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Chapter 3

Model Definition

This model was designed to take into account the change in strength and ductility of

concrete due to confinement. Ductility is a measure of the failure strain relative to the

yield or peak strain. Previous researchers have utilized two different approaches when

modeling these effects. The “effective confinement” approach [(Mander et al., 1988b),

(Ahmad and Shah, 1982), (Sheikh and Uzumeri, 1982)] estimates the amount of

confining pressure that the confinement applies on the concrete. This is typically done

by estimating the stress in the confining material, the effectiveness of the confinement

over the cross section, and other cross sectional properties. It is assumed that this

confining pressure will be constant throughout the loading. The increase in concrete

strength is then determined by considering experimental results of concrete at an

equivalent confining pressure. Therefore, any change in the concrete behavior due

to a change in the confinement pressure cannot be captured with this method. The

“effective confinement” method cannot explicitly include the variation in the stress

throughout the cross section or the change in confinement pressure with loading or

changing confinement material properties. The second approach, which was chosen

for this thesis, is to implicitly model the effect of concrete confinement by including

it in the concrete plasticity theory. In this method, the confinement mechanism

is modeled explicitly in the finite element (FE) model. By explicitly including the

confining material, this method allows any form of confinement (active or passive) and

any confining material (for example, rebar, steel jackets, or fiber reinforced polymer

(FRP) sheets) to be modeled. Interaction between the concrete and the confining
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mechanism is properly accounted for. For example, fracture of a stirrup in a column,

and the subsequent drastic change in the confinement level of the concrete, leading

to a change in the behavior of the concrete itself, can be modeled. Even the effect of

the variable confinement over the cross section of a tied column can be modeled.

The ability to accurately represent the three-dimensional behavior of concrete

is fundamental to the approach taken in this thesis. Once the failure surface is

reached, the current three-dimensional load state of the concrete directly affects the

failure surface location and rate of damage accumulation. Through this approach,

confinement can come not only from the traditional forms of rebar or FRP jackets,

but also from loading in perpendicular directions. By understanding and modeling

the actual three-dimensional behavior of the concrete under true triaxial loading

conditions, the model is more flexible than the “effective confinement” models. It can

be applied to more diverse structures instead of being limited to simple columns with

designated types of confinement.

It is not the intention that all aspects of concrete behavior be included in the model

defined in this thesis. Creep, fracture, shear sliding, strain rate effects, and cyclic

loading behaviors are not built into the present model. Tension strength is also not

included. The specimen is assumed to be pre-cracked, thus the initial tension strength

is set to zero. At a later date, this model could be incorporated into an existing

framework that includes these behaviors [for example, ABAQUS ABAQUS (Inc.) or

ADINA ADINA R&D (Inc.)] to create a complete, versatile concrete model. However,

the scope of this thesis is limited to monotonic compression or bending to create

the backbone curves of concrete. The backbone curve presents the boundary of the

stress versus strain behavior for the concrete. If the specimen were cyclically loaded,

unloading would fall away from the backbone curve, but loading would eventually

cause a return to the backbone curve.

This chapter details the equations defining the concrete model. The plasticity

model presented in Malvar et al. (1994) and improved upon in Malvar et al. (1996)

was used as a starting point for the creation of the model defined in this thesis.

Section 3.1 shows the three loading surfaces that underlie this model. Within this
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thesis, the term loading surface describes a surface that is fixed in the invariant space.

The loading surfaces are a tool to define the location of the failure surface. The

failure surface defines the boundary between elastic and plastic loading, as discussed

in Section 2.2. Section 3.2 defines the current failure surface, which moves between

the three fixed loading surfaces. Section 3.3 discusses the final component of the

concrete model, the flow rule. Section 3.4 summarizes the input parameters required

to utilize the model. Section 3.5 derives the tangent modulus tensor.

3.1 Loading Surfaces

The backbone of the model is three loading surfaces corresponding to the yield, peak,

and residual stress states of the concrete, following Malvar et al. (1994). The load-

ing surfaces are three-dimensional and are fixed in the (ξ, r, θ) invariant space. For

a specimen compressed in only one direction and free in the other two orthogonal

directions (uniaxial compressive loading), the surfaces correspond to the yield, peak,

and residual points as shown in Figure 3.1. The current failure surface travels be-

Figure 3.1: Loading surface locations.

tween these three fixed surfaces based on a damage parameter defined in Section 3.2.

The equations defining the peak and residual loading surfaces are identical, while the

yield loading surface is given a different shape. Values for the parameters controlling

these equations are determined from experimental data for each of the three surfaces.

The shape of each loading surface can be best understood by examining its shape in
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two separate planes, as previously discussed in Section 2.2. The first is the meridian

plane, which is the (ξ, r) plane, and represents lines of constant θ. The second is the

deviatoric plane, which is the (r, θ) plane, and defines the cross section of the failure

surface for constant values of ξ. By examining the behavior in these two planes, the

full three-dimensional shape of the surface can be easily visualized.

The peak and residual loading surfaces are assigned a hyperbolic shape in the

meridian plane as described in Section 3.1.1. This particular shape was chosen because

it presented the best fit to the test data over the largest range of confinement. The

shape of the test data in the meridian plane can be seen in Figures 4.3 and 4.4 for

the peak surface and Figure 4.18 for the residual surface. The yield loading surface

has a different shape in the meridian plane, which will be discussed in Section 3.1.1.

The cross section for all three loading surfaces in the deviatoric plane is defined by

an elliptic interpolation between the two meridians, as introduced by William and

Warnke (1975). This is the most common approach for the deviatoric plane, as it

meets all the requirements for a concrete failure surface discussed in Chapter 2. It

also produces the best fit to the test data shown in Figure 4.11. Section 3.1.2 shows

the equations defining this elliptic shape.

3.1.1 Meridians

The peak and residual loading surfaces are controlled by two hyperbolic meridians

in the (ξ, r), or meridian, plane. They are denoted as the tensile and compressive

meridians based on the value of the Lode angle for that meridian. Recall from Sec-

tion 2.2 that the tensile and compressive meridians correspond to Lode angles of 0◦

and 60◦, respectively. For the peak and residual surfaces, these two meridians have a

hyperbolic shape as described by Equation 3.1 and seen in Figure 3.2.
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The concrete compressive strength, f ′c, is defined in the accepted fashion as the com-

pressive strength at 28 days of a uniaxially loaded cylinder, with a height equal to

twice the width (ACI Committee 318, 2000). Note that values of ξ are negative for

Figure 3.2: Shape of the peak and residual tensile and compressive meridians in the
(ξ, r) space. Note that values of ξ are negative for compression.

compression. The invariants ξ and θ are defined in Equations 2.10 and 2.12, respec-

tively. Values of the parameters a0 through a3 and b0 through b3 are determined

from test data in Section 4.2.3 for the peak surface and Section 4.3.3 for the residual

loading surface.

The yield loading surface is not based on hyperbolic meridians. It is well known

that the yield point for concrete is not precisely defined due to the gradual onset of

yielding. However, a single yield surface is designated at the initiation of yielding,

rather than using multiple surfaces to define a yield region. The region of yielding

will be accounted for through the transition of the failure surface from the yield

surface to the peak surface, wherein damage is accumulating but strain softening has

not yet initiated. Strain softening is defined as the region in which the stress in the

material is actually decreasing with an increase in strain. The location of the yield

surface is somewhat arbitrary but should be close to the initial onset of yielding. The

test data show that the peak and residual stresses increase more significantly with

confinement than the yield stress. Whereas the peak and residual stresses increase

hyperbolically with confinement, the yield stress approaches a constant. Thus, the
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following equation is chosen to define the meridians for the yield loading surface:
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(3.2)

The shape of the yield tensile and compressive meridians is shown in Figure 3.3.

Figure 3.3: Shape of the yield tensile and compressive meridians in the (ξ, r) space.
Note that values of ξ are negative for compression.

There are eighteen parameters (the a and b series for the peak and residual sur-

faces, and c and d for the yield surface) that control the increase in the failure devia-

toric stress due to confinement. For all three loading surfaces, the difference between

the a and b series of parameters (or c and d for the yield loading surface) accounts

for the change in deviatoric stress caused by the Lode angle passing from 0◦ to 60◦.

It can be seen from test data that the deviatoric stress at yield, peak, or residual is

lower at a Lode angle of 0◦ then at 60◦. Thus, the tensile meridian will always have a

smaller magnitude than the compressive meridian as seen in Figure 3.2. Equations 3.1

and 3.2 account for the increase in the strength of concrete as a result of confinement.

The magnitude of ξ increases with increasing confinement. Through Equations 3.1

and 3.2, higher magnitudes of ξ lead to higher values for r before the failure surface

is reached. The increase in the magnitudes of both ξ and r equate to larger stresses

being supported by the concrete under confinement.
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3.1.2 Elliptic Fit

The shape of the loading surface in the deviatoric plane is chosen as an elliptic curve,

shown in Figure 3.4, defined by a method introduced in William and Warnke (1975).

By using an ellipse, all the conditions of smoothness, symmetry, and convexity dis-

Figure 3.4: Elliptic trace of the failure surface for 0◦ ≤ θ ≤ 60◦. Based on Chen
(1982).

cussed in Chapter 2 are met. The elliptic curve between the two meridians is defined

by Equation 3.3. The resulting full cross section of the loading surface in the devia-

toric plane can be seen in Figure 3.5. Note that in Figure 3.5, the ξ axis is normal to

the cross section plane, which is also the plane of the page, and passes through the

origin.

Ri(ξ, θ) =
2rc,i(r

2
c,i−r2t,i)cosθ+rc,i(2rt,i−rc,i)

√
4(r2c,i−r2t,i)cos2θ+5r2t,i−4rt,irc,i

4(r2c,i−r2t,i)cos2θ+(rc,i−2rt,i)2

i = yield, peak, residual

(3.3)

Thus, each of the three loading surfaces is defined:

Fi = r −Ri(ξ, θ) = 0 i = yield, peak, residual (3.4)
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Figure 3.5: Deviatoric section of the failure surface. Modified from Chen (1982).

The invariant r is defined in Equation 2.11. The value for Ri(ξ, θ) is given by Equa-

tion 3.3 with the corresponding set of parameters for that loading surface (i.e., yield,

peak, or residual).

3.2 Failure Surface

Recall that all three of these loading surfaces are fixed in the (ξ, r, θ) invariant space.

The current failure surface is a linear combination of two of the three surfaces based

on the current damage level, ψ. The value for ψ is integrated along the loading path

of the material in order to represent the current total damage level. The incremental

damage for a given load step is defined by:

dψ =
dεp

φ+ α(| ξ
f ′
c
|γ )

(3.5)

The effective plastic strain increment, dεp, was previously defined in Equation 2.17

and is restated here:

dεp =

√
2

3
dεpijdε

p
ij (3.6)
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The parameter, φ, defines how damage is accumulated at very low levels of stress. The

invariant ξ must be located in the denominator so that large values of confinement,

which result in large values for ξ, result in a decrease in the rate at which damage is

accumulated. The parameters α and γ control how the damage accumulation rate is

affected by confinement. Equation 3.5 is used to account for the increase in ductility

seen in concrete due to increasing levels of confinement. The form of this equation is

based on Malvar et al. (1994); changes were made in order to simplify the model and

to better match the test data.

The location of the current failure surface based on the damage level is controlled

by the variable β:

β =

(
ψ

ψpeak

)κ
e
1−

(
ψ

ψpeak

)κ
(3.7)

The parameter, ψpeak, defines the damage level at which the peak surface is reached.

The parameter, κ, controls the rate at which the failure surface travels from one

loading surface to the next. This functional form of β is based on a form derived by

Smith and Young (1955) to represent the shape of the stress versus strain relationship

for uniaxial compression loading shown in Figure 3.1. The value of β is zero until

the load path intersects the yield loading surface. It then passes from zero to one as

the current failure surface travels from the yield to the peak loading surfaces. The

value of β then decreases from one back to zero as the current failure surface travels

from the peak to the residual loading surface. The current failure surface can now be

found by:

F = 0 = r −

 β (Rpeak(ξ, θ)−Ryield(ξ, θ)) +Ryield(ξ, θ) ψ ≤ ψpeak

β (Rpeak(ξ, θ)−Rresidual(ξ, θ)) +Rresidual(ξ, θ) ψ > ψpeak
(3.8)

The invariant r is defined in Equation 2.11. Ryield(ξ, θ), Rpeak(ξ, θ), and Rresidual(ξ, θ)

are defined in Equation 3.3.
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3.3 Flow Rule

Based on Malvar et al. (1996), a blend of two common flow rules was utilized which

led to good agreement with test data. An associated flow rule for this model results

in plastic volume expansion in excess of that indicated by test data. However, using a

Prandtl-Reuss flow rule (Chen, 1982) does not allow for any plastic volume expansion,

which is also not correct for concrete. Thus, a combination of the two rules is used,

resulting in a nonassociated flow rule for the model.

The potential surface, Q, is therefore defined as the interpolation of two surfaces.

The first surface is equal to the failure surface, as would be defined for associative

flow. The second surface represents a circular cylinder passing through the failure

surface at the point representing the current stress state whose axis lies along the ξ

axis. This definition for Q is implemented into Equation 2.14 to determine the plastic

strain increment. The parameter, ω, controls the amount of plastic volume change

seen in the material. The effect of ω on the direction of plastic flow can be seen in

Figure 3.6.

Figure 3.6: Graphical representation of the direction of plastic flow depending on ω
based on Noble et al. (2005). Note that values of ξ are negative for compression.
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3.4 Model Parameters

The model contains a total of twenty-four parameters that control its behavior. The

values for these parameters are determined using test data in Chapter 4. A summary

of these parameters and their significance is shown in Table 3.1. These twenty-four

Table 3.1: Summary of model parameters.
Name Behavior Controlled Total

a0, a1, a2, a3

x 2 surfaces
shape of the hyperbolic tensile meridian for the peak and
residual loading surfaces

8

b0, b1, b2, b3
x 2 surfaces

shape of the hyperbolic compressive meridian for the
peak and residual loading surfaces

8

c shape of the tensile meridian for the yield loading surface 1
d shape of the compressive meridian for the yield loading

surface
1

φ accumulation of damage at low stress levels 1
α, γ accumulation of damage as a function of confinement 2
ψpeak amount of damage corresponding to the peak stress level

of the concrete
1

κ rate at which the current loading surface passes between
each of the fixed surfaces

1

ω ratio of associated plastic flow to Prandtl-Reuss plastic
flow

1

Total 24

parameters can be fit to the test data for all types of concrete and defined permanently.

Thus, a user of the model does not need to specially tune these parameters to the

individual specimen of concrete being analyzed. However, if the user is intending to

model a specific concrete mix, or a specific type of concrete, the parameters could

be fit using a subset of data matching the concrete that is to be modeled. The

model also requires three input parameters that are specific to the concrete specimen

being modeled: the modulus of elasticity, E; Poisson’s ratio, ν; and the unconfined

compressive strength, f ′c, of the concrete.
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3.5 Tangent Modulus Tensor

Once the plasticity model is completely defined, the consistency condition is used

to derive the tangent modulus tensor, which defines the relationship between the

incremental stress and strain. The consistency condition as derived in Section 2.4

and given in Equation 2.20 is:

dF =
∂F

∂σij
dσij +

∂F

∂εp
dεp = 0 (3.9)

where dεp is given by Equation 3.6 and the elastic stress increment, dσij, is given by:

dσij = De
ijkl (dεkl − dεpkl) (3.10)

De
ijkl is the elastic modulus tensor, dεkl the total strain increment, and dεpkl the plas-

tic strain increment as defined in Section 2.3. The definition of the plastic strain

increment, as given in Equation 2.14, is restated here:

dεpij = dλ
∂Q

∂σij
(3.11)

where Q is defined as discussed in Section 3.3. Substituting Equations 3.10 and 3.11

into Equation 3.9, combined with Equation 3.6 for dεp, yields an equation that can

be solved for dλ:

dλ =

∂F
∂σij

De
ijkldεkl

∂F
∂σmn

De
mnpq

∂Q
∂σpq

− ∂F
∂εp

√
2
3
∂Q
∂σij

∂Q
∂σij

(3.12)

Using Equation 3.12 for dλ with Equation 3.11 yields an expression for dεpij which

can be combined with Equation 3.10 to define the tangent modulus tensor.

dσij = Dtangent
ijkl dεkl =

(
De
ijkl +Dp

ijkl

)
dεkl (3.13)



26

where the plastic modulus tensor is given by:

Dp
ijkl = −

De
ijtu

(
∂Q
∂σtu

)(
∂F
∂σrs

)
De
rskl

∂F
∂σmn

De
mnpq

∂Q
∂σpq

− ∂F
∂εp

√
2
3
∂Q
∂σij

∂Q
∂σij

(3.14)

A detailed derivation of this equation can be found in Section 8.5 of Chen (1982).

Expressions for the partial derivatives in Equation 3.14 can be derived from the

equations found in this chapter and are given in Appendix A. The tangent modulus

tensor will be implemented into finite element code in order to utilize the material

model for predicting the behavior of concrete.


