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Abstract

A plasticity model to predict the behavior of confined concrete is developed. The
model is designed to implicitly account for the increase in strength and ductility due
to confining a concrete member. The concrete model is implemented into a finite
element (FE) model. By implicitly including the change in the strength and ductility
in the material model, the confining material can be explicitly included in the FE
model. Any confining material can be considered, and the effects on the concrete of
failure in the confinement material can be modeled. Test data from a wide variety of
different concretes utilizing different confinement methods are used to estimate the
model parameters. This allows the FE model to capture the generalized behavior
of concrete under multiaxial loading. The FE model is used to predict the results
of tests on reinforced concrete members confined by steel hoops and fiber reinforced
polymer (FRP) jackets. Loading includes pure axial load and axial load-moment
combinations. Variability in the test data makes the model predictions difficult to
compare but, overall, the FE model is able to capture the effects of confinement on
concrete. Finally, the FE model is used to compare the performance of steel hoop to
FRP confined sections, and of square to circular cross sections. As expected, circular
sections are better able to engage the confining material, leading to higher strengths.
However, higher strains are seen in the confining material for the circular sections.
This leads to failure at lower axial strain levels in the case of the FRP confined
sections. Significant differences are seen in the behavior of FRP confined members
and steel hoop confined members. Failure in the FRP members is always determined
by rupture in the composite jacket. As a result, the FRP members continue to take

load up to failure. In contrast, the steel hoop confined sections exhibit extensive strain
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softening before failure. This comparison illustrates the usefulness of the concrete
model as a tool for designers. Overall, the concrete model provides a flexible and

powerful method to predict the performance of confined concrete.
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