
A Variational Approach to Eulerian
Geometry Processing of Surfaces and

Foliations

Thesis by

Patrick Mullen

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2007

(Submitted May 21, 2007)

ii

c© 2007

Patrick Mullen

All Rights Reserved

iii

Acknowledgements

Special thanks to my advisor, Mathieu Desbrun, as well as Yiying Tong and Alexander McKenzie

for an enjoyable collaboration. Additional thanks to Santiago V. Lombeyda for volume visualization

of Figures 7.2 and 7.4, and to Peter Schröder, Ken Museth, Jean-Philippe Pons, and anonymous

reviewers for their discussions and comments. This work is supported by NSF (CAREER CCR-

0133983, and ITR DMS-0453145), DOE (DE-FG02-04ER25657), and Pixar.

iv

Abstract

We present a purely Eulerian framework for geometry processing of surfaces and foliations. Contrary

to current Eulerian methods used in graphics, we use conservative methods and a variational inter-

pretation, offering a unified framework for routine surface operations such as smoothing, offsetting,

and animation. Computations are performed on a fixed volumetric grid without recourse to La-

grangian techniques such as triangle meshes, particles, or path tracing. At the core of our approach

is the use of the Coarea Formula to express area integrals over isosurfaces as volume integrals. This

enables the simultaneous processing of multiple isosurfaces, while a single interface can be treated

as the special case of a dense foliation. We show that our method is a powerful alternative to con-

ventional geometric representations in delicate cases such as the handling of high-genus surfaces,

weighted offsetting, foliation smoothing of medical datasets, and incompressible fluid animation.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Previous Work 2

2.1 Background . 2

2.2 Our Approach . 3

3 Processing Eulerian Foliations 5

3.1 Discrete Setup . 5

3.2 Foliations . 6

3.3 Coarea Formula . 7

3.4 Overview of Foliation Processing . 7

4 Surface Advection 9

4.1 Density Advection . 9

4.2 Numerical Integration . 10

5 Gradient Flows in Eulerian Setting 12

5.1 Geometric Functionals . 12

5.2 Eulerian Gradient Flows . 13

6 Examples of Gradient Flows 15

6.1 Surface Offsetting . 15

6.2 Mean Curvature Flow . 18

6.3 Sharpening Flow . 19

7 Applications and Implementation Details 21

7.1 Single Surface Processing . 21

vi

7.2 Conservative Mass Advection for Fluid Simulation 23

7.3 Simultaneous Mean Curvature Flows . 25

7.4 Implementation Details . 25

8 Conclusions 27

8.1 High Order Lie Advection (HOLA) . 27

8.2 Extensions . 28

A WENO Weights and Integrals 29

Bibliography 32

1

Chapter 1

Introduction

Evolving surfaces, be it for modeling or animation purposes, is a routine task in Computer Graphics.

Over the last decade, the method of choice to process geometry has consisted of a Lagrangian setup

where the surface is explicitly stored as a piecewise-linear mesh, and vertices are moved so as

to achieve the desired deformation [1]. Great success with this approach has been reported for

editing, smoothing, and parameterization, often using variational formulations [2, 3]. Nevertheless,

Lagrangian methods come with their share of difficulties, including mesh element degeneracies, self-

intersections, and topology changes, all of which require delicate treatment. While some of these

issues can be addressed with point sets [4], the problem of continuous (fine) resampling remains,

and the concern of a proper, topologically-sound surface reconstruction arises.

Consequently, Eulerian methods emerged as a great alternative to meshes in several applica-

tions [5, 6, 7]. One particularly successful Eulerian approach is the Level Set Method (LSM),

drawing on the development of numerical solutions to the Hamilton-Jacobi equations in applied

mathematics. The LSM methodology has proven very useful in vision, image processing, as well

as graphics [8, 9] since the traditional hurdles that mesh processing faces are nicely circumvented

due to a parameterization-free treatment. However, other problems arise in this particular Eulerian

approach. From a numerical point of view, the LSM relies on finite difference methods applied to

a distance function. This specific setup has significant consequences, first and foremost being that

volume loss cannot be prevented without using additional (most often Lagrangian) computational

devices. A less obvious consequence is that the variational nature of useful flows such as mean

curvature motion, which was numerically exploited and proven crucial for mesh processing [10], is

no longer respected.

In this work we present an alternative to current purely-Eulerian methods in graphics by describ-

ing a conservative (i.e., mass-preserving) and variational treatment of basic geometry processing

tasks. Based on Geometric Measure Theory, our approach even allows foliation (multiple-surface)

processing, a particularly useful tool, e.g., in the treatment of medical datasets (see Fig. 3.1 & 7.4).

2

Chapter 2

Previous Work

2.1 Background

Computing interface motion in the Eulerian setting has recently received considerable attention in

applied mathematics and computational physics (thorough reviews can be found in, for instance, [8,

9]). These techniques have made promising contributions to geometry processing in the last few

years.

Lagrange vs. Euler There is a clear historical preference for Lagrangian methods in surface

processing, probably due to the classical parametric definition of surfaces in differential geometry.

Moreover, the large number of efficient data structures available and the ease with which geometric

quantities (volume, area, curvatures, etc) can be accurately evaluated have contributed to make

meshes the representation of choice for surfaces. In comparison, Eulerian data structures were,

until recently, limited to regular grids or restricted octrees. However, recent progress (e.g., [11])

is a clear sign that fast and concise Eulerian representations can now compete with mesh-based

methods—their most salient property over mesh-based approaches being the natural handling of

complex topology changes without special treatment.

Level Set Method Over the years Eulerian approaches have even shown superiority in appli-

cations such as compression of complex surfaces [12], surface offsetting [13], or even surface mesh

extraction from 3D scans [14]. In applications where high-quality surfaces need to be treated, a

particular Eulerian technique called the Level Set Method has also been successfully used for surface

editing [6], smoothing [7], texturing [15], and even incompressible fluid animation [16] to mention a

few. The basic idea of the LSM is to represent a surface as the zero level set of a signed distance

function, referred to as the level set function, and to evolve this function according to a partial

differential equation of motion [17]. This level set function is efficiently stored as discrete values on

a fixed regular grid, allowing for simple Finite Difference schemes to integrate the motion.

3

There are, however, serious theoretical and practical issues with LSM. First, the use of a distance

function brings inherent limitations: even in the continuous limit, a Lie-advected distance function

is no longer a distance function. Consequently, an Eulerian discretization of this particular setup

introduces an inevitable numerical drift resulting in volume loss, particularly in regions of high

curvature. A multitude of remedies to this intrinsic deficiency have been proposed, sometimes as

simple as refining the grid, but often at the cost of significantly higher computational complexity

[18, 19, 20, 21, 22, 15]. The addition of a large amount of Lagrangian particles was introduced as

a way to compensate for volume loss [23], although high-frequency perturbations of the surface can

appear [15] (one promising approach is to store the level set on SPH-like particles [24] as it benefits

from a dual Lagrangian-Eulerian representation). Second, the LSM uses a traditionally cell-centered

representation of vector fields, incompatible with conventional incompressible Navier-Stokes solvers

that use staggered Marker-And-Cell (MAC) grids.

Gradient Flows Gradient flows are the linchpin of geometry processing: many now-traditional

geometric tools for meshes such as mean curvature flow (MCF), shape optimization, and conformal

parameterization are best expressed and numerically resolved through simple variational princi-

ples [1, 25] mostly based on L2-minimizations. However, Eulerian geometric methods (including

LSM) rarely exploit these variational qualities to derive robust numerical schemes. In particular,

the numerical implementation of MCF in LSM relies on finite differences to directly approximate the

partial differential equations, instead of treating the underlying variational principles.

2.2 Our Approach

In this work, we propose a fully-Eulerian approach to geometry processing that is numerically based

on variational principles and designed to preserve fundamental invariants—two critical differences

from LSM-based techniques. We show that processing foliations allows the treatment of single

surfaces and multiple surfaces in a unified framework based on the Coarea Formula. Reusing existing

numerical techniques as much as possible (e.g., the large body of work on Eulerian advection), we

go through the list of basic geometry processing tools: advection, outward and inward offset, mean

curvature flow, and other gradient flows.

Our contributions include a number of distinctive features:

• We use a fully Eulerian representation for our surface(s), eliminating the need to prevent the

typical degeneracies of Lagrangian mesh elements.

• Unlike LSM, volume control is facilitated by construction, allowing conservative flows (as in

the case of incompressible fluid simulation) to be easily approximated.

4

• Gradient flows are numerically achieved through a simple variational approach based on the

Coarea Formula. In particular, we perform mean curvature flow through area minimization as

proposed in [26]—but with no need for regularization.

• Multiple surface processing (where all the isosurfaces in a dataset are handled at once) is easily

achieved.

5

Chapter 3

Processing Eulerian Foliations

Before delving into the mathematical foundations of our approach, we first discuss the dedicated

data structures and representations we wish to utilize. We focus particularly on finding a represen-

tation that is as simple as possible (a single value per grid cell to optimize efficiency and memory

requirements), but able to capture basic geometric measures like area.

3.1 Discrete Setup

A fully-Eulerian setup requires special types of surface representations: we only allow ourselves to

encode and process data stored on a fixed grid. However, the exact type of data to use is, a priori,

arbitrary. Out of the various possibilities, we must rule out using the conventional LSM distance

function representation: as we discussed earlier, such a setup does not appear to be a viable solution

due to an inevitable loss of volume however accurate its numerical treatment is—particularly in the

case of incompressible fluids (see Fig. 4.2 for a simple example). Unfortunately, Volume-Of-Fluid

methods (VOF, where the exact ratio of occupancy of an object within each cell is stored [27]) must

also be ruled out despite their perfect volume control, due to their notorious difficulty in accurately

evaluating geometric quantities such as curvatures. Note that newer variants have partially addressed

this deficiency, at the price of a dramatic increase in data storage and processing [28]. Embracing

the specificity of Eulerian grids, the Phase Field Method (PFM) by [29] proposes instead the notion

of a smeared interface representation, where grid cells in a finite width around the interface capture

rapid but smooth transitions in density. PFM, however, presupposes the profile of the smeared

interface, requiring very fine grids to obtain detailed results.

Finite Volumes Instead, we opt for a (cell-centered) Finite-Volume setup, where a single value

per cell is stored. This setup falls in the category of interface capturing methods, as it defines

the interface as a region of steep gradient of a characteristic-like function (as opposed to LSM-like

interface tracking methods which treat the interface as a sharp discontinuity moving through a grid).

6

Figure 3.1: Foliation Processing: Two isovalues of a volumetric data set before (left) and after
(right) a mean curvature flow is performed simultaneously on all of the isovalues. Grid Size: 2803

This setup has an obvious physical interpretation: acknowledging the fact that explicitly maintaining

a perfect Heaviside function of the object is impossible in this discrete Eulerian setting, we do not

encode the exact surface, but instead store an approximate (blurred, in a sense) mass density of

the object inside each cell. Thus, a cell with a value of 0 will be considered completely outside the

object, a cell at 1 will be considered as completely inside, and the rest of the cells (with densities

varying from 0 to 1) represent a smeared interface of the object. (Note that we will use the terms

density and mass density interchangeably as our explanations will always use densities restricted

to [0, 1].) Unlike VOF or PFM, we do not restrict the profile of our density function, avoiding the

computational overhead incurred when a special profile needs to be maintained, as well as allowing

the treatment of multiple isosurfaces with varying shape. Note finally that this density-based setup

will facilitate the use of this Eulerian representation in applications such as fluid simulation.

3.2 Foliations

The use of smeared-out Heaviside functions to define an interface is common in phase field and level

set methods (e.g., when surface tension must be transferred to the surroundings). However, unlike

LSM and PFM that use predefined expressions for the smearing (typically piecewise Gaussian or sine

functions), we will demonstrate that there is significant benefit to keeping our approach valid for any

function: we will be able to either accurately capture the motion of a single surface by keeping the

density function sharp, or process the whole family of isosurfaces that a density function represents.

Such a family of isosurfaces of a given function in R3 is a foliation, while a single isosurface is a

leaf of this foliation (think “layers” of an onion as an analogy). At the core of our approach is the

idea that one could manipulate foliations instead of single surfaces: we do not favor one isosurface

over another, but rather move them all in concert. We show in the next section that such foliation

processing can be achieved through simple volume integration, which has a natural resilience against

7

numerical noise.

Single Surface as a Sharp Foliation For the treatment of single surfaces, we offer a compromise

between the inherent volume loss of LSM and the artifacts found in exact volume-preserving VOF

methods. Rather than trying to preserve the volume of a particular isosurface, we instead use

conservative methods to exactly preserve the total mass used to represent the surface. This mass

conservation leads to standard volume conservation in the limit of a sharp (unsmeared) interface,

in which case our representation becomes the characteristic function of the surface. To this end, a

sharpening procedure (akin to the LSM redistancing) can be employed to maintain a sharp interface

and therefore give good volume control while minimizing artifacts. In particular, this exact mass

preservation means simulations of moving interfaces (e.g. fluids) can be run indefinitely without

continually accumulating volume loss.

3.3 Coarea Formula

Geometric Measure Theory provides a wealth of geometric knowledge particularly relevant in graph-

ics: its use of integration and measure theory provides generalizations of differential notions to

discrete surfaces. For instance, discrete (integral) curvatures are nicely defined through Steiner’s

polynomial [30], a variational characterization of infinitesimal displacements. Of particular interest

in our work is another celebrated result from Geometric Measure Theory (surprisingly absent in the

graphics literature) called the Coarea Formula [31]. When reduced to the case of 3D (Euclidean)

space, this formula states that for a scalar field ρ with mild continuity conditions, integrating a

function over each of its isolevels in a region R can be done directly by a volume integral over R

through: ∫
R

∫
ρ−1(c)∩R

f(x) dA dc =
∫
R

f(x) |∇ρ|dV, (3.1)

where c denotes an isovalue of ρ, ρ−1(c) represents the c-isosurface (i.e., the set of 3D points such

that ρ(x) = c), and f(.) is an arbitrary function of space. In other words, the term |∇ρ| measures a

local “density of isosurface area”. Consequently, if we think of the foliation consisting of all ρ−1(c) as

the representation of a “smeared interface”, the Coarea Formula elucidates the relationship between

the sum of area integrals and a global volume integral. We now have not only a representation, but

also a mathematical formalism to process it.

3.4 Overview of Foliation Processing

In the remainder of this work, we discretize a domain Ω by a regular grid G (extension to arbitrary

grids will be discussed in Section 8). A grid cell of G is denoted Ci, and the spacing between cells is

8

denoted h. A cell average 1
h3

∫
Ci

ρdV is abbreviated to ρi. We denote Fij the (oriented) face between

cells Ci and Cj . The mass flux between these cells (i.e., the amount of mass per unit time crossing

Fij) is denoted fij (a positive value meaning a transfer from i to j). Finally,

when using a vector field u, we denote uij its flux through the face Fij , i.e.,

uij =
∫

Fij
u ·nFij

dA. The step size used for time integration is denoted dt.

Foliation Evolution In our Eulerian framework, generating a particular type of surface(s) evo-

lution is achieved through an update of the density field ρ. As we will see next, such an update is

performed via integration of a partial differential equation of the general form (different from the

LSM due to its conservative and variational nature):

∂ρ

∂t
= −

advection︷ ︸︸ ︷
∇·(ρu) +

gradientflows︷ ︸︸ ︷
∂L
∂ρ |∇ρ| (3.2)

The first rhs term is an advection (i.e., the surface is moved along a given vector field) corresponding

to the classical mass continuity (hyperbolic partial differential) equation. The second term handles

a large class of surface deformations known as gradient flows, where the gradient of an energy

functional L is driving the surface’s motion. In particular, we will show that for the mass functional,

a motion in the normal direction to the interface (the traditional outward or inward offset for constant

propagation speed) is generated. A variational, entropy-satisfying numerical scheme will be designed

to avoid artifacts like swallow tails. Another gradient flow that we will demonstrate is the mean

curvature flow (when L is the surface area), now corresponding to a parabolic partial differential

equation. We now review these two terms separately over the course of the next two chapters.

9

Chapter 4

Surface Advection

We first describe how our Eulerian surface(s) representation is updated to achieve advection along

a given vector field u. We follow the typical MAC set-up, i.e., the vector field is given as fluxes on

the grid cell boundaries. Note that these fluxes can be trivially computed regardless of whether the

vector field is given analytically or via node values. Once an advection procedure has been chosen

(whichever it may be), we will then be able to define Eulerian gradient flows in Chapter 5.

4.1 Density Advection

Since our grid stores a density value per cell, evolving the set of all isosurfaces along an external

vector field simply amounts to advecting the density, i.e., transporting mass along the velocity field.

This (Lie) advection is achieved through the following equation:

∂ρ

∂t
+∇·(ρu) = 0 (4.1)

We can enforce this continuous equation weakly on each cell Ci of our regular grid G through

integration, as traditionally done in Finite Volume Methods, by applying the divergence theorem to

the previous equation, yielding

∂

∂t

∫
Ci

ρdV +
∫

∂Ci

(
ρu · ~n

)
dA = 0 (4.2)

The interpretation of this last equation is particularly intuitive: mass gets moved along the vector

field from one cell to the next through faces. This interpretation leads to the evolution equation of

the cell averages:
dρi

dt
= − 1

h3

∑
j∈N (Ci)

fij

where N (Ci) denotes the set of cells adjacent to Ci, while fij refers to the flux of matter between

cells Ci and Cj induced by uij as defined in Section 3.4. Because mass is only transferred across

10

Figure 4.1: Surface Advection: (left) the bunny is advected in a vortex flow causing severe
deformation. (right) Comparison of final results obtained after reversing the vortex flow using a
piecewise-constant (PWC) and WENO-5 advection scheme. Grid size: 2803.

cells, the total mass will be preserved by construction. The crux of advection is thus to derive

“correct” density exchanges at each cell boundary. Note the obvious link with the conventional

level-set Hamilton-Jacobi equation [8]: for divergence-free vector fields, the two continuous partial

differential equations are equivalent—only their numerical treatment differs.

4.2 Numerical Integration

There are a multitude of available finite-volume techniques to determine density flux through cell

boundaries. The reader can find most relevant references in a recent, thorough review by Barth and

Ohlberger [32]. We remain agnostic vis-a-vis the optimal method to use. For our graphics purposes

where visual impact overrides the necessity of accuracy, we opt for a dimension-by-dimension upwind

interpolation. This procedure implements the conventional REA (reconstruct-evolve-average) algo-

rithm in which the density is first locally reconstructed by a polynomial such that it fits the current

cell averages, then evolved through the cell boundary, and finally averaged to deduce the quantity

of mass exchange between two adjacent cells. The lowest order polynomial can often be sufficient in

graphics applications, in which case we use a Godunov piecewise-constant (PWC) approximation.

This is easily computed using:

fij = max(uij , 0)ρi + min(uij , 0)ρj .

When higher accuracy is desirable, a WENO-5 reconstruction [33] is preferable as it picks an average-

preserving polynomial as non-oscillatory as possible (more details can be found in Appendix A). Note

that both PWC and WENO-5 are upwinding, i.e., they have a stronger dependence on data upstream

from u—a very intuitive physical (and numerical) condition to enforce for correctly “pushing” the

density along the vector field. An example of extreme surface deformation is shown in Fig. 4.1, where

a bunny model is advected along a strong, vortex-like wind inducing large deformation. Notice that

such an example done in a Lagrangian setup would require either an extremely dense triangle mesh

to begin with (dense enough to handle the worst deformation), or an adaptive mesh refinement

procedure to avoid artifacts. The difference that WENO-5 can make compared to PWC in quality

11

Figure 4.2: 2D Comparison With LSM: Results of advecting a circle in a vortex flow via the
LSM (top) and our method (bottom), both using WENO-5. Our density-based approach continues
to capture the motion long after the level set has disappeared due to volume loss during advection.
Grid size: 1282

becomes clear if the deformation is reversed: the shape of the original bunny is better preserved

with a high-order advection scheme.

Time Integration We use a first or second-order Runge Kutta (TVD—Total Variation Dimin-

ishing) time integration [34] depending on the targeted accuracy. Time step size may be adapted

according to the maximum velocity in order to satisfy the CFL condition. Our choice of density

advection technique also allows us to take larger time steps if efficiency is at stake with a method

similar to a semi-Lagrangian backtracking: as detailed in [19], the transfer-through-boundary ap-

proach can be used recursively to provide a fast, stable integration method even for time steps larger

than what the CFL stability condition imposes—at the cost of only a small loss of accuracy.

12

Chapter 5

Gradient Flows in Eulerian Setting

Gradient flows are crucial in geometry processing, used in many design and editing tools. A case

in point is the mean curvature flow (MCF) which, by following the gradient of the surface area

functional, provides a geometric diffusion appropriate for denoising [10]. This gradient flow and

its variants spawned several research topics such as conformal mapping and Laplacian editing that

successfully employed the same variational setup. However, in order to define Eulerian counterparts,

we first need to properly define how a geometric functional is expressed for a surface that is no longer

discretized as a 2D simplicial complex, but as a smeared-out interface in space.

5.1 Geometric Functionals

Various geometric measures can be computed with our Eulerian density-based setup. A particularly

simple (yet useful) one is the total mass induced by a given density ρ:

Mρ =
∫

Ω

ρ dV, (5.1)

A cell-localized mass value can similarly be defined as: Mi =
∫

Ci
ρ dV = h3ρi. Another measure

we will use when dealing with a single surface is the deviation D of the density function from the
1
2 -isosurface:

Dρ =
∫

Ω

(ρ− 1
2
)4 dV, (5.2)

This measure will allow us to evaluate how sharp (i.e., how close to a Heaviside function) our

smeared interface is.

One useful property of the Coarea Formula is that it can be used to compute less obvious

geometric measures of surfaces in the Eulerian framework. In particular, the surface area Aρ of a

smeared interface defined by a density field ρ finds an elegant expression and interpretation. Indeed,

one can take all isosurface areas into account and thus define a total Eulerian surface area (integrated

13

throughout the foliation) as:

Aρ
def=

∫
(0,1)

∫
ρ−1(c)∩Ω

dA dc
Eq. (3.1)

=
∫

Ω

|∇ρ| dV (5.3)

Note that, in the limit case of an infinitely fine grid where ρ is exactly a characteristic function (1 for

inside, 0 for outside), this integral equals the area of the (unique) interface. Therefore, this Eulerian

surface area is a direct extension of the usual Lagrangian area, accommodating the volumetric nature

of our spatial discretization. Using the exact same derivation, we can also define a “proportion” of

total area in a cell Ci as simply:

Ai =
∫

Ci

|∇ρ| dV.

5.2 Eulerian Gradient Flows

We approach the notion of gradient flows as a way to evolve all isosurfaces of our density function ρ

in order to minimize a given functional L(ρ). That is, instead of the Lagrangian formulation where a

functional on the surface itself guides the evolution of the interface, all isodensity surfaces conspire to

extremize a volumetric functional. This approach remains in line with our overarching methodology

of treating the interface as a collection of isosurfaces, while coinciding with the Lagrangian definition

in the limit of infinite resolution; it simply accounts for the reality of Eulerian discretization.

Eulerian Norm of Variations In our Eulerian approach, the traditional L2 norm of vector fields

in the Lagrangian setting must now be replaced by a special norm on variations of density δρ: indeed,

a deformation is no longer induced by a surface vector field, but by a volumetric change δρ of the

density function. In fact, a direct application of the Coarea Formula was advocated in [26] to equip

the space of all possible deformation fields δρ with an inner product 〈, 〉ρ through:

〈 δ1ρ, δ2ρ 〉ρ =
∫

Ω

δ1ρ δ2ρ|∇ρ|−1dV (5.4)

for two variations δ1ρ and δ2ρ of ρ. We can now use this metric to define the gradient flow of L

with respect to ρ as:
∂ρ

∂t
= −(

∂L
∂ρ

)] = −∂L
∂ρ
|∇ρ|, (5.5)

where the sharp operator] uses the metric 〈, 〉ρ to transform a differential into a vector [35]. Note

that this continuous expression is exact: no approximations have yet been made.

Weak Form in Tangent Space Droske and Rumpf’s approach continues by defining a weak

(Galerkin) formulation using test functions θ from the tangent space of ρ (i.e., the space in which

∂ρ/∂t lives) and enforcing that 〈∂ρ/∂t, θ〉ρ = 〈−(∂L
∂ρ)], θ〉ρ. Rewritten using the density-based metric

14

leads to the equation: ∫
Ω

∂ρ/∂t θ

|∇ρ|
dV = −

∫
Ω

∂L
∂ρ

θdV.

The use of classical regularization techniques is then proposed to deal with the denominator on the

lhs of this equation.

Discrete Gradient Flows in Dual Tangent Space We, however, prefer to avoid regularization

completely. We resort instead to test functions θ from the dual space of ∂ρ/∂t (i.e., covectors) and

define our weak formulation as enforcing the equality between natural pairings (vector-covector)

with all test functions, i.e., (∂ρ/∂t, θ) = (−(∂L
∂ρ)], θ). This yields the equation

∫
Ω

∂ρ

∂t
θdV = −

∫
Ω

∂L
∂ρ
|∇ρ|θdV.

Both methods are strictly equivalent if arbitrary continuous test functions are used. However, we

can now restrict θ to the space spanned by the piecewise-constant basis functions θi, i.e., where θi

is defined to be 1 inside cell Ci and 0 elsewhere. With this Petrov-Galerkin treatment, a gradient

flow integration step is thus performed by computing:

∂ρi

∂t
= −

∫
Ci

∂L
∂ρ
|∇ρ|dv ≈ −

[
∂L
∂ρ

]
i

|∇ρ|i,

for each cell Ci, meaning that we locally increase/decrease the density according to the gradient of

our functional weighted by the integrated area of the isosurfaces in cell Ci. This basic idea can now

be implemented for various functionals as we describe next.

15

Chapter 6

Examples of Gradient Flows

We now provide examples of basic gradient flows along with numerical details on how to implement

them.

6.1 Surface Offsetting

We start off with the simple example of L = ρ, that is, we wish to extremize the total change of

mass. This gives ∂L/∂ρ = 1, in which case the gradient flow to maximize this functional becomes:

∂ρ

∂t
= |∇ρ|

As previously mentioned, in the case of a sharp interface the total mass becomes the total volume of

the surface as well. In this case the flow can be interpreted as maximizing the change in volume, which

we know to be a uniform motion of the surface along its normal direction, i.e., an offsetting flow.

We will show that this gradient flow can indeed be used for offsetting/insetting surfaces at uniform

or spatially-varying speeds. We will use a simple variational definition of the term |∇ρ| as the

maximum mass gain of a cell (induced by unit velocity) to derive its numerical approximation (the

exact same argument leads to defining the inward flow that maximizes mass loss). For conciseness,

Figure 6.1: Surface Offsetting: bunny undergoes a negative and positive offset via normal flow.
Notice the sharp corners properly created in the process. Grid Size: 3503.

16

we will denote |∇ρ|+i the maximum mass gain that cell Ci can receive in a time step dt, and |∇ρ|−i
its maximum potential mass loss. These two values become identical for infinitely fine grids (i.e., in

the continuous limit), but are different in our discrete setting.

Approximating Local Mass Gain To obtain an accurate approximation of each maximum mass

gain in the grid, we first compute the mass gain that would be incurred by each cell if the density

was advected by an axis-aligned velocity field. This computation is easily achieved by simulating

an advection step for a time step dt, for which the PWC or WENO-5 advection approach detailed

in Section 4 is used to compute the flux on each boundary of the cell for all possible axis-aligned

velocity fields. To simplify our explanations, let us switch to 2D as the extension to 3 dimensions

will be straightforward. Each cell evaluates the following mass-gain values (2 values per axis, one

for each direction):

δx+

i =
∫

Ci

(∇ · (ρ
(

1
0

)
)dt)dV δx−

i =
∫

Ci

(∇ · (ρ
(
−1
0

)
)dt)dV

δy+

i =
∫

Ci

(∇ · (ρ
(

0
1

)
)dt)dV δy−

i =
∫

Ci

(∇ · (ρ
(

0
−1

)
)dt)dV

With these values, we can now derive what the mass increase in the cell would be if the local velocity

within the cell were (ux, uy):

δρi dt =
1
h2

(
max(ux, 0)δx+

i + max(−ux, 0)δx−

i + max(uy, 0)δy+

i + max(−uy, 0)δy−

i

)
. (6.1)

Since we are looking for the maximum mass increase for a unit velocity, we want to extremize the

above expression subject to the constraint |u|2 = u2
x + u2

y = 1. This is done using a Lagrange

multiplier λ, resulting in the objective function δρi dt+λ(u2
x +u2

y−1). Setting its partial derivatives

with respect to ux, uy, and λ equal to 0, and substituting the solution back into Eq (6.1) gives the

equation for the maximum mass increase for a unit velocity in the cell to be:

dt|∇ρ|+i =
1
h2

√
max(max(δx+

i , 0)2,min(δx−
i , 0)2) + max(max(δy+

i , 0)2,min(δy−

i , 0)2) (6.2)

Similarly, if we maximize the magnitude of mass decrease instead, we get:

dt|∇ρ|−i =
1
h2

√
max(min(δx+

i , 0)2,max(δx−
i , 0)2) + max(min(δy+

i , 0)2,max(δy−

i , 0)2) (6.3)

Readers aware of the LSM machinery will notice the resemblance with the Godunov scheme for

normal flows [36]. Hence, our geometric derivation can draw upon applied mathematical results

that proved convergence (in the sense of viscosity solutions) and entropy-satisfying property (as it

avoids the formation of superfluous swallow tails) to demonstrate its validity—as well as its time

17

Figure 6.2: Weighted Offsetting: weighting functions can be used to perform spatially-varying
normal flow. (left) A polynomial function of height is used to grow the bunny’s ears while shrinking
its feet. (right) A sinusoidal function of height adds waves to the bunny surface. Grid Size: 3503.

step restriction. Notice that a closely related scheme to approximate |∇ρ| is the Engquist-Osher

formula [37]. We found that this formula can also be interpreted directly in variational geometric

terms, by simply allowing the velocity to be different at each face of the cell while constraining the

squared sum of all these local fluxes to be unit. This scheme is thus a viable alternative (with fairly

minor visual difference) in our context as well, though its variational roots are less geometrically

obvious.

Implementation Once the terms in Eqs (6.2) and (6.3) have been computed, performing a step

of positive normal flow is done through:

ρt+dt
i = ρt

i + |∇ρt|+i dt,

while a negative normal flow is achieved via:

ρt+dt
i = ρt

i − |∇ρt|−i dt.

Fig. 6.1 provides an example of both flows on the bunny model. For a more general normal flow

with a spatially-varying magnitude µ(x), the update becomes:

ρt+dt
i = ρt

i +
(
max(µi, 0)|∇ρt|+i + min(µi, 0)|∇ρt|−i

)
dt, (6.4)

where µi refers to the integral of µ(x) over the cell Ci. Figure 6.2 shows two examples of choosing µ(x)

to be a nonlinear function of one dimension. Finally, we note that while using a WENO-5 advection

is more accurate for approximating mass gain, the computationally-simpler PWC approach produces

18

Figure 6.3: Mean Curvature Flow: (left) a mean curvature flow of a circle results in a continuous
decrease of the radius; (right) when simulated in an Eulerian setup, our approach (solid line) follows
the analytical value of the radius closer than the LSM (dashed line) of equivalent order (WENO-5).
Grid Size: 1282

very similar visual results in practice.

6.2 Mean Curvature Flow

When the energy functional is the total Eulerian area (i.e., L = Aρ), the resulting gradient flow is

known as the mean curvature flow. Therefore, by applying the general expression of a gradient flow,

we can explicitly update the density to produce a MCF through:

ρt+dt
i = ρt

i −
∂Aρt

∂ρi
(|∇ρt|i dt),

where |∇ρt|i dt is computed as detailed in Section 6.1 depending on the sign of its multiplicator.

What remains to be computed is the term ∂Aρ/∂ρi for a given cell Ci. To achieve this (again focusing

on 2D for clarity), we use a first-order, centered approximation of the gradient for simplicity that

yields:

Ai =
1
2

√
(ρE(i) − ρW (i))2 + (ρN(i) − ρS(i))2,

where N(i), S(i),W (i), E(i) represent respectively the north, south, west, and east neighbor of

cell Ci. Notice that in this low order approximation, ρi does not appear in the above expression.

Remembering that Aρ =
∑

Ai, we can compute

∂Aρ

∂ρi
=

∂AN(i)

∂ρi
+

∂AS(i)

∂ρi
+

∂AW (i)

∂ρi
+

∂AE(i)

∂ρi
(6.5)

Each of these terms on the rhs is easy to compute; for example

∂AE(i)

∂ρi
=

ρi − ρE(E(i))

2AE(i)
(6.6)

19

Figure 6.4: Conservative Mean Curvature Flow: while mean curvature flow (bottom) signifi-
cantly shrinks an object, a conservative version (top) restricts the flow to preserve the mass of the
surface, leading to near-preservation of the volume. Grid size: 1603

While we explain the concept of this approach in 2D, the extension to nD is straightforward. Fig. 6.3

demonstrates how even our first-order definition of the gradient of ρ provides accurate results com-

pared to an analytical solution.

Conservative MCF We can now extend MCF to approximate a conservative mean curvature

flow, a flow defined in the Lagrangian setup as minimizing surface area while preserving the volume.

To implement this flow in Eulerian form, we need to first compute the global mass change ∆M

induced by a given time step. This is achieved by computing

∆M =
∑ ∂Aρt

∂ρi
|∇ρt|i.

We then update each cell according to

ρt+dt
i = ρt

i − (
∂Aρt

∂ρi
− ∆M

Aρt

)|∇ρt|i dt (6.7)

By our definition of ∆M , the total mass is exactly preserved. Note that this is analogous to the

differential geometric way of writing conservative mean curvature flow, where instead of moving

along the normal times κ (mean curvature), the magnitude becomes (κ− κ) where κ is the average

mean curvature over the domain. Fig. 6.4 compares the conservative and non-conservative version

of MCF.

6.3 Sharpening Flow

When treating a single sharp interface the density function may smear over time, particularly with

low-order schemes. As the interface gets more diffused, velocities and densities far from the interface

20

begin to play unintended roles. Additionally, the volume of any particular isosurface can get farther

from the correct value despite mass preservation. In an effort to both maintain good volume control

and keep the interface reasonably sharp, we may resharpen the interface by redistributing the den-

sity while preserving the interface shape. A sharpening gradient flow is performed by maximizing

the deviation function Dρ defined in Eq. (5.2). To avoid over-sharpening (that could lead to grid

aliasing), we add a limiter to the flow such that regions where the density suddenly jumps by more

than a threshold τ (0.4 in all of our experiments) are left intact. Therefore, the whole sharpening

phase is performed by first computing

wi(ρ) = (ρi − .5)3
(

1−min
(
1,

maxj∈N (Ci)(|ρi − ρj |)
τ

))
,

where N (Ci) denotes the set of cells adjacent to Ci; to keep the sharpening conservative (in a manner

similar to the conservative curvature flow), we then compute the total mass change β that one step

of sharpening creates and finally update each cell according to

ρt+dt
i = ρt

i + (wi(ρt)− β

Aρt

)|∇ρt|i dt (6.8)

In practice, |∇ρ|i need only be computed once per sharpening phase and can be reused in the few

iterations needed to sharpen the band.

21

Chapter 7

Applications and Implementation
Details

With the above treatment of Eulerian gradient flows, our approach provides a unified framework for

a wide range of geometry processing applications. We review three examples that we experimented

with, and provide detailed explanations of our implementation.

7.1 Single Surface Processing

When focusing on a single surface (as in Fig. 4.1 and 6.1 for instance), one should maintain the

sharpness of the interface such that most of the isosurfaces remain densely located in a narrow band

around the surface: this strategy will drastically improve the computational efficiency by integrating

the appropriate differential equations solely inside this band. We thus keep track of such a narrow

band of cells around the interface and restrict our computations to only be performed in those band

cells. When ρ reaches certain thresholds (as in a negligible distance from 1, resp. 0) in the boundary

cells of the band, we add the neighboring cells to (resp., remove that cell from) the band, thus

maintaining this band as it evolves in time. Any remaining small inward/outward flux across the

boundary of the band is applied only to the cell in the band, while the mass change that would

have been applied to the outer cell is postponed and accumulated globally. Once the magnitude

of this accumulated mass reaches a threshold, it is reinjected into the system to ensure total mass

preservation over time. In practice, over the course of an entire simulation the total postponed mass

was generally less than half of a percent of the total mass. We stress that this narrow band and

reinjection process is performed only as an optimization. In fact, while extremely valuable for many

geometry processing tasks, computation on a narrow band only may not be desirable depending on

the application (e.g., when dealing with mixed materials or non divergence-free velocity fields).

22

Figure 7.1: Incompressible Fluid Simulation: the feline flows into a thin layer of liquid, showing
plenty of small-scale motion while preserving mass - all in the absence of any Lagrangian artifice.
Grid Size: 1283 for density, 643 for fluid solver

Reinjection There are a few viable options on how to handle the reinjection of the postponed

mass transfers. One simple way is to take a step of normal flow to increase or decrease the total

mass by the necessary amount. We had better results using a second option which reinjects the

mass along the advective vector field. Once the threshold is reached, we use the change from the

previous advection step to add (resp., remove) density only in the cells whose density increased

(resp., decreased), in an amount proportional to their change in that step. This has the advantage

of only affecting densities in regions where it is changed regardless. While this method can cause

slight inaccuracies in the total speed of the advection over long periods of time, it can be sufficient

for visual purposes. A third option, preferred in our tests, is to reinject the mass during sharpening

via a gradient flow, as explained next.

Sharpening When using a narrow band, smearing of the interface leads to a wider band and

therefore a greater computational burden. For this reason the sharpening procedure explained in

Section 6.3 takes on the additional role of maintaining a complexity proportional to the interface

area at all times. Detecting when sharpening is necessary can be done by occasionally approximating

the average width of the band: this is efficiently achieved by dividing the number of cells in the band

by the total surface area given in Eq. (5.3). If this average width exceeds some threshold, sharpening

is performed as explained in Section 6.3. A few conservative gradient flow steps are taken until the

band width is narrow enough. As stated above, reinjection can be performed while sharpening by

subtracting the accumulated mass from β.

23

Figure 7.2: Volumetric Rendering Of Fluid: a bunny-shaped fluid is dropped into a box, pre-
serving the total mass even after gravity is inverted arbitrarily, causing extreme deformation. Notice
how the volumetric rendering reveals intricate details captured by all the isosurfaces throughout the
animation, despite a very coarse resolution (grid size: 643).

Surface Extraction For all of the single-surfaces examples presented, surface extraction was

performed using marching cubes [38] on the .5 isovalue. Several steps of sharpening were performed

prior to the surface extraction to ensure minimal volume variation. Note that this sharpened data

need not be used in continuing the flow, and therefore this can be done as a post-process along

with the surface extraction. While marching cubes was used for its simplicity and robustness, the

ambiguity of the exact location of the interface could be exploited to produce smoother surfaces if

desired. In fact, any smooth surface that approximates the density in the narrow band region would

be a valid surface reconstruction.

7.2 Conservative Mass Advection for Fluid Simulation

Our mass density representation accommodates incompressible free surface fluid flows seamlessly.

Contrary to the level set approach, mass preservation is easily achieved through our advection

scheme (Eq. 4.2) guaranteeing that mass is only exchanged through faces, and hence conserved.

This property avoids the visual artifacts of volume loss traditionally present in particle-free surface

capturing schemes—and without the memory and computational overhead associated with particles.

In fact, having a mass density provides more intricate visualizations than the traditional single level-

set visualization: Fig. 7.2 depicts volume renderings of a long simulation run, showing the complexity

of the details captured in the density function even on a coarse grid—and the mass is preserved

throughout. While we present our basic approach in the following paragraphs, further details of the

24

Figure 7.3: Miscible Fluids: multiple fluid densities can be simulated in our density-based repre-
sentation. Displayed are slices of two miscible fluids to demonstrate that mixing is easily achieved
even on a very coarse grid (643).

fluid simulations can be found in [39].

Our implementation mostly follows [16] applied in conjunction with narrow-band velocity extrap-

olation [40], but now using our Eulerian setup instead of LSM. A cell is included in the Navier-Stokes

solve if it is ‘full’ of fluid (i.e., if ρi > 1−ε), thus allowing pressure projection to a divergence-free ve-

locity field to be computed in the usual fashion. Note that we specify Dirichlet boundary conditions

on the Poisson equation at the fluid/vacuum interface, setting the weight of the dual edge between

two cells on opposite sides of the interface to 1/(1
2 + ρi), where i is the cell on the ‘vacuum’ side of

the interface. This is a heuristic similar in spirit to the level set fluid interface alternative described

by Bridson [41], as we are ensuring that pressure is zero at the surface estimated at the distance of
1
2 + ρi from the fluid cell. A last improvement is also added to combat the unphysical scenario of

ρj > 1 (which can arise during numerical integration): we further augment the Laplacian matrix

L of the Poisson equation by adding (ρj − 1) to Ljj iff ρj > 1, or equivalently by modifying the

rhs of our Poisson equation. This accentuates the pressure in the cell j, therefore naturally pushing

excess mass into neighboring cells during the next advection time step. Notice in Fig. 7.1 that our

density-based Eulerian formulation brings robustness to the simulation as even thin layers of fluid

are treated appropriately. In the continuous setting, mass conservation and true volume preservation

are synonymous under divergence freeness. While this is difficult to achieve in the discrete world,

the aforementioned sharpening procedure goes far to alleviate artifacts of spatial mass diffusion, but

without the visual artifacts often seen with VOF methods.

Miscible fluids can be simulated effortlessly as well, as multiple fluid densities are admissible

in our representation. The total mass density per cell is directly derived as the sum of these fluid

densities. To demonstrate the mixing between liquids, we use a blending of colors to indicate the

types of fluid (see Fig. 7.3). Note that our physically based interpretation of ρ as a mass density could

25

Figure 7.4: MCF Of Multiple Isosurfaces: Foliation processing can perform a mean curvature
flow of all isovalues concurrently. Volumetric rendering allows the visualization of several isovalues
of the 3D medical scan data being simultaneously smoothed. Grid Size: 2803

also be amenable to high-speed compressible fluid models, while again maintaining mass conservation

exactly.

7.3 Simultaneous Mean Curvature Flows

As discussed in the introduction, mean curvature flows performed on meshes are limited: small topo-

logical defects can create degeneracies as triangles distort, requiring either iterative mesh surgery [2]

or an initial topological cleanup [42]. Conversely the Eulerian framework truly shines when dealing

with complex topological objects, as topology changes occur naturally without further complications.

However, our framework allows a nice extension: because our approach is targeting the foliation in-

stead of a particular surface, we can apply our mean curvature flow procedure as is to volumetric

datasets—hence performing a curvature flow of all isovalues collectively and concurrently. This

is particularly desirable for 3D data coming from medical imaging as they represent (often noisy)

density functions, e.g., hydrogen nuclei density in MRI. As our representation is coherent with this

density interpretation, we can smooth all the layers of the head between skin and skull simulta-

neously as shown in Fig. 7.4, while LSM or even Lagrangian methods could only process a single

isosurface at a time. The speedup is therefore significant, providing a cheap, yet geometrically rele-

vant anisotropic filtering of 3D datasets (comparison with a direct (isotropic) Laplacian smoothing

provided in Fig. 7.5).

7.4 Implementation Details

In order to provide a general estimate of timings with our minimally optimized code, we mention

that the advection of the bunny in Fig. 4.1 took 1.5 seconds per time step, the smoothing of all the

isovalues of the medical data set required 30 seconds per time step, and the smoothing of the feline in

Fig. 6.4 required 1.5 seconds per time step for non-conservative MCF and 2 seconds for conservative

MCF. In general inward or outward offsetting takes times comparable to non-conservative MCF for

both volumetric and single surface data. These simulations were performed on a single PC with a

26

Figure 7.5: Comparison With Laplacian: A skull (red) along with the same amount of smoothing
with our mean curvature flow (teal, left) and a standard (isotropic) 3D Laplacian smoothing of the
dataset (green, right). Our mean curvature behaves as expected in convex/concave regions, while
Laplacian flow results in significant outward motion due to interference from neighboring isovalues.
Grid Size: 2803

2.93GHz Intel Core 2 CPU, although only the advection step was implemented to take advantage

of both cores. The fluid simulations were performed on a single 1.86GHz Pentium 4 machine and

took approximately 2 minutes per frame, including the fluid solve, advection, and file I/O.

Several simple ideas were employed to increase the the efficiency of the implementation. At

first an HRLE Grid data structure (as described in [11]) was attempted, and while this reduced

memory usage, a fast algorithm for the frequent cell insertion and deletion that maintained memory

coherency proved difficult and rendered our implementation too slow. We therefore opted to store

the entire grid in an array, along with a separate byte array containing 2 bits per cell to store the

state of the cell as completely inside the interface, completely outside the interface, in the narrow

band, or on the boundary of the narrow band (as explained in Sec. 7.1). Fast enumeration over

the byte array was used to find the cells in which computation need be done. Parallelization of the

advection step was straightforward given a cell’s update dependence only on local data. We assigned

half of the cells to each core for simplicity, though more efficient schemes are surely possible.

27

Chapter 8

Conclusions

We have presented a general Eulerian framework along with the necessary toolkit to perform standard

geometry processing on both single surfaces and foliations through the Coarea Formula. Variational

interpretations, previously proven powerful in Lagrangian settings, are used to derive simple, robust,

and conservative numerical techniques for routine geometric operations such as offsetting, mean

curvature flow, and animation. The applications are clearly numerous, ranging from anisotropic

diffusion of 3D medical data to fluid interface simulations. Although we carefully avoid the use of

Lagrangian devices to remain truly Eulerian, our framework does not prevent either (SPH) particles

or semi-Lagragian path tracing to be incorporated for specific applications. We now conclude with

some extensions and potential future work.

8.1 High Order Lie Advection (HOLA)

The advection equation given in Eq. (4.1) is a special case of the general Lie advection of an arbitrary

differential k-form ω, defined on a manifold M, by a vector field X living on this manifold. This

general Lie advection equation is given by

∂ω

∂t
+ LXω = 0. (8.1)

In recent work [43] the WENO-based advection scheme presented here has been generalized to the

high order Lie advection (HOLA) of arbitrary discrete differential k-forms by discrete vector fields

on discrete manifolds. In this framework our advection scheme becomes the special case where ω = ρ

is an n-form in an n-dimensional Euclidean space. Note that the use of the standard MAC set-up

of storing fluxes on faces in 3 dimensions agrees with this framework, where the vector field X is

represented as a dual 1-form X[, and therefore fluxes are stored on primal faces as a discrete 2-form

?X[. Here the flat ([) operator is one that converts a vector field to a 1-form, and the Hodge Star

(?) converts a k-form to a dual n− k form in n dimensions, both using an appropriate metric.

28

8.2 Extensions

Although we only use explicit integration throughout our work, implicit integration is an obvious

extension deserving investigation. In particular, the mean curvature flow could benefit from the

same treatment as in the Lagrangian setting where the metric was assumed constant during a time

step to allow for a simple implicit update; a similar process could be applied to, e.g., Eq. (6.6) where

the denominator would be evaluated with the current value of ρ while the numerator would represent

ρ at the next time step—resulting in a linear equation to solve for the update. Note also that while

the details of our approach were restricted to regular grids, recent improvements in finite volume

advection schemes [44] should make the extension to simplicial or cell complexes both useful and

straightforward: once advection is properly defined, the exact same variational approaches we used

can be extended to arbitrary grids. Advances in Eulerian data structures should also yield further

computational improvements. We would also like to explore the adaptation of these methods for

treating the free surface of a fluid simulation using variational integrators in spacetime. Farther

reaching future work includes investigation of higher order velocity interpolation (which may be

especially useful for adaptive grids), the use of multidimensional density approximations for more

accurate advection, the development of more advanced surface reconstruction methods, as well as

the study of higher order mean curvature (and Wilmore [26]) flow approximations.

29

Appendix A

WENO Weights and Integrals

We give the stencils and weights used for a WENO advection scheme in our framework. Third order

stencils are used, requiring 4 values per stencil. The 4 stencils can be combined using the weights

w0 = 1
35 , w1 = 12

35 , w2 = 18
35 , and w3 = 4

35 to obtain a 6th order approximation at a point in smooth

regions. The following qi (see Figure A.1) compute the integral of the reconstructed ρ from the

boundary between ρx and ρx+1 to the boundary minus h for each stencil (generally v · dt), where

∆x is the width of each grid cell.

q0 =
h4

24∆x3 (ρx−3 − 3ρx−2 + 3ρx−1 − ρx) +

h3

12∆x2 (−3ρx−3 + 11ρx−2 − 13ρx−1 + 5ρx) +

h2

24∆x
(11ρx−3 − 45ρx−2 + 69ρx−1 − 35ρx) +

h

12
(−3ρx−3 + 13ρx−2 − 23ρx−1 + 25ρx)

q1 =
h4

24∆x3 (ρx−2 − 3ρx−1 + 3ρx − ρx+1)−

h3

12∆x2 (ρx−2 − 5ρx−1 + 7ρx − 3ρx+1)−

h2

24∆x
(ρx−2 − 3ρx−1 − 9ρx + 11ρx+1) +

h

12
(ρx−2 − 5ρx−1 + 13ρx + 3ρx+1)

30

q0

q1

q2

q3

ρx−3 ρx−2 ρx−1 ρx ρx+1 ρx+2 ρx+3

Figure A.1: WENO Stencils: each stencil uses a different group of adjacent cells to compute the
integral of a polynomial reconstruction over the orange region. Note all stencils used include the
upwind (bold) cell ρx.

q2 =
h4

24∆x3 (ρx−1 − 3ρx + 3ρx+1 − ρx+2) +

h3

12∆x2 (ρx−1 − ρx − ρx+1 + ρx+2) +

h2

24∆x
(−ρx−1 + 15ρx − 15ρx+1 + ρx+2)−

h

12
(ρx−1 − 7ρx − 7ρx+1 + ρx+2)

q3 =
h4

24∆x3 (ρx − 3ρx+1 + 3ρx+2 − ρx+3) +

h3

12∆x2 (3ρx − 7ρx+1 + 5ρx+2 − ρx+3) +

h2

24∆x
(11ρx − 9ρx+1 − 3ρx+2 + ρx+3) +

h

12
(3ρx + 13ρx+1 − 5ρx+2 + ρx+3)

The smoothness function we used is the sum of the integral squared of each derivative of the

reconstructed polynomial over the region of the reconstruction Ω, i.e.

S(ρ(x)) =
3∑

k=1

∫
Ω

(
∂k

∂xk
ρ(x))2 dx. (A.1)

31

For the cubic polynomial constructed from ρ0, ρ1, ρ2, and ρ3 this evaluates to

S(ρ0, ρ1, ρ2, ρ3) =
1
60

(867ρ2
0 + 6083ρ2

1 − 11606ρ1ρ2 +

6083ρ2
2 + 3802ρ1ρ3 − 4362ρ2ρ3 + 867ρ2

3 −

2ρ0(2181ρ1 − 1901ρ2 + 587ρ3))

We also tried several other smoothness functions, including weighting the derivatives based on their

order and varying the range of integration, but found little to no qualitative differences in the results.

The above equations are all used in standard WENO fashion to compute the final flux through

the face between ρx and ρx+1 (assuming h = v · dt is positive) as

1
α

3∑
i=0

wiqi

S(ρx+i−3, ρx+i−2, ρx+i−1, ρx+i) + ε
(A.2)

where

α =
3∑

i=0

wi

S(ρx+i−3, ρx+i−2, ρx+i−1, ρx+i) + ε
(A.3)

is a normalization factor, and ε is a small number to avoid division by 0 (taken as 1 × 10−6 in our

experiments).

32

Bibliography

[1] M. Botsch and M. Pauly, “Geometric Modeling based on Triangle Meshes,” 2006, aCM SIG-

GRAPH Course.

[2] U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces and Their Conjugates,”

Experimental Mathematics, vol. 2, no. 1, pp. 15–36, 1993.

[3] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder, “Discrete Shells,” in Symposium on

Computer Animation, 2003, pp. 62–67.

[4] M. Alexa, M. Gross, M. Pauly, H. Pfister, M. Stamminger, and M. Zwicke, “Point-Based

Computer Graphics,” 2006, aCM SIGGRAPH Course.

[5] S. Frisken, R. Perry, A. Rockwood, and T. Jones, “Adaptively Sampled Distance Fields: A

General Representation of Shape for Computer Graphics,” in ACM SIGGRAPH Proc., 2000,

pp. 249–254.

[6] K. Museth, D. Breen, R. Whitaker, and A. Barr, “Level Set Surface Editing Operators,” ACM

Trans. on Graphics, vol. 21, no. 3, pp. 330–338, 2002.

[7] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, “Geometric Surface Processing via Nor-

mal Maps,” ACM Trans. on Graphics, vol. 2, no. 4, pp. 1012–1033, 2003.

[8] J. A. Sethian, Level Set Methods and Fast Marching Methods, 2nd ed., ser. Monographs on

Appl. Comput. Math. Cambridge: Cambridge University Press, 1999, vol. 3.

[9] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, ser. Applied Math-

ematical Sciences. New York: Springer-Verlag, 2003, vol. 153.

[10] M. Desbrun, M. Meyer, P. Schröder, and A. Barr, “Implicit Fairing of Irregular Meshes using

Diffusion and Curvature Flow,” ACM SIGGRAPH, pp. 317–324, 1999.

[11] B. Houston, M. Nielsen, C. Batty, O. Nilsson, and K. Museth, “Hierarchical RLE Level Set: A

Compact and Versatile Deformable Surface Representation,” ACM Trans. on Graphics, vol. 25,

no. 1, pp. 151–175, 2006.

33

[12] H. Lee, M. Desbrun, and P. Schröder, “Progressive Encoding of Complex Isosurfaces,” in Proc.

of ACM SIGGRAPH, 2003, pp. 471–476.

[13] D. Breen and S. Mauch, “Generating Shaded Offset Surfaces with Distance, Closest-Point and

Color Volumes,” in International Workshop on Volume Graphics, March 1999, pp. 307–320.

[14] B. Curless and M. Levoy, “A Volumetric Method for Building Complex Models from Range

Images,” in Proc. of ACM SIGGRAPH, 1996, pp. 303–312.

[15] A. W. Bargteil, T. G. Goktekin, J. F. O’Brien, and J. A. Strain, “A Semi-Lagrangian Contouring

Method for Fluid Simulation,” ACM Trans. Graph., vol. 25, no. 1, pp. 19–38, 2006.

[16] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” in ACM SIGGRAPH, Aug. 2001,

pp. 23–30.

[17] S. Osher and J. E. Sethian, “Fronts Propagating with Curvature-dependent Speed: Algorithms

based on the Hamilton-Jacobi Formulation,” Journal of Computational Physics, vol. 79, pp.

12–49, 1988.

[18] M. Sussman and E. G. Puckett, “A Coupled Level Set and Volume-Of-Fluid method for Com-

puting 3D and Axisymmetric Incompressible Two-phase Flows,” J. Comput. Phys., vol. 162,

no. 2, pp. 301–337, 2000.

[19] P. Frolkovic and K. Mikula, “High-resolution Flux-based Level Set Method,” Preprint 2005-12,

2005, Department of Mathematics and Descriptive Geometry, Slovak University of Technology,

Bratislava.

[20] E. Olsson and G. Kreiss, “A Conservative Level Set Method for Two Phase Flow,” J. Comput.

Phys., vol. 210, no. 1, pp. 225–246, 2005.

[21] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating Water and Smoke with an Octree Data

Structure,” ACM Trans. Graph., vol. 23, no. 3, pp. 457–462, Aug. 2004.

[22] V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Hussaini, “Physics-based Boiling

Simulation,” in EG/ACM SIGGRAPH Symp. on Comput. Anim., 2006, pp. 317–324.

[23] D. Enright, J. F. R. Fedkiw, and I. Mitchell, “A Hybrid Particle Level Set Method for Improved

Interface Capturing,” J. Computational Physics, vol. 183, pp. 83–116, 2002.

[24] S. E. Hieber and P. Koumoutsakos, “A Lagrangian particle level set method,” J. Comput. Phys.,

vol. 210, no. 1, pp. 342–367, 2005.

[25] E. Grinspun, “Discrete Differential Geometry: an applied introduction,” 2006, ACM SIG-

GRAPH Course.

34

[26] M. Droske and M. Rumpf, “A Level Set Formulation for Willmore Flow,” Interfaces and Free

Boundaries, vol. 6, no. 3, pp. 361–378, 2004.

[27] E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider, “A High-order

Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows,” J.

Comput. Phys., vol. 130, no. 2, pp. 269–282, 1997.

[28] V. Dyadechko and M. Shashkov, “Moment-of-Fluid Interface Reconstruction,” LANL Technical

Report LA-UR-05-7571, 2006.

[29] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, “Diffuse-Interface Methods In Fluid

Mechanics,” Annual Review of Fluid Mechanics, vol. 30, pp. 139–165, 1998.

[30] P. Schröder, What Can We Measure, ser. Discrete Differential Geometry, E. Grinspun, P.

Schröder, M. Desbrun (Eds.). ACM SIGGRAPH Course Lecture Notes, 2006, pp. 8–12.

[31] H. Federer, “Curvature Measures,” Trans. Amer. Math. Soc., vol. 93, pp. 418–491, 1959.

[32] T. Barth and M. Ohlberger, Finite volume methods: foundation and analysis, ser. Encyclopedia

of Computational Mechanics, E. Stein, R. de Borst, T.J.R. Hughes (Eds.). John Wiley and

Sons Ltd, 2004, vol. 1, pp. 439–474.

[33] G.-S. Jiang and C.-W. Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comp.

Phys., vol. 126, no. 1, pp. 202–228, 1996.

[34] C. Shu and S. Osher, “Efficient Implementation of Essentially non-Oscillatory Shock Capturing

Schemes,” J. Sci. Comput., vol. 77, pp. 439–471, 1988.

[35] R. Abraham, J. Marsden, and T. Ratiu, Eds., Manifolds, Tensor Analysis, and Applications.

Applied Mathematical Sciences Vol. 75, Springer, 1988.

[36] E. Rouy and A. Tourin, “A Viscosity Solutions Approach to Shape-From-Shading,” SIAM J.

on Num.l Analysis, vol. 29, no. 3, pp. 867–884, 1992.

[37] B. Engquist and S. Osher, “One-Sided Difference Schemes and Transonic Flow,” PNAS, vol. 77,

no. 6, pp. 3071–3074, 1980.

[38] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construc-

tion algorithm,” in SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer

graphics and interactive techniques. New York, NY, USA: ACM Press, 1987, pp. 163–169.

[39] A. McKenzie, “HOLA: a High-Order Lie Advection of Discrete Differential Forms With Appli-

cations in Fluid Dynamics,” Master’s thesis, California Institute of Technology, 2007.

35

[40] D. Adalsteinsson and J. Sethian, “The Fast Construction of Extension Velocities in Level Set

Methods,” J. Computational Physics, vol. 148, pp. 2–22, 1999.

[41] R. Bridson, R. Fedkiw, and M. Müller-Fischer, “Fluid Simulation,” in ACM SIGGRAPH Course

Notes, 2006.

[42] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing excess topology from isosurfaces,”

ACM Trans. Graph., vol. 23, no. 2, pp. 190–208, 2004.

[43] A. McKenzie, D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden, and M. Desbrun,

“HOLA: a High-Order Lie Advection of Discrete Differential Forms,” In Preparation, 2007.

[44] Y. Zhang and C. Shu, “High-Order WENO Schemes for Hamilton-Jacobi Equations on Trian-

gular Meshes,” J. Sci. Comput., vol. 24, pp. 1005–1030, 2003.

