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Abstract

A plasticity model to predict the behavior of confined concrete is developed. The

model is designed to implicitly account for the increase in strength and ductility due

to confining a concrete member. The concrete model is implemented into a finite

element (FE) model. By implicitly including the change in the strength and ductility

in the material model, the confining material can be explicitly included in the FE

model. Any confining material can be considered, and the effects on the concrete of

failure in the confinement material can be modeled. Test data from a wide variety of

different concretes utilizing different confinement methods are used to estimate the

model parameters. This allows the FE model to capture the generalized behavior

of concrete under multiaxial loading. The FE model is used to predict the results

of tests on reinforced concrete members confined by steel hoops and fiber reinforced

polymer (FRP) jackets. Loading includes pure axial load and axial load-moment

combinations. Variability in the test data makes the model predictions difficult to

compare but, overall, the FE model is able to capture the effects of confinement on

concrete. Finally, the FE model is used to compare the performance of steel hoop to

FRP confined sections, and of square to circular cross sections. As expected, circular

sections are better able to engage the confining material, leading to higher strengths.

However, higher strains are seen in the confining material for the circular sections.

This leads to failure at lower axial strain levels in the case of the FRP confined

sections. Significant differences are seen in the behavior of FRP confined members

and steel hoop confined members. Failure in the FRP members is always determined

by rupture in the composite jacket. As a result, the FRP members continue to take

load up to failure. In contrast, the steel hoop confined sections exhibit extensive strain
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softening before failure. This comparison illustrates the usefulness of the concrete

model as a tool for designers. Overall, the concrete model provides a flexible and

powerful method to predict the performance of confined concrete.
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Chapter 1

Introduction

Concrete is the most prevalent construction material in the world (Craig et al., 1996).

It has been used in widely varying structural applications from the dome of the Pan-

theon to Hoover Dam to the Guggenheim Museum. Much has been learned about

concrete behavior through its varied and historical use. One of the most recent lessons

came from the February 9, 1971 magnitude 6.6 San Fernando earthquake. Damage

to reinforced concrete structures, even some recently built to the latest building code,

was extensive. Engineers discovered that the buildings of the time were non-ductile

and that the design of future concrete structures would require more ductility to with-

stand seismic loading. While the idea of confinement was not a new one, the level

of confinement demanded in seismic zones, and the details of its implementation, re-

quired new understanding. Special details for ductile response were implemented into

the building code as a result of the lessons learned in the San Fernando earthquake.

The January 17, 1994 magnitude 6.7 Northridge earthquake provided a reminder of

the danger presented by the existing non-ductile reinforced concrete structures, built

before the change in the building code. Today, the design of new reinforced concrete

structures in active seismic zones and the problem of existing non-ductile reinforced

concrete structures are both important challenges. This thesis seeks to aid engineers

by providing a design tool to evaluate the ductility and strength of confined reinforced

concrete members.

Concrete shows a significant change in strength and ductility due to confinement.

Confinement can come in many forms. The traditional method is to wrap the concrete
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member with hoops or spirals of steel rebar. Many new forms of confinement have

arisen to be used in the retrofit of existing non-ductile concrete structures. Steel

jackets, welded wire fabric, and fiber reinforced polymer (FRP) composites are some

of the many confinement strategies employed in retrofits. Methods to evaluate the

performance of concrete members under different forms of confinement are required

to evaluate and compare different retrofit strategies. Of importance to designers is

the increase in the peak stress, the strain at peak stress, and the post-peak behavior

of the concrete. This thesis provides a tool to predict these important quantities.

Due to the extensive use of concrete, experimental test data for concrete is abun-

dant. However, reviews of test data in this thesis show that concrete behavior can be

inconsistent. The inconsistencies are likely due to the fact that concrete is an amal-

gamation of various different materials. Something as fundamental as the concrete

compressive strength, f ′c, will be quite different among specimens from the same mix-

ture of concrete. Further, the behavior of concrete can be rather complex, changing

drastically with different load configurations and histories. The combination of the

inconsistency and complexity make it extremely difficult to accurately model. How-

ever, since the use of concrete is widespread and extensive, attempts to model this

material are necessary. The inconsistency and complexity of the material must be

kept in mind when defining any concrete model. The goal of the model is to capture

the overall trends seen in the behavior, not specific details observed in a particular

test.

Many models currently exist for reinforced concrete. Several different approaches

have been considered. Some models perform simple curve fits to confined tests and use

these fits to predict the behavior of a similarly confined section. Others use nonlinear

elasticity or plasticity models to capture the more complicated effects and predict the

behavior of concrete in a general sense. Somewhat more recently, attempts have been

made to create endochronic models for concrete. Each approach has its strengths,

complexity level, and complications. The intended use of any particular concrete

model may dictate which approach is best suited. For a more in-depth discussion of

the different types of concrete models, see Chen (1982).
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This thesis presents a new model to represent the confined behavior of concrete.

It predicts the change in the behavior of concrete when confined. The model uti-

lizes plasticity theory to represent the behavior of concrete under multiaxial loading.

Relevant plasticity theory is reviewed in Chapter 2. The changes in the stress and

strain behavior of confined concrete due to the current three-dimensional load state

are implicitly taken into account. The concrete model is defined and discussed in

Chapter 3.

In Chapter 4, a large set of experimental data is compiled consisting of tests on

a variety of concretes which have a wide range of different properties. Test data

from concrete with different compressive strengths, aggregate sizes and properties,

water-cement ratios, saturation values, ages, additives, and many other variables

are utilized to estimate the model parameters. Including a large variety of concrete

variables allows the model to represent a more generalized behavior of concrete.

The new material model for concrete is implemented into a finite element (FE)

program, described in Chapter 5, for use in representing reinforced concrete structural

members. By implicitly including the multiaxial behavior in the concrete model, the

confining material can be explicitly included in the FE model. This allows for any

type of confinement to be considered. As new retrofit strategies are considered and

new confining materials are created, the FE model can be used to predict and evaluate

the behavior of the concrete due to the retrofit.

The FE model is utilized to predict the behavior of confined reinforced concrete

member laboratory tests in Chapter 6. Different load types and confinement config-

urations are considered. The predictions of the FE model are then compared to the

experimental data to evaluate the performance of the FE model. In Chapter 7, the

FE model is used to perform a comparison of the behavior of circular versus square

cross sections, as well as a comparison of the performance of members with steel rebar

confinement versus FRP confinement. The confined concrete members are compared

under both axial load and moment. The performance results of the different members

are discussed.

Chapter 8 discusses the conclusions drawn from this thesis. While discrepancies
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in the experimental data led to some differences between test results and FE model

predictions, the FE model did not exhibit any obvious or clear errors. The model

was able to capture the general behavior of concrete under confinement. Use of

the FE model to compare square to circular cross sections, and steel hoop to FRP

confinement, emphasized the effects of cross sectional shape and confinement material

on concrete behavior. Significantly different behaviors were exhibited by sections

confined by FRP versus steel hoops. While both sections withstand large strains, the

FRP confined sections fail at their peak stress while the steel confined sections exhibit

strain softening post-peak. This raises the question of how to define ductility for this

type of section. Thus, designers must determine exactly what type of performance

they want out of the member. With that behavior in mind, the model defined in

this thesis serves as an excellent tool to predict concrete behavior for the different

configurations being considered.
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Chapter 2

Plasticity Review

The creation of the concrete model in this thesis required extensive use of current

plasticity theory. In order for the reader to understand the model, a brief review

of relevant plasticity theory is presented here. First, Section 2.1 defines the stress

invariants used for the definition of this model and discusses their physical significance.

Second, the definition and requirements of a failure surface are reviewed in Section 2.2.

Third, the definitions for plastic flow and effective plastic strain are discussed in

Section 2.3. Finally, the consistency condition, used for determining the tangent

material matrix, is outlined in Section 2.4. For a complete discussion of plasticity

theory and its application to concrete, see Chen (1982).

2.1 Stress Invariants

For a concrete model to be most useful, the model itself should be defined independent

of the coordinate system attached to the material. Thus, it is necessary to define

the model in terms of stress invariants which are, by definition, independent of the

coordinate system selected. The three-dimensional stress state of the material is

traditionally defined by the stress tensor, which can be represented relative to a
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chosen coordinate system by a matrix:

σij =


σx τxy τxz

τxy σy τyz

τxz τyz σz

 (2.1)

This stress tensor is often decomposed into two parts: a purely hydrostatic stress, σm,

defined in Equation 2.2, and the deviatoric stress tensor, sij, defined in Equation 2.3.

σm =
1

3
(σx + σy + σz) (2.2)

sij =


σx − σm τxy τxz

τxy σy − σm τyz

τxz τyz σz − σm

 (2.3)

A common set of stress invariants are the three principal stress invariants. The

principal stress coordinate system is the coordinate system in which shear stresses

vanish, leaving only normal stresses. This requirement of zero shear stresses leads to

the characteristic equation:

σ3 − I1σ
2 + I2σ − I3 = 0 (2.4)

The first, second, and third invariant of the stress tensor, I1, I2, and I3 are defined

in the following equations:

I1 = σx + σy + σz (2.5)

I2 = (σxσy + σyσz + σzσx)− τ 2
xy − τ 2

yz − τ 2
zx (2.6)

I3 =

∣∣∣∣∣∣∣∣∣
σx τxy τxz

τyx σy τyz

τzx τzy σz

∣∣∣∣∣∣∣∣∣ (2.7)

The three roots of Equation 2.4 are the three principal stress invariants, also called

the three principal stresses. They are ordered so that σ1 > σ2 > σ3.
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The three principal stresses, as well as most other stress invariants, can be rewrit-

ten in terms of three core invariants: the first invariant of the stress tensor, I1, and

the second and third invariants of the deviatoric stress tensor, J2 and J3. The first

invariant of the stress tensor, I1, was previously defined in Equation 2.5. The second

and third invariants of the deviatoric stress tensor are defined as:

J2 =
1

6
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + τ 2
xy + τ 2

yz + τ 2
zx (2.8)

J3 =
1

3
sijsjkski =

∣∣∣∣∣∣∣∣∣
σx − 1

3
I1 τxy τxz

τyx σy − 1
3
I1 τyz

τzx τzy σz − 1
3
I1

∣∣∣∣∣∣∣∣∣ (2.9)

Clearly, a large variety of stress invariants were available to use in defining the

model. The three stress invariants ξ, r, and θ were chosen to define the components

of the concrete model:

ξ =
1√
3
I1 =

1√
3
(σ1 + σ2 + σ3) (2.10)

r =
√

2J2 =

√
1

3
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (2.11)

cos(3θ) =
3
√

3

2

J3

J
3/2
2

(2.12)

They have a direct physical interpretation which makes it easier to understand the

physical implications of the model. To understand the physical significance of each

of these invariants, it is helpful to look at them in the principal stress coordinate

system (σ1, σ2, σ3). Recall that the principal stress coordinate system corresponds

to the orientation in which the material has no shear stresses. A diagram of this

coordinate system is shown in Figure 2.1. Consider the case of purely hydrostatic

loading with magnitude equal to σh. For this load case, σ1 = σ2 = σ3 = σh. Thus,

the load path travels along the ξ axis. The magnitude of the hydrostatic load, σh, is

equal to the stress invariant ξ. Therefore, it is clear that the invariant ξ represents the

hydrostatic component of the current stress state. Now we consider the planes that lie
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Figure 2.1: Graphical interpretation of stress invariants (ξ, r, θ) in the principal stress
space. Modified from Chen (1982).

perpendicular to this hydrostatic axis. For any given stress state lying in one of these

planes, the distance between the point representing the stress state in the principal

stress coordinate system and the hydrostatic axis is related to the deviatoric stress.

The magnitude of this distance is equal to the invariant r. Thus, r represents the

stress invariant measure of the deviatoric stress. This leaves only the third invariant,

θ, also known as the Lode angle. The invariant θ is controlled by the relationship

of the intermediate principal stress to the major and minor principal stresses. When

the intermediate principal stress, σ2, is equal to the minor principal stress, σ3, the

value for θ becomes 60◦. When the intermediate principal stress, σ2, is equal to the

major principal stress, σ1, the value for θ becomes 0◦. Thus, θ is an indication of

the magnitude of the intermediate principal stress in relation to the minor and major

principal stresses.
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2.2 Failure Surface

An important component of a concrete plasticity model is the failure surface. In tra-

ditional plasticity theory, this surface is alternately referred to as the yield or loading

surface. In this thesis, to prevent confusion, this surface will be known exclusively

as the failure surface, which defines the boundary of elastic behavior. (The concepts

of the yield surface and the loading surface will be introduced in Chapter 3 to refer

to surfaces which do not follow the rules required of the failure surface.) When the

current stress state of the material lies within the failure surface, the material behaves

purely elastically. The definition of the failure surface will clearly depend on stress

variables, but can also depend upon other variables, such as the plastic strain, or

constant parameters, often called hardening parameters. Detailed discussions of the

variables on which this surface can depend can be found in other texts [(Chen, 1982),

(Lubliner, 1990), (Khan and Huang, 1995)]. The failure surface defined in this thesis

is a function of stress variables, through the invariants discussed in Section 2.1, and

the effective plastic strain, εp, which will be defined in Section 2.3. Thus, the surface

can be expressed as:

F = F (σij, εp) = 0 (2.13)

The failure surface is defined such that, for load states where F < 0, the material

behaves elastically. Once the load path intersects the failure surface, unloading is

defined as returning to a stress state where F < 0. While loading continues, the

stress state must stay on the failure surface with F = 0, although this surface can

move and change shape as εp varies.

There are well documented behaviors of concrete that affect the definition of the

failure surface. Details of the experimental behavior of concrete will be given in

Sections 4.2 through 4.5. From these experiments, it is known that the failure surface

for concrete should be smooth. Further, consider the failure surface in the (ξ, r)

plane, also known as the meridian plane. The shape of the failure surface in this

plane describes how the deviatoric stress, r, that can be supported by the concrete

will change with the current hydrostatic stress, ξ. Recall that the value for the Lode
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angle, θ, varies only between 0◦ and 60◦. The two meridian planes corresponding to

these two extreme values of the Lode angle are called the tensile and compressive

meridians, respectively. The tensile meridian is so named because uniaxial tension

is one of the load cases which corresponds to a Lode angle of 0◦. The compressive

meridian is given that name because uniaxial compression corresponds to a Lode

angle of 60◦. It is known that, in general, concrete can withstand higher deviatoric

stresses when subjected to confinement. There are two forms of confinement: active

and passive. Active confinement is a lateral pressure applied to the concrete. Passive

confinement consists of wrapping a concrete member in a material such as steel rebar,

steel jackets, or fiber reinforced polymer (FRP) jackets, to create a lateral pressure

through restraining the expansion of the concrete under axial loading. Confining the

concrete results in an increase in apparent strength. In addition, when subjected

to loading with θ values near 60◦, it will withstand higher deviatoric stresses than

when loading occurs near a θ value of 0◦. Also, experimental results imply that these

meridians should be convex and curved. Thus, in the model’s meridian planes: the

deviatoric stress increases with ξ; the compressive meridian lies outside the tensile

meridian; and the intersection of the surface in all meridian planes is convex. This is

exemplified later in Figure 3.2. Experiments have shown that concrete does not fail

under purely hydrostatic loading. Therefore, the failure surface should not cross the

hydrostatic axis.

It is also useful to consider experimental results in the (r,θ), or deviatoric, plane.

The failure surface in this plane exhibits a three-fold symmetry. This is due to the

fact that concrete typically behaves as an isotropic material. For small values of ξ,

the failure surface is nearly triangular. As ξ increases, the cross section becomes more

circular. Physically, this means that the dependence on the intermediate principal

stress decreases with increasing confinement.

As previously mentioned, experimental results show that the meridians of the fail-

ure surface should be convex. Theory also supports this requirement, since Drucker’s

stability postulate [(Drucker, 1951), (Drucker, 1960)] requires that the failure surface

itself be convex.
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2.3 Plastic Flow

To properly model concrete, it is necessary to incorporate the phenomenon called

hardening into the model. This allows the failure surface to expand and change shape

as the concrete is plastically loaded. This requires that the failure surface depend on

the plastic strain. Determining the amount of plastic strain that has occurred requires

a concept in plasticity known as plastic flow.

As previously stated, the failure surface defines the boundary of elastic deforma-

tion. When the stress state reaches the failure surface, further loading induces plastic

flow. While, by definition of a failure surface, the stress state must stay on the failure

surface, due to the presence of hardening in the model, the failure surface can move

or change shape due to the plastic flow. However, rules must be established to deter-

mine the behavior of this plastic flow. Similar to the failure surface in stress space, a

plastic potential function, Q, is defined in strain space. While the potential function

is considered to lie in the strain space, the stress and strain variables are commonly

thought of as being interchangeable. First, the plastic strain increment is defined:

dεpij = dλ
∂Q

∂σij
(2.14)

The scalar dλ represents a proportionality coefficient that can change with loading.

The total plastic strain is used to determine the total strain:

εij = εeij + εpij (2.15)

The elastic strain, εeij, is determined in the traditional fashion using a generalized

Hooke’s Law:

σij = De
ijklε

e
kl (2.16)

The variable De
ijkl represents the elastic modulus tensor of the material.

A common approach, known as associated plasticity, is to define the plastic po-

tential function to have the same shape as the current failure surface. As will be
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discussed in Section 3.3, associated plasticity does not correctly predict the behav-

ior of concrete and, therefore, this thesis will use non-associated plasticity with the

plastic potential function having a different shape than the current failure surface.

The loading history of the material should affect the location of the failure surface.

Within this thesis, this is accomplished through the use of the effective plastic strain

increment. The movement of the failure surface will be directly controlled by the

effective plastic strain increment:

dεp =

√
2

3
dεpijdε

p
ij (2.17)

The introduction of the 2
3

multiplier comes from requiring a von Mises type material

model to satisfy the uniaxial compressive stress test. While the model presented in

this thesis shows little resemblance to a von Mises model, this particular definition

for effective plastic strain is often used and was, therefore, selected for use here. The

effective plastic strain increment is used to control the hardening behavior of the

failure surface, as discussed in Section 3.2.

2.4 Consistency Condition

The consistency condition is a mathematical expression of the requirement that the

stress state stay on the failure surface as long as loading continues, even though the

failure surface itself will be moving and changing shape due to hardening.

F + dF = 0 (2.18)

However, recall that the failure surface is defined such that F = 0 is the onset of

plastic flow. Thus, the above equation can be simplified:

dF = 0 (2.19)
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The failure surface in this thesis is written as a function of the stress and the effective

plastic strain. Thus, the above condition can be rewritten a final time:

dF =
∂F

∂σij
dσij +

∂F

∂εp
dεp = 0 (2.20)

This condition will be used in Section 3.5 to determine the tangent modulus tensor.

The tangent modulus tensor is necessary to define the relationship between the stress

and strain increments, as will be discussed in Section 3.5.
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Chapter 3

Model Definition

This model was designed to take into account the change in strength and ductility of

concrete due to confinement. Ductility is a measure of the failure strain relative to the

yield or peak strain. Previous researchers have utilized two different approaches when

modeling these effects. The “effective confinement” approach [(Mander et al., 1988b),

(Ahmad and Shah, 1982), (Sheikh and Uzumeri, 1982)] estimates the amount of

confining pressure that the confinement applies on the concrete. This is typically done

by estimating the stress in the confining material, the effectiveness of the confinement

over the cross section, and other cross sectional properties. It is assumed that this

confining pressure will be constant throughout the loading. The increase in concrete

strength is then determined by considering experimental results of concrete at an

equivalent confining pressure. Therefore, any change in the concrete behavior due

to a change in the confinement pressure cannot be captured with this method. The

“effective confinement” method cannot explicitly include the variation in the stress

throughout the cross section or the change in confinement pressure with loading or

changing confinement material properties. The second approach, which was chosen

for this thesis, is to implicitly model the effect of concrete confinement by including

it in the concrete plasticity theory. In this method, the confinement mechanism

is modeled explicitly in the finite element (FE) model. By explicitly including the

confining material, this method allows any form of confinement (active or passive) and

any confining material (for example, rebar, steel jackets, or fiber reinforced polymer

(FRP) sheets) to be modeled. Interaction between the concrete and the confining
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mechanism is properly accounted for. For example, fracture of a stirrup in a column,

and the subsequent drastic change in the confinement level of the concrete, leading

to a change in the behavior of the concrete itself, can be modeled. Even the effect of

the variable confinement over the cross section of a tied column can be modeled.

The ability to accurately represent the three-dimensional behavior of concrete

is fundamental to the approach taken in this thesis. Once the failure surface is

reached, the current three-dimensional load state of the concrete directly affects the

failure surface location and rate of damage accumulation. Through this approach,

confinement can come not only from the traditional forms of rebar or FRP jackets,

but also from loading in perpendicular directions. By understanding and modeling

the actual three-dimensional behavior of the concrete under true triaxial loading

conditions, the model is more flexible than the “effective confinement” models. It can

be applied to more diverse structures instead of being limited to simple columns with

designated types of confinement.

It is not the intention that all aspects of concrete behavior be included in the model

defined in this thesis. Creep, fracture, shear sliding, strain rate effects, and cyclic

loading behaviors are not built into the present model. Tension strength is also not

included. The specimen is assumed to be pre-cracked, thus the initial tension strength

is set to zero. At a later date, this model could be incorporated into an existing

framework that includes these behaviors [for example, ABAQUS ABAQUS (Inc.) or

ADINA ADINA R&D (Inc.)] to create a complete, versatile concrete model. However,

the scope of this thesis is limited to monotonic compression or bending to create

the backbone curves of concrete. The backbone curve presents the boundary of the

stress versus strain behavior for the concrete. If the specimen were cyclically loaded,

unloading would fall away from the backbone curve, but loading would eventually

cause a return to the backbone curve.

This chapter details the equations defining the concrete model. The plasticity

model presented in Malvar et al. (1994) and improved upon in Malvar et al. (1996)

was used as a starting point for the creation of the model defined in this thesis.

Section 3.1 shows the three loading surfaces that underlie this model. Within this
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thesis, the term loading surface describes a surface that is fixed in the invariant space.

The loading surfaces are a tool to define the location of the failure surface. The

failure surface defines the boundary between elastic and plastic loading, as discussed

in Section 2.2. Section 3.2 defines the current failure surface, which moves between

the three fixed loading surfaces. Section 3.3 discusses the final component of the

concrete model, the flow rule. Section 3.4 summarizes the input parameters required

to utilize the model. Section 3.5 derives the tangent modulus tensor.

3.1 Loading Surfaces

The backbone of the model is three loading surfaces corresponding to the yield, peak,

and residual stress states of the concrete, following Malvar et al. (1994). The load-

ing surfaces are three-dimensional and are fixed in the (ξ, r, θ) invariant space. For

a specimen compressed in only one direction and free in the other two orthogonal

directions (uniaxial compressive loading), the surfaces correspond to the yield, peak,

and residual points as shown in Figure 3.1. The current failure surface travels be-

Figure 3.1: Loading surface locations.

tween these three fixed surfaces based on a damage parameter defined in Section 3.2.

The equations defining the peak and residual loading surfaces are identical, while the

yield loading surface is given a different shape. Values for the parameters controlling

these equations are determined from experimental data for each of the three surfaces.

The shape of each loading surface can be best understood by examining its shape in
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two separate planes, as previously discussed in Section 2.2. The first is the meridian

plane, which is the (ξ, r) plane, and represents lines of constant θ. The second is the

deviatoric plane, which is the (r, θ) plane, and defines the cross section of the failure

surface for constant values of ξ. By examining the behavior in these two planes, the

full three-dimensional shape of the surface can be easily visualized.

The peak and residual loading surfaces are assigned a hyperbolic shape in the

meridian plane as described in Section 3.1.1. This particular shape was chosen because

it presented the best fit to the test data over the largest range of confinement. The

shape of the test data in the meridian plane can be seen in Figures 4.3 and 4.4 for

the peak surface and Figure 4.18 for the residual surface. The yield loading surface

has a different shape in the meridian plane, which will be discussed in Section 3.1.1.

The cross section for all three loading surfaces in the deviatoric plane is defined by

an elliptic interpolation between the two meridians, as introduced by William and

Warnke (1975). This is the most common approach for the deviatoric plane, as it

meets all the requirements for a concrete failure surface discussed in Chapter 2. It

also produces the best fit to the test data shown in Figure 4.11. Section 3.1.2 shows

the equations defining this elliptic shape.

3.1.1 Meridians

The peak and residual loading surfaces are controlled by two hyperbolic meridians

in the (ξ, r), or meridian, plane. They are denoted as the tensile and compressive

meridians based on the value of the Lode angle for that meridian. Recall from Sec-

tion 2.2 that the tensile and compressive meridians correspond to Lode angles of 0◦

and 60◦, respectively. For the peak and residual surfaces, these two meridians have a

hyperbolic shape as described by Equation 3.1 and seen in Figure 3.2.

rt,i
f ′
c

= −1
2
a3,i +

√
a0,i + a1,i

ξ
f ′
c
+ a2,i

(
ξ
f ′
c

)2

+ 1
4
a2

3,i θ = 0◦

rc,i
f ′
c

= −1
2
b3,i +

√
b0,i + b1,i

ξ
f ′
c
+ b2,i

(
ξ
f ′
c

)2

+ 1
4
b23,i θ = 60◦

i = peak, residual

(3.1)
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The concrete compressive strength, f ′c, is defined in the accepted fashion as the com-

pressive strength at 28 days of a uniaxially loaded cylinder, with a height equal to

twice the width (ACI Committee 318, 2000). Note that values of ξ are negative for

Figure 3.2: Shape of the peak and residual tensile and compressive meridians in the
(ξ, r) space. Note that values of ξ are negative for compression.

compression. The invariants ξ and θ are defined in Equations 2.10 and 2.12, respec-

tively. Values of the parameters a0 through a3 and b0 through b3 are determined

from test data in Section 4.2.3 for the peak surface and Section 4.3.3 for the residual

loading surface.

The yield loading surface is not based on hyperbolic meridians. It is well known

that the yield point for concrete is not precisely defined due to the gradual onset of

yielding. However, a single yield surface is designated at the initiation of yielding,

rather than using multiple surfaces to define a yield region. The region of yielding

will be accounted for through the transition of the failure surface from the yield

surface to the peak surface, wherein damage is accumulating but strain softening has

not yet initiated. Strain softening is defined as the region in which the stress in the

material is actually decreasing with an increase in strain. The location of the yield

surface is somewhat arbitrary but should be close to the initial onset of yielding. The

test data show that the peak and residual stresses increase more significantly with

confinement than the yield stress. Whereas the peak and residual stresses increase

hyperbolically with confinement, the yield stress approaches a constant. Thus, the
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following equation is chosen to define the meridians for the yield loading surface:

rt,yield
f ′
c

= −c ξ
f ′
c

(
1− ξ

f ′
c

)−1

θ = 0◦

rc,yield
f ′
c

= −d ξ
f ′
c

(
1− ξ

f ′
c

)−1

θ = 60◦
(3.2)

The shape of the yield tensile and compressive meridians is shown in Figure 3.3.

Figure 3.3: Shape of the yield tensile and compressive meridians in the (ξ, r) space.
Note that values of ξ are negative for compression.

There are eighteen parameters (the a and b series for the peak and residual sur-

faces, and c and d for the yield surface) that control the increase in the failure devia-

toric stress due to confinement. For all three loading surfaces, the difference between

the a and b series of parameters (or c and d for the yield loading surface) accounts

for the change in deviatoric stress caused by the Lode angle passing from 0◦ to 60◦.

It can be seen from test data that the deviatoric stress at yield, peak, or residual is

lower at a Lode angle of 0◦ then at 60◦. Thus, the tensile meridian will always have a

smaller magnitude than the compressive meridian as seen in Figure 3.2. Equations 3.1

and 3.2 account for the increase in the strength of concrete as a result of confinement.

The magnitude of ξ increases with increasing confinement. Through Equations 3.1

and 3.2, higher magnitudes of ξ lead to higher values for r before the failure surface

is reached. The increase in the magnitudes of both ξ and r equate to larger stresses

being supported by the concrete under confinement.
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3.1.2 Elliptic Fit

The shape of the loading surface in the deviatoric plane is chosen as an elliptic curve,

shown in Figure 3.4, defined by a method introduced in William and Warnke (1975).

By using an ellipse, all the conditions of smoothness, symmetry, and convexity dis-

Figure 3.4: Elliptic trace of the failure surface for 0◦ ≤ θ ≤ 60◦. Based on Chen
(1982).

cussed in Chapter 2 are met. The elliptic curve between the two meridians is defined

by Equation 3.3. The resulting full cross section of the loading surface in the devia-

toric plane can be seen in Figure 3.5. Note that in Figure 3.5, the ξ axis is normal to

the cross section plane, which is also the plane of the page, and passes through the

origin.

Ri(ξ, θ) =
2rc,i(r

2
c,i−r2t,i)cosθ+rc,i(2rt,i−rc,i)

√
4(r2c,i−r2t,i)cos2θ+5r2t,i−4rt,irc,i

4(r2c,i−r2t,i)cos2θ+(rc,i−2rt,i)2

i = yield, peak, residual

(3.3)

Thus, each of the three loading surfaces is defined:

Fi = r −Ri(ξ, θ) = 0 i = yield, peak, residual (3.4)
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Figure 3.5: Deviatoric section of the failure surface. Modified from Chen (1982).

The invariant r is defined in Equation 2.11. The value for Ri(ξ, θ) is given by Equa-

tion 3.3 with the corresponding set of parameters for that loading surface (i.e., yield,

peak, or residual).

3.2 Failure Surface

Recall that all three of these loading surfaces are fixed in the (ξ, r, θ) invariant space.

The current failure surface is a linear combination of two of the three surfaces based

on the current damage level, ψ. The value for ψ is integrated along the loading path

of the material in order to represent the current total damage level. The incremental

damage for a given load step is defined by:

dψ =
dεp

φ+ α(| ξ
f ′
c
|γ )

(3.5)

The effective plastic strain increment, dεp, was previously defined in Equation 2.17

and is restated here:

dεp =

√
2

3
dεpijdε

p
ij (3.6)
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The parameter, φ, defines how damage is accumulated at very low levels of stress. The

invariant ξ must be located in the denominator so that large values of confinement,

which result in large values for ξ, result in a decrease in the rate at which damage is

accumulated. The parameters α and γ control how the damage accumulation rate is

affected by confinement. Equation 3.5 is used to account for the increase in ductility

seen in concrete due to increasing levels of confinement. The form of this equation is

based on Malvar et al. (1994); changes were made in order to simplify the model and

to better match the test data.

The location of the current failure surface based on the damage level is controlled

by the variable β:

β =

(
ψ

ψpeak

)κ
e
1−

(
ψ

ψpeak

)κ
(3.7)

The parameter, ψpeak, defines the damage level at which the peak surface is reached.

The parameter, κ, controls the rate at which the failure surface travels from one

loading surface to the next. This functional form of β is based on a form derived by

Smith and Young (1955) to represent the shape of the stress versus strain relationship

for uniaxial compression loading shown in Figure 3.1. The value of β is zero until

the load path intersects the yield loading surface. It then passes from zero to one as

the current failure surface travels from the yield to the peak loading surfaces. The

value of β then decreases from one back to zero as the current failure surface travels

from the peak to the residual loading surface. The current failure surface can now be

found by:

F = 0 = r −

 β (Rpeak(ξ, θ)−Ryield(ξ, θ)) +Ryield(ξ, θ) ψ ≤ ψpeak

β (Rpeak(ξ, θ)−Rresidual(ξ, θ)) +Rresidual(ξ, θ) ψ > ψpeak
(3.8)

The invariant r is defined in Equation 2.11. Ryield(ξ, θ), Rpeak(ξ, θ), and Rresidual(ξ, θ)

are defined in Equation 3.3.
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3.3 Flow Rule

Based on Malvar et al. (1996), a blend of two common flow rules was utilized which

led to good agreement with test data. An associated flow rule for this model results

in plastic volume expansion in excess of that indicated by test data. However, using a

Prandtl-Reuss flow rule (Chen, 1982) does not allow for any plastic volume expansion,

which is also not correct for concrete. Thus, a combination of the two rules is used,

resulting in a nonassociated flow rule for the model.

The potential surface, Q, is therefore defined as the interpolation of two surfaces.

The first surface is equal to the failure surface, as would be defined for associative

flow. The second surface represents a circular cylinder passing through the failure

surface at the point representing the current stress state whose axis lies along the ξ

axis. This definition for Q is implemented into Equation 2.14 to determine the plastic

strain increment. The parameter, ω, controls the amount of plastic volume change

seen in the material. The effect of ω on the direction of plastic flow can be seen in

Figure 3.6.

Figure 3.6: Graphical representation of the direction of plastic flow depending on ω
based on Noble et al. (2005). Note that values of ξ are negative for compression.
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3.4 Model Parameters

The model contains a total of twenty-four parameters that control its behavior. The

values for these parameters are determined using test data in Chapter 4. A summary

of these parameters and their significance is shown in Table 3.1. These twenty-four

Table 3.1: Summary of model parameters.
Name Behavior Controlled Total

a0, a1, a2, a3

x 2 surfaces
shape of the hyperbolic tensile meridian for the peak and
residual loading surfaces

8

b0, b1, b2, b3
x 2 surfaces

shape of the hyperbolic compressive meridian for the
peak and residual loading surfaces

8

c shape of the tensile meridian for the yield loading surface 1
d shape of the compressive meridian for the yield loading

surface
1

φ accumulation of damage at low stress levels 1
α, γ accumulation of damage as a function of confinement 2
ψpeak amount of damage corresponding to the peak stress level

of the concrete
1

κ rate at which the current loading surface passes between
each of the fixed surfaces

1

ω ratio of associated plastic flow to Prandtl-Reuss plastic
flow

1

Total 24

parameters can be fit to the test data for all types of concrete and defined permanently.

Thus, a user of the model does not need to specially tune these parameters to the

individual specimen of concrete being analyzed. However, if the user is intending to

model a specific concrete mix, or a specific type of concrete, the parameters could

be fit using a subset of data matching the concrete that is to be modeled. The

model also requires three input parameters that are specific to the concrete specimen

being modeled: the modulus of elasticity, E; Poisson’s ratio, ν; and the unconfined

compressive strength, f ′c, of the concrete.
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3.5 Tangent Modulus Tensor

Once the plasticity model is completely defined, the consistency condition is used

to derive the tangent modulus tensor, which defines the relationship between the

incremental stress and strain. The consistency condition as derived in Section 2.4

and given in Equation 2.20 is:

dF =
∂F

∂σij
dσij +

∂F

∂εp
dεp = 0 (3.9)

where dεp is given by Equation 3.6 and the elastic stress increment, dσij, is given by:

dσij = De
ijkl (dεkl − dεpkl) (3.10)

De
ijkl is the elastic modulus tensor, dεkl the total strain increment, and dεpkl the plas-

tic strain increment as defined in Section 2.3. The definition of the plastic strain

increment, as given in Equation 2.14, is restated here:

dεpij = dλ
∂Q

∂σij
(3.11)

where Q is defined as discussed in Section 3.3. Substituting Equations 3.10 and 3.11

into Equation 3.9, combined with Equation 3.6 for dεp, yields an equation that can

be solved for dλ:

dλ =

∂F
∂σij

De
ijkldεkl

∂F
∂σmn

De
mnpq

∂Q
∂σpq

− ∂F
∂εp

√
2
3
∂Q
∂σij

∂Q
∂σij

(3.12)

Using Equation 3.12 for dλ with Equation 3.11 yields an expression for dεpij which

can be combined with Equation 3.10 to define the tangent modulus tensor.

dσij = Dtangent
ijkl dεkl =

(
De
ijkl +Dp

ijkl

)
dεkl (3.13)
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where the plastic modulus tensor is given by:

Dp
ijkl = −

De
ijtu

(
∂Q
∂σtu

)(
∂F
∂σrs

)
De
rskl

∂F
∂σmn

De
mnpq

∂Q
∂σpq

− ∂F
∂εp

√
2
3
∂Q
∂σij

∂Q
∂σij

(3.14)

A detailed derivation of this equation can be found in Section 8.5 of Chen (1982).

Expressions for the partial derivatives in Equation 3.14 can be derived from the

equations found in this chapter and are given in Appendix A. The tangent modulus

tensor will be implemented into finite element code in order to utilize the material

model for predicting the behavior of concrete.
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Chapter 4

Model Identification

The twenty-four parameters that define the concrete model must be determined using

test data and common assumptions about concrete behaviors. If the model is to be

used for a specific analysis, the ideal approach would be to fit the model using test

data from the actual concrete being analyzed. However, if the model is to be used for

predictive analysis, the exact behavior of the concrete will likely not be known before

the analysis is performed. For this type of use, the parameters should be determined

for some average concrete behavior that is able to represent typical concretes used in

construction. Thus, a large quantity of test data with different types of confinement

methods, concrete strengths, aggregate sizes, saturation levels, cross-sectional shapes,

loading configurations, age, etc., were used to choose the values for the parameters.

While it is clear that some of these variables will affect the strength and ductility of

concrete, in many cases the values for these variables are not known at the time the

analysis is performed. For example, the aggregate type used in the mix may not be

known at the time of design, but would be known once the structure was constructed.

Another example is the age of concrete, because the designer cannot know when the

concrete will experience an extreme loading event. Therefore, it is necessary to obtain

data with a wide range of values for these variables.

In typical structural applications, it is common to assume that the concrete is pre-

cracked. Thus, for simplicity of the model as defined in this thesis, the pre-cracked

assumption is used. This means that the yield, peak, and residual surfaces must all

pass through the origin in the (ξ, r, θ) invariant space. The yield surface meridians
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are defined such that this criteria is already met. For the peak and residual surfaces,

the pre-cracked assumption is used to define two of the parameters. In the case of all

three surfaces, tension strength could easily be added at a later time, were it required.

This chapter describes how the values of the twenty-four parameters given in Ta-

ble 3.1 were determined. The process for obtaining the parameters c and d, which

define the yield surface, is discussed in Section 4.1. Determining the parameters for

the peak surface—and the extensive test data used in that process—is discussed in

Section 4.2. Similarly, the method for determining the residual surface is outlined

in Section 4.3. The relationship used to define the damage increment, dψ, and the

determination of the value for γ, are discussed in Section 4.4. Finally, the determina-

tion of the parameters relating to the flow rule and the location of the failure surface

are discussed in Section 4.5.

4.1 Yield Surface Definition

The equations that define the yield surface have only two parameters. As discussed

in Section 3.1.1, the precise location of the yield surface is not critical since the onset

of concrete yielding occurs gradually. Thus, the parameter d was determined by

assuming that the yield point of uniaxially loaded concrete is 45% of the peak stress.

This assumed yield point for concrete is commonly used [for example, Malvar et al.

(1994)]. The stress state at uniaxial yield is given by:

σx = σy = 0

σz = (−0.45)f ′c

 at uniaxial yield (4.1)

Equation 4.1 corresponds to the invariant values:

ξ = −0.45f ′
c√

3

r = 0.45
√

2
3
f ′c

θ = 60◦

 at uniaxial yield (4.2)
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Implementing this stress state into Equation 3.4 for the yield surface gives a value for

the parameter d:

d = 0.45

√
2

3

(
1 +

√
3

0.45

)
' 1.78 (4.3)

Similarly, data from Kupfer et al. (1969) indicate that biaxial loading of concrete

results in a 16% increase in concrete stress when a specimen is loaded biaxially.

Thus, it is assumed that a specimen loaded biaxially will yield at 45% of a peak

stress increased by 16%. This corresponds to the stress state given by:

σx = 0

σy = σz = −(0.45)(1.16)f ′c

 at biaxial yield (4.4)

Equation 4.4 corresponds to the invariant values:

ξ = − (2)(0.45)(1.16)f ′
c√

3

r = (0.45)(1.16)
√

2
3
f ′c

θ = 0◦

 at biaxial yield (4.5)

Implementing this stress state into Equation 3.4 for the yield surface gives a value for

the parameter c:

c = (0.45)(1.16)

√
2

3

(
1 +

√
3

(2)(0.45)(1.16)

)
' 1.13 (4.6)

The parameters c and d uniquely define the yield surface. These values for the

parameters, defined in Equations 4.3 and 4.6, respectively, were used to validate the

model (Chapter 6) and predict concrete behavior (Chapter 7).

In summary, a simplified approach was taken to define the yield surface since it is

not critical in predicting the effect of confinement on concrete. The remaining compo-

nents of the model capture the important behaviors of concrete under confinement.

Parameters pertaining to those components will be determined in a more rigorous

fashion in the following sections.
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4.2 Peak Surface Correlation

A total of twenty-one data sets, published in twenty-seven papers, were obtained

to estimate the parameters defining the peak surface. The tests performed in each

of the published studies were intended to study the effects of confinement on the

behavior of concrete. Several of the authors designed their experiments to test the

effects of certain variables on confined concrete behavior. Other papers only test a

single concrete mix at different confinement levels, but can be compared to similar

papers to understand the effect of different concrete variables. With the compilation

of all twenty-one data sets, a large number of concrete variables were taken into

consideration.

Several concrete mix variations were tested in the different papers. The concrete

age at testing varied from 10 to 200 days. Water-cement ratios of 0.26 to 1.25 were

used. Several different additives were considered, including fly ash, silica fume, su-

perplasticizers, air-entraining agents, and water-reducing agents. The type, weight,

surface roughness, and size of the aggregates varied widely throughout the studies.

A maximum coarse aggregate size range of 0.375 to 1.5 inches (9.5 to 38 mm) was

seen throughout the papers, and some mixes did not include any coarse aggregate,

only sand. The proportions of water/cement/sand/aggregate were varied over a large

range. The saturation level was varied from oven dried to 100% saturated and im-

mersed in fluid at the time of testing. The final concrete compressive strength in the

tests varied from 1.1 to 19.1 ksi (7.5 to 132 MPa)

Test setup details created other variables within the tests. Specimen sizes and

shapes ranged from 2.125 x 4.25 inch (54 x 108 mm) cylinders, 5 x 5 x 0.5 inch (125

x 125 x 12.5 mm) plates, and 2.25 x 2.25 x 2.25 inch (57.2 x 57.2 x 57.2 mm) cubes

up to 12 x 14 inch (305 x 350 mm) cylinders, 7.9 x 7.9 x 2 inch (200 x 200 x 50

mm) plates, and 4 x 4 x 4 inch (100 x 100 x 100 mm) cubes. The load paths varied

over Lode angles from 0◦ to 60◦, and failure was approached from multiple different

directions. Two papers detailed experiments with different friction reducing boundary

conditions including dry steel platens, one or two 0.08 in (2 mm) thick resin sheets
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both ungreased and greased, teflon greased teflon pads, and polyester film greased

aluminum pads.

The method of testing was varied utilizing different methods of lateral load ap-

plication including active and passive confinement and biaxial and triaxial loading.

Passive tests included several different types of confining materials including steel re-

bar and glass and carbon fiber reinforced polymer (FRP). The number and strength

of the FRP wraps was varied as well as the diameter, spacing, and yield strength of

the steel rebar.

The compilation of the data represents a wide range of a large number of important

concrete variables, which is critical to representing a wide variety of different concrete

and loading conditions. Details of each paper contributing data used for the peak

surface are discussed in Section 4.2.1. The compilation of the data is shown and

discussed in Section 4.2.2. Finally, the fit for the peak loading surface is discussed in

Section 4.2.3.

4.2.1 Peak Surface Papers

Table B.1 gives a summary of the twenty-one data sets. Discussion of the papers is

divided based on the loading configuration. Though the papers are discussed and

separated by loading configuration, all data were used together for estimating the

parameters. The other variables tested will be highlighted in the discussion of each

individual paper.

Twelve of the data sets used a triaxial pressure vessel, or Hoek cell, for loading.

Details of this type of machine are discussed extensively elsewhere [for example, MTS

Systems Corporation (2004), Hoek and Franklin (1968), and Blanks and McHenry

(1945)]. To summarize, the specimen to be tested is placed in a traditional universal

testing machine for the axial loading. However, the cylinder is enclosed by a fluid-

filled pressure chamber and sheathed in rubber, neoprene, plastic, or similar casing

to prevent the fluid from penetrating the specimen. In this way, the specimen has a

constant, controlled lateral pressure throughout the duration of the loading. In these
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types of tests, hydrostatic pressure means that equal loads are applied axially (by

the universal testing machine) and laterally (by the fluid). A typical example of this

type of machine is shown in Figure 4.1. Use of this type of machine proves an ideal

Figure 4.1: Example of a triaxial pressure vessel. Reproduced from Imran and Pan-
tazopoulou (1996).

way to test the effect of confinement on different types of concrete. For this reason,

the majority of the data sets chosen used this method. These papers are discussed

in Section 4.2.1.1. The limitation of this setup is the inability to have intermediate

values for the Lode angle. The Lode angle is either 0◦ or 60◦, based on whether the

fluid pressure exceeds the axial load being applied.

Four papers were chosen that tested concrete cubes under true triaxial loading,

allowing for the full range of Lode angles to be tested. These researchers utilized

a triaxial device that had the ability to apply loads along each of the three axes

independently. The four true triaxial papers are detailed in Section 4.2.1.2. The

machine utilized for each set of experiments is discussed in the individual papers.

The typical setup was to use three independent hydraulic rams to apply loads in

the three orthogonal directions of the cubic specimen. An example of this type of
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machine is shown in Figure 4.2. The challenge with this type of loading is to ensure the

Figure 4.2: Example of a true triaxial testing machine. Reproduced from Launay and
Gachon (1972a).

proper friction reducing boundary condition. The approach to avoid these boundary

condition effects is discussed in each individual paper.

Three papers were chosen that used passive confinement. Two of these utilized

steel rebar or wire, the third used fiber reinforced composite sheets. Equations were

presented in each paper to estimate lateral pressure as a function of the confine-

ment configuration. Those equations were used in this thesis when calculating the

lateral pressure on the specimen at peak stress. The papers are summarized in Sec-

tion 4.2.1.3.

Finally, two papers were selected that performed traditional biaxial tests. Biaxial

testing has the same challenges as true triaxial loading in regards to minimizing the

effects of the boundary conditions. Biaxial papers are discussed in Section 4.2.1.4.
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4.2.1.1 Peak Surface Papers Utilizing a Triaxial Pressure Vessel

A set of papers were published by Q. Li and F. Ansari detailing their experiments

[(Ansari and Li, 1998), (Li and Ansari, 1999), (Li and Ansari, 2000)]. A modern

triaxial pressure vessel (MTS Systems Corporation, 2004) was used for these tests.

Concrete cylinders were enclosed in a rubber membrane for testing. The confinement

effect of this membrane, leading to an average 7% increase in axial strength, was

taken into account in the results. Three high strength mixes with f ′c values of 6.9,

10.3, and 15.6 ksi (47.7, 71.1, and 107.3 MPa) were tested in Ansari and Li (1998)

and Li and Ansari (1999), while only the two higher strength mixes were tested in Li

and Ansari (2000). A comparison of specimen sizes was performed by using 4 x 8 inch

(100 x 200 mm) cylinders in Ansari and Li (1998) and Li and Ansari (1999), while

3 x 6 inch (76 x 152 mm) cylinders were used in Li and Ansari (2000). Specimens

in Ansari and Li (1998) and Li and Ansari (1999) were tested at an age of 40 ± 7

days. Specimens in Li and Ansari (2000) were tested at an age of 35 ± 7 days. In

both cases, the specimens were moist cured until the day before testing. Specimens

were hydrostatically loaded to the desired lateral confining pressure, then the axial

load was increased to failure. Confinement pressures ranging from 0.18f ′c to 0.93f ′c

were applied. The authors concluded that the influence of confining pressure on

the failure strength of high strength concrete is not as pronounced as with normal

strength concrete. However, there is a large and distinct increase in the failure strain

of high strength concrete due to confinement. Results of the final paper were used to

conclude that high strength concrete has a minor size effect, but it is not necessary

to take it into account when modeling failure surfaces.

Attard and Setunge (1994) and Attard and Setunge (1996) used five different

concrete mixes with three different coarse aggregate types leading to eleven different

cylinder strengths, with f ′c values ranging from 8.4 to 19.1 ksi (58 to 132 MPa). The

4 x 8 inch (100 x 200 mm) cylindrical specimens were moist cured at 100% humidity

until 7 days before testing, then air dried to reduce the influence of pore water pressure

on the results. Most of the specimens were tested at 90 days after casting. Confining
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pressures ranging from 72.5 to 2900 psi (0.5 to 20 MPa) were applied to the cylinders

through the pressurized fluid. The authors concluded that the type of aggregate used

had a significant influence on the elastic modulus, strain at peak stress, and ductility.

Balmer (1949) used the then recently constructed triaxial pressure vessel (Blanks

and McHenry, 1945) for his experiments. The 6 x 12 inch (152 x 305 mm) cylindrical

specimens were all cast from the same mix, fog-cured for 28 or 90 days, then oven

dried for 7 days. The 28 and 90 day specimens had unconfined strengths of 3.6 and

4.0 ksi (25 and 28 MPa), respectively. Confining pressures from 1 to 25 ksi (7 to

172 MPa) were applied through the use of pressurized kerosene. The specimens were

encased in rubber jackets. The author concluded that the increase in strength with

confinement was nonlinear.

Bellamy (1961) used both solid and hollow cylinders in his testing. The cylinders

were 6 x 12 inches (152 x 305 mm) in size, and the hollow cylinders had an inner

diameter of 2.95 inches (74.9 mm). Specimens were fog cured at 100% humidity for

7 days and then stored at 80% humidity until testing at an approximate age of 200

days. The solid cylinders were tested to determine the increase in strength and strain

at failure due to triaxial loading. The hollow cylinders were used to investigate biaxial

loading. Failure always initiated at the inside face of the hollow cylinders where the

concrete was in a biaxial stress state. Both types of cylinders were hydrostatically

loaded to the desired lateral pressure, then the axial load was increased to failure.

The comparison of the two different loading types was used to draw some conclusions

about the effect of the Lode angle. The author concluded that the intermediate

principal stress increased the major principal stress at failure by a minimum of 75%.

Tests performed by Candappa, Setunge, and Sanjayan investigated the complete

stress versus strain curves of high strength concrete [(Candappa et al., 1999), (Can-

dappa et al., 2001)]. The 4 x 8 inch (100 x 200 mm) cylinders were placed in a

thin polyurethane membrane, and the lateral confining pressure was applied through

the use of oil. Three high strength mixes and one normal strength mix were tested.

Cylinders were cured for 28 days in standard bath conditions, then allowed to air

dry for at least 28 days before testing. At the time of testing, cylinder strengths
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(f ′c) of the four mixes were 6.1, 8.8, 10.6, and 15.0 ksi (41.9, 60.6, 73.1, and 103.3

MPa). Confining pressures of 0.6, 1.2, and 1.7 ksi (4, 8, and 12 MPa) were tested.

Specimens were loaded laterally to the desired confinement level and then the axial

load was increased to failure. The authors concluded that the axial strain at peak

stress showed a linear relationship with confinement. They also noted that the effect

of confinement on strains at peak stress appears less for high strength concrete under

higher confinement levels.

Chinn and Zimmerman (1965) used the same triaxial pressure vessel as Balmer

(1949), but specimens were loaded to much higher confining pressures. Four different

loading paths were tested. Type one loading, similar to other papers, was to load

the specimen hydrostatically to the desired confining pressure, then increase the axial

load to failure. Confining pressures for this load type varied from 0.5f ′c to 17.1f ′c.

Type two was to load the specimens hydrostatically to the desired axial pressure and

then increase the confining pressure to failure. Axial loads ranged from 0.0 to 3.7f ′c,

while final lateral pressures ranged from 1.4f ′c to 11.5f ′c. These two loading types were

performed to examine the effect of the two extreme values for the Lode angle at various

confinement levels. Type three was pure hydrostatic loading to the capacity of the

testing machine. Type four was to increase lateral stresses as a constant proportion

of the axial stress until the specimen failed. Final confining pressures for this loading

varied from 2.2f ′c to 12.2f ′c. During testing, the 6 x 12 inch (152 x 305 mm) cylinders

were encased in either a neoprene or polyvinylchloride sheath. Three concrete mixes

were arbitrarily selected with target compressive strengths of 4, 7, and 10 ksi (28, 48,

and 69 MPa). Due to variations in the mixture and casting methods, the actual f ′c

values varied from 3.4 to 10.3 ksi (23 to 71 MPa). Specimens were cured for 7 days and

then oven dried for 24 hours. Due to issues with the testing machine, the specimens

were then stored in the lab for 1 to 10 days before being tested. Both type one and

type two loading showed a linear increase in strength with confinement. However,

the slope of this line was 1.0 for type one and 2.1 for type two. By comparing type

four loading with type one, it was noted that the load path did not affect the final

stress state of the specimen at failure.
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Cordon and Gillespie (1963) undertook an extensive investigation of the effects

of different aggregates and cements on the strength of concrete. Eighteen different

concrete mixes were made for triaxial testing with water-cement ratios of 0.40, 0.55,

and 0.70 with 0.75 and 1.5 inch (19 and 38 mm) maximum coarse aggregate sizes.

Final f ′c values ranged from 5.7 to 6.6 ksi (39 to 46 MPa), with slumps ranging from 1

to 8 inches (25 to 200 mm). The 6 x 12 inch (152 x 305 mm) cylinders were encased in

thin plastic bags and tested at confinement pressures ranging from 0.05f ′c to 1.13f ′c.

The authors concluded that water-cement ratio is not the sole important variable

in establishing the strength of the concrete; the maximum size, surface texture, and

shape of the aggregate are also important.

Duke and Davis (1944) studied the effect of saturation on the creep and triaxial

strength of concrete. Saturated specimens were moist cured for 28 days before testing

and were in direct contact with the water used to apply the lateral loads during

testing. Partially-dry specimens were moist cured for 21 days, moved to 50% humidity

for 5 days, and then coated with a heavy moisture-resistance lacquer for testing.

Saturated specimens had a compressive strength, f ′c, of 5.7 ksi (39 MPa), while the

partially-dry specimens had a compressive strength, f ′c, of 6.6 ksi (46 MPa). Lateral

pressures of 0 to 900 psi (0 to 6 MPa) were applied to the 3 x 6 inch (76 x 152 mm)

cylinders. Test results indicated that while the strength of the saturated specimens

was lower, the strength increase due to lateral confinement was the same for saturated

and partially-dry specimens.

Imran and Pantazopoulou (1996) investigated the effects of saturation, water-

cement ratio, and load path on the triaxial behavior of concrete. Cylinders were

encased in a urethane rubber membrane for testing in the triaxial pressure vessel.

Lateral stresses of 0.05f ′c, 0.10f ′c, 0.20f ′c, 0.40f ′c, 0.70f ′c, and 1.0f ′c were applied to the

2.125 x 4.25 inch (54 x 108 mm) cylinders. Water-cement ratios of 0.40, 0.55, and

0.75 were used. Saturated specimens were moist cured for approximately 3.5 months

before testing, leading to concrete strengths of 3.1, 6.3, and 9.4 ksi (21.2, 43.5, and

64.7 MPa). Dry specimens were also moist cured for approximately 3.5 months, but

then dried at 140◦F (60◦C) for 72 hours before testing. Final concrete strengths of the
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dry specimens at testing were 4.2, 6.9, and 10.6 ksi (28.6, 47.4, and 73.4 MPa). Four

load paths were considered. Type A loading applied the desired confining pressure

while the axial load remained zero and then increased the axial load to failure. Type

B loading alternated between increasing the confining pressure and the axial load in

increments until failure was reached. Type C loading applied a specified confining

pressure and then decreased the confining pressure and increased the axial load in

increments until failure was reached. Type D loading applied the lateral pressure

then cycled the axial load. The authors made several important conclusions. Failure

of the concrete specimens tested triaxially was defined by the initiation of volumetric

expansion. Saturated concrete specimens exhibited lower strength than comparable

dry specimens. This weakening was more pronounced for concretes with a higher

water-cement ratio. Concrete loaded cyclically exhibited a degradation in elastic

modulus which led to some path dependence of the deformation behavior. Cyclically

loaded specimens also exhibited higher volumetric expansion at the same level of axial

deformation. However, the peak strength of the concrete was observed to be path

independent.

Richart, Brandtzaeg, and Brown performed the pioneering work in the study of

the triaxial behavior of concrete in their two papers, Richart et al. (1928) and Richart

et al. (1929). The latter paper tested passively confined columns and will be discussed

in Section 4.2.1.3. The former paper studied the effect of confinement on the strength

and ductility of concrete through the use of a triaxial pressure vessel. Three different

mixes were tested triaxially. The three mixes, with water-cement ratios of 0.64, 0.88,

and 1.25, yielded final f ′c values of 1.1, 2.6, and 3.7 ksi (7.6, 18, and 26 MPa). The

4 x 8 inch (100 x 200 mm) and 4 x 22 inch (100 x 560 mm) cylinders were moist

cured for approximately 27 days, then were typically allowed to air dry about one

day before testing. Lateral confining pressure ranged from 0.07f ′c to 5.71f ′c. Due to

many problems with the testing equipment, the authors were only able to conclude

that the strength of concrete is significantly raised through confinement. However,

the variation with Lode angle was uncertain.

Rosenthal and Glucklich (1970) studied the biaxial behavior of concrete using
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hollow cylinders in a triaxial pressure vessel. The 12 x 14 inch (305 x 350 mm)

cylinders had an inner diameter of 9.8 inches (250 mm). Two concrete mixes, with

water-cement ratios of 0.63 and 0.94, yielded compressive strengths at testing ranging

from 2.8 to 6.9 ksi (20 to 48 MPa). The specimens were stored for 7 days under water,

then for another 75 days at 65% humidity. Testing took place at an age of 90 days.

The authors concluded that the initiation of failure in the concrete is through the

initiation of internal cracking. They noted that by increasing the mean stress, the

concrete was able to delay the onset of internal cracking to a higher load.

Sfer et al. (2002) studied the effect of age on the behavior of concrete under triaxial

compression. One mix of concrete was used with a water-cement ratio of 0.57. The 6

x 12 inch (150 x 300 mm) cylinders were moist cured until tested. The cylinders were

placed in a butyl sleeve, with a neoprene sleeve fitted over it, before being placed in

the pressure vessel. One series of tests was performed at an age of 60 ± 9 days with a

concrete compressive strength at testing of 4.8 ksi (32.8 MPa). The second series of

tests, identical to the first, was performed at an age of 100 ± 15 days with a concrete

compressive strength at testing of 5.6 ksi (38.8 MPa). Lateral pressures ranging from

0.04f ′c to 1.83f ′c were tested. By comparing the results with other tests, the authors

concluded that the results were independent of specimen size. They also noted that

by increasing the confining pressure, the failure of the specimens transitioned from a

brittle to a ductile failure.

4.2.1.2 Peak Surface Papers Utilizing a True Triaxial Testing Machine

Chuan-zhi et al. (1987) studied the effects of different friction reducing boundary con-

ditions on true triaxial testing. Four different friction-reducing pads were compared

in the testing. Two mixes with two different coarse aggregates were used to cast the 4

x 4 x 4 inch (100 x 100 x 100 mm) cubes with concrete strengths ranging from 1.1 to

2.1 ksi (7.5 to 14.3 MPa) . Specimens were tested both biaxially and triaxially, with

lateral confinement pressures ranging from 0.06f ′c to 3.43f ′c for the biaxial loading and

0.10f ′c to 4.20f ′c for the triaxial testing. The authors concluded that the Lode angle

significantly affects the peak strength of the triaxially loaded specimens.
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Lan and Guo (1997) investigated the effect of the load path on the multiaxial

behavior of concrete. One concrete mix was used with a water-cement ratio of 0.71.

The specimens were cast in four batches with f ′c values ranging from 2.2 to 3.8 ksi

(15.0 to 26.5 MPa). The 2.78 x 2.78 x 2.78 inch (70.7 x 70.7 x 70.7 mm) cubes were

moist cured for 28 days, then placed in air until testing. Four biaxial and two triaxial

loading paths were considered. Details of the biaxial load paths can be found in the

cited paper. The first triaxial load path was to hydrostatically load the cube and then

decrease the axial load to failure. The second triaxial load path was to apply the two

lateral loads to the desired value and then increase the axial load to failure. The

authors concluded that, in practice, the biaxial strength of concrete is independent

of the load path. By comparing the triaxial results of these experiments with triaxial

results of other papers which utilized a different load path, the authors concluded

that the triaxial strength of concrete is also load independent.

Launay and Gachon (1972a) and Launay and Gachon (1972b) performed triaxial

tests on a concrete intended for use in a nuclear reactor. The mix for this concrete

used a water-cement ratio of 0.53, creating a final compressive strength of 5.2 ksi (36

MPa). Cubes 2.76 x 2.76 x 2.76 inches (70 x 70 x 70 mm) were cured under water

for 7 days and were then stored in a tight polyethylene sack until testing at 28 days.

Specimens were tested at lateral pressures ranging from 0.20f ′c to 5.64f ′c. The results

included a fairly wide range of both the Lode angle and confinement levels.

Mills and Zimmerman (1970) also studied different friction reducing boundary

conditions under uniaxial testing then utilized the best boundary pads to investigate

the multiaxial behavior of concrete. Three different mixes with water-cement ratios

of 0.49, 0.58, and 0.66 were used to cast the 2.25 x 2.25 x 2.25 inch (57.2 x 57.2 x

57.2 mm) cubes. Final compressive strengths of 3.3, 3.9, and 5.2 ksi (23, 27, and

36 MPa) were reached in the concrete. The cubes were moist cured for 28 days,

then allowed to dry for approximately one month before testing. All stresses were

applied hydrostatically until a particular direction had reached the desired level, at

which point only the other directions continued to increase. This continued until

failure of the specimen. Lateral stresses ranging from 0.02f ′c to 3.14f ′c were applied
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to the cubes. A wide range of Lode angles was tested. The authors noted that the

failure planes appeared in the plane or planes of the minimum principal stress. They

also noted that the effect of the Lode angle was significant and should be taken into

account when creating failure criteria.

4.2.1.3 Peak Surface Papers Utilizing Passive Confinement

Ahmad and Shah (1982) tested spirally-reinforced concrete cylinders. Seven series of

tests were utilized: five with normal weight concrete, all of the same mix; two with

lightweight concrete, each with its own mix. Cylindrical specimens 3 x 6 inches (75 x

150 mm) in size were stored at 100% humidity until 1 to 2 days before testing, when

conditions were changed to 50% humidity. The age of the specimens at testing was

varied from 28 to 200 days so as to have a variety of compressive strengths ranging

from 3.8 to 9.5 ksi (26 to 65 MPa). The spiral pitch, diameter, and yield strength

were varied for the eight different series. The authors concluded that an increase

in compressive strength or use of lightweight aggregate decreases the effectiveness of

confinement.

Toutanji (1999) studied the behavior of concrete columns wrapped in varying levels

of FRP composite sheets. The 3 x 12 inch (76 x 305 mm) cylindrical specimens were

all cast from the same mix, having a water-cement ratio of 0.5. The final compressive

strength of the plain cylinders was 4.5 ksi (30.9 MPa). The cylinders were confined

with two wraps of a unidirectional FRP sheet. Three types of fibers were used for the

sheets, two carbon and one glass, which were bonded with the same type of epoxy

system. The confined cylinders were then loaded in uniaxial compression to failure.

The authors concluded that the compressive strength, maximum strain, and ductility

were all significantly increased through the use of FRP confinement. The increase in

strength of the specimens confined with carbon fiber was higher due to the higher

lateral stresses supported by the carbon fiber, which had a higher elastic modulus

and tensile strength.

Richart et al. (1929) tested concrete passively confined by steel wire or bar. Only

one mix was tested, with a water-cement ratio of 0.87, and all specimens were 10 x
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40 inch (254 x 1016 mm) cylinders. Cylinders were stored in the lab in wet burlap for

24 days to cure. Two days before testing, the burlap was removed and the cylinders

were prepared for testing. Testing variables included only the amount and kind

of spiral reinforcement. Two different sized mild steel drawn wires, three different

sized mild steel rolled bars, and one high strength cable steel stock were used for

reinforcement. Only one pitch was tested for each size of each steel type. Thus, six

different reinforcement ratios were tested. The authors concluded that, within the

range of confinement found by steel spirals, the increase in the strength of concrete

was linear with confinement pressure.

4.2.1.4 Peak Surface Papers Utilizing Biaxial Loading

Calixto (2002) performed biaxial tension-compression loading. Specimens were 5 x

5 x 0.5 inch (125 x 125 x 12.5 mm) plates cast from the same high strength mix.

The plates were cured at 100% humidity for 56 days, then removed and prepared for

testing. The compressive strength of the plates at testing was 8.6 ksi (59.6 MPa), while

comparable cylinder tests showed a compressive strength of 10.8 ksi (74.4 MPa). This

difference was attributed to the lack of confinement existing in the plate specimens.

The author noted that the shape of the strength envelope for high strength concrete

is much more linear than that obtained for normal strength concrete. Further, the

decrease in the compressive strength under biaxial tension-compression is lower for

normal strength concrete than for high strength concrete.

Kupfer et al. (1969) and Kupfer and Gerstle (1973) performed a series of biaxial

tests. Three concrete mixes with water-cement ratios of 0.43, 0.90, and 1.20 were

used. Specimens were moist cured for 7 days, then stored at 65% humidity for 21

days. Final compressive strengths, f ′c values, of 2.77, 4.51, and 8.62 ksi (19.1, 31.1,

and 59.4 MPa) were reached by the concrete. The 7.9 x 7.9 x 2.0 inch (200 x 200

x 50 mm) plates were tested at four different stress ratios: biaxial tension, tension-

compression, and two biaxial compression states. The authors noted an average

increase in strength of 16% when the specimens were loaded with equal compressive

stresses in two principal directions.
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4.2.2 Peak Surface Data

Figures 4.3 and 4.4 show all test data for Lode angles of 0◦ and 60◦ which correspond

to the peak tensile and compressive meridians, respectively. Note that compression

is defined as negative. Plots for each individual set of experiments are shown in

Appendix C.

Figure 4.3: Test data for peak compressive and tensile meridians.

It is observed that some of the data at a Lode angle of 60◦ actually overlap with

data for a Lode angle of 0◦. The multiaxial loading configuration that corresponds

to the strongest state for a concrete specimen is a Lode angle of 60◦. If there exists

some problem within the test setup, the concrete will soften prematurely, and the

experimentally determined peak stress state will lie below the true peak stress state

of the concrete. From all data sets, it is apparent that a Lode angle of 0◦ corresponds

to a lower deviatoric stress, r, for the same hydrostatic stress, ξ. Authors that

investigated the effect of the Lode angle on concrete behavior previously noted this

from individual tests. Thus, a problem with the test setup could cause some data

points for a Lode angle of 60◦ to be smaller and in the range of data for a Lode angle
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Figure 4.4: Test data for peak compressive and tensile meridians: low confinement
region.

of 0◦.

There are several ways in which testing problems can lead to premature concrete

failure. For example, for concrete specimens loaded in a triaxial pressure vessel, failure

often led to puncturing of the protective sheath and penetration of the fluid. However,

there is no way to be certain that the sheath was not ruptured prematurely, leading

to penetration of the fluid. The dramatic increase in pore pressure due to penetration

of the fluid into the pores of the specimen would alter the stress state in the concrete,

similar to the effective stress concept in soils. This penetration of the fluid could cause

premature failure of the specimen. Thus, there may be some ambiguity as to whether

the true peak strength of the concrete was reached. Similarly, for true triaxial testing,

if the boundary conditions are not frictionless, additional stresses introduced at the

boundary could affect failure of the specimen. For these reasons, it is understood

why there exists some data points corresponding to a Lode angle of 60◦ which may

lie somewhat below the compressive meridian. Problems with the testing conditions

will typically cause the specimen to fail at a stress state less than the true peak. This
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is an important point in understanding the scatter seen in the data.

As previously mentioned, it was the intent to gather data with a large variation

in concrete and testing variables. Bringing this large quantity of data together allows

for the investigation into the effects of these variables on concrete behavior. The

effects of the concrete compressive strength, the confinement method, the specimen

size, and the year of testing are explored in the following figures.

Figures 4.5 and 4.6 show the spread in the peak compressive meridian data due

to the value of f ′c for that concrete specimen. It is widely accepted that concrete

Figure 4.5: Change in the effectiveness of confinement with concrete compressive
strength.

uniaxial compressive strength has an influence on the strength increase of concrete

due to confinement. Higher strength concretes supposedly do not have as great of an

increase in strength with confinement as lower strength concretes. This conclusion is

not obvious from the test data compiled for this thesis. For confinement levels with

ξ/f ′c between -2 and 0, the effect of concrete compressive strength is indistinguishable.

At higher confinement levels, it becomes possible to observe some effect of the concrete

compressive strength. However, the effect of concrete compressive strength is small
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Figure 4.6: Change in the effectiveness of confinement with concrete compressive
strength: low confinement region.

relative to the scatter in the data. For this reason, as well as the fact that the intention

of this thesis is to model the conditions of passive confinement—which corresponds

to the lower confinement range—the change in the effectiveness of confinement with

concrete strength was not taken into account in the model presented herein.

Figure 4.7 shows the effect of the type of confinement on the peak compressive

meridian data. The only type of tests that yielded results where ξ/f ′c was less than

-5 were tests utilizing a triaxial pressure vessel. Thus, only the lower confinement

range is shown for this testing variable. There appears to be a small influence of the

testing method that leads to higher strength values in the true triaxial tests than

the other testing methods. This topic has been extensively studied elsewhere [for

example, Gerstle et al. (1980) and Schickert and Winkler (1977)], and this author

will defer to those results as it is outside the scope of this thesis.

Figure 4.8 shows the effect of specimen size on the peak compressive meridian

data. All but six of the data points with ξ/f ′c less than -5 were 6 x 12 inch (152 x

305 mm) cylinders, so the figure is limited to ξ/f ′c between -5 and 0. The size of the



47

Figure 4.7: Change in the effectiveness of confinement with the confinement method:
low confinement region.

Figure 4.8: Change in the effectiveness of confinement with specimen size: low con-
finement region.
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specimen does not appear to alter the effectiveness of confinement on the strength of

the concrete.

An interesting result of bringing this large collection of data together is to consider

the generation in which the experiments were performed. Clearly, the technology of

concrete testing has advanced considerably from the time of the first published paper

in this set of data (Richart et al., 1928). Thus, the data were grouped by the year

in which the tests were published in order to determine if this advance in technology

has changed the apparent behavior of the concrete. Figures 4.9 and 4.10 show the

variation in the results with their year of publication. While the papers published

Figure 4.9: Change in the effectiveness of confinement with year of experiment.

from 1961 to 1970 appear to have the largest scatter, there is no distinguishable trend

in the data. Thus, it is interesting to note that the now primitive techniques utilized

in the 1920s appear to yield quite similar results to tests performed with far more

advanced equipment. Regardless, there is clearly no reason to disregard data due to

the use of antiquated testing techniques.

Plotting the data in the (r, θ) plane requires some data modification due to the

fact that the data for a range of Lode angles are never all in the same ξ plane. Thus,
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Figure 4.10: Change in the effectiveness of confinement with era of experiment: low
confinement region.

to assist in visualizing the shape of the test data, a parabolic fit was performed for

5◦-10◦ increments in the Lode angle, based on the quantity of test data obtained for

that Lode angle range. The fit was then evaluated at a specific value for ξ. In this

way, the general shape of the test data can be understood. Figure 4.11 shows the

shape of the test data in the (r, θ) plane for various levels of ξ. Recall that values of

the Lode angle may only range from 0◦ to 60◦. For the sake of illustration, this range

is copied and reflected to the full 360◦ using the three-fold symmetry of concrete.

4.2.3 Peak Surface Fit

As discussed at the beginning of this chapter, the concrete is assumed to be pre-

cracked. Thus, two of the parameters for the peak loading surface, a0 and b0, are set

to zero. Also, due to the manner in which the loading surface is defined, it is possible

to eliminate a third parameter. Consider the unconfined axial loading of a cylindrical

specimen. The model must be defined so that the peak surface is reached at a stress

state corresponding to the defined compressive strength of the specimen. For this
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Figure 4.11: Shape of the test data in the (r, θ) plane.

case, the triaxial stress state can be defined:

σx = σy = 0

σz = −f ′c

 at uniaxial peak (4.7)

This corresponds to invariant values:

ξ = − f ′
c√
3

r =
√

2
3
f ′c

θ = 60◦

 at uniaxial peak (4.8)

Implementing this stress state into Equation 3.4 for the peak surface gives parameter

b1 in terms of b2 and b3, the remaining compressive meridian parameters:

b1 =
b2√
3
− 2√

3
− b3

√
2

9
(4.9)



51

This leaves only five parameters for the peak surface that must be determined using

the test data: a1, a2, a3, b2, and b3.

A least squares fit of the data was performed to estimate the remaining parameters

for the peak tensile and compressive meridians. Equation 3.4 defines the peak surface.

Since the stress state is on the peak surface when the value of Fpeak is zero, the error

between each data point and the model is defined using the same equation. Thus,

the parameters a1, a2, a3, b2, and b3 for the peak surface were adjusted to minimize

the error, defined as:

error =
n∑
i=1

[ri −Rpeak(ξi, θi)]
2 (4.10)

Using the entire data set, the peak surface parameter values shown in Table 4.1 were

obtained. The fit for these parameters is shown with the test data in Figures 4.12

Table 4.1: Peak surface parameters.
Parameter Value Parameter Value

a0,peak 0.0 b0,peak 0.0
a1,peak -1.3419 b1,peak -3.6425
a2,peak 0.1327 b2,peak 0.1761
a3,peak 0.8889 b3,peak 1.8310

and 4.13.

Note that Equation 4.9 requires that the peak compressive meridian pass through

the uniaxial peak compression point (−
√

1
3
,
√

2
3
)=(−0.58, 0.82) in (ξ, r) space. The

scatter in the data near that point is due to the fact that the compressive strength of

concrete often varies from specimen to specimen. While the compressive strength of

the batch is given at a certain value, different specimens will fail at a different point

than defined in Equation 4.8 because of this variation in f ′c.

It can be seen from the fit that peak compressive meridian data at lower confine-

ment are being somewhat overestimated in this fit. There are only two parameters

used to fit the peak compressive meridian: b2 and b3. Thus, it may be the case that

the data at higher confinement levels are responsible for the fit being poorer at lower

confinement levels. Since the scope of this thesis involves modeling the behavior of

passively confined columns, a second fit to the test data was made to obtain better
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Figure 4.12: Peak compressive and tensile meridians for fit of all data.

Figure 4.13: Peak compressive and tensile meridians for fit of all data: low confine-
ment region.
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correlation in the lower confinement range. However, if the intent is to model the

complete triaxial load range of concrete, this first fit represents the best choice of

parameters.

For the second fit, the data were limited to the subset having a ξ/f ′c value be-

tween -3.5 and 0.0. This range was chosen as it represents the largest range of values

for steel or composite confined columns commonly used for civil engineering applica-

tions. All types of loading were used in this fit, not just passive confinement data.

The reason for this is due to the physical mechanism being represented. True triaxial

loading and triaxial pressure vessels both have a more even stress distribution in the

specimen. These testing methods directly measure the lateral stress on the specimen.

The passive confinement data uses an assumed formula (given in each individual pa-

per) to calculate an effective lateral stress created by the confinement. However, it

is understood that this lateral stress distribution is not evenly distributed over the

height of the cylinder due to the fact that the confinement (in the case of steel rebar,

for example) is not evenly distributed. Thus, non-passive test data more accurately

represent the physical mechanism causing the strength increase through confinement.

The finite element model itself will handle the unevenness in the lateral stress distri-

bution. For this reason, the entire set of data for low confinement was utilized for

this second fit.

Parameter estimates resulting from the second fit are defined in Table 4.2. These

values for the parameters were used to validate the model (Chapter 6) and predict

concrete behavior (Chapter 7). A comparison of the peak tensile and compressive

Table 4.2: Peak surface parameters for low confinement range.
Parameter Value Parameter Value

a0,peak 0.0 b0,peak 0.0
a1,peak -1.4344 b1,peak -1.9711
a2,peak 0.0924 b2,peak 0.3103
a3,peak 1.1005 b3,peak 0.7039

meridians for both fits is shown in Figures 4.14 and 4.15. The second fit reduces

the overestimation of the data in the low confinement range. However, the peak
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Figure 4.14: Comparison of peak compressive and tensile meridians for two different
fits.

Figure 4.15: Comparison of peak compressive and tensile meridians for two different
fits: low confinement region.
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compressive meridian still does not lie near the middle of the data. One reason is

the requirement that the peak compressive meridian pass through the uniaxial peak

point (−0.58, 0.82) as previously discussed. This is, however, a valid requirement to

enforce. Also, the model assumed a hyperbolic shape of the meridian with only two

remaining parameters to fit to the data. However, the fact that the peak compressive

meridian does not pass through the middle of the data is not considered a problem

for this case. As discussed in Section 4.2.2, peak compressive meridian data points

that lie close to, or within, the peak tensile meridian data points are clearly suspect

since they may be due to problems with the test setup. For these reasons, a slight

overestimation of the peak compressive meridian data is considered acceptable.

The peak compressive meridians for the two different fits are compared to two

existing models in Figures 4.16 and 4.17. One of the two existing models is discussed

in Malvar et al. (1994) and Malvar et al. (1996) and the other in ANATECH Corp.

(1998). It is clear that a hyperbola represents the better fit to data when considering

both high and low confinement ranges. Although a separate fit was utilized in this

thesis to better fit the lower confinement range, a hyperbolic shape is still a superior

choice to the two models shown.

4.3 Residual Surface Correlation

Papers showing the full stress versus strain behavior of multiaxially loaded concrete

are somewhat rare. Few papers extend to a large enough strain to be useable in

determining the residual stress of the concrete. Thus, only five sets of experiments

were found to determine the parameters defining the residual surface. Test data from

Ansari and Li (1998), Attard and Setunge (1994), and Attard and Setunge (1996),

used for the peak surface, were also able to be utilized for determining the residual

surface parameters. Details of those papers are discussed in Section 4.2.1.1. An

additional three data sets were obtained from Jamet et al. (1984), van Mier (1984),

and Xie et al. (1995) to be used in determining the residual surface parameters.

These three papers will be discussed in Section 4.3.1. The compilation of the residual
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Figure 4.16: Comparison of peak compressive meridian to existing models.

Figure 4.17: Comparison of peak compressive meridian to existing models: low con-
finement region.
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surface data is shown and discussed in Section 4.3.2. Last, the method for choosing

the parameters defining the residual surface is discussed in Section 4.3.3.

4.3.1 Residual Surface Papers

Four of the five experiments used a triaxial pressure vessel as previously described

in Section 4.2.1. The fifth used a true triaxial setup, also described in Section 4.2.1.

Thus, only one of these experiments had test data for a Lode angle other than 60◦.

However, a fairly large range of some important variables was obtained in the limited

number of papers found. Concrete compressive strengths from 4.2 to 19.1 ksi (29 to

132 MPa) were tested. Cylinder sizes from 2.19 x 4.33 inches (55.5 x 110 mm) to 4 x

8 inches (100 x 200 mm) and cubes of 4 x 4 x 4 inches (100 x 100 x 100 mm) were all

considered in the tests. While the variable range was not nearly as great as that of

the peak surface data, a reasonable amount of variation in the testing variables was

seen in the five sets utilized for the residual surface. A summary of these five sets of

test data can be found in Table D.1.

Jamet et al. (1984) performed a limited set of experiments up to strain levels of

10%, with the focus on measuring the axial and lateral deformation patterns. One

mix of normal strength concrete, with a water-cement ratio of 0.53, was used to create

the specimens. The final concrete compressive strength of the 4.33 x 8.66 inch (110

x 220 mm) cylinders was 4.2 ksi (29 MPa). Specimens were sealed and stored in the

molds for 48 hours, then removed and stored for 30 days at 65% relative humidity.

At this point, some amount of grinding was performed to ensure true parallelism

between all faces. Finally, the cylinders were again stored at 65% relative humidity

for 180 more days before being removed for testing. A triaxial pressure vessel was

utilized to apply confining pressures of 0.4, 1.5, 3.6, 7.3, and 14.5 ksi (3, 10, 25, 50,

and 100 MPa). Unfortunately, tests employing confining pressures of 7.3 and 14.5

ksi (50 and 100 MPa) were terminated before the residual stress was reached and so

could not be used for determining the residual surface parameters. During testing,

the cylinders were jacketed in rubber sleeves to prevent penetration of the confining
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fluid. Specimens were first loaded hydrostatically until the desired confining pressure

was reached. The axial load was then increased to a total axial strain of 10%. The

authors concluded that, as confining pressures are increased, concrete transitions from

drastic strain softening behavior to that of classical ductility. It was also determined

that the lateral strains achieved by the cylinders were strongly dependent upon the

magnitude of the confining pressure.

van Mier (1984) studied the strain softening behavior of concrete under multiaxial

loading conditions. A triaxial testing machine was constructed for this purpose.

Details of this machine can be found in the cited paper. The machine allowed for

independent loading of the specimens in three orthogonal directions. One mix of

concrete with a water-cement ratio of 0.50 was used to create all of the 4 inch (100

mm) cubes. Specimens were cast in 28 x 5 x 5 inch (700 x 135 x 135 mm) prisms.

The prisms were stored under water for 28 days and then removed and cut into 4.1

inch (104 mm) cubes. These cubes were then ground flat to the desired size to ensure

that all faces were parallel. The final specimens were then stored in plastic bags

at room temperature until testing. The age at testing ranged from 71 to 252 days,

leading to a range of concrete compressive strengths of 5.8 to 7.4 ksi (39.9 to 51.0

MPa). Specimens were tested in a variety of loading paths: uniaxial, biaxial, triaxial,

constant stress-ratio, constant strain-ratio, etc. The author found that the casting

direction of the concrete had a significant effect on the ductility of the specimen under

uniaxial loading. Casting direction refers to whether the axially loaded direction was

horizontal or vertical when the specimen was originally cast. Two different failure

mechanisms were observed for Lode angles near 60◦ and near 0◦. For Lode angles

near 60◦, corresponding to the compressive meridian, fracture occurred in a large

number of inclined planes. This type of failure corresponded to a more ductile strain

softening behavior. Lode angles near 0◦, corresponding to the tensile meridian, showed

a planar fracture with failure occurring mainly in one direction. This type of failure

showed a more brittle strain softening behavior. The author noted that failure along

the compressive meridian showed a significant increase in ductility with confining

pressure, while failures along the tensile meridian were not as significantly influenced
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by an increase in confining pressure.

Xie et al. (1995) studied the triaxial behavior of high strength concretes. Three

different concrete mixes were used with water-cement ratios of 0.321, 0.283, and 0.216

for compressive strengths at testing of 8.7, 13.4, and 17.3 ksi (60.2, 92.2, and 119 MPa)

which were tested at 29, 35, and 39 days, respectively. The 2.19 x 4.33 inch (55.5 x

110 mm) cylinders were encased in a polyurethane membrane for testing in a modified

Hoek cell. Eleven different confining pressures were tested for each concrete strength

ranging from 0.01f ′c to 0.50f ′c. The authors concluded that high strength concrete is

less ductile than normal strength concrete. However, like normal strength, increasing

confinement leads to an increase in the maximum and residual compressive strengths

and improves the ductility.

4.3.2 Residual Surface Data

Similar to the yield stress, the residual stress is a somewhat ambiguous quantity.

Following the definition laid out in Xie et al. (1995), the residual stress was defined

as the point at which the magnitude of the descending slope of the stress-strain curve

is less than 2% of the initial elastic slope of the curve. This definition resulted in much

of the test data being thrown out. Specifically, all data for Lode angles other than

60◦ (found only in van Mier (1984)) did not meet this requirement. Figure 4.18 shows

the remaining test data, all of which lie on the compressive meridian. It is difficult

to see the effect of different variables with such a small set of data. It is interesting

to note that the data from van Mier (1984), Ansari and Li (1998), and Jamet et al.

(1984) appear to lie on the same curve, while Xie et al. (1995), Attard and Setunge

(1994), and Attard and Setunge (1996) appear to lie on a different curve. There is

nothing obvious to differentiate these two sets of experimental data that would lead

to a different behavior from each other. It is clear that more testing is necessary to

determine the effect of different variables on the residual stress of concrete.
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Figure 4.18: Test data for residual compressive meridian.

4.3.3 Residual Surface Fit

As discussed at the beginning of this chapter, due to the concrete being defined as

pre-cracked, parameters a0 and b0 for the residual surface are set to zero. Due to lack

of data for Lode angles other than 60◦, the ratios of the tensile meridian parameters

to the compressive meridian parameters for the residual surface were set equal to that

of the peak surface. Thus, it was only necessary to determine the parameters for the

compressive meridian.

The parameters defining the compressive meridian of the residual surface were

determined by performing a least squares fit to the previously discussed test data.

Similar to Equation 4.10, the least squares error minimized for the residual compres-

sive meridian is defined by:

error =
n∑
i=1

[ri − rc,residual]
2 (4.11)

The definition of rc,residual is given by Equation 3.1.
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Determining the parameters using only this fit created a residual surface that

intersects the uniaxial load path in the (ξ, r) space at two locations, as shown in

Figure 4.19. This is physically incorrect. Under uniaxial loading, the specimen will

Figure 4.19: Fit for residual compressive meridian with no constraints on the param-
eters.

soften until the load path intersects the residual surface. For this loading case, it

should be possible for the specimen to soften down to a zero stress state. However,

the model is defined such that the stress state stops changing when the residual surface

is reached. Thus, the residual surface must only intersect the uniaxial load path at

the origin. Therefore, it was necessary to introduce a constraint that the slope of the

residual surface be tangent to the uniaxial load path at the origin of the (ξ, r) space.

From Equation 4.8, it can be seen that the slope of the uniaxial load path (which is

a line in (ξ, r) space) is:

r = −ξ
√

2 (4.12)

By taking the derivative of Equation 3.1 and setting the derivative equal to −
√

2 at
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ξ = 0, we can eliminate the parameter b3.

b3 = − b1√
2

(4.13)

Using this constraint, the parameters defining the residual compressive meridian were

determined through a least squares fit. With the ratio of the tensile to compressive

meridian parameters determined by the peak surface parameters given in Table 4.2,

the parameters for the tensile meridian of the residual surface were calculated. The

Table 4.3: Residual surface parameters.
Parameter Value Parameter Value

a0,residual 0.0 b0,residual 0.0
a1,residual -0.9764 b1,residual -1.3417
a2,residual 0.0565 b2,residual 0.1898
a3,residual 1.4833 b3,residual 0.9847

values for the parameters, defined in Table 4.3, were used to validate the model

(Chapter 6) and predict concrete behavior (Chapter 7). The compressive meridian

for the residual surface is shown along with the test data in Figure 4.20.

4.4 Determination of the Equation for the Damage

Increment

The intent of this thesis is to model the increase in the strength and ductility of

concrete due to confinement. The effect on strength is handled by the shape of the

loading surfaces discussed in Sections 4.1, 4.2, and 4.3. The variable that affects

ductility in the model is the damage parameter, ψ. The damage parameter defines

the location of the failure surface as a function of the strain state. However, the

damage parameter is simply the sum of the damage increments, dψ, over the load

path. Thus, ductility will be controlled by the definition of the damage increment,

dψ.

The magnitude of the damage increment, dψ, (for a given load increment) as a
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Figure 4.20: Final fit for the residual surface compressive meridian.

function of confinement, accounts for the increase in ductility due to confinement. The

invariant ξ, defined in Equation 2.10, is representative of the amount of confinement

present in the material, as it is a measure of the hydrostatic state of stress. Therefore,

it is desirable to determine the nature of the relationship between the increment in

damage, dψ, and the invariant ξ.

The functional relationship between ξ and dψ cannot be seen directly from test

data. Since the damage level is an artificially created quantity, it cannot be measured

by concrete testing. Thus, it is necessary to find a state where the damage level is

a known value and a related, measurable quantity is also at a known value. This

occurs at the peak stress of the concrete. At the peak stress, as previously defined in

Equation 3.8, ψ is equal to ψpeak, and the strain at peak stress, εpeak, can be easily

determined from the test data. It is also necessary that ψpeak and εpeak be related

if the assumption is to be made that they vary with ξ in a similar way. The model

has been defined (following traditional plasticity theory) such that the increment in

damage, dψ, is directly proportional to the normalized plastic strain increment, dεp

(through a relationship that involves ξ, see Equation 3.5). Thus, dψ is going to be a
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function of the strain at peak stress, since εpeak contributes to dεp. A variable that

affects εpeak will affect dψ in the same way. Therefore, to determine the relationship

between the damage increment and the stress invariant ξ, the variation of εpeak will

be examined for different confinement levels and concrete compressive strengths. The

functional form of the relationship between dψ and ξ is chosen as the same form

between εpeak and ξ.

The relationship between the damage increment, dψ, and the plastic strain in-

crement, dεpij, will be determined by observing the relationship between the strain

at peak stress and the confinement level. Data from Attard and Setunge (1994),

Attard and Setunge (1996), Candappa et al. (1999), Candappa et al. (2001), Smith

et al. (1989), and Xie et al. (1995) were utilized to explore this relationship. All of

the data were used for previous parameter determination except Smith et al. (1989).

Discussion of the other papers can be found in Sections 4.2.1.1 and 4.3.1. Details of

the experiments performed by Smith et al. (1989) will be discussed in Section 4.4.1.

This collection of data will be explored in Section 4.4.2, and the final relationship for

dψ and determination for the value of γ will also be discussed.

4.4.1 Papers Used to Determine the Equation for the Dam-

age Increment

Details of the experiments from Attard and Setunge (1994), Attard and Setunge

(1996), Candappa et al. (1999), and Candappa et al. (2001) are discussed in Sec-

tion 4.2.1.1. Discussion of the experiments performed in Xie et al. (1995) is in Sec-

tion 4.3.1.

Smith et al. (1989) performed a set of experiments to determine the post-peak

behavior of concrete under triaxial loading. A triaxial pressure vessel was used to

apply lateral confinement to the 2.125 x 4.250 inch (54 x 108 mm) cylinders. The

specimens were encased in a polyurethane membrane during testing. One mix of

concrete was created to cast thirty-five of the specimens. A water-cement ratio of 0.83

was used for a final compressive strength of 5.0 ksi (34.5 MPa). Blocks of concrete
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6 x 6 x 10 inch (152 x 152 x 254 mm) were cast and aged for eight months. At that

time, the blocks were removed and the cylinders cored out and used for testing. An

additional sixteen specimens were furnished by the Waterways Experiment Station

that had a final compressive strength of 6.4 ksi (44.1 MPa). However, the results

from the testing of these specimens were not used in this thesis for the determination

of failure surface and flow rule parameters due to the fact that they were cyclically

loaded. The 5.0 ksi (34.5 MPa) specimens were loaded laterally up to the desired

confining pressure. The axial load was then increased to an axial strain level of 5%.

The authors concluded that increasing confining pressure leads to a transition from

brittle to ductile post-peak behavior. They further concluded that the plastic strain

increments at peak were not compatible with an associated flow rule. The volume

dilatation was somewhat less than an associated flow rule would predict. Last, the

general stress versus strain behavior of different strength concretes is similar, but with

a trend of increasing brittleness with increasing strength.

4.4.2 Discussion of Test Data Used to Determine the Equa-

tion for the Damage Increment

Several authors noted that the change in ductility with confinement is different for

normal- versus high-strength concrete. This was discussed in Sections 4.2.1, 4.3.1,

and 4.4.1. Therefore, the effect of the concrete compressive strength on the axial

strain at peak stress must also be explored if its effect is to be taken into account in

the model. It is necessary to understand how both the concrete compressive strength

and the confinement level change the strain at peak stress.

The way in which the concrete compressive strength changes the behavior of the

strain at peak stress is examined by considering the unconfined loading case. Fig-

ure 4.21 shows the axial strain at peak unconfined stress plotted against the concrete

compressive strength. No correlation appears between these two quantities. Thus,

it is assumed that the concrete compressive strength only affects how confinement

changes the strain at peak stress, but it does not directly affect the strain at peak
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Figure 4.21: Variation of strain at unconfined peak stress with concrete compressive
strength, f ′c.

stress itself. In order to examine this effect, it is necessary to explore the change in

strain at peak confined stress for various confinement levels and concrete compressive

strength.

It is clear from Figure 4.21 that different concretes have a different strain at uncon-

fined peak stress. To study only the change in strain at peak stress with confinement,

the ratio of the strain at peak stress for the confined case to the strain at peak stress

for the unconfined case is observed. This allows the variation in the unconfined strain

at peak stress to be normalized out of the behavior.

Figure 4.22 shows the ratio of the confined to unconfined strain at peak stress

plotted against the invariant ξ. It can be seen that a roughly linear relationship

between the strain ratio and ξ exists. The slope of this line appears to vary with the

compressive strength of the concrete.

Malvar et al. (1994) proposed that the relationship between the damage parameter
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Figure 4.22: Ratio of confined strain to unconfined strain at peak stress plotted versus
ξ.

and confinement be defined by:

dψ =
dεp

rf

(
1 + | p

ft
|
)b (4.14)

The form of this equation was used as a starting point for the relationship for dψ. The

parameters rf and b were to be estimated for their model. This thesis replaces the

quantity represented by the hydrostatic pressure, p, with the invariant ξ. Further, the

tension strength of concrete, ft, is known to vary as the square root of the concrete

compressive strength f ′c (Nilson, 1997). Thus, it is implied that by normalizing the

invariant ξ with the square root of the concrete compressive strength, the variation

with f ′c should disappear.

Figure 4.23 shows the ratio of confined to unconfined strain at peak stress plotted

against the ratio of ξ to the square root of the concrete compressive strength. Scatter

still exists within the data due to the concrete compressive strength. Thus, this

relationship is not adequate to determine how the peak strain should vary with both
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Figure 4.23: Ratio of confined strain to unconfined strain at peak stress plotted versus
ξ/
√
f ′c.

the invariant ξ and f ′c.

The equations for the loading surfaces of this model predict that the shape of

the surface will scale with the ratio of ξ to the concrete compressive strength itself.

Further, the linear relationship shown in Figure 4.22, with only the slope of the line

varying with f ′c, implies that the increase in strain at peak stress should scale with

ξ/f ′c. Thus, the ratio of confined to unconfined strain at peak stress was plotted

against the ratio of ξ to the concrete compressive strength in Figure 4.24. While

scatter still exists in the data, there is no longer a distinguishable trend in this scatter

based on the concrete compressive strength. Thus, it is defined that the damage level

will vary with the ratio of ξ to f ′c.

By comparing Figure 4.22 to Figure 4.24, the behavior no longer appears linear.

A power law was chosen to represent this relationship. A least squares fit of the power

law is shown with the data in Figure 4.25. The Smith et al. (1989) data point plotted

at the extreme left of all the data points may appear to call into question the validity

of the power law fit. However, examining this data point relative to the others in
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Figure 4.24: Ratio of confined strain to unconfined strain at peak stress plotted versus
ξ/f ′c.

Figure 4.25: Power law fit for ratio of confined strain to unconfined strain at peak
stress versus ξ/f ′c.
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his experiments, it very quickly becomes apparent that this is an anomalously low

value for the strain at peak stress. Consider the raw data for the eight data points

from Smith et al. (1989) shown in Table 4.4. From the trend in the εpeak values, it is

Table 4.4: Smith et al. (1989) raw data points.
σconfining (ksi) σpeak (ksi) εpeak

0.0 -5.0 -0.003
-0.1 -6.0 -0.004
-0.5 -8.4 -0.009
-1.0 -11.4 -0.011
-2.0 -15.6 -0.023
-3.0 -18.8 -0.029
-4.0 -22.4 -0.038
-5.0 -24.3 -0.033

expected that the strain at peak stress for the final load point would be near -0.047,

which corresponds to a ratio of confined to unconfined strain at peak stress of 15.7.

The power law fit predicts a ratio of 14.7. Thus, while this data point appears to call

into question the power law fit, it can be disregarded.

The equation describing the power law as fit to the data is given by:

εpeak,confined
εpeak,unconfined

= 1.3276

(
|ξ|
f ′c

)1.7199

+
(
1− (1.3276)3−

1.7199
2

)
(4.15)

The constant term ensures that, for the uniaxial case, the strain ratio takes the value

of one. The important parts of this equation are the power law relationship and

the value of the power determined from the fit. The constants will not carry over

to the relationship between dψ and ξ/f ′c; ψpeak is the integral of dψ up to the peak

stress, whereas the axial strain at peak stress is the integral of the axial strain. Thus,

the constants will be combined with other coefficients in the integration of dεp when

calculating the relationship between dψ and ξ/f ′c. These coefficients are represented

by the introduction of the parameters φ and α. The final equation for dψ, given by

Equation 3.5, is also shown in Equation 4.16. The power law functional form was used

to determine the form of Equation 3.5, and the value of the power in Equation 4.15

is an estimate of γ in Equation 3.5. This value for γ was used to validate the model
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(Chapter 6) and predict concrete behavior (Chapter 7).

dψ =
dεp

φ+ α(| ξ
f ′
c
|γ )

(4.16)

4.5 Correlation of the Failure Surface and Flow

Rule Parameters

Four of the five remaining parameters, φ, α, ψpeak, and κ, relate to the definition of

the failure surface. The final parameter, ω, is used in the definition of the flow rule.

Due to the nature of these parameters, it is not possible to directly measure them

through test data. To further complicate the estimation of these parameters, their

values are inter-related. More than one parameter can affect a particular concrete

behavior in a similar way, and the nature of this behavior can change with the values

of other parameters.

The process chosen to determine values for these parameters was to observe their

effect on the shape of the stress versus strain curve of the concrete under different

loadings, and visually determine the best choices for these parameters. Due to the

somewhat subjective and iterative nature of this process, a limited set of test data

representative of typical concrete behavior was chosen to estimate these parameters.

The experiments published in Smith et al. (1989), Candappa et al. (1999), and Can-

dappa et al. (2001) were utilized for the selection of the remaining five parameters.

Test data from Candappa et al. (1999) and Candappa et al. (2001) were discussed in

Section 4.2.1; Smith et al. (1989) were discussed in Section 4.4.1.

These two sets were chosen primarily because of the large strain values to which the

experiments were run, and the recording of both axial and lateral strains throughout

all experiments. Both sets contained lateral loading magnitudes in the range expected

from modern passive confinement methods. While testing was performed outside of

the expected range, only data with confinement pressures that could be reached by

passive confinement were used.
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An additional reason these two sets were chosen was the values of their concrete

compressive strengths. As mentioned in Sections 4.2.1, 4.3.1, and 4.4.1, test data

show that the increase in the ductility and strength of concrete brought about by

confinement is different for normal- versus high-strength concrete. The current model

does not explicitly take this effect into account. Thus, it was decided that these

parameters would be chosen to best represent normal-strength concrete due to it

being most prevalent in modern construction. If modeling of high-strength concrete is

desirable, these parameters could instead be determined using high-strength concrete,

or the model could be altered to include the effects of high- versus normal-strength

concrete at a later time. However, within this thesis, the parameters were chosen

based on the results of Smith et al. (1989) for concrete with a compressive strength

of 5.0 ksi (34.5 MPa) and the results of Candappa et al. (1999) and Candappa et al.

(2001) for concrete with a compressive strength of 6.1 ksi (41.9 MPa). Test data to

large strains containing both axial and lateral strains for concrete strengths of 3.0 to

4.0 ksi (21 to 28 MPa) could not be found, so these two were selected as the closest

available data to normal-strength concrete.

Results of the 5.0 ksi (34.5 MPa) concrete tested in Smith et al. (1989) are shown

in Figure 4.26. Results of the 6.1 ksi (41.9 MPa) concrete tested in Candappa et al.

(1999) and Candappa et al. (2001) are shown in Figure 4.27. Note that neither of

these data sets were used in determining the residual surface. This is due to the fact

that, with one exception, none of the curves extended to the point where the final

slope was less than 2% of the initial slope of the curve. However, due to the fact that

the parameters being determined in this section affect the entire stress versus strain

curve, not simply the post-peak behavior, it is not critical that the residual stress be

reached in order to properly estimate these five parameters.

The curves that actually met the residual surface criterion are the curves from

Smith et al. (1989) for a confining pressure of 1000 psi (6.9 MPa). From Figure 4.26,

it can be seen that those particular curves are actually exhibiting strain hardening

at their final behavior, which is not expected or typically seen for concrete in that

area of the curve. Thus, the residual stress may not have actually been reached, as
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Figure 4.26: Test data for 5.0 ksi (34.5 MPa) concrete from Smith et al. (1989).

Figure 4.27: Test data for 6.1 ksi (41.9 MPa) concrete from Candappa et al. (1999)
and Candappa et al. (2001).
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there may be some problem with that particular specimen. Regardless, the general

trend of both of these sets of data fall well in line with the majority of concrete data.

Therefore, it is acceptable to choose these as being representative of the change in

the stress versus strain curve with confinement.

The stress versus strain curves predicted by the model were generated using a spe-

cial case of the procedure detailed in Chapter 5. A single solid element was used, with

the prescribed pressure applied laterally to the element. The axial displacement was

then monotonically increased until the axial strain reached that of the corresponding

data.

Using the two data sets, the final five parameters were determined by visually

matching the model to the data. The values for these last five parameters are given

in Table 4.5. The precision of these variables is limited due to the method by which

Table 4.5: Summary of failure surface and flow rule parameter values.
Parameter Value Parameter Value

φ 0.5 α 10.
ψpeak 0.6× 10−3 κ 0.6
ω 0.5

they were estimated. A comparison of the finalized model to the Smith et al. (1989)

data is shown in Figure 4.28. Similarly, Candappa et al. (1999) and Candappa et al.

(2001) data are compared to the final model in Figure 4.29.

The model appears to predict reasonably well results at low confining pressures.

At very low levels of confinement [below 500 psi (3.4 MPa) for Smith et al. (1989)],

strain softening may be a bit too rapid, but at slightly higher levels, the model

follows the data more closely. The model is quite successful at predicting the data

from Candappa et al. (1999) and Candappa et al. (2001). The results for Smith et al.

(1989) are not as close. However, the model does well in the lower confinement range.

The ratio of lateral strain to axial strain appears to be working well in the model,

which is an important component if passive confinement is to be correctly modeled.

Overall, the model is able to predict the behavior of confined concrete throughout

the entire loading history.
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Figure 4.28: Comparison of model to data from Smith et al. (1989).

Figure 4.29: Comparison of model to data from Candappa et al. (1999) and Candappa
et al. (2001).
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4.6 Summary of Parameters

Table 4.6 shows the final values for the twenty-four parameters of the concrete plas-

ticity model. These values were implemented into a finite element program to predict

the behavior of confined concrete.

Table 4.6: Summary of model parameter values.
Parameter Value Parameter Value

c 1.1333 d 1.7816
a0,peak 0.0 b0,peak 0.0
a1,peak -1.4344 b1,peak -1.9711
a2,peak 0.0924 b2,peak 0.3103
a3,peak 1.1005 b3,peak 0.7039
a0,residual 0.0 b0,residual 0.0
a1,residual -0.9764 b1,residual -1.3417
a2,residual 0.0565 b2,residual 0.1898
a3,residual 1.4833 b3,residual 0.9847
γ 1.7199 φ 0.5
α 10. ψpeak 0.6× 10−3

κ 0.6 ω 0.5
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Chapter 5

Finite Element Program

An existing finite element (FE) program, written by John F. Hall, is adapted for

use with this model. The original program was a linearly elastic, static analysis FE

program for solid and structural mechanics. It was designed to solve the equation

[K]{x} = {f} for {x} given a linear elastic stiffness matrix and constant force values.

It contained only linear springs and four node isotropic plane stress or strain elements.

Modifications of the program are necessary to model reinforced concrete columns.

The first step is to add or modify elements to be used for representing reinforced

concrete columns confined by steel rebar or fiber reinforced polymer (FRP) sheets.

Capabilities for six node tetrahedral and eight node rectangular brick elements are

added to the existing program; both using an eight point integration scheme. Each

node of the solid element has three translational degrees of freedom. The solid ele-

ments are to be used for modeling the concrete. The material model defined in this

thesis is implemented into the newly added solid elements. Three material parameters

need to be provided as input to these solid elements: the modulus of elasticity, E;

Poisson’s ratio, ν; and the unconfined compressive strength, f ′c. Further, the linear

spring element is modified to be bilinear elastic. The loading behavior of the spring

element is bilinear, and the unloading behavior is along the current stiffness value,

not the initial stiffness value. Four input quantities are required for the spring el-

ements: the initial modulus of elasticity, E; area, A; yield stress, fy; and the yield

ratio, defined as the ratio of the post yield stiffness to the initial elastic stiffness. The

solid and spring elements are used to model a reinforced concrete column with two
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different types of confinement materials in subsequent chapters.

Nonlinear solution capabilities and coordinate updating are also added to the pro-

gram. The applied load is divided into smaller steps so that the full stress versus strain

behavior of the material can be mapped. For each small load increment, the program

iterates using the elastic stiffness matrix until convergence is achieved. For each it-

eration, the current difference between the applied load and the internal resisting

load is calculated. This force residual is used in conjunction with the elastic stiffness

matrix to calculate a new increment in displacement. This increment is added to the

previous increments determined during iteration on the current load step and then

applied to the previously converged step for calculation of the current internal load.

At the end of each converged load increment, the coordinates are updated. The full

Fortran code is shown in Appendix E.

To reduce the problem size, only a horizontal slice of the column is considered.

Figure 5.1 shows a slice of a typical cylindrical column. The slice is meshed by one

Figure 5.1: Typical slice of column used for FE model.

layer of solid elements. The height of the slice should be equal to half of the hoop

spacing or spiral pitch for the case of a steel rebar confined section. Where adequate

symmetry exists in the cross sectional shape and rebar layout, only a fraction of the

cross section is modeled. For the case of pure axial loading, only one quarter of the

slice is typically modeled. When moments are applied to the section, one half of the

section is modeled. In both load cases, symmetric boundary conditions are applied.

For circular cross sections, the centermost elements of the section are six node solid



79

elements. All other elements in the section are eight node elements. A typical mesh

used for a load case including moments about the x-axis is shown in Figure 5.2. The

Figure 5.2: Typical mesh used for circular cross sections.

nodes on the left hand face would be restrained in the x-direction. For the case of a

square cross section, only eight node solid elements are used and the section is meshed

with a simple grid.

The assumption that plane sections remain plane is designed into the program.

The nodes in the bottom plane are fixed in the vertical degree of freedom; this vertical

direction is labeled as the z-axis in Figures 5.1 and 5.2. The top plane of nodes is

defined to move as a plane having three degrees of freedom, representing a vertical

displacement and two rotations. In the figures, all nodes in the top plane would share

one z degree of freedom, one rotation about the x-axis, and one rotation about the

y-axis as a plane. Each top plane node is free to move within the plane that has its

orientation defined by the three shared degrees of freedom. These conditions constrain

the top and bottom planes to remain planar, a typical assumption for columns.

Since the confinement material is to be explicitly included, a method for modeling

steel rebar and FRP sheets must be defined. For steel rebar, spring elements are

defined within the bottom layer of nodes to represent the steel hoops. Spirals are

modeled in an identical fashion, ignoring the fact that the rebar would change over

the height of the given section. No attempt is made to account for the difference in
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behavior between a hoop and a spiral. The slice is defined with a height equal to

half of the hoop spacing or spiral pitch. Longitudinal rebar is also modeled using

bilinear spring elements. In both cases, the post-yield stiffness of the rebar is set

to zero. Thus, strain hardening in the rebar is not modeled. For the case of FRP

confinement, springs are defined around the top and bottom layers of perimeter nodes

to represent the FRP sheet. In this case, the slice height is typically set equal to

the height of the steel confined column to which the FRP confined column is being

compared. The FRP sheets are represented as purely elastic. Thus, the yield ratio

is defined as one. For comparisons between the FE model and experimental results

performed in this thesis, the yield stress, fy, is defined as the rupture stress of the

FRP, and the program is terminated if any FRP element reaches its fy value. The

area of the spring element is defined as the thickness of the sheet multiplied by half

the slice height. This is the area of the FRP sheet being represented by the individual

spring element.

Comparable steel hoop and FRP confined meshes are shown in Figure 5.3. This

mesh would be used for axial load, as it represents only one quarter of the cross

sectional slice. Thick lines indicate the presence of spring elements in the mesh. All

Figure 5.3: Comparable meshes with steel hoops versus FRP confinement.

finite element meshes used for Chapters 6 and 7 are shown in Appendices G and H,

respectively.

In the scope of this thesis, several different load configurations are considered.

Finite element theory allows for the application of loads in many different ways.
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Thus, some details are necessary about how the loads are applied. Axial loads are

applied by a force on the z degree of freedom of the top plane. Moments are applied

to the x or y rotational degrees of freedom of the top plane. For the case of combined

axial load and moment, the member is loaded to the specified axial load, and then the

moment is increased to failure. When active confinement is modeled (for example,

a cylinder immersed in a pressurized fluid), radial forces are applied to the external

nodes in proportion to the area represented by that node. This is not the only way of

applying these load cases, but simply the manner chosen for this thesis. For all cases,

when the concrete stress is given, this stress is calculated as the weighted average

over all integration points lying within the confined area of the section. The weights

are given by the product of the Gauss-Legendre weight and the determinant of the

Jacobian calculated at that integration point.



82

Chapter 6

Comparisons to Tests on
Reinforced Concrete Members

Finite element (FE) model predictions of laboratory test results of reinforced concrete

members with various confinement methods are presented in this chapter. Five differ-

ent papers were obtained (none of which were used for the correlations in Chapter 4)

that reported tests of confined concrete members. These papers tested a variety of

confinement configurations, materials, and cross sectional geometries, since the con-

crete plasticity model is intended to be used for many different applications. The

papers are discussed individually in Section 6.1. The FE model predictions are com-

pared to the test results in Section 6.2. A discussion of the overall performance of

the FE model is in Section 6.3.

6.1 Test Data

Test data for confined concrete members are quite abundant; thus, it was possible

to select test data similar to that which this FE model is intended to predict. A

fairly broad spectrum was considered in the five papers. Both steel rebar and fiber

reinforced polymer (FRP) confinement, as well as circular, square, and rectangular

cross-sections, were included. Four of the papers presented results from axially loaded

confined concrete members, while the fifth presented an axial load-moment strength

interaction diagram. The set of papers is considered typical of what the FE model is

designed to predict.
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Chaallal and Shahawy (2000) studied the combined effects of axial and flexu-

ral loads on confined concrete members. The intent of the paper was to study the

enhancement in strength by wrapping a lightly confined section in carbon fiber re-

inforced polymer (CFRP). The concrete was purchased from a commercial supplier

with an experimentally determined compressive strength of 3.7 ksi (25.0 MPa) and a

water-cement ratio of 0.68. The members tested were 8 x 14 x 84 inch (200 x 350 x

2100 mm) rectangular sections with 1 inch (25 mm) radius corners. Four Grade 60

number 6 bars ran longitudinally through the section. The hoops consisted of Grade

60 number 3 bars at 4 inches (100 mm). A cross section of the steel confined member,

along with the material properties, is shown in Figure 6.1. The second member was

identical to the first, but was wrapped with 2 plies of a bi-directional CFRP. Unfor-

tunately, due to lack of information about the CFRP material and layout, the CFRP

confined section could not be modeled. Hence, only the results for the hoop confined

members are employed here. Pure axial load and pure moment were considered along

with four intermediate axial load-moment combinations.

Harries and Carey (2003) observed the effect of cross sectional shape on perfor-

mance. Two members with square cross sections, each with a different corner radius,

and one member with a circular cross section were tested. The circular columns were

6 x 12 inch (152 x 305 mm) specimens, while the square columns were 6 x 6 x 12 inch

(152 x 152 x 305 mm) specimens with either a 0.43 or 0.98 inch (11 or 25 mm) radius

applied to the corners. The concrete had a compressive strength at testing of 4.6 ksi

(31.8 MPa) for the cylindrical specimens, 4.1 ksi (28.6 MPa) for the square specimens

with a 0.43 inch (11 mm) corner radius, and 4.7 ksi (32.4 MPa) for the square speci-

mens with a 0.98 inch (25 mm) corner radius. All specimens were confined by three

or six plies of E-glass FRP. The FRP had an experimentally-determined strength of

428 lb per inch per ply (75 N per mm per ply) and an elastic modulus of 28 kips

per inch per ply (4.9 kN per mm per ply). The authors performed axial load tests

on the specimens both with the FRP bonded to the member using epoxy as well as

unbonded by covering the member with a kitchen-type plastic wrap before applying

the FRP. Typical applications of composite confinement are bonded to the column,
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so the unbonded tests were not used here.

Harries and Kharel (2003) investigated the effects of varying amounts and type of

FRP confinement on axial behavior of confined columns. All specimens were 6 x 12

inch (152 x 305 mm) cylinders. The concrete had a compressive strength at testing

of 4.7 ksi (32.1 MPa). Two different composite materials were used to create the

FRP: a carbon fiber and an E-Glass fiber. The carbon fiber had an experimentally-

determined strength of 994 lb per inch per ply (174 N per mm per ply) with an elastic

modulus of 90 kips per inch per ply (15.7 kN per mm per ply). The E-Glass fiber

had an experimentally-determined strength of 428 lb per inch per ply (75 N per mm

per ply) and an elastic modulus of 28 kips per inch per ply (4.9 kN per mm per ply).

The carbon FRP confined columns were tested with 1, 2, or 3 plies for confinement.

The E-Glass FRP confined columns were tested with 1, 2, 3, 6, 9, 12, or 15 plies for

confinement.

Mander et al. (1988a) tested the effect of steel rebar confinement on columns and

walls. The columns were circular in cross section with dimensions of 19.7 x 59.1 inches

(500 x 1500 mm), while the rectangular walls were 5.9 x 27.6 x 47.2 inches (150 x 700

x 1200 mm). All columns used in this comparison were loaded axially at a strain rate

of 0.013 sec−1. This strain rate was utilized to simulate the rate of seismic loading.

The unconfined compressive strength, determined at the 0.013 sec−1 strain rate, was

4.1 ksi (28 MPa). Mander et al. (1988b) states that loading at this strain rate will

result in an increase in the stiffness, peak strength, and strain at peak stress. Thus,

the unconfined compressive strength measured at this same strain rate of 0.013 sec−1

was designated as f ′c in the FE model. All walls used in this comparison were loaded

axially at a strain rate of 0.00001 sec−1 and had a measured compressive strength,

at that strain rate, of 3.8 ksi (26 MPa). All steel rebar used for longitudinal and

confining steel was Grade 275. Scott et al. (1982) experimentally tested different

rebar sizes, and the yield strength of the bars was found to vary with the size of

the bar. These measured yield strengths were used in the FE model. Four columns

were chosen for comparison. The columns all had twelve 0.63 inch (16 mm) diameter

deformed longitudinal bars. Three were confined with spirals of 0.47 inch (12 mm)
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diameter round bars at pitches of 1.61 to 4.06 inches (41 to 103 mm). The fourth was

confined by a spiral of 0.39 inch (10 mm) diameter round bar at 4.69 inch (119 mm)

pitch. Three different walls were used for comparison. All walls had sixteen 0.47 inch

(12 mm) diameter deformed longitudinal bars. Transverse steel configurations were

different for each of the three walls. All three consisted of hoops formed by 0.24 inch

(6 mm) diameter round bars at either 0.98 or 1.97 inch (25 or 50 mm) spacing. The

rebar configuration and material strengths for all columns and walls considered are

shown in Figures 6.9 and 6.13.

Scott et al. (1982) studied square columns confined by steel rebar. All columns

tested were 17.7 x 17.7 x 47.2 inches (450 x 450 x 1200 mm). Normal weight concrete

was used. The concrete had a maximum aggregate size of 0.79 inches (20 mm) and

a slump of 3 inches (75 mm). The cylinders were cured for 7 days at 68◦F (20◦C)

and 100% humidity. They were then stripped and left standing in the laboratory

for approximately five weeks before testing. Two confined columns were chosen for

comparison which had a compressive strength, f ′c, for the concrete of 3.16 ksi (21.8

MPa). One column had twelve 0.79 inch (20 mm) diameter longitudinal bars with

a yield strength, fy, of 62.9 ksi (434 MPa). The other column had eight 0.94 inch

(24 mm) diameter longitudinal bars with a yield strength, fy, of 57.1 ksi (394 MPa).

Both columns used 0.39 inch (10 mm) double hoops at a spacing of 2.84 inches (72

mm) having a yield strength of 44.8 ksi (309 MPa). The hoop configurations were

different for the two columns. The cross sections and material properties are shown

in Figure 6.16. Both columns were loaded axially at a strain rate of 0.0000033 sec−1.

Stress versus strain curves for various sizes of steel bars were determined in the paper

and used for defining the yield strength of the rebar.
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6.2 Comparison Results

6.2.1 Chaallal and Shahawy (2000)

The FE model was used to predict the axial load-moment interaction diagram of a

hoop confined section, as tested in Chaallal and Shahawy (2000). The finite element

mesh used to represent the section is shown in Appendix Section G.1. The comparison

of the test results to the FE model prediction, along with the member cross section,

is shown in Figure 6.1. At both the pure axial and balanced point loadings, the FE

Figure 6.1: Comparison of model to test data from Chaallal and Shahawy (2000).

model appears to overestimate the experimental results. The balanced load point

is defined as the point where the steel yields in tension at the same curvature that

the concrete crushes under the compression. This balanced point will have the high-

est moment capacity of any axial load-moment combination. Assuming unconfined

concrete and using equations from ACI Committee 318 (2000), the pure axial load

supported by this column would be 452 kips (2012 kN), and the balanced moment

would be 1135 kip·in (128.2 kN·m) at an axial load of 154 kips (685 kN). The exper-

imental points lie below even this unconfined assumption. Thus, the experimental

results at these points are not considered reliable. The opposite is observed at the

pure moment point. For this case, the FE model is underestimating the experimen-
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tal data. Again, assuming unconfined concrete and equations from ACI Committee

318 (2000), the pure moment that this section can withstand would be 578 kip·in

(65.3 kN·m). The FE model prediction is 586 kip·in (66.2 kN·m). The FE model is

predicting that the confinement is not effective under pure moment, which may be a

reasonable assumption since the section will be partially cracked and the axial stress

will vary over the uncracked portion. It is not clear what can be concluded from

this comparison due to large discrepancies in the test results. The FE model may be

overestimating the increase in strength for a lightly confined section. However, the

test data clearly has some discrepancies, so the problems may not lie with the FE

model.

6.2.2 Harries and Carey (2003)

Results from the testing of E-Glass FRP confined columns performed by Harries and

Carey (2003) were compared to predictions from the FE model. The comparisons for

the circular column and the two square columns are shown in Figures 6.2 through 6.4.

The finite element meshes used to perform these predictions are shown in Appendix

Section G.2. In Figure 6.4, the mismatch in the peak stress of the 0 ply column

between the FE model and the test is due to the fact that the 0 ply column strength

did not match the f ′c value specified in the paper.

The FE model predicts exceptionally well the behavior of the circular column.

For the square columns, the experimental data suggest that there is sometimes slack

in the loading mechanism. This type of variability in loading will not be accounted

for in the FE model. However, the FE model does predict the peak stress of the

specimen reasonably well. The square sections show a concave upward type behavior

after the peak stress is reached. This behavior is not seen in the FE model, nor

is it seen in the circular column. The physical mechanism leading to this abrupt

drop is not discussed in the paper. Therefore, it is difficult to know whether there

is a problem with the concrete plasticity model, a problem with the FE model, or a

problem with the experimental results. There may be some features of the behavior
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Figure 6.2: Comparison of model to test data from Harries and Carey (2003) for
circular column.

Figure 6.3: Comparison of model to test data from Harries and Carey (2003) for
square column with 0.43 inch (11 mm) corner radius.
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Figure 6.4: Comparison of model to test data from Harries and Carey (2003) for
square column with 0.98 inch (25 mm) corner radius.

of square columns which are not captured by the FE model. However, since these

shapes were again compared for steel confined sections, this issue will be discussed in

conjunction with the results presented in Section 6.2.4.

6.2.3 Harries and Kharel (2003)

Experimental data for circular columns confined by two types of composites was given

in Harries and Kharel (2003). In addition to the typical concrete axial stress versus

strain data, the authors provided the dilation ratio of the column. The dilation ratio

is defined as the ratio of the transverse strain to the axial strain. In order to compare

transverse strains, the FE model was loaded to the point at which it reached the same

axial strain as the experiment. In some cases, the FE model predicted composite

rupture before it reached the final experimental axial strain. These cases are denoted

by an asterisk (*) in the figures. Comparison of the carbon FRP confined columns

is shown in Figures 6.5 and 6.6. Results of the E-glass FRP confined columns are
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Figure 6.5: Axial stress versus strain comparison of model to test data from Harries
and Kharel (2003) for columns confined by carbon FRP.

Figure 6.6: Dilation ratio comparison of model to test data from Harries and Kharel
(2003) for columns confined by carbon FRP.
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compared in Figures 6.7 and 6.8. The mesh used to generate the FE results is shown

Figure 6.7: Axial stress versus strain comparison of model to test data from Harries
and Kharel (2003) for columns confined by E-glass FRP.

in Appendix Section G.3.

For the carbon FRP confined columns, the FE model appears to consistently over-

estimate the increase in strength with confinement. However, it also underestimates

the amount of transverse strain that the column should exhibit. It would be expected

that if the FE model were underestimating the transverse strains of the specimen, it

would also underestimate the strains in the confining material and, thus, underesti-

mate the strength increase. The fact that the FE model underestimates the transverse

strain but overestimates the strength implies that the stiffness of the confining ma-

terial provided by the paper is too large. This idea is reinforced by the fact that for

lower levels of E-glass confinement (where the confining material behavior will not

affect the results as significantly), the strength increase in the FE model is somewhat

closer to that predicted by the experiment. However, it must also be noted that the

overestimate of the strength and underestimate of the transverse strains are consis-

tent between the two different confining materials found in the paper. Thus, while it



92

Figure 6.8: Dilation ratio comparison of model to test data from Harries and Kharel
(2003) for columns confined by E-glass FRP.

may still be the case that the manufacturer overestimated the composite properties

for both types of fiber, it may also be the case that the FE model is not predicting

the behavior of this concrete mix very well. Examining the FE model prediction for

the unconfined columns shows that it is also underestimating the transverse strains

for that unconfined case.

This paper and Harries and Carey (2003) used the same E-glass FRP for confine-

ment. The FE model performed exceptionally well at predicting the behavior of the

circular columns confined by the E-glass FRP in Harries and Carey (2003). Thus, it

would seem that the composite properties are well defined for that case. It may be

the case, physically, that the ply effectiveness is decreased with an increasing number

of plies due to the increase in the final thickness of the FRP. This would mean that

the strength increase from one ply to two plies would be more significant than the

strength increase from, for example, 12 plies to 13 plies. Unfortunately, the data at

lower confinement levels exhibit some discrepancies. In the case of the Carbon FRP,

no strength increase is exhibited by the addition of the first ply. In the case of the
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E-Glass FRP, the 1, 2, and 3 ply results exhibit the same peak stress, which is higher

than the unconfined peak stress. Due to these inconsistencies in the test data at

lower confinement levels, it is difficult to see the increase in strength with each ply.

However, if it is a valid assumption that the ply effectiveness is decreased with an

increasing number of plies, this effect is not accounted for in the FE model and could

lead to the fact that the strength overestimation is more severe at higher ply counts.

The FE model does reasonably well predicting the data, particularly considering

that the data is not consistent for low ply counts. Thus, it is considered that the

errors seen between the FE model and the experiments are not significantly larger

than the errors that can be seen in the experiments themselves.

6.2.4 Mander et al. (1988a)

Both circular columns and rectangular walls were tested by Mander et al. (1988a).

The FE model was used to predict four different columns and three different walls.

The FE meshes used are shown in Appendix Section G.4. The cross section and

rebar configuration for the four circular columns is shown in Figure 6.9. It should be

Figure 6.9: Details of circular columns tested in Mander et al. (1988a) and predicted
using the current model.

noted that a difference between the FRP tests and the steel rebar confined tests is

the presence of cover concrete. It is expected that the concrete external to the steel
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hoops or spirals will spall off and become ineffective at strains higher than the axial

concrete strain at peak uniaxial stress. The model should properly account for this

effect. A comparison of the FE model prediction to the experimental data is shown

in Figure 6.10. The FE model predictions do not extend to the same axial strain as

Figure 6.10: Comparison of model to test data from Mander et al. (1988a) for circular
columns.

the test data. While the FE model successfully predicted strain softening in the case

of the FRP confined sections, it stops converging not long after the peak stress in

the steel rebar confined case. However, it was discovered that if the tensile meridian

of the residual surface was set to be equal to that of the compression meridian, the

FE model would continue on to the desired strain levels. It is not apparent why

this change fixes the convergence problem. Fundamentally, a nonlinear problem with

strain softening is extremely sensitive and finding a reliable iteration method can be

extremely difficult. Further, recall from Section 4.3, no data was found for the tensile

meridian of the residual surface. An assumption was made that the ratio of the

parameters for the compressive and tensile meridians between the peak and residual

surface would be the same. There is no physical basis for that particular assumption.
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Therefore, there is also no data to refute the assumption that the residual surface

is round. Thus, the concrete model, altered to have a round residual surface, was

implemented into the FE model and used to predict the column data. Results for

this case are shown in Figure 6.11. The spiral strains were given for column 4 and

Figure 6.11: Comparison of model with round residual surface to test data from
Mander et al. (1988a) for circular columns.

are compared to FE model predictions in Figure 6.12. Up to the peak stress of the

concrete, the results will be identical for the two different residual surfaces. Use of a

round residual surface is expected to overestimate the residual strength of the concrete

for cases where the Lode angle is less than 60◦. However, for circular columns, the

theoretical Lode angle will be close to 60◦ throughout the specimen because the two

lateral in-plane stresses are roughly equal. Thus, it is not expected that the concrete

model with a round residual surface will differ much in prediction from the concrete

model originally defined in Chapter 3.

The FE model does quite well at predicting the strain at peak stress. However, it

underestimates the peak stress increase due to confinement for the circular columns

except for the case with highest confinement. This may be due to the strain rate
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Figure 6.12: Comparison of FE model to test data from Mander et al. (1988a) for
column 4.

of 0.013 sec−1 at which the columns were tested. As mentioned in Section 6.1, the

concrete stiffness, peak strength, and strain at peak stress are increased when loading

at a strain rate of 0.013 sec−1. This higher value for f ′c was used for the FE model.

However, it appears that how the peak strength increases with confinement may also

be affected by rapid loading, which is not accounted for in the FE model. Scott et al.

(1982) measured a larger strength increase due to confinement at a strain rate of

0.0167 sec−1 than the strength increase at a strain rate of 0.0000033 sec−1. Thus, it

is this dynamic loading effect which is most likely leading to the discrepancy in peak

stress, as the concrete model presented in this thesis does not account for strain rate

effects.

The FE model does exceptionally well at predicting the spiral strains up to the

peak stress of the concrete. In the strain softening portion, the FE model appears

to be underestimating the spiral strains. The concrete axial strain at peak stress is

approximately 0.0034. Thus, it would appear that the FE model is underestimating

the post-peak volumetric expansion for this column.



97

The cross section and rebar configuration for the three different walls are shown

in Figure 6.13. The experimental results are compared to the FE model predictions

Figure 6.13: Details of rectangular walls tested in Mander et al. (1988a) and predicted
using the current model.

for the walls in Figure 6.14. Note that wall 8 was one of four unconfined walls tested

by Mander et al. (1988a). This wall had no longitudinal or transverse steel. As with

the circular columns, the identical problem was encountered with the walls: the FE

model was not able to predict the post-peak behavior of the rectangular walls. The

concrete model was again modified to have a round residual surface, and the FE

model was then able to successfully predict the strain softening behavior of the walls.

However, for the rectangular walls, it is expected that the Lode angle will be different

than 60◦, as was the case for the circular columns. Therefore, it is expected that the

residual strength of the walls will be slightly overestimated by using a round residual

surface compared to the residual surface laid out in Chapter 3. However, recall that

there is no data for a Lode angle of 0◦, so it is not known which residual surface more

closely represents concrete.

The FE model prediction with the round residual surface is compared to exper-

imental results in Figure 6.15. The FE model is not as successful at predicting the

behavior of the walls as it was with the circular columns. However, a review of the

experimental data may reveal the cause of some of the discrepancies. Wall 3 had
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Figure 6.14: Comparison of model to test data from Mander et al. (1988a) for rect-
angular walls.

Figure 6.15: Comparison of model with round residual surface to test data from
Mander et al. (1988a) for rectangular walls.
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twice as much transverse steel as wall 4, but with twice the hoop spacing. Thus, it is

expected that their behaviors may be similar. Wall 1 had more transverse steel than

wall 4, but with the identical hoop spacing. Therefore, it is expected that wall 1 will

support a higher concrete stress then wall 4. However, these results are not seen in

the experimental testing. Mander et al. (1988a) noted that an unexpected issue with

wall buckling likely led to the premature failure of wall 1. Thus, similar testing issues

may have lead to the discrepancies seen in predicting the peak stress. It is clear that

the FE model is also underestimating the strain at peak stress for all of these walls.

The FE model also appears to soften more rapidly than the experiments. This is

likely due to the absence of strain hardening in the steel model. The effects of not

modeling strain hardening in the rebar will be illustrated further in Section 6.2.5.

6.2.5 Scott et al. (1982)

Two square columns tested by Scott et al. (1982) were compared to predictions made

by the FE model, using the FE meshes shown in Appendix Section G.5. The cross

section and rebar details for these two columns are shown in Figure 6.16. A compar-

Figure 6.16: Details of square columns tested in Scott et al. (1982) and predicted
using the current model.

ison of the experimental results to the FE model predictions is shown in Figure 6.17.

Note that column 1 was an unconfined specimen and, therefore, had no longitudinal

or transverse steel. The same problem discussed in Section 6.2.4 was encountered
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Figure 6.17: Comparison of model to test data from Scott et al. (1982) for square
columns.

with this data: the FE model is not able to predict the strain softening region. The

concrete model was again altered to have a round residual surface, and the results

are compared in Figure 6.18. While the strength is overestimated for both columns,

the FE model does an excellent job at predicting the difference in strength due to the

different transverse rebar configurations. While the performance difference is small,

the ability of the FE model to accurately capture it shows that the FE model is

able to predict the way in which confinement affects the strength and ductility of the

concrete, which was its core purpose.

Scott et al. (1982) also provided plots of the concrete and longitudinal steel forces

as well as the average hoop stresses for each of these two columns. These are compared

to the FE model predictions in Figures 6.19 through 6.22. Here, it is apparent how

well the FE model is able to predict the concrete expansion which engages and loads

the steel rebar. The strain softening appears to occur too quickly in the FE model,

but this is likely due to the absence of strain hardening in the steel model. The strains

at which steel strain hardening begins to take place in the experiment is where the
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Figure 6.18: Comparison of model with round residual surface to test data from Scott
et al. (1982) for square columns.

Figure 6.19: Comparison of model to test data from Scott et al. (1982) for column 2
concrete and steel forces.
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Figure 6.20: Comparison of model to test data from Scott et al. (1982) for column 2
hoop stresses.

Figure 6.21: Comparison of model to test data from Scott et al. (1982) for column 6
concrete and steel forces.



103

Figure 6.22: Comparison of model to test data from Scott et al. (1982) for column 6
hoop stresses.

FE model continues to soften more rapidly than seen in the experiments. If strain

hardening were to be introduced into the steel model, the FE model predictions may

fall at nearly the same rate as the experiments show. Thus, although the FE model

over-predicts the strength for this case, all other behaviors are predicted extremely

well by the concrete model.

6.3 Conclusions from the Comparisons

It is well established that variability in the behavior of concrete can be quite substan-

tial (Nilson, 1997). Due to the variability within each material used to create the mix,

the process by which it is created, the change in the concrete with age and loading,

and the fact that concrete is a congeries of different materials, the strength, stiffness,

and other overall properties of concrete will vary. For these reasons, it is difficult to

consistently predict the behavior of concrete when the material itself does not behave

consistently. For most modeling comparisons, the ideal is to have the prediction lie
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within a few percent of the tests; this is not possible for concrete. Several experiments

performed identically on the same batch of concrete specimens typically will not lie

within a few percent of each other [for example, Bresler and Pister (1958), Duke

and Davis (1944), and Hurlbut (1985)]. This must be appreciated when comparing a

computer model to the somewhat erratic experimental data for concrete.

The FE model is able to predict concrete behavior under a wide range of load-

ing and confinement types. There is no consistent error observed in any predicted

quantity; an overestimate in a particular quantity on one set of data will be an un-

derestimate on a different set. With the FRP confined circular columns, the FE

model shows an overestimation of the observed strength, whereas for the circular

steel confined columns, the FE model underestimates the observed strength. The

FE model prediction of the square FRP confined columns tends to overestimate the

experimental strain at peak strength, while the prediction for the steel confined walls

underestimates this quantity. The remaining experiments showed close agreement in

the experimental strain at peak stress. Thus, the FE model does not appear to be

flawed in some fundamental way that would lead to a consistent difference between

experiments and model predictions.

More significantly, the FE model is able to capture the changes in concrete be-

havior brought about by changes in shape, confining material, steel confinement con-

figuration, and other experimental variables. While the FE model prediction of the

square FRP confined columns of Section 6.2.2 shows a difference in the shape of the

axial stress versus strain curves, the FE model predicts the curves for the square

rebar confined columns of Section 6.2.5 reasonably well. Also, the FE model is able

to predict the behavior of circular columns quite well. Thus, it is shown that the FE

model can successfully predict concrete behavior for both square and circular cross

sections. Further, the FE model is able to represent the concrete behavior with both

FRP confinement and steel rebar confinement. The circular cross sections in Sec-

tion 6.2.3 show a transition from post-peak strain softening to strain hardening. This

transition is predicted by the FE model. The small increase in peak stress with a

change in transverse steel configuration in Section 6.2.5 is also seen in the FE model
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predictions. Thus, the FE model is able to predict concrete behavior confined by two

quite different confinement materials.

The experimental data in Section 6.2.1 proved to have some obvious discrepancies.

The unconfined ACI equations were able to predict the behavior better than the FE

model. While the section was lightly confined, some effect of confinement would be

expected. However, none was seen in the experimental results. Thus, issues with the

data made it impossible to draw any conclusions about the accuracy of the FE model

predictions. More data of this type is needed for comparison before the FE model can

be considered accurate in predicting axial load-moment strength interaction diagrams.

The FE model was designed to account for a variety of different loading config-

urations (confinement material, geometry, loading type, etc.) so that the behavior

of concrete under these conditions could be studied. While it is unfortunate that

the original concrete model has an unknown issue that prevents prediction of the full

strain softening region for steel confinement, use of the round residual surface appears

to be a satisfactory substitute until the issue can be resolved. Overall, the FE model

is considered to perform adequately for predicting the axial load behavior of confined

sections.
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Chapter 7

Effects of Cross Sectional Shape
and Confining Material

The finite element (FE) model is utilized to compare the performance of square versus

circular cross sections, as well as fiber reinforced polymer (FRP) versus steel hoop

confined sections. A series of concrete axial stress versus strain curves are generated

with different confinement levels for each confining material. An axial load-moment

strength interaction diagram is created for the highest confinement level for each

cross sectional shape and confining material. Using these analyses, a comparison is

performed to examine how cross sectional shape and confining material affect the

strength and ductility of the section. The cross sections and loading details are

described in Section 7.1. The results of this comparison are discussed in Section 7.2.

This comparison can be used to highlight the different advantages and disadvan-

tages of the different section shapes and confining materials. Designers face many

decisions when laying out the details of a section. For each specific application, a

slightly different performance standard may be applied. By understanding the effects

of these two design variables, the designer is able to choose the shape or confining

material that exhibit more optimal performance for the specific application.
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7.1 Discussion of Sections Used for Performance

Comparison

A square and a circular cross section, both confined by steel hoops, are designed

in order to examine the effects of cross sectional shape. To more easily facilitate

the comparison, the two sections are designed to have an identical confined area. It

is important that the two cross sections have the same confined area because it is

expected that the cover concrete will spall off and become ineffective. Details of the

two cross sections are shown in Figure 7.1. For both sections, hoop spacings of 3, 6,

Figure 7.1: Details of square and circular cross sections confined by steel hoops.

10, and 14 inches (76, 152, 254, and 356 mm) are employed. A concrete axial stress

versus strain curve is computed for each cross section and hoop spacing. The FE

meshes used to represent these cross sections are shown in Appendix H. As discussed

in Sections 6.2.4 and 6.2.5, it is necessary to modify the concrete model to have a

round residual surface in order to predict the behavior to sufficiently large compressive

strain levels. This is only necessary for axial loading of the steel confined sections.

Recall that use of the round residual surface is expected to slightly overstimate the

residual stress for loading which is not close to a Lode angle of 60◦. All other analyses

are performed with the original concrete model as described in Chapter 4. An axial

load-moment interaction diagram was created for both cross sections with the 3 inch

(76 mm) hoop spacing only.

A similar configuration is then considered with an alternative confining material.

The steel hoops are removed from the FE model and replaced with an E-glass FRP

around the outside of each section. In this configuration, the confined area is no
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longer identical for the square and the circular cross sections. The confined area of

the square cross section is 196.0 square inches (1265 square centimeters), whereas

the confined area for the circular cross section is 183.1 square inches (1181 square

centimeters). The E-glass FRP used for confinement has a strength of 428 lb per inch

per ply (75 N per mm per ply) and an elastic modulus of 28 kips per inch per ply (4.9

kN per mm per ply). The FE meshes used to predict the behavior of these sections are

shown in Appendix H. Concrete axial stress versus strain curves are generated for a

confinement of 10 and 30 plies of the E-glass FRP. An axial load-moment interaction

diagram is then generated for the two cross sections confined by 30 plies of E-glass

FRP. Note that four of the axial load-moment cases required a refined mesh, shown

in Figure H.5.

It is difficult to define what a comparable amount of confinement for steel hoops

and E-Glass FRP is. In order to evaluate the confinement amounts for these two

disparate materials, the elastic stiffness of each particular confinement configuration

was evaluated. Table 7.1 shows the configuration of steel hoops that equates to the

same confinement stiffness as a given ply count of E-Glass FRP.

Table 7.1: Confinement equivalence by elastic stiffness.
Number of E-
Glass Plies

Equivalent Hoop
Spacing (in)

Steel Hoop
Bar Number

Steel Hoop Bar
Area (in2)

10 11.4 #3 0.11
10 20.7 #4 0.20
30 3.8 #3 0.11
30 6.9 #4 0.20
30 10.7 #5 0.31

7.2 Results of Comparison

The performance comparison for purely axial loads is presented in Section 7.2.1.

Results of the axial load-moment interaction diagram are discussed in Section 7.2.2.

In considering the performance of columns, axial load and moment capacity are the

typical metrics used to determine the capability of the section to perform as required.
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Thus, these quantities are used to explore the effects of section shape and confining

material on the behavior of the column.

7.2.1 Axial Load Performance Comparison

As discussed in Sections 6.2.4 and 6.2.5, the analysis terminates prematurely when

steel hoops are used for confinement. Thus, for the pure axial load cases of the

steel confined sections only, the residual surface is round with the tensile meridian

changed to match the compression meridian. For the E-glass FRP confined sections,

the residual surface defined in Section 4.3 is used.

Concrete axial stress versus strain curves for the steel confined sections are shown

in Figure 7.2, and for the E-glass FRP confined sections in Figure 7.3. The uncon-

Figure 7.2: Comparison of the axial performance of steel confined sections.

fined square and circular sections have identical axial stress versus strain curves as

predicted by the FE model. For the E-glass FRP confined cases, all modeled sec-

tions terminated with failure of the E-glass FRP (meaning that failure was defined

by rupture of the fibers in the FRP).
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Figure 7.3: Comparison of the axial performance of E-glass confined sections.

For both types of confining materials, higher concrete stresses are supported by

the circular sections than the comparable square sections, as expected due to the

fact that confinement is more effective in circular sections. It is difficult to discern

from Figure 7.2 how the two steel confined cross sections compare in ductility. Thus,

Table 7.2 compares the strains at peak stress to those when the stress falls to 50%

of the peak stress. The strain ratio is defined as the strain at 50% of peak stress

divided by the strain at peak stress. It is clear that the ductility of the circular cross

sections exceeds that of the square cross sections for the case of steel confinement.

However, this is achieved through more effective use of the confinement, which leads

to higher strains in the confining material for the circular sections (as shown by

the last column of Table 7.2). The higher strains in the confinement for circular

sections is more readily seen in the E-glass FRP results, since rupture of the FRP

dictates the axial strain at failure. While the strength increase is much higher in the

circular sections, the final axial strain of the square cross sections is higher because

the FRP is not as highly stressed for this case. This lower stress in the FRP means

that rupture of the FRP will occur at a higher axial strain. Thus, if a designer
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Table 7.2: Strength and ductility comparison of square versus circular steel confined
sections.
Cross
Section
Shape

Hoop
Spacing
(in)

Peak
Stress
(ksi)

Peak
Stress
/f ′c

Strain
at Peak
Stress

Strain
at 50%
of Peak
Stress

Strain
Ratio

Confinement
Plastic Strain
at 50% of Peak
Stress

Circle 14 -4.574 1.143 -0.0030 -0.0092 3.084 0.0081
Circle 10 -4.799 1.200 -0.0032 -0.0109 3.404 0.0100
Circle 6 -5.302 1.326 -0.0036 -0.0155 4.270 0.0151
Circle 3 -6.441 1.610 -0.0048 -0.0341 7.079 0.0343

Square 14 -4.448 1.112 -0.0030 -0.0082 2.734 0.0054
Square 10 -4.620 1.155 -0.0031 -0.0093 3.009 0.0063
Square 6 -5.000 1.250 -0.0034 -0.0123 3.580 0.0087
Square 3 -5.851 1.463 -0.0043 -0.0274 6.405 0.0211

was concerned more about the axial strain of the section at confinement rupture,

the square cross section would outperform the circular cross section. However, if

the greater concern is the load carrying capacity of the column, the circular cross

sections consistently outperform the square cross sections. With structural design,

the designer often requires a ductile failure mode. These results raise the question of

what exactly represents a ductile failure. If it is desirable that the specimens exhibit

some form of softening as a warning of the onset of failure, only the square cross

section confined by 10 layers of FRP would be considered to exhibit ductile failure.

All other sections reach their peak stress simultaneously with the failure of the E-

glass FRP. This may be considered a brittle failure mode, as the onset of failure is

not preceded by softening and redistribution of the load. Examples of this brittle

failure can be found in the literature (Pulido et al., 2004). However, all FRP confined

sections are still reaching large strain values. Reaching large strains may also be

considered ductile. The difference is that those three specimens are continuing to

take load right up to the failure point, which may be a useful behavior, depending

upon the individual structure being considered. This type of behavior is not typically

seen in reinforced concrete members. The designer must think about what ductility

means and its purpose for the individual structure being considered. Thus, when

designing a section using FRP confinement, it is important to correctly design the
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number of plies so that the section will exhibit the behavior desired by the designer.

The FE model can be used for this purpose.

7.2.2 Axial Load-Moment Performance Comparison

No convergence problems are experienced when moments are applied to steel confined

sections. Thus, the residual surface as defined in Chapter 3 is used for all FE model

predictions in this section (with the exception of the steel confined pure axial load

cases, as discussed in Section 7.1). The axial load-moment interaction diagrams for

the two cross-sections confined by either 30 plies of E-glass FRP or steel hoops at

3 inch (76 mm) spacing are shown in Figure 7.4. For reference, ACI Committee

Figure 7.4: Axial load-moment interaction diagram for all four different sections.

318 (2000) equations were used with the assumption of unconfined concrete to make

the predictions labeled as unconfined ACI. As with the axial loadings, the circular

cross section confined by the E-glass FRP terminated with failure of the confining

material. However, the square cross sections confined by E-glass FRP did not reach

their peak moments at composite failure, but were instead limited by the strength
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of the concrete. For the steel confined case, the square cross section withstands

higher moments than the circular. This is likely due to the fact that the square cross

section has a higher gross area than the circular section, and the fact that more of

the area is distributed away from the neutral axis, thereby yielding a higher moment

capacity. The pattern is reversed for the E-glass confined sections, with the circular

cross section sustaining higher loads than the square. This is an unexpected result

due to the fact that many consider confinement to be ineffective at increasing moment

capacity, which may not be correct. A possible explanation is that the less effective

confinement of the square section is not able to prevent degradation of the concrete,

whereas in the circular section, the confinement is able to prevent the concrete from

softening. Thus, confinement effectiveness comes into play with the FRP sections.

This would not be the case for the steel confined sections because the concrete that

is supporting the compression side of the moment couple is outside the steel hoops.

For the FRP confined sections, all concrete is confined.

In order to more easily compare the increase in moment capacity with axial load,

the axial load is normalized by the pure axial load capacity of the section, and the

moment is normalized by the pure moment capacity of the section. This normalized

axial load-moment interaction diagram is shown in Figure 7.5. For both types of

confinement, the square section actually has a larger increase in moment capacity

with the addition of axial load than the circular section. Since no unconfined sections

were modeled, it is difficult to know if this is an effect of the shape or the effectiveness

of the confinement. From Section 7.2.1, it is seen that in the case of pure axial loading,

the circular sections showed a greater increase in axial load carrying capacity with

confinement than the square sections. Therefore, it is likely that the square sections’

outperformance of the circular sections’ is due to the shape, not the effectiveness of the

confinement. Clearly, the E-glass FRP shows a greater increase in moment capacity

with the addition of load than the comparable steel confined section. As with pure

axial loading, the E-glass FRP creates a stronger section than a comparable steel

confined section. From Table 7.1, the stiffness of 30 plies of E-Glass FRP is equivalent

to #3 bars at approximately 4 inch (100 mm) hoop spacing. Yet the 30 ply E-Glass
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Figure 7.5: Normalized axial load-moment interaction diagram for all four different
sections.

FRP confined section shows a greater increase in strength than the section confined

by #3 bars at 3 inches (76 mm). However, this strength increase again comes at the

cost of a loss of ductility, as will be seen in the following figures.

Figures 7.6 through 7.9 show the moment-curvature curves for all points computed

for the axial load-moment interaction diagrams. Several moment-curvature curves

show a small drop due to the occasional convergence problem. However, the solution

always returns to the correct path. It is in these plots that the performance of the

E-glass FRP confined circular section stands out. The curvature values for that

section are significantly higher at failure than any other section modeled. However,

as previously mentioned, failure is caused by rupture of the composite, which may

not be considered a ductile failure mode. Thus, this section may not be desirable

to designers seeking to create a ductile structure, depending upon that designer’s

definition of ductility. However, if fewer plies of the E-glass FRP were used, the

section would return to a more ductile failure mode, albeit at a lower strength. This

may be more useful for structural design purposes. The three other sections showed
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Figure 7.6: Moment versus curvature curves for the steel confined circular cross sec-
tion.

Figure 7.7: Moment versus curvature curves for the steel confined square cross section.
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Figure 7.8: Moment versus curvature curves for the E-glass FRP confined circular
cross section.

Figure 7.9: Moment versus curvature curves for the E-glass FRP confined square
cross section.
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somewhat less strength and significantly less curvature at failure. However, failure

for the lower axial load levels was preceded by strain softening.

Clearly, when choosing the confining material and section geometry, many different

factors come into play. These analyses are designed to highlight the tradeoff between

strength and ductility that is seen for the FRP versus steel confinement, and for

square versus circular cross sections. It is important for the designer to keep this

trade off in mind when choosing the right confining material and geometry.
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Chapter 8

Conclusions

Concrete is a material that exhibits complex behaviors, including a strong depen-

dence on its multiaxial load state. It has long been recognized that it is necessary

to confine concrete in order to have the required strength and ductility for structural

use. However, due to its heterogeneous composition, even the most basic properties

of concrete, such as its compressive strength, can vary widely from specimen to spec-

imen. This combination of complex behavior and varying properties makes concrete

a difficult material to accurately model. Despite these challenges, this thesis seeks to

model the multiaxial behavior of concrete. The concrete model defined in this thesis

defines the backbone monotonic loading curves for concrete. It can then be combined

with existing finite element codes that account for other concrete behaviors, including

cracking, shear sliding, and creep, to fully model this complex material.

Current plasticity theory provides an ideal framework to model concrete. Ba-

sic ideas of failure surfaces and plastic flow are adapted to represent the behaviors

exhibited by concrete. A complex, work hardening failure surface is defined in the

stress invariant space. This failure surface is composed of three fixed loading surfaces

that correspond to the uniaxial yield, peak, and residual stresses. The current fail-

ure surface travels between these three fixed loading surfaces based on the accrual of

damage in the material. The damage level is related to the amount of plastic strain

accumulated in the specimen. The plastic strain is determined through the use of a

non-associated flow rule. The full plasticity model is then coupled to finite element

theory to create a computer program capable of predicting the behavior of concrete.
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The full plasticity model contains twenty-four parameters, which must be defined

using experimental concrete data and knowledge of fundamental concrete behavior.

For this purpose, twenty-five experimental data sets were obtained from published

works. These data sets included results from tests on a wide variety of concrete mixes

and strengths, specimen shapes, confinement configurations, and load paths. Some of

these variables are explicitly taken into account by the concrete model, while others

deemed to be less significant are not accounted for. The concrete model parameters

were then fit to the data. In the scope of this thesis, the data utilized for the fit are

consistent with the loading of confined concrete columns. If a different use is required

of the program, these parameters can be fit to data more closely representative of the

problem being considered.

The finite element (FE) model is utilized to predict the experimental results of

concrete. Five experimental data sets were obtained representing the variety of prob-

lems that this model is designed to solve. Four data sets are results of axial loading of

confined columns. Two utilized steel rebar as a confinement material, and two used

a fiber reinforced polymer (FRP) for confinement. The fifth data set tested a steel

confined column under combined axial load and moment. When these data sets were

initially modeled, a problem with the residual surface led to premature termination

of the program for steel confined sections. It is desirable to determine the issue with

this model that leads to the problem. However, a simple workaround was utilized

by defining the tensile meridian to be equal to the compressive meridian, creating a

round residual surface. The FE model predictions, using a round residual surface for

steel confined sections only, are compared to the results obtained from the experi-

ments. While the data contains large scatter, the program exhibited no consistent or

systematic error in predicting the experimental results. Overall, the FE model was

quite successful at accounting for a wide variety of testing variables, including shape,

confining material, and confinement layout.

A concrete model of this type can be utilized as both a design and analysis tool. A

study is performed to determine the effects of confining material and cross sectional

shape. Concrete confined by FRP is shown to be capable of much greater increases



120

in strength. However, this increase in strength can be accompanied by a significant

decrease in the ductility of the failure mode. This is a significant point for designers to

consider when using this confining material. In general, circular shaped cross sections

show a larger increase in strength and ductility than comparable square sections. This

performance increase comes at the cost of higher stresses in the confining material.

This exploration of these two design variables is useful information when designing

structures.

In this thesis, a detailed concrete model is designed, its parameters are estimated

using test data, the identified model is validated, and then it is used to explore

certain aspects of concrete behavior. Comparisons to test data are shown to be

favorable, making the predictive results of this model useful for understanding how

concrete will perform under a particular loading configuration. The potential uses

of such a program are quite extensive. It can be applied as a simple design tool

for use in capacity calculations. New confining materials can be explored, and the

resulting concrete behavior compared to existing confinement techniques. A deeper

understanding of concrete behavior can be gained through careful examination of the

stress distribution in the material in many different types of loading configurations.

Implementing this model into existing code that would account for cyclic loading

effects (including cracking, shear sliding, etc.) would allow a complete time history

analysis of a concrete structure undergoing dynamic loading such as an earthquake.

The concrete model presented in this thesis presents a powerful and flexible tool for

the future analysis of concrete behavior under loads.



121

Bibliography

ABAQUS, Inc. (2006). ABAQUS Analysis User’s Manual. 166 Valley Street, Provi-

dence, RI 02909.

ACI Committee 318 (2000). Building code requirements for structural concrete (318-

99) and commentary (318R-99). Technical Report ACI 318-99, American Concrete

Institute, PO Box 9094, Farmington Hills, Michigan, 48333-9094. Second Printing.

ADINA R&D, Inc. (2006). ADINA Users Manual. 71 Elton Avenue, Watertown,

MA.

Ahmad, S. H. and Shah, S. P. (1982). Stress-strain curves of concrete confined by

spiral reinforcement. ACI Journal, 79(6):484–490.

ANATECH Corp. (1998). ANACAP-U/ANAMAT Theory Manual Version 2.5. 5435

Oberlin Drive, San Diego, CA 92121. ANA-QA-145.

Ansari, F. and Li, Q. (1998). High-strength concrete subjected to triaxial compression.

ACI Materials Journal, 95(6):747–755.

Attard, M. M. and Setunge, S. (1994). The stress-strain relationship of confined

and unconfined normal and high strength concretes. UNICIV Report R-341, The

University of New South Wales, School of Civil Engineering.

Attard, M. M. and Setunge, S. (1996). Stress-strain relationship of confined and

unconfined concrete. ACI Materials Journal, 93(5):432–442.

Balmer, G. G. (1949). Shearing strength of concrete under high triaxial stress –



122

computation of Mohr’s envelope as a curve. Structural Research Laboratory Report

SP-23, Bureau of Reclamation, Research and Geology Division, Denver, Colorado.

Bellamy, C. J. (1961). Strength of concrete under combined stress. Journal of the

American Concrete Institute, 58(4):367–380.

Blanks and McHenry (1945). Large triaxial testing machine built by bureau of recla-

mation. Engineering News-Record, 135:171–173.

Bresler, B. and Pister, K. S. (1958). Strength of concrete under combined stresses.

Journal of the American Concrete Institute, 55(20):321–345.

Calixto, J. M. (2002). Behavior of high-performance concrete subjected to biaxial

tension-compression stresses. In Third International Conference on High Perfor-

mance Concrete: Performance and Quality of Concrete Structures, volume Special

Publication 201, pages 1–14, Brazil. ACI.

Candappa, D. C., Sanjayan, J. G., and Setunge, S. (2001). Complete triaxial stress-

strain curves of high-strength concrete. Journal of Materials in Civil Engineering,

13(3):209–215.

Candappa, D. P., Setunge, S., and Sanjayan, J. G. (1999). Stress versus strain re-

lationship of high strength concrete under high lateral confinement. Cement and

Concrete Research, 29(12):1977–1982.

Chaallal, O. and Shahawy, M. (2000). Performance of fiber-reinforced polymer-

wrapped reinforced concrete column under combined axial-flexural loading. ACI

Structural Journal, 97(4):659–668.

Chen, W.-F. (1982). Plasticity in Reinforced Concrete. McGraw-Hill Book Company.

Chinn, J. and Zimmerman, R. M. (1965). Behavior of plain concrete under various

triaxial compression loading conditions. Technical Report WL TR 64-163, Air Force

Weapons Laboratory, University of Colorado, Boulder.



123

Chuan-zhi, W., Zhen-hai, G., and Xiu-qin, Z. (1987). Experimental investigation of bi-

axial and triaxial compressive concrete strength. ACI Materials Journal, 84(2):92–

100.

Cordon, W. A. and Gillespie, H. A. (1963). Variables in concrete aggregates and

portland cement paste which influence the strength of concrete. Journal of the

American Concrete Institute, 60(8):1029–1050.

Craig, J. R., Vaughan, D. J., and Skinner, B. J. (1996). Resources of the Earth:

Origin, Use and Environmental Impact. Prentice Hall, Upper Saddle River, NJ,

second edition.

Drucker, D. C. (1951). A more fundamental approach to plastic stress-strain relations.

In Proceedings of the First U. S. National Congress of Applied Mechanics, pages

487–491, Chicago. ASME.

Drucker, D. C. (1960). Extension of the stability postulate with emphasis on tem-

perature changes. In Plasticity - Proceedings of the Second Symposium on Naval

Structural Mechanics, pages 170–184, New York. Pergamon Press.

Duke, C. M. and Davis, H. E. (1944). Some properties of concrete under sustained

combined stresses. Proceedings - American Society for Testing and Materials,

44:888–896.

Gerstle, K. H., Aschl, H., Bellotti, R., Bertacchi, P., Kotsovos, M. D., Ko, H.-Y.,

Linse, D., Newman, J. B., Rossi, P., Schickert, G., Taylor, M. A., Traina, L. A.,

Winkler, H., and Zimmerman, R. M. (1980). Behavior of concrete under multiaxial

stress states. Journal of the Engineering Mechanics Division, 106(EM6):1383–1403.

Harries, K. A. and Carey, S. A. (2003). Shape and “gap” effects on the behavior of

variably confined concrete. Cement and Concrete Research, 33(6):881–890.

Harries, K. A. and Kharel, G. (2003). Experimental investigation of the behavior of

variably confined concrete. Cement and Concrete Research, 33(6):873–880.



124

Hoek, E. and Franklin, J. A. (1968). Simple triaxial cell for field or laboratory testing

of rock. Transactions of the Institution of Mining and Metallurgy, 77:A22–A26.

Hurlbut, B. J. (1985). Experimental and computational investigation of strain-

softening in concrete. Master’s thesis, University of Colorado.

Imran, I. and Pantazopoulou, S. J. (1996). Experimental study of plain concrete

under triaxial stress. ACI Materials Journal, 93(6):589–601.

Jamet, P., Millard, A., and Nahas, G. (1984). Triaxial behaviour of a micro-concrete

complete stress-strain curves for confining pressures ranging from 0 to 100 MPa.

In Proceedings of International Conference on Concrete under Multiaxial Condi-

tions, volume 1, pages 133–140, Toulouse, France. RILEM-CEB-CNRS, Presses

de’l Université Paul Sabatier.
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Appendix A

Partial Derivatives Required for
Equation 3.14

This appendix consists of the partial derivatives necessary for calculating the tangent

modulus tensor as laid out in Section 3.5 and Equation 3.14. The equations from

which these derivatives are determined are all given in Chapter 3.
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∂σij
= ω
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dσij
+ (1− ω)
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→ ∞. Therefore, the
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Appendix B

Summary of Papers Used for
Determining Peak Surface
Parameters
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Appendix C

Figures Showing Individual Data
Sets for Papers Used to Determine
Peak Surface

Figure C.1: Test data from Ahmad and Shah (1982).
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Figure C.2: Test data from Ansari and Li (1998), Li and Ansari (1999), and Li and
Ansari (2000).

Figure C.3: Test data from Attard and Setunge (1996).
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Figure C.4: Test data from Balmer (1949).

Figure C.5: Test data from Bellamy (1961).
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Figure C.6: Test data from Calixto (2002).

Figure C.7: Test data from Candappa et al. (1999) and Candappa et al. (2001).
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Figure C.8: Test data from Chinn and Zimmerman (1965).

Figure C.9: Test data from Chuan-zhi et al. (1987).



144

Figure C.10: Test data from Cordon and Gillespie (1963).

Figure C.11: Test data from Duke and Davis (1944).
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Figure C.12: Test data from Imran and Pantazopoulou (1996).

Figure C.13: Test data from Kupfer et al. (1969) and Kupfer and Gerstle (1973).
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Figure C.14: Test data from Lan and Guo (1997).

Figure C.15: Test data from Launay and Gachon (1972a) and Launay and Gachon
(1972b).
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Figure C.16: Test data from Mills and Zimmerman (1970).

Figure C.17: Test data from Richart et al. (1928).
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Figure C.18: Test data from Richart et al. (1929).

Figure C.19: Test data from Rosenthal and Glucklich (1970).
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Figure C.20: Test data from Sfer et al. (2002).

Figure C.21: Test data from Toutanji (1999).
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Appendix D

Summary of Papers Used for
Determining Residual Surface
Parameters
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Appendix E

Fortran Code of the Finite
Element Program Containing the
Concrete Plasticity Model

!****************************************************************************
!
! PROGRAM: Column_Plasticity
!
! PURPOSE: Calculate stress vs. strain and moment-curvature curves for
! a given column cross section and given axial load range.
!
! NOTES: Elements must always be numbered so that the top layer nodes
! are first and the axis of the column runs through x=y=0.
! Present code does not allow for load reversals as the concrete
! model does not account for crack opening/closing.
!
! WRITTEN BY: Julie Wolf (includes sections by John Hall)
!
!****************************************************************************

PROGRAM MAIN
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
DIMENSION TITLE(20)
REAL(KIND=16), ALLOCATABLE, DIMENSION(:) :: A,B,C
REAL(KIND=16), ALLOCATABLE, DIMENSION(:,:) :: AXLDS

C
C Array AXLDS contains the vector of axial load and moment values
C Array A contains mesh data (COOR, ID, and R)
C Array B contains element data
C Array C contains solution data (H, F, RTPT, DX, XT, XTPT, ELRT ELRTPT)
C

INTEGER(KIND=8), ALLOCATABLE, DIMENSION(:) :: NTYPE
C
C Array NTYPE designates the plane of the node
C 0 - bottom plane
C 1 - top plane
C Used for determining degrees of freedom
C

REAL(KIND=16) MX,MY,MSTOP,MMAX
COMMON /INFO/ N5TEMP
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NPAR(8)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /TOL/ TOLF,TOLM,NITMAX
COMMON /DEBUG/ IDEBUG
OPEN (5,FILE=’input.txt’)
OPEN (6,FILE=’output.txt’)
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OPEN (7,FILE=’storage’,FORM=’UNFORMATTED’)
OPEN (8,FILE=’MC_curves.txt’)

C
C Read and print control information.
C

READ(5,1000) TITLE
1000 FORMAT(20A4)

READ(5,*) NNP,NEG1,NEG10,NEG11,NEG100,NEG110,NUMAX
ALLOCATE(NTYPE(NNP))
ALLOCATE(AXLDS(NUMAX,2))
AXLDS=0.Q0
NTYPE=0
DO 50 K=1,NUMAX
READ(5,*) AXLDS(K,1),AXLDS(K,2)

50 CONTINUE
WRITE(6,1001) TITLE,NNP,NEG1,NEG10,NEG11,NEG100,NEG110,NUMAX

1001 FORMAT(5(/),1X,20A4,4(/),1X,’NNP =’,I5,/,1X,
* ’NEG1 (Longitudinal Rebar) =’,I5,(/),1X,
* ’NEG10 (Lower Transverse Rebar) =’,I5,(/),1X,
* ’NEG11 (Upper Transverse Rebar) =’,I5,(/),1X
* ’NEG100 (Top Layer Concrete) =’,I5,(/),1X,
* ’NEG110 (Interior Concrete) =’,I5,(/),1X,
* ’NUMAX =’,I5,(/),1X,’AXLDS =’)
DO 100 I=1,NUMAX
WRITE(6,1002) AXLDS(I,1),AXLDS(I,2)

1002 FORMAT(10X,E12.5,4X,E12.5)
100 CONTINUE

READ(5,*) NSSTEPS,NHSTEPS,NITMAX,ANGLE,TOLF,TOLM,MSTOP,MMAX
WRITE(6,1003) NSSTEPS,NHSTEPS,NITMAX,ANGLE,TOLF,TOLM,MSTOP,MMAX

1003 FORMAT(2(/),1X,’NSSTEPS =’,I5,/,1X,’NHSTEPS =’,I5,/,1X,
* ’NITMAX = ’,I5,/,1X,
* ’ANGLE (IN DEGREES) OF MOMENT APPLICATION = ’,E12.5,/,1X,
* ’FORCE TOLERANCE = ’,E12.5,/,1X,’MOMENT TOLERANCE = ’,E12.5,/,
* 1X,’SMALLEST MOMENT INCREMENT ATTEMPTED = ’,E12.5,/,1X,
* ’MAXIMUM MOMENT ATTEMPTED = ’,E12.5)
IF (NHSTEPS .GT. NSSTEPS .AND. NUMAX .EQ. 1
* .AND. AXLDS(1,2) .EQ. 0.) THEN

WRITE(6,*) ’Number of hydrostatic steps must be less than’,
* ’ or equal to the number of static steps’

STOP
ENDIF

C
C Read and print nodal data. Number equations.

N1=1
N2=N1+NNP*3 ! COOR
N3=N2+NNP*3 ! ID
N4=N3+NNP*3 ! R
ALLOCATE(A(N4-1))
A=0.Q0
ZCOR=0.

C
C Generates and prints nodal coordinates.

CALL READC(A(N1),NNP,ZCOR,NTYPE)
C
C Generates the nodal boundary conditions. Numbers the equations and
C prints the equation numbers. Computes NEQ.

CALL READID(A(N2),A(N1),NNP,NEQ,NTYPE)
C
C Generates and prints nodal loads and specified displacements.

CALL READR(A(N3),A(N2),NNP)
C
C Read and print element data. Calculate assembly arrays. Calculate
C and print half-bandwidth.
C

MBAND=1
MAXNEL1=0
MAXNEL10=0
MAXNEL11=0
MAXNEL100=0
MAXNEL110=0
MAXNINT=1

C
N5=1
N6=1
N7=1
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N8=1
N9=1
N10=1
N11=1
N1101=1
N1102=1
N1103=1
N1104=1
N12=1
N1201=1
N1202=1
N1203=1
N1204=1
N13=NEQ*(8*6*2+1)+1
WRITE(6,2001)

2001 FORMAT(4(/),1X,’ELEMENT DATA’)
IGO=1
REWIND 7
DO 200 IEG=1,NEG1
READ(5,*) NPAR
IF(NPAR(1).NE.1) THEN
WRITE(6,2002)

2002 FORMAT(2(/),’Incorrect number of longitudinal rebar groups’,
* ’ (Type 1 elements)’)

STOP
END IF
CALL TRUSSA(A,B,C)
IF(N5TEMP.GT.N5) N5=N5TEMP

200 CONTINUE
DO 201 IEG=1,NEG10
READ(5,*) NPAR
IF(NPAR(1).NE.10) THEN
WRITE(6,2003)

2003 FORMAT(2(/),’Incorrect number of lower transverse rebar groups’,
* ’ (Type 10 elements)’)

STOP
ENDIF
CALL TRUSSB(A,B,C)
IF(N5TEMP.GT.N5) N5=N5TEMP

201 CONTINUE
DO 202 IEG=1,NEG11
READ(5,*) NPAR
IF(NPAR(1).NE.11) THEN
WRITE(6,2004)

2004 FORMAT(2(/),’Incorrect number of upper transverse rebar groups’,
* ’ (Type 11 elements)’)

STOP
ENDIF
CALL TRUSSC(A,B,C)
IF(N5TEMP.GT.N5) N5=N5TEMP

202 CONTINUE
DO 203 IEG=1,NEG100
READ(5,*) NPAR
IF(NPAR(1).NE.100) THEN
WRITE(6,2005)

2005 FORMAT(2(/),’Incorrect number of solid concrete groups’,
* ’ (Type 100 elements)’)

STOP
END IF
CALL SOLIDA(A,B,C)
IF(N5TEMP.GT.N5) N5=N5TEMP

203 CONTINUE
DO 204 IEG=1,NEG110
READ(5,*) NPAR
IF(NPAR(1).NE.110) THEN
WRITE(6,2006)

2006 FORMAT(2(/),’Incorrect number of solid concrete groups’,
* ’Type 110 elements)’)

STOP
END IF
CALL SOLIDB(A,B,C)
IF(N5TEMP.GT.N5) N5=N5TEMP

204 CONTINUE
WRITE(6,2007) MBAND,NEQ

2007 FORMAT(4(/),1X,’MBAND = ’,I5,/,1X,’NEQ = ’,I5)
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C
C Assemble nodal loads. Calculate and assemble element matrices and
C vectors.

N6=1+NEQ*MBAND ! H
N7=N6+NEQ ! F
N8=N7+NEQ ! RTPT
N9=N8+NEQ ! DX
N10=N9+NEQ ! XT
N11=N10+NEQ ! XTPT
N1101=N11+4*MAXNEL1*NEG1 ! ELRT1
N1102=N1101+4*MAXNEL10*NEG10 ! ELRT10
N1103=N1102+4*MAXNEL11*NEG11 ! ELRT11
N1104=N1103+(MAXNINT*(6*2+3)+1)*MAXNEL100*NEG100 ! ELRT100
N12=N1104+(MAXNINT*(6*2+3)+1)*MAXNEL110*NEG110 ! ELRT110
N1201=N12+4*MAXNEL1*NEG1 ! ELRTPT1
N1202=N1201+4*MAXNEL10*NEG10 ! ELRTPT10
N1203=N1202+4*MAXNEL11*NEG11 ! ELRTPT11
N1204=N1203+(MAXNINT*(6*2+3)+1)*MAXNEL100*NEG100 ! ELRTPT100
N13=N1204+(MAXNINT*(6*2+3)+1)*MAXNEL110*NEG110 ! ELRTPT110
ALLOCATE(B(N5-1))
ALLOCATE(C(N13-1))

C
C
C Loop over all axial load cases

DO 300 K=1,NUMAX
B=0.Q0
C=0.Q0
MX=0.Q0
MY=0.Q0
DM=1000.Q0*TOLM

C
C Transfer nodal loads from R to F.

CALL FILLF(A(N2),A(N3),C(N6),AXLDS(K,1),MX,MY,NNP,NEQ)
C
C Transfer initial element lengths to ELRTPT

IGO=2
REWIND 7
DO 400 IEG=1,NEG1
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSA(A,B,C)

400 CONTINUE
DO 401 IEG=1,NEG10
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSB(A,B,C)

401 CONTINUE
DO 402 IEG=1,NEG11
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSC(A,B,C)

402 CONTINUE
DO 403 IEG=1,NEG100
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDA(A,B,C)

403 CONTINUE
DO 404 IEG=1,NEG110
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDB(A,B,C)

404 CONTINUE
WRITE(6,3000) AXLDS(K,1)
WRITE(*,3000) AXLDS(K,1)

3000 FORMAT(4(/),1X,’SOLUTION INFORMATION FOR AXIAL LOAD = ’,E12.5)
WRITE(8,3001) AXLDS(K,1)

3001 FORMAT(/,1X,’AXIAL LOAD =’,E19.12,/)
WRITE(8,3002)

3002 FORMAT(10x,’CURVATURE-X’,18X,’MX’,9X,’CURVATURE-Y’,18X,’MY’)
C
C Solve for axial load only

CALL STANAL(A(N1),A(N2),A(N3),B,C(1),C(N6),C(N7),C(N8),C(N9),
* C(N10),C(N11),C(N12),AXLDS(K,1),NTYPE,NSSTEPS,NHSTEPS,ZCOR,
* NITER)
TEMP=QSQRT(C(N11-2)*C(N11-2)+C(N11-1)*C(N11-1))
WRITE(8,3003) C(N11-2),0.,C(N11-1),0.

3003 FORMAT(1X,6(1X,E19.12))
c Skip moment curvature calcs if no applied moment

IF (AXLDS(K,2) .EQ. 0.) GO TO 300
C
C Create moment-curvature curve
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WRITE(6,3004) AXLDS(K,2)
WRITE(*,3004) AXLDS(K,2)

3004 FORMAT(4(/),1X,’SOLUTION INFORMATION FOR MOMENT = ’,E12.5)
MX=AXLDS(K,2)*QCOSD(ANGLE)
MY=AXLDS(K,2)*QSIND(ANGLE)
CALL FILLF(A(N2),A(N3),C(N6),AXLDS(K,1),MX,MY,NNP,NEQ)
CALL MCANAL(A(N1),A(N2),A(N3),B,C(1),C(N6),C(N7),C(N8),C(N9),
* C(N10),C(N11),C(N12),AXLDS(K,2),NTYPE,NSSTEPS,NHSTEPS,ZCOR,
* NITER)

300 CONTINUE
STOP
END PROGRAM MAIN

C-----------------------------------------------------------------------
C-----------------------------------------------------------------------

SUBROUTINE ASSMBL(H,F,HE,FE,IDL,NEQ,MBAND,NED,M1,M2)
C Assembles HE into H when M1.NE.0. Assembles FE into F when M2.NE.0.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION H(NEQ,MBAND),F(NEQ),HE(NED,NED),FE(NED*M2),IDL(NED)
IF(M1.EQ.0) GO TO 2

C Assemble HE into H.
DO 10 I=1,NED
IROW=IDL(I)
IF(IROW.EQ.0) GO TO 10
DO 20 J=1,NED
ICOL=IDL(J)-IROW+1
IF(ICOL.GT.0) H(IROW,ICOL)=H(IROW,ICOL)+HE(I,J)

20 CONTINUE
10 CONTINUE
2 IF(M2.EQ.0) RETURN

C Assemble FE into F.
DO 30 I=1,NED
IROW=IDL(I)
IF(IROW.EQ.0) GO TO 30
F(IROW)=F(IROW)+FE(I)

30 CONTINUE
RETURN
END

SUBROUTINE BAND(IDL,NED,NEL,MBAND)
C Computes MBAND.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION IDL(NED,NEL)
DO 10 N=1,NEL
DO 20 I=1,NED
IROW=IDL(I,N)
IF(IROW.EQ.0) GO TO 20
DO 30 J=1,NED
ICOL=IDL(J,N)
IF(ICOL.EQ.0) GO TO 30
NDIFF=IROW-ICOL+1
IF(NDIFF.GT.MBAND) MBAND=NDIFF

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE BSOLVE(A,B,N,NBD,MA,MB)
C symmetric banded equation solver for AX=B where A is N*NBD and B is N*1

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION A(N,NBD),B(N)
IF(MA.EQ.0) GO TO 200

C forward reduction on A
AVOD=0.Q0
DO 100 I=1,N
AVOD=AVOD+QABS(A(I,1))

100 CONTINUE
AVOD=AVOD/N
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TOL=AVOD* 1.Q-12
DMIN=1.Q+30
DO 110 IROW=1,N

c add below line to prevent negative stiffness
IF(A(IROW,1).LT.DMIN) DMIN=A(IROW,1)
IF(DMIN.LT.TOL) GO TO 300
IF(IROW.EQ.N) GO TO 110
MIN=KMIN0(NBD,N-IROW+1)
DO 120 J=2,MIN
IF (A(IROW,J).EQ.0.Q0) GO TO 120
ST=A(IROW,J)/A(IROW,1)
IJ1=IROW+J-1
DO 130 K=J,MIN
KJ1=K-J+1
A(IJ1,KJ1)=A(IJ1,KJ1)-ST*A(IROW,K)

130 CONTINUE
A(IROW,J)=ST

120 CONTINUE
110 CONTINUE
200 IF(MB.EQ.0) RETURN

C forward reduction and back substitution on B
IF(N.EQ.1) B(1)=B(1)/A(1,1)
IF(N.EQ.1) RETURN
N1=N-1
DO 210 I=1,N1
MIN=KMIN0(NBD,N-I+1)
DO 220 J=2,MIN
JJ=I+J-1
B(JJ)=B(JJ)-B(I)*A(I,J)

220 CONTINUE
210 CONTINUE

DO 230 I=1,N
B(I)=B(I)/A(I,1)

230 CONTINUE
DO 240 I=1,N1
II=N-I+1
MIN=KMIN0(NBD,II)
DO 250 J=2,MIN
JJ=II-J+1
B(JJ)=B(JJ)-B(II)*A(JJ,J)

250 CONTINUE
240 CONTINUE

RETURN
300 WRITE(6,3000)

3000 FORMAT(2(/),5X,’DMIN IS LESS THAN TOL; EXECUTION STOPPED.’)
WRITE(6,3001) AVOD,DMIN,TOL,IROW

3001 FORMAT(5X,’AVOD =’,1X,E12.5,4X,’DMIN =’,1X,E12.5,4X,’TOL =’,1X,
* E12.5,4X,’IROW =’,I5)
STOP
END

SUBROUTINE CORGEN(COOR,NNP,NTYPE)
C Generates matrix COOR

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),COOR1(3),NTYPE(NNP)
L=0
LG=0

10 READ(5,*) N,NG,(COOR1(J),J=1,3),NTYPE(N)
IF(N.EQ.0) RETURN
DO 20 J=1,3
COOR(N,J)=COOR1(J)

20 CONTINUE
NB=L+LG
IF((LG.LE.0).OR.(NB.GE.N)) GO TO 40
NE=N-1
NSPACE=(N-L-1)/LG+1
DO 30 J=1,3
CINC=(COOR(N,J)-COOR(L,J))/NSPACE
DO 31 I=NB,NE,LG
COOR(I,J)=COOR(I-LG,J)+CINC
NTYPE(I)=NTYPE(I-LG)

31 CONTINUE
30 CONTINUE
40 L=N
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LG=NG
GO TO 10
END

SUBROUTINE DFCALC(DF,DQ,X,R,THETA,PSIMAX,ALPHA,GAMMA,ETA,PHI,
* OMEGA,PSI,BETA,DBETADPSI,YST,DFDEP,SXX,SYY,SZZ,SXY,SYZ,SXZ)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION DF(6,1),DQ(6,1)
REAL(KIND=16) PSIMAX,PSI,PHI,X,R,THETA,J2,J3

C
C Calculate all derivatives related to the peak loading surface
C peak parameters

RT = -0.550272139045945Q0+QSQRT(-1.43439820150635Q0*X
* +0.0924044582071Q0*X**2.Q0+0.3027994270102Q0)
RC = -0.35195889174841Q0+QSQRT(-1.9710532637594Q0*X
* +0.31027499318239Q0*X**2.Q0+0.123875061480769Q0)
CALL RCALC(RT,RC,THETA,RPEAK)
DRTDX = 0.5Q0/(RT+0.550272139045945Q0)*(-1.43439820150635Q0
* +0.1848089164142Q0*X)
DRCDX = 0.5Q0/(RC+0.35195889174841Q0)*(-1.9710532637594Q0
* +0.62054998636478Q0*X)
CALL DRCALC(RC,RT,DRCDX,DRTDX,THETA,DRPEAKDX,DRPEAKDTH)
IF (X .GE. 0.) THEN

RT = 0.Q0
RC = 0.Q0
RPEAK = 0.Q0
DRTDX = 0.Q0
DRCDX = 0.Q0
DRPEAKDX = 0.Q0
DRPEAKDTH = 0.Q0

ENDIF
DFPEAKDX = -DRPEAKDX
DFPEAKDTH = -DRPEAKDTH

C
C Calculate all derivatives related to the yield loading surface

IF (PSI .LT. PSIMAX) THEN
TEMPA = QSQRT(2.Q0/3.Q0)*0.45Q0*(1.Q0+QSQRT(3.Q0)/0.45Q0)
TEMPB = QSQRT(2.Q0/3.Q0)*0.522Q0*(1.Q0+QSQRT(3.Q0)/1.044Q0)
TEMPC = -X/(1.Q0-X)
RT = TEMPC*TEMPB
RC = TEMPC*TEMPA
CALL RCALC(RT,RC,THETA,RYIELD)

c DRTDX = 0.5Q0/(RT+0.882224889542381Q0)
c * *(-1.47Q0+0.262233966735318Q0*X)
c DRCDX = 0.5Q0/(RC+1.108994328239060Q0)
c * *(-3.61Q0+0.356609103684252Q0*X)

TEMPC = (1.Q0-X)**2.Q0
DRTDX = -TEMPB/TEMPC
DRCDX = -TEMPA/TEMPC
CALL DRCALC(RC,RT,DRCDX,DRTDX,THETA,DRYIELDDX,DRYIELDDTH)
IF (X .GE. 0.) THEN

RT = 0.Q0
RC = 0.Q0
RYIELD = 0.Q0
DRCDX = 0.Q0
DRTDX = 0.Q0
DRYIELDDX = 0.Q0
DRYIELDDTH = 0.Q0

ENDIF
DFYIELDDX = -DRYIELDDX
DFYIELDDTH = -DRYIELDDTH
DFDX = BETA*DFPEAKDX + (1.Q0-BETA)*DFYIELDDX
DFDTH = BETA*DFPEAKDTH + (1.Q0-BETA)*DFYIELDDTH

C
C Vary Psi relationship here
C

DPSIDEP = 1.Q0/(PHI+ALPHA*(QABS(X))**GAMMA)
DFDEP = (RYIELD-RPEAK)*DBETADPSI*DPSIDEP

C
C Calculate all derivatives related to the residual loading surface

ELSE IF (PSI .GT. PSIMAX) THEN
RTT = -0.741661501371667Q0+QSQRT(-0.97641966644489Q0*X

* +0.0565121387786362Q0*X**2.Q0+0.5500617826168760Q0)
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RCC = -0.474373208368885Q0+QSQRT(-1.341730049803430Q0*X
* +0.189756033577570Q0*X**2.Q0+0.225029940818189Q0)

C Parameters to have round residual surface
c RTT = RCC
C

IF (X .GE. 0.) THEN
RTT = 0.Q0
RCC = 0.Q0

ENDIF
IF (RCC .GE. RC .AND. RTT .GE. RT) THEN

DFDX = DFPEAKDX
DFDTH = DFPEAKDTH
RRES = RPEAK

ELSE
IF (RT .GT. RTT) THEN
DRTDX = 0.5Q0/(RTT+0.741661501371667Q0)*

* (-0.97641966644489Q0+0.1130242775572724Q0*X)
ENDIF
IF (RC .GT. RCC) THEN
DRCDX = 0.5Q0/(RCC+0.474373208368885Q0)*

* (-1.341730049803430Q0+0.37951206715514Q0*X)
ENDIF

C Parameters to have round residual surface
c IF (RT .GT. RTT) THEN
c DRTDX = DRCDX
c ENDIF
C

RT = QMIN1(RT,RTT)
RC = QMIN1(RC,RCC)
CALL RCALC(RT,RC,THETA,RRES)
CALL DRCALC(RC,RT,DRCDX,DRTDX,THETA,DRRESDX,DRRESDTH)
IF (X .GE. 0.) THEN
RC = 0.Q0
RT = 0.Q0
RRES = 0.Q0
DRCDX = 0.Q0
DRTDX = 0.Q0
DRRESDX = 0.Q0
DRRESDTH = 0.Q0

ENDIF
DFRESDX = -DRRESDX
DFRESDTH = -DRRESDTH
DFDX = BETA*DFPEAKDX + (1.Q0-BETA)*DFRESDX
DFDTH = BETA*DFPEAKDTH + (1.Q0-BETA)*DFRESDTH

ENDIF
C
C Vary Psi relationship here
C

DPSIDEP = 1.Q0/(PHI+ALPHA*(QABS(X))**GAMMA)
DFDEP = (RRES-RPEAK)*DBETADPSI*DPSIDEP

ELSE
DFDX = DFPEAKDX
DFDTH = DFPEAKDTH
DFDEP = 0.Q0

ENDIF
DQDX = OMEGA*DFDX
DQDTH = OMEGA*DFDTH

C
C Calculate all derivatives related to the invariants

CALL PRIN(X,R,THETA,S1,S2,S3)
X = X*YST
R = R*YST
J2 = R**2.Q0/2.Q0
if (idebug .eq. 1) write(11,*) ’J2 = ’,J2
DJ2DSXX = (2.Q0*SXX-SYY-SZZ)/3.Q0
DJ2DSYY = (-SXX+2.Q0*SYY-SZZ)/3.Q0
DJ2DSZZ = (-SXX-SYY+2.Q0*SZZ)/3.Q0
DJ2DSXY = 2.Q0*SXY
DJ2DSYZ = 2.Q0*SYZ
DJ2DSXZ = 2.Q0*SXZ

TEMPA = X/QSQRT(3.Q0)
J3 = (SXX-TEMPA)*(SYY-TEMPA)*(SZZ-TEMPA)-((SXX-TEMPA)*SYZ**2.Q0
* +SXY**2.Q0*(SZZ-TEMPA)+SXZ**2.Q0*(SYY-TEMPA))
* +2.Q0*SXY*SYZ*SXZ
DJ3DSXX = (4.Q0*SYY*SZZ-2.Q0*SXX*(-SXX+SYY+SZZ)



160

* -(SYY**2.Q0+SZZ**2.Q0))/9.Q0-(2.Q0*SYZ**2.Q0
* -(SXY**2.Q0+SXZ**2.Q0))/3.Q0
DJ3DSYY = (4.Q0*SXX*SZZ-2.Q0*SYY*(SXX-SYY+SZZ)
* -(SXX**2.Q0+SZZ**2.Q0))/9.Q0
* -(2.Q0*SXZ**2.Q0-(SXY**2.Q0+SYZ**2.Q0))/3.Q0
DJ3DSZZ = (4.Q0*SXX*SYY-2.Q0*SZZ*(SXX+SYY-SZZ)
* -(SXX**2.Q0+SYY**2.Q0))/9.Q0
* -(2.Q0*SXY**2.Q0-(SXZ**2.Q0+SYZ**2.Q0))/3.Q0
DJ3DSXY = 2.Q0*SXZ*SYZ+2.Q0/3.Q0*SXY*(SXX+SYY-2.Q0*SZZ)
DJ3DSYZ = 2.Q0*SXY*SXZ+2.Q0/3.Q0*SYZ*(-2.Q0*SXX+SYY+SZZ)
DJ3DSXZ = 2.Q0*SXY*SYZ+2.Q0/3.Q0*SXZ*(SXX-2.Q0*SYY+SZZ)
TEMPA = QSIN(3.Q0*THETA)
DTHDJ2 = 0.75Q0*QSQRT(3.Q0)*J3/(J2**2.5Q0)/TEMPA
DTHDJ3 = -QSQRT(3.Q0)/2.Q0/(J2**1.5Q0)/TEMPA
IF (TEMPA .LT. 1.Q-6) THEN
DTHDJ2 = QSQRT(3.Q0)/2.Q0*J3/(J2**(2.5Q0))
DTHDJ3 = -1.Q0/QSQRT(3.Q0)/(J2**(1.5Q0))

ENDIF
DTHDSXX = DTHDJ3*DJ3DSXX+DTHDJ2*DJ2DSXX
DTHDSYY = DTHDJ3*DJ3DSYY+DTHDJ2*DJ2DSYY
DTHDSZZ = DTHDJ3*DJ3DSZZ+DTHDJ2*DJ2DSZZ
DTHDSXY = DTHDJ3*DJ3DSXY+DTHDJ2*DJ2DSXY
DTHDSYZ = DTHDJ3*DJ3DSYZ+DTHDJ2*DJ2DSYZ
DTHDSXZ = DTHDJ3*DJ3DSXZ+DTHDJ2*DJ2DSXZ

TEMPSXX = DJ2DSXX/R/YST
TEMPSYY = DJ2DSYY/R/YST
TEMPSZZ = DJ2DSZZ/R/YST
TEMPSXY = DJ2DSXY/R/YST
TEMPSYZ = DJ2DSYZ/R/YST
TEMPSXZ = DJ2DSXZ/R/YST

C
C Correct for case where R=0

IF (R .EQ. 0. .OR. X .GE. 0.) THEN
TEMPSXX = 0.Q0
TEMPSYY = 0.Q0
TEMPSZZ = 0.Q0
TEMPSXY = 0.Q0
TEMPSYZ = 0.Q0
TEMPSXZ = 0.Q0

ENDIF
C
C Calculated final yield and loading surface derivatives

DF(1,1) = TEMPSXX+DFDX/QSQRT(3.Q0)/YST+DFDTH*DTHDSXX
DF(2,1) = TEMPSYY+DFDX/QSQRT(3.Q0)/YST+DFDTH*DTHDSYY
DF(3,1) = TEMPSZZ+DFDX/QSQRT(3.Q0)/YST+DFDTH*DTHDSZZ
DF(4,1) = TEMPSXY+DFDTH*DTHDSXY
DF(5,1) = TEMPSYZ+DFDTH*DTHDSYZ
DF(6,1) = TEMPSXZ+DFDTH*DTHDSXZ
DQ(1,1) = TEMPSXX+DQDX/QSQRT(3.Q0)/YST+DQDTH*DTHDSXX
DQ(2,1) = TEMPSYY+DQDX/QSQRT(3.Q0)/YST+DQDTH*DTHDSYY
DQ(3,1) = TEMPSZZ+DQDX/QSQRT(3.Q0)/YST+DQDTH*DTHDSZZ
DQ(4,1) = TEMPSXY+DQDTH*DTHDSXY
DQ(5,1) = TEMPSYZ+DQDTH*DTHDSYZ
DQ(6,1) = TEMPSXZ+DQDTH*DTHDSXZ
X = X/YST
R = R/YST
RETURN
END

SUBROUTINE DRCALC(RC,RT,DRCDX,DRTDX,THETA,DRDX,DRDTH)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
REAL(KIND=16) RC,RT,DRCDX,DRTDX,THETA,TEMPA,TEMPB,DRDX,DRDTH
TEMPA = 4.Q0*(RC**2.Q0-RT**2.Q0)*(QCOS(THETA))**2.Q0
* +(RC-2.Q0*RT)**2.Q0
TEMPB = QSQRT(4.Q0*(RC**2.Q0-RT**2.Q0)*(QCOS(THETA))**2.Q0
* +5.Q0*RT**2.Q0-4.Q0*RT*RC)
DRDX = (2.Q0*DRCDX*(RC**2.Q0-RT**2.Q0)*QCOS(THETA)+4.Q0*RC*
* (RC*DRCDX-RT*DRTDX)*QCOS(THETA)+DRCDX*(2.Q0*RT-RC)*TEMPB+RC
* *(2.Q0*DRTDX-DRCDX)*TEMPB+(RC*(2.Q0*RT-RC)*(8.Q0*(RC*DRCDX
* -RT*DRTDX)*(QCOS(THETA))**2.Q0+10.Q0*RT*DRTDX-4.Q0*DRTDX*RC
* -4.Q0*RT*DRCDX))/(2.Q0*TEMPB))/TEMPA-((2.Q0*RC*(RC**2.Q0
* -RT**2.Q0)*QCOS(THETA)+RC*(2.Q0*RT-RC)*TEMPB)*(8.Q0*(RC*DRCDX
* -RT*DRTDX)*(QCOS(THETA))**2.Q0+2.Q0*(RC-2.Q0*RT)*(DRCDX



161

* -2.Q0*DRTDX)))/(TEMPA**2.Q0)
TEMPA = RC**2.Q0 - RT**2.Q0
TEMPB = 2.Q0*RT - RC
DRDTH = 2.Q0*QSIN(THETA)*RC*TEMPA/((4.Q0*(QCOS(THETA))**2.Q0*TEMPA
* +TEMPB**2.Q0)**2.Q0)/QSQRT((4.Q0*(QCOS(THETA))**2.Q0-1.Q0)*TEMPA
* +TEMPB**2.Q0)*((4.Q0*(QCOS(THETA))**2.Q0*TEMPA-TEMPB**2.Q0)
* *QSQRT((4.Q0*(QCOS(THETA))**2.Q0-1.Q0)*TEMPA+TEMPB**2.Q0)
* +8.Q0*(QCOS(THETA))**3.Q0*TEMPA*TEMPB+2.Q0*QCOS(THETA)
* *TEMPB**3.Q0-4.Q0*QCOS(THETA)*TEMPA*TEMPB)
IF (QSIN(3.Q0*THETA) .LT. 1.Q-6) THEN
DRDTH = 1.5Q0*RC*TEMPA/(TEMPB**2.Q0)

ENDIF
RETURN
END

SUBROUTINE FCALC(F,ELAS,SIG0,DSIG,X,R,THETA,PSI,PSIMAX,BETA,YST)
C
C Subroutine to calculate F (the loading function) given the current
C stress state (SIG0) the stress increment (DSIG) and current hardening
C parameter (PSI). ELAS indicates the ratio of DSIG which is to be
C applied.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION SIG0(6),DSIG(6)
REAL(KIND=16) F,ELAS,SIG0,DSIG
REAL(KIND=16) SXX,SYY,SZZ,SXY,SYZ,SXZ,I1,I2,J2,J3,X,R,THETA
REAL(KIND=16) RT,RC,RYIELD,RPEAK,RRES,PSIMAX,PSI,BETA,YST
SXX = SIG0(1)+ELAS*DSIG(1)
SYY = SIG0(2)+ELAS*DSIG(2)
SZZ = SIG0(3)+ELAS*DSIG(3)
SXY = SIG0(4)+ELAS*DSIG(4)
SYZ = SIG0(5)+ELAS*DSIG(5)
SXZ = SIG0(6)+ELAS*DSIG(6)
I1 = SXX+SYY+SZZ
I2 = (SXX*SYY+SYY*SZZ+SZZ*SXX)-SXY**2.Q0-SYZ**2.Q0-SXZ**2.Q0
TEMP = I1/3.Q0
J2 = 3.Q0*TEMP**2.Q0-I2
J3 = (SXX-TEMP)*(SYY-TEMP)*(SZZ-TEMP)-((SXX-TEMP)*SYZ**2.Q0
* +SXY**2.Q0*(SZZ-TEMP)+SXZ**2.Q0*(SYY-TEMP))+2.Q0*SXY*SYZ*SXZ
X = I1/QSQRT(3.Q0)/YST
R = QSQRT(2.Q0*J2)/YST
TEMP = 1.5Q0*QSQRT(3.Q0)*J3/(J2**(1.5Q0))
IF (TEMP .LT. -1.) TEMP=-1.Q0
IF (TEMP .GT. 1.) TEMP=1.Q0
THETA = QACOS(TEMP)/3.Q0
CALL PRIN(X,R,THETA,S1,S2,S3)
IF (X .GE. 0.) THEN

F = R
GO TO 10

ENDIF
C Below two expressions use fit for peak loading surface

RT = -0.550272139045945Q0+QSQRT(-1.43439820150635Q0*X
* +0.0924044582071Q0*X**2.Q0+0.3027994270102Q0)
RC = -0.35195889174841Q0+QSQRT(-1.9710532637594Q0*X
* +0.31027499318239Q0*X**2.Q0+0.123875061480769Q0)
CALL RCALC(RT,RC,THETA,RPEAK)
IF (PSI .LT. PSIMAX) THEN

C
C Below two expressions use fit for yield loading surface

TEMPA = QSQRT(2.Q0/3.Q0)*0.45Q0*(1.Q0+QSQRT(3.Q0)/0.45Q0)
TEMPB = QSQRT(2.Q0/3.Q0)*0.522Q0*(1.Q0+QSQRT(3.Q0)/1.044Q0)
TEMPC = -X/(1.Q0-X)
RT = TEMPC*TEMPB
RC = TEMPC*TEMPA
CALL RCALC(RT,RC,THETA,RYIELD)
F = R-BETA*(RPEAK-RYIELD)-RYIELD

ELSE IF (PSI .GT. PSIMAX) THEN
RT = -0.741661501371667Q0+QSQRT(-0.97641966644489Q0*X

* +0.0565121387786362Q0*X**2.Q0+0.5500617826168760Q0)
RC = -0.474373208368885Q0+QSQRT(-1.341730049803430Q0*X

* +0.189756033577570Q0*X**2.Q0+0.225029940818189Q0)
C Parameters to have round residual surface
c RT = RC
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C
CALL RCALC(RT,RC,THETA,RRES)
RRES = QMIN1(RRES,RPEAK)
F = R-BETA*(RPEAK-RRES)-RRES

ELSE F = R-RPEAK
ENDIF

10 RETURN
END

SUBROUTINE FILLF(ID,R,F,AXLD,MX,MY,NNP,NEQ)
C Transfers nodal loads from R to F.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION ID(NNP,3),R(NNP,3),F(NEQ)
REAL(KIND=16) MX,MY
DO 10 I=1,NNP
DO 11 J=1,3
IROW=ID(I,J)
IF(IROW.EQ.0) GO TO 11
F(IROW)=R(I,J)

11 CONTINUE
10 CONTINUE

F(NEQ-2)=AXLD
F(NEQ-1)=MX
F(NEQ)=MY
RETURN
END

SUBROUTINE IDGEN(ID,NNP,NTYPE)
C Generates vector ID

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION ID(NNP,3),ID1(3),NTYPE(NNP)

10 READ(5,*) N,NE,NG,(ID1(J),J=1,3)
IF(N.EQ.0) GO TO 40
DO 20 J=1,3
ID(N,J)=ID1(J)

20 CONTINUE
NB=N+NG
IF((NG.LE.0).OR.(NB.GT.NE)) GO TO 10
DO 30 I=NB,NE,NG
DO 31 J=1,3
ID(I,J)=ID1(J)

31 CONTINUE
30 CONTINUE

GO TO 10
40 DO 50 I=1,NNP

IF (NTYPE(I) .EQ. 1) ID(I,3)=0
50 CONTINUE

END

SUBROUTINE JACCOMP (COOR,LM,XJ,XI,P,DP,DET,NNP,NEN,IJK)
C Computes the Jacobian matrix, it’s inverse, and it’s determinant

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),LM(NEN),XJ(3,3),XI(3,3),P(4,NEN),DP(3,NEN)

C
XJ=0.Q0
DO 10 I=1,NEN
J1 = LM(I)
IF (J1.EQ.0) GO TO 10
DO 11 J=1,3

XJ(1,J) = XJ(1,J) + P(2,I)*COOR(J1,J)
XJ(2,J) = XJ(2,J) + P(3,I)*COOR(J1,J)
XJ(3,J) = XJ(3,J) + P(4,I)*COOR(J1,J)

11 CONTINUE
10 CONTINUE

C XJ is the Jacobian matrix at the current integration point.
C

XI(1,1) = XJ(2,2)*XJ(3,3) - XJ(3,2)*XJ(2,3)
XI(2,2) = XJ(1,1)*XJ(3,3) - XJ(3,1)*XJ(1,3)
XI(3,3) = XJ(1,1)*XJ(2,2) - XJ(2,1)*XJ(1,2)
XI(1,2) = -XJ(1,2)*XJ(3,3) + XJ(3,2)*XJ(1,3)
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XI(2,1) = -XJ(2,1)*XJ(3,3) + XJ(3,1)*XJ(2,3)
XI(1,3) = XJ(1,2)*XJ(2,3) - XJ(2,2)*XJ(1,3)
XI(3,1) = XJ(2,1)*XJ(3,2) - XJ(3,1)*XJ(2,2)
XI(2,3) = -XJ(1,1)*XJ(2,3) + XJ(2,1)*XJ(1,3)
XI(3,2) = -XJ(1,1)*XJ(3,2) + XJ(3,1)*XJ(1,2)
DET = XJ(1,1)*XI(1,1) + XJ(1,2)*XI(2,1) + XJ(1,3)*XI(3,1)

C DET is the determinant of XJ.
IF (DET.LE.0.) WRITE(6,1000) IJK
IF (DET.LE.0.) STOP
DO 20 I=1,3
DO 21 J=1,3
XI(I,J) = XI(I,J)/DET

21 CONTINUE
20 CONTINUE

C XI is the inverse of XJ.
C

DP = 0.Q0
DO 30 I=1,3
DO 31 J=1,NEN
DP(I,J) = XI(I,1)*P(2,J) + XI(I,2)*P(3,J) + XI(I,3)*P(4,J)

31 CONTINUE
30 CONTINUE

C DP contains terms of the nodal displacement (pressure) to strain (pressure)
C gradient) transformation matrix at the current integration point (X,Y,Z axes).
1000 FORMAT (//,3X,’DETERMINANT OF JACOBIAN NON-POSITIVE IN ELEMENT ’,

1 I5,’ EXECUTION STOPPED’)
RETURN
END

SUBROUTINE LCLCOR(COOR,LM,COORL,NNP,NEN)
C Transfers nodal coordinates for an element from COOR to COORL.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),LM(NEN),COORL(NEN,3)
DO 10 I=1,NEN
LI=LM(I)
DO 11 J=1,3
IF(LI.EQ.0) COORL(I,J)=0.Q0
IF(LI.NE.0) COORL(I,J)=COOR(LI,J)

11 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE LCLID(ID,LM,IDL,NEDN,NED,NEN,NEL,NEQ,NNP)
C Transfers equation numbers for all elements from ID to IDL.
C For elements having half their nodes in the top plane

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION ID(NNP,3),LM(NEN,NEL),IDL(NED,NEL)
DO 10 N=1,NEL
DO 20 I=1,NEN/2
LI=LM(I,N)
DO 21 J=1,NEDN-1
IF(LI.EQ.0) IDL((I-1)*(NEDN-1)+J,N)=0
IF(LI.NE.0) IDL((I-1)*(NEDN-1)+J,N)=ID(LI,J)

21 CONTINUE
20 CONTINUE

DO 30 I=NEN/2+1,NEN
LI=LM(I,N)
DO 31 J=1,NEDN
IF(LI.EQ.0) IDL((I-1)*NEDN+J-NEN/2,N)=0
IF(LI.NE.0) IDL((I-1)*NEDN+J-NEN/2,N)=ID(LI,J)

31 CONTINUE
30 CONTINUE

DO 40 I=1,3
IDL(NED-I+1,N)=NEQ-I+1

40 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE LCLID2(ID,LM,IDL,NNP,NEDN,NEN,NEL)
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C Transfers equation numbers for all elements from ID to IDL.
C For elements which do not lie in the top plane.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION ID(NNP,6),LM(NEN,NEL),IDL(NEDN,NEN,NEL)
DO 10 N=1,NEL
DO 11 I=1,NEN
LI=LM(I,N)
DO 12 J=1,NEDN
IF(LI.EQ.0) IDL(J,I,N)=0
IF(LI.NE.0) IDL(J,I,N)=ID(LI,J)

12 CONTINUE
11 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE LCLID3(ID,LM,IDL,NEDN,NED,NEN,NEL,NEQ,NNP)
C Transfers equation numbers for all elements from ID to IDL.
C For elements having all their nodes in the top plane

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION ID(NNP,3),LM(NEN,NEL),IDL(NED,NEL)
DO 10 N=1,NEL
DO 20 I=1,NEN
LI=LM(I,N)
DO 21 J=1,NEDN-1
IF(LI.EQ.0) IDL((I-1)*(NEDN-1)+J,N)=0
IF(LI.NE.0) IDL((I-1)*(NEDN-1)+J,N)=ID(LI,J)

21 CONTINUE
20 CONTINUE

DO 30 I=1,3
IDL(NED-I+1,N)=NEQ-I+1

30 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE LCLX(X,COORL,IDL,XL,DX,NEDN,NEN,NED,NEQ,IFLAG)
C Transfers displacements for an element from X to XL.
C For elements having half their nodes in the top plane
C If IFLAG=0 calculates displacements assuming current coordinates
C If IFLAG=1 calculates displacements assuming coordinates of previous time step

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION X(NEQ),COORL(NEN,3),XL(NEN,NEDN),IDL(NED),DX(NEQ)
DO 10 I=1,NEN/2

DO 11 J=1,NEDN-1
IDI=IDL((I-1)*(NEDN-1)+J)
IF(IDI.EQ.0) XL(I,J)=0.Q0
IF(IDI.NE.0) XL(I,J)=X(IDI)

11 CONTINUE
10 CONTINUE

DO 20 I=NEN/2+1,NEN
DO 21 J=1,NEDN

IDI=IDL((I-1)*NEDN+J-NEN/2)
IF(IDI.EQ.0) XL(I,J)=0.Q0
IF(IDI.NE.0) XL(I,J)=X(IDI)

21 CONTINUE
20 CONTINUE

DO 30 I=1,NEN/2
ID1=IDL((I-1)*(NEDN-1)+1)
ID2=IDL((I-1)*(NEDN-1)+2)
XL(I,3)=X(NEQ-2) + (COORL(I,2)-DX(ID2)*IFLAG) * X(NEQ-1)

* - (COORL(I,1)-DX(ID1)*IFLAG) * X(NEQ)
30 CONTINUE

RETURN
END

SUBROUTINE LCLX2(X,IDL,XL,NEDN,NEN,NED,NEQ)
C Transfers displacements for an element from X to XL.
C For elements which do not lie in the top plane
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IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION X(NEQ),XL(NEN,NEDN),IDL(NEDN,NEN)
DO 10 I=1,NEN

DO 11 J=1,NEDN
IDI=IDL(J,I)
IF(IDI.EQ.0) XL(I,J)=0.Q0
IF(IDI.NE.0) XL(I,J)=X(IDL(J,I))

11 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE LMGEN(LM,MAT,NEN,NEL)
C Generates vector MAT and matrix LM

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION LM(NEN,NEL),MAT(NEL),LM1(NEN)

10 READ(5,*) N,NE,NG,MAT1,(LM1(I),I=1,NEN),LMG
IF(N.EQ.0) RETURN
MAT(N)=MAT1
DO 20 I=1,NEN
LM(I,N)=LM1(I)

20 CONTINUE
NB=N+NG
IF((NG.LE.0).OR.(NB.GT.NE)) GO TO 10
DO 30 J=NB,NE,NG
MAT(J)=MAT1
DO 31 I=1,NEN
IF(LM1(I).EQ.0) LM(I,J)=0
IF(LM1(I).NE.0) LM(I,J)=LM(I,J-NG)+LMG

31 CONTINUE
30 CONTINUE

GO TO 10
END

SUBROUTINE MCANAL(COOR,ID,R,B,H,F,RTPT,DX,XT,XTPT,ELRT,ELRTPT,
* MOMENT,NTYPE,NSSTEPS,NHSTEPS,ZCOR,NITER)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NPAR(8)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /TOL/ TOLF,TOLM,NITMAX
COMMON /DEBUG/ IDEBUG
COMMON /MISC/ PSIMAX,KAPPA
DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),B(N5-1),H(NEQ,MBAND),
* F(NEQ),RTPT(NEQ),DX(NEQ),XT(NEQ),XTPT(NEQ),
* ELRT(N12-N11),ELRTPT(N13-N12),NTYPE(NNP)
REAL(KIND=16) MOMENT,KAPPA
TIME=0.Q0
DT=QABS(MOMENT/NHSTEPS)

C Calculate elastic stiffness matrix and factor
C Remove below code to iterate with tangent stiffness
C

IGO=3
H=0.Q0
REWIND 7
DO 10 IEG=1,NEG1
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSA(COOR,B,H)

10 CONTINUE
DO 20 IEG=1,NEG10
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSB(COOR,B,H)

20 CONTINUE
DO 30 IEG=1,NEG11
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSC(COOR,B,H)

30 CONTINUE
DO 40 IEG=1,NEG100
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READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDA(COOR,B,H)

40 CONTINUE
DO 50 IEG=1,NEG110
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDB(COOR,B,H)

50 CONTINUE
c add large stiffness in two rotational DOFs

H(NEQ-1,1)=H(NEQ-1,1)+1.0Q17
c H(NEQ,1)=H(NEQ,1)+1.0Q17
c

CALL BSOLVE(H,DX,NEQ,MBAND,1,0)
DO 100 N=1,NHSTEPS
TIME=TIME+DT
FRAC=QABS(TIME/MOMENT)

C Set previous time step displacement and element responses equal
C to current time step values
C

XT = XTPT
ELRT = ELRTPT
NITER=0
DO 200 K=1,NITMAX
DO 205 I=1,NEQ-2

DX(I)=F(I)-RTPT(I)
205 CONTINUE

DO 206 I=NEQ-1,NEQ
DX(I)=F(I)*FRAC-RTPT(I)

206 CONTINUE
DO 210 I=1,NNP

DO 211 J=1,3
IDI=ID(I,J)
IF(IDI.EQ.0) GO TO 211
IF(QABS(DX(IDI)).GT.TOLF) GO TO 1

211 CONTINUE
210 CONTINUE

IF(QABS(DX(NEQ-2)).GT.TOLF) GO TO 1
IF(QABS(DX(NEQ-1)).GT.TOLM) GO TO 1
IF(QABS(DX(NEQ)).GT.TOLM) GO TO 1
GO TO 2

1 CALL BSOLVE(H,DX,NEQ,MBAND,0,1)
DO 230 I=1,NNP

DO 231 J=1,3
IDI=ID(I,J)
IF (IDI.EQ.0) GO TO 231
COOR(I,J)=COOR(I,J) + DX(IDI)

231 CONTINUE
230 CONTINUE

DO 240 I=1,NEQ
XTPT(I) = XTPT(I) + DX(I)
DX(I) = XTPT(I)- XT(I)

240 CONTINUE
DO 250 I=1,NNP

IF (NTYPE(I).EQ.1) COOR(I,3)=ZCOR+XTPT(NEQ-2)
* +COOR(I,2)*XTPT(NEQ-1)-COOR(I,1)*XTPT(NEQ)

250 CONTINUE
RTPT=0.Q0
IGO=4
REWIND 7
DO 260 IEG=1,NEG1
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSA(COOR,B,H)

260 CONTINUE
DO 261 IEG=1,NEG10
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSB(COOR,B,H)

261 CONTINUE
DO 262 IEG=1,NEG11
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSC(COOR,B,H)

262 CONTINUE
DO 263 IEG=1,NEG100
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDA(COOR,B,H)

263 CONTINUE
DO 264 IEG=1,NEG110
READ(7) NEND,NPAR,(B(I),I=1,NEND)
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CALL SOLIDB(COOR,B,H)
264 CONTINUE

c add large FORCE in two rotational DOFs
RTPT(NEQ-1)=RTPT(NEQ-1)+1.0Q17*DX(NEQ-1)
RTPT(NEQ)=RTPT(NEQ)+1.0Q17*DX(NEQ)

c
NITER=K

200 CONTINUE

2 WRITE(6,2000) TIME,NITER
WRITE(*,2000) TIME,NITER

2000 FORMAT(1X,’MOMENT =’,E12.5,5X,’NITER =’,I5)
IF (NITER .EQ. NITMAX) WRITE(6,2001) F(NEQ-1)*FRAC-RTPT(NEQ-1)

2001 FORMAT(6X, ’MOMENT IMBALANCE = ’,E12.5)
WRITE(8,2005) XTPT(NEQ-1),F(NEQ-1)*FRAC-mrotx,XTPT(NEQ),
* F(NEQ)*FRAC-mroty

2005 FORMAT(1X,6(1X,E19.12))
100 CONTINUE

WRITE(6,2003)
2003 FORMAT(2(/),25X,’POST MOMENT ELEMENT RESPONSES’,/)

CALL PPICT(COOR,ID,B,H,XTPT,2,NTYPE,TIME)
RETURN
END

SUBROUTINE PPICT(COOR,ID,B,C,XTPT,ND,NTYPE,TIME)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NPAR(8)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),ID(NNP,3),B(N5-1),XTPT(NEQ),NTYPE(NNP)
IGO=5
REWIND 7
DO 100 IEG=1,NEG1
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSA(COOR,B,C)

100 CONTINUE
DO 101 IEG=1,NEG10
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSB(COOR,B,C)

101 CONTINUE
DO 102 IEG=1,NEG11
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSC(COOR,B,C)

102 CONTINUE
DO 103 IEG=1,NEG100
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDA(COOR,B,C)

103 CONTINUE
DO 104 IEG=1,NEG110
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDB(COOR,B,C)

104 CONTINUE
IF (ND.EQ.1) RETURN
WRITE(6,1000)

1000 FORMAT(/,3X,’NODE’,8X,’XDISP’,8X,’YDISP’,8X,’ZDISP’)
DO 200 I=1,NNP
XDISP=0.Q0
YDISP=0.Q0
ZDISP=0.Q0
ID1=ID(I,1)
ID2=ID(I,2)
ID3=ID(I,3)
IF(ID1.NE.0) XDISP=XTPT(ID1)
IF(ID2.NE.0) YDISP=XTPT(ID2)
IF(ID3.NE.0 .AND. NTYPE(I).EQ.0) ZDISP=XTPT(ID3)
IF(NTYPE(I).EQ.1) THEN

ZDISP=XTPT(NEQ-2)+COOR(I,2)*XTPT(NEQ-1)-COOR(I,1)*XTPT(NEQ)
ENDIF
WRITE(6,2000) I,XDISP,YDISP,ZDISP

2000 FORMAT(3X,I4,3(1X,E12.5))
200 CONTINUE
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WRITE(6,2001)
2001 FORMAT(/,3X,’TOP PLANE’,/,9X,’ZDISP’,2X,’CURVATURE-X’,

* 2X,’CURVATURE-Y’)
WRITE(6,2002) XTPT(NEQ-2),XTPT(NEQ-1),XTPT(NEQ)

2002 FORMAT(1X,3(1X,E12.5),4(/))
RETURN
END

SUBROUTINE PRIN(X,R,THETA,S1,S2,S3)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
REAL(KIND=16) X,R,THETA,PI

C SIGM = sigma_mean = mean stress
C SQJ2 = square root of the invariant J2
C S1,S2,S3 = principal stresses with S1>S2>S3

PI = 3.14159265358979323846264338327950
SIGM = X/QSQRT(3.Q0)
SQJ2 = R/QSQRT(2.Q0)
TEMP = 2.Q0/QSQRT(3.Q0)*SQJ2
TEMP2 = 2.Q0/3.Q0*PI
S1 = SIGM + TEMP*QCOS(THETA)
S2 = SIGM + TEMP*QCOS(THETA - TEMP2)
S3 = SIGM + TEMP*QCOS(THETA + TEMP2)
RETURN
END

SUBROUTINE RCALC(RT,RC,THETA,R)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
REAL(KIND=16) R,RT,RC,THETA
R=(2.Q0*RC*(RC**2.Q0-RT**2.Q0)*QCOS(THETA)+RC*(2.Q0*RT-RC)
* *QSQRT(4.Q0*(RC**2.Q0-RT**2.Q0)*(QCOS(THETA))**2.Q0
* +5.Q0*RT**2.Q0-4.Q0*RT*RC))/(4.Q0*(RC**2.Q0-RT**2.Q0)
* *(QCOS(THETA))**2.Q0+(RC-2.Q0*RT)**2.Q0)
RETURN
END

SUBROUTINE READC(COOR,NNP,ZCOR,NTYPE)
C Generates and prints nodal coordinates.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),NTYPE(NNP)
CALL CORGEN(COOR,NNP,NTYPE)
WRITE(6,1000)

1000 FORMAT(4(/),1X,’NODAL COORDINATES’,/,6X,’NODE’,14X,’X’,12X,’Y’,
* 12X,’Z’,4X,’TYPE’)
DO 10 I=1,NNP
WRITE(6,1001) I,(COOR(I,J),J=1,3),NTYPE(I)
IF (COOR(I,3).GT.ZCOR) ZCOR=COOR(I,3)

10 CONTINUE
1001 FORMAT(6X,I4,2X,3(1X,E12.5),7X,I1)

RETURN
END

SUBROUTINE READID(ID,COOR,NNP,NEQ,NTYPE)
C Generates the nodal boundary conditions. Numbers the equations and
C prints the equation numbers. Computes NEQ.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION ID(NNP,3), COOR(NNP,3),NTYPE(NNP)
ID=1
CALL IDGEN(ID,NNP,NTYPE)

C Number the nonzero terms of ID from 1 to NEQ. Set NEQ.
NEQ=0
DO 20 I=1,NNP
DO 21 J=1,3
IF(ID(I,J).EQ.0) GO TO 21
NEQ=NEQ+1
ID(I,J)=NEQ

21 CONTINUE
20 CONTINUE
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C Add final 3 DOF’s to account for top plane vertical displacement
C and two rotations

NEQ=NEQ+3
WRITE(6,2000)

2000 FORMAT(4(/),1X,’EQUATION NUMBERS’,/,6X,’NODE’,4X,’DOF 1’,2X,
* ’DOF 2’,2X,’DOF 3’)
DO 30 I=1,NNP
WRITE(6,3000) I,(ID(I,J),J=1,3)

30 CONTINUE
3000 FORMAT(6X,I4,2X,6(3X,I4))

RETURN
END

SUBROUTINE READR(R,ID,NNP)
C Generates and prints nodal loads and specified displacements.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION R(NNP,3)
R=0.Q0
CALL RGEN(R,ID,NNP)
WRITE(6,1000)

1000 FORMAT(4(/),1X,’SPECIFIED NODAL LOADS’,/,6X,
* ’NODE’,10X,’DOF 1’,8X,’DOF 2’,8X,’DOF 3’)
DO 10 I=1,NNP
WRITE(6,1001) I,(R(I,J),J=1,3)

1001 FORMAT(6X,I4,2X,6(1X,E12.5))
10 CONTINUE

RETURN
END

SUBROUTINE RECT (P,R,S,T)
C RECT COMPUTES SHAPE FUNCTION VALUES AND DERIVATIVES FOR AN 8 NODE ELEMENT
C AT THE LOCAL COORDINATE LOCATION R,S,T.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION P(4,8)

C
DO 10 I=1,4

C I=1 FOR SHAPE FUNCTION VALUES; =2 FOR R DERIVATIVES; =3 FOR S DERIVATIVES;
C =4 FOR T DERIVATIVES.

IF (I.EQ.1) GO TO 4
IF (I.EQ.2) GO TO 5
IF (I.EQ.3) GO TO 6
IF (I.EQ.4) GO TO 7

4 AR = 1.Q0 + R
SR = 1.Q0 - R
AS = 1.Q0 + S
SS = 1.Q0 - S
AT = 1.Q0 + T
ST = 1.Q0 - T
GO TO 8

5 AR = 1.Q0
SR = -1.Q0
GO TO 8

6 AR = 1.Q0 + R
SR = 1.Q0 - R
AS = 1.Q0
SS = -1.Q0
GO TO 8

7 AS = 1.Q0 + S
SS = 1.Q0 - S
AT = 1.Q0
ST = -1.Q0

8 P(I,1) = 0.125Q0*SR*AS*AT
P(I,2) = 0.125Q0*SR*SS*AT
P(I,3) = 0.125Q0*AR*SS*AT
P(I,4) = 0.125Q0*AR*AS*AT
P(I,5) = 0.125Q0*SR*AS*ST
P(I,6) = 0.125Q0*SR*SS*ST
P(I,7) = 0.125Q0*AR*SS*ST
P(I,8) = 0.125Q0*AR*AS*ST

10 CONTINUE
RETURN
END
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SUBROUTINE RGEN(R,ID,NNP)
C Generates vector R

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION R(NNP,3),ID(NNP,3),R1(3)

10 READ(5,*) N,NE,NG,(R1(J),J=1,3)
IF(N.EQ.0) RETURN
DO 20 J=1,3
R(N,J)=R1(J)

C IF(R1(J).NE.0 .AND. ID(N,J).EQ.1) THEN
C WRITE(6,1000) N,J
C 1000 FORMAT(/,1X,’NODAL LOADS ARE IGNORED IN THIS PROGRAM.’,/,
C * ’NODE = ’,I4,5X,’DOF = ’,I1,/)
C R(N,J)=0
C ENDIF

20 CONTINUE
NB=N+NG
IF((NG.LE.0).OR.(NB.GT.NE)) GO TO 10
DO 30 I=NB,NE,NG
DO 31 J=1,3
R(I,J)=R1(J)

31 CONTINUE
30 CONTINUE

GO TO 10
END

SUBROUTINE SOLIDA(A,B,C)
C Sets up storage for subroutine SOLID1

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
COMMON /INFO/ N5TEMP
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NEN,NINT,NDUM(3)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
REAL(KIND=16), ALLOCATABLE, DIMENSION(:) :: BSUB
DIMENSION A(N4-1),B(N5-1),C(N13-1)

C
IF (MAXNEL100.LT.NEL) MAXNEL100=NEL
IF (NINT.EQ.2) MAXNINT=8
IF (NINT.EQ.3) MAXNINT=4
N401=1 +NUMAT ! E
N402=N401+NUMAT ! POISSON’S RATIO
N403=N402+NUMAT ! f’c
N404=N403+NEL ! MAT
N405=N404+NEN*NEL ! LM
N5TEMP=N405+(NEN*3-NEN/2+3)*NEL ! IDL
NEND=N5TEMP-1
IF (IGO.EQ.1) THEN

ALLOCATE(BSUB(NEND))
BSUB=0.Q0
CALL SOLID1(A(N1),A(N2),A(N3),BSUB(1),BSUB(N401),BSUB(N402),

* BSUB(N403),BSUB(N404),BSUB(N405),C(1),C(N6),C(N7),C(N8),
* C(N9),C(N10),C(N1103),C(N1203))

WRITE(7) NEND,NELTYP,NEL,NUMAT,NEN,NINT,(NDUM(I),I=1,3),
* (BSUB(I),I=1,NEND)

DEALLOCATE(BSUB)
ELSE

CALL SOLID1(A(N1),A(N2),A(N3),B(1),B(N401),B(N402),B(N403),
* B(N404),B(N405),C(1),C(N6),C(N7),C(N8),C(N9),C(N10),
* C(N1103),C(N1203))
ENDIF
RETURN
END

SUBROUTINE SOLID1(COOR,ID,R,E,PR,YST,MAT,LM,IDL,H,F,RTPT,DX,XT,
* XTPT,ELRT,ELRTPT)

C Performs computations for 6 or 8 node solid elements.
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
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COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NEN,NINT,NDUM(3)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),E(NUMAT),PR(NUMAT),
* YST(NUMAT),MAT(NEL),LM(NEN,NEL),H(NEQ,MBAND),F(NEQ),RTPT(NEQ),
* IDL(NEN*3-NEN/2+3,NEL),DX(NEQ),XT(NEQ),XTPT(NEQ),
* ELRT(MAXNINT*(6*2+3)+1,MAXNEL100,NEG100),
* ELRTPT(MAXNINT*(6*2+3)+1,MAXNEL100,NEG100)
DIMENSION HE(NEN*3-NEN/2+3,NEN*3-NEN/2+3),RE(NEN*3-NEN/2+3),
* COORL(NEN,3),XP(NEN*3),T(NEN*3,NEN*3-NEN/2+3),
* TT(NEN*3-NEN/2+3,NEN*3),TEMP(NEN*3,NEN*3-NEN/2+3),
* HEP(NEN*3,NEN*3),REP(NEN*3),XTL(NEN,3),XTPTL(NEN,3),
* DXL(NEN*3),DEPS(6),DSIG(6),DTT(6,6,MAXNINT,MAXNEL100,NEG100)

C
NEDN=3
NLED=NEN*NEDN
NGED=NLED-NEN/2+3

C
IF (NEN.NE.6 .AND. NEN.NE.8) THEN

WRITE(6,1000)
1000 FORMAT(’Invalid number of nodes for solid element. ’,

* ’Program terminated.’)
STOP

ENDIF
IF (IGO.EQ.1) GOTO 1 ! Input element data
IF (IGO.EQ.2) GOTO 2 ! Determine initial element volumes
IF (IGO.EQ.3) GOTO 3 ! calculate the tangent stiffness, H
IF (IGO.EQ.4) GOTO 4 ! calculate RTPT and ELRTPT
IF (IGO.EQ.5) GOTO 5 ! Print the system picture
WRITE(6,1001)

1001 FORMAT(’Fatal error in subroutine SOLID1. Invalid value for IGO.’)
STOP

C
C Read and print element data. Calculate assembly arrays and half-
C bandwidth
C

1 WRITE(6,1002) IEG
1002 FORMAT(//,2X,’TOP LAYER SOLID ELEMENT GROUP NUMBER’,I4,10X)

WRITE(6,1003) NEL,NUMAT,NEN,NINT
1003 FORMAT(/,4X,’NEL =’,I5,4X,’NUMAT =’,I3,4X,’NEN = ’,I2,

* 4X,’NINT = ’,I2)
WRITE(6,1004)

1004 FORMAT(/,4X,’MATERIAL/GEOMETRIC SETS’,/,9X,’SET’,14X,’E’,
* 4X,’POISSONS RATIO’,10X,’YST’)
DO 100 I=1,NUMAT
READ(5,*) E(I),PR(I),YST(I)
WRITE(6,1005) I,E(I),PR(I),YST(I)

1005 FORMAT(8X,I4,3X,E12.5,6X,E12.5,1X,E12.5)
100 CONTINUE

C
C Generates vector MAT and matrix LM

CALL LMGEN(LM,MAT,NEN,NEL)
WRITE(6,1006)

1006 FORMAT(/,4X,’MATERIAL SET NUMBERS AND CONNECTIVITY VECTORS’,/,
* 9X,’ELE’,3X,’SET’,5X,’NODE NUMBERS’)
DO 110 N=1,NEL

C
C Transfers nodal coordinates for an element from COOR to COORL.

WRITE(6,1007) N,MAT(N),(LM(I,N),I=1,NEN)
1007 FORMAT(8X,I4,2X,I4,5X,8(2X,I4))
110 CONTINUE

C
C Transfers equation numbers for all elements from ID to IDL.
C For elements having half their nodes in the top plane

CALL LCLID(ID,LM,IDL,NEDN,NGED,NEN,NEL,NEQ,NNP)
C
C Calculate MBAND

CALL BAND(IDL,NGED,NEL,MBAND)
RETURN

C
C Set initial volumes for elements, initialize YFLAG, and
C initialize DTT to the elastic stiffness matrix
C

2 DTT = 0.Q0
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C Add line below to iterate with the tangent stiffness
c WRITE(9) DTT

DO 200 N=1,NEL
CALL SOLSTF(HEP,ELRT,ELRTPT,DXL,REP,COOR,LM(1,N),E(MAT(N)),
* PR(MAT(N)),YST(MAT(N)),NINT,N,NEN,0,MAXNEL100,NEG100)

200 CONTINUE
RETURN

C
C Calculate and assemble element matrices and vectors
C

3 DO 300 N=1,NEL
c if (idebug .eq. 1) write(11,3100) n,nel
c 3100 format(’Calculating stiffness for solid element ’,i5,’ of ’,i5)

M=MAT(N)
CALL SOLSTF(HEP,ELRT,ELRTPT,DXL,REP,COOR,LM(1,N),E(M),PR(M),
* YST(M),NINT,N,NEN,1,MAXNEL100,NEG100)

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
C
C Define transformation matrix
C

T=0.Q0
TT=0.Q0
TEMP=0.Q0

T(1,1)=1.Q0
T(2,2)=1.Q0
T(4,3)=1.Q0
T(5,4)=1.Q0
T(7,5)=1.Q0
T(8,6)=1.Q0
T(10,7)=1.Q0
T(11,8)=1.Q0

IF (NEN.EQ.6) THEN
T(12,9)=1.Q0
T(13,10)=1.Q0
T(14,11)=1.Q0
T(15,12)=1.Q0
T(16,13)=1.Q0
T(17,14)=1.Q0
T(18,15)=1.Q0
T(3,16)=1.Q0
T(3,17)=COORL(1,2)
T(3,18)=-COORL(1,1)
T(6,16)=1.Q0
T(6,17)=COORL(2,2)
T(6,18)=-COORL(2,1)
T(9,16)=1.Q0
T(9,17)=COORL(3,2)
T(9,18)=-COORL(3,1)

ENDIF
IF (NEN.EQ.8) THEN

T(13,9)=1.Q0
T(14,10)=1.Q0
T(15,11)=1.Q0
T(16,12)=1.Q0
T(17,13)=1.Q0
T(18,14)=1.Q0
T(19,15)=1.Q0
T(20,16)=1.Q0
T(21,17)=1.Q0
T(22,18)=1.Q0
T(23,19)=1.Q0
T(24,20)=1.Q0
T(3,21)=1.Q0
T(3,22)=COORL(1,2)
T(3,23)=-COORL(1,1)
T(6,21)=1.Q0
T(6,22)=COORL(2,2)
T(6,23)=-COORL(2,1)
T(9,21)=1.Q0
T(9,22)=COORL(3,2)
T(9,23)=-COORL(3,1)
T(12,21)=1.Q0
T(12,22)=COORL(4,2)



173

T(12,23)=-COORL(4,1)
ENDIF
DO 310 I=1,NEN*3

DO 320 J=1,NEN*3-NEN/2+3
TT(J,I)=T(I,J)

320 CONTINUE
310 CONTINUE

C
C Transform to global coordinates
C

TEMP=MATMUL(HEP,T)
HE=MATMUL(TT,TEMP)
CALL ASSMBL(H,F,HE,RE,IDL(1,N),NEQ,MBAND,NGED,1,0)

300 CONTINUE
RETURN

C
4 DO 400 N=1,NEL
M=MAT(N)

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
C
C Transfer displacements for an element from X to XL.
C For elements having half their nodes in the top plane

CALL LCLX(XT,COORL,IDL(1,N),XTL,DX,NEDN,NEN,NGED,NEQ,1)
CALL LCLX(XTPT,COORL,IDL(1,N),XTPTL,DX,NEDN,NEN,NGED,NEQ,0)
DO 410 I=1,NEN

DXL(I*3-2) = XTPTL(I,1)-XTL(I,1)
DXL(I*3-1) = XTPTL(I,2)-XTL(I,2)
DXL(I*3) = XTPTL(I,3)-XTL(I,3)

410 CONTINUE
CALL SOLSTF(HEP,ELRT,ELRTPT,DXL,REP,COOR,LM(1,N),E(M),PR(M),
* YST(M),NINT,N,NEN,2,MAXNEL100,NEG100)

C
C Define transformation matrix
C

T=0.Q0
TT=0.Q0
TEMP=0.Q0

T(1,1)=1.Q0
T(2,2)=1.Q0
T(4,3)=1.Q0
T(5,4)=1.Q0
T(7,5)=1.Q0
T(8,6)=1.Q0
T(10,7)=1.Q0
T(11,8)=1.Q0

IF (NEN.EQ.6) THEN
T(12,9)=1.Q0
T(13,10)=1.Q0
T(14,11)=1.Q0
T(15,12)=1.Q0
T(16,13)=1.Q0
T(17,14)=1.Q0
T(18,15)=1.Q0
T(3,16)=1.Q0
T(3,17)=COORL(1,2)
T(3,18)=-COORL(1,1)
T(6,16)=1.Q0
T(6,17)=COORL(2,2)
T(6,18)=-COORL(2,1)
T(9,16)=1.Q0
T(9,17)=COORL(3,2)
T(9,18)=-COORL(3,1)

ENDIF
IF (NEN.EQ.8) THEN

T(13,9)=1.Q0
T(14,10)=1.Q0
T(15,11)=1.Q0
T(16,12)=1.Q0
T(17,13)=1.Q0
T(18,14)=1.Q0
T(19,15)=1.Q0
T(20,16)=1.Q0
T(21,17)=1.Q0
T(22,18)=1.Q0
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T(23,19)=1.Q0
T(24,20)=1.Q0
T(3,21)=1.Q0
T(3,22)=COORL(1,2)
T(3,23)=-COORL(1,1)
T(6,21)=1.Q0
T(6,22)=COORL(2,2)
T(6,23)=-COORL(2,1)
T(9,21)=1.Q0
T(9,22)=COORL(3,2)
T(9,23)=-COORL(3,1)
T(12,21)=1.Q0
T(12,22)=COORL(4,2)
T(12,23)=-COORL(4,1)

ENDIF
DO 420 I=1,NEN*3

DO 430 J=1,NEN*3-NEN/2+3
TT(J,I)=T(I,J)

430 CONTINUE
420 CONTINUE

C
C Transform to global coordinates
C

RE=MATMUL(TT,REP)
CALL ASSMBL(H,RTPT,HE,RE,IDL(1,N),NEQ,MBAND,NGED,0,1)

400 CONTINUE
RETURN

C
5 WRITE(6,5000) IEG

5000 FORMAT(//,2X,’SOLID CONCRETE ELEMENT GROUP NUMBER ’,I4)
DO 500 N=1,NEL
M=MAT(N)
WRITE(6,5001) N,NEN,ELRTPT(MAXNINT*(6*2+3)+1,N,IEG)

5001 FORMAT(/,4X,’ELEMENT NUMBER’,I4,/,’NEN =’,I2,/,’VOLUME = ’,
* E12.5,//)
IF (MAXNINT.EQ.1) THEN

WRITE(6,5002)
5002 FORMAT(2X,’STRESS VECTOR’,4X,’STRAIN VECTOR’)

DO 510 I=1,6
WRITE(6,5003) ELRTPT(I,N,IEG),ELRTPT(6+I,N,IEG)

5003 FORMAT(3X,E12.5,5X,E12.5,5X,E12.5)
510 CONTINUE

WRITE(6,5004) ELRTPT(13,N,IEG)
5004 FORMAT(/,2X,’PSI = ’,E12.5)

ENDIF
IF (MAXNINT.EQ.4) THEN

WRITE(6,5005)
5005 FORMAT(4X,’STRESS VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,

* ’INT PT 3’,6X,’INT PT 4’)
DO 520 I=1,6
WRITE(6,5006) ELRTPT(I,N,IEG),ELRTPT(6+I,N,IEG),

* ELRTPT(2*6+I,N,IEG),ELRTPT(3*6+I,N,IEG)
5006 FORMAT(8(2X,E12.5))
520 CONTINUE

WRITE(6,5007)
5007 FORMAT(//,4X,’STRAIN VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,

* ’INT PT 3’,6X,’INT PT 4’)
DO 530 I=1,6
WRITE(6,5006) ELRTPT(4*6+I,N,IEG),ELRTPT(5*6+I,N,IEG),

* ELRTPT(6*6+I,N,IEG),ELRTPT(7*6+I,N,IEG)
530 CONTINUE

WRITE(6,5008)
5008 FORMAT(//,4X,’FINAL VALUE OF PSI’,/,6X,’INT PT 1’,6X,’INT PT 2’,

* 6X,’INT PT 3’,6X,’INT PT 4’)
WRITE(6,5006) ELRTPT(8*6+1,N,IEG),ELRTPT(8*6+2,N,IEG),

* ELRTPT(8*6+3,N,IEG),ELRTPT(8*6+4,N,IEG)
ENDIF
IF (MAXNINT.EQ.8) THEN

WRITE(6,5009)
5009 FORMAT(4X,’STRESS VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,

* ’INT PT 3’,6X,’INT PT 4’,6X,’INT PT 5’,6X,’INT PT 6’,6X,
* ’INT PT 7’,6X,’INT PT 8’)

DO 540 I=1,6
WRITE(6,5006) ELRTPT(I,N,IEG),ELRTPT(6+I,N,IEG),

* ELRTPT(2*6+I,N,IEG),ELRTPT(3*6+I,N,IEG),ELRTPT(4*6+I,N,IEG),
* ELRTPT(5*6+I,N,IEG),ELRTPT(6*6+I,N,IEG),ELRTPT(7*6+I,N,IEG)
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540 CONTINUE
WRITE(6,5010)

5010 FORMAT(//,4X,’STRAIN VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,
* ’INT PT 3’,6X,’INT PT 4’,6X,’INT PT 5’,6X,’INT PT 6’,6X,
* ’INT PT 7’,6X,’INT PT 8’)

DO 550 I=1,6
WRITE(6,5006) ELRTPT(8*6+I,N,IEG),ELRTPT(9*6+I,N,IEG),

* ELRTPT(10*6+I,N,IEG),ELRTPT(11*6+I,N,IEG),
* ELRTPT(12*6+I,N,IEG),ELRTPT(13*6+I,N,IEG),
* ELRTPT(14*6+I,N,IEG),ELRTPT(15*6+I,N,IEG)

550 CONTINUE
WRITE(6,5011)

5011 FORMAT(//,4X,’FINAL VALUE OF PSI’,/,6X,’INT PT 1’,6X,’INT PT 2’,
* 6X,’INT PT 3’,6X,’INT PT 4’,6X,’INT PT 5’,6X,’INT PT 6’,6X,
* ’INT PT 7’,6X,’INT PT 8’)

WRITE(6,5006) ELRTPT(16*6+1,N,IEG),ELRTPT(16*6+2,N,IEG),
* ELRTPT(16*6+3,N,IEG),ELRTPT(16*6+4,N,IEG),
* ELRTPT(16*6+5,N,IEG),ELRTPT(16*6+6,N,IEG),
* ELRTPT(16*6+7,N,IEG),ELRTPT(16*6+8,N,IEG)
ENDIF

500 CONTINUE
RETURN
END

SUBROUTINE SOLIDB(A,B,C)
C Sets up storage for subroutine SOLID10

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
COMMON /INFO/ N5TEMP
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NEN,NINT,NDUM(3)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
REAL(KIND=16), ALLOCATABLE, DIMENSION(:) :: BSUB
DIMENSION A(N4-1),B(N5-1),C(N13-1)

C
IF (MAXNEL110.LT.NEL) MAXNEL110=NEL
IF (NINT.EQ.2) MAXNINT=8
IF (NINT.EQ.3) MAXNINT=4
N401=1 +NUMAT ! E
N402=N401+NUMAT ! POISSON’S RATIO
N403=N402+NUMAT ! f’c
N404=N403+NEL ! MAT
N405=N404+NEN*NEL ! LM
N5TEMP=N405+NEN*3*NEL ! IDL
NEND=N5TEMP-1
IF (IGO.EQ.1) THEN

ALLOCATE(BSUB(NEND))
BSUB=0.Q0
CALL SOLID10(A(N1),A(N2),A(N3),BSUB(1),BSUB(N401),BSUB(N402),

* BSUB(N403),BSUB(N404),BSUB(N405),C(1),C(N6),C(N7),C(N8),
* C(N9),C(N10),C(N1104),C(N1204))

WRITE(7) NEND,NELTYP,NEL,NUMAT,NEN,NINT,(NDUM(I),I=1,3),
* (BSUB(I),I=1,NEND)

DEALLOCATE(BSUB)
ELSE

CALL SOLID10(A(N1),A(N2),A(N3),B(1),B(N401),B(N402),B(N403),
* B(N404),B(N405),C(1),C(N6),C(N7),C(N8),C(N9),C(N10),
* C(N1104),C(N1204))
ENDIF
RETURN
END

SUBROUTINE SOLID10(COOR,ID,R,E,PR,YST,MAT,LM,IDL,H,F,RTPT,DX,XT,
* XTPT,ELRT,ELRTPT)

C Performs computations for 6 or 8 node interior solid elements.
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NEN,NINT,NDUM(3)
COMMON /DEBUG/ IDEBUG
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DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),E(NUMAT),PR(NUMAT),
* YST(NUMAT),MAT(NEL),LM(NEN,NEL),H(NEQ,MBAND),F(NEQ),RTPT(NEQ),
* IDL(3,NEN,NEL),DX(NEQ),XT(NEQ),XTPT(NEQ),
* ELRT(MAXNINT*(6*2+3)+1,MAXNEL110,NEG110),
* ELRTPT(MAXNINT*(6*2+3)+1,MAXNEL110,NEG110)
DIMENSION HE(NEN*3,NEN*3),RE(NEN*3),COORL(NEN,3),XP(NEN*3),
* XTL(NEN,3),XTPTL(NEN,3),DXL(NEN*3),DEPS(6),DSIG(6),
* DTT(6,6,MAXNINT,MAXNEL110,NEG110)

C
NEDN=3
NED=NEN*NEDN

C
IF (NEN.NE.6 .AND. NEN.NE.8) THEN

WRITE(6,1000)
1000 FORMAT(’Invalid number of nodes for interior solid element. ’,

* ’Program terminated.’)
STOP

ENDIF
IF (IGO.EQ.1) GOTO 1 ! Input element data
IF (IGO.EQ.2) GOTO 2 ! Determine initial element volumes
IF (IGO.EQ.3) GOTO 3 ! calculate the tangent stiffness, H
IF (IGO.EQ.4) GOTO 4 ! calculate RTPT and ELRTPT
IF (IGO.EQ.5) GOTO 5 ! Print the system picture
WRITE(6,1001)

1001 FORMAT(’Fatal error in subroutine SOLID10. ’
* ’Invalid value for IGO.’)
STOP

C
C Read and print element data. Calculate assembly arrays and half-
C bandwidth
C

1 WRITE(6,1002) IEG
1002 FORMAT(//,2X,’INTERIOR SOLID ELEMENT GROUP NUMBER’,I4,10X)

WRITE(6,1003) NEL,NUMAT,NEN,NINT
1003 FORMAT(/,4X,’NEL =’,I5,4X,’NUMAT =’,I3,4X,’NEN = ’,I2,

* 4X,’NINT = ’,I2)
WRITE(6,1004)

1004 FORMAT(/,4X,’MATERIAL/GEOMETRIC SETS’,/,9X,’SET’,14X,’E’,
* 4X,’POISSONS RATIO’,10X,’YST’)
DO 100 I=1,NUMAT
READ(5,*) E(I),PR(I),YST(I)
WRITE(6,1005) I,E(I),PR(I),YST(I)

1005 FORMAT(8X,I4,3X,E12.5,6X,E12.5,1X,E12.5)
100 CONTINUE

C
C Generates vector MAT and matrix LM

CALL LMGEN(LM,MAT,NEN,NEL)
WRITE(6,1006)

1006 FORMAT(/,4X,’MATERIAL SET NUMBERS AND CONNECTIVITY VECTORS’,/,
* 9X,’ELE’,3X,’SET’,5X,’NODE NUMBERS’)
DO 110 N=1,NEL

C
C Transfers nodal coordinates for an element from COOR to COORL.

WRITE(6,1007) N,MAT(N),(LM(I,N),I=1,NEN)
1007 FORMAT(8X,I4,2X,I4,5X,8(2X,I4))
110 CONTINUE

C
C Transfers equation numbers for all elements from ID to IDL.
C For elements which do not lie in the top plane

CALL LCLID2(ID,LM,IDL,NNP,NEDN,NEN,NEL)
C
C Calculate MBAND

CALL BAND(IDL,NED,NEL,MBAND)
RETURN

C
C Set initial volumes for elements, initialize YFLAG, and
C initialize DTT to the elastic stiffness matrix
C

2 DTT = 0.Q0
C Add line below to iterate with the tangent stiffness
c WRITE(9) DTT

DO 200 N=1,NEL
CALL SOLSTF(HE,ELRT,ELRTPT,DXL,RE,COOR,LM(1,N),E(MAT(N)),
* PR(MAT(N)),YST(MAT(N)),NINT,N,NEN,0,MAXNEL110,NEG110)

200 CONTINUE
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RETURN
C
C Calculate and assemble element matrices and vectors
C

3 DO 300 N=1,NEL
c if (idebug .eq. 1) write(11,3100) n,nel
c 3100 format(’Calculating stiffness for solid element ’,i5,’ of ’,i5)

M=MAT(N)
CALL SOLSTF(HE,ELRT,ELRTPT,DXL,RE,COOR,LM(1,N),E(M),PR(M),
* YST(M),NINT,N,NEN,1,MAXNEL110,NEG110)
CALL ASSMBL(H,F,HE,RE,IDL(1,1,N),NEQ,MBAND,NED,1,0)

300 CONTINUE
RETURN

C
4 DO 400 N=1,NEL

c if (idebug .eq. 1) write(11,4100) n,nel
c 4100 format(’Calculating forces for interior solid element ’,i5,
c * ’ of ’,i5)

M=MAT(N)
C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
C
C Transfer displacements for an element from X to XL.
C For elements which do not lie in the top plane

CALL LCLX2(XT,IDL(1,1,N),XTL,NEDN,NEN,NED,NEQ)
CALL LCLX2(XTPT,IDL(1,1,N),XTPTL,NEDN,NEN,NED,NEQ)
DO 410 I=1,NEN

DXL(I*3-2) = XTPTL(I,1)-XTL(I,1)
DXL(I*3-1) = XTPTL(I,2)-XTL(I,2)
DXL(I*3) = XTPTL(I,3)-XTL(I,3)

410 CONTINUE
CALL SOLSTF(HE,ELRT,ELRTPT,DXL,RE,COOR,LM(1,N),E(M),PR(M),
* YST(M),NINT,N,NEN,2,MAXNEL110,NEG110)
CALL ASSMBL(H,RTPT,HE,RE,IDL(1,1,N),NEQ,MBAND,NED,0,1)

400 CONTINUE
RETURN

C
5 WRITE(6,5000) IEG

5000 FORMAT(//,2X,’INTERIOR SOLID CONCRETE ELEMENT GROUP NUMBER ’,I4)
DO 500 N=1,NEL
M=MAT(N)
WRITE(6,5001) N,NEN,ELRTPT(MAXNINT*(6*2+3)+1,N,IEG)

5001 FORMAT(/,4X,’ELEMENT NUMBER’,I4,/,’NEN =’,I2,/,’VOLUME = ’,
* E12.5,//)
IF (MAXNINT.EQ.1) THEN

WRITE(6,5002)
5002 FORMAT(2X,’STRESS VECTOR’,4X,’STRAIN VECTOR’)

DO 510 I=1,6
WRITE(6,5003) ELRTPT(I,N,IEG),ELRTPT(6+I,N,IEG)

5003 FORMAT(3X,E12.5,5X,E12.5,5X,E12.5)
510 CONTINUE

WRITE(6,5004) ELRTPT(13,N,IEG)
5004 FORMAT(/,2X,’PSI = ’,E12.5)

ENDIF
IF (MAXNINT.EQ.4) THEN

WRITE(6,5005)
5005 FORMAT(4X,’STRESS VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,

* ’INT PT 3’,6X,’INT PT 4’)
DO 520 I=1,6
WRITE(6,5006) ELRTPT(I,N,IEG),ELRTPT(6+I,N,IEG),

* ELRTPT(2*6+I,N,IEG),ELRTPT(3*6+I,N,IEG)
5006 FORMAT(8(2X,E12.5))
520 CONTINUE

WRITE(6,5007)
5007 FORMAT(//,4X,’STRAIN VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,

* ’INT PT 3’,6X,’INT PT 4’)
DO 530 I=1,6
WRITE(6,5006) ELRTPT(4*6+I,N,IEG),ELRTPT(5*6+I,N,IEG),

* ELRTPT(6*6+I,N,IEG),ELRTPT(7*6+I,N,IEG)
530 CONTINUE

WRITE(6,5008)
5008 FORMAT(//,4X,’FINAL VALUE OF PSI’,/,6X,’INT PT 1’,6X,’INT PT 2’,

* 6X,’INT PT 3’,6X,’INT PT 4’)
WRITE(6,5006) ELRTPT(8*6+1,N,IEG),ELRTPT(8*6+2,N,IEG),
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* ELRTPT(8*6+3,N,IEG),ELRTPT(8*6+4,N,IEG)
ENDIF
IF (MAXNINT.EQ.8) THEN

WRITE(6,5009)
5009 FORMAT(4X,’STRESS VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,

* ’INT PT 3’,6X,’INT PT 4’,6X,’INT PT 5’,6X,’INT PT 6’,6X,
* ’INT PT 7’,6X,’INT PT 8’)

DO 540 I=1,6
WRITE(6,5006) ELRTPT(I,N,IEG),ELRTPT(6+I,N,IEG),

* ELRTPT(2*6+I,N,IEG),ELRTPT(3*6+I,N,IEG),ELRTPT(4*6+I,N,IEG),
* ELRTPT(5*6+I,N,IEG),ELRTPT(6*6+I,N,IEG),ELRTPT(7*6+I,N,IEG)

540 CONTINUE
WRITE(6,5010)

5010 FORMAT(//,4X,’STRAIN VECTORS’,/,6X,’INT PT 1’,6X,’INT PT 2’,6X,
* ’INT PT 3’,6X,’INT PT 4’,6X,’INT PT 5’,6X,’INT PT 6’,6X,
* ’INT PT 7’,6X,’INT PT 8’)

DO 550 I=1,6
WRITE(6,5006) ELRTPT(8*6+I,N,IEG),ELRTPT(9*6+I,N,IEG),

* ELRTPT(10*6+I,N,IEG),ELRTPT(11*6+I,N,IEG),
* ELRTPT(12*6+I,N,IEG),ELRTPT(13*6+I,N,IEG),
* ELRTPT(14*6+I,N,IEG),ELRTPT(15*6+I,N,IEG)

550 CONTINUE
WRITE(6,5011)

5011 FORMAT(//,4X,’FINAL VALUE OF PSI’,/,6X,’INT PT 1’,6X,’INT PT 2’,
* 6X,’INT PT 3’,6X,’INT PT 4’,6X,’INT PT 5’,6X,’INT PT 6’,6X,
* ’INT PT 7’,6X,’INT PT 8’)

WRITE(6,5006) ELRTPT(16*6+1,N,IEG),ELRTPT(16*6+2,N,IEG),
* ELRTPT(16*6+3,N,IEG),ELRTPT(16*6+4,N,IEG),
* ELRTPT(16*6+5,N,IEG),ELRTPT(16*6+6,N,IEG),
* ELRTPT(16*6+7,N,IEG),ELRTPT(16*6+8,N,IEG)
ENDIF

500 CONTINUE
RETURN
END

SUBROUTINE SOLSTF(STF,ELRT,ELRTPT,DXL,REP,COOR,LM,EE,PR,YST,
* NINT,IJK,NEN,IFLAG,MAXNEL,NEG)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /DEBUG/ IDEBUG
COMMON /TOL/ TOLF,TOLM,NITMAX
COMMON /MISC/ PSIMAX,KAPPA
DIMENSION STF(NEN*3,NEN*3),DXL(NEN*3),REP(NEN*3),COOR(NNP,3),
* ELRT(MAXNINT*(6*2+3)+1,MAXNEL,NEG),LM(NEN),
* ELRTPT(MAXNINT*(6*2+3)+1,MAXNEL,NEG)
DIMENSION RI(25),SI(25),TI(25),WI(25),BT(NEN*3,6),B(6,NEN*3),
* P(4,NEN),DP(3,NEN),XJ(3,3),XI(3,3),D(6,6),DT(6,6),DINV(6,6),
* DEPS(6),DSIG(6),DF(6,1),DQ(6,1),DFT(1,6),TEMP(6,1),DEPSP(6),
* DTT(6,6,MAXNINT,MAXNEL,NEG)
REAL(KIND=16) PSIMAX,KAPPA,PSI,PHI,F,ELAS,DEN,X,R,THETA,J2,J3,
* NDEPSP,TEMPPSI,D1,DET,VOL,PF
INTEGER(KIND=8) FINT

C
C If IFLAG = 0 -> Calculate the element volume and initialize YFLAG.
C If IFLAG = 1 -> Calculate the stiffness matrix
C If IFLAG = 2 -> Calculate the stress, strain, and force vector
C
C RI,SI,TI AND WI CONTAIN THE R,S,T COORDINATES AND WEIGHTS, RESPECTIVELY, OF
C THE INTEGRATION POINTS FOR THE TRIANGULAR PRISM AND RECTANGULAR PRISM
C ELEMENTS IN THE FOLLOWING ORDER: 1 POINT (TRIANGULAR PRISM, NINT=1),
C 1 POINT (RECTANGULAR PRISM, NINT=1), 8 PTS (TP,4x2), 8 PTS (RP,2x2x2),
C 3 PTS (TP,3x1), 4 PTS (RP,2x2x1)
C

RI(1) = 1.Q0/3.Q0
RI(2) = 0.Q0
RI(3) = RI(1)
RI(4) = RI(1)
RI(5) = 0.6Q0
RI(6) = 0.2Q0
RI(7) = 0.2Q0
RI(8) = 0.6Q0
RI(9) = 0.2Q0
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RI(10) = 0.2Q0
RI(11) = -1.Q0/QSQRT(3.Q0)
RI(12) = RI(11)
RI(13) = 1.Q0/QSQRT(3.Q0)
RI(14) = RI(13)
RI(15) = RI(11)
RI(16) = RI(11)
RI(17) = RI(13)
RI(18) = RI(13)
RI(19) = 0.5Q0
RI(20) = 0.Q0
RI(21) = RI(19)
RI(22) = RI(11)
RI(23) = RI(11)
RI(24) = RI(13)
RI(25) = RI(13)

C
SI(1) = RI(1)
SI(2) = 0.Q0
SI(3) = RI(1)
SI(4) = RI(1)
SI(5) = 0.2Q0
SI(6) = 0.6Q0
SI(7) = 0.2Q0
SI(8) = 0.2Q0
SI(9) = 0.6Q0
SI(10) = 0.2Q0
SI(11) = RI(13)
SI(12) = RI(11)
SI(13) = RI(11)
SI(14) = RI(13)
SI(15) = RI(13)
SI(16) = RI(11)
SI(17) = RI(11)
SI(18) = RI(13)
SI(19) = RI(19)
SI(20) = RI(19)
SI(21) = 0.Q0
SI(22) = RI(13)
SI(23) = RI(11)
SI(24) = RI(11)
SI(25) = RI(13)

C
TI = 0.Q0
TI(3) = RI(13)
TI(4) = RI(11)
TI(5) = RI(13)
TI(6) = RI(13)
TI(7) = RI(13)
TI(8) = RI(11)
TI(9) = RI(11)
TI(10) = RI(11)
TI(11) = RI(13)
TI(12) = RI(13)
TI(13) = RI(13)
TI(14) = RI(13)
TI(15) = RI(11)
TI(16) = RI(11)
TI(17) = RI(11)
TI(18) = RI(11)

C
WI = 1.Q0
WI(2) = 8.Q0
WI(3) = -9.Q0/32.Q0
WI(4) = WI(3)
WI(5) = 25.Q0/96.Q0
WI(6) = WI(5)
WI(7) = WI(5)
WI(8) = WI(5)
WI(9) = WI(5)
WI(10) = WI(5)
WI(19) = RI(1)
WI(20) = RI(1)
WI(21) = RI(1)
WI(22) = 2.Q0
WI(23) = WI(22)
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WI(24) = WI(22)
WI(25) = WI(22)

C
C D is the elastic stiffness matrix
C

C11 = EE*(1.Q0-PR)/((1.Q0+PR)*(1.Q0-2.Q0*PR))
C22 = EE*PR/((1.Q0+PR)*(1.Q0-2.Q0*PR))
C33 = EE/(2.Q0*(1.Q0+PR))
D = 0.Q0
D(1,1) = C11
D(1,2) = C22
D(1,3) = C22
D(2,1) = C22
D(2,2) = C11
D(2,3) = C22
D(3,1) = C22
D(3,2) = C22
D(3,3) = C11
D(4,4) = C33
D(5,5) = C33
D(6,6) = C33

C
C Calculate the inverse of the elastic material matrix

C4 = (C11**2.Q0+C11*C22-2.Q0*C22**2.Q0)
C1 = (C11+C22)/C4
C2 = -C22/C4
C3 = 1.Q0/C33
DINV = 0.Q0
DINV(1,1) = C1
DINV(1,2) = C2
DINV(1,3) = C2
DINV(2,1) = C2
DINV(2,2) = C1
DINV(2,3) = C2
DINV(3,1) = C2
DINV(3,2) = C2
DINV(3,3) = C1
DINV(4,4) = C3
DINV(5,5) = C3
DINV(6,6) = C3

C
C

IF (IFLAG.EQ.0) VOL = 0.Q0
IF (IFLAG.EQ.1) STF = 0.Q0
IF (IFLAG.EQ.2) REP = 0.Q0

C
C NINT=INTEGRATION SCHEME: 1 OR 2 POINT.

IF ((NEN.EQ.6).AND.(NINT.EQ.1)) L1=1
IF ((NEN.EQ.6).AND.(NINT.EQ.1)) L2=1
IF ((NEN.EQ.8).AND.(NINT.EQ.1)) L1=2
IF ((NEN.EQ.8).AND.(NINT.EQ.1)) L2=2
IF ((NEN.EQ.6).AND.(NINT.EQ.2)) L1=3
IF ((NEN.EQ.6).AND.(NINT.EQ.2)) L2=10
IF ((NEN.EQ.8).AND.(NINT.EQ.2)) L1=11
IF ((NEN.EQ.8).AND.(NINT.EQ.2)) L2=18
IF ((NEN.EQ.6).AND.(NINT.EQ.3)) L1=19
IF ((NEN.EQ.6).AND.(NINT.EQ.3)) L2=21
IF ((NEN.EQ.8).AND.(NINT.EQ.3)) L1=22
IF ((NEN.EQ.8).AND.(NINT.EQ.3)) L2=25

C L1 TO L2 ARE THE GAUSS QUADRATURE POINT LOCATIONS.
C

DO 100 L=L1,L2
C L LOOPS OVER THE INTEGRATION POINTS

P = 0.Q0
IF (NEN.EQ.6) CALL TRI (P,RI(L),SI(L),TI(L))
IF (NEN.EQ.8) CALL RECT (P,RI(L),SI(L),TI(L))
CALL JACCOMP(COOR,LM,XJ,XI,P,DP,DET,NNP,NEN,IJK)
D1 = WI(L)*DET
ELRTPT(MAXNINT*(6*2+2)+L-L1+1,IJK,IEG) = D1
IF (IFLAG.EQ.0) THEN

VOL = VOL + D1
GO TO 100

ENDIF
B = 0.Q0
DO 130 J=1,NEN
J1 = 3*(J-1) + 1
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J2 = J1 + 1
J3 = J1 + 2
B(1,J1) = DP(1,J)
B(2,J2) = DP(2,J)
B(3,J3) = DP(3,J)
B(4,J1) = DP(2,J)
B(4,J2) = DP(1,J)
B(5,J2) = DP(3,J)
B(5,J3) = DP(2,J)
B(6,J1) = DP(3,J)
B(6,J3) = DP(1,J)

130 CONTINUE
C B IS THE NODAL DISPLACEMENT TO STRAIN (X,Y,Z AXES) TRANSFORMATION MATRIX AT
C THE CURRENT INTEGRATION POINT.
C

BT = 0.Q0
DO 140 I=1,6

DO 150 J=1,NEN*3
BT(J,I)=B(I,J)

150 CONTINUE
140 CONTINUE

C BT IS THE TRANSPOSE OF B AT THE CURRENT INTEGRATION POINT.
C

IF (IFLAG.EQ.1) THEN
B = MATMUL(D,B)
STF = STF + D1*MATMUL(BT,B)
GO TO 100

ENDIF
C THE CONTRIBUTION TO THE PORTIONS OF THE ROWS OF THE STIFFNESS MATRIX
C AT THE CURRENT INTEGRATION POINT HAS BEEN ADDED INTO STF.
C
C Define constants here

OMEGA = 0.5Q0
PHI = 0.5Q0
ALPHA = 10.0Q0 !0.6Q1*5.Q3/YST
GAMMA = 1.72Q0
PSIMAX = 0.6Q-3
FINT = 10
TOLLS = 0.000001Q0
KAPPA=0.6q0
PSI = ELRT(MAXNINT*12+L-L1+1,IJK,IEG)

C
C Below two lines require beta as a function of psi

BETA = ((PSI/PSIMAX)**KAPPA)
* *QEXP(1.Q0-((PSI/PSIMAX)**KAPPA))
DBETADPSI = KAPPA*QEXP(1.Q0-((PSI/PSIMAX)**KAPPA))
* * (1.Q0 - ((PSI/PSIMAX)**KAPPA))
* / (PSIMAX*((PSI/PSIMAX)**(1.q0-KAPPA)))

C
C CE 108 pg. 9-19 step a. Calculate strain increment

DEPS = MATMUL(B,DXL)
C
C CE 108 pg. 9-19 step b. Calculate stress increment assuming elastic behavior

DSIG = MATMUL(D,DEPS)
C
C CE 108 pg. 9-19 step c. Compute current stress/strain state

DO 200 I=1,6
NSIG = (L-L1+1)*6-6+I
NEPS = MAXNINT*6+(L-L1+1)*6-6+I
ELRTPT(NSIG,IJK,IEG) = ELRT(NSIG,IJK,IEG)+DSIG(I)
ELRTPT(NEPS,IJK,IEG) = ELRT(NEPS,IJK,IEG)+DEPS(I)

200 CONTINUE
C
C Add this line to remove plasticity
c GO TO 1
C
C CE 108 pg. 9-19 step d. Compute F and determine stress state

CALL FCALC(F,1.Q0,ELRT((L-L1+1)*6-5,IJK,IEG),DSIG,
* X,R,THETA,PSI,PSIMAX,BETA,YST)

C
C If the current stress is below the loading surface and was not previously cracked/crushed
C set loading type to elastic and tangent matrix to the elastic matrix

IF (F .LT. 0.Q0 .AND.
* ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .GE. -5.Q0) THEN

ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 0.Q0
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C IF (F .GT. -TOLLS) ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 10.Q0
DT = D
GO TO 1

ENDIF
C
C If in axial tension or previously in axial tension, apply plane stress

IF (ELRTPT((L-L1+1)*6-3,IJK,IEG) .GT. 0.Q0 .OR.
* (ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .LE. -5.Q0 .AND.
* ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .GE. -15.Q0)) THEN

ELRTPT((L-L1+1)*6-3,IJK,IEG) = 0.Q0
ELRTPT((L-L1+1)*6-1,IJK,IEG) = 0.Q0
ELRTPT((L-L1+1)*6,IJK,IEG) = 0.Q0
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = -10.Q0
C11 = EE/(1.Q0-PR**2.Q0)
C22 = C22*PR
C33 = C11*(1.Q0-PR)/2.Q0
DT = 0.Q0
DT(1,1) = C11
DT(1,2) = C22
DT(2,1) = C22
DT(2,2) = C11
DT(4,4) = C33
DSIG = MATMUL(DT,DEPS)
ELRTPT((L-L1+1)*6-5,IJK,IEG) = ELRT((L-L1+1)*6-5,IJK,IEG)

* +DSIG(1)
ELRTPT((L-L1+1)*6-4,IJK,IEG) = ELRT((L-L1+1)*6-4,IJK,IEG)

* +DSIG(2)
ELRTPT((L-L1+1)*6-2,IJK,IEG) = ELRT((L-L1+1)*6-2,IJK,IEG)

* +DSIG(4)
GO TO 1

ENDIF
C
C If concrete was previously in net tension => completely cracked so zero out stress

IF (ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .LT. -15.Q0) THEN
DO 205 J=1,6

NSIG = (L-L1+1)*6-6+J
ELRTPT(NSIG,IJK,IEG) = 0.Q0

205 CONTINUE
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = -20.Q0
DT=0.Q0
GO TO 1

ENDIF
C
C If you are at the origin and have not previously loaded the specimen at all,
C assign elastic loading and skip plasticity.

IF (F .EQ. 0.Q0 .AND.
* ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .GE. -1.Q0) THEN

IF (X .EQ. 0.Q0 .AND.
* ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .LT. 5.Q0
* .AND. ELRT(MAXNINT*12+L-L1+1,IJK,IEG) .EQ. 0.Q0) THEN

ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 0.Q0
DT = D
GO TO 1

ENDIF
ENDIF

C
C CE 108 pg. 9-19 step e. Determine ELAS based on previous stress state

IF (ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .GT. 5.Q0 .OR.
* ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .LT. -5.Q0) THEN

ELAS = 0.Q0
ELSE

CALL ZBRENT(0.Q0,1.Q0,ELAS,TOLLS,
* ELRT((L-L1+1)*6-5,IJK,IEG),DSIG,X,R,THETA,PSI,
* PSIMAX,BETA,YST)

ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 10.Q0
IF (ELAS .EQ. 0.Q0 .AND.

* ELRT(MAXNINT*12+L-L1+1,IJK,IEG) .EQ. 0.Q0) THEN
CALL FCALC(PF,0.Q0,ELRT((L-L1+1)*6-5,IJK,IEG),DSIG,

* X,R,THETA,PSI,PSIMAX,BETA,YST)
IF (PF .LE. 0.Q0) THEN

ELAS = 1.Q0
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 0.Q0

ENDIF
ENDIF

ENDIF
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C
C CE 108 pg. 9-19 step f. Push current stress state to current loading surface

DO 210 I=1,6
NSIG = (L-L1+1)*6-6+I
ELRTPT(NSIG,IJK,IEG) = ELRT(NSIG,IJK,IEG)+ELAS*DSIG(I)

210 CONTINUE
IF (ELAS .EQ. 1.) THEN
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 10.Q0
GO TO 1

ENDIF
DEPS = DEPS*(1.Q0-ELAS)
DEPS = DEPS/FINT

C
C CE 108 pg. 9-19 step g. Calculate elastic and plastic stress

DO 220 I=1,FINT
CALL FCALC(F,0.Q0,ELRTPT((L-L1+1)*6-5,IJK,IEG),DSIG,

* X,R,THETA,PSI,PSIMAX,BETA,YST)
C If in tension, zero out stresses and set flag

IF (X .GT. 0.) THEN
DO 230 J=1,6

NSIG = (L-L1+1)*6-6+J
ELRTPT(NSIG,IJK,IEG) = 0.Q0

230 CONTINUE
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG)= -20.Q0

GO TO 1
ENDIF
NSIG = (L-L1+1)*6-6
SXX = ELRTPT(NSIG+1,IJK,IEG)
SYY = ELRTPT(NSIG+2,IJK,IEG)
SZZ = ELRTPT(NSIG+3,IJK,IEG)
SXY = ELRTPT(NSIG+4,IJK,IEG)
SYZ = ELRTPT(NSIG+5,IJK,IEG)
SXZ = ELRTPT(NSIG+6,IJK,IEG)
CALL DFCALC(DF,DQ,X,R,THETA,PSIMAX,ALPHA,GAMMA,ETA,PHI,

* OMEGA,PSI,BETA,DBETADPSI,YST,DFDEP,SXX,SYY,SZZ,SXY,SYZ,
* SXZ)

DO 240 J=1,6
DFT(1,J) = DF(J,1)

240 CONTINUE
C
C Calculate DT = the tangent material matrix
C DEN is the denominator (scalar) of the DT expression

TEMP = 0.Q0
TEMP(4,1) = DQ(4,1)
TEMP(5,1) = DQ(5,1)
TEMP(6,1) = DQ(6,1)
DEN = 0.Q0
DO 250 J=1,6

DEN = DEN + (TEMP(J,1)+DQ(J,1))*DQ(J,1)
250 CONTINUE

DEN = 2.Q0/3.Q0*DEN
DEN = QSQRT(DEN)
DEN = -DFDEP*DEN
TEMP = 0.Q0
TEMP = MATMUL(D,DQ)
DO 260 J=1,6

DEN = DEN + DF(J,1)*TEMP(J,1)
260 CONTINUE

DFT = MATMUL(DFT,D)
DT = MATMUL(DQ,DFT)
DT = MATMUL(D,DT)
DT = DT/DEN
DT = D - DT
IF (DEN .EQ. 0.) THEN

IF (X .EQ. 0. .AND.
* ELRT(MAXNINT*12+L-L1+1,IJK,IEG) .EQ. 0.Q0) THEN

DT = D
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG)=0.Q0

ELSE
DT = 0.Q0
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG)=10.Q0

END IF
END IF

C Compute the new stress for the given DT and increment in strain
DSIG = MATMUL(DT,DEPS)
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DO 280 K = 1,6
TEMP(K,1) = DSIG(K)

280 CONTINUE
IF (DEN .EQ. 0. .AND. X .EQ. 0.) THEN

DSIG = FINT*DSIG
DO 290 J=1,6

NSIG = (L-L1+1)*6-6+J
ELRTPT(NSIG,IJK,IEG) = ELRTPT(NSIG,IJK,IEG)+DSIG(J)

290 CONTINUE
GO TO 1

ENDIF
C
C Set up iteration to return stress state to yield surface

DO 300 J=1,NITMAX
DEPSP = DEPS - MATMUL(DINV,DSIG)
NDEPSP = 0.Q0
DO 320 K=1,3

NDEPSP = NDEPSP + DEPSP(K)*DEPSP(K)
320 CONTINUE

DO 330 K=4,6
NDEPSP = NDEPSP + 2.Q0 * DEPSP(K)*DEPSP(K)

330 CONTINUE
NDEPSP = QSQRT(2.Q0/3.Q0*NDEPSP)
AVEX = X/2.Q0 + (ELRTPT((L-L1+1)*6-5,IJK,IEG)

* + ELRTPT((L-L1+1)*6-4,IJK,IEG) + DSIG(1)
* + ELRTPT((L-L1+1)*6-3,IJK,IEG) + DSIG(2)
* + DSIG(3))/QSQRT(3.Q0)/YST/2.Q0

C
C Vary Psi relationship here
C

IF (PSI .GE. PSIMAX) THEN
TEMPPSI = PSI + NDEPSP/

* (PHI + ALPHA * (QABS(AVEX))**GAMMA)
ELSE

TEMPPSI = PSI + NDEPSP/
* (PHI + ALPHA * (QABS(AVEX))**GAMMA)

ENDIF
C
C Below two lines require beta as a function of psi

BETA = ((TEMPPSI/PSIMAX)**KAPPA)
* *QEXP(1.Q0-((TEMPPSI/PSIMAX)**KAPPA))

DBETADPSI = KAPPA*QEXP(1.Q0-((TEMPPSI/PSIMAX)**KAPPA))
* * (1.Q0 - ((TEMPPSI/PSIMAX)**KAPPA))
* / (PSIMAX*((TEMPPSI/PSIMAX)**(1.q0-KAPPA)))

IF (ELRT(MAXNINT*13+L-L1+1,IJK,IEG) .EQ. 0.) GO TO 2
IF (PSI .LT. 1Q-5) GO TO 2
CALL FCALC(F,1.Q0,ELRTPT((L-L1+1)*6-5,IJK,IEG),

* DSIG,X,R,THETA,TEMPPSI,PSIMAX,BETA,YST)
C If in axial compression but still net tension the concrete
C must be cracked/crushed so zero out stresses

IF (X .GT. 0.Q0) THEN
if (elrtpt((l-l1+1)*6-3,ijk,ieg) .le. 0.q0) then

DO 340 K=1,6
NSIG = (L-L1+1)*6-6+K
ELRTPT(NSIG,IJK,IEG) = 0.Q0

340 CONTINUE
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = -20.Q0
DT=0.Q0
GO TO 1

ELSE IF (ELRT(MAXNINT*13+L-L1+1,IJK,IEG)
* .EQ. -10.Q0
* .OR. ELRTPT((L-L1+1)*6-3,IJK,IEG) .GT. 0.Q0) THEN

ELRTPT((L-L1+1)*6-3,IJK,IEG) = 0.Q0
ELRTPT((L-L1+1)*6-1,IJK,IEG) = 0.Q0
ELRTPT((L-L1+1)*6,IJK,IEG) = 0.Q0
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = -10.Q0
C11 = EE/(1.Q0-PR**2.Q0)
C22 = C22*PR
C33 = C11*(1.Q0-PR)/2.Q0
DT = 0.Q0
DT(1,1) = C11
DT(1,2) = C22
DT(2,1) = C22
DT(2,2) = C11
DT(4,4) = C33



185

DSIG = MATMUL(DT,DEPS)
ELRTPT((L-L1+1)*6-5,IJK,IEG) =

* ELRT((L-L1+1)*6-5,IJK,IEG)+DSIG(1)
ELRTPT((L-L1+1)*6-4,IJK,IEG) =

* ELRT((L-L1+1)*6-4,IJK,IEG)+DSIG(2)
ELRTPT((L-L1+1)*6-2,IJK,IEG) =

* ELRT((L-L1+1)*6-2,IJK,IEG)+DSIG(4)
GO TO 1

ENDIF
ENDIF

IF (J .EQ. NITMAX .AND. QABS(F) .GT. QABS(TEMPF)) THEN
DO 310 K = 1,6

DSIG(K) = TEMP(K,1)
310 CONTINUE

ENDIF
IF (QABS(F) .LT. TOLLS) GO TO 2
IF (J .EQ. NITMAX) GO TO 2
IF (J .EQ. 1) TEMPF = F
CALL DFCALC(DF,DQ,X,R,THETA,PSIMAX,ALPHA,GAMMA,ETA,PHI,

* OMEGA,TEMPPSI,BETA,DBETADPSI,YST,DFDEP,SXX,SYY,SZZ,
* SXY,SYZ,SXZ)

c CALL DFCALC2(DF,ELRTPT((L-L1+1)*6-5,IJK,IEG),
c * TEMPPSI,PSIMAX,BETA,YST)

DEN = 0.Q0
DO 350 K = 1,6

DEN = DEN + DF(K,1)*DF(K,1)
350 CONTINUE

IF (DEN .EQ. 0.) GO TO 2
DO 360 K = 1,6

DSIG(K) = DSIG(K) - DF(K,1)*F/DEN
360 CONTINUE
300 CONTINUE
2 PSI = TEMPPSI

DO 390 J=1,6
NSIG = (L-L1+1)*6-6+J
ELRTPT(NSIG,IJK,IEG) = ELRTPT(NSIG,IJK,IEG)+DSIG(J)

390 CONTINUE
220 CONTINUE

ELRTPT(MAXNINT*12+L-L1+1,IJK,IEG) = PSI
ELRTPT(MAXNINT*13+L-L1+1,IJK,IEG) = 10.Q0

C
C CE 108 pg. 9-19 step h. Add contribution to force vector

1 DO 400 I=1,6
DO 410 J=1,NEN*3

NSIG=(L-L1+1)*6-6+I
REP(J) = REP(J)+D1*BT(J,I)*ELRTPT(NSIG,IJK,IEG)

410 CONTINUE
400 CONTINUE
100 CONTINUE

IF (IFLAG.EQ.0) ELRTPT(MAXNINT*(6*2+3)+1,IJK,IEG)=VOL
RETURN
END

SUBROUTINE STANAL(COOR,ID,R,B,H,F,RTPT,DX,XT,XTPT,ELRT,ELRTPT,
* AXLD,NTYPE,NSSTEPS,NHSTEPS,ZCOR,NITER)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NPAR(8)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /TOL/ TOLF,TOLM,NITMAX
COMMON /DEBUG/ IDEBUG
COMMON /MISC/ PSIMAX,KAPPA
DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),B(N5-1),H(NEQ,MBAND),
* F(NEQ),RTPT(NEQ),DX(NEQ),XT(NEQ),XTPT(NEQ),
* ELRT(N12-N11),ELRTPT(N13-N12),NTYPE(NNP)
REAL(KIND=16) KAPPA
TIME=0.Q0
DT=QABS(AXLD/NSSTEPS)

C Calculate elastic stiffness matrix and factor
C Remove below code to iterate with tangent stiffness
C
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IGO=3
H=0.Q0
REWIND 7
DO 10 IEG=1,NEG1
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSA(COOR,B,H)

10 CONTINUE
DO 20 IEG=1,NEG10
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSB(COOR,B,H)

20 CONTINUE
DO 30 IEG=1,NEG11
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSC(COOR,B,H)

30 CONTINUE
DO 40 IEG=1,NEG100
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDA(COOR,B,H)

40 CONTINUE
DO 50 IEG=1,NEG110
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDB(COOR,B,H)

50 CONTINUE
c add large stiffness in two rotational DOFs

H(NEQ-1,1)=H(NEQ-1,1)+1.0Q17
H(NEQ,1)=H(NEQ,1)+1.0Q17

c
CALL BSOLVE(H,DX,NEQ,MBAND,1,0)
DO 100 N=1,NSSTEPS
TIME=TIME+DT
FRAC=QABS(TIME/AXLD)
IF (N .LT. NHSTEPS) THEN
FRAC2=(N*1.Q0)/(NHSTEPS*1.Q0)

ELSE
FRAC2 = 1.Q0

ENDIF
IF(AXLD.EQ.0.) FRAC=1.Q0

C Set previous time step displacement and element responses equal
C to current time step values
C

XT = XTPT
ELRT = ELRTPT
NITER=0
DO 200 K=1,NITMAX
DO 205 I=1,NEQ-3

DX(I)=F(I)*FRAC2-RTPT(I)
205 CONTINUE

c removed P-delta moment (should be to NEQ, not to NEQ-2)
DO 210 I=NEQ-2,NEQ-1

DX(I)=F(I)*FRAC-RTPT(I)
210 CONTINUE

DO 220 I=1,NNP
DO 221 J=1,3

IDI=ID(I,J)
IF(IDI.EQ.0) GO TO 221
IF(QABS(DX(IDI)).GT.TOLF) GO TO 1

221 CONTINUE
220 CONTINUE

IF(QABS(DX(NEQ-2)).GT.TOLF) GO TO 1
IF(QABS(DX(NEQ-1)).GT.TOLM) GO TO 1
IF(QABS(DX(NEQ)).GT.TOLM) GO TO 1
GO TO 2

1 CALL BSOLVE(H,DX,NEQ,MBAND,0,1)
DO 240 I=1,NNP

DO 241 J=1,3
IDI=ID(I,J)
IF (IDI.EQ.0) GO TO 241
COOR(I,J)=COOR(I,J) + DX(IDI)

241 CONTINUE
240 CONTINUE

DO 250 I=1,NEQ
XTPT(I) = XTPT(I) + DX(I)
DX(I) = XTPT(I)- XT(I)

250 CONTINUE
DO 260 I=1,NNP

IF (NTYPE(I).EQ.1) COOR(I,3)=ZCOR+XTPT(NEQ-2)
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* +COOR(I,2)*XTPT(NEQ-1)-COOR(I,1)*XTPT(NEQ)
260 CONTINUE

RTPT=0.Q0
IGO=4
REWIND 7
DO 270 IEG=1,NEG1
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSA(COOR,B,H)

270 CONTINUE
DO 271 IEG=1,NEG10
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSB(COOR,B,H)

271 CONTINUE
DO 272 IEG=1,NEG11
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL TRUSSC(COOR,B,H)

272 CONTINUE
DO 273 IEG=1,NEG100
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDA(COOR,B,H)

273 CONTINUE
DO 274 IEG=1,NEG110
READ(7) NEND,NPAR,(B(I),I=1,NEND)
CALL SOLIDB(COOR,B,H)

274 CONTINUE
c add large FORCE in two rotational DOFs

RTPT(NEQ-1)=RTPT(NEQ-1)+1.0Q17*DX(NEQ-1)
RTPT(NEQ)=RTPT(NEQ)+1.0Q17*DX(NEQ)
NITER=K

200 CONTINUE
2 WRITE(6,2000) TIME,NITER
WRITE(*,2000) TIME,NITER

2000 FORMAT(1X,’LOAD =’,E12.5,5X,’NITER =’,I5)
IF (NITER .EQ. NITMAX) WRITE(6,2001) F(NEQ-2)*FRAC-RTPT(NEQ-2)

2001 FORMAT(6X, ’AXIAL LOAD IMBALANCE = ’,E12.5)
100 CONTINUE

WRITE(6,2003)
2003 FORMAT(2(/),25X,’POST AXIAL LOAD ELEMENT RESPONSES’,/)

CALL PPICT(COOR,ID,B,H,XTPT,2,NTYPE,TIME)
RETURN
END

SUBROUTINE TOP(NTYPE,LM,NEN,NEL,NNP)
C Create array NTYPE which denotes top/bottom plane for each node
C **Only call from element subroutines which have nodes in the top plane**

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION NTYPE(NNP),LM(NEN,NEL)
DO 10 I=1,NEL

DO 20 J=1,NEN/2
NODE=LM(J,I)
NTYPE(NODE)=1

20 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE TRI (P,CX,CY,T)
C TRI COMPUTES SHAPE FUNCTION VALUES AND DERIVATIVES FOR A 6 NODE ELEMENT
C AT THE LOCAL COORDINATE LOCATION CX,CY,T.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /DEBUG/ IDEBUG
DIMENSION P(4,8)

C
DO 10 I=1,4

C I=1 FOR SHAPE FUNCTION VALUES; =2 FOR CX DERIVATIVES; =3 FOR CY DERIVATIVES;
C =4 FOR T DERIVATIVES.

IF (I.EQ.1) GO TO 4
IF (I.EQ.2) GO TO 5
IF (I.EQ.3) GO TO 6
IF (I.EQ.4) GO TO 7

4 R = CX
S = CY
V = 1.Q0 - R - S
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AT = 1.Q0 + T
ST = 1.Q0 - T
GO TO 8

5 R = 1.Q0
S = 0.Q0
V = -1.Q0
GO TO 8

6 R = 0.Q0
S = 1.Q0
GO TO 8

7 R = CX
S = CY
V = 1.Q0 - R - S
AT = 1.Q0
ST = -1.Q0

8 P(I,1) = 0.5Q0*R*AT
P(I,2) = 0.5Q0*S*AT
P(I,3) = 0.5Q0*V*AT
P(I,4) = 0.5Q0*R*ST
P(I,5) = 0.5Q0*S*ST
P(I,6) = 0.5Q0*V*ST

10 CONTINUE
RETURN
END

SUBROUTINE TRUSSA(A,B,C)
C Sets up storage for subroutine TRUSS1.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
REAL(KIND=16), ALLOCATABLE, DIMENSION(:) :: BSUB
COMMON /INFO/ N5TEMP
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NDUM(5)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /DEBUG/ IDEBUG
DIMENSION A(N4-1),B(N5-1),C(N13-1)

C
IF (MAXNEL1.LT.NEL) MAXNEL1=NEL
N401=1 +NUMAT ! E
N402=N401+NUMAT ! AREA
N403=N402+NUMAT ! YST
N404=N403+NUMAT ! YRT
N405=N404+NEL ! MAT
N406=N405+2*NEL ! LM
N407=N406+8*NEL ! IDL
N5TEMP=N407+NEL ! ALEN
NEND=N5TEMP-1
IF (IGO.EQ.1) THEN

ALLOCATE(BSUB(NEND))
BSUB=0.Q0
CALL TRUSS1(A(N1),A(N2),A(N3),BSUB(1),BSUB(N401),BSUB(N402),

* BSUB(N403),BSUB(N404),BSUB(N405),BSUB(N406),BSUB(N407),
* C(1),C(N6),C(N7),C(N8),C(N9),C(N10),C(N11),C(N12))

WRITE(7) NEND,NELTYP,NEL,NUMAT,(NDUM(I),I=1,5),
* (BSUB(I),I=1,NEND)

DEALLOCATE(BSUB)
ELSE

CALL TRUSS1(A(N1),A(N2),A(N3),B(1),B(N401),B(N402),B(N403),
* B(N404),B(N405),B(N406),B(N407),C(1),C(N6),C(N7),
* C(N8),C(N9),C(N10),C(N11),C(N12))
ENDIF
RETURN
END

SUBROUTINE TRUSS1(COOR,ID,R,E,AREA,YST,YRT,MAT,LM,IDL,ALEN,
* H,F,RTPT,DX,XT,XTPT,ELRT,ELRTPT)

C Performs computations for longitudinal truss elements.
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
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COMMON /ELPAR/ NELTYP,NEL,NUMAT,NDUM(5)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),E(NUMAT),
* AREA(NUMAT),YST(NUMAT),YRT(NUMAT),MAT(NEL),LM(2,NEL),
* IDL(8,NEL),ALEN(NEL),ELRT(4,MAXNEL1,NEG1),ELRTPT(4,MAXNEL1,NEG1),
* H(NEQ,MBAND),F(NEQ),RTPT(NEQ),DX(NEQ),XT(NEQ),XTPT(NEQ)
DIMENSION HEP(6,6),REP(6),COORL(2,3),XP(6),T(6,8),TT(8,6),
* TEMP(6,8),HE(8,8),RE(8)

C
NEN=2 ! Number of nodes per element
NEDN=3 ! Number of degrees of freedom per node
NLED=6 ! Number of local degrees of freedom per element
NGED=NLED-NEN/2+3 !Number of global degrees of freedom per element

C
C NGED reflects removing the vertical degrees of freedom from the nodes
C in the upper plane then adding back in the 3 top plane DOFs
C

IF (IGO.EQ.1) GOTO 1 ! Input element data
IF (IGO.EQ.2) GOTO 2 ! Transfer initial lengths to ELRT
IF (IGO.EQ.3) GOTO 3 ! calculate the tangent stiffness, H
IF (IGO.EQ.4) GOTO 4 ! calculate RTPT and ELRTPT
IF (IGO.EQ.5) GOTO 5 ! Print the system picture
WRITE(6,1000)

1000 FORMAT(’Fatal error in subroutine TRUSS1. Invalid value for IGO.’)
STOP

C
C Read and print element data. Calculate assembly arrays and half-
C bandwidth.

1 WRITE(6,1001) IEG
1001 FORMAT(//,2X,’LONGITUDINAL REBAR ELEMENT GROUP NUMBER’,I4,10X)

WRITE(6,1002) NEL,NUMAT
1002 FORMAT(/,4X,’NEL =’,I4,4X,’NUMAT =’,I3)

WRITE(6,1003)
1003 FORMAT(/,4X,’MATERIAL/GEOMETRIC SETS’,/,9X,’SET’,14X,’E’,

* 9X,’AREA’,10X,’YST’,10X,’YRT’)
DO 100 I=1,NUMAT
READ(5,*) E(I),AREA(I),YST(I),YRT(I)
WRITE(6,1004) I,E(I),AREA(I),YST(I),YRT(I)

1004 FORMAT(8X,I4,2X,4(1X,E12.5))
100 CONTINUE

C
C Generates vector MAT and matrix LM

CALL LMGEN(LM,MAT,NEN,NEL)
WRITE(6,1005)

1005 FORMAT(/,4X,’MATERIAL SET NUMBERS AND CONNECTIVITY VECTORS’,/,
* 9X,’ELE’,8X,’LENGTH’,3X,’SET’,5X,’NODE NUMBERS’)
DO 120 N=1,NEL

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
ALEN(N)=0.Q0
DO 110 I=1,3
XP(I)=COORL(1,I)-COORL(2,I)
ALEN(N)=ALEN(N)+XP(I)*XP(I)

110 CONTINUE
ALEN(N)=QSQRT(ALEN(N))
WRITE(6,1006) N,ALEN(N),MAT(N),(LM(I,N),I=1,NEN)

1006 FORMAT(8X,I4,2X,E12.5,2X,I4,5X,2(2X,I4))
120 CONTINUE

C
C Transfers equation numbers for all elements from ID to IDL.
C For elements having half their nodes in the top plane

CALL LCLID(ID,LM,IDL,NEDN,NGED,NEN,NEL,NEQ,NNP)
CALL BAND(IDL,NGED,NEL,MBAND)
RETURN

C
C Transfer initial element lengths to ELRTPT

2 DO 200 N=1,NEL
ELRTPT(4,N,IEG)=ALEN(N)

200 CONTINUE
RETURN

C
C Calculate and assemble element matrices and vectors

3 DO 300 N=1,NEL
M=MAT(N)
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C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
CLEN=0.Q0
DO 310 I=1,3
XP(I)=COORL(1,I)-COORL(2,I)
CLEN=CLEN+XP(I)*XP(I)

310 CONTINUE
CLEN=QSQRT(CLEN)
DO 320 I=1,3
XP(I)=XP(I)/CLEN
XP(I+3)=-XP(I)

320 CONTINUE
C Define transformation matrix from local to global DOFs
C

T=0.Q0
T(1,1)=1.Q0
T(2,2)=1.Q0
T(4,3)=1.Q0
T(5,4)=1.Q0
T(6,5)=1.Q0
T(3,6)=1.Q0
T(3,7)=COORL(1,2)
T(3,8)=-COORL(1,1)
DO 330 I=1,8

DO 331 J=1,6
TT(I,J)=T(J,I)

331 CONTINUE
330 CONTINUE

EAA=E(M)*AREA(M)/ALEN(N)
ELS=QABS(E(M)*ELRTPT(2,N,IEG)) ! ELRTPT(2)=elastic strain
IF(ELS.GE.YST(M)) EAA=EAA*YRT(M)
DO 340 I=1,6
DO 341 J=1,6
HEP(I,J)=XP(I)*XP(J)*EAA

341 CONTINUE
340 CONTINUE

C Transform to global DOFs
C

TEMP=MATMUL(HEP,T)
HE=MATMUL(TT,TEMP)
CALL ASSMBL(H,F,HE,RE,IDL(1,N),NEQ,MBAND,NGED,1,0)

300 CONTINUE
RETURN

C
C Compute and print stresses, strains, forces and displacements.

4 DO 400 N=1,NEL
M=MAT(N)
PLEN=ELRT(4,N,IEG) ! Length at previous time step
EPSET=ELRT(2,N,IEG) ! Elastic strain at previous time step
EPSETPT=ELRTPT(2,N,IEG) ! Elastic strain at current time step
YEPS=YST(M)/E(M) ! Yield strain

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
CLEN=0.Q0
DO 410 I=1,3

XP(I)=COORL(1,I)-COORL(2,I)
CLEN=CLEN+XP(I)*XP(I)

410 CONTINUE
CLEN=QSQRT(CLEN)
DO 420 I=1,3

XP(I)=XP(I)/CLEN
XP(I+3)=-XP(I)

420 CONTINUE
C Determine if loading plastically (1), loading elastically (2),
C loading transition (3), or unloading elastically (4)

EPST=(PLEN-ALEN(N))/ALEN(N) ! Previous total strain
EPSTPT=(CLEN-ALEN(N))/ALEN(N) ! Current total strain
DEPS=EPSTPT-EPST ! Change in total strain

C Assume elastic then check assumption
EPSETPT=EPSET+DEPS
IF (QABS(EPSTPT).LT.QABS(EPST) .AND. QABS(EPSETPT).LE.YEPS) THEN

IFLAG=4 ! Elastic unloading
ELSEIF (QABS(EPSETPT).LE.YEPS) THEN
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IFLAG=2 ! Elastic loading
ELSEIF (QABS(EPSET).LT.YEPS) THEN

IFLAG=3 ! Transition loading
ELSEIF (QABS(EPSET).GE.YEPS) THEN

IFLAG=1 ! Plastic loading
ELSE

WRITE(6,4000) N,IEG
4000 FORMAT(2(/),5X,’NO CASE FOUND FOR ELEMENT ’,I4,

* ’ OF LONGITUDINAL REBAR GROUP ’,I4)
STOP

ENDIF
IF (IFLAG.EQ.2 .OR. IFLAG.EQ.4) THEN

ELRTPT(2,N,IEG)=ELRT(2,N,IEG)+DEPS
ELRTPT(3,N,IEG)=ELRT(3,N,IEG)

ENDIF
IF (IFLAG.EQ.3 .OR. IFLAG.EQ.1) THEN

IF (DEPS.GT.0) ELRTPT(2,N,IEG)=YEPS
IF (DEPS.LT.0) ELRTPT(2,N,IEG)=-YEPS
IF (DEPS.EQ.0) ELRTPT(2,N,IEG)=ELRT(2,N,IEG)
ELRTPT(3,N,IEG)=ELRT(3,N,IEG)+DEPS

* -(ELRTPT(2,N,IEG)-ELRT(2,N,IEG))
ENDIF
ELRTPT(1,N,IEG)=ELRTPT(2,N,IEG)*E(M)+ELRTPT(3,N,IEG)*YRT(M)*E(M)
ELRTPT(4,N,IEG)=CLEN

C Define transformation matrix from local to global DOFs
C

TT=0.Q0
TT(1,1)=1.Q0
TT(2,2)=1.Q0
TT(3,4)=1.Q0
TT(4,5)=1.Q0
TT(5,6)=1.Q0
TT(6,3)=1.Q0
TT(7,3)=COORL(1,2)
TT(8,3)=-COORL(1,1)
REP=0.Q0
RE=0.Q0
DO 430 I=1,6

REP(I)=ELRTPT(1,N,IEG)*XP(I)*AREA(M)
430 CONTINUE

DO 440 I=1,8
DO 450 J=1,6

RE(I)=RE(I)+TT(I,J)*REP(J)
450 CONTINUE
440 CONTINUE

CALL ASSMBL(H,RTPT,HE,RE,IDL(1,N),NEQ,MBAND,NGED,0,1)
400 CONTINUE

RETURN

5 WRITE(6,5000) IEG
5000 FORMAT(//,2X,’LONGITUDINAL REBAR ELEMENT GROUP NUMBER’,I4,10X)

DO 500 N=1,NEL
M=MAT(N)
WRITE(6,5001) N

5001 FORMAT(/,4X,’ELEMENT NUMBER’,I4,/,7X,’YIELD STRESS’,10X,’STRESS’,
* 11X,’FORCE’,6X,’YIELD STRAIN’,6X,’ELASTIC STRAIN’,6X,
* ’PLASTIC STRAIN’)
FORCE=ELRTPT(1,N,IEG)*AREA(M)
YEPS=YST(M)/E(M)
WRITE(6,5002) YST(M),ELRTPT(1,N,IEG),FORCE,
* YEPS,ELRTPT(2,N,IEG),ELRTPT(3,N,IEG)

5002 FORMAT(3X,3(4X,E12.5),6X,E12.5,2(8X,E12.5))
500 CONTINUE

RETURN
END

SUBROUTINE TRUSSB(A,B,C)
C Sets up storage for subroutine TRUSS10.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
REAL(KIND=16), ALLOCATABLE, DIMENSION(:) :: BSUB
COMMON /INFO/ N5TEMP
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
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COMMON /ELPAR/ NELTYP,NEL,NUMAT,NDUM(5)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /DEBUG/ IDEBUG
DIMENSION A(N4-1),B(N5-1),C(N13-1)

C
IF (MAXNEL10.LT.NEL) MAXNEL10=NEL
N401=1 +NUMAT ! E
N402=N401+NUMAT ! AREA
N403=N402+NUMAT ! YST
N404=N403+NUMAT ! YRT
N405=N404+NEL ! MAT
N406=N405+2*NEL ! LM
N407=N406+6*NEL ! IDL
N5TEMP=N407+NEL ! ALEN
NEND=N5TEMP-1
IF (IGO.EQ.1) THEN

ALLOCATE(BSUB(NEND))
BSUB=0.Q0
CALL TRUSS10(A(N1),A(N2),A(N3),BSUB(1),BSUB(N401),BSUB(N402),

* BSUB(N403),BSUB(N404),BSUB(N405),BSUB(N406),BSUB(N407),
* C(1),C(N6),C(N7),C(N8),C(N9),C(N10),C(N1101),C(N1201))

WRITE(7) NEND,NELTYP,NEL,NUMAT,(NDUM(I),I=1,5),
* (BSUB(I),I=1,NEND)

DEALLOCATE(BSUB)
ELSE

CALL TRUSS10(A(N1),A(N2),A(N3),B(1),B(N401),B(N402),B(N403),
* B(N404),B(N405),B(N406),B(N407),C(1),C(N6),C(N7),
* C(N8),C(N9),C(N10),C(N1101),C(N1201))
ENDIF
RETURN
END

SUBROUTINE TRUSS10(COOR,ID,R,E,AREA,YST,YRT,MAT,LM,IDL,ALEN,
* H,F,RTPT,DX,XT,XTPT,ELRT,ELRTPT)

C Performs computations for lower transverse truss elements.
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NDUM(5)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),E(NUMAT),
* AREA(NUMAT),YST(NUMAT),YRT(NUMAT),MAT(NEL),LM(2,NEL),
* IDL(3,2,NEL),ALEN(NEL),ELRT(4,MAXNEL10,NEG10),
* ELRTPT(4,MAXNEL10,NEG10),H(NEQ,MBAND),F(NEQ),RTPT(NEQ),DX(NEQ),
* XT(NEQ),XTPT(NEQ)
DIMENSION HE(6,6),RE(6),COORL(2,3),XP(6)

C
NEN=2 ! Number of nodes per element
NEDN=3 ! Number of degrees of freedom per node
NED=6 ! Number of degrees of freedom per element

C
IF (IGO.EQ.1) GOTO 1 ! Input element data
IF (IGO.EQ.2) GOTO 2 ! Transfer initial lengths to ELRT
IF (IGO.EQ.3) GOTO 3 ! calculate the tangent stiffness, H
IF (IGO.EQ.4) GOTO 4 ! calculate RTPT and ELRTPT
IF (IGO.EQ.5) GOTO 5 ! Print the system picture
WRITE(6,1000)

1000 FORMAT(’Fatal error in subroutine TRUSS10. ’,
* ’Invalid value for IGO.’)
STOP

C
C Read and print element data. Calculate assembly arrays and half-
C bandwidth.

1 WRITE(6,1001) IEG
1001 FORMAT(//,2X,’LOWER TRANSVERSE REBAR ELEMENT GROUP NUMBER’,I4,10X)

WRITE(6,1002) NEL,NUMAT
1002 FORMAT(/,4X,’NEL =’,I4,4X,’NUMAT =’,I3)

WRITE(6,1003)
1003 FORMAT(/,4X,’MATERIAL/GEOMETRIC SETS’,/,9X,’SET’,14X,’E’,

* 9X,’AREA’,10X,’YST’,10X,’YRT’)
DO 100 I=1,NUMAT
READ(5,*) E(I),AREA(I),YST(I),YRT(I)
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WRITE(6,1004) I,E(I),AREA(I),YST(I),YRT(I)
1004 FORMAT(8X,I4,2X,4(1X,E12.5))
100 CONTINUE

C
C Generates vector MAT and matrix LM

CALL LMGEN(LM,MAT,NEN,NEL)
WRITE(6,1005)

1005 FORMAT(/,4X,’MATERIAL SET NUMBERS AND CONNECTIVITY VECTORS’,/,
* 9X,’ELE’,8X,’LENGTH’,3X,’SET’,5X,’NODE NUMBERS’)
DO 120 N=1,NEL

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
ALEN(N)=0.Q0
DO 110 I=1,3
XP(I)=COORL(1,I)-COORL(2,I)
ALEN(N)=ALEN(N)+XP(I)*XP(I)

110 CONTINUE
ALEN(N)=QSQRT(ALEN(N))
WRITE(6,1006) N,ALEN(N),MAT(N),(LM(I,N),I=1,NEN)

1006 FORMAT(8X,I4,2X,E12.5,2X,I4,5X,2(2X,I4))
120 CONTINUE

C
C Transfers equation numbers for all elements from ID to IDL.
C For elements which do not lie in the top plane.

CALL LCLID2(ID,LM,IDL,NNP,NEDN,NEN,NEL)
CALL BAND(IDL,NED,NEL,MBAND)
RETURN

C
C Transfer initial element lengths to ELRTPT

2 DO 200 N=1,NEL
ELRTPT(4,N,IEG)=ALEN(N)

200 CONTINUE
RETURN

C
C Calculate and assemble element matrices and vectors

3 DO 300 N=1,NEL
M=MAT(N)

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
CLEN=0.Q0
DO 310 I=1,3
XP(I)=COORL(1,I)-COORL(2,I)
CLEN=CLEN+XP(I)*XP(I)

310 CONTINUE
CLEN=QSQRT(CLEN)
DO 320 I=1,3
XP(I)=XP(I)/CLEN
XP(I+3)=-XP(I)

320 CONTINUE
EAA=E(M)*AREA(M)/ALEN(N)
ELS=QABS(E(M)*ELRTPT(2,N,IEG)) ! ELRTPT(2)=elastic strain
IF(ELS.GE.YST(M)) EAA=EAA*YRT(M)
DO 340 I=1,6
DO 341 J=1,6
HE(I,J)=XP(I)*XP(J)*EAA

341 CONTINUE
340 CONTINUE

CALL ASSMBL(H,F,HE,RE,IDL(1,1,N),NEQ,MBAND,NED,1,0)
300 CONTINUE

RETURN
C
C Compute and print stresses, strains, forces and displacements.

4 DO 400 N=1,NEL
M=MAT(N)
PLEN=ELRT(4,N,IEG) ! Length at previous time step
EPSET=ELRT(2,N,IEG) ! Elastic strain at previous time step
EPSETPT=ELRTPT(2,N,IEG) ! Elastic strain at current time step
YEPS=YST(M)/E(M) ! Yield strain

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
CLEN=0.Q0
DO 410 I=1,3
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XP(I)=COORL(1,I)-COORL(2,I)
CLEN=CLEN+XP(I)*XP(I)

410 CONTINUE
CLEN=QSQRT(CLEN)
DO 420 I=1,3

XP(I)=XP(I)/CLEN
XP(I+3)=-XP(I)

420 CONTINUE
C Determine if loading plastically (1), loading elastically (2),
C loading transition (3), or unloading elastically (4)

EPST=(PLEN-ALEN(N))/ALEN(N) ! Previous total strain
EPSTPT=(CLEN-ALEN(N))/ALEN(N) ! Current total strain
DEPS=EPSTPT-EPST ! Change in total strain

C Assume elastic then check assumption
EPSETPT=EPSET+DEPS
IF (QABS(EPSTPT).LT.QABS(EPST) .AND. QABS(EPSETPT).LE.YEPS) THEN

IFLAG=4 ! Elastic unloading
ELSEIF (QABS(EPSETPT).LE.YEPS) THEN

IFLAG=2 ! Elastic loading
ELSEIF (QABS(EPSET).LT.YEPS) THEN

IFLAG=3 ! Transition loading
ELSEIF (QABS(EPSET).GE.YEPS) THEN

IFLAG=1 ! Plastic loading
ELSE

WRITE(6,4000) N,IEG
4000 FORMAT(2(/),5X,’NO CASE FOUND FOR ELEMENT ’,I4,

* ’ OF LOWER TRANSVERSE REBAR GROUP ’,I4)
STOP

ENDIF
IF (IFLAG.EQ.2 .OR. IFLAG.EQ.4) THEN

ELRTPT(2,N,IEG)=ELRT(2,N,IEG)+DEPS
ELRTPT(3,N,IEG)=ELRT(3,N,IEG)

ENDIF
IF (IFLAG.EQ.3 .OR. IFLAG.EQ.1) THEN

IF (DEPS.GT.0) ELRTPT(2,N,IEG)=YEPS
IF (DEPS.LT.0) ELRTPT(2,N,IEG)=-YEPS
IF (DEPS.EQ.0) ELRTPT(2,N,IEG)=ELRT(2,N,IEG)
ELRTPT(3,N,IEG)=ELRT(3,N,IEG)+DEPS

* -(ELRTPT(2,N,IEG)-ELRT(2,N,IEG))
ENDIF
ELRTPT(1,N,IEG)=ELRTPT(2,N,IEG)*E(M)+ELRTPT(3,N,IEG)*YRT(M)*E(M)
ELRTPT(4,N,IEG)=CLEN
RE=0.Q0
DO 430 I=1,6

RE(I)=ELRTPT(1,N,IEG)*XP(I)*AREA(M)
430 CONTINUE

CALL ASSMBL(H,RTPT,HE,RE,IDL(1,1,N),NEQ,MBAND,NED,0,1)
400 CONTINUE

RETURN

5 WRITE(6,5000) IEG
5000 FORMAT(//,2X,’LOWER TRANSVERSE REBAR ELEMENT GROUP NUMBER’,I4,10X)

DO 500 N=1,NEL
M=MAT(N)
WRITE(6,5001) N

5001 FORMAT(/,4X,’ELEMENT NUMBER’,I4,/,7X,’YIELD STRESS’,10X,’STRESS’,
* 11X,’FORCE’,6X,’YIELD STRAIN’,6X,’ELASTIC STRAIN’,6X,
* ’PLASTIC STRAIN’)
FORCE=ELRTPT(1,N,IEG)*AREA(M)
YEPS=YST(M)/E(M)
WRITE(6,5002) YST(M),ELRTPT(1,N,IEG),FORCE,
* YEPS,ELRTPT(2,N,IEG),ELRTPT(3,N,IEG)

5002 FORMAT(3X,3(4X,E12.5),6X,E12.5,2(8X,E12.5))
500 CONTINUE

RETURN
END

SUBROUTINE TRUSSC(A,B,C)
C Sets up storage for subroutine TRUSS11.

IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
REAL(KIND=16), ALLOCATABLE, DIMENSION(:) :: BSUB
COMMON /INFO/ N5TEMP
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
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* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NDUM(5)
COMMON /POINTS/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N1101,N1102,
* N1103,N1104,N12,N1201,N1202,N1203,N1204,N13
COMMON /DEBUG/ IDEBUG
DIMENSION A(N4-1),B(N5-1),C(N13-1)

C
IF (MAXNEL11.LT.NEL) MAXNEL11=NEL
N401=1 +NUMAT ! E
N402=N401+NUMAT ! AREA
N403=N402+NUMAT ! YST
N404=N403+NUMAT ! YRT
N405=N404+NEL ! MAT
N406=N405+2*NEL ! LM
N407=N406+7*NEL ! IDL
N5TEMP=N407+NEL ! ALEN
NEND=N5TEMP-1
IF (IGO.EQ.1) THEN

ALLOCATE(BSUB(NEND))
BSUB=0.Q0
CALL TRUSS11(A(N1),A(N2),A(N3),BSUB(1),BSUB(N401),BSUB(N402),

* BSUB(N403),BSUB(N404),BSUB(N405),BSUB(N406),BSUB(N407),
* C(1),C(N6),C(N7),C(N8),C(N9),C(N10),C(N1102),C(N1202))

WRITE(7) NEND,NELTYP,NEL,NUMAT,(NDUM(I),I=1,5),
* (BSUB(I),I=1,NEND)

DEALLOCATE(BSUB)
ELSE

CALL TRUSS11(A(N1),A(N2),A(N3),B(1),B(N401),B(N402),B(N403),
* B(N404),B(N405),B(N406),B(N407),C(1),C(N6),C(N7),
* C(N8),C(N9),C(N10),C(N1102),C(N1202))
ENDIF
RETURN
END

SUBROUTINE TRUSS11(COOR,ID,R,E,AREA,YST,YRT,MAT,LM,IDL,ALEN,
* H,F,RTPT,DX,XT,XTPT,ELRT,ELRTPT)

C Performs computations for upper transverse truss elements.
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
COMMON /INFO1/ NNP,NEQ,MBAND,IGO
COMMON /INFO2/ IEG,NEG1,NEG10,NEG11,NEG100,NEG110,MAXNEL1,
* MAXNEL10,MAXNEL11,MAXNEL100,MAXNEL110,MAXNINT
COMMON /ELPAR/ NELTYP,NEL,NUMAT,NDUM(5)
COMMON /DEBUG/ IDEBUG
DIMENSION COOR(NNP,3),ID(NNP,3),R(NNP,3),E(NUMAT),
* AREA(NUMAT),YST(NUMAT),YRT(NUMAT),MAT(NEL),LM(2,NEL),
* IDL(7,NEL),ALEN(NEL),ELRT(4,MAXNEL11,NEG11),
* ELRTPT(4,MAXNEL11,NEG11),H(NEQ,MBAND),F(NEQ),RTPT(NEQ),DX(NEQ),
* XT(NEQ),XTPT(NEQ)
DIMENSION HEP(6,6),REP(6),COORL(2,3),XP(6),T(6,7),TT(7,6),
* TEMP(6,7),HE(7,7),RE(7)

C
NEN=2 ! Number of nodes per element
NEDN=3 ! Number of degrees of freedom per node
NLED=6 ! Number of local degrees of freedom per element
NGED=NLED-NEN+3 ! Number of global degrees of freedom per element

C
C NGED reflects removing the vertical degrees of freedom from both nodes
C then adding back in the 3 top plane DOFs in place of each
C

IF (IGO.EQ.1) GOTO 1 ! Input element data
IF (IGO.EQ.2) GOTO 2 ! Transfer initial lengths to ELRT
IF (IGO.EQ.3) GOTO 3 ! calculate the tangent stiffness, H
IF (IGO.EQ.4) GOTO 4 ! calculate RTPT and ELRTPT
IF (IGO.EQ.5) GOTO 5 ! Print the system picture
WRITE(6,1000)

1000 FORMAT(’Fatal error in subroutine TRUSS11. ’,
* ’Invalid value for IGO.’)
STOP

C
C Read and print element data. Calculate assembly arrays and half-
C bandwidth.

1 WRITE(6,1001) IEG
1001 FORMAT(//,2X,’UPPER TRANSVERSE REBAR ELEMENT GROUP NUMBER’,I4,10X)

WRITE(6,1002) NEL,NUMAT
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1002 FORMAT(/,4X,’NEL =’,I4,4X,’NUMAT =’,I3)
WRITE(6,1003)

1003 FORMAT(/,4X,’MATERIAL/GEOMETRIC SETS’,/,9X,’SET’,14X,’E’,
* 9X,’AREA’,10X,’YST’,10X,’YRT’)
DO 100 I=1,NUMAT
READ(5,*) E(I),AREA(I),YST(I),YRT(I)
WRITE(6,1004) I,E(I),AREA(I),YST(I),YRT(I)

1004 FORMAT(8X,I4,2X,4(1X,E12.5))
100 CONTINUE

C
C Generates vector MAT and matrix LM

CALL LMGEN(LM,MAT,NEN,NEL)
WRITE(6,1005)

1005 FORMAT(/,4X,’MATERIAL SET NUMBERS AND CONNECTIVITY VECTORS’,/,
* 9X,’ELE’,8X,’LENGTH’,3X,’SET’,5X,’NODE NUMBERS’)
DO 120 N=1,NEL

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
ALEN(N)=0.Q0
DO 110 I=1,3
XP(I)=COORL(1,I)-COORL(2,I)
ALEN(N)=ALEN(N)+XP(I)*XP(I)

110 CONTINUE
ALEN(N)=QSQRT(ALEN(N))
WRITE(6,1006) N,ALEN(N),MAT(N),(LM(I,N),I=1,NEN)

1006 FORMAT(8X,I4,2X,E12.5,2X,I4,5X,2(2X,I4))
120 CONTINUE

C
C Transfers equation numbers for all elements from ID to IDL.
C For elements having all their nodes in the top plane.

CALL LCLID3(ID,LM,IDL,NEDN,NGED,NEN,NEL,NEQ,NNP)
CALL BAND(IDL,NGED,NEL,MBAND)
RETURN

C
C Transfer initial element lengths to ELRTPT

2 DO 200 N=1,NEL
ELRTPT(4,N,IEG)=ALEN(N)

200 CONTINUE
RETURN

C
C Calculate and assemble element matrices and vectors

3 DO 300 N=1,NEL
M=MAT(N)

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
CLEN=0.Q0
DO 310 I=1,3
XP(I)=COORL(1,I)-COORL(2,I)
CLEN=CLEN+XP(I)*XP(I)

310 CONTINUE
CLEN=QSQRT(CLEN)
DO 320 I=1,3
XP(I)=XP(I)/CLEN
XP(I+3)=-XP(I)

320 CONTINUE
C Define transformation matrix from local to global DOFs
C

T=0.Q0
T(1,1)=1.Q0
T(2,2)=1.Q0
T(4,3)=1.Q0
T(5,4)=1.Q0
T(3,5)=1.Q0
T(3,6)=COORL(1,2)
T(3,7)=-COORL(1,1)
T(6,5)=1.Q0
T(6,6)=COORL(2,2)
T(6,7)=-COORL(2,1)
DO 330 I=1,7

DO 331 J=1,6
TT(I,J)=T(J,I)

331 CONTINUE
330 CONTINUE

EAA=E(M)*AREA(M)/ALEN(N)
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ELS=QABS(E(M)*ELRTPT(2,N,IEG)) ! ELRTPT(2)=elastic strain
IF(ELS.GE.YST(M)) EAA=EAA*YRT(M)
DO 340 I=1,6
DO 341 J=1,6
HEP(I,J)=XP(I)*XP(J)*EAA

341 CONTINUE
340 CONTINUE

C Transform to global DOFs
C

TEMP=MATMUL(HEP,T)
HE=MATMUL(TT,TEMP)
CALL ASSMBL(H,F,HE,RE,IDL(1,N),NEQ,MBAND,NGED,1,0)

300 CONTINUE
RETURN

C
C Compute and print stresses, strains, forces and displacements.

4 DO 400 N=1,NEL
M=MAT(N)
PLEN=ELRT(4,N,IEG) ! Length at previous time step
EPSET=ELRT(2,N,IEG) ! Elastic strain at previous time step
EPSETPT=ELRTPT(2,N,IEG) ! Elastic strain at current time step
YEPS=YST(M)/E(M) ! Yield strain

C
C Transfers nodal coordinates for an element from COOR to COORL.

CALL LCLCOR(COOR,LM(1,N),COORL,NNP,NEN)
CLEN=0.Q0
DO 410 I=1,3

XP(I)=COORL(1,I)-COORL(2,I)
CLEN=CLEN+XP(I)*XP(I)

410 CONTINUE
CLEN=QSQRT(CLEN)
DO 420 I=1,3

XP(I)=XP(I)/CLEN
XP(I+3)=-XP(I)

420 CONTINUE
C Determine if loading plastically (1), loading elastically (2),
C loading transition (3), or unloading elastically (4)

EPST=(PLEN-ALEN(N))/ALEN(N) ! Previous total strain
EPSTPT=(CLEN-ALEN(N))/ALEN(N) ! Current total strain
DEPS=EPSTPT-EPST ! Change in total strain

C Assume elastic then check assumption
EPSETPT=EPSET+DEPS
IF (QABS(EPSTPT).LT.QABS(EPST) .AND. QABS(EPSETPT).LE.YEPS) THEN

IFLAG=4 ! Elastic unloading
ELSEIF (QABS(EPSETPT).LE.YEPS) THEN

IFLAG=2 ! Elastic loading
ELSEIF (QABS(EPSET).LT.YEPS) THEN

IFLAG=3 ! Transition loading
ELSEIF (QABS(EPSET).GE.YEPS) THEN

IFLAG=1 ! Plastic loading
ELSE

WRITE(6,4000) N,IEG
4000 FORMAT(2(/),5X,’NO CASE FOUND FOR ELEMENT ’,I4,

* ’ OF UPPER TRANSVERSE REBAR GROUP ’,I4)
STOP

ENDIF
IF (IFLAG.EQ.2 .OR. IFLAG.EQ.4) THEN

ELRTPT(2,N,IEG)=ELRT(2,N,IEG)+DEPS
ELRTPT(3,N,IEG)=ELRT(3,N,IEG)

ENDIF
IF (IFLAG.EQ.3 .OR. IFLAG.EQ.1) THEN

IF (DEPS.GT.0) ELRTPT(2,N,IEG)=YEPS
IF (DEPS.LT.0) ELRTPT(2,N,IEG)=-YEPS
IF (DEPS.EQ.0) ELRTPT(2,N,IEG)=ELRT(2,N,IEG)
ELRTPT(3,N,IEG)=ELRT(3,N,IEG)+DEPS

* -(ELRTPT(2,N,IEG)-ELRT(2,N,IEG))
ENDIF
ELRTPT(1,N,IEG)=ELRTPT(2,N,IEG)*E(M)+ELRTPT(3,N,IEG)*YRT(M)*E(M)
ELRTPT(4,N,IEG)=CLEN

C Define transformation matrix from local to global DOFs
C

T=0.Q0
TT(1,1)=1.Q0
TT(2,2)=1.Q0
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TT(3,4)=1.Q0
TT(4,5)=1.Q0
TT(5,3)=1.Q0
TT(6,3)=COORL(1,2)
TT(7,3)=-COORL(1,1)
TT(5,6)=1.Q0
TT(6,6)=COORL(2,2)
TT(7,6)=-COORL(2,1)
REP=0.Q0
RE=0.Q0
DO 430 I=1,6

REP(I)=ELRTPT(1,N,IEG)*XP(I)*AREA(M)
430 CONTINUE

DO 440 I=1,7
DO 450 J=1,6

RE(I)=RE(I)+TT(I,J)*REP(J)
450 CONTINUE
440 CONTINUE

CALL ASSMBL(H,RTPT,HE,RE,IDL(1,N),NEQ,MBAND,NGED,0,1)
400 CONTINUE

RETURN

5 WRITE(6,5000) IEG
5000 FORMAT(//,2X,’UPPER TRANSVERSE REBAR ELEMENT GROUP NUMBER’,I4,10X)

DO 500 N=1,NEL
M=MAT(N)
WRITE(6,5001) N

5001 FORMAT(/,4X,’ELEMENT NUMBER’,I4,/,7X,’YIELD STRESS’,10X,’STRESS’,
* 11X,’FORCE’,6X,’YIELD STRAIN’,6X,’ELASTIC STRAIN’,6X,
* ’PLASTIC STRAIN’)
FORCE=ELRTPT(1,N,IEG)*AREA(M)
YEPS=YST(M)/E(M)
WRITE(6,5002) YST(M),ELRTPT(1,N,IEG),FORCE,
* YEPS,ELRTPT(2,N,IEG),ELRTPT(3,N,IEG)

5002 FORMAT(3X,3(4X,E12.5),6X,E12.5,2(8X,E12.5))
500 CONTINUE

RETURN
END

SUBROUTINE zbrent(x1,x2,ELAS,tol,SIG0,DSIG,X,R,THETA,PSI,
* PSIMAX,BETA,YST)
IMPLICIT REAL(KIND=16) (A-H,O-Z)
IMPLICIT INTEGER(KIND=8) (I-N)
INTEGER(KIND=8) ITMAX
REAL(KIND=16) tol,x1,x2,EPS
PARAMETER (ITMAX=1000,EPS=1.q-16)

C Using Brents method, find the root of a function func known to lie between x1 and x2.
C The root, returned as zbrent, will be refined until its accuracy is tol.
C Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER(KIND=8) iter
REAL(KIND=16) a,b,c,d,e,fa,fb,fc,p,q,r,s,tol1,xm
a=x1
b=x2
CALL FCALC(fa,a,SIG0,DSIG,X,R,THETA,PSI,PSIMAX,BETA,YST)
CALL FCALC(fb,b,SIG0,DSIG,X,R,THETA,PSI,PSIMAX,BETA,YST)
if((fa.gt.0..and.fb.gt.0.).or.(fa.lt.0..and.fb.lt.0.)) then

write(6,*) ’root must be bracketed for zbrent’
write(6,*) ’fcalc(a) = ’,fa
write(6,*) ’fcalc(b) = ’,fb
write(6,*) ’psi = ’, psi
write(6,*) ’program terminated by subroutine zbrent’
if (fa .gt. 0.q0) elas = 0.q0
if (fb .lt. 0.q0) elas = 1.q0
stop

endif
c=b
fc=fb
do 11 iter=1,ITMAX
if((fb.gt.0..and.fc.gt.0.).or.(fb.lt.0..and.fc.lt.0.))then

c=a !Rename a, b, c and adjust bounding interval d.
fc=fa
d=b-a
e=d

endif
if(abs(fc).lt.abs(fb)) then
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a=b
b=c
c=a
fa=fb
fb=fc
fc=fa

endif
tol1=2.Q0*EPS*abs(b)+0.5Q0*tol !Convergence check.
xm=.5Q0*(c-b)
if(abs(xm).le.tol1 .or. fb.eq.0.)then

ELAS=b
return

endif
if(abs(e).ge.tol1 .and. abs(fa).gt.abs(fb)) then

s=fb/fa !Attempt inverse quadratic interpolation.
if(a.eq.c) then

p=2.Q0*xm*s
q=1.Q0-s

else
q=fa/fc
r=fb/fc
p=s*(2.Q0*xm*q*(q-r)-(b-a)*(r-1.Q0))
q=(q-1.Q0)*(r-1.Q0)*(s-1.Q0)

endif
if(p.gt.0.) q=-q !Check whether in bounds.
p=abs(p)
if(2.Q0*p .lt. min(3.Q0*xm*q-abs(tol1*q),abs(e*q))) then

e=d !Accept interpolation.
d=p/q

else
d=xm !Interpolation failed, use bisection.
e=d

endif
else !Bounds decreasing too slowly, use bisection.

d=xm
e=d

endif
a=b !Move last best guess to a.
fa=fb
if(abs(d) .gt. tol1) then !Evaluate new trial root.

b=b+d
else

b=b+sign(tol1,xm)
endif
CALL FCALC(fb,b,SIG0,DSIG,X,R,THETA,PSI,PSIMAX,BETA,YST)

11 enddo
pause ’zbrent exceeding maximum iterations’
ELAS=b
return
END
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Appendix F

Summary of Papers Used for
Model Identification
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Appendix G

Finite Element Meshes Used for
Comparisons to Tests on
Reinforced Concrete Members

Black dots are shown at the location of all nodes. Thin lines indicate the outlines

of the solid concrete elements. Thick lines indicate the presence of spring elements.

Spring elements are used to represent longitudinal rebar, hoop bars, or fiber reinforced

polymer (FRP) confinement.
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G.1 Chaallal and Shahawy (2000)

Figure G.1: Finite element representation of member tested in Chaallal and Shahawy
(2000).
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G.2 Harries and Carey (2003)

Figure G.2: Finite element representation of member with circular cross section tested
in Harries and Carey (2003).
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Figure G.3: Finite element representation of member with square cross section and
0.43 inch (11 mm) corner radius tested in Harries and Carey (2003).

Figure G.4: Finite element representation of member with square cross section and
0.98 inch (25 mm) corner radius tested in Harries and Carey (2003).
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G.3 Harries and Kharel (2003)

The mesh used for the members tested in Harries and Kharel (2003) is identical to

the mesh depicted in Figure G.2.

G.4 Mander et al. (1988a)

Figure G.5: Finite element representation of column 1 tested in Mander et al. (1988a).

Note that the longitudinal bars are redistributed for the mesh in column 1. Mesh

refinement is necessary to preserve element quality. Thus, five longitudinal bars are

in the mesh to represent the four that are actually in the column. The longitudinal

bar area is defined to be equivalent and, therefore, the bars in the mesh are each

smaller than the actual longitudinal bars in the column. However, this does not
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affect performance of the column under pure axial load, which is the only load case

considered for this column.

Figure G.6: Finite element representation of columns 2-4 tested in Mander et al.
(1988a).

For each column, the height of the mesh in the z direction is defined as half of the

hoop spacing. Thus, meshes representing columns 2 through 4 each have a different

value for the height. Figure G.6 depicts the height for column 2. The mesh shown in

Figure G.6 is also used to represent the unconfined column with the same height as

column 4. The longitudinal rebar and hoop elements are removed for that case.
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Figure G.7: Finite element representation of walls 1, 3, and 4 tested in Mander et al.
(1988a).

Wall 3 has a hoop spacing equal to twice that of walls 1 and 4. The correct

height of the mesh in the z direction (equal to half the hoop spacing) is used for each

individual mesh. The height depicted in Figure G.7 is representative of the height for

walls 1 and 4. The mesh shown in Figure G.7 is also used to represent the unconfined

wall with the same height value as walls 1 and 4. The longitudinal rebar and hoop

elements are removed for that case.
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G.5 Scott et al. (1982)

Figure G.8: Finite element representation of column 2 tested in Scott et al. (1982).
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Figure G.9: Finite element representation of column 6 tested in Scott et al. (1982).

The mesh shown in Figure G.9 is also used to represent the unconfined column.

The longitudinal rebar and hoop elements are removed for that case.
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Appendix H

Finite Element Meshes Used for
Effects of Cross Sectional Shape
and Confining Material

Meshes are shown in this chapter in the same method as Appendix G. Black dots are

shown at the location of all nodes. Thin lines indicate the outlines of the solid concrete

elements. Thick lines indicate the presence of spring elements. Spring elements are

used to represent longitudinal rebar, hoop bars, or FRP confinement.
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Figure H.1: Finite element representation of square column confined by steel hoops,
used for comparison in Chapter 7.
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Figure H.2: Finite element representation of circular column confined by steel hoops,
used for comparison in Chapter 7.
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Four different hoop spacings are analyzed for each of the meshes shown in Fig-

ures H.1 and H.2. The figures depict the three inch hoop spacing. For each individual

hoop spacing considered, the height of the mesh in the z direction is equal to half of

the hoop spacing.

Figure H.3: Finite element representation of square column confined by FRP, used
for comparison in Chapter 7.
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Figure H.4: Finite element representation of circular column confined by FRP, used
for comparison in Chapter 7.
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Mesh refinement is necessary when the neutral axis crosses the integration points

at the edge of the compression side of the section. For the axial load-moment com-

bined loading case with axial loads of 0, 140, 280, and 420 kips (0, 623, 1246, and

1868 kN) applied to the square cross section confined by FRP, the mesh shown in

Figure H.5 is used to correctly capture the location of the neutral axis. This fine of

a mesh is not necessary for any other section or load case.

Figure H.5: Finite element representation of square column confined by FRP, used
for special load cases of comparison in Chapter 7.
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