agy,, = 3;’;—2, we get

vy = —0(1/Aamp + 511+ X) + (571 + X) vy

Upt
s —Sﬂ—i}?K(l/Aamp + 511+ X) + (s + X)vp
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= —— P (K(1/Agmp + 571 + X) — (571 + X)2). (3.7)
st + X
Taking the Laplace transform of Equation 3.3, we get
lin + 5Crv, = gm5(vpi . ’U,»/K).

The following set of equations solve for jfnﬂ—

Z.in + U'I‘(SCT + gvnS/K/) = Gms¥Upl,

tin

+ v (s + 1/K) = vy
Gmb

We substitute v, from Equation 3.7 in the preceding equation:

(s + X)v,
(1/Aamp + s71 -+ 4\’) — (87‘( + )()27

Lin

M= —
+ I7a

gms

where M = s7, + 1/k. Hence, E‘w; is described by
gm

(sm + X)

i
== —(M+ Vy. 3.8
Yms ( K(l/Aa7np+STl+X) - (STE’JFX)Z)U ( )

The transfer functionsA%, fl’;f:, and ;;;_1_ are given by
v 1 K(1/Agmp + 511+ X) — (s11 + X)? (3.9)
bin Gms M(K(1/Agmp + 571+ X)—(sn+ X)) +sn+ X’ o
o K . (3.10)
lin B Ims A/I(I((l/ﬂamp + 51+ X) = (571 + X)) +sm+ X7 -
v sm+X) 1 (3.11)
iin Ims  M(K(1/Agmp + 511+ X) — (s + X)2) +sm+ X 7

We can reduce the denominators of Equations 3.9 to 3.11 to a second-order expression:

K(1/Awmp + 51+ X) = (s1+ X)* = (514 X)(1/Aump + 5714) + 1/ Aamp(5T1a)
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Figure 3.8: Circuit diagram of the variant, RLs. The circuit is the same as that
in Figure 3.4, except that we added a cascode transistor, Q7, to decrease the Miller
capacitance at the node, V..

- STid
= + X)) {1/ Agny + 577 .

Equations 3.8 through 3.11 then can be expressed as

tin 1
Gms ( 1/4“7”'? + $Tia + Aamp(57l+X)) '
v 1 1/ Aamp + 5710 + Aam:(en—f—A)
tin Gms5 (*57—1" + 1/5)(1/’1@7”? + $Tia + Aamp(s,;—f—)s)) +1
wo_ L 1 |
Gin Gms (87} + 1/6)(1/ Agmp + T1a + . np(57l+)i)) + 1— J
’ 1 r s{rg+m)+X ’
_Lj.’;. _ sT+X
iin Gms (STT + 1//‘1’;)(1/407@9 + §Tid + 1aﬂ1p{STl+X)) + 1
, r SﬁTzd+Tz)+,ga(9mz '!
_ 3 STg—{-Qa/ng = . (3']2)
Yms _(37}' + 1/6)(1/Aamp + 5710 + Aa"mp(sﬂ”{"ga/g‘mz)) + 1J
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Figure 3.9: Frequency plot of the variant, RLy, over five decades of background

intensity. The bandwidths of the frequency curves are extended through the addition
of a cascode transistor, as shown in Figure 3.8.

The low-frequency gain of the circuit from Equation 3.12 is then

Uy / Ur _ l Aamp
iz’n/Iph k1 -+ K‘Aamp ’

and the circuit has a zero at

da 1

Gma Tid + T
Y

Cﬂz -} Cg.

2 = —

The frequency response curves in Figure 3.6 are measured from the fabricated
circuit over five decades of background intensity. We obtain the curves by using a
sine-wave modulated red LED source. The number next to each curve is the log
intensity of the mean value; 0 log is the intensity of the LED source. We obtain
the remaining curves by interposing neutral density filters between the LED and the

chip. Figure 3.6 shows that, in the range of 1 to 100 Hz, the circuit is a bandpass
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Figure 3.10: Temporal responses of the variants, RL; and RLj over five decades of
background intensity. The top set of curves corresponds to the responses from RL,
and have been shifted up by 0.5V for ease of comparison. The input stimulus is a red
LED of contrast 0.15. The circuit acts as a highpass filter (that is, a differentiator)
at high intensities, and as a lowpass filter as the intensity drops.

filter at high light levels, and reduces to a lowpass filter at low light levels. For each
frequency curve, the gain is flat in the middle, and is given by A = ng—lc‘i The cutoff

frequencies change with the background intensity; this change is analyzed next.

I-V Relationship

Here, we analyze the dependence of the cutoff frequencies of the circuit on the back-

ground intensity. The equation for the current through Q; can be written as

- Iope—h:p Vb (8{7+AV/2) _ e(V—AV/?))

_ Iope—n,,vbev(eawz _ e—AV/Q)

= 2L,e "% sinh(AV/2)), (3.13)

where V = L?-/ﬂ and AV = V} — V};. The exponential relationship for Equation

3.13 is for a pFET transistor operating in subthreshold, where I,, is the quiescent
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Figure 3.11: Contrast responses of LMC over eight different background intensities
at 0.5 log intensity units apart. Responses are to 300ms contrast steps. Source: From
Juusola and colleagues [8], Figure 4, pg. 125.

leakage current of the transistor, and &, is the effectiveness of the gate in controlling
the surface potential of the channel of the pFET.

The KCL equation for the bias circuit consisting of Q3 and Q4 is given by

I, = 0716””<V+AV/2)€’%, (3.14)

where V, = V4+ AV /2, I,y is the quiescent leakage current of the nFET transistor, and

ky, 1s the effectiveness of the gate in controlling the surface potential of the channel
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Figure 3.12: Response of Vi, and V;, of RLs to a step response over four decades
of intensities. The bias curves have been shifted by 0.6V. The input stimulus is a
square-wave modulated LED source with a contrast of 0.15. The larger difference
between V| and Vj;, at high intensities is due to the body effect of Q.

of the nFET. We rearrange the terms in Equation 3.14 to solve for e=%#":

eV = (2L Y gmrmaTHAV]2) (3.15)

on

Substituting Equation 3.15 into Equation 3.13, we get the I-V relationship for Q;:

A : T
I= 210,,(1—5)"?8(l'ﬂﬂ'“p)"e—”n*‘vm’/? sinh(AV/2). (3.16)

on

Measured I-V curves of Q; with six different common-mode voltages are shown in
Figure 3.7. The common-mode voltage varies from 2V to 3V in steps of 0.2V. The
curve with the highest slope (i.e., transconductance) is taken with a common-mode
voltage of 3V. The curve is asymmetrical because Q; acts like a resistor when V;
is higher than V,, and acts like a diode when V] is less than V};. Interestingly, an
increase in the voltage, Vi, leads to a decrease in &, of Q; and to an increase in &, of

Q4. Hence, the change in the & effects tend to cancel out each other. We know that
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Figure 3.13: Plots of adaptation responses of RL, and of Delbriick’s circuit. The input
stimulus is a red LED driven by a square wave of contrast 0.18. The bottom curve
corresponding to Delbriick’s receptor has been shifted down so that we can compare
the two curves. The adaptation response of the RLy circuit is more symmetrical than
that of Delbriick’s circuit when the circuit goes from dark to light conditions and
back.

Vi1 biases Qs, which supplies the photocurrent, Iyn. Since Iy = Tpe™ Vo1~V

(IthVI

1/kn
Lon )

= e?l, (3.17)
Substituting Equation 3.17 into Equation 3.16, and substituting for V = V‘—?-{P—‘ =

Vo + AV/2, we get

I,

Ion

= LI mre e -2kl AVI2 ginh (A V/2), (3.18)

I = 2I,(F) el rnrelVogll-2nm)AV/2 6inh(AV/2)

where I, = QIOP(T?T:)”"(%)(I_”"””)/ . Equation 3.18 shows that conductance, g,, of
Q1 in Figure 3.5, is proportional to the background intensity, L. As I, increases,
ge increases, so the cutoff frequencies shift to the right, as seen in Figure 3.6. If
we compare both the “0” curve and the “-1” curve, we can see that the cutoff fre-
quencies are approximately different by a factor of 10. Thus, the exponent of I,

(1—Knkp)/kn = 1. Since the & values change with the current through the transistor,
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Figure 3.14: Adaptation responses of the RL, circuit for two values of V,,. The
curves show how the adaptation time constant of the circuit changes with Vi, ( or
I;), when the circuit goes from dark to light conditions and back. The bottom curve
corresponds to a smaller value of V},,, the bottom curve is shifted down by 0.2V for
ease of comparison.

the exponent also changes. The different values of the exponent with I, can be seen

from the different amounts of shifts in the cutoff frequencies of the curves.

3.5.2 RLy

The next variant of the retino-laminar circuit, RL», improves RL;, by adding a cascode
transistor, Qr, as shown in Figure 3.8. The addition of the cascode transistor increases
the bandwidth of the circuit by about a decade. In this section, we describe the
temporal responses of RLs, and compare the adaptation response of RL, with that

of Delbrick’s circuit.

Temporal responses

The cascode transistor reduces the Miller capacitance observed by the node, V;, and
thus, increases the bandwidth of the circuit under all background intensities. The

increase in the bandwidth of the circuit is shown in Figure 3.9, where we obtain the
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Figure 3.15: Response of V; of RLs to a step response for different values of V4.
The input stimulus is a square-wave modulated red LED source. The value of V,,
was varied from 0.73 to 0.9 V. The curve with the longest time constant of decay
corresponds to the lowest value of V.

curves using the same LED source as that described for Figure 3.6. The temporal
responses of the circuit under five different light levels for both RL; and Rl are
shown in Figure 3.10.

The input stimulus to the circuit is a square-wave modulated LED with a con-
trast of 0.15. The data in Figure 3.10 show the change in filtering behavior of both
circuits with different background intensities. The temporal responses observed in
these circuits are comparable to the contrast responses recorded from the LMCs as
shown in Figure 3.11 [8]. The LMC response to a 300ms contrast step in Figure 3.11
was taken at eight different background intensities at 0.5 log intensity units apart.

The change in the time constant of the circuit is due to the change in the con-
ductance, g,, as the background intensity changes. The conductance, g,, is greater
at high background intensities because of the increased body effect at Q4 due to a
higher source voltage. The larger difference between V| and V;, at high intensities can
be seen in Figure 3.12. Here, the step response of V] and V4, is measured over four

decades of intensities.
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Figure 3.16: Circuit diagram of the variant, RL3. This circuit is the same as the RLo
circuit, except that Q3 is diode connected.

Adaptation Properties

We can look at the RL circuit as a version of the Delbriick circuit with an adaptation
time constant that is set by an external bias. In the Delbriick circuit, the adaptation
time constant is predetermined at the design phase and by process parameters. In
Figure 3.13, we compare the adaptation properties of RL, with those of Delbriick’s
circuit. The input stimulus consists of a square-wave modulated LED source with a
contrast of about 0.18. We take the circuit from dark to light conditions, and back
again, by using neutral density filters. The top curve corresponds to the response from
RLj, and the bottom curve corresponds to the response from the Delbriick circuit.
The RL, circuit adapts symmetrically, when it goes from light to dark conditions and
back. In contrast, Delbriick’s circuit shows an asymmetrical adaptative behavior; it
adapts more slowly when it goes from dark to light conditions. The curve also shows
that the adaptation time constant of Delbriick’s circuit, unexpectedly, depends on the
background intensity. The time constant of the adaptive element probably changes

because the minority carriers generated in the photodiode area migrate to the well in
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Figure 3.17: Frequency plot of the RL; circuit over five decades of background inten-
sity. The curves show that, in the range of 1 to 100 Hz, the circuit acts as a highpass
filter for high light levels and as a lowpass filter under low light levels.

which the adaptive element sits, and change the conductance of this element.

As described earlier, the adaptation time constant of the RLs circuit can be con-
trolled via the bias voltage, V.. Figure 3.14 shows the adaptation properties of the
circuit for two different values of V,,,. The top curve in the figure corresponds to a
larger value of V,,, and hence to an increased conductance, g,, or to a decreased time
constant. We can see that the adaptation time constant is smaller for the top curve
than for the bottom curve. Figure 3.14 also shows that the adaptation time constant
is less affected by changes in V},, when the circuit goes from light to dark than when
it goes from dark to light conditions. This asymmetry comes about because Q, acts
as a source follower only when V| goes high. When V] goes low, Q3 discharges V;, at
a linear rate.

The dependence of the time constant of the circuit on V,, is further demonstrated
by recording the step response of the circuit to an LED source of contrast 0.15 for

various values of V,. The output data are shown in Figure 3.15 for 5 different values

of V.
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Figure 3.18: Step responses of the RLs and RLj circuits. The curves show the
responses of both variants of the circuit over five decades of background intensity to
an LED source of contrast 0.18. The top set of curves shows the responses from RL3,
while the bottom set of curves shows to the responses from RLs. The biases, V,, and
Vs, have been adjusted such that the time constants of both circuits at the highest
intensity are about equal.

3.5.3 RLj

Figure 3.16 shows the third version of the retino-laminar circuit, RL3. The dif-
ference between this circuit and RLs is that Q3 is diode connected and the source of
the transistor is brought out externally via V;. This version was suggested by Rahul
Sarpeshkar [23]. Even though the cascode transistor has been included in the figure,
the results shown here are from a variant without the cascode transistor. The transfer
function of this circuit is similar to that of RLq, except that the conductance, g,, has a
different dependence on the photocurrent, I,,. The dependence of the time constant

of RL3 on the background intensity is smaller than that of RL;.

I-V Relationship

We do an analysis similar to that in Section 3.5.1, to determine the dependence

of g, on the photocurrent, I,. We first solve for the I-V relationship of Q;. The
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Figure 3.19: Plots of adaptation responses of RL, and RLs under five decades of
background intensity. The input stimulus is a red LED driven by a square wave of
contrast 0.18. The top curve corresponds to the response from RLs. The bottom
curve corresponds to the response from RLs.

equation for the bias circuit is

L, = Ionemn(V—i—AV/Z)e—Vb

= [uefVe (3.19)
where Vi = V + AV/2. We rearrange the terms in Equation 3.19 to solve for e—*%»"b:

— —Enfp 7, e
e—"Vo — g mep (VHAV/Y) —Bx Ve (3.20)

Substituting Equation 3.20 into Equation 3.13 (Section 3.5.1), and substituting for
V=840 - 4 AV/2, we get

—Enfipyyy | fnkp . .« 2
I = 2@, mt)V e m AV 2 Ginh(AV/2)e mt
H'rn,WR

= 2L, mA D e 2B AV 2 Ginh (AV/2)e T Ve, (3.21)



2.3 kN

221

2.1

18

Retino-laminar output and Vi, (volts)

¥ ﬁ/f [
N g\ﬂ

17
0 02 0.4 0.6 0.8

Time (sec)

Figure 3.20: Response of V}, and V;, of RL3 to a step response over four decades of
intensities. The bias curves have been shifted by 0.6V. The input stimulus is a square-
wave modulated red LED source of contrast 0.15. The larger difference between V|
and V4 at high intensities is due to the body effect of Q.

We now substitute in I, from Equation 3.17 into Equation 3.21:

TR, fn _pknk .
I = Il w258V Gk AV /9),

where Ig = 2103,(%)(1_%%)/’5”.

The frequency-response curves for this circuit are shown in Figure 3.17. The data
show that, in the frequency range of 1 to 100 Hz, the circuit acts as a highpass filter
under high intensities, and reduces to a lowpass filter as the intensity drops. The
corresponding temporal responses are shown in Figure 3.18. Here, the figure shows
the step responses of RLs and RL3 to an LED source of contrast 0.18 over five decades
of background intensity. The top set of curves shows the responses from RLj; the
bottom set of curves shows the responses from RL,. The biases, V; and V,,, have
been set such that the time constant for both circuits is approximately equal at the
largest background intensity. If we compare the dependence of the time constant of

RLj3 on the background intensity, and that of RL; in Figure 3.10, we see that the time

constant of RL3 varies less with intensity. With a diode-connected Qg, the change in
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Figure 3.21: Adaptation responses of RL3 for two different values of V5. The bottom
curve corresponds to a higher value of V5. The curve has been shifted down by 0.2V
for ease of comparison. A higher value of Vj corresponds to a decrease in conductance
of Q1, or to an increase in the adaptation time constant

Vo in RLg is 1/(1 + &,) less than the change in V; in RL;, for a given change in V.
This difference in dependence can be seen from the prefactor of the V + AV/2 term
in Equations 3.15 and 3.20.

As we have seen in the case of the RL, circuit, the change in the temporal filtering
over different intensities is due to the body effect of Q4. Figure 3.20 shows the larger
difference in V; and V4, (i.e., g, is larger) at high intensities. The data in this figure
are the step responses of ¥} and V}, over four decades of intensities to an LED source

of contrast 0.15.

Adaptation Properties

A comparison of the adaptation behaviors of RL, and RLj is shown in Figure
3.19. The top curve shows the adaptive behavior of RL3; the bottom curve shows the
response from RL,. The adaptation response is symmetrical for both RL; and RLs,
when the circuit goes from dark to light conditions and back. There is a difference
in the initial response when the RLj circuit goes from “-4” to “-3” conditions: The

positive-going response is followed by a sharp negative-going response. The RL,



70

V=059, 0651, 0715, 0.75,0.795

245

24 F

B

VTR

23 L

Retino-laminar output (volts)

0 01 02 03 0.4 0.5 0.6
Time (sec)

Figure 3.22: Response of V} of RLs to a step response for different values of V. The
input stimulus is a square-wave modulated red LED source. The value of V; was
varied from 0.59 to 0.795V. The curve with the longest time constant corresponds to
the value of V;, = 0.795.

circuit does not show this response under similar conditions. The adaptation time
constant of the RL3 circuit can also be controlled externally via V;. In Figure 3.21,
the adaptation behavior of RLj is shown for two different values of V. The bottom
curve shows the response of the circuit with a higher value of V. A higher value of
Vs corresponds to a decrease in the conductance, g,, or an increase in the adé,ptation
time constant. As in the case of RLy, we can demonstrate the dependence of the
time constant of the circuit on V; by recording the step response of the circuit to an
LED source for various values of V;. The output data are shown in Figure 3.22 for 5

different values of V.

3.6 Layout

A hexagonal array of 20 x 20 pixels of the variant, RL;, has been fabricated in
the 1.2um CMOS ORBIT technology. Figure 3.24 shows the layout of this array

and Figure 3.23 shows the layout of a single pixel. The green areas in both figures
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Figure 3.23: Layout of the variant, RL.

correspond to the photosensor area. The second layer of metal in the layout covers the
entire chip, except over the photosensor regions. This metal layer prevents photons

from entering the circuits.

3.7 Discussion

This chapter described a compact silicon model of the adaptive filtering properties of
the laminar cells. The circuit does not model the zero DC gain of the LMC. Moini
and colleagues [24] modeled the LMC by a differentiator circuit which gives zero DC
gain. However, the adaptive filtering properties of the LMC are not modeled by this

circuit.
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Figure 3.24: 2D layout of an array of 20 x 20 pixels of the variant, RL;, in 1.2/m
ORBIT technology.
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Chapter 4 Motion Adaptation

In this chapter, I describe a new adaptive correlator that models the adaptation
observed in the fly’s motion system from recordings done on the H1 neuron. This
adaptation process allows the motion system of the fly to match its temporal res-
olution to the speeds in the visual scene. This phenomenon of temporal resolution
improvement with increasing presentations of moving stimuli is also observed in psy-
chophysical experiments done on humans [1]. There is no evidence as yet that shows
that the visual system of insects possesses cells that peak at different temporal fre-
quencies in response to moving stimuli, similar to the cells in the motion processing
area of cats and monkeys. This difference in the structure of the motion neural cir-
cuitry of vertebrates and invertebrates is probably due to the fact that the visual
system of the fly consists of only about 0.5 million neurons, as compared to 10"
neurons in the human cortex. Faced with such scarcity of neurons, the insect must
increase its time resolution by adapting the time constant of its motion system to
the incoming motion signal. Recordings from the H1 neuron (one of the wide-field,
direction-selective neurons in the lobula plate) show that the adaptation process al-
lows the visual system to respond reliably to moving stimuli over 4 decades of temporal
frequencies. The adaptation of the motion system to steady-state motion allows the
system to respond to relative changes in motion, rather than constant motion. Sim-
ilar adaptation phenomenon has been reported in photoreceptors and synapses (also
called short-term synaptic depression) [2]. By adapting out the background lighting,
the photoreceptor cell can respond to relative changes in intensity, or contrast over
seven decades of background intensity. Similarly by adapting out the presynaptic
firing rate, the post-synaptic cell can respond to relative changes in firing rate, rather
than the absolute firing rate.

The output of the fly’s motion system is typically modeled by the Hassenstein—

Reichardt detector (or the correlation model). The adaptive correlator described here
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is a variant of this model that includes adaptation of the time constant in the model.
This adaptive model is implemented in an aVLSI circuit. Both simulation and chip
results from this model are presented in this chapter. T compare the predictive results
from my model with experimental adaptation results obtained from the H1 neuron
by several research groups [3][4][5]. T also discuss the importance of the adaptation

process in increasing the time resolution of the motion system.

4.1 Anatomy

The anatomy and physiology of the large-field tangential neurons in the lobula com-
plex have been described extensively [6]]7][8][9][10][11]. There are about 50 neurons in
the lobula complex of Calliphora. Some of these neurons are shown in Figure 4.1. The
immense dendritic arborizations of these neurons suggest that they integrate from a
lot of presynaptic cells. The cells respond to motion in the preferred or null direc-
tion, either with graded responses, action potentials or both. The neurons respond
to motion in only four directions; progressive, regressive, upwards and downwards.
These neurons are involved in controlling the fly’s flight course [12][13]. The output
neurons either synapse onto neurons driving the neck and flight motor neurons, or
onto neurons driving the leg motor neurons [14].

Research into the behavioral responses of the fly and the study of the physiology
of the direction-selective cells have been actively pursued by researchers at the Max-

Planck Institute in Tuebingen [6][12][13][15][16][17][18][19][20].

4.2 Adaptation in the Fly’s Motion System

The H1 neuron is a wide-field, direction-selective cell in the lobula plate, which in-
tegrates information spatially from elementary motion detectors (EMDs) [21][22][23].
The neuron responds preferentially to movement from the back to the front on the
ipsilateral eye. The H1 neuron is a spiking neuron and it responds to stepwise dis-

placements by increasing its firing rate to a peak before the firing rate decays back



Figure 4.1: Tangential cells in the lobula plate of Calliphora. The figure shows the
immense arborization of the dendrites of these cells. A: anterior, P: posterior. Source:
From Hausen [7], Figure 3, pg. 55.

to a quiescent level. An example of the response of the neuron is shown in Figure
4.2. Using recordings on this neuron, several research groups [3][4][5][24] have shown
that the time constant of the motion circuitry in flies adapts in response to moving
stimuli.

In experiments performed by de Ruyter van Steveninck and associates [3], the H1
neuron in the blowfly Calliphora erythrocephala was first adapted to a moving square-
wave grating for about 3.2s. The movement of the grating was stopped after a few
seconds and a stepwise displacement in the grating was presented to the neuron after
0.2s. The firing rate of the neuron increases sharply before decaying exponentially to
its resting level. They measured the time constant of the decay of the firing rate for
different speeds of the adapting grating and observed that the time constant decreased

in response to an increase in speed of the adapting grating. These results indicate that
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Figure 4.2: Example of the response of H1 to a stepwise displacement of a stimulus
presented to the nmeuron in the preferred direction. Source: From de Ruyter van
Steveninck and colleagues [3], Figure 1, pg. 224.

the time constant of the motion system adapts to the speed of the moving stimuli.
The adaptation of the time constant is local, insensitive to contrast and the direction
of motion, as shown in Figure 4.3 and Figure 4.4.

In a separate experiment, Maddess and Laughlin [4] also showed that the H1
neuron in the fly Lucilia cuprina adapts in response to motion, but their results
indicate that the adaptation is dependent on contrast frequency, rather than on the
speed of the moving stimulus. In their experiment, they adapted the neuron by
moving a random grating for 6.7s after 16.7s of no motion. The H1 neuron responds
to the start of the movement by increasing its firing rate to a peak before the firing rate
adapts exponentially down to the background rate. The time constant of the decay
of the firing rate in the presence of steady motion was measured for various speeds of
the moving grating. Figure 4.5 shows the plot of the time constant of the adaptation
versus the velocity of the grating. Maddess and Laughlin inferred that the H1 neuron
responds to velocity contrast following Weber’s law, much like photoreceptors respond
to signal contrast rather than to background intensity. Laughlin [25] points out that

the purposes of the adaptation process are to prevent the H1 neuron from saturating,
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Figure 4.3: Experiments by de Ruyter van Steveninck and associates which show that
adaptation occurs independent of direction of motion. The H1 neuron is first adapted
to a constant speed (W) square-wave grating for several seconds. The grating was
stopped for 200ms before a sudden step in the grating was presented to the fly. The
figures in the first row show the response of the neuron to the grating moving in
the preferred direction at two different adapting speeds, 0.5° /s and 15°/s. The time
constant of the exponential decay of the neuron’s response to a stepwise displacement
of the grating is smaller in the case of the faster adapting speed, 15°/s. The figures
in the bottom row show that the change in time constant occurs even if the adapting
stimulus was moving in the null direction. Source: From de Ruyter van Steveninck
and colleagues [3], Figure 4, pg. 226.

and to maintain high sensitivity to deviations in velocity from the mean level. This
increase in sensitivity of H1 is seen in Maddess and Laughlin’s work where they first
adapted the H1 neuron to a moving stimulus at 58°/s for 6.7s after a stationary
phase of 8.3s. During the 6.7s phase, 16 equally spaced increments and decrements of
23.4°/s were added to the velocity of the stimulus. The results are shown in Figure
4.6.

A distinction should be made here between the time constants defined in the work
of de Ruyter van Steveninck and colleagues and that of Maddess and Laughlin. The
first time constant describes the decay of the cell’s response to a single test step and
the range is from 300ms to 10ms as shown in Figure 4.4. The second time constant

describes the speed with which the response to a maintained velocity decays. When
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Figure 4.4: Plot of the adapted time constant versus the velocity of the adapting
stimulus. The figure shows that the time constant of H1 adapts to the velocity, W,
of the moving stimulus and that the time constant, 7, adapts independent of the
contrast magnitude. The slope of the fit to the data is —0.7. A possible reason for
the slope being less than —1 is described in Section 4.6. Source: From de Ruyter van
Steveninck and colleagues [3], Figure 3, pg. 226.

the H1 neuron is stimulated by a pattern that starts moving at a maintained velocity,
its initial high response decays to a plateau in a few seconds. Figure 4.5 shows that
this time constant depends on the contrast frequency of the pattern. The decay in
the firing rate in the second case is probably partly due to the fact that the time
constant in Fig 4.4 is adapting to the new velocity. Thus, the second time constant
could be reflecting the speed with which the first time constant adapts to the new
conditions. In support of this view, in a direct measurement [3] on the neuron, the
speed of adaptation of the first time constant was found to be of the order of seconds.

Jian and Horridge [26] confirmed Maddess and Laughlin’s results that showed that
the response of the H1 neuron to a constant velocity contrast is fairly independent of
the adapting velocity. They also showed that the response of the H1 neuron increases

with velocity contrast independently of background velocity, contrast frequency or
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Figure 4.5: Adapted time constant versus contrast frequency. Source: From Maddess
and Laughlin [4], Figure 9, pg. 263.

velocity modulation frequency. Similar results that show that the adaptation depends
on contrast frequency rather than speed are borne out by the experiments of Borst
and Egelhaaf on the H1 and HSE neurons in the blowfly [5].

From the results of the research groups above, we know that the adaptation process
is spatially localized, is independent of contrast (for high-contrast stimuli), spatial
wavelength, and of direction of motion. The adaptation also occurs on a long time

scale of 6 to Ts.

4.3 Correlation Model

The responses of the H1 neuron can be modeled by the Hassenstein—Reichardt cor-
relator, as shown in Figure 4.7. The Hassentein-Reichardt correlator was initially
formulated to model the optomotor responses of the Chlorophanus beetle. Different
variants of the Reichardt correlator [27] have also been used to model human motion
detection. The blocks in the correlator have a fixed time constant, and hence do not

model the change in time constant observed in the adaptation experiments described
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Figure 4.6: Curves from Maddess and Laughlin showing that the H1 neuron is sen-
sitive to velocity contrast. The trial consists of 8.3s of stationary grating, then a
phase where the grating moved at 58°/s for 6.7s. In the 6.7s, 16 equally spaced (a)
increments and (b) decrements of 23.4°/s were added to the velocity of the grating.
Source: From Maddess and Laughlin [4], Figure 4, pg. 258.

in Section 4.2. In the correlator, the output of the lowpass filter is correlated with
the input signal when the latter signal reaches the neighboring pixel. We can see that
the correlation between the output of the left filter with the input at the neighboring
pixel is greater when the input signal moves from left to right than when the signal
moves from right to left. The outputs of the multipliers are time averaged before they
are subtracted, as shown at the bottom of Figure 4.7a, so that the dependence on the
flicker at the input is removed. In Figure 4.7b, another variation of the correlator is
shown where the input goes through 2 different filters, F, and Fy. We use this model
to compute the temporal-averaged response of the correlator. We assume that the
input signal is a sine wave, I + Alsin(wt + 6), where I is the mean intensity level,
6 is the spatial phase, and w is the temporal frequency. Let the spacing between the

pixels be a, and let A be the spatial wavelength of the input signal. The input to the
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Figure 4.7: Correlation models. (a) This model was originally formulated by Hassen-
stein and Reichardt to model direction selectivity in the motion system of the beetle.
The input at each pixel is delayed by a lowpass filter with a fixed time constant. The
output of the filter is correlated with the input signal when the latter signal reaches
the neighboring pixel. The outputs of the multipliers are time averaged before they
are subtracted so that the common-mode dependence on the input can be removed.
{(b) A generic model of the correlator where the input at each pixel goes through two
filters, F; and F9, with different time constants before the outputs of the filters are
muitiplied together.

neighboring detector, is then I + AT sin(wt + 6 4 252).
Let the transfer function of F; be L(w)e®) and that of Fy be H(w)e™«). The
outputs of the four filters are A,, As, B, and B, as shown in Figure 4.7b. These

outputs can be written as

A = L(0)] + L(w)AI sin(wt + 0 + 6;(w)),
Ay = H(0) + H(w)AT sin(wt + 0 + 6, (w)),
2
By = L(0)] + L(w)AT sin(wi + % 0+ 6 (w)),

2ra |
By = H(O)+H@)AT sin(wt + = +0(w) +6).
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Figure 4.8: Output of the Hassenstein—Reichardt correlator for various fixed time
constants. The family of curves shows that if the time constant of the filters in the
correlator is made adaptive, the system can respond over a larger range of input

frequencies.

The expected value of the correlated output, A; x By, is

E[ﬁ’ll * Bz]

E[L(0)H(0)I%] + E[H(0)L(w)IAT sin(wt + 6 + 6;(w))]

27a

+E[L(0)IH(w)AT sin{wt + %— + 0y (w) + 6)]

VE[H(W)L(W)AL sin(wt + 8 + 6,(w)) sin(wt + 9% +0,(0) + 0)]

27a

LOYH(0)I* + E[H(w) L(w) /2AT*(cos(8i{w) — h(w) — —/\~)

. 2ra
—cos(2wt + 20 + 6;(w) + Op(w) + TH

LO)H(0) + H ()L () AT cos(Bi(w) — n(w) — -Qi;ﬁ) /.

Similarly, the correlated output, A; * By, can be reduced to

27a

E[As * By] = L(0O)H(0)I” + H (w)L(w)AI* cos(65(w) — fi(w) — /2
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The final direction-selective output, R, which is 41 x By — Ao % By, is

27ma 27a

H(w)L(w) aly

R = ———AI*(cos(6)(w) — Op(w) — T) — cos(p(w) — O {w) —

F4

= H(w)L(w)AT? sin(?) sin(fp(w) — Oi(w)).

If the filters have the same time constant, 7, and the phase offset between the filters

is 90°, then
wT

H(M)L(u)) = m

We can write the time-averaged output of this correlator as

wT 2ra
1+ w2r?

R = AI*

The time constant of decay of the firing rate of the H1 neuron corresponds to the time
constant of the lowpass filter in Figure 4.7a. In Figure 4.8, we show a family of curves
corresponding to the output of the correlator over different temporal frequencies.
Each curve in the plot corresponds to a certain fixed time constant of the filters. If the
filters have an adaptive time constant, the family of curves illustrates the subsequent
response of the correlator. The plot shows that a correlator with an adaptive time
constant responds over a larger range of input frequencies, similar to the response of

the H1 neuron in the fly.

4.4 Adaptive Correlation Model

I describe a variant of the correlation model (shown in Figure 4.10b), that I called
the adaptive correlation model, where the time constant of the filters adapts to the
motion input. The circuitry for adapting the time constant of the filters is shown
in Figure 4.9a. The input first goes through both a lowpass and a highpass filter
with the same time constant or cutoff frequency. The gain curves of these filters are
shown in Figure 4.9b. The comparator in Figure 4.9a uses the difference in the peak

amplitudes of the output of the filters as an error signal in adapting the time constant
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Figure 4.9: Adaptive correlation model and the gain curves of the filters in the model.
(a) The input signal goes through both a lowpass filter and a highpass filter with the
same time constant. The comparator uses the difference between the peak amplitudes
of the outputs of the filters as an error signal in adapiing the time constant of the
filters. (b) The gain curves of highpass and lowpass filters with the same cutoff
frequency are shown in the plot. The magnitudes of the filter outputs are equal only
at the cutoff frequency. The difference between the outputs increases as the input
frequency deviates more from the cutoff frequency.

of the filters. From Figure 4.9b, we see that the error signal increases as the input
frequency deviates further away from the present cutoff frequency or time constant.
The comparator adapts the cutoff frequency of the filters until the cutoff frequency
approximates that of the input. Thus, the cutoff frequency codes the time scale of
the input. The adaptation process in this model is independent of the signal contrast
and of direction of motion, and is spatially localized to each pixel, as observed in the
experimental results from the H1 neuron [3][4].

One version of the Reichardt correlator circuit, (also called the minimal corre-
lation model), which includes a lowpass filter and a highpass filter with the same

time constant was proposed by Kirschfeld [28][29][30]. This configuration is shown in
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Figure 4.10: Adaptive correlation model.(a) Hassenstein-Reichardt correlator as mod-
ified by Kirschfeld. The filters consist of a lowpass filter and highpass filter with the
same time constant. (b) The adaptive correlation model, which consists of Kirschfeld’s
correlator with the inclusion of the peak amplitude comparator. The peak amplitude
comparator adapts the cutoff frequency of the filters so that the cutoff frequency
matches the motion frequency. Thus, the time constant of the filters codes for the
temporal resolution of the motion.

Figure 4.10a. The outputs of the filters have a 90° phase offset over all {requencies.
The constant phase offset between the outputs allows maximal overlap in the correla-
tion of the inputs, and hence extends the input range of the frequencies to which the
correlator responds. Our time-constant adaptation circuitry can be incorporated in
Kirschfeld’s correlation model to form the adaptive correlation model, which is shown

in Figure 4.10b.

4.5 aVLSI Model of the Adaptive Correlator

The adaptation circuitry in Figure 4.9 was implemented on an aVLSI circuit as shown

in Figure 4.11. The lowpass filter is a follower integrator; the highpass filter is a
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Figure 4.11: Circuitry for adaptation to the motion frequency. The input goes through
two filters. The peak amplitudes of the outputs of the filters, Vi, and Vj,;,, are obtained
from the outputs of the source followers. These outputs, Vi, and Vbhp, are compared
by the bump circuit. The bias voltage, V,, that controls the time constant of the
filters is charged or discharged depending on the difference between V4, and Vohp-

follower differentiator. The time constant of the filters, 7, is determined by the

capacitor, C' and by the bias voltage, V. The time constant, 7, is given by 5(—;— =

cur CUr
Wl T klgeFvr/Ur -

The output of each filter goes to a source follower operated as a
peak detector, which outputs the maximum value of the filter outputs. The peak
value is measured over a user-defined time constant determined by V;.

The outputs of all source followers are, in turn, connected to a bump circuit,
described previously by Delbriick [31]. The operation of the bump circuit is as follows.
The middle branch acts a current correlator between the two inputs. If the difference
between the two inputs is small, then most of the bias current, I, flows through this

branch. The current through this branch is

I
1+ 4 cosh® 28%7

I mid —

where AV = Vi, — Vipp and S is a geometric constant. If the input, Viip, is sig-
nificantly greater than Viy,p,, then most of I, flows through the left branch and V, is
charged up. On the other hand, V; is discharged when Vi, > Volp-

The adaptation works as follows. If the input temporal frequency is greater than
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the cutoft frequency (the inverse of 7) of the filters, then the output of the highpass
filter will be larger in amplitude than the output of the lowpass filter. Since Vi, >
Voip, V- is discharged, decreasing 7 or increasing the cutoff frequency. The discharge
of V, continues until the cutoff frequency is equal to the input frequency. Notice
that, when the cutoff frequency approaches the input frequency, the discharging slows
down because most of [ is diverted to the middle branch of the bump circuit. This
characteristic helps to ensure the stability of the circuit loop. Correspondingly, V; is
charged when the input frequency is less than the cutoff frequency of the filters. In

equilibrium, 7 is matched to the input frequency.

4.6 Adaptation of the Filter Time Constant

In this section, we analyze the time response of the filters’s time constant in the

small-signal case, from the adaptation circuitry in Figure 4.11.

4.6.1 Dynamics of Time-Constant Adaptation

The time constant of the filters, 7, is determined by €% = . Ioi}‘;}f 5= The rate of
n '

change of 7 can be determined by

gr ot oV,  k, OV,

ot ov. ot Up o1

The rate of change of V. depends on the charging current, I;,, and on the dis-
charging current, [, in the bump circuit according to the following equation:
oV,

Cw"'ét_ - ]1p - Ihp-

The rate of change of the time constant is then:

or Kn

ot~ C.Ur

7'([19 - Ihp)~

The currents in the bump circuit depend on the outputs of the lowpass and high-
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pass filters. We assume that the input signal is a sine wave of form, V + AV sin(wt).

The output of the lowpass filter, Vi, is V 4+ 2M ﬁ%ﬁ sin(wt); that of the highpass

filter is Vi, = V + 2M =25 sin{wt), where 2M is the p-p amplitude of the sine

wave. Let Iy — I, = I, — I, in the bump circuit. Then

Iy
L +1

Ib211+IQ+Q (41)

o Vi Y VYU (Vi —V -
Let I, = Iyt nVie=V)/Ur and I, = IyelsnVoe=V)/Ur and define —% = et (Vip=Vhp) = prnAV

Then, substituting into Equation 4.1,

T,etnAV/Ur

- Kn AV/U
I, = be T I+ 0{1 n ornAV]Ur

J‘in AV/UT

. R AV/U
- IQ(l”{"Pﬁ T+ —-—*——-——1_}“()MA»/[P)

e —Fn AV/UT

1 + e—#aAV/Ur )-

= I(14e™aV/Ur g

Solving for I} — I, and letting x = k, AV/Ur, we obtain

1+e™® 1+e”
(1+e=)2+ae® (14622 + e
(14+e)(1—e™)
"I+ e )2 + e ?
sinh(x, AV /Ur)
b(x/? + 2 cosh?(k, AV/(2U7p))’

11—12 = I( )

So the rate of change of the time constant is defined as follows:

} ot kady
ot CWUT

sinh(ka AV/Ur)
/2 + 2cosh®(k, AV/(2U7))

[ ]?

where AV is the difference between the peak amplitudes of both filters.

AV = Vi)hp - V,blp
1

= M
' (\F+u)272 V14 w?r?

);
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Figure 4.12: Adaptation of the time constant of system to a change in the motion
frequency. The curve with * shows the time constant adaptation to its final value.
The curve with o shows the impulse response of a lowpass filter with a fixed time
constant; the curve with + shows the impulse response of a lowpass filter with the
adapting time constant.

where 2M is the p—p amplitude of the input signal to the filters. For small z, sinh(z) ~
z,cosh(x) = 1. So,
or 2621, T(wr — 1)

T M ; 4.2
o= ardCl o &3]

The updating rate for 7 is then ¢y = ﬁ%. Equation 4.2 also shows that when

wT =1, 7 is in equilibrium and the time constant of the system is the inverse of the
input frequency. Figure 4.12 shows a plot of the time constant of the filters adapting
with time as described by Equation 4.2. The figure also shows the impulse response
of a lowpass filter with both a fixed time constant and an adapting time constant.

If the input is a superposition of two input frequencies, w; and ws, then the

difference in the inputs to the bump circuit is

LleT‘—l (,(JQT—].

AV = BT = - .
\/1 + wir? \/1 + wiT?
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The updating ends when AV = (0; that is,

(it = 1) (/1 + wi3T?) + (wor — 1)(y1 + wir?) = 0.

Solving for 7, we see that the new time constant is the inverse of the geometric mean

of the two frequencies:

T = 1/(&)’10&)2).

4.6.2 Steady-state Response

The response of the Hassenstein—Reichardt correlator as shown in Section 4.3 is

R = AI 1+w2725m( S ).

In the adapted steady-state case, R = AI*sin(%%)/2. The direction-selective output
thus conveys no information about the temporal frequency. However, the data from
Maddess and Laughlin [4] show that the steady-state response of the H1 neuron
changes as a function of temporal frequency as shown in Figure 4.13a. The data from
their work also indicate that the time constant of the system decays with time to
a quiescent time constant when no input is present to the system. The adaptation
circuitry in Figure 4.11 does not provide for a quiescent time constant.

There is an important reason for not adapting 7 to be the inverse of the temporal
frequency. Figure 4.8 shows that the response of the correlator is maximal at wr = 1.
Hence, the adapted response of the correlator sits at the peak of the curve and does
not sit on the high gain portion of the curve. The adapted response should be on
either side of the peak so that the correlator will be highly sensitive to any changes
in the temporal frequency. In Section 4.7, T show that how the circuit in Figure
4.11 can be modified so that the output of the correlator sits on the high-gain part
of the curve, as shown in Figure 4.14. The sensitivity of the correlator output is

increased, because any change in the mation frequency leads to a greater change
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Figure 4.13: Comparison of the steady-state adapted responses of the H1 neuron and
of the model for different adapting velocities. (a) Steady-state adapted response of
the H1 neuron for different adapting velocities as measured by Maddess and Laughlin.
Source: From Maddess and Laughlin [4], Figure 7, pg. 261. (b) Steady-state adapted
response as computed from the modified adaptation dynamics described by Equation

4.6.

in the correlator output. The fact that the adapted time constant is not the exact
inverse of the temporal frequency would explain why the slope of the fit in Figure 4.4

and Figure 4.5 is less than -1.

4.7 Dynamics of Time-Constant Adaptation with
Quiescent Time Constant

The circuit shown in Figure 4.11 can be modified so that the system has a quiescent
time constant. The new circuit is shown in Figure 4.15. The quiescent time constant
is set by the voltage, V;, in the bump circuit. The dynamics of this new system is

ey

described in the remainder of this section.



=1/w

Log normalized response

Log input frequency
Figure 4.14: Plot shows that the adapted output of the Hassenstein-Reichardt cor-

relator should sit on the high gain portion of the curve. The constant, k, describes
the location of each steady-state adaptation relative to 7 = 1/w.

4.7.1 Rate Change of Time-constant Adaptation

The new rate of change of time constant is defined as

or wr — 1 .
o = T s (e = V0)), (4.3)

where gy, is the transconductance of the follower and V is the voltage that determines

the quiescent time constant. If we equate the left side of Equation 4.3 to zero, we get

wr — 1

N + gmVe = g V7. (4.4)
Substituting V, = —[-ff— ln(%%) into Equation 4.4, we have

wr — 1 IJT1 (C'UT)
\/W gm G—Q‘m fi[()"/- .
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FILTER SOURCE FOLLOWER BUMP CIRCUIT

Figure 4.15: Circuit modified from the one shown in Figure 4.11 so that it has a
quiescent time constant. The quiescent time constant is set by the voltage, V,, in the
bump circuit.

Let = ¢, Ve, § = gm-[-’:‘l Then,

wr — 1 . CUrp

).

We rearrange the terms to solve for w, and let X = (8In(£x) — a)?:

wlogr
g L. CUrp, .
(wr =1 = (14+w??)(BIn( &IO:) —a)? (4.5)
= 1+ )X,
From Equation 4.5, we get w = ﬁﬂlf_z;xg The implicit expression for the adapted
time constant is 7 = }—@ Solving for R in steady state, we have
9  WT . 2ma e
R = AI T sin( A ) (4.6)
AP(1-X 2ra
- 2 5 ) sin =)
AT? CUry 2
= Sl (BIn() — 0)?) sin(=).

Figure 4.13 shows a comparison between the steady-state response of H1 as measured
by Maddess and Laughlin and the steady-state response of the correlator as defined

by Equation 4.6.
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Figure 4.16: Plots showing the recovery of the filters’s time constant back to the
quiescent time constant. (a) Recovery of the system from motion with a high temporal
frequency. (b) Recovery of the system from motion with a high temporal frequency.

4.7.2 Recovery Time

When the stimulus stops moving, the time constant of the system adapts down to

the quiescent value with dynamics controlled by:

or
—_— = T Ve — Vo).
)

V. defines the quiescent time constant, 7y, as follows:

U
Vo = ~Lln(e/mp),
Y
where ¢ = é%?; Similarly, V. defines the time constant, 7(¢), as follows:
.U ,
V, = ?Tln(c/T(t)). (4.7)
Integrating Equation 4.7, we have

%:_ = —y7{gnUr/c(n(c/m) — In(c/7(t)))

= —K7(n(c/m) — In(c/7(t)))
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Figure 4.17: Simulated step response of correlator to a moving sine wave grating with
a fixed time constant and an adapting time constant.

= —Kr(In(r(t)/m0)),

where K = g, Ur/k.

The dynamics of the recovery of the system when the input stimulus at different
temporal frequencies stops moving is shown in Figure 4.16. Figure 4.16a shows the
recovery of the system from a stimulus moving a high temporal frequency and Fig-
ure 4.16b shows the recovery of the system from a stimulus moving a low temporal

frequency.

4.8 Step Response of Correlator to a Sine-Wave
Input

We look at the step response of the correlator to a sine-wave input when the input is
initially stationary from —oo to 0. The input then is displaced stepwise. The analysis
is similar to that described by de Ruyter and colleagues [3]. Let the signal at the first
receptor be 7 = ATsin(¢) at ¢ < 0, and 27 = Alsin(¢ —n) at t > 0. The signal

at the second receptor is shifted by a spatial phase of #,. Hence, the input here is
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y; = Alsin(¢ +6,) at t < 0, and is y = Alsin(¢ + 6, —n) at t > 0. The step

—t/T

response of the lowpass filter is 1 —e™"/" while the step response of the highpass filter

is e7/7. We ignore the mean luminance, I, since the terms involving I will go to 0
when we compute R. Using the correlator intermediate terms defined in Figure 4.7,

the output of the lowpass filter, Fy, of the first receptor for ¢t > 0 is
A = a4+ (zf —2D)(1 — e,
Similarly, the output of the highpass filter, Fy, of the first receptor for ¢ > 0 is
Ay = a7 + (af —z7)e V7.
Corresponding filter outputs of the second receptor are,

By = yi + (i —y)(1—e)

By = yi +(yf —yr)e "
The correlated output, R, is

R = BQXAI-BIXAQ

= (2527 —atfay)(2e77 — 1)

9
— AI%sin = Az

sinn(2e M7 — 1),

The response of the correlator with a fixed time constant and an adapting time

constant to a sine-wave grating that starts and stops moving is shown in Figure 4.17.
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Figure 4.18: Adaptation of the cutoff frequency of the filters to a sine wave with a
p—p amplitude of 100mV. The frequency of the sine wave was varied over 4 decades,

and the cutoff frequency of the filters was measured after the time constant of the
system has adapted to the new input frequency.

4.9 Results from the aVLSI Model of the Adapta-
tion Circuitry

In this section, we show results from a silicon implementation of the adaptation
circuitry using analog subthreshold circuits. The VLSI circuitry is shown in Figure
4.11. We have not yet implemented the modified circuit with a quiescent time constant
as shown in Figure 4.15. The input to the adaptation circuitry consists of a sine wave
with a p-p amplitude of 100mV. The frequency of the sine wave was varied over
four decades, and the cutoff frequency of the filters was measured after the system
had adapted to the new input frequency. These data are shown in Figure 4.18; they
demonstrate that the adaptive model adapts the cutoff frequency of the filters linearly
to the input temporal frequency for over 4 decades of frequency.

The p—p outputs of the lowpass and highpass filters were measured at each adapt-
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Figure 4.19: Normalized p-p outputs of lowpass and highpass filters over 4 decades
of frequency. The p-p outputs were normalized with respect to the p—p amplitude
of the input. The data deviate around 10 kHz, because the cutoff frequency of the
readout circuits through which the outputs travel, starts to affect the data.

ing frequency, and normalized with respect to the p—p amplitude of the input. The
normalized data are shown in Figure 4.19. The time constant, 7, of the filters can
be described by 7 = C/G, where G is the conductance and C is the capacitance of
each filter. Because I miscalculated the capacitor sizes on one of the filters, the time
constant of the filters is not at the input frequency, and the output amplitudes of
the two filters are different, as shown in Figure 4.19. The data also show that the
output amplitudes of the two filters do not vary substantially over the range of input
frequencies used, indicating that the system is adapting the time constant of the fil-
ters. The data start deviating around 10 kHz, because the outputs of the filters go
through readout circuits on the chip before they are measured offchip, and the cutoff

frequency of the readout circuits starts to affect the output data.
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Figure 4.20: Adaptation of the cutoff frequency of the filters to various input frequen-

cies of a sine wave that drives a red LED light incident on the chip. The contrast
from the LED is about 0.3.

4.9.1 Adaptation Data after Filtering through the Photore-

ceptor

We next illuminated the chip with a red LED light that was driven by a sine wave. The
contrast from the LED was about 0.3 as measured by a photometer. A photoreceptor
circuit on chip transduced the light from the LED and passed the signal to the
adaptive correlator. The photoreceptor circuit acts like a lowpass temporal filter.
The frequency of the sine wave driving the LED was varied, and the cutoff frequency
of the filters was then measured after the circuit had adapted to each input frequency.
The data in Figure 4.20 show that the cutoff frequency of the filters adapts linearly
to the input temporal frequency from the LED for about 2 decades. This range of 1

Hz to 100 Hz is within the range of natural moving objects.

4.9.2 Adaptation Dynamics of Adaptive Correlator
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Figure 4.21: Curves showing adaptation of the cutoff frequency of the filters to a 58
percent step increase from a 20Hz sine wave, and to a 58 percent step decrease to a
20Hz sine wave that drives a red LED light incident on the chip.

In the next set of experiments, the incident light on the chip was again from the
red LED, which was driven by a 0.35V p-p 20Hz sine wave riding on top of a 0.8V
DC voltage. The contrast from the LED was 0.3. We first adapted the system to
an input frequency of 20Hz, before a step increase of 58 percent in the frequency
occurred. We measured the change in cutoff frequency of the filters in response to
the new frequency. Figure 4.21 shows the cutoff frequency of the filters as it adapts
monotonically to the new input frequency. After the system had adapted to this new
frequency, a step decrease of 58 percent back down to 20Hz occurred, and we again
measured the cutoff frequency of the filters. The adaptation of the cutoff frequency
to the 20Hz sine wave is again shown in Figure 4.21.

We then used a 20Hz square wave, instead of a sine wave, to drive the red LED,
so that we could see the response of the adaptation circuitry to a superposition of
sine waves, rather than to only a pure sine wave. Figure 4.22 shows the adaptation
of the cutoff frequency of the filters to a step increase of 58 percent in the frequency

of a 20Hz square wave, as compared to the adaptation of the cutoff frequency to a
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Figure 4.22: Curves showing the adaptation of the cutoff frequency to a step increase
of 58 percent in the input frequency of a 20Hz square wave (top curve), and of a 20Hz
sine wave driving a red LED incident on the chip (bottom curve).

20Hz sine wave driving the LED. The cutoff frequency adapts to a higher value in
the case of the square wave, because the square wave contains higher harmonics of

the fundamental frequency of 20Hz.

4.10 Comparisons with other Models

De Ruyter van Steveninck and colleagues in their paper proposed that the adapted re-
sponses of the H1 neuron can be predicted by the Reichardt’s correlator with adapting
lowpass filters. Clifford and Langley [32] have also proposed a model of the temporal
adaptation of H1, where the locally integrated response of a one-dimensional array of
EMDs is fed back to adapt the time constants of the filters. Their model, which is
a form of a leaky predictor, is able to predict many of the adaptation experimental
results of Maddess and Laughlin [4], and of Jian and Horridge [26]. My model differs

from their model in that the signal used in adapting the time constants of the filter
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is obtained from the filters before the correlation. Hence, local spatial integration

before the global integration of H1 from the EMDs is not required.
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Chapter 5 Analog Model of Direction
Selectivity

Most analog motion circuits use robust features extracted through thresholding or
zero-crossings. The input signals are either binary or discretized in time. In cases
where a threshold is set, only high-contrast signals are detected as robust features
because the low-contrast signals are at the same level as the noise in the circuit.
However, from the optomotor experiments in flies, we know that the fly is able to
compute motion from a minimum contrast of 0.005. In this chapter, I propose a novel
analog method of computing local direction selectivity from continuous, graded inputs
through temporal averaging and mutual inhibition. The motion circuit does not
extract discretized signals, but rather does a continuous-time computation from the
graded input signals. It integrates the input information over time before making
a decision on the direction of motion of the stimulus. The latency for low-contrast
signals is longer than that for high-contrast signals, since the circuit takes a longer
time to integrate the information from the low-contrast signal. The model implements
most of the components of the traditional Reichardt model including the temporal
averaging block. Previous circuit models have not implemented temporal averaging
with continuous signals. The mutual inhibition block also models the inhibition seen
in the direction-selective cells in the lobula plate. This analog circuit model shows
that local direction selectivity can be computed through correlation of continuous-

time signals.

5.1 Direction-Selective Models

The Hassenstein—Reichardt model [1] describes the properties of the direction-selective

cells in the fly. This model has been modified by Santen and Sperling to handle di-
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rection selectivity in the human visual system [2][3]. Specifically, the researchers
included spatial filters in front of the Reichardt model. These filters correspond to
prefiltering executed in the areas preceding the motion processing layers. Santen
and Sperling also showed that the correlator model and the spatiotemporal energy
model are equivalent even though the subblocks of the models look different. The
Santen—Sperling-Reichardt model also applies to the fly visual system, where the
filters represent the spatial and temporal filters in the retina, lamina, and medulla.
The importance of the spatiotemporal filtering in the vertebrate retina before mo-
tion computation has also been expounded by Beaudot [4] and by Boahen [5]. The

spatiotemporal filtering models in flies were discussed in Chapter 3.

5.2 History of Motion Chips

Motion algorithms have been traditionally implemented on serial computers with
CCD cameras as the front end. As a result, the algorithms are constrained by the
processing speed of the computers themselves and by the frame rate of CCD cameras.
Initially, the bottleneck was the speed of the computers, but as speeds of microproces-
sors and DSP chips increased, the bottleneck eventually shifted to the frame rate of
the CCDs. These systems are cumbersome because of the sizes of the camera and of
the computer. In the past decade, researchers have shifted their interest to combining
the sensor and the motion circuitry on the same chip or on a set of chips. The motion
algorithms are implemented in the analog, digital, or hybrid domains for parallelism
and speed. The sensors are also replaced by continuous-time CMOS sensors. The set
of chips can then be used as the front end to surveillance cameras or to autonomous
navigating platforms. In the neuromorphic world, the outputs of these chips can be
used for saccadic and smooth pursuit systems, and for active vision.

In the domain of neuromorphic-inspired motion chips, the circuits either use
intensity-based input or features obtained from zero-crossings or thresholding. The
motion algorithms implemented are based on one of the following: the gradient

method [8], the correlation method [9][10][11][12]][13][14][15][16][17], the energy method
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Figure 5.1: Tree diagram of the various motion schemes implemented in silicon.

(18], and the Barlow-Levick’s model [19][20] which describes direction selectivity in the
rabbit’s retina. Figure 5.1 shows a tree diagram of the different implemented versions.
These tree diagram does not list other motion systems that use CCD/CMOS hybrids
or systems that implement frame correlation with CMOS sensors [21]. Comparisons
of the different systems have been explicated by Sarpeshkar and colleagues [13] and
also by Etienne-Cummings [16]. Some of these implementations provide direction
selectivity information only; others provide both speed and direction-selectivity out-
puts. The factors that decide the implementation of a motion algorithm are based
on the visual input, the sensor, the computing substrate, and also the number of
transistors. Frequently, since the sensor is combined with the motion circuitry within
the same pixel, the pixel spacing grows disproportionately with the sensor area. The
increase in the pixel dead area compromises the subsequent motion process. These
compromises are outlined in Chapter 2. Hence, a more efficient motion algorithm
might be compromised by the extra number of transistors needed to implement the
function. The address-event protocol designed by Mahowald [22], improvements of
this protocol by Lazzaro and colleagues [23] and by Boahen [5], and versions of a
interchip communication protocol [24][25] make viable a layered system, where the

receptors reside on a chip that communicates to separate chips that compute motion.
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Figure 5.2: Block diagram of new motion model for direction selectivity. The non-
linearity in this circuit model is represented by an exponential. The summation and
exponential blocks are equivalent to a multiplication in the circuit domain.

5.3 Correlation Model of Direction-Selective Cir-
cuit

The analog circuit model for direction selectivity is shown in Figure 5.2. The inputs
go through a temporal filter that represents the filtering in the retina and laminar
layer. The signals are then delayed by a lowpass filter. The nonlinearity in this
model is represented by an exponential, instead of by a multiplier as in the traditional
Reichardt’s model. However, the summation and exponential blocks are equivalent to
a multiplication in the circuit model. The correlated signals are averaged over time.
The temporally averaged signals mutually inhibit each other. This inhibition is also
observed in the direction-selective cells.

The adaptive correlator model in Chapter 4 can be included into this model, so
that the motion system will be sensitive to changes in input frequency. The circuit

implementation of the combined model has not been completed, so it will not be
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discussed in this dissertation.

5.3.1 Transfer Function

Similar to the analysis in Chapter 4, we compute the transfer function of the direction-
selective circuit. Let the complex transfer function of the lowpass filters be L{w)e ),
and let the spatial phase between the two pixels be ¢. We assume the input to be a
sine wave of form I + ATsin(wt). The outputs of the filters, 4, and A4,, (shown in

Figure 5.2), can be written as

A = LO) + L(w)AT sin{wt — 6(w)),
Ay = L(0)] + L(w)AI sin(wt + ¢ — 8(w)).

We ignore the DC intensity, I, in the remainder of the analysis. The outputs, A4;
and As, are then summed into exponential blocks. The outputs, F;, and Es, of these

blocks can be written as

E, = L)AL (sin(wt—0(w))+sin(wi+e))

B, = eL@AIGnwttsin(uité=0@w)),

The outputs, 71 and Ts, of the temporal-averaging blocks can be written as

m’f’
T, = / Bydt,
J0

T
T, = / Esdl,
0

where T is the period of the sine wave. There is no closed-form solution for T} and T5.
In Figure 5.3, T1 and T5 are plotted versus ¢, for a fixed time constant of the lowpass
filter, 7 = 2s. Here, I assume the input is moving at a constant velocity and the input
is composed of different spatial wavelengths. The outputs, T; and Ty, is computed for
spatial phases between 0 and 7. An increasing spatial phase between the receptors is

equivalent to a decreasing wavelength of the input. The top curve corresponds to 7Th;
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Figure 5.3: Plot of the temporal averaged outputs, 77 and T3, versus the spatial phase
between the receptors, ¢. An increasing spatial phase corresponds to a decreasing
wavelength. We analyze the case where the velocity of the input is fixed and the
input is composed of different spatial wavelengths. The top curve corresponds to Tp;
the bottom curve corresponds to Ti. Here, To > T for all spatial phases between 0
and 7.

the bottom curve corresponds to T;. The figure shows that T, > T}, thus showing
that the correct direction is computed for these spatial phases. When ¢ = 0, as in the
case of flicker, the outputs, 71 and T3, are equal. Hence, the mutual inhibition block
will signal no motion. In Figure 5.4, T1 and 75 are plotted versus ¢, for two different
values of f(w). Here, I assume that different spatial wavelength inputs are moving
at different velocities such that the temporal frequency, w, is constant. When ¢ = 0,
as in the case of flicker, the outputs, 77 and 75, are equal as in the previous figure.
If the spatial phase, ¢, is positive, the correct direction is always signaled because
T: (the solid curve)> T, (the dashed curve). The preferred direction is indicated by
the horizontal arrow at the bottom of the plots. Notice that the maximum difference

between 77 and T; is when ¢ = §. The second plot shows the outputs, 7 and Ts, for
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Figure 5.4: Plot of the temporal averaged outputs, 7} and T3, versus the phase
between the receptors, ¢, for two different values of delay through the lowpass filter, 6.
The top curve corresponds to a value of § = 1 rad and the bottom curve corresponds
to a value of 8 = 2 rad. The curves to the right of the vertical line show that if
the stimulus is moving in the preferred direction, T} > T, for all values of ¢. The
maximum difference is obtained when the temporal phase between the receptors is
equal to the delay through the lowpass filter, that is, ¢ = 6. In the case of flicker,
that is, when ¢ =0, T} = Ts.

a different 6. Again, the maximum difference between the outputs is when ¢ = 6. By
passing 71 and T» to a mutual inhibition block, we get the direction of the moving

stimulus.

5.3.2 Circuit Implementation

Figure 5.5 shows the circuit for the direction-selective model. The output of the
retino-laminar circuit, Vi, is buffered through a source follower. The buffered output,

Vb, drives a lowpass filter. Both these outputs, V;, and V4, are represented as currents,
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Mhp
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Figure 5.5: Motion circuit that implements the direction-selective model shown in
Figure 5.2. The output of the retino-laminar circuit, V|, (described in Chapter 3)
is buffered through a source follower consisting of Q3 and Q4. The source follower
was also used to generate the bias to the feedback element, ¢, in the retino-laminar
circuit. The buffered output, V4, drives a lowpass filter. The filtered output, Vi,
and V4, are brought out as currents, I, and In,. Note that the current, Ip, is not a
highpass output of V4. The current outputs are correlated and fed to a WTA circuit.
Temporal averaging is implemented as part of the WTA circuit.

Iy and Iy,. The currents are correlated and then fed to a winner-take-all (WTA) [26]
circuit. The correlated currents represent the output of the exponential stage in
Figure 5.2. The temporal averaging at nodes V; and V5, and mutual inhibition are
both part of the WTA circuit. The transfer function of the WTA circuit is described

in Appendix 7.1.
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Time Constant of Lowpass Filter

The lowpass filter in Figure 5.5 does not have a fixed time constant. The current
charging up the output capacitor depends on the value of V},. The transfer function is
derived from the KCL equations at nodes v, and v, in the small-signal model shown
in Figure 5.6:

Ym3Ve + Ciip + gmavy = 0, (5.1)

Gm1Y; + Gmaly = 0. (52)

From Equation 5.2, we get v, = %vé. Taking the Laplace transform of Equation

5.1, we get
Gm3Uy + 1)((80; + gm2) =0. (53)

Plugging in v, = %”’“—jvi into Equation 5.3, we solve for v;:
T

sC
st ngvl = gmlvi. (5.4)

9m3 Gm2

vy =
From Equation 5.4, we solve for v;:

1.

s Im19m3 - 1 2
9m2(sC + gua) 1478 "

v =

where 7 = EQZZ and all values of g,, are equal. Since g,,4 is exponentially dependent
on the gate voltage, input signals at different background intensities and different

contrasts will have different time constants.

5.4 Experimental Results

The experimental results reported here are obtained from a test circuit fabricated in a
2pm CMOS ORBIT technology. Since the time constant of the lowpass filter changes
exponentially with the output of the retino-laminar circuit, results are shown only

at one background intensity. Most of the data shown are taken at the inputs to the
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Figure 5.6: Plot of lowpass filter and small-signal model. (a) Circuit diagram of
lowpass filter whose time constant depends on the input signal. (b) Small-signal
model of the filter.

correlation circuitry and the WTA output. Sine-wave stimuli are used in most of the
experiments. The results will show that the circuit integrates information over time
before making a decision. The latency between the onset of a direction change in the

stimulus and the decision made by the circuit is also obvious.

5.4.1 Qutput of Lowpass Filter

Depending on the value of 14, the time constant of the lowpass filter can be also
be adjusted via the external bias, V;. Figure 5.7 shows the step response of I, to a
square-wave modulated red LED of contrast 0.4 for three values of V. The current
output has been converted to a voltage through a sense-amplifier. The rise times for
the three curves are 0.78ms, 1.5ms, and 3.4ms, corresponding to values of V; of 0.215V,
0.236V, and 0.263V. The time constants are then 0.356ms, 0.68ms, and 1.54ms. Since
the time constant is inversely dependent on the g, of the transistors, 7 = C/g,,, we

can compute k of Q4 from the ratios of the time constants. The transconductance,
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Figure 5.7: Step response of the lowpass filter for three different values of V.

Gm, 18 kIoe"+/UT The ratio of two time constants, 1y and 7, is given by
I e (Va1 —Ve2)/Ur
T2

From the first set of time constants, 0.356ms and 0.68ms, we find that x = 0.8; from
the second set, 0.68ms and 1.54ms, we get x = 0.78. We can also see that the fall time
of the step response is smaller than the rise time because the value of V;, is higher at
the high-to-low going edge.

Figure 5.8 shows the step responses of V4, and I, to a stimulus of contrast 0.4 at
two background intensities. The lighter-colored curves are the responses at the lower
background intensity. The current output is smaller and the time constant is larger
in the case of the low background intensity. The plot illustrates the large difference
in time constants of the outputs with only 70mV difference between the two values of
V4. We can also see that the fall time of Iy, is smaller than the rise time. The time
constant also changes for different contrast signals at the same background intensity
as shown in Figure 5.9. The two different input contrasts are 0.4 and 0.54. The

difference in the time constant is again due to the different values of V4.
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Figure 5.8: Step responses of V;, and I, to a stimulus of contrast 0.4 at two back-
ground intensities. The darker-colored curves are the responses to the stimulus at
the higher background intensity. The current output is higher than that at the lower
background intensity because of the higher value of V4.

5.4.2 Response of Direction-Selective Output

I recorded the response of the direction-selective output to motion by displaying a
moving sine-wave stimulus (actually a rotating wheel with spokes of alternating gray
levels) to the chip. The range of temporal frequencies of the stimulus varies from 1Hz
to about 22Hz. In Figure 5.10, I show the responses of V4, and the direction-selective
output to a slow moving stimulus at a frequency of 2.3Hz. The stimulus changes
direction and its input frequency increases to 2.7Hz in the middle of the plot. This
figure shows that the circuit responds to direction changes independent of the speed
of the stimulus. Notice the latency between the onset of the direction change in the
stimulus and the change in the direction-selective output. This latency indicates that
the circuit is averaging the input information over time.

The same data were obtained for a stimulus that initially moved at 9Hz and
switched to 10Hz in the middle of Figure 5.11. Thus, the circuit still responds correctly
to a faster moving stimulus. The circuit can respond to the moving stimulus up to

frequencies of more than 22Hz. Unfortunately, it was difficult to drive the motor
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Figure 5.9: Step responses of V4, and I, to a stimulus of contrast 0.4 and 0.54 at the
same background intensity. The time constants of the current output are different in
both cases because of the different values of V4.

holding the stimulus at frequencies greater than 22Hz. The contrast of the stimulus
in Figure 5.10 and Figure 5.11 is 0.82. Figure 5.12 shows the data of the same
experiment for a stimulus of lower contrast at 0.58.

The direction-selective output is also invariant with the stimulus speed as shown
in Figure 5.13 and Figure 5.14. The stimulus was slowed down in Figure 5.13 and
speeded up in Figure 5.14.  Figure 5.15 shows the responses of V;, and the direction-
selective output to my hand moving back and forth over the chip. The sharp peaks
in the V4, output corresponds to the edges of my hand. The circuit computes the

direction of motion correctly.

5.4.3 Dependence of Direction-Selective Output on Contrast

The data from the experiments described in Section 5.4.1 and Section 5.4.2 are ob-
tained with a fixed set of biases. In this case, the chip stops responding when the
contrast of the stimulus on the wheel goes below 0.58. This behavior does not mean
that the circuit cannot respond to a lower contrast. By setting V; to a lower value,

the circuit responds down to a contrast of 0.3, but then the high-contrast signals
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Figure 5.10: Responses of V;, and the direction-selective output to direction changes
of the stimulus. The speed of the stimulus increases from 2.3Hz to 2.7Hz in the middle
of the figure.

are a problem because the time constant is too fast for a reliable correlated output.
To illustrate that the chip works with low-contrast signals, the moving stimulus was
shown under fluorescent lighting. The responses are shown in Figure 5.16. The p-p
output of V4 is only about 60mV, as compared to the p-p values of V;, in Section 5.4.2
which range from 0.2 to 0.3V. The p—p output of 60mV corresponds to a stimulus of
contrast of 0.118.

The laiency of the direction-selective output for low-contrast signals is longer than
that of high-contrast signals, because the time constant of the filter is shorter for high
contrast signals as shown in Figure 5.9. Figure 5.17 shows the latency of the direction-
selective responses to two different contrast stimulus. The top set of curves show the
responses to the stimulus of contrast 0.82, while the bottom set of curves show the
responses to the stimulus of contrast 0.58. The latency of the direction-selective

output is shorter for the higher-contrast stimulus.
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Figure 5.11: Responses of Vj, and the direction-selective output to direction changes
of the stimulus. The speed of the stimulus increases from 9Hz to 10Hz in the middle
of the figure.

5.5 Discussion

The motion circuit described in this chapter shows that direction selectivity can be
computed from continuous-time graded signals of low contrast. The robustness of
the output signal is increased through the use of temporal averaging and mutual
inhibition. Inhibition has been observed in the direction-selective cells in the lobula
plate. The time constant of this circuit is exponentially dependent on the background
intensity. This property makes it difficult to operate the circuit over decades of

background intensity and will be removed in a subsequent implementation.
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Figure 5.12: Responses of V4, and the direction-selective output to direction changes
of the stimulus at a contrast of 0.58. The speed of the stimulus increases from 9Hz
to 10Hz in the middle of the figure.
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Figure 5.13: Responses of V4, and the direction-selective output to the slowing down

of the stimulus. The data show that the direction-selective output depends on only
the direction change of the stimulus, and not on the decreasing speed of the stimulus.
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Figure 5.14: Responses of V;, and the direction-selective output to the speeding up of
the stimulus. The figure shows that the direction-selective output depends on only
the direction change of the stimulus, and not on the increasing speed of the stimulus.
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Figure 5.15: Responses of V4, and the direction-selective output to my hand moving
back and forth over the chip.
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Figure 5.16: Responses of V}, and the direction-selective output to a change in direc-
tion of the stimulus under fluorescent lighting.
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Figure 5.17: Responses of V}, and the direction-selective output for two different
contrast signals to a sine-wave stimulus moving at 1Hz. The top set of curves are
the responses to a stimulus of 0.82; the bottom set of curves are the responses to
a stimulus of 0.58. The latency for the response of the circuit is shorter for the
higher-contrast stimulus.



128

Bibliography

1]

W. Reichardt, “Autocorrelation: A principle for the evaluation sensory informa-
tion by the central nervous system,” in Sensory Communication, W. A. Rosen-

blith, ed, Wiley, New York, pp. 303-317, 1961.

J. P. H. van Santen and G. Sperling, “Temporal covariance model of human

motion perception,” J. Opt. Soc. America A, 1:4, pp. 451-473, 1984.

J. P. H. van Santen and G. Sperling, “Elaborated Reichardt detectors,” .J. Opt.
Soc. America A, 2:2, pp. 300-320, 1985.

W. A. Beaudot, “Sensory coding in the vertebrate retina — towards an adaptive
control of visual sensitivity,” Network Computation in Neural Systems, T, pp.

317-323, 1996.

K. Boahen, “Retinomorphic vision systems: reverse engineering the vertebrate

retina,” PhD Thesis, California Institute of Technology, Pasadena, CA, 1997.

E. Adelson and J. Bergen, “Spatiotemporal energy models for the perception of

motion,” J. Opt. Soc. America A, 2:2, pp. 284-299, 1985.

A. B. Watson and A. J. Ahumada, Jr, “Model of human visual-motion sensing,”

J. Opt. Soc. America A, 2:2, pp. 322-341, 1985.

J. Tanner and C. Mead, “An integrated optical motion sensor,” in VLSI Signal
Processing 1T, S. Y. Kung, R. Owen, and J. Nash, eds, IEEE Press, New York,
pp. 59-76, 1986.

A. Andreou and K. Strohbehn, “Analog VLSI implementation of Hassenstein—
Reichardt—Poggio models for vision computation,” Proc. IEEE Symp. Syst., Man
Cybern, pp. 707-710, 1990.



[10]

[15]

[16]

18]

129
K. Strohbehn, R. C. Meitzler, A. G. Andreou, and R. E. Jenkins, “Analog image
processing with silicon retinas,” Johns Hopkins APL Technical Digest, 15:3, pp.
178187, 1994.

R. Sarpeshkar, W. Bair, and C. Koch, “An analog VLSI chip for local velocity
estimation based on Reichardt’s motion algorithm,” in Advances in Neural In-
Jormation Processing Systems 5, S. Hanson, J. Cowan, and L. Giles, eds, Morgan

Kaufmann, San Mateo, CA, pp. 781-788, 1993.

J. Kramer, R. Sarpeshkar, and C. Koch, “An analog VLSI velocity sensor,” Proc.
Int. Symp. Circuits Syst. ISCAS 95, pp. 413-416, Seattle, WA, 1995.

R. Sarpeshkar, J. Kramer, G. Indiveri, and C. Koch, “Analog VLSI architec-
tures for motion processing - from fundamental limits to system applications,”

Proceedings of the IEEE, 84:7, pp. 969-987, 1996.

J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-based analog VLSI velocity

sensors,” IEEE Transactions on Circuilts and Systems II | 44:2, pp. 86-101,
1997.

R. Etienne-Cummings, C. Donham, J. van der Spiegel, and P. Mueller, “Spa-
tiotemporal computation with a general purpose analog neural computer: Real-
time visual motion estimation,” Proc. IEEE Int. Conf. on Neural Networks, pp.

18351840, 1994.

R. Etienne-Cummings, J. van der Spiegel, and P. Mueller, “A focal-plane visual-
motion measurement sensor,” IEEE Transactions on Circuits and Systems I,

44:1, pp. 55-66, 1997.

T. Horiuchi, W. Bair, B. Bishofberger, A. Moore, C. Koch, and J. Lazzaro, “Com-
puting motion using analog VLSI chips: An experimental comparison among

different approaches,” Int. Journal on Comp. Vision, 8, pp. 203-216, 1992.

T. Delbriick, “Silicon retina with correlation-based velocity-tuned pixels,” IEEE

Transactions on Neural Networks, 4, pp. 529-541, 1993.



[19]

[20]

23]

130
H. B. Barlow and W. R. Levick, “The mechanisms of directionally selective units

in rabbit’s retina,” Journal of Physiology, 178, pp. 477-504, 1965.

R. Benson and T. Delbriick, “Direction selective silicon retina that uses null
inhibition,” in Advances in Neural Information Processing Systems 4, J. Moody,
S. Hanson, and R. Lippmann, eds, Morgan Kaufmann, San Mateo, CA, pp.
756763, 1992.

A. Simoni, G. Torelli, F. Maloberti, A. Sartori, S. Plevridis, and A. Birbas, “A
single chip optical sensor with analog memory for motion detection,” TEEE J.

Solid-State Circuits, 30:7, pp. 890-897, 1995.

M. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of form
and function,” PhD) Thesis, California Institute of Technology, Pasadena, CA,
1994.

J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie, “Sili-
con auditory processors as computer peripherals,” IEEE Transactions on Neural

Networks, 4:3, pp. 523-528, 1993.

A. Mortara, E. A. Vittoz, and P. Venier, “A communication scheme for analog

VLSI perceptive systems,” IEEE J. Solid-State Circuits, 30:6, pp. 660669, 1995.

P. Venier, A. Mortara, X. Arreguit, and E. Vittoz, “An integrated cortical layer
for orientation enhancement,” IEEE Journal of Solid State Circuits, 32:2 pp.
177286, 1997.

J. Lazzaro, S. Ryckebusch, M. Mahowald, and C. Mead, “Winner-take-all net-
works of O(n) complexity,” in Advances in Neural Information Processing Systems

1, D. Tourestzky, ed, Morgan Kaufmann, San Mateo, CA, pp. 703-711, 1988.



131

Chapter 6 Conclusions

This dissertation has described the development of a direction-selective system that
included the preprocessing properties of the retina and laminar cells, and also the
motion adaptation observed in the direction-selective cells of the lobula plate. This
system is an improvement over previous motion systems by adding adaptive tem-
poral preprocessing after the receptor circuit and incorporating temporal averaging
for robustness and mutual inhibition. The various chapters describe the different
subsystems of the direction-selective system.

In Chapter 2, I compared the temporal and spatial bandwidths of a previous
silicon receptor model [1] with that of different insect receptors. The results of the
comparison show that even though silicon receptors have higher limits on the speed
sensitivities at high background intensities, these receptors perform poorly at low
background intensities. In contrast, the speed sensitivities of insect receptors are
almost invariant to the background intensity. A main reason for this difference is that
the temporal bandwidths of our silicon receptors vary linearly with the background
intensity, while the bandwidths of the biological receptors depend on a 1/3 to 1 /4 root
of the intensity. In the interest of keeping the pixel area small, our silicon receptors
do not model the sharp cutoff in the frequency gain curves of the biological receptors.
This sharp cutoff might be important in the subsequent motion detection process.

This dissertation contains the first characterization of offset distributions in our
silicon retinae and that in the fly receptors. Both the neural system and the silicon
system have to deal with mismatches between neurons or transistors. If the offset
distribution is worse in our silicon retinae, then we should use adaptation or self-
calibration methods to reduce the range of offsets. It is difficult to obtain data that
describe the offset statistics in a single organism. The data from the fly receptors were
obtained from different flies but of the same species. It is interesting to see that the

offset distribution is small among different flies. We can do a better comparison of the
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offsets in both systems, by characterizing the offsets of different chips with the same
design and layout that have been fabricated on the same run. I have characterized
the offsets at only one background intensity. It would be interesting to see if the offset
statistics vary with the background intensity.

The Delbriick receptor model has been endowed with the adaptive temporal fil-
tering properties of the LMCs by adding two more transistors to the circuit. This
new retino-laminar circuit, shown in Chapter 3, has an adaptation time constant that
can be controlled by an external bias. The temporal filtering also changes with the
background intensity. The change in the temporal filtering with the S/N conditions
can be predicted by using information theory [2]. The assumption used is that the
visual system tries to maximise the information transfer to subsequent layers. The
retino-laminar circuit does not implement the weak spatial center-surround property
and the zero DC gain of the LMCs.

The adaptive correlator described in Chapter 4, models the time constant adap-
tation of the motion system to the temporal frequencies of the input stimuli. This
model is a variant of the Hassenstein-Reichardt (HR) model. The filters in the HR
model are endowed with adaptive time constants and the circuitry for adapting the
time constants are included in the adaptive correlator. The results from this model
explain the physiological results from the direction-selective cells. The results from a
silicon implementation of this model also show that the time constants of the filters
indeed adapt to the motion stimuli.

The final system described in Chapter 5, is a novel implementation of the HR
model, where temporal averaging and mutual inhibition are part of the direction
selectivity process. The circuit uses the graded output signals of the retino-laminar
circuit, and does not use any pulses or edges in the direction selective computation.
Previous implementations have ignored the temporal averaging computation in the
correlation model, and only one other implementation incorporated mutual inhibition.
The mutual inhibition process models the inhibition observed in the H1 cell in the
lobula plate when motion in the null direction is presented to the eye. The temporal

averaging process induces different latencies for different contrast signals. For low
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contrast signals, the circuit exhibits a longer latency in reaching a decision on the
direction of motion. The circuit needs to be extended to the 2D domain and the
correlated inputs that are fed to the mutual inhibition block need to be brought
out. The adaptation circuitry described in Chapter 4 needs to be incorporated into
this direction-selective model. The time constant of the lowpass filter in the present
model is exponentially dependent on the background intensity. This property makes
it difficult to operate the circuit over decades of background intensity and will be
removed in a subsequent implementation.

The different subsystems of the direction-selective system show the importance of
understanding the filters at each processing stage of the visual layers. Obviously, the
spatial and temporal processing in each stage is necessary for obtaining robust outputs
at the final motion layer under different background conditions. Tt is also important
that we understand the relevance of the spatiotemporal processing in each layer.
The neuromorphic modeling of the fly visual system gives us a medium to develop a
working model that captures the spatiotemporal features necessary for robust motion
computation. It also allows us to address the issues that neural systems face, for

example, offsets and noise.
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Chapter 7 Appendix to Chapter 5

7.1 Transfer Function of WTA

The transfer function of the The equations at nodes V| and V5 are:

11 = CV1 + ga11v1 + Gm11Ye,

io = CUy + GaraVa + Gmave.
The equation at node V, is:
mi2(v1 — Ue) + gmoi (V2 — ve) = Cetie + (Ya12 + Gaz1 )ve.
Rewriting Equation 7.3 in the Laplace domain, we get

Gm120U1 + gm21U2 = (‘SC{, + Gmi2 “+ gm?l)vv

Hence,

- 12 + Gm21
© 7 8C, 4 Gmiz + Gmor

(7.3)

(7.4)

Taking the Laplace transform of Equations 7.1 and 7.2 and substituting v, from

Equation 7.4, we get

it = (5CH+ ga11)v1 + (Gm119m12/ Y )01 + (Gm119mo1 /Y )ve
= (SC + Ga11 + gmngmm/Y)m + (gmugmm/y)’?)?;
o = (SC + Gao2)v2 + (Gm22gm12/ Y )v1 + (Gmo2gmar /Y )vo

= (90 + Gdoo + ganQQ?nQI/}/>712 + (gm22977112/y’)1917
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where YV = sC. + gm12 + gme21. Substituting in vy from Equation 7.5 into Equation

7.6, we get:

Gm119mai2 Imi19m21 Gmo20mi2 - Y

Y Y (i = Y )(SC + ga2)Y + gm22gmn
((sC + gq11) (5C + gg22)Y + (8C + ga11)Gmoagmor + (5C + Gao2) Gim119m12)V1 + Gmi1Gmar i
(5C' + ga22)Y + GmaaGman

i1 = (sC+ gau + Jur +

gmele) + Gma2Gm12 (3/1 gmllgm‘zl, 2) Y

Y Y Y (5C' + ga11)Y + Gmi1Gmr2
((sC' + ga22)(5C + gn1)Y + (8C + 9422) Gm11Gm12 + (8C + Ga11) gm22Gma1) V2 + Gmaagmizia
(5C + g411)Y + Gm119m12

1o = (SC + gqo0 +






