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Abstract

We show how to parameterise a homogenised conductivity in R2 by a scalar function s(x),

despite the fact that the conductivity parameter in the related up-scaled elliptic operator is

typically tensor valued. Ellipticity of the operator is equivalent to strict convexity of s(x),

and with consideration to mesh connectivity, this equivalence extends to discrete param-

eterisations over triangulated domains. We apply the parameterisation in three contexts:

(i) sampling s(x) produces a family of stiffness matrices representing the elliptic operator

over a hierarchy of scales; (ii) the curvature of s(x) directs the construction of meshes well-

adapted to the anisotropy of the operator, improving the conditioning of the stiffness matrix

and interpolation properties of the mesh; and (iii) using electric impedance tomography to

reconstruct s(x) recovers the up-scaled conductivity, which while anisotropic, is unique.

Extensions of the parameterisation to R3 are introduced.
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Preface

A common undertaking in science is to discover what properties emerge from systems as we

observe them over a range of scales. The interaction between genetics and environmental

change gives us evolution just as gravitational interactions between small astronomical

bodies builds solar systems. This thesis is concerned with the properties that emerge when

we view heterogeneous materials on a variety of scales.

It is an amazing pattern in science that we can do experiments and form theories at

particular scales as if these scales were isolated. Knowing the makeup of the nuclei in

a fluid phase does not help us form the Navier-Stokes equations, nor does modelling the

stream of radiation from the Sun help us build a theory of planetary motion. This pattern

is probably related to the universality of the stationary action principle. At a great many

scales, following the flow of energy in a system provides good predictions of experiment,

and energy by and large does not seem to leap between disparate scales.

This said, it also seems that interesting science happens when this assumption of scale

separation is violated. Looking at black holes questions the consistency between theories

of gravitation and quantum mechanics, and understanding how molecules form bonds with

each other aught to explain why cracks form easily in some materials while other materials

can be greatly deformed before any catastrophic failure. Even water, a phase composed of

a single type of molecule, transfers energy between fine eddies and its average flow in the

relatively mild circumstances under which it flows turbulently.

The general approach in engineering and computation for accounting for the interactions

between scales is to either argue that their affect is insignificant, or by encapsulating the

small scales in a model. For example, this thesis studies conductivity, a material parameter

relating the amount of flux, either of mass or energy, to an applied potential. A conductivity

model is typically an encapsulation of a microscopic flow, such as electrons through a wire,

or molecular vibrations through an atomic lattice. While conductivity is often constant
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in homogeneous media, we can further encapsulate it by averaging it over compositions of

materials, heterogeneous at fine scales. This further encapsulation is homogenisation, and

the first part of this thesis considers which features of conductivity should be preserved by

homogenisation.

The second part of this thesis concerns a question dual to building a consistent multi-

scale theory. The dual problem is a measurement problem, and it asks what we can de-

termine about a system given that the scale at which we perform our measurements is

macroscopic relative to the scale of the underlying physics. Again, we study conductivity,

and based on flux and potential measurements at the boundary of a body, we ask what we

can determine about its conductivity throughout its interior.

Many people have in some way contributed to this work, either by their early influence

in my life, or by the more recent contributions of hot meals and moral support. I will thank

the great many of you in person over the months and years ahead, and shall confine my

thanks here to the earliest and the latest players. Our lives tend to begin with our parents,

and mine is no different: the influence of my parents, Judith Ann and Robert W. Donaldson,

can be seen directly in this thesis for their conviction that I be educated both in math and

in writing. Equally important, I thank them for the freedom they offered me to work on

my own projects from a young age. This freedom has been mirrored by a great many of my

educators, including my current advisors Houman Owhadi and Mathieu Desbrun. The idea

to work on electric impedance tomography, the starting point of this work, was one that I

brought to them, and they never lacked for interest in its development.

Roger Donaldson

Pasadena, California

April 2008
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Chapter 1

Introduction: Homogenising

Conductivity

Computer simulation and qualitative understanding of a real-world material often requires

only coarse-scale solutions despite the material’s fine-scale variability. Solution fields tend

to vary at scales similar to those of the material’s properties, so if we desire only coarse-

scale solutions, we need only coarse-scale representations of the materials. The trouble is

that material properties tend to appear as parameters in the partial differential equations

(PDE) modelling the system. Averaging material properties is thus often the same problem

as coarsening the scale at which the differential operators act. Compressing a differential

operator with the intent of averaging the effects of its rapidly varying parameters is called

homogenisation.

In this thesis, we study the homogenisation of conductivity. Conductivity is the capacity

of a material to conduct flow under an applied potential. The flow may be electric current

through a wire or hydrogen molecules through a fuel cell or reindeer through a thick forest,

but the point is that this capacity for flow may change rapidly from one region to another.

When homogenised, this fine-scale variation can have a strange effect: the direction of the

flow may not be the same as the gradient of the potential. This directional dependence

means that conductivity is not a scalar-valued function of space, but is tensor valued. The

magic here is that if we homogenise the conductivity, symmetries emerge that reduce its

dimensionality. In R2, we can parameterise the homogenised conductivity again by a scalar

function, and with this new parameterisation, taking averages of conductivity is as easy as

coarsely-sampling the scalar parameterisation, just as we would do to a solution field.
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1.1 A multi-scale elliptic operator

We are concerned with the variable coefficient linear elliptic problem

−div(Q∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.1)

Ω ⊂ Rd is a simply connected closed and bounded domain with boundary ∂Ω, f is a

source term, u is a potential field, and Q is a tensor representing a material property

such as conductivity, or heat or chemical diffusivity. The computational problem is to

resolve a potential field u at a coarse scale quickly and with accuracy, despite the fact that

conductivity Q may vary at fine spatial scales. Hence, we are looking for a reduction in the

dimensionality of solutions of problem (1.1) without undue compromise in accuracy. The

main result of homogenisation is that while simple spatial averages of a given field u give

good approximations to its fine-scale variation, parameterising the differential operator by

näıve averages of Q does not provide coarse-scale solutions close to the fine-scale solutions.

To illustrate the care that must be exercised in averaging material properties, consider

an observer measuring the conductivity of the material in Figure 1.1. The material is

laminated. Although locally isotropic, it is composed of alternating layers having large and

small conductivities. A very small observer, one small enough to reside on a single layer,

sees no preferred direction in the material. Unless the small observer is lucky enough to

be sitting on the boundary between two layers, the observer will see only black or white

material in his immediate surroundings. With no preferred direction, the small observer

deduces that the material is isotropic.

A large observer sees exactly the opposite. Seeing many boundaries between black and

white laminates, the large observer knows that the conductivity parallel to the laminates will

be larger than the conductivity perpendicular to them, even if the conductivity is constant

and isotropic within each layer. At a coarse scale, an anisotropic conductivity is the best

model for the material, even though the conductivity is scalar at its finest scale. Taking

simple averages of the fine-scale conductivities does not predict this anisotropy.

There are at least three ways to take averages of conductivities, and hence of elliptic
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Figure 1.1: A scalar conductivity alternating at a fine scale acts as an anisotropic con-
ductivity at a coarse scale. The lengths of the axes represent the effective homogenised
conductivities in each principal direction.

operators: the representative volume element (RVE) technique, asymptotic homogenisation,

and metric-based up-scaling. RVE takes a small sample of the domain, larger than the scale

of the material’s inhomogeneities, and takes measurements of the potential gradient ∇u,

and the resulting flux j = Q∇u averaged over the entire sample. The RVE experimenter

is ignorant of any variations in the material smaller than the size of the sample. While

physically intuitive, this method assumes a particular sample scale, and does not indicate

how to correctly change scale, composing larger-scale samples of the material from smaller-

scale ones. Mathematically, there is no limit taken, and so there is no notion of the RVE

sample converging to a particular value. In fact, since the scale at which averaging occurs

is fixed and finite (not infinitesimal), some authors do not classify this as a homogenisation

method. The RVE method appears in particular in the elasticity literature, see [47], for

example, and the references therein.

Asymptotic homogenisation, perhaps the most widely known approach in the mathe-

matics community, assumes that the material has periodic structure, the fine-scale period ε

being much smaller than the diameter of the domain. Asymptotic homogenisation expands

the exact solution as an asymptotic series, identifying the material’s cell problem, a PDE

parameterised by the exact fine-scale conductivity, but which is solved only over a single

fine-scale period in the domain. The conductivity parameterising the homogenised operator

is given in terms of solutions to the cell problem for ε → 0. Although this method does

take advantage of periodic structure to reduce the size of the calculations required, one of

its shortcomings is requiring a separation between the macro-scale (the size of the domain
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itself) and the micro-scale (the period of the structure). The calculation is described in

detail in [48, Chapter 1], for example.

The work in this thesis is based on the third method, metric-based up-scaling, a name

coined by Owhadi and Zhang in their papers [65, 66, 88] which followed earlier work of

Babus̆ka et al [20]. Like the other methods, metric-based up-scaling reduces the effective

dimensionality of the numerical PDE that must be solved, but does so without requiring a

separation of scale. Without separation of scale, and without periodicity or other patterns

in the material, full knowledge of the fine-scale conductivity must be accounted for, and

the method begins by solving d high-dimensional problems, where the domain Ω ⊂ Rd.

The solutions to these d problems are a change of variables F : Ω → Ω, and it is in this

new coordinate system that we perform up-scaling. The new coordinates F account for

the fine-scale variability in solutions to the original problem, such that solutions in the new

coordinate system are remarkably smooth.

Numerically, computing these so-called harmonic coordinates F requires discretizing the

problem at a scale smaller than the finest scale of the conductivity. Thus, this method offers

no advantage over simply solving the problem at a fine resolution unless the operator is to

be re-used. This happens, for example, when solutions are required for several source terms

f , or when the f is replaced by a time-dependent term, such as a time-derivative of u, as

is the case in the diffusion equation. We study this method here because its independence

on scale — barring the resolution of the d initial solves — is precisely what allows us to

use linear operations to rescale the homogenised operator to the desired resolution of the

solution fields, despite the fact that the underlying conductivity may have a continuum of

scales.

Briefly, a conductivity obtained by metric-based up-scaling is a tensor field with three

properties: it is positive-definite, symmetric and its columns are divergence-free. The first

two conditions are conventional, and the third is a consequence of metric-based up-scaling.

These three constraints reduce the dimensionality of the conductivity, and for dimension

d = 2, the up-scaled conductivity may be represented as scalar convex function, s : R2 →

R: roughly speaking, the curvatures of s(x) represent the directions and strength of the
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anisotropy of the conductivity. In R2, we write

Q = F∗σ =

 ∂yys −∂xys

−∂xys ∂xxs

 , (1.2)

Q is the push-forward of σ by the harmonic coordinates. Since solutions u pushed forward

by F are smooth, Q can be up-scaled while preserving the global effects inherited by fine-

scale features of σ, such as those of a laminated domain. The bulk of this thesis, where we

consider conductivities in R2, regards computations consequential to this parameterisation.

Development of this parameterisation and the recent work by Owhadi and Zhang will be

introduced in further detail in Section 1.2.

Since conductivity is a parameter specifying the elliptic differential operator, up-scaling

conductivity is equivalent to up-scaling an operator. The original treatment of metric-based

up-scaling specifies a discretised operator from the original conductivity as a non-linear

operation. An important development by the use of our parameterisation s(x) is that up-

scaling — selecting a particular scale for computation — can now be accomplished as the

linear operation of a function approximation, such as interpolation. Once s(x) is computed

on the finest scale, its coarser scale approximations give a family of consistent operators

that can be quickly computed.

In this thesis, we identify applications of the homogenised operator to both forward

and inverse elliptic problems. The forward problem is the basic problem (1.1), where we

seek a potential field u for given a conductivity Q and source f . Of course, variations

on (1.1) with different boundary conditions and source terms are common — the focus here

is on the operator div(Q∇·). After homogenisation, the operator in the forward problem

is discretized and represented as a scalar function s(x) at the finest scale. We then re-

sample s(x) to form coarse scale representations of the operator. Discretization of s(x) in

the form (1.2) requires some care. We shall show that while Q is represented pointwise

by second derivatives of s(x), second derivatives of s(x) can be understood in the sense of

distributions, so we need only at least a piecewise linear interpolation of s(x) to represent

discretizations of operator div(Q∇·).

This representation for s(x) advantages forward solution methods in at least two ways.

First, multi-scale methods for solving elliptic PDE require a hierarchy of discrete operators.
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For example, the multi-grid method works by resolving solutions at increasingly fine scales,

and hence requires a hierarchy of discretizations of the operator. For unstructured meshes,

methods for computing this hierarchy for variable-coefficient problems are not known. Sec-

ond, we can use our parameterisation to better condition a forward solver’s linear systems.

A source of ill-conditioning in these solves is a mismatch between the anisotropy of the

problem and the mesh over which solutions are interpolated. We use our scalar function

s(x) to produce meshes that are well-adapted to the anisotropy of Q. The idea is related to

the construction of Delaunay triangulations formed by projecting points in the plane onto

a regular paraboloid. We devote Chapter 2 to the discretization of s(x), and to these two

applications of our parameterisation to the forward problem.

The inverse problem is a measurement problem, the goal being to reconstruct con-

ductivity Q throughout the domain from the boundary Neumann-to-Dirichlet map. The

Neumann-to-Dirichlet map

Λσ : H− 1
2 (∂Ω) → H

1
2 (∂Ω), (1.3)

Λσ(f) = g (1.4)

is a positive-definite boundary operator that gives boundary trace g = u |∂Ω of the solution

to
−div(σ∇u) = 0, x ∈ Ω,

∂

∂n
(σu) = f, x ∈ ∂Ω,∫
∂Ω
f = 0.

(1.5)

H− 1
2 and H

1
2 are the appropriate spaces for the boundary traces of flux and potential when

the solution u ∈ H1(Ω). In practise, measuring the Neumann-to-Dirichlet map amounts to

applying fluxes to the boundary ∂Ω and measuring the resulting solution values on ∂Ω, then

using this data to deduce the conductivity throughout the entire domain. This problem

appears first in the literature in the 1980 paper by Calderón [29]. This reconstruction

is ill-posed in the sense that large perturbations to Q incur only small perturbations to

the boundary data, particularly when Q is perturbed far from the boundary, see [39], for

example. Building the symmetry, positivity, and divergence-free properties directly into the

parameterisation for Q limits the space over which we search for solutions, regularising the
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reconstruction. Because the problem is exponentially ill-posed — the modulus of continuity

for the map from boundary data to the conductivity grows exponentially with increasing

resolution — coarsening the scale at which we resolve Q is also regularising, but only if the

up-scaled reconstruction is consistent with the fine-scale, unresolved conductivity. Chapter 3

applies the discretization of Q as scalar function s(x) to this inverse problem.

Save occasional one-dimensional examples, all of the work in the first three chapters

considers conductivities in dimension two. Extending the results to dimensions three and

higher is not trivial. Not only do we require more than a single scalar parameter to represent

the symmetric and divergence-free up-scaled conductivity, but in even simple examples it

is possible for the up-scaled conductivity to lose ellipticity. The added freedom in R3

allows the formation of interlocking current loops, which up-scaled, seem to give negative

conductivities in some directions. Chapter 4 considers these difficulties, and, based on

our discretization and work with the inverse problem in R2, suggests directions of future

research.

Homogenisation by metric-based up-scaling is at the heart of the multi-scale represen-

tation for conductivity. Even if a conductivity is isotropic (scalar) at the finest scale, it

can appear anisotropic at coarser scales. Indeed, it is possible to build meta-materials with

fine-scale structure manifesting advantages at the coarse-scale. Two examples are the de-

sign of laminated materials having increased strength [14], and electromagnetic materials

exhibiting cloaking behaviour [43, 74]. This is a third application of homogenisation, that

of material design. We do not treat this application here, but refer the reader to [14] for

example. The remainder of this chapter introduces metric-based up-scaling, representa-

tion (1.2) of homogenised conductivity by second derivatives of a scalar function s(x), and

uses metric-based up-scaling to compute the homogenisation for the simple example of a

laminated domain.

1.2 Homogenising scalar conductivities

Material properties may be characterised as isotropic — independent of orientation — or

anisotropic, the opposite. An observer standing on an isotropic material has no information

from which to deduce directionality, while an observer standing in an anisotropic material

does see a preferred direction. The anisotropy of problem (1.1) appears in the tensor-valued
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conductivity, Q flow density, j potential, u
Ohm’s Law electric conductivity current density voltage
Fick’s Law diffusivity substance flow concentration
Fourier’s Law thermal conductivity heat flow temperature
Darcy’s Law diffusivity substance flow pressure

Table 1.1: Linear constitutive laws for potential-driven flux. In each case, a flux, j is
proportional to the gradient of a potential ∇u with constant of proportionality Q. Q, the
conductivity, need not be scalar, indicating that j and ∇u are not necessarily parallel.

conductivity parameter Q of the elliptic differential operator.

To see howQ represents anisotropy, consider the physical interpretation of problem (1.1).

Setting j the flux, −div j = f states that the net flux leaving a point equals the externally-

provided source flux f . u is a potential, and j = Q∇u is a linear constitutive law. This law

is Ohm’s law for electromagnetism, Fick’s law for chemical diffusion, Fourier’s law for heat

conduction, and Darcy’s law for porous-media flow (see Table 1.1). Only when Q is a scalar

multiple of the identity do the flux and potential gradient have the same ratio irrespective

of direction. That is, only scalar conductivities are isotropic. What is interesting is that,

as we have already described for the special case of the laminated domain, the anisotropy

of the conductivity depends on the scale at which we observe the material.

While not limited to treating laminated materials, asymptotic homogenisation requires

a separation between the coarse scale where we observe anisotropy, and a fine scale, where

material properties are nearly constant. In our example, the fine scale is given by the pitch ε

of the laminate in Figure 1.1. Metric-based up-scaling works differently. Instead of assuming

the period of the finest scale features from the outset, metric-based up-scaling transforms

the fine-scale conductivity by a change of variables. The transformed conductivity varies

on the same scales as the original conductivity, but its arithmetic spatial averages faithfully

parameterise the up-scaled operator.

Consider the basic problem (1.1), where the conductivity varies over fine scales:

−div(σ∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.6)

σ(x) represents a conductivity as a positive-definite symmetric tensor, where σ may vary
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over a continuum of scales from very coarse to very fine. The homogenisation begins by

solving for the d σ-harmonic coordinates, F : Ω → Ω:

−div(σ∇F ) = 0, x ∈ Ω,

F = x, x ∈ ∂Ω.
(1.7)

These problems can be in practise quite expensive to solve, as F must be resolved on a scale

comparable to the finest scale of σ. However, once we have the σ-harmonic coordinates, the

reward is that if we compute the push-forward of σ by transformation F , denoting

Q(x) =
∇F Tσ∇F
|det∇F |

◦ F−1(x), (1.8)

then solutions to problem (1.1) will be close to solutions to problem (1.6), even if u

is approximated in a (coarse) low-dimensional space. Here we are using the convention

(∇F )ij = ∂xiFj for row i, column j of matrix ∇F . Provided our conductivity σ is scalar at

the very finest scale, we can compute coarse-scale approximations, as long as we are willing

to compute with the tensor-valued conductivities predicted by the laminate example. Note

that F : Ω → Ω, is 1-1 onto.

This choice, Q, for the homogenised σ that allows us to approximate solutions in a low-

dimensional space is the main result of Owhadi and Zhang [65, 88]. Details are provided

in that work, but we summarise the argument here. In their paper, the authors prove that

under coercivity and boundedness conditions on σ, if u solves (1.6), then û = u ◦ F ∈

W 2,p, p > 2, the Sobolev space of functions having second-order weak derivatives in Lp. In

R2, the application of a Sobolev embedding theorem shows that û is surprisingly smooth:

u◦F ∈ C1,α(Ω), the Hölder space of functions having α-Hölder continuous first derivatives.

In particular,

‖(∇F )−1∇u‖Cα = ‖∇û‖Cα ≤ C‖f‖∞, (1.9)

for constants α,C > 0. Both C and the Hölder parameter α depend on Ω, on bounds on σ

and on the eigenvalues of ∇F Tσ∇F . In addition, C depends on d. The solution u ∈ H1,

and will vary at small scales if σ does. Hence, we may interpret this bound to mean that

the harmonic coordinates F contain all of the fine-scale variation of u, and subsequently

provide a form of compensation, giving us the solution’s smooth counterpart, û. This
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bound holds irrespective of the scales at which σ varies, implying that û = u ◦ F−1 may be

well-approximated in a (low-dimensional) space, for example, the space of piecewise linear

polynomials.

In this thesis we choose û, v̂ from Ph
1 = span(ϕi), the space of piecewise linear poly-

nomials of scale h interpolating functions at vertices i of a triangulation of Ω. The ϕi are

the so-called hat functions. In such case, solutions to (1.6) may be approximated by linear

combinations of functions ψi = ϕi ◦ F . Setting uh ∈ span(ψi), where h represents the scale

of the triangulation, [65] gives

‖u− uh‖H1 ≤ Chα‖f‖L∞ . (1.10)

This justifies using Q, the push-forward of σ under transformation F , as the tensor param-

eterising the homogenised elliptic operator.

One way to see why bound (1.10) holds in R2 is to note that interpolating solution

u ∈ C1,α by a piecewise linear function vh ∈ Ph
1 gives an approximation error

‖u− vh‖H1 ≤ Chα. (1.11)

The regularity of u determines α and the magnitude of the second derivatives of u determine

C. Next, it is shown in [65] that the Q-norm,

‖v‖Q =
∫

Ω
∇vTQ∇v (1.12)

is equivalent to the H1-norm. Now we let uh be the finite element solution to our PDE in

Ph
1 . Céa’s lemma says that

‖u− uh‖Q ≤ inf
v∈Ph

1

‖u− v‖Q. (1.13)

Our interpolation vh ∈ Ph
1 , and the Q-norm and H1-norm are equivalent, so the finite

element solution satisfies (1.10). The explicit dependence on ‖f‖L∞ makes sense because

C in (1.11) depends on the magnitude of the weak second derivatives of solution u.

From definition (1.8), we can see that when homogenised from a scalar conductivity, Q

is indeed positive-definite, symmetric, and divergence-free. Positivity follows directly from
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the positivity of σ, the physical requirement that a non-zero potential gradient imparts

a non-zero flux approximately parallel to the gradient. Symmetry follows from the left

and right applications of ∇F . Symmetry is consistent with the condition that Q be used

to compute the energy of a potential field. For example, in electromagnetism, the power

liberated by a potential field is the inner product of flux and the potential gradient,

E(u) =
∫

Ω
∇uT j =

∫
Ω
∇uTQ∇u. (1.14)

This is the Dirichlet norm for the operator, and forms an inner product given a symmetric

positive-definite Q.

While the positivity and symmetry properties are standard in representing physical con-

ductivities, the divergence-free property is special to metric-based up-scaling. Q divergence-

free means div(Qe) = 0 for all constant vectors e ∈ Rd. Choosing an arbitrary constant

vector e and test function w ∈ H1
0 (Ω), we integrate by parts:

∫
Ω
w div(Qe) = −

∫
Ω
∇wT ∇F Tσ∇F

|det∇F |
◦ F−1e (1.15)

= −
∫

Ω
∇(w ◦ F )T (σ∇F )e (1.16)

= eT

∫
Ω
w ◦ F div(σ∇F ) = 0. (1.17)

So Q is at least divergence-free in a weak sense. While we construct our parameterisation for

Q from the standpoint that columns of Q be pointwise divergence-free, we only require the

weak condition in our numerical implementations. The divergence-free property constrains

the up-scaled conductivity to admit affine potential functions u as solutions to div(Q∇u) =

0. On the coarsest scale, this is exactly the kind of average physical behaviour we expect:

applying a large potential to one side of a domain and a small potential to the other,

the coarsest average response is linear decay across the domain. Metric-based up-scaling

gives a conductivity that can be appropriately averaged over any scale, beginning with the

coarsest, so it is appropriate that our homogenisation method should support the coarsest-

scale response.



Chapter 1. Introduction: Homogenising Conductivity 12

1.3 Anisotropic conductivities in R2

Having recalled the metric-based homogenisation of σ, we will now apply the three con-

straints of positivity, symmetry, and zero divergence to parameterise Q in R2. Saving

mention of higher-dimensional problems for the final chapter, we will constrain our calcu-

lations to R2. This choice is not only for clarity of the presentation and simplicity in the

numerics: the added freedom afforded in three and higher dimensions can give singular

homogenised conductivities, as pointed out in [65, Figure 1.6]. Further discussion of this

issue appears in Chapter 4.

We begin construction of our parameterisation by satisfying the divergence-free property,

checking that div(Qe(i)) = 0 for e(i)j = δij . In R2, this amounts to

∂xQ11 + ∂yQ12 = 0, (1.18)

∂xQ21 + ∂yQ22 = 0. (1.19)

This is reminiscent of a harmonicity condition, where we might choose scalar functions h

and k such that

Q =

 ∂yh −∂yk

−∂xh ∂xk

 . (1.20)

Observing that Q is symmetric, we further impose ∂yk = ∂xh. Now we define scalar function

s(x, y) such that h = ∂ys, k = ∂xs, and we have our stated parameterisation, equation (1.2):

Q =

 ∂yys −∂xys

−∂xys ∂xxs

 . (1.2)

So, given a sufficiently smooth function s(x, y), its second derivatives define a symmetric

and divergence-free tensor Q. Furthermore, as a consequence of the Poincaré lemma, if

Ω is simply-connected, every irrotational vector field is also a conservative field. That is,

we can always compute h, k from a given Q, and then compute s from h, k. For example,

denoting vector field ω = (−Q12, Q11), the divergence-free condition gives curlω = 0. With

Ω simply-connected, we have that there exists scalar function α such that ω = ∇α, and

identifying α = h, we have that ∂xh = −Q12, and ∂yh = Q11. Justification for the existence

of k and s is similar. h, k and s are not unique. h, k are determined only up to addition of
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an arbitrary constant, and s up to the addition of an arbitrary affine function.

Finally, we determine which s(x, y) represents positive-definite Q. In R2, Q is positive-

definite if and only if its determinant and trace are both positive. In terms of s(x, y), we

require

detQ = ∂xxs∂yys− (∂xys)
2 (1.21)

trQ = ∂xxs+ ∂yys > 0. (1.22)

Furthermore, note that setting Hs the Hessian of s(x), and the 90-degree rotation matrix

R =

0 −1

1 0

 , (1.23)

we have that Hs = RQRT . Hence, Q has the same eigenvalues as the Hessian of s(x), while

the directions of the principal curvatures of s(x) are rotated 90 degrees with respect to the

eigenvectors of Q. Hence, Q positive-definite is equivalent to Hs positive-definite, and Q

positive-definite is equivalent to s(x) being a strictly convex function.

We have thus far been very much treating Q as a tensor field rather than as a parameter

for the bilinear operator. Rather, in Chapter 2 when we discretize this operator in the basic

problem (1.1), and in Chapter 3, where we discuss what aspect of material conductivities

can actually be measured, we consider Q only as an integrated quantity. In particular, if

span(ϕi) form a basis for approximating solutions û, we are concerned with

qij = −
∫

Ω
∇ϕT

i Q∇ϕj (1.24)

= −
∫

Ω
∇ψT

i σ∇ψj , (1.25)

where, again, ψi = ϕi ◦ F . This is the stiffness matrix familiar from the finite element

literature. The negative sign is a convention chosen such that qij > 0, i 6= j for most qij .

Referring back to equation (1.17), it is because Q appears in integrals for the stiffness matrix

that it is sufficient to consider the divergence-free property only in the weak sense. Fur-

thermore, when we compute the relationship between qij and piecewise linear interpolants

si of s(x), we can take advantage of this integral form to consider second derivatives of our
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coarse-scale
parametrisation, s(0)i

harmonic
tensor, Q

coarse-scale stiffness
matrix, q(0)ij

fine-scale stiffness
matrix, q(n)

ij

fine-scale
parametrisation, s(n)

i

scalar
parametrisation, s

fine-scale
conductivity, σ

restriction

prolongation

interpolation

sampling

integration

least-squares

hinge formula 2.9

hinge formula 2.9

least-squares

Hodge integration

differentiation

Figure 1.2: Relationships between the different representations for conductivity. Dashed
arrows represent non-linear homogenisation through harmonic coordinates, and solid ar-
rows represent linear operations. We apply prolongation and restriction over a sequence of
discrete scales as represented by the dotted arrows. Refer to the text for details.

parameterisation s(x) in the sense of distributions.

Figure 1.2 summarises the relationships between the quantities representing conduc-

tivity in R2. The top line is the sequence of representations for conductivities given in

the continuum. Computation of Q from σ is summarised here and presented in detail by

Owhadi and Zhang [65]. Computation of σ from Q is new in this thesis and is presented as

Theorem 3.1 in Chapter 3. The relationship between σ and Q is non-linear, but the benefit

is that once Q is known, subsequent up-scaling is linear.

Existence of s(x) given Q is given above, consequential to the Hodge decomposition,

and computation of s(x) from Q can be accomplished by a series of PDE solves for h, k,

then s. In practise, we compute the fine-scale interpolants s(n)
i by a least-square solve from

the stiffness matrix elements q(n)
ij . We up-scale s(x) from its fine-scale discretisation by

prolongation of the function s(x) to coarser scales, then subsequent computation of q(k)
ij

from these coarse-scale interpolants. An alternative is to compute a family of stiffness
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matrices, each directly from integration of the original conductivity σ against appropriate

test functions. Our parameterisation avoids the need for this non-linear approach.

The appearance of Q exclusively in the elliptic operator implies that s(x) need only be

in H2, rather than C2. Furthermore, as a consequence of the smoothness of solutions found

in harmonic coordinates, arithmetic averages of Q give appropriate approximations. We

never need second derivatives of s(x) itself, but only integrals of these second derivatives.

We take advantage of this weaker regularity condition, and approximate s(x) by piecewise-

linear functions in our discretizations. Our discretization and up-scaling procedure will be

the subject of Chapter 2.

Finally, we refer to the upward-pointing arrows on the right-hand side of Figure 1.2.

These are inverse operations, whereby we are producing fine-scale representations of con-

ductivity from coarse-scale ones. Without additional information, this inverse procedure is

not well-defined, and such down-scaling typically makes assumptions of smoothness, either

of s(x) or of Q itself. Previous work in inverse problems down-scales σ directly. However,

this procedure is typically applied only to scalar conductivities, and we know that in general,

conductivities are not effectively scalar at all scales. Chapter 3 studies the inverse problem

in more detail, and before considering the discretization of s(x), we further illustrate the

up-scaling problem by closing this chapter with an example.

1.4 A simple example: the laminated domain

To get a sense of the relationship between the second derivatives, or curvatures of s(x),

the homogenised conductivity Q, and the fine-scale conductivity σ, consider again the con-

ductivity of the laminated domain of Figure 1.1. We will explicitly compute Q(x) for this

conductivity, and then take its spatial arithmetic average. Although we arrive at the same

homogenised conductivity computed by asymptotic homogenisation, we see this equivalence

only after the averaging step. The point is that while Q may be safely averaged, it still

varies at the same fine scale as σ.

Let the laminated domain be the unit square; Ω = [0, 1] × [0, 1]. Partition the square

into subsets A and B, where connected components of A and B alternate in the y-direction

to form the lamination pattern of Figure 1.1. Let each lamination, that is, each connected

component of A,B, have height ε/2. Let σA, σB be the constant scalar conductivities of
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10
y

1

F2(y)

ε
BA

0
y

ε/2

ε

F2(y)

Figure 1.3: The harmonic coordinate F2(x, y) for domain laminated by horizontal layers
where σA > σB. The figure on the left shows the solution over an ε-cell, and the figure on
the right shows how this harmonic coordinate captures the fine-scale variation in σ over the
entire domain.

A,B, respectively. Given these constant conductivities, we compute the harmonic coordi-

nates F = (F1(x, y), F2(x, y)) to be

F1(x, y) = x,

F2(x, y) =


2σB

σA + σB
y + bi, y ∈ A,

2σA

σA + σB
y + ci, y ∈ B.

(1.26)

bi, ci are constants such that F2 is continuous at lamination boundaries. The calculation for

F1 is obvious; F2 is computed by observing that since σA, σB are constant, F2 is piecewise

linear. To determine the gradient of F2, consider a single pair of laminations, height ε. Over

each of these pairs, a cell in the asymptotic homogenisation terminology, F2 has a net slope

in the y-direction of 1, as its net slope over the entire y-extent is 1 also, and each cell is

identical. Solving equation (1.7) over the cell gives the gradients in (1.26). Figure 1.3 shows

F2(y) over a single cell and over the entire domain.

Denote Q̂ the value of Q prior to composition with F−1, Q̂ =
∇F Tσ∇F
|det∇F |

. σ piecewise
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constant gives Q̂ constant over each of A,B:

Q̂ =



QA =


σA

2σB
(σA + σB) 0

0
2σAσB

σA + σB

 , x ∈ A,

QB =


σB

2σA
(σA + σB) 0

0
2σAσB

σA + σB

 , x ∈ B.

(1.27)

Since Q̂(x) = Q(F (x)), we have

Q =


QA, F (x) ∈ A

QB, F (x) ∈ B,
(1.28)

or

Q =


QA, x ∈ F (A)

QB, x ∈ F (B).
(1.29)

Q is piecewise constant, and varies at the same scale as σ, so it appears that this

calculation has done nothing but make things more complicated by turning our scalar σ

into a matrix. However, we can now affect the homogenisation by approximating Q by its

arithmetic integral average, 〈Q〉. This is justified, for example, by a finite element treatment

of the problem. If ϕi, ϕj are functions in the piecewise linear basis having overlapping

support, then to solve problems using Q, we will compute stiffness matrix elements

qij = −
∫

Ω
∇ϕT

i Q∇ϕj . (1.30)

However, on individual triangles, ∇ϕi,∇ϕj are constant, so these matrix elements are

exactly given by integrals of Q over triangles Tj , namely, the quantities

−
∫

Tj

∇ϕT
i 〈Q〉Tj∇ϕj , 〈Q〉Tj =

1
|T |

∫
T
Q. (1.31)

This choice to take averages over triangles with an appeal to the piecewise linear basis is

arbitrary: it is only at this step where we set the scale to which we up-scale the conductivity.
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To compute 〈Q〉, we note that (1.29) implies that Q = QA over fraction λA =
σB

σA + σB

of the domain, and similarly for QB. Since Q is piecewise constant, the integral amounts

to a weighted sum:

〈Q〉 = λAQA + λBQB (1.32)

=

σA + σB

2
0

0
2σAσB

σA + σB

 . (1.33)

This weighted sum holds provided we integrate over an integral number of pairs of laminates:

the smallest domain over which we can average has height ε, exactly the size of the single

cell identified in asymptotic homogenisation, and this 〈Q〉 is that computed by asymptotic

homogenisation for small ε.

The homogenised conductivity is a good representation of the average conductivity of

the domain. Despite the fact that the fine-scale conductivity is isotropic, the homogenised,

or coarse-scale, conductivity is the arithmetic mean, σ̄, of σA, σB parallel to the laminations,

and their harmonic mean, σ
¯
, perpendicular to the laminations1. Note that a simple volume

average of σ would give an isotropic conductivity of σ̄, and does not predict the anisotropy

of the averaged media.

Given Q, we would now like to calculate its corresponding parameterisation s(x, y).

This is non-trivial, even in this simple case, precisely because σ is itself not constant. σ,

hence Q, has fine-scale variations, so the curvatures of s(x) will also vary at a fine scale.

However, we are seeking coarse-scale solutions to the basic problem (1.6), and would thus

prefer to use the homogenisation 〈Q〉. When averaged over sufficiently large sub-domains,

〈Q〉 is constant over the domain, and we claim that up to the addition of an arbitrary affine

function,

s(x, y) ≈ 1
2
〈Q〉22x2 − 〈Q〉12xy +

1
2
〈Q〉11y2, (1.34)

=
1
2
σ
¯
x2 +

1
2
σ̄y2. (1.35)

1These results may be familiar as the formulae for conductances in serial and parallel: the effective
conductance of conductors in parallel is their arithmetic sum, and of conductors in serial is their harmonic
sum.
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This approximation to s(x, y) represents a constant conductivity, which is trivially sym-

metric and divergence free, and provided σA, σB > 0, likewise is s(x, y) convex, and is 〈Q〉

positive definite. In the next chapter, we demonstrate that when we seek solutions to the

basic problem (1.1) at sufficiently coarse scales — at scales greater than ε in this case —

averaging s(x, y) is equivalent to averaging Q and hence homogenising σ.
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Chapter 2

The Forward Problem

Although this thesis project began with a study of the inverse problem, it is more natural

in this presentation to begin our closer look at the basic problem

−div(Q∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

by considering the forward problem of determining the potential field u for a given con-

ductivity σ. In solving the homogenised forward problem, we need to construct a discrete

approximation of s(x), and in so doing, we will see what to expect when we attempt to

reconstruct s(x) in the inverse problem. Inspired by recent work in discrete differential ge-

ometry, see for example [34, 35], we choose to calculate fields and homogenise conductivities

using piecewise linear finite element spaces over simplicial (triangle) meshes, working nearly

exclusively in finite spaces.

There are several reasons to discretize the problem over simplicial meshes supporting

piecewise linear functions. With this choice, we use data structures that treat single el-

ements at a time, where each element has information only about which elements are its

immediate neighbours. Unlike regular meshes, where we often rely on each element’s po-

sition in a global coordinate system, relying only on neighbour information reflects the

locality of the differential problem we are discretizing. From a more practical point of view,

the small support of the basis functions gives us simple formulae relating problem variables,

and hence gives linear operators that can be represented as sparse matrices. The sparse

relationships also makes interpreting our formulae straightforward — for example, we de-

velop an interpretation of positivity of Q via convexity of the discretized s(x) in Section 2.1.

Finally, we can take advantage of the wealth of existing open software available for building,

manipulating, and viewing triangle meshes. Appendix A lists the software we use in our
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calculations.

In the first section of this chapter we discretize the conductivity through a piecewise lin-

ear interpolation of s(x). This will complete the connection between the fine-scale σ and the

multi-scale stiffness matrices for the problem anticipated by Figure 1.2 and already begun

with the continuum construction in Section 1.3. The remaining two sections of this chapter

apply the discretized s(x) to the construction of meshes well-adapted to the anisotropy of

the up-scaled conductivity, then the construction of multi-scale approximations to div(Q∇·).

These applications show connections to weighted Delaunay triangulations and multi-grid

solution methods, respectively.

2.1 Discretizing the conductivity

We solve the problem using a Galerkin method, seeking weak solutions to the basic prob-

lem (1.1) in a finite subspace of H1
0 (Ω). We use the notation H1

0 (Ω) to be the space of

functions having L2-integrable weak first derivatives taking value zero on ∂Ω. We will de-

termine the relationship between the homogenised stiffness matrix and the piecewise linear

interpolation of s(x).

To specify the Galerkin method, fix T h a triangle mesh with nodes N h. Set h the

largest circumdiameter over all triangles in the mesh. h is used throughout to denote the

linear scale of our discretizations. Single indices i, j, k, l denote vertices, pairs of indices

ij, jk denote edges, and triples ijk, ijl denote triangles. Vertices have location (xi, yi) or

just xi when the dimension of the mesh is understood. The mesh is oriented: ij is the

edge beginning at vertex i and ending at vertex j; ijk is the triangle traversed from vertex

i to j to k. When ijk appear in counterclockwise order around the triangle, the triangle

has positive area, otherwise, the area is negative. Further discussion of mesh orientation is

in [34, 63].

Set V h ⊂ H1
0 (Ω) where we choose V h = Ph

1 to be the set of piecewise linear polynomials

at scale, linear on triangles of scale h. Basis functions ϕi are often referred to as hat

functions, where i indexes the vertex where ϕi = 1. Multiplying equation (1.1) by test
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function vh ∈ V h, and integrating by parts, we seek the solution uh satisfying

∫
Ω
(∇vh)TQ∇uh =

∫
Ω
vhf, ∀vh ∈ V h. (2.1)

Setting ui = uh(xi), this amounts to solving the linear system

∫
Ω
∇ϕT

i Q∇uh =
∫

Ω
ϕif (2.2)∑

j∈Nh

uj

∫
Ω
∇ϕT

i Q∇ϕj =
∫

Ω
ϕif. (2.3)

Recall that provided Q is the metric up-scaled σ, the accurate approximation of the true

solution û ∈ C1,α in this basis is justified. What this equation implies is that the only

information we need about the conductivity is the elements

qij = −
∫

Ω
∇ϕT

i Q∇ϕj . (2.4)

These quantities form the stiffness matrix familiar in the finite element literature. As

mentioned in Chapter 1, the negative sign, while arbitrary, makes most qij > 0.

There is redundancy in the stiffness matrix. First, it is symmetric in i, j, inheriting

the symmetry of tensor Q. Second, since piecewise linear functions exactly interpolate

constants, qii = −
∑

j∈N (i) qij . N (i) is the set of vertices sharing an edge with vertex i.

Thus, we are solving the system

∑
j∈N (i)

qij(ui − uj) = fi, (2.5)

where fi =
∫
Ω ϕif . This equation relies only on the connectivity of the triangulation, and

we can conveniently associate the qij with edges, and the ui, fi with nodes of the mesh.

The only information we have about conductivity is contained in the stiffness matrix.

That is, it is the integrated, not pointwise, values of Q that matter to finding approxi-

mate discrete solutions to the basic problem. This indicates why up-scaling σ to give Q is

important: construction of the stiffness matrix takes a weighted arithmetic average of the

conductivity which we know can give inaccurate solutions when σ has fine-scale variations.

Instead of parameterising qij in terms of Q, however, we next show how to build the stiffness
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i

j

k

lη

ξ

Figure 2.1: Notation for computing qij over a hinge from si, sj , sk, and sl. The supports of
ϕi and ϕj are shown, with the support of the integrand of (2.4) shaded.

matrix directly from a piecewise linear approximation of s(x).

Referring to Figure 2.1, we will recover qij as a linear combination of si, sj , sk, and sl.

Just as for scalar u(x), we set si = s(xi). Coefficients of the relationship between the si

and the stiffness matrix depend only on the geometry of the triangle mesh. The collection

of the four vertices and two triangles surrounding an interior edge is often referred to as a

hinge.

Rewrite (2.4) in the rotated coordinate system of Figure 2.1:

qij = −
∫

Ω
(∇ϕi)T

 ∂ηηs −∂ξηs

−∂ξηs ∂ξξs

∇ϕj . (2.6)

A change of variables confirms that integral (2.6) is invariant under rotation and translation.

We abuse notation in that the second derivatives are understood here as distributional

derivatives: we are about to interpolate s(x) by piecewise linear functions, which do not

have pointwise second derivatives everywhere.

We have chosen coordinate system ξ-η such that edge ij is parallel to the η-axis. We

are concerned with the values of s(x) interpolated at i, j, k, and l, as these are associated

to only the corresponding hat basis functions sharing support with those at i and j. The

second derivatives of the ϕ are non-zero only on edges, and due to the support of the
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gradients of the ϕ, contributions of the second derivatives at edges ik, jk, il, and jl are also

zero. Finally, the ∂ξηϕ and ∂ηηϕ are zero along ij, so the only contributions of s(x) to the

integral (2.4) are its second derivatives with respect to ξ along edge ij.

The contributions of four integrals remain, and by symmetry, we have only two inte-

grals to compute. Noting that the singularities in the first and second derivatives are not

coincident, from direct computation of the gradients of the basis functions and integration

by parts we have

∫
ijk∪ijl

∂ηϕi∂ξξϕi∂ηϕj =
1
|ij|2

(cot θijk + cot θijl) , (2.7)∫
ijk∪ijl

∂ηϕi∂ξξϕk∂ηϕj = − 1
2Aijk

. (2.8)

The only contribution to these integrals is in the neighbourhood of edge ij. Aijk is the

unsigned area of triangle ijk and, for example, θijk is the interior angle of triangle ijk at

vertex j. Combining these results, we have that the elements of the stiffness matrix are

qij =− 1
|ij|2

(cot θijk + cot θijl) si −
1
|ij|2

(cot θjik + cot θjil) sj

+
1

2Aijk
sk +

1
2Aijl

sl.
(2.9)

Diagonal elements qii of the stiffness matrix are computed by qii = −
∑

j∈N (i) qij .

Equation (2.9) is valid only for interior edges. Because of our choice to interpolate s(x)

by piecewise linear functions, we have concentrated all of the curvature of s(x) on the edges

of the mesh, and we need a complete hinge, an edge with two incident triangles, in order to

approximate this curvature. Without values for s(x) outside of Ω and hence exterior to the

mesh, we do not have a complete hinge on boundary edges. This will become important

where we solve the inverse problem in Chapter 3, but in our model forward problem our

homogeneous boundary conditions make irrelevant the values of qij on boundary edges.

Equation (2.9) represents the discretized homogenised elliptic operator, and preserves

several properties of the continuous operator exactly. We next confirm by direct calculation

that the discretization preserves the divergence-free property, that the operator is unchanged

under the addition of arbitrary affine functions to s(x), and that our formula is equivalent

to the well-known cotangent formula when Q is isotropic and constant.
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Aj

sj+1

sj

sj−1

αj+1 − αj

i αj − αj−1

Aj−1

Figure 2.2: One-ring surrounding an interior vertex i, with the notation for confirming
that the divergence-free property is exactly preserved by our discretization of the elliptic
operator.

First, the discretized operator exactly preserves the divergence-free property. In the

discrete setting, we check that for all choices of s(xi, yi),

∑
j∈N (i)

qij (xi − xj) = 0, (2.10)

where xi = (xi, yi) are the coordinates of the mesh vertices. (2.10) is the discretization of

the divergence-free condition in the continuum,

div(Qe(k)) = div(Q∇x(k)) = 0, k = 1 . . . d. (2.11)

The e(p) form the usual orthonormal basis, which for the convenience of considering the qij

directly, we represent as the gradients of identity map, ∇x = Id. Referring to Figure 2.2,

choose interior vertex i to be at the origin, and take value s = (xi, yi) = 0. Write the

locations of the surrounding vertices in complex notation, such that s(xj , yj) = s(aje
Iαj ) =

sj . Here, I =
√
−1. Let the area of the triangle counterclockwise from edge ij be Aj , and
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let index addition be modulo n, where n is the valence of vertex i. Then, directly compute

∑
j∈N (i)

qij (xi − xj) =
∑

j∈N (i)

qijaje
Iθj , (2.12)

= −
∑

j∈N (i)

aje
Iθj

[
sj

a2
j

(cot(αj+1 − αj) + cot(αj − αj−1))−
sj+1

2Aj
− sj−1

2Aj−1

]
, (2.13)

= −
∑

j∈N (i)

sje
Iθj

[
sj

aj
(cot(αj+1 − αj) + cot(αj − αj−1))

−aj−1e
I(αj−1−αj)

2Aj−1
− aj+1e

I(αj+1−αj)

2Aj

]
. (2.14)

We observe that 2Aj = ajaj+1 sin(αj+1 − αj) and compute the bracketed term in the sum:

1
aj

[
cot(αj+1 − αj) + cot(αj − αj−1)−

cos(αj − αj−1)
sin(αj − αj−1)

− cos(αj+1 − αj)
sin(αj+1 − αj)

+ I

(
sin(αj − αj−1)
sin(αj − αj−1)

− sin(αj+1 − αj)
sin(αj+1 − αj)

)]
= 0. (2.15)

Hence, for any sj and any aj , αj coordinates around vertex i, the elliptic operator paramete-

rised by s(x) is exactly divergence-free.

This result is encouraging, as divergence-free operators in the continuum by definition

admit the d solutions u(k) = x(k), k = 1 . . . d to the Dirichlet problems

div(Q∇u(k)) = 0, x ∈ Ω,

u(k) = x(k), x ∈ ∂Ω,
(2.16)

and the piecewise linear functions which we use to interpolate the solutions u, exactly

interpolate first-order polynomials. Céa’s lemma says that with conditions on Q, if uh ∈ V h

solves the weak problem (2.1), then this solution is optimal in V h, in the sense that if u ∈ H1
0

is the exact solution, then

‖u− uh‖ ≤ C inf
v∈V h

‖u− v‖. (2.17)

However, this statement is only true when the integrations in (2.1) are exact. By interpolat-

ing s(x), we have no such guarantee of exactness. Fortunately, we now find that all solutions

interpolated by V h = Ph
1 are exact solutions. The row-sum condition qii = −

∑
j∈N (i) qij

guarantees that the approximated stiffness matrix admits constant fields as solutions, and
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now the construction of qij from samples si guarantees that the approximated stiffness

matrix admits exact linear solutions also. Preservation of constant solutions in the null-

space of the discretized elliptic operator appears to be important for stability of discretized

problems, as is observed in [21] Similarly, preservation of the divergence-free property —

exact admission of affine solutions to the null-space — is important in discretizing elliptic

operators.

Next, we compute the stiffness matrix for the case where s(x, y), rather than u(x, y), is

an affine function. First, suppose s(x, y) = constant. The qij are linear in the si, so choose

s(x, y) = 1. In this case, (2.9) becomes

qij = − 1
‖ij‖2

(cot θijk + cot θijl)−
1

‖ij‖2
(cot θjik + cot θjil)

+
1

2Aijk
+

1
2Aijl

(2.18)

=
1

2Aijk

(
ijTki

ijT ij
+
ijT jk

ijT ij
+
ijT ij

ijT ij

)
+

1
2Aijl

(
ijT li

ijT ij
+
ijT jl

ijT ij
+
ijT ij

ijT ij

)
(2.19)

= 0, (2.20)

since the sum of edges around a triangle, ij + jk+ ki = 0, for example. Choosing s(x, y) =

ax+by for constants a, b similarly gives qij = 0. We don’t show this calculation in detail, but

the idea is as follows: we translate the mesh such that the origin is at vertex i, an arbitrary

choice, since translation of a linear function is equivalent to the addition of a constant.

Then we compute that the contributions of linear functions parallel and perpendicular to

edge ij are both zero. Combining this with ax+ by in the local rotated frame of each hinge

shows that qij = 0 for arbitrary a, b.

The fact that expression (2.9) gives qij = 0 exactly for affine functions is consistent with

our interpolation for s. Piecewise linear functions exactly interpolate first-order polynomi-

als, and the addition of functions ax + by + c to s(x) contribute exactly zero to Q in the

continuum.

Our final special case is where the conductivity is constant and isotropic. Set Q = Id.

In this case, we have by inspection,

Q = Id ⇒ s(x, y) =
1
2
x2 +

1
2
y2 + a(x, y), (2.21)
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where a(x, y) is an arbitrary affine function. The addition of arbitrary a(x, y) is equivalent

to translating s(x, y) around the plane, so given hinge ijkl, we choose vertex i to be at the

origin. Thus, s(xp, yp) = 1
2‖ip‖

2 = 1
2 ip

T ip for p = j, k, l. Substituting cot θijk = − ij
T jkT

2Aijk
,

for vertices i, j, k, equation (2.9) gives

qij =
1
2

(
ijTki

2Aijk
+
ijT li

2Aijl

)
+
ikT ik

4Aijk
+
ilT il

4Aijl
, (2.22)

=
ikT (ik − ij)

4Aijk
+
ilT (il − ij)

4Aijl
, (2.23)

=
1
2

(cot θikj + cot θilj) . (2.24)

Again, all triangle areas are unsigned. This result is precisely the famous cotangent formula

for the stiffness matrix of the discretized Laplacian. Not only is this the result obtained

by direct discretization of solutions by piecewise linear functions, but also appears as the

discrete Laplacian computed, for example, by discrete exterior calculus: see [34] and its

references. That a piecewise linear interpolation of a quadratic s(x) should give an exact

result for the stiffness matrix is not immediately obvious, and we return to this point in

Section 2.2 when we discuss convergence of the operator under mesh refinement.

We next consider the convexity of the piecewise linear surface interpolated by the si to

confirm the positivity of Q, just as we have established the relationship between positivity

and convexity in the continuum. We claim that when the si form a convex interpolation

of a convex function, the linear operator represented in (2.5) is positive-definite. Using for-

mula (2.9), we next show that when the dihedral angle of a hinge defined by the interpolants

si is less than 180 degrees if and only if qij > 0. Furthermore, when all edges have convex

dihedral angles, the resulting surface is convex.

To see that qij > 0 is equivalent to a convex interior dihedral angle θd < π, we use the

invariance of the stiffness matrix under the addition of an arbitrary affine function to s(x)

to consider the special case si = sj = sl = 0. In this case, over a single hinge,

qij =
sk

2Aijk
. (2.25)

Since we are using the unsigned area, qij > 0 ⇔ sk > 0 ⇔ θd < π (see Figure 2.3).

To relate this result to the positivity of the stiffness matrix, and the positivity of the
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sk > 0

si = 0

sj = 0

qij > 0

θd < π

sl = 0

Figure 2.3: The connection between convexity of the surface interpolating s(x) and the
positivity of Q can be seen by a calculation of the dihedral angles of each hinge.

elliptic operator it represents, we know that as a consequence of the Gershgorin circle

theorem that if all off-diagonal entries of the stiffness matrix are negative, and the stiffness

matrix has row-sum zero, then the matrix is at least positive semi-definite. Recalling that

we have chosen to consider qij the negative of the stiffness matrix, the result applies here.

However, while qij > 0 is sufficient to guarantee that the stiffness matrix is positive semi-

definite, we know from other work in the finite element literature that this element-wise

positivity is not a necessary condition [77]. That is, it is possible to have a few qij < 0 and

still have a positive-definite stiffness matrix. The consequence, however, is that the matrix

is ill-conditioned

From our geometric form for Q, instead of requiring the piecewise linear surface inter-

polating s(x) be convex, that is, that all edges have qij > 0, we only require that the si

interpolate a convex surface. For example, consider the quadrilateral in Figure 2.4: its

corners lie on the surface s(x). A triangulation of this quadrilateral could be completed

by connecting either diagonal, but unless the four corners are co-planar, only one choice

gives a convex interpolation. Although single edge flips cannot always make a non-convex

interpolation into a convex one, if the underlying surface s(x) is convex, there is always a

choice of connectivity that gives a convex interpolating triangulation. This triangulation

can be constructed by taking the convex hull of the interpolating vertices. Indeed, this

construction motivates the adapted triangulations we consider in Section 2.3. Following

the arguments in the previous paragraph, the convex choice also gives the best-conditioned

stiffness matrix, and we discuss this further in the next section.
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Figure 2.4: Edge flips can replace non-convex edges, where θd > π ⇒ qab < 0, with convex
edges without changing the interpolated values si. For the given hinge, the diagonal giving
a negative edge is on the left; a positive edge is on the right.

2.2 Multi-scale elliptic operators

It’s tidy to have a sparse representation for divergence-free conductivities, but in order to

be able to use the discretization of s(x) in computation, we need to verify its convergence.

That is, we need to verify that the operator which the discrete s(x) represents is conver-

gent, and, in turn, that the solutions produced in the finite subspaces of H1 converge to

something reasonable. In particular, we would like to use coarse samples of s(x) to produce

a hierarchy of operators. We may wish to use the coarsest operators as a preconditioner for

finer-scale solves: such a hierarchy is employed in multi-grid solvers [28]. However, before

considering the preconditioning application, we must check that the sequence of operators

give convergent solutions. If Q is represented exactly, then we already know from results in

metric-based up-scaling that a sequence of ever-finer finite element solutions converges to

the homogenisation solution. By sampling s(x), however, we are not expressing Q exactly,

and we must check that error due to this discretization does not overwhelm error due to

the finite element method alone.

2.2.1 Homogenised operator convergence

Set Q the anisotropic conductivity, computed on the continuum, and Qh the conductivity at

scale h. Qh is computed from sh(x), an approximation of s(x) over a triangulated domain.
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In our case, we have chosen sh(x) to be a piecewise linear interpolating polynomial, where

small h represents a fine scale interpolation; specifically, we set h to be the diameter of the

largest circumcircle over all triangles in the mesh. Since sh(x) is piecewise linear, its second

derivatives exist only in the sense of distributions, so we instead prefer to work with the

bilinear operators

s(x) ⇒ Q(x) ⇒ B(u, v) =
∫

Ω
∇uTQ∇v, (2.26)

sh(x) ⇒ Qh(x) ⇒ Bh(u, v) =
∫

Ω
∇uTQh∇v. (2.27)

The order of the argument is as follows: We assume Bh to converge to B, showing that

Bh inherits the continuous and coercivity properties of B. We use coercivity to show that

solutions computed using Bh converge to those of B. Finally, we confirm that for our specific

approximation of s(x), we have convergence of Bh to B.

Assume that we control the error incurred by discretizing the operator, whereupon there

exists a function C̃(h) > 0 such that

|Bh(u, v)− B(u, v)| ≤ C̃(h)‖u‖H1‖v‖H1 , u, v ∈ V h. (2.28)

V h ⊂ H1
0 is where we approximate solutions to the homogenised problem. We choose V h

such that ∀vh ∈ V h,∃v ∈ H1
0 such that ‖vh − v‖H1 ≤ Ch‖v‖H1 . The space of piecewise

linear polynomials is one such example of V h with this property. With such control, we

find that Bh can be continuous and coercive if B is:

|Bh(u, v)| ≤ |B(u, v)− Bh(u, v)|+ |B(u, v)|

≤ C(C̃(h) + 1)‖u‖H1‖v‖H1 , (2.29)

|Bh(u, u)| ≥ |B(u, u)| − |B(u, u)− Bh(u, u)|

≥ C(C0 − C̃(h))‖u‖2
H1 , (2.30)

where here and throughout the following C > 0 denotes a constant independent of h. While

continuity of Bh is guaranteed irrespective of C̃(h), preservation of coercivity depends on
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the size of C̃(h) with respect to C0, a constant proportional to the smallest eigenvalue,

λmin = min
‖u‖H1≤1

B(u, u)
‖u‖H1

. (2.31)

In our special case of approximation of s by piecewise linear polynomials, Lemma 2.2 will

show that C̃(h) is a constant such that C(C0 − C̃) > 0 for all h.

Next, we repose the basic problem (1.1) and two approximations in weak form. In each

case, set L(v) =
∫
Ω fv. All functions u, uh, ũh, v are zero on ∂Ω:

u ∈ H1
0 solves B(u, v) = L(v), ∀v ∈ H1

0 , (2.32)

uh ∈ V h solves B(uh, v) = L(v), ∀v ∈ V h, (2.33)

ũh ∈ V h solves Bh(uh, v) = L(v), ∀v ∈ V h. (2.34)

We assume the Q in problem (2.32) to be a conductivity up-scaled by the metric, and

as such we note u ∈ H1
0 , following [65]. With these definitions, and the preservation of

coercivity and continuity under approximation, we have our main result for this section:

Theorem 2.1. Let u ∈ H1
0 and ũh ∈ V h solve problems (2.32) and (2.34), respectively.

Furthermore, suppose operators Bh converge to B in the sense of equation (2.28) at rate

C̃(h) = C0h
p for some p > 0. Then there exists a constant C independent of h such that

‖u− ũh‖H1 ≤ Chγ , γ = min(p, α). (2.35)

Even though we have approximated the operator, we don’t lose an order of convergence

in approximating both the operator and the solution. We will see this behaviour in our

numerical example, where the irregularity of the homogenisation solution, rather than the

approximation of s(x), dominates the error approximating the solution.

Proof of Theorem 2.1. First, we examine the error due to the approximation of the operator.
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For v ∈ V h,

|Bh(ũh − uh, v)| =
∣∣∣Bh(ũh, v)− B(uh, v) +

(
B(uh, v)− Bh(uh, v)

)∣∣∣ (2.36)

= |L(v)− L(v) + B(uh, v)− Bh(uh, v)| (2.37)

≤ Chp‖uh‖H1‖v‖H1 (2.38)

We have specified the O(hp) convergence of our approximated operator. Choose v = ũh−uh,

and apply coercivity:

|Bh(ũh − uh, ũh − uh)| ≤ Ch‖uh‖H1‖ũh − uh‖H1 (2.39)

‖ũh − uh‖ ≤ Chp‖uh‖H1 . (2.40)

Finally, u solves (2.32), and since the operator is constructed from a metric up-scaled

conductivity, we have

‖u− ũh‖H1 ≤ ‖uh − ũh‖H1 + ‖u− uh‖H1 (2.41)

≤ C
(
hp‖uh‖H1 + hα‖f‖L∞

)
(2.42)

≤ Chγ‖f‖L∞ , γ = min(p, α). (2.43)

We have applied bound (1.10) from [65] to control the approximation of u by uh.

To complete the argument, we check the convergence of Bh to B for our particular

approximation of s(x) by piecewise linear interpolating polynomials.

Lemma 2.2. Set s(x) ∈ H2 such that

B(u, v) =
∫

Ω
∇u

 ∂yys −∂xys

−∂xys ∂xxs

∇v, (2.44)

and interpolate s(x) by piecewise linear sh(x) over a triangulated domain. Then,

|Bh(u, v)− B(u, v)| ≤ Ch2‖u‖H1‖v‖H1 , u, v ∈ V h, (2.45)

where all triangles have circumcircles of diameter less than or equal to h, and V h ⊂ H1
0 is
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the space where we approximate solutions to the continuous problem.

Proof. Recalling the calculation of qij from the interpolated si = s(xi), since sh(x) is defined

only in the sense of distributions, we find that by integration by parts, instead of comparing

second derivatives of s, sh over triangle faces, we compare their first derivatives over edges.

Setting (ϕi) piecewise linear hat functions interpolating solutions at vertices, consider

qij = −
∫

Ω
∇ϕT

i Q∇ϕj , (2.46)

qh
ij = −

∫
Ω
∇ϕT

i Q
h∇ϕj . (2.47)

Using the ξ − η coordinates in Figure 2.1, considering qij − qh
ij leads, for example, to

(∂ηϕi∂ηϕj)
∫

Ω
div((∂ξs− ∂ξs

h, 0))

= (∂ηϕi∂ηϕj)
∫

∂Ω
(∂ξs− ∂ξs

h, 0)T n̂ (2.48)

≤ Ch2, (2.49)

where we have applied Taylor’s theorem and multiplied by the length of the boundary

integral in the last line. Calculations for the other contributions of the si to qh
ij give similar

estimates, so

|qij − qh
ij | ≤ Ch2. (2.50)

Now we estimate the operator error. When V h is the space of piecewise linear polyno-

mials, (ϕi) forms a basis, and setting ui = u(xi), vi = v(xi), expressions (2.46) and (2.47)

give

|Bh(u, v)− B(u, v)| =

∣∣∣∣∣∣
∑
i∼j

(qij − qh
ij)(ui − uj)(vi − vj)

∣∣∣∣∣∣ (2.51)

≤ Cmax
i∼j

|qij − qh
ij |

∣∣∣∣∣∣
∑
i∼j

γij(ui − uj)(vi − vj)

∣∣∣∣∣∣ (2.52)

= C|qij − qh
ij |∞

∫
Ω
∇uT∇v ≤ Ch2‖∇u‖L2‖∇v‖L2 (2.53)

≤ Ch2‖u‖H1‖v‖H1 . (2.54)
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We use the notation i ∼ j to denote vertices i, j sharing edge ij of the triangle mesh. The

γij are the cotangents representing the geometry of the triangles such that the integral is

exact for u, v ∈ V h — in R2, the γij are independent of h. Finally, the Poincaré inequality

implies the equivalence of the h1
0 semi-norm and the H1

0 norm.

2.2.2 Operator convergence: numerical experiment

In this section, we construct s(x) numerically, and use it to compute solutions to a test

problem over a laminated domain. As previously alluded, we construct Bh by computing

s(x) on a fine scale, and then resampling s(x) at the desired scale h. Although s(x) is

convex at the finest scale, we have already noted that a piecewise linear interpolation of

s(x) is only convex up to edge flips. Since s(x) and its interpolants belong not to linear

spaces, but only to the cone of convex functions, numerical calculations for s(x) are delicate.

All of our numerical experiments are performed using C and C++ code compiled with gcc

version 3.4.2 on a Linux platform. The hardware is a desktop machine with a dual-Pentium

3.0 GHz processor and 1.5 GB RAM.

Construction of a coarse-scale operator is in three steps. First, we compute the stiffness

matrix qij from σ at a fine scale. Generally, this scale is chosen smaller than the finest scale

of σ. Second, we invert equation (2.9), giving si = s(xi). Finally, we resample our fine-scale

s(x), and apply equation (2.9) to give the stiffness matrix for the downscaled operator.

The first step, computing qij from σ is the most expensive. In this step, we compute

the fine-scale stiffness matrix

qij =
∫

Ω
∇ϕiQ∇ϕj =

∫
Ω
∇ψiσ∇ψj , (2.55)

where we recall that the notation ψi = ϕi◦F from Chapter 1 implies that solutions produced

using this stiffness matrix are the homogenised solutions, û = u ◦F−1 ∈ C1,α. Numerically,

there are two choices: 1) we could compute qij from Q, the first equality of (2.55); or 2) we

could compute qij directly from σ, the second equality of (2.55). In order that the result is

accurate, both choices require computing F on a scale finer than that of the triangulation

for qij . We cannot avoid this fine-scale calculation since F contains all variation in σ.

Numerically, we find that the second choice is easier to implement, since it does not require
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explicit calculation of F−1 from F . This calculation can be done on a desktop machine,

but only if care is taken to compute contributions to qij one element at a time. In our

experiments, we choose the mesh for representing qij at a scale 7–10 times smaller than the

smallest feature in σ, and choose the mesh for solving for F to 7–10 times smaller than the

scale for qij . This is about the limit of what we can hope to study given the memory and

speed constraints of our desktop machine.

To compute the si from the qij , we solve equations (2.9) by least-squares. That is, we

determine

argmin‖As− q‖2
l2 + ν‖s‖2

l2 . (2.56)

Here, s is the vector of si, and q is the given vector of qij . The least-squares solve is

regularised by some ν � 1, since s(x) is only unique up to the addition of affine functions,

but with only mild regularisation — ν/‖s‖ ≈ 10−4 in practise. Our calculations show that

A is rank-deficient, having three zero singular values corresponding to the three degrees of

freedom of affine functions. By this solve, for optimal s∗, we also have a fine-scale stiffness

matrix q∗ = As∗ that is divergence-free. As a final step, we compute the convex hull of the

surface defined by (xi, yi, si). The reason we do this is so that any interpolation we make

of the fine scale surface is itself convex.

Building coarser scale stiffness matrices from a non-convex approximation of s(x) has

two pitfalls: 1) the matrix may not be positive-definite; and 2) the matrix may be ill-

conditioned. The first problem arises due to numerical error in computing F , and then the

fine-scale qij , and finally the si by least-squares. Due to this error, we have produced an

s(x) that gives an indefinite operator, even though the original σ is positive everywhere.

Since a convex discrete s(x) gives positive-definite stiffness matrix, taking the convex hull

of the si can avoid this problem without changing the approximation for the si significantly.

In practise, when we build F and qij from sufficiently fine meshes, less than 0.1% of points

are culled when taking the convex hull.

Even if all points are on the convex hull, indicating that the stiffness matrix is positive-

definite, the surface may have some edges with negative dihedral angles, giving the stiffness

matrix positive off-diagonals, ill-conditioning the matrix. In this case, taking the convex

hull of the si does not cull any points, but merely changes the connectivity of the mesh.

The simplest such change is the repair of a single negative edge by an edge flip as we saw in
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Figure 2.4. We should not in general expect the surface defined by the si to form a convex

interpolation of s(x) without taking the convex hull — the only way this could happen is

if we were to anticipate the shape of s(x) prior to triangulating the domain. More will be

said of triangulations for given σ in the next section.

The final step in computing our coarse-scale operator is to resample s(x) at a coarse

scale. Again, we take the convex hull of the resampled s(x) before applying equation (2.9)

to compute a well-conditioned coarse-scale stiffness matrix.

As a final note on the coarse operator, we comment that there is a way to compute the

si from the matrix Q. Recalling our construction of s(x) through the intermediate integrals

of h and k, we have

Q =

Q11 Q12

Q12 Q22

 =

 ∂yh −∂yk

−∂xh ∂xk

 =

 ∂yys −∂xys

−∂xys ∂xxs

 . (2.57)

Given Q, this gives equations

∆h = ∂yQ11 − ∂xQ12, (2.58)

∆k = −∂yQ12 + ∂xQ22, (2.59)

∆s = ∂yk + ∂xk, (2.60)

and we can numerically solve for h, k and then s. We can only solve for s(x) weakly since

even at the finest scale we approximate s(x) by piecewise linear functions, but this is an

explicit construction. Furthermore, by applying Green’s theorem to the equations for h and

k, we only need the entries of Q piecewise constant on triangles. Unfortunately, in practise,

this method fails to produce an s(x) that is remotely convex: barely 30% of the (xi, yi, si)

produced in this manner lie on their convex hull. It may be that we are not discretizing the

three problems in a consistent manner, or that Q does not average over triangles as well as

it does as a stiffness matrix. Comparing the success of our two approaches, we are content

to use the former in our codes, however, returning to this method may be fruitful in a study

of the problem in R3.

Our numerical experiment in computing s(x) begins with the laminated scalar conduc-

tivity of Figure 2.5. From this laminated domain, we compute the fine-scale s(x), projected
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Figure 2.5: Laminated domain used in numerical experiments. Alternating blue and red
strips have conductivity 0.05 and 1.95, respectively, and the surrounding green area has
conductivity 1. The circle has radius 1, and the strips each have width 0.04.

in Figure 2.6. Note that unlike asymptotic homogenisation, the fine-scale structure of the

conductivity is visible at the finest scale of s(x). However, the coarse-scale anisotropy is also

apparent: the curvature is larger parallel to the x-axis, consistent with a larger conductivity

in the y-direction. (Recall that the up-scaled conductivity Q is the rotated Hessian of s(x).)

Figure 2.7 shows the homogenising effect of down-scaling s(x): the fine detail reflecting the

laminations in σ are not visible, but the anisotropy represented by the anisotropic curvature

remains.

Having a method for computing the linear interpolant sh(x) over many scales h, we turn

now to a test of convergence of solutions to Bh(uh, v) = L(v), v ∈ V h as h→ 0. We choose

the test problem

−div(Q∇u) = f x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.61)

f = exp[−10((x− 0.4)2 + (y − 0.4)2)]

− exp[−10((x+ 0.4)2 + (y + 0.4)2)].
(2.62)
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Figure 2.6: Two views of the fine-scale s(x) surface for the laminated domain. The left-hand
view reflects the fine-scale pattern in σ, and the right-hand view highlights the coarse-scale
anisotropy in the curvature.

Figure 2.7: Two views of the s(x) surface resampled and linearly interpolated at a coarse
scale. While the left-hand view no longer shows the fine-scale pattern in σ, the right-hand
view still shows the overall anisotropy of the up-scaled operator.
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Figure 2.8: A comparison of homogenisation solutions at coarse and fine scales. The figure
on the left shows a fine-scale solution; note in particular the undulations at the peak due
to the laminations in σ. The coarse-scale solution on the right is much smoother.

Note that Q is the homogenised σ, and we are computing the homogenisation solution u

rather than solution to the original problem with conductivity σ. The reason for this is

that the solution to the unhomogenised problem is not smooth in general, and up-scaling

the non-smooth solution is unjustified. However, the solution to the homogenised problem

is C1,α, and its coarse-scale averages do approximate the fine-scale homogenised solution

faithfully.

For our test problem, we do not have an exact solution and can only compute a reference

solution uref, over our finest scale for qij . In this case, our reference solution is over a

polygonal domain with 512 boundary points on the unit circle; with a uniform mesh this

corresponds to h ≈ 0.012. This reference solution and a coarse-scale solution on a mesh

having h ≈ 0.070 are shown in Figure 2.8. Convergence of the sequence of solutions for h

decreasing to the finest numerical scale is shown by Table 2.1 and Figure 2.9.

Note that we observe convergence in H1
0 although the convergence is only O(h0.43). This

is suggestive of Hölder continuity of the first derivative with exponent α ≈ 0.43. Figure 2.10

shows a rendered close-up of the reference solution, on which we see a lack of smoothness

at the lamination boundaries, a nice depiction of a solution that is C1, but almost certainly
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VB N h ‖e‖L2 ‖e‖L∞ |e|h1 ‖∇e‖L∞

32 85 3.13×10−2 3.57×10−3 7.59×10−3 3.63×10−2 1.44×10−3

45 190 2.22×10−2 1.70×10−3 4.62×10−3 3.01×10−2 1.32×10−3

64 389 1.56×10−2 1.02×10−3 3.16×10−3 2.81×10−2 1.24×10−3

90 872 1.11×10−2 6.36×10−4 1.97×10−3 2.50×10−2 1.11×10−3

128 1631 7.81×10−3 4.21×10−4 1.62×10−3 2.12×10−2 1.12×10−3

180 2616 5.56×10−3 3.08×10−4 1.31×10−3 1.88×10−2 8.58×10−4

256 5172 3.91×10−3 2.03×10−4 7.38×10−4 1.50×10−2 7.43×10−4

360 8099 2.78×10−3 1.73×10−4 8.74×10−4 1.29×10−2 1.05×10−3

Table 2.1: Convergence of an approximated operator. Test cases are indexed by the VB,
the number of boundary points. N is the number of vertices in the mesh, h is the mesh
size, and error e = ũh − uref. uref is the reference solution on a circle having 512 boundary
points. This data is plotted in Figure 2.9.
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Figure 2.9: Plot of the convergence of solutions to the reference solution as given in Table 2.1.
The observed convergence rates are approximately: ‖e‖L2 ∼ O(h1.2), ‖e‖L∞ ∼ O(h1.0),
|e|h1 ∼ O(h0.43), and ‖∇e‖L∞ ∼ O(h0.23).
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Figure 2.10: Detail of the reference solution near the peak at (x, y) = (0.4, 0.4). This ren-
dering suggests that although flipping edges could make the solution appear smoother — a
problem with representing any solution on a piecewise linear mesh — there are irregulari-
ties in the solution at the lamination boundaries which affect convergence more so than the
approximation of s(x).

not C2.

Finally for this experiment, we look at the direct difference between the reference solu-

tion and a coarse-scale solution. The error pattern in Figure 2.11 shows how up-scaling the

operator and coarsening the mesh limits the ability to resolve the fine-scale structure of the

solution. Figure 2.11 also shows how the laminations are distorted by the harmonic change

of coordinates F , just as we saw in the example calculation in Chapter 1.

A nice application of this down-scaling would be to multi-grid methods, where a hier-

archy of operators is needed to provide rapidly convergent coarse-scale corrections to the

slowly convergent fine-scale problem [28]. Following the multi-grid literature, set Ah the

stiffness matrix at scale h, P h
2h the prolongation operator, which takes coarse-scale solutions

to approximate fine-scale solutions, and R2h
h the restriction operator, which decimates fine-

scale solutions to coarse-scale approximations. In such case, two conditions are generally
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Figure 2.11: Difference between VB = 256 and VB = 512, showing the fine-scale structure
not captured by the coarser mesh. The distortion of the laminations by F is also apparent.

demanded to ensure consistency between scales, lending stability to the method as a whole:

A2h = R2h
h AhP h

2h, (2.63)

R2h
h = c(P h

2h)T , c constant. (2.64)

The question is, by changing the scale of the operator (the stiffness matrix) as we have done

by resampling s(x), do we produce a hierarchy of stiffness matrices satisfying the first of

these conditions? It seems that convergence of the operators should be sufficient, but the

multi-grid condition is much more specific, applying in particular to hierarchical meshes,

where our family of ever-finer meshes need not bear any relation to each other. For the

moment, we do not have an answer to this question.
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2.3 Well-adapted triangulations

In addition to being able to resolve the elliptic operator on a variety of scales, it is typically

useful to examine the quality of the discretized operator. In particular, this section focuses

on adapting the triangle mesh to the anisotropy of the up-scaled operator. If Q is highly

anisotropic and a regular mesh is used to discretize the domain, the resulting stiffness

matrix can be ill-conditioned, and the interpolation of the solution can be adversely affected.

Fortunately, while the problem’s physical parameters may be given to us as σ, we often have

a choice about how we build our computational mesh, and good mesh design can give us

well-conditioned stiffness matrices and good interpolation properties. A good introduction

to this problem is given by Shewchuk in his review of finite element quality [77]. One method

for constructing anisotropic meshes is given in [57], and assumes that the anisotropy of the

problem is given as a map from the problem domain to an isotropic space. Our method

works directly with the conductivity to produces meshes well-adapted to the anisotropy of

Q.

Figure 2.12 compares an isotropic to an anisotropic mesh. The isotropic mesh is suitable

for the basic problem where Q = Id, and the anisotropic mesh for the case where the

conductivity is greater in the y-direction than in the x-direction. This case corresponds

to Q11 � Q22 ⇒ ∂xxs � ∂yys. The mesh anisotropy improves both interpolation of the

solution and conditioning of the stiffness matrix.

We can see the effect on interpolation from a physical argument: potentials change

rapidly when conductivities are low, thus demanding increased resolution in this case, in

the x-direction. Alternatively, recalling that Q is divergence-free, we have from the strong

statement of the original problem,

−div(Q∇u) = −∂xxu∂yys+ 2∂xyu∂xys− ∂yyu∂xxs = f. (2.65)

If this expression is approximately zero the curvature of u is large in directions where the

curvature of s(x) is small. Recalling that Q is the 90-degree rotated Hessian of s(x) recovers

the intuition that u should be better resolved orthogonal to the principal curvature of s(x).

The improvement in conditioning can be seen by recalling our goal of making off-diagonal

elements of the stiffness matrix as negative as possible. Since we build the stiffness matrix
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Figure 2.12: Comparison of an isotropic and an anisotropic mesh. The figure on the left
shows the lack of directional bias expected for a mesh suitable for the isotropic problem,
while the figure on the right is suitable for the case where the conductivity is greater in the
y-direction then in the x-direction.

by interpolating the surface s(x), this means building a mesh that best interpolates s(x) has

its finest resolution in the direction where the second derivative of s(x) is greatest. Looking

again at expression (2.65), if f ≈ 0, and, for illustration, the principal curvatures of s(x)

are parallel to the axes, so ∂xys = 0, |∂xxs| � |∂yy|s is consistent with |∂xx|u � |∂yy|u.

A mesh that is suitable for interpolating s(x) and providing a well-conditioned operator is

also a suitable candidate for interpolating the solution.

That the optimal mesh for interpolation coincides with that for well-conditioned stiffness

matrices is not always the case. An example in [77] shows how the choice of boundary

conditions can void this correspondence. In our case, the choice of source function f can

give this problem, but predicting the best interpolating mesh from source data departs from

our concern with the elliptic operator itself.

We propose a method to build meshes directly from our parametrisation s(x) of the

anisotropic scalable conductivity. Two ingredients contribute to quality meshes: the con-

nectivity of the mesh vertices, and the placement of those vertices. The final algorithm for

mesh generation iterates over two steps: 1) Select the optimal connectivity for the given

vertex locations; 2) Select the optimal vertex locations for the given connectivity. By ex-
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xa xc xb

s(x)

sh(x)

Figure 2.13: One-dimensional illustration of the convex hull construction of the Delaunay
triangulation. Points xa, xb are given points, projected onto the surface s(x). The slope of
the interpolation sh(x) equals the slope of s(x) at xc, analogous to the circumcentre of a
triangle in a two-dimensional construction.

amining how these issues are addressed in isotropic problems, we will apply those same

principals to use s(x) in our anisotropic mesh generation.

2.3.1 Mesh connectivity by weighted Delaunay triangulations

For both interpolation and matrix conditioning, a reliable connectivity criterion is that

the triangulation be Delaunay. This means that the circumcircle of each triangle in the

mesh contains no other vertex of the mesh. (There are several equivalent definitions of a

Delaunay triangulation, but this one is directly useful for our purposes.) Given a set of

points, we can construct its Delaunay triangulation geometrically. We project points given

in the xy-plane up to the paraboloid z = 1
2x

2 + 1
2y

2. We then take the convex hull of these

points which defines a polyhedron having triangular faces. These triangles, when projected

back to the xy-plane, give the Delaunay triangulation of the original points. O’Rourke

gives an illustrated discussion of this construction [63, pp 182–190]. Figure 2.13 shows a

one-dimensional illustration of this construction.

The convex hull construction uses exactly the points that interpolate s(x, y) correspond-

ing to the unit constant isotropic conductivity, that is, the discretization of the Laplacian

operator. Furthermore, in taking the convex hull of these points, all edges of the interpolated

paraboloid are convex by construction, and all off-diagonal entries of the stiffness matrix

for the Laplacian on this mesh, given by the cotangent formula, are negative. This explains

why quality triangulations should at least be Delaunay. Referring back to Figure 2.4, it

is possible for the convex paraboloid z = 1
2x

2 + 1
2y

2 to have a non-convex interpolation
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if the connectivity of the mesh is non-Delaunay. With non-convex edges, a non-Delaunay

triangulation gives a discrete Laplacian with positive off-diagonal entries. Even though

the matrix as a whole is positive-definite, having just a few positive off-diagonal entries

gives the stiffness matrix a few large eigenvalues, increases the spectral condition number,

and ill-conditions the matrix [77, pp 31–32, 43]. The main point here is that Delaunay

triangulations give stiffness matrices such that

−
∫

Ω
∇ϕT

i ∇ϕj > 0, i ∼ j, (2.66)

which in turn give the best-conditioned stiffness matrix for the given vertices [77].

In the case of anisotropic media, we seek the same property, that

qij = −
∫

Ω
∇ϕT

i Q∇ϕj > 0, i ∼ j. (2.67)

Hence, instead of creating Delaunay meshes, we build meshes that are Q-Delaunay by

way of our s(x) parameterisation. That is, instead of projecting our set of points up to

a paraboloid, we project them to the s(x) surface, take the convex hull of these points,

and use the projection of the resulting polyhedron to the xy-plane as our Q-Delaunay

triangulation. Since we have taken the convex hull of the points over the s(x) surface, each

hinge has a convex dihedral angle and each off-diagonal element of the stiffness matrix will

be negative. Building a triangulation by way of the convex hull isn’t expensive — there is

an O(N2) algorithm for N vertices — but there is a way that we can build our Q-Delaunay

triangulation as a weighted Delaunay triangulation, and hence take advantage of faster and

less memory-intensive algorithms.

A weighted Delaunay triangulation assigns to each vertex a scalar quantity, wi, the

weight of the vertex. In a standard Delaunay triangulation, connecting the circumcentres

of triangles determines the dual Voronoi diagram for the triangulation. If the triangulation

is Delaunay, each polyhedron of the Voronoi diagram contains exactly one vertex of the

triangulation. In a weighted Delaunay triangulation, the same is true, but the weights act

to move the weighted Voronoi centre of each triangle away from its circumcentre, and the

connectivity of the original points changes accordingly.

Figure 2.14 shows the geometry of a weighted Delaunay triangle. We interpret the
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ij∗

ij

√
wi

Figure 2.14: The figure on the left shows the geometry of a triangle in a weighted Delaunay
triangulation, showing the shift of the dual edges away from the midpoint of the primal
edges, and the subsequent shift of the Voronoi centre of the triangle. The right-hand figure
shows an entire hinge, identifying the primal and dual edge lengths at the hinge.

weights wi as the square of the radii of circles centred at the triangle vertices. (There is also

an interpretation for the case where wi < 0; see [68].) The associated dual Voronoi edges lie

not at the midpoints of the edges, as they would in a standard Delaunay triangulation, but

are the lines equidistant from the circles at each primal edge’s vertices. The intersection

of the weighted Voronoi edges is the weighted centre of the triangle. Hence, a weighted

Delaunay triangulation having equal weights on all vertices is a standard Delaunay trian-

gulation. Our goal is to compute weights for the triangulation such that all qij > 0, just as

the regular Delaunay triangulation provides for the isotropic case.

Glickenstein [42] examines the discrete Dirichlet energy on a weighted Delaunay trian-

gulation. As is standard, he defines the discrete Dirichlet energy

E(u) =
1
2

∑
i∼j

|ij∗|
|ij|

(ui − uj)2, (2.68)

where the edge-wise values
|ij∗|
|ij|

are the ratios of the dual to primal edge lengths at each

hinge: see Figure 2.14. More generally, the Dirichlet energy associated to conductivity Q is

given by

E(u) =
1
2

∫
Ω
∇uTQ∇u, (2.69)

and interpolating u in the piecewise linear basis, we have the discrete energy (2.68) provided
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we can make the identification

qij =
|ij∗|
|ij|

. (2.70)

If we choose the dual edges according to their positions dictated by the weights of the

triangulation,
|ij∗|
|ij|

> 0 by definition. The magic is that for given si, we can always find

those weights such that the identification (2.70) holds, and hence so qij > 0 for all edges of

the mesh.

The calculation by Glickenstein shows that at hinge ijkl of a weighted triangulation,

|ij∗|
|ij|

=
1
2

(cot θikj + cot θilj)

+
1

2|ij|2
(cot θijk + cot θijl)wi +

1
2|ij|2

(cot θjik + cot θjil)wj

− 1
4Aijk

wk −
1

4Aijl
wl.

(2.71)

We identify the first two terms with the edge ratio for the Laplacian, where Q = Id. The

remaining terms are half of our value for qij , where the wi replace the si. This is to say

that when u is a piecewise linear interpolation,

E(u) =
1
2

∫
Ω
∇uT

(
Id− 1

2
Qw

)
∇u, (2.72)

where the subscript w defines

Qw =

 ∂yyw −∂xyw

−∂xyw ∂xxw

 , (2.73)

just as our conductivity Q is built from derivatives of s(x). Hence, choosing w so that

Q = Id − 1
2Qw will give us qij > 0. Since we use second derivatives of s(x) to compute Q,

this implies

s(x, y) =
1
2
x2 +

1
2
y2 − 1

2
w(x, y), (2.74)

so choosing weights

wi = x2
i + y2

i − si (2.75)

gives a triangulation on which qij > 0 on each edge. For a given set of points, this is

equivalent to the construction over the convex hull of s(x), and gives the best-conditioned
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stiffness matrix we could hope for.

A remarkable fact about the convex hull construction is that in the isotropic case,

the (x, y)-projected coordinates of the circumcentre of each Delaunay triangle are at the

point where the slope of the paraboloid equals the slope of the triangle interpolating the

paraboloid (again, see Figure 2.13 [63]). This fact, we believe, is the ultimate reason that

equation (2.9) exactly gives the cotangent formula for s(x, y) = 1
2x

2 + 1
2y

2, even though

sh(x), the interpolation of s(x), is only piecewise linear.

2.3.2 Optimising vertex locations

Choosing appropriate triangulations alone improves the conditioning of stiffness matrices,

but by exercising our freedom in choosing vertex locations, we can further improve upon

the conditioning and interpolation properties of our discretization. Again, there is a way to

use s(x) directly to this end, and the method of Alliez et al for producing quality isotropic

meshes suggests the correct extension to the anisotropic case [15].

In the isotropic case [15] seeks the arrangement of vertices (both connectivity and loca-

tion) minimising the energy

E = ‖p− ph‖L1 , (2.76)

where p(x, y) = 1
2x

2 + 1
2y

2 and ph(x, y) is its piecewise linear interpolating polynomial.

In one dimension, the relationship between p and ph is exactly the same as that depicted

between s(x) and sh in Figure 2.13. The one-dimensional picture is slightly misleading

in that while it does illustrate the freedom to move the interpolation knots, it does not

show the freedom in choosing the connectivity that we have in higher dimensions. (In one

dimension, we can show that equispaced knots minimise (2.76).) We replace p, ph with s, sh,

and so seek the connectivity and vertex positions that minimise

E = ‖s− sh‖L1 . (2.77)

As in [15], we propose a two step iterative process. First, for a given set of points, we

compute its optimal connectivity as its Q-weighted Delaunay triangulation. Second, we

adjust the points towards the minimum E for that triangulation. We have already discussed

the Delaunay step, and the remainder of this section develops the adjustment step, tailored
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to our given Q.

Since sh ≥ s, the energy

E = ‖s− sh‖L1 =
∫

Ω
sh − s (2.78)

=
∑

i

s(xi)
∫

Ω
ϕi(x)−

∫
Ω
s(x) (2.79)

=
1
3

∑
|Ωi|s(xi)−

∫
Ω
s(x). (2.80)

We have used the linear basis Ph
1 spanned by the hat functions (ϕi) for sh, and identified |Ωi|

as the area of all triangles incident to vertex i. Minimising the energy for this connectivity

means setting ∇xiE = 0 for all vertex locations xi. The integral of s(x) is constant, so we

have

∇xiE =
|Ωi|
3
∇s|x=xi +

1
3

∑
Tj∈Ωi

∇xi |Tj |

[∑
k∈Tj

k 6=i

s(xk)

] , (2.81)

where in addition to observing how E changes with respect to s(x), we also need to include

the contribution due to changing the area |Tj | of each triangle incident to vertex i. k ∈ Tj

refers to the set of vertices of triangle Tj . A straightforward computation shows that for

positively-oriented triangle ijk, and corners with coordinates {(xi, yi), (xj , yj), (xk, yk)},

∂xi |Tijk| =
1
2
(yj − yk),

∂xi |Tijk| =
1
2
(xk − xj),

(2.82)

which is only dependent on vertex positions.

At the optimal vertex positions, ∇xiE = 0. We examine two cases, first where the

conductivity is constant, and second where it varies over the domain. In both cases, we

use (2.81) to compute a greedy update rule for the vertex positions.

In the case Q = constant, we have

s(x, y) =
Q22

2
x2 −Q12xy +

Q11

2
y2, (2.83)

∇s =

 Q22x−Q12y

−Q12x+Q11y

 = Hsx, (2.84)
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where Hs is the Hessian of s(x). This means that within each one-ring, vertices have optimal

position x∗i satisfying the 2× 2 linear system

Hsx
∗
i = − 1

|Ωi|
∑

Tj∈Ωi

∇xi |Tj |

[∑
k∈Tj

k 6=i

s(xk)

] . (2.85)

Following [15], we use this expression to build an update rule by shifting all vertices by the

current vertex position xi.

In the constant case, the interpolation error is unaffected if we shift s(x) by constant

value xi. To see this, compute

s(x− xi) =
Q22

2
(x− xi)2 −Q12(x− xi)(y − yi) +

Q11

2
(y − yi)2 (2.86)

=
Q22

2
x2 −Q12xy +

Q11

2
y2 + ex+ fy + g (2.87)

= s(x, y) + ex+ fy + g (2.88)

for constants e, f, g. Since sh(x), sh(x− xi) are piecewise linear, and interpolate s(x), s(x−

xi), respectively, we have that

sh(x− xi) = sh(x) + ex+ fy + g (2.89)

holds exactly for the same e, f, g, so

∫
Ω
sh(x− xi)− s(x− xi) =

∫
Ω
sh(x)− s(x). (2.90)

Hence, updating vertex position xi to position x∗i means solving

Hsx
∗
i = Hsxi −

1
|Ωi|

∑
Tj∈Ωi

∇xi |Tj |

[∑
k∈Tj

s(xk − xi)

] , (2.91)

where we have s(0) = 0. Setting s(x) = 1
2x

2 + 1
2y

2 recovers the update rule in [15] for

isotropic meshes. At each update step, we iterate over the entire mesh, computing dxi =
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x∗i − xi. We then adjust each vertex,

x
(n+1)
i = x

(n)
i + αdx

(n)
i , (2.92)

where n is the iteration number, and α is a relaxation parameter. In practise, even for

constantQ, we find that for particularly anisotropic conductivities, choosing α ≈ 1
2 stabilises

the iteration. The need for some relaxation is not surprising, since we are using a greedy

algorithm to adjust the vertex points, and on anisotropic meshes where triangles get long

and thin it doesn’t take much to move a vertex far from its original one-ring.

When updating xi in the case of non-constant Q, we observe that the interpolation error

is not invariant under translation, and we cannot use (2.91). Instead, we seek x∗i satisfying

Hs(x∗i ) = − 1
|Ωi|

∑
Tj∈Ωi

∇xi |Tj |

[∑
k∈Tj

k 6=i

s(xk)

] . (2.93)

The system for x∗i is no longer a linear system, since the Hessian of s(x) does not vary

linearly in x. The solution is to linearise the Hessian around the current vertex location

xi and to further relax the vertex movement such that in any given timestep, no vertex

leaves its Voronoi area. This slows convergence, but prevents inversion of triangles in the

mesh. The inversion of triangles isn’t necessarily destabilising, as the weighted Delaunay

step returns the points to the convex hull of s(x), but in practise we see that if vertices

move too far from their original positions, stability is adversely affected.

Thus far, we have implied that we begin with an arrangement of points, and then

perform weighted Delaunay and vertex adjustment steps until convergence. This method

works, but convergence can be slow as the connectivity can become trapped far from its

optimal value with a complete complement of points. Instead, we begin with a full set of

boundary points plus a similar number of interior points randomly distributed throughout

the domain. With each iteration, we add new points to the domain in the neighbourhood

of badly formed or excessively large triangles. The precise locations where these points

are introduced is flexible, as the vertex adjustment step tends to move them towards their

optimal positions immediately. Triangles smaller than a preset-set minimum area are not
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refined, as allowing this lets the algorithm refine the mesh indefinitely. Point addition is

not sensitive to the choice of quality measure, so long as an anisotropic quality measure is

used. [77, pp 53–54] lists several quality measures, of which we use

quality =
ÃT

l̃1
2
+ l̃2

2
+ l̃3

2 . (2.94)

AT is triangle area, and l1, l2, l3 are the lengths of its three sides. The tilde indicates

that the measurements are made on the triangle pulled back to isotropic space. We use

measure (2.94), as it is scale independent and bounds the condition number of the triangle

stiffness matrix.

Original seed boundary points are not moved. Moreover, any vertices sent outside the

domain by the vertex adjustment step are projected back to the domain boundary, where

they are allowed to move either back into the domain or along the boundary as the iteration

proceeds.

Over a small number of iterations (12 is typical) the algorithm converges, whereupon the

vertex adjustment step moves the vertices very little, the weighted Delaunay triangulation

doesn’t change the connectivity in more than a few places, and no new points are added

after vertex adjustment. In the numerical experiments, after these first few steps, we see

minimal improvement to the conditioning of the stiffness matrix or to the interpolation

properties of the mesh. Algorithm 2.1 summarises the complete adaptive algorithm.

Algorithm 2.1 Build Q-adapted mesh
Read the input boundary points
Select initial interior points
Construct Q-weighted Delaunay triangulation
repeat

Adjust vertices
Add new points
Construct Q-weighted Delaunay triangulation

until converged

2.3.3 Numerical results

In order to clearly see the behaviour of our iteration, we perform our numerical tests for the

simple case that Q is anisotropic but constant over the domain. Our test domain is again
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the unit disk, with

Q =

0.1 0

0 10

 (2.95)

corresponding to s(x, y) = 1
210x2 + 1

20.1y2. This is the conductivity used to produce the

adapted mesh already seen in Figure 2.12.

Figures 2.15, 2.16 and 2.17 plot comparisons of the interpolation quality in the L2-norm,

the interpolation quality in the h1-semi-norm, and the conditioning of the stiffness matrices.

Interpolation quality is judged by how well the mesh interpolates s(x, y). That is, if sh is

the piecewise linear interpolant of s(x), then we measure

‖es‖L2 = ‖sh − s‖L2 , (2.96)

|es|h1 = ‖∇sh −∇s‖L2 . (2.97)

As already mentioned, this is an optimistic measure of interpolation quality. Without fur-

ther knowledge of the problem, however, s(x) is a reasonable representative of the problem’s

anisotropy. See Table 2.2 for the interpolation error. We also measure the spectral con-

dition number κ2 of the stiffness matrices for Q consequential to the meshes, as the ratio

of largest to smallest eigenvalues of a matrix is typically associated with the difficulty of

solving its resulting linear systems. See Table 2.3 for the condition number data. In all

cases, we index the test meshes by the number of boundary vertices, VB. For fixed VB,

the isotropic and adapted anisotropic meshes tend to give comparable interpolation quality,

while the isotropic meshes tend to require far more vertices than do the adapted meshes.

See Figure 2.18 for this comparison. The isotropic meshes are generated by Shewchuk’s

Triangle program [75].

We measure both interpolation and conditioning quality with respect to the number of

vertices, N , of the mesh, rather than with respect to h, the circumradius of the largest

triangle in the mesh. Although N ∼ h−2 for both isotropic and anisotropic meshes, using

circumradius gives the appearance that the long, thin triangles of the anisotropic meshes

will appear much larger than the regular triangles of the isotropic meshes. One way to stan-

dardise the comparison is to perform measurements of the anisotropic triangles in isotropic

space, deforming the anisotropic triangles by a function representing the anisotropy of Q.
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Figure 2.15: Interpolation quality of adapted meshes measured by the L2-norm error in a
linear interpolation of s(x, y). Error diminishes as O(N−1) in both cases, but is offset by a
factor of about 4 in the adapted anisotropic meshes.
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Figure 2.16: Interpolation quality of adapted meshes measured by the h1-semi-norm error
in a linear interpolation of s(x, y). Error diminishes as O(N− 1

2 ) in both cases, but is offset
by a factor of about 3 in the adapted anisotropic meshes.
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Figure 2.17: Matrix conditioning quality of adapted meshes measured by the spectral con-
dition number κ2 of the stiffness matrix. The condition number grows as O(N) in both
cases, but is offset by a factor of about 5 in the adapted anisotropic meshes.

isotropic anisotropic
VB N ‖es‖L2 |es|h1 N ‖es‖L2 |es|h1

32 85 6.27×10−2 1.25 101 1.13×10−2 3.43×10−1

45 190 2.34×10−2 7.42×10−1 131 1.01×10−2 3.11×10−1

64 389 1.07×10−2 5.04×10−1 212 4.68×10−3 2.16×10−1

90 873 4.59×10−3 3.28×10−1 280 4.04×10−3 1.94×10−1

128 1631 2.52×10−3 2.43×10−1 428 2.43×10−3 1.52×10−1

180 2633 1.55×10−3 1.91×10−1 656 1.69×10−3 1.21×10−1

256 5201 7.72×10−4 1.35×10−1 817 1.46×10−3 1.13×10−1

360 8453 4.81×10−4 1.07×10−1 1380 8.97×10−4 8.89×10−2

512 25019 1.58×10−4 6.11×10−2 2312 4.83×10−4 6.56×10−2

Table 2.2: Improvement of interpolation by meshes adapted to an anisotropic conductivity.
The test meshes are indexed by their number of boundary vertices, VB. Other values are:
N , the number of vertices; ‖es‖L2 , the L2-norm error in interpolating s(x); and |es|h1 , the
h1-semi-norm error in interpolating s(x).
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isotropic anisotropic
VB N κ2 N κ2

32 85 40 101 6.0
45 190 99 131 6.7
64 389 220 212 15
90 873 534 280 18
128 1631 1037 428 26
180 2633 1721 656 35
256 5201 3551 817 46
360 8453 5974 1380 71
512 25019 17849 2312 132

Table 2.3: Improvement of matrix conditioning by meshes adapted to an anisotropic con-
ductivity. The test meshes are indexed by their number of boundary vertices, VB. Other
values are: N , the number of vertices; and κ2 the spectral condition number of the stiffness
matrix.
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Figure 2.18: Comparison of the growth of the total number of vertices with respect to the
number of boundary vertices. This is particularly interesting for the problem of computing
boundary flux data from boundary value data, where the size of the problem is determined
by the boundary resolution. For the isotropic mesh, N ∼ V 1.9

B , and for the anisotropic
mesh, N ∼ V 1.1

B .
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isotropic anisotropic
VB N λmin λmax N λmin λmax

32 85 1.19 48.1 101 1.16 7.01
45 190 5.20×10−1 51.6 131 0.964 6.46
64 389 2.40×10−1 52.9 212 0.504 7.46
90 873 9.92×10−2 53.0 280 0.411 7.37
128 1631 5.40×10−2 56.0 428 0.310 8.17
180 2633 3.30×10−2 56.8 656 0.214 7.53
256 5201 1.67×10−2 59.3 817 0.179 8.24
360 8453 9.91×10−3 59.2 1380 0.124 8.82
512 25019 3.44×10−3 61.4 2312 0.0586 7.71

Table 2.4: Comparison of the eigenvalues of the stiffness matrices for both isotropic and
anisotropic meshes. The maximal eigenvalues λmax are nearly constant, while the smallest
eigenvalues λmin are O(h2).

This is indeed a standard method in building anisotropic meshes [57, 77]. We choose to

measure quality with respect to N because of its independence on anisotropy, and for its rel-

evance in practical computational constraints: the memory footprint of data is as important

as processor loading in modern computing.

The matrix condition numbers are determined by the smallest eigenvalues, which shrink

in proportion with h2, the area of the triangles, and the largest eigenvalues, which are

determined by triangle quality. Table 2.4 shows that the largest eigenvalues are relatively

unaffected by the mesh size in both cases, and that even by adapting the mesh to the

conductivity, we cannot escape the O(h2) shrinkage in the smallest eigenvalues. However,

the smallest triangles in the anisotropic mesh need not have areas as small as those of the

isotropic mesh in order to achieve the same interpolation accuracy.

More generally, quality measures of both the anisotropic and isotropic meshes converge

at the same rate. Recalling that N ∼ h−2, the estimates

‖sh − s‖L2 ≤ CL2N
−1 (2.98)

|sh − s|h1 ≤ Ch1N− 1
2 (2.99)

κ2 ≤ Cκ2N (2.100)

hold for all meshes, irrespective of their isotropy. The gain in adaptively meshing the

domain to suit Q comes as the size of the constants CL2 , Ch1 , Cκ2 are each smaller for well-
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isotropic anisotropic iso/aniso
κ2 0.385 0.0723 5.33
‖es‖L2 4.69 1.13 4.15
|es|h1 10.5 3.66 2.87

Table 2.5: Comparison of leading constants in quality bounds for isotropic and anisotropic
meshes.

adapted meshes. The ratios of these constants given in Table 2.5 shows that, for example, to

achieve comparable L2-accuracy on an unadapted mesh requires an approximately twenty-

fold increase in the condition number over a well-adapted mesh.

Finally, mesh adaptation is only useful if its cost does not overwhelm that of solving the

larger or badly conditioned problem on the isotropic mesh. Fortunately, the cost is reason-

able: for N vertices, the weighted Delaunay triangulation is approximately O(N logN), the

vertex adjustment is O(N), and the number of iterations required is, in practise, constant.

Approximately 12 iterations construct the anisotropic meshes studied in this example.
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Chapter 3

The Inverse Problem

Perhaps the most widely applicable definition of an “inverse problem” is one that deduces

that parameters of a PDE from information about its solutions. Examples include the

measurement of the inhomogeneous reflectivity of sedimentary rock, the absorptivity of the

human body by X-rays, the relaxation time of hydrogen nuclei in a magnetic field, and the

electrical conductivity of inhomogeneous materials. These examples represent, respectively,

reflection seismology for oil exploration, X-ray tomography for finding bone breaks, nuclear

magnetic resonance (NMR) for identifying chemical composition, and electric impedance to-

mography (EIT) for identifying abnormal tissue. In each of these examples, we are typically

inferring what material we are seeing (oil, bone, chemical, tumour) from the uniqueness of

that material’s properties in the context in which it is measured.

With the possible exception of NMR, each of the above examples is an imaging example,

whereupon the result of the inverse problem is an image representing how the parameter of

the PDE changes with respect to location. Our inverse problem is the EIT problem. Our

model is that at each point in space, the current density, j, obeys Ohm’s law with respect

to electric potential u:

j(x) = σ(x)∇u(x), x ∈ Ω ⊂ Rd. (3.1)

We have explicitly identified the spatial dependence of the conductivity σ over the domain

Ω, and our image will represent the size of the material property conductivity at each

point in space. Measuring conductivity is useful in at least two applications: 1) in medical

imaging, where abnormal tissue (cysts, tumours) has a different conductivity than normal

surrounding tissue; and 2) in soil remediation, where oil-contaminated soil has a lower

conductivity than the surrounding water-moistened soil.

EIT measures σ(x) by taking measurements of voltages consequential to applied currents
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at the boundary of the domain. Specifically, we define the Neumann-to-Dirichlet map,

Λσ : H− 1
2 (∂Ω) → H

1
2 (∂Ω) (3.2)

Λσ(f) = g, (3.3)

where for given σ, g = u|∂Ω is the boundary trace of the solution to

−div(σ∇u) = 0, x ∈ Ω,

σ
∂u

∂n
= f x ∈ ∂Ω,∫

∂Ω
f = 0.

(3.4)

The EIT problem is:

Given knowledge of the Neumann-to-Dirichlet map Λσ, deduce the conductivity

σ(x), x ∈ Ω.

Practically, this means that from coincident measurements of currents and potentials on ∂Ω,

we attempt to recover σ throughout the interior of the domain. We note that deducing σ

from the Dirichlet-to-Neumann, denoted (Λσ)−1, is an equivalent problem. Λσ has an inverse

provided we restrict ourselves to boundary sources
∫
∂Ω f = 0, and solutions

∫
∂Ω u = 0. We

choose to refer to Λσ because its smoothing action is inherited by numerical reconstruction

methods.

The EIT problem is first identified in the mathematics literature in a 1980 paper by

Calderón [29], although the technique had been known in geophysics since the 1930s. Since

the 1980 publication, a large community has formed around this problem. From work of

Uhlmann, Sylvester, Kohn, Vogelius, Isakov and more recently, Alessandrini and Vessella,

we know that complete knowledge of Λσ uniquely determines σ ∈ L∞(Ω), where Ω ⊂ Rd, d ≥

2 [13, 50, 54, 82]. Specific examples show that not only is this problem exponentially ill-

posed, but that this extreme sensitivity is realised in simple examples [11, 12]. There has

also been numerical work, studying reconstruction methods [24, 25, 26, 36, 41, 52], and the

sensitivity of this problem to error in boundary measurements [37, 39]. Recently, there has

also been work recovering σ from partial boundary data and from cases where the boundary

location is imperfectly known [51, 55, 56]. Finally, in addition to the technical reports of
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EIT in medical applications [40, 49, 58, 60, 89] and in geophysical applications [38], EIT

has been the subject of several reviews [23, 30, 83].

What can we add to such a well-studied, though ill-posed problem? As we will show

in Section 3.2, it is difficult to recover σ at a fine resolution. Hence, one approach to

regularising this problem is to only coarsely resolve the domain, in accordance with the

resolution and accuracy of the boundary data. However, homogenisation tells us that

even if the conductivity is scalar at a fine scale, and hence we know that there is a 1-1

correspondence between Λσ and σ, if we resolve σ at a coarse scale, we can expect that

we will measure an effective anisotropic conductivity, inconsistent with our assumption of

isotropy. Hence, our approach is to recover an anisotropic, divergence-free conductivity

using the parameterisation s(x). Given our interest in exploring the application of s(x) to

this inverse problem, everything we do in this chapter, save a one-dimensional example in

Section 3.1, is in R2.

Before discussing the theory of this inverse homogenisation in Section 3.2, we motivate

the choice to seek divergence-free conductivities by example in Section 3.1. Section 3.3

gives a reconstruction algorithm with some numerical results. Finally, as parameterisation

of conductivity by s(x) is new, there are a host of reconstruction methods using metric-

based up-scaling that are not successful. Instead of polluting the inverse problems literature

with these failed attempts, we confine their report to Section 3.4 of this thesis.

3.1 What aspect of conductivity can we measure?

An inverse problem seeks to measure a physical quantity2. Ohm’s law, equation (3.1) defines

conductivity pointwise in correspondence with pointwise values of the potential gradient and

current density. However, in practise, we cannot measure the gradient of a potential at a

point, nor the density of a current flux: instead, scientists and engineers resort to measuring

integrated quantities, such as the difference in potential between two points, and the current

flux which is an integral of current density over an area. For practical purposes, conductivity

will turn out to be an integral average of the pointwise σ appearing in Ohm’s Law. The idea

of reporting integral quantities is not specific to inverse problems: it is central to discrete

differential geometry, an idea presented in [34, 73].
2We might argue that every scientific measurement provides data for an inverse problem.
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Starting simply, in one dimension, what can we measure about conductivity? By corre-

spondence to our problem in R2, we are given the one-dimensional rod 0 ≤ x ≤ 1 with con-

ductivity σ(x). We measure the potentials u(0), u(1), and the boundary currents σ
du

dx

∣∣∣∣
x=0,1

.

The potential obeys the conservation law

− d

dx

(
σ
du

dx

)
= 0, 0 < x < 1, (3.5)

so we immediately note that consistent with our physical intuition, the current σ
du

dx
= f =

constant throughout the rod. Furthermore, since only the first derivative of u appears in

the conservation law, we can add a constant to u(0), u(1) without changing the solution,

and only the difference u(1) − u(0) is the relevant measurement of potential. Finally, the

equation is linear: In this context, the only unique data we can collect about this rod is the

potential difference g = u(1)− u(0) when the current is equal to f , and when, for example,

we double f , g will double also. Hence, the Neumann-to-Dirichlet map in one dimension is

Λσ(f) = ag (3.6)

for some constant a. This value a is parameterised by σ and is the only information about

σ that we can hope to obtain from studying Λσ.

It is helpful for what comes next to know what that constant a actually is. Multiply-

ing (3.5) by u and integrating by parts, we have

∫ 1

0
σ

(
du

dx

)2

= uσ
du

dx

∣∣∣∣1
0

(3.7)(
σ
du

dx

)2 ∫ 1

0

1
σ

= fg (3.8)

f/g =
(∫ 1

0

1
σ

)−1

= σ
¯
. (3.9)

We have used the fact that the current, f = σ
du

dx
, is constant throughout the domain. The

interpretation is that we identify the harmonic mean of σ
¯

as the effective conductivity of

the domain. In one dimension, the harmonic mean is the only quantity we can measure

about conductivity based only on the Neumann-to-Dirichlet map3.
3This is really a consequence of the coincidence of the gradient and divergence in one dimension: since
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From an experimentalist’s point of view, even if we are able to probe the material

at its interior points, with only a finite number of measurements, all we can deduce is

the harmonic mean of σ between our sample points — we can know integral values, but

not pointwise values. The harmonic mean is the same conductivity we compute when we

homogenise by the RVE method, the asymptotic homogenisation, and, most importantly,

by metric-based up-scaling. The message is that the averaged conductivities we measure

using the Neumann-to-Dirichlet map are also the homogenised conductivities. In fact, the

only experiment we can do to determine conductivity is measure a Neumann-to-Dirichlet

map. And, this is not just true in one dimension.

When the conductivity is homogenised by metric-based up-scaling, the homogenised

conductivity admits piecewise linear solutions. In one dimension, this means that the ho-

mogenisation solution has constant gradient, so since the current Q
du

dx
is constant, the

homogenised conductivity is constant also. However, Q homogenised from σ is almost

never constant in more than one dimension, but Q’s admission of solutions with constant

gradient can tell us precisely what we can measure about homogenisation of conductivity

using the Neumann-to-Dirichlet map.

Consider our domain to be the triangle T = ijk. As usual, (ϕi) form the piecewise linear

basis over the triangle. To each test potential gi = ϕi|∂T , we associate a test current fi|∂T .

In keeping with our restriction to integrated quantities, the information available to us are

the fi integrated over edges of the triangle. For example, for test potential i and edge ij,

we have

f
(ij)
i =

∫
ij
fi (3.10)

=
∫

ij
(Q∇ϕi)Tdn̂ (3.11)

=
∫

∂T
(ϕi + ϕj)(Q∇ϕi)Tdn̂ (3.12)

=
∫

T
∇(ϕi + ϕj)TQ∇ϕi (3.13)

= −
∫

T
∇ϕT

kQ∇ϕi = qik. (3.14)

We have used the divergence theorem and the fact that ∇ϕi+∇ϕj +∇ϕk = 0 on a triangle.

div(σ∇u) = ∇(σ∇u), x ∈ R, we know σ∇u = constant.



Chapter 3. The Inverse Problem 66

Similar calculations show that the three independent elements qij of the stiffness matrix,

namely

qij = −
∫

T
∇ϕT

i Q∇ϕj , (3.15)

together completely determine the relationship between these test potentials and integrated

currents. In some sense this is obvious: the stiffness matrix for an element determines the

relationship between the solution u and the sources
∫
T fϕj over the element. However, we

use the piecewise linear basis functions as test potentials because we know that they are

exact solutions to the homogenised equation using Q at every interior point of the triangle.

Of course, the uniqueness results in the inverse problems literature say we can do far

more in dimensions two and greater, stating that given Λσ, we can uniquely specify the

corresponding isotropic conductivity everywhere in the domain [13, 50, 54, 82]. However,

even in the broader context of an entire triangulated domain, deducing the elements of the

stiffness matrix, the (qij) for the piecewise linear basis, is the correct thing to do, and we

should interpret these edge-wise values as stiffness matrix elements for the homogenised

conductivity. Further, since Q is divergence-free, we are justified in parameterising its

stiffness matrix by s(x), just as we did for the forward problem.

3.2 Theory

Our contribution is to the reconstruction not of σ, but to its homogenisation Q obtained

through metric-based up-scaling. Every other practical reconstruction method parametrises

σ as a scalar function. This is for good reason: uniqueness of σ with respect to Λσ is

not only known for scalar σ, but we also know that with no further constraints, if σ is

anisotropic, then it is only known up to a push-forward by some diffeomorphism on Ω [19,

45, 61, 81]. However, the main result of this section is that we can identify two unique

conductivities consistent with the Neumann-to-Dirichlet map: the isotropic conductivity,

and the divergence-free conductivity we obtain from metric-based up-scaling.

One way to see the non-uniqueness in recovering anisotropic conductivities is to look

at the Neumann-to-Dirichlet map for anisotropic conductivity σ under a diffeomorphism

Φ : Ω → Ω, where Φ is the identity in a neighbourhood of ∂Ω. Under this mapping, we
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consider the push-forward of the conductivity σ and a solution u:

σ̃ = Φ∗σ =
∇ΦTσ∇Φ
|det∇Φ|

◦ Φ−1, (3.16)

ũ = Φ∗u = u ◦ Φ−1. (3.17)

With this mapping by Φ, for boundary source f ,
∫
∂Ω f = 0, the two problems

−div(σ∇u) = 0, x ∈ Ω,

σ
∂u

∂n
= f, x ∈ ∂Ω,

(3.18)

and
−div(σ̃∇ũ) = 0, x ∈ Ω,

σ̃
∂ũ

∂n
= f, x ∈ ∂Ω,

(3.19)

give equal boundary potentials u = ũ = g. The calculation is similar to that used to

produce Q from σ in Chapter 1. When Φ is not the identity mapping at least one of σ, σ̃ is

anisotropic, and we conclude that anisotropic conductivities cannot be in 1-1 correspondence

with Neumann-to-Dirichlet maps.

Anisotropy presents a difficulty to this inverse problem. On the one hand, we know that

the problem is exponentially ill-posed. That is, while we have Lipshitz continuity between

σ and Λσ, for two conductivities σ1, σ2 in a finite subspace of L∞,

‖σ1 − σ2‖L∞(Ω) ≤ C‖Λσ1 − Λσ2‖L(H−
1
2 (∂Ω),H

1
2 (∂Ω))

. (3.20)

(‖·‖
L(H−

1
2 (∂Ω),H

1
2 (∂Ω))

is the natural operator norm for Λσ.) The constant C grows expo-

nentially with the number of elements, N , we use to represent the conductivity [13]:

C(N) ≥ A exp
(
BN

1
d−1

)
. (3.21)

d is the dimension and A,B are absolute constants. This bound is confirmed by example in a

note by Luca Rondi [71]. Hence, a way to regularise the problem is to demand reconstruction

over fewer elements, reducing N to match the desired resolution of σ.

On the other hand, homogenisation reminds us that unless we sample an isotropic
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conductivity at a sufficiently fine scale, we do not necessarily observe its samples to be

isotropic. Practical reconstruction methods assume that σ is isotropic at the coarse scale

of reconstruction, ignoring the effects of homogenisation. Indeed, this is the only example

of how EIT appears to be robust: while otherwise ill-posed, numerical reconstruction does

not seem to suffer in practise from the effect of homogenisation. While simulated test cases

in the literature appear to lack any fine-scale texture required to produce an anisotropic

homogenisation effect, a better explanation is provided by studying anisotropic EIT.

It is true that the Neumann-to-Dirichlet map defines an equivalence class of conductiv-

ities, where elements of each class are push-forwards of each other under diffeomorphisms.

Following the exposition of [19], which has the strongest result we know of for uniqueness

of anisotropic conductivities over bounded domains Ω ⊂ R2, we consider the class of matrix

functions σ = [σij ] such that

σ ∈ L∞(Ω; R2×2), σT = σ, λmin(σ) > 0, (3.22)

where λmin is the minimal eigenvalue of σ. Further, we identify the set

Σ(Ω) = {σ ∈ L∞(Ω; R2×2) | λmax(σ) <∞}. (3.23)

It is known by example that if σ has an infinite eigenvalue, even its equivalence class cannot

be recovered. The unbounded eigenvalue case gives an example of electric cloaking [44, 45].

The main result of [19] is that if Ω ⊂ R2 is a simply connected bounded domain and σ ∈

L∞(Ω; R2×2) satisfies conditions (3.22), then the Neumann-to-Dirichlet map Λσ determines

the equivalence class of conductivities

Eσ = {σ1 ∈ Σ(Ω) | σ1 = Φ∗σ,

Φ : Ω → Ω is an H1-diffeomorphism andΦ|∂Ω = x},
(3.24)

Φ∗σ denotes the push-forward of σ by diffeomorphism Φ. Q is a member of this equiva-

lence class, since Q = Φ∗σ when Φ are the σ-harmonic coordinates F . This result is the

anisotropic extension of the uniqueness result in [13] which requires σ ∈ L∞(Ω) to be scalar

for its unique reconstruction from Λσ.

While we have uniqueness only up to the equivalence class (3.24), the following theorem
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identifies two important elements of this class.

Theorem 3.1. Let fixed σ ∈ L∞(Ω; R2×2) which satisfies conditions (3.22) identify the

equivalence class Eσ. Then in dimension d = 2:

(i) There exists a unique Q ∈ Eσ such that Q is divergence-free; and

(ii) There exists a unique γ ∈ Eσ such that γ is scalar.

A proof of the theorem follows a few comments.

Anisotropy requires that we be specific about which conductivity we are trying to re-

cover. We are fortunate that for a given Neumann-to-Dirichlet map, we will always be able

to find a scalar conductivity consistent with our measurements — it is the unique scalar

conductivity in the equivalence class of conductivities defined by Λσ. This is what nearly

all reconstruction algorithms do, and this explains why the algorithms rarely encounter dif-

ficulty due do anisotropy from up-scaling. A scalar conductivity consistent with Λσ always

exists.

However, that scalar conductivity is only L∞, and may vary at scales finer than the

resolution of the mesh used in the reconstruction. In this case, seeking the homogenisation

of the original conductivity may be more reasonable. The inverse problem asks “What

can we measure?” Since the ill-posedness of this problem restricts the scale at which we

can make measurements, the element of the equivalence class associated to the Neumann-

to-Dirichlet map that we can actually measure is the unique divergence-free homogenised

conductivity. There is no one “true” conductivity for the domain, but the homogenised

conductivity is a unique conductivity that is well-behaved with respect to change of scale.

We close this section with a proof of the theorem:

Proof of Theorem 3.1. For claim (i), recall that the homogenisation of σ does not require

σ to be isotropic, so Q exists by construction of the σ-harmonic coordinates F .

Conversely, suppose Q = Φ∗σ is divergence-free. Then the development of equa-

tion (1.17) in Section 1.2 shows that

∫
Ω
w div(σ∇Φ) = 0 (3.25)
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for all test functions w ∈ H1
0 . But since Φ = x |∂Ω, Φ uniquely solves the equation for the

σ-harmonic coordinates, Φ = F ∈ H1
0 , and Q = F∗σ uniquely when Q is divergence-free.

For claim (ii), we will show that scalar conductivity γ is the push-forward of σ by

coordinates G which uniquely solve the equations

div
(

σ√
detσ

∇G
)

= 0, x ∈ Ω,

G = x, x ∈ ∂Ω.
(3.26)

In this case, we will show that γ Id =
(√

detσ ◦G−1
)

Id = G∗σ.

Let G = (G1, G2) satisfy (3.26). Then

div
(

σ√
detσ

∇G2

)
= 0 (3.27)

which implies that we can find a function P1 such that

R∇P1 =
σ√

detσ
∇G2, P1 = x |∂Ω (3.28)

We can enforce the boundary condition on P1 provided the domain is closed, bounded and

simply connected.

Observe that for A ∈ R2×2,

(
A−1

)T =
1

detA
RART , R =

0 −1

1 0

 . (3.29)

This implies that we can rearrange (3.28),

√
detσRTσ−1R∇P1 = RT∇G2 (3.30)

σ√
detσ

∇P1 = RT∇G2 (3.31)

implying

div
(

σ√
detσ

∇P1

)
= 0. (3.32)
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By the uniqueness of solutions to (3.26), we have that P1 = G1. Together, we have

σ√
detσ

∇G2 = R∇G1, (3.33)

σ√
detσ

∇G1 = RT ∇G2, (3.34)

or, more compactly,
σ√

detσ
∇GR = R∇G. (3.35)

A second application of identity (3.29), this time to ∇G gives

σ√
detσ

∇G = R∇GRT , (3.36)

∇GTσ∇G
|det∇G|

=
√

detσ. (3.37)

Modulo composition by G−1, we identify the left-hand side as the push-forward of σ by G,

and setting γ =
√

detσ ◦G−1, we have that G∗σ = γ Id.

Finally, we note that the authors in [19, 80, 81] use quasi-conformal changes of coor-

dinates in R2 to show that any anisotropic conductivity can be changed to an isotropic

one, a construction central to their observation of their observation of the equivalence class

Eσ, and a result we discover via metric-based up-scaling. Both proofs, however, rely on

arguments in R2. It is not known, for example, if the construction of coordinates in (3.26)

is valid in R3, and a similar result in dimensions d ≥ 3 is future work for the time-being.

3.3 Reconstructing s(x)

From the equivalence class of conductivities determined by the Neumann-to-Dirichlet map,

we have identified two conductivities from this class that we might naturally choose to

reconstruct. The first is the scalar conductivity, and the second is the divergence-free con-

ductivity. As mentioned in the introduction to this chapter, the reconstruction of the scalar

conductivity has been well studied. However, the reconstruction of divergence-free conduc-

tivities, interpreted as homogenised conductivities, is new in this thesis, and a reconstruction

algorithm is the topic of this section.
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We tried a great variety of reconstruction algorithms, and we present the most success-

ful choice here. Section 3.4 enumerates our less-successful reconstruction attempts. Our

algorithm parameterises the stiffness matrix of divergence-free conductivity Q using the

piecewise linear interpolation of s(x). We pose the problem on a triangulated domain as a

least-squares minimisation program with a Tikonhoff regularisation, much as is introduced

for EIT in [36]. This method solves for a divergence-free stiffness matrix for Q. Finally, we

use the values for interpolated s(x) to estimate its curvatures, hence corresponding values

for Q on triangles of the mesh.

3.3.1 Least-squares method

A least squares problem for s(x) is

minimise
s∈Ph

1

1
2

M∑
i=1

‖Λsf
(i) − g(i)‖2

L2(∂Ω) + ν‖∇Qs‖,

subject to s(x) convex

(3.38)

We have identified the dependence of the Neumann-to-Dirichlet map Λs and the con-

ductivity Qs on the parameterisation s(x). We have approximated the operator norm

L(H− 1
2 (∂Ω),H

1
2 (∂Ω)) by measuring M current-voltage pairs (f (i), g(i)), i = 1 . . .M over

the boundary of the domain. That is, for u(i) solving

−div(Qs∇u(i)) = 0, x ∈ Ω,

∂

∂n
(Qsu

(i)) = f (i), x ∈ ∂Ω,
(3.39)

we have g(i) = u(i)|∂Ω. ν � 1 is a regularisation parameter, and ‖∇Qs‖ measures the

smoothness of Qs. We discuss specific choices for this smoothness norm shortly. We refer

to the first and second terms of the objective in program (3.38) as the boundary-error and

regularisation terms, respectively. By arguments of Chapter 1, the constraint, that s(x)

is a convex function, ensures that Qs is positive-definite. Problem (3.38) is not a convex

program. This is due to the nonlinear relationship between conductivity and the Neumann-

to-Dirichlet map. However, with the small amount of regularisation, we can use a convex

optimisation algorithm to solve this problem.
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In order to use a convex optimisation algorithm to solve the least-squares problem, we

need to compute the gradient of the boundary-error term with respect to s(x). We do so

by adapting the adjoint method outlined in [36], which we repeat here and frame in the

context of the piecewise linear discretization of s(x). To compute the gradient, we consider

the effect of a variation δs of s(x) on the solution u:

s(x) ⇒ s(x) + δs(x), (3.40)

Q⇒ Q+ δQ, (3.41)

u(x) ⇒ u(x) + δu(x) + δ2u(x) + . . . . (3.42)

Q is linear in s(x), so we have furthermore identified the first variation δQ in Q. (s, δs)

and (Q, δQ) are used interchangeably in the following. Suppressing the test mode index i

for clarity, the variation of an element of the boundary-error term with respect to s is

D

(
1
2
‖Λsf − g‖2

L2(∂Ω)

)
(δs) = (Λsf − g,DΛs(δs))∂Ω , (3.43)

where (·, ·)∂Ω denotes the L2(∂Ω) inner product, and DΛs(δs) is the variation of the

Neumann-to-Dirichlet map with respect to s. Our task is to determine this variation.

Writing the Neumann-to-Dirichlet problem (3.39) in terms of these expansions and

grouping terms by their order gives the 0th-order problem,

−div(Q∇u) = 0, x ∈ Ω,

∂

∂n
(Qu) = f, x ∈ ∂Ω,

(3.44)

and the 1st-order problem,

−div(Q∇δu) = div(δQ∇u), x ∈ Ω,

∂

∂n
(Qδu) = − ∂

∂n
(δQu), x ∈ ∂Ω.

(3.45)

Next, we identify the derivative of the Neumann-to-Dirichlet map

DΛs(δs) = δu|∂Ω, (3.46)
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and define the L2-adjoint derivative with respect to a test function w:

∫
∂Ω
wDΛs(δs) =

∫
Ω
δsD∗Λs(w). (3.47)

Finally, we define a third problem, the problem adjoint to the 0th-order problem:

−div(Q∇u∗) = 0, x ∈ Ω,

∂

∂n
(Qu∗) = w, x ∈ ∂Ω,

(3.48)

where w is again a test function. We multiply the 1st-order problem by u∗ and integrate

by parts, applying the boundary conditions of each of the three problems:

∫
Ω
u∗div(Q∇δu) = −

∫
Ω
u∗div(δQ∇u), (3.49)

⇒
∫

Ω
(∇u∗)TQ∇δu+

∫
Ω
(∇u∗)TQ∇u =∫

∂Ω
u∗(δQ∇δu)Tdn̂+

∫
∂Ω
u∗(δQ∇u)Tdn̂, (3.50)

⇒−
∫

Ω
δu div(Q∇u∗) +

∫
∂Ω

(δu)w = −
∫

Ω
(∇u∗)T δQ∇u, (3.51)

⇒
∫

∂Ω
wDΛs(δs) = −

∫
Ω
(∇u∗)T δQ∇u, (3.52)

and we identify the adjoint derivative of Λσ as

(δs,D∗Λσ(w))Ω = −
∫

Ω
∇uT δQ∇u∗, (3.53)

where u, u∗ solve the primal and adjoint problems, respectively, and (·, ·)Ω is the L2(Ω)

inner product. In terms of our original calculation of the variation of the boundary error,

we have

D

(
1
2
‖Λsf − g‖2

L2

)
(δs) = −

∫
Ω
∇uT δQ∇u∗, (3.54)

where u∗ solves the adjoint problem with w = Λsf − g, representing the error in our guess

for the Neumann-to-Dirichlet map for current-voltage pair (f, g). When this error is zero

for all modes i = 1 . . .M , the variation of the boundary-error term is zero. The role of the

adjoint derivative framework is to interpret variability on the boundary — the boundary

error — to variability in the interior — the error in conductivity.
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In the discrete setting, the right-hand side of equation (3.54) is a sum over edges,

weighted by the variations δqij in the stiffness matrix elements:

−
∑
i∼j

δqij(ui − uj)(u∗i − u∗j ). (3.55)

Applying formula (2.9) for the qij in terms of the interpolants si, over hinge ijkl,

δqij =− 1
|ij|2

(cot θijk + cot θijl) δsi −
1
|ij|2

(cot θjik + cot θjil) δsj

+
1

2Aijk
δsk +

1
2Aijl

δsl.
(3.56)

This completes the linear relationship between the variation of the boundary-error term and

the variations δsi, from which we compute the gradient of the boundary error. Since the

adjoint method is constructed using integration by parts, developing the discrete adjoint

derivative starting with the discrete finite element form of the primal and adjoint equations,

and using summation by parts produces exactly the result we have here.

Calculating the gradient of the boundary-error term for a particular s(x) means solving

two PDE, the 0th-order primal problem and the adjoint problem. These problems have the

same stiffness matrix, and so need to be assembled only once. This adjoint method can be

extended to compute higher-order variations of the boundary-error term. In particular, in

order to minimise the objective, we need to compute its Hessian. However, we find that

this problem is sufficiently well-behaved that we can use finite-difference approximations to

the Hessian in our codes.

3.3.2 Regularisation

The idea of the regularisation term is to provide a criterion for choosing between several

qualitatively different choices for the conductivity that might reduce the boundary error,

given that the problem is ill-posed. Our regularisation selects for conductivities that are

in some way smooth at the scale of our mesh, and is called Tikonhoff regularisation for

where it appears in the minimisation problem. The parameter ν weighs the importance of

matching the data, given in the boundary-error term, against the importance of having a

smooth solution. The regularisation criteria we have found appropriate for this problem
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control the smoothness of the trace of Q. In particular, we have investigated regularisation

using ‖trQ‖TV and ‖∇trQ‖L2 , that is, the total variation norm and the L2(Ω)-norm of the

gradient, respectively.

There are two reasons we choose to regularise the problem using the smoothness of trQ.

First, trQ is the sum of the eigenvalues of Q and hence is rotation invariant. Another

rotation-invariant choice is detQ, the product of the eigenvalues. However, our second

reason for choosing trQ is that it is linear in s(x), and so in our interpolants si, while the

determinant is not.

In the continuous setting, Q is constructed from weak second derivatives of s(x). How-

ever, our representation for s(x) is piecewise linear, and we must justify how we can use s(x)

to represent Q. This question is important, since a meaningful report of the conductivity

is Q itself, not s(x). From an implementation standpoint, we need to approximate Q itself

from the interpolants si in order to perform our trQ regularisation.

A specific calculation justifies using only piecewise linear s(x) to approximate Q. Set Vi

the Voronoi region associated to vertex i, and ∂Vi its boundary. See Figure 3.1. Now we

compute using the divergence theorem

∫
Vi

trQ =
∫

Vi

∂xxs+ ∂yys (3.57)

=
∫

Vi

∆s (3.58)

=
∫

∂Vi

∇sTdn̂ (3.59)

=
1
2

∑
j∈N (i)

(cotαij + cotαji) (si − sj) (3.60)

The last line assumes a piecewise constant discretisation of s(x), which gives ∇s constant

on each triangle. The angles αij , αji are the angles opposite edge ij on its hinge. This is

the classic cotangent formula for approximating the Laplacian of piecewise linear functions.

At this point, we have only the integral of trQ over the Voronoi area, rather than a

pointwise value. However, because of the smoothness of solutions associated to Q, we know

that arithmetic averages of Q scale stably. Furthermore, we can also compute averages of
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Figure 3.1: The Voronoi region associated to the centre vertex is shaded. The boundary of
the Voronoi region is comprised of the edges dual to the edges incident to the centre vertex.

each of the second partial derivatives of s(x). For example,

〈∂xxs〉 =
1
|Vi|

∫
Vi

∂xxs =
1
|Vi|

∫
∂Vi

∂xs

0

T

dn̂ (3.61)

∂xs is constant on each triangle, so this quantity is well-defined for piecewise linear approx-

imations of s(x). This example illustrates that since we can be satisfied with arithmetic

averages of Q, piecewise linear s(x) are sufficient to reconstruct of conductivity. However,

in our calculations, we choose a slightly different approximation to integral averages of Q.

Consistent with these arguments are other stencils for measuring integrals of curvature

presented in the literature [46, 59, 70, 72]. We choose to approximate Q on triangles using

the stencil of Figure 3.2, whose adequate approximation properties are discussed in [70].

This choice gives a smaller stencil for approximating ∇trQ, and allows us to directly read

the conductivity as second derivatives of an interpolating polynomial for the purposes of

reporting results.

The six points of the stencil are sufficient to define a quadratic interpolant in the neigh-

bourhood of the triangle. This gives

sijk(x, y) = ax2 + bxy + cy2 + dx+ ey + f (3.62)

for constants a, b, c, d, e, f linear in the six interpolants si in the stencil. Differentiating

twice gives a constant approximation

Qijk =

2a b

b 2c

 . (3.63)
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Figure 3.2: Stencil for approximating Q on triangle ijk from the interpolants si at nearby
vertices.

Since a, c are linear in the si, so too is trQijk = 2(a+ c). detQijk is only quadratic in the

si, and so it isn’t onerous to calculate its derivatives with respect to the si. In fact, since
√

detQ = σ ◦ F , for the transformation F from scalar σ to Q, we might prefer to control

detQ directly. However, ‖∇ detQ‖ is not convex, and we see in the simulation results that

the image of detQ closely matches that of trQ in practise.

On the triangulation, we compute the regularisation norm using, for example,

‖trQ‖TV =
∑
i∼j

|ij||trQij − trQji|. (3.64)

The subscripts ij and ji denote values on either side of edge ij. This formula for total

variation of piecewise constant functions over triangular meshes follows from [53]. This is

a convex function of the si, since trQij − trQji is linear in the si, and the absolute value

function is convex. Other choices are the approximated norms

‖trQ‖L1 =
∑
i∼j

|ij∗||ij||trQij − trQji|, (3.65)

‖trQ‖2
L2 =

∑
i∼j

|ij∗||ij| (trQij − trQji)
2 , (3.66)

(3.67)

but we find that the approximation to the total variation norm produces the best results.

At each boundary edge, where Q is defined only on one side of the edge, we assume a value
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Figure 3.3: Placement of ghost vertices and triangles at the boundary of the mesh for
specifying values of the stiffness matrix on boundary edges.

for Q on an imaginary triangle outside the domain. This is similar to the assumption of σ

near the boundary of the domain, as is done in most other EIT algorithms. However, in

contrast to these other algorithms, we use this assumed boundary value for the conductivity

only to facilitate regularisation, and not to otherwise parameterise the conductivity. Still,

at boundaries, we must be careful about how we parameterise s(x), and that is the topic of

the next section.

3.3.3 Boundary values for s

In Chapter 2, we developed the relationship between interpolants si and the stiffness matrix

entries qij for qij at a hinge of the mesh. This presents a problem at the boundary of the

mesh, on edges that border only one triangle. Indeed, by interpolating s(x) as a piecewise

linear function, we have concentrated all of the curvature of s(x), and hence the contribution

of the approximated Q to the stiffness matrix, to the edges on each hinge. We avoided the

boundary problem in Chapter 2 by considering only problems where u = 0|∂Ω, but we do

not have homogeneous boundary data in the inverse problem. The solution is to provide

“ghost” vertices and triangles on the exterior of the mesh.

Figure 3.3 gives an example of how ghost triangles and vertices are added at the bound-

ary of a mesh. s(x) is interpolated at the ghost vertices, providing sufficient degrees of

freedom to specify the stiffness matrix on boundary edges, and these interpolants become

additional variables in the optimisation. The locations of the ghost vertices are somewhat

arbitrary — at each boundary edge, we choose to reflect the vertex inside the domain across

the edge to determine its ghost vertex location. This is one choice that is a compromise

between setting the ghost vertices on the point at infinity, and setting the ghost vertices
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on the boundary edge itself. In the first instance, the area of the associated ghost triangle

goes to infinity, its coefficient in the qij formula, the reciprocal of the triangle area, is zero,

and s(x) interpolated at the ghost vertex has no contribution to the stiffness matrix. In

the second instance, the area of the ghost triangle goes to zero, and the stiffness matrix is

extremely sensitive to the value of the ghost vertex interpolant. Keeping the area and the

angles of the ghost triangle comparable to the dimensions of the other triangle of the hinge

seems a reasonable choice.

We are in effect expanding the domain in order to compute the stiffness matrix at the

boundary, despite the fact that the finite element method does not otherwise require that

we do so. We see one justification for adding degrees of freedom to s(x) at ghost vertices

by comparing the degrees of freedom in the stiffness matrix to the degrees of freedom given

by the interpolants of s(x). Suppose we have a mesh with E edges and V vertices, of which

VI are interior vertices, and VB are boundary vertices. There are E elements qij in the

stiffness matrix, given the symmetry of the matrix, and the fact that its row sums are zero.

Furthermore, since Q is divergence-free, we have the conditions

∑
j∈N (i)

qij (xi − xj) = 0, (2.10)

of which there are two at each interior vertex in dimension 2. Hence, the stiffness matrix

has E − 2VI degrees of freedom.

Now, suppose we count the number of edges in a triangle mesh with respect to the

number of its vertices. Building the mesh up from a single triangle, each time we add a

vertex, we also add two edges. (This is known as adding an “ear” to the mesh.) This is

true except when we add an edge that encloses a vertex in a one-ring, creating an interior

vertex, see Figure 3.4. This means that the total number of edges is

E = 3 + 2(V − 3) + VI . (3.68)

Rearranging this relationship, and noting V = VI + VB gives

E − 2VI = V + VB − 3. (3.69)
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Figure 3.4: Computing the number of edges in a mesh with respect to its number of vertices
and interior vertices. The left figure shows how adding a vertex to a boundary edge adds
two new edges, while the right figure shows that creating an interior vertex requires adding
an edge to complete a one-ring.

The left-hand side is the number of degrees of freedom in the stiffness matrix, and the

right-hand side is the number of degrees of freedom in the piecewise linear interpolation of

s(x). There are V + VB knots for s(x) if we include the ghost vertices, less three degrees of

freedom since s(x) is itself unique only up to the addition of affine functions.

3.3.4 Enforcing convexity

As noted in Chapter 2, convexity of the piecewise linear surface interpolating s(x) is equiv-

alent to qij > 0. This constraint is linear in our solution variables si, and so seems straight-

forward to enforce in the optimisation problem. However, as we showed by the example of

edge-flips in Figure 2.4, even if s(x) is convex, its interpolation may not be so. All the same,

even without adjusting the mesh during the optimisation for the si, requiring qij > 0 does

not in practise present a difficulty to our nonlinear optimising code. One way we might see

such difficulty is where the solution has qij = 0 for some edge, indicating that the optimal

solution is to have no curvature at that edge. Likely, this indicates an edge that should be

flipped in the mesh. However, the effect of having a zero-valued edge in the stiffness matrix

seems to be sufficiently local that it does not qualitatively affect our solves. Moreover,

flipping edges during the optimisation seems to destabilise the solve.

3.3.5 Numerical results

As a test of the use of s(x) as a suitable parameterisation for the inverse problem, we

test the reconstruction using the boundary least-squares error minimisation (3.38). The

algorithm we use is an interior point method provided in the C++ code IpOpt [2]. Details
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Figure 3.5: A sample isotropic conductivity for testing reconstruction. The image on the
left is σ, while the image on the right is

√
detQ = σ ◦ F−1. The dark blue background has

conductivity 1.0, the red circle has conductivity 10.0 and the yellow bar has conductivity
5.0. In this case, all of the features shrink in harmonic coordinates.

of the algorithm appear in [84, 85, 86]. Despite the fact that the boundary-error term is not

convex in the conductivity, and so is not convex in the piecewise linear parameterisation for

s(x), this minimisation does give us sufficiently good results that we can assess the role of

σ-harmonic coordinates in this inverse problem.

Our first test is the reconstruction of a conductivity pattern that is piecewise constant

at a coarse scale. This is similar to the test patterns used in previous work, such as

in [25, 26, 39, 52], and helps us understand what the Neumann-to-Dirichlet map tells us

about divergence-free conductivities. Figure 3.5 shows the original conductivity pattern,

a few large geometric shapes embedded in a constant background conductivity. The first

image in Figure 3.5 is the conductivity that we would expect to recover from boundary

data under the assumption that the conductivity is isotropic. We compare this to the

second image in Figure 3.5, which shows
√

detQ = σ ◦ F−1 for Q the push-forward of

σ by its harmonic coordinates. Although this picture does not capture the anisotropy of

our divergence-free conductivity, it does indicate a difficulty in trying to capture up-scaled

conductivities — in this case, the area of the up-scaled features is significantly smaller than

the original features, and it is difficult to detect small features with EIT, especially far from

the domain boundary.

To reconstruct the conductivity from boundary data, we solve for the Dirichlet data
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given Neumann data sinusoidal over the boundary of the circle.

f (i) =


cos(2πbicθ), i even,

sin(2πbicθ), i odd.
(3.70)

We parameterise the circle boundary by the polar angle θ. bxc is the largest integer not

larger than x. This gives us the (f (i), g(i)) pairs. Note that the decision to use sinusoidal

boundary excitations is arbitrary. As pointed out in [39], the best boundary excitations

can be obtained by diagonalising the boundary map, and this can be done in practise with

only boundary data. However, arguments in [29, 82] which use geometric optics solutions to

show unicity of isotropic EIT reconstruction indicate that sinusoidal excitations are always

nearly optimal.

Images of our reconstruction for the conductivity in Figure 3.5 are given in Figure 3.6.

These reconstructions use M = 18 test modes and we choose regularisation parameter ν =

3×10−3 with the ‖trQ‖TV regularisation. By design of the regularisation, the reconstruction

tends to favour piecewise constant conductivities, and like other reconstruction methods,

blurs the original σ. The circular blob, although having a large conductivity, is difficult to

resolve; as we have already noted, it appears quite small in harmonic coordinates. When

the scale of the conductivity pattern is large, it may indeed be best to search directly for σ

instead of its divergence-free up-scaled value.

The situation is different when the conductivity pattern varies at fine scales. Consider

the laminated pattern in Figure 3.7, the same example conductivity we use in Chapter 2.

Again the first image in Figure 3.7 gives the original conductivity, while the second image

gives
√

detQ = σ ◦ F−1, a representation of the up-scaled conductivity. The fine-scale

structure is difficult to make out in harmonic coordinates, but the homogenised pattern,

which is anisotropic, is detectable by EIT.

Figures 3.8 and 3.9 show the results of the reconstruction. The first set of figures, Fig-

ure 3.8 shows the anisotropy captured by the reconstruction. Comparing the rendering of

s(x) to that in Figure 2.6, page 39, we see that the overall anisotropy is captured — conduc-

tivity is greater in the y-direction than in the x-direction — but the dynamic range of the

reconstruction is muted. The approximate ratio of the y-conductivity to the x-conductivity

is approximately 8:1 in the original, but only 2:1 in the reconstruction. However, we obtain
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Figure 3.6: Reconstruction of the isotropic conductivity in Figure 3.5. The left-hand figure
shows trQ, while the right-hand figure shows

√
detQ. The reconstruction blurs the original

σ, similar to other methods in the literature, but does not underestimate the dynamic range
of the large rectangle.

Figure 3.7: A sample conductivity that, while isotropic at the fine scale, is anisotropic at
the coarse scale. This is the same conductivity of Figure 2.5 which we considered in the
forward problem. The right-hand image gives

√
detQ = σ ◦F−1, showing how in harmonic

coordinates, the fine-scale structure of the medium is difficult to see pointwise. Fortunately,
we can still recover the coarse-scale anisotropy.
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Figure 3.8: Anisotropic reconstruction showing the parameterisation s(x) we recover using
EIT (left image), and the pattern of anisotropy we see by rendering the orientation of the
maximal eigenvalue of Q (right image). The colour-bar in the right image indicates the
strength of the anisotropy as |λmax − λmin|/trQ.

this result over a large range of regularisation weights, ν = 1 × 10−6 to 1 × 10−3, and

over a large range of initial guesses for the conductivity, suggesting that it is indeed the

boundary data, and not any particular bias in our reconstruction method, that indicates

anisotropy. Without the parameterisation s(x) for divergence-free conductivities, we could

not identify this particular anisotropic conductivity from the equivalence class defined by

our Neumann-to-Dirichlet map.

For comparison with the other reconstruction, we show the trace and determinant ofQ in

Figure 3.9. Included in these figures are the ghost boundary ears we add to give complete

hinges on the boundary edges. The plot of the trace is smoother (in the sense of total

variation) than that of the determinant, which is not surprising, since we have controlled

the trace directly in our regularisation. The fact that the trace and determinant patterns

are nearly coincident suggests that regularising the trace of Q is a sufficient substitute

for regularising over the determinant, despite the fact that detQ = σ2 ◦ F−1, and relates

directly to the original scalar conductivity.
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Figure 3.9: The determinant and trace of the reconstructed divergence-free conductivity
Q. That detQ and trQ are nearly coincident even for this anisotropic case suggests that
regularising one of the two regularises the other.

3.3.6 Evaluating algorithms for divergence-free EIT

Reconstructing conductivities by minimisation of program 3.38 is admittedly not competi-

tive with existing methods for tomography of piecewise-constant scalar conductivities. How-

ever, determining divergence-free conductivities is certainly less-well studied than the many

reconstruction techniques for isotropic conductivities, and here, we have succeeded in sim-

ply introducing divergence-free conductivities as new reconstruction candidates. These

candidates are well-suited to representing conductivities having fine-scale variability, while

having low-dimensional representations. While we cannot claim discovery of an optimal

reconstruction method, we can specify criteria appropriate for evaluating future reconstruc-

tion methods which seek divergence-free conductivities.

We propose the following test: An experimenter begins with a homogeneous simply-

connected material, carves out regions of the material, and replaces the removed material

with inclusions having different conductivities than the original. The experimenter knows

where these inclusions are, and asks the mathematician to find them using EIT. If the

mathematician’s reconstruction method is perfect, he will recover the locations and con-

ductivities of all of the experimenter’s inclusions. Succeeding in this test many times will

convince the experimenter that the mathematician’s EIT method is sound.
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Whether simulated or tested by an experimental apparatus, this is the very test per-

formed on isotropic EIT. Owing to the ill-posedness of EIT, experimenters and mathemati-

cians alike are typically satisfied with a reconstruction method that produces the locations

of all inclusions, even if the dynamic range of the reconstructed conductivities is attenuated.

For divergence-free EIT, we need a similar check. The difficulty is that the divergence-free

conductivity is related to the original conductivity by the harmonic coordinates, which are

solutions to an elliptic problem parameterised by the original isotropic conductivity solved

over the entire domain. This means that the divergence-free conductivity at a point depends

on the isotropic conductivity everywhere. Fortunately, we have a relationship between the

isotropic and divergence-free conductivities that holds locally, and we can in some sense

evaluate the possibility of falsely detecting or missing inclusions based on a divergence-free

reconstruction.

Suppose that the experimenter constructs test domains from materials isotropic at the

finest scale. In this case, we know that the divergence-free conductivity Q satisfies

σ =
√

detQ ◦ F, (3.71)

where F : Ω → Ω are the harmonic coordinates for the original conductivity σ. We remind

the reader that F satisfies an elliptic boundary value problem, just as does G = F−1,

div
(

Q√
detQ

∇G
)

= 0, x ∈ Ω,

G = x, x ∈ ∂Ω,
(3.72)

consequential to Theorem 3.1. In R2, F, F−1 ∈ H1(Ω), and H1 embeds in Cα [10]. There-

fore, connected paths remain connected when transformed by F , and likewise by F−1. Also,

in R2, det∇F > 0 strictly, so simple paths remain simple when transformed by F , and again

likewise for F−1. This means that isotropic inclusions are in 1-1 correspondence with in-

clusions in detQ. If a test domain has piecewise constant isotropic inclusions, then perfect

divergence-free reconstruction will detect those inclusions.

Having detected the inclusions, one final task remains for the mathematician: determi-

nation of their location. Relationship (3.71) indicates that the location of inclusions will

be distorted by the harmonic coordinates. Fortunately, (3.72) determines G = F−1, and
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given a perfect reconstruction of divergence-free Q, we can exactly determine σ. Testing

the success of divergence-free EIT with respect to an experimental collection of isotropic

inclusions is meaningful. Note that these arguments are restricted to R2. As we discuss

further in Chapter 4, in dimensions d ≥ 3, simple paths can become crossed under F , and

we have no proof of formula (3.72).

This test of divergence-free EIT falls short in three ways: first, it does not treat con-

ductivities that are anisotropic at the finest scale; second, it makes no comment on the

stability of divergence-free EIT; and third, it does not take advantage of the divergence-free

representation of conductivity to directly represent real fine-scale conductivities, without

transformation by F−1. Recovering conductivities which are anisotropic at the finest scale

cannot be done uniquely: we cannot hope to recover the experimenter’s inclusions. The

best we can hope to do is to identify elements of the equivalence class determined by the

Neumann-to-Dirichlet map. The two natural choices are the isotropic conductivity and the

divergence-free conductivity. Since the divergence-free conductivity has good homogenisa-

tion properties, we expect this to be a good choice, since well-resolved divergence-free con-

ductivities produce solutions close to their poorly-resolved approximations. This is different

than suggesting the divergence-free conductivity is close to the experimenter’s conductivity,

which may not be directly homogenisable.

The second issue is stability: can two similar Neumann-to-Dirichlet maps be consistent

with substantially different divergence-free conductivities? It appears that the answer is

no, or at least, the difference can be no worse than that of an isotropic reconstruction.

Owing to relation (3.71), and the fact that σ > 0, we have that the maximal eigenvalue

of Q satisfies |λmax| ∈ L∞. This furthermore means that ‖Q‖∗ ∈ L∞ in common matrix

norms of Q, where ‖·‖∗ represents one of the induced p-norms, the Frobenius norm, or

the trace norm. The converse also holds, so in these common matrix norms, σ ∈ L∞ and

‖Q‖∗ ∈ L∞ are topologically equivalent, and Alessandrini’s stability result in [13] will hold

for divergence-free conductivities. That is, we approximate Q in a finite subspace of the set

of functions where ‖Q‖∗ is bounded, so

Q =
N∑

i=1

ξi(x)Qi (3.73)
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for basis functions ξi(x). Then, for Q1, Q2 in this subspace,

|‖Q1 −Q2‖∗|∞ ≤ C(N)‖ΛQ1 − ΛQ2‖L(H−
1
2 (∂Ω),H

1
2 (∂Ω))

, (3.74)

where C(N) depends at worse exponentially on N , the size of the basis used to approximate

Q. (Recall that ‖·‖
L(H−

1
2 (∂Ω),H

1
2 (∂Ω))

is an operator norm for NtD.)

Fortunately, bound (3.74) may not be as sharp as it is known to be for isotropic con-

ductivities. Or, it may simply be that owing to the good homogenisation qualities of Q,

N can be smaller than it could be for direct reconstructions of isotropic conductivities. In

any case, it appears that reconstructing divergence-free conductivities is not a detriment to

stability, even when it comes to evaluating sensitivity to missing or falsely detected inclu-

sions. Whether reconstructing divergence-free conductivities can improve stability is not

yet known.

Finally, we will take best advantage of divergence-free reconstructions when we have

methods for directly interpreting which fine-scale conductivities are implied by their diver-

gence-free counterparts. This means building an associative library. A divergence-free

conductivity, for example, that is strongly anisotropic is likely to represent a conductivity

laminated on the finest scale. The difficulty with interpreting divergence-free conductiv-

ities, as already stated, is their non-locality with respect to the fine scale. However, the

relationship σ =
√

detQ ◦ F suggests that there may exist approximate local relationships,

up to composition with the harmonic coordinates. In practise, we furthermore find that

F (x) ≈ x, so interpreting divergence-free conductivities may not be as difficult as the initial

non-locality suggests. That is, many conductivities appear to be nearly divergence-free,

a fact that may allow us to interpret the divergence-free reconstruction as one close to

the true conductivity, even in the case where that conductivity may be anisotropic, and

EIT reconstruction is known to be non-unique. In any case, further research in associating

divergence-free to fine-scale isotropic conductivities will benefit not only EIT, but also the

forward problem, which is currently limited by the need to compute the harmonic coordi-

nates at a fine scale. An associative library could provide an appropriate shortcut to this

procedure.



Chapter 3. The Inverse Problem 90

3.4 Unsuccessful reconstruction algorithms

This final section on EIT in two dimensions itemises the several unsuccessful reconstruction

algorithms we have attempted over the last several years. In order, we discuss reconstruction

of the conductivity as a resistor network, the down-scaling of the conductivity by inverting

the principles of metric-based up-scaling, an adaptation of Calderón’s original algorithm to

the s(x) parameterisation, and the incorporation of so-called variational constraints, already

successful in the EIT problem for scalar conductivities. While unsuccessful as reconstruction

methods, each case illustrates some further understanding of conductivity and the inverse

problem. Our difficulties show the importance in resolving the conductivity in the cone

of σ > 0, Q positive-definite, or s(x) convex, that the conductivity not be otherwise too

constrained, and that the reconstruction be regularised in some way.

3.4.1 Resistor network interpretation

In the case of linear finite elements, we have shown that it is natural to report elements

of the stiffness matrix as values on edges of a triangulation. In turn, we could use this

representation to pose the inverse problem as an inverse conductance network problem,

where the stiffness matrix value on each edge represents the conductance of the edge. This

is a topological interpretation of the problem, and gives further insight into what really is

measurable about conductivity.

In the case of electric conductance, the physical interpretation of this model is that if

ui − uj is the potential difference between endpoints of edge ij, then Jij = qij(ui − uj) is

the electric current flowing through the edge from vertex i to vertex j. The conservation

law at each vertex is exactly the same,

∑
j∈N (i)

Jij =
∑

j∈N (i)

qij(ui − uj) = fi, (3.75)

where fi is the current injected into the network at vertex i. On interior vertices, fi = 0, and

on boundary vertices, fi is an integral of the test current we use to measure the Neumann-

to-Dirichlet map for the network. There is no buildup of charge in the network: indeed, the

row-sum condition on the stiffness matrix implies that for solvability,
∑

i fi = 0.

We emphasise that there is no manifold in this statement of the inverse resistor network
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problem: there is only a network of edges and vertices. However, recalling Glickenstein’s

development [42], summarised by us in Section 2.3, qij is the ratio between the length of a

dual edge to the length of its edge in a weighted Delaunay triangulation. This is reminiscent

of the expression for the conductance of a one-dimensional bar, namely

Conductance =
1

Length
× Cross-section Area× Conductivity, (3.76)

where we interpret Cross-section Area as the dual edge length, and Length as the edge

length. If Conductivity, an isotropic material parameter in this setting, were constant, this

suggests that conductances qij are determined not by any material property, but rather

by the metric geometry of the mesh. However, as a model for the continuum, referring to

Theorem 3.1, while we can always find an isotropic σ in the equivalence class determined

by Λσ, that unique isotropic conductivity may not be constant. Hence, conductivity is not

simply a discrete metric over the triangle mesh, at least not as a model of a metric in the

continuum.

While our idea of conductivity as a metric may not be consistent with the continuum

view, this affects only our interpretation of the stiffness matrix, and there appears to be no

difficulty in treating the problem as an inverse resistor network problem. This problem has

been studied by Curtis and Morrow to the extent that these authors provide a direct (though

ill-conditioned) method for solving the inverse resistor problem on specific networks [31, 32,

33]. Indeed, in the discrete setting, there appears to be plenty of boundary data from which

to deduce the edge values in the interior. With VB boundary vertices, the Neumann-to-

Dirichlet map has

|Λσ| =
VB(VB − 1)

2
(3.77)

degrees of freedom. This accounts for the fact that this linear map is symmetric with

row-sum zero. Recalling our calculation from Section 3.3, the number of edges E in a

triangulation having VI interior vertices is

E = 3VI + 2VB − 3. (3.78)

Unless our mesh choice is pathological, VI = O(V 2
B). However, we find in practise that
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the constant for this growth relation is less than one-half, and the number of edges we are

solving for does not exceed the cardinality of the boundary data.

Such is the case for unstructured triangular networks: Curtis and Morrow go to lengths

to construct patterned networks that not only meet cardinality criteria, but also can be

solved directly from boundary data. On these special networks, conductances are deter-

mined one at a time, with known values used in the computation of succeeding conduc-

tances in their iteration. It happens that error builds exponentially as the solve proceeds,

but with exact arithmetic, their method is correct. The direct method is sensitive to error

in boundary data, but still, recent work uses the circular planar networks of Curtis and

Morrow, combined with a parameterisation of conductivity using the finite-volume method

to compute isotropic conductivities on circular domains [25].

There are few examples of triangular networks meeting the exactness criteria of Curtis

and Morrow, so we attempt to solve the inverse network problem on unstructured networks,

minimising the boundary least-squares functional, our optimisation (3.38) of Section 3.3

without the regularisation term. As we are interested in resolving the homogenisation

divergence-free conductivity, we search the space of interpolants si rather than the space

of edge conductivities, qij . Owing to the geometric information in the relationship between

qij and si, this parameterisation makes the link between the topological connectivity of the

network and its geometry as a triangular mesh embedded in Ω. Were we to solve the inverse

network problem for the qij without the divergence-free constraint, the locations of the

network vertices would be arbitrary. Choosing the vertex locations independently of solving

for the qij is equivalent to choosing a particular element of the equivalence class determined

by the Neumann-to-Dirichlet map. Optimising for the divergence-free element avoids this

ambiguity. Parameterising the problem by the si returns us to the more successful method

already presented, where we furthermore find that some regularisation is needed.

Recognising that the boundary least-squares functional is not convex, we attempt solving

this problem using simulated annealing, a stochastic global optimisation method for non-

convex problems. Our problem is constrained to have positive conductances, qij > 0, and we

are fortunate for the development of constrained simulated annealing algorithms. Simulated

annealing is introduced in the classic text of Nocedal and Wright [62]; see [87] for an

example use of Lagrange multipliers in implementing an inequality-constrained constrained
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algorithm.

Using non-convex optimisation is no minor undertaking, as we found methods for con-

strained simulated annealing to be sensitive to our choice of mesh. Simulated annealing

works by randomly adjusting the problem variables, occasionally taking steps that increase

the value of the cost function. The idea is to prevent the solve from settling in local min-

ima. The frequency of these uphill steps decreases as the solve proceeds, with the preference

against uphill steps decreasing at a problem-specific so-called cooling rate. A large cooling

rate tends to trap the solution in a local minimum, while a small cooling rate lets the solve

run for so long that it never seems to converge. In our case, the optimal cooling rate is

sensitive to the choice of mesh geometry, even for a constant mesh size, so in practise, we

choose a small cooling rate. The algorithm then takes so long to converge that it can only

be applied in practise to coarse meshes.

The trouble with simulated annealing may be due to a sensitivity to finding edge values

near zero. As in the regularised convex optimisation, this is an indication that the mesh

connectivity requires a non-convex interpolation, even though the underlying s(x) is convex.

One way to correct this is to allow the algorithm to flip edges of the triangulation throughout

the solve: unfortunately, this destabilises the annealing solver in practise.

Solving the problem directly as an inverse network problem does not give a unique solu-

tion unless the network is one of a small class of networks, or unless the edge conductances

are divergence-free. Imposing the divergence-free constraint recovers the same boundary-

error term in the objective that we have in the continuum interpretation, and, save the

regularisation term, there is no difference between the two interpretations, save the lack

of regularisation in the network model. In neither case does a numerical solver converge

without some form of regularisation.

3.4.2 Down-scaling the conductivity

In our early attempts at incorporating metric-based up-scaling into EIT, we would first solve

for a coarse stiffness matrix qij , and then down-scale the conductivity to produce an estimate

of the conductivity on the fine scale. The first of these attempts at downscaling is an

iteration to determine isotropic σ and the σ-harmonic coordinates F . Recognising a numeric

instability in down-scaling and determining the F -harmonic coordinates simultaneously,
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our second attempt first down-scales Q before attempting to compute isotropic σ. Neither

method is particularly successful, but both failures show us that confining our admissible

conductivities to those in the equivalence class determined by the Neumann-to-Dirichlet

map is indeed restrictive.

The iteration for the σ-harmonic coordinates is in two steps. First, for given qij on a

coarse mesh, we determine the σ on a fine mesh that is consistent with the given qij and

has optimal smoothness. We experiment with several smoothness metrics, of which the

total-variation of σ seems to give the best result. Hence, this first step is to solve

minimise
σ∈Ph

0

‖σ(n)‖TV

subject to qij = −
∫

Ω
∇(ϕi ◦ F (n))Tσ(n)∇(ϕj ◦ F (n)),

σ(n) > 0,

(3.79)

where we use superscripts n to denote the iteration number. σ is piecewise constant over

triangles. This first step requires that we assume the harmonic coordinates F . Once we

have σ, the second step is to update the harmonic coordinates by solving

−div(σ(n)∇F (n+1)) = 0 x ∈ Ω,

F (n+1) = x x ∈ ∂Ω.
(3.80)

We initialise the iteration by choosing F (0) = x. The trouble is that this iteration does not

converge, although after only a single iteration, this iteration does produce a reasonable

result. See Figure 3.10 for an example. Figure 3.11 is a plot of several convergence metrics

as an iteration proceeds. We see the best images in the first few iterations, where the

constraints that the given qij , our input data, match the stiffness matrix for our current

guess for Q, are most badly violated.

Suspecting that the non-convergence of the iteration is due to the simultaneous down-

scaling of σ and the computation of the harmonic coordinates, as an alternative, we at-

tempted to first resolve the divergence-free conductivity Q at the fine scale, then compute
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Figure 3.10: Output of the harmonic coordinate iteration. The figure on the top left is
the coarse mesh produced by simulated annealing, the input to the harmonic coordinate
iteration. Left to right, top to bottom, the remaining three images show the progression of
the iteration at 1, 10, and 20 steps, showing its instability. The true conductivity is that of
Figure 3.5.
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Figure 3.11: Convergence metrics of the harmonic coordinate iteration. epsF and epsσ are
the change in F and σ between iterations, σTV is the total variation smoothness of σ, and
qerr is the violation of the qij constraints in equation (3.79) following the solve for F . We
see the best images in the first few steps, where the qij constraints are most violated.
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σ and F . This means solving

minimise
Q∈Ph

0

‖∇Q‖∗

subject to qij = −
∫

Ω
∇ϕT

i Q∇ϕj ,

Q positive-definite and divergence-free.

(3.81)

This is a semidefinite convex program, provided the smoothness measure ‖∇·‖∗ for Q is

convex. (For example, ‖∇Q‖∗ could be the total variation of Q.) From a practical perspec-

tive, the code to implement this program is quite complicated, and the solver tends not to

converge. The semidefinite solver has difficulty finding any feasible Q, let alone one that

minimises any smoothness criterion.

Finally, we have attempted solving directly for G = F−1 using our coarse-scale Q, and

equations (3.26).

div
(

Q

|detQ|1/2
∇G

)
= 0, x ∈ Ω,

G = x, x ∈ ∂Ω.
(3.26)

Although the harmonic coordinates F vary on a fine scale, the hope is that their coarse

approximation will be sufficiently close to the true solution that we can initialise the F -σ

iteration and rely on more local convergence of the iteration. Unfortunately, we observe

that solutions to (3.26) on the coarse scale fail to satisfy the consistency condition implied

by (3.35), which relates G1, G2 through Q, indicating that the G we recover is not terri-

bly close to the true solution. Moreover, even if we solve for Q on a fine scale, using the

regularised boundary-error optimisation (3.38), the consistency condition G is sufficiently

well-violated that the solutions to (3.26) are nonsensical. A critical step in solving equa-

tions (3.26) is computing a value for detQ to build a stiffness matrix. The values of this

determinant can be approximated from s(x) using the piecewise-quadratic approximation

for s(x) given, as we recall, by the stencil in Figure 3.2. We suspect that it is the inaccuracy

of these values which spoils the solve for G(x).

The boundary data defines an equivalence class of conductivities, and we use this bound-

ary data to produce a coarse-scale stiffness matrix. The lack of regularisation notwithstand-

ing, all of these failures suggest that the coarse-scale stiffness matrix is too far from any



Chapter 3. The Inverse Problem 98

fine-scale conductivity, either scalar or divergence-free, that we can step toward the fine

scale using a local iteration or convex optimisation. By starting with a coarse scale stiff-

ness matrix, we are, in effect, searching an equivalence class of conductivities, and within

this equivalence class, there are no good guesses we can make for fine-scale conductivities

sufficiently close to a true conductivity that we can take advantage of any supposed local

convergence properties.

3.4.3 Calderón iteration

In his seminal paper on EIT, Calderón showed that the Neumann-to-Dirichlet map is locally

in 1-1 correspondence with an isotropic conductivity [29]. Moreover, the proof is construc-

tive, providing a linearised reconstruction algorithm: as long as the initial guess for the

conductivity is not too far from the actual conductivity, Calderón’s algorithm converges.

The method is so successful, that until the quite recent development of the D-bar method,

the Calderón algorithm was used in EIT medical devices [40, 49]. One of our attempts at

reconstruction is to mimic Calderón’s method, in our case recovering divergence-free con-

ductivities by our s(x) parameterisation. The adapted algorithm fails: unless the initial

guess is extremely close to the true solution, the algorithm tends to lose positivity in Q,

computing non-convex s(x). However, the idea is so simple, and the Calderón algorithm so

central to practical EIT, that we briefly present the idea here.

Calderón’s insight is that if a supposed conductivity Q̃ is close to the true conductivity

Q, then the solution ũ in the interior of the domain is close to the true solution u. That is,

if we solve
−div(Q̃∇ũ) = 0, x ∈ Ω,

ũ = g, x ∈ ∂Ω,
(3.82)

then ũ ≈ u |Ω when ‖Q̃−Q‖ is small. This observation motivates computing

∫
Ω
∇u(1)Q∇u(2) −

∫
Ω
∇u(2)Q̃∇ũ(1)

=
∫

∂Ω
u(1)(Q∇u(2))Tdn̂−

∫
∂Ω
u(2)(Q̃∇ũ(1))Tdn̂ (3.83)

=
∫

∂Ω
g(1)f (2) −

∫
∂Ω
g(2)f̃ (1). (3.84)
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The pairs (f (i), g(i)) are Neumann-Dirichlet solution pairs obtained as boundary measure-

ments of the Neumann-to-Dirichlet map, and f̃ = (Q̃∇ũ)T n̂ in the solution to the approxi-

mate problem (3.82). Setting δQ = Q− Q̃, we make the approximation u ≈ ũ, and we have

an linear equation for updating Q based only on boundary data:

∫
Ω
∇u(1)δQ∇u(2) =

∫
∂Ω
g(1)f (2) − g(2)f̃ (1). (3.85)

(Compare this to the similar update rule, equation (3.54) on page 74 for the nonlinear

optimisation, obtained by the primal-adjoint method.) Calderón uses complex geometric

optics solutions to make all of this rigorous for sufficiently small δQ.

In the discrete setting, we have the linear system

∑
i∼j

δqij(u
(a)
i − u

(a)
j )(u(b)

i − u
(b)
j ) = h(ab), (3.86)

where the h(ab) are a quadrature of the boundary data for solution pairs a, b. Using our

solutions ui from our supposed qij , this gives us one equation for each solution pair a, b.

As we have commented in the context of the resistor network interpretation, most reason-

able triangular meshes have enough boundary nodes that the cardinality of the discrete

Neumann-to-Dirichlet is greater than the number of edges, and this linear system, though

ill-posed, is in practise overdetermined.

Unfortunately, although we regularise equations (3.86), using regularised least-squares

or a truncated singular value decomposition, this method tends to produce search directions

δq that give negative edge conductivities. Edge flipping is again destabilising. All of this

suggests this linearised update rule is inappropriate for finding divergence-free conductiv-

ities. We may also be significantly violating the approximation u = ũ: Calderón assumes

that the boundary test potentials contain only low-order Fourier modes. By interpolating

solutions as piecewise linear functions, we may be violating this assumption too grossly.

3.4.4 Variational constraints

The EIT reconstruction algorithms most robust in the presence of noise is perhaps the work

of Borcea [26], which adds so-called variational constraints to the least-squares boundary-

error minimisation following earlier work of Berryman and Kohn [22]. The addition of these
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constraints tends to better localise high-conductivity inclusions and reduce the reconstruc-

tion’s sensitivity to noise in the boundary data.

The constraints rely on the fact that the energy lost to the conductance of the domain

equals the energy expended at the boundary, which is the inner product of the voltage and

the current density over ∂Ω. We understand this relationship as integration by parts of the

Dirichlet energy: ∫
Ω
∇uTQ∇u =

∫
∂Ω
u(Q∇u)Tdn̂ =

∫
∂Ω
fg. (3.87)

Recognising the monotonicity between the Dirichlet energy and the conductivity Q is the

starting point for the variational constraints, whereupon we restrict Q to a set such that its

Dirichlet energy either exceeds or is exceeded by the known boundary energy. Parameter-

ising Q by s(x) puts these constraints in our framework of divergence-free conductivities.

Consistent with our other findings, however, combining the divergence-free constraint with

the variational constraints makes it difficult for our nonlinear convex optimiser to find a

feasible conductivity, let alone one that minimises the boundary energy.

Variational constraints identify two sets of conductivities, the Dirichlet feasible set and

the Thomson feasible set. A conductivity σ∗ is said to be Dirichlet feasible for boundary

potential g if

(g, (Λσ)−1g)∂Ω = min
u=g|∂Ω

∫
Ω
∇uTσ∇u ≥ (g, (Λσ∗)−1g)∂Ω, (3.88)

and is Thomson feasible for boundary current f if

(f,Λσf)∂Ω = min
∂

∂n
(σu)=f |∂Ω

∫
Ω
∇uTσ∇u ≥ (f,Λσ∗f)∂Ω. (3.89)

At a solution, where Λσ∗ = Λσ, equality holds for both the Dirichlet and Thomson inequal-

ities, and it can be shown that solutions to the inverse problem lie on the intersection of

the boundaries of both sets. The important observation in [22, 26] is that the interior of

the Dirichlet infeasible set lies entirely in the Thomson feasible set, and the interior of the

Thomson infeasible set lies entirely in the Dirichlet feasible set. This means that there

are relatively few conductivities which can be both Thomson and Dirichlet feasible. See

Figure 3.12.
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Solution path
σ1

Dirichlet infeasible
Thomson feasible

feasible
σ2

Thomson infeasible
Dirichlet feasible

Figure 3.12: Feasibility constraints for EIT for a conductivity σ parameterised by only two
conductivities, σ1, σ2. The Thomson feasible region (green ∪ white) is non-convex, while
the Dirichlet feasible region (blue ∪ white) is convex. The solution lies at the intersection
between the two feasible sets, and the solution path is entirely within the Thomson feasible
region. Similar images appear in [22, 26].

As the boundary-error term is minimised, the conductivity approaches the intersection

of the boundaries of both the Thomson and Dirichlet infeasible sets. There are at least

two ways to use Dirichlet or Thomson feasibility to improve the boundary least-squares

error optimisation. The first is to restrict the solution to the set of Thomson infeasible

conductivities, whereupon the convex minimisation algorithm approaches the boundary of

the Thomson feasible set. The second is to restrict the solution to the set of Dirichlet

infeasible conductivities. This second choice is preferred by Borcea for numerical reasons,

as it takes advantage of the convexity of the Dirichlet feasible set. (See again Figure 3.12.)

The complete constrained nonlinear program for an isotropic conductivity σ is

minimise
M∑
i=1

‖Λσf
(i) − g(i)‖+ ν‖∇σ‖,

subject to (g(i), (Λσ)−1g(i))∂Ω ≤ (g(i), f (i))∂Ω, i = 1 . . .M

σ > 0.

(3.90)

Borcea uses a convex optimisation algorithm to solve this problem, and does so successfully,

despite the fact that the problem is non-convex. Neither the Dirichlet constraint nor the

boundary-error term in the objective are convex (although the positivity constraint on σ is).
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This non-convexity may be the source of our difficulty in applying this method to determine

divergence-free anisotropic conductivities. Our divergence-free constraint, in addition to the

variational constraint, may be beyond the flexibility of our convex optimisation algorithm.

That said, Borcea does point out several other equivalent programs that use variational

constraints, and we have yet to explore all of the possibilities numerically.
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Chapter 4

Extensions

Further work in discretizing homogenised conductivities obtained by metric-based up-scaling

could include extensions to other systems with linear constitutive laws, such as linearised

elasticity, or addressing the issue of optimal design by homogenisation. However, instead of

focusing on the applications, we propose in this final chapter the extension of discretized up-

scaled conductivities to higher dimensions, where homogenisation is not so straightforward.

The initial motivation for this extension comes from recent work of Stern et al, which pro-

vides a family of numerical schemes for the free space Maxwell’s equations. These schemes

preserve energy and momentum even for coarse discretizations of time and space [79]. In

the presence of variable electric permittivity and magnetic permeability, however, coarse

spatial discretizations do not faithfully represent materials having fine-scale structure, an

inference from our understanding of conductivity up-scaling. A homogenisation method for

Maxwell’s equations based on integral averages of the fields has already been proposed [78],

although the method is much like representative volume averaging (RVE) in that it not only

requires a separation of coarse and fine scales, but also dictates what the fine scale should

be, without regard for convergence. Fortunately, a formalism already exists for applying

metric-based up-scaling to the spatial components of hyperbolic PDE [64], a formalism that

in two spatial dimensions gives the same parameterisation s(x) and its discrete analogue

we have developed throughout this thesis.

The natural discretization of Maxwell’s equations is in four-dimensional space-time. Just

as we have seen for conductivity, the material parameters permittivity and permeability

define a metric on the discretized solution mesh. Looking even further ahead, studying

the effect of varying this metric may provide a stepping stone for extending the variational

methods of Stern et al to numerical relativity. However, remaining in context of this work

on homogenisation, we will close by discussing some aspects of metric-based up-scaling in

three dimensions, both over the continuum, and in the discrete setting.
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4.1 Parameterising conductivities in R3

Suppose we extend our parameterisation s(x) of up-scaled conductivities to three dimen-

sions. We will still have a conductivity Q = F∗σ that is divergence-free, and we can take

advantage of its redundancy to parameterise Q. In two dimensions, Q is symmetric, giv-

ing three degrees of freedom, from which we subtract the two divergence-free constraints,

leaving Q in a one-parameter family, our functions s(x). In three dimensions, Q symmetric

gives six degrees of freedom, from which we subtract the three divergence-free constraints,

leaving Q in a three parameter family of functions. Naming these three functions q, r, s,

one way to parameterise Q is

Q =


∂yyq + ∂zzs −∂xyq −∂zxs

−∂xyq ∂zzr + ∂xxq −∂yzr

−∂zxs −∂yzr ∂xxs+ ∂yyr

 . (4.1)

In dimension d, there are d(d− 1)/2 such parameters, one associated to each second deriva-

tive ∂xixj , i < j. Setting, say, r, s = 0 in the three-dimensional case, indicating zero con-

ductivity in the z-direction, gives the divergence-free conductivity in two dimensions.

A constraint determining the positivity of Q is not clear, however. In two dimensions,

we identify convexity of s(x, y) with the positivity of Q. In three dimensions, writing

Qxy =


∂yyq −∂xyq 0

−∂xyq ∂xxq 0

0 0 0

 , (4.2)

and likewise for Qyz associated to r and Qzx associated to s, we have Q = Qxy +Qyz +Qzx.

We see that convexity of q, r, s in the xy, yz and zx planes, is sufficient for positivity of Q.

However, this is not a necessary condition, as we see by example: choose

Q = α


1 0 0

0 1 0

0 0 0

 + β


0 0 0

0 1 0

0 0 1

 + γ


1 0 0

0 0 0

0 0 1

 (4.3)

and set α = β = 1, γ = −1/2. Qxy, Qyz are positive-definite, but even though Qzx is
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negative-definite, Q is still positive-definite. Moreover, when the up-scaledQ is constant, the

harmonic coordinates F are just F (x) = x, and Q is the same as the original conductivity:

we can’t blame this result on metric-based up-scaling. We even see in this example that Q

uniquely determines q, r, s (up to affine functions, which don’t affect their convexity), so we

can’t change our choices of q, r, s such that they are all convex. Failure to represent Q in

this simple case by convex functions suggests that convexity of the functions generating Q

is not the correct way to determine its positivity.

More difficult still, with the added freedom in three dimensions, there arises the pos-

sibility that when up-scaled, a conductivity operator can lose ellipticity. With the added

freedom afforded to the flux field in R3, it’s possible at the fine scale for the potential field

to lose monotonicity for boundary conditions u = x|∂Ω. At the coarse-scale, the geometry

of the fine-scale conductivity giving rise to this inversion is lost, and is replaced by up-

scaled conductivity that is not everywhere positive-definite. Briane et al give an example

of a periodic lattice of fine-scale interlocking rings which has this property in asymptotic

homogenisation, a difficultly likewise seen in metric-based up-scaling [27, 65]4.

If a homogenised conductivity does not necessarily form an elliptic operator, this also

raises questions for the inverse problem. Very little is known about anisotropy in general

in the inverse problem for d ≥ 3, let alone a result identifying members of an equivalence

class determined by the Neumann-to-Dirichlet map. Here is where a study of what we can

actually measure could contribute to understanding homogenisation. If all we can measure

about a piece of conductive material is its Neumann-to-Dirichlet map, then we are blind to

its internal structure. Yet, if a unique divergence-free conductivity that is consistent with

the boundary map can be found, then metric-based up-scaling is in some way producing a

sensical up-scaled conductivity. Despite the local loss of ellipticity, it seems that we should

still be able to solve for homogenisation solutions using the up-scaled conductivity since the

up-scaled domain has a well-defined Neumann-to-Dirichlet map.

The situation is analogous to the formation of shocks in nonlinear hyperbolic conserva-

tion laws such as Burgers’ equation. Solving Burgers’ equation by the method of charac-

teristics gives solutions that are well-defined in the characteristic variables of the problem,

but when projected back to the original space-time coordinates give multivalued functions.
4Fortunately, Briane et al also show that this loss of ellipticity cannot happen in any dimension if the

material is merely laminated.
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Our interpretation is that this gives shocks (discontinuities) in the solutions, although the

conservation law, an integral law, implied by the original PDE is preserved. Likewise, con-

ductivity may be positive-definite in its original coordinates, but when pushed forward by

its harmonic coordinates (a nonlinear operation) it loses positivity, but it does not lose its

conservation properties, and we can still observe a sensible Neumann-to-Dirichlet map. It

may be simply that we require the Neumann-to-Dirichlet map to be positive-definite, rather

than requiring Q itself to be pointwise positive-definite. Perhaps this will be a fruitful per-

spective for studying non-ellipticity due to homogenisation.

4.2 Discrete parameterisations of conductivities

An answer for how to restrict Q in three dimensions so that it maintains its conservation

properties may be discovered from the discrete view of the functions q, r, s which generate

the up-scaled conductivity. One way to expand our view of divergence-free conductivity is

to frame our parameterisations for q, r, s and for the resulting stiffness matrix elements in

terms of a discrete differential complex. Such complexes are introduced in [34] for discrete

exterior calculus, and in [16, 17] where they are used for constructing mixed finite element

families having favourable stability properties.

In the continuum, differential forms and their exterior derivatives together form a com-

plex. Setting Λ(k)(Ω) the set of k-forms over manifold Ω, and d(k) the exterior derivative

on elements of Λ(k)(Ω), we form the complex where the dimension5 of Ω is n,

R ↪→ Λ(0) d(0)

−−→ Λ(1) d(1)

−−→ · · · d(n−1)

−−−−→ Λ(n) −→ 0. (4.4)

This is the de Rham complex. In the continuum, it satisfies d(k+1) ◦d(k) = 0, a consequence

of Stokes’ theorem. Moreover, provided the domain Ω is “reasonable” (Ω simply connected

is sufficient), the dual of this statement, the Poincaré lemma, holds: If ω ∈ Λ(k+1), and

dω = 0, then there is α ∈ Λ(k) such that ω = dα. If forms are discretized properly, then a

discrete complex analogous to (4.4) has these same consistencies.

We discretize the de Rham complex by noting that forms are quantities that can be
5We must switch notation here: d is so commonly used for the exterior derivative that we cannot also

use it for the dimension of the space.
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integrated over regions of sub-manifolds. Following [34], discrete exterior calculus recognises

that these regions are quantised when the manifold is a simplicial complex (such as a

triangulation), so discrete differential forms are defined only on elements of the simplicial

complex. For example, 1-forms are defined on edges and 2-forms are defined on faces,

corresponding to their integration over paths and areas. Most importantly, there is no

interpolation of forms between simplicial elements in this context. (This perspective is

specific to [34] – see [16] for an example of a framework where forms are interpolated.)

Avoiding interpolation contributes to the coordinate-free representation of forms as values

on vertices, edges, faces, and so forth.

Discrete exterior calculus discretizes the exterior derivative, completing a discrete con-

struction of the complex (4.4). In this setting, d(k) is a linear operation from k-forms to

(k+1)-forms which can be represented as a matrix multiplication. To give an idea of the

form of this matrix, if α is a 0-form with values αi, αj on vertices of oriented edge ij, then

ωij , the value of ω = dα on edge ij, is αj − αi. Similar definitions exist for higher-order

exterior derivatives, with the design that every discrete exterior derivative satisfy a discrete

Stokes’ theorem. The important consequence of the discrete Stokes’ theorem is that by

their definition, every discrete exterior derivative satisfies d(k+1) ◦d(k) = 0. This means that

even in the discrete setting, (4.4) is a complex. Further work in [35] shows that a discrete

Poincaré lemma also holds exactly in this framework.

Looking back at conductivities in R2, we see that we have formed a differential complex,

though it is not the de Rham complex. We have

R ↪→ S
A−→ Q

B−→ V −→ 0. (4.5)

Working immediately with discretized quantities, A is the linear operation that computes

the stiffness matrix qij ∈ Q from the parameterisation si ∈ S. B is the linear opera-

tion that computes the divergences vi ∈ V of the stiffness matrix at interior vertices by

equation (2.10):

vi =
∑

j∈N (i)

qij (xi − xj) . (4.6)

By construction, we have B ◦ A = 0, and so (4.5) is a complex. We know in the contin-

uum that this complex supports an analogue to the Poincaré lemma: if a conductivity is
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divergence free, then we can parameterise it by some s(x), unique up to the addition of

affine functions. Numerical experiments suggest that this is true in the discrete setting,

but we do not yet have a proof. Arnold et al identify the continuous analogue of (4.5) as

the elasticity complex in their application of this complex to produce stable mixed finite

element methods for two-dimensional elasticity [17, 18]. They use higher-order elements

than our parameterisation of s(x), and it would be interesting to know if our low-order

parameterisations give similarly stable methods.

It remains to be seen if divergence-free stiffness matrices can be incorporated into higher-

order complexes, either for the purpose of furthering higher-dimensional linearised elasticity,

or representing homogenised conductivities. Arnold et al claim that no such framework in

higher dimensions yet exists [17]; a good starting point may be to establish the relationship

between piecewise linear interpolants for q, r, s and the conductivity stiffness matrix. For

example, just as we developed a coordinate-free relationship between the si and qij in R2,

we should be able to do the same in higher dimensions, removing the rectangular bias of

our Qxy, Qyz, Qzx.

For homogenisation, the benefit of extending our parameterisation to higher dimensions

could be remarkable, as we would reap the numerical rewards of operator compression

to a variety of scales, increasingly important in higher dimensions. We may be able to

form a discrete perspective to decide which divergence-free conductivities give admissible

up-scaled operators based on geometric properties of q, r, s. Appropriate discretization of

up-scaled conductivities could also benefit the inverse problem in higher dimensions, where

our understanding of anisotropic conductivities, largely limited to two dimensions, could

be expanded by the question of what we are really measuring about conductivity by the

response of a material at its boundary.
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differential-geometry operators for triangulated 2-manifolds, Visualization and

mathematics III (Berlin), Springer-Verlag, 2003, pp. 35–57.

[60] Jennifer L. Mueller, David Isaacson, and Jonathan C. Newell, A reconstruction

algorithm for electrical impedence tomography data collected on rectangular electrode

arrays, IEEE Transactions on Biomedical Engineering 46 (1999), no. 1, 1379–1386.

[61] Adrian I. Nachman, Global uniqueness for a two-dimensional inverse boundary value

problem, Annals of Mathematics 142 (1995), 71–96.

[62] Jorge Nocedal and Stephen J Wright, Numerical optimization, Springer, New York,

2000.

[63] Joseph O’Rourke, Computational geometry in c, 2nd ed., Cambridge University

Press, New York, 1998.

[64] Houman Owhadi and Lei Zhang, Homogenization of the acoustic wave equation with a

continuum of scales, (2006), Submitted, DOI http://arxiv.org/abs/math/0604380v2.

[65] , Metric-based upscaling, Communications on Pure and Applied Mathematics

60 (2006), no. 5, 675–723, DOI http://arxiv.org/abs/math/0505223v5.

[66] , Homogenization of parabolic equations with a continuum of space and time

scales, SIAM Journal on Numerical Analysis 46 (2007), no. 1, 1–36, DOI

http://arxiv.org/abs/math/0512504v1.

[67] Christopher C. Paige and Michael A. Saunders, Lsqr: An algorithm for sparse linear

equations and sparse least squares, ACM Transactions on Mathematical Software 8

(1982), no. 1, 43–71.

[68] D. Pedoe, Geometry, a comprehensive course, 2nd ed., Dover, New York, 1988.

[69] William H. Press, Saul A. Teukolsky, Willian T. Vetterling, and Brian P. Flannery,

Numerical recipes in c++, 2nd ed., Cambridge University Press, New York, 2002.



Bibliography 115

[70] Jason Reisman, Eitan Grinspun, and Denis Zorin, A note on the triangle-centered

quadratic interpolation discretization of the shape operator, Tech. report, New York

University, 2007.

[71] Luca Rondi, A remark on a paper by alessandrini and vessella, Advances in Applied

Mathematics 36 (2006), 67–69.

[72] Szymon Rusinkiewicz, Estimating curvatures and their derivatives on triangle

meshes, Proceedings, 2nd international symposium on 3D data processing,

visualisation and transmission, 2004, pp. 486–493.
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Appendix A

Software credits

All of the software to produce the computational results for this work is written in C++

and compiled on a Linux machine using gcc version 3.4.6. Much assistance in the form of

computational libraries is provided by the computing community. Although credit to the

authors of software is provided in the bibliography, the following lists the packages used to

avoid the reader having to sift through the bibliography for software citations. Wherever

possible, we cite the version number used in our codes — a change in the version currently

available to the reader should indicate packages that are continuing to be developed.

CGAL-3.3.1 http://www.cgal.org — Computational Geometry Algorithms Library, a col-

lection of geometric algorithms and data structures, used in nearly all code for its mesh

data structures and interpolation algorithms; also has built-in variable-precision nu-

meric types, particularly useful for computing signed triangle areas [6]

Qt-3.3 http://doc.trolltech.com/3.3/ — Qt, a GUI toolkit, used in nearly all code as a

user interface to the OpenGL library [4]

GSL-1.10 http://www.gnu.org/software/gsl/ — Gnu Scientific Library, a numerical li-

brary for C and C++ programmers [8]

Triangle-1.6 http://www.cs.cmu.edu/˜quake/triangle.html — Triangle, a 2D quality mesh

generator, used to generate triangle meshes [75]

IpOpt-3.2.4 https://projects.coin-or.org/Ipopt/ — Interior point optimisation library for

C++, used to solve the inverse problem optimisation program [2]

Glpk-4.8 http://www.gnu.org/software/glpk/ — Gnu Linear Programming Kit, used to

solve the inverse problem when posed as an L1-minimisation [7]
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lsqr http://www.stanford.edu/group/SOL/software/lsqr.html — A conjugate gradient type

method for solving sparse least-squares problems, used to compute (si) from (qij) [9,

67]

ConfigFile http://www-personal.umich.edu/˜wagnerr/ConfigFile.html — Configuration file

reader for C++, used everywhere for setting solver parameters at runtime [1]

OpenGL-1.2 http://www.opengl.org/ — Open Graphics Library, an industry standard for

high-performance 3D rendering, used here with the OpenGL Utility Library (GLU) to

render the surface s(x); particularly useful for checking by eye that s(x) is convex [3]

cblas http://www.netlib.org/blas/ — Basic Linear Algebra Subroutines in C, low-level

libraries used by several other packages, as well as to optimise my own conjugate

gradient solver [5]

Numerical Recipes http://www.nr.com/ — Numerical Recipes in C++, used for its SVD

code [69]

CGeom http://maven.smith.edu/˜orourke/books/ftp.html — Computational Geometry

in C, code from a book by Joseph O’Rourke; though the book offers a great deal

more, only the O(n2) convex hull code is used here [63]

CG Although by itself not software, all of the linear solves for this project are done using

the diagonally preconditioned conjugate gradient method. This is not the fastest

method, but for positive-definite systems, it is one of the simplest, particularly given

the help found in Shewchuk’s explanation [76]
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Appendix B

Notation

bxc Largest integer not larger than x

∇F When F : Rd → Rd, element (∇F )ij = ∂xiFj

λmin, λmax Extremal eigenvalues of a matrix

Ω A domain in Rd, closed and bounded unless otherwise indicated

∂Ω Boundary of domain Ω

∂xixjf The second partial derivative of function f with respect to coordinates xi, xj

AT Transpose of matrix A

Aij The element in row i, column j of matrix A

d The dimension; the domain Ω ⊂ Rd

h The scale of a triangulation of Ω

Hs Hessian of scalar function s(x)

I The imaginary number
√
−1

j Flux due to a potential

δv, δ2v First, second variations of v

ϕi Piecewise linear hat function at node i

ψi The pull-back of the piecewise linear hat function, ϕi ◦ F

σ A conductivity, typically having fine-scales

F Harmonic coordinate map
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F∗u Push-forward of function u by coordinate change F ; umay be scalar- or tensor-

valued

Q A conductivity, often the homogenisation from metric-based up-scaling

qij Stiffness matrix value on edge ij. When plural, the entire stiffness matrix is

implied

s(x), s(x, y) Scalar function parameterising a conductivity

si Value of the parameterisation s(x) interpolated at vertex i. When plural, the

entire set of interpolants is implied

u A scalar potential field

(·, ·)Ω L2 inner product over the domain

(·, ·)∂Ω L2 inner product over the domain boundary

‖·‖ Unspecified norm

i, j, k Mesh vertices

i ∼ j Vertices i, j sharing an edge of a triangulation

ij Oriented mesh edge from vertex i to vertex j

ijk Oriented mesh triangle with vertices i, j, k

xi, (xi, yi) Location of mesh vertex i

C1,α Space of functions with Cα first derivatives

Cα Space of Hölder continuous functions with parameter α

H1(Ω) First Sobolev space, W 1,2(Ω). The domain Ω is often implied

H1
0 (Ω) Set of functions in H1(Ω) taking the value zero on ∂Ω

V h Discrete function space approximating solutions at scale h

Wm,p(Ω) Sobolev space of functions having support in domain Ω, with mth-order (and

lower) weak derivatives in Lp. The domain is often implied
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P0 Space of piecewise constant functions

Ph
0 Space of functions piecewise constant over scale h

P1 Space of piecewise linear polynomials

Ph
1 Subspace of P1 piecewise linear over scale h

B(u, v) The bilinear operator associated to the elliptic problem

Bh(u, v) The bilinear operator associated to the elliptic problem, approximated at scale

h

Λs Neumann-to-Dirichlet map parameterised by s(x)

Λσ Neumann-to-Dirichlet map for conductivity σ

Eσ Equivalence class of conductivities consistent with the Neumann-to-Dirichlet

map determined by σ

f (i), g(i) Neumann and Dirichlet boundary data, respectively. Index i identifies f (i)

with g(i) by Λσ(f (i)) = g(i)
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